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Abstract

This work presents new results about several nonlinear equations. We investigate the (non)existence of
solitary waves of the ZK equation and some of the their properties by using the variational methods.
Next we study the initial value problem associated to some dissipative ZK equations (ZKB and Benney
equations). We will also investigate the (non)existence and stability of solitary wave solutions of BO-ZK;
and their properties. Furthermore, we are interested in studying the solitary wave solutions of the high
dimensional Benjamin equations and their characteristics.

ii



iii

%%@W
i My Vi



Acknowledgements

I would like to express my gratitude to professor Felipe Linares, my advisor, for his indescribable support,
encouragements, and many useful suggestions during this project.

Many thanks to the committee members of my thesis, Marcia Scialom, André Nachbin, Adan Corcho,
Rafael Iorio and Ademir Pastor, for their various comments to improve this manuscript.

I would like to express my gratitude to Jaime Angulo, Jean-Claude Saut and Jerry L. Bona for fruitful
conversations and comments.

In addition, I acknowledge my scholarship for my doctorate studies, granted by CNPq-TWAS.

I am thankful to my friends, Aida, Alireza, Azam, Didier, Hossein, Luis Gustavo, Mahdi, Meysam,
Saeed, Vanessa and Wanderson during my stay in Brazil.

Finally T can not forget thanking to my parents and my wife for all their love, patience and support in
spite of being thousands of miles of distance.



Contents

Abstract ii
Preliminaries 1
1 Solitary Waves of ZK equation 9
1.1 Imtroduction . . . . . . . . . . e e e 9
1.2 Nonexistence . . . . . . . . . e e e e 10
1.3 Existence . . . . . . L e e 12
1.4 Regularity of the Solitary Waves . . . . . . . .. .. .. 18
1.5 Traveling Wave Solution of ZK in the Plane . . . . . . . .. .. ... ... ... . ... 19
1.6 Extension . . . . . . . . . e e e e e e 24
1.7 A General Nonlinearity . . . . . . . . . . e 30
1.8 Asymptotic Properties . . . . . . . . . L 32
1.9 Imstability . . . . . . o L o e 36
2 ZK with Dissipation 46
2.1 Imtroduction . . . . . . . . L 46
2.2 ZKB Equation . . . . .. e 47
2.3 Linear Properties . . . . . . . . L e 48
2.4 Local Existence . . . . . . . . e e e 52
2.5 Weighted Spaces . . . . . . . o e 57
2.6 Equation with Higher Order Dissipation . . . . . . . .. .. ... ... ... ...... 59
2.7 Negative Sobolev Indices . . . . . . . . . . L 66
3 BO-ZK Equation 72
3.1 Imtroduction . . . . . . . . L 72
3.2 (Nom)existence . . . . . . .. .o i 73
3.3 Stability . . . . o e 76
3.4 Decay and Regularity . . . . . . . . . e 79
4 High Dimensional Benjamin Equations 88
4.1 (Non)Existence . . . . . . . . . . . 89
4.2 The Existence . . . . . . . . . e e e e e 93
4.3 Variational Characterizations . . . . . . . . . . . . . . e 100
4.4 Regularity and Decay . . . . . . .. e 108



4.5  (Generalized)Benjamin-Ono-KP

Bibliography

vi



Preliminaries

Let S; = R x (—L, L). We define a concentration function for nonnegative function u € L*(Sz). Let £ € R
and r > 0, then we define S,.(£) as the rectangle of the form

€ —r&+r] x[-L, L]
We define the concentration function of u as

Q(r) = sup Jj du, (0.1)

for the measure on Sy, given by du = u dxdy.

The concentration compactness principle of Lions [52, 53] is a way of compensating for the well known
failure of precompactness of bounded sets in infinite-dimensional Banach spaces (i.e. that bounded se-
quences need not have convergent subsequences). The principle, roughly speaking, asserts that given any
bounded sequence, there exists a subsequence which resolves into the superposition of convergent sequences
that have been shifted by an asymptotically orthogonal set of unitary group actions, plus an error term
which goes to zero in certain coarse norms which are weaker than the original norm topology (but sig-
nificantly stronger than the weak topology). It is useful in generating nonlinear profiles of solutions to
nonlinear equations, and also combines well with the induction on energy method. For » € R and x € R”,
we denote the ball with radius r, centered at z, by B,(x).

LEMMA 0.0.1 (Concentration-Compactness) Suppose that ji, is a sequence of probability measures
on R™ such that p, > 0 and fRn dpm = 1. There exists a subsequence {fi,} such that one of the three
following conditions holds:

(i) (Evanescence) For all R > 0 there holds

lim sup/ dpy, | = 0.
m—0o0 \ zeR™ JBg(x)

(ii) (Compactness) There exists a sequence {Tmy} C R™ such that for any € > 0 there is a radius R > 0

with the property that
/ dppy, > 1 —¢
BR(IHL)

for all m.



(iii) (Dichotomy) There exists a number X\, 0 < X\ < 1, such that for any € > 0 there is a number R > 0
and a sequence {x;,} C R™ with the following property:
Given R' > R, there are non-negative measures pt, and p?2, such that

© 0 < pup, + 13, < fim,
o supp(py,) C Br(xm) and supp(u?,) C R™\ B (zm),

)<

LEMMA 0.0.2 (Periodic Concentration-Compactness) Suppose that {u,} is a sequence of positive
measures on Sy, such that lim,,_... @, = L, where Q,, are defined by (0.1) corresponding to p,,. Then there
exists a subsequence of measures, denoted the same, such that one of the following three conditions holds:

e limsup (')\ [ dul
Rn

n—oo

+‘(1/\)fdui
RTL

(i) (Evanescence) For all r > 0,
lim sup ff di, = 0.
n—oo §ERST(€)

(ii) (Compactness) There exists a sequence &, in R such that for any € > 0, there is a v > 0 such that

f duy, > L —¢ for every n € N.
S'r(gn)

(iii) (Dichotomy) There exists | € (0, L) such that for any € > 0, there exists a positive number r > 0 and
a sequence &, in R with the following property: Given r' > r there exists nonnegative measures .,
and p2 such that

© 0< iy, + pp < pin,
o supp(u)) C Sp(&n) and supp(p2) C Sp\ Sr(én),

. thllp(l—J]‘d/-%ll + [(L - _Hdﬂi> <e
n—o0 St St

We consider LP(f2) spaces of complex-valued functions. €2 being an open subset of R™, LP(2) denotes the
space of (classes) measurable functions u : @ — C such that |u||1r) < co with

1/p
lull oo (/ u(z |Pdm) ,

llull r () = ess sgp [ul,

if pe[l,00), and

if p = co.

LEMMA 0.0.3 (Refined Fatou lemma) Let p € (0,00) and {u;}; be a bounded sequence in LP(R™)

such that u; — u a.e. in R". Then
Hujuip(ﬂ@n) = [Ju; — u||L,, Rn) ||U||1£p(Rn) — 0.

The assumption u; — u a.e. can be removed if p = 2.



To a proof, see [18].
We will use following variants of the Hérmander-Mikhlin multipliers theorem [56].

PROPOSITION 0.0.4 (Lizorkin) Let Y : RN — R be CV for |¢;| >0, j = 1,...,N. Assume that
there exists M > 0 such that
Ky kn oFY
LN el pekn

with k;, =0 orl and k =k +ka+---+ky =0,1,...,N. Then Y is a Fourier multiplier on LT(RN),
1<r < 4o0.

)] <M,

PROPOSITION 0.0.5 Let1 < p < oo, T be a operator in L(LP(R™)) and A be a lattice in R™. Suppose
® is the multiplier corresponding to T' which is continuous at each point of A. Then there exists a unique
periodized operator T defined by

Tf — Z )\mameim.z7

meA
where f(x) =Y., cn am€™® and Ap, = ®(m) for every m € A, such that T is in L(LP(T™)) and HTH <
1Tl

THEOREM 0.0.6 ([3]) Let {A(t)} be a family of bounded linear operators of a Hilbert space V into
V* (dual of V). Let also {B(t)} be a family of operators belonging to L*([0,T); L(V,V*). Suppose that the

following conditions hold:

(1) (7;]11/6(7\; 18 )A’(t) € LY[0,T]; L(V,V*)) such that for all (u,v) € V x V, one has %(A(t)u,v) =
t)u,v),

(ii) fort € [0,T], the operator A(t) is self-adjoint,
(iii) there is a real number o > 0 such that (A(t)u,u) > a|jul|?, for allu € V and t € [0,T).

If u € L3([0,T); V) is a solution of u' + A(t)u + B(t)u = 0 verifying u(T) = 0, then u = 0 on [0, T).

We will use the standard multi-index notation. A multi-index o = (aq, -+ ,@,) is a n—tuple of
nonnegative integers. We define the symbols |of := Y7 | o, 2 1= 2" 25? --- 2% and
D¢ := —a\al .
0z 053 -+ Oz

Define for each (a, 3) € N?" the semi-norm, || - ||4., by

1£llas = lz*D° £l .

DEFINITION 0.0.7 We define the Schwartz space, (R™), as

S R") ={p € C¥[R") : |[¢llas < oo for any (o, 5) € N>}




The topology in .#(R") is that induced by the family of semi-norms {|| - ”avﬁ}(a,ﬁ)ENQ"' We say that a
linear functional ¥ : . (R™) — C, defines a tempered distribution if ¥ is continuous (and we denote ./ (R™)
as the set of all tempered distribution). Consider an open subset 2 of R™. For m € N and 1 < p < oo, the
Sobolev space W™P(Q) is defined by

Wm™P(Q) ={u e LP(Q) : D% € LP(Q) for any |a] < m}.
W™P(Q) is a Banach space when equipped with the norm || - [[yym.» (o) defined by
”uHW’"vP(Q) = z ||DauHLP(Q)~
0<|a|<m
When p = 2, set W™P(Q) = H™(9).

THEOREM 0.0.8 (Gagliardo-Nirenberg’s inequality) Let 1 < p,q,r < oo and let j,m be two in-
tegers such that 0 < j < m. If

] I (1-0)

n r q

for some 6 € [j 1] (0 <1ifr>1andm—j—2=0), then there exists C = C(n,m,j,0,q,r) such that
0
Yo IDule <C | Y 1D | (g’
lo =7 loal=m

for every u € L (R™).

DEFINITION 0.0.9 Given s € R, one defines Sobolev spaces
sV
HS(R") = {u e 7' (R") : [(1 RE a} c L2(R")}

and

ng ~1Y
full-e = | [(1+ 16

L?(R")

Let € be an open set in R™ with smooth boundary. The Sobolev space H*(2) is defined by the restriction
of the elements of H*(R™) to 2, and with the norm

Il fll sy = inf{[|@|| grs(mn) : @ coincides with f in Q}.

DEFINITION 0.0.10 Let s1,---,s, € R. We define the anisotropic Sobolev spaces H®1» ' »*n (R™)
endowed with the norm

||<)DH?{“1 \sn (Rn) - /]R |$(€17 e afn)|2 H (1 + 512)51 dgl e dgn
" i=1

for any ¢ € " (R™).



One can easily prove the following interpolation in the anisotropic spaces.
LEMMA 0.0.11 If S1,i S 0; S 52,4, 1 S 7 S n., with
(01, 0n) = 0(s1,1,+ 81,0) + (1= 0)(s2,1,++ , 52.n)

and 0 € [0,1], then

T (0.2)

DEFINITION 0.0.12 Letry,---,r, € R. We define the fractional Sobolev-Liouville space

0
Hf”HgL---,Qn(]R”) S ||f||H‘51,17""31,n(Rn)

H(sl,-u ,Sn) (Rn) = Hsl,(),m ,0 (Rn) A---N HO"“ 0,85 (Rn)

equipped with. the norm |f]ycr. ooy = | Flz2@) + Sy D3 | gy, where DE (- 162) =

~

&l % f(&rs e &n)-
If for all 1 < k < n, 7, = r, are integers, then H(1>™) (R") is the Sobolev space W2 (R™).

REMARK 0.0.13 If 3 — 2 < s < min{sy, -+ ,8,} and p € [2,00), then the following embedding are
continuous
Hsl+---+sn (Rn) [N Hsl’m’S" (Rn) [N Hs (Rn) N Lp (Rn)

THEOREM 0.0.14 (Young’s inequality) Let f € LP(R") and g € LY(R™), 1 < p,q < oo with %—i— >

1. Then f*g € L"(R") where + = % + é — 1. Moreover

1
q

I * gllr@ey < NFllLe@nllgllLan)-

LEMMA 0.0.15 Let 1 <p,q,p1,q1,p2,q2 < 00 wz‘thl—l—%: p%—’—p% andl—i—%: qil—i—q%, Then

I1f *glleeramey < Ifllpe o ey ll9ll Loz o2 (w2
LEMMA 0.0.16 Ifs; > 5 , for alli=1,---,n, then H**"*» (R") is an algebra.

THEOREM 0.0.17 (Embedding) If s > 2 + k, then H*(R") is continuously embedded in C¥ (R"),
the space of the functions with k continuous derivatives vanishing at infinity. In other words, if f € H*(R™)
and s > % + k then (after a possible modification of f in a set of measure zero) f € C% (R™) and

I fller@ny < sl fllas mn)-

THEOREM 0.0.18 (Embedding) The space H*(Q)) is continuously embedded in LP(QY), if 2 < p < 0o

1 1
and — > 5~ 2 Moreover, H*() is continuously embedded in L>®(QY) if s > n/2. This embedding is
D n

L1 s

compact if — > — — —.

p 2 n
LEMMA 0.0.19 For any f € H"/?>*<(R") and ¢ € (0,1/2], we have

£l oo @y < e(m)e™ 2| Il grnsate@ny-



THEOREM 0.0.20 If s > %, then H*(R™) is a algebra with respect to the product of the functions.
That is, if f,g € H*(R™), then fg € H*(R™) with

I f9llersny < Il e ey 9l s (-

DEFINITION 0.0.21 Let H be a Hilbert space and I : H — R be a functional. We say I satisfies the
Palais-Smale condition if I € C'(H,R), and if every sequence {uy}?2, C H such that:

o {Iugl}e2, is bounded, and
o I'luy] — 0 in H,
is precompact in H.

DEFINITION 0.0.22 Let H be a Hilbert space and I : H — R be a functional. We say u € H is a
critical point if I'lu] = 0. Also the number c is a critical value if K. # (), where

K.:={ueH | Ilu] =¢, I'lu] = 0}.

The mountain pass theorem (see [19]) is an existence theorem from the calculus of variations. Given
certain conditions on a function, the theorem demonstrates the existence of a saddle point. The theorem
is unusual in that there are many other theorems regarding the existence of extremum, but few regarding
saddle points.

THEOREM 0.0.23 (Mountain Pass) Let H be a Hilbert space and I : H — R be a functional. As-
sume that I satisfies the following conditions:

e ] € C'(H,R),

e [’ is Lipschitz continuous on bounded subsets of H,

o [ satisfies the Palais-Smale compactness condition,

e I[0]=0,

e there exist positive constants r and a such that I[u] > a if ||u|| =r, and
o there exists v € H with ||v|]| > r such that I[v] <O0.

If we define:
I'={geC([0,1;H)|g(0) = 0,g(1) = v}.
Then

= inf I
©= g on el

is a critical value of I.

THEOREM 0.0.24 (Mountain Pass) Let X be a Banach space. Let My be a closed subspace of the
metric space M and Ty C C(My, X). Define

I'={yeCM,X) : v|lm, €To}.



If p € CY(X,R) satisfies

oo > ¢ := inf sup p(y(u)) > a:= sup sup p(vo(u)),
Y€l ueM Y0€Lo u€Mo

then, for every e € (0,(c—a)/2), 6 >0 and v € T such that

suppoy <c+e,
M

there exists u € X such that
o c—2 < p(u) <c+ 2,
o dist(u,v(M)) < 24,
o ll¢'(u)l| < 8e/d.

