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comentários sobre o presente trabalho.

Também agradeso a muitas outras pessoas que não cito nestes agradecimen-
tos, mais com quem meu coração esta igualmente grato, a amizade que tem me
ofrecido com certeza tem contribuido também a convertir este trabalho numa
realidade.

O tempo dividido com cada um deles eles, entre discussoẽs sobre matemática
e outros aspectos da vida tem feito da minha passagem pelo IMPA uma das
melhores experiências de minha vida. Todos eles fizeram os tempos dif́ıceis mais
amenos e os bons momemtos tornaran-se inesqueḉıveis. Agradeço a vida ter
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Introduction

A crucial problem in financial mathematics is that of pricing derivative contracts
under realistic assumptions. Among these contracts are the so-called options. An
option gives its holder the right, but not the obligation, to buy or sell a certain amount
of a financial asset, by a certain date, for a certain strike price. The writer of the option
must specify:

• The type of the option: If the option is to buy it is named a call whereas if the
option is to sell it is called a put. These two are called vanilla options.

• The underlying asset: Typically, it is a stock, a bond, a currency, or an index;

• The amount of the underlying to be purchased or sold;

• The expiration date of the contract; if the option can be exercised at any date
before maturity, it is called an American option but, if it can only be exercise at
maturity, it is called a European option;

• The strike price at which the transaction is performed if the option is exercised.

Let us examine the case of a European call option on a given stock. We will assume
that the price of the stock at time t is given by Xt where X = {Xt}t≥0 is a stochastic
process in some probability space. Let us assume also that we fixed an initial time
t0 when the value of Xt is x, i.e., Xt0 = x. Let us call T the expiration date and K
the exercise price. Obviously, if K is greater than XT , the holder of the option has no
interest whatsoever in exercising the option. But, if XT > K, then the holder makes
a profit of XT −K by exercising the option, i.e., buying the stock for K and selling it
back on the market at XT . Therefore, the value of the call at maturity is given by

(XT −K)+ = max(XT −K, 0).

Actually, we are interested in the price of the option at an initial time t0. Obviously,
at this moment in time we do not know the value (XT −K)+, since it is also a random
variable.
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The ground-breaking work of Black-Scholes [BS73] and the analysis of Merton
[Mer73], by means of a general approach based on reasonable simplifying assump-
tions, led to pricing formulas for the vanilla options. In their model, they realized that,
at time t0, the price of the European call of our discussion is completely determined
despite the random character of the payoff (XT − K)+ at the maturity time T . In
order to introduce the forthcoming ideas of this work and to prepare the notation let
us develop informally some ideas concerning the fair pricing of a call option.

At a first glance, and without no prior information, the conditional expected value
of the quantity (XT −K)+

Ũ = E[(XT −K)+|Xt0 = x] , (1)

would be a good guess for the value of the payoff (XT−K)+ at time T . Under the usual
assumption of riskless borrowing at an interest rate r, such value should be brought to
present value and thus, at time t0, the price Û of the option would be

Û = e−r(T−t0)E[(XT −K)+|Xt0 = x] . (2)

However, a very important point is the fact that actually the expectation in Equa-
tion (2) must be computed not with respect to the probability measure P, associated
to the random dynamics that models the stock dynamics of Xt (physical measure), but
with respect to an equivalent measure. This measure is characterized by the property
that for the discounted stock price process St = e−r(t−t0)Xt we have that the conditional
expectations E[St2|St1 ] for t0 ≤ t1 ≤ t2 ≤ T satisfy the property

E[St2|St1 ] = St1 . (3)

We then say that the discounted stock price process St satisfies the martingale property
with respect to this new probability measure Q called the risk neutral measure (r.n.m)
or the martingale measure. The main point being that any of the two situations where

EQ[St2|St1 ] ≶ St1 , (4)

is equivalent to the fact of having a positive probability of an arbitrage opportunity.
Intuitively, if it happens that

EQ[St2|St1 ] < St1 ,

then with a positive probability the value St2 would be less than St at time t = t1. So
it would be better for someone to sell short the stock at t1 and deposit this amount St1

in the bank. At time t2 he will have er(t2−t1)St1 > St1 which he can use to return the
stock that is now worth St2 . Thus, with nonzero probability the investor would have
made a profit. For a precise definition of non-arbitrage and a proof of the statement
above see [Duf01, Sch03, KK01].
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One of the main results of Black and Scholes[BS73] is that the price function Û
in (2) defined as function of the stock price x and a time before maturity t < T , i.e.

Û(x, t)1 satisfies the final value problem:

∂Û

∂t
+
σ2x2

2

∂2Û

∂x2 + r(x
∂Û

∂x
− Û) = 0, 0 < x <∞,

Û(x, T ) = (x−K)+.

(5)

In the Black-Scholes (BS) model it is assumed that, under the risk neutral measure,
the stock evolves according to the following stochastic differential equation (SDE):

dXt = rXtdt+ σXtdW
Q
t ,

Xt0 = x.
(6)

Here, WQ
t is the Brownian motion w.r.t. Q and the positive constants r and σ are the

interest rate and the volatility, respectively.

Thus, in general the solution U of (5) depends also on the other parameters of the
model

U(x, t) = UBS(x, t, T,K, r, σ2). (7)

It turns out that, if we fix all the other arguments but the volatility, the dependence
of UBS on σ defines a 1−1 map from R+ onto its range. By implied volatility we mean
the inverse of such map. Thus, the implied volatility of a traded option is the volatility
value that, substituted into the Black-Scholes equation, produces the known price of
the option. It is a standard practice in the market to compare option prices by means
of their implied volatilities.

Despite its power and impact, the BS model has a number of drawbacks. For
example, the implied volatility should be a constant independent of the strike price K
and the time to expiration. This, however, is not verified in practice. A number of
more realistic models have been suggested in order to mitigate such problems. Among
such models, stochastic volatility ones have gained tremendous popularity in the past.

For stochastic volatility models (SVM) it is assumed that the stock price satisfies
the following stochastic differential equation

dXt = µXtdt+ σtXtdWt , (8)

where, in contrast to the BS model which assumes that the parameter σ is constant, the
volatility evolves according to a stochastic process of the form σt = σ(Yt), where σ(·)
is dependent on another suitable stochastic process Y = {Yt}t≥0. We will concentrate
ourselves on the case where Y is an Ornstein-Uhlenbeck (OU) type process. In other
words, Y satisfies the SDE

dYt = α(m− Yt)dt+ βdŴt, (9)

1These variables (x, t), would correspond to (x, t0) in formula (2).
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where Ŵt is another Brownian motion possibly correlated to Wt, so we can assume
that dŴ = ρdWt + (1− ρ2)1/2dZt, were Zt is a Brownian motion independent of Wt.

Among other features, the process Y given by (9) is normally distributed and has
a tendency to revert back to its long-run mean level m, with a velocity that depends
on the coefficients α and β.

Despite its elegance, pricing in stochastic volatility models is substantially more
complicated. In this context, the market is no longer complete and thus we do not have
a unique equivalent risk neutral measure as in the BS model [Duf01]. Such measures
are parameterized by functions of the form γ = γ(x, y, t). For each such risk neutral
measure Qγ, the price evolves according to

dXt = rXtdt+ σ(Yt)XtdW
1
t ,

Xt0 = x,

dYt =
(
α(m− Yt)− βΛ(Xt, Yt, t)

)
dt+ β(ρdW 1

t + (1− ρ2)1/2dW 2
t ),

Yt0 = y .

(10)

Here, Λ(x, y, t) = ρµ−r
σ(y)

+(1− ρ2)1/2γ(x, y, t) and as usual W 1
t and W 2

t are independent
Brownian motions.

The option price U in such model is a solution to the partial differential equation
[FPS00]

Ut +
σ(y)2x2

2
Uxx +

β2

2
Uyy + ρβxσ(y)Uxy+

(α(m− y)− βΛ(x, y, t))Uy − r(xUx − U) = 0 ,

U(x, y, T ) = (x−K)+ ,

(11)

where

Λ(x, y, t) = ρ
µ− r

σ(y)
+ γ(x, y, t)

√
1− ρ2 .

Let us note in Equation (11) that now the price function U(x, y, t,K, T ) depends on the
volatility level y at time t. In Equation (11), γ(·) is termed the market price of volatility
risk or more succintly the risk premium 2. For a justification of this terminology, in
loose terms, (small) increases in the volatility risk β leads to increases in the rate of
return on the option price by a factor proportional to γ. More precisely, we have, using
Itô formula and Eq. (11), that

dU(Xt, Yt, t) =
[µ− r

σ(Yt)

(
Xtσ(Yt)

∂U

∂x
+ βρ

∂U

∂y

)
+ rU + γβ(1− ρ2)1/2∂U

∂y

]
dt

+
(
Xtσ(Yt)

∂U

∂x
+ βρ

∂U

∂y

)
dWt + β(1− ρ2)1/2∂U

∂y
dZt.

2 See Section 2.5 of [FPS00].
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One of the difficulties with stochastic volatility models is the choice of a suitable
risk premium function γ. One approach to circumvent such difficulty is to consider
practical situations whereby one prices the options as asymptotic perturbations of the
standard BS model and computes the corrections directly from market data without
having to estimate the risk neutral measure. This approach was pursued by Fouque,
Papanicolaou, and Sircar in a series of works [FPS00, FPSS03a, FPSS03b]. It relies
heavily on the hypothesis of fast mean reversion, i.e., α >> 1 of the Ornstein-Uhlenbeck
process Yt that models the volatility in (10). This hypothesis, although verified in a
number of markets, is not always true. This leads to the natural question of how
to estimate the risk premium γ from market data, as well as, how to compute the
sensitivity of the prices with respect to its change. More precisely, we are naturally led
to the following questions:

i How smoothly do the prices depend on γ?

ii How sensitive are the prices on γ and how to compute the sensitivity of the prices
with respect to γ?

iii Does the knowledge of the prices determine γ uniquely, or, is there some local
uniqueness?

iv How to estimate γ ?

In this thesis we settle Question 1 above by showing analyticity in suitable function
spaces for the case where γ is independent of x. We also compute the functional
derivative of the price w.r.t. to γ in suitable spaces by means of both PDE techniques
and Malliavin calculus techniques, thus addressing Question 2.

Finally, we discuss Questions 3 and 4. In this part we are concerned with the
practical problem of calibrating or estimating the risk premium γ in Equation (11)
assuming that we have at our disposal knowledge of the solution U(x, y, t).

One might be tempted to consider a direct approach to estimating the coefficients
of (11). For example, by directly solving for γ. However, this has several drawbacks.
In practice, we do not know the function U(x, y, t) for all values of y. Furthermore,
differentiation is an ill-posed operation and any noise in the data may contaminate the
results. Thus, we are forced to apply regularization techniques to our problem within
the scope of inverse problem theory [HH03, Cré03, BI99, CT06].

Let us state the main objectives of this work:

i To establish the main property of analyticity of the map Γ : γ → U in appropriate
function spaces. This will be exploited, for example in order to devise iterative
methods to handle the calibration problem.

ii To consider an iterative technique to tackle the inverse problem, we focused on
the framework of classical Landweber regularization [BL05, EHN96, Sch95]. This
involves computing the functional derivative of the map Γ : γ → U .
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iii To explore the use of a stochastic variational calculus, namely Malliavin calcu-
lus, to carry out the computation of the functional derivative mentioned above
and compare this approach with that of classical calculations using partial dif-
ferential equations. Let us remark the fact that Malliavin calculus has been
applied recently by E. Fournié, J.-M. Lasry, J. Lebuchoux, N. Touzi and P.-L.
Lions to compute the so-called option greeks,3 for some option pricing models
[FLLL01, FLL+99], see also [Ben02, Lio00].

iv To design a thorough strategy to invert the operator Γ, that would be suitable
to numerical implementation. To accomplish this, it may be helpful to have as
much understanding as possible of the mechanism of the direct map Γ that sends
the function γ to the corresponding solution U(x, y, t) of (11). Other examples of
applications of inverse problems to mathematical finance can be found in [HH03,
Cré03, BI99, CT06].

Let us also give here a brief description of the contents of this thesis.

Chapter 1 consists of background material to keep this work as self contained as
possible. It starts with a short introduction to Malliavin calculus. It will be used later
to compute the Fréchet derivative of Γ(γ). We introduce the notion of the derivative
of random variables defined on a Gaussian probability space, and a few of its proper-
ties that will allow us to perform some calculations. In this chapter, there is also a
reference to Girsanov’s theorem and the relation between partial differential equations
and stochastic differential equations (SDEs).

In Chapter 2, it is proved that the operator Γ(γ) is differentiable, and indeed it
is analytic in a suitable space. The rest of the chapter is devoted to finding a way of
computing the Fréchet derivative ∂Γ

∂γ
through the use of Malliavin calculus and to see

if such approach would provide any advantage with respect to traditional methods of
calculation using partial differential equations.

In Chapter 3, we try to design a strategy to handle the inversion of the map Γ :
γ → U in the case when the Brownian motion of the asset price process Xt and that of
the volatility process Yt are uncorrelated, i.e, ρ = 0. We discuss whether the technique
based on Malliavin calculus to compute functional derivatives developed in Chapter 2,
can be used in the numerical treatment of the reconstruction problem. The chapter
ends with a short note suggesting how to deal with inversion problem in the more
difficult correlated case where ρ 6= 0.

