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Resumo

Nos últimos anos prinćıpios de grandes desvios estáticos e dinâmicos de
sistemas de part́ıculas interagentes com bordos estocásticos têm sido muito es-
tudados como um primeiro passo para o entendimento de estados estacionários
fora do equiĺıbrio.

Neste trabalho consideramos Processos de exclusão simêtrico gradiente com
bordos estocásticos em cualquer dimensão e estudamos neste contexto os se-
guintes problemas.

Primeiro apresentamos uma prova da hidrostática baseada no limite hidro-
dinâmico e o fato que o perfil estacionario é um atrator global da equação
hidrodinâmica. Também sâo provados o limite hidrodinâmico e a lei de Fick.

Depois apresentamos uma prova do principio dos grandes desvios dinâmico
para a medida empirica. A prova apresentada aqui é mais simples do que a
usual ja que ao invez de aproximarmos trajetorias com funçã custo finita por
trajetorias suaves, aproximamos o campo externo associado a ele com campos
externos suaves e provamos que as soluçoes fracas da equação hidrodinâmica
com estes campos externos aproximam a trajetoria original. Isto simplifica
consideravelmente a prova dos grandes desvios dinâmicos.

Por último, apresentamos uma prova do principio de grandes desvios para
a medida estacionaria. Mais precisamente, seguindo a estratégia de Freidlin
e Wentzell provamos que a medida estacionária de nosso sistema satisfaz um
prinćıpio de grandes desvios com função custo dada pelo quase potencial da
função custo dinâmica.
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Introduction

Statical and dynamical large deviations principles of boundary driven inter-
acting particles systems has attracted attention recently as a first step in the
understanding of nonequilibrium thermodynamics (cf. [5, 7, 9] and references
therein). One of the main dificulties is that in general the stationary measure is
not explicitly known and moreover it presents long range correlations (cf. [25]).

This work has three purposes. First, inspired by the dynamical approach
to stationary large deviations, introduced by Bertini et al. in the context of
boundary driven interacting particles systems [3], we present a proof of the hy-
drostatics1 based on the hydrodynamic behaviour of the system and on the fact
that the stationary profile is a global attractor of the hydrodynamic equation.

More precisely, if ρ̄ represents the stationary density profile and πN the
empirical measure, to prove that πN converges to ρ̄ under the stationary state
µN

ss, we first prove the hydrodynamic limit stated as follows. If we start from
an initial configuration which has a density profile γ, on the diffusive scale the
empirical measure converges to an absolutely continuous measure, π(t, du) =
ρ(t, u)du, whose density ρ is the solution of the parabolic equation





∂tρ = (1/2)∇ ·D(ρ)∇ρ ,
ρ(0, ·) = γ(·) ,
ρ(t, ·) = b(·) on Γ ,

where D is the diffusivity of the system, ∇ the gradient, b is the boundary
condition imposed by the stochastic dynamics and Γ is the boundary of the
domain in which the particles evolve. Since for all initial profile 0 ≤ γ ≤ 1,
the solution ρt is bounded above, resp. below, by the solution with initial
condition equal to 1, resp. 0, and since these solutions converge, as t ↑ ∞, to
the stationary profile ρ̄, hydrostatics follows from the hydrodynamics and the
weak compactness of the space of measures.

The second contribution of this work is a simplification of the proof of the
dynamical large deviations2 of the empirical measure. The original proof [18,
11, 16] relies on the convexity of the rate functional, a very special property
only fulfilled by very few interacting particle systems as the symmetric simple
exclusion process. The extension to general processes [22, 23, 6] is relatively
technical. The main difficulty appears in the proof of the lower bound where
one needs to show that any trajectory λt, 0 ≤ t ≤ T , with finite rate function,
IT (λ) < ∞, can be approximated by a sequence of smooth trajectories {λn :
n ≥ 1} such that

λn −→ λ and IT (λn) −→ IT (λ) . (0.0.1)
1This is part of one work in partnership with Claudio Landim and Mustapha Mourragui.
2This result is also part of the same work mentioned above
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This property is proved by approximating in several steps a general trajec-
tory λ by a sequence of profiles, smoother at each step, the main ingredient
being the regularizing effect of the hydrodynamic equation. This part of the
proof is quite elaborate and relies on properties of the Green kernel associated
to the second order differential operator.

We propose here a simpler proof. It is well known that a path λ with
finite rate function may be obtained from the hydrodynamical path through an
external field. More precisely, if IT (λ) <∞, there exists H such that

IT (λ) =
1
2

∫ T

0

dt

∫
σ(λt) [∇Ht]2 dx ,

where σ is the mobility of the system and H is related to λ by the equation
{
∂tλ− (1/2)∇ ·D(λ)∇λ = −∇ · [σ(λ)∇Ht]
H(t, ·) = 0 at the boundary . (0.0.2)

This is an elliptic equation for the unknown function H for each t ≥ 0. Note
that the left hand side of the first equation is the hydrodynamical equation.
Instead of approximating λ by a sequence of smooth trajectories, we show that
approximating H by a sequence of smooth functions, the corresponding smooth
solutions of (0.0.2) converge in the sense (0.0.1) to λ. This approach, closer to
the original one, simplifies considerably the proof of the hydrodynamical large
deviations.

The third contribuition of this work is the proof of a large deviation principle
of the empirical density under the invariant measure. More precisely, we prove
that the quasi potential of the dynamical rate function is the large deviation
functional of the stationary state.

We follow closely the approach given in [8]. In fact, the arguments presented
in there can be adapted modulo technical dificulties to our context. However
there is a case not considered in the proof of the upper bound in [8], which we
describe in detail in the following.

For a fixed closed set C in the weak topology not containing the stationary
density ρ̄, small neighborhoods Vδ (which depends on a parameter δ > 0) of ρ̄
are considered. By following the Freidlin and Wentzell strategy, the proof of the
upper bound is reduced to prove that the minimal quasi-potential of densities
in C can be estimated from above by the minimal dynamical rate function of
trajectories which start at Vδ and touch C before a time T = Tδ.

At this moment, in [8] it is supposed that the time T = Tδ is fixed and then,
by a direct aplication of the dynamical large deviation upper bound, the desired
result is obtained. The same argument still works if we assume the existence
of a sequence of parameters δn ↓ 0 with the sequence of times Tδn bounded.
The problem here, is that such bounded sequence doesn’t necessarily exist.
Moreover, by the construction of such times T δ, it is expected that Tδ →∞ as
δ ↓ 0.

In our context, to solve this missing case, we first prove that long trajectories
which have their dynamical rate functions uniformly bounded has to be close
in some moment to the stationary density ρ̄ in the L2 metric, and then we
prove that the quasi potential is continuous at the stationary density ρ̄ in the
L2 topology.
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In this way, we fullfill the gap in [8] described above and extend their result
for a broader class of models. Finally, as a consequence of these facts we obtain
a direct proof of the lower semicontinuity of the quasi potential. In the context
of one dimensional boundary driven SSEP, the lower semicontinuity of the quasi
potential was obtained indirectly by using its exact formulation given in [10, 4].

The organization of this thesis is as follows.

1. Notations and Results

Here we introduce the boundary driven gradient symmetric exclusion pro-
cesses (Section 1.1) and establish some notations in order to describe in detail
the three results mentionated above: hydrostatics (Section 1.2), dynamical large
deviations (Section 1.3), and statical large deviations (Section 1.4).

2. Hydrodynamics and Hydrostatics

In this chapter we prove hydrostatics based on the hydrodynamic behaviour
of the system and on the fact that the stationary profile is a global attractor of
the hydrodynamic equation. More presicely, in Section 2.1 we present a proof
for the hydrostatics and Fick’s law by supposing the hydrodynamic behavior.
A proof for the hydrodynamic behavior can be found in [14] but for the sake
of completeness we present in Section 2.2 a detailed proof based on the entropy
method.

3. Dynamical Large Deviations

Here we obtain a dynamical large deviation principle for the empirical mea-
sure. We start by investigating the dynamical rate function IT (·|γ) in Section
3.1. The main result obtained here is the fact that the dynamical rate function
has compact level sets.

Then, in Section 3.2, we prove IT (·|γ) density, which means that any trajec-
tory λt, 0 ≤ t ≤ T , with finite rate function, IT (λ|γ) <∞, can be approximated
by a sequence of smooth trajectories {λn : n ≥ 1} such that

λn −→ λ and IT (λn|γ) −→ IT (λ|γ) .

This is fundamental for the obtention of the lower bound.
In Section 3.3, we prove large deviation upper and lower bound. The last

one is obtained by the usual arguments (cf. Chapter 10 in [16]) and the IT
density proved in the last section. To prove the upper bound,we have to take
care of some additional technical dificulties, the first one is the fact that the
invariant measure is not explicitly known which difficulties the obtention of
superexponential estimates, the second one is the necessity of energy estimates
in order to prove that trajectories with infinite energy are negligible in the
context of large deviations, and the last one is that we are working with the
empirical measure instead of (as usual) the empirical density.

4. Statical Large Deviations

In this chapter we prove a large deviation principle for the stationary mea-
sure. More precisely, Following the Freidling and Wentzell [15] strategy and
more closely the article [8], we prove that the large deviation functional for
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the stationary measure is given by the quasi potential of the dynamical rate
function.

In Section 4.1 we introduce the functional IT closely related to the dynamical
rate function IT (·|γ) and prove that trajectories which stays a long time far away
from the stationary state ρ̄ pays a nonnegligible cost.

In Section 4.2 we study some properties of the quasi potential. The first
main result obtained here is the continuity of the quasi potential at the station-
ary state ρ̄ in the L2 topology. The second one is a direct proof of the lower
semicontinuity of the quasi potential.

Finally, in Section 4.3 we prove large deviations lower and upper bounds.
The first one is an inmediate consequence of the hydrostatic result and the dy-
namical large deviation lower bound. To prove the upper bound, we proceed as
in [8] and fulfill the gap in there mentioned above by using the results developing
in the previous sections.

5. Weak Solutions

Finally, we study weak solutions of the hydrodynamic equation, of its sta-
tionary solutions and of the equation with external field (0.0.2). These results
are essential in the derivation of many of the results of the previous chapters.
However, we have postponed their proofs until here because they are naturally
expected for weak solutions of quasilinear parabolic equations.

In Section 5.1 we establish existence and uniqueness of weak solutions as
well as monotonicity and uniformly infinitely propagation of speed.

In Section 5.2 we establish energy estimates for weak solutions, which is one
of the mai ingredients in the proof of the results in Chapter 4.

4



Chapter 1

Notations and Results

1.1 Boundary Driven Exclusion Process

Fix a positive integer d ≥ 2. Denote by Ω the open set (−1, 1)×Td−1, where Tk is
the k-dimensional torus [0, 1)k, and by Γ the boundary of Ω: Γ = {(u1, . . . , ud) ∈
[−1, 1]× Td−1 : u1 = ±1}.

For an open subset Λ of R × Td−1, Cm(Λ), 1 ≤ m ≤ +∞, stands for the
space of m-continuously differentiable real functions defined on Λ.

Fix a positive function b : Γ → R+. Assume that there exists a neighbour-
hood V of Ω and a smooth function β : V → (0, 1) in C2(V ) such that β is
bounded below by a strictly positive constant, bounded above by a constant
smaller than 1 and such that the restriction of β to Γ is equal to b.

For an integer N ≥ 1, denote by Td−1
N = {0, . . . , N − 1}d−1, the discrete

(d−1)-dimensional torus of length N . Let ΩN = {−N+1, . . . , N−1}×Td−1
N be

the cylinder in Zd of length 2N−1 and basis Td−1
N and let ΓN = {(x1, . . . , xd) ∈

Z × Td−1
N |x1 = ±(N − 1)} be the boundary of ΩN . The elements of ΩN are

denoted by letters x, y and the elements of Ω by the letters u, v.
We consider boundary driven symmetric exclusion processes on ΩN . A con-

figuration is described as an element η in XN = {0, 1}ΩN , where η(x) = 1 (resp.
η(x) = 0) if site x is occupied (resp. vacant) for the configuration η. At the
boundary, particles are created and removed in order for the local density to
agree with the given density profile b.

The infinitesimal generator of this Markov process can be decomposed in
two pieces:

LN = LN,0 + LN,b ,

where LN,0 corresponds to the bulk dynamics and LN,b to the boundary dy-
namics. The action of the generator LN,0 on functions f : XN → R is given
by

(LN,0f
)
(η) =

d∑

i=1

∑
x

rx,x+ei(η)
[
f(ηx,x+ei)− f(η)

]
,

where (e1, . . . , ed) stands for the canonical basis of Rd and where the second
sum is performed over all x ∈ Zd such that x, x+ ei ∈ ΩN . For x, y ∈ ΩN , ηx,y

is the configuration obtained from η by exchanging the occupations variables
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η(x) and η(y):

ηx,y(z) =





η(y) if z = x ,
η(x) if z = y ,
η(z) if z 6= x, y .

For a > −1/2, the rate functions rx,x+ei(η) are given by

rx,x+ei
(η) = 1 + a

{
η(x− ei) + η(x+ 2ei)

}

if x − ei, x + 2ei belongs to ΩN . At the boundary, the rates are defined as
follows. Let x̌ = (x2, · · · , xd) ∈ Td−1

N . Then,

r(−N+1,x̌),(−N+2,x̌)(η) = 1 + a
{
η(−N + 3, x̌) + b(−1, x̌/N)

}
,

r(N−2,x̌),(N−1,x̌)(η) = 1 + a
{
η(N − 3, x̌) + b(1, x̌/N)

}
.

The non-conservative boundary dynamics can be described as follows. For
any function f : XN → R,

(LN,bf) (η) =
∑

x∈ΓN

Cb(x, η)
[
f(ηx)− f(η)

]
,

where ηx is the configuration obtained from η by flipping the occupation variable
at site x:

ηx(z) =
{
η(z) if z 6= x
1− η(x) if z = x

and the rates Cb(x, ·) are chosen in order for the Bernoulli measure with density
b(·) to be reversible for the flipping dynamics restricted to this site:

Cb
(
(−N + 1, x̌), η

)
= η(−N + 1, x̌)

[
1− b(−1, x̌/N)

]

+
[
1− η(−N + 1, x̌)

]
b(−1, x̌/N) ,

Cb
(
(N − 1, x̌), η

)
= η(N − 1, x̌)

[
1− b(1, x̌/N)

]

+
[
1− η(N − 1, x̌)

]
b(1, x̌/N) ,

where x̌ = (x2, · · · , xd) ∈ Td−1
N , as above.

Denote by {ηt = ηN
t : t ≥ 0} the Markov process associated to the generator

LN speeded up by N2. For a smooth function ρ : Ω → (0, 1), let νN
ρ(·) be the

Bernoulli product measure on XN with marginals given by

νN
ρ(·)(η(x) = 1) = ρ(x/N) .

It is easy to see that the Bernoulli product measure associated to any constant
function is invariant for the process with generator LN,0. Moreover, if b(·) ≡ b for
some constant b then the Bernoulli product measure associated to the constant
density b is reversible for the full dynamics LN .

1.2 Hydrostatics

Denote by µN
ss the unique stationary state of the irreducible Markov process

{ηt : t ≥ 0}. We examine in Section 2.1 the asymptotic behavior of the empirical
measure under the stationary state µN

ss .
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Let M = M(Ω) be the space of positive measures on Ω with total mass
bounded by 2 endowed with the weak topology. For each configuration η, denote
by πN = πN (η) the positive measure obtained by assigning mass N−d to each
particle of η :

πN = N−d
∑

x∈ΩN

η(x) δx/N ,

where δu is the Dirac measure concentrated on u. For a measure ϑ in M and a
continuous function G : Ω → R, denote by 〈ϑ,G〉 the integral of G with respect
to ϑ:

〈ϑ,G〉 =
∫

Ω

G(u)ϑ(du) .

To define rigorously the quasi-linear elliptic problem the empirical measure
is expected to solve, we need to introduce some Sobolev spaces. Let L2(Ω) be
the Hilbert space of functions G : Ω → C such that

∫
Ω
|G(u)|2du <∞ equipped

with the inner product

〈G, J〉2 =
∫

Ω

G(u) J̄(u) du ,

where, for z ∈ C, z̄ is the complex conjugate of z and |z|2 = zz̄. The norm of
L2(Ω) is denoted by ‖ · ‖2.

Let H1(Ω) be the Sobolev space of functions G with generalized deriva-
tives ∂u1G, . . . , ∂ud

G in L2(Ω). H1(Ω) endowed with the scalar product 〈·, ·〉1,2,
defined by

〈G, J〉1,2 = 〈G, J〉2 +
d∑

j=1

〈∂ujG , ∂ujJ〉2 ,

is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2. For each G
in H1(Ω) we denote by ∇G its generalized gradient: ∇G = (∂u1G, . . . , ∂ud

G).
Let Ω = [−1, 1]× Td−1 and denote by Cm

0 (Ω) (resp. Cm
c (Ω)), 1 ≤ m ≤ +∞,

the space of m-continuously differentiable real functions defined on Ω which
vanish at the boundary Γ (resp. with compact support in Ω). Let ϕ : [0, 1] → R+

be given by ϕ(r) = r(1+ar) and let ‖·‖ be the Euclidean norm: ‖(v1, . . . , vd)‖2 =∑
1≤i≤d v

2
i . A function ρ : Ω → [0, 1] is said to be a weak solution of the elliptic

boundary value problem
{

∆ϕ(ρ) = 0 on Ω ,
ρ = b on Γ , (1.2.1)

if

(S1) ρ belongs to H1(Ω):
∫

Ω

‖ ∇ρ(u) ‖2du < ∞ .

(S2) For every function G in C2
0

(
Ω

)
,

∫

Ω

(
∆G

)
(u)ϕ

(
ρ(u)

)
du =

∫

Γ

ϕ(b(u))n1(u) (∂u1G)(u)dS ,

where n=(n1, . . . ,nd) stands for the outward unit normal vector to the
boundary surface Γ and dS for an element of surface on Γ.
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We prove in Section 5.1 existence and uniqueness of weak solutions of (1.2.1).
The first main result of this work establishes a law of large number for the
empirical measure under µN

ss . Denote by Eµ the expectation with respect to a
probability measure µ.

Theorem 1.2.1. For any continuous function G : Ω → R,

lim
N→∞

EµN
ss

[ ∣∣∣∣〈πN , G〉 −
∫

Ω

G(u)ρ̄(u)du
∣∣∣∣
]

= 0 ,

where ρ̄(u) is the unique weak solution of (1.2.1).

Denote by Γ−, Γ+ the left and right boundary of Ω:

Γ± = {(u1, . . . , ud) ∈ Ω | u1 = ±1}

and denote by Wx,x+ei
, x, x+ei ∈ ΩN , the instantaneous current over the bond

(x, x+ ei). This is the rate at which a particle jumps from x to x+ ei minus the
rate at which a particle jumps from x + ei to x. A simple computation shows
that

Wx,x+ei(η) = τx+eihi(η)− τxhi(η) ,

provided x− ei and x+ 2ei belong to ΩN . Here,

hi(η) = η(0) + a{η(0)[η(−ei) + η(ei)]− η(−ei)η(ei)} .

Furthermore, if x1 = N − 1,

Wx−e1,x =
{
η(x− e1)− η(x)

}{
1 + a η(x− 2e1) + a b((x+ e1)/N)

}

and if x1 = −N + 1,

Wx,x+e1 =
{
η(x)− η(x+ e1)

}{
1 + a η(x+ 2e1) + a b((x− e1)/N)

}
.

Theorem 1.2.2. (Fick’s law) Fix −1 < u < 1. Then,

lim
N→∞

EµN
ss

[
2N
Nd−1

∑

y∈Td−1
N

W([uN ],y),([uN ]+1,y)

]

=
∫

Γ−
ϕ(b(v)) S(dv)−

∫

Γ+

ϕ(b(v)) S(dv) .

Remark 1.2.3. We could have considered different bulk dynamics. The impor-
tant feature used here to avoid painful arguments is that the process is gradient,
which means that the currents can be written as the difference of a local function
and its translation.

