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1 Goals and results

In this work we study a one dimensional mechanical system of infinitely many
point particles interacting through elastic collisions with a tracer particle,
subject to a constant force. All point particles are field neutral and the mass
of the tracer particle and field neutral particles are equal (the last condition
can be removed, and one can consider the case of a heavy tracer particle
which is more technically involved). A special feature of the model is that
all neutral particles are equipped with a lifetime, which starts to discount
after the first collision with the tracer particle. When the lifetime expires,
the point particle is removed from the system, while the tracer particle has
infinite lifetime and remains in the system forever. The principal question is
to determine the long time behavior of the tracer particle. Our main goal is
to generalize results (and extend techniques) of [11] to a as broad as possible
class of distributions of lifetimes of the neutral particles in mechanical models
of Brownian motion. It is believed that in the original model, i.e. with no
lifetimes, during the evolution each neutral particle interacts with the tracer
particle only finitely many times, and then flies away. However, the tail of
the distribution of the last collision is expected to decay polynomially, thus
producing long term memory in the system. Our motivation comes from
the fact, that the understanding of the behaviour of models with a more
general class of lifetime distribution might serve as another step forward in
developing new (stochastic) tools which permit to analyze this long standing
problem.
Applying an approach, which relies on line covering techniques by random
intervals, proposed in collaboration with V. Beffara, V. Sidoravicius and M.E.
Vares, we succeed to show that the strong law of large numbers (LLN) and
the invariance principle (IP) for the rescaled position of the tracer particle
holds as long as the lifetimes of the neutral particles are integrable random
variables. Moreover, we are able to show that for the class of physically
relevant distributions of lifetimes, such as inverse Gaussian, the mechanical
system at low density of neutral particles still undergoes periods of clustering
(against the predictions in physics literature), and, in fact, is a Bernoulli
system. The key element of the proof is to show that under our assumptions,
the different mechanical systems under consideration undergo the so-called
clustering process, i.e. have infinitely many regeneration instants, when the
system looses completely influence of its past on its future, and then to
establish the tail asymptotic for the clustering event to occur. The control
on tail decay determines the decay of correlations for the system. Once this
is achieved, there is a number of available standard techniques which one
applies in this case in a routine way to obtain the LLN and the IP. It is
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important to notice that we prove the LLN and the IP only for the discrete
dynamics, obtained by observing our system at the times of the collisions of
the tracer particle with freshly coming neutral particles (i.e. at the moment
of the first collision between the tracer particle and each neutral particle).
For future perspective, we believe that the idea to apply interval covering
techniques is potentially very robust in the force driven systems, where one
expects ballistic behaviour of a tracer particle at large time scales. Currently
we are working on the extensions of these methods to the systems with neutral
particles moving with Maxwellian velocities.
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2 Introduction

We are concerned with the asymptotic behaviour of one dimensional mechani-
cal systems, in particular with the motion of a tracer particle (t.p.) subject
to a constant electric field in a random environment of neutral gas particles
(n.p.s). This is one of fundamental questions in non-equilibrium statistical
mechanics.
Our main model of interest, we call it Model 1 (M1), from a mechanical
point of view is exactly the same as in [11], and informally can be described
as follows. We consider the semi-infinite segment R+ = [0,+∞), with n.p.s
initially located at positions qn > 0, and the charged t.p. is located at the
origin. All particles including the t.p. have equal mass one. The constant
force f > 0 acts only on the charged particle, while the n.p.s do not feel the
force. At the moment of collision the t.p. exchanges velocities with the n.p.
elastically. N.p.s are initially standing, and interdistances between any two
neighbouring particles are independent identically distributed (i.i.d.) expo-
nential random variables with the parameter λ > 0. However differently from
[11], where the lifetimes of particles were taken as i.i.d. exponential random
variables with parameter 1, in the present work we will assume that lifetimes
χn > 0 of n.p.s are i.i.d. random variables which are integrable.
To obtain control on Model 1 we will consider the auxiliary Model 2 (M2).
A one-dimensional particle system in R+ consisting of the t.p. interacting
through elastic collisions with infinitely many point-like particles of an ideal
gas and, as before, we suppose that all particles including the t.p. have equal
mass one. Randomness enters through a measure under which the t.p. ini-
tially is at rest, located at the origin, and which governs injection of n.p.s
into the system in the following way: the n.p.s collide with the t.p. for the
first time at Poisson times, i.e. the times between consecutive first (fresh)
collisions of the t.p. with the n.p.s are i.i.d. exponential random variables
with intensity % > 0. In other words, differently from M1, where n.p.s are
initially assumed to be standing at exponential interdistances, in M2 we will
assume that the n.p.s arrive (are injected into the system) at Poisson times
at the position of the t.p. with zero incoming velocity. Then they remain in
the system. Between collisions, a constant force f > 0 acts only on the t.p.
while the n.p.s, as in M1, do not feel the force and do not interact among each
other either. At collisions, the t.p. exchanges velocities with the n.p.s elas-
tically. For convenience n.p.s are thought as undistinguishable pulses which
only exchange velocities at collisions with each other and are relabeled after-
wards, i.e. we may think they cross each other. Multiple arrivals at the same
first collision time with equal velocities are excluded by our construction. In
this way, the proof of the fact that the dynamics of the system seen from the
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position of the t.p. is well-defined and governed by a uniform motion plus
elastic collisions which obey the rules of classical mechanics follows the same
lines as the proof of the main theorem in [13]. In the case of Model 1, the
existence of the dynamics is proved in [13].
In the general situation (with no lifetimes) the system is expected to be
asymptotically free and that the velocity of the t.p. does not approach to
equilibrium with an exponential decay in general. The reason for this be-
haviour lies in the appearance of multiple recollisions between the t.p. and
the same n.p.s of the environment. When the t.p. accelerates, it can collide
with a n.p. many times which influences the friction force and affects the
limiting velocity of the t.p. In particular, a n.p. which has collided earlier
with the t.p., can recollide after an arbitrarily large time. This potentially
can create a long tail memory which is responsible for a power law behaviour
of correlations. So far, there is unfortunately no satisfactory way of treating
fully Newtonian systems without any stochastic dynamics. One alternative
approach proposed by [11] is the introduction of lifetimes for the n.p.s. The
notion of lifetimes had already appeared indirectly in the models of [8], [9] or
[5] for instance, where geometric restrictions and conditions on the velocity
of the n.p.s lead (explicitly or not) to uniformly bounded lifetimes. Explicit
exponential lifetimes of the n.p.s in this context were introduced for the first
time in [11]. In this work we were concerned with relaxing the condition
of lower uniform boundedness of the interdistances in [4]. M1 and M2 are
some kind of asymptotic versions of the virtually one-dimensional model of
[5], the so-called modified Rayleigh gas with a merely horizontally moving
stick of height 1 subject to a constant force and collisions with n.p.s. In [5]
the second dimension is only available to the n.p.s. Indeed, the horizontal
initial velocity component v1 and the vertical initial velocity component v2 of
the n.p.s in [5] determine their lifetimes χ = 1

v2
, due to the assumption that

the vertical velocity components of the stick and the n.p.s do not change at
collision times. In other words, χ is the time each of the n.p. remains inside
the strip available to the stick, and once a n.p. leaves the strip, it can be
considered extinct since it has become out of reach for the moving stick. In
this way, our models can be interpreted as having zero horizontal velocity
component and stick length going to zero, with the difference that M2 is
initially a Poisson system in time and not in space, and secondly the n.p.s
in [5] enter the strip available to the stick in a Poissonian manner and there-
fore do not necessarily collide for the first time at exponential interdistances
with the stick as well. On the other hand, allowing both v1 and v2 to be
normal distributed at the same time, χ becomes inverse Gaussian (one-sided
1
2
-stable), a heavy-tailed distribution, known to be the distribution of the