We close with some conclusions and suggestions for further research in Chapter 4.

3The option greeks are derivatives of the option prices with respect to different quantities of interest.
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CHAPTER 1

Some Analytical Tools

In this chapter we will give an introduction to some notions of Malliavin Calculus.
We will focus on what is needed for the purpose of the sequel. We follow closely the
exposition in [Nua06]. Good references for the prerequisites in stochastic calculus for
this chapter and the others are [Øks03, Kar88, Fri75]. For applications of Malliavin
calculus to mathematical finance see:[FLL+99, Ben02, Lio00].

Consider the separable Hilbert space H = L2(T,B, λ) where (T,B) is a measurable
space formed by an interval T = [0, T ] ⊂ R with the Borel σ-algebra B, and the
Lebesgue measure λ defined on B.

We consider the class of stochastic Itô integralsW (h) :=
∫ T

0
h(s)dWs of the elements

h ∈ H with respect to the canonical Brownian motion Ws defined on Ω = C0([0, T ];R)
and with associated probability measure P . Let F denote the σ-algebra generated by
all the random variables of the formW (h), h ∈ L2(T,B, λ). Now letW (A) := W (1A),
where A ∈ B and 1A is its characteristic function. Note that we can think of W as an
L2(Ω,F , P )-valued measure on the parameter space (T,B) which takes independent
values (in the stochastic sense) on any family of disjoint Borel subsets of T , and such
that any random variable W (A) is distributed as N(0, λ(A)) if λ(A) < ∞. We will
call W a Gaussian measure, (or Brownian) in (T,B). This measure is also called white
noise based on λ.

1.1 The Derivative Operator

We want to introduce the derivative DF of a square integrable random variable
F : Ω −→ R. This means that we want to differentiate F with respect to the parameter
ω ∈ Ω. In the usual applications of this theory, the random variables F are only defined
P -almost-everywhere (a.e) and do not possess a continuous version. For this reason,
we will introduce a notion of derivative in a weak sense. We denote by C∞p (Rn) the set
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of all continuously differentiable functions f : Rn −→ R such that f and all its partial
derivatives have polynomial growth.

Let S denote the class of smooth random variables F ∈ S of the form

F = f(W (h1), . . . ,W (hn)), (1.1)

where f belongs to C∞p (Rn), and h1, . . . , hn are in H = L2(T,B, λ) for n ≥ 1. We will
denote by Sb and S0 the classes of smooth random variables of the form (1.1) such
that the function f belongs to C∞b (Rn) and to C∞0 (Rn) respectively. Here f ∈ C∞b
means that f is infinitely differentiable and is bounded together with all its partial
derivatives, f ∈ C∞0 (Rn) means that f is infinitely differentiable and has compact
support. Moreover, we will denote by P the class of random variables of the form
(1.1), such that f is a polynomial. Note that P ⊂ S, S0 ⊂ Sb ⊂ S and that P and S0

are dense in L2(Ω).

Definition 1. The derivative of a smooth random variable of the form (1.1), is the
stochastic process {DtF}t∈T given by

DtF =
n∑

i=1

∂f

∂xi

(W (h1), . . . ,W (hn))hi(t). (1.2)

For example, DtW (h) = h(t). We will consider DF as an element of L2(T × Ω) ∼=
L2(Ω;H). In order to interpret DF as a directional derivative, note that for any
element h ∈ H we have

〈DF, h〉H = lim
ε→0

1

ε
[f(W (h1) + ε〈h1, h〉H , · · · ,W (hn) + ε〈hn, h〉H)

− f(W (h1), · · · ,W (hn))].

An important example: Consider the Brownian motion on the interval [0, 1], so that
Ω is the canonical space Ω = C0([0, 1];R). In this case, 〈DF, h〉H can be interpreted
as a directional Fréchet derivative. In fact, let us introduce the subspace H1 of Ω
which consists of all the absolutely continuous functions x : [0, 1] → R, with a square
integrable density, i.e. x(t) =

∫ t

0
ẋ(s)ds, ẋ ∈ H = L2([0, 1];R). The space H1 is usually

called the Cameron-Martin space. We can transport the Hilbert space structure of H
to H1 by putting

〈x, y〉H1 = 〈ẋ, ẏ〉H =

∫ t

0

ẋ(s)ẏ(s)ds.

Thus, H1 becomes a Hilbert space isomorphic to H. The injection of H1 into H is
continuous, since we have

sup
0≤t≤1

|x(t)| ≤
∫ 1

0

|ẋ(s)|ds ≤ ‖ẋ‖ = ‖x‖H1 .
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Consider a smooth functional of the particular form F = f(W (t1), . . . ,W (tn)), f ∈
C∞p (R), 0 ≤ t1 ≤ · · · < tn ≤ 1, where W (ti) =

∫ ti
0
dWs = W (1[0,ti]). Notice that

such functional is continuous in Ω. Then, for any function h ∈ H, the scalar product
〈DF, h〉H coincides with the directional derivative of F in the direction of the element∫ ·
0
h(s)ds which belongs to H1. In fact

〈DF, h〉H =
n∑

i=1

∂f

∂xi

(W (t1), . . . ,W (tn))〈1[0,ti], h〉H

=
n∑

i=1

∂f

∂xi

(W (t1), . . . ,W (tn))

∫ ti

0

h(s)ds

=
d

dε

[
F (ω + ε

∫ ·

0

h(s)ds)

]

ε=0

.

The following result is an integration-by-parts formula, which will play an important
role.

Lemma 1. Suppose that F is a smooth functional and h ∈ H = L2(T ). Then,

E[〈DF, h〉H ] = E[FW (h)]. (1.3)

Proof: First notice that we can normalize Eq (1.3) and assume that the norm of
h is one. There exist orthonormal elements of H, say e1, . . . , en , such that h = e1 and
F is a random variable of the form

F = f(W (e1), . . . ,W (en)),

where f is in C∞p (R). Let φ(x) denote the density of the standard normal distribution
on Rn, that is,

φ(x) = (2π)−
n
2 exp(−1

2

n∑
i=1

x2
i ).

Then, we have,

E[〈DF, h〉H ] =

∫

Rn

∂f

∂x1

(x)φ(x)dx

=

∫

Rn

f(x)φ(x)x1dx

= E[FW (e1)] = E[FW (h)].

Remark : We can see from Lemma 1 that the operator D is closable as an operator
from Lp(Ω) into Lp(Ω;L2(T )) so it makes sense to use the following conventions:

We will denote the domain of D in Lp(Ω) by D1,p, meaning that D1,p is the closure
of the class of smooth random variables S with respect to the norm

‖F‖1,p =

[
E[|F |p] + E[‖DF‖p

L2(T )]

] 1
p

.
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For p = 2, the space D1,2 is a Hilbert space with the scalar product

〈F,G〉1,2 = E[FG] + E[〈DF,DG〉H ].

More generally, we can introduce iterated derivatives of k-times weakly differentiable
random variables. If F is a smooth random variable and k is an integer, we set

Dk
t1,...,tk

F = Dt1Dt2 · · ·DtkF.

Note that for a smooth random variable F , the derivative DkF is considered as a
measurable function on the product space T k × Ω, which is defined a.e. with respect
to the measure λk × P . Then, for every p ≥ 1 and any natural number k we introduce
the seminorm on S defined by

‖F‖k,p =
[
E[|F |p] +

k∑
i=1

E[‖DiF‖p
L2(T )]

] 1
p
. (1.4)

This family of seminorms satisfies the following properties:

• Monotonicity : ‖F‖k,p ≤ ‖F‖j,q, for any F ∈ S, if p ≤ q and k ≤ j.

• Closability : The operator Dk is closable from S into Lp(Ω;H⊗k).

• Compatibility : Let p, q ≥ 1 be real numbers and k, j be natural numbers. Suppose
that Fn is a sequence of smooth random variables such that ‖Fn‖k,p converges to
zero as n tends to infinity, and ‖Fn − Fm‖j,q tends to zero as n and m tend to
infinity. Then ‖Fn‖j,q tends to zero as n tends to infinity; This is a consequence
of the closability of the operators Di, i ≥ 1 on S.

The completion of the family of smooth random variables S with respect to the
norm ‖ · ‖k,p is denoted by Dk,p. and it follows from the first property above that
Dk+1,p ⊂ Dk,q if k ≥ 0 and p > q.

Now, we will state the chain rule. It can be easily proved by approximating the random
variable F by smooth random variables and the function φ by (φ ∗ ψε)cM , where {ψε}
is an approximation of the identity and cM is a C∞ function such that 0 ≤ cM ≤ 1,
cM = 1 if |x| ≤M and cM = 0 if |x| ≥M + 1.

Proposition 1. Let φ : Rm → R be a continuously differentiable function with bounded
partial derivatives, and p ≥ 1. Suppose that F = (F 1, . . . , Fm) is a random vector
whose components belong to the space D1,p. Then, φ(F ) ∈ D1,p and

D(φ(F )) =
m∑

i=1

∂φ

∂xi

(F )DF i. (1.5)
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The next result concerns the derivative of a conditional expectation with respect
to a σ-field generated by Gaussian stochastic integrals. Let A ∈ B, denote by FA the
σ-field (completed with respect to P ) generated by the random variables {W (B) : B ⊂
A and B ∈ B}.
Proposition 2. Suppose that F belongs to D1,2, and let A ∈ B. Then, the conditional
expectation E[F |FA] also belongs to the space D1,2 and we have

Dt(E[F |FA]) = E[DtF |FA]1A(t),

a.e. in T × Ω.

Remark: In particular, if F belongs to D1,2 and is FA-measurable, then DtF is
zero a.e. in Ac × Ω.

1.2 The Skorohod Integral

In this section, we will consider the adjoint of the derivative operator and we will
show that it coincides with a generalization of the stochastic integral introduced by
Skorohod in [Sko75].

Definition 2. We denote by δ the adjoint of the operator D. That means δ is an
unbounded operator on L2(T × Ω) with values in L2(Ω) such that:

• The domain of δ, denoted by Dom(δ), is the set of processes u ∈ L2(T ×Ω) such
that ∣∣∣∣E[

∫

T

DtFutλ(dt)]

∣∣∣∣ ≤ c‖F‖2, (1.6)

for all F ∈ D1,2, where c is some constant depending on u.

• If u belongs to Dom(δ), then δ(u) is the element of L2(Ω) characterized by

E[Fδ(u)] = E[

∫

T

DtFutλ(dt)], (1.7)

for any F ∈ D1,2.

We refer to the operator δ as the Skorohod stochastic integral of the process u. It
transforms square integrable processes into random variables. The following notation
is usual:

δ(u) =

∫

T

utδWt.

14



1.2.1. Properties of the Skorohod Integral

We will now state some properties of the Skorohod integral that are common in
calculations that apply Malliavin calculus to mathematical finance. We suggest the
interested reader to go to [Nua06], for the ditails.

First notice that the Skorohod integral has zero mean, that is, E[δ(u)] = 0 if
u ∈ Dom(δ) and that δ is a linear operator on Dom(δ).

i Integration of Smooth Elementary Processes .
We denote by SH the class of smooth elementary processes of the form

u(t) =
n∑

i=1

Fihi(t),

where the Fi are smooth random variables, and the hi are elements of H = L2(T ).
From the integration-by-parts formula established in Lemma 1, we deduce that
a process of this type is Skorohod integrable and moreover that

δ(u) =
n∑

i=1

FiW (hi)−
n∑

i=1

∫

T

DtFihi(t)λ(dt). (1.8)

We see here that the Skorohod integral of a smooth elementary process can be
decomposed into two parts, one that can be considered as a pathwise integral and
another one that involves the derivative operator. We remark that if for every
i, the function hi is an indicator 1Ai

of a set Ai ∈ B, and Fi is FAc
i
-measurable,

then by the remark after Proposition 2, the second summand of equation (1.8),
vanishes and the Skorohod integral of u is just the first summand of (1.8).

Definition 3. We denote by L1,2, the class of processes u ∈ L2(T × Ω) such
that u(t) ∈ D1,2 for almost all t and there exists a measurable version of the two
parameter process Dsut verifying

E[

∫

T

∫

T

(Dsut)
2λ(ds)λ(dt)] <∞

L1,2 is a Hilbert space with the norm

‖u‖2
1,2 = ‖u‖2

L2(T×Ω) + ‖Du‖2
L2(T 2×Ω),

it can be seen that L1,2 is isomorphic to L2(T ;D1,2), and it is shown that L1,2 ⊂
Dom(δ).

ii Commutativity Relation Between the Derivative and the Skorohod Integral.
Suppose that u is a process in the space L1,2. We assume that for almost all t the
process {Dtus}s∈T is Skorohod integrable and there is a version of the process

15



{ ∫
T
(Dtus)δWs

}
t∈T

which is in L2(T × Ω). Then, the Skorohod integral δ(u)

belongs to D1,2, and we have

Dtδ(u) = ut +

∫

T

(Dtus)δWs. (1.9)

iii The Skorohod Integral of a Process Multiplied by a Random Variable.
Suppose that u is a Skorohod integrable process. Let F be a random variable in
the space D1,2 such that E[F 2

∫
T
u2

tλ(dt)] <∞. Then it holds that

∫

T

(Fut)δWt = F

∫

T

utδWt −
∫

T

(DtF )utλ(dt), (1.10)

in the sense that Fut is integrable if the right-hand side of (1.10) belongs to
L2(Ω).

iv The Itô Stochastic Integral as a Particular Case of the Skorohod In-
tegral .