We recall the Hilbert Transform 57, defined by

%(f)(x):jrp.v.;*f(x):;p_v'/f(a:y—y)dy,

is a unitary operator on L?(R); we remember that for any f € LP(R), 1 < p < oo, the Hilbert transform
A f(x) exits and is finite a.e.. Moreover, the Hilbert transform operator ¢ : f — S f for f € LP(R),

1 < p < o0, is bounded. Some properties of the Hilbert transform 2, for f, g € .7:

[otn == [ 1),

H(f)(€) = —isgn(§)/,
172 ()l = 11 fll L2,
O, I = H0,,
H(f(a))(z) =sgn(a)(f)(ax), for everya € R,
(2 fe(2))(y) =y (f) (),
H(f(-+a))(x)=2(f)(x+a), foreverya€ R,

/ efo A fy =0,
H(fg) = [7(g) + 97() + A (H()) A (9)) .

We will explain now the notation of well-posedness that will be used. Let X and Y be Banach spaces such

that X — Y and suppose that f € C(X,Y). Consider the initial value problem:

du
ot = f(u)

u(0) = .



DEFINITION 0.0.25 We will say that (0.12)-(0.13) is locally well-posed in X if for any ¢ € X there
exists T > 0 such that the following conditions hold,

e there exists a unique u € C([0,T]; X) N CY([0,T);Y) such that satisfies (0.12)-(0.13);

e u depends continuously on ¢ in the sense that if v, — @ in X, then for n large enough u, €
C(0,T); X) and u,, — u in C([0,T]; X).

If T can be taken arbitrary large, then the initial value problem is called globally well-posed.

Observe that the first condition expresses the persistence of u(t) in the space X. The second condition says
that the local flow defined by (0.12)-(0.13) is continuous.

In what follows different constants may denoted by the same letter when their precise values are of no
relevance to our arguments. When necessary, dependence on other quantities will be indicated.



Chapter 1

Solitary Waves of ZK equation

1.1 Introduction

The Korteweg-de Vries (KdV) equation depicts the evolution of the weakly nonlinear and weakly dispersive
waves in such physical as plasma physics, ion-acoustic waves, stratified internal waves, and atmospheric
waves [6]. Kakutani and Ono have shown that the modified KdV equation governs the propagation of Alfvén
waves at a critical angle to the undisturbed magnetic field. The presence of the transverse dispersion has
been physically attributed to the finite Larmor radius effects [1]. But, despite its overt fame, the KdV
equation is restricted as a model by being spatially one-dimensional. On the basis of the great success
in the soliton theory, a lot of works have recently been directed to thrive higher-dimensional models
and investigations of soliton properties in multi-dimensional systems, particularly two and three spatial
dimensions. There are several two-dimensional generalizations of the KdV equation, but the Kadomtsev-
Petviashvili (KP) and Zakharov-Kuznetsov (ZK) [1] equations are the most well-known ones.
The ZK equation
U + Aty + vy =0, (z,y) € R x R 1

was first derived in three dimensional form to describe nonlinear ion-acoustic waves in a magnetized Plasma.
But a variety of physical phenomena, in the purely dispersive limit, are governed by this type of equation
such as the long waves on a thin liquid film, the Rossby waves in rotating atmosphere, and the isolated
vortex of the drift waves in three-dimensional plasma. Spatially localized solitary wave solutions decaying
in all directions were also obtained analytically but the conclusion is restricted to specific situations. When
the localized pulses decaying in all directions preserve their forms in the interaction with other pulses, they
are called solitons in higher dimensional space. The multi-dimensional localized pulses are often actually
observed in a variety of physical phenomena and some of them turn up to imply soliton-like properties;
magmons in porous flow and vortex solitons in plasmas [1]. However, detailed investigation, either ana-
lytical or numerical, of those properties based on sound models of nonlinear differential equations are still
defective.

A cylindrically symmetric solitary wave solution (bell-shaped pulse) of ZK equation was obtained nu-
merically [40, 67]. The numerical study of the ZK equation shows that the cylindrically symmetric solitary
wave solution are fundamental because these solutions arise from an arbitrary initial condition. In fact, the
interesting issue is the existence of ground states of —Awu + f(u) = 0 which is well known, under suitable
assumptions over the nonlinearity. It follows, for example, from the results of Berestycki and Lions [9].
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The well-posedness of the ZK equation with the nonlinearity u?u, (generalized ZK equation) can be
seen using Kato’s Theory for the general nonlinearity [42]. Faminskii showed the ZK equation is globally
well-posed in H* (R?) for s > 1 [31]. Biagioni and Linares proved the modified ZK equation (p = 2) is
globally well-posed in H* (R?) for s > 1 [12]. Recently, Linares and Saut obtained some results in the
three dimensional case [51].

The present Chapter of this thesis is devoted to define a suitable space for traveling wave solutions and
give a necessary condition for the existence related to the speed ¢. Then, we obtain periodic traveling wave
solutions from a constrained minimization problem when the nonlinearity is p—}rlum‘l and p = %, where
k € Nis even and k and ¢ are relatively prime. We use the Steiner Symmetrization to extend our result to
the arbitrary p, also we will show that the found solution is, in fact, a smooth solitary wave solution with
symmetry and decay (is called bell-shaped pulse). We also use the ideas of Pankov and Pfliiger ([64, 65])
to show that the sequence of solitary wave solutions of ZK in cylinder tends to a traveling wave solution
of ZK equation in R™. Next, we use other approach to obtain the solitary waves for a general nonlinearity
of the ZK equation. Note that these results, in a appropriate context, can be repeated for other higher-
dimensional models such as the generalization of the BBM equation, which one dimensional models the
unidirectional propagation of long waves in a channel and is an alternative model for the Korteweg-de Vries
equation. In Section 1.9, we will study instability of some of the minimizers of generalized KdV equation.
We use the variational properties of our solutions and show that they are unstable for p > 4.

1.2 Nonexistence

We will study existence of traveling wave solutions of the equation of Zakharov-Kuznetsov of the form
up + Aug + (f(u))y =0 (1.1)

in two dimensional cylinder and some of their properties. However, note that a similar procedure can
be applied to the case of R™ x T™. One can easily show that the equation (1.1) inherits the following
invariants:

& (u) = %fj(\VMQ — F(u)) dedy, & (u) = %jj u? dxdy.

As far as we know 5 invariants for ZK equation, other three invariants are the following;:

M (u) = / wdz, M) = / / w dady,
I(u) ://(m‘+yj)u dxdy—m'//%uz dxdy,

where 7 and j denote the unit vectors in the x and y-directions; and the extent of integrals is over the
total region under consideration. By a solitary wave solution we mean a solution of (1.1) of the form
u(z,y,t) = p(z — ct,y), where (({ =z — ct,y) € R x T, where ¢ € R represents the speed of the wave and

¢ —0, (1.2)
Ap — 0, (1.3)
Ve — 0, (1.4)
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as the variable || approaches to +oo, where A = (“)52 + 85 and V = (0, 9y); and also

o( _L) = @('7[’)’ VQD(', —L)= V(p(',L). (1'5)

p+1
We consider f(z) = x+ T So putting this form of u in (1.1) and integrating once, we see that ¢ must
p

satisfy the partial differential equation

p+1

p+1

—cp+Ap+ 0. (1.6)

We will see that ¢ has to be positive; in fact, there is no solution of (1.6) when ¢ < 0. We start by defining
the natural spaces needed to find a weak solution of equation (1.6). Hereafter we change the role of & by
x.

DEFINITION 1.2.1 Let C,.(R?) be the space of smooth functions which are L-periodic in y and have

per
compact support in x and define

H}J(SL) = {<p|SL Tpe C;:r(Rz)}v SL =R x (_LvL) (17)

Let Hy, denote the closure of Hi(Sy) with respect to the norm given by
lelF = [[ & + 2 + 2 dady.
St
Similarly, we can define L?, with the norm ||¢||}, = [[ [¢[Pdzdy.
SL

THEOREM 1.2.2 Let ¢ > 0 and p € R. Then there exists no nontrivial solutions in Hy, of

(pp-i-l
cap+A<p+p+1=O, (1.8)

such that (1.2 — 1.5) hold.

Proof. We will use Pohozaev-type identities to prove this result.
Let ¢ € Hy. Multiplying (2.2) by ¢ and integrating over Sy, one gets

[f e 2 PP _
cp” — |Vol|* + 1 dxdy = 0. (1.9)
Sy p

Similarly, multiplying (2.2) by z¢, and y¢, and integrating over Sr, one obtains

[[ -ev? - o2+ 42 2970 iy =0 (1.10)
) e e A g B0 |
and 2 pr+?

et 2 —p:— — Y dady = 0. 1.11
!Lf cp” + pp — @y Ty W 0 (1.11)
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By summing (2.4) and (2.5), we have

jj cp? 207 dxdy = 0. (1.12)
p+1)(p+2)

From (2.3) and (2.6), we have

ffp cp? 4+ 2|Vo|? dedy = 0.
St

So, ¢ = 0. |

Therefore, ¢ € R in the equation (1.6) must be positive.

1.3 Existence

We are going to make use of a variational method applied to a suitable minimization problem to prove the
existence of the solitary wave solution of the ZK Equation in Sp. We consider the case that p = %7 where
k € Nis even and k and ¢ are relatively prime. We will prove there is a solution of (1.6) by variational
methods. We start by defining the nonlinear continuous functional I on Hy,

— 1 2 2
I(p) = ;5 ! 196l + cg? dudy
L

and the following constrained minimization problem on Hyp,
= inf I(@):@EHL,J(cp)sz(pp+2dxdy:q>0 . (1.13)

Also, we consider the set of minimizers
Go={peHL: I(p)=1;, J(¥) =q}. (1.14)
We call a sequence {¢,} C H;, a minimizing sequence to G, if

lim I(pn) =Gyq,, J(pn)=gq, forall neN.
We endeavor to show that G, # 0. If g € G, then by the Lagrange Multiplier theorem, there exists
6 € R such that 61(g) + 66J(g) = 0, where §I(g) and 6.J(g) are the Fréchet derivatives of I and J at g.
Now 61 and §J are given (as distributions in HL_I) by

§I(g) = —Ag+cg, 6J(g) = (p+2)g".

By the change of the scale ¢ = sgn(0)(|0](p + 2)(p + 1))*/Pg, we obtain that ¢ satisfies in (1.6). Let
g > 0, and {p,} be a minimizing sequence to I;. Therefore, since I(yp,) — I; and I(yp) represents a
equivalent norm to the ||¢||%, it follows that there exists K > 0 such that ||¢,[|? < K. Also, it is clear that
1, > 0 for every ¢ > 0. So,
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LEMMA 1.3.1 For all ¢ > 0, one has 0 < I; < o0.

To each minimizing sequence {¢, }, we associate a sequence of nondecreasing functions @, : [0, 00) —

[0, g] defined by
¢+r
= sup/ / ©PT2 dady.
CER

An elementary argument shows that any uniformly bounded sequence of nondecreasing functions on
[0,00) must have a subsequence which converges pointwise to a nondecreasing limit function on [0, c0).
Hence {Q,} has such a subsequence, which we denote again by {Q,}. Let @ : [0,00) — [0,¢q] be the
nondecreasing function to which @,, converges, and define o = lim,_,, Q(r); then 0 < o < ¢. In fact, we
are going to use the Lemma 0.0.2 and show that the evanescence and dichotomy do not occur for @, (r).
Suppose a = q. Then there exists rg > 0 such that for all sufficiently large values of n we have

¢+ro
Qn(ro) = bup/ / p+2 dxdy > q/2.
¢—

Hence for each sufficiently large n we can find z,, such that

L Tp+T0
/ / P2 dady > q/2.
—L Jx,—ro

Now, let z > ¢/2 be given. Since a = ¢ then we can find r¢(z) and N(z) such that if n > N(z) then

z)+ro(z
/ / (pnﬁ dxdy > z
zn(2)—ro(z

for some z,(z) € R. Since fSL ©P*2 dady = q, it follows that for large n the intervals [x,, — 70, Ty + 7]
and [x,(z) — ro(2),2n(2) + 70(2)] must overlap. Thus, by defining r = r(z) = 2ro(z) + ro, we have that
[xy, — r, 2, + 7] contains [z, (2) — 79(2), 2n(2) + ro(2)] and therefore

L Tn+To
/ / OP 2 dady > z,
—L Jx,—19

for all sufficiently large n. Note that the case of z < ¢/2 is clear. We define ¢, (z,y) = pn(x + z,,y). Now
1
if we put z =1 — — for every k € N, then there exists r; such that for all sufficiently large n € N,

k
L Tk 1
/ / PP dady > 1 — —.
), k

We have the fact that {,,} is bounded in Hp, then compactness embedding Hy, into LP*2 on bounded
intervals, it follows that some subsequence of {5, } converges in LP*2([—ry, r] x [-L, L]) norm to a limit
function g € LPT2([—ry, rx] x [—L, L]) satisfying

L Tk 1
/ / " 2 dedy > 1— —.
—L —Tk k
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By Cantor diagonalization argument, together with the fact that J(g,) = ¢ for all n, we have then that
some subsequence of {¢,,} converges in LP*? norm to a function g € LP*? satisfying [[ g**? dzdy = q.
SL
By weak compactness and the weak lower semicontinuity of the norm in Hp, we know that ¢, converges
weakly to ¢ in Hy, and that ||g|ly < liminf, . [|@n|l1. It follows that I(g) < liminf, .. I($,) = I,
whence I(g) and g € G,. Furthermore, I(g) = lim I($,), whence ||g|ly = lim [|@,|l1 and @, converges
n— o0 n—00

to g in Hy norm. So, G is nonempty. In fact, we have proved
LEMMA 1.3.2 Suppose « = q. Thence there exists a sequence of real numbers {x1,xo,x3, -} such
that for every z < q there exists r = r(z) such that f_LL f;"j: WP2 dady > 2z for all sufficiently large n.

Moreover, the sequence {@,} defined by &n(x,y) = pn(x+ 2, y) has a subsequence which converges in Hp,
norm to a function g € Gj.

Now, we are going to show that the cases a = 0 (evanescence) and 0 < «a < ¢ (dichotomy) do not
occur. First, we show the sub-additivity property of I,. Let ¢ > 0 and ¢ € Hy. We define the function g

by wo(x,y) = thap(x,y). Then J(pg) = 0J(p), and I(pp) = 91’%[(@). Hence

v =t {I(g0) : () = 0a} = inf {072 1() : J(¢) = g} = 07

2
Therefore I, = <Q1> I, for all ¢1,¢2 > 0. Now, if v € (0, ¢q) then there exists § € (0,1) such that
42

v = fq. Since the function f(6) = 077 + (1- H)W satisfies in f(f) > 1 for all € (0,1) and I, > 0,
thereupon one has

2 2 2 2
Lt Iy = 0751, + (1= )72 1, = (077 + (1= )77 ) [, > 1,
Therefore,

LEMMA 1.3.3 For ally € (0,q), one has Iy < I;_ + I,.

We choose a function ¢ € C§°(R) such that ¢ =1 on [-1,1] , ¢ = 0 for x ¢ [-2,2] and |¢'| < K
for some K > 0. Also we choose a function 1 € C§°(R) such that ¢? + ¢? = 1 on R, and we define
¢r(x) = ¢ (£) and ¢, (z) = ¥ (£). Let e > 0. By the definition of «, there exists 71 such that for every
r>ry, a—e<Q(r) <Q(2r) < a. Since Q,, converges pointwise to @, there is N € N such that for every
n > N, |Qn(r) — Q(r)] < €/2, and |@Q,(2r) — Q(2r)] < €/2. Thus a — € < Q,(r) < Qn(2r) < o + € ,for

every n > N. Now by the definition of @,,, for every n > N there exists x,, such that

L Tp+T L Tp+27r
/ / P2 dady > a — e, / / WP dedy < a+ e (1.15)
—LJx,—r —L Jx,—2r

Now we define g, (z,y) = ¢r(z — z,)pn(z,y) and hy(x,y) = ¥.(x — 2p)pn(z,y). It is obvious that
gn(2,Y), hn(z,y) are in Hy,. We have

L
| [ o dady - / / 2 (2) @ @ + 2,) dedy
-LJR
Tp+2r
/ / P2 (x4, y) dady = / / WP (z,y) dedy < a+e
T, —27r
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/ / hEY? dxdy = / / P2 (2) T2 (2 + 20y y) dady
Ty +27
/ / P2 (x4 2y, y) dedy = / / O3 (2,y) dedy > o —e.
Ty —2T

[J(gn) —al <€ foreveryn =N, (1.16)

Consequently,

since J(¢p) = q. Likewise we have,
|[J(hy) — (g —a)| <€ foreveryn> N (1.17)

from the inequalities of (1.15). Now, we have

I(ga) + I(ha) = 5 fIVgn|2+cgn + [ Vhal® + ¢ h2 dady
2ﬂ¢’2 2 )2+ 20,8.0n(0n)s

+ 92} + ¢ 6% dady + 2jfw'2 ;

+ wf(v?n)i + 2%%%(%% + wr(%)y

1 1
+ w2l dedy = < [[ [Vinl? + ¢ @2 daday + O () :
2 5 r

since ¢? +¥? =1 and |¢',|oc = |¢'0o/Ts [¥'1]oo = |¥']0o/r. We make the choice 7 so large such that the
O(1/r) term in the preceding paragraph is less than € in absolute value. In consequence, |I(p,) — I(g,) —
I(hy)| < € for all n > N(r). Therefore,

LEMMA 1.3.4 For every e > 0, there exists a number N € N, sequences {g,} and {h,} of Hy, functions
such that for every n > N,

* |J(gn) —af <e
o |J(hn) = (g—0a)l <e
o I(pn) > I(gn) + I(hy) —e.