first time a Brownian excursion hits some given level. This case is excluded

6



in [5] where a uniform lower bound of the vertical velocity distribution is
imposed to exclude long living n.p.s and control recollisions. In view of this
motivation, we suppose therefore that the t.p. has an infinite lifetime and
the lifetimes of the n.p.s are i.i.d. with absolutely continuous distribution,
independent of the first collision (arriving) times at which they start to be
discounted.
In M1, the mechanical motion is delayed with respect to a Markovian evo-
lution where n.p.s are annihilated immediately after collisions (and thus ne-
glecting recollisions at all), i.e. tn(ω) ≥ t̃n(ω) where t̃n(ω) (resp. tn(ω)) is
the hitting time of the t.p. of the position of the n-th n.p. at first collision
in the Markovian (resp. interaction) dynamics in some configuration ω. In
M2, it follows directly from the definition that the Markovian velocity is an
upper bound for the velocity of the t.p. in the true dynamics for any time,
since here tn(ω) = tn(ω̃) for the suitable Markovian configuration ω̃, since in
contrast to the above models, fresh n.p.s can arrive during the interaction
of the t.p. with a block of already moving particles and the t.p. does not
have to go through moving n.p.s in front of it first to reach the next fresh
particle. In particular, the times when the n.p.s become extinct coincide in
these two dynamics for M2. Observe that in Model 1, being specified initially
in space, intercollision times of the t.p. with standing n.p.s in the Markovian
evolution are proportional to the square root of the interdistances, making
them Weibull distributed, in contrast to M2, where the intercollision times
in both Markovian and true dynamics coincide and are exponential. By sym-
metry between these models, the interdistances in the Markovian evolution
are Weibull with possibly different parameters. Still, since M2 is truly one-
dimensional, the t.p. cannot overtake n.p.s during the evolution.
As all other models mentioned above, either directly or indirectly, our analy-
sis relies essentially on the somewhat artificial notion of the so-called cluster
times, i.e. first collision times at which the t.p. will not interact in the fu-
ture with any n.p. it had collided with before, including the n.p. it collides
with at this time. These times will then determine the mixing properties
of the system. To construct a specific subset of cluster times, due to lack
of mechanical arguments, we recurr first to the finding of conditions for the
lifetime distribution which guarantee the existence of times of total extinc-
tion, i.e. stopping times with respect to the dynamics at which all previously
moving n.p.s become extinct. The only memory of the past is then contained
in the own velocity of the t.p. Upon this, since all particles have equal mass,
cluster times are constructed by a simple mechanical argument and the ge-
neral cluster times are then stochastically dominated by these special ones.
This interpretation is indeed very close to the classical concepts of random
covering problems in some different context and which allows to interpret
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the set of moments of total extinction of the n.p.s as the so-called uncov-
ered set which is the closed image of an associated subordinator, i.e. an
increasing Lévy process which represents the continuous time analogue of a
renewal process. Cluster times are then stochastically bounded by the char-
acteristics of this process. This is to some extent only of second interest,
since in general the characteristics are hard to find explicitly for some given
lifetime distribution. One natural way of generalization is to allow other
distributions for the interarrival times of the n.p.s. One might think that
if the interarrival time distribution were substituted by some heavier tailed
distribution like Weibull, the most natural one in a Markovian (annihilation)
version of the dynamics in M1 as already noted above, one may expect that
such heavy-tailed interarrival distributions (still with finite mean) favour the
non-covering of R+ more than the light-tailed exponential distribution, that
is the heaviness of lifetime distributions which caused covering in the Poisson
case might be weakend in the non-Poisson arrival case. Though we will not
follow this direct approach, rather we establish some appropriate comparison
principle between the mechanical models under consideration.
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3 The mechanical models and results

For convenience, we begin first with the formal description of Model 2 (M2).

3.1 Model 2

The state space of this system seen from the position of the t.p. as described
in the introduction is given by

Ω = R+ ×X = {ω = (V, x) : V ∈ R+, x ∈ X}

where for any bounded A ∈ B(R+),

X = {x ⊆ M× (0,+∞) : card(x ∩ (A× R+)× (0,+∞)) <∞ and

card(x ∩ (q, v)× (0,+∞)) ≤ 1}

is the (marked) environment of the n.p.s and M = R+×R+ is the one-particle
state space consisting of the (relative w.r.t. the position of t.p.) position q
and (absolute) velocity v of one n.p. Here V stands for the velocity of the
t.p. (the first particle) and x is the point process of all locally finite subsets
(in space) of M, marked by the lifetimes, whose projection x : Ω → X is
given by

x(ω) = xm(ω)

where xm are the moving n.p.s in the configuartion ω. As for the main
quantities, we write (qn(t))n∈N for the positions of the n.p.s relative to the
t.p. at time t, (vn(t))n∈N for the absolute velocities of the n.p.s at time t,
(σn)n∈N denote the interarrival times of the n.p.s and (χn)n∈N the lifetimes of
the n.p.s, with the convention that the t.p. has an infinite lifetime, qn ≤ qn+1

and if qn = qn+1, then vn < vn+1 and χn < χn+1. The topology of X is the
one for which a fundamental system of neighbourhoods of a point x ∈ X is
given by

GA,B,C = {x′ ∈ X : card(x ∩ (A×B)× C) = card(x′ ∩ (A×B)× C)}

with A, B and C open sets in R+ resp. (0,+∞) such that A is bounded
with x ∩ (∂A×B)×C = ∅ where ∂A is the boundary of a set A. With this
topology, X is a Polish space and we denote by B(X) its Borel σ-algebra
resp. B(Ω) = B(R+)⊗B(X) the Borel σ-algebra of Ω. Initially, the t.p. is at
rest and we endow (Ω,B(Ω)) with the probability measure µ0, concentrated
on the space of initial configurations

Ω0 = {ω ∈ Ω : V (ω) = 0, x(ω) = ∅},
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under which the interarrival times (σn)n∈N of the fresh n.p.s are i.i.d. expo-
nential distributed with intensity % > 0 and the lifetimes (χn)n∈N are i.i.d.
and independent of (σn)n∈N, with common absolute continuous distribution
function which we denote by Fχ1

(t) =
∫ t

0
fχ1

(y)dy for some density fχ1
.

When we speak of arrivals of n.p.s, we mean the times at which n.p.s appear
(are injected) at the position of the t.p. with incoming velocity zero. The
lifetime of the n-th n.p. starts to be discounted at the n-th arrival time
tn =

∑n
i=1 σi with t0 = 0, whereas the t.p. has an infinite lifetime. Thus, the

initial configuration can be described by the point process Ξ = (tn, χn)n∈N on
the upper right plane H = R+×(0,∞) with intensity measure n : B(H) → R+

given by

n(B) = %

∫
B

Fχ1
(ds)dq = %

∫
B

fχ1
(s)dsdq

for B ∈ B(H). One then associates to each n.p. its lifetime interval, i.e.
the interval In = (tn, tn + χn) for the n-th n.p. The dynamics, which we
will denote by (T t)t∈R+ , is then such that the t.p. is uniformly accelerated
by the force f > 0 between consecutive collisions and at these collisions, it
exchanges its velocity elastically with the n.p.s according to the mechanical
rule

∆V = −∆v

where ∆V = V + − V − and ∆v = v+ − v− are the velocity jumps and V +

(V −) and v+ (v−) are the outgoing (incoming) velocities of the t.p. and
the n.p.s. The dynamics is right-continuous in the sense that at collision
times the velocities are the outgoing ones, i.e. V + = V and v+ = v. In this
way, the dynamics is µ0-a.s. well-defined on Ω (the same argument as in [4],
Proposition A.1, works here as well). All statements about the dynamics
will be understood such that they hold for those ω for which the dynamics
is well-defined. If convenient, we may write as well for ω ∈ Ω and t > 0,

ω(t) = T tω = (Vt(ω), x(ω(t)))

where Vt = v0(t) = v0 ◦ T t is the velocity of the t.p. at time t > 0 given by

Vt = ft+
∑

s∈J(V )∩(0,t]

∆Vs

with V0 = Vtn = 0 and J(V ) = {t > 0 : ∆Vt = −ft} is the set of jump times
of the process (Vt)t∈R+ where ∆Vt = Vt−Vt−. The positionQt = q0(t) = q0◦T t

of the t.p. at time t > 0 is then

Qt =

∫ t

0

Vsds
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with Q0 = 0. The dynamics at the particular moments of first collisions is
called the discrete dynamics and is (well-)defined by

T n = Ttn

for any n ≥ 1 on the associated configuration space

X1 = {x ∈ X : V (x) = 0}.

The evolution of the initial measure under the discrete dynamics (T n)n∈N is
denoted by

µn = µ0 ◦ T−n.

Later we will use a different notation with a hat on all quantities related to
M2 in order to distinguish between M2 and M1 when we will compare them
directly.