Recall that for A ∈ B we denote by FA the σ-algebra σ({W (B) : B ⊂ A,B ∈ B}).
Lemma 2. Let A ∈ B and let F be a square integrable random variable which is
measurable with respect to the σ-algebra FAc. Then, the process F1A is Skorohod
integrable and

δ(F1A) = FW (A).

Proof: By (1.10) and the remark after Proposition 2 we have

δ(F1A) = FW (A)−
∫

T

DtF1A(t)λ(dt) = FW (A).

Using this lemma we can show that the operator δ is an extension of the Itô
integral in the case of Brownian motion. Let W = {Wt}t∈[0,1] be Brownian
motion. We denote by L2

a the closed subspace of L2([0, 1] × Ω;R) ∼= L2(T × Ω)
formed by the adapted process, i.e, processes measurable with respect to the σ-
algebra F[0,t], where F[0,t] includes all the information until the time t. Then, we
have the following:

Proposition 3. L2
a ⊂ Dom(δ), and the operator δ restricted to L2

a coincides with
the Itô integral. That is,

δ(u) =

∫ 1

0

utdWt. (1.11)
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Proof : Assume that u is an elementary adapted process of the form

ut =
n∑

i=1

Fi1(ti,ti+1](t),

where Fj ∈ L2(Ω,Fti , P ;R), and 0 ≤ t1 < · · · < tn+1 ≤ 1 with Ft = F[0,t]. Then,
from the above lemma we obtain u ∈ Dom(δ) and

δ(u) =
n∑

i=1

Fi(W (ti+1)−W (ti)). (1.12)

We know that any process u ∈ L2
a can be approximated in the norm of L2(T ×Ω)

by a sequence un of elementary adapted processes. Then by (1.12), δ(un) is equal
to the Itô integral of un and it converges in L2(Ω) to the Itô integral of u. Since
δ is closed we deduce that u ∈ Dom(δ) and δ(u) is equal to the Itô integral of u.

v Stochastic Integral Representation of Wiener Functionals .

Assume that W = {Wt}t∈[0,1] is the canonical Brownian motion, it is well known
that any square integrable random variable F , measurable with respect to the
σ-algebra generated by W , can be written as

F = E[F ] +

∫ 1

0

φ(t)dWt,

where the process φ belongs to L2
a. When the variable F belongs to the space

D1,2, it turns out that the process φ can be identified as the optimal projection
of the derivative of F . This is called the Clark-Ocone representation formula.

Proposition 4. Let F ∈ D1,2, and assume that W is one dimensional Brownian
motion. Then

F = E[F ] +

∫ 1

0

E[DtF |Ft]dWt. (1.13)

1.3 Differentiability of Solutions to SDEs

Now we want to state some facts about the differentiability in the sense of Malliavin
of solutions to stochastic differential equations. Let us consider the following SDE,

X(t) = x0 +

∫ t

0

B(s,Xs)ds+
d∑

j=1

∫ t

0

Aj(s,Xs)dW
j
s , (1.14)

where Aj, B : [0, T ] × Rm → Rm, for 1 ≤ j ≤ d are measurable functions. We
assume that the functions A and B satisfy the suitable conditions for the existence of
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solutions to (1.14). Suppose, as usual, that (Ω,F , P ) is the canonical probability space
associated with a d-dimensional Brownian motion {W i

t , t ∈ [0, T ], 1 ≤ i ≤ d}. We will
use the convention of summation over repeated indices. The next result describes the
“perturbations” of the solutions to (1.14).

Proposition 5. Let X be the solution of the stochastic differential equation (1.14),
and suppose that the coefficients Ai

j, B
i are continuously differentiable functions with

bounded derivatives. Then, Xt belongs to D1,p for p ≥ 1, i = 1, . . . ,m, and all t ∈ [0, T ].
The derivatives satisfy the following SDE:

Dj
rX

i
t = Ai

j(r,Xr) +

∫ t

r

(∂kB)(s,Xs)D
j
rX

k
s ds

+

∫ t

r

(∂kA
i
l)(s,Xs)D

j
rX

k
s dW

l
s (1.15)

As a consequence, the next result shows in the case of an Itô process how to compute
its “first variation”.

Proposition 6. Let {Xt}t≥0 be an m-dimensional Itô process whose dynamics is driven
by the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt,

where b and σ are assumed to be continuously differentiable functions with bounded
derivatives. Let {Yt}t≥0 be the associated first variation process defined by the stochastic
differential equation1

dYt = b′(Xt)Ytdt+
m∑

i=1

σ′i(Xt)YtdW
i
t , Y (0) = Im,

where Im is the identity matrix of Rm×m. Then, the process {Xt}t≥0 belongs to D1,2

and its Malliavin derivative is given by

DsXt = YtY
−1
s σ(Xs)1s≤t, s ≥ 0,P-a.e. (1.16)

In connection to the chain rule, Proposition 1, we have that if ψ ∈ C1
b (Rm) then,

Dsψ(XT ) = ∇ψ(XT )YTY
−1
s σ(Xs)1s≤T , s ≥ 0, P-a.e.

and also

Ds

∫ T

0

ψ(Xt)dt =

∫ T

s

∇ψ(Xt)YtY
−1
s σ(Xs)dt, P-a.e.

1Here, primes denote derivatives and σi is the i-th column vector of σ.
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1.4 Girsanov’s Theorem.

We include a short discussion about this theorem so as to be as self contained as
possible. It will be used, in Proposition 7.Ch 2 and Proposition 9.Ch 3. The result
concerns the change of probability measure. As motivation, let us consider a probability
space (Ω,F , P ) and independent normal random variables ξ1, ξ2, . . . , ξn on it. For an
arbitrary vector µ ∈ Rn, introduce a new measure P̃ on (Ω,F) by

P̃ (dω) = exp

{ n∑
i=1

µiξi(ω)− 1

2

n∑
i=1

µ2
i

}
· P (dω),

which is actually a probability since

P̃ (Ω) = e−
1
2

Pn
i=1 µ2

i ·
n∏

i=1

E[eµiξi ] = 1.

The question now is, what is the distribution of (ξ1, . . . , ξn) under P̃ ?.

We have

P̃ [ξ1 ∈ dz1, . . . , ξn ∈ dzn] = exp(
n∑

i=1

µizi − 1

2

n∑
i=1

µ2
i ) · P [ξ1 ∈ dz1, . . . , ξn ∈ dzn]

= (2π)−
n
2 exp

{
− 1

2

n∑
i=1

(zi − µi)
2

}
dz1 . . . dzn.

In other words, under P̃ the random variables (ξ1, . . . , ξn) are independent, and ξi ∼
N (µi, 1). Equivalently, setting ξ̃i = ξi − µi, for 1 ≤ i ≤ n, the random variables
(ξ̃1, . . . , ξ̃n) under P̃ have the same law as the random variables (ξ1, . . . , ξn) under P
(namely independent and standard normal). The following result extends this idea to
processes, and it is of great importance in stochastic analysis.

Theorem 1 (Girsanov.). Let W = {Wt,Ft; 0 ≤ t ≤ T} be d-dimensional Brownian
motion, X = {Xt,Ft; 0 ≤ t ≤ T} a measurable, adapted, Rd-valued process with∫ T

0
‖Xt‖2dt <∞, P-a.e., and suppose that the exponential super martingale Z,

Zt = exp
( ∫ t

0

XsdWs − 1

2

∫ t

0

‖Xs‖2ds
)
,

is actually a martingale, i.e,
E[ZT ] = 1. (1.17)

Then, under the measure
P̃ (dω) = ZT (ω)P (dω), (1.18)

which is actually a probability by virtue of (1.17), the process

W̃t = −
∫ t

0

Xsds+Wt, Ft; 0 ≤ t ≤ T, (1.19)

is a d-dimensional Brownian motion.
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Remark: The Novikov condition

exp
( ∫ T

0

‖Xs‖2ds
)
<∞,

is sufficient for Zt to be a martingale. So in particular, this is the case if Xt is bounded.
See [Øks03, KS91, Fri75] and the references therein for more material on Girsanov’s
theorem.

20



1.5 Parabolic Operators and their Relation with Stochastic Differ-
ential Equations.

In this section, we describe a theme that will play an important role in Chapter 3.
References for this section are [Øks03, KS91, Fri64]. The main goal here is to give an
intuitive idea of the results that will allow us to perform some formal calculations.

As motivation let us assume we are given an Itô diffusion in Rn, {Xx,t0
t } starting

at point x in the space, at time t = t0. Since an Itô diffusion is a Markov process, we
may consider the transition densities ψ(X, t; x, t0) and compute for any Borel set B in
Rn the probability of XT to belong to B as

Pr(XT ∈ B) =

∫

B

ψ(x̄, T ;x, t)dx̄.

Due to the Markov property, it is also possible to define a semigroup of operators
{Gt}t≥0 parametrized by t ≥ 0, that act on functions f ∈ C(Rn) as

Gt : f → Ex,0[f(Xt)],

so all the statements in this section also have interpretations on semigroup theory.

Our main goal in this section is to show that the Markov transitions ψ(x̄, T ; x, t) are
fundamental solutions to certain parabolic equations whose coefficients are linked with
those of the stochastic differential equation satisfied by the diffusion XT and thus are
related with the generator of the one parameter family semigroup mentioned above.

Here, we will follow closely the exposition and notation of [Øks03]. We refer the
reader to the books [Fri75, KS91] for more details on this topic.

Definition 4. A (time-homogeneous) Itô diffusion is a stochastic process

Xt(ω) = X(t, ω) : [0,∞)× Ω −→ Rn

satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ t0,

X(t0) = x.

(1.20)

Here, Wt is the m-dimensional Brownian motion and the functions

b : Rn −→ Rn, σ : Rn −→ Rn×m,

satisfy the following uniform Lipschitz condition

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y| x, y ∈ Rn,

where |σ|2 =
∑

|σi,j|2.
(1.21)
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Remarks:

• The condition (1.21) is sufficient to ensure existence and uniqueness of solutions
to (1.20).

• Since the functions b and σ do not depend on t, the diffusion becomes homoge-
neous in time, in the sense that the probability density ψ(x̄, t2 + h; x, t1 + h) for
t2 > t1 > 0 and h > 0 does not depend on h.

Definition 5. The Infinitesimal Generator of a Diffusion.

Let {Xx,0
t } be a time-homogeneous Itô diffusion in Rn. The (infinitesimal) generator

A of {Xt} is defined for f in its domain by

Af(x) = lim
t↓0
Ex,0[f(Xt)]− f(x)

t
, x ∈ Rn. (1.22)

Here the notation Ex,0 means that we take the expectation of the diffusion {Xx,0
t }, such

that X(0) = x, i.e, it starts at x at time t = 0.

The set of functions f : Rn → R such that the limit exists at x is denoted by DA(x),
while DA denotes the set of functions for which the limit exists for all x ∈ Rn.

Now we have the first theorem:

Theorem 2. Let {Xt} be the Itô diffusion

dXt = b(Xt)dt+ σ(Xt)dWt.

If f ∈ C2
0(Rn), then f ∈ DA and

Af(x) =
∑

i

bi(x)
∂f

∂xi

+
1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj

. (1.23)

Here, σT is the transpose matrix of σ.

Remarks:

• We also assume that the matrix σσT is positive definite.

• The result above and the following are both strongly connected to the Itô formula
for stochastic calculus.

Theorem 3. (Dynkin’s Formula) Let f ∈ C2
0(Rn) then we have

Ex,0[f(Xt)] = f(x) + Ex,0[

∫ t

0

Af(Xs)ds].
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1.5.1. Kolmogorov’s Backward Equations.

In the sequel we let Xt be an Itô diffusion with generator A. If we chose f ∈ C2
0(Rn),

then from Dynkin’s formula we get that the function

U(T, x) = Ex,t[f(XT )],

is differentiable with respect to T and

∂U

∂T
= Ex[Af(XT )] (1.24)

Here, we remark that in our notation Ex,t[f(XT )] is in fact the conditional expectation
of f(XT ) given that Xt = x i.e.

Ex,t[f(XT )] = E[f(XT )|Xt = x].

The right hand side of (1.24) can be also expressed directly in terms of U(T, x).

Theorem 4. Kolmogorov’s Backward Equation. Let f ∈ C2
0 and define

U(T, x) = Ex,t[f(XT )], t < T.

Then, U(T, ·) ∈ DA for each T and

∂U

∂T
= AU,

U(t, x) = f(x), x ∈ Rn.

(1.25)

Now, let us make some remarks about the preceding theorems. At this point we
will develop some formal calculations to give an interpretation of the above facts. Let
us begin with Dynkin’s formula

U(t, x) = Ex,t[f(XT )] = f(x) + Ex,t[

∫ T

t

Af(Xs)ds], (1.26)

Here, we are considering an Itô diffusion {Xx,t
s } that satisfies Xt = x. Let us assume

that we have the transition density of the process Xs for t ≤ s ≤ T namely ψ(X̄, s;x, t).
Substituting ψ into equation (1.26) we see that

Ex,t[f(XT )] =

∫
f(X̄)ψ(X̄, T ; x, t)dX̄ = f(x) +

∫ T

t

∫
AX̄f(X̄)ψ(X̄, s;x, t)dX̄ds,

(1.27)
The indefinite integral being performed over the support of ψ. Thinking of ψ as the
transition probability, it is desirable also that

lim
s↓r or r↑s

ψ(·, s;x, r) = δx(·) for t ≤ r < s ≤ T, (1.28)
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holds either we fixed r and make s ↓ r or fix s and make r ↑ s. Here, δx(X̄) is the
Dirac’s delta measure supported at x. Differentiating (1.27) with respect to T and
applying integration by parts to the right hand side we obtain formally∫

f(X̄)
∂

∂T
ψ(X̄, T ; x, t)dX̄ =

∫
f(X̄)A∗̄Xψ(X̄, T ;x, t)dX̄, (1.29)

where A∗x̄ is the formal adjoint of A, that is,

A∗x̄g(x̄) = −
∑

i

∂

∂x̄i

(big) +
1

2

∑
i,j

∂2

∂x̄i∂x̄j

((σσT )i,jg).

Since equation (1.29) holds for every f ∈ C2
0 , it follows from it and (1.28) that ψ

satisfies
∂ψ

∂T
− A∗x̄ψ = 0,

lim
T↓t

ψ(x̄, T ; x, t) = δx(x̄).

(1.30)

This is what we refered to at the beginning of this section: The Markovian transition
kernel of the diffusion XT namely ψ(x̄, T ;x, t), is the fundamental solution of the
PDE (1.30). But there is more, this kernel also satisfies an equation that involves the
operator A instead of its adjoint A∗ this time in the pair of variables (x, T ). To see
this, we use the Kolmogorov’s backward equation. Rewriting Equation (1.25) in terms
of ψ, it takes the form

∂

∂T

∫
f(x̄)ψ(x̄, T ; x, t)dx̄ = Ax

∫
f(x̄)ψ(x̄, T ; x, t)dx̄.

Proceeding formally, for all f ∈ C2
0 we have∫

f(x̄)
∂

∂T
ψ(x̄, T ;x, t) =

∫
f(x̄)Axψ(x̄, T ;x, t)dx̄.

Therefore, ψ(x̄, T ;x, t) must also satisfy

∂ψ

∂T
− Axψ = 0,

lim
T↓t

ψ(x̄, T, ·, t) = δx̄(·). (1.31)

Now, let us conclude this section describing the solution to the non-homogeneous
equation

∂U

∂t
− AU = V (x, t),

U(x, t0) = 0.

(1.32)
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Here, the operator A is assumed to be uniformly elliptic of the form given in (1.23), to
this we refer to the Duhamel’s principle [Fri64].

Let us solve the final value problem

∂U(x, t; s)

∂t
+ AU(x, t; s) = 0, t < s,

U(x, s, s) = V (x, s).

Inspired by (1.31), we see that U(x, t; s) can be written as

U(x, t, s) =

∫
V (x̄, t)ψ(x̄, s;x, t)dx̄.

Keeping this in mind let us check that the function Ũ(x, s) =
∫ s

t0
U(x, t; s)dt is a

candidate to solve (1.32). Indeed

(
∂

∂s
− Ax)

∫ s

t0

∫
V (x̄, t)ψ(x̄, s; x, t)dx̄dt,

=

∫ s

t0

∫
V (x̄, t)(

∂

∂s
− Ax)ψ(x̄, s; x, t)dx̄dt

+ lim
r↑s

∫
V (x̄, r)ψ(x̄, s;x, r)dx̄ .

(1.33)

On the right hand side of Equation (1.33) the first term vanishes and the second equals
V (x, s).

A similar formula can be found using the same ideas for solutions of equations with
the adjoint A∗.
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CHAPTER 2

Stochastic Volatility Models and Analytic

Properties

Classical Black-Scholes models [BS73], although highly successfull for their simplic-
ity and applicability, have a number of drawbacks [FPS00]. One of such drawbacks is
the fact that the implied volatility determined from real data is not constant. Another
one is that the distribution of real asset prices presents fat tails. There are several
competing models to try to address such shortcomings. It is fair to say that one of the
most competitive ones is the class of stochastic volatility models. Let us consider an
asset with price Xt at the instant t, that evolves according to the following stochastic
differential equation {

dXt = µXtdt+ σtXtdWt,
X0 = x.

(2.1)

Here, µ is the mean return rate, Wt is the Brownian motion, and the volatility follows
the process {σt}. We will refer to the model (2.1) as the diffusion with stochastic
volatility model for the asset price dynamics. We can see that the model (2.1) is indeed
a generalization of the Black-Scholes model where the volatility is now modeled by the
process σt which has its own stochastic dynamics. We are going to consider a mean
reverting stochastic volatility model, it consists of modeling the volatility process σt of
(2.1) by a function of a mean reverting Ornstein-Uhlenbeck process Yt, i.e., σt = σ(Yt)
where:

dYt = α(m− Yt)dt+ βdŴt. (2.2)

Here, m, α and β are positive constants, {Ŵt} is a Brownian motion, and σ(·) is a
positive function of a real variable.

It can be shown that the law of Yt given Y0 is

N
(
m+ (Y0 −m)e−αt,

β2

2α
(1− e−2αt)

)
.
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In other words, it is normally distributed with mean m + (Y0 −m)e−αt and variance
β2

2α
(1− e−2αt). Therefore, m is the limit of the mean value of Yt as t → +∞, and 1/α

is the characteristic time of mean reversion The parameter α is called the rate of mean
reversion. The ratio β2/2α is the limit of the variance of Yt as t→ +∞. See [FPS00]
for more information on this model.

The Brownian motion Ŵt may be correlated with Wt of (2.1), and in the sequel, we
will write:

Ŵt = ρWt +
√

1− ρ2W 1
t .

Here, Wt and W 1
t are two independent Brownian motions, and the correlation factor

ρ lies in [−1, 1].

We will then consider the following dynamics for the asset price in the so-called
physical measure in contrast with the equivalent martingale measure (e.m.m for shortly)
or also called the risk neutral measure in the mathematical finance literature:

dXt = µXtdt+ σ(Yt)XtdWt,

dYt = α(m− Yt)dt+ β(ρ dWt +
√

1− ρ2dW 1
t ). (2.3)

It turns out that in the stochastic volatility context we do not have a complete
market [Sch03, FPS00]. According to the non-arbitrage principle[Sch03, Duf01], one
has to choose an equivalent measure under which the the discounted price of the asset
stochastic process {e−rtXt}t≥0, becomes a martingale for the Brownian filter.

We are interested on the price of a European call option written on the assetXt. The
following modification of (2.3), gives rise in a natural way to several of such equivalent
martingale measures,

dXt =rXtdt+ σ(Yt)XtdW
∗
t , X0 = x,

dYt =[α(m− Yt)− β(
√

1− ρ2γ(Xt, Yt, t) + ρ
µ− r

σ(Yt)
)]dt

+ β(ρdW ∗
t +

√
1− ρ2dW 1∗

t ), Y0 = y,

(2.4)

where

dW ∗
t =

r − µ

σ(Yt)
dt+ dWt,

dW 1∗
t =γ(Xt, Yt, t)dt+ dW 1

t .

System (2.4) describes the dynamics of Xt in the risk neutral measure, here r is the
constant interest rate and the function γ(x, y, t) accounts for the so called risk premium

factor from the second source of randomness Ŵt that drives the volatility. Notice that
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its introduction in the equation for Yt does not change the drift of Xt.

We remark that in the model under consideration we do not have a unique equivalent
martingale measure as in the case of the Black-Scholes model. Thus, option pricing
becomes more difficult. In the model (2.4), the non-uniqueness of martingale measures
is implicit in the fact that we need to choose a function γ(x, y, t), and every such
function gives rise to a particular equivalent martingale measure.
It is known [FPS00] that the price of an European Call option written on the asset
Xt that follows the stochastic volatility dynamics of (2.4), is given by the solution
U(x, y, t) of the following final value problem:

Ut +
σ2(y)x2

2
Uxx +

β2

2
Uyy + ρβxσ(y)Uxy+

(α(m− y)− βΛ(y))Uy − r(xUx − U) = 0 ,

U(x, y, T ) = (x−K)+ .

(2.5)

Here,

Λ(x, y, t) = ρ
µ− r

σ(y)
+

√
1− ρ2γ(x, y, t), and 0 ≤ t < T, x > 0, y ∈ R.

Now we are ready to state, at least informally, our main goal. In principle the
ideal problem we would like to study is that of determining the function γ(x, y, t) from
data of the function U(x, y, t). This is important because in many applications it is
necessary to price other derivatives, such as exotic ones, in a way that is consistent
with the ones that are available in the market. Actually, in this work we will focus on
a particular case of this problem, namely, we are going to deal with the uncorrelated
case. This means that ρ = 0. Furthermore, we will assume that γ depends only on y.
See [SZ06] for some comments on this hypothesis.

Thus, our basic equations for asset dynamics in the risk neutral measure Qγ become:

dXt = rXtdt+ σ(Yt)XtdW
∗
t , X0 = x, (2.6)

dYt = (α(m− Yt)− βγ(Yt))dt+ βdW 1∗
t , Y0 = y,

The price U(x, y, t) of a European call option written on Xt, is

Ut +
σ2(y)x2

2
Uxx +

β2

2
Uyy + (α(m− y)− βγ(y))Uy − r(xUx − U) = 0. (2.7)

U(x, y, T ) = (x−K)+; 0 ≤ t < T, x > 0, y ∈ R. (2.8)

The characterization of the function σ(y) is another very important issue and has
been the subject of extensive analysis [Dup97]. Here, we assume that it is given by the
model of Stein and Stein [SS91] whereby σ(y) = |y|. Many of our ideas can be applied
to other models as well.
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2.1 Statement of the Problem.

First, we will assume that the function γ(y) is Lipschitz continuous and that Equa-
tion (2.6) has a unique strong solution that is well behaved [Øks03]. The assumption
on γ is a rather delicate point, indeed it should be investigated by appropriate finan-
cial arguments which properties the function γ must have in order to make the model
consistent. We will not delve into this question here and rather we will try to leave
the model as general as possible. For example, we would like the process Yt to have
moments of all orders bounded in the time interval under consideration. We are going
to consider the following operator defined formally.

Γ : C(R) ∩ A −→ C(R+,R, [0, T ]) ∩B.

Here, A and B are spaces that will be specified later. The operator Γ is given by:

Γ(γ)(x, y, t) = U(x, y, t) = e−r(T−t)EQγ [(XT −K)+|Xt = x, Yt = y]. (2.9)

So, the operator Γ takes the coefficient γ(y) and maps it to U(x, y, t), the corresponding
solution of (2.8) where γ(y) is taken as a coefficient in the same equation. The last
equality expresses the well known fact of the function U(x, y, t) being the discounted
expected value of the call payoff (x−K)+ evaluated on XT under a risk neutral measure
Qγ associated to the dynamics (2.6).

The inverse problem we are going to consider is then, that of inverting Γ or recover-
ing as much information as posible about γ from Γ(γ). In other words, we assume the
function U(x, y, t), of price data to be given, and we will try to recover a suitable coeffi-
cient γ̃(y) for (2.8) such that Γ(γ̃)(x, y, t) = U(x, y, t). An important point concerning
the inverse problem under consideration is the fact that in practice option prices are
quoted according to their maturity T , and strike price K, and the values of Xt and
Yt would be known at a time t before the expiration date. However, in our approach
we are considering the variables (x, y, t). We will exploit the fact that the option price
function U(x, y, t,K, T ) depends on x and K, through their ratio x

K
. By that we mean

the following: (x1, K1) and (x2, K2) are two pairs such that

x1

K1

=
x2

K2

,

then
U(x1, y, t,K1, T )

K1

=
U(x2, y, t,K2, T )

K2

.

This symmetry of the function U can be verified with the help of Eqs. (2.27), (2.33) and
the Hull-White formula in Section 2.3 and is natural assumption from a dimensional
point of view.

Furthermore, since the equation is homogeneous in time, then U depends on T and
t through their difference τ = T − t. Summing up, we have the following:
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Remark 1. The solution U to the final value problem (2.5) satisfies

U(x, y, t,K, T ) = KG(
x

K
, y, τ), for some function G.

These properties of U allow us to translate data given by quoted prices of (K,T ) into
values of (x, t). In fact, this procedure is equivalent to the standard practice of displaying
the implied volatility as a function of the so-called moneyness ratio X/K.

The above remark leads us to formulate the following theoretical version of the
calibration problem:

Inverse Problem 1. Given the value of U(x, y0, t,K, T ) for all values of x and a given
y0 determine the risk premium γ.

We say this is a theoretical version because in practice we will never have a contin-
uum of data.

The approach we will suggest to invert Γ in a regularized way will be trough the
iterative method of Landweber [BL05, Sch95]. It is defined by the iteration

γk+1(y) = γk(y)− ∂Γ

∂γ

∗
(γk)[Ū − Γ(γk)](y), (2.10)

where the linear operator

∂Γ

∂γ

∗
(γk) : C(R+,R, [0, T ]) ∩B −→ C(R) ∩ A

is the adjoint of the Fréchet derivative operator Γ, namely

∂Γ

∂γ
(γk) : C(R) ∩ A −→ C(R+,R, [0, T ]) ∩B,

and Ū = Ū(x, y0, t,K, T ) is the given data.

2.2 The Analyticity of Γ and ∂Γ
∂γ .

In this section we will discus some theoretical estimates that grant the existence of
∂Γ
∂γ

and the analyticity of Γ for the case σ(y) = |y| in (2.5) for suitable function spaces.

Here, we will follow the recent work of Achdou, Franchi and Tchou [AFT05], con-
cerning the analysis of the Equation (2.5). We will also make use of some classical
results of Kato following [Paz83]. Among other things, in [AFT05] the authors give
some estimates concerning the semigroup related with equation (2.5). In a previous
work Achdou and Tchou [AT02], it was shown that it is convenient to use the following
change of variables: Take a bounded solution U of (2.5) and consider the function

u(x, y, t) = e−(1−η)
(y−m)2

2ν2 U(x, y, t).
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Here, η ∈ (0, 1) and ν2 = β2

2α
. In terms of u, Equation (2.5) for σ(y) = |y| takes the

form
∂u

∂t
− Atu = 0, (2.11)

with

Atv :=
1

2
y2x2 ∂

2v

∂x2
+
β2

2

∂2v

∂y2
+ rx

∂v

∂x
+ ((1− 2η)α(y −m)− βγ(x, y, t))

∂v

∂y

−
(
r + 2

α2

β2
η(1− η)(y −m)2 + 2(1− η)

α

β
(y −m)γ(x, y, t)− α(1− η)

)
v.

(2.12)

Let us denote by Q the half plane R+ × R. The domain of the operator At is defined
by

Dt = {v ∈ V : Atv ∈ L2(Q)},
where the weighted Sovolev space V is

V :=

{
v :

(√
1 + y2v,

∂v

∂y
, xy

∂v

∂x

)
∈ (L2(Q))3

}

and is endowed with the norm

‖v‖V =

( ∫

Q
(1 + y2)|v|2 + |∂v

∂y
|2 + x2y2|∂v

∂x
|2

) 1
2

.

Clearly V is a Hilbert space. Let us write down three results from [AFT05] concerning
the initial value problem

{
d
dt
u = Atu 0 < t < T,

u(t = 0) = u0 .
(2.13)

Theorem 5 ([AFT05]). The domain of At does not depend on t, i.e., there exists
D = Dt for all t. If α2/β2 > 2, then for suitable values of η (in particular such that
2α2

β2 η(1− η) > 1),

D =

{
v ∈ V : y2x2 ∂

2v

∂x2
,
∂2v

∂y2
, yx

∂2v

∂x∂y
, x
∂v

∂x
, y
∂v

∂y
, y2v ∈ L2(Q)

}
. (2.14)

Theorem 6 ([AFT05]). Assume that α > β for a suitable η ( see the details in the
paper [AFT05]). There exists a unique u in L2((0, T );V ) ∩ C0([0, T ];L2(Q)), with
∂u
∂t
∈ L2(0, T ;V ′) such that in the sense of distributions in time,

{
d
dt

(u, v) = 〈Atu, v〉, ∀v ∈ V,
u(t = 0) = u0.

(2.15)

The mapping u0 7→ u is continuous from L2(Q) to L2([0, T ];V ) ∩ C0([0, T ];L2(Q)).
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Theorem 7 ([AFT05]). Assume that there exists ξ ∈ (0, 1], such that γ belongs to
Cξ([0, T ], L∞(Q)) and that α2

β2 > 2. Then, for each suitable η, if u0 belongs to D

defined by (2.14), then the solution of (2.15) given by Theorem 6, belongs also to
C1((0, T );L2(Q)) ∩ C0([0, T ];D) and satisfies the equation

d

dt
u− Atu = 0,

for each t ∈ [0, T ]. Furthermore, for u0 ∈ L2(Q), the weak solution of (2.15) given by
Theorem 6, belongs also to C1((τ, T );L2(Q))∩C0([τ, T ];D), for all τ > 0 and we have
that

‖du
dt

(t)‖L2(Q) + ‖Atu(t)‖L2(Q) ≤ C

t
,

for t > 0.

In [AFT05], the next three statements concerning the operator At are proved. Thus,
one can apply Kato’s theorem [Paz83]. This in turn implies Theorem 7.

Let us consider a family of operators A(t) : D(A(t)) ⊂ X → X where X is a Banach
space and 0 ≤ t ≤ T satisfying the following properties:

i The domain D(At) = D of A(t) is dense in X and independent of t.

ii For t ∈ [0, T ] the resolvent R(λ : A(t)) exists for all λ with Reλ ≤ 0 and there is
a constant M such that

‖R(λ : A(t))‖ ≤ M

|λ|+ 1
for Reλ ≤ 0, t ∈ [0, T ]. (2.16)

iii There exist constants L and 0 < δ ≤ 1, such that

‖(A(t)− A(s))A(τ)−1‖ ≤ L|t− s|δ for s, t, τ ∈ [0, T ]. (2.17)

The next result remains valid if instead of considering the interval [0, T ] one considers
the interval [a, b], 0 ≤ a < b <∞.

Theorem 8 (Kato). Under the Assumptions 1-3 above, there is a unique evolution
system U(t, s) on 0 ≤ s ≤ t ≤ T , satisfying:

i
‖U(t, s)‖ ≤ C for 0 ≤ s ≤ t ≤ T,

ii For 0 ≤ s ≤ t ≤ T , U(t, s) : X → D and t → U(t, s) is strongly differentiable
in X. The derivative (∂/∂t)U(t, s) ∈ B(X) and it is strongly continuous on
0 ≤ s ≤ t ≤ T . Moreover,

∂

∂t
U(t, s) + A(t)U(t, s) = 0, for 0 ≤ s ≤ t ≤ T,

‖ ∂
∂t
U(t, s)‖ = ‖A(t)U(t, s)‖ ≤ C

t− s
,
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and
‖A(t)U(t, s)A(s)−1‖ ≤ C, for 0 ≤ s ≤ t ≤ T.

iii For every v ∈ D and t ∈ (0, T ), U(t, s)v is differentiable with respect to s on
0 ≤ s ≤ t ≤ T and

∂

∂s
U(t, s) = U(t, s)A(s)v.

Remark. Let us remark that the Assumption 2 and the fact that D is dense in
X imply that for every t ∈ [0, T ], A(t) is the infinitesimal generator of an analytic
semigroup St(s), s ≥ 0, satisfying

‖St(s)‖ ≤ C for s ≥ 0,

‖A(t)St(s)‖ ≤ C

s
for s ≥ 0,

for a suitable constant C.

Now, let us see then how the above results imply the differentiability of Γ(γ),
in appropriate spaces. Here, and in the sequel, we consider the case of γ in (2.12)
dependent only on y. In such case, At does not depend on t. Let us denote by Aγ+εh,
the operator obtained making the substitution of γ(y) by γ(y) + εh(y), in the formula
that defines At in Equation (2.12).

Let us also use the notation

Aγ+εh = Aγ +Bεh .

We write ū = u+ δu as the solution to the problem

d

dt
ū− Aγ+εhū = 0, for t0 ≤ t ≤ T,

ū(T ) = (x−K)+.

Here u is the solution of

d

dt
u− Aγu = 0, for t0 ≤ t ≤ T,

u(T ) = (x−K)+.

Thus, we can see that
(
d

dt
− Aγ+εh

)
(u+ δu) =

(
d

dt
− Aγ

)
δu+Bεhu+Bεhδu,
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so the difference δu satisfies(
d

dt
− Aγ

)
δu−Bεhδu = Bεhu,

δu(T ) = 0,

(2.18)

which is the same as

∂

∂t
δu+ Aγδu = −εβh(y)uy − 2ε

α

β
h(y)(1− η)(y −m)u

−εh(y)βδuy − 2ε
α

β
h(y)(1− η)(y −m)δu,

= −εh(y)
[
βuy + 2

α

β
(1− η)(y −m)u+ βδuy + 2

α

β
(1− η)(y −m)δu

]
.

(2.19)

So, thanks to the work on [AFT05], we can consider the semigroup S(t) associated to
Aγ,

S(t) : L2(Q) → D, D =

{
v ∈ V : Aγv ∈ L2(Q)

}
,

and we can integrate Equation (2.19) to get

δu[h](t) = −
∫ t

t0

S(t− r)h(y)[βuy + 2
α

β
(1− η)(y −m)u](r)dr

−
∫ T

t0

S(t− r)[βδuy + 2
α

β
(1− η)(y −m)δu](r)dr.

(2.20)

The results also grants that S(t) is uniformly bounded for t in [t0, T ] by a constant C,
therefore the linear operator δu, is bounded and,

‖δu[h]‖V ≤ εC(T − t0)‖h‖L∞(R)‖uy + 2
α

β
(1− η)(y −m)u‖L2(Q),

+εC(T − t0)‖h‖L∞(R)‖βδuy + 2
α

β
(1− η)(y −m)δu‖L2(Q),

≤ εC(T − t0)‖h‖L∞‖u‖H1(Q) + εC1‖δu‖V .

(2.21)

Then taking ε small enough we have

‖δu‖V ≤ ε

1− εC1

C(T − t0)‖h‖L∞‖u‖H1(Q). (2.22)

This proves that Γ : L∞(R) → V is differentiable. In fact, using an idea that can be
traced back at least to the ground breaking work of Calderon [Cal80], we can show
that Γ is analytic. Let us denote by L(D) the algebra of bounded linear operators on
D.
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Theorem 9. Assume that α2/β2 > 2 and T > t0. Then, Γ : L∞(R) → L(D) is analytic
in the sense that it can be written as a convergent series of multilinear operators .

Proof: Due to the existence of the semigroup St associated with the operator Aγ.
We can consider the map Gt : C0([0, t], D) → D that sends v ∈ C0([0, t], D) into a
solution u to the initial value problem

{
d
dt
u− Atu = v(t)

u|t=0 = 0.
(2.23)

Gt is bounded because

Gtv =

∫ t

0

S(t− s)v(s)ds.

So,
‖Gtv‖V ≤ C(t− t0)‖v‖L2(Q).

Thus, applying Gt to (2.18) we obtain

δu− GtBεhδu = GtBεhu, (2.24)

since for w ∈ V we have

Bεhw = −εh(y)(βwy + 2
α

β
(1− η)(m− y)w), (2.25)

then we can estimate that,

‖Bεhw‖L2(Q) ≤ εC‖w‖V ‖h‖L∞ .

Therefore, taking ε small enough, for example such that,

‖GtBεh‖ < 1,

so we can consider the inverse of I − GtBεh, to obtain

δu =
∞∑

j=0

(GtBεh)
j(GtBεh)[u]. (2.26)

We finally note that u does not depent on h. Thus looking at (2.25), we see that in
(2.26) we have δu as a power series of the linear operator,

Gt[−ε(·)(βuy + 2
α

β
(1− η)(m− y)u)],

applied to h.
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2.3 The computation of ∂Γ/∂γ.

Our main result here is the derivation of a fairly explicit formula for the opera-
tor ∂Γ

∂γ

∗
(γ). This would allow an implementation of Landweber’s method as a route

to attack our callibration problem. We are going to use two different techniques to
carry out such computations. The first one is based on Malliavin Calculus introduced
in Chapter 1. The second will be a more classical derivation dealing directly with
Equation (2.8) and making use of a perturbation argument.

The first calculation assumes that the functions involved are well behaved so that
all the steps in the calculation are permitted.

We start by introducing some notation. We denote by UBS the solution to the
classical Black-Scholes model whereby the volatility σ(y), is considered constant. More
precisely, for S = σ2 and τ = T − t we have

UBS[S](x, τ ;K, r) = UBS(x,K, r, τ, S) =

{
xΦ(d1)−Ke−rτΦ(d2) (S > 0)
max(x−Ke−rτ , 0) (S = 0),

(2.27)

with

d1 =
ln

(
x
K

)
+ rτ + S

2√
S

, d2 = d1 −
√
S,

and Φ is the cumulative density function of the normal distribution, i.e,

Φ(z) =
1√
2π

∫ z

−∞
e−

x2

2 dx.

Proposition 7. The operator ∂Γ/∂γ is given by

∂Γ
∂γ

(γ)[h](y) =

−EQγ

[
∂UBS

∂S
(ξT )

∫ T

t

(
∫ T

s
2σ(Yv)σ

′(Yv)e
R v

s f ′(Yu)dudv

)
h(Ys)ds

∣∣∣∣Yt = y

]
,

(2.28)

where

ξT =

∫ T

t

σ2(Ys)ds and

f(y) = α(m− y)− βγ(y) .

Proof. Let us assume that the dynamics of the stock prices Xt and the volatility
process Yt in the risk neutral measure follow the following system of SDEs.

dXt = rXtdt+ σ(Yt)XtdW
1
t ,

dYt = f(Yt)dt+ βdW ∗
t .
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Let us also denote

dXε
t = rXε

tdt+ σ(Yt)X
ε
tdW

1
t , Xε

0 = x, (2.29)

dYt = (f(Yt) + εh(Yt))dt+ βdW ε
t , Y0 = y,

where the process

dW ε
t = − ε

β
h(Yt)dt+ dW ∗

t ,

is by Girsanov’s theorem Brownian motion under the probability measure

dQε = exp

(
ε

β

∫ T

t

h(Ys)dW
∗
s −

ε2

2β2

∫ T

t

h(Ys)
2ds

)
dQγ. (2.30)

Then, let us consider

U ε(x, y, t) = e−r(T−t)EQε

[
(Xε

T −K)+

∣∣∣∣Xε
t = x, Yt = y

]
, (2.31)

We can see that the last expectation is taken under Qε, which is the measure associated
with (2.29) and note that when ε = 0, we recover (2.9). It can be shown by Itô calculus
that

Xε
T = x exp

( ∫ T

t

[
r − σ2(Ys)

2

]
ds+

∫ T

t

σ(Ys)dW
1
s

)
. (2.32)

We use this expression to find a way of conditioning the expectation in (2.31), on the
whole path trajectory of Ys, with t ≤ s ≤ T , getting by means of this trick the
Hull-White formula

U ε(x, y, t,K, T ) = EQε

[
UBS[ξT ]

]
, (2.33)

where UBS is given by Equation (2.27) and we are leaving all the arguments but ξT
implicit. The variable ξT is given by

ξs :=

∫ s

t

σ2(Yv)dv .

Now, we will get rid off the dependence of the measure in (2.31) on the parameter ε
applying Girsanov’s theorem. This yields

EQε

[
UBS(

∫ T

t
σ2(Ys)ds)

]
=

EQγ

[
e
( ε

β

R T
t h(Ys)dW ∗

s − ε2

2β2

R T
t h2(Ys)ds)

UBS(
∫ T

t
σ2(Ys)ds)

]
.

(2.34)

In what follows, all the expected values will be assumed to be evaluated under the
measure Qγ. So we can write

1
ε
(U ε − U)(x,y,t) =

1
ε
EQγ

[
(e
{ ε

β

R T
t h(Ys)dW ∗

s − ε2

2β2

R T
t h2(Ys)ds} − 1)UBS

( ∫ T

t
σ2(Ys)ds

)]
.

37



Taking the limit when ε→ 0 we get

1

β
EQγ

[
(

∫ T

t

h(Ys)dW
∗
s )UBS(

∫ T

t

σ2(Ys)ds)

]
. (2.35)

Now we use Malliavin calculus, in particular the fact that the Malliavin derivative is
the adjoint of the stochastic integral, to write the last expression as

1

β
EQγ

[ ∫ T

t

D∗
s

[
UBS(

∫ T

t

σ2(Yu)du)
]
h(Ys)ds

]
, (2.36)

with D∗
s being the Malliavin derivative with respect to the Brownian motion W ∗

t . We
will continue performing the derivations on (2.36), taking into account that we are
working with the measure Qγ, for which the dynamics of Yt takes the form

dYt = (α(m− Yt)− βγ(Yt))dt+ βdW ∗
t = f(Yt)dt+ βdW ∗

t . (2.37)

So,

1
β
EQγ

[ ∫ T

t
D∗

s

[
UBS(

∫ T

t
σ2(Yu)du)

]
h(Ys)ds

]
=

1
β
EQγ

[
∂UBS

∂S
(
∫ T

t
σ2(Yu)du)

∫ T

t

( ∫ T

s
2σ(Yv)σ

′(Yv)D
∗
sYvdv

)
h(Ys)ds

]
.

(2.38)

Using that

d(D∗
sYv) = f ′(Yv)D

∗
sYvdv, so D∗

sYv = βe(
R v

s f ′(Yu)du)1{s≤v}, (2.39)

(C.f. Proposition 6 of Chapter 2), and substituting in (2.38), we finally get our desired
formula (2.28). Let us now to write formula (2.28) in a more comfortable form.
Let us introduce the following notation

ηs := 2

∫ s

t

σ(Yv)σ
′(Yv)e

θvdv.

θs :=

∫ s

t

f ′(Yv)dv,

(2.40)

and as before we have

ξs =

∫ s

t

σ2(Yv)dv.

Thus, we can see that (2.28), or equivalently (2.38), becomes

EQγ

[
∂UBS

∂S
(ξT )

∫ T

t
e−θs(ηT − ηs)h(Ys)ds

]
=

∫∫ T

t
∂UBS

∂S
(ξT )e−θs(ηT − ηs)h(Ys)Ψ(ξT , ηT , T ; θs, ηs, Ys, s; y, t)dθsdηsdYsdsdηTdξT .

(2.41)
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Here, the function Ψ(ξT , ηT , T ; θs, ηs, Ys, s; y, t), is the joint probability distribution of
the functionals in (2.40) and Ys in the considered times. It is clear the dependence of
Ψ on Yt = y at time t, since all the above functionals depend on the whole trajectory
of Ys.

An interesting point concerning (2.41) is that it can be used to carry out Monte
Carlo simulations. Later on we will return to expression (2.41) to get an expression
for ∂Γ∗/∂γ so as to connect these ideas with Landweber’s method and talk a little bit
about numerical calculations.

We will continue with the derivation of another formula for ∂Γ/∂γ however different,
via classical calculations dealing directly with the partial differential equation (2.8).

Naturally associated to equation (2.8), we have a function φ(x̄, ȳ, s;x, y, t) defined
for t ≤ s as the density function of the homogeneous diffusion (Xs, Ys) whose dynamics
is driven by

dXt = rXtdt+ σ(Yt)XtdW
1
t , X0 = x,

dYt = (α(m− Yt)− βγ(Yt))dt+ βdW ∗
t , Y0 = y.

So, we interpret φ(x̄, ȳ, s;x, y, t)dx̄dȳ as the probability density

Pr
[
Xs ∈ (x̄, x̄+ dx), Ys ∈ (ȳ, ȳ + dy)|Xt = x, Yt = y

]
,

Yet another view of φ is that of the Markov transition probability of the diffusion
(Xs, Ys), the same interpretation holds for Ψ in (2.41) considering the diffusions ξs, ηs, θs, Ys.
Let us denote the differential operator in (2.8) by L, i.e.,

L :=
∂

∂t
+
x2σ2(y)

2

∂2

∂x2
+
β2

2

∂2

∂y2
+ rx

∂

∂x
+ (m(α− y)− βγ(y))

∂

∂y
(2.42)

The formal adjoint of L is

L∗U :=
∂2

∂x2 (
x2σ2(y)

2
U) + β2

2
∂2U
∂y2 − r ∂

∂x
(xU)− ∂

∂y
((m(α− y)− βγ(y))U).

(2.43)

Taking into account that L is the generator of the diffusion (Xs, Ys), it is a well known
result that under some regularity conditions on the coefficients σ(y), γ(y), then the
function φ(x̄, ȳ, s;x, y, t) is just the fundamental solution in PDE terminology of both
(2.42) and (2.43). See Section 1.5 of Chapter 1. Therefore, they satisfy the following
relations:

(
∂

∂t
+ L)(x,y,t)[φ(x̄, ȳ, s;x, y, t)] = 0, (2.44)

lim
t→s−

φ(x̄, ȳ, s;x, y, t) = δ(x̄,ȳ)(x, y).

(− ∂

∂s
+ L∗)(x̄,ȳ,s)[φ(x̄, ȳ, s;x, y, t)] = 0 (2.45)

lim
s→t+

φ(x̄, ȳ, s;x, y, t) = δ(x,y)(x̄, ȳ),
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for all s > t where δ(u,v)(x, y) is the Dirac delta in the variables (x, y).

We are now ready to state and prove the following result:

Proposition 8 (An alternative expression for ∂Γ/∂γ.). Under sufficiently regular co-
efficients σ(y) and γ(y), we have

∂Γ
∂γ

(γ)[h(s)] =

e−r(T−t)
∫∫ T

t
(u−K)+φȳ(u, v, T ; x̄, ȳ, s)h(ȳ)φ(x̄, ȳ, s;x, y, t)dȳdx̄dsdvdu.

(2.46)

Proof. Let us work with the adjoint equation

−φs + x2σ2(y)
2

φx̄x̄ + β2

2
φȳȳ

+(2σ2(y)− r)xφx̄ − (α(m− y)− βγ(y))φȳ + (σ2(y)− r +m− βγ′(y))φ = 0
(2.47)

performing on it the following perturbation on the coefficient γ,

γ(y) −→ γ(y) + εh(y) .

So that φ −→ φ+ ε(δφ). We now substitute this into Equation (2.47), equate terms
on ε and we get the following equation for the first variation δφ.

−δφs + x2σ2(y)
2

δφx̄x̄ + β2

2
δφȳȳ + (2σ2(y)− r)xδφx̄ − (α(m− y)− βγ(y))δφȳ

+(σ2(y)− r +m− βγ′(y))δφ = βh(y)φȳ(y) + βh′(y)φ.

= (h(ȳ)φ)ȳ.
(2.48)

This looks exactly like (2.47), but with the forcing term (h(ȳ)φ)ȳ. Then, using Duhamel’s
principle we can write the solution of (2.48), as

δφ[h](u, v, T ; x, y, t) =

−∫∫ T

t
φ(u, v, T ; x̄, ȳ, s) ∂

∂ȳ
[h(ȳ)φ(x̄, ȳ, s;x, y, t)]dȳdx̄ds =

∫∫ T

t
φȳ(u, v, T ; x̄, ȳ, s)h(ȳ)φ(x̄, ȳ, s; x, y, t)dȳdx̄ds,

(2.49)

where the last equality was obtained by integration by parts. Since φ is the fundamental
solution of the operator ∂

∂t
+ L, we may write the solution of (2.8) as

U(x, y, t) = e−r(T−t)EQγ

[
(XT −K)+

∣∣∣∣Xt = x, Yt = y

]
(2.50)

= e−r(T−t)

∫
(u−K)+φ(u, v, T ;x, y, t)dvdu.
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Then, the variation ∂Γ/∂γ should be

∂Γ

∂γ
(γ)[h(s)] =: δU [h(s)](x,y,t) = e−r(T−t)

∫
(u−K)+δφ[h](u, v, T ; x, y, t)dvdu. (2.51)

Finally, we take the last expression in (2.49) and plug it into (2.51), to get the desired
formula (2.46).

∂Γ

∂γ
(γ)[h(s)] = (2.52)

e−r(T−t)

∫∫ T

t

(u−K)+φȳ(u, v, T ; x̄, ȳ, s)h(ȳ)φ(x̄, ȳ, s;x, y, t)dvdudȳdx̄ds. ¤

Despite the fact that Equation (2.52) could be of some use, we see that in contrast
to (2.41), Monte Carlo method might not help us too much here since the density
derivative φȳ(u, v, T ; x̄, ȳ, s) is not easy at all to be numerically simulated.
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CHAPTER 3

The Inverse Problem

In this chapter we shall sketch a complete plan to handle the Inverse Problem 1.
This is needed since Equations (2.41) and (2.46) from Chapter 2 are still too complex
for numerical implementation.

We start by giving some intuition on how the forward map Γ : γ 7→ U acts in the
case of zero correlation (ρ = 0). Using this we will design a strategy to invert this
operator. In the final part of the chapter we give a rough idea that could be used to
begin the work with the uncorrelated case.

Let us come back to the formula of ∂Γ/∂γ in (2.41) and see how much of it could
be treated numerically. As we saw in Chapter 2

∂Γ
∂γ

[h](y, t) = E
[
∂UBS

∂S
(ξT )

∫ T

t
e−θs(ηs − ηT )h(Ys)ds

]
= (3.1)

∫∫ T

t

∂UBS

∂S
(ξT )e−θs(ηs − ηT )h(Ys)Ψ(ξT , ηT , T ; θs, ηs, Ys, s; y, t)d(θs, ηs, Ys, s, ηT , ξT ) ,

where

dYs = f(Ys)dt+ βdW 2
s ,

ηs = 2

∫ s

t

σ(Yv)σ
′(Yv)e

θvdv,

θs =

∫ s

t

f ′(Yv)dv,

ξs =

∫ s

t

σ2(Yv)dv,

and

d(θs, ηs, Ys, s, ηT , ξT ) = dθsdηsdYsdsdηTdξT .
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The joint density Ψ for this system of diffusions solves the following initial value prob-
lem

− ∂Ψ

∂t
+
β2

2

∂2Ψ

∂y2
− 2σ(y)σ′(y)eθ ∂Ψ

∂η
− f ′(y)

∂Ψ

∂θ
− σ2(y)

∂Ψ

∂ξ
= 0 , (3.2)

Ψ(y, η, θ, ξ, t0; y0, t0) = δ(y0,0,0,0)(y, η, θ, ξ) .

From (3.1), we see that Malliavin calculus helped us to avoid the inconvenient presence
of the derivative of the diffusion density φȳ in the formula (2.52)

∂Γ
∂γ

[h] = e−r(T−t)

∫∫ T

t
(u−K)+φȳ(u, v, T ; x̄, ȳ, s)h(ȳ)φ(x̄, ȳ, s;x, y, t)dvdudȳdx̄ds.

So, instead of φȳ, by making use of Malliavin calculus we can consider a diffusion
in a higher dimensional space. To wit, a four dimensional space in the variables
(ξs, θs, ηs, Ys).

The question we address now is: How to apply Equation (3.1) in Landweber’s
method in the reconstruction of γ(y)?. We recall the Landweber iteration

γk+1 = γk − ∂Γ

∂γ

∗
[γk](Γ(γk)− U). (3.3)

Here, as before, U is the given data. Through this iterative method we are looking for
a least square solution of

‖Γ(γ)− U‖2 ,

and ∂Γ∗/∂γ is the adjoint of the operator given in (3.1). Let us set V (x, y, t) :=
(Γ(γ)− U). Then, also from (3.1) it can be seen that

∂Γ
∂γ

∗
[γ](V )(ω) = (3.4)

∫∫ T

t0

∂UBS

∂S
( ξT )e−θs(ηs − ηT )Ψ(ξT , ηT , T ; θs, ηs, ω, s; y, t)V (x, y, t)d(θs, ηs, s, ηT , ξT , x, y, t).

This last equation displays the difficulty in implementing Landweber’s method. We
must work numerically essentially with Equation (3.2) and its adjoint, both four di-
mensional PDEs, and the error should be kept under control in a bounded domain, the
integral in the last expression also must be approximated.

So, we will seek another technique that would reduce the computational complexity
of the equations involved. The key is the Hull-White formula that we already met in
Chapter 2.

U(x, y, t,K, T ) = E [UBS[ξT ](x, T − t,K, r)] , (3.5)

where

ξT =

∫ T

t

σ2(Ys)ds . (3.6)
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Here, U represents the prices of European call options in the stochastic volatility model
that we are considering with maturity T , strike price K, when the states of the stock
price and volatility level were (x, y) at the initial time t. Furthermore, UBS is the
Black-Scholes function, so it represents the prices of European call options in the
classic model where the volatility is considered constant. Let us write the Hull-White
formula in terms of the density Φ of the process ξT ,

U(x, y, t,K, T ) =

∫ ∞

0

UBS[ξ](x, T − t,K, r)Φ(ξ, T ; y, t)dξ, (3.7)

Here, Φ(ξ, T ; y, t) is the distribution of ξT =
∫ T

t
σ2(Ys)ds. It clearly depends on the

initial value y at initial time t.

One idea to reduce the computational complexity associated to solving the PDE in
Equation (3.2) would be to first “invert” for Φ in the linear Equation (3.7).

Remark 2. A important theoretical problem, which may be investigated numerically,
is that of computing the singular value decomposition of the integral operator

U : A→ B
φ 7→ ∫∞

0
UBS[ξ](·/K, T − t,K, r)φ(ξ)dξ

(3.8)

in appropriate spaces A and B.

In fact, this is a classical integral equation whose literature is pretty extensive [BL05,
EHN96]. The next step is to use the distribution of the process Yt that follows the
dynamics

dYt = f(Yt)dt+ βdW 2
t ,

Yt0 = yt0 .
(3.9)

From now on, we will denote the distribution of Yt by ρ(y, t; y0, t0) for t > t0. It
turns out that ρ has a more direct relation with the function γ. This link is given by
the simpler PDE associated to the process of Equation (3.9)

∂ρ

∂t
=
β2

2

∂2ρ

∂y2
− ∂

∂y
(f(y)ρ) ,

ρ(y, t0; y0, t0) = δy0(y) ,

(3.10)

where f(y) = α(m − y) − βγ(y) and, as usual, δy0(y) is the Dirac measure supported
at y0.

3.1 The Action of Γ.

In this part we would like to describe intuitively the mechanisms by which the
operator Γ : γ 7→ U , acts. We start with equations (3.9) and (3.10). Thus, the function
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f controls the evolution of the mean of the paths of the process Yt, by a discretization
of (3.9). It can be seen that for a small time increment ∆t, the transition density
ρ(y, t0 + ∆t; y0, t0) has the following form

ρ(y, t0 + ∆t; y0, t0) ≈ 1√
2πβ(∆t)

exp

[
− (y − y0 − f(y0)∆t)

2

2β(∆t)

]
.

The process Yt is then mapped to wt = σ2(Yt) and we assume that the function
p(wt2 ;wt1) is the transition density function from wt1 to wt2 .

Next we consider the distribution of the functional ξT defined on the paths of the
process Yv by

ξT =

∫ T

t

σ2(Yv)dv.

The joint density ρ̄(Y, ξ, s; y, 0, t) of (Ys, ξs) for t ≤ s ≤ given that Yt = y, ξt = 0 at the
initial time t, satisfies the following initial value problem

− ∂ρ̄
∂T

+ β2

2
∂2ρ̄
∂y2 − ∂

∂y
(f(y)ρ̄)− σ2(y)∂ρ̄

∂ξ
= 0,

ρ̄(Y, ξ, t; y, 0, t) = δ(y,0)(Y, ξ).

(3.11)

However, we prefer to work with (3.10) instead of (3.11). One of the reasons for this is
that we want to reduce the dimension of our equations as much as possible. Another
reason is that we want to focus in the specific case of the Stein model [SS91] where the
function σ(y) is taken to be |y|. From now on we consider σ(y) = |y|. Finally, we note
that the distribution Φ(ξ, T ; y, t) of ξT is given by

Φ(ξ, T ; y, t) =

∫ ∞

−∞
ρ̄(Y, ξ, s; y, 0, t)dY.

Once the function Φ is determined, we have that the value of our operator Γ in γ is
given by

Γ(γ) = U(x, y, t, T,K) =

∫ ∞

0

UBS[ξ](x, T − t,K, r)Φ(ξ, T ; y, t)dξ,

This completes our intuitive description of the action of the operator Γ.

Thus, we can think of the operator Γ as a composition of operators as follows:
G1 : γ 7→ ρ, G2 : ρ 7→ ρ̄, G3 : ρ̄ 7→ Φ and G4 : Φ 7→ U so that

Γ = G4 ◦ G3 ◦ G2 ◦ G1. (3.12)

Remark Another way of thinking of the relation between the distributions Φ and
ρ is as follows. The process Yt is mapped to wt = σ2(Yt) and we assume that the
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function p(wt2 ;wt1) is the transition density function from wt2 to wt1 . So we would like
to discuse the following intuitive idea.

The function Φ(ξ, T ; y, t) is given formally by a limit of the form:

Φ(ξ, T ; y, t) =

lim
‖∆t‖→0

1/(∆t)n−1

∫
p(

ξ − zn−1

∆t
;
zn−1 − zn−2

∆t
)p(

zn−1 − zn−2

∆t
;
zn−2 − zn−3

∆t
) · · · p(

z1

∆t
; y, t)dzn−1 · · · dz1.

(3.13)

Here, p(wt2 , wt1) is the transition kernel (Markov transition) of the processes wt =
σ2(Yt) ,i.e., the conditional probability

Pr(σ2(Yt2) = wt2|σ2(Yt1) = wt1),

Remark: Once we know p(wt2 , wt1), it is necessary a change of variable to get the
density ρ of Yt.

We now provide an heuristic argument for this statement. We think of the random
variable ξT =

∫ T

t
σ2(Ys)ds as being approximated by a finite sum

n∑
i=1

wti =
n∑

i=1

σ2(Yti)∆t,

Then, let us inquire about the distribution of the last sum,

Pr(w1 + w2 + · · ·wn = ξ) =

∫

{w1+w2+···wn=ξ}
p(w1, w2, . . . , wn−1)dw1dw2 · · · dwn−1, (3.14)

Here p(w1, w2, . . . , wn−1) is the joint density of the variables {wti}n−1
i=1 . Now we make

the following change of variables in (3.14),

w1 =
z1

∆t
,

w2 =
z2 − z1

∆t
,

w3 =
z3 − z2

∆t
,

...

wn−1 =
ξ − zn−1

∆t
.

After this (3.14) will look like:

=
1

(∆t)n−1

∫

Rn−1
p(

ξ − zn−1

∆t
,
z2 − z1

∆t
, . . . ,

z1

∆t
)dzn−1dzn−2 · · · dz1,

=
1

(∆t)n−1

∫

Rn−1
p(

ξ − zn−1

∆t
;
zn−1 − zn−2

∆t
)p(

zn−1 − zn−2

∆t
;
zn−2 − zn−3

∆t
) · · · p(

z1

∆t
; y, t)dzn−1dzn−2 · · · dz1.

(3.15)

46



The last equality is obtained by splitting the joint density

p(
ξ − zn−1

∆t
,
z2 − z1

∆t
, . . . ,

z1

∆t
),

into the transitions p(wi, wi−1), using the Markov property.

3.2 A Strategy to Invert Γ in the Uncorrelated Case (ρ = 0) and γ
linear

Through-out this section we assume γ to be linear. Let us recall the main equations

Ut +
|y|2x2

2
Uxx +

β2

2
Uyy + (α(m− y)− βγ(y))Uy − r(xUx − U) = 0 ,

U(x, y, T ) = (x−K)+; 0 ≤ t < T, x > 0, y ∈ R .
(3.16)

We would like to reconstruct γ(y) based on the knowledge of the solution U . The SDE
that controls the dynamics of the asset price and the volatility processes, in the risk
neutral measure, is

dXt = rXtdt+ |Yt|XtdW
1
t ,

X0 = x,

dYt = (α(m− Yt)− βγ(Yt))dt+ βdW 2
t ,

Y0 = y. (3.17)

Here, as usual, W 1
t and W 2

t are two independent Brownian motions. Now, we will
explain a possible methodology to handle our inverse problem which is based on trying
to invert each of the operators in (3.12).

i Solve for the function Φ (the distribution density of the process ξT =
∫ T

t
|Yv|2dv),

assuming we are given as data the function U(x, y, t, T,K) in the following linear
problem

Γ(γ) = U(x, y, t, T,K) =

∫ ∞

0

UBS[ξ](x, T − t,K, r)Φ(ξ, T ; y, t)dξ,

ii Determine the distribution ρ(Y, v; y, t) of the process Yv. For this let us note that
this distribution is Gaussian whose parameters we will be talking a little about
in a while.

Let us assume that γ(y) = a + by, for two constants a and b, then we have the
equation for Yt in the risk neutral measure

dYt =[α(m− Yt)− β(a+ bYt)]dt+ βdW 2
t ,

=α1(m
∗ − Yt)dt+ βdW 2

t ,
(3.18)
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here

α1 = α+ βb , m∗ =
αm− βa

α + βb
.

Then we have for Yt

d(eα1tYt) = α1m
∗eα1tdt+ βeα1tdW 2

t ,

and thus

YT = ye−α1(T−t) + e−α1T [α1m
∗
∫ T

t

eα1sds+ β

∫ T

t

eα1sdW 2
s ].

Therefore, the mean value MT and the variance ΣT of YT are given by:

MT = ye−α1(T−t) +m∗(1− e−α1(T−t)), ΣT =
β2

2α1

(1− e−2α1(T−t)) .

Once we have estimated Φ and taking into account that

ξs = ξt +

∫ s

t

Y 2
u du,

we deduce that

d

ds
E[ξs] = E[Y 2

s ] ⇐⇒ d

ds

∫
ξΦ(ξ, s; y, t)dξ = Σs +M2

s (3.19)

Finally, we need another equation that relates MT and ΣT that together with Eq.
(3.19) determine the unknows a and b based on the knowledge of the distribution
Φ. One posibility to obtain such equation could be computing E[Y 2

s ] through Itô
formula as follows:

Since

d(Y 2
s ) =2YsdYs + d〈Y 〉s,

=2Ys[α1(m
∗ − Ys)ds+ βdW 2

s ] + β2ds,

we have

E[Y 2
T ] = y2 +

∫ T

t

E[2α1Ys(m
∗ − Ys) + β2]ds,

and thus
d

dT

(
ΣT +M2

T

)
= 2α1m

∗MT − 2α1(ΣT +M2
T ) + β2.
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Therefore, the equation that relates MT and ΣT is

2α1ΣT +
d

dT
ΣT = 2α1m

∗MT − d

dT
M2

T − 2α1M
2
T + β2. (3.20)

Finally, let us observe that we have the following estimation for the distribution
ρ(Y, v; y, t) of {Yv}v≥t.

ρ(Y, v) =





1√
2πΣv

e−
(Y−Mv)2

2Σv , v > t,

δy(Y ), v = t.

iii Next, through the technique of Malliavin calculus we estimate γ from G1 : γ(y) 7→
ρ(Y, v) via Landweber’s method.

We now explain Step 3: Consider the equation

∂ρ

∂v
=
β2

2

∂2ρ

∂y2
− ∂

∂y
(f(y)ρ), t0 < v ,

ρ(y, t0; y0, t0) = δy0(y) ,

(3.21)

We now want to reconstruc the function f(y) from the knowledge of ρ. However,
instead of ρ will use an average of it. For that, fix a smooth function φ(y) and consider
the function Υ(y, t) given by

Υ(y, t) =

∫ ∞

−∞
φ(Y )ρ(Y, v; y, t)dY = Ey,t[φ(Yv)].

Let us denote by G(f) = Υ(y, t) the operator that maps f to Υ. We consider a
technique based on Malliavin calculus of Chapter 2 applying Landweber’s method.

fk+1 = fk − ∂G
∂f

∗
[fk](G[fk]−Υ),

Furthermore, we denote by
∂G
∂f

[f ](h)

the derivative of G evaluated at the point f and applied to h.

Proposition 9. The Fréchet derivative ∂G
∂f

[f ](h) is given by

∂G
∂f

[f ](h) =
∫∫ v

t

φ′(Yv)eθv−θsh(Ys)Ψ(Yv, θv, v; Ys, θs, s; y, t)dYvdθvdYsdθsds, (3.22)
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where Ψ is the joint density at the relevant times of the two-dimensional diffusion
(Ys, θs) that follows the dynamics

dYs = f(Ys)ds+ βdW 2
s ,

dθs = f ′(Ys)ds.

Furthermore,

∂G
∂f

∗
[f ](V )(ω) =

∫∫ r

t0

φ′(Yv)e
θv−θsΨ(Yv, θv, v;ω, θs, s; y, t)V (y, t)dYvdθvdθsdsdydt.

(3.23)

Proof : We basically follow the same route as in the proof of Proposition 7 of
Chapter 2. Consider the SDE

dYs = f(Ys)ds+ βdW 2
s .

Then, let us consider also the following perturbation of the SDE above

dYs = (f(Ys) + εh(Ys))ds+ βdW̃s,

dW̃s = − ε

β
h(Ys)dt+ dW 2

s ,

(3.24)

By Girsanov’s theorem, W̃s is a Brownian motion under the probability measure

dP ε = e
ε
β

R v
t h(Ys)dW 2

s− ε2

β2

R v
t h2(Ys)ds

dP.

Then,
G(f + εh) = EP ε

[φ(Yv)].

So,

∂G
∂γ

=
d

dε
EP ε

[φ(Yv)]ε=0,

=
d

dε
EP [e

ε
β

R v
t h(Ys)dW 2

s− ε2

β2

R v
t h2(Ys)ds

φ(Yv)]ε=0,

=
1

β
E

[(∫ v

t

h(Ys)dW
2
s

)
φ(Yv)

]
,

=
1

β
E

[ ∫ v

t

φ′(Yv)(DsYv)h(Ys)ds

]
,
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The last equality can be justified as follows:
Since

dYs = f(Ys)ds+ βdW 2
s ,

we have for the Malliavin derivative DsYv that

dDsYv = f ′(Yv)(DsYv)ds .

Therefore,
DsYv = βχ{s<v}e

R v
s f ′(Yu)du,

and thus
∂G
∂γ

= −E
[ ∫ v

t

φ′(Yv)e
θv−θsh(Ys)ds

]
,

where we have used the notation

θs :=

∫ s

t

f ′(Yu)du.

Finally, we write the above expectation in terms of the joint density of the diffusions
in the respective times to get the formula (3.22).

The next proposition shows how to compute (3.23) in practice by solving some
PDEs that have Ψ as fundamental solution. See Section 1.5 of Chapter 1.

Proposition 10. An alternative representation for (3.23) is

∂G
∂f

∗
[f ](V )(ω) =

∫∫ v

t0

Z(ω, θ, s)e−θW (ω, θ, s)dθds , (3.25)

where the functions Z(ω, θ, s) and W (ω, θ, s) satisfy the following problems:

∂Z

∂s
+
β2

2

∂2Z

∂ω2
+ f(ω)

∂Z

∂ω
− f ′(ω)

∂Z

∂θ
= 0, t0 ≤ s ≤ v, (3.26)

Z(ω, θ, v) = φ′(ω)eθ,

and

−∂W
∂s

+
β2

2

∂2W

∂ω2
− ∂

∂ω
(f(ω)W ) + f ′(ω)

∂W

∂θ
= V (ω, s), t0 ≤ s ≤ v,

W (ω, θ, t0) = 0.

(3.27)

Proof : Just remark that

Z(ω, θ, s) =

∫
φ′(Yv)e

θvΨ(Yv, θv, v;ω, θ, s)dYvdθv, (3.28)

51



solves (3.26), and that

W (ω, θ, s) =

∫ v

t0

∫
Ψ(ω, θ, s; y, t)V (y, t)dydt (3.29)

satisfies (3.27). Finally substituing (3.28) and (3.29) in (3.25) we get (3.23).

Remark. The approach to attack the inverse problem that lead us to equations
(3.26) and (3.27) by computing ∂G∗/∂f [f ](V ) through (3.25) seems simpler than that
of Equation (2.41) in Chapter 2. This is due to the fact that the role of the boundary
values at truncated domains is simplified when performing numerical simulations. We
also remark that the method suggested by the Proposition 10 to compute (3.23) may
be used to compute the formulas (2.41) and (2.46) in Chapter 2.

3.3 A Note in The Correlated Case.

Our aim here is to sketch a possible starting point to work out the reconstruction
problem in the case of correlation ρ 6= 0. We continue assuming that the coefficient γ
depends only on y, in a linear form, i.e., γ(y) = a+ by.

Let us return to the general equations of the asset dynamics in the risk neutral
measure.

dXt = rXtdt+ |Yt|Xt((1− ρ2)1/2dW 1
t + ρdW 2

t ),

X0 = x,

dYt = (α(m− Yt)− βΛ(Yt))dt+ βdW 2
t ,

Y0 = y.

(3.30)

Here, as usual, W 1
t and W 2

t are both independent Brownian motions and Λ(y) =
ρµ−r
|y| +

√
1− ρ2γ(y). We also consider the solution U(x, y, t, T,K) of the final value

problem for the price of European call options based on Xt,

Ut +
|y|2x2

2
Uxx +

β2

2
Uyy + ρβx|y|Uxy

+(α(m− y)− βΛ(y))Uy − r(xUx − U) = 0,

U(x, y, T ) = (x−K)+,

(3.31)

where

Λ(y) = ρ
µ− r

|y| +
√

1− ρ2γ(y), and 0 ≤ t < T, x > 0, y ∈ R.
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From the expression for Λ we see that the closer we get of total correlation, (i.e. ρ ≈ ±1)
the less it makes sense to invert for the function γ since in such case the solution of
(3.31) does not depend significantly on γ. Therefore, let us assume in this section that
|ρ| ∈ (0, 1) is far enough from the endpoints. We will try to imitate the procedure
followed in the case of zero correlation. First, we will see that there is a generalization
of the Hull-White formula for the correlated case. Then, we would like to estimate the
distribution of the volatility process Yt. Finally, we will try to apply Malliavin calculus.

Let us discuss then the Hull-White formula keeping in mind its derivation in the
uncorrelated case.

Now, in the presence of correlation, from Equation (3.30) and Itô calculus we can
see that

XT = xe
R T

t (r− |Ys|2
2

)ds+
R T

t |Ys|(ρdW 2
s +(1−ρ2)1/2dW 1

s ),

= xe−ρ2
R T

t
|Ys|2

2
ds+ρ

R T
t |Ys|dW 2

s e
R T

t (r−(1−ρ2)
|Ys|2

2
)ds+(1−ρ2)1/2

R T
t |Ys|dW 1

s ,

= xeηT e
R T

t (r−(1−ρ2)
|Ys|2

2
)ds+(1−ρ2)1/2

R T
t |Ys|dW 1

s .

(3.32)

Here,

ηT = −ρ2

∫ T

t

|Ys|2
2

ds+ ρ

∫ T

t

|Ys|dW 2
s .

At this point, we should compare equation (3.32) with (2.32) of Chapter 2. Note, that
they are basically the same after substituting x and the process |Ys| in (2.32) by xeηT

and the process (1−ρ2)1/2|Ys|, respectively, getting (3.32). Then, in this case, the Hull-
White formula yields

U(x, y, t, T,K) = E

[
UBS(xe

ηT , t, T,K, ξT )

]
, (3.33)

where

ξT = (1− ρ2)

∫ T

t

|Ys|2ds.

Let us write (3.33) in terms of the joint density Φ(η, ξ, T ; y, t) of ηT and ξT :

U(x, y, t, T,K) =

∫
U(xeη, t, T,K, ξ)Φ(η, ξ, T ; y, t)dηdξ, (3.34)

Now, the first thing to do is to solve (3.34) for Φ from the data U(x, y, t, T,K), and
as in the uncorrelated case we want to estimate the distribution of the process |Ys|
from Φ. Now, differently from the uncorrelated case the distribution function of Ys

is not normal despite the fact that it continue being determinated by three constant
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parameters together with the correlation coefficient ρ. Let us note that since we are
assuming that γ(y) is linear we can write the SDE for Ys in (3.30) as

dYs = [α2(m2 − Ys)− ρβ

|Ys| ]ds+ βdW 2
s . (3.35)

Comparing (3.35) with (3.18), we easily see that we are forced to first take care of
estimating ρ and then to search a way of estimating the parameters α2 and m2. At
this point we would proceed with Malliavin calculus and Landweber iteration as we
described at the end of the previous section to reconstruct the function γ(y) from the
density ρ(Y, s) of the process Ys.
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CHAPTER 4

Conclusions and Suggestions for Further Research

In this work we have proved that the forward map Γ : γ → U is Frechét differentiable
at bounded Hölder continuous functions γ(·) in the direction of functions belonging
to an L∞-type space. Even more, we proved that Γ is locally analytic, using the
regularization effect of the semigroup associated to the map Γ : γ → U .

Then, we have computed by two methods the derivative ∂Γ/∂γ. The first one,
which used classical techniques from partial differential equations, led to the formula

∂Γ

∂γ
(γ)[h] =

e−r(T−t)

∫∫ T

t

(u−K)+φȳ(u, v, T ; x̄, ȳ, s)h(ȳ)φ(x̄, ȳ, s; x, y, t)dvdudȳdx̄ds .

(4.1)

The second one, which used Malliavin calculus, led to

∂Γ
∂γ

(γ)[h] =
∫∫ T

t

∂UBS

∂S
(ξT )e−θs(ηs − ηT )h(Ys)Ψ(ξT , ηT , T ; θs, ηs, Ys, s; y, t)d(θs, ηs, Ys, s, ηT , ξT ) .

(4.2)

The expression obtained with the help of Malliavin calculus seems to be better
suited to numerical purposes. In formula (4.2), in contrast to (4.1), we have the pos-
sibility of performing the calculations through Monte Carlo methods. This is due to
the fact that in the Malliavin formula case (4.2) we do not have the inconvenient pres-
ence of the derivative of the Markov kernel for the underlying diffusions. Furthermore,
equations associated to (4.2), such as for example (3.2), although higher dimensional1,

1The increase in the dimension of these equations is due to the consideration of the distribution of
some Malliavin derivative process in the calculation following this approach.
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are less complex to be treated numerically than the ones associated to (4.1). Indeed,
recalling Equation (3.2)

− ∂Ψ

∂t
+
β2

2

∂2Ψ

∂y2
− 2σ(y)σ′(y)eθ ∂Ψ

∂η
− f ′(y)

∂Ψ

∂θ
− σ2(y)

∂Ψ

∂ξ
= 0 , (4.3)

Ψ(y, η, θ, ξ, t0; y0, t0) = δ(y0,0,0,0)(y, η, θ, ξ) ,

we see that we avoid the singular diffusion term |y|2x2∂2/∂x2. Furthermore, the bound-
ary values for (4.3) can be considered as homogeneous for values of (y, η, θ, ξ) big
enough.

We proposed the formula in (4.2) for ∂Γ/∂γ to attack the reconstruction problem in
the context of Landbewer regularization. We discussed some issues concerning practical
implementations like for example the use of option prices quoted both in the maturity
T and the strike price K.

We presented a decomposition of the forward operator Γ that seems to simplify
the analysis and the numerics of the inverse problem. This decomposition splits the
inversion procedure first in a linear problem to reconstruct the distribution Φ of the
process ξT =

∫ T

t
σ2(Ys)ds (time-averaged volatility process).

In a second part it is proposed an alternative approach to a finite difference treat-
ment of some four-dimensional partial differential equations like Equation (4.3), that
consists of determining the distribution of the Ornstein-Uhlenbeck process Yt, by esti-
mating its mean value using the distribution Φ

Finally, we addressed the method to compute functional derivatives using Malliavin
calculus to solve the nonlinear problem that links the distribution ρ(Y, t) of Yt and our
target function f through2 Landbewer regularization.

Finally, we suggested an approach to the reconstruction problem when ρ 6= 0, trying
to adapt the ideas proposed in the uncorrelated case.

A natural continuation of this work is the numerical implementation and verification
of the ideas presented here. Another direction would be to consider the reconstruction
problem of the risk premium in option pricing models where the underlying asset is
modeled by fractional Brownian motion or more general Levy processes so as to take
into account the presence of jumps in the asset dynamics.

2Recall that we are actually interested on the function γ(y), but f(y) = α(m− y)− βγ(y).
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Colloquium].

[BS73] Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. The Journal of Political Economy, 81(3):637–654, 1973.

[Cal80] Alberto-P. Calderón. On an inverse boundary value problem. In Seminar
on Numerical Analysis and its Applications to Continuum Physics (Rio de
Janeiro, 1980), pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.
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