1.3 Dynamical Large Deviations

Fix T > 0. Let M0 be the subset of M of all absolutely continuous measures
with respect to the Lebesgue measure with positive density bounded by 1:

M0 =
{
ϑ ∈M : ϑ(du) = ρ(u)du and 0 ≤ ρ(u) ≤ 1 a.e.

}
,

8



and let D([0, T ],M) be the set of right continuous with left limits trajectories
π : [0, T ] →M, endowed with the Skorohod topology. M0 is a closed subset of
M and D([0, T ],M0) is a closed subset of D([0, T ],M).

Let ΩT = (0, T ) × Ω and ΩT = [0, T ] × Ω. For 1 ≤ m,n ≤ +∞, denote
by Cm,n(ΩT ) the space of functions G = Gt(u) : ΩT → R with m continuous
derivatives in time and n continuous derivatives in space. We also denote by
Cm,n
0 (ΩT ) (resp. C∞c (ΩT )) the set of functions in Cm,n(ΩT ) (resp. C∞,∞(ΩT ))

which vanish at [0, T ]× Γ (resp. with compact support in ΩT ).
Let the energy QT : D([0, T ],M) → [0,+∞] be given by

QT (π) =
d∑

i=1

sup
G∈C∞c (ΩT )

{
2

∫ T

0

〈πt, ∂ui
Gt〉dt−

∫ T

0

dt

∫

Ω

G(t, u)2 du

}
.

For each G ∈ C1,2
0 (ΩT ) and each measurable function γ : Ω → [0, 1], let

ĴG = ĴG,γ,T : D([0, T ],M0) → R be the functional given by

ĴG(π) = 〈πT , GT 〉 − 〈γ,G0〉 −
∫ T

0

〈πt, ∂tGt〉 dt

−
∫ T

0

〈ϕ(ρt),∆Gt〉 dt +
∫ T

0

dt

∫

Γ+
ϕ(b) ∂u1GdS

−
∫ T

0

dt

∫

Γ−
ϕ(b) ∂u1GdS − 1

2

∫ T

0

〈σ(ρt), ‖∇Gt‖2〉 dt ,

where σ(r) = 2r(1 − r)(1 + 2ar) is the mobility and πt(du) = ρt(u)du. Define
JG = JG,γ,T : D([0, T ],M) → R by

JG(π) =

{
ĴG(π) if π ∈ D([0, T ],M0),
+∞ otherwise .

We define the rate functional IT (·|γ) : D([0, T ],M) → [0,+∞] as

IT (π|γ) =





sup
G∈C1,2

0 (ΩT )

{
JG(π)

}
if QT (π) <∞ ,

+∞ otherwise .

We are no ready to state our second main result.

Theorem 1.3.1. Fix T > 0 and a measurable function ρ0 : Ω → [0, 1]. Consider
a sequence ηN of configurations in XN associated to ρ0 in the sense that:

lim
N→∞

〈πN (ηN ), G〉 =
∫

Ω

G(u)ρ0(u) du

for every continuous function G : Ω → R. Then, the measure QηN = PηN (πN )−1

on D([0, T ],M) satisfies a large deviation principle with speed Nd and rate func-
tion IT (·|ρ0). Namely, for each closed set C ⊂ D([0, T ],M),

lim
N→∞

1
Nd

log QηN (C) ≤ − inf
π∈C

IT (π|ρ0)
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and for each open set O ⊂ D([0, T ],M),

lim
N→∞

1
Nd

log QηN (O) ≥ − inf
π∈O

IT (π|ρ0) .

Moreover, the rate function IT (·|ρ0) is lower semicontinuous and has compact
level sets.

1.4 Statical Large Deviations

Let us introduce PN = µN
ss ◦ (πN )−1, which is a probability measure on M and

describes the behavior of the empirical measure under the invariant measure.
Let ρ̄ : Ω → [0, 1] be the weak solution of (1.2.1) . Following [3], [15], we

define V : M→ [0,+∞] as the quasi potential for the dynamical rate function
IT (·|ρ̄).

V (ϑ) = inf {IT (π|ρ̄) : T > 0, π ∈ D([0, T ],M) and πT = ϑ} .

It is clear that for the measure ϑ(du) = ρ̄(u)du we have that V (ϑ) = 0.
We will prove in Section 3.1 that if IT (π|ρ̄) is finite then π belongs to

C([0, T ],M0). Therefore we may restrict the infimum in the definition of V (ϑ)
to paths in C([0, T ],M0) and if V (ϑ) is finite, ϑ belongs to M0. Reciprocally,
we will see in Section 4.2 that V is bounded on M0.

The last main result of this work establishes a large deviation principle for
the invariant measure.

Theorem 1.4.1. The measure PN satisfies a large deviation principle on M
with speed Nd and lower semicontinuous rate function V . Namely, for each
closed set C ⊂M and each open set O ⊂M,

lim
N→∞

1
Nd

logPN (C) ≤ − inf
ϑ∈C

V (ϑ) ,

lim
N→∞

1
Nd

logPN (O) ≥ − inf
ϑ∈O

V (ϑ) .

10



Chapter 2

Hydrodynamics and
Hydrostatics

2.1 Hydrodynamics, Hydrostatics and
Fick’s Law

We prove in this section Theorem 1.2.1. The idea is to couple three copies of
the process, the first one starting from the configuration with all sites empty,
the second one starting from the stationary state and the third one from the
configuration with all sites occupied. The hydrodynamic limit states that the
empirical measure of the first and third copies converge to the solution of the
initial boundary value problem (2.1.1) with initial condition equal to 0 and 1.
Denote these solutions by ρ0

t , ρ1
t , respectively. In turn, the empirical measure

of the second copy converges to the solution of the same boundary value prob-
lem, denoted by ρt, with an unknown initial condition. Since all solutions are
bounded below by ρ0 and bounded above by ρ1, and since ρj converges to a
profile ρ̄ as t ↑ ∞, ρt also converges to this profile. However, since the second
copy starts from the stationary state, the distribution of its empirical measure
is independent of time. Hence, as ρt converges to ρ̄, ρ0 = ρ̄. As we shall see
in the proof, this argument does not require attractiveness of the underlying
interacting particle system. This approach has been followed in [21] to prove
hydrostatics for interacting particles systems with Kac interaction and random
potential.

We first describe the hydrodynamic behavior. Fix T > 0 and a profile
ρ0 : Ω → [0, 1]. A measurable function ρ : ΩT → [0, 1] is said to be a weak
solution of the initial boundary value problem





∂tρ = ∆ϕ
(
ρ
)
,

ρ(0, ·) = ρ0(·) ,
ρ(t, ·)

∣∣
Γ

= b(·) for 0 ≤ t ≤ T ,
(2.1.1)

in the layer [0, T ]× Ω if

(H1) ρ belongs to L2
(
[0, T ],H1(Ω)

)
:

∫ T

0

ds

(∫

Ω

‖ ∇ρ(s, u) ‖2du
)
<∞ ;
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(H2) For every function G = Gt(u) in C1,2
0 (ΩT ),

∫

Ω

{
GT (u)ρ(T, u)−G0(u)ρ0(u)

}
du−

∫ T

0

ds

∫

Ω

du (∂sGs)(u)ρ(s, u)

=
∫ T

0

ds

∫

Ω

du (∆Gs)(u)ϕ
(
ρ(s, u)

)−
∫ T

0

ds

∫

Γ

ϕ(b(u))n1(u)(∂u1Gs(u))dS ,

where n=(n1, . . . ,nd) stands for the outward unit normal vector to the
boundary surface Γ and dS for an element of surface on Γ.

We prove in Section 5.1 existence and uniqueness of weak solutions of (2.1.1).

For a measure µ on XN , denote by Pµ = PN
µ the probability measure on the

path space D(R+, XN ) corresponding to the Markov process {ηt : t ≥ 0} with
generator N2LN starting from µ, and by Eµ expectation with respect to Pµ.
Recall the definition of the empirical measure πN and let πN

t = πN (ηt):

πN
t = N−d

∑

x∈ΩN

ηt(x) δx/N .

Theorem 2.1.1. Fix a profile ρ0 : Ω → (0, 1). Let µN be a sequence of measures
on XN associated to ρ0 in the sense that :

lim
N→∞

µN

{ ∣∣∣∣〈πN , G〉 −
∫

Ω

G(u)ρ0(u) du
∣∣∣∣ > δ

}
= 0 , (2.1.2)

for every continuous function G : Ω → R and every δ > 0. Then, for every
t > 0,

lim
N→∞

PN
µ

{ ∣∣∣∣〈πN
t , G〉 −

∫

Ω

G(u)ρ(t, u) du
∣∣∣∣ > δ

}
= 0 ,

where ρ(t, u) is the unique weak solution of (2.1.1).

A proof of this result can be found in [14]. Denote by QN
ss the probability

measure on the Skorohod space D([0, T ],M) induced by the stationary measure
µN

ss and the process
{
πN (ηt) : 0 ≤ t ≤ T

}
. Note that, in contrast with the usual

set-up of hydrodynamics, we do not know that the empirical measure at time
0 converges. We can not prove, in particular, that the sequence QN

ss converges,
but only that this sequence is tight and that all limit points are concentrated on
weak solution of the hydrodynamic equation for some unknown initial profile.

We first show that the sequence of probability measures
{
QN

ss : N ≥ 1
}

is
weakly relatively compact:

Proposition 2.1.2. The sequence {QN
ss, N ≥ 1} is tight and all its limit points

Q∗
ss are concentrated on absolutely continuous paths π(t, du) = ρ(t, u)du whose

density ρ is positive and bounded above by 1 :

Q∗
ss

{
π : π(t, du) = ρ(t, u)du , for 0 ≤ t ≤ T

}
= 1 ,

Q∗
ss

{
π : 0 ≤ ρ(t, u) ≤ 1 , for (t, u) ∈ ΩT

}
= 1 .
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The proof of this statement is similar to the one of Proposition 3.2 in [19].
Actually, the proof is even simpler because the model considered here is gradient.

The next two propositions show that all limit points of the sequence
{
QN

ss :
N ≥ 1

}
are concentrated on absolutely continuous measures π(t, du) = ρ(t, u)du

whose density ρ are weak solution of (2.1.1) in the layer [0, T ] × Ω. Denote by
AT ⊂ D

(
[0, T ],M0

)
the set of trajectories {π(t, du) = ρ(t, u)du : 0 ≤ t ≤ T}

whose density ρ satisfies condition (H2).

Proposition 2.1.3. All limit points Q∗
ss of the sequence {QN

ss, N > 1} are
concentrated on paths π(t, du) = ρ(t, u)du in AT :

Q∗
ss{AT } = 1 .

The proof of this proposition is similar to the one of Proposition 3.3 in [19].
Next result implies that every limit point Q∗

ss of the sequence {QN
ss , N > 1} is

concentrated on paths whose density ρ belongs to L2([0, T ],H1(Ω)) :

Proposition 2.1.4. Let Q∗
ss be a limit point of the sequence {QN

ss, N > 1}.
Then,

EQ∗ss

[∫ T

0

ds

(∫

Ω

‖ ∇ρ(s, u) ‖2 du
)]

<∞ .

The proof of this proposition is similar to the one of Lemma A.1.1 in [17].
We are now ready to prove the first main result of this work.

Proof of Theorem 1.2.1. Fix a continuous function G : Ω → R. We claim
that

lim
N→∞

EµN
ss

[ ∣∣〈π,G〉 − 〈ρ̄(u)du,G〉
∣∣
]

= 0 .

Note that the expectations are bounded. Consider a subsequence Nk along
which the left hand side converges. It is enough to prove that the limit vanishes.
Fix T > 0. Since µN

ss is stationary, by definition of QNk
ss ,

Eµ
Nk
ss

[ ∣∣〈π,G〉 − 〈ρ̄(u)du,G〉
∣∣
]

= QNk
ss

[ ∣∣〈πT , G〉 − 〈ρ̄(u)du,G〉
∣∣
]
.

By Proposition 2.1.2, there is a limit point Q∗
ss of

{
QNk

ss : k ≥ 1
}
. Since the

expression inside the expectation is bounded, by Propositions 2.1.3 and 2.1.4,

lim
k→∞

QNk
ss

[∣∣〈πT , G〉 − 〈ρ̄(u)du,G〉
∣∣
]

= Q∗
ss

[∣∣〈πT , G〉 − 〈ρ̄(u)du,G〉
∣∣1{ST }

]

≤ ‖G‖∞Q∗
ss

[∥∥ρ(T, ·)− ρ̄(·)
∥∥

1
1{ST }

]
,

where ‖ · ‖1 stands for the L1(Ω) norm and where ST stands for the subset of
D([0, T ],M0) consisting on those trajectories {π(t, du) = ρ(t, u)du : 0 ≤ t ≤ T}
whose density ρ is a weak solution of (2.1.1). Denote by ρ0(·, ·) (resp. ρ1(·, ·))
the weak solution of the boundary value problem (2.1.1) with initial condition
ρ(0, ·) ≡ 0 (resp. ρ(0, ·) ≡ 1). By Lemma 5.1.4, each profile ρ in AT , including
the stationary profile ρ̄, is bounded below by ρ0 and above by ρ1. Therefore

lim
k→∞

Eµ
Nk
ss

[ ∣∣〈π,G〉 − 〈ρ̄(u)du,G〉∣∣
]
≤ ‖G‖∞

∥∥ρ0(T, ·)− ρ1(T, ·)∥∥
1
.

Note that the left hand side does not depend on T . To conclude the proof it
remains to let T ↑ ∞ and to apply Lemma 5.1.7.
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Fick’s law, announced in Theorem 1.2.2, follows from the hydrostatics and
elementary computations presented in the Proof of Theorem 2.2 in [17]. The
arguments here are even simpler and explicit since the process is gradient.

In the next section we will show that Propositions 2.1.2, 2.1.3 and 2.1.4
holds for any sequence of probability measures µN on XN in the place of the
stationary ones µN

ss. Furthermore, if the sequence µN satisfies (2.1.2) with some
profile ρ0 : Ω → [0, 1] then all limit points Q∗ of QµN are concentrated on paths
π with π(0, du) = ρ0(u)du:

Q∗{π : π(0, du) = ρ0(u)du
}

= 1 .

From these facts and the uniqueness of weak solutions of (2.1.1) we may obtain
the next result.

Theorem 2.1.5. Under the conditions in Theorem 2.1.1, the sequence of prob-
ability measures QµN converges weakly to the measure Q∗ that is concentrated
on the absolutely continuous path π(t, du) = ρ(t, u)du whose density ρ(·, ·) is the
unique weak solution of the hydrodynamic equation (2.1.1).

Theorem 2.1.1 follows from this last result by standard arguments (cf. Sec-
tion 4.2 in [16]).

2.2 Proofs of Propositions 2.1.2, 2.1.3 and 2.1.4

Fix T > 0 and a sequence µN of measures onXN . Denote by QN the probability
measure on the path space D([0, T ],M) induced by the process {πN (ηt) : 0 ≤
t ≤ T} and with initial distribution µN . Fix a limit point Q∗ of the sequence
QN and assume, without loss of generality, that QN converges to Q∗.

For a function G in C1,2
0 (ΩT ), consider the martingales MG

t = MG,N
t , NG

t =
NG,N

t defined by

MG
t =

〈
πN

t , Gt

〉− 〈
πN

0 , G0

〉−
∫ t

0

ds (∂s +N2LN )
〈
πN

s , Gs

〉
,

NG
t =

(
MG

t

)2 −
∫ t

0

ds AG,N
s ,

where
AG,N

s = N2LN

〈
πN

s , Gs

〉2 − 2
〈
πN

s , Gs

〉
N2LN

〈
πN

s , Gs

〉
.

A simple computation give us that AG,N
s is bounded above by C(G)N−d.

Therefore, by Doob’s and Chebychev’s inequalities, for every δ > 0,

lim
N→∞

PµN

{
sup

0≤t≤T

∣∣MG
t

∣∣ > δ

}
= 0 (2.2.1)

Denote by Γ−N , resp. Γ+
N , the left, resp. right, boundary of ΩN :

Γ±N = {(x1, · · · , xd) ∈ ΓN : x1 = ±(N − 1)} .
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For each x in Γ±N , let x̂ = x±e1. After two summations by parts we may rewrite
the part inside the integral term of the martingale MG

t as

〈
πN

s , ∂sGs

〉
+

1
Nd

d∑

i=1

∑
x

(
∆N

i Gs

)
(x/N)τxhi(ηs)

+
1

Nd−1

∑

x∈Γ−N

(
∂N
1 Gs

)
(x/N)[ϕ(b(x̂/N)) + aV −(x, ηs)]

− 1
Nd−1

∑

x∈Γ+
N

(
∂N
1 Gs

)
(x/N)[ϕ(b(x̂/N)) + aV +(x, ηs)]

+ OG(N−1) ,

(2.2.2)

where ∆N
i G stands for the discrete second partial derivative in the i-th direction,
(
∆N

i G
)
(x/N) = N2[G(x+ ei/N) +G(x− ei/N)− 2G(x/N)] ,

and
V ±(x, η) = [η(x) + b(x̂/N)][η(x∓ e1)− b(x̂/N)] .

Proof of Proposition 2.1.2. In order to prove tightness for the sequence QN ,
we just need to prove tightness of the real process 〈πN

t , G〉 for any function G
in C2(Ω). Moreover, by approximations of G in L1(Ω) and since there is at
most one particle per site, we may assume that G belongs C2

0(Ω). In that case,
tightness for 〈πN

t , G〉 follows from (2.2.1), (2.2.2) and the fact that the total
mass of the empirical measure πN

t is bounded by 2.
The other two statements follows from the fact that there is at most one

particle per site (cf. Section 4.2 in [16]).

Fix here and throughout the rest of the section a real number α in (0, 1) and
a function β as in the beginning of Section 1.1 and such that there is a θ > 0
such that for all ǔ in Td−1:

β(u1, ǔ) = b(−1, ǔ) if − 1 ≤ u1 ≤ −1 + θ ,

β(u1, ǔ) = b(1, ǔ) if 1− θ ≤ u1 ≤ 1 . (2.2.3)

Notice that, for N large enough, νN
β(·) is reversible with respect to the generator

LN,b.
For a cylinder function Ψ, denote the expectation of Ψ with respect to the

Bernoulli product measure νN
α by Ψ̃(α):

Ψ̃(α) = EνN
α [Ψ]

For each integer l > 0 and each site x in ΩN , denote the empirical mean
density on a box of size 2l + 1 centered at x by ηl(x):

ηl(x) =
1

|Λl(x)|
∑

y∈Λl(x)

η(y) ,

where
Λl(x) = ΛN,l(x) = {y ∈ ΩN : |y − x| ≤ l} .
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For each cylinder function Ψ and each ε > 0, let

V Ψ
N,ε(η) =

1
Nd

∑
x

∣∣∣∣∣∣
1

ΛεN (x)

∑

y∈ΛεN (x)

τx+yΨ(η)− Ψ̃(ηεN (x))

∣∣∣∣∣∣
,

where the sum is carried over all x for which the support of τx+yΨ is contained
in ΩN for every y in ΛεN (x).

For a continuous function H : [0, T ]× Γ → R, let

V ±N,H =
∫ T

0

ds
1
Nd

∑

x∈Γ±N

V ±(x, ηs)H(s, x̂/N) .

Proposition 2.1.3 follows in the ususal way from (2.2.2) and the next replace-
ment Lemma (cf. Section 5.1 in [16]).

Lemma 2.2.1. Let Ψ be a cylinder function and H : [0, T ]×Γ → R a continuous
function. For every δ > 0,

lim
ε→∞

lim
N→∞

PµN

[ ∫ T

0

ds V Ψ
N,ε(ηs) > δ

]
= 0 (2.2.4)

lim
N→∞

PµN [|V ±N,H | > δ] = 0 (2.2.5)

For probability measures µ, ν in XN , denote by H(µ|ν) the entropy of µ
with respect to ν. Since there are at most one particle per site, there exists a
constant C = C(β) > 0 such that

H
(
µ
∣∣νN

β(·)
)
≤ CNd (2.2.6)

for any probability measure µ on XN (cf. comments following Remark 5.5.6 in
[16]).