3.2 Model 1

As for M1, we make the suitable modifications and recall the description in
the introduction and the notation for M2. The topology is analogous to the
one of M2 with the difference that a configuration consists now of a sequence
of positions, velocities and (residual) lifetimes instead of arrival times, ve-
locities and (residual) lifetimes. We will maintain the notation of M2 and
denote all related quantities of the dynamics of M1 by the same letters, oth-
erwise introducing different notation at particular places to avoid confusion
which model we are talking about. Formally, all particles are initially at rest,
i.e. V = vn = 0 for any n ≥ 1 and the initial measure µ0 on (Ω,B(Ω)) is
such that the sequence of interparticle distances ξn = qn − qn−1, n ≥ 1, is
i.i.d. exponential with density λ > 0. The lifetimes χn, n ≥ 1, begin to be
discounted at the times of first collisions tn, n ≥ 1, are i.i.d. with distribu-
tion function Fχ1 and independent of the whole sequence (ξn)n∈N. The initial
configuration can then be described by the point process Ξ = (qn, χn)n∈N on
H = R+ × (0,∞) with intensity measure n : B(H) → R+ given by

n(A) = %

∫
A

Fχ1
(dy)dt

for A ∈ B(H). Analogous to M2, the dynamics (Tt)t∈R+ is such that the t.p.
is uniformly accelerated by the force f > 0 between consecutive collisions
and at these collisions, it exchanges its velocity elastically with the n.p.s ac-
cording to ∆V = −∆v. By the same conventions as in M2, the dynamics
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is well-defined by [11], Remark 2, since the proof is independent of the life-
time (distribution). At difference to M2, here we have a initial Poissonian
system in space and the first hitting times tn depend heavily on possible
recollisions, whereas in M2, the freshly arriving n.p.s rain down on the t.p.
at exponential interarrival times independently of recollisions. In the sequel,
we write generically FY = µ0 ◦ Y −1 for the distribution function under the
initial measure µ0 (the same for M1 and M2) for some random element Y on
Ω and F Y = 1− FY for its tail. The expectation operator is denoted by Eµ

with respect to an arbitrary measure µ. For a stochastic process we often
also write the common abbreviation Y = (Yt)t∈R+ .

We may state now our main results which concern M1, our main model
of interest with initially standing n.p.s. Denote by Qt = q0(t) the position of
the t.p. at time t > 0 and µn the measure on the state space as seen from
the t.p. at the moment of the first collision with the n-th n.p.

Theorem 3.1. (Law of Large Numbers) If the sequence (χn)n∈N of lifetimes
of. n.p.s is i.i.d. with Eµ0χ1 < +∞, then there exists a positive constant
vd > 0 (the drift velocity) such that

lim
t→+∞

Qt

t
= vd µ0-a.s.

Theorem 3.2. (Invariant Measure) If the sequence (χn)n∈N of lifetimes of.
n.p.s is i.i.d. such that Eµ0 exp(aχ1) < +∞ for some a > 0, then there exists
an invariant probability measure µ which is concentrated on X1, such that

lim
n→+∞

µn = µ weakly.

The proof of the above theorem is based on the construction of the so-called
cluster index, and using this construction we in fact will get the following
result.

Corollary 3.3. (Mixing and Invariance Principle) Under the assumptions
of Theorem 3.1 and Theorem 3.2 the following holds:

1. Let Mn
m denote the σ-field generated by the variables {τi : m ≤ i ≤ n},

where τi is the interarrival time between the (i−1)-th and i-th particle.
Then there exist positive constants c > 0 and c′ > 0 such that

ψ(n) = sup
A∈Mk

0 , B∈M+∞
k+n

|µ(B|A)− µ(B)| ≤ c exp(−c′n)
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for all k, n ≥ 1.

2. There exists a positive constant σ > 0 such that the process(Qut − vdut

σ
√
u

)
t∈[0,1]

converges in law as u → +∞, on the Skorokhod space D([0, 1],R), to
standard Brownian motion.

As we just mentioned above, the proof of the above theorem is based on the
construction of the cluster indices. This is the key part of the work, and is
contained in section 5. We will achieve this by coupling three models, which
in some stochastic sense dominate each other. First we will show that if the
lifetimes of the n.p.s are integrable, then M2 has infinitely many regeneration
times with any density of the injected n.p.s. Finally, using comparisons and
couplings, we will show that this implies that the Markovian version of M1
with small enough density of particles inherits the same property from which
follows the same for the original M1. Once this is achieved, we briefly outline
consequences and give references to all necessary steps, which are at this point
rather standard, to achieve the proof of Theorem 3.2 and Corollary 3.3.
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4 Annihilation dynamics

From now on we will use different notations for M1 and M2 where we denote
all quantities related to M2 with a hat. Due to possible recollisions, without
enlarging the underlying probability space, the velocity process V = (Vt)t∈R+

resp. V̂ = (V̂t)t∈R+ is a non-Markovian càdlàg process which increases linearly
in time proportional to the constant field f > 0 between successive collisions
and at these collision times has negative jumps. An auxiliary Markovian
dynamics can be achieved by annihilating the n.p.s immediately at each
first collision with the t.p., which makes the corresponding velocity process
Markovian due to the exclusion of recollisions. At each collision (which is
then always a first one) the environment of the n.p.s is recreated according to
the initial measure µ0 and the t.p. is the only moving particle in the system.
The state space of this dynamics is denoted by X0 resp. X̂0 and all related
quantities to this dynamics will carry superscript zero in both models. Since
the velocity change in the interval (tn−1, tn) resp. (t̂n−1, t̂n) is only due to the
constant field f > 0, the corresponding intercollisions times are given by

τ 0
n = t0n − t0n−1 =

√
2ξn
f

where ξn = qn − qn−1 is exponential with parameter % > 0 for M1, and

τ̂ 0
n = τ̂n = t̂n − t̂n−1

which is exponential with parameter %̂ > 0 for M2. Recall that (ξn)n∈N and
(τ̂n)n∈N are independent and the distribution of τ 0

1 is known to be Weibull
with scaling parameter a = %f

2
and form parameter b = 2. This distribution

is also known under the name Rayleigh distribution whose density and tail
are given by

fτ0
1
(τ) = %fτ exp(−%f

2
τ 2)

and

F τ0
1
(τ) = exp(−%f

2
τ 2).

For its mean and variance we have Eµ0τ
0
1 =

√
π√

2%f
and Γ = Varµ0τ

0
1 = 4−π√

%f
> 0.

If we denote by ϑ0
t =

∑
n∈N 1{t0n≤t} resp. ϑ̂t =

∑
n∈N 1{btn≤t} the Weibull

resp. Poisson process of the number of (first) collisions of n.p.s in the in-

terval [0, t], and by t0
ϑ0

t
=
∑ϑ0

t
n=1 τ

0
n resp. t̂bϑt

=
∑bϑt

n=1 τ̂n the time of the last
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collision of a n.p. before time t, then the velocity process V 0 = (V 0
t )t∈R+

resp. V̂ 0 = (V̂ 0
t )t∈R+ becomes

V 0
t = f(t− t0ϑ0

t
) resp. V̂ 0

t = f(t− t̂bϑt
)

for any t ≥ 0 with V 0
0 = V̂ 0

0 = 0. Both processes are (strong) Markov with

the same form of the infinitesimal generator, which for V̂ 0 is

LbV 0

ϕ(v) = fϕ′(v) + %̂(ϕ(0)− ϕ(v))

with v ∈ R+ and ϕ : R+ → R+ bounded and continuous. Both processes hit
the zero on the set of its jump times, namely J(V 0) = {t0n : n ∈ N} resp.

J(V̂ 0) = {t̂n : n ∈ N}.

Remark 4.1.

1. By the renewal theorem (cf. [6]), the laws of the velocity processes
converge as t→ +∞ to the stationary distributions

ν0(B) = λEµ0

∫ τ0
1

0

1B(V 0
s )ds resp. ν̂0(B) = %̂Eµ0

∫ bτ1
0

1B(V̂ 0
s )ds

for B ∈ B(R+), where we have set λ =
√

2%f√
π

. In particular, Eν0V 0
t =

λf
2
Eµ0(τ

0
1 )2 = λ

%
=

q
2f
%√
π

and Ebν0V̂ 0
t = b%f

2
Eµ0 τ̂

2
1 = fb% for any t > 0.

2. By symmetry, the interdistances in the annihilation dynamics of M2
become ξ̂0

n = f
2
τ̂ 2
n which are i.i.d. Weibull with parameters a = f

2b%2 and

b = 1
2

whose density resp. tail take the form

fbξ0
1
(ξ) =

%̂√
2fξ

exp(−%̂

√
2ξ

f
)

resp.

F bξ0
1
(ξ) = exp(−%̂

√
2ξ

f
)

with mean Eµ0 ξ̂
0
1 = fb%2 and variance Γ̂ = Varµ0 ξ̂

0
1 = 5f2b%4 > 0.

We have the almost immediate LLN for the annihilation dynamics of M1 and
M2.
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Lemma 4.2. (LLN for Markovian dynamics) There are constants v0
d > 0

and v̂0
d > 0 such that

lim
t→+∞

Q0
t

t
= v0

d µ0-a.s. (ν0-a.s.)

and

lim
t→+∞

Q̂0
t

t
= v̂0

d µ0-a.s. (ν̂0-a.s.)

where v0
d =

q
2f
%√
π

and v̂0
d = fb% .

Proof. It is sufficient to consider moments of first collisions only, since
tϑt ≤ t < tϑt+1 and Qtϑt

≤ Qt ≤ Qtϑt+1
imply

Qtϑt

tϑt+1

≤ Qt

t
≤
Qtϑt+1

tϑt

.

This holds for all dynamics related to the different models. Hence for the
annihilation dynamics of M1, by the renewal theorem and the LLN for i.i.d.
random variables,

lim
t→+∞

Q0
t

t
= lim

t→+∞

ϑ0
t

t

(∑ϑ0
t

k=1 ξk
ϑ0

t

)
=
Eµ0ξ1
Eµ0τ

0
1

µ0-a.s. (ν0-a.s.)

where τ 0
1 =

√
2ξ1
f

is Rayleigh with Eµ0τ
0
1 =

√
π√

2%f
and ξ1 is exponential with

Eµ0ξ1 = 1
%
. As for the annihilation dynamics of M2, by the LLN for the

Poisson process and for i.i.d. random variables,

lim
t→+∞

Q̂0
t

t
= lim

t→+∞

ϑ̂t

t

(∑bϑt

k=1 ξ̂
0
k

ϑ̂t

)
=
Eµ0 ξ̂

0
1

Eµ0 τ̂1
µ0-a.s. (ν̂0-a.s.)

where ξ̂0
1 = f

2
τ̂ 2
1 is Weibull with Eµ0 ξ̂

0
1 = fb%2 and τ̂1 is exponential with

Eµ0 τ̂1 = 1b% . 2

Remark 4.3.

1. In M1, due to recollisions, we have τ 0
n ≤ τn for any n ≥ 1 and

Vt|t∈(tn−1,tn) ≤ V 0
t |t∈(t0n−1,t0n) for any n ≥ 1 and initial configurations

such that x0 = x0
0. The formal proof of the last statement follows the

lines of Proposition 3.3. in [14]. In particular, ϑt ≤ ϑ0
t and consequently

lim supt→+∞
Qt

t
≤ v0

d µ0-a.s.
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2. In M2, due to recollisions, we have V̂t ≤ V̂ 0
t for any t > 0, but τ̂n = τ̂ 0

n

for any n ≥ 1 and configurations such that x̂0 = x̂0
0. Consequently,

ξ̂n ≤ ξ̂0
n for any n ≥ 1 and lim supt→+∞

bQt

t
≤ v̂0

d µ0-a.s.

17



5 Renewal structure of the dynamics

Coming back to the complete models M1 and M2, we make the following
definitions.

Definition 5.1.

1. A moment t > 0 is called a time of (total) annihilation for the initial

configuration x ∈ X resp. x̂ ∈ X̂ iff at t > 0, all n.p.s such that the
t.p. had met before time t are annihilated from the system (extinct)
and the remaining memory of the past is contained only in the velocity
of the t.p. at that time. We denote by D(x) ⊆ R+ resp. D(x̂) ⊆ R+

the (random) set of all times of annihilation for x resp. x̂.

2. A first collision time tk > 0 resp. t̂k > 0 is called a cluster time for the
initial configuration x ∈ X resp. x̂ ∈ X̂ iff the t.p. will never collide
for any t > tk resp. t > t̂k with the n.p.s it had collided with for t ≤ tk
resp. t ≤ t̂k, including the n.p. it collides with at tk resp. t̂k. If tk
resp. t̂k is a cluster time for x resp. x̂, we call the (random) integer k
a cluster index for x resp. x̂.

3. A cluster time tk resp. t̂k is called double cluster time for x resp. x̂ iff
tk−1 resp. t̂k−1 is as well a cluster time for x resp. x̂. The index k is
then called double cluster index for x resp. x̂.

Remark 5.2.

1. In M1 (as well as in M2), the set D can be written as D = R+\
⋃

n∈N In,
the so-called uncovered set of R+ (cf. [7] and [12]), where In = (tn, tn +
χn) are the lifetimes intervals. The zero is always contained in D if
there are no initially moving n.p.s.

2. If in M1 (as well as in M2), there is an infinite sequence of cluster
indices k1 < k2 < ... for the configuration x, then R+ =

⋃
n∈N Jkn

where on each of the intervals Jkn = [tkn , tkn+1) with Jkn ∩ Jkm = ∅
for any n 6= m, the t.p. can interact only with n.p.s which it collided
with for the first time in such an Jkn and only with those. One then
might say that the dynamics is regenerative or splits into independent
clusters (blocks) Cn(x) = {Tkn+tx : 0 ≤ t ≤ tkn+1}, n ≥ 1, since

µ0(TknA ∩B) = µ0(A)µ0(B)

for any A ∈ B(X), B ∈ {T−1
kn
A : A ∈ B(X)} and n ≥ 1.
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3. In M1, let A the σ-algebra generated by the cluster times (tkn)n∈N.
Then under the conditional measure µA0 = µ0(.|A), the intercollision
times (τkn+1)n∈N are i.i.d. Rayleigh with variance Γ > 0. Under µA0 ,
the vectors (τkn+2, ..., τkn+1)n∈N are independent and for any m 6= n,
the m-vector (τkm+2, ..., τkm+1) is independent of τkn+1. As for M2, by

symmetry, denoting by Â the σ-algebra generated by the cluster times
(t̂kn)n∈N, then under the conditional measure µ

bA
0 = µ0(.|Â), the trav-

elled distances (ξ̂kn+1)n∈N are i.i.d. Weibull with variance Γ̂ > 0. Under

µ
bA
0 , the vectors (ξ̂kn+2, ..., ξ̂kn+1)n∈N are independent and for any m 6= n,

the m-vector (ξ̂km+2, ..., ξ̂km+1) is independent of ξ̂kn+1.

5.1 Random line covering

For future purposes, we make the following definiton.

Definition 5.3. Let Ξ = (tn, χn)n∈N resp. Ξ̂ = (t̂n, χn)n∈N be the point
process associated to M1 resp. M2 and denote by DΞ resp. DbΞ the uncovered

sets generated by them. We then say that Ξ resp. Ξ̂ is non-covering iff DΞ

resp. DbΞ is unbounded µ0-a.s.

In the following, we will be concerned with M2 only and associate to Ξ̂ =
(t̂n, χn)n∈N the auxiliary piecewise deterministic process R̂ = (R̂t)t∈R+ which
is formally defined as follows. If η̂t = t− tbϑt

is the time spent since the last

first collision, the linear part of R̂ in t̂bϑt
< t < t̂bϑt+1 is given by

R̂t = (R̂btbϑt

− η̂t)
+ = (R̂btbϑt

− η̂t) ∨ 0 = (R̂btbϑt

− η̂t)1{ bRbt bϑt

>bηt}

which is decreasing linearly with slope one since η̂ is increasing in (t̂bϑt
, t̂bϑt+1).

The process possibly jumps at t = t̂n for some n ≥ 1 by magnitude ∆R̂btn =

(χn − R̂btn−)+, in particular

R̂btn = χn1{χn> bRbtn−} + R̂btn−1{χn≤ bRbtn−}.

Assuming that R̂0 = r ≥ 0, the process has therefore the representation

R̂t = (r − t+

bϑt∑
k=1

(χk − R̂btk−)+) ∨ 0

for any t ≥ 0. We refer to Pr as the distribution of R̂ starting at r ≥ 0, and we
consider the naturally filtered, complete probability space (X̂, F̂ , (F̂t)t∈R+ , µ0).
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Lemma 5.4. The process R̂ = (R̂t)t∈R+ is (strong) Markov with infinitesimal
generator

L bRϕ(r) = %

∫ ∞

r

ϕ′(s)F χ1
(s)ds− ϕ′(r),

where ϕ : R+ → R+ is bounded and continuous with bounded derivatives.

Proof. The (strong) Markov property is standard and follows since the

increment R̂ bH+t − R̂ bH = (
∑bϑ bH+tbϑ bH+1

(χk − R̂btk−)+ − t) ∨ 0 starts at zero and

is independent of F̂ bH where Ĥ is a finite F̂t-stopping time, due to the fact

that (ϑ̂ bH+t − ϑ̂ bH)t∈R+ is a Poisson process, independent of F̂ bH by the lack of

memory of the exponential distribution. From the representation of R̂ one
reads directly its inifinitesimal generator as

L bRϕ(r) = −ϕ′(r) + %̂Eµ0(ϕ(χ1 ∨ r)− ϕ(r))

which is well-defined for ϕ : R+ → R+ bounded and continuous with bounded
derivatives. The last expression can be brought into the desired form using
that

Eµ0ϕ(χ1 ∨ r) =

∫ ∞

0

ϕ(s ∨ r)Fχ1
(ds)

= ϕ(r)Fχ1
(r) +

∫ ∞

r

ϕ(s)Fχ1
(ds)

= ϕ(∞)−
∫ ∞

r

ϕ′(s)Fχ1
(s)ds

=

∫ ∞

r

ϕ′(s)F χ1
(s)ds+ ϕ(r),

by virtue of integration by parts in the third equality. 2

Remark 5.5. In the following we will use that by construction, DbΞ =

{t ≥ 0 : R̂t = 0} µ0-a.s. and that if the zero is a recurrent state, by the lack

of memory, R̂ will hit the zero infinitely often eventually µ0-a.s. and hence
DbΞ is µ0-a.s. unbounded.

We use the following criterion for non-covering which is due to [1]. For
completeness, we will give the proof which follows standard techniques.
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Lemma 5.6. The Poisson point process Ξ̂ is non-covering iff %̂ > 0 and
Fχ1 are such that ∫ ∞

0

exp(−%̂
∫ t

0

F χ1(s)ds)dt = +∞.

Proof. Define the survival probability

π(r) = µ0(R̂t > 0 for any t ≥ 0|R̂0 = r)

and the first time of total annihilation

Ĥ(r) = inf{t > 0 : R̂t = 0|R̂0 = r}.

with π(0) = 0 and π(+∞) = 1, and Ĥ(+∞) = +∞ µ0-a.s. Observe

that by the Markov property of R̂, π is a bounded invariant function, i.e.
Erπ(R̂t) = π(r) and hence L bRπ(r) = 0 if π is in the domain of L bR (which
will indeed be the case by the verification argument below). By standard

arguments, (π(R̂t))t∈R+ is a martingale iff L bRπ(r) = 0. Plugging now in and
differentiation to get rid of the integral term yields

π′′(r) = −%̂F χ1
(r)π′(r).

Solving this equation and using integration, subject to the initial condition
π(0) = 0, gives the expression for the survival probability

π(r) = β

∫ r

0

exp(−%̂
∫ s

0

F χ1
(u)du)ds

for some norming constant β ≥ 0. In particular π is continuous and differ-
entiable. Since 0 ≤ π ≤ 1 and limr→+∞ π(r) = π(+∞) = 1, if the right hand
side above does not converge, it follows that one must have β = 0 and hence
π(r) = 0 resp. Ĥ(r) < +∞ µ0-a.s. for any r > 0. In other words, the zero

is a recurrent state for R̂ and it follows from Remark 5.5. that DbΞ is µ0-a.s.
unbounded. On the other hand, if the above integral converges as r → +∞,
again from limr→+∞ π(r) = π(+∞) = 1 it follows that

β−1 =

∫ ∞

0

exp(−%̂
∫ s

0

F χ1
(u)du)ds < +∞

and π(r) > 0 for any r > 0. Since π is a positive bounded invariant function,

the process (M̂t∧ bH(r))t∈R+ is a (stopped) martingale which is defined by

M̂t = π(R̂t) = P bRt
(R̂s > 0 for any s ≥ 0)
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with M̂0 = π(r) > 0 for any r > 0 and 0 < M̂t ≤ 1. By optimal stopping,

Eµ0M̂t = Eµ0M̂0 = π > 0 for any t ≥ 0. By continuity, π(+∞) = 1 and

the martingale convergence theorem, the limit M̂∞ = limt→+∞ M̂t exists and

equals to 1 bA = M̂∞ = 1 µ0-a.s. for the invariant set Â = {R̂t > 0 for any t ≥
0}. Taking expectation and bounded convergence yields π(r) = Eµ01 bA = 1

for any r > 0 which entails limt→+∞ R̂t = +∞ resp. Ĥ(r) = +∞ µ0-a.s. for

any r > 0. If r = 0, we set N̂t = M̂bτ1∨t starting at N̂0 = π(χ1) > 0 instead

of M̂t and proceed as before. Hence if r = 0, then DbΞ = {0} µ0-a.s. resp. if
r > 0, then DbΞ = ∅ µ0-a.s. in this case. 2

Remark 5.7. The lack of memory property of the exponential distribu-
tion is essential for the Markov property of R̂, since otherwise ϑ̂ = (ϑ̂t)t∈R+

is not Markov and the future of R̂ depends through the distribution of the
time to the next arrival on the past via the time spent since the last first
collision of a particle, and hence the method as in the proof of Lemma 5.6
cannot be applied. If we denote by ϑ0 a renewal counting process with finite
mean 1

%
and existing second moment of the i.i.d. interarrival times (τ 0

n)n∈N
which have a absolute continuous distribution with density fτ0

1
and distri-

bution function Fτ0
1
, which is independent of the lifetimes, then one can

make the associated process R0 = (R0)t∈R+ being Markovian without en-
larging the underlying probability space by considering the bivariate process
(R0, α0) = (R0

t , α
0
t )t∈R+ , where α0

t = t − t0
ϑ0

t
is the spent time since the last

first collision before time t > 0. The process (R0, α0) evolves deterministi-
cally for s ∈ (t, t + α0

t ) as (R0
s, α

0
s) = (R0

t − (s − t), α0
t − (s − t)) and for

s = t0
ϑ0

t +1
, (R0

s, α
0
s) = (χϑ0

t +1 ∨ R0
t0
ϑ0

t +1
−, 0). Since α0 is a (strong) Markov

process, (R0, α0) becomes a strong Markov process too, whose infinitesimal
generator can be calculated from the same arguments as the one in the Pois-
son case as

L(R0,α0)ϕ(r, a) =
fτ0

1
(a)

F τ0
1
(a)

∫ ∞

r

∂yϕ(y, a)F χ1
(y)dy − ∂rϕ(r, a) + ∂aϕ(r, a)

for ϕ : R+ × R+ → R+ in the domain of the generator, noting that α0

increases deterministically between two consecutive arrivals and if %(a)da +
o(da) denotes the probability that there is an arrival in the interval (a, a+da)

conditionally that up to time a > 0 there is no arrival, then %(a) =
f

τ0
1
(a)

F
τ0
1
(a)

=

limh→0
1
h
µ0(a < τ 0

1 < a + h|τ 0
1 > a) is the hazard (failure) rate for the

distribution of the interarrival times. Like in the Poisson case, (ϕ(Rt, αt))t∈R+

22



is a martingale iff

∂rϕ(r, a) = %(a)

∫ ∞

r

∂yϕ(y, a)F χ1
(y)dy + ∂aϕ(r, a).

One then could try to solve this PDE to get a criterion for non-covering as in
the Poisson case. One example for such a renewal process in the light of the
annihilation dynamics of M1 or M2 as in section 4 is where ϑ0 is a Weibull
renewal counting process. Rather than following this strategy, we will take
a different route in section 5.2.

Remark 5.8. Since ϑ̂ is Poisson, the number N̂ (A) of coordinates which fall
into the setA ∈ B(H) is Poisson distributed with mean n̂(A) = %̂

∫
A
Fχ1(ds)dt.

1. Hence for At = {(s, u) : 0 < t− s < u} and t > 0 fixed, the probability
that at time t all n.p.s born before t are annihilated (i.e. that t is in
the set DbΞ) is given by

µ0(R̂t = 0) = µ0(N̂ (At) = 0) = exp(−%̂
∫ t

0

F χ1
(t− s)ds)

resp. the mean number of alive n.p.s at time t > 0 is

n̂(At) = Eµ0N̂ (At) = %̂

∫ t

0

F χ1
(t− s)ds.

2. By symmetry and since F χ1
(t − s) = F χ1

(s) − µ0(s < χ1 ≤ t − s) on
(0, t

2
], one has∫ t

0

F χ1
(t− s)ds = 2

∫ t/2

0

F χ1
(t− s)ds ≤ 2

∫ t

0

F χ1
(s)ds.

Thus if Eµ0χ1 < +∞ and using that Eµ0χ1 =
∫∞

0
F χ1(s)ds, it follows

that µ0(R̂t = 0) > 0 and n̂(At) ≤ 2%̂Eµ0χ1 for any t, in particular∫∞
0

exp(−%̂
∫ t

0
F χ1(s)ds)dt = +∞.

We summarize the previous results in the following corollary.

Corollary 5.9. If %̂ > 0 and Fχ1 are such that∫ ∞

0

exp(−%̂
∫ t

0

F χ1(s)ds)dt = +∞,
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then there exists an infinite sequence Ĥ1 < Ĥ2 < ... of times of total annihi-
lation such that Ĥk < +∞ µ0-a.s. and

Ĥk = inf{t > Ĥk−1 : R̂t = 0}

with Ĥ0 = 0 where

γ̂k = Ĥk − Ĥk−1

are i.i.d. for any k ≥ 1. The uncovered set generated by Ξ̂,

DbΞ =
⋃
k∈N

(Ĥk, t̂bϑ bHk
+1),

is unbounded µ0-a.s. where

δ̂k = t̂bϑ bHk
+1 − Ĥk

is i.i.d. exponential with intensity %̂ > 0 for any k ≥ 1. 2

Concerning moments, we have the following results.

Lemma 5.10. If Eµ0χ1 < +∞, then Eµ0 γ̂1 < +∞.

Proof. If Eµ0χ1 < +∞, then
∫∞

0
exp(−%̂

∫ t

0
F χ1(s)ds)dt = +∞ by Remark

5.7.2. On the other hand, if Ĉ1 is the first connected component, then

Eµ0 γ̂1 ≤ Eµ0(τ̂1 +
∑

k: btk∈bC1
χk) < cb%

for some constant cb% < +∞. 2

Using similar arguments we have the following corollary.

Corollary 5.11.

1. Suppose that there is a constant a > 0 such that Eµ0 exp(aχ1) < +∞.
Then there is a constant b > 0 such that Eµ0 exp(bγ̂1) < +∞.

2. If there is a constant a > 0 such that Eµ0 exp(aχ1) < +∞, then there

are constants c > 0 and c′ > 0 such that the i.i.d. sequence (N̂ (Ĉk))k∈N
of the number of n.p.s in each connected component has tail

µ0(N̂ (Ĉ1) > n) ≤ c exp(−c′n).
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Excursion: The uncovered set as the image of an sub-
ordinator

The concrete distribution of γ̂1 seems quite complicated. Using standard
concepts from excursion theory, γ̂1 equals to the first passage time of an
associated subordinator above some fixed level and its distribution can be
expressed in terms of the characteristics of the subordinator. We review
shortly this construction. Suppose that R̂0 = 0 and define the local time of
R̂ at zero in [0, t] as

L̂t =

∫ t

0

1{ bRs=0}ds

which is constant on time intervals where R̂ is away from zero and increases
on time intervals where R̂ hits the zero, hence 1{ bRt=0} = 1 iff L̂t+s > L̂t for

any s > 0. From the construction of the (strong) Markov process R̂ and the
fact that the residual arrival time κ̂t = t̂bϑt+1 − t at time t ≥ 0 is exponential
and has no atom at zero, one sees that P0(γ̂1 = 0) = µ0(κ̂0 > 0) > 0 which

entails by Blumenthal’s zero-one law that P0(γ̂1 = 0) = 1, i.e. R̂ will hit the
zero a.s. infinitely often during any initial time interval. It then follows from
[3], Chapter V, that the right-continuous inverse of the local time of R̂ given
by

σ̂t = L̂−1
t = inf{s ≥ 0 : L̂s > t}

is a subordinator, i.e. an increasing Lévy process starting at zero whose
Laplace exponent Φ̂(θ) = − logEµ0 exp(−θσ̂1), θ ≥ 0, is given by the Lévy-
Khintchin formula

Φ̂(θ) = κθ +

∫ ∞

0

(1− exp(−θs))Π(ds) = θ(κ+

∫ ∞

0

exp(−θs)Π(s)ds)

where Π is a Borel measure on (0,+∞) (Lévy measure) such that
∫ 1

0
sΠ(ds) =∫ 1

0
Π(s)ds < +∞ and κ = limθ→+∞

Φ(θ)
θ

> 0 the drift. The range of σ̂ is the
closure of the uncovered set DbΞ, whereas DcbΞ =

⋃
t∈J(bσ)(σ̂t−, σ̂t) where J(σ̂) is

the set of its jump times. Clearly, L̂t = inf{s ≥ 0 : σ̂s > t} and the potential
(renewal) measure is given by

Û(B) =

∫
B

µ0(R̂t = 0)dt =

∫ ∞

0

µ0(σ̂t ∈ B)dt

for B ∈ B(R+) resp. Û([0, t]) = Eµ0L̂t for t ≥ 0. As one sees from the
Lévy-Khintchin formula, if σ̂

′
is another subordinator with image the closure
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of DbΞ, there is a constant c > 0 such that σ̂′t = σ̂ct µ0-a.s. for any t ≥ 0. In
this way, the subordinator is uniquely characterized up to a constant. Finally
note that L̂∞ = +∞ µ0-a.s. iff the zero is eventually infinitely recurrent for
R̂ µ0-a.s. Hence in terms of σ̂, if β−1 = +∞, it follows as in Remark 5.8.
that

Eµ0L̂∞ =

∫ ∞

0

µ0(R̂t = 0)dt

≥
∫ ∞

0

exp(−2%̂

∫ t

0

F χ1
(s)ds)dt

= c′β−1 = +∞

for some constant c′ > 0, thus L̂∞ = +∞ µ0-a.s. and DbΞ is unbounded. In
particular, the renewal measure of σ̂ is a Radon measure with density

û(t) = exp(−%̂
∫ t

0

F χ1
(t− s)ds).

To determine the distribution of γ̂1, we can take the marginal distribution of
the jump of σ̂ at its local time L̂t in Proposition 2, Chapter III, in [2], and
obtain

Fbγ1(t) = µ0(∃s > 0 : σ̂s > t) = µ0(σ̂bLt
> t) =

∫ t

0

Π(t− s)û(s)ds.

To make use of that expression, one has to recover the characteristics of σ̂.
It is standard that the Laplace transform of the renewal measure can be
expressed as

Φ−1(θ) =

∫ ∞

0

exp(−θt− %̂

∫ t

0

F χ1
(t− s)ds)dt,

whereas by the Lévy-Khintchin formula it follows that κ = limθ→+∞
Φ(θ)

θ
and∫∞

0
exp(−θt)Π(s)ds = Φ(θ)

θ
− κ. Clearly, for some given lifetime distribution,

in general except im some very special cases, it seems quite difficult to obtain
concrete analytical expressions.

5.2 Comparison of line covering processes

The key difficulty is that in the original dynamics of M1 one can say very
little about the distribution of the highly dependent intercollision times of
the n.p.s. We therefore take a different approach and construct a suitable
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comparison between the dynamics of M2 and the random line covering prob-
lem for the annihilation dynamics in M1. For this purpose, we will introduce
an auxiliary Poisson covering process, which we call ε-reinforced covering
process. As in the original covering process Ξ̂ = (t̂n, χn)n∈R+ associated with

M2, we will assume that starting-points t̂n of the lifetime (covering) intervals
In = (tn, tn +χn) are distributed according to the Poisson law with intensity
%̂ > 0. However, from each such point now we will allow to start a multiple
number of covering intervals, which are all going rightwards. The probability
that out of a given point we start k, k ≥ 1, additional intervals is geometric
with parameter ε, and equals to εk(1 − ε) for 0 < ε < 1, independently for
each Poissonian point. The lengths of all intervals are chosen independently,
and are distributed according to Fχ1

as before. The such obtained point
process can thus be seen to be a Poisson covering process with a sequence
of lifetimes which is constituted by the maximum lenghts of all lifetimes for
every Poisson point. We thus have the following definition.

Definition 5.12. We say that Ξ̂ε = (t̂n, χ
ε
n)n∈N, 0 < ε < 1, is an ε-reinforced

covering process if it is a Poisson covering process with χε
n = max1≤k≤ bN ε

n
χnk

for n ≥ 1, where {χnk : n ∈ N, 1 ≤ k ≤ N̂ ε
n} is an independent array such

that (N̂ ε
n)n∈N is i.i.d. with µ0(N̂ ε

1 = k) = εk(1 − ε) and independent of
(χnk)n∈N for any k ≥ 1.

Recall that we denote by Ξ = (tn, χn)n∈N the covering process associated
to M1 and by Ξ0 = (t0n, χn)n∈N the covering process associated to its annihi-
lation dynamics where τ 0

n = t0n−t0n−1 are i.i.d. Rayleigh distributed. The first
comparison result below states that the annihilation dynamics dominates the
covering of the complete dynamics of M1. The proof is based on the obser-
vation that while with larger intercollision times, uncovered components are
shifted to the right, but they cannot shrink. This could be made formal, but
since it is graphically clear, we will not give the more technically involved
proof here.

Proposition 5.13. If Ξ0 = (t0n, χn)n∈N is non-covering, then Ξ = (tn, χn)n∈N
is non-covering. 2

The second comparison result states that the Poisson covering of M2 domi-
nates the covering of its ε-reinforced version. Though for the proof we will
need the finite moment condition for the lifetime distribution.

Proposition 5.14. If Eµ0χ1 < +∞, then for any 0 < ε < 1, the ε-reinforced
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Poisson line covering process Ξ̂ε is non-covering.

Proof. Note that by Remark 5.8.2, the condition Eµ0χ1 < +∞ entails that

Ξ̂ is non-covering. Let ∆̂k = Ĥk − t̂bϑ bHk−1
+1, k ≥ 1, be the length of the k-th

connected component Ĉk where Ĥk = inf{t > Ĥk−1 : R̂t = 0} is the k-th time

of total annihilation as in Corollary 5.9. If Eχ1 < +∞, then E∆̂1 < +∞
by Lemma 5.10 and since Ξ̂ is non-covering, the uncovered set splits into
DbΞ =

⋃
k∈N(âk − Ĥk−1) where we have set for short âk = tbϑ bHk−1

+1, k ≥ 1.

Let t ∈ (âi − Ĥi−1) for some large i ≥ 1 and denote by Ûk(t) the event that

the additional lifetime of at least one n.p. in some connected component Ĉk,
k ≤ i − 1, is covering t. If we denote by χnj the j-th lifetime at the n-th
arrival time tn as in Definition 5.12, then we have

Ûk(t) ⊆ {
∑

j≥2, n: tn∈bCk

χnj >
∑

k+1≤j≤i−1

(âj − Ĥj−1)}.

But
∑

j≥2, n: tn∈Ck
χnj are i.i.d. random variables for any k with

Eµ0(
∑

j≥2, n: tn∈bCk

χnj) < cε,

for some constant cε < +∞, while Eµ0

∑
k+1≤j≤i−1(âj − Ĥj−1) = (k − i)%̂.

Since Eµ0χ1 < +∞ (and as a consequence Eµ0∆̂1 < +∞) we get by Borel-
Cantelli that

µ0({
∑

j≥2, n: tn∈bCk

χnj >
∑

k+1≤j≤i−1

(âj − Ĥj−1)} infinitely often) = 0,

which implies that µ0(
⋂

k≤i−1 Û
c
k(t)) > 0 from which the assertion follows. 2

We finally we come to the main result from which we deduce the strong
cluster property of the dynamics in M1 in section 5.

Lemma 5.15. If Eµ0χ1 < +∞, then there is a % > 0 with 0 < % < %̂ such
that the corresponding covering process Ξ0 = (t0n, χn)n∈N is non-covering.

Proof. As before, Eµ0χ1 < +∞ implies that Ξ̂ = (t̂n, χn)n∈N is non-covering.
Recall that (τ̂n)n∈N and (τ 0

n)n∈N are independent and note that for f > 0 and
%̂ > 0 fixed, there is % > 0 such that µ0(τ

0
1 < τ̂1) ≤ ε for some given 0 < ε < 1.

We will now perform the following surgery. Every segment [t̂n−1, t̂n] such that
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τ 0
n < τ̂n will be subtracted by performing the left-shift of the semi-infinite

configuration lying to the right of the Poisson point t̂n by the distance τ̂n and
identifying the point t̂n−1 with t0n, while the point t̂n−1 is endowed with the
two lifetimes χn and χn−1, and every segment [t̂n−1, t̂n] such that τ 0

n ≥ τ̂n will
be contracted by performing the left-shift of the semi-infinite configuration
lying to the right of the Poisson point t̂n by the distance τ 0

n − τ̂n ≥ 0 and
identifying the point t̂n with the point t0n, while each of the points contin-
ues to have one lifetime, namely t̂n = t0n with χn and t̂n−1 with χn−1. The

such obtained process Ξ̂ε say, is the ε-reinforced line covering process of Ξ̂,
where for notational reasons we assume that intervals which were completely
subtracted have lengths equal to zero. Since Ξ̂ is non-covering, according to
Proposition 5.14 one can choose any 0 < ε < 1 such that Ξ̂ε is non-covering.
2

Corollary 5.16. If Eχ1 < +∞, then Ξ0 is non-covering for any % > 0.

Proof. Note that an inspection of the proof of Lemma 5.15 implies that
by inverting the roles of Ξ̂ and Ξ0, for any given % > 0 one can choose a suffi-
ciently large %̂ > 0 such that Ξ0 is non-covering. We then apply Proposition
5.13 and the assertion follows. 2

5.3 Construction of cluster indices

By a simple mechanical argument we now show that the non-covering of Ξ
resp. Ξ̂ is a sufficient condition to guarantee the existence of cluster times
in M1 resp. M2 as defined in Definition 5.1. Conversely though, from the
opposite one cannot deduce in general the absence of cluster times since it
does not exclude a more mechanical continuous loss of memory.

Lemma 5.17. Suppose that Eµ0χ1 < +∞. Then there exists an infinite
sequence of cluster times for M1 and M2.

Proof. Recall that Eµ0χ1 < +∞ implies that there is an infinite sequence

Ĥ1 < Ĥ2 < ... of times of total annihilation for M2 by Corollary 5.9 where
(γ̂k)k∈N is i.i.d. with distribution function Fbγ1 and Ĥk < +∞ µ0-a.s. for
any k ≥ 1. The same is true for M1 by Corollary 5.16. We treat in the
following only M1, since the case for M2 is analogous. Given γ1 = s, fix
a constant a > 0 and denote by V? = Vs the velocity of the t.p. at that
time. We can suppose that V? = 0. Then due to exclusion of recollisions,
µ0(τ

0
ϑs+1 > a) = exp(−%f

2
a2) for some fixed constant a > 0. On the set
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{τ 0
ϑs+1 > a}, the outgoing velocity of the next fresh n.p. is the constant

v+
ϑs+1 > fa. Choose now the lifetime χϑs+1 of the n.p. smaller than the

time the t.p. would need to catch it up in the free dynamics, i.e. with no
further n.p.s in (tϑs+1,+∞], in particular smaller than b = 2a determined by

bv+
ϑs+1 >

∫ b

0
fsds = f

2
b2. With the event Aγ1 = {τ 0

ϑγ1+1 > a} ∩ {χϑγ1+1 ≤ 2a}
we thus have

µ0(∃s ≤ t : tϑs+1 is a cluster time)

≥ µ0({γ1 ≤ t} ∩ Aγ1) =

∫ t

0

µ0(As|γ1 = s)Fγ1(ds)

= exp(−%f
2
a2)Fχ1

(2a)Fγ1(t)

by the independence of τ 0
ϑγ1+1 and χϑγ1+1. 2

Corollary 5.18. The dynamics of M2 has infinitely many cluster indices
and moreover, under the condition of Theorem 3.2 on the existence of ex-
ponential moment, the inter-cluster-indices distribution has exponentially
decaying tails. 2

Remark 5.19. Later we consider also double cluster times resp. indices
as in Definition 5.1.3 which is indeed analogous to the notion of so-called
good cluster indices in [4]. To produce them in our case, replace the event
AH = {τH > a} ∩ {χϑH+1 ≤ b} by A′H = AH ∩ BH where BH = {HϑH+1 >
b} ∩ {χϑH+2 ≤ 2b} and then one has as above

µ0(∃s ≤ t : tϑs+1 is a double cluster time) ≥ c′FH(t)

for some constant c′ = c′(a, V?, f, %) with 0 < c′ < ĉ. If we set Y ′k =
1{tϑHk

+1 is a double cluster time} for k ≥ 1, then µ0(Y
′
1 = 1) ≥ c′ > 0 and

µ0(Y
′
k = 1|Y ′1 , ..., Y ′k−1) ≥ c′ > 0 for k ≥ 2. It follows that there is a γ′ > 0

such that lim infn→∞ n
−1
∑n

k=1 Y
′
k ≥ γ′ > 0 µ0-a.s.

Lemma 5.20. If Eµ0χ1 < +∞, then sequence of measures {µn : n ∈ N} is
tight.

Proof. To show tightness we have for the mean number of alive n.p.s at
time t > 0 in M2 by Remark 5.8 that

Eµ0N̂ (At) = %̂

∫ t

0

F χ1
(t− s)ds ≤ 2%̂

∫ t

0

F χ1
(s)ds ≤ 2%̂Eµ0χ1 .
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By Markov’s inequality µ0(N̂ (At) > k) ≤ k−1Eµ0N̂ (At) ≤ k−12%̂Eµ0χ1 for
k > 0, denoting An = Atn , since limn→∞ tn = ∞ and Eµ0χ1 < +∞, it follows

that µ0(R̂t = 0) > 0 for any t > 0 and

lim
k→∞

lim sup
n→∞

µ0(N̂ (An) > k) = 0

which entails by [11], Lemma 4.5, the tightness of {N̂ (An) : n ∈ N}. If

µ̂n = µ0 ◦ T̂−1
n is the law of the discrete dynamics as defined in section 3.1,

the above result entails the tightness of the family {µ̂n : n ∈ N} and hence

the convergence to a necessarily invariant measure µ̂ say, i.e. µ̂ = µ̂ ◦ T̂−1
n

for any n ≥ 1 such that µ̂(X̂1) = 1. For M1, in the light of section 5.2,
the interarrival times (of standing n.p.s) of the Weibull line covering process
associated to the Markovian dynamics of M1 dominate the (exponential)
interarrival times in M2, hence by the previous considerations, this implies
that the (mean) number of alive n.p.s in M1 at any time is smaller than the
(mean) number of alive n.p.s in M2 and tightness for M1 follows. Thus we
have Theorem 3.2. 2
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6 Mixing and law of large numbers

Existence of some limiting invariant measure µ̂ under the discrete dynamics
(T̂n)n∈N for M2 follows by tightness of the family {µ̂n : n ∈ N} as shown
above under the condition of finite first moment of the lifetime distribution.
Uniqueness follows by successfully coupling µ̂ with the initial measure µ0. In
the light of the construction of the cluster times in section 5.3 it is quite clear
how to produce a successful coupling. For this, let ω̂ ∈ Ω̂ be a configuration
with decomposition x(ω̂) = x0(ω̂) ∪ xm(ω̂) and distributed according to the
measure µ̂ where we denote by x0(ω̂) the (freshly) arriving n.p.s at the Poisson
times. Take two initial configurations ω̂′ and ω̂′′ distributed according to µ0

resp. µ̂ such that x0(ω̂) = x0(ω̂
′) = x0(ω̂

′′), xm(ω̂′) = ∅, xm(ω̂) = xm(ω̂′′),

R̂0(ω̂
′) = 0 and R̂0(ω̂

′′) = r0 for some r0 > 0 where R̂ is the associated
piecewiese deterministic process from section 5.1. Note also that under µ̂,
the freshly arriving n.p.s and the moving n.p.s are independent and the fresh
n.p.s distributed according to the initial measure µ0, i.e. µ̂ = µ0 ⊗ µ̂m with
µ0(Ω̂0) = µ̂m(Ω̂c

0) = 1. In words, the configuration ω̂′ consists only of the
t.p. and the freshly arriving n.p.s distributed according to µ0 and ω̂′′ has the
same arriving n.p.s as ω̂′ and its moving n.p.s are distributed according to
µ̂m with initial maximal residual lifetime r0, i.e. their joint distribution is
the measure Q̂ on Ω̂0 × Ω̂0 given by

Q̂(dω̂′dω̂′′) = 1{xm(bω′)=∅}1{x0(bω′)=x0(bω′′)}µ0(dω̂
′)µ̂(dω̂′′).

If convenient, we write the related quantities to the two configurations with
the corresponding superscripts like Ĥ ′

1 or Ĥ ′′
1 for Ĥ1(ω̂

′) resp. Ĥ1(ω̂
′′), for in-

stance. With the same notation as in the previous sections, letting Ĥr0(ω̂
′) =

inf{s > r0 : R̂s(ω̂
′) = 0}, one has Hr0(ω̂

′) = σ̂bLr0
(ω̂′) = Ĥ(ω̂′′) = Ĥ(ω̂) where

σ̂ is the associated subordinator and L̂r0 its local time at r0 > 0 (see excursion

at the end of section 5.1). Set Ĥk(ω̂
′) = Ĥk(ω̂

′′) and χk(ω̂
′) = χk(ω̂

′′) for any

1 ≤ k ≤ [Ĥ(ω̂)] where [.] denotes the integer part and let V̂ ′? = V̂ bH(ω̂′) > 0

and V̂ ′′? = V̂ bH(ω̂′′) > 0. Fix now some a′ > 0, sample τ̂ bH(ω̂′) according to
the exponential distribution µ0(τ̂

′bH ≤ s|τ̂ ′bH > a′) (again by lack of memory)
and then set τ̂ bH(ω̂′′) = τ̂ bH(ω̂′) in the configuration ω̂′′. Both n.p.s arriving

at t̂′bϑ bH+1
(= t̂′′bϑ bH+1

) have some minimal outgoing velocity v̂′min resp. v̂′′min, de-

pending on V̂ ′? resp. V̂ ′′? (and of f and â′). If χ′′bϑ bH+1
≤ b̂′ and χ′′bϑ bH+1

≤ b̂′′

for the corresponding constants b̂′ and b̂′′, determined as in section 5.3, then
t̂′bϑ bH+1

is a cluster time for both configurations ω̂′ and ω̂′′. Setting the in-

terdistances as ξ̂′bϑ bH+k
= ξ̂′′bϑ bH+k

for any k ≥ 2 concludes the coupling in this
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case. Otherwise, repeat the above procedure now with Ĥ(T̂ r0ω̂′) instead of

Ĥ(ω̂). Since Ξ̂ is non-covering and all other events involved have strictly
positive probability, a successful coupling also in this case will be achieved in
finite time. It then follows from Corollary 5.11.2 under exponential moment
condition that there are constants c > 0 and c′ > 0 such that

Q̂((ω̂′, ω̂′′) : ∃i ≤ n : t̂bϑ bHi
+1 is an (ω̂′, ω̂′′)-cluster time) ≥ 1− ce−c′n

for any n ≥ 1 and the mixing is exponentially decaying.
An analogous procedure applies for M1 by the following reasoning. The
moments of total extinction are stopping times with respect to the dynamics
of M1 (and M2) and hence future positions of standing n.p.s are independent
of the past. However future hitting times and velocities of the t.p. with the
n.p.s depend on the velocity of the t.p. at the times of total extinction. But
since the velocity (and thus the time it takes to arrive to the next standing
n.p.) is bounded from below by the time and velocity of the t.p. if it would
have zero velocity at the time of total extinction, the velocity of the t.p. at
collision with the next standing n.p. is bounded by an exponential random
variable and the time by the square root of it. In the same way as in the
construction of cluster indices for M2, this allows now to request that the
lifetime of the first n.p. after moments of total extinction is short enough
such that it dies before the t.p. catches it up, even if it flies with the lowest
possible velocity determined by the lower bound. Thus we have Theorem 3.1
and Corollary 3.3.1.
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7 Invariance principle

The proof of the IP for the displacement of the t.p. in M1 and M2 under
exponential mixing is now classic. We will give the proof for M2 only, while
for M1 one has to interchange the roles of interarrival times and interdis-
tances. Define the random element on (Ω̂1,B(Ω̂1), µ̂) by Ŝ[nt] = n−1/2Ẑ[nt]

where Ẑn =
∑

1≤k≤n(ξ̂k − %̂−1v̂d) and v̂d = %̂Ebµξ̂1 is the drift. Note that

Ebµξ̂0
1 = Ebµ0 ξ̂

0
1 = f%̂−2, hence Ebµξ̂1 ≤ f%̂−2 and Ebµξ̂2

1 ≤ 6f 2%̂−4. Furthermore,

we have
∑

n∈N

√
ψ̂(n) < ∞ since the mixing coefficient ψ̂(n) is exponen-

tially decaying by the previous section. Then σ̂2 = limn→∞ n
−1EbµẐ2

n =

Ebµ(ξ̂1 − %̂−1v̂d) + 2
∑

k≥2Ebµ(ξ̂1 − %̂−1v̂d)(ξ̂k − %̂−1v̂d) < ∞ and if σ̂2 > 0,

Ŝ[nt] converges weakly on the Skorokhod space to σ̂W where W is stan-

dard one-dimensional Brownian motion. If Ĉ ′ is the σ-algebra generated by
the double cluster indices, by the property of conditional variance, EbµẐ2

n =

Ebµ(E
bC′bµ Ẑ2

n) + Ebµ(E
bC′bµ Ẑn)2 ≥ Ebµ(E

bC′bµ Ẑ2
n) and by conditional independence,

n−1E
bC′bµ Ẑ2

n = n−1

n∑
k=1

E
bC′bµ ξ̂2

k ≥ Γ̂n−1

n∑
k=1

Ŷ ′k

with Γ̂ > 0 and Ŷk

′
the indicator of the k-th double cluster time. Hence

lim inf
n→∞

n−1E
bC′bµ Ẑ2

n ≥ Γ̂γ̂′ > 0 µ-a.s.

for some constant γ̂′ > 0 and therefore σ̂2 > 0 by integration. Replacing n
by nκ for 0 < κ < 1/2 in the coupling of the previous section guarantees

that ξ̂k(ω̂
′) = ξ̂k(ω̂

′′) a.s. for k ≥ nκ and n large enough with the appropriate
configurations ω̂′ and ω̂′′. Using Minkowski’s inequality and limn→∞ n

κ−1/2 =
0, one sees that the IP for Ŝ[nt] is valid also on (Ω̂1,B(Ω̂1), µ0). By [1],

Theorem 17.1, we have that n−1/2Ẑbϑnt
converges weakly to σ̂%̂−1/2Wt. Noting

that Q̂t =
∑bϑt

k=1 ξ̂k +
∫ tbtbϑt

V̂sds it follows that |Ŝ[nt]− Ŝbϑnt
| ≤ n−1/2|ξ̂0bϑnt+1

| and

by Chebyshev’s inequality this converges in probability µ0 (resp. µ̂) to zero as

n→∞ uniformly in t yielding the IP for (Q̂t)t∈R+ , i.e. n−1/2Q̂[nt] converges
weakly on Skorokhod space to σ̃Wt with σ̃ = σ̂%̂−1/2 > 0. Again as already
mentioned at the beginning, the IP holds for M1 in the same way by changing
from interdistances to interarrival times and Corollary 3.3.2 is proven.

34



References

[1] Billingsley, P.: Convergence of probability measures. Wiley 1968.
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