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Resumo

Nos 1ltimos anos principios de grandes desvios estaticos e dindmicos de
sistemas de particulas interagentes com bordos estocasticos tém sido muito es-
tudados como um primeiro passo para o entendimento de estados estacionérios
fora do equilibrio.

Neste trabalho consideramos Processos de exclusao simétrico gradiente com
bordos estocasticos em cualquer dimensao e estudamos neste contexto os se-
guintes problemas.

Primeiro apresentamos uma prova da hidrostatica baseada no limite hidro-
dindmico e o fato que o perfil estacionario é um atrator global da equagao
hidrodinamica. Também sao provados o limite hidrodinamico e a lei de Fick.

Depois apresentamos uma prova do principio dos grandes desvios dinamico
para a medida empirica. A prova apresentada aqui é mais simples do que a
usual ja que ao invez de aproximarmos trajetorias com funga custo finita por
trajetorias suaves, aproximamos o campo externo associado a ele com campos
externos suaves e provamos que as solugoes fracas da equacgao hidrodinamica
com estes campos externos aproximam a trajetoria original. Isto simplifica
consideravelmente a prova dos grandes desvios dinamicos.

Por ultimo, apresentamos uma prova do principio de grandes desvios para
a medida estacionaria. Mais precisamente, seguindo a estratégia de Freidlin
e Wentzell provamos que a medida estaciondria de nosso sistema satisfaz um
principio de grandes desvios com funcao custo dada pelo quase potencial da
funcao custo dinamica.
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Introduction

Statical and dynamical large deviations principles of boundary driven inter-
acting particles systems has attracted attention recently as a first step in the
understanding of nonequilibrium thermodynamics (cf. [5, 7, 9] and references
therein). One of the main dificulties is that in general the stationary measure is
not explicitly known and moreover it presents long range correlations (cf. [25]).

This work has three purposes. First, inspired by the dynamical approach
to stationary large deviations, introduced by Bertini et al. in the context of
boundary driven interacting particles systems [3], we present a proof of the hy-
drostatics! based on the hydrodynamic behaviour of the system and on the fact
that the stationary profile is a global attractor of the hydrodynamic equation.

More precisely, if p represents the stationary density profile and 7V the
empirical measure, to prove that N converges to p under the stationary state
uN. we first prove the hydrodynamic limit stated as follows. If we start from
an initial configuration which has a density profile ~, on the diffusive scale the
empirical measure converges to an absolutely continuous measure, w(t,du) =
p(t, u)du, whose density p is the solution of the parabolic equation

o= (1/2)9 - D(p)Vp,
ot ) =b()on T,

where D is the diffusivity of the system, V the gradient, b is the boundary
condition imposed by the stochastic dynamics and I' is the boundary of the
domain in which the particles evolve. Since for all initial profile 0 < v < 1,
the solution p; is bounded above, resp. below, by the solution with initial
condition equal to 1, resp. 0, and since these solutions converge, as t T oo, to
the stationary profile p, hydrostatics follows from the hydrodynamics and the
weak compactness of the space of measures.

The second contribution of this work is a simplification of the proof of the
dynamical large deviations? of the empirical measure. The original proof [18,
11, 16] relies on the convexity of the rate functional, a very special property
only fulfilled by very few interacting particle systems as the symmetric simple
exclusion process. The extension to general processes [22, 23, 6] is relatively
technical. The main difficulty appears in the proof of the lower bound where
one needs to show that any trajectory A, 0 < ¢ < T, with finite rate function,
I (M) < oo, can be approximated by a sequence of smooth trajectories {\" :
n > 1} such that

A" — X and Ip(\") — Ir(N) . (0.0.1)

IThis is part of one work in partnership with Claudio Landim and Mustapha Mourragui.
2This result is also part of the same work mentioned above



This property is proved by approximating in several steps a general trajec-
tory A by a sequence of profiles, smoother at each step, the main ingredient
being the regularizing effect of the hydrodynamic equation. This part of the
proof is quite elaborate and relies on properties of the Green kernel associated
to the second order differential operator.

We propose here a simpler proof. It is well known that a path A with
finite rate function may be obtained from the hydrodynamical path through an
external field. More precisely, if IT(\) < oo, there exists H such that

1 /T
() = 5/ dt/a()\t) [VH,] da ,
0
where o is the mobility of the system and H is related to A by the equation

{ A —(1/2)V-D(A)VA = =V - [0(\)VH,] (0.0.2)

H(t,-) = 0 at the boundary .

This is an elliptic equation for the unknown function H for each ¢ > 0. Note
that the left hand side of the first equation is the hydrodynamical equation.
Instead of approximating A by a sequence of smooth trajectories, we show that
approximating H by a sequence of smooth functions, the corresponding smooth
solutions of (0.0.2) converge in the sense (0.0.1) to A. This approach, closer to
the original one, simplifies considerably the proof of the hydrodynamical large
deviations.

The third contribuition of this work is the proof of a large deviation principle
of the empirical density under the invariant measure. More precisely, we prove
that the quasi potential of the dynamical rate function is the large deviation
functional of the stationary state.

We follow closely the approach given in [8]. In fact, the arguments presented
in there can be adapted modulo technical dificulties to our context. However
there is a case not considered in the proof of the upper bound in [8], which we
describe in detail in the following.

For a fixed closed set C in the weak topology not containing the stationary
density p, small neighborhoods Vs (which depends on a parameter § > 0) of p
are considered. By following the Freidlin and Wentzell strategy, the proof of the
upper bound is reduced to prove that the minimal quasi-potential of densities
in C can be estimated from above by the minimal dynamical rate function of
trajectories which start at Vs and touch C before a time T = Tj.

At this moment, in [8] it is supposed that the time T = Ty is fixed and then,
by a direct aplication of the dynamical large deviation upper bound, the desired
result is obtained. The same argument still works if we assume the existence
of a sequence of parameters 6,, | 0 with the sequence of times 75, bounded.
The problem here, is that such bounded sequence doesn’t necessarily exist.
Moreover, by the construction of such times T?, it is expected that T5 — oo as
610.

In our context, to solve this missing case, we first prove that long trajectories
which have their dynamical rate functions uniformly bounded has to be close
in some moment to the stationary density p in the L? metric, and then we
prove that the quasi potential is continuous at the stationary density p in the
L? topology.



In this way, we fullfill the gap in [8] described above and extend their result
for a broader class of models. Finally, as a consequence of these facts we obtain
a direct proof of the lower semicontinuity of the quasi potential. In the context
of one dimensional boundary driven SSEP, the lower semicontinuity of the quasi
potential was obtained indirectly by using its exact formulation given in [10, 4].

The organization of this thesis is as follows.

1. Notations and Results

Here we introduce the boundary driven gradient symmetric exclusion pro-
cesses (Section 1.1) and establish some notations in order to describe in detail
the three results mentionated above: hydrostatics (Section 1.2), dynamical large
deviations (Section 1.3), and statical large deviations (Section 1.4).

2. Hydrodynamics and Hydrostatics

In this chapter we prove hydrostatics based on the hydrodynamic behaviour
of the system and on the fact that the stationary profile is a global attractor of
the hydrodynamic equation. More presicely, in Section 2.1 we present a proof
for the hydrostatics and Fick’s law by supposing the hydrodynamic behavior.
A proof for the hydrodynamic behavior can be found in [14] but for the sake
of completeness we present in Section 2.2 a detailed proof based on the entropy
method.

3. Dynamical Large Deviations

Here we obtain a dynamical large deviation principle for the empirical mea-
sure. We start by investigating the dynamical rate function Ip(-|7y) in Section
3.1. The main result obtained here is the fact that the dynamical rate function
has compact level sets.

Then, in Section 3.2, we prove I7(:|y) density, which means that any trajec-
tory A, 0 < ¢t < T, with finite rate function, I (A]y) < oo, can be approximated
by a sequence of smooth trajectories {\" : n > 1} such that

A" — X and Ir(A\"|y) — Ir(Aly) .

This is fundamental for the obtention of the lower bound.

In Section 3.3, we prove large deviation upper and lower bound. The last
one is obtained by the usual arguments (cf. Chapter 10 in [16]) and the Ip
density proved in the last section. To prove the upper bound,we have to take
care of some additional technical dificulties, the first one is the fact that the
invariant measure is not explicitly known which difficulties the obtention of
superexponential estimates, the second one is the necessity of energy estimates
in order to prove that trajectories with infinite energy are negligible in the
context of large deviations, and the last one is that we are working with the
empirical measure instead of (as usual) the empirical density.

4. Statical Large Deviations

In this chapter we prove a large deviation principle for the stationary mea-
sure. More precisely, Following the Freidling and Wentzell [15] strategy and
more closely the article [8], we prove that the large deviation functional for



the stationary measure is given by the quasi potential of the dynamical rate
function.

In Section 4.1 we introduce the functional I closely related to the dynamical
rate function I (+|y) and prove that trajectories which stays a long time far away
from the stationary state p pays a nonnegligible cost.

In Section 4.2 we study some properties of the quasi potential. The first
main result obtained here is the continuity of the quasi potential at the station-
ary state p in the L? topology. The second one is a direct proof of the lower
semicontinuity of the quasi potential.

Finally, in Section 4.3 we prove large deviations lower and upper bounds.
The first one is an inmediate consequence of the hydrostatic result and the dy-
namical large deviation lower bound. To prove the upper bound, we proceed as
in [8] and fulfill the gap in there mentioned above by using the results developing
in the previous sections.

5. Weak Solutions

Finally, we study weak solutions of the hydrodynamic equation, of its sta-
tionary solutions and of the equation with external field (0.0.2). These results
are essential in the derivation of many of the results of the previous chapters.
However, we have postponed their proofs until here because they are naturally
expected for weak solutions of quasilinear parabolic equations.

In Section 5.1 we establish existence and uniqueness of weak solutions as
well as monotonicity and uniformly infinitely propagation of speed.

In Section 5.2 we establish energy estimates for weak solutions, which is one
of the mai ingredients in the proof of the results in Chapter 4.



Chapter 1

Notations and Results

1.1 Boundary Driven Exclusion Process

Fix a positive integer d > 2. Denote by Q the open set (—1,1)xT~!, where T* is
the k-dimensional torus [0, 1)¥, and by I the boundary of Q: T' = {(uy,...,us) €
[~1,1] x T4 1 ;g = £1}.

For an open subset A of R x T4~ C™(A), 1 < m < +oo, stands for the
space of m-continuously differentiable real functions defined on A.

Fix a positive function b : I' — Ry. Assume that there exists a neighbour-
hood V of  and a smooth function 8 : V' — (0,1) in C?(V) such that 3 is
bounded below by a strictly positive constant, bounded above by a constant
smaller than 1 and such that the restriction of 8 to I' is equal to b.

For an integer N > 1, denote by Tjt\fl ={0,...,N — 1}971  the discrete
(d—1)-dimensional torus of length N. Let Qy = {~N+1,...,N—1} xT% ! be
the cylinder in Z¢ of length 2N — 1 and basis ']T‘]iv_l and let T'y = {(x1,...,24) €
Z x T4 |2y = (N — 1)} be the boundary of Qy. The elements of Qy are
denoted by letters =,y and the elements of ) by the letters u, v.

We consider boundary driven symmetric exclusion processes on Q. A con-
figuration is described as an element 7 in X = {0, 1}~ where n(z) = 1 (resp.
n(x) = 0) if site 2 is occupied (resp. vacant) for the configuration 7. At the
boundary, particles are created and removed in order for the local density to
agree with the given density profile b.

The infinitesimal generator of this Markov process can be decomposed in
two pieces:

Ly =LNo+ LNy,

where Ly, corresponds to the bulk dynamics and Ly to the boundary dy-
namics. The action of the generator Ly o on functions f : Xy — R is given
by

d
(£N70f) (77) = Z Z Trxte; (77) [f(nrc,.r+ei) - f(n)] )

where (eq,...,eq) stands for the canonical basis of R? and where the second
sum is performed over all z € Z? such that =,z + ¢; € Qy. For z,y € Qn, n*Y
is the configuration obtained from 7 by exchanging the occupations variables



n(x) and n(y):
n(y) ifz=u,
n(z) = () ifz=y,
n(z) ifz#x,y.
For a > —1/2, the rate functions 7, 4+, (1) are given by

Te,x+e; (n) =1+ a{??(x —e;) +n(x+ 2ei)}
if © — e;, x + 2e; belongs to Q. At the boundary, the rates are defined as
follows. Let & = (22, ,24) € 'H"]j\fl. Then,
F-N+1a),(—-N+2,5) (M) = 1 + a{n(—N +3,&) +b(—1,%/N)},
r(N—20),(N-1,5(1) = 1 + a{n(N —3,%) +b(1,&/N)}.

The non-conservative boundary dynamics can be described as follows. For
any function f: Xy — R,

(Lnpf) () =D Coa,m)[f0*) = F()]
zel Ny
where 7 is the configuration obtained from 7 by flipping the occupation variable
at site x: ) 2 2
o ) n(z ifz#zx
" (Z)_{ 1—n(z) fz==x

and the rates C®(x, -) are chosen in order for the Bernoulli measure with density
b(-) to be reversible for the flipping dynamics restricted to this site:

C’'((-N+1,%),n) = n(-N+1,2)[1-0b(-1,%/N)]

+[1 = n(=N +1,%)]b(-1,%/N),
n(N —1,2)[1 - b(1,2/N)]

+[1=n(N = 1,&)]b(1,&/N),

Cﬁ((Af"laf)7ﬂ)

where & = (z2, -+ ,24) € T}i\,_l, as above.

Denote by {n; = nl¥ : t > 0} the Markov process associated to the generator
Ly speeded up by N2. For a smooth function p : Q — (0,1), let l/é\(’.) be the
Bernoulli product measure on Xy with marginals given by

vy (n(x) = 1) = p(x/N) .

It is easy to see that the Bernoulli product measure associated to any constant
function is invariant for the process with generator £y o. Moreover, if b(-) = b for
some constant b then the Bernoulli product measure associated to the constant
density b is reversible for the full dynamics Ly.

1.2 Hydrostatics

Denote by uX the unique stationary state of the irreducible Markov process
{n: : t > 0}. We examine in Section 2.1 the asymptotic behavior of the empirical
measure under the stationary state pY.



Let M = M(f) be the space of positive measures on €2 with total mass
bounded by 2 endowed with the weak topology. For each configuration 7, denote
by 7 = 7 (n) the positive measure obtained by assigning mass N~ to each

particle of 7 :
= N4 Z () 0z /N
TEQN
where §,, is the Dirac measure concentrated on u. For a measure ¥ in M and a
continuous function G : 2 — R, denote by (1, G) the integral of G with respect

to 9:
G) = /QG(u)ﬂ(du).

To define rigorously the quasi-linear elliptic problem the empirical measure
is expected to solve, we need to introduce some Sobolev spaces. Let L2(£2) be
the Hilbert space of functions G : Q — C such that [, |G(u)|*du < co equipped
with the inner product

<G,J>2:/QG(U) J(u) du

where, for z € C, 7 is the complex conjugate of z and |z|? = 2z. The norm of
L?(2) is denoted by || - ||z

Let H'(Q) be the Sobolev space of functions G with generalized deriva-
tives 0y, G, ..., 0y, G in L?(Q). H'(Q2) endowed with the scalar product (-, )1 2,
defined by

d
(G, J)10 = (G, J)a Za G, Dy, J)s

is a Hilbert space. The corresponding norm is denoted by || - ||1,2. For each G
in H(Q) we denote by VG its generalized gradient: VG = (9,,G, ..., 0,,G).

Let Q = [~1,1] x T¢~! and denote by CJ*(2) (resp. C™(12)), 1 < m < +o0,
the space of m-continuously differentiable real functions defined on Q which
vanish at the boundary I' (resp. with compact support in Q). Let ¢ : [0,1] — R4
be given by ¢(r) = r(1+ar) and let ||-|| be the Euclidean norm: ||(vy,...,vq)||? =
> icicqV?. A function p: © — [0, 1] is said to be a weak solution of the elliptic
boundary value problem

Ag(p) = 0  onQ,
{ PR onT. (1.2.1)

if
(S1) p belongs to H(Q):

[ 190t 1 < o
Q
(S2) For every function G in C3 (),

/ (AG) () o (p(us)) du = / (b)) 1y (1) (8., G) (w)dS ,
Q

T

where n=(n1,...,n4) stands for the outward unit normal vector to the
boundary surface I' and dS for an element of surface on I'.