For the proof of (2.2.4) we need to establish an estimate on the entropy
production. Denote by SN

t the semigroup associated with the infinitesimal
generator N2LN and let µN

t = µNSN
t . Let also fN

t , resp. gN
t , be the density of

µN
t with respect to νN

β(·), resp. νN
α ). Notice that

∂tf
N
t = N2L∗NfN

t , (2.2.7)

where L∗N is the adjoint of LN in L2
(
νN

β(·)
)
.

For a density f with respect to a probability measure µ on XN , let

DN
0

(
f, µ

)
=

d∑

i=1

∑
x

DN
x,x+ei

(
f, µ

)
,

where the second sum is performed over all x such that x, x+ ei belong to ΩN

and

DN
x,x+ei

(
f, µ

)
=

1
2

∫
rx,x+ei(η)

(√
f(ηx,x+ei)−

√
f(η)

)2
µ(dη) .

Denote by DN
β (·) the Dirichlet form of the generator LN,b with respect to

its reversible probabilty measure νN
β(·) and let HN (t) = H

(
µN

t |νN
β(·)

)
.
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Lemma 2.2.2. There exists a positive constant C = C(β) such that

∂tHN (t) ≤ −N2DN
0

(
gN

t , ν
N
α

)
+ CNd

Proof. By (2.2.7) and the explicit formula for the entropy,

∂tHN (t) = N2

∫
fN

t LN log fN
t ν

N
β(·)(dη)

Since νN
β(·) is reversible with respect to LN,b, standard estimates gives that

the piece of the right-hand side of the last equation corresponding to LN,b is
bounded above by −2N2DN

β

(
fN

t

)
. Hence, in order to conclude the proof, we

just need to show that there exists a constant C = C(β) > 0 such that, for any
sites x, y = x+ ei in ΩN ,

∫
fN

t Lx,y log fN
t ν

N
β(·)(dη) ≤ −DN

x,y(gN
t , ν

N
α ) + CN−2 , (2.2.8)

where Lx,y is the piece of the generator LN,0 that corresponds to jumps between
x and y.

Fix then x, y = x+ ei in ΩN . By the definitions of fN
t and gN

t ,
∫
fN

t Lx,y log fN
t ν

N
β(·)(dη) =

∫
gN

t Lx,y log gN
t ν

N
α (dη)

+
∫
gN

t Lx,y log
(
νN

α (η)
νN

β(·)(η)

)
νN

α (dη) .
(2.2.9)

Since the product measure νN
α is invariant for the generator Lx,y, by standard

estimates, the first term of the right-hand side of (2.2.9) is bounded above by
−2DN

x,y

(
gN

t , ν
N
α

)
.

On the other side, since νN
α and νN

β(·) are product measures, we may compute
the second term on the right-hand side of (2.2.9). It is equal to

[
Φ(y/N)− Φ(x/N)

] ∫
[η(y)− η(x)]rx,y(η)gN

t (η)νN
α (dη)

=
[
Φ(y/N)− Φ(x/N)

] ∫
η(x)rx,y(η)[gN

t (ηx,y)− gN
t (η)]νN

α (dη) ,

where Φ = log( β
1−β ). By the elementary inequality 2ab ≤ Aa2 + A−1b2, the

previous expression is bounded above by

1
2
[
Φ(y/N)− Φ(x/N)

]2∫
η(x)rx,y(η)

(√
gN

t (ηx,y) +
√
gN

t (η)
)2

νN
α (dη)

+DN
x,y(gN

t , ν
N
α ).

This and the fact that gN
t is a density with respect to νN

α permit us to deduce
(2.2.8).

The proof of (2.2.5) requires the following estimate.
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Lemma 2.2.3. There exists a positive constant C = C(β) such that if f is a
density with respect to νN

β(·), then

〈LN

√
f,

√
f
〉

νN
β(·)

≤ −1
2
DN

0

(
f, νN

β(·)
)−DN

β (f) + CNd−2 .

Proof. It is enough to show that there is a constant C = C(β) such that

〈Lx,y

√
f,

√
f
〉

νN
β(·)

≤ −1
2
Dx,y

(
f, νN

β(·)
)

+ CN−2 , (2.2.10)

for any x, y = x+ ei in ΩN .
Fix then x, y = x+ ei in ΩN .

〈Lx,y

√
f,

√
f
〉

νN
β(·)

= −1
2

∫
rx,y(η)

(√
f(ηx,y)−

√
f(η)

)2
νN

β (dη)

+
1
2

∫
rx,y(η)f(η)

[
νN

β (ηx,y)
νN

β(·)(η)
− 1

]
νN

β (dη)

= −DN
x,y

(
f, νN

β

)

+
1
4

∫
rx,y(η)[f(ηx,y)− f(η)]

[
1− νN

β (ηx,y)
νN

β (η)

]
νN

β (dη) .

Notice that, for some constant C1 = C1(β),
∣∣∣∣∣1−

νN
β (ηx,y)
νN

β (η)

∣∣∣∣∣ ≤ C1|B(y/N)−B(x/N)| , (2.2.11)

where B = 1−β
β . Hence, by the elementary inequality 2ab ≤ Aa2 + A−1b2, the

left hand side in (2.2.10) is bounded above by

C1
2

16

∫
rx,y(η)

(√
f(ηx,y) +

√
f(η)

)2[B(x/N)−B(y/N)]2νN
β (dη)

−1
2
DN

x,y

(
f, νN

β(·)
)
.

From this fact and since f is a density with respect to νN
β(·) we obtain (2.2.10).

Proof of Lemma 2.2.1. By (2.2.6) and Lemma 2.2.2, the proof of (2.2.4) may
be reduced (cf. Section 5.3 in [16]) to show that for every positive constant C0,

lim
ε→0

lim
N→∞

sup
g

∫
V Ψ

N,ε(η)g(η)ν
N
α (dη) = 0 , (2.2.12)

where the supremum is carried over all densities g with respect to νN
α such that

DN
0

(
g, νN

α

) ≤ C0N
d−2. Moreover, since V Ψ

N,ε is bounded, we may replace g by
its conditional expectation gε given {η(x) : x ∈ ΩN−2εN} in the left hand side
of (2.2.12) . In that case, this limit may be estimated by the one of the periodic
case. Hence, (2.2.12) follows from Lemma 5.5.7 in [16].
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We turn now to the proof of (2.2.5). Fix A > 0. By the entropy inequality
and (2.2.6),

EµN [|V −N,H |] ≤
C

A
+

1
ANd

[
logEνN

β(·)

[
exp

{
ANd|V −N,H |

}]]
.

Thus we just need to show that for some constant C = C(β) > 0,

lim
N→∞

1
Nd

logEνN
β(·)

[
exp

{
ANd|V −N,H |

}] ≤ C . (2.2.13)

Since e|x| ≤ ex + e−x and

lim
N→∞

1
Nd

log(aN + bN ) ≤ max
{

lim
N→∞

1
Nd

log aN , lim
N→∞

1
Nd

log bN

}
,

we may remove the absolute value in (2.2.13), provided our estimates remain in
force if we replace H with −H.

Let
V ±H (x, η, s) = V ±(x, η)H(s, x̂/N) .

By the Feynman-Kac formula, the left hand side of (2.2.13), without the absolute
value, is bounded by

1
Nd

∫ T

0

λN
s ds ,

where λN
s stands for the largest eigenvalue of the νN

β(·)-reversible operatorN2Lsym
N +

AN
∑

x∈Γ−
V −H (x, η, s) and Lsym

N is the symmetric part of the operator LN in

L2
(
νN

β(·)
)
. By the variational formula for the largest eigenvalue, for each s ∈

[0, T ], N−dλN
s is equal to

sup
f

{
A

Nd−1

〈 ∑

x∈Γ−N

V −H (x, η, s), f

〉

νN
β(·)

+
1

Nd−2

〈
LN

√
f,

√
f
〉

νN
β(·)

}
,

where the supremum is carried over all densities f with respect to νN
β(·).

By Lemma 2.2.3, for a constant C1 = C1(β) > 0, the expression inside braces
is less than or equal to

C1 +
A

Nd−1

{ ∑

x∈Γ−N

〈V −H (x, η, s), f〉νN
β(·)

− N

A

(1
2
DN

0

(
f, νN

β(·)
)

+DN
b

(
f, νN

β(·)
))

}
.

In this last expression, for some positive constant C2 = C2(b), the part inside
braces is bounded above by

∑

x∈Γ−N

{
〈V −H (x, η, s), f〉νN

β(·)
− NC2

A

[ ∫ (√
f(ηx,x+e1)−

√
f(η)

)2

+
(√

f(ηx)−
√
f(η)

)2
νN

β (dη)
]}
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Hence, in order to prove (2.2.5), it is enough to show that the part inside
braces in the last expression is bounded above by some positive constant cN ,
not depending on s, f or x, which converges to 0 as N ↑ ∞.

Fix such s, f and x, and denote by fx the conditional expectation of f given
{η(x), η(x+ e1)}. Since VH,x,s(η) = V −H (x, η, s) depends on the configuration η
only through {η(x), η(x + e1)}, the part inside braces in the last expression is
bounded above by

〈VH,x,s, fx〉νN
β(·)

− NC2

A

[ ∫ (√
fx(ηx,x+e1)−

√
fx(η)

)2 +

(√
fx(ηx)−

√
fx(η)

)2
νN

β (dη)
]
.

Let Λx = {0, 1}{x,x+e1} and denote by f̂x the restriction of fx to Λx. Note
that, for N large enough, the restriction of νN

β(·) to Λx is the Bernoulli product
measure associated to the constant function bx = b(x̂/N). Hence, for a constant
C3 = C3(b) > 0, the last expression is bounded above by

〈VH,x,s, f̂x〉νN
bx
− NC3

A
V arνN

bx

(√
f̂x

)
.

which, by the elementary inequality 2ab ≤ Aa2+A−1b2 and since EνN
bx

(VH,x,s) =
0, is bounded by

A

4NC3
EνN

bx

[
(VH,x,s)2

(√
f̂x + E

√
f̂x

)2
]
.

Since f̂x is a density with respect to νN
b and |VH,x,s| ≤ 2‖H‖∞, the previous

expression is bounded by

cN =
4A‖H‖2∞
NC3

,

which concludes the proof.

For each function G in C∞c (ΩT ), each integer 1 ≤ i ≤ d and C > 0, let
QG,i,C

T : D([0, T ],M) → R be the functional given by

QG,i,C
T (π) =

∫ T

0

〈
πs, ∂uiGs

〉
ds− C

∫ T

0

ds

∫

Ω

du G(s, u)2 .

Recall from Section 1.3 that the energy QT (π) was defined as

QT (π) =
d∑

i=1

Qi
T (π) ,

where

Qi
T (π) = sup

G∈C∞c (ΩT )

{
2

∫ T

0

〈πt, ∂uiGt〉dt−
∫ T

0

dt

∫

Ω

G(t, u)2 du

}
.
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Notice that

sup
G∈C∞c (ΩT )

{QG,i,C
T (π)

}
=
Qi

T (π)
4C

. (2.2.14)

The next result is the key ingredient in the proof of Proposition (2.1.4).

Lemma 2.2.4. There exists a constant C0 = C0(β) > 0 such that for every
integer 1 ≤ i ≤ d and every function G in C∞c (ΩT ),

lim
N→∞

1
Nd

logEνN
β(·)

[
exp

{
NdQG,i,C0

T (πN )
}]

≤ C0

Proof. By the Feynman-Kac formula,

1
Nd

logEνN
β(·)

[
exp

{
N

∫ T

0

ds
∑

x∈ΩN

(ηs(x)− ηs(x− ei))G(s, x/N)
}]

is bounded above by
1
Nd

∫ T

0

λN
s ds ,

where λN
s stands for the largest eigenvalue of the νN

β(·)-reversible operatorN2Lsym
N +

N
∑

x∈ΩN
[η(x)−η(x−ei)]G(s, x/N). By the variational formula for the largest

eigenvalue, for each s ∈ [0, t], λN
s is equal to

sup
f

{〈
N

∑

x∈ΩN

(η(x)− η(x− ei))G(s, x/N), f
〉

νN
β(·)

+N2
〈
LN

√
f,

√
f
〉

νN
β(·)

}
,

where the supremum is carried over all densities f with respect to νN
β(·). By

Lemma 2.2.3, for a constant C = C(β) > 0, the expression inside braces is
bounded above by

CNd−N
2

2
DN

0 (f, νN
β(·)) +

∑

x∈ΩN

{
NG(s, x/N)

∫
[η(x)−η(x− ei)]f(η)νN

β (dη)
}
,

By the elementary inequality 2ab ≤ Aa2 + A−1b2, the part inside braces in
the last expression is bounded above by

G(s, x/N)2
∫
f(ηx−ei,x)νN

β (dη)

+
1
4

∫
η(x)f(ηx−ei,x)

[
N

(
1− νN

β (ηx−ei,x)
νN

β (η)

)]2

νN
β (dη)

+ G(s, x/N)2
∫

η(x)
rx−ei,x(η)

(√
f(ηx−ei,x) +

√
f(η)

)2
νN

β (dη) ,

which is bounded above by C1G(s, x/N)2 +C1, by some positive constant C1 =
C1(β), because of (2.2.11) and the fact that f is a density with respect to νN

β(·).
Thus, C0 = C + C1 satisfies the statement of the Lemma.
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It is well known that a trajectory π(t, du) = ρ(t, u)du in D([0, T ],M0) has fi-
nite energy, QT (π) <∞, if and only if its density ρ belongs to L2([0, T ],H1(Ω)),
in which case,

QT (π) =
∫ T

0

dt

∫

Ω

du ‖∇ρt(u)‖2 <∞ .

Proof of Proposition 2.1.4. Fix a constant C0 > 0 satisfying the statement
of Lemma 2.2.4. Let {Gk : k ≥ 1} be a sequence of smooth functions dense
in L2([0, T ],H1(Ω)) and 1 ≤ i ≤ d an integer. By the entropy inequality and
(2.2.6), there is a constant C = C(β) > 0 such that

EµN

[
max

1≤k≤r

{QGk,i,C0
T (πN )

}]

is bounded above by

C +
1
Nd

logEνN
β(·)

[
exp

{
Nd max

1≤k≤r

{QGk,i,C0
T (πN )

}}]
.

Hence, Lemma 2.2.4 together with the facts that emax{x1,...,xn} ≤ ex1 + · · ·+exn

and that

lim
N→∞

1
Nd

log(aN + bN ) ≤ max
{

lim
N→∞

1
Nd

log aN , lim
N→∞

1
Nd

log bN

}
,

imply

EQ∗

[
max

1≤k≤r

{QGk

i,C0

}]
= lim

N→∞
EµN

[
max

1≤k≤r

{QGk

i,C0
(πN )

}]

≤ C + C0 .

This together with (2.2.14) and the monotone convergence theorem prove the
desired result.
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Chapter 3

Dynamical Large Deviations

In this chapter, we investigate the large deviations from the hydrodynamic limit.

3.1 The Dynamical Rate Function

We examine in this section the rate function IT (·|γ). The main result, presented
in Theorem 3.1.7 below, states that IT (·|γ) has compact level sets. The proof
relies on two ingredients. The first one, stated in Lemma 3.1.2, is an estimate
of the energy and of the H−1 norm of the time derivative of the density of a
trajectory in terms of the rate function. The second one, stated in Lemma 3.1.6,
establishes that sequences of trajectories, with rate function uniformly bounded,
whose densities converges weakly in L2 converge in fact strongly.

We start by introducing some Sobolev spaces. Recall that we denote by
C∞c (Ω) the set of infinitely differentiable functions G : Ω → R, with compact
support in Ω. Recall from Section 1.2 the definition of the Sobolev space H1(Ω)
and of the norm ‖ · ‖1,2. Denote by H1

0 (Ω) the closure of C∞c (Ω) in H1(Ω).
Since Ω is bounded, by Poincaré’s inequality, there exists a finite constant C1

such that for all G ∈ H1
0 (Ω)

‖G‖22 ≤ C1‖∂u1G‖22 ≤ C1

d∑

j=1

〈∂ujG , ∂ujG〉2 .

This implies that, in H1
0 (Ω)

‖G‖1,2,0 =





d∑

j=1

〈∂ujG , ∂ujG〉2





1/2

is a norm equivalent to the norm ‖ · ‖1,2. Moreover, H1
0 (Ω) is a Hilbert space

with inner product given by

〈G , J〉1,2,0 =
d∑

j=1

〈∂ujG , ∂ujJ〉2 .

To assign boundary values along the boundary Γ of Ω to any function G
in H1(Ω), recall, from the trace Theorem ([26], Theorem 21.A.(e)), that there
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exists a continuous linear operator B : H1(Ω) → L2(Γ), called trace, such that
BG = G

∣∣
Γ

if G ∈ H1(Ω) ∩ C(Ω). Moreover, the space H1
0 (Ω) is the space of

functions G in H1(Ω) with zero trace ([26], Appendix (48b)):

H1
0 (Ω) =

{
G ∈ H1(Ω) : BG = 0

}
.

Since C∞(Ω) is dense in H1(Ω) ([26], Corollary 21.15.(a)), for functions F,G
in H1(Ω), the product FG has generalized derivatives ∂ui(FG) = F∂uiG +
G∂ui

F in L1(Ω) and
∫

Ω

F (u) ∂u1G(u) du +
∫

Ω

G(u) ∂u1F (u) du

=
∫

Γ+

BF (u)BG(u) du −
∫

Γ−
BF (u)BG(u) du .

(3.1.1)

Moreover, if G ∈ H1(Ω) and f ∈ C1(R) is such that f ′ is bounded then f ◦ G
belongs to H1(Ω) with generalized derivatives ∂ui

(f ◦ G) = (f ′ ◦ G)∂ui
G and

trace B(f ◦G) = f ◦ (BG).
Finally, denote by H−1(Ω) the dual of H1

0 (Ω). H−1(Ω) is a Banach space
with norm ‖ · ‖−1 given by

‖v‖2−1 = sup
G∈C∞c (Ω)

{
2〈v,G〉−1,1 −

∫

Ω

‖∇G(u)‖2du
}
,

where 〈v,G〉−1,1 stands for the values of the linear form v at G.
For each function G in C∞c (ΩT ) and each integer 1 ≤ i ≤ d, let QG,i

T :
D([0, T ],M0) → R be the functional given by

QG,i
T (π) = 2

∫ T

0

〈πt, ∂uiGt〉 dt−
∫ T

0

dt

∫

Ω

du G(t, u)2 ,

and recall, from Section 1.3, that the energy Q(π) was defined as

QT (π) =
d∑

i=1

Qi
T (π) with Qi

T (π) = sup
G∈C∞c (ΩT )

QG,i
T (π) .

The functional QG,i
T is convex and continuous in the Skorohod topology.

Therefore Qi
T and QT are convex and lower semicontinuous. Furthermore, it

is well known that a trajectory π(t, du) = ρ(t, u)du in D([0, T ],M0) has finite
energy, QT (π) <∞, if and only if its density ρ belongs to L2([0, T ],H1(Ω)), in
which case,

QT (π) =
∫ T

0

dt

∫

Ω

du ‖∇ρt(u)‖2 <∞ .

LetDγ = Dγ,b be the subset of C([0, T ],M0) consisting of all paths π(t, du) =
ρ(t, u)du with initial profile ρ(0, ·) = γ(·), finite energy QT (π) (in which case ρt

belongs to H1(Ω) for almost all 0 ≤ t ≤ T and so B(ρt) is well defined for those
t) and such that B(ρt) = b for almost all t in [0, T ].

Lemma 3.1.1. Let π be a trajectory in D([0, T ],M) such that IT (π|γ) < ∞.
Then π belongs to Dγ .
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Proof. Fix a path π in D([0, T ],M) with finite rate function, IT (π|γ) <∞. By
definition of IT , π belongs to D([0, T ],M0). Denote its density by ρ: π(t, du) =
ρ(t, u)du.

The proof that ρ(0, ·) = γ(·) is similar to the one of Lemma 3.5 in [4] and
is therefore omitted. To prove that B(ρt) = b for almost all t ∈ [0, T ], since
the function ϕ : [0, 1] → [0, 1 + a] is a C1 diffeomorphism and since B(ϕ ◦ ρt) =
ϕ(Bρt) (for those t such that ρt belongs to H1(Ω)), it is enough to show that
B(ϕ ◦ ρt) = ϕ(b) for almost all t ∈ [0, T ]. To this end, we just need to show
that, for any function H± ∈ C1,2([0, T ]× Γ±),

∫ T

0

dt

∫

Γ±
du

{
B(ϕ(ρt))(u)− ϕ(b(u))

}
H±(t, u) = 0 . (3.1.2)

Fix a function H ∈ C1,2([0, T ] × Γ−). For each 0 < θ < 1, let hθ : [−1, 1] → R
be the function given by

hθ(r) =





r + 1 if − 1 ≤ r ≤ −1 + θ ,
−θr
1−θ if − 1 + θ ≤ r ≤ 0 ,
0 if 0 ≤ r ≤ 1 ,

and define the function Gθ : ΩT → R as G(t, (u1, ǔ)) = hθ(u1)H(t, (−1, ǔ)) for
all ǔ ∈ Td−1. Of course, Gθ can be approximated by functions in C1,2

0 (ΩT ).
From the integration by parts formula (3.1.1) and the definition of JGθ

, we
obtain that

lim
θ→0

JGθ
(π) =

∫ T

0

dt

∫

Γ−
du

{
B(ϕ(ρt))(u)− ϕ(b(u))

}
H(t, u) ,

which proves (3.1.2) because IT (π|γ) <∞.
We deal now with the continuity of π. We claim that there exists a positive

constant C0 such that, for any g ∈ C∞c (Ω), and any 0 ≤ s < r < T ,

|〈πr, g〉 − 〈πs, g〉| ≤ C0(r − s)1/2
{
IT (π|γ) + ‖g‖21,2,0

+ (r − s)1/2‖∆g‖1
}
.

(3.1.3)

Indeed, for each δ > 0, let ψδ : [0, T ] → R be the function given by

(r − s)1/2ψδ(t) =





0 if 0 ≤ t ≤ s or r + δ ≤ t ≤ T ,
t−s
δ if s ≤ t ≤ s+ δ ,

1 if s+ δ ≤ t ≤ r ,

1− t−r
δ if r ≤ t ≤ r + δ ,

and let Gδ(t, u) = ψδ(t)g(u). Of course, Gδ can be approximated by functions
in C1,2

0 (ΩT ) and then

(r − s)1/2 lim
δ→0

JGδ (π) = 〈πr, g〉 − 〈πs, g〉 −
∫ r

s

dt 〈ϕ(ρt),∆g〉

− 1
2(r − s)1/2

∫ r

s

dt 〈σ(ρt), ‖∇g‖2〉 .
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To conclude the proof, it remains to observe that the left hand side is bounded
by (r − s)1/2IT (π|γ), and to note that ϕ, σ are positive and bounded above on
[0, 1] by some positive constant.

Denote by L2([0, T ],H1
0 (Ω))∗ the dual of L2([0, T ],H1

0 (Ω)). By Proposition
23.7 in [26], L2([0, T ],H1

0 (Ω))∗ corresponds to L2([0, T ],H−1(Ω)), i.e., for each v
in L2([0, T ], H1

0 (Ω))∗, there exists a unique {vt : 0 ≤ t ≤ T} in L2([0, T ],H−1(Ω))
such that for any G in L2([0, T ], H1

0 (Ω)),

〈〈v,G〉〉−1,1 =
∫ T

0

〈vt, Gt〉−1,1 dt , (3.1.4)

where the left hand side stands for the value of the linear functional v at G.
Moreover, if we denote by |||v|||−1 the norm of v,

|||v|||2−1 =
∫ T

0

‖vt‖2−1 dt .

Fix a path π(t, du) = ρ(t, u)du in Dγ and suppose that

sup
H∈C∞c (ΩT )

{
2

∫ T

0

〈ρt, ∂tHt〉 dt−
∫ T

0

dt

∫

Ω

du ‖∇Ht‖2
}

< ∞ . (3.1.5)

In this case ∂tρ : C∞c (ΩT ) → R defined by

∂tρ(H) = −
∫ T

0

〈ρt, ∂tHt〉 dt

can be extended to a bounded linear operator ∂tρ : L2([0, T ],H1
0 (Ω)) → R.

It belongs therefore to L2([0, T ],H1
0 (Ω))∗ = L2([0, T ],H−1(Ω)). In particular,

there exists {vt : 0 ≤ t ≤ T} in L2([0, T ],H−1(Ω)), which we denote by vt =
∂tρt, such that for any H in L2([0, T ],H1

0 (Ω)),

〈〈∂tρ,H〉〉−1,1 =
∫ T

0

〈∂tρt, Ht〉−1,1 dt .

Moreover,

|||∂tρ|||2−1 =
∫ T

0

‖∂tρt‖2−1 dt

= sup
H∈C∞c (ΩT )

{
2

∫ T

0

〈ρt, ∂tHt〉 dt−
∫ T

0

dt

∫

Ω

du ‖∇Ht‖2
}
.

Let W be the set of paths π(t, du) = ρ(t, u)du in Dγ such that (3.1.5) holds,
i.e., such that ∂tρ belongs to L2

(
[0, T ],H−1(Ω)

)
. For G in L2

(
[0, T ],H1

0 (Ω)
)
,

let JG : W → R be the functional given by

JG(π) = 〈〈∂tρ,G〉〉−1,1 +
∫ T

0

dt

∫

Ω

du ∇Gt(u) · ∇(ϕ(ρt(u)))

− 1
2

∫ T

0

dt

∫

Ω

du σ(ρt(u)) ‖∇Gt(u)‖2 .
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By Proposition 23.23 in [26], if π(t, du) = ρ(t, u)du belongs to W and G
belongs to C1,2

0 (ΩT ),

〈ρT , GT 〉 − 〈ρ0, G0〉 −
∫ T

0

〈ρt, ∂tGt〉 dt =
∫ T

0

〈∂tρt, Gt〉−1,1 dt ,

which together with Lemma 3.1.1 and the integration by parts formula (3.1.1)
implies that

JG(π) = JG(π) . (3.1.6)

Then, since J·(π) is continuous in L2
(
[0, T ],H1

0

)
and since C∞c (ΩT ) ⊂ C1,2

0 (ΩT )
are dense in L2

(
[0, T ],H1

0 (Ω)
)
, for every π in W ,

IT (π|γ) = sup
G∈L2([0,T ],H1

0)
JG(π) = sup

G∈C∞c (ΩT )

JG(π) . (3.1.7)

Lemma 3.1.2. There exists a constant C0 > 0 such that if the density ρ of
some path π(t, du) = ρ(t, u)du in D([0, T ],M0) has a generalized gradient, ∇ρ,
then

∫ T

0

dt ‖∂tρt‖2−1 ≤ C0 {IT (π|γ) +QT (π)} , (3.1.8)

∫ T

0

dt

∫

Ω

du
‖∇ρt(u)‖2
χ(ρt(u))

≤ C0 {IT (π|γ) + 1} , (3.1.9)

where χ(r) = r(1− r) is the static compressibility.

Proof. Fix a path π(t, du) = ρ(t, u)du inD([0, T ],M0). In view of the discussion
presented before the lemma, we need to show that the left hand side of (3.1.5)
is bounded by the right hand side of (3.1.8). Such an estimate follows from
the definition of the rate function IT (·|γ) and from the elementary inequality
2ab ≤ Aa2 +A−1b2.

We turn now to the proof of (3.1.9). We may of course assume that IT (π|γ) <
∞, in which case QT (π) < ∞. Fix a function β as in the beginning of Section
1.1. For each δ > 0, let hδ : [0, 1]2 → R be the function given by

hδ(x, y) = (x+ δ) log
(
x+ δ

y + δ

)
+ (1− x+ δ) log

(
1− x+ δ

1− y + δ

)
.

By (3.1.8), ∂tρ belongs to L2([0, T ],H−1(Ω)). We claim that
∫ T

0

〈∂tρt, ∂xh
δ(ρt, β)〉−1,1 dt =

∫

Ω

hδ(ρ
T
(u), β(u))du

−
∫

Ω

hδ(ρ0(u), β(u))du . (3.1.10)

Indeed, By Lemma 3.1.1 and (3.1.8), ρ−β belongs to L2
(
[0, T ],H1

0 (Ω)
)

and
∂t(ρ − β) = ∂tρ belongs to L2([0, T ],H−1(Ω)). Then, there exists a sequence
{G̃n : n ≥ 1} of smooth functions G̃n : ΩT → R such that G̃n

t belongs to
C∞c (Ω) for every t in [0, T ], G̃n converges to ρ−β in L2([0, T ], H1

0 (Ω)) and ∂tG̃
n

converges to ∂t(ρ − β) in L2([0, T ],H−1(Ω)) (cf. [26], Proposition 23.23(ii)).
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For each positive integer n, let Gn = G̃n + β and for each δ > 0, fix a smooth
function h̃δ : R2 → R with compact support and such that its restriction to
[0, 1]2 is hδ. It is clear that

∫ T

0

〈∂tG
n
t , ∂xh̃

δ(Gn
t , β)〉 dt =

∫

Ω

h̃δ(Gn
T (u), β(u))du

−
∫

Ω

h̃δ(Gn
0 (u), β(u))du .

(3.1.11)

On the one hand, ∂xh
δ : [0, 1]2 → R is given by

∂xh
δ(x, y) = log

(
x+ δ

1− x+ δ

)
− log

(
y + δ

1− y + δ

)
.

Hence, ∂xh
δ(ρ, β) and ∂xh̃

δ(Gn, β) belongs to L2
(
[0, T ],H1

0 (Ω)
)
. Moreover,

since ∂xh̃
δ is smooth with compact support andGn converges to ρ in L2([0, T ],H1(Ω)),

∂xh̃
δ(Gn, β) converges to ∂xh

δ(ρ, β) in L2([0, T ], H1
0 (Ω)). From this fact and

since ∂tG
n converges to ∂tρ in L2([0, T ],H−1(Ω)), if we let n → ∞, the left

hand side in (3.1.11) converges to
∫ T

0

〈∂tρt, ∂xh
δ(ρt, β)〉−1,1 dt .

On the other hand, by Proposition 23.23(ii) in [26], Gn
0 , resp. Gn

T , converges
to ρ0, resp. ρT , in L2(Ω). Then, if we let n→∞, the right hand side in (3.1.11)
goes to ∫

Ω

hδ(ρ
T
(u), β(u))du−

∫

Ω

hδ(ρ0(u), β(u))du ,

which proves claim (3.1.10).
Notice that, since β is bounded away from 0 and 1, there exists a positive

constant C = C(β) such that for δ small enough,

hδ(ρ(t, u), β(u)) ≤ C for all (t, u) in ΩT . (3.1.12)

For each δ > 0, let Hδ : ΩT → R be the function given by

Hδ(t, u) =
∂xh

δ(ρ(t, u), β(u))
2(1 + 2δ)

.

A simple computation shows that

JHδ (π) ≥
∫ T

0

dt
〈
∂tρt, H

δ
t

〉
−1,1

+
1
4

∫ T

0

dt

∫

Ω

du ϕ′(ρt(u))
‖∇ρt(u)‖2
χδ(ρt(u))

−1
8

∫ T

0

dt

∫

Ω

du σδ(ρt(u))
‖∇β(u)‖2
χδ(β(u))2

,

where χδ(r) = (r + δ)(1− r + δ) and σδ(r) = 2χδ(r)ϕ′(r). This last inequality
together with (3.1.10), (3.1.7) and (3.1.12) show that there exists a positive
constant C0 = C0(β) such that for δ small enough

C0 {IT (π|γ) + 1} ≥
∫ T

0

dt

∫

Ω

du
‖∇ρ(t, u)‖2
χδ(ρ(t, u))

.

We conclude the proof by letting δ ↓ 0 and by using Fatou’s lemma.
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Corollary 3.1.3. The density ρ of a path π(t, du) = ρ(t, u)du in D([0, T ],M0)
is the weak solution of the equation (2.1.1) with initial profile γ if and only if
the rate function IT (π|γ) vanishes. Moreover, in that case

∫ T

0

dt

∫

Ω

du
‖∇ρt(u)‖2
χ(ρt(u))

< ∞ .

Proof. On the one hand, if the density ρ of a path π(t, du) = ρ(t, u)du in
D([0, T ],M0) is the weak solution of equation (2.1.1), by assumption (H1), the
energy QT (π) is finite. Moreover, since the initial condition is γ, in the formula
of ĴG(π), the linear part in G vanishes which proves that the rate functional
IT (π|γ) vanishes. On the other hand, if the rate functional vanishes, the path
ρ belongs to L2([0, T ],H1(Ω)) and the linear part in G of JG(π) has to vanish
for all functions G. In particular, ρ is a weak solution of (2.1.1). Moreover, in
that case, by the previous lemma, the bound claimed holds.

For each q > 0, let Eq be the level set of IT (π|γ) defined by

Eq = {π ∈ D([0, T ],M) : IT (π|γ) ≤ q} .
By Lemma 3.1.1, Eq is a subset of C([0, T ],M0). Thus, from the previous
lemma, it is easy to deduce the next result.

Corollary 3.1.4. For every q ≥ 0, there exists a finite constant C(q) such that

sup
π∈Eq

{∫ T

0

‖∂tρt‖2−1 dt +
∫ T

0

dt

∫

Ω

du
‖∇ρ(t, u)‖2
χ(ρ(t, u))

}
≤ C(q) .

Next result together with the previous estimates provide the compactness
needed in the proof of the lower semicontinuity of the rate function.

Lemma 3.1.5. Let {ρn : n ≥ 1} be a sequence of functions in L2(ΩT ) such
that uniformly on n,

∫ T

0

‖ρn
t ‖21,2 dt+

∫ T

0

‖∂tρ
n
t ‖2−1 dt < C

for some positive constant C. Suppose that there exists a function ρ ∈ L2(ΩT )
such that ρn converges to ρ weakly in L2(ΩT ). Then ρn converges to ρ strongly
in L2(ΩT ).

Proof. Since H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) with compact embedding H1(Ω) →
L2(Ω), from Corollary 8.4, [24], the sequence {ρn} is relatively compact in
L2

(
[0, T ], L2(Ω)

)
. Therefore the weak convergence implies the strong conver-

gence in L2
(
[0, T ], L2(Ω)

)
.

Next result is a straightforward consequence of Corollary 3.1.4 and Lemma
3.1.5.

Lemma 3.1.6. Let {πn(t, du) = ρn(t, u)du : n ≥ 1} be a sequence of trajectories
in D([0, T ],M0) such that, for some positive constant C,

sup
n≥1

{IT (πn|γ)} ≤ C.

If ρn converges to ρ weakly in L2(ΩT ) then ρn converges to ρ strongly in L2(ΩT ).
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Theorem 3.1.7. The functional IT (·|γ) is lower semicontinuous and has com-
pact level sets.

Proof. We have to show that, for all q ≥ 0, Eq is compact in D([0, T ],M). Since
Eq ⊂ C([0, T ],M0) and C([0, T ],M0) is a closed subset of D([0, T ],M), we just
need to show that Eq is compact in C([0, T ],M0).

We will show first that Eq is closed in C([0, T ],M0). Fix q ∈ R and let
{πn(t, du) = ρn(t, u)du : n ≥ 1} be a sequence in Eq converging to some
π(t, du) = ρ(t, u)du in C([0, T ],M0). Then, for all G ∈ C(ΩT ),

lim
n→∞

∫ T

0

〈ρn
t , Gt〉 dt =

∫ T

0

〈ρt, Gt〉 dt .

Notice that this means that ρn → ρ weakly in L2(ΩT ), which together with
Lemma 3.1.6 imply that ρn → ρ strongly in L2(ΩT ). From this fact and the
definition of JG it is easy to see that, for all G in C1,2

0 (ΩT ),

lim
n→∞

JG(πn) = JG(π) .

This limit, Corollary 3.1.4 and the lower semicontinuity of QT permit us to
conclude that QT (π) ≤ C(q) and that IT (π|γ) ≤ q.

We prove now that Eq is relatively compact. To this end, it is enough to
prove that for every continuous function G : Ω → R,

lim
δ→0

sup
π∈Eq

sup
0≤s,r≤T
|r−s|<δ

|〈πr, G〉 − 〈πs, G〉| = 0 . (3.1.13)

Since Eq ⊂ C([0, T ],M0), we may assume by approximations of G in L1(Ω)
that G ∈ C∞c (Ω). In which case, (3.1.13) follows from (3.1.3).

We conclude this section with an explicit formula for the rate function
IT (·|γ). For each π(t, du) = ρ(t, u)du in D([0, T ],M0), denote by H1

0 (σ(ρ))
the Hilbert space induced by C1,2

0 (ΩT ) endowed with the inner product 〈·, ·〉σ(ρ)

defined by

〈H,G〉σ(ρ) =
∫ T

0

dt 〈σ(ρt),∇Ht · ∇Gt〉 .

Induced means that we first declare two functions F,G in C1,2
0 (ΩT ) to be equiv-

alent if 〈F − G,F − G〉σ(ρ) = 0 and then we complete the quotient space with
respect to the inner product 〈·, ·〉σ(ρ). The norm of H1

0 (σ(ρ)) is denoted by
‖ · ‖σ(ρ).

Fix a path ρ in D([0, T ],M0) and a function H in H1
0 (σ(ρ)). A measurable

function λ : ΩT → [0, 1] is said to be a weak solution of the nonlinear boundary
value parabolic equation





∂tλ = ∆ϕ(λ)−∑d
i=1 ∂ui (σ(λ)∂uiH) ,

λ(0, ·) = γ ,

λ(t, ·)|Γ = b for 0 ≤ t ≤ T .

(3.1.14)

if it satisfies the following two conditions.
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(H1’) λ belongs to L2
(
[0, T ],H1(Ω)

)
:

∫ T

0

ds

(∫

Ω

‖ ∇λ(s, u) ‖2du
)
<∞ ;

(H2’) For every function G(t, u) = Gt(u) in C1,2
0 (ΩT ),

∫

Ω

{
GT (u)ρ(T, u)−G0(u)γ(u)

}
du−

∫ T

0

ds

∫

Ω

du (∂sGs)(u)λ(s, u)

=
∫ T

0

ds

∫

Ω

du (∆Gs)(u)ϕ
(
λ(s, u)

)−
∫ T

0

ds

∫

Γ

ϕ(b(u))n1(u)(∂u1Gs(u))dS

+
∫ T

0

ds

∫

Ω

du σ(λ(s, u))∇Hs(u) · ∇Gs(u) .

In Section 5.1 we prove uniqueness of weak solutions of equation (3.1.14)
when ‖∇H‖ belongs to L2(ΩT ), i.e., provided

∫ T

0

dt

∫

Ω

du ‖∇Ht(u)‖2 <∞ .

Lemma 3.1.8. Assume that π(t, du) = ρ(t, u)du in D([0, T ],M0) has finite
rate function: IT (π|γ) <∞. Then, there exists a function H in H1

0 (σ(ρ)) such
that ρ is a weak solution to (3.1.14). Moreover,

IT (π|γ) =
1
2
‖H‖2σ(ρ) . (3.1.15)

The proof of this lemma is similar to the one of Lemma 5.3 in [16] and is
therefore omitted.

3.2 IT (·|γ)-Density

The main result of this section, stated in Theorem 3.2.3, asserts that any trajec-
tory λt, 0 ≤ t ≤ T , with finite rate function, IT (λ|γ) <∞, can be approximated
by a sequence of smooth trajectories {λn : n ≥ 1} such that

λn −→ λ and IT (λn|γ) −→ IT (λ|γ) .

This is one of the main steps in the proof of the lower bound of the large
deviations principle for the empirical measure. The proof reposes mainly on
the regularizing effects of the hydrodynamic equation and is one of the main
contributions of this article, since it simplifies considerably the existing methods.

A subset A of D([0, T ],M) is said to be IT (·|γ)-dense if for every π in
D([0, T ],M) such that IT (π|γ) <∞, there exists a sequence {πn : n ≥ 1} in A
such that πn converges to π and IT (πn|γ) converges to IT (π|γ).

Let Π1 be the subset of D([0, T ],M0) consisting of paths π(t, du) = ρ(t, u)du
whose density ρ is a weak solution of the hydrodynamic equation (2.1.1) in the
time interval [0, δ] for some δ > 0.

Lemma 3.2.1. The set Π1 is IT (·|γ)-dense.
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Proof. Fix π in D([0, T ],M) such that IT (π|γ) < ∞. By Lemma 3.1.1, π
belongs to C([0, T ],M0). For each δ > 0, let ρδ be the path defined as

ρδ(t, u) =





λ(t, u) if 0 ≤ t ≤ δ ,

λ(2δ − t, u) if δ ≤ t ≤ 2δ ,
ρ(t− 2δ, u) if 2δ ≤ t ≤ T ,

where π(t, du) = ρ(t, u)du and where λ is the weak solution of the hydrodynamic
equation (2.1.1) starting at γ. It is clear that πδ(t, du) = ρδ(t, u)du belongs to
Dγ , because so do π and λ and that QT (πδ) ≤ QT (π)+2QT (λ) <∞. Moreover,
πδ converges to π as δ ↓ 0 because π belongs to C([0, T ],M). By the lower
semicontinuity of IT (·|γ), IT (π|γ) ≤ limδ→0 IT (πδ|γ). Then, in order to prove
the lemma, it is enough to prove that IT (π|γ) ≥ limδ→0 IT (πδ|γ). To this end,
decompose the rate function IT (πδ|γ) as the sum of the contributions on each
time interval [0, δ], [δ, 2δ] and [2δ, T ]. The first contribution vanishes because
πδ solves the hydrodynamic equation in this interval. On the time interval
[δ, 2δ], ∂tρ

δ
t = −∂tλ2δ−t = −∆ϕ(λ2δ−t) = −∆ϕ(ρδ

t ). In particular, the second
contribution is equal to

sup
G∈C1,2

0 (ΩT )

{
2

∫ δ

0

ds

∫

Ω

du ∇ϕ(λ) · ∇G− 1
2

∫ δ

0

〈σ(λt), ‖∇Gt‖2〉 ds
}

which, by Schwarz inequality, is bounded above by
∫ δ

0

ds

∫

Ω

du ϕ′(λ)
‖∇λ‖2
χ(λ)

.

By Corollary 3.1.3, this last expression converges to zero as δ ↓ 0. Finally,
the third contribution is bounded by IT (π|γ) because πδ in this interval is just
a time translation of the path π.

Let Π2 be the set of all paths π in Π1 with the property that for every δ > 0
there exists ε > 0 such that ε ≤ πt(·) ≤ 1− ε for all t ∈ [δ, T ].

Lemma 3.2.2. The set Π2 is IT (·|γ)-dense.

Proof. By the previous lemma, it is enough to show that each path π(t, du) =
ρ(t, u)du in Π1 can be approximated by paths in Π2. Fix π in Π1 and let λ be as
in the proof of the previous lemma. For each 0 < ε < 1, let πε = (1− ε)π + ελ.
Note that QT (πε) < ∞ because QT is convex and both QT (π) and QT (λ)
are finite. Hence, πε belongs to Dγ since both π and λ satisfy the boundary
conditions. Moreover, It is clear that πε converges to π as ε ↓ 0. By the lower
semicontinuity of IT (·|γ), in order to conclude the proof, it is enough to show
that

lim
ε→0

IT (πε|γ) ≤ IT (π|γ) . (3.2.1)

By Lemma 3.1.8, there exists H ∈ H1
0 (σ(ρ)) such that ρ solves the equation

(3.1.14). Let P = σ(ρ)∇H − ∇ϕ(ρ) and Pλ = −∇ϕ(λ). For each 0 < ε < 1,
let Pε = (1 − ε)P + εPλ. Since ρ solves the equation (3.1.14), for every G ∈
C1,2
0 (ΩT ),

∫ T

0

〈Pε
t ,∇Gt〉 dt = 〈πε

T , GT 〉 − 〈πε
0, G0〉 −

∫ T

0

〈πε
t , ∂tGt〉 dt .
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Hence, by (3.1.7), IT (πε|γ) is equal to

sup
G∈C1,2

0 (ΩT )

{∫ T

0

dt

∫

Ω

du
{
Pε +∇ϕ(ρε)

} · ∇G − 1
2

∫ T

0

dt

∫

Ω

du σ(ρε)‖∇G‖2
}
.

This expression can be rewritten as

1
2

∫ T

0

dt

∫

Ω

du
‖Pε +∇ϕ(ρε)‖2

σ(ρε)

− 1
2

inf
G

{ ∫ T

0

dt

∫

Ω

‖Pε +∇ϕ(ρε)− σ(ρε)∇G‖2
σ(ρε)

du
}

Hence,

IT (πε|γ) ≤ 1
2

∫ T

0

dt

∫

Ω

‖Pε +∇ϕ(ρε)‖2
σ(ρε)

du ·

In view of this inequality and (3.1.15), in order to prove (3.2.1), it is enough
to show that

lim
ε→0

∫ T

0

dt

∫

Ω

du
‖Pε +∇ϕ(ρε)‖2

σ(ρε)
du =

∫ T

0

dt

∫

Ω

‖P +∇ϕ(ρ)‖2
σ(ρ)

du ·

By the continuity of ϕ′, σ and from the definition of Pε,

lim
ε→0

‖Pε +∇ϕ(ρε)‖2
σ(ρε)

=
‖P +∇ϕ(ρ)‖2

σ(ρ)

almost everywhere. Therefore, to prove (3.2.1), it remains to show the uniform
integrability of the families

{‖Pε‖2
χ(ρε)

: ε > 0
}

and
{‖∇ρε‖2

χ(ρε)
: ε > 0

}
.

Since IT (π|γ) < ∞, by (3.1.9), (3.1.15) and Corollary 3.1.3, the functions
‖P‖2
χ(ρ) , ‖Pλ‖2

χ(λ) , ‖∇ρ‖2
χ(ρ) and ‖∇λ‖2

χ(λ) belong to L1(ΩT ). In particular, the function

g = max
{‖P‖2
χ(ρ)

,
‖Pλ‖2
χ(λ)

,
‖∇ρ‖2
χ(ρ)

,
‖∇λ‖2
χ(λ)

}
,

also belongs to L1(ΩT ). By the convexity of ‖ · ‖2 an the concavity of χ(·),
‖Pε‖2
χ(ρε)

≤ (1− ε)‖P‖2 + ε‖Pλ‖2
(1− ε)χ(ρ) + εχ(λ)

≤ g ,

which proves the uniform integrability of the family ‖Pε‖2
χ(ρε) . The uniform inte-

grability of the family ‖∇ρε‖2
χ(ρε) follows from the same estimate with ∇ρε, ∇ρ and

∇λ in the place of Pε, P and Pλ, respectively.

Let Π be the subset of Π2 consisting of all those paths π which are solutions
of the equation (3.1.14) for some H ∈ C1,2

0 (ΩT ).

Theorem 3.2.3. The set Π is IT (·|γ)-dense.
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Proof. By the previous lemma, it is enough to show that each path π in Π2 can
be approximated by paths in Π. Fix π(t, du) = ρ(t, u)du in Π2. By Lemma
3.1.8, there exists H ∈ H1

0 (σ(ρ)) such that ρ solves the equation (3.1.14). Since
π belongs to Π2 ⊂ Π1, ρ is the weak solution of (2.1.1) in some time interval
[0, 2δ] for some δ > 0. In particular, ∇H = 0 a.e in [0, 2δ] × Ω. On the other
hand, since π belongs to Π1, there exists ε > 0 such that ε ≤ πt(·) ≤ 1 − ε for
δ ≤ t ≤ T . Therefore,

∫ T

0

dt

∫

Ω

du ‖∇Ht(u)‖2 < ∞ . (3.2.2)

Since H belongs to H1
0 (σ(ρ)), there exists a sequence of functions {Hn : n ≥

1} in C1,2
0 (ΩT ) converging to H in H1

0 (σ(ρ)). We may assume of course that
∇Hn

t ≡ 0 in the time interval [0, δ]. In particular,

lim
n→∞

∫ T

0

dt

∫

Ω

du ‖∇Hn
t (u)−∇Ht(u)‖2 = 0 . (3.2.3)

For each integer n > 0, let ρn be the weak solution of (3.1.14) with Hn in
place of H and set πn(t, du) = ρn(t, u)du. By (3.1.15) and since σ is bounded
above in [0, 1] by a finite constant,

IT (πn|γ) =
1
2

∫ T

0

〈σ(ρn
t ), ‖∇Hn

t ‖2〉 dt ≤ C0

∫ T

0

dt

∫

Ω

du ‖∇Hn
t (u)‖2 .

In particular, by (3.2.2) and (3.2.3), IT (πn|γ) is uniformly bounded on n. Thus,
by Theorem 3.1.7, the sequence πn is relatively compact in D([0, T ],M).

Let {πnk : k ≥ 1} be a subsequence of πn converging to some π0 in
D([0, T ],M0). For every G in C1,2

0 (ΩT ),

〈πnk

T , GT 〉 − 〈γ,G0〉 −
∫ T

0

〈πnk
t , ∂tGt〉 dt =

∫ T

0

〈ϕ(ρnk
t ),∆Gt〉 dt

−
∫ T

0

dt

∫

Γ

ϕ(b)n1(∂u1G)dS −
∫ T

0

〈σ(ρn
t ),∇Hnk

t · ∇Gt〉 dt .

Letting k → ∞ in this equation, we obtain the same equation with π0 and
H in place of πnk and Hnk , respectively, if

lim
k→∞

∫ T

0

dt 〈ϕ(ρnk
t ),∆Gt〉 =

∫ T

0

dt 〈ϕ(ρ0
t ),∆Gt〉 ,

lim
k→∞

∫ T

0

dt 〈σ(ρnk
t ),∇Hnk

t · ∇Gt〉 =
∫ T

0

dt 〈σ(ρ0
t ),∇Ht · ∇Gt〉 .

(3.2.4)

We prove the second claim, the first one being simpler. Note first that we
can replace Hnk by H in the previous limit, because σ is bounded in [0, 1] by
some positive constant and (3.2.3) holds. Now, ρnk converges to ρ0 weakly
in L2(ΩT ) because πnk converges to π0 in D([0, T ],M0). Since IT (πn|γ) is
uniformly bounded, by Lemma 3.1.6, ρnk converges to ρ0 strongly in L2(ΩT )
which implies (3.2.4). In particular, since (3.2.2) holds, by uniqueness of weak
solutions of equation (3.1.14), π0 = π and we are done.
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3.3 Large Deviations

We prove in this section the dynamical large deviation principle for the empirical
measure of boundary driven symmetric exclusion processes in dimension d ≥ 1.
The proof relies on the results presented in the previous sections and is quite
similar to the original one presented in [18, 11]. There are just three additional
difficulties. On the one hand, the lack of explicitly known stationary states hin-
ders the derivation of the usual estimates of the entropy and the Dirichlet form,
so important in the proof of the hydrodynamic behaviour. On the other hand,
due to the definition of the rate function, we have to show that trajectories with
infinite energy can be neglected in the large deviations regime. Finally, since
we are working with the empirical measure, instead of the empirical density, we
need to show that trajectories which are not absolutely continuous with respect
to the Lebesgue measure and whose density is not bounded by one can also be
neglected. The first two problems have already been faced and solved. The first
one in [20, 4] and the second in [22, 6]. The approach here is quite similar, we
thus only sketch the main steps in sake of completeness.

3.3.1 Superexponential estimates

It is well known that one of the main steps in the derivation of the upper
bound is a super-exponential estimate which allows the replacement of local
functions by functionals of the empirical density in the large deviations regime.
Essentially, the problem consists in bounding expressions such as 〈V, f2〉µN

ss
in

terms of the Dirichlet form 〈−N2LNf, f〉µN
ss

. Here V is a local function and
〈·, ·〉µN

ss
indicates the inner product with respect to the invariant state µN

ss. In
our context, the fact that the invariant state is not known explicitly introduces
a technical difficulty.

Let β be as in the beginning of Section 1.1. Following [20], [4], we use νN
β(·)

as reference measure and estimate everything with respect to νN
β(·). However,

since νN
β(·) is not the invariant state, there are no reasons for 〈−N2LNf, f〉νN

β(·)
to be positive. The next statement shows that this expression is almost positive.

We may suppose that β satisfies (2.2.3), in which case, for every N large
enough, νN

β(·) is reversible for the process with generator LN,b and then
〈−N2LN,bf, f〉νN

β(·)
is positive.

Recall from Section 2.2 the definition of DN
0 (·, ·) and recall also that we

denote by DN
β (·) the Dirichlet form of the generator LN,b with respect to its

reversible probability measure νN
β(·).

Lemma 3.3.1. There exists a constant C depending only on β such that if f

is density with respect to νN
β(·) and g = f

dνN
β(·)

dνN
α

then

〈LN

√
f,

√
f
〉

νN
β(·)

≤ −1
4
DN

0 (g, νN
α )−DN

β (f) + CNd−2 .

Proof. By Lemma (2.2.3), it is enough to show that there is a constant C1 =
C1(β) > 0 such that

DN
x,y(f, νN

β(·)) ≤
1
2
DN

x,y(g, νN
α )− C1N

−2 , (3.3.1)
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for any x, y = x+ ei ∈ ΩN .
Fix then x, x+ ei in ΩN . By the inequality 2ab ≤ Aa2 +A−1b2,

DN
x,y(f, νN

γ ) =
1
2

∫
rx,y(η)

[√
g(ηx,y)

(√
νN

γ (η)
νN

γ (ηx,y)
− 1

)

+
√
g(ηx,y)−

√
g(η)

]2

νN
α (dη)

≥ 1
4

∫
rx,y(η)

(√
g(ηx,y)−

√
g(η)

)2
νN

α (dη)

−1
2

∫
rx,y(η)g(ηx,y)

[√
νN

γ (η)
νN

γ (ηx,y)
− 1

]2

νN
α (dη) .

Hence, (3.3.1) follows from (2.2.11).

This lemma together with the computation presented in [2], p. 78, for non-
reversible processes, permits to prove the super-exponential estimate. Recall
from Section 2.2 that, for a cylinder function Ψ we denote the expectation of Ψ
with respect to the Bernoulli product measure νN

α by Ψ̃(α):

Ψ̃(α) = EνN
α [Ψ] .

recall also that, for a positive integer l and x ∈ ΩN , we denote the empirical
mean density on a box of size 2l + 1 centered at x by ηl(x):

ηl(x) =
1

|Λl(x)|
∑

y∈Λl(x)

η(y) ,

where
Λl(x) = ΛN,l(x) = {y ∈ ΩN : |y − x| ≤ l} .

For each G ∈ C(ΩT ), each cylinder function Ψ and each ε > 0, let

V G,Ψ
N,ε (s, η) =

1
Nd

∑
x

G(s, x/N)
[
τxΨ(η)− Ψ̃(ηεN (x))

]
,

where the sum is carried over all x such that the support of τxΨ belongs to ΩN .
For a continuous function H : [0, T ]× Γ → R, let

V ±N,H =
∫ T

0

ds
1

Nd−1

∑

x∈Γ±N

V ±(x, ηs)H
(
s,
x± e1
N

)
,

where

V ±(x, η) =
[
η(x) + b

(
x± e1
N

)][
η(x∓ e1)− b

(
x± e1
N

)]
.

Proposition 3.3.2. Let G : ΩT → R and H : [0, T ] × Γ → R be continuous
functions. Fix a cylinder function Ψ and a sequence {ηN : N ≥ 1} of configu-
rations with ηN in XN . For every δ > 0,

lim
ε→0

lim
N→∞

1
Nd

logPηN

[∣∣∣∣∣
∫ T

0

V G,Ψ
N,ε (s, ηs)ds

∣∣∣∣∣ > δ

]
= −∞ , (3.3.2)
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lim
N→∞

1
Nd

logPηN

[
|V ±N,H | > δ

]
= −∞ . (3.3.3)

Proof. Recall that, for some constant C = C(β) > 0,

dδηN

dνN
β(·)

≤ C2Nd

. (3.3.4)

Hence, we just need to show the Proposition with PνN
β(·)

in the place of PηN .
The proof of (3.3.2) is almost the same as the one of Theorem 10.3.1 in [16].

It follows from (2.2.12), we just need in addition Lemma 3.3.1 for estimates on〈−N2LN

√
f,
√
f
〉

νN
β(·)

.

We turn now to the proof of (3.3.3). By the exponential Chevychev inequal-
ity, for every A > 0, the left han side of (3.3.3) is bounded above by

−Aδ + lim
N→∞

1
Nd

logEνN
β(·)

[exp{ANd|V ±N,H |}] ,

which, by (2.2.13), is bounded by −Aδ + C1 for some positive constant C1 =
C1(β) > 0. Hence, (3.3.3) follows from the arbitrariness of A.

For each ε > 0 and π in M, denote by Ξε(π) = πε the absolutely continuous
measure obtained by smoothing the measure π:

Ξε(π)(dx) = πε(dx) =
1
Uε

π(Λε(x))
|Λε(x)| dx ,

where Λε(x) = {y ∈ Ω : |y − x| ≤ ε}, |A| stands for the Lebesgue measure of
the set A, and {Uε : ε > 0} is a strictly decreasing sequence converging to 1:
Uε > 1, Uε > Uε′ for ε > ε′, limε↓0 Uε = 1. Let

πN,ε = Ξε(πN ) .

A simple computation shows that πN,ε belongs to M0 for N sufficiently large
because Uε > 1, and that for each continuous function H : Ω → R,

〈πN,ε,H〉 =
1
Nd

∑

x∈ΩN

H(x/N)ηεN (x) + O(N, ε) ,

where O(N, ε) is absolutely bounded by C0{N−1 + ε} for some finite constant
C0 depending only on H.

For each H in C1,2
0 (ΩT ) consider the exponential martingale MH

t defined by

MH
t = exp

{
Nd

[〈
πN

t , Ht

〉− 〈
πN

0 ,H0

〉

− 1
Nd

∫ t

0

e−Nd〈πN
s ,Hs〉 (∂s +N2LN

)
eNd〈πN

s ,Hs〉 ds
]}

.

Recall from Section 1.3 the definition of the functional ĴH . An elementary
computation shows that

MH
T = exp

{
Nd

[
ĴH(πN,ε) + VH

N,ε + c1H(ε) + c2H(N−1)
]}

. (3.3.5)
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In this formula,

VH
N,ε = −

d∑

i=1

∫ T

0

V
∂2

ui
H,hi

N,ε (s, ηs) ds− 1
2

d∑

i=1

∫ T

0

V
(∂ui

H)2,gi

N,ε (s, ηs) ds

+ aV +
N,∂u1H − aV −N,∂u1H + 〈πN

0 , H0〉 − 〈γ,H0〉 ;
the cylinder functions hi, gi are given by

hi(η) = η(0) + a
{
η(0)[η(−ei) + η(ei)]− η(−ei)η(ei)

}
,

gi(η) = r0,ei(η) [η(ei)− η(0)]2 ;

and cjH : R+ → R, j = 1, 2, are functions depending only on H such that
cjH(δ) converges to 0 as δ ↓ 0. In particular, the martingale MH

T is bounded by
exp

{
C(H,T )Nd

}
for some finite constant C(H,T ) depending only on H and

T . Therefore, Proposition 3.3.2 holds for PH
ηN = PηNMH

T in place of PηN .

3.3.2 Energy estimates

To exclude paths with infinite energy in the large deviations regime, we need
an energy estimate.

Fix a constant C0 satisfying the statement of Lemma 2.2.4. Recall from
Section 2.2 the definition of the functional QG,i,C0

T and that

sup
G∈C∞c (ΩT )

{
QG,i,C0

T (π)
}

=
Qi

T (π)
4C0

. (3.3.6)

Fix a sequence {Gk : k ≥ 1} of smooth functions dense in L2([0, T ],H1(Ω)).
For any positive integers r, l, let

Br,l =
{
π ∈ D([0, T ],M) : max

1≤k≤r
1≤i≤d

QGk,i,C0
T (π) ≤ l

}
.

Since, for fixed G in C∞c (ΩT ) and 1 ≤ i ≤ d integer, the function QGk,i,C0
T is

continuous, Br,l is a closed subset of D([0, T ],M).

Lemma 3.3.3. There is a positive constant C̃ such that, for any positive inte-
gers r, l,

lim
N→∞

1
Nd

log QηN [Br,l
c] ≤ −l + C̃ .

Proof. Let C > 0 be a constant satisfying (3.3.4). For integers 1 ≤ k ≤ r and
1 ≤ i ≤ d, by the exponential Chevychev inequality and Lemma 2.2.4,

lim
N→∞

1
Nd

logPηN

[
QGk,i,C0

T > l
]
≤ −l + C0 + C .

Therefore, since

lim
N→∞

1
Nd

log(aN + bN ) ≤ max
{

lim
N→∞

1
Nd

log aN , lim
N→∞

1
Nd

log bN
}
, (3.3.7)

the desired inequality is obtained with C̃ = C0 + C.
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3.3.3 Upper bound

Fix a sequence {Fk : k ≥ 1} of smooth nonnegative functions dense in C(Ω) for
the uniform topology. For k ≥ 1 and δ > 0, let

Dk,δ =
{
π ∈ D([0, T ],M) : 0 ≤ 〈πt, Fk〉 ≤

∫

Ω

Fk(x) dx + Ckδ , 0 ≤ t ≤ T
}
,

where Ck = ‖∇Fk‖∞ and ∇F is the gradient of F . Clearly, the set Dk,δ, k ≥ 1,
δ > 0, is a closed subset of D([0, T ],M). Moreover, if

Em,δ =
m⋂

k=1

Dk,δ ,

we have that D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n. Note, finally, that for all
m ≥ 1, δ > 0,

πN,ε belongs to Em,δ for N sufficiently large. (3.3.8)

Fix a sequence of configurations {ηN : N ≥ 1} with ηN in XN and such that
πN (ηN ) converges to γ(u)du in M. Let A be a subset of D([0, T ],M),

1
Nd

logPηN

[
πN ∈ A]

=
1
Nd

logEηN

[
MH

T (MH
T )−1 1{πN ∈ A}] .

Maximizing over πN in A, we get from (3.3.5) that the last term is bounded
above by

− inf
π∈A

ĴH(πε) +
1
Nd

logEηN

[
MH

T e−NdVH
N,ε

]
− c1H(ε)− c2H(N−1) .

Since πN (ηN ) converges to γ(u)du in M and since Proposition 3.3.2 holds for
PH

ηN = PηNMH
T in place of PηN , the second term of the previous expression is

bounded above by some CH(ε,N) such that

lim
ε→0

lim
N→∞

CH(ε,N) = 0 .

Hence, for every ε > 0, and every H in C1,2
0 (ΩT ),

lim
N→∞

1
Nd

logPηN [A] ≤ − inf
π∈A

ĴH(πε) + C ′H(ε) , (3.3.9)

where lim
ε→0

C ′H(ε) = 0.

For each H ∈ C1,2
0 (ΩT ), each ε > 0 and any r, l,m, n ∈ Z+, let Jr,l,m,n

H,ε :
D([0, T ],M) → R ∪ {∞} be the functional given by

Jr,l,m,n
H,ε (π) =

{
ĴH(πε) if π ∈ Br,l ∩ Em,1/n ,

+∞ otherwise .

This functional is lower semicontinuous because so is ĴH ◦Ξε and because Br,l,
Em,1/n are closed subsets of D([0, T ],M).
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Let O be an open subset of D([0, T ],M). By Lemma 3.3.3, (3.3.7), (3.3.8)
and (3.3.9),

lim
N→∞

1
Nd

log QηN [O] ≤ max
{

lim
N→∞

1
Nd

log QηN [O ∩Br,l ∩ Em,1/n] ,

lim
N→∞

1
Nd

log QηN [(Br,l)c]
}

≤ max
{
− inf

π∈O∩Br,l∩Em,1/n

ĴH(πε) + C ′H(ε) , −l + C̃
}

= − inf
π∈O

Lr,l,m,n
H,ε (π) ,

where
Lr,l,m,n

H,ε (π) = min
{
Jr,l,m,n

H,ε (π)− C ′H(ε) , l − C̃
}
.

In particular,

lim
N→∞

1
Nd

log QηN [O] ≤ − sup
H,ε,r,l,m,n

inf
π∈O

Lr,l,m,n
H,ε (π) .

Note that, for each H ∈ C1,2
0 (ΩT ), each ε > 0 and r, l,m, n ∈ Z+, the

functional Lr,l,m,n
H,ε is lower semicontinuous. Then, by Lemma A2.3.3 in [16], for

each compact subset K of D([0, T ],M),

lim
N→∞

1
Nd

log QηN [K] ≤ − inf
π∈K

sup
H,ε,r,l,m,n

Lr,l,m,n
H,ε (π) .

By (3.3.6) and since D([0, T ],M0) = ∩n≥1 ∩m≥1 Em,1/n,

lim
ε→0

lim
l→∞

lim
r→∞

lim
m→∞

lim
n→∞

Lr,l,m,n
H,ε (π) =

{
ĴH(π) if QT (π) <∞ and π ∈ D([0, T ],M0) ,
+∞ otherwise .

This result and the last inequality imply the upper bound for compact sets
because ĴH and JH coincide on D([0, T ],M0). To pass from compact sets to
closed sets, we have to obtain exponential tightness for the sequence {QηN }.
This means that there exists a sequence of compact sets {Kn : n ≥ 1} in
D([0, T ],M) such that

lim
N→∞

1
Nd

log QηN (Kn
c) ≤ −n .

The proof presented in [1] for the non interacting zero range process is easily
adapted to our context.

3.3.4 Lower bound

The proof of the lower bound is similar to the one in the convex periodic case.
We just sketch it and refer to [16], section 10.5. Fix a path π in Π and let
H ∈ C1,2

0 (ΩT ) be such that π is the weak solution of equation (3.1.14). Recall
from the previous section the definition of the martingaleMH

t and denote by PH
ηN
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the probability measure on D([0, T ], XN ) given by PH
ηN [A] = EηN [MH

T 1{A}].
Under PH

ηN and for each 0 ≤ t ≤ T , the empirical measure πN
t converges in

probability to πt. Further,

lim
N→∞

1
Nd

H
(
PH

ηN

∣∣PηN

)
= IT (π|γ) ,

where H(µ|ν) stands for the relative entropy of µ with respect to ν. From
these two results we can obtain that for every open set O ⊂ D([0, T ],M) which
contains π,

lim
N→∞

1
Nd

logPηN

[O] ≥ −IT (π|γ) .

The lower bound follows from this and the IT (·|γ)-density of Π established in
Theorem 3.2.3.
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Chapter 4

Statical Large Deviations

We prove here that the quasi potential is the large deviation functional of the
stationary measure. Throughout this chapter, we denote by ρ̄ the weak solution
of (1.2.1), and by ϑ the measure in M0 with density ρ̄, i.e., ϑ(du) = ρ̄(u)du.

4.1 The Functional IT

Fix T > 0. For each G ∈ C1,2
0 (ΩT ), let J̌G = J̌G,T : D([0, T ],M0) → R be the

functional given by

J̌G(π) = 〈πT , GT 〉 − 〈π0, G0〉 −
∫ T

0

〈πt, ∂tGt〉 dt

−
∫ T

0

〈ϕ(ρt),∆Gt〉 dt +
∫ T

0

dt

∫

Γ+
ϕ(b) ∂u1GdS

−
∫ T

0

dt

∫

Γ−
ϕ(b) ∂u1GdS − 1

2

∫ T

0

〈σ(ρt), ‖∇Gt‖2〉 dt ,

where πt(du) = ρt(u)du. Define J̃G = J̃G,T : D([0, T ],M) → R by

J̃G(π) =

{
J̌G(π) if π ∈ D([0, T ],M0),
+∞ otherwise .

We define the functional IT : D([0, T ],M) → [0,+∞] as

IT (π) =





sup
G∈C1,2

0 (ΩT )

{
J̃G(π)

}
if QT (π) <∞ ,

+∞ otherwise .

Notice that, by Lemma 3.1.1, for any measurable function γ : Ω → [0, 1],

IT (π|γ) =

{
IT (π) if π0(du) = γ(u)du ,
+∞ otherwise .

By this reason, it is easy to see that most of the results stated in Section 3.1
which holds for the dynamical rate function IT (·|γ) also holds for the functional
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IT . Thus when we refer to a result stated in Section 3.1 and concerning the
dynamical rate function IT (·|γ), we mean the same result with IT in the place
of IT (·|γ).

By Lemma 3.1.1, if a trajectory π in D([0, T ],M) satisfies IT (π) <∞ then
π belongs to C([0, T ],M0). Thus when we let a trajectory π with IT (π) < ∞,
we will assume automatically that it belongs to C([0, T ],M0).

Let C1(Ω) be the set of continuous functions f : Ω → R such that

sup
u∈Ω

|f(u)| = 1 .

Recall that we may define a metric on M by introducing a dense countable
family {fk : k ≥ 1} of functions in C1(Ω), with f1 = 1, and by defining the
distance

d(ϑ1, ϑ2) =
∞∑

k=1

1
2k
|〈ϑ1, fk〉 − 〈ϑ2, fk〉| .

Let D be the space of measurable functions bounded below by 0 and bounded
above by 1 endowed with the L2(Ω) topology.

For ϑ ∈ M, ρ ∈ D and ε > 0, let us denote by Bε(ϑ) the open ε-ball in M
with centre ϑ in the d-metric,

Bε(ϑ) =
{
ϑ̃ ∈M : d

(
ϑ̃, ϑ

)
< ε

}
,

and by Bε(ρ) the open ε-ball in D with centre ρ in the L2(Ω) norm,

Bε(ρ) = {ρ̃ ∈ D : ‖ρ̃− ρ‖2 < ε} .
Next result states that any trajectory whose density stays a long time far

away from ρ̄ in the L2(Ω) norm pays a nonnegligible cost.
For each δ > 0 and each T > 0 denote by D([0, T ],M0\Bδ(ρ̄)) the set of

trajectories π(t, du) = ρ(t, u)du in D([0, T ],M0) such that ρt /∈ Bδ(ρ̄) for all
0 ≤ t ≤ T .

Lemma 4.1.1. For every δ > 0, there exists T > 0 such that

inf{IT (π) : π ∈ D([0, T ],M0\Bδ(ρ̄))} > 0 .

Proof. By Corollary 5.1.8, there exists T0 = T0(δ) > 0 such that for any weak
solution λ of (2.1.1),

‖λt − ρ̄‖2 < δ/2 for all t ≥ T0 . (4.1.1)

We assert that the statement of the lemma holds with T = 2T0. If this is not
the case, there exists a sequence of trajectories {πk

t (du) = ρk(t, u)du : k ≥ 1} in
D

(
[0, T ],M0\Bδ(ρ̄)

)
such that IT (πk) ≤ 1/k. Since IT has compact level sets,

by passing to a subsequence if necessary, we may assume that πk converges
to some πt(du) = ρ(t, u)du in D([0, T ],M0). Moreover, by Lemma 3.1.6, ρk

converges to ρ strongly in L2(ΩT ).
On the other hand, the lower semicontinuity of IT implies that IT (π) = 0 or

equivalently, by Corollary 3.1.3, that ρ is a weak solution of (2.1.1). Hence, by
(4.1.1) and since

∥∥ρk
t − ρ̄

∥∥
2
≥ δ for all t ∈ [0, T ] and for all positive integer k,

∫ T

0

∥∥ρk
t − ρt

∥∥2

2
dt ≥

∫ 2T0

T0

∥∥ρk
t − ρt

∥∥2

2
dt ≥ δ2T0/4 ,
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which contradicts the strong convergence of ρk to ρ in L2(ΩT ) and we are done.

The same ideas permit us to establish an analogous result for the weak
topology as follows.

Corollary 4.1.2. For every ε > 0, there exists T > 0 such that

inf
{
IT (π) : π ∈ D([0, T ],M) and πT /∈ Bε(ϑ)

}
> 0 .

Proof. Let δ = ε/
√

2 and consider T0 > 0 satisfying (4.1.1). Set T = T0 and
assume that the statement of the corollary does not hold. In that case, since
IT has compact level sets, by Lemma 3.1.6 and Corollary 3.1.3, there exists
a sequence of trajectories {πk : k ≥ 1} in C([0, T ],M0), with πk

T /∈ Bε(ϑ),
converging to some π whose density is a weak solution of (2.1.1). By (4.1.1) and
since Bδ/2(ρ̄) ⊂ Bε/2(ϑ), πT belongs to Bε/2(ϑ̄). Hence, for every integer k > 0,

d
(
πk

T , πT

)
> ε/2 ,

which contradicts the convergence of πk to π in C([0, T ],M0).

Fix a weak solution ρ of (2.1.1). By Corollary 3.1.3,

ET (ρ) =
∫ T

0

dt

∫

Ω

du
‖∇ρt(u)‖2
χ(ρt(u))

<∞. (4.1.2)

Recall from Section 3.1 the definition of the functional ∂tρ : C∞c (ΩT ) → R. By
Lemma 3.1.1, by the integration by parts formula (3.1.1) and since ρ is a weak
solution of (2.1.1),

∂tρ(H) = −
∫ T

0

〈ρt, ∂tHt〉 dt = −
∫ T

0

∫

Ω

∇ϕ(ρt(u)) · ∇Ht(u) du

for everyH ∈ C∞c (ΩT ). Then, ∂tρ can be extended to a bounded linear operator
in L2([0, T ],H1

0 (Ω))∗ which corresponds to the path {∂tρt : 0 ≤ t ≤ T} in
L2([0, T ],H−1(Ω)) with ∂tρt : H1

0 (Ω) → R, 0 ≤ t ≤ T , given by

〈∂tρt, G〉−1,1 =
∫

Ω

∇ϕ(ρt(u)) · ∇Gt(u)du . (4.1.3)

We conclude this section with an estimate on the cost paying by backwards
solutions of the hydrodynamic equation (2.1.1). Let π(t, du) = ρ̃(t, u)du be the
path in C([0, T ],M0) with density given by ρ̃(t, du) = ρ(T − t, u)du. It is clear
that QT (π) = QT (ρ(u)du) <∞ and that ∂tρ̃t = −∂tρT−t. By (3.1.6) and since
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ρ is a weak solution of (2.1.1), for each G in C1,2
0 (ΩT ),

J̃G(π) =
∫ T

0

〈∂tρ̃t, Gt〉−1,1 dt+
∫ T

0

dt

∫

Ω

du ∇ϕ(ρ̃t(u)) · ∇Gt(u)

−1
2

∫ T

0

dt

∫

Ω

du σ(ρ̃t(u))‖∇Gt(u)‖2

= −
∫ T

0

〈∂tρt, Ĝt〉−1,1 dt+
∫ T

0

dt

∫

Ω

du ∇ϕ(ρt(u)) · ∇Ĝt(u)

−1
2

∫ T

0

dt

∫

Ω

du σ(ρt(u))‖∇Ĝt(u)‖2

= 2
∫ T

0

dt

∫

Ω

du ∇ϕ(ρt(u)) · ∇Ĝt(u)− 1
2

∫ T

0

dt

∫

Ω

du σ(ρt(u))‖∇Ĝt(u)‖2

≤
∫ T

0

dt

∫

Ω

du ϕ′(ρt(u))
‖∇ρt(u)‖2
χ(ρt(u))

,

where Ĝ(t, u) = G(T − t, u) and where the last inequality follows from the
elementary inequality 2ab ≤ Aa2 + A−1b2. In particular, since ϕ′ is bounded
above on [0, 1] by some constant C0 > 0,

IT (π) ≤ C0ET (λ) . (4.1.4)

4.2 The Statical Rate Function

In this section we study some properties of the quasi potential V . The first
main result, presented in Theorem 4.2.2, states that V is continuous at ρ̄ in the
L2(Ω) topology. The second one, presented in Theorem 4.2.4, states that V is
lower semicontinuous.

We start with an estimate on V (ϑ). Let V : D→ [0,+∞] be the functional
given by V(ρ) = V (ρ(u)du). For each h > 0 and each δ > 0, let Dh

δ be the
subset of D consisting of those profiles ρ satisfying the following conditions:

i) ρ belongs to ∈ H1(Ω) and Bρ = b.

ii)
∫
Ω
‖∇ρ(u)‖2du ≤ h.

iii) δ ≤ ρ(u) ≤ 1− δ a.e. in Ω.

Lemma 4.2.1. For every h > 0 and every δ > 0, there exists a constant C > 0
such that

V(ρ) ≤ C

{
‖ρ− ρ̄‖22

∫ 1

0

α′(t)2dt+
∫ 1

0

α(t)2dt
}

for any ρ in Dh
δ and any increasing C1-diffeomorphism α : [0, 1] → [0, 1].

Proof. Fix h > 0 and δ > 0. Let ρ ∈ Dh
δ and let α : [0, 1] → [0, 1] be an increasing

C1-diffeomorphism. Consider the path πα(t, du) = ρα(t, u)du in C([0, T ],M0)
with density given by ρα

t = (1 − α(t))ρ̄ + α(t)ρ. From condition i), it is clear
that ρα belongs to L2([0, 1],H1(Ω)) (which implies that Q1(πα) <∞) and that
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Bρα
t = b for every t in [0, 1]. Further, since ρ̄ solves (1.2.1), for every function

G in C1,2
0 (Ω1) and every t in [0, 1],

∫

Ω

∇ϕ(ρα
t (u)) · ∇Gt(u)du =

∫

Ω

∇[ϕ(ρα
t (u))− ϕ(ρ̄(u))] · ∇Gt(u)du

=
∫

Ω

Ψα
t (u) · ∇Gt(u)du ,

where Ψα
t = α(t)ϕ′(ρα

t )∇(ρ − ρ̄) + [ϕ′(ρα
t ) − ϕ′(ρ̄)]∇ρ̄. From the definition of

ρα it is easy to see that ∂tρ
α(t, u) = α′(t)(ρ(u)− ρ̄(u)). Hence, by (3.1.6),

J̃G(πα) =
∫ 1

0

α′(t)〈ρ− ρ̄, Gt〉 dt+
∫ 1

0

dt

∫

Ω

duΨα
t (u) · ∇Gt(u)

− 1
2

∫ 1

0

〈σ(ρα
t ), ‖∇Gt‖2〉 dt .

(4.2.1)

Recall that ρ̄ is bounded away from 0 and 1. Therefore, from condition iii),
there exists a constant C1 = C1(δ) > 0 such that the third term on the right
hand side of (4.2.1) is bounded above by

−C1

∫ 1

0

dt

∫

Ω

du ‖∇Gt(u)‖2 .

On the other hand, by the inequality 2ab ≤ Aa2 +A−1b2 and by Poincaré’s
inequality, there exists a constant C2 > 0 such that the first term on the right
hand side of (4.2.1) is bounded by

C2‖ρ− ρ̄‖22
∫ 1

0

α′(t)2dt+
C1

2

∫ 1

0

dt

∫

Ω

du ‖∇Gt(u)‖2 .

Finally, from condition ii) and since ϕ′ is bounded and Lipschitz on [0, 1],
there is a constant C ′ = C ′(h) > 0 such that

∫
Ω
‖Ψα

t (u)‖2du ≤ C ′α(t)2 for
every t in [0, 1]. Hence, by the inequality 2ab ≤ Aa2 + A−1b2 and by Schwarz
inequality, there exists a constant C3 = C3(h, δ) > 0 such that the second term
on the right hand side of (4.2.1) is bounded by

C3

∫ 1

0

α(t)2dt+
C1

2

∫ 1

0

dt

∫

Ω

du ‖∇Gt(u)‖2 .

Adding these three bounds, we obtain that

J̃G(πα) ≤ C2‖ρ− ρ̄‖22
∫ 1

0

α′(t)2dt+ C3

∫ 1

0

α(t)2dt

for any function G in C1,2
0 (Ω1), which implies the desired result with C =

max{C2, C3}
Theorem 4.2.2. V is continuous at ρ̄.

Proof. We will prove first that the restriction of V to the sets Dh
δ is continuous at

ρ̄. Fix then h > 0 and δ > 0. Let {ρn : n ≥ 1} be a sequence in Dh
δ converging

to ρ̄. By Lemma 4.2.1, there is a constant C = C(h, δ) such that
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V(ρn) ≤ C

{
‖ρn − ρ̄‖22

∫ 1

0

α′(t)2dt+
∫ 1

0

α(t)2dt
}

for any integer n > 0 and any increasing C1-diffeomorphism α : [0, 1] → [0, 1].
Thus, by letting n ↑ ∞ and then taking the infimum over all the increasing
C1-diffeomorphisms α : [0, 1] → [0, 1], we conclude that

lim
n→∞

V(ρn) ≤ C inf
α

{∫ 1

0

α(t)2dt
}

= 0 .

We deal now with the general case. Let {ρn : n ≥ 1} be a sequence in
D converging to ρ̄. Fix ε > 0. For each integer n > 0, let λn be the weak
solution of (2.1.1) starting at ρn. By Lemma 5.2.1, there exist T = T (ε) > 0
and N0 = N0(ε) > 0 such that, for all integer n > N0,

ET (λn) ≤ ε . (4.2.2)

In particular, there exists T ′ ≤ Tn ≤ 2T ′ = T such that
∫

Ω

‖∇λn
Tn

(u)‖2du ≤ ε/T ′ .

Moreover, by Lemma 5.1.6, there exists δ = δ(T ′) > 0 such that δ ≤ λn
Tn

(u) ≤
1 − δ for every integer n > N0 and for every u in Ω. Hence, λn

Tn
belongs to

Dε/T ′

δ . Further, by Lemma 5.1.2,
√

2‖ρn − ρ̄‖2 ≥ ‖ρn − ρ̄‖1 ≥ ‖λn
Tn
− ρ̄‖1 ≥ ‖λn

Tn
− ρ̄‖22 ,

which implies that λn
Tn

also converges to ρ̄ in L2(Ω). Therefore, by the first part
of the proof,

lim
n→∞

V(λn
Tn

) = 0 .

For each integer n > 0, let πn be the path in C([0, Tn],M) given by πn
t (du) =

λn(Tn − t, u)du. By (4.1.4) and (4.2.2), for every integer n > N0,

ITn(πn) ≤ C0ETn(λn) ≤ C0ε .

In particular,

lim
n→∞

V(ρn) ≤ lim
n→∞

V(λn
Tn

) + lim
n→∞

ITn(πn) ≤ C0ε ,

which, by the arbitrariness of ε, implies the desired result.

Similar arguments permit us to show that the quasi potentials of measures
in M0 are uniformly bounded.

Proposition 4.2.3. V (ϑ) is finite if and only if ϑ belongs to M0. Moreover,

sup
ϑ∈M0

V (ϑ) <∞ .
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Proof. By Lemmas 5.1.6 and 5.2.1, there exist constants δ > 0 and h > 0 such
that, for every weak solution λ of the equation (2.1.1),

δ ≤ λ(t, u) ≤ 1− δ ∀(t, u) ∈ [1,∞)× Ω and E2(λ) ≤ h . (4.2.3)

Fix ϑ(du) = ρ(u)du in M0 and let λ be the weak solution of (2.1.1) starting
at ρ. By (4.2.3), there exists a time 1 ≤ T ≤ 2 such that λT belongs to
Dh

δ . Moreover, if we denote by π the path in C([0, T ],M0) given by πt(du) =
λ(T − t, u)du, by (4.1.4), there exists a constant C1 = C1(h) > 0 such that
IT (π) ≤ C1. Hence, by Lemma 4.2.1, there exists a constant C2 = C2(h, δ) > 0
such that

V(ρ) ≤ V(λT ) + IT (π) ≤ C2 + C1 .

For any real numbers r < s and any trajectory π in D([r̃, s̃],M) with r̃ ≤
r ≤ s ≤ s̃, let π[r,s] be the trajectory in D([0, s− r],M) given by π[r,s]

t = πt+r,
and let

I[r,s](π) = Is−r

(
π[r,s]

)

For each π in D((−∞, 0],M), let Iπ : (−∞, 0] → [0,+∞] be the function
given by

Iπ(t) = I[t,0](π) .

It is clear that this is a nonincreasing function and then

I(π) = lim
t↓−∞

Iπ(t) ∈ [0,+∞]

is well defined. We claim that, for every path π in D((−∞, 0],M),

I(π) ≥ V (π0) . (4.2.4)

Moreover, if I(π) <∞ then, as t ↓ −∞, πt converges to ϑ in M0.
Indeed, the last assertion is an immediate consequence of Corollary 4.1.2.

To prove (4.2.4), we may assume of course that I(π) < ∞. In that case,
π(t, du) = ρ(t, u)du belongs to C((−∞, 0],M0) and, by Lemma 4.1.1, there
exists a sequence of nonpositive times {tn : n ≥ 1} such that, for each integer
n > 0, ρtn belongs to B1/n(ρ̄). Hence, for all integer n > 0,

V (π0) ≤ V(ρtn) + Iπ(tn) ≤ V(ρtn) + I(π) .

To conclude the proof of (4.2.4) it remains to let n ↑ ∞ and to apply Theorem
4.2.2.

As a consequence of these facts we recover the definition for the quasi po-
tential given in [3], in which the infimum appearing in the definition of V (ϑ) is
carried over all paths π in D([−∞, 0],M) with π−∞ = ϑ̄ and π0 = ϑ.

Theorem 4.2.4. The functional V is lower semicontinuous.

Proof. Since V (ϑ) is finite only for measures ϑ in M0, which is a closed subset
of M, we just need to prove that, for all q ∈ R+, the set

Vq = {ϑ ∈M0 : V (ϑ) ≤ q} ,
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is closed in M0. Fix then q ∈ R+ and let {ϑn(du) = ρ(u)du : n ≥ 1} be a
sequence of measures in Vq converging to some ϑ(du) = ρ(u)du in M0.

By definition of V , for each integer n > 0, there exists a path πn in
C([0, Tn],M0) with πn

0 = ϑ, πn
Tn

= ϑn and such that

ITn(πn) ≤ V (ϑn) + 1/n ≤ q + 1/n (4.2.5)

Let us assume first that the sequence {Tn : n ≥ 1} is bounded above by some
T > 0. In that case, for each integer n > 0, let π̂n be the path in C([0, T ],M0)
obtained from πn by staying a time T − Tn at ϑ,

π̂n
t =

{
ϑ if 0 ≤ t ≤ T − Tn ,

πn
t−T+Tn

if T − Tn ≤ t ≤ T .

It is clear that IT (π̂n|ρ̄) = ITn(πn|ρ̄). Moreover, from (4.2.5) and since
IT (·|ρ̄) has compact level sets, there exists a subsequence of π̂n converging to
some π in C([0, T ],M0) such that πT (du) = ρ(u)du and IT (π|ρ̄) ≤ q. In
particular, ρ belongs to Vq and we are done.

To complete the proof, let us now assume that Tn has a subsequence which
converges to ∞. We may suppose, without loss of generality that this subse-
quence is the sequence Tn itself. For each integer n > 0, let π̃n be the path in
C([−Tn, 0],M0) given by π̃n

t = πn
t+Tn

.
Since IT is lower semicontinuous with compact level sets, for any integer l > 0

and for any subsequence {π̃nr : r ≥ 1} of π̃n, there exists a subsequence of π̃nr

converging to some π̌l in C([−l, 0],M0) with π̌l
0 = ρ and I[−k,0](π̌l) ≤ q. Then,

by a Cantor’s diagonal argument, we may obtain a path π̌ in C((−∞, 0],M0)
with π̌0 = ρ and I(π̌) ≤ q. This together with (4.2.4) conclude the proof of the
theorem.

4.3 Large Deviations

4.3.1 Lower bound

The proof of the lower bound is essentially the same as the one in [8] but for the
sake of completeness we present here the detailed proof. In fact, it is a simple
consequence of Theorem 1.2.1 (hydrostatics) and the dynamical large deviation
lower bound.

Fix an open subset O of M. We have to prove that

lim
N→∞

1
Nd

logPN (O) ≥ − inf
ϑ∈O

V (ϑ) .

To this end, it is enough to show that for any measure ϑ in O∩M0 and any
trajectory π̃ in C([0, T ],M0) with π̃T = ϑ,

lim
N→∞

1
Nd

logPN (O) ≥ −IT (π̃|ρ̄) (4.3.1)

holds. Since µN
ss is stationary,

PN (O) = EµN

[
Pη0

(
πN

T ∈ O)]
.
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Theorem 1.2.1 guarantees that for any fixed δ > 0,

lim
N→∞

PN (Bδ(ϑ)) = 1,

which is equivalent to the existence of a sequence of positive numbers {εN :
N ≥ 1} converging to 0 and such that PN (BεN

(ϑ)) converges to 1. Hence, for
N large enough,

PN (O) ≥ 1
2

inf
η∈BN

{
Pη

[
πN

T ∈ O]}
,

where BN =
(
πN

)−1 (BεN
(ϑ)). For each integer N > 0, consider a configuration

ηN in BN satisfying

PηN

[
πN

T ∈ O]
= inf

η∈BN

{
Pη

[
πN

T ∈ O]}
.

Since πN
(
ηN

)
converges to ρ̄ in M and since OT = πT

−1(O) is an open
subset of D([0, T ],M), by the dynamical large deviations lower bound,

lim
N→∞

1
Nd

logPN (O) ≥ lim
N→∞

1
Nd

logPηN

[
πN

T ∈ O]

= lim
N→∞

1
Nd

log QηN (OT )

≥ − inf
π∈OT

IT (π|ρ̄) ≥ −IT (π̃|ρ̄) ,

which proves (4.3.1) and we are done.

4.3.2 Upper bound

In this subsection we prove the upper bound. We follow closely the approach
given in [8] and solve the missing case mentioned in the introduction. Fix a
closed subset C of M. We have to show that

lim
N→∞

1
Nd

logPN (C) ≤ −V (C) , (4.3.2)

where V (C) = infϑ∈C V (ϑ).
Notice that if ϑ belongs to C, V (C) = 0 and the upper bound is trivially

verified. Thus, we may assume that ϑ /∈ C.
We may assume of course that the left hand side of (4.3.2) is finite, which

implies that C ∩XN 6= ∅ for infinitely many integers N . By the compactness of
M and since C is a closed subset of M, there exists a sequence of configurations
{ηNk : k ≥ 1} with πN (ηNk) in C ∩XNk

converging to some ϑ in C. Moreover,
since each configuration in XN has at most one particle per site, ϑ belongs to
M0. In particular, by Proposition 4.2.3, V (C) <∞.

Fix δ > 0 such that B3δ(ϑ) ∩ C = ∅. Let B = Bδ be the open δ-ball with
centre ϑ in the d-metric,

B = Bδ(ϑ) ,

and let R = Rδ be the subset of M defined by

R = {ϑ ∈M : 2δ ≤ d(ϑ, ϑ) ≤ 3δ} .
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For each integer N > 0 and each subset A of M, let AN = (πN )−1(A) and
let HN

A : D(R+, XN ) → [0,∞] be the entry time in AN :

HN
A = inf

{
t ≥ 0 : ηt ∈ AN

}
.

Let ∂BN = ∂BN
δ be the set of configurations η in XN for which there exists

a finite sequence of configurations {ηi : 0 ≤ i ≤ k} in XN with η0 in RN , ηk = η
and such that

i) For every 1 ≤ i ≤ k, the configuration ηi can be obtained from ηi−1 by a
jump of the dynamics.

ii) The unique configuration of the sequence that can enter into BN after a
jump is ηk.

Let also τ1 = τN
1 : D(R+, XN ) → [0,∞] be the stopping time given by

τ1 = inf
{
t > 0 : there exists s < t such that ηs ∈ RN and ηt ∈ ∂BN

}
.

The sequence of stopping times obtained by iterating τ1 is denoted by τk.
This sequence generates a Markov chain Xk on ∂BN by setting Xk = ητk

.
Notice that this Markov chain is irreducible. In fact, let ζ, η be configurations

in ∂BN . By definition of the set ∂BN , there exist a sequence {ηi : 0 ≤ i ≤ k}
in XN which satisfies η0 ∈ RN , ηk = η, i) and ii). Further, it is clear that there
exists a sequence {ζi : 0 ≤ i ≤ l} in XN which satisfies ζ0 = ζ, ζl = η0 and i).
Consider then the sequence {η̃j : 0 ≤ j ≤ l + k} in XN given by

η̃j =

{
ζj if 0 ≤ j ≤ l ,

ηj−l if l < j ≤ l + k .

Let j0 = 0 and for i ≥ 1 let

j2i−1 = min
j>j2i−2
ηj∈RN

{j} and j2i = min
j>j2i−1
ηj∈∂BN

{j} .

Thus, by setting ξi = η̃j2i , we obtain a sequence {ξi : 0 ≤ i ≤ r} in ∂BN

starting at ξ0 = ζ, ending at ξr = η and such that

Pξi−1 [ητ1 = ξi] > 0 ,

for every 1 ≤ i ≤ r. This implies the irreducibility of Xk.
Hence, since the state space ∂BN is finite, this Markov chain has a unique

stationary measure νN . Following [15], we represent the stationary measure µN

of a subset A of XN as

µN
ss(A) =

1
CN

∫

∂BN

Eη

(∫ τ1

0

1{ηs∈A}ds
)
dνN (η) ,

where
CN =

∫

∂BN

Eη (τ1) dνN (η) .
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In particular, by this representation an by the strong Markov property,

PN (C) ≤ 1
CN

sup
η∈∂BN

{
Pη

[
HN
C < τ1

]}
sup

η∈CN

{Eη (τ1)} .

Recall that a configuration in XN can jump by the dynamics to less than
other 2dNd configurations and that the jump rates are of order N2. Hence,
since any trajectory in D(R+, XN ) has to perform at least a jump before the
stopping time τ1, CN ≥ 1/CNd+2 for some constant C > 0.

Notice that the jumps of the process d(πN (ηt), ρ̄) are of order N−d. Thus,
for N large enough, any trajectory in D(R+, XN ) starting at some configuration
in ∂BN , resp. CN , satisfies HN

R ≤ HN
C , resp. τ1 ≤ HN

B . Hence, by the strong
Markov property,

PN (C) ≤ CNd+2 sup
η∈RN

{
Pη

[
HN
C < HN

B

]}
sup

η∈CN

{
Eη

(
HN

B

)}
.

Therefore, in order to prove (4.3.2), it is enough to show the next lemma.

Lemma 4.3.1. For every δ > 0,

lim
N→∞

1
Nd

log sup
η∈XN

{
Eη

(
HN

Bδ

)} ≤ 0 . (4.3.3)

For every ε > 0, there exists δ > 0 such that

lim
N→∞

1
Nd

log sup
η∈RN

δ

{
Pη

[
HN
C < HN

Bδ

]} ≤ −V (C) + ε . (4.3.4)

To prove this lemma, we will need the following technical result.

Lemma 4.3.2. For every δ > 0, there exists T0, C0, N0 > 0 such that

sup
η∈XN

{
Pη

[
HN

Bδ
≥ kT0

]} ≤ exp
{−kC0N

d
}
,

for any integers N > N0 and k > 0.

Proof. Fix δ > 0. By Corollary 4.1.2, there exists T0 > 0 and C0 > 0 such that

inf
π∈D

IT0(π) > C0 ,

where D = D([0, T0],M\B). For each integer N > 0, consider a configuration
ηN in XN such that

PηN

[
HN

B ≥ T0

]
= sup

η∈XN

{
Pη

[
HN

B ≥ T0

]}
.

By the compactness of M, every subsequence of πN (ηN ) contains a subse-
quence converging to some ϑ in M. Moreover, since each configuration in XN

has at most one particle per site, ϑ belongs to M0. From this and since D is a
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closed subset of D([0, T0],M), by the dynamical large deviations lower bound,
there exists a measure ϑ(du) = γ(u)du in M0 such that

lim
N→∞

1
Nd

logPηN

[
HN

B ≥ T0

]
= lim

N→∞
1
Nd

log QηN (D)

≤ − inf
π∈D

IT0(π|γ)
< −C0 .

In particular, there exists N0 > 0 such that for every integer N > N0,

PηN

[
HN

B ≥ T0

] ≤ exp{−C0N
d} .

To complete the proof, we proceed by induction. Suppose then that the state-
ment of the lemma is true until an integer k − 1 > 0. Let N > N0 and let η̂ be
a configuration in XN . By the strong Markov property,

Pη̂

[
HN

B ≥ kT0

]
= Eη̂

[
1{HN

B≥T0}Pη
T0

[
HN

B ≥ (k − 1)T0

]]

≤ Pη̂

[
HN

B ≥ T0

]
sup

η∈XN

{
Pη

[
HN

B ≥ (k − 1)T0

]}

≤ exp
{−kC0N

d
}
,

which concludes the proof.

Proof of Lemma 4.3.1. Let δ > 0 and consider T0, C0, N0 > 0 satisfying the
statement of Lemma 4.3.2. For every integer N > N0 and every configuration
η in XN ,

Eη

(
HN

B

) ≤ T0

∞∑

k=0

Pη

(
HN

B ≥ kT0

) ≤ T0

∞∑

k=0

exp
{−kC0N

d
} ≤ T0

1− e−C0
,

which proves (4.3.3).
We turn now to the proof of (4.3.4). Fix ε > 0. By Lemma 4.3.2 and since

V (C) <∞, for every δ > 0, there exists Tδ > 0 such that

lim
N→∞

1
Nd

log sup
η∈XN

{
Pη

[
Tδ ≤ HN

Bδ

]} ≤ −V (C) .

For each integer N > 0, consider a configuration ηN in RN
δ such that

PηN

[
HN
C ≤ Tδ

]
= sup

η∈RN
δ

{
Pη

[
HN
C ≤ Tδ

]}
.

Let Cδ be the subset of D([0, Tδ],M) consisting of all those paths π for which
there exists t in [0, Tδ] such that π(t) or π(t−) belongs to C. Notice that Cδ is
the closure of πN ({HN

C ≤ Tδ}) in D([0, Tδ],M).
Recall that every subsequence of πN (ηN ) contains a subsequence converging

in M to some ϑ that belongs to M0. Hence, by the dynamical large deviations
upper bound, there exists a measure ϑδ(du) = γδ(u)du in Rδ ∩M0 such that

lim
N→∞

1
Nd

logPηN

(
HN
C ≤ Tδ

) ≤ lim
N→∞

1
Nd

log QηN (Cδ) ≤ − inf
π∈Cδ

ITδ
(π|γδ) .
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Therefore, since

lim
N→∞

1
Nd

log{aN + bN} ≤ max
{

lim
N→∞

1
Nd

log aN , lim
N→∞

1
Nd

log bN

}
,

the left hand side in (3.3.9) is bounded above by

max
{
−V (C),− inf

π∈Cδ

ITδ
(π|γδ)

}

for every δ > 0. Thus, in order to conclude the proof, it is enough to check that
there exists δ > 0 such that

inf
π∈Cδ

ITδ
(π|γδ) ≥ V (C)− ε .

Assume that this is not true. In that case, for every integer n > 0 large
enough, there exists a path πn in C1/n ∩ C([0, T1/n],M0) such that

IT1/n
(πn|γ1/n) < V (C)− ε .

Moreover, since πn belongs to C1/n∩C([0, T1/n],M0), there exists 0 < T̃n ≤ T1/n

such that πn
eTn

belongs to C.
Let us assume first that the sequence of times {T̃n : n ≥ 1} is bounded above

by some T > 0. For each integer n > 0, let π̃n be the path in C([0, T ],M0)
given by

π̃n
t =

{
πn

t if 0 ≤ t ≤ T̃n ,

πn
eTn

if T̃n ≤ t ≤ T .

Since IT has compact level sets and since πn
0 (du) = γ1/n(u)du belongs to R1/n∩

M0 for every integer n > 0, we may obtain a subsequence of π̃n converging to
some π in C([0, T ],M0) such that π0 = ϑ, π(T ) ∈ C and IT (π) ≤ V (C) − ε,
which contradicts the definition of V (C) and we are done.

To complete the proof, let us assume now that there exists a subsequence{
T̃nk

: k ≥ 1
}

of T̃n converging to ∞. By Theorem 4.2.2, there exists δ > 0
such that V(ρ) < ε for every ρ in Bδ(ρ̄). Moreover, if πnk

t (du) = ρnk(t, u)du,
by Lemma 4.1.1, for any integer k large enough, there exists 0 ≤ tk ≤ T̃nk

such
that ρnk

tk
belongs to Bδ(ρ̄). Then,

V (πnk(T̃nk
)) ≤ V(ρnk

tk
) + I[tk,eTnk

](π
nk)

< ε+ V (C)− ε = V (C) ,

which also contradicts the definition of V (C) and we are done.
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Chapter 5

Weak Solutions

We establish in this chapter some properties of the weak solutions of the bound-
ary value problems (1.2.1) and (2.1.1) (3.1.14).

5.1 Existence and Uniqueness

We prove in this section existence and uniqueness of weak solutions of the bound-
ary value problems (1.2.1), (2.1.1) and (3.1.14). We start with the parabolic
differential equation (2.1.1).

Proposition 5.1.1. Let ρ0 : Ω → [0, 1] be a measurable function. There exists
a unique weak solution of (2.1.1).

Proof. Existence of weak solutions of (2.1.1) is warranted by the tightness of
the sequence QN proved in Section 2.1. Indeed, fix a profile ρ0 : Ω → [0, 1] and
consider a sequence

{
µN : N ≥ 1

}
of probability measures in M associated to

ρ0 in the sense (2.1.2). Fix T > 0 and denote by QN the probability measure
on D([0, T ],M) induced by the measure µN and the process πN

t . In Section 2.1,
we proved that the sequence

{
QN : N ≥ 1

}
is tight and that any limit point

of
{
QN : N ≥ 1

}
is concentrated on weak solutions of (2.1.1). This proves

existence. Uniqueness follows from Lemma 5.1.2 below.

Next lemma states that the L1(Ω)-norm of the difference of two weak solu-
tions of the boundary value problem (2.1.1) decreases in time:

Lemma 5.1.2. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be weak

solutions of (2.1.1) with initial condition ρj
0. Then, ‖ρ1

t − ρ2
t‖1 decreases in

time. In particular, there is at most one weak solution of (2.1.1).

Proof. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj , j = 1, 2, be weak solutions

of (2.1.1) with initial condition ρj
0. Fix 0 ≤ s < t. For δ > 0 small, denote by

Rδ the function defined by

Rδ(u) =
u2

2δ
1{|u| ≤ δ} +

(|u| − δ/2
)
1{|u| > δ} .

Let ψ : Rd → R+ be a smooth approximation of the identity:

ψ(u) ≥ 0 , supp ψ ⊂ [−1, 1]d ,
∫
ψ(u) du = 1 .
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For each positive ε, define ψε as

ψε(u) = ε−dψ(uε−1) .

Taking the time derivative of the convolution of ρj
t with ψε, after some

elementary computations based on properties (H1), (H2) of weak solutions of
(2.1.1), one can show that

∫

Ω

duRδ

(
ρ1(t, u)− ρ2(t, u)

)−
∫

Ω

duRδ

(
ρ1(s, u)− ρ2(s, u)

)

= −δ−1

∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) · {ϕ′(ρ1)∇ρ1 − ϕ′(ρ2)∇ρ2
}
,

where Aδ stands for the subset of [0, T ]× Ω where |ρ1(t, u)− ρ2(t, u)| ≤ δ. We
may rewrite the previous expression as

− δ−1

∫ t

s

dτ

∫

Aδ

duϕ′(ρ1)‖∇(ρ1 − ρ2)‖2

− δ−1

∫ t

s

dτ

∫

Aδ

du
{
ϕ′(ρ1)− ϕ′(ρ2)

}∇(ρ1 − ρ2) · ∇ρ2 .

Since ρ1, ρ2 are positive and bounded by 1, there exists a positive constant
c0 such that c0 ≤ ϕ′(ρj(τ, u)). The first line in the previous formula is then
bounded above by

−c0δ−1

∫ t

s

dτ

∫

Aδ

du ‖∇(ρ1 − ρ2)‖2 .

On the other hand, since ϕ′ is Lipschitz, on the set Aδ, |ϕ′(ρ1) − ϕ′(ρ2)| ≤
M |ρ1 − ρ2| ≤ Mδ for some positive constant M . In particular, by Schwarz
inequality, the second line of the previous formula is bounded by

δ−1MA

∫ t

s

dτ

∫

Aδ

du ‖∇(ρ1 − ρ2)‖2 + δMA−1

∫ t

s

dτ

∫

Aδ

du ‖∇ρ2‖2

for every A > 0. Choose A = M−1c0 to obtain that
∫

Ω

duRδ

(
ρ1(t, u)− ρ2(t, u)

)−
∫

Ω

duRδ

(
ρ1(s, u)− ρ2(s, u)

)

≤ δc−1
0 M2

∫ t

0

dτ

∫
du ‖∇ρ2‖2 .

Letting δ ↓ 0, we conclude the proof of the lemma because Rδ(·) converges to
the absolute value function as δ ↓ 0.

Lemma 5.1.3. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be weak

solutions of (3.1.14) for the same H satisfying (3.2.2) and with initial condition
ρj
0. Then, ‖ρ1

t −ρ2
t‖1 decreases in time. In particular, there is at most one weak

solution of (3.1.14) when H satisfies (3.2.2).
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Proof. Following the same procedure of the proof of the previous lemma, we get
first ∫

Ω

duRδ

(
ρ1(t, u)− ρ2(t, u)

)−
∫

Ω

duRδ

(
ρ1(s, u)− ρ2(s, u)

)

= −δ−1

∫ t

s

dτ

∫

Aδ

du∇(ρ1 − ρ2) · {ϕ′(ρ1)∇ρ1 − ϕ′(ρ2)∇ρ2
}

−δ−1

∫ t

s

dτ

∫

Aδ

du
{
σ(ρ1)− σ(ρ2)

}∇(ρ1 − ρ2) · ∇H ,

and then ∫

Ω

duRδ

(
ρ1(t, u)− ρ2(t, u)

)−
∫

Ω

duRδ

(
ρ1(s, u)− ρ2(s, u)

)

≤ δC1

∫ t

0

dτ

∫
du ‖∇ρ2‖2 + δC2

∫ t

0

dτ

∫
du ‖∇H‖2 ,

for some positive constants C1 and C2. Hence, letting δ ↓ 0 we conclude the
proof of the lemma.

The same ideas permit to show the monotonicity of weak solutions of (2.1.1).
This is the content of the next result which plays a fundamental role in proving
existence and uniqueness of weak solutions of (1.2.1).

Lemma 5.1.4. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be the

weak solutions of (2.1.1) with initial condition ρj
0. Assume that there exists

s ≥ 0 such that
λ
{
u ∈ Ω : ρ1(s, u) ≤ ρ2(s, u)

}
= 1 ,

where λ is the Lebesgue measure on Ω. Then, for all t ≥ s

λ
{
u ∈ Ω : ρ1(t, u) ≤ ρ2(t, u)

}
= 1 .

Proof. We just need to repeat the same proof of the Lemma 5.1.2 by considering
the function R+

δ (u) = Rδ(u)1{u ≥ 0} instead of Rδ.

Corollary 5.1.5. Denote by ρ0 (resp. ρ1) the weak solution of (2.1.1) asso-
ciated to the initial profile constant equal to 0 (resp. 1). Then, for 0 ≤ s ≤ t,
ρ1

t (·) ≤ ρ1
s(·) and ρ0

s(·) ≤ ρ0
t (·) a.e.

Proof. Fix s ≥ 0. Note that ρ̂(r, u) defined by ρ̂(r, u) = ρ1(s + r, u) is a weak
solution of (2.1.1) with initial condition ρ1(s, u). Since ρ1(s, u) ≤ 1 = ρ1(0, u),
by the previous lemma, for all r ≥ 0, ρ1(r + s, u) ≤ ρ1(r, u) for almost all u.

Corollary 5.1.6. For every δ > 0, there exists ε > 0 such that for all weak
solution ρ of (2.1.1) with any initial profile ρ0,

ε ≤ ρ(t, u) ≤ 1− ε for almost all (t, u) in [δ,+∞)× Ω .

Proof. Let ρ0 and ρ1 be as in the statement of the previous corollary. For fixed
δ > 0, there exists ε > 0 such that

ε ≤ ρ0(t, u) and ρ1(t, u) ≤ 1− ε for almost all (t, u) in [δ,∞)× Ω .

This and Lemma 5.1.4 permit us to conclude the proof.
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We now turn to existence and uniqueness of the boundary value problem
(1.2.1). Recall the notation introduced in the beginning of Section 3.1. Consider
the following classical boundary-eigenvalue problem for the Laplacian:

{ −∆U = αU ,
U ∈ H1

0 (Ω) . (5.1.1)

By the Sturm–Liouville theorem (cf. [12], Subsection 9.12.3), problem (5.1.1)
has a countable system {Un, αn : n ≥ 1} of eigensolutions which contains all
possible eigenvalues. The set {Un : n ≥ 1} of eigenfunctions forms a complete
orthonormal system in the Hilbert space L2(Ω), each Un belong to H1

0 (Ω), all
the eigenvalues αn, have finite multiplicity and

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ · · · → ∞ .

The set {Un/α
1/2
n : n ≥ 1} is a complete orthonormal system in the Hilbert

space H1
0 (Ω). Hence, a function V belongs to L2(Ω) if and only if

V = lim
n→∞

n∑

k=1

〈V,Uk〉2 Uk

in L2(Ω). In this case,

〈V,W 〉2 =
∞∑

k=1

〈V,Uk〉2 〈W,Uk〉2

for all W in L2(Ω). Moreover, a function V belongs to H1
0 (Ω) if and only if

V = lim
n→∞

n∑

k=1

〈V,Uk〉2 Uk

in H1
0 (Ω). In this case,

〈V,W 〉1,2,0 =
∞∑

k=1

αk〈V,Uk〉2 〈W,Uk〉2 (5.1.2)

for all W in H1
0 (Ω).

Lemma 5.1.7. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1]. Let ρj, j = 1, 2, be the

weak solutions of (2.1.1) with initial condition ρj
0. Then,

∫ ∞

0

‖ρ1
t − ρ2

t‖21 dt < ∞ .

In particular,
lim

t→∞
‖ρ1

t − ρ2
t‖1 = 0 .

Proof. Fix two profiles ρ1
0, ρ

2
0 : Ω → [0, 1] and let ρj , j = 1, 2, be the weak

solutions of (2.1.1) with initial condition ρj
0. Let ρj

t (·) = ρj(t, ·). For n ≥ 1 let
Fn : R+ → R be the function defined by

Fn(t) =
n∑

k=1

1
αk

∣∣〈ρ1
t − ρ2

t , Uk〉2
∣∣2 .
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Since ρ1, ρ2 are weak solutions, Fn is time differentiable. Since ∆Uk =
−αkUk and since αk > 0, for t > 0,

d

dt
Fn(t) =−

n∑

k=1

{
〈ρ1

t − ρ2
t , Uk〉2 〈ϕ(ρ1

t )− ϕ(ρ2
t ) , Uk〉2

+ 〈ϕ(ρ1
t )− ϕ(ρ2

t ) , Uk〉2 〈ρ1
t − ρ2

t , Uk〉2
}
.

(5.1.3)

Fix t0 > 0. Integrating (5.1.3) in time, applying identity (5.1.2), and letting
n ↑ ∞, we get
∫ T

t0

dt

∫

Ω

du
[
ϕ(ρ1

t (u))− ϕ(ρ2
t (u))

][
ρ1

t (u)− ρ2
t (u)

]
= lim

n→∞
1
2

{
Fn(t0)− Fn(T )

}

≤ 1
2α1

‖ρ1
t0 − ρ2

t0‖22

for all T > t0. Since ρ1
t0 − ρ2

t0 belongs to L2(Ω),
∫ ∞

t0

dt

∫

Ω

du
[
ϕ(ρ1

t (u))− ϕ(ρ2
t (u))

][
ρ1

t (u)− ρ2
t (u)

]
< ∞ .

There exists a positive constant C2 such that, for all a, b ∈ [0, 1]

C2(b− a)2 ≤ (
ϕ(b)− ϕ(a)

)
(b− a) .

On the other hand, by Schwarz inequality, for all t ≥ t0,

‖ρ1
t − ρ2

t‖21 ≤ 2‖ρ1
t − ρ2

t‖22 .

Therefore ∫ ∞

t0

‖ρ1
t − ρ2

t‖21 dt <∞ .

and the first statement of the lemma is proved because the integral between
[0, t0] is bounded by 4t0. The second statement of the lemma follows from the
first one and from Lemma 5.1.2.

Corollary 5.1.8. There is a nonnegative function Ψ in L2(R+) such that for
any profiles ρ1

0, ρ
2
0 : Ω → [0, 1], the weak solutions ρj, j = 1, 2 of (2.1.1) with

initial conditions ρj
0 satisfy

‖ρ1
t − ρ2

t‖1 ≤ Ψ(t) ,

for every t ≥ 0.

Proof. Let ρ0, resp. ρ1, be the weak solution of the hydrodynamic equation
(2.1.1) with initial condition ρ0(0, ·) ≡ 0, resp. ρ1(0, ·) ≡ 1, and set Ψ(t) =
‖ρ1

t − ρ0
t‖1. By the previous lemma, Ψ belongs to L2(R+). The last statement

of the corollary follows from the monotonicity of weak solutions established in
Lemma 5.1.4.

Proposition 5.1.9. There exists a unique weak solution of the boundary value
problem (1.2.1).

59



Proof. We start with existence. Let ρ1(t, u) (resp. ρ0(t, u)) be the weak solution
of the boundary value problem (2.1.1) with initial profile constant equal to 1
(resp. 0). By Lemma (5.1.4), the sequence of profiles {ρ1(n, ·) : n ≥ 1} (resp.
{ρ0(n, ·) : n ≥ 1}) decreases (resp. increases) to a limit denoted by ρ+(·) (resp.
ρ−(·)). In view of Lemma 5.1.7, ρ+ = ρ− almost surely. Denote this profile by
ρ̄ and by ρ̄(t, ·) the solution of (2.1.1) with initial condition ρ̄. Since ρ0(t, ·) ≤
ρ̄(·) ≤ ρ1(t, ·) for all t ≥ 0, by Lemma 5.1.4, ρ0(t + s, ·) ≤ ρ̄(s, ·) ≤ ρ1(t + s, ·)
a.e. for all s, t ≥ 0. Letting t ↑ ∞, we obtain that ρ̄(s, ·) = ρ̄(·) a.e. for all s.
In particular, ρ̄ is a solution of (1.2.1).

Uniqueness is simpler. Assume that ρ1, ρ2 : Ω → [0, 1] are two weak solution
of (1.2.1). Then, ρj(t, u) = ρj(u), j = 1, 2, are two stationary weak solutions of
(2.1.1). By Lemma 5.1.7, ρ1 = ρ2 almost surely.

5.2 Energy Estimates

We establish here an energy estimate for weak solutions in terms of the time T
and the L1 distance between its initial profile and the stationary density ρ̄.

Fix T > 0 and let ρ be a weak solution of (2.1.1). Recall from (4.1.2) the
definiton of ET (ρ)

Lemma 5.2.1. There exists a positive constant C such that for any T > 0 and
any weak solution ρ of (2.1.1) with initial profile ρ0 : Ω → [0, 1],

ET (ρ) ≤ C {T + ‖ρ0 − ρ̄‖1} .

Proof. Fix T > δ > 0, a weak solution ρ of (2.1.1) and a function β : Ω → (0, 1)
of class C2 such that β

∣∣
Γ

= b. Let ε > 0 such that

1− ε ≤ β , ρt ≤ ε for every t ≥ δ.

Let F,U : [δ, T ]× Ω → R be the functions given by

F (t, u) = ρ(t, u) log
(
ρ(t, u)
β(u)

)
+ (1− ρ(t, u)) log

(
1− ρ(t, u)
1− β(u)

)
,

and

U(t, u) = log
(

ρ(t, u)
1− ρ(t, u)

)
− log

(
β(u)

1− β(u)

)
.

We claim that
∫

Ω

[F (T, u)− F (δ, u)] du =
∫ T

δ

〈∂tρt, Ut〉−1,1 dt . (5.2.1)

Indeed, let h : [ε, 1− ε]2 → R be the smooth function given by

h(x, y) = x log
(
x

y

)
+ (1− x) log

(
1− x

1− y

)
.

By proceeding as in the proof of Lemma 3.1.2 with h in the place of hδ we may
show that
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∫ T

δ

〈∂tρt, ∂xh(ρt, β)〉−1,1 dt =
∫

Ω

h(ρ
T
(u), β(u))du

−
∫

Ω

h(ρδ(u), β(u))du ,

which is equivalent to the claim (5.2.1). By this claim, (4.1.3) and since ρ is a
weak solution of (2.1.1),

∫

Ω

[F (T, u)− F (δ, u)]du = −
∫ T

δ

dt

∫

Ω

du∇ϕ(ρt(u)) · ∇Ut(u)

=
∫ T

δ

dt

∫

Ω

du
ϕ′(ρt(u))
χ(β(u))

∇β(u) · ∇ρt(u)

−
∫ T

δ

dt

∫

Ω

duϕ′(ρt(u))
‖∇ρt(u)‖2
χ(ρt(u))

.

(5.2.2)

Let

E[δ,T ](ρ) =
∫ T

δ

dt

∫

Ω

du
‖∇ρt(u)‖2
χ(ρt(u))

.

Since ϕ′ is bounded bellow on [0, 1] by some positive constant C1, by (5.2.2)
and the elementary inequality 2ab ≤ A−1a2 +Ab2,

2E[δ,T ](λ) ≤ 2
C1

∫ T

δ

dt

∫

Ω

duϕ′(ρt(u))
‖∇ρt(u)‖2
χ(ρt(u))

≤ E[δ,T ](ρ) +
1
C2

1

∫ T

δ

dt

∫

Ω

du
ϕ′(ρt(u))2χ(ρt(u))

χ(β(u))2
‖∇β(u)‖2

+
2
C1
‖FT − Fδ‖1 .

Therefore, since ϕ′, χ are bounded above on [0, 1] by some positive constant
and since β is a function in C2(Ω) bounded away from 0 and 1, there exists a
constant C2 = C2(β) such that

E[δ,T ](ρ) ≤ C2(T − δ) +
2
C1
‖FT − Fδ‖1 .

Thus, in order to conclude the proof, we just need to show that there is a
constant C ′ > 0 such that

‖FT − Fδ‖1 ≤ C ′‖ρ0 − ρ̄‖1 , (5.2.3)

and then let δ ↓ 0. From the definition of F and since β is bounded away from
0 and 1 it is easy to see that ‖FT − Fδ‖1 is bounded above by

∫

Ω

{|f(ρT (u))− f(ρδ(u))|+ |f(1− ρT (u))− f(1− ρδ(u))|} du

+ C3‖ρT − ρδ‖1 ,
(5.2.4)

where f(r) = r log r and C3 = C3(β) is a positive constant.
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Fix δ0 > 0 such that 2δ0 ≤ ρ̄(u) ≤ 1 − 2δ0 for all u in Ω. Let Aδ be the
subset of Ω defined by

Aδ = {u ∈ Ω : |ρδ(u)− ρ̄(u)| > δ0 or |ρT (u)− ρ̄(u)| > δ0} .

Decompose the integral term in (5.2.4) as the sum of two integral terms
∫

Aδ
+

∫
Ac

δ
.

On the one hand, it is clear that m(Aδ) ≤ δ−1
0 (‖ρδ − ρ̄‖1 + ‖ρT − ρ̄‖1) and

then, since −e−1 ≤ f(r) ≤ 0 for all r ∈ (0, 1], the first integral term is bounded
above by

2
eδ0

{‖ρδ − ρ̄‖1 + ‖ρT − ρ̄‖1} .

On the other hand, Ac
δ ⊂ {u ∈ Ω : δ0 ≤ ρδ(u), ρT (u) ≤ 1 − δ0} and there

exists a constant C4 = C4(δ0) > 0 such that |f(r) − f(s)| ≤ C4|r − s| for all
r, s ∈ [δ0, 1]. Hence, the second integral term is bounded by

2C4‖ρT − ρδ‖1 .

These bounds together with (5.2.4) and Lemma 5.1.2 prove (5.2.3) and we
are done.
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