Now, suppose the case 0 < o < ¢ occurs. Let € > 0 be given. We consider N and {gn}n>n , {hn}n>n
in Hy, as above.
For n > N, we set
1 1
- ari? = _(g—a)r=
gn = In 5 ha= W o
n

||gn||p+2 p+2
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Then J(§n) = o and J(hy) = ¢ — a. So, it follows that 1(§,) > I, and I(hy,) > I,_q. Accordingly,

gl 17|
I(gn) > iH Iy I(hn) > pi Ig—a-
a2 (q — a) Ptz

From (1.16) and (1.17), it follows

lgn I3+ L%y
I(¢n) > I(gn) + I(hn) —€ > > Iy + —————FIj_a—¢€
art2 (¢ — a)r?
(g—a—ewe
A A

Ij—o — €
art2? (g —a)rt?

For a fixed €, we take n — 0o, and then as ¢ — 0o, we obtain
THEOREM 1.3.5 (Ruling out Dichotomy) If 0 < a < q then I, > I, + I;_,.

This theorem contradicts the sub-additivity property of I, if we consider « € (0,¢). So, we have ruled
out the case 0 < o < ¢. Now, we will use ideas of Albert and Lied to rule out the evanescence case [2, 50].
Let £ € Z(R) (Schwartz space) such that supp &(x) = [—2,2] and ¢ is positive in [-2 , 2]. We define
F(z) =) ,cz&@ —mn). Then for every x, the sum defining f (x) has not more than four of the terms in

i((i)) Therefrom w € C*(R)

the sum being nonzero. So, F (z) > 0 for every x € R. We define w(z) =

and supp w C [—2, 2]. We have

by the equalities

Fle—m)=> &e—n-—m)=> &x—n)=7F ().

nez neZ
Also, since Y, ., &(x —n) > {(x), it follows that w(x) < 1 for every z € R.

LEMMA 1.3.6 Let w € C>®(R) be given such that 0 < w < 1, w(z) = 0 for z ¢ [-2 , 2|, and
Yomezw(x—mn) =1 for all x € R. Then there exists a positive constant k such that for all ¢ € Hp,

D lwl@ —n)ell} <k Jlollf. (1.18)
ne 7z

Proof. We define w,,(z) = w(x —n) for n € Z. Also, let [>(Hy) denote the Hilbert space of all sequences
{fn}nez such that f, € Hy foreachn e Z and Y, ., [|fnll} < oo. So we have

2
{wonetnllizr,y = D lwneliz, = (lonelze + 1@n)a)lI72 + [(@np)yl72)
ne”Z nez

=2 ﬂ (lwnl® + |(@n®)al® + [(wnep)y|* dady) .

nezZ Sy,

(1.19)
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By the definition of w,,, we have

Dl wn@)ylize = Zﬂw (x —n)lpy|? dxdy—ﬂwy drdy Y w®(x —n)

nez nezZ Sy, nez

(1.20)
< ﬂ loy|® dady Y " w(z—n) = ﬂ oy |* ddy
nez St
and
>l wn@)allz =D llwhe + wnpallzs $ D llwhelie + lwnpels- (1.21)
nezZ nez neZ
Also, we have
S 2 <Z/ / Plip(a +n, ) ? dedy < k(w Z/ / 2, y)I? dudy
n—2
nez neZ (1.22)
< 4h(w) / [ 1ol? dady = k(o)
-LJr
Therefore from (1.19), (1.20), (1.21) and (1.22), we obtain (1.18). |

LEMMA 1.3.7 Suppose B > 0 and § > 0 are given. Then there exists n = n(B,d) such that if f € Hp,
with || f|l1 < B and || f||pp+2 > 0§, then

L r+2
sup [ [ 1Pt dady =
s —L Jr—2

Proof. Let w be as in the preceding lemma. Since ), ., w(x —n) = 1, it implies that no more than four
of the terms in the sum are nonzero at any given value of x, it follows that there exists a constant k1 > 0
such that Y, wP™(x —n) > ki for all € R. Suppose there exists f (which is not identically zero)
such that ||f||; < B and

lonf13 = (1+ kol FIZ22) o fIEE2, (1.23)
k B2
1

kB2 2 KIfIE 2 (1+ Rl A1) D lwn 520 = (1 +Rallf127) ij waslias

newL n€EZ St

> (14 kallf I8 ) Rall FIBER = Rl 1552 + kke = il FI52, + kB2

for every n € Z where ko = . By summing over n and using Lemma 1.3.6, we have

But it is impossible, since f is not identically zero. So, there exists ng € Z such that

—p—2 2
oo f13 < (14 B2l FIZE) oo SN0, (1.24)

2

where ko = . Therefore, from (1.24) and Sobolev embedding, we have

1

+2
on s < Bllon 1 < 1 (1 722 ) o 1352
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Then,

Il
3

L no+2 o L . , kQ 7pp—2
P P
[ L ez [ [z i (155

]
Now, for every minimizing sequence {¢,,} of I,, we know that ||<pn|\12ﬁ2 > q and ||pn|l1 < B for every

n € Z. Thus by preceding lemma, there exists 7 > 0 such that @, (2) > n for all n. Therefore,
o= lim Q(r) > Q(2) = lim Qu(2) =7 >0.

Therefore, we have showed
THEOREM 1.3.8 (Ruling out Evanescence) For every minimizing sequence of I, , a > 0.

Thus, we have ruled out the evanescence case; hence the Compactness case occurs, i.e. a = q.

1.4 Regularity of the Solitary Waves

In this section, we prove that any solitary wave of (1.6) is a C*° function, for all p € N. More precisely we
have

THEOREM 1.4.1 Any solitary wave solution of (1.6) belongs to H° := H7°(SL).

Proof. There may exist many ways to prove this, but we will proceed by bootstrapping argument, using
Lemmata 0.0.4 and 0.0.5. Setting ¢ = ;;Tlﬁppﬂv (1.6) yields

Frfy(@yy) = —n? }—r}—y(@) = q(&n) fxfy(w)a

2

where ¢(&,n) = ne€TZ,§ € Rand F,, F, are the Fourier transforms with respect to z and

o
c+ &2 +n?’
y (respectively). It can be rewrited as follows

Fy(pyy) = _7_—1—1 [q(&,n) FoFyy] = q(n) b,

where g(n) is the operator F; ! ¢(-,n) F, for any fixed n. It is easy to verify that ¢(n) € £ (L*(R,)),
the space of bounded linear operators in L?(R,). As well, it is easily checked out that q(¢,n) satisfies the
assumption of Proposition 0.0.4, if we take n € R, so ¢(&,n) is a multiplier in L?(R?). Thusly, so is it for g(n)
in the space L* (Ry, L*(R,)) = L? (R?). Additionally, we have that g(n) depends continuously on n with
respect to the norm in £ (L2 (Rm)) at any point n # 0. Using the Proposition 0.0.5, for every x € R fixed,
it follows that g(n) is a multiplier in the space L? ((—L, L), LQ(RI))Y = L?(SL)" considered as the space
of L-periodic functions in y, where superscript Y means that for functions from this space F, ¢ vanishes at
n = 0. Since ¢(§,0) = 0, the corresponding multiplier vanishes on {gp € L?(SL) : Fyo=0if n= 0} and,
hence, is a bounded operator on the entire space L?(Sr). In fact, here, we need an extension of that theorem
for operator-valued multipliers which may be discontinuous at the point zero; nevertheless, the proof
presented in [68] of Proposition 0.0.5 brings about without any change; although the last argument does
not need for (... So, since pP! € L?(Sy), we obtain that ¢y, € L?(SL), and analogously ¢, € L?(SL).
So ¢ € H?(SL). By differentiating of (1.6) in the sense of distribution with respect to x,y and reiteration
of the process leads to proof of Theorem 1.4.1. [ |
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REMARK 1.4.2 Theorem 1.4.1 implies that we do not initially need to put the conditions (1.2) — (1.4)
on .

THEOREM 1.4.3 Suppose p € N and 1 < ¢ < 00 and ¢, is a solution of (1.6) which we obtained by
minimization. Then p. € WH4(SL).

Proof. By (1.44), we have 7, %, (%ﬁc) = i€ FuFy(pe) = i€Ko(€,n)FoFy(¥), where o = Lo 1. By

a similar argument as the one used obtaining the regularity, we obtain that 68“;” is in L9(Sy). Similarly

aa—fj € L9(S). Combining these estimates, we have

dpe

pc
loclbwrasiy = lelznisy + |5 %

La(S1) H y

< CllE Ml pagsy)-

La(SL)
So ¢, € Wl’q(SL). |

REMARK 1.4.4 In fact, one can show that ||¢c|lw2.a(s,) is equivalent to ||o.
it can be shown that p. € W*P(Sp) for 1 < k,p < ococ.

ptl
||L4<P+1>(SL)‘ Furthermore,

1.5 Traveling Wave Solution of ZK in the Plane

We proved the existence of the traveling wave solution wuj of the Zakharov-Kuznetsov equation of period &
in y-direction, for every k € Z. In this section, we are going to demonstrate the sequence {uy}x converges
to a solitary wave solution of the Zakharov-Kuznetsov in R? as k — oo. Let k € N and Sy, = R x (—k, k)
and Hy be as in the Definition 1.2.1. As we saw before, we obtained, uy, a solitary wave solution of the
ZK equation in Si. By a simple calculation we see that uy is a critical point of Jj, where

1 2 2 2 2
- cu? + |Vul? — ————— P2 dady.
o RS ey v

Tie(u)

We define the functional

1 2 2 2 p+2
J(u) = 2/chu + |Vu| (p+1)(p+2)u dxdy,

We will show that there exists a minimizer of I, in R?. We denotes S,.(¢) the cube with the side length
r, centered at the point ¢ € R2.
LEMMA 1.5.1 Ifu, € Hy, n=1,2,... is a bounded sequence and there exists a r > 0 such that

lim sup / |u,|? dedy = 0,
S(€)

nHOOEESk
then Hun”LP(Sk) — 0, forall2<p< .

Proof. By Holder’s inequality we have

1/2

1/2
/ |tn |P dady < </ [t |2 dxdy) </ | |2P~1) dxdy) (1.25)
Sr(8) S5r(€) 5r(€)
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To proceed, we use the embedding theorem, so by (6.1) we have

/ |t |P dady < (/
Sr(€) 5r(8)

r

1/2
-1 —
il d$dy> ln (s, e < A7 unllzzcs, e
On the other hand, for > 0, we can choose a fixed number m = m(r) € N such that the countable set

1
v={5( - €= @ve 52 bl <k}

can cover S and any point of Sy is contained in at most m of the cubes of . Summing up, using the
inequality above, we find that

1/2
/ [un|? dady < A | sup / [wn|? dady .
Sk £€Sk J S, (€)

By the assumption we conclude that ||u,||zs(s,) — 0, for 2 < p < co. [ ]

LEMMA 1.5.2 Let {u,} C Hy be a sequence of y-periodic functions of period k such that it is uniformly
bounded in the Hy-norm and satisfies J(ur) — 0, then the following alternative holds: Either

(i) |lukllg, — 0 ask — oo, or

(ii) There exist r,n > 0 and a sequence of the points & € R? such that, up to a subsequence,

lim (/ |ug |2 dacdy) > 1.
k=0 \Js,(6)

Proof. Assume that the case (ii) does not hold, then from Lemma 1.5.1, we get |lug||rr(s,) — 0 for all
2 < p < co0. By the definition of J, we have

Tie(ug) — %(Jé(wg),uh} = m /Sk u?t? dxdy. (1.26)

So, we obtain

min{1, ¢} 9 1 5 1 9 1 12
e <[ = | Vug|? dedy = S -
0 ey, < [ eud + 519 dody = i) + el
L 1 p+2 1 L p+2
= §<\7k(uk)7uk> + m”“k\\mu (sp) = 5“«7 (ur)[[fuw |l + m”uknmu(sk)'
So, the right hand side tends to zero, which implies the condition (i) holds. [ |

LEMMA 1.5.3 Any critical point uy of Jy satisfies the estimate ||ug| m, < Cr with a constant Cj > 0
only depending on the critical value.
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Proof. Since ¢, = Ji(ux) and J/(ur) = 0, then we obtain

1 / p
ek = Ti(ug) — §<jk(Uk),uk> = m /Sk uz+2 dxdy.

This implies

2 2
min{1, c}||ug||? S/ cu? + |Vug|? dedy = 27 (up —|—7/ uP*? dady
2 ) 4
:2ck+7/ bt da:dy:<2—|—>ck.
(p+1D+2)Js, " p
4
Therefore [[ug |7, < %ck. [ |

LEMMA 1.5.4 Let u;, € Hy and u € H*(R?) be nontrivial solutions of y-periodic and non-periodic
equations which satisfy (T} (u), ux) = 0 and (J'(u),u) = 0, respectively. Then there exist ¢ > 0,e3 > 0
not depending on k such that ||uk|lm, > €1, ||ullgr > €1, Ti(ug) > €2 and J(u) > ea.

Proof. Since (J/(ux),ur) = 0 then we get

. 1 C
win{1,c}ulfy, < [ o+ (Val dody =~ [ o dody <
k

Sk

where C' > 0 depends on the embedding constants.
So, this shows that

skl > <m{10}<p+1>)

On the other hand, we have

1 1
Ti(u :/ cu? + |Vug|? — ————— P2 dady > min{1, c}|ug||?, — ——————ul™ dzdy.
M) = g e Vel = Gy ks ey = minh el = g gy e

By the assumptions, we obtain
. 9 2
Tie(ug) = min{1, e}||ugl, — ;Jk(uk)-

Therefore, we get

Tilou) 2 win{1, e} oy,

This together with the first estimate, gives the desired lower bound. Clearly, the arguments for u € H!(R?)
are similar. |

In the following constructions, we need a operator from Hj to H'(R?). Let y; be a C$°(R) cut-off
function satisfying y(s) = 1 for |s| < k, xx(s) = 0 for |s| > k+ 1 and [x}|, |[x}| < co. We define the cut-off

operator Py : Hy — H'(R?) by Pru(z,y) = 9, (Xk(y)ﬁg;,lcu(a:,y)), where 8;@(3;,@/) = [Y, u(z,s) ds.

Then we have the following lemma.
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LEMMA 1.5.5 Py, is a uniformly bounded (with respect to k) linear operator from Hy, into H*(R?) and
Pru(z,y) = u(z,y) for (x,y) € Sk.