We prove in Section 5.1 existence and uniqueness of weak solutions of (1.2.1).
The first main result of this work establishes a law of large number for the
empirical measure under pY. Denote by E* the expectation with respect to a
probability measure p.

Theorem 1.2.1. For any continuous function G : Q — R,
|-»

Denote by I'_, T';. the left and right boundary of €2:

lim EM [

N—o0

(=N, G) — /ﬁ G(u)p(u)du

where p(u) is the unique weak solution of (1.2.1).

Py ={(u,...,uq) € Q| w1 = £1}

and denote by Wy z4e,, , T+e; € Qn, the instantaneous current over the bond
(z,z+e;). This is the rate at which a particle jumps from x to x + e; minus the
rate at which a particle jumps from = + e; to z. A simple computation shows
that

VV§@+ein)::7¢+eJH(n)-‘T¢hKU),
provided x — e; and x + 2¢; belong to Q5. Here,

hi(n) = n(0) + a{n(0)[n(—e:) + nle:)] — n(—ei)n(e)} -
Furthermore, if x1 = N — 1,
Wiy = {nz — e1) = n(z) {1 +an(z — 2e1) + ab((z +e1)/N)}
and if 11 = —-N + 1,
Wasarer = {nle) = n(z +en) {1+ an(z +261) +ab((z — e1)/N)}.

Theorem 1.2.2. (Fick’s law) Fiz —1 < u < 1. Then,

N
lim EH#ss

Nt O WiluNa) (V1)

d—1
yeTy

- / o (b()) S(dv) / (b)) S(dv) .

Remark 1.2.3. We could have considered different bulk dynamics. The impor-
tant feature used here to avoid painful arguments is that the process is gradient,
which means that the currents can be written as the difference of a local function
and its translation.

1.3 Dynamical Large Deviations

Fix T > 0. Let M be the subset of M of all absolutely continuous measures
with respect to the Lebesgue measure with positive density bounded by 1:

M? = {9 € M:9(du) = p(u)du and 0<p(u) <1 ae.},



and let D([0,T], M) be the set of right continuous with left limits trajectories
7:[0,T] — M, endowed with the Skorohod topology. M"Y is a closed subset of
M and D([0,T], M?) is a closed subset of D([0,T], M).

Let Qr = (0,7) x Q and Q7 = [0,7] x Q. For 1 < m,n < 400, denote
by C™"(Qr) the space of functions G = Gy(u) : Q7 — R with m continuous
derivatives in time and n continuous derivatives in space. We also denote by
Co"" () (resp. C°(Q7)) the set of functions in C"™"(Qr) (resp. C**°(Qr))
which vanish at [0, 7] x T (resp. with compact support in Q).

Let the energy Qp : D([0,T], M) — [0, +0c0] be given by

d

T T
Or(m) :Z sup 2/ (m,@uiGth—/ dt/ G(t,u)*du p .
7 Gecz(Qr) 0 0 Q

For each G € Cy*(r) and each measurable function v : € — [0,1], let
Jo = Ja~1: D([0,T], M°) — R be the functional given by

T
Jo(r) = (mr,Gr) - (7,Go) - / (70, O0Cy) dt

_/ (o(p0), AGy) dt +/ dt/ b) D, G dS
0 T+
/tﬁ/ aﬁms71/<< D). IVGHIP) d
- 0

where o(r) = 2r(1 — r)(1 4 2ar) is the mobility and m;(du) = p;(u)du. Define
Je = Janr : D(0,T], M) — R by

+00 otherwise .

JG(W) _ {jG(ﬂ') if me D([O’T]’MO)’

We define the rate functional It (:|y) : D([0,T], M) — [0, +o0] as

sup  {Ja(n)} if Qr(m) < oo,
Ir(nly) = { Gecy*(@r)
+00 otherwise .

We are no ready to state our second main result.

Theorem 1.3.1. FizT > 0 and a measurable function pg : Q@ — [0,1]. Consider
a sequence N of configurations in Xy associated to py in the sense that:

fin (1¥().G) = [ Gluypo(u) du
N—oo O
for every continuous function G : Q — R. Then, the measure Qv =Pyw (7N)~1

on D([0,T), M) satisfies a large deviation principle with speed N and rate func-
tion It (-|po). Namely, for each closed set C C D([0,T], M),

lgnOo Nd logQ,~(C) < mf Ir(7|po)



and for each open set O C D([0,T], M),

1

lim 5 log Qv (0) = — inf Ir(x|po) -

N —o0 N
Moreover, the rate function IT(:|pg) is lower semicontinuous and has compact
level sets.

1.4 Statical Large Deviations
Let us introduce Py = plY, o (m¥)~1, which is a probability measure on M and
describes the behavior of the empirical measure under the invariant measure.
Let p:  — [0,1] be the weak solution of (1.2.1) . Following [3], [15], we
define V : M — [0,400] as the quasi potential for the dynamical rate function

I7(-[p)-
V() =inf {Ir(x|p): T >0, m € D([0,T], M) and 7y =9} .

It is clear that for the measure 9(du) = p(u)du we have that V(d) = 0.

We will prove in Section 3.1 that if Ip(w|p) is finite then 7 belongs to
C([0,T), M°). Therefore we may restrict the infimum in the definition of V'(¥9)
to paths in C([0,T], M) and if V(1) is finite, ¥ belongs to M. Reciprocally,
we will see in Section 4.2 that V is bounded on M.

The last main result of this work establishes a large deviation principle for
the invariant measure.

Theorem 1.4.1. The measure Py satisfies a large deviation principle on M
with speed N¢ and lower semicontinuous rate function V. Namely, for each
closed set C C M and each open set O C M,

— 1
. -
i w5 log P (C) < — inf V(9),

1
.1 > _ .
I\}lm 7 log Pn(0) > 191221"9 V(9)

10



Chapter 2

Hydrodynamics and
Hydrostatics

2.1 Hydrodynamics, Hydrostatics and
Fick’s Law

We prove in this section Theorem 1.2.1. The idea is to couple three copies of
the process, the first one starting from the configuration with all sites empty,
the second one starting from the stationary state and the third one from the
configuration with all sites occupied. The hydrodynamic limit states that the
empirical measure of the first and third copies converge to the solution of the
initial boundary value problem (2.1.1) with initial condition equal to 0 and 1.
Denote these solutions by p?, pf, respectively. In turn, the empirical measure
of the second copy converges to the solution of the same boundary value prob-
lem, denoted by p;, with an unknown initial condition. Since all solutions are
bounded below by p® and bounded above by p!, and since p’ converges to a
profile p as t T oo, p; also converges to this profile. However, since the second
copy starts from the stationary state, the distribution of its empirical measure
is independent of time. Hence, as p; converges to p, po = p. As we shall see
in the proof, this argument does not require attractiveness of the underlying
interacting particle system. This approach has been followed in [21] to prove
hydrostatics for interacting particles systems with Kac interaction and random
potential.

We first describe the hydrodynamic behavior. Fix T > 0 and a profile
po: © — [0,1]. A measurable function p : Qr — [0,1] is said to be a weak
solution of the initial boundary value problem

dp = Ap(p)
p(0,:) = po(-), (2.1.1)
p(t,-)’F: b() for0<t<T,

in the layer [0,T] x Q if
(H1) p belongs to L? ([0,T], H'()):

/oT ds (/Q I Vp(s, u) 2du> < oo

11



(H2) For every function G = Gy(u) in Cy”*(Qr),
/{GT (T, u) — Go(u)po(u }du—/ ds/du (0sGs)(u)p(s,u)

/ds/duAG p(s,u) /ds/ ) (O, Gs(u))dS ,

where n=(n1,...,n4) stands for the outward unit normal vector to the
boundary surface I' and dS for an element of surface on I'.

We prove in Section 5.1 existence and uniqueness of weak solutions of (2.1.1).

For a measure p on Xy, denote by P, = IP’LV the probability measure on the
path space D(R;, Xy) corresponding to the Markov process {n; : t > 0} with
generator N?Ly starting from p, and by E, expectation with respect to P,,.
Recall the definition of the empirical measure 7% and let ¥ = 7V (n,):

V=N (@) by -

zeQN

Theorem 2.1.1. Fiz a profile py : Q@ — (0,1). Let u be a sequence of measures
on Xy associated to py in the sense that :

A}lm 1] { <7TN,G>7/G(u)p0(u)du >5} =0, (2.1.2)
— 00 0
for every continuous function G : Q@ — R and every § > 0. Then, for every
t>0,

th]P’N{ 7rt,G /G tudu>5}:O,

where p(t,u) is the unique weak solution of (2.1.1).

A proof of this result can be found in [14]. Denote by Qé\sf the probability
measure on the Skorohod space D([0,T], M) induced by the stationary measure
p¥ and the process {7TN () :0<t < T}. Note that, in contrast with the usual
set-up of hydrodynamics, we do not know that the empirical measure at time
0 converges. We can not prove, in particular, that the sequence Qg converges,
but only that this sequence is tight and that all limit points are concentrated on
weak solution of the hydrodynamic equation for some unknown initial profile.

We first show that the sequence of probability measures {Qé\sf N > 1} is
weakly relatively compact:

Proposition 2.1.2. The sequence {Q,, N > 1} is tight and all its limit points
Q:, are concentrated on absolutely continuous paths w(t,du) = p(t,u)du whose
density p is positive and bounded above by 1 :

Q:S{ﬂ' st du) = p(t,u)du, for 0 <t < T} =1,

Q:s{ :0< p(t,u) <1, for (t,u) € QT}

12



The proof of this statement is similar to the one of Proposition 3.2 in [19].
Actually, the proof is even simpler because the model considered here is gradient.

The next two propositions show that all limit points of the sequence {Qé\si :
N > 1} are concentrated on absolutely continuous measures 7 (¢, du) = p(t, u)du
whose density p are weak solution of (2.1.1) in the layer [0,7] x 2. Denote by
A7 C D([0,T], M°) the set of trajectories {m(t,du) = p(t,u)du: 0 <t < T}
whose density p satisfies condition (H2).

Proposition 2.1.3. All limit points Q, of the sequence {Qi\g, N > 1} are
concentrated on paths w(t,du) = p(t,u)du in Arp :

Q. f{Ar}=1.

The proof of this proposition is similar to the one of Proposition 3.3 in [19].
Next result implies that every limit point Q, of the sequence {QY, N > 1} is

concentrated on paths whose density p belongs to L([0,T], H(Q)) :
Proposition 2.1.4. Let Q%, be a limit point of the sequence {QY., N > 1}.

Then,
T
Eq:, [/ ds (/ | Vo(s,u) ||? du)] <00,
0 Q

The proof of this proposition is similar to the one of Lemma A.1.1 in [17].
We are now ready to prove the first main result of this work.

Proof of Theorem 1.2.1. Fix a continuous function G : @ — R. We claim
that Y
lim E“ss[!(w,G) —<p(u)du,G>|] = 0.

N—o0
Note that the expectations are bounded. Consider a subsequence N} along
which the left hand side converges. It is enough to prove that the limit vanishes.
Fix T > 0. Since uX is stationary, by definition of QN

Bt [|<7T,G>— (ﬁ(u)du,G}” = Qéﬁk[|<7TT,G> —<ﬁ(u)du,G>|} :

By Proposition 2.1.2, there is a limit point QZ, of {Qi\i’“ k> 1}. Since the
expression inside the expectation is bounded, by Propositions 2.1.3 and 2.1.4,

lim QY [|(r7,G) — (p(w)du, G)| | = QL [[(mr,G) = (plw)du, G)| 1{Sr}]
< Gl Qi [lo(T. ) = 50|, 1St} -

where || - [|; stands for the L'(Q) norm and where Sy stands for the subset of
D([0,T], M°) consisting on those trajectories {m(t,du) = p(t,u)du:0 <t <T}
whose density p is a weak solution of (2.1.1). Denote by p°(-,-) (resp. p'(-,))
the weak solution of the boundary value problem (2.1.1) with initial condition
p(0,-) =0 (resp. p(0,-) =1). By Lemma 5.1.4, each profile p in Ay, including
the stationary profile p, is bounded below by p° and above by p'. Therefore

N

lim 5 [|(r,6) = @i || < 1Ge [0°(T) = 9T, )]

k—oo

Note that the left hand side does not depend on T. To conclude the proof it
remains to let 7' T co and to apply Lemma 5.1.7.
O
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Fick’s law, announced in Theorem 1.2.2, follows from the hydrostatics and
elementary computations presented in the Proof of Theorem 2.2 in [17]. The
arguments here are even simpler and explicit since the process is gradient.

In the next section we will show that Propositions 2.1.2, 2.1.3 and 2.1.4
holds for any sequence of probability measures x4’ on Xy in the place of the
stationary ones plY.. Furthermore, if the sequence p¥ satisfies (2.1.2) with some
profile pg : Q@ — [0, 1] then all limit points Q* of Q u~ are concentrated on paths
7w with 7(0, du) = po(u)du:

Q" {m: 7(0,du) = po(u)du} =1.

From these facts and the uniqueness of weak solutions of (2.1.1) we may obtain
the next result.

Theorem 2.1.5. Under the conditions in Theorem 2.1.1, the sequence of prob-
ability measures Q,,~ converges weakly to the measure Q™ that is concentrated
on the absolutely continuous path 7(t, du) = p(t,u)du whose density p(-,-) is the
unique weak solution of the hydrodynamic equation (2.1.1).

Theorem 2.1.1 follows from this last result by standard arguments (cf. Sec-
tion 4.2 in [16]).

2.2 Proofs of Propositions 2.1.2, 2.1.3 and 2.1.4

Fix T' > 0 and a sequence uV of measures on X y. Denote by QY the probability
measure on the path space D([0,T], M) induced by the process {7 (n;) : 0 <
t < T} and with initial distribution x. Fix a limit point Q" of the sequence
QN and assume, without loss of generality, that QN converges to Q.

For a function G in Cé ’2((271«)7 consider the martingales MS = MtG N NE =
NtG’N defined by

t
ME = <7r,fv,Gt>—<7réV,G0>—/ ds (0, + N*Ly)(xN,G,),
0

t
NE (ME)? f/ ds AN |
0

where

AGN = N2Ly (N, G) = 2(x  GOIN? Ly (N, G) .

A simple computation give us that AZY is bounded above by C(G)N~9.
Therefore, by Doob’s and Chebychev’s inequalities, for every § > 0,

lim P N{ sup |MP| > 5} =0 (2.2.1)

N—oo * 0<t<T
Denote by I'y, resp. FJJ(,, the left, resp. right, boundary of Qy:

e ={(z1,-- ,24) €Ty 121 = +(N - 1)}.

14



For each z in Fﬁ, let £ = x+e;. After two summations by parts we may rewrite
the part inside the integral term of the martingale M as

d
<w§¢%GQ4~£E§:§:(AfGQCm%UQhAm)
=1 x
o O (VG @/Neb(E/N)) + aV ™ (,m.)]
vely (2.2.2)

o 2 OGN /N)) + aV* (2, n,)

T+
zel'y

+ O¢g (N_ 1) ,
where AN G stands for the discrete second partial derivative in the i-th direction,
(ANG)(@/N) = N2[G(x + /N) + Glx — e,/N) - 2G(x/N))

and
VE(z,n) = () + b(&/N)][n(x F er) — b(#/N)].

Proof of Proposition 2.1.2. In order to prove tightness for the sequence Q”,
we just need to prove tightness of the real process (ri¥,G) for any function G
in C2(2). Moreover, by approximations of G in L'(Q2) and since there is at
most one particle per site, we may assume that G belongs C3(Q). In that case,
tightness for (7, G) follows from (2.2.1), (2.2.2) and the fact that the total
mass of the empirical measure 7" is bounded by 2.

The other two statements follows from the fact that there is at most one
particle per site (cf. Section 4.2 in [16]). O

Fix here and throughout the rest of the section a real number « in (0,1) and
a function § as in the beginning of Section 1.1 and such that there is a 8 > 0
such that for all 4 in T4~ 1:

6(Ul,ﬂ)zb(—1,ﬂ) if —1§u1§—1—|—9,
b(1, 1) if 1-0<u <1. (2.2.3)

Notice that, for IV large enough, Vé\b is reversible with respect to the generator
EN,b~

For a cylinder function ¥, denote the expectation of ¥ with respect to the
Bernoulli product measure v by ¥(a):

F(a) = E¥ [

For each integer [ > 0 and each site x in Qp, denote the empirical mean
density on a box of size 2] + 1 centered at x by n'(z):

gy = L
(@) = yg;(x)n(y),

where

AN(z)=An,(z) ={y € Qn : |y — x| < }.

15



For each cylinder function ¥ and each € > 0, let

W= 3a iy X )= @)

yEAEN(r)
where the sum is carried over all z for which the support of 7,4, ¥ is contained

in Qp for every y in Ay (z).
For a continuous function H : [0,T] x I" — R, let

VIiH:/O ds Nd Z VE(z,ns)H(s,2/N) .

zEFi

Proposition 2.1.3 follows in the ususal way from (2.2.2) and the next replace-
ment Lemma (cf. Section 5.1 in [16]).

Lemma 2.2.1. Let ¥ be a cylinder function and H : [0,T]xI' — R a continuous
function. For every § > 0,

T
lim lim P~ [/ ds Vi .(ns) > 6| =0 (2.2.4)
0

g—o00 N—oo

lim Pov[|Vy gyl >0 =0 (2.2.5)

N—o0

For probability measures u,v in Xy, denote by H(u|v) the entropy of u
with respect to v. Since there are at most one particle per site, there exists a
constant C'= C(8) > 0 such that

il (Wg;,)) < ON? (2.2.6)

for any probability measure p on Xy (cf. comments following Remark 5.5.6 in
16]).

For the proof of (2.2.4) we need to establish an estimate on the entropy
production. Denote by S the semigroup associated with the infinitesimal
generator N2Ly and let uN = [LN SN. Let also f~, resp. g/, be the density of
uN with respect to z/ﬁ() resp. vY). Notice that

Ouf = N*LN [T, (2.2.7)

where L% is the adjoint of £ in L? ( Va(. )).
For a densfcy f with respect to a probability measure p on Xy, let

ZZJ f? j{:jg:l)mx+fl fv )

=1 x

where the second sum is performed over all z such that x, x + e; belong to Q
and

1

DY, io (fin) = Q/Tx,ﬁel(n)(\/f(n“*ei) — VT’ u(dn)

Denote by Dév () the Dirichlet form of the generator Ly, with respect to
its reversible probabilty measure Vé}b and let Hy(t) = H(Mﬂ”ﬁ.))

16



Lemma 2.2.2. There exists a positive constant C = C(() such that

O Hy(t) < —N?DY (g, vY) + ON*

[e3

Proof. By (2.2.7) and the explicit formula for the entropy,
0ty (t) = N* [ 1 Lavlog £vA (an)

Since I/év(.) is reversible with respect to Ly 3, standard estimates gives that
the piece of the right-hand side of the last equation corresponding to Ly is
bounded above by —2N 2Dév ( N ) Hence, in order to conclude the proof, we
just need to show that there exists a constant C' = C(8) > 0 such that, for any
sites z,y = = + €; in Qp,

/ft]VELy log ftNVﬁ_)(dn) < —Di\fy(giv, vy 4+ CN~2, (2.2.8)
where L, is the piece of the generator £y o that corresponds to jumps between

x and y.
Fix then z,y = = + ¢; in Qx. By the definitions of f and g,

/ SN Lo ylog fYVf (dn) = / 98 Ly log gp v (dn)

+ / 90 Lqylog (Vz‘é:)(g) ) v (dn) .

(2.2.9)

Since the product measure v/ is invariant for the generator Ly, by standard

estimates, the first term of the right-hand side of (2.2.9) is bounded above by
—2Di\{y (giv, uév)

On the other side, since v and uév(_) are product measures, we may compute
the second term on the right-hand side of (2.2.9). It is equal to

[90/8) — (/M) [ ) = )y () ) ()
= [0(y/N) ~ B(a/N)] [ 0l ol (7) = ()l ).

where & = log(%). By the elementary inequality 2ab < Aa? + A71b%, the
previous expression is bounded above by

S [0/N) = /NI [ nte)re (0 (o2 7)o ) v ()

+D, (g7 va).

This and the fact that g}¥ is a density with respect to v permit us to deduce
(2.2.8).
O

The proof of (2.2.5) requires the following estimate.

17



Lemma 2.2.3. There exists a positive constant C = C(f3) such that if [ is a
density with respect to Vév(.), then

(ExVFN D)y <=5 DE (Fvhl,) = DY () +ONT2.

Proof. Tt is enough to show that there is a constant C' = C(8) such that

(Loy VT, f) xy(f,z/ﬁ())+ON 2, (2.2.10)

for any z,y =z + e; in Qp.
Fix then z,y = z 4+ ¢; in Q.

(Lay/ T, \/f)Vév(_) —%/rz,y(n)(\/f(n” VIm) VY (dn)

+5 [ reatms) {‘m -]

v
= _Dojc\{y(f”/év)

B()
1 T,y Vév(n%y) N
o [rentalstren = sl |1 = 2 v .

Notice that, for some constant C; = C1(0),

vy (r7)
1= T < G B(y/N) - Bla/N), (2:2.11)
Vs (n)
where B = . Hence, by the elementary inequality 2ab < Aa? + A~1b%, the

left hand 51de in (2 2.10) is bounded above by

2
O v )/ + T 1B(a/) ~ B/ )
*le\fy(fvyé\E))

From this fact and since f is a density with respect to Vév(_) we obtain (2.2.10).
O

Proof of Lemma 2.2.1. By (2.2.6) and Lemma 2.2.2, the proof of (2.2.4) may
be reduced (cf. Section 5.3 in [16]) to show that for every positive constant Cp,

lim lim sup/ng’E(n)g(n)uév(dn) =0, (2.2.12)

e—=0N—oo g

where the supremum is carried over all densities g with respect to /Y such that
DY (g7 v, ) < CoN4=2. Moreover, since VNs is bounded, we may replace g by
its conditional expectation g. given {n(x) : x € Qn_ 25]\/'} in the left hand side
of (2.2.12) . In that case, this limit may be estimated by the one of the periodic
case. Hence, (2.2.12) follows from Lemma 5.5.7 in [16].
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We turn now to the proof of (2.2.5). Fix A > 0. By the entropy inequality
and (2.2.6),

C

Vil < 5+ g (o B, [exp {ANVy 1]

Thus we just need to show that for some constant C = C(3) > 0,
— 1 At —
NhinOO N log Eyév(') [exp {AN |VN7H|}] <C. (2.2.13)
Since el®l < e + ¢~ and
— 1 < — 1 — 1
A}gnoo Na log(an + by) < max A}Enoo N logay, I&Enoo Na logby ¢ ,

we may remove the absolute value in (2.2.13), provided our estimates remain in
force if we replace H with —H.
Let
ViE(x,m,8) = VE(x,n)H(s,#/N).

By the Feynman-Kac formula, the left hand side of (2.2.13), without the absolute

value, is bounded by
1Ty
W/ )\s dS7

where A\Y stands for the largest eigenvalue of the yﬁ( y-reversible operator N LY+

AN Z Vi (x,n,s) and L3Y™ is the symmetric part of the operator Ly in
leF—
L2 (vl Vi )). By the variational formula for the largest eigenvalue, for each s €

[0,T], N=9\Y is equal to

sup{Nd1<ZV (,7,5), >U N 2<Lfo>N }

IEF B()

where the supremum is carried over all densities f with respect to Vév(_).

By Lemma 2.2.3, for a constant C; = C1(8) > 0, the expression inside braces
is less than or equal to

A N /1
G+ ]Vd_l{ Z <V§(x717, S)7f>ug’(.> - Z(iD(JJV(fv Vé\é-)) +D117V(f’ Vé\i)))} :
zel'y

In this last expression, for some positive constant Co = C3(b), the part inside
braces is bounded above by

> {Wirtems) iy, - 22| [ (VR - V)

zel'y

(V) — T Y (dm} }
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Hence, in order to prove (2.2.5), it is enough to show that the part inside
braces in the last expression is bounded above by some positive constant cy,
not depending on s, f or x, which converges to 0 as N T oco.

Fix such s, f and x, and denote by f, the conditional expectation of f given
{n(z),n(x+ 61)} Slnce Vi ,z,s(n) = Vi (2,7, s) depends on the configuration 7
only through {n(z),n(z + 61)} the part inside braces in the last expression is
bounded above by

Witeo by, = | [ (WVEGET) = VEG) +
(V) = V) vl dn)]

Let A, = {0,1}{=#+e1} and denote by f, the restriction of f, to A,. Note
that, for IV large enough, the restriction of Vév(') to A, is the Bernoulli product
measure associated to the constant function b, = b(Z/N). Hence, for a constant
C5 = C3(b) > 0, the last expression is bounded above by

(V)

—1p2 and since E, v (VHm s) =

<VH,'£,87 f1>uév
which, by the elementary inequality 2ab < Aa®?+A
0, is bounded by
o By | Vira ) (VEe + 2R
4N03 yé\; H,z,s T T .

Since f, is a density with respect to v and Vi 25| < 2||H ||, the previous
expression is bounded by
_4A|H|A
NC3
which concludes the proof.
O

For each function G in C°(Qr), each integer 1 < ¢ < d and C > 0, let
Q%" . D([0,T]), M) — R be the functional given by

T T
QGZC( ):/(; <7T878uiGs> ds_c‘/o dS/Qd’LL G(S7’U,)2.

Recall from Section 1.3 that the energy Qr(w) was defined as

where

T T
Qh(m) = sup {2/ (m,@uiGth—/ dt/ G(t,u)? du}.
GeC(Qr) 0 0 Q
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Notice that

sup {Q?@c(ﬂ)} _ Qi (m) )

(2.2.14)
Gecz(Qr) 40
The next result is the key ingredient in the proof of Proposition (2.1.4).
Lemma 2.2.4. There exists a constant Co = Co(8) > 0 such that for every
integer 1 <1 < d and every function G in C°(2r),
w1 d ~Gyi,Co( N
et [on Vo5 <

Proof. By the Feynman-Kac formula,
N logE, o [exp{ /ds Z Ns(x) — Ns x—el))G(s,x/N)H
TEQN
is bounded above by
1 TN
W/(; As dS,
where A\Y stands for the largest eigenvalue of the 1/5 ) -reversible operator N2L3

N> cay (@) —n(z—e;)]G(s,x/N). By the variational formula for the largest
eigenvalue, for each s € [0,¢], AY is equal to

up {<N > n(z —¢;))G(s,z/N), f>VN + N Ly, \/fm.)} ,

z€QN B()

sym

where the supremum is carried over all densities f with respect to Vév(_). By
Lemma 2.2.3, for a constant C' = C(f) > 0, the expression inside braces is
bounded above by

Aﬂ

CN= DY () + S (NG s,/ N) [ln(a) e = e )}

TEQN

By the elementary inequality 2ab < Aa? + A~'b2, the part inside braces in
the last expression is bounded above by

Glsya/N [ £~ an)
+ 1 o [N(l - év(’fv))] i an)

vg (1)

b GNP s (VI T

which is bounded above by C1G(s,x/N)?+ Cy, by some positive constant C; =
C1(0), because of (2.2.11) and the fact that f is a density with respect to l/év(_).
Thus, Cy = C + C satisfies the statement of the Lemma.

O
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It is well known that a trajectory 7 (¢, du) = p(t,u)du in D([0,T], M°) has fi-
nite energy, Or () < oo, if and only if its density p belongs to L2([0,T], H(Q)),
in which case,

T
Qrp(m) :/0 dt/@du Vs (u)||* < .

Proof of Proposition 2.1.4. Fix a constant Cy > 0 satisfying the statement
of Lemma 2.2.4. Let {G) : k > 1} be a sequence of smooth functions dense
in L2([0,T], H'(Q)) and 1 < i < d an integer. By the entropy inequality and
(2.2.6), there is a constant C' = C(3) > 0 such that

Gr,i,Co( N
By~ L%?%(T{QTk ’(m )}}

is bounded above by

1 d GrvixCo (. N
C+ N logIEl,év(_) [exp {N 1%1]?; {97 (™)} el -

Hence, Lemma 2.2.4 together with the facts that ema{# 1, 2n} < o1 4 ... 4 o¥n
and that

1 — 1 — 1
— 1 < — 1 — 1
A}l_r)r(l)o ~Nd log(an + bn) _max{ngr(l)o ~d logaN,Nlir}><J ~d long} ,

imply
G . G N
Eq- Lrélggr {Qif‘o }] = J\}gnoo E,~ Lr;lg;{r {Qi,é‘o (m )}]
< C+0Cp.

This together with (2.2.14) and the monotone convergence theorem prove the
desired result.
O
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Chapter 3

Dynamical Large Deviations

In this chapter, we investigate the large deviations from the hydrodynamic limit.

3.1 The Dynamical Rate Function

We examine in this section the rate function I (-|y). The main result, presented
in Theorem 3.1.7 below, states that I7(-|y) has compact level sets. The proof
relies on two ingredients. The first one, stated in Lemma 3.1.2, is an estimate
of the energy and of the H_; norm of the time derivative of the density of a
trajectory in terms of the rate function. The second one, stated in Lemma 3.1.6,
establishes that sequences of trajectories, with rate function uniformly bounded,
whose densities converges weakly in L? converge in fact strongly.

We start by introducing some Sobolev spaces. Recall that we denote by
C°(€2) the set of infinitely differentiable functions G : @ — R, with compact
support in €. Recall from Section 1.2 the definition of the Sobolev space H'(£2)
and of the norm || - ||12. Denote by Hj(Q) the closure of C°(Q) in H'(Q).
Since 2 is bounded, by Poincaré’s inequality, there exists a finite constant C}
such that for all G € H}(Q)

d
IGI3 < C1l0w,Gl3 < C1 > (0u,G, 0u,G)2

Jj=1

This implies that, in HE ()

. 1/2
| > (0u,G , 0u,G)2
j=1
is a norm equivalent to the norm | - ||1,2. Moreover, H}(f2) is a Hilbert space
with inner product given by
d
(G, D120 = Y (0u,G, 0u,J)2
j=1

To assign boundary values along the boundary I' of € to any function G
in H*(), recall, from the trace Theorem ([26], Theorem 21.A.(e)), that there
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exists a continuous linear operator B : H'(Q2) — L*(T), called trace, such that
BG = G’r if G € HY(Q) N C(Q). Moreover, the space H}(Q) is the space of
functions G in H'(Q) with zero trace ([26], Appendix (48b)):

H{(Q) ={GeH'(Q): BG=0}.

Since C*°(€) is dense in H!(2) ([26], Corollary 21.15.(a)), for functions F, G
in H'(Q), the product FG has generalized derivatives d,,(FG) = Fo,,G +
GO,,F in L*(Q) and

/ F(u) 0. Glu) du + / G () 0w, F(u) du
¢ ° (3.1.1)
= / BF(u) BG(u) du — / BF(u) BG(u)du.
r _

Moreover, if G € H'(Q2) and f € C!(R) is such that f’ is bounded then f o G

belongs to H'(£) with generalized derivatives d,,(f o G) = (f' o G)9,,G and
trace B(f o G) = f o (BG).

Finally, denote by H~1(2) the dual of H}(Q2). H~(Q) is a Banach space
with norm || - ||-1 given by

|v||>, = sup {2(1},(}')1,1—/ ||VG(u)||2du},
GeCz () Q
where (v, G)_11 stands for the values of the linear form v at G.
For each function G in C°(Qr) and each integer 1 < i < d, let Q?’Z :
D([0,T], M%) — R be the functional given by

T T
Q?l(ﬂ—) = 2/ <7Tta auth> dt - / dt/ du G(t? 'LL)Q ?
0 0 @

and recall, from Section 1.3, that the energy Q(m) was defined as

d
Qr(m) =Y Qp(r) with Qp(r)= sup QF(m).
i—1 GeC=(Qr)

The functional Q?’i is convex and continuous in the Skorohod topology.
Therefore QiT and Qr are convex and lower semicontinuous. Furthermore, it
is well known that a trajectory m(t,du) = p(t,u)du in D([0,T], M) has finite
energy, Qr(m) < oo, if and only if its density p belongs to L%([0, 7], H'(f2)), in
which case,

T
Qrp(m) :/0 dt/ﬂdu V()| < 0.

Let D., = D., ;, be the subset of C([0, T'], M) consisting of all paths 7 (¢, du) =
p(t,u)du with initial profile p(0,-) = v(:), finite energy Qr () (in which case p;
belongs to H!(£2) for almost all 0 < ¢ < T and so B(p;) is well defined for those
t) and such that B(p;) = b for almost all ¢ in [0, 7.

Lemma 3.1.1. Let 7 be a trajectory in D([0,T], M) such that It (w|y) < co.
Then m belongs to D,
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Proof. Fix a path 7 in D([0,T], M) with finite rate function, Ir(7|y) < co. By
definition of I, m belongs to D([0, T], M?). Denote its density by p: (¢, du) =
p(t, u)du.

The proof that p(0,-) = (-) is similar to the one of Lemma 3.5 in [4] and
is therefore omitted. To prove that B(p;) = b for almost all ¢ € [0,7], since
the function ¢ : [0,1] — [0,1+ a] is a C! diffeomorphism and since B(p o p;) =
©(Bpy) (for those t such that p; belongs to H*(£2)), it is enough to show that
B(yp o pt) = ¢(b) for almost all t € [0,T]. To this end, we just need to show
that, for any function Hy € C12([0,T] x T'y.),

[t [ {Bleto ) — et} Hattw) = 0. (312)

Fix a function H € CY2([0,T] x ). For each 0 < 6 < 1, let hg : [-1,1] = R
be the function given by

r+1 if —1<r<-1+480,
ho(r) =4 7% if —1+0<r <0,
0 ifo<r<i,

and define the function Gy : Q7 — R as G(t, (u1,%)) = hg(u1)H(t, (-1 u)) for
all @ € T?"!. Of course, Gy can be approximated by functions in C1 (Qr).
From the integration by parts formula (3.1.1) and the definition of JGG, we
obtain that

T
tim T, () = [t [ au {Blep0)w) — o0} H(t.0).

which proves (3.1.2) because Ip(7]y) < .
We deal now with the continuity of 7. We claim that there exists a positive
constant Cy such that, for any g € C°(2), and any 0 < s <r < T,

(77, 9) = (o )] < Colr = )2 Ir(xly) + gl 20

(3.1.3)
+ (=52 Aglh }

Indeed, for each § > 0, let ¢° : [0, 7] — R be the function given by

0 fo<t<sor r+d<t<T,
L—s fs<t<s+94§
/2,8 (4 5 ns>t> )
(r=s) 700 =9 | fs+o<t<r,

1-55 ifr<t<r+d,

and let GO (t,u) = ¢°(t)g(u). Of course, G° can be approximated by functions
in C)*(Qr) and then

(T—S)l/Q(%i_I)I(l)Jgé(ﬂ') = (m,g) — (7s,9) — /dt w(pt), Ag)

s [t e IValP).

25



To conclude the proof, it remains to observe that the left hand side is bounded
by (r — s)'/2Ip(r|y), and to note that o, o are positive and bounded above on
[0,1] by some positive constant. O

Denote by L%([0,7], H}())* the dual of L*([0,T], H&( )). By Proposition
23.71n [26], L2([0,T], H}(Q2))* corresponds to L2([0,T], H~(R)), i.e., for each v
in L2([0,T], HE (2))*, there exists a unique {v; : 0 < ¢t < T} in L2([0, T] H=1(Q))
such that for any G in L?([0,T], H (),

T
(v,Gh-11 = /0 (v, Gy) 1,1 dt (3.1.4)

where the left hand side stands for the value of the linear functional v at G.
Moreover, if we denote by ||v]—1 the norm of v,

T
2 2
Jol?, = / lenl|?  dt

Fix a path 7 (¢, du) = p(t,u)du in D, and suppose that

T T
sup {2/ (pt, O Hy) dt—/ dt/ du VHtHQ} < 0. (3.1.5)
HecCe (Qr) 0 0 Q

In this case dyp : C° (1) — R defined by
T
Oip(H) = —/ (pt, OpHy) dt
0

can be extended to a bounded linear operator dyp : L?([0,T], H}(Q)) — R.
It belongs therefore to L2([0,T], H}(Q))* = L?([0,T], H~*(Q)). In particular,
there exists {v; : 0 < t < T} in L?([0,7], H (), which we denote by v, =
Oipt, such that for any H in L?([0,T], H} (1)),

T
(O HY) 11 = / (Orprs He) 11 dt
0

Moreover,

I9epll2

T
/H@Pt”%dt
0
T T
T — {2/ ooty e~ [t [ ||VHt|2}.
HeC= (Qr) 0 0 Q

Let W be the set of paths 7 (¢, du) = p(¢,uw)du in D such that (3.1.5) holds,
i.e., such that d;p belongs to L? ([0, T], H 1(Q)). For G in L? ([0, T], Hj(2)),
let Jg : W — R be the functional given by

T
Jo(m) = (@ GY-rs+ / dt /Q du VG, (u) - V(o))
T
= 5t [ o) G,
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By Proposition 23.23 in [26], if 7 (t,du) = p(t,u)du belongs to W and G
belongs to Co%(Qr),

T T
(or, G1) — (po, Go) —/ (pt, 0rGy) dt = / (O¢pe, Gi)—1,1 dt
0 0

which together with Lemma 3.1.1 and the integration by parts formula (3.1.1)
implies that

Ja(m) = Ja(n). (3.1.6)
Then, since J.(r) is continuous in L? ([0, 7], H}) and since C°(Qr) € Cy*(Qr)
are dense in L? ([0, 7], Hj (), for every 7 in W,

Ip(wly) = sup Jo(m) = sup  Jg(w). (3.1.7)
GeL2([0,T],H}) GeCx (Qr)

Lemma 3.1.2. There exists a constant Cy > 0 such that if the density p of
some path 7(t,du) = p(t,u)du in D([0,T], M) has a generalized gradient, Vp,
then

T
| dian?, < Collreh)+ @y, (318)
/ dt/d HW”Z < Co{Ir(nly) + 1}, (3.1.9)

where x(r) = r(1 —r) is the static compressibility.

Proof. Fix apath 7(t,du) = p(t,u)du in D(]0,T], M?). In view of the discussion
presented before the lemma, we need to show that the left hand side of (3.1.5)
is bounded by the right hand side of (3.1.8). Such an estimate follows from
the definition of the rate function Ir(:|y) and from the elementary inequality
2ab < Aa® + A1b2.

We turn now to the proof of (3.1.9). We may of course assume that Ir(7|y) <
00, in which case Qr(m) < co. Fix a function § as in the beginning of Section
1.1. For each § > 0, let h° : [0,1]> — R be the function given by

5 _ r+0 B l—z+6
h (x,y)—(x+6)log(y+5>+(1 954—6)10g(1_y_Hs i

By (3.1.8), d;p belongs to L([0,T], H~1(Q)). We claim that

T
| @ocot oy sadr = [ 00w, B
0 Q
- [ Bonta). fe)du. (3.1.10)

Indeed, By Lemma 3.1.1 and (3.1. 8) —6 belongs to L? ([0, 7], H}(€2)) and
9 (p — B) = Oip belongs to L2([0,T], H-*()). Then, there exists a sequence
{G™ : n > 1} of smooth functions G" : Q7 — R such that G? belongs to
C2°(Q) for every t in [0, T], G™ converges to p— 3 in L2([0,T], HL(Q)) and 8,G™
converges to dy(p — 3) in L2([0,T], H=1(Q)) (cf. [26], Proposition 23.23(ii)).
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For each positive integer n, let G = G" + B and for each § > 0, fix a smooth
function h® : R? — R with compact support and such that its restriction to
[0,1]2 is A?. Tt is clear that

T ~ ~
/ (OG0, 10 (G, B)) dt = / R (G (u), (u))du
0 Q
- / R (G (), ().

On the one hand, d,h% : [0,1]?> — R is given by

) y+6
o —log [ —E% ) o (YT )
Duh (2, y) 0g<1—x+(5> Og(l—y+5>

Hence, 8,h%(p,3) and 8,h°(G",3) belongs to L> ([0,T], H3(2)). Moreover,
since 9, h° is smooth with compact support and G™ converges to p in L2([0,T], H*(Q)),
9.0 (G™, B) converges to d.hd(p,3) in L2([0,T], HL()). From this fact and
since 9;G™ converges to 0;p in L2([0,T], H-1(2)), if we let n — oo, the left
hand side in (3.1.11) converges to

(3.1.11)

T
/ (Orpes D (91, B)) 1.1 dt
0

On the other hand, by Proposition 23.23(ii) in [26], G, resp. G%:, converges
to po, resp. pr, in L2(Q) Then, if we let n — oo, the rlght hand side in (3.1.11)
goes to

R (py(u), Bw))du — [ 1 (po(u), B(u))du,
Q Q

which proves claim (3.1.10).
Notice that, since 3 is bounded away from 0 and 1, there exists a positive
constant C' = C(f) such that for § small enough,

R (p(t,u), B(u)) < C for all (t,u) in Qf. (3.1.12)
For each § > 0, let H? : Q7 — R be the function given by

9:h° (p(t,u), B(u))
2(1426)

H(t,u) =

A simple computation shows that

Jgs(n) > /OTdt<8tpt, / dt/dw Hth( )|I?

xdm(D
HVB WQ
—— d du os(
/ ', o (B@)?
(r

where x5(r) = (r +8)(1 —r+ ) and os(r) = 2xs(r)¢’(r). This last inequality
together with (3.1.10), (3.1.7) and (3.1.12) show that there exists a positive
constant Cy = Co(f) such that for § small enough

IIVP (t,u)]?
Co{l 1} > dt .
otz +1) > [ [ V2001
We conclude the proof by letting § | 0 and by using Fatou’s lemma. O
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Corollary 3.1.3. The density p of a path w(t,du) = p(t,w)du in D(]0,T], M?)
is the weak solution of the equation (2.1.1) with initial profile v if and only if
the rate function It (w|y) vanishes. Moreover, in that case

v 191 ()2
Ad%f“mmw

Proof. On the one hand, if the density p of a path w(¢,du) = p(t,u)du in
D([0,T], MY) is the weak solution of equation (2.1.1), by assumption (H1), the
energy Qr () is finite. Moreover, since the initial condition is -y, in the formula
of jg(ﬂ'), the linear part in G vanishes which proves that the rate functional
Ip(7|y) vanishes. On the other hand, if the rate functional vanishes, the path
p belongs to L2([0,T], H*(2)) and the linear part in G of Jg () has to vanish
for all functions G. In particular, p is a weak solution of (2.1.1). Moreover, in
that case, by the previous lemma, the bound claimed holds. O

For each ¢ > 0, let E, be the level set of Ip(m|y) defined by
Ey ={m € D([0,T}, M) : Ir(n|y) < q} .

By Lemma 3.1.1, E, is a subset of C([0,T], M?). Thus, from the previous
lemma, it is easy to deduce the next result.

Corollary 3.1.4. For every q > 0, there exists a finite constant C(q) such that

T g Vo(t,w)|?
su Oupell®, dt + / dt/ du Hi’ < C(q) .
ma{é'““”l o o™ Mot @

Next result together with the previous estimates provide the compactness
needed in the proof of the lower semicontinuity of the rate function.

Lemma 3.1.5. Let {p" : n > 1} be a sequence of functions in L*(Qr) such
that uniformly on n,

T 2 T 2
Anwmgﬁ+é|@wmlﬁ<c

for some positive constant C. Suppose that there exists a function p € L?(Qr)
such that p" converges to p weakly in L*(Q7). Then p, converges to p strongly
mn LQ(QT)

Proof. Since H*(Q) C L?*(Q) c H~(Q) with compact embedding H'(Q) —
L?(Q2), from Corollary 8.4, [24], the sequence {p,} is relatively compact in
L?([0,T],L*(2)). Therefore the weak convergence implies the strong conver-
gence in L2([0, 7], L*(9)). O

Next result is a straightforward consequence of Corollary 3.1.4 and Lemma
3.1.5.

Lemma 3.1.6. Let {n"(t,du) = p"(t,u)du : n > 1} be a sequence of trajectories
in D([0,T], M°) such that, for some positive constant C,

sup {Ir(r"|7)} < C.
n>1

If p"™ converges to p weakly in L (1) then p" converges to p strongly in L*(Q7).
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Theorem 3.1.7. The functional It (-|y) is lower semicontinuous and has com-
pact level sets.

Proof. We have to show that, for all ¢ > 0, E, is compact in D([0,T], M). Since
E, C C([0,T], M°) and C([0,T], M) is a closed subset of D([0,T], M), we just
need to show that E, is compact in C([0,77], M?).

We will show first that FE, is closed in C([0,T], M°). Fix ¢ € R and let
{m™(t,du) = p™(t,u)du : n > 1} be a sequence in E, converging to some
7(t,du) = p(t,u)du in C([0,T], MP). Then, for all G € C(Qr),

T

T
im [ (G dt:/ (0, ) dt.
0

n—00 0

Notice that this means that p" — p weakly in L?(Q27), which together with
Lemma 3.1.6 imply that p” — p strongly in L?(Qr). _From this fact and the
definition of Jg it is easy to see that, for all G in CS’Q(QT)7

lim Jg(ﬂ'n) = Jg(ﬂ) .
n—oo
This limit, Corollary 3.1.4 and the lower semicontinuity of Qp permit us to
conclude that Q7 (7) < C(q) and that Ir(w|y) <g.
We prove now that E; is relatively compact. To this end, it is enough to
prove that for every continuous function G : Q — R,

lim sup sup |(m,G) — (7s,G)| =0. (3.1.13)
6—0 neE, 0<s,r<T
|r—s|<é

Since E, C C([0,T], M°), we may assume by approximations of G in L(Q)
that G € C°(2). In which case, (3.1.13) follows from (3.1.3). O

We conclude this section with an explicit formula for the rate function
Ir(-|y). For each n(t,du) = pgt,u)du in D([0,T], M°), denote by H}(c(p))
the Hilbert space induced by Cy*(Qr) endowed with the inner product (-, -)
defined by

a(p)

T
(H,G)o(y) = / it (o(py), VH, - VGy).
0

Induced means that we first declare two functions F, G in Cé 2(Q7) to be equiv-
alent if (F — G, F — G)4(,) = 0 and then we complete the quotient space with
respect to the inner product (-,-) The norm of H}(o(p)) is denoted by
- lo-

Fi(;)a path p in D([0,7T], M°) and a function H in H(o(p)). A measurable
function A : Q7 — [0,1] is said to be a weak solution of the nonlinear boundary
value parabolic equation

a(p):

oA = Ap(N) = XL, 0, (0N, H)
A0, =, (3.1.14)
At,)p = b for 0<t<T.

if it satisfies the following two conditions.
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(H1’) X belongs to L? ([0,T], H(Q)):

/oT s (/Q IVAGs; w) 2du) <00

(H2’) For every function G(t,u) = Gy(u) in Cg”*(Qr),

T
/{GT(u) u) — Golu }du—/ s [ du(0.G) @A

/ds/duAG (s,u)) /ds/ ) (O, Gs(u))dS

+ / ds /Qdu o (A(s,u)) VHy(u) - VGy(u)

In Section 5.1 we prove uniqueness of weak solutions of equation (3.1.14)
when ||V H]|| belongs to L?(Q27), i.e., provided

T
/ dt/ du |V Hy(u)|* < oo
0 Q

Lemma 3.1.8. Assume that n(t,du) = p(t,u)du in D([0,T], M°) has finite
rate function: It(w|y) < co. Then, there exists a function H in Hi(o(p)) such
that p is a weak solution to (3.1.14). Moreover,

Ip(zly) = IIHHa(p) (3.1.15)

The proof of this lemma is similar to the one of Lemma 5.3 in [16] and is
therefore omitted.

3.2  Ip(-|y)-Density

The main result of this section, stated in Theorem 3.2.3, asserts that any trajec-
tory A, 0 < ¢t < T, with finite rate function, IT(\|y) < oo, can be approximated
by a sequence of smooth trajectories {A"™ : n > 1} such that

A" — XA and  Ip(A"|y) — Ir(A]y) .

This is one of the main steps in the proof of the lower bound of the large
deviations principle for the empirical measure. The proof reposes mainly on
the regularizing effects of the hydrodynamic equation and is one of the main
contributions of this article, since it simplifies considerably the existing methods.

A subset A of D([0,T], M) is said to be Ir(:|7)-dense if for every = in
D([0,T], M) such that Ip(7|y) < oo, there exists a sequence {7™ :n > 1} in A
such that 7™ converges to m and Ir(n™|y) converges to Ir(r|7y).

Let II; be the subset of D([0,T], M) consisting of paths 7 (¢, du) = p(t, u)du
whose density p is a weak solution of the hydrodynamic equation (2.1.1) in the
time interval [0, 0] for some 6 > 0.

Lemma 3.2.1. The set 11y is Ip(+|y)-dense.
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Proof. Fix = in D([0,T], M) such that Ir(n|y) < oo. By Lemma 3.1.1, =
belongs to C([0,T], M°). For each § > 0, let p° be the path defined as

At u) ifo<t<d,
PO(tu) = S N20 —tu) i <t<26,
p(t —26,u) f20<t<T,

where 7(t, du) = p(t, u)du and where X is the weak solution of the hydrodynamic
equation (2.1.1) starting at ~. It is clear that 7°(t, du) = p®(t,u)du belongs to
D.,, because so do 7 and A and that Qr(7°) < Qp(7)+297(\) < co. Moreover,
7% converges to m as | 0 because m belongs to C([0,T], M). By the lower
semicontinuity of I7(-|y), Ir(r|y) < lims_ o I7(7°|y). Then, in order to prove
the lemma, it is enough to prove that I7(rw|y) > lims_q I7(7°|y). To this end,
decompose the rate function I7(7%|y) as the sum of the contributions on each
time interval [0, 4], [d,20] and [2d,T]. The first contribution vanishes because
7% solves the hydrodynamic equation in this interval. On the time interval
[6,20], 0ip! = —0idas—t = —Ap(Aas—_t) = —Ap(p?). In particular, the second
contribution is equal to

5 5
1
sup 2/ ds/ du V() - VG — */ (0(Xe), [IVGe|?) ds
Gecy?(Qr) 0 Q2 2 Jo

which, by Schwarz inequality, is bounded above by

’ 1oy VAL
/0 ds/gdugo()\) O

By Corollary 3.1.3, this last expression converges to zero as ¢ | 0. Finally,
the third contribution is bounded by Ir(7|y) because 7 in this interval is just
a time translation of the path . O

Let II; be the set of all paths 7 in II; with the property that for every § > 0
there exists € > 0 such that e < m(-) <1 —€for all ¢t € [4,T].

Lemma 3.2.2. The set Iy is I7(-|y)-dense.

Proof. By the previous lemma, it is enough to show that each path 7 (t,du) =
p(t,u)du in I can be approximated by paths in II5. Fix 7 in II; and let A be as
in the proof of the previous lemma. For each 0 < e < 1, let 7€ = (1 —e)m + €.
Note that Qr(n°) < oo because Qr is convex and both Qp(w) and Qr(\)
are finite. Hence, 7° belongs to D, since both 7 and X satisfy the boundary
conditions. Moreover, It is clear that 7 converges to 7 as € | 0. By the lower
semicontinuity of Ir(-|7y), in order to conclude the proof, it is enough to show
that

i I7(nly) < Ir(al). (3.2.1)
E—

By Lemma 3.1.8, there exists H € H{ (o (p)) such that p solves the equation
(3.1.14). Let P = o(p)VH — Vi(p) and P* = —V()). For each 0 < ¢ < 1,
let P = (1 —¢)P + eP?. Since p solves the equation (3.1.14), for every G €
Co™* (@),

T T
/(Pf,VGt) dt:<7r§p,GT>—<7rg,G0>—/ (75, 0,G) dt
0 0
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Hence, by (3.1.7), I7(7¢|y) is equal to

T T
1
sup / dt/ du {P°+Vep(p°)} - VG — 7/ dt/ du o(p%)||[VG? .
cect2@r) | Jo Q 2 Jo Q

This expression can be rewritten as

1 T 5 £\ (|12
i [ a1 )
2 Jo Q a(p?)

T € €Y — o(of 2
_%igf{/o dt/ﬂ P +Vs0(f;()ps) (P)VG] du}

Hence,

| P2+ Volof)|?
Ip(mfly) < f/ ae [ T PPN gy,
e A

In view of this inequality and (3.1.15), in order to prove (3.2.1), it is enough
to show that

T e ENTE: T 9
lim/ dt/duwdu _ / dt/mdu
==0%Jo Q a(p°) 0 Q a(p)

By the continuity of ', o and from the definition of P¢,

i P2+ V)2 _ [P+ V(o)
=0 a(p°) a(p)

almost everywhere. Therefore, to prove (3.2.1), it remains to show the uniform
integrability of the families

Pe||? € (|12
{ H :8>0} and {IVp”:5>0}.
x(p°) x(p°)
Since Irp(w|y) < oo, by (3 1.9), (3.1.15) and Corollary 3.1.3, the functions

”XIZJJ; , Hf(*/\!z, ”Z(‘; I and HV/E\I)\ belong to L*(27). In particular, the function

~ max [PI* Pl [[Voll® [[VA]?
g=ma {x(p)’ XN 7 x(p) T x(N) }

also belongs to L'(Qr). By the convexity of || - ||? an the concavity of x(-),

Pe)? _ (1= o)|IP|* +<[[PA? g
x(p) = (A—ex(p) +ex(n) — 77

12
which proves the uniform integrability of the family IP°I° " The uniform inte-

x(p°)
grability of the family |v(,; < ‘)I follows from the same estimate with Vp., Vp and
VA in the place of P., P and P}, respectively. O

Let II be the subset of Ils consisting of all those paths m which are solutions
of the equation (3.1.14) for some H € Cy*(Qr).

Theorem 3.2.3. The set II is Ip(-|y)-dense.
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Proof. By the previous lemma, it is enough to show that each path 7 in Il can
be approximated by paths in II. Fix n(t,du) = p(t,u)du in IIs. By Lemma
3.1.8, there exists H € Hg(o(p)) such that p solves the equation (3.1.14). Since
7 belongs to Iy C IIj, p is the weak solution of (2.1.1) in some time interval
[0,26] for some & > 0. In particular, VH = 0 a.e in [0,2§] x . On the other
hand, since 7 belongs to II;, there exists € > 0 such that e < m(-) < 1 — € for
6 <t <T. Therefore,

T
/ dt/du IVH,@)[? < o. (3.2.2)
0 Q

Since H belongs to Hg(o(p)), there exists a sequence of functions {H" : n >
1} in C3%(Qr) converging to H in Hi(o(p)). We may assume of course that
VH] =0 in the time interval [0, §]. In particular,

T
lim dt [ du||VH!(u) — VH(u)||>=0. (3.2.3)

For each integer n > 0, let p™ be the weak solution of (3.1.14) with H™ in
place of H and set 7n"(t,du) = p™(t,u)du. By (3.1.15) and since o is bounded
above in [0,1] by a finite constant,

1 T T
) =5 [ eIV a< o [ ar [ du vz,

In particular, by (3.2.2) and (3.2.3), I7(7"|7y) is uniformly bounded on n. Thus,
by Theorem 3.1.7, the sequence 7™ is relatively compact in D([0,T], M).

Let {7™ : k > 1} be a subsequence of 7" converging to some 7° in
D([0,T], M°). For every G in C4*(Qr),

T T
(w2, Gr) — (7, Go) — / (i 0,Gy) dt = / (P(oh*), AG,) dt
0 0

T T
- [t [ om@nGras — [ o). v 6 at.

Letting k — oo in this equation, we obtain the same equation with 7% and
H in place of #"* and H™*, respectively, if

T T
din [t (o). 0G) = [t (el). AG)
— 00 0 0
., . (3.2.4)
Jim [ dt (o), VH VG, = / dt (o(o0), VH, - VGy) .
—>Jo 0

We prove the second claim, the first one being simpler. Note first that we
can replace H™ by H in the previous limit, because o is bounded in [0, 1] by
some positive constant and (3.2.3) holds. Now, p™* converges to p° weakly
in L?(Qr) because 7" converges to 7° in D([0,T], M°). Since I7(7"|y) is
uniformly bounded, by Lemma 3.1.6, p™* converges to p° strongly in L?(Q7)
which implies (3.2.4). In particular, since (3.2.2) holds, by uniqueness of weak
solutions of equation (3.1.14), 7% = 7 and we are done. O
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3.3 Large Deviations

We prove in this section the dynamical large deviation principle for the empirical
measure of boundary driven symmetric exclusion processes in dimension d > 1.
The proof relies on the results presented in the previous sections and is quite
similar to the original one presented in [18, 11]. There are just three additional
difficulties. On the one hand, the lack of explicitly known stationary states hin-
ders the derivation of the usual estimates of the entropy and the Dirichlet form,
so important in the proof of the hydrodynamic behaviour. On the other hand,
due to the definition of the rate function, we have to show that trajectories with
infinite energy can be neglected in the large deviations regime. Finally, since
we are working with the empirical measure, instead of the empirical density, we
need to show that trajectories which are not absolutely continuous with respect
to the Lebesgue measure and whose density is not bounded by one can also be
neglected. The first two problems have already been faced and solved. The first
one in [20, 4] and the second in [22, 6]. The approach here is quite similar, we
thus only sketch the main steps in sake of completeness.

3.3.1 Superexponential estimates

It is well known that one of the main steps in the derivation of the upper
bound is a super-exponential estimate which allows the replacement of local
functions by functionals of the empirical density in the large deviations regime.
Essentially, the problem consists in bounding expressions such as (V, f2) py in
terms of the Dirichlet form (=N?Lyf, f),~. Here V is a local function and
() uy indicates the inner product with respect to the invariant state . In
our context, the fact that the invariant state is not known explicitly introduces
a technical difficulty.

Let § be as in the beginning of Section 1.1. Following [20], [4], we use uév(,)
as reference measure and estimate everything with respect to Vév(_). However,
since l/é\?_) is not the invariant state, there are no reasons for (—N2Ly f, f>VZ;V(.)
to be positive. The next statement shows that this expression is almost positive.

We may suppose that § satisfies (2.2.3), in which case, for every N large
enough, Vé\i_) is reversible for the process with generator Ly; and then
(=N2Lyyf, f>,jév(_) is positive.

Recall from Section 2.2 the definition of D{¥(-,-) and recall also that we
denote by DJ(-) the Dirichlet form of the generator Ly with respect to its

reversible probability measure Vé\z).

Lemma 3.3.1. There exists a constant C' depending only on (3 such that if f
d N
is density with respect to Vﬁ.) and g = 2L then

(LvVENT)

Proof. By Lemma (2.2.3), it is enough to show that there is a constant Cy; =
C1(6) > 0 such that

1
sy <~ D (g.0) = DY () + N2,
B()

1
DY, (F3) < 5D, (g,0) — CIN 2, (33.1)
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for any z,y = x + e; € Qn.
Fix then z, x + ¢; in Qn. By the inequality 2ab < Aa® + A~1b?,

DY) = [reaton [ Vit ({0 1)

vy (™Y
2
+v/g(py) — vg(n)} vl (dn)
! / o () (V) — /g(m)) 2 (d)

-2/ m,ym)g(nz’y)[ oV 1} ).

2 v ()

Y
S

Hence, (3.3.1) follows from (2.2.11).
O

This lemma together with the computation presented in [2], p. 78, for non-
reversible processes, permits to prove the super-exponential estimate. Recall
from Section 2.2 that, for a cylinder function ¥ we denote the expectation of ¥
with respect to the Bernoulli product measure v by ¥(a):

T(a) = E¥ [1].

recall also that, for a positive integer [ and x € Qp, we denote the empirical
mean density on a box of size 21 + 1 centered at x by n'(z):

lp) — 1
1@ = 5] ygim)n(y%

where
M(z)=Ani(2)={y e Qn : ly—x| <1}
For each G € C(Qr), each cylinder function ¥ and each & > 0, let

1

VS (s,m) = < D Glsya/N) [ W(n) = BN @))]

where the sum is carried over all x such that the support of 7, ¥ belongs to Q.
For a continuous function H : [0,T] x I" — R, let

T
1 T Ee
VE. = ds —— § VE(z,n ) H
N,H /O S Nd71 (%n) <S7 N ) 9

wefi

where

V) = o)+ ()] e Fen -0 (5]

Proposition 3.3.2. Let G : Qpr — R and H : [0,7] x ' — R be continuous
functions. Fiz a cylinder function U and a sequence {n™ : N > 1} of configu-
rations with n™ in Xn. For every § > 0,
— = 1 4 G,
lim lim — Ve (s:ms)ds
0

St Nd log PnN

> 5] = —00, (3.3.2)
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— 1
Jim — log P~ [|V;H| > 5] = . (3.3.3)
Proof. Recall that, for some constant C' = C(f) > 0,
dén™N

N
v

< N7 (3.3.4)

Hence, we just need to show the Proposition with Py[zjv( ) in the place of P, ~.

The proof of (3.3.2) is almost the same as the one of Theorem 10.3.1 in [16].
It follows from (2.2.12), we just need in addition Lemma 3.3.1 for estimates on

(= NLvVINT) -
We turn now to the proof of (3.3.3). By the exponential Chevychev inequal-
ity, for every A > 0, the left han side of (3.3.3) is bounded above by

T 1 dy+
—As+ J\}gnoo N log Eug(.) [exp{AN®|V5 y[}],

which, by (2.2.13), is bounded by —Ad + C; for some positive constant C; =
C1(8) > 0. Hence, (3.3.3) follows from the arbitrariness of A.
O

For each € > 0 and 7 in M, denote by E.(7) = n° the absolutely continuous
measure obtained by smoothing the measure 7:

1 (A (2))

Ze(m(de) = m(dw) = F=A0

dx ,

where Ac(z) = {y € Q: |y — z| < e}, |A] stands for the Lebesgue measure of
the set A, and {U. : € > 0} is a strictly decreasing sequence converging to 1:
U.>1,U.>U fore > ¢, lim. | gU, = 1. Let

e = EE(ﬂ'N).

A simple computation shows that 7V belongs to M for N sufficiently large
because U, > 1, and that for each continuous function H : Q — R,

(@ H) = s Y0 /N () + O(NV,e)

T€EQN

where O(N, ¢) is absolutely bounded by Co{N~! + €} for some finite constant
Co depending only on H.
For each H in Cy*(Qr) consider the exponential martingale M/ defined by

MtH = exp {Nd |:<771{V,Ht> - <7T(§V,H0>

1

t
_ W/ o~ Nl H.) (53 +N2CN) Nl H.) ds] }
0

Recall from Section 1.3 the definition of the functional Jy. An elementary
computation shows that

MHE = exp {Nd {jH(TrN’E) + Vﬁ@ + ch(e) + CZH(Nfl)} } . (3.3.5)
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In this formula,

Z/ 82 H,h; 87]9 dsf Z/ 8u7H) ,gl Sﬂs)dS

+aVyo, n = aVyo, n + (0, Ho) — (v, Ho);

the cylinder functions h;, g; are given by

hin) = 1(0) + a{n(O)n(=es) +n(ei)] —n(—em(es) }
9:(n) = To...(n) In(es) = n(0))?

and c’ﬁ : Ry — R, j = 1,2, are functions depending only on H such that
c{q(é) converges to 0 as § | 0. In particular, the martingale M¥ is bounded by
exp {C(H,T)N?} for some finite constant C'(H,T) depending only on H and
T. Therefore, Proposition 3.3.2 holds for IP’;IN =P~ MTI«{ in place of P ~.

3.3.2 Energy estimates

To exclude paths with infinite energy in the large deviations regime, we need
an energy estimate.

Fix a constant Cj satisfying the statement of Lemma 2.2.4. Recall from
Section 2.2 the definition of the functional Q?"”CO and that

sup ){Q?’i’co (w)} = O (m) . (3.3.6)

GeCx(Qr 4Co

Fix a sequence {G}, : k > 1} of smooth functions dense in L2([0, T], H*(Q)).
For any positive integers r, 1, let

B, = {w € D([0,T], M) : max Q*"“ () < l},

1<k<r
1<i<d
Since, for fixed G in C°(2r) and 1 < i < d integer, the function Q?’“’i’co is

continuous, B, is a closed subset of D([0,T], M).

Lemma 3.3.3. There is a positive constant C such that, for any positive inte-
gers T, 1,

A}E%ONdlogQ N [Brifl < =14+ C.

Proof. Let C > 0 be a constant satisfying (3.3.4). For integers 1 < k < r and
1 <4 < d, by the exponential Chevychev inequality and Lemma 2.2.4,

Therefore, since
— 1 — 1 — 1
A}gnoomlog(aNerN)gmax{ lgnoomlogaN,ngnoomlong}, (3.3.7)

the desired inequality is obtained with C=Cy+C.
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3.3.3 Upper bound

Fix a sequence {F} : k > 1} of smooth nonnegative functions dense in C(f2) for
the uniform topology. For k > 1 and § > 0, let

Dy = {WED([O,T],M): 0 < (m¢, Fr) S/Fk(x)da: + C’kd,OStST},
Q

where Cy, = | VFg| o and VF is the gradient of F. Clearly, the set Dy 5, k > 1,
d > 0, is a closed subset of D([0,T], M). Moreover, if

Ems = () Dis
k=1
we have that D([0,7], M°) = Ny>1 N1 Ep1/n- Note, finally, that for all
m>1,6>0,

7V belongs to E,, s for N sufficiently large. (3.3.8)

Fix a sequence of configurations {77N : N > 1} with 77N in X and such that
7N (n™) converges to y(u)du in M. Let A be a subset of D([0,T], M),

1
Nd

1

log P, v [ﬂ'N € A] = N

log B, v [Mf1 (M)~ 1{x" € A}] .
Maximizing over 7V in A, we get from (3.3.5) that the last term is bounded
above by

. N R 1 _ njdyH _
7#I§4JH(W )+ WlogEnN [M%{e N VN=E] —ch(e) — 4 (NTY).
Since 7V (nV) converges to vy(u)du in M and since Proposition 3.3.2 holds for
]PSIN = P,w MH in place of IP, v, the second term of the previous expression is
bounded above by some Cp (e, N) such that

fm Tm Cple, N) = 0.

e—0 N—oo

Hence, for every € > 0, and every H in Cé ’Z(TT),

1 o
J\}gnoo Na logP, ~ [A] < — ;23 Ju(7%) + Cy(e), (3.3.9)
where lim Chx(e)=0.

E—
For each H € CY?(Qr), each e > 0 and any r,l,m,n € Z, let Jgf;m’” :
D([0,T], M) — RU {0} be the functional given by

jH(ﬂ's) ifre B, ﬂEm)l/n,
+00 otherwise .

r,l,m,n
JH,E (TF) = {

This functional is lower semicontinuous because so is J o= and because B, ,
Ep, 1 /n are closed subsets of D([0,77], M).
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Let O be an open subset of D([0,T], M). By Lemma 3.3.3, (3.3.7), (3.3.8)
and (3.3.9),

— 1 — 1
I 5 logQv[0] < max { Jin 5108 Qv [ON B 1 Byl
— 1 .
A}E)noo Nd log Q, v [(Br) ]}
< max{ - inf Ju(7%) 4+ Cly (), —Z+C~’}

TFEOOBT,LQEmyl/n

= L,

where _
Lyt (w) = min { T () = Oy () L= C'} .

In particular,

— 1
lim —
No

1 7 logQ~[0] < — sup  inf Ly "™"(m).

H.e,rilmmn me0

Note that, for each H € C(‘%’Q(Qicp)7 each ¢ > 0 and r,l,m,n € Z,, the

functional Lg{’gm’n is lower semicontinuous. Then, by Lemma A2.3.3 in [16], for
each compact subset K of D([0,T], M),

1 .
lim —lo K] < — inf su L™ ().
i galosQulkl € -~ s L

By (3.3.6) and since D([0,7], M%) = Np>1 Nin>1 Epi/m,

lim lim lim lim lim Lj7™"(w) =
e—01l—o00Tr—00 M—00 N—00 ’

Ju(n) if Qp(r) < oo and 7 € D([0,T], M°),
400 otherwise .

This result and the last inequality imply the upper bound for compact sets
because Jy and Jg coincide on D([0,T], M°). To pass from compact sets to
closed sets, we have to obtain exponential tightness for the sequence {QnN}.
This means that there exists a sequence of compact sets {IC,, : n > 1} in
D([0,T7], M) such that

— 1
lim —

dm o log Q,~ (K,°) < —n.

The proof presented in [1] for the non interacting zero range process is easily
adapted to our context.

3.3.4 Lower bound

The proof of the lower bound is similar to the one in the convex periodic case.
We just sketch it and refer to [16], section 10.5. Fix a path 7 in II and let
H € Cy*(Qr) be such that 7 is the weak solution of equation (3.1.14). Recall
from the previous section the definition of the martingale M{" and denote by P/
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the probability measure on D([0,T], Xn) given by P,I;[N [A] = E,~[MFA1{A}].
Under PH, and for each 0 < ¢t < T, the empirical measure 7TtN converges in

probability to m,. Further,
. 1 H
Jim 7 (B[P ) = Fr(al).

where H(u|v) stands for the relative entropy of p with respect to v. From
these two results we can obtain that for every open set O C D([0,T], M) which
contains T,
. 1
Nhjmoo N logP,~ [O] = —Ip(n]v).
The lower bound follows from this and the Ip(-|7y)-density of II established in
Theorem 3.2.3.
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Chapter 4

Statical Large Deviations

We prove here that the quasi potential is the large deviation functional of the
stationary measure. Throughout this chapter, we denote by p the weak solution
of (1.2.1), and by ¥ the measure in M with density p, i.e., ¥(du) = p(u)du.

4.1 The Functional I

Fix T > 0. For each G € C*(Q7), let Jg = Jar : D([0,T], M°) — R be the
functional given by

T
JG(T‘-) = <7TT,GT>_<7TOaGO>—/ <7Tt,8th>dt
0
T T
—/0 (p(pe), AGy) dt + /0 dt/F+ ©(b) 8y, G dS
T 1 T )
[ [ ewoncas - 5 [t veda.

where 7, (du) = p;(u)du. Define Jg = j@gT : D([0,T], M) — R by

~ Ja(m) if € D([0,T], M),
Ja(m) = .
+00 otherwise .
We define the functional I : D([0,T], M) — [0, +o0] as
sup {j@(ﬂ')} if Qp(m) < 00,
Ir(7) = { Geeh*(@r)
+00 otherwise .

Notice that, by Lemma 3.1.1, for any measurable function v : Q — [0, 1],

Ir(m)  if mo(du) = vy(u)du,
400 otherwise .

Ir(7ly) = {

By this reason, it is easy to see that most of the results stated in Section 3.1
which holds for the dynamical rate function Ir(+]y) also holds for the functional
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Ir. Thus when we refer to a result stated in Section 3.1 and concerning the
dynamical rate function I'r(-|y), we mean the same result with I in the place
of Ir(:|7)-

By Lemma 3.1.1, if a trajectory « in D([0,T], M) satisfies I (7) < oo then
7 belongs to C([0,T], M?). Thus when we let a trajectory 7 with I () < oo,
we will assume automatically that it belongs to C'([0, 7], M?).

Let C1(£2) be the set of continuous functions f :  — R such that

sup |f(u)] = 1.

u€e)
Recall that we may define a metric on M by introducing a dense countable
family {fx : k > 1} of functions in C;(Q2), with f; = 1, and by defining the
distance

o

1
191,192 227| 1917f]€ <r‘927fk>|'

k=1

Let D be the space of measurable functions bounded below by 0 and bounded
above by 1 endowed with the L?(Q2) topology.

For 4 € M, p € D and € > 0, let us denote by B.(¢) the open e-ball in M
with centre ¢ in the d-metric,

B.(0) = {0 € M:d(d,0) <&},
and by B.(p) the open e-ball in D with centre p in the L?(£2) norm,
B.(p) = {7eD: 5 - plla <}

Next result states that any trajectory whose density stays a long time far
away from p in the L?(£2) norm pays a nonnegligible cost.

For each § > 0 and each T > 0 denote by D([0,T], M°\Bs(p)) the set of
trajectories m(t,du) = p(t,u)du in D([0,T], M°) such that p; ¢ Bs(p) for all
0<t<T.

Lemma 4.1.1. For every § > 0, there exists T > 0 such that
inf{I7(r): = € D([0,T], M°\Bs(p))} > 0.

Proof. By Corollary 5.1.8, there exists Ty = Tp(6) > 0 such that for any weak
solution A of (2.1.1),

1At — pll2 < 6/2 forall t > Tp. (4.1.1)

We assert that the statement of the lemma holds with T' = 2Tg. If this is not
the case, there exists a sequence of trajectories {mF(du) = p*(t,u)du : k> 1} in
D ([0, T], M°\Bs(p)) such that Ir(m*) < 1/k. Since I has compact level sets,
by passing to a subsequence if necessary, we may assume that 7% converges
to some m;(du) = p(t,u)du in D([0,T], M®). Moreover, by Lemma 3.1.6, p*
converges to p strongly in L?(Qr).

On the other hand, the lower semicontinuity of It implies that Iz (7) = 0 or
equivalently, by Corollary 3.1.3, that p is a weak solution of (2.1.1). Hence, by
(4.1.1) and since ||pf — pl|, > 6 for all ¢ € [0, T] and for all positive integer k,

T 9 2T 9
Lk o= [k =il = 3 a.
0
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which contradicts the strong convergence of p* to p in L?(€27) and we are done.
O

The same ideas permit us to establish an analogous result for the weak
topology as follows.

Corollary 4.1.2. For every € > 0, there exists T > 0 such that
inf {I7(7) : m € D([0,T],M) and 77 ¢ B.(9)} > 0.

Proof. Let § = £/+/2 and consider Ty > 0 satisfying (4.1.1). Set T = Ty and
assume that the statement of the corollary does not hold. In that case, since
Ir has compact level sets, by Lemma 3.1.6 and Corollary 3.1.3, there exists
a sequence of trajectories {7* : &k > 1} in C([0,T], M?), with 7% ¢ B.(9),
converging to some m whose density is a weak solution of (2.1.1). By (4.1.1) and
since B;,2(p) C 35/2(19) mr belongs to B, /; (9). Hence, for every integer k > 0,

d(rh,mr) > ¢/2,
which contradicts the convergence of 7% to 7 in C([0, T], M?). O

Fix a weak solution p of (2.1.1). By Corollary 3.1.3,

/dt/ ”vpt " (4.1.2)

Recall from Section 3.1 the definition of the functional d;p : C°(Qr) — R. By
Lemma 3.1.1, by the integration by parts formula (3.1.1) and since p is a weak
solution of (2.1.1),

T T
oit) = = [ (proummyat = = [ [ Selpuw) - Vi) i

for every H € C°(Qr). Then, 0;p can be extended to a bounded linear operator
in L2([0,T), H}(2))* which corresponds to the path {9;p; : 0 < t < T} in
L2([0,T], H~Y(Q)) with 0;p; : H}(2) = R, 0 <t < T, given by

(Orpt, Gy—11 = /QVgo(pt(u)) VG (u)du . (4.1.3)

We conclude this section with an estimate on the cost paying by backwards
solutions of the hydrodynamic equation (2.1.1). Let 7 (¢, du) = p(t, u)du be the
path in C([0, T], M°) with density given by j(t,du) = p(T — t,u)du. It is clear
that Qr(m) = Qr(p(u)du) < oo and that d;p, = —dpr—¢. By (3.1.6) and since
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p is a weak solution of (2.1.1), for each G in C(l)’2 (Qr),

T
Ja(r) = / (0¢pr, Gy) — 11dt+/ dt/du V(pie(u)) - VGi(u)

_,/ dt/dua pe(w)) || VG (u)|?

= _/ (Bype, Gy)— 11dt+/ dt/du Vio(pi(u)) - VGi(u)

f,/ dt/ du o(py () |V Go(u) |

_ 2/0 dt/Qdu Vo(pu(w) - VG (u) — Q/OTdt/Qdu o (o ()| VG (u)|2

T 2
Vo (u)
< dt | du ¢ (pe(u ”7,
- /0 /Q o) o)
where G(t,u) = G(T — t,u) and where the last inequality follows from the

elementary inequality 2ab < Aa? + A~'b2. In particular, since ¢’ is bounded
above on [0, 1] by some constant Cy > 0,

Ir(m) < Cobr(N) . (4.1.4)

4.2 The Statical Rate Function

In this section we study some properties of the quasi potential V. The first
main result, presented in Theorem 4.2.2, states that V is continuous at p in the
L?(2) topology. The second one, presented in Theorem 4.2.4, states that V is
lower semicontinuous.

We start with an estimate on V(). Let V : D — [0, +00] be the functional
given by V(p) = V(p(u)du). For each h > 0 and each § > 0, let D? be the
subset of D consisting of those profiles p satisfying the following conditions:

i) p belongs to € H'(Q) and Bp = b.
i) Jo IV p(e)|Pdu <
iii) § < p(u) <1—3 ae. in Q.

Lemma 4.2.1. For every h > 0 and every § > 0, there exists a constant C > 0

such that
1 1
V<p>sc{|p—pn§ | ez [ a(t)th}
0 0

for any p in DY and any increasing C*-diffeomorphism o : [0,1] — [0, 1].

Proof. Fixh > 0and § > 0. Let p € D! and let « : [0, 1] — [0, 1] be an increasing
C'-diffeomorphism. Consider the path 7% (t,du) = p®(t,u)du in C([0,T], M°)
with density given by p = (1 — «(t))p + a(t)p. From condition i), it is clear
that p® belongs to L2([0,1], HY(Q)) (which implies that Q1 (7%) < 00) and that
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Bpf = b for every ¢ in [0,1]. Further, since p solves (1.2.1), for every function
G in Cy*() and every ¢ in [0, 1],

/Q Ve(p(w) - VG(w)du = / Vol (W) — p(p(w))] - VGe(u)du
= /Q\I/f‘(u)-VGt(u)du,

where U = a(t)¢' (p})V(p — p) + [¢'(p) — ¢'(p)]Vp. From the definition of
p* it is easy to see that Oyp®(t,u) = o/ (¢ )( u) — p(u)). Hence, by (3.1.6),

Ja(m®) =/O o (t){p— p, Gy) dt + / ~/Qdqua() Ve (4.2.1)

1 1
-3 | et 1v6 ar.

Recall that p is bounded away from 0 and 1. Therefore, from condition i),
there exists a constant Cy = C1(d) > 0 such that the third term on the right
hand side of (4.2.1) is bounded above by

1
—01/ dt/ du || VG (u)]|? .
0 Q

On the other hand, by the inequality 2ab < Aa? + A~1b? and by Poincaré’s
inequality, there exists a constant C3 > 0 such that the first term on the right
hand side of (4.2.1) is bounded by

1 C 1
Callo—pl} [ (0t + 5 [ at [ auVGuwP.
0 0 Q

Finally, from condition i) and since ¢’ is bounded and Lipschitz on [0, 1],
there is a constant C' = C’(h) > 0 such that [, [ ¥¢(u)[?du < C'af(t)? for
every t in [0,1]. Hence, by the inequality 2ab < Aa® + A~1b? and by Schwarz
inequality, there exists a constant C5 = C3(h,d) > 0 such that the second term
on the right hand side of (4.2.1) is bounded by

! C
03/ o()2dt + 1/ dt [ du VG, ).
0 2 0 Q

Adding these three bounds, we obtain that
_ 1 1
Ja(m®) < Cyllp — ﬁ||§/ o (t)2dt + 03/ a(t)?dt
0 0
for any function G in Cé’Q(m), which implies the desired result with C' =
maX{CQ,Cg} O

Theorem 4.2.2. V is continuous at p.

Proof. We will prove first that the restriction of V to the sets Dg‘ is continuous at
p. Fix then h > 0 and 6 > 0. Let {p™ : n > 1} be a sequence in D} converging
to p. By Lemma 4.2.1, there is a constant C = C'(h,d) such that
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v < ¢ {0 -3 [ (0t / 1 afat}

for any integer n > 0 and any increasing C'-diffeomorphism « : [0,1] — [0, 1].
Thus, by letting n T oo and then taking the infimum over all the increasing
C'-diffeomorphisms « : [0, 1] — [0, 1], we conclude that

lim V(p") < C'inf {/01 a(t)2dt} =0.

n—oo

We deal now with the general case. Let {p"™ : n > 1} be a sequence in
D converging to p. Fix € > 0. For each integer n > 0, let \™ be the weak
solution of (2.1.1) starting at p™. By Lemma 5.2.1, there exist T = T'(¢) > 0
and Ny = Ny(e) > 0 such that, for all integer n > Nj,

Er(A") <e. (4.2.2)

In particular, there exists 77 < T,, < 21" = T such that

[ 193, @lfdu < /1"
Q

Moreover, by Lemma 5.1.6, there exists § = 6(7") > 0 such that ¢ < A} (u) <
1 — ¢ for every integer n > Ny and for every u in . Hence, A} belongs to

]D)Z/T/. Further, by Lemma 5.1.2,
V2" = pllo 2 [1p" = Al = 1N, = Al = INZ, = 73

which implies that A7, also converges to p in L?(2). Therefore, by the first part
of the proof,

lim V(M) =0

n— o0

For each integer n > 0, let 7™ be the path in C([0, T3], M) given by 7} (du) =
AT, — t,u)du. By (4.1.4) and (4.2.2), for every integer n > Ny,

Ir, (") < Colr, (A") < Coe.
In particular,

lim V(p") < lim V(A% )+ lim I7, (7") < Coe,
n—oo

n—oo n—oo
which, by the arbitrariness of ¢, implies the desired result. O

Similar arguments permit us to show that the quasi potentials of measures
in M° are uniformly bounded.

Proposition 4.2.3. V() is finite if and only if 9 belongs to M. Moreover,

sup V(9) < o0.
veMo
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Proof. By Lemmas 5.1.6 and 5.2.1, there exist constants 6 > 0 and kA > 0 such
that, for every weak solution A of the equation (2.1.1),

0 < At,u) <1—-90 VY(t,u) € [1l,00) x Q2 and &E(A) <h. (4.2.3)

Fix 9(du) = p(u)du in M° and let X be the weak solution of (2.1.1) starting
at p. By (4.2.3), there exists a time 1 < T < 2 such that Ar belongs to
D%. Moreover, if we denote by 7 the path in C([0,T], M°) given by m;(du) =
AT — t,u)du, by (4.1.4), there exists a constant C; = Cy(h) > 0 such that
Ip(m) < Cy. Hence, by Lemma 4.2.1, there exists a constant Cy = Cy(h,d) > 0
such that

V(p) < V(Ar) + Ir(m) < C2 + Ch

For any real numbers r < s and any trajectory « in D([F, §], M) with 7 <
r < s < 3, let 7l™*! be the trajectory in D([0,s — 7], M) given by Wt[r’s] = Tyt
and let
Iy g (m) = I (nl"9)
For each 7 in D((—o0,0], M), let I : (—00,0] — [0,+0o0] be the function
given by
Iﬂ(t) = I[t,O] ().

It is clear that this is a nonincreasing function and then

I(m) = lim Iy(t) € [0, +o0]

is well defined. We claim that, for every path 7 in D((—o0, 0], M),
I(m) > V(m). (4.2.4)

Moreover, if I(7) < oo then, as t | —oo, 7; converges to ¥ in M°.

Indeed, the last assertion is an immediate consequence of Corollary 4.1.2.
To prove (4.2.4), we may assume of course that I(r) < oco. In that case,
n(t,du) = p(t,u)du belongs to C((—o0,0], M%) and, by Lemma 4.1.1, there
exists a sequence of nonpositive times {¢, : n > 1} such that, for each integer
n >0, pg, belongs to By, (p). Hence, for all integer n > 0,

V(o) < V(pn,) + In(ta) < V(py, ) + I(m).

To conclude the proof of (4.2.4) it remains to let n T co and to apply Theorem
4.2.2.

As a consequence of these facts we recover the definition for the quasi po-
tential given in [3], in which the infimum appearing in the definition of V' (+J) is
carried over all paths 7 in D([—o0,0], M) with 7_o, = ¢ and w9 = 9.

Theorem 4.2.4. The functional V is lower semicontinuous.

Proof. Since V(1) is finite only for measures 9 in M°, which is a closed subset
of M, we just need to prove that, for all ¢ € R, the set

Vo={0e M :V(¥) <q},
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is closed in M°. Fix then ¢ € Ry and let {9"(du) = p(u)du : n > 1} be a
sequence of measures in V, converging to some ¥(du) = p(u)du in M°.

By definition of V, for each integer n > 0, there exists a path #" in
C([0,T,]), M°) with 7t = 9, mp, =" and such that

Ir (7") S V(@) +1/n < q¢+1/n (4.2.5)

Let us assume first that the sequence {7}, : n > 1} is bounded above by some
T > 0. In that case, for each integer n > 0, let 7" be the path in C([0, 77, M)
obtained from 7™ by staying a time T — T;, at 9,

n 9 ifo<t<T-T,,
T =
i Ty, UT-T,<t<T.

It is clear that Ip(7"|p) = I, (7"|p). Moreover, from (4.2.5) and since
I7(|p) has compact level sets, there exists a subsequence of 7™ converging to
some 7 in C([0,T], M°) such that 7r(du) = p(u)du and Ir(w|p) < ¢. In
particular, p belongs to V;, and we are done.

To complete the proof, let us now assume that T}, has a subsequence which
converges to co. We may suppose, without loss of generality that this subse-
quence is the sequence T,, itself. For each integer n > 0, let @™ be the path in
C([-Ty,0], M%) given by 7" = 7}, 1, .

Since I is lower semicontinuous with compact level sets, for any integer [ > 0
and for any subsequence {7"" : r > 1} of 7™, there exists a subsequence of 7"~
converging to some 7! in C([~I,0], M°) with 7} = p and I 0 (#) < q. Then,
by a Cantor’s diagonal argument, we may obtain a path % in C((—o0,0], M?)
with 7o = p and I(#) < ¢. This together with (4.2.4) conclude the proof of the
theorem. O

4.3 Large Deviations

4.3.1 Lower bound

The proof of the lower bound is essentially the same as the one in [8] but for the
sake of completeness we present here the detailed proof. In fact, it is a simple
consequence of Theorem 1.2.1 (hydrostatics) and the dynamical large deviation
lower bound.

Fix an open subset O of M. We have to prove that

1
N > .
th Nd log Pn(0) > 19lIel(f9 V(9)

To this end, it is enough to show that for any measure ¥ in O N.M° and any

trajectory 7 in C([0,T], M°) with 77 = 9,

. 1 o
lim - log Py () > ~Ir(7]p) (4.3.0)

N—oo
holds. Since pl, is stationary,

Pn(0) =E,, [Py, (7} € O)] .
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Theorem 1.2.1 guarantees that for any fixed § > 0,
Nlim PN(B(s(E)) =1,

which is equivalent to the existence of a sequence of positive numbers {en :
N > 1} converging to 0 and such that Py (B., (¥)) converges to 1. Hence, for
N large enough,
1, N
Pn(O) > 3 77lergN {PU [7TT S O]} ,

1 —

where By = (7V) " (B., (0)). For each integer N > 0, consider a configuration

n in By satisfying
P, [r} € O] = niEanN {P, [=} € O]} .

Since 7V (nN) converges to p in M and since O = 77~ 1(0O) is an open

subset of D([0,T], M), by the dynamical large deviations lower bound,

1 1
lim —7logPy(0) > lim —logP,w [y € O]

N—oo N—o0

. 1
lim Nd log QnN (Or)

N—o0

— inf Ip(nlp) > —Ir(7|p
inf r(7|p) = —Ip(7|p),

Y%

which proves (4.3.1) and we are done.

4.3.2 Upper bound

In this subsection we prove the upper bound. We follow closely the approach
given in [8] and solve the missing case mentioned in the introduction. Fix a
closed subset C of M. We have to show that

im 1
where V(C) = infyec V(9).

Notice that if ¥ belongs to C, V(C) = 0 and the upper bound is trivially
verified. Thus, we may assume that 9 ¢ C.

We may assume of course that the left hand side of (4.3.2) is finite, which
implies that C N Xy # () for infinitely many integers N. By the compactness of
M and since C is a closed subset of M, there exists a sequence of configurations
{nNe 1 k > 1} with 7V (n™*) in C N Xy, converging to some ¥ in C. Moreover,
since each configuration in X has at most one particle per site, ¢ belongs to
M°O. In particular, by Proposition 4.2.3, V(C) < oc.

Fix § > 0 such that Bss(9) NC = (). Let B = B; be the open é-ball with
centre 9 in the d-metric,

log Py (C) < =V(C), (4.3.2)

B = Bs(¥),
and let R = Rs be the subset of M defined by

R={0eM:25<d®,D) <35}
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For each integer N > 0 and each subset A of M, let AN = (7V)~1(A) and
let HY : D(R,, Xy) — [0,00] be the entry time in AN:

Hg:inf{tEO:nteAN}.

Let OB = 0B} be the set of configurations n in Xy for which there exists
a finite sequence of configurations {1’ : 0 < i < k} in Xy with % in RV, n¥ =19
and such that

i) For every 1 < i < k, the configuration 7’ can be obtained from =1 by a
jump of the dynamics.

ii) The unique configuration of the sequence that can enter into BY after a
jump is n*.

Let also 71 = 7" : D(R,, Xx) — [0, 00] be the stopping time given by

71 = inf {t > 0 : there exists s < t such that n, € RN and N € GBN} .

The sequence of stopping times obtained by iterating 7, is denoted by 7.
This sequence generates a Markov chain X on dBY by setting Xy = 1, .

Notice that this Markov chain is irreducible. In fact, let {, 7 be configurations
in 0BY. By definition of the set BY, there exist a sequence {n’ : 0 <i < k}
in Xy which satisfies n° € RN, n¥ =1, i) and #i). Further, it is clear that there
exists a sequence {¢* : 0 <4 < I} in Xy which satisfies (° = ¢, ¢! = n° and 7).
Consider then the sequence {7}’ : 0 < j <1+ k} in Xy given by

g ¢ Fosi<i,
=t ifl<j<Ii+k.

Let jo =0 and for ¢ > 1 let

J2i—1 = min {j} and Jjei = min {j}.
J>J2i—2 i>J2i—1
nierN nieoaBN

Thus, by setting £* = 772¢, we obtain a sequence {¢ : 0 < i < r} in 9BY
starting at ¢° = ¢, ending at £” = 7 and such that

Pfi—l [7771 = fz} >0,
for every 1 <4 < r. This implies the irreducibility of Xj.
Hence, since the state space 9BY is finite, this Markov chain has a unique

stationary measure vy . Following [15], we represent the stationary measure py
of a subset A of X as

1 L
/ii\;(A) = 07/ E, </ 1{nseA}dS) dvn(n),
N JoBN 0

Cny = /33N E, (11) dvn(n) -

where
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In particular, by this representation an by the strong Markov property,

1
Pn(C) < oo sup {P, [HY < 7]} sup {E, (1)} .
N nedBN necN

Recall that a configuration in Xy can jump by the dynamics to less than
other 2dN?¢ configurations and that the jump rates are of order N2. Hence,
since any trajectory in D(Ry, Xy) has to perform at least a jump before the
stopping time 11, Cy > 1/C’Nd"’2 for some constant C > 0.

Notice that the jumps of the process d(m™ (1), p) are of order N~%. Thus,
for N large enough, any trajectory in D(R, X ) starting at some configuration
in OBY, resp. CV, satisfies HY < HY, resp. 71 < HJ. Hence, by the strong
Markov property,

Pn(C) < CN2 sup (P, [HY < HY]} sup {E, (HY)} .
neRN neCnN

Therefore, in order to prove (4.3.2), it is enough to show the next lemma.
Lemma 4.3.1. For every § > 0,

— 1
lim —

Jim g lognselg)N {E, (Hgé)} <0. (4.3.3)

For every € > 0, there exists § > 0 such that

w1 N N
YIS
To prove this lemma, we will need the following technical result.

Lemma 4.3.2. For every § > 0, there exists Ty, Coy, Ng > 0 such that

sup {Pn [Hga > kTo}} < exp {—kJC’oNd} ,
neXn

for any integers N > Ny and k > 0.

Proof. Fix 6 > 0. By Corollary 4.1.2, there exists Ty > 0 and Cy > 0 such that

T}ng ITo (ﬂ-) > CO )
where D = D([0, Tp], M\ B). For each integer N > 0, consider a configuration
n™ in Xy such that

P~ [HY > Ty = sup {P, [Hf >To]} .
neXn
By the compactness of M, every subsequence of 7™ (nV) contains a subse-
quence converging to some ¢ in M. Moreover, since each configuration in Xy

has at most one particle per site, 1 belongs to M. From this and since D is a
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closed subset of D([0, 7], M), by the dynamical large deviations lower bound,
there exists a measure ¥(du) = vy(u)du in M° such that

1 N B

ngnoo m ]Og PnN [HB Z TO] = ]\;E}noo W log QnN (D)
< _#relfDITo(’]ﬂ’Y)
< —Cy.

In particular, there exists Ny > 0 such that for every integer N > Ny,
P,~ [HE > Ty < exp{—CoN’}.

To complete the proof, we proceed by induction. Suppose then that the state-
ment of the lemma is true until an integer k —1 > 0. Let N > Ny and let 1) be
a configuration in X . By the strong Markov property,

Py [HY > KTo] = By [1(yyom)Pu,, [HE = (k= 1)T)]
< Py [HE >To] sup {P, [Hp > (k- 1)To]}
neXny

< exp {—kCoNd} ,

which concludes the proof.
O

Proof of Lemma 4.3.1. Let § > 0 and consider Ty, Cy, Ny > 0 satisfying the
statement of Lemma 4.3.2. For every integer N > Ny and every configuration
nin Xy,

E, (HY) <ToS P, (HY > kTo) <Tp Y exp {~kCoN?} < I_L

—Co ?
k=0 k=0 ¢«
which proves (4.3.3).

We turn now to the proof of (4.3.4). Fix € > 0. By Lemma 4.3.2 and since
V(C) < oo, for every ¢ > 0, there exists Ts > 0 such that

— 1
ngnoo ~i lognsel;%:)N {P, [T5 < Hga]} <-V().

For each integer N > 0, consider a configuration n” in R(];V such that

P~ [HY <T5] = sup {P, [HY <T;]} .
neRY

Let Cs be the subset of D([0, Ts], M) consisting of all those paths 7 for which
there exists ¢ in [0, T5] such that w(t) or w(t—) belongs to C. Notice that Cs is
the closure of 7 ({HY < T5}) in D([0,Ts], M).

Recall that every subsequence of 7V (V) contains a subsequence converging
in M to some 9 that belongs to M°. Hence, by the dynamical large deviations
upper bound, there exists a measure 9J5(du) = vs(u)du in Rs N M such that

— 1
lim —

— 1
N : :
i logP,~ (HY < T5) < lim Nd log Q,~(Cs) < — Trlgcfg Iy (mlvs) -
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Therefore, since

— 1
lim —dlog{aN +bn} < max{ lim

— 1
N N log“Nu&inmzwbng} ’

oo N

the left hand side in (3.3.9) is bounded above by

max{V(C), inf IT5(7T|75)}
w€eCs

for every § > 0. Thus, in order to conclude the proof, it is enough to check that
there exists § > 0 such that

| e
inf I, (wha) > V(C)

Assume that this is not true. In that case, for every integer n > 0 large
enough, there exists a path 7" in Cy ,, N C([0, T} /5], M?O) such that

IT1/n (th/l/n) < V(C) -

Moreover, since 7 belongs to Cy 1, NC([0, T /,,], M), there exists 0 < T, < Ty/m
such that ’/T% belongs to C.

Let us assume first that the sequence of times {Tn : n > 1} is bounded above
by some T > 0. For each integer n > 0, let # be the path in C([0,T], M°)
given by

3
13
’—h

mo i 0< <t<T,,
T, <

Since I has compact level sets and since 7 (du) = 1/, (u)du belongs to R/, N
M©O for every integer n > 0, we may obtain a subsequence of " converging to
some 7 in C([0,T], M) such that 79 = ¥, n(T) € C and Iz(7) < V(C) — ¢,
which contradicts the definition of V(C) and we are done.
To complete the proof, let us assume now that there exists a subsequence
k> 1} of T), converging to co. By Theorem 4.2.2, there exists § > 0
such that V(p) < ¢ for every p in Bs(p). Moreover, if 7rt"’“ (du) = p™(t,u)du,
by Lemma 4.1.1, for any integer k large enough, there exists 0 <t < Tnk such
that p;’* belongs to Bs(p). Then,

V(m" (Tv’ﬂk)) < Vipgr) + I[tkfnk](ﬂ'nk)
< e+ V(C)—e=V(C),

which also contradicts the definition of V(C) and we are done. O
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Chapter 5

Weak Solutions

We establish in this chapter some properties of the weak solutions of the bound-
ary value problems (1.2.1) and (2.1.1) (3.1.14).

5.1 Existence and Uniqueness

We prove in this section existence and uniqueness of weak solutions of the bound-
ary value problems (1.2.1), (2.1.1) and (3.1.14). We start with the parabolic
differential equation (2.1.1).

Proposition 5.1.1. Let py : Q — [0,1] be a measurable function. There exists
a unique weak solution of (2.1.1).

Proof. Existence of weak solutions of (2.1.1) is warranted by the tightness of
the sequence Q” proved in Section 2.1. Indeed, fix a profile pgy : Q@ — [0,1] and
consider a sequence { uN N > 1} of probability measures in M associated to

po in the sense (2.1.2). Fix T > 0 and denote by QY the probability measure
on D([0,T], M) induced by the measure ' and the process 7¥. In Section 2.1,
we proved that the sequence {QN N > 1} is tight and that any limit point

of {QN : N > 1} is concentrated on weak solutions of (2.1.1). This proves
existence. Uniqueness follows from Lemma 5.1.2 below. O

Next lemma states that the L!(€2)-norm of the difference of two weak solu-
tions of the boundary value problem (2.1.1) decreases in time:

Lemma 5.1.2. Fiz two profiles p§, p§ : @ — [0,1]. Let p/, j =1, 2, be weak
solutions of (2.1.1) with initial condition p}). Then, ||pt — p?|l1 decreases in
time. In particular, there is at most one weak solution of (2.1.1).

Proof. Fix two profiles p§, pg : @ — [0,1]. Let p7, j = 1, 2, be weak solutions
of (2.1.1) with initial condition p}. Fix 0 < s < t. For § > 0 small, denote by
Rs the function defined by
2
U
Rs(u) = oo M{Jul <0} + (Jul = 6/2)1{[ul > o} .
Let ¢ : R? — R, be a smooth approximation of the identity:

v 20, swppwc L [vwdi=1.
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For each positive €, define 1. as

Ye(u) = e*dw(uefl) .

Taking the time derivative of the convolution of p{ with 1., after some
elementary computations based on properties (H1), (H2) of weak solutions of
(2.1.1), one can show that

/ duRs(p' (t,u) — p*(t,u)) — / duRs(p'(s,u) — p*(s,u))
Q Q
= i [ [ a6t =) {6V -

where A; stands for the subset of [0, T] x Q where |p*(t,u) — p?(t,u)| < 5. We
may rewrite the previous expression as

t
5 / dr [ dug (NN - o)
s As
t
— 5 [Lar [ au{e ) - SV - )V
s As

Since p', p? are positive and bounded by 1, there exists a positive constant
¢o such that ¢ < ¢'(p?(1,u)). The first line in the previous formula is then
bounded above by

t
el [ar [ au v -
S A5

M|p' — p?| < M6 for some positive constant M. In particular, by Schwarz
inequality, the second line of the previous formula is bounded by

On the other hand, since ¢’ is Lipschitz, on the set As, |¢'(p') — @' (p?)] <

t t
5—1MA/ dr/ du | V(p* — p?)|I* + 5MA—1/ dT/ du ||V p?||?
K] As s As
for every A > 0. Choose A = M !¢y to obtain that
/ duRs(p' (t,u) — p*(t,u)) — / duRs(p'(s,u) — p*(s,u))
Q Q
t
< 5c51M2/ d’r/du||Vp2||2.
0

Letting § | 0, we conclude the proof of the lemma because Rs(-) converges to
the absolute value function as § | 0. O

Lemma 5.1.3. Fiz two profiles pj, p2 : Q — [0,1]. Let p’, j = 1, 2, be weak
solutions of (3.1.14) for the same H satisfying (3.2.2) and with initial condition
pb. Then, ||pt — p?ll1 decreases in time. In particular, there is at most one weak

solution of (3.1.14) when H satisfies (3.2.2).
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Proof. Following the same procedure of the proof of the previous lemma, we get
first

[ duRs(o e = 2(00) — [ duRa(p'(5,0) = 92 (5,0)
Q Q
- —5_1/ dr [ duv(p' —p?) - {&'(p")\Vp' — ¢ (p*)Vp*}
s As

t
o [ar [ aufoeh) — o)V - ) VE
s As
and then

/ duRs(p'(t,u) — p*(t,u)) — / duRs(p'(s,u) — p*(s,u))
)

Q

t t
< 501/ dT/duHVp2||2+5C’2/ dT/duHVH||2,
0 0

for some positive constants C; and Cs. Hence, letting 6 | 0 we conclude the
proof of the lemma. O

The same ideas permit to show the monotonicity of weak solutions of (2.1.1).
This is the content of the next result which plays a fundamental role in proving
existence and uniqueness of weak solutions of (1.2.1).

Lemma 5.1.4. Fiz two profiles p§, p§ : @ — [0,1]. Let p?, j =1, 2, be the
weak solutions of (2.1.1) with initial condition p}. Assume that there exists
s > 0 such that

MueQ : p'(s,u) <p*(s,u)} =1,

where X is the Lebesgue measure on ). Then, for allt > s
MueQ : p'(tu) <p*(tu)}=1.

Proof. We just need to repeat the same proof of the Lemma 5.1.2 by considering
the function R} (u) = Rs(u)1{u > 0} instead of Rs. O

Corollary 5.1.5. Denote by p° (resp. p') the weak solution of (2.1.1) asso-
ciated to the initial profile constant equal to 0 (resp. 1). Then, for 0 < s <,

pi() < ps() and p3() < p}() a-e.

Proof. Fix s > 0. Note that p(r,u) defined by p(r,u) = p'(s + r,u) is a weak

solution of (2.1.1) with initial condition p!(s,u). Since pl(s,u) < 1 = p'(0,u),

by the previous lemma, for all » > 0, p'(r + s,u) < p'(r,u) for almost all w.
O

Corollary 5.1.6. For every § > 0, there exists € > 0 such that for all weak
solution p of (2.1.1) with any initial profile po,

e<p(t,u) <1l—ce for almost all (t,u) in [§,+00) x Q.

Proof. Let p° and p' be as in the statement of the previous corollary. For fixed
6 > 0, there exists € > 0 such that

e < p’(t,u) and p'(t,u) <1—e for almost all (t,u) in [§,00) x Q.

This and Lemma 5.1.4 permit us to conclude the proof. O
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We now turn to existence and uniqueness of the boundary value problem
(1.2.1). Recall the notation introduced in the beginning of Section 3.1. Consider
the following classical boundary-eigenvalue problem for the Laplacian:

~AU = alU,
{ Ue HLQ). (5.1.1)

By the Sturm-Liouville theorem (cf. [12], Subsection 9.12.3), problem (5.1.1)
has a countable system {U,,a, : n > 1} of eigensolutions which contains all
possible eigenvalues. The set {U, : n > 1} of eigenfunctions forms a complete
orthonormal system in the Hilbert space L?(f2), each U,, belong to Hg (), all
the eigenvalues a,, have finite multiplicity and
O<ay<a<l <o, <o > 00.

The set {U, /oz,l/ >:n > 1} is a complete orthonormal system in the Hilbert
space Hi (). Hence, a function V belongs to L*(2) if and only if

n

Vo= lim Y (V,Uk)2 Uy
k=1

in L?(). In this case,

(V.W)2 = i<V7Uk>2<VVaUk>2
k=1

for all W in L?(£2). Moreover, a function V belongs to Hg () if and only if

n

Vo= lim Y (V,Uk)2 Uy
k=1

in H}(Q). In this case,

(ViW)i20 = > an(V.Us)2 (W, Ur)z (5.1.2)
k=1

for all W in HZ ().

Lemma 5.1.7. Fiz two profiles pj, pg : @ — [0,1]. Let p?, j = 1, 2, be the
weak solutions of (2.1.1) with initial condition p}. Then,

o0
/Hﬁ—@ﬁﬁ<m-
0

In particular,
Jim [[ph — p? =0 .
— 00

Proof. Fix two profiles pj, p : @ — [0,1] and let p/, j = 1, 2, be the weak
solutions of (2.1.1) with initial condition pj. Let p](-) = p’(t,-). For n > 1 let
F, : Ry — R be the function defined by
- 1 1 2 2
Fu(t) =Y — (o — 07, Uk)e|

a
k=1 'k
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Since p', p? are weak solutions, F,, is time differentiable. Since AU, =
—a U and since ay > 0, for ¢t > 0,

%Fn(t) = ; {<pt1 =075 Uk)2 (2(pt) = #(pf)  Uk)z (5.1.3)

+ (p(pr) —e(p}) , Ur)a (o} — 0}, Uk>2} :

Fix to > 0. Integrating (5.1.3) in time, applying identity (5.1.2), and letting

n T oo, we get

n—oo

’ 1 1 .1
AﬁLwW@w)w@wﬂmwﬂmmﬂﬁﬂ%)ﬂﬂﬂ

Lo 2 12
2a; 1Pt ~ Pioll
for all T > t,. Since p;, — p7, belongs to L*(Q),

|t [ dulotok) = el )] ot ) = )] < o0
0
There exists a positive constant Cs such that, for all a,b € [0, 1]
Calb - a)? < ((b) — pl@)) (b—a)
On the other hand, by Schwarz inequality, for all ¢ > tg,

ot — P22 < 2|lpt — P23 .

Therefore -
|t = ptlide < oo
to

and the first statement of the lemma is proved because the integral between
[0,t0] is bounded by 4ty. The second statement of the lemma follows from the
first one and from Lemma 5.1.2. O

Corollary 5.1.8. There is a nonnegative function ¥ in L*(R,) such that for
any profiles p§, pt : @ — [0,1], the weak solutions p?, j =1, 2 of (2.1.1) with
initial conditions p}) satisfy

lot — Pl < (1),

for every t > 0.

Proof. Let p°, resp. p', be the weak solution of the hydrodynamic equation
(2.1.1) with initial condition p°(0,-) = 0, resp. p'(0,:) = 1, and set ¥(t) =
llpt — p?l1. By the previous lemma, ¥ belongs to L?(R, ). The last statement
of the corollary follows from the monotonicity of weak solutions established in
Lemma 5.1.4. O

Proposition 5.1.9. There ezists a unique weak solution of the boundary value
problem (1.2.1).
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Proof. We start with existence. Let p'(¢,u) (resp. p°(¢,u)) be the weak solution
of the boundary value problem (2.1.1) with initial profile constant equal to 1
(resp. 0). By Lemma (5.1.4), the sequence of profiles {p*(n,-) : n > 1} (resp.
{p°(n,-) : mn > 1}) decreases (resp. increases) to a limit denoted by p*(-) (resp.
p~(+)). In view of Lemma 5.1.7, p™ = p~ almost surely. Denote this profile by
p and by p(t,-) the solution of (2.1.1) with initial condition p. Since p°(t,-) <
p(-) < pl(t,-) for all t > 0, by Lemma 5.1.4, p°(t +s,-) < p(s,-) < pl(t+s,-)
a.e. for all s, ¢t > 0. Letting ¢ T oo, we obtain that p(s, ) = p(-) a.e. for all s.
In particular, p is a solution of (1.2.1).

Uniqueness is simpler. Assume that p!, p? : Q — [0, 1] are two weak solution
of (1.2.1). Then, p/(t,u) = p’(u), j = 1, 2, are two stationary weak solutions of
(2.1.1). By Lemma 5.1.7, p! = p? almost surely. O

5.2 Energy Estimates

We establish here an energy estimate for weak solutions in terms of the time 7'
and the L! distance between its initial profile and the stationary density p.

Fix T > 0 and let p be a weak solution of (2.1.1). Recall from (4.1.2) the
definiton of Er(p)

Lemma 5.2.1. There exists a positive constant C' such that for any T > 0 and
any weak solution p of (2.1.1) with initial profile py : Q — [0, 1],

Er(p) < C{T + lpo — plh} -

Proof. Fix T > & > 0, a weak solution p of (2.1.1) and a function 3 : Q — (0,1)
of class C? such that 6|F =b. Let € > 0 such that

l—e< B, p < ¢ for every t > 4.

Let F,U : [0,T] x Q — R be the functions given by

Fit.0) = pitu)tog (45 4 (1= pttun o (L2

and
We claim that
T
/[F(T7 u) — F(6,u)]du = / (Opr, Up)—1,1 dt. (5.2.1)
Q 5

Indeed, let h : [e,1 — €]> — R be the smooth function given by

h(z,y) = zlog <Z) +(1-2)log (1 x) .

1—y

By proceeding as in the proof of Lemma 3.1.2 with & in the place of h® we may
show that
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T
/ (Oupes Ohi(pr B)) 11 dt = / W, (), B(u)) du
) Q
- / h(ps (), B(w))du,
Q

which is equivalent to the claim (5.2.1). By this claim, (4.1.3) and since p is a
weak solution of (2.1.1),

—/%/mmﬂmmywmm
/dt/d ¥ ”t Vﬁ( ) Vo) (5.2.2)

a5t

2
- /dt/d |th ||

Since ¢’ is bounded bellow on [0, 1] by some positive constant C1, by (5.2.2)
and the elementary inequality 2ab < A~'a? + Ab?,

U 2
2pmN = & / dt / du @' (pi(u NE ((u))|)|

¢ (o () *x(pr(w) :
< Honlo)+ g / dt / du e V)

/ (F(T,u) — F(5,u)]du
Q

Let

2
—||Fr — Fsl|1 .
+6’1H T — Fs|h1

Therefore, since ¢, x are bounded above on [0,1] by some positive constant
and since 3 is a function in C?(2) bounded away from 0 and 1, there exists a
constant Co = Co(f) such that

2
Es,m(p) < Co(T —6) + a\|FT — Fs||: -

Thus, in order to conclude the proof, we just need to show that there is a
constant C’ > 0 such that

|Fr — Fsllv < C'|lpo — pll (5.2.3)

and then let § | 0. From the definition of F' and since (8 is bounded away from
0 and 1 it is easy to see that ||Fr — Fsl|; is bounded above by

/Q {If(pr(u)) = flps(u)[ + [f(1 = pr(u)) = f(1 = ps(w))[} du

+ Csllpr — pslli,

(5.2.4)

where f(r) = rlogr and C5 = C5(/3) is a positive constant.
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Fix dp > 0 such that 26y < p(u) < 1 — 24 for all u in Q. Let As be the
subset of 2 defined by

As = {ue Q: |ps(u) — pu)| > & or |pr(u) — p(w)] > do}-

Decompose the integral term in (5.2.4) as the sum of two integral terms an + J e
3

On the one hand, it is clear that m(A;) < 65 (|ps — plli + llpr — pll1) and
then, since —e~! < f(r) <0 for all r € (0, 1], the first integral term is bounded
above by

2 _ _
ogo Ulps = pll + llpr = P} -

On the other hand, A5 C {u € Q: & < ps(u), pr(u) < 1— 6} and there
exists a constant Cy = C4(dg) > 0 such that |f(r) — f(s)] < Calr — s for all
r, 8 € [d0, 1]. Hence, the second integral term is bounded by

2C4|lpr — psll1 -

These bounds together with (5.2.4) and Lemma 5.1.2 prove (5.2.3) and we
are done.

O
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