Proof. For u € Hj, we have

Jf et dsay <2 f[ (Totwpute.n P + vy bute ) doas. (1.27)
R2 R2

The first integral on the right hand side can easily estimated by 2[u||%. (s)- To estimate the second one,
we denote A; = [~k — L1, —k] and A5 = [k, k+ %] For y € A1, by the Cauchy-Schwarz inequality, we have

2
2
< [ futw. o) ds
M

y
‘8 pu(z y S ‘/ |u(z, )| ds
—k

and for y € 45, by the Cauchy-Schwarz inequality, we have

laykuxy ’/ |uxs|ds

< / fu(z, 5)|? ds.
No

The second integral in (1.27) can now estimated by

ﬂ ykuxy)‘ drdy — //

2
X ()8, pul, y)‘ dady

HUA R
/ /|Xk |2/|uxs\2dsdxdy
MUA R
<cz / lulags,) dy < C2 [lul2as,).
MNUN

This shows that
JJ 1Pruta,y)P dady < 1 ullfags, .
R2

Similarly, we can estimate

[J 1Prut, )y dwdy < 4[] [Ixwuy 2 + 2 xiul® + XG0yl | dody
R2 R2

< G (lluy [32s,y + lullfags,) ) -

Finally, we get [[ |(Pru(z,y))s|* dedy < [[ |ugz(z,y)[* dedy. This shows that P, : Hp — H'(R?) is
R2 2

uniformly bounded. The second statement of the lemma is obvious. |
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THEOREM 1.5.6 Let u, € H;, be a minimizer for J,. Then there exists a sequence &, € R? and a
function u € HY(R?) such that Pruk(- + &) converges weakly to u along a subsequence. Moreover, u is a
nontrivial solution of the Zakharov-Kuznetsov equation, a minimizer of I, in R* and

Jim [l — (- + &), = 0.

Proof. For k > 1 we can choose o € C§°(S1) having fSl oP*2 dxdy > 0. Since supp o C S; C Si, we
define a periodic extension of g such that gp(z,y) = o(z,y) when (z,y) € S; and gp(x,y) = 0 when
(x,y) € Sk \ S1. We take 8 € R in such way that e, = [oj satisfies that e, € Hy. Then, this leads
us to conclude that Ji(ex) = Ji(e1). Therefore from Lemma 1.5.3 and Lemma 1.5.4 we have |Jug| g, is
uniformly bounded from below and above. Thus, case (i) of Lemma 1.5.2 is not possible and from case
(ii), we obtain a sequence & € R? such that the shifted functions uy = ug(- + &) satisfy (for large k)

/ il dedy > /2,
S-(0)

with appropriate r,n > 0. Clearly, uy is also critical points of J. Since the sequence Pyuy is bounded in
H'(R?), there exists a subsequence which converges weakly in H'(R?) to a nontrivial function u € H!(R?).
We claim that u is a nontrivial solution of Zakharov-Kuznetsov equation. Since the embedding H!(Q) —
LPT2(Q) is compact for any bounded domain 2 in R?, we claim i, — u strongly in LPT2(Q). Let ¥ €
C§°(R?). Then for sufficiently large k we have that supp ¥ C Sy, and so, ¥ can be considered as an element
of Hy for k large just by defining its periodic extension.

Now, we have

Q Sk

This clearly implies (g, 9) g, — (u,9) 1. On the other hand, since 9 is also a member of H!, for large
k, then we see

1 1
— L= p+1 — T ~ _ ~p+1 S H / —0-
0,9) = (w0 = [0 dsay = i (Gs0ym, — 7 [ @500 dedy ) = i (), ) =0
that means u is a nontrivial weak solution of ZK. We want to show that v € Gy, where
Gy={ue H'(R? : I(u)=1,, J(u) =q}, (1.28)
I, = inf {I(u) cue HY(R?), J(u) = JI uP*? dedy = q} , (1.29)
]‘RQ
1 2 2
I(u) = 3 i!c u® + |Vul|* dzdy, (1.30)
Gf;:{uer : Ik(u):Ié“7 J*(u) =q}, (1.31)
k_ k . k — p+2 —
I =inf ¢ I"(u) : we Hy, J"(u) *jj“ dedy =gq ; , (1.32)
Sk

1
IF(u) = 3 ffc u? + |Vul? dzdy. (1.33)
Sk
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First note that for given w € H'(R?) such that J(w) = g, there exists a sequence wy, € C§°(Sk) such
that ||w, — w1 (r2), as k — oo. By the Sobolev embedding, we have ||wy — wl|zp+2(r2y — 0 implying
|[|w || Lo+2mz) — |w]lo+2re)| — 0. So, we obtain J(wy) = g, hence J*(wi) = q. Moreover J(u) = q
because u is a critical point of J and a nontrivial weak solution of the ZK equation, and uy € G’; . From
continuity for the functional I, we conclude that I(wg) — I(w), as k — oo. Thus for given € > 0, there
exists k. such that I(wy) < I(w) + €, which implies that limsup I} < I(w) + € for any w € H'(R?) with
J(w) = ¢ and for any € > 0. Moreover lim sup Ig < I,. Now, note that for a given bounded D C R?, we
have that D C Sy for k large enough, and so

~ 1 - ~
I = T1*(uy) > 5 ffc Uy + |V |* dedy.
D

Taking lim inf, we get that

1 1
. . k_ 7k~ T . ~9 ~ 12 2 2
liminf I = I"(uy) —hmlnf§gc uy + |Vug|® dedy > §gcu + |Vu|* dzdy,

due to the local compactness result. In other words, we have shown that liminf I(f > I(u), since D
is arbitrary. But w is a nontrivial weak solution of the ZK equation, then lim inf Ig > I;. In other
words, limg_, o I(’; = I, = I(u), which is equivalent to say that u is a nontrivial solution of ZK. Now, let
wy € C§°(Sy) such that wy, — u in H'(R?). Then, a direct computation shows that

lim Huk —u(-—i—{k)HHk = lim ||ﬂk—u\|H,€ =0& lim ||ﬂk—wk||Hk =0.
k—oo k—o0 k—o0
On the other hand, we have that

Ik(ﬂk —wg) = Ik(ﬁk) + Ik(wk) — ZJI ur wi + Vuy - wg dedy
Sk

= 1) + 1*(wy) = 2 [ [ @ w+ Vil - Vu dady
Sk

-2 jj up (wi —u) + Vg, - V(wg — u) dedy
Sk
= I"(ug) + " (wy) — 2(tg, w)r — 2(Up, wy, — w1

Since wy, converges strongly to u in H'(R?) and ||t || g, is bounded, we conclude that |(uy, wi —u)| = o(1).
But we proved that (i, u) — I(u). So, taking limit as k — oo and using I*(-) ~ || - |, , 1(-) ~ || |2 (r2)s

[y, — wel[F, ~ I* (@, — wi) = o(1).

So, limy oo s — u(- + &) %, = 0. "

1.6 Extension

We studied the equation (1.6) in the case that p = %, where k € N is even and k and ¢ are relatively prime.
The evenness of k was necessary to define the concentration functions @, (). Now, we want extend our
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results to the case p is arbitrary. Let ¢ > 0 and S, = R x (—L, L). We define the functional I on Hj, as
before,

_ 1 2 2
I(p) = 2QIV@I + e dedy
L

and the following constrained minimization problem on Hyp,

I,=inf (I(p):p € H, J(p) = JI OP T2 (2, y)drdy = q >0 . (1.34)
St

Also, we consider the set of minimizers G, = {9 € Hy : I(p) =1, , J(¢) = q}. But, here, we cannot
define the concentration functions, because we do not know the sign of J(-). So, we consider the following
constrained minimization on Hy,

Iq* =inf{ I(p) o€ Hp, J" () := jf lo(z,y)|PT2 dedy =q >0 p . (1.35)
SL

Also, associated to this minimization problem we consider the set of minimizers G; , defined by

* * *

G, = {(pEHL:I(go):Iq , J (ap):q}.
To each minimizing sequence {¢,} of I q* , we can define the concentration functions Q. : [0,00) — [0, ¢
defined by
* bt 2
Qn (r) = szlp/ / o(z, y)|PT* dady.
—L J(—r

Now, the method of Section 1.3 works analogously, and we have

THEOREM 1.6.1 Letc > 0, and let {p,} be a minimizing sequence to Iq*. Then there is a subsequence
{on,} and a sequence of numbers {x,, } C R? such that p,, (- + x,,) converges strongly in Hy, to some
@ € Hr,. The limit ¢ is a minimizer for Iq*; i.e., G; £ 0.

In the rest, we use the ideas of [8].

Rearrangement

In this section, we rearrange the region in a suitable way that we are able to use the results of Section 1.3.

Monotone Decreasing Rearrangement

Let © be a bounded open subset of R™ and u : 2 C R® — R} = [0,00) be a nonnegative measurable
function. We define level sets Qg := {x : u(x) > s}, s € R of u. We denote a point € R™ by (z/,y) with
x’ € R"~1. Furthermore, we introduce the notation Q(z') = QN{(z',y) € R" ; y € R}, for fixed 2’ € R"~1.
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The length of this one-dimensional set Q(z’) can be calculated as follows m(Q(z')) = [ xa(2’,y) dy, where
R

xq is the characteristic function of € and m denotes the Lebesque measure. Now, we define

oy [ HEDER 0y <@ i a0
Q*(2)) =
0 if Q)=0

and Q% == U, e *(27), where ' C R"! is the set of those ' € R"™! for which Q(z) is not empty.
Then the set Q* is a bounded open subset of R™ whose measure is equal to m(f2), and is connected if and
only if the projection of € on hyperplane {y = 0} is connected; this will be called the monotone decreasing

rearrangement of () relative to the direction y. It is included in R”? := {x € R", z = (2,y), 2’ e R"" ! y €
R}

DEFINITION 1.6.2 We define the monotone decreasing rearrangement in the direction y of u by
u*(z) :=sup{s e R ; z € Q}.

u* is the unique function defined on Q*, which is decreasing in the y-direction (that is, for any 2’ € R"~1,
a>b>0,u (2,a) <u*(z',b)) and y-equimeasurable with u, i.e., satisfies

m({¢ € Q'), u(a’,¢) > 7}) =m({¢ € Q*(2), w*(2,¢) > 7}) (1.36)
for all 7 > 0, and all 2’ € R*~1.

REMARK 1.6.3 Ifu is a function with compact support, we can choose for Q either the support of u or
any open set containing it, without changing u*; therefore, we shall not always indicate ) in the following,
for the rearrangement of functions with compact support.

REMARK 1.6.4 In particular, it is clear that Q = Q* when  is the cylinder S;, = R x (=L, L), and u
and u* have the same domain of definition.

Steiner Symmetrization

Let u: QCR" — R(J{ be a nonnegative measurable function.

We define
(@) €RY; 0 < |y < Im(Qa))} i Q') #0
O (2 =
) if Q@)=0
and Q* := |J Q*(2’). Then we define Steiner symmetrization to {y = 0} of u by u#(z) := sup{s €
x' e
R ;zeQ}.

REMARK 1.6.5 The monotone decreasing rearrangement just described is equivalent to Steiner sym-
metrization applied to y-even functions (those verifying u(z',y) = u(a’,—y)). To see that, let u be a
function with compact support, and define u* by ut(z',y) = w(a’,—y), and U = u + ut. If U¥ is the
Steiner symmetrization of U relative to the y, then u* and U¥ coincide on R%. Therefore all properties of
Steiner symmetrization are possessed by the monotone decreasing rearrangement.



1.6 Extension 27

REMARK 1.6.6 The monotone decreasing rearrangement is order-preserving, for sets (i.e. Q1 C Qo
imply Q7 C Q%) and for functions (u < v imply u* < v*).

REMARK 1.6.7 One of the very useful properties of any equimeasurable rearrangement is that if F' is
any continuous function defined on R~ ! x R, then

F(2', u(z)) do = F(2',u*(x)) dx. (1.37)
Q o

This is a clear consequence of (1.36). As a particular case, we have

l[ull e (@) = llw* | Lr (00 (1.38)
for all p € [1, o0].
REMARK 1.6.8 It will be easy to see that for all s > 0, (u®)* = (u*)® pointwise.

Inequalities

There are some inequalities between u and u* that are important and useful.

LEMMA 1.6.9 (Hardy-Littlewood) Let = Sp and u, v be two nonnegative functions of L*(Q).
Then we have

/Q w(@)o(x) do < / (@) (2) da. (1.39)

Q

This property is proved for the Steiner symmetrization in one dimension in [36], and for all equimeasurable
and order-preserving rearrangement in [45]. Also a similar property is valid for functions with arbitrary

sign:
’/uv §/|u*||v*|.

REMARK 1.6.10 This inequality and (7.5) imply that the monotone decreasing rearrangement is con-
tinuous and 1-Lipschitz in the L? norm:

/Q|U*(I)—v*(x)|2 dx§/9|u(x)—v(x)\dz.

LEMMA 1.6.11 (Riesz) Letus,...,u; be nonnegative measurable functions on Q such satisfying m({x ;u;(x) >
s}) < oo foralls >0 and all 1 <i < k. Then |(ur *ug*---*ug)(0)| < (u] *xud*---*uj)(0), in the sense
that if the right hand side is finite, then the left hand side exists and the inequality holds.

THEOREM 1.6.12 (Riesz-Sobolev) Let u and v be two nonnegative functions in L*(2), and w a
function with support in R}, positive and nonincreasing in the y-direction in R, verifying w(z',a) >
w(z’,b) >0, for all 2’ € R"™L, and for all a > b > 0. Then we have:

Ij w(xy)v(z2)w(z) — b, ly1 — y2|) dridas < ff u*(z1)v* (z2)w(z) — 2%, ly1 — y2|) dzidas,
QxQ QxQ

and

jf u(zy)v(ze)w(zy + x2) drrdas < fj w*(z1)v* (z2)w(zy + x2) dxido,
QxQ QxQ

where x1 = (¢, y1) and x9 = (z5,y2) € R".
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For the monotone decreasing rearrangement or Steiner symmetrization we have

THEOREM 1.6.13 Let Q2 = S;, and u be a function in Hy, := Hi(SL). Then u* belongs to Hy,, and

/ |Vu*|? dz S/ |Vu|? da. (1.40)
Q Q

Proof. Let ¢t > 0, and K;(x,y) be the Heat kernel in Q. We know that /C; is in all the LP(2) spaces, so

By(u) =t~ </QXQ|U2 dxdy—/QXQu(x)lCt(z,y)u(y) dxdy)

is well-defined. Due to Theorem 1.6.12, we have B;(u) > B(u*), since Bi(u) is symmetric decreasing. We
have u* € L?(f2), since u € L%(Q). To complete the proof, by a similar argument in [45, Lemma 2.6] in the
case of cylinder Q, limy_o By(f) = ||f||32 if f € Hy and limy_o By(f) = oo if f ¢ Hy. ]

It is easy to generalize (1.40) with a separation of y and the other coordinates:

LEMMA 1.6.14 Under the assumptions of Theorem 1.6.13, we have

/|Vm/u*|2 dmg/ \Voul? de and /|8yu*|2 dw§/|6yu\2 dx. (1.41)
Q Q Q Q

DEFINITION 1.6.15 Ifu:Q — C, we define u* = |u|* and u# = |u|#.
REMARK 1.6.16 Note that all the results above hold for this definition.

Now, we come back to our problem.

LEMMA 1.6.17 If ¢ € G; then |p|* € G4. moreover, I < Iq*.

Proof. By (1.38), we know that the rearrangement preserves LP-norm, so it follows that J* (Jo|*) =
J*(¢) = q. On the other hand, from [35, Lemma, 7.6], we know that if ¢ € Hy, then || € Hy. Therefore
by Theorem 1.6.13, we have Iq* = I(p) > I(|el*) > Iq*. Hence, we have |p|* € G;. Since J(|¢|*) =

J*(gp) = ¢, it follows I, < I(J*. Now, suppose that |o|* # G4. Then there exists ¢y € Hj, such that
J(¢) = q and I(¢p) < I(||*). By defining

_ g
T ol
we have J* (¢) = ¢ and I(¢) = ﬁ Y) < I(1), since ¢ = J(¢) < J* (). Therefore,
Lpt2

I(Jp|*) =1 < I(¢) < I(¥) < I(|¢]*).

which is a contradiction. So |¢|* € G,. [ |
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PROPOSITION 1.6.18 If ¢ € G4 then ¢* € G4. Moreover I, = Iq* and G, C G;.

Proof. Let ¢ € G,. Since P, ¢* € L?(SL), it follows from the properties of the decreasing monotone
rearrangement that

0<g= / pPy? dady < / (") (%) dady = / (") dady =: . (1.42)
St Sr St

We want to show that ¢ = 7 and I(p) = I(¢*). Indeed, considering v € G, and defining 8 = (%)pﬁ, we
have J(87 ') = 7 and J(Bv) = q¢. Whence, we obtain that I(v) < 872I(p) = I(B 1 p) and I(p) <
B2I(v) = I(Bv). Thusly, we have I(v) < 372I(p) < I(v) implying I(¢) = $%I(v). By (1.42) and the
properties of the decreasing monotone rearrangement we have that I(¢*) < I(p) = 21(v) < I(v) < I(p*),
so it follows that I(¢*) = I(¢) and the equality 5%I(v) = I(v) implies that ¢ = 7.

For the second part, if ¢ € G, thence by the first part of proposition, we obtain that J™ (Jp|*) =
J(|e|*) = q, since p* = |p|* > 0. So, Iq* < I(J¢|*) = I(¢) = I;. Now, by Lemma 1.6.17, we obtain that

I,=1]. (1.43)

It remains to prove that G, C G; . Let ¢ € G4. Then by the first part and the properties of the decreasing

monotone rearrangement we have that ¢ = J(¢) = J(¢*) = J* (¢*) = J* (¢). Now, by (1.43), we get
I(p) =1, =1). Thusly, ¢ € G". n

Now, by the Lemma 1.6.17, we have that G, # 0. So if ©» € G, then by the Lagrange multiplier the-
orem, there exists 6 € R such that §I(¢) + 65J(¢)) = 0. By a scaling change, we obtain that v satisfies in
equation (1.6) in the pointwise sense, similar to Section 1.4. Thus, by choosing ¢ = |¢|* with ¢ € Gq*, we
have that ¢ is a solitary wave solution of the ZK equation, which is a nonnegative smooth function and is
even decreasing in y-direction. We see that ¢ is strictly positive. In fact, we have

1
Py = o Ker e @), (1.44)

where K.(x,y) is the inverse Fourier transform of I/(\c(ﬁ, n) for all ¢ € R and n € (7/L)Z ; and

*

_ 1
- c+§2+n2 I
is the convolution operator in Sy, defined by

L
fg(z,y) = / / fl@ =0,y —p)g(o,p) dodp.
RJ-L
By an integral approximation, one can show that K. is positive, so if ¢(zg,yo) = 0, then ¢ = 0, which is
contradiction. In fact

THEOREM 1.6.19 For every ¢ > 0 and p € N, the ZK equation (1.6) has a solitary wave solution
€ Hp® which is cylindrically symmetric, strictly positive and decreasing in y-direction (bell-shaped pulse).

REMARK 1.6.20 Note that the Fourier transform of Kernel of generalized BBM is in the form of

~ 1
K(&m) = O r A nd)
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1.7 A General Nonlinearity

In this section we want to study the existence of the solitary wave solution, u(z,y) = ¢(z — ct,y), of the
equation (1.1) with a general nonlinearity such that (z,y) € R x T, with periodic L. Indeed, we are looking
for a solution of

—cp+Ap+ f(p) =0 (1.45)

with the conditions (1.2)-(1.5) where A = 97 49;. We assume that f is a differentiable real-valued function
on R such that f(0) = 0; and denote F(z) = foz f(s) ds as the primitive function of f. We define the
energy functional

Be) = [ 5(eet + Vo) = Fly) dady.

LEMMA 1.7.1 Suppose that f satisfies the following assumption:
f(x) < p(x), where p(x) is polynomial in the form of
p(z) = a1x + agx® 4+ - + apr™

for some m € N | where a; € R, for each 1 < i <'m, and min{l,c} > |a1|( remember that c is velocity of
solitary wave solution.

In consequence, there exists p > 0 and § > 0, independent on L, such that E(p) > > 0, if o € HY(SL)
and (¢l = p.

Proof. From the assumptions of the lemma and the Sobolev embedding, we have

1 .
B(e) = gumin{Lellelt = [ F(e) dody

1 . ay / 2 A / 1
> —min{l,c R dedy — -+ — mt dyd
2 min{l, ce}lolli - 5 ,, ¢ dvdy ) y
1 . 2 |a1| 2 |am| m-+1
> imln{LC}H@h - TH@HL?(SL) - m+ 1 ||<P||Lm+1(sL) dxdy
1 . |a2| |am| m
2 i(mln{lvc} —la)lleli - 7”90”? - m”ﬂh .
Now, we can choose p > 0 small enough such that E(p) > ¢ > 0, if ||¢]l1 = p. ]

LEMMA 1.7.2 Suppose that F satisfies the following assumption:

There exists v € C’Z?ST(RQ) such that \=2 [ F(\v) dzdy is sufficiently large as X > 0 tends to infinity.
R2

Then there exists e € H*(S) such that E(e) < 0 and |e|1 > p, where p > 0 is the same constant in
the Lemma 1.7.1.
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Proof. Without loss of generality, we may assume that v has compact support in S;. Therefore
)\2
E(w) = / 2 e? +190]) — F(w) dady
S

is negative and small enough, as A\ tends to infinity. So there exists Ay > 0 such that E(Av) < 0 and
[[Aov|l1 > p. We set e; = Aguv. For L > 1, we define

v if (z,y) €5
0 if (z,y)€SL\Si.

By extending vy, periodically, and setting e;, = Aovy,, we have e, € H*(SL), |ler|lnis,) = lleillmrsi) > p
and E(er,) = E(e1) < 0. |

THEOREM 1.7.3 Suppose [ satisfies the assumptions of Lemma 1.7.1 and Lemma 1.7.2. Also assume
that one of the following conditions holds:

o There exists pu > 2 such that pF(x) < xf(z).
o There exists p < 1 such that pF(x) > xf(z).
Then there exists a nontrivial solution of (1.45) in H*(SL).

Proof. We define
d = inf E(vy(t
inf max (v(t))
where I' = {r € C([0,1], HL) ; 7(0) =0 ,~(1) = e}, with e obtained in Lemma 1.7.2. Note that, according
to our choice of e, the set {t e ; t € [0,1]} belongs to I" and

max E(te) >d >4d >0,
0<t<1

which shows that d is uniformly bounded (from below and above), independent of L. Now, by using
Lemmata 1.7.1, 1.7.2 and Theorem 0.0.24 , we obtain that there exists a sequence ¢, € Hp such that
E(pn) — d and ||E'(¢n)|lz; — 0as n — oo, where Hf = H~'(SL,). Note that the functional E does not
satisfy the Palais-Smale condition. For instance, if ¢g # 0 is a critical point of E, then (- + 7, -) is also a
critical point of E, for each j € Z; but the sequence {¢(-+j, )}, does not have any convergent subsequence
in HL.

We prove that the sequence {¢,} is bounded in Hj,. Indeed, by the hypotheses we have

min{1, c}(1 — wlleallf < (E'(¢n), on) — HE(pn) < IE (¢n)lla; lonll — pd,

or
1 1 . 1 1
(2 - M) win{L, e}l < Bpn) = (B (pu)s ) < A+ LI (o)l onls

Hence the sequence {p,} is bounded in Hy,.
Now, we use from Lemma 1.5.1 to show that this sequence has a nontrivial limit. Assume, on contrary, there
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exists 7 > 0 such that supgcg, [q © |un|? dzdy — 0, then |[uy||1s(s,) tends to zero for all 2 < p < oco.
So we can choose a sequence ¢,, such that ¢, — 0, and

1 1
d=Blpn) = 5E (wa)gn) +en < [ FUognl + F(gn)] dady + e,
L

< billnl3agsn) + + bmllenl it s,) +en

where by, --- , b, are positive constants. Since d > 0 and the right hand side can be made arbitrary small
as n — o0, this arises a contradiction. Consequently, there exists a sequence {(z,,y,)} in R? and r > 0
such that, along a subsequence,

/ |Pn|? dzdy > d > 0,
8,-(0)
for all n, where @, (z,y) = @n(x + Zn,y + yn); and there exists ¢ in Hy, such that @, converges weakly in
Hp, and strongly in L? (Sp) to . It is obvious that ¢ # 0, also for every v € C2°,(R?)

loc per
(E'(¢),v) = lim (E'($,),v) =0,

n—oo
which implies that ¢ is a nontrivial solution of (1.45). [ |

REMARK 1.7.4 Similarly, one can show that the argument discussed in Section 1.5 holds in the general
nonlinearity case.

1.8 Asymptotic Properties

In this section we are going to study some asymptotic properties and the behavior of solitary wave solutions.
These investigations may be important in instability theory. To study the demeanors of the solutions of
(1.6), it is natural to peruse the behavior of K., the Kernel of the equation ZK, where

. 1
Ko(&,n) := FyFu(K.)(E,n) = crein?

where £ € R and n € (7/L)Z. First we will try to represent K in the forms which may be more convenient
to deal with them. To do this, we will need the following propositions.

PROPOSITION 1.8.1 (Poisson Summation Formula) Let f be a function on RN such that for
some §d >0 and A >0
A A A
< —— d < —

then

S fatmy= 3 fm) e,

mezZN mezZN

The proof of the following proposition is elementary.
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PROPOSITION 1.8.2 Letc >0 and

- 1
B(¢§) = w

where ¢ € RN. Then B is an even real-valued function in L'(RY). Moreover, B decays to zero when |x|
tends to infinity.

Now, by the definition, it is easy to check that K.(z,y) is a real-valued function for every (z,y) € Sr. Also
by definition,

- ¢iateiny cos(z€ +ny) cos(x€) cos(ny)
K= [ 3 e | X ere - | X e

R NELZ R NETZ R NELTZ
i€
By using Proposition 1.8.2, we have that [ 6—5-752 d¢ = %e’\/am. Therefore K, can be written by
R C
cos(ny) —t—(c-s-nQ)ﬁ m cos(ny) —\/er\
(z,y) f/ i dt = : (1.46)
nEz:ZV (¢ +n?) nEZ:Z Vet n?

So we see that K (x,y) will increase when (z,y) moves to (0,0). On the other hand,

Ka= [T [ 30 oo

neLL
Therefore, by Propositions 1.8.1 and 1.8.2, we obtain that

1

(z,y) = 2L e~ ar (=" Hyt2nLll?) gy (1.47)

nez
for every (z,y) € Sy, and (x,y) # (0,0). Also we can write K, in the following form
(z,y) / N h(n) e de, (1.48)
neLL

1

where iL(n) = m

. So, for y # 0, by using the Poisson Summation Formula, we have

e— Vet y+2nL|
(x,y) = QLZ /cos \/% d¢ = 4LZJ£’0(\/E(362 + |y + 2nL|?)'/?), (1.49)

nEZR nez
where % is known as the modified Bessel function of third order, or a Macdonald function; and can be
represented by
9)1/2 oo 0\ Y2
Ho(r) = 7(77/ 2 1"_1/26_7’/ e t¢1/2 (1 + ) dt.
I'(3) 0 2r
Note that J£(r) ~ log(1/r), as r — 0 and (r) ~ (Z)/? e=" as r — co. (See Figure 1.1 - 1.3).
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Figure 1.1: Kernel of equation (1.6) in R x T.

LEMMA 1.8.3 K. € L? forpe [l,40), K. € H® for s <1 and[/(\ceHs for s > 0.

Proof. It is easy to see that I/{\c € L? for any p € (1,4+00], K. € LP for any p € [1,+00) and K. € H® for
s < 1. However note that K, € L°(S\{0}). It is also easy to see that |VK,.| € LP, for any p € (3/4, +o0].
So I/(\c € H;. Therefore I/(\c € H? for any s < 2, since H; C HS, for any s = 2 (1 — Z%) On the other hand,
it is easy to see that I/(\( € H? for s > 1. This completes the proof. |
LEMMA 1.8.4 r®|V| € L?, for any a > 0, where r = (14 2% + y*)'/2. Moreover, p € H' (r® dxdy).
t2
Proof. Multiply (1.6) by x;(x)|z|*¢ and x,(y)|y|“p, respectively, where x;(t) = xo (2> and yg €
J
CP(R), 0< x0 <1, xo(t)=1if —L/4 <t < L/4 and xo(t) =0 if |[¢| > L/2. The proof follows by using
several integrations by parts, the properties of x;, Theorem 1.4.1 and Lebesgue’s theorem. |
K.
r

LEMMA 1.8.5 rh € L*°, where h= . Furthermore, r*p € L, for any a > 0.

Proof. It is casy to see that h € LP, for any p € (1/2,+00] and h € LP, for any p € [1,+0o0|. Since

r(f * 9)l < Cl(rf) x gl + C|f = (rg)l;

then |rh| < C'||rK|| .« || Kc| ;1 < 0o. The second part comes from ¢ = h* ((1— A)/2pP+1)  for a = 1.
For general o > 0, the proof is similar. |

THEOREM 1.8.6 Let ¢, be a solution of (1.6) which we obtained by minimization. Then there exists
00,07 > 0 such that

lpe(,y)| < Cre™V and  |pu(z,y)| < Coe= L,
for any 0 < 0 and o1, < o7, Morcover @, e”tWlp. and eIl are in L'(SL).

Proof. The proof is strongly related to the kernel K. By (1.47), we have e”1*| K.(x,y) € L? (SL), for any

o < 09 = v/c. Then by (1.44) we see . decays exponentially in the z-direction. So K.(z,y) = O (e""x‘).

Similarly by (1.49), we obtain that the solution decays exponentially in y-direction. By (1.46)-(1.49),

an application of Fubini’s theorem and Young’s inequality in L!(Sy), we obtain the second part, since

(P€+1 S Ll(SL) |
So that the solitary wave solution ¢, is rapidly decreasing.
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Figure 1.2: Kernel of equation (1.6) in R x R.

Figure 1.3: (left) Projection of Kernel on yz-plane, (right) Projection on zz-plane
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1.9 Instability

In this section, we consider a solitary wave solution ¢(z,y) of ZK equation obtained from a minimization
problem such as of type of Section 1.3 such that ¢ does not depend on y; or indeed the minimizers of
the KdV equation with a suitable constraint value. We are going to show that this type of solutions are
unstable in Hy, for some special p. We will use the ideas of [16]. First we state a well-posedness result for
ZK equation.

THEOREM 1.9.1 Let s > 2. Then for any ug € H*(SL), there exists T = T(||ug|lms) > 0 and there
exists a unique solution v € C([0,T); H*(SL)) of ZK equation with uw(0) = ug and u(t) depending on g
continuously in the H®—norm.

Proof. The proof can be obtained via Kato’s Theory ([42]). ]

For any X C Hy and e > 0, we denote the set V(X,¢) = {g € Hy; inf,ex ||v — gllu, < €}, the e—neighborhood
of X in Hy. Also for Y C LP, we denote Qy = {7,v ; a € R?,v € Y}, where 7, denotes the translation
operator by a.

DEFINITION 1.9.2 We say X C Hy, is stable by the flow of ZK iff for any € there exists & such that
for any ug € V(X,0), the solution of the ZK equation with initial data w(0) = ug is in V(X&) for all
t > 0. Otherwise we say that X is unstable.

A direct consequence of this definition is the following.

LEMMA 1.9.3 Let X C Hp, and € > 0. Then V(Qx,¢€) = Quy(x,¢)-
Throughout this section, ¢ is a solitary wave as described at the beginning.
LEMMA 1.9.4 Consider ¢ which is not necessarily ¢, = 0. Then

(I) There exists g > 0 such that for any v € V(, €0), there exists a unique N(v) € S, such that
lv—A(v)]| < |lv—w|, for all w € Q,. Moreover A : V(Q,,€y) — Q, is C.

II) There exists a unique C? functional A : V(. €0) — R? which satisfies the following for a € R? and
%]
v € V(Qy,€0):
(i
(it

(iii

) A(tqv) = A(v) + o, modulus L in the second component of a,
) <U TA(v) @m) =0,

) (N (v),v) =0, ifv ey,

) for any v € V(Qy,€), if D= BC — A% £ 0, then

(iv

Ai(v) = % (py (- + M)A = (- + A(v))C), (1.50)
Ay(v) = % (P (- + A()A = @y (- + A(v)) B), (1.51)
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where
B= [ 0(w.)par (@) + Al) dody, (1.52)
€= [ o )pn((.) + M) dad, (1.53)
A= [ o@.9)p((2.9) + Mo)) dad, (154)

(v) if v is a function such that v(z,y) = v(x,—y), then A(v) = (A1(v),0); and

TA(v) Pz
A(v) = ——2 1.55
1( ) <’U77—A(v)(prz> ( )

Proof. Lete > 0. Define G : ¥(¢, €)xR? — R?, given by G(v,a) = %st |Tap(z,y)—v(x,y)|* dedy. Then
from regularity of ¢, we obtain G € C3 and V,G(v, ) : Y(p,€) x R? — R? by V,G(v,a) = —(1,Vp,v).
So we have V,G(¢,0) = 0. Notice that Jacobian matrix of V, G at (¢, 0) is invertible and the determinant
is positive, because (¢, p,) = 0, since ¢ is cylindrically symmetric. Hence from the Implicit Function
Theorem, we get that there exists ¢y > 0 and a unique C? function A : V(y,€g) — R?, such that for every
v e V(p,€), VaG(v,A(v)) = 0. We define N(v) = Ta)¢p, for v € V(p, €g). For every v € V(p,¢€), N(v)
is the unique element of ¥(¢y, €y) satisfying ||[v — A(v)]| < ||lv — w]|, for all w € V(p, €9) N Q. But we know
that G(v,a) = G(Tgv, + (), for all 3 € R%. By Lemma 1.9.3, A can be extensible to ¥(€2,, €y) in such
way that for all v € V(p,€0), A(Tav) = A(v) + @, modulus the second component of «. The derivatives
(1.50) and (1.51) are obtained by differentiating the relation

<TA(v)v<p7 U> = 07

with respect to v. Now if v(z,y) = v(x, —y), analogously, by using the Implicit Function Theorem, we can
find A1 (v) for v € V(p, ) such that (1(4, (v),0)¢z, v) = 0. Note that (7(4, (),0)9y,v) = 0, because of having
cylindrically symmetry of ¢ and v. Hence the uniqueness provided by the Implicit Function Theorem gives
A(v) = (A1(v),0), taking €y smaller if necessary. Also, (1.55) follows by differentiating the relation

(T(AL (v),0) %Pz, V) = 0,

with respect to v.

|
Now, suppose that v is a function such that v, and ., is € Hy. Then we define
<’LL, TA(u)QZ)1>
By (U) = Az — —————TA () Pz~ 1.56
o 2 T T s e M )

LEMMA 1.9.5 B, is a C' function with bounded derivatives from V(Q,, €) into Hy,. Moreover

(i) By commutes with translation in the x-variable,
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(i) (By(u),u) =0 for all u € V(Qy, €0),

(111) 81#(@) =y if <(P, ¢z> =0,
(iv) if (@2, Ve) = 0 then (By(u),uy) =0 for all u € Q.

Proof. The proof follows from the previous lemma and differentiation. ]

REMARK 1.9.6 Note that in the preceding lemma we used the geometry of R x T, which does not hold
in R2.

Now we will consider the following situation

(" (0) By (), By () <0, (1.57)

where § = &1 + ¢é, and P(z) = P(x,y) = ffoo ©(z,y) + 2zp.(z,y) dz. Note that ¢ satisfies —cp + @0 +
p%gop*l = 0. Now for vy € V(Q,, €0), we consider the initial value problem

Lo(s) = B(0(s), v(0) = o, (1.58)

From Lemma 1.9.5, we have that for each vy € V(£, €y), this system admits a unique maximal solution
v € C?((—0,0); Y(Qy, €0)) where v(0) = vy and o = o(vg) € (0,+00]. Moreover, for each €; < € there
exists op > 0 such that o(vy) > o1 for each vg € V(Q, €1). Now for fixed €;,0;, we consider the flow of
(1.58)

U : (—o1,01) X V(Qp,€1) = V(Qy, €)
(s,v0) — % (s)vo,

where s — % (s)vg is the maximal solution of (1.58) with initial data vg. From Lemma 1.9.5, we have that
% is C! and for each vy € V(Qyp,€1), s € (—01,01) — % (s)vg is C%. Also the flow commutes with the
translations with respect to the z-variable (and then commutes with 7, for each o € R?). Also from the

relation R

U(s)p = +/ TA (t)p) P dt — / F()Ta@ (t)¢) Paa dl,
0 0

and the properties of ¢, we have that % (s) € W21(S.), for s € (—o,0), where s € (—0,0) — F(s)
is a continuous function. Now for every vy € ¥(£y,€1), we get from Taylor’s theorem that there exists
6 € (0,1) such that

S(% (s)vo) = S(vo) + P(vo)s + %K(%(as)vo)SQ, (1.59)

where
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are functionals defined on ¥(§2,,€1). Since R and % are continuous, S’(¢) = 0. We are going to show that
the condition (1.57) implies the instability. In fact, by (1.57) we have ®(¢) < 0. Therefore there exists
€2 € (0,€1] and o9 € (0, 01] such that

S( (s)vo) < S(vo) + P(vo)s, (1.62)

for vo € V(p,€2) and s € (—02,02). We can extend the inequalities (1.62) to vg € V(Qy,€2) by Lemma
1.9.3 and the commutation between % (s)vg and the translations. Now we put vg = % (p)p with p # 0
small enough. Then we obtain

S(% ()% (p)p) < S(% (p)p) + 2(% (p)g)s- (1.63)
Hence for s = —p < 0, we have
S(p) < S5(# (p)p) = 2(% (p)p)p- (1.64)
Also from (1.57) we have that the function p — S(% (p)¢) has a strict local maximum at zero, so
S (p)p) < S(p); (1.65)

for p € (—0,02) and p # 0. From (1.64) and (1.65), we have that for some o3 < o9,
(% (p)p) <0, (1.66)

for p € (0,03). But since ¢ a minimizer of § under the constraint J(u) = ¢, then we have from (1.57) that

(J'(p), By () # 0, (1.67)

where J(p) = [ P*?. Now we consider the function (vg, s) € V(Qg, €1) X (—=01,01) — J(% (s)vp). This
function is C* and (y,0) — ¢. From (1.67), we have

d

257 (X ()w)le0) = (J'(¢), By (v)(9)) # 0. (1.68)

Thusly by the Implicit Function Theorem, there exists e3 € (0,¢e2) and o3 € (0,02) such that for each
vo € V(ip,€3), there exists a unique s = s(vg) € (—o3, 03) such that J(% (s)vg) = q. Now by using (1.62)
for (vo, s(vg)) € V(p,€3) X (—o3,03) and since ¢ is a minimizer of § under the constraint J(u) = ¢, we
have that for vg € V (i, €3) there exists s € (—o3,03) such that

S(ip) < S(vo) + P(vo)s. (1.69)

Therefore from Lemma 1.9.3 and the commutation between % (s)vy and translations we can extend (1.69)
to V(Q,,€3). Note that since B_y(p) = —By(p), we assume that (J'(p), By (¢)) < 0, by using (1.67). So
for 7 > 0 small enough we can get some § small such that

J(U(T)p) = J(p) + /OT<J’(?/(W)90), By (% (@)p)) dw = q—0 < q. (1.70)

Note that if ug is a function satisfying (1.65), (1.66) and (1.70) (by substituting ug instead of % (p)p), then
since ¢ is a minimizer of § under the constraint J(u) = ¢, the ZK solution u(t) corresponding to initial
data wg satisfies (1.65), (1.66) and (1.70).

In the rest, we need the following lemma.



1.9 Instability 40

LEMMA 1.9.7 Assume that uy € V(Qy,€9) and satisfies in Lemma 1.9.9. If u(t) is a solution of
(1.1) corresponding to ug as initial data and u(t) € V(Qy,€0) for t € [0,T], then for (x) = P(x,y) =
J oo o(2,9) + 200 (2,y) dz, we have

Ay (u(t)) = g (@ — Ay (u(t), y)u(t) dedy < +oo,

for allt €10,T7.

The functional 4, is called the Lyapunov functional along .
Proof. Put w(t) = A1(u(t)). Therefore

Ap(u(t)) = | Pz —w(t),y)ul(t) dedy =

S

L “+o00
/SL [W(z —w(t),y) — vH(x —w(t))] u(t) dedy + / / vu(t) dedy,

—L Juw(t)

where v = [ ¢ + 22¢, dz and # is the Heaviside function. Thus we obtain
R

L “+oo
/ / u(t) dedy
—L Jw(t)

By the decaying at infinity of ¢ in z, we have that ||¢p — v#]| 2 is finite. Thusly

“+oo
/ u(z, -, t) do

(t)

1Ay (u(@)| S NI¢ — vt 2[Jull > + [v| : (L.71)

1Ay (u(®)] S 1 — vt L2 [luoll L2 + ||

Le*(~L,L)
To estimate Hf:(:; u(z, -, t) dfrH , we use the following lemmata.
LOO

LEMMA 1.9.8 Let s > 2 and ug € f;g, for some r < 2. Then the solution of the ZK equation
corresponding to initial data ug € C([0,T); H¥) N L> ([0,T); L* ((1 + |x|r/2) dz)) satisfies

()| p2 (1 afrr2yany < C(L+ )12

for any t such that 0 <t <Ty} < T, where

= c( sup [u(t)lls,. ||uo|L2((H|mr/z)dz)> .

te[0,Th]

Proof. Denote w(z) = w(z,y) = (1 + |z|")'/, so we have (wu); + wulu, + wuPu, = 0. By taking
L?-inner product in the last equation with wu, we obtain |wu||3. < C(1 +t), where we used the fact that
(wQ)x and (wQ)M are bounded on Sy . [
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LEMMA 1.9.9 Let s > 3 and up € H*(SL). Also, suppose that ug € fg’é(S’L) N ng(SL). Then
8 3

<C (t—3/4(1 F )Pt A+ |x|)1/4) :
LOO

‘/:m u(s, - 1)

where u(t) is the solution of the ZK equation corresponding to initial data u(0) = up and

c=c <oi?£’T u®)las ol ol 2 ) :

Proof. We denote W(y) = [ uo(z,y) dx, then M(z,y,t) = f;oo u(s,y,t) ds is the solution of

1
My + AM, — Pt =0
p+1

with initial data M (0) = f:oo uo(s,y) ds. We also have

M(z,y,t) =U(t) « M(0)(z,y) — P} ; Ut —71)*uPt () dr
= U+ fi@) + U0 = foary) = — [0t =7) 2 0(r)

(1.72)
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where U(t) = [y, o (€ HS0r00) gedy, fi (2, ) = 3t(~2)W(y), fola,y) = H(w,0) = #(~a)W(y) and
#H(x) is the Heaviside function. By Lemma 2.3.4, we have

18z, -, )l o < NUE) 5y W oo ¥ H(=2) + U@ e +o [|9(0) = WH (=) 1y

p+1_/ /HU —7) >|<yu’"H(s,~77')||Lgc dsdr
s/ Wl U@ = s, Dllzse ds + CE22 ot — wa(—)].
+ Ct—3/4/ | ‘1/4 |M(S7y70> - W<y)}[(_8)| dde
+1
b [0t Pl el

3
sc||uo|\L1/ 23302 g ) ds
—00

0 1
+C||u0||L1/ (t_2/3+t_3/4|s—x|1> H(s—x)ds

—o0
+ 3| M — wH ()| +Ct*3/4/ [T | (5,9, 0) — W(y) #H(—s)| dyds

St

+m*“L(LH$ﬂM@%®*W@ﬂPdes

1 +1
WG st =T)lnge o s T

=%+ %+ 95+ 9+ 3195 + %-
p+1
On the other hand, we have
JrOO 3/2,—1/2 +OO
5, < / 67%773/ =1/ d"], 9 < / <t72/3 _|_t73/4|77|1/4> dn.
max{0,z} min{0,z}
and
L “+oo n
e [ [ [T s oo, dsdndy
- Jo 0
L 0 0
we [ [l uotny) dsindy <€ [ (14 1557) o) dnds.
—LJ—coJny St
Also

t
aa<c/“(a—7>w3+/Wx—ﬂi@—T>?)w<>&ﬁuh
0 R

t
<C <t1/3 + |x|1/4t1/4) + c/ / (14 [s|)V8(t — )3 * (s, y, 7) [P dsdydr.
0 SL
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But
1/4
L<LH¥V@Ma%ﬂmlw@s(L<Lwﬁfﬂw&mﬁ el
L L

where v, = %(2}) +1) and vy, = By Lemma 1.9.8, we obtain that

_ 9

8(p+1)°

t/@+bﬁ“@@%ﬂw4@@§0ﬂ+ﬂw,
SL

and then .
/ (t=m)=* / (L4 [s)fu(s, y, 1) dsdydr < OtV (1+ 1),
0 St
and consequently
% < C(t1/3 +t1/4(1 +t1/4 + |l‘|1/4))
This completes the proof.

LEMMA 1.9.10 Lets > 3 andug € H*(Sp)NV(Qy,€0). We also assume that u(t) is the solution of the
ZK equation corresponding to initial data ug and ey < ||¢]|%2 ||@uallz2- Then |A1(u(t))] < |A1(uo)| + C|t|,
where C' does only depend on €.

Proof. Notice that from the ZK equation we have that u(x,y,t)=u(x,-y,t). So by differentiating the
relation (7(a, (u),0)%0z,u) = 0 in t (see Lemma 1.9.4), we obtain

(Aug + uPug, T(Al(u),o)%>
<u(t)7 T(A4 (U),O)@zx>

A (u(t) =

Let u(z,y,t) = 7(a, (u),002(x,y) + h(z,y,t) with ||h(t)||z, < €o. Denote 6 = (Ai(u),0). Since ¢ satisfies
the ZK equation, we have that

1

@ (0),mape) = = (5" ) Taspa) = ellalie + 200,

A T p i) x) — Ahx x> x
(Aug + ©Pug, Tap) = { + e Tg<p>+p+1

where

1
Z(t) = - <h(t)7 TEAQOII> + m <7_5§0a:$7 (7_650 + h)p+1 - Tﬁcpmm>~

So we obtain
12(t)] < Chllhl|z2 + CallB|TEL + Co < Creb ™ + Co. (1.73)

On the other hand, we have
(u(t), T6pze) = —lllltz + (h(t), Topaz) < =ll@all7e + collprallze <O (1.74)

Therefore |A)(u(t))| < C¢,, and the proof is complete. |
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By Lemmata 1.9.8, 1.9.9 and 1.9.10, we conclude that for o = —3/4 and ( = 1/2,
|y (u(t)] < C(E2 + 1), (1.75)

where C' does not depend on time. |

So, we have

d
1A (u(0) = [ (Tt a0 0) + ) u(0) dady = = (o) N 0t + i (0(0) )
L
= — (By(u()), 5" (w(t))) + c(By (u(t)), u(t)) = —P(u(t)).

(1.76)
Furthermore, [ clu(t)]” + [Vu(t)|* dzdy = 25(u(t)) + pfilJ(u(t)) < 25(p) + % < 400. On the other
hand, by using (1.65), (1.66) and (1.70), we obtain that % (7) satisfies these inequalities for 7 € (0, 03).
Now we take a sequence {7;} C (0, o3) such that 7; — 0 as j — +o00; and consider u;(¢) as the ZK solutions
corresponding to initial datum wg ; = % (7;)¢. Note that ug ; tends to ¢ in H*(Sy) (and then in Hy) as
Jj — +oo. We are going to show that u;(t) do not stay in V(£ e3) for all j € N. We define the maximum
time which each u; stays near to the orbit of ¢:

Tj=sup{T >0 ; wu;(t) € V(Q,e3), forallt e (0,7)}. (1.77)
Then it follows from (1.69) that for each j € N and ¢ € (0,Tj), there exists s = s,(t) € (—o3,03) such that
S() < 8(u;(t)) + P(u;(t)s = S(uo,;) + P(u;(t))s. (1.78)

As mentioned above, P(u;(t)) < 0, for t € (0,7}); so we have that

S(p) = S(uo,5)

= P(u;(t) =
o3

=0, >0, (1.79)

for all ¢ € (0,7}). We will show that T; < +oco which implies the instability. Suppose that for some j, we
have T; = 4+o00. Then from (1.76), (1.79) and the properties of the flow, we have that

Ay (uj(t)) = Ay (uo,;) + e, (1.80)
for all ¢ € (0,400). Then from (1.75), we obtain that
Ay (uo,;) + e
CE L (1.81)

for all ¢t € (0, +00), where p + ¢ < 1. Consequently, it implies that T; < +oc.
Now we want to investigate when the condition (1.57) occurs. Note that (¢, ;) = 0, so By(p) = .
Also, by the definition, we have §”(¢) = —A + ¢ — pP. Therefore, we obtain that

(8" (Q)as a) = (8" (@), ) +4S" () s Tpz) + 4(S" (0)(T02), TPx)

__~p P2 4p / p+2 2
= — % dedy + —— % dxdy + 4 pz dzdy
p+1Js, (p+1(p+2) Js, S

2p — p? / o2 / 2
_ dedy +4 | @2 dedy.
p+1(p+2) /s, 4 S v
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On the other hand, we know that

2 _ p +2
2 dody = —/ P2 drdy,
/SL“J YT+ )(p+2) Js, 7 Y

by Pohozaev-type identities. Therefore

17 o 4]7—]92 P2
(" ()Y, ¥z) = D) /SL@ 2 dady. (1.82)

Thusly, we have proved
THEOREM 1.9.11 The orbit Q, is unstable by the flow of ZK equation, if p > 4.



Chapter 2

ZK with Dissipation

2.1 Introduction

The dispersion terms in the ZK equation appear in the Zakharov-Kuznetsov-Burgers (ZKB) equation, with
directional dispersion:

1
ut+<Auauz+2u2> =0, (z,9) €R? teR*;
x

and the ZK equation with higher order dissipation which is known as a 2D version of the Benney equation

Up + Uy + QU + Aug + BA%u =0, (z,y) €R? tcRT

where a« > 0, § > 0 are real constants, u is a real-valued function. The ZKB equation describes the
propagations, of nonlinear dust acoustic waves in a nonuniform magnetized dusty plasma [26, 61]. The
Benney equation describes a variety of physical phenomena in two dimensions (mainly, of hydrodynamic
origin), for example, long waves on a thin liquid film, the Rossby waves in rotating atmosphere and the
drift waves in plasma [7, 39, 58]. 2D pulses in the Benney equation were numerically identified in the
limiting case of zero dispersion [66].

In Sections 2.2 and 2.6, we will investigate the Cauchy problem associated to the generalized ZKB
equation and the Benney equation in Sobolev spaces H* (Rg). The Benney equation can be considered as
a high dimensional generalization of the KdV-KS equation

where 0,u € R are constants. In [11], using the dissipative effect of the linear part, Biagioni, Bona,
Torio and Scialom showed that the Cauchy problem associated to (2.1) is globally well-posed in H*(R)
for s > 1. We use purely dissipative methods applied by Dix to study the initial value problem for the
KdV-Burgers equation [25] (see also Giga in [34]). The main argument consists in applying a fixed point
theorem to the integral equation associated to the Benney equation in time weighted spaces. Indeed, we
can observe that the structure of the Benney equation possesses a dissipation stronger (in some sense)
than the dispersion. So that we do not need to use Bourgain’s-type spaces as in [59, 60]. But in the ZKB
equation, the dissipation is weaker than the dispersion so we need to use the effects of the dispersion. On

46
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the other hand, the directional dissipation u,, does not permit to use the Sobolev spaces directly by linear
properties of the ZKB equation. Therefore we have to apply the techniques of Molinet and Ribaud in the
Bourgain spaces which is strongly related to the results of the ZK equation. Unfortunately, the Cauchy
problem of the (generalized) ZK equation in Bourgain’s type spaces seems not to work.

Our strategy is to use the regularization by applying more dissipative terms to the equation [37]; in
fact, we will study the following regularized ZKB problem:

up + (Au+ f(u) — aug)e — BALu = 0;

where 8 € R is nonnegative.

2.2 7ZKB Equation

In this section, we will study the Cauchy problem of the Zakharov-Kuznetsov-Burgers (ZKB) equation:
us + (Au+ f(u) — aug ), =0, (2.2)

where o € R is nonnegative and f is a differentiable real-valued function on R such that f(0) = 0 and
f/(0) = 0. We also assume that f(z) = O(zP*!), for p € N. We denote F(z) = fom f(s) ds as the primitive
function of f. We are going to investigate the local well-posedness of initial value problem of (2.2) in
Sobolev spaces H® and some weighted spaces. Our strategy is to use the regularization by applying more
dissipative terms to the equation; in fact, we will study the following regularized ZKB problem:

ur + (Au+ f(u) — aug )y — BALu =0, (2.3)

where 5 € R is nonnegative; and then by using the properties of (2.2) we obtain the solution of (2.3).
Here, we consider u(z,y) such that (z,y) € R x R"~! and A = 92 + A ;. The directional dissipation term
Uz, just provides the mass conservation. But it is worth knowing the behavior of the ZKB equation under
invariants of the ZK equation. We suppose that u(t) is sufficiently regular, then one can see that:

PROPOSITION 2.2.1 For anyt € [0,T], we have

t
/ u(t)? dedy + 2a/ / u? (') dedydt’ = / u? dady.
n 0 n R'n,

Consequently, |u(t)||Lz is a non-increasing function of t; and

sup |lu(t)||lr2 < [luol| L2
t€[0,T]

E(u(®)) + a /0 t / ez @y a2, )] deayir =a /0 t / () f'(u) dadyde’ + B(u),

where E(u) = [g. %|Vu|2 — F(u) dzdy.
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2.3 Linear Properties

Consider the initial value problem

u + (Au — aug )y — BALu =0

(2.4)
u(,y,0) =uo(z,y)  (z,y) ER xR
where ug € H®, s € R. Solutions of (2.4) are described by the semigroup {Uy, g(t)}1>0, that is,
2 2 R
Ug 5(t) = Uy p(t)ug = / / (i€®+i€In|* —ag®—Bn| )+m€+zyn o(&,m) dedn.
Rr-1 R
In fact, U;(t\)uo = Ko 5(§,m,t)to, where
Ka,ﬁ<£7 m, t) = eit(£3+§|n|2+ai§2+ﬁi\n\2).
By an elementary calculation, one has that
|+ 1) Kastent)| 317 max{a=, 57}, (2.5)

where < means the inequality needs to a harmless positive constant (which in fact only depends on s). So,
we can obtain a useful property of the solutions of (2.4).

LEMMA 2.3.1 Let o, > 0 and s € R, then for every 6 > 0 and all t > 0, U, 5(t) € L(H*, H**?);
moreover

e s®ll -5 3 (1+ ¢ maxfa™, 873" uoll -, (2.6)
for any ug € H®.
However, it is straightforward that U, g is a contraction semigroup in H*® and is extensible to a strongly
continuous unitary group whenever o = 3 = 0. Next we study the LP estimates of U, g(t)dp which may be
useful. Denote K, 3(§,m,t) = g(§,m,t) fo,s(&,n,t) where g(&,n,t) = (& +EM*) | By induction it is easy
to see that for any k € N, %fa,g = pr(&,n,t) fa,p, where pi is a polynomial of degree k in each of the

variables ¢ and & with its higher order term of the form (atf)*. Also %ck fa,p can be analogously obtained
for the components of 1. On the other hand,

k
a?g =g Z tjgk.,j(f,n)a
i=[%]

where gy, ;(§,7) is a polynomial of degree 2j with respect to & and |n| and also g ;(0,0) = 0. Also
g = gr(&n,t)g,

where py, is a polynomial of degree k + 1 with its higher order term of the form (3tén)*. Then by Leibniz’s

rule we have
(%]

O Kap = Kap Y 17 InlF " hy (&, 8) 2.7)

Jj=0
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for each component of n = (11, ,mn—1). So we can obtain the estimates of the Green function Ugﬁ (t) =
Ua,3(t)d0:

LEMMA 2.3.2 Let m = (my, -+ ,my), k= (ki,--+ ,k,) € (ZY)", 2 € R" and t > 0.

(i) If2<p< oo, then

|#* D2 (1), < Cler, B (B2 4= (1=3), (28)
(i)  If1<p<2, then
|25 D™ U9 51|, < Cla, By ()2 (F1=8) ¢=r(=5) =151 (2.9)
1/2

where |k| = ki 4+ -+ + kn, [m|=m1+ - +m, and (t) = (1 +?)

Proof. Suppose that 2 < p < oco. We have by the Plancherel theorem and the preceding lemma

4D 08 5(0)] 0 = Clla™ D Kasl o, < Clas B0 0™ Kol o
< C(a, B) (1) F(H-8) 4= (1-5) -5,

The second estimate, for 1 < p < 2, follows from the last estimate, interpolation and the following

inequality:

e D02 50l = [ DU 0] do + [ 7] [aF D700 4 (0)]
S (0) RN\ S, (0)

kEymy70 L(kl—2) -l
DU t‘ <t =5
DU (1)), < ()2 IFE)

<) 2" DU ()| . + ()7 F

where k =k+1= (k1 +1, -+ ,kp+1),1=(1,---,1) € R" and S,(0) denotes the cube centered at 0 € R™
with the side length r = /(t). [ |

A direct corollary of preceding lemma is LP-estimates of the solutions u, g(t) of (2.4):

PROPOSITION 2.3.3 Let ug € L?. Then uq 5(t) € LP for any 2 < p < oo; moreover ||uqs(t)|Lr <
Ct=|luoll, where § = 0(p) =1~ 2.

Proof. By using of the Plancherel theorem and the Holder Inequality, we have
lta,s®)llzr < ClKagioll 2, < Clluollez [|UG 5@ | 2, -
2 <

But from last lemma, we have HUaﬁ(t)HL 2p < Ctr~'. Thus lta.s()]lze < Ct=uollLz- [ ]

Now we will obtain some y—directional estimates of U, 2 ﬁ(t) which may be useful in the instability analysis.

LEMMA 2.3.4 Let 2 <p <oo. Then for anyt > 0,
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(i)  if x>0 then

n—1 2 3/2,-1/2
)e_él/t /'

_1(p—
HUS,B(t)HLZ(]Rﬂfl) <Ct 3(n="3 (2.10)

(il) ifz <0 then

_1 1+
10 5@ty < C (t 5

n

1;1) +t%(1;,2n)7%+2%, |x|:,—23p/—411> ; (2.11)

where £ =1— 1L,
p p

Proof. By a change of variable we have

n

Ug)ﬂ(x7y’t) :/ ot (€ +ig|n|? —ag®—Bln|*)+izg+iy-n dédn

—-C t_1/3/ A€ it e | —at' /362 — Bt|n|* +it T Paétiyn dédn
-C tfl/S/ Ad (til/gm + t2/3|7l|2) ptyn—att/2e2—pt|n|? dn,
]Rn—l

where A1 is the Airy function, defined by Ai(z) = [ i€’ +izg d€. By using Plancherel theorem, we obtain
R

||Ug,ﬁ(xv '7t)HLp(Rn—1) < C t_l/s ’

Ai (t—1/3x+t2/3\ : |2)‘

La(R"—1) ’

Now, if # > 0 then we know that [Ai(z)| < e=3e" (see[32]), this leads us to the inequality (2.10). If

2 < 0 then we divide R* ! to {77 eER™L: 2+t tr > O} and its complement, but by using the preceding
bound on the Airy function, it is clear that

q
Ai (t—1/3x + t2/3|77|2)‘ dn (2.12)

]2+t —12>0

is bounded independently of z and ¢t > 0. On the other hand, if we consider the other region, then by a
change of variable, we have

1—n

q
Ai (t’l/Bm + t2/3|17|2)’ dn=Ct3

2+t~ 12<0 In[2-H¢-1/32<0
1-n 0 1/3 n7%
=Ct3 / |Ai(w)]? (w -tV x) dw,
t—1/3z

where C' depends on |S"~!|. Since w < 0 then |Ai(w)| < |w|~1/4, thusly

q
I= Ai (t*l/% + |77|2)‘ dn

1—n 0 n_g
[<COts / |~/ (w - t_1/3x) dw;
t=1/3g
2 7 5 0 1—2n q 1 q 3 (2.13)
<C it gp-t / w0/ duw; < C 1T gt

t—1/3x

By (2.10), (2.11) and the bound on (2.12), we obtain (b). [ ]

Now we want to study the initial value problem (2.4) in weighted spaces.
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DEFINITION 2.3.5 Let s € R be nonnegative, p € N and r = (r1,---,r,) € (RY)". We denote
Lr ((1 + |a:2r|) dx) the space of all real valued functions f such that

Hf”ip((l-&-\x%ndx) = /fp(l‘) (1 + |l‘2r|) dx < oo,

n
where |z27| = 3" 22", Also we denote F,5P the space of all real valued measurable functions f such that
i=1

ger = ||l + 1 f e (14 j22r))dz) < 00
The following lemma is useful in the weighted spaces.

LEMMA 2.3.6 Letn=2,pmeN, 3>0,¢t>0 and w = (wy,w2) € R%. Then for any [ € ¥,

o]
)nmﬁﬁ
Proof. The proof follows from Plancherel theorem, Leibniz’s rule, (2.6) and (2.7). In fact, we have

Iy D*Ua s () fllee = [0 (620 Kus(&m0)f)|

min{m,ws}

<Cc )

0m7

© _lel
1D Ua,s(8) 00 < Clom, B leo]) (1445

‘ 2Ol R K 56, 1)

k=0
m—k [%] ) ) . o
<O gyt 7 2L 4 (€] 2 Ko g (&, t) O K f
k j=0 ¢=0 Lr
SOV IS vt e (4 fely Ryttt || gmokif
k 7 14

<cY 3% (tj”?‘“‘ +t2”k5'”‘) H@T_k_jf .
PR

<c

=)o

where C' may change from line to line and depends on 3, m, |w| and the maximum of the coefficients of
8,2'7 f. This completes the proof. |

By using the definition of the U, g, Lemma 2.3.1 and L? interpolation theorem (see [68]), we can eas-
ily obtain the persistence and boundedness and regularity of the solutions in our weighted spaces.

LEMMA 2.3.7 Letn =2, 5 > 2, r € [0,1] and t > 0. Then if f € 7> and 3 > 0, then U, (t) €
L (718’2) and

1Ua,p(t)fll 522 < Cllf|
where C' is a polynomial of first degree in t with positive coefficients depending on o and 3. Moreover
Uas()f € C ([0, 4+00); 7
Furthermore, if f € %52, 6 >0 and 8 > 0, then Ua 5(t) € L (52, £57%2) and

[Ua,p(t) fllz+52 < Cllfl 4,

5,2.

jr15,2,
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Moreover Uy g(-) f € C ([0, 400); F5T92).
The following properties are some direct consequences of Lemmata 2.3.1, 2.3.6 and 2.3.7.
LEMMA 2.3.8 Let s >0, w e R2, N, § >0, 8 >0 andt > 0. Then, if f € Tff , then Uq g(t) €
L (Tﬁ’f, fl‘ij‘s’z) and
1Uas@fllors2 < Cllfll o2,

where C = C(t,a, 3,9) is a continuous function such that C ~ O (t_%) ast — 0%. Moreover Uy g(-) f €
c ([0, +00); Tﬁfé’2)-

Furthermore, D*U, 5(t) € L (fﬁf) and

[D*Ua,p(t)f]

g2 S Ol fllgez,

where C = C (t,a, 08, |w|) is a continuous function such that C ~ O (t_%) as t — 0T. Moreover
DU s()f € C (10, +00); 7).

2.4 Local Existence

Now we are going to study the Cauchy problem (2.3). We use the obtained properties of linear problem
and a Poincare argument to get the existence in a suitable space. Without loss of generality we assume

that f(z) = ﬁxp“ in (2.3). The main theorem is the following:

THEOREM 2.4.1 Leta, 3> 0ands > 5+1. Then for anyug € H®, there exists Ty 5 =T (a, B3, |[uol| rr+)

«

and a unique solution of initial value problem (2.3), uq () defined in the interval [O,Tgﬁ} satisfying
uqp € C([0,T5 5] : H?) NC* ([0,T5 5] H?), (2.14)

t
[t (Bl s < [luollars exp {C/o e, (I | Vtta,5(7) | L= dT}, (2.15)

for allt € {O,Tgﬁ]. Moreover uq,3 € C (<O,Ts7ﬁ] ;H‘X’) .

(e

Proof. As usual we consider the integral equation associated to the initial value problem (2.3), that is,

t
o (8) = U (B)up + / Un (t — 7)(Optio gti? ) (7) d. (2.16)
0
We define the operator
t
D(v(t)) = Uq p(t)uo +/ Ua,p(t — 7)(vPv,)(T) dr, (2.17)
0

and the metric space
E(T55) ={ve C([0,T5 4] H")  |vp < |luollm:},
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where [v|g =  sup ||v(t) — Ua,g(t)uol s First we will show that ®(v) € E (Tjﬁ) ifveE (Tjﬁ) and
te[0,7 4]

T3, 5 is suitable . In fact, by Hélder inequality and (2.6), we have
t t
1D(0(8)) = Un s (Ol < c/ [Ua p(t — 0P (1)]| s dr < c/ (147 max{a~*, 8~ N2 dr
0 0
t
< cHuoHpH/ (14 7~ *max{a™*%, /2 dr.
0

Therefore ®(v) € E (Ta ﬁ) for T 5 small enough. A similar computation shows that ® is a contraction

(by choosing T, 5 smaller if necessary). So the obtained fixed point via contraction is a solution of equation
(2.3) with 1n1tlal data ug. Note that the obtained solution wu, g(¢) with initial data g is more regular for

t>0andisinC ((O,Téﬁ} ,HOO). In fact, for any A > 0 and 7 > 0, we have that U, 5(t)up € H***, by
(2.6). But for any € € (0,1), we have

0,8t — T)ug’ﬂ(T)awua’ﬁ(T) dr

Hs+1+e

t
1
< c/ |Uast = b3 o) dr
Hs+e 0
< ¢ sup [|[ua, (T )HPH/ (1+7"°max{a"%,p S})1/2

where ¢ depends on e. This implies that u, g(t) € H*€ for all t € (O, T;ﬁ] . By reiterating this procedure,

one gets that uy g(t) € H™ for all t € <O,T§”@] Now suppose that t € <O,T(jﬁ}, so we have uq g(t) and

%uaﬂ(t) are in H*. Define J* = (1 — A)*/2. We know that J* € L(H", H"~*) for every s,7 € R. Thus
J®uq g(t) € H*. By applying J° to (2.3) and taking the inner product with J°uq g(t), we obtain

1 d S S 1 S S
g g1l e + A0t 5 (1), T e (1) g (0 (1), T (1)

— 04<Jsaiua7ﬁ(t), Jsuaﬁ( )> — ﬁ(JSAJ_Uaﬁ( ), J® uaﬁ(t» =0.
Since J* commutes with the derivative operators, then from integrating by parts, we have

_1d

= 5l s (e + a7 Otia (O + BTV L1t (1) 3.

- (Uh 5 (0T Dt 5(8), T, (8) ) + (1%, 60, 5 ()]0rtia,p(8), T e o(t))
Now, we use the Kato-Ponce commutator ([44]) :
LEMMA 2.4.2 If f,g€ L (R™), s >0 and p € (1,+0), then

117%, Mgl o < C (IV Fllzen [[ 757 9| oy + 177 Fll s lgllzea) (2.18)
1fglle < CUF o 1729l Los + 1177 Fll Los 9llzea) (2.19)

where pa, p3 € (1,400) such that
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By using the preceding lemma, we obtain that

D s (B < € (0 2 0et0,5(0), (05| + O {177, 0, 0], T 0(0) )|
< O |(ul 3 00110 (8), (Tt (1)) +
+ Ol () 7% Bt (8) 1 11, () 11+
+ Cl0utta s (Bl 158, 5 (Ol 1t o (8) 12
< C (Jlua s (D52 1950 5Ol < a5l ) +
+ O (It s O Vet o (8) o<t s () - )
< Cllua s (O)=11Vta s (1) 22 e, (8) -

where we used the fact that || fgllgs < C(|fllL=llgllas + |fllzsllgllne), for every s > 0. The Gronwall
inequality leads to (2.15). |

Now we are going to find a time interval of existence of solutions of (2.3) which is independent of pa-
rameters a and . This can be easily obtained by considering the solution of %X = ¢, X1(t) for t € [0,T7),

with initial data X(0) = ||u|/%., where ¢ = 22 and ¢, is in the inequality

d
T e sl < elluas@)lf. +2,

for t € (0, Tjﬁ), by using the Sobolev embedding. Now we take T € (0, 7). Thus |ua.s(t)|| g < X/2(t),

for t € [0, 7] where 7" = min{7, T} 5}. So all solutions can be extended to [0,7] and then to [0,7*) and
also for any T € (0,77), there is o/ such that ||ue,g(t)||gs < @ for all o, 8> 0and 0 <t < T. To get
the solutions of (2.2), we need to study the behavior of the solutions of (2.3) when the parameter [ varies.
In fact, we will investigate more general case where a and (§ vary. Let aq, s, 81,82 > 0 and ug,vg € H®
where s > 5 4 1. Also let uq, g, (), Ua, 5, () € C([0,T]; H®) be the solutions of (2.3) corresponding to the
initial data and the parameters ug, a1, 31 and vg, asg, B2 respectively. Note that T does not depend on the
parameters. Denote w(t) = uq, g, (t) — Ua, 3, (t), then we have

D w)ls = 2 (a2 () — a2t (1), a0 + 20 (e (0), (1)) + 281 (D 1 (), (1)

p+1

+ 2(a1 - a2)<ua1,ﬁ1 (O)ea w(t)) +2(81 — B2) (A Ltta, 6, (), (1))
p+1 (9(w 2(t))e) — 20l ()72 — 261V Lw(e) |22+
+2(an — az)@iualﬁl (), w(t)) + 2(61 — B2)(A Lua, g, (1), w(t))

< CHP|w(t)ll7e +2(lox — ozl + |81 — Bal) 27,

where g(w) = u, 5 +uizlﬁl Uag, By + Uay By uzgl& +up,, 5,, and C does not depend on the parameters.
Therefore by Gronwall’s inequality, we obtain that

lw(t)[17: < C (lwoll7z + [en = Bal + 61 — ), (2.20)
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for all t € [0,T], where wy = ug — vo and C = C(s,p, %, T). In particular, for ug = vg, we have

”uoélﬁl (t) — Uas,B2 (t)”L2 < C(‘Oél - 51| + |ﬂl - 62|)a (221)

for all t € [0,T7.
Now, let {ua,g(t)}z., be the solutions of (2.3) corresponding to initial data ug and the parameters

a (fixed) and B. Then {uap(t)}s., is a Cauchy sequence in C([0,T); L?), by (2.21). Denote uq(t) =
limg_, ua,p(t) and we () = Ua,g, (t) — Uq,p,(t). Then we have

(wa(t), @) us| < [wa(t), ¢ — )us| + {walt), ) s | < 27(l¢ — Pllas + lwa (@)l L2 19|

for any ¢ € ¥, ¢ € H® and t € [0,T]. Thus u,g(t) — ua(t) in Cu([0,T]; H®) as f — 0 and u, €
Cyw([0,T]; H?). Also by interpolation, we have uq g(t) — uo(t) in C([0,T]; H") for any r € [0, s). So

Adyug g(t) — Adyua(t), (2.22)
AJ_ua,g(t) — AJ_ua (t), (2.23)
3§ua75(t) — 8§ua(t), (2.24)

in C,,([0,T); H*=2) N C([0,T]); H"=?), and
8, (ugf; (t)) N A0 (2.25)

in C, ([0, T]; H=Y)Y N C([0,T]); H™~1) as 3 — +0. But we know that

t
Ua (1) = up — /0 {Aamuaﬁ(ﬂ + ]ﬁax (w53(7)) = a02uas(r) = B Luap(7) | dr.

By taking the limit from the last identity and using the (2.22)-(2.25), we conclude that u, is a solution
of (2.2). The uniqueness implies that there is no other solution different from u,. Also the inequality of
(2.15) can be obtained by the weak lower semicontinuity. Note that u, has right continuity at zero. In
fact,
ol s < liminf ||uq(t)||gs < limsup XY/2(t) = ||luol| a--
t—0+ t—0+
Thus lim;_ g+ ua(t) = up. Analogously, one can obtain that as a = S — 0, there is a unique solution
u(t) of (1.1) in C([0,T7; H®) for s > 4§ 4 1. Notice that in this case we have also the left continuity
of the solution u(t) at T ( and in fact any ¢ € [0,7]), by the uniqueness and the invariance of (1.1) by
(z,y,t) — (—z,y,a—1) for all a € R. So Theorem 2.4.1 holds for 8 = 0 (in the weak sense) and o = 8 = 0.
Now we state the continuous dependence of the solutions to the initial data.

THEOREM 2.4.3 For R > 0, the correspondence ug — ua,p that associates to ug € Br the solution
Uq. g Of (2.3) with initial data ug, is continuous mapping from Br into E;, 5, where B is the ball of radius
R centered at the origin of H®.

Proof. To prove this, one may use the Bona-Smith approximation. The following lemma (with slight
modifications) appears in [17].

LEMMA 2.4.4 Let ¢ € H® and s € R. Then we have
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(a) |l¢° — pllrze — 0, ase — 0,
(b) e = ¢*llz2 < le = 2ll|@ll 2, for any e,£ > 0,

(c) llellp> < NetllLe iff e =€ >0,
r\"/s
(d) [|¢°llrz < (;) e_r/SHQOHL?; for any r € R,

where g¥(€) = e=(HE " 5(e).

Suppose that ug, — ug in H® and also us g, and u g are the corresponding solutions of (2.3) with
Ua 8.n(0) = uon and uq 3(0) = ug. Take T € (0,7°) and denote ¢, = ugp, and ¢ = ug. By using the
preceding lemma and its notation, we have ||¢f — ¢||gs — 0 as e — 0 and n — +o0. So there is ¢g > 0
and N € N such that for € € (0,e0) and n > N, uqa,g,n, U, 5, and ug, 5 are defined in [0, 7. For simplicity
we remove « and 3. Therefore we have

[un(8) = w(@®)l s < llun(t) =g (O)lls + un () — v (@)l + (@) = w@)] a@-
Denote v = v*, v, = u;,, w = v—v and w,, = U, —v,. By the preceding lemma and Lemma 2.4.2, we have

d
Tl S (Wi = oPve,w) e S ((WPws, w) e + (0 = 0o, w)pe)

S K% wPlwg, JPw)| + [(u JPwe, JPw)| + || (u? = 0P )vg || s ||wl]| s
< llwlfre + llg(w)ll e
S llwllre + llwllms (17 wlvell L2 + llw*vg]|22)

S llwllre + llwllzzs (lwll g ol e + 1wl

wog || g llwllae S lwllds + lwos | melwl

vll2),

for some r € (1,s— 1) and where < means the inequalities need to a positive constant depending on p, o/r.
By interpolation and the preceding lemma, we have that

r

TS e -t -
[wlar < Cllwllpz *llwllf. < Clle =@l * < Ce 7,

and ||v||gs+1 < C|lpf||gs+1 < C(HgaHHs,T)@_l/Q- Then

d
Sl < C (ol +°),

where C' = C(a/p, ||¢||gs,7,p) and § = 1 — “tL. By Gronwall’s inequality, we obtain that

S
[wlFs < Cle" = ell + &%)
Thusly
0
lwlZre + lwallfe < CUl" = @llFe + l0f — enllFre +€%), (2.26)
and by interpolation we obtain

lv = vallZrs < Cllv = vnllme v = vallze < Cligh, = ¢°llz2 < Clign — ¢llze, (2.27)
where C' = C(e/r, ||¢| g2 ). The proof follows from (2.26) and (2.27). |



2.5 Weighted Spaces 57

COROLLARY 2.4.5 The same result holds when 8 = 0 (and for « = 3 = 0) in C([0,T]; H®) (in
C([0,T); H?)), by weak lower semicontinuity.

THEOREM 2.4.6 Ifp=1, s> 5 +1 and o, 3 > 0 then the correspondence ug — uq,p is analytic.

Proof. We define the mapping
A:H° X Ep 53— E 5

given by ,
Aug,v(t)) = v(t) — U g(t)uo — /0 Ua,p(t — 7)(vug)(7) dr.

Due to (2.6), A is smooth for s > & + 1 and «, 3 > 0. Let A(uo,u(t)) = 0, which is to say, suppose u(t) is
a solution of (2.3) with u(0) = ug. Then taking the Fréchet derivative with respect to the second variable,
we have

A (g, u(t))d = 6 — / Un p(t — 7)(06)a(r) dr.

But we know that

Va6t = 7)(ud)a(7) drllme < Cop5.ma )l e llGl]2rs-

It is deduced that for 7 ; small enough A7, (uo,u(t)) is invertible since it is of the form of I + © such that
I19lx <1, where X = £ (Ejﬁ7 E;ﬁ). The proof is complete by the Implicit Function Theorem. |

2.5 Weighted Spaces

Now we are going to obtain some result in weighted spaces. We state our results in two dimensional case.
By some easy calculation, one can obtain the following useful lemma.

LEMMA 2.5.1 Let W be a function with all its first and second derivatives bounded and such that
[W(e,y)| < Cee”+)

for all (z,y) € R? and any € € (0,2), for some € > 0 and C. > 0. Then there exist the constants
Ci,---,C5 > 0, independent of € such that

(VWL o < CLIVW| oo + Ca, (2.28)
1D 2] < Cy [ VW] + Ca | D" + Cs, (2.29)

where W.(x,y) = W(z,y)exp (—¢ (#? + y?)) and w € R? such that |w| = 2.

THEOREM 2.5.2 Let ug € H® (‘1/1/2), s> 2 and W be a weight function as in Lemma 2.5.1. Then the
solution uq,g of the equation (2.8) corresponding to the initial data ug is in C ({O,T;jﬁ) s H? ((WQ))

Moreover, the continuous dependence of solutions of the equation (2.3) holds in H® (‘WQ)
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Proof. By Theorem 2.4.1, it suffices to prove that ||[#Wu(t)||,- remains bounded as long as t € [0, 7] for
any T € (O,Téﬁ). By the hypothesis, || W.uq gllr2 < 0o and ||Wediua gll2 < oo, for all ¢ € (0,T]. By
using the equation (2.3), we obtain that

d

pn ||‘W€ua’g|\i2 =2 <‘W€ua,57 W05 Atg g — WerPu, + a‘Weaiua”g + 6%ALUO¢’§> .
On the other hand, it is simple to see that

<Weuo¢,ﬁy WaaxAua,B> = <Waua,ﬁa [‘1/1/5, ax]Auoe,ﬁ> + <Wsu(x,[3a ax[waa A]ua,ﬂ> ) ( )
(Wetta, 5, WoOZua,6) + |0:(Wetta,p) 72 = (Wetta,5, [We, 07] ta,p) (2.31)
(Wetia, 3, WeA Ltia,p) + ||vl(wsua,6)”2L2 = (Wetta g, [We, A1) Ua,p) ( )
(2.33)

| g0 | < ([0 Bt pll o Nt < Bt

By using the integration by parts and Lemma 2.5.1, one obtain that

d 2 2

Wt sll7s < 2(C lutas e 1Wetta sl o+ F | Wetta ]2

< CoAf + (Lt f) | Wetta pll 72
and by Gronwall’s inequality, it follows that
| Wettasl < €5 (|Meollfe + T (Corr)) -

Applying now the Monotone Convergence Theorem yields that

|Wallfs < e ([ aaolfs + T (Cor)?).

Thus uep € H® (‘WQ) for all t € (O, T, 5). The continuity and dependence continuity can be derived from

analogous estimates, similar to Theorem 2.4.1. |

The following theorem shows the persistence of the solutions of the equation 2.3 in the weighted spaces
¥ 1S,§2~

THEOREM 2.5.3 Lets €N, s >3 and 3 > 0. Also suppose that us g € C ([O,Tjﬁ) ;HS> 18 mazximal
solution of the equation (1.6) corresponding to the initial data fl‘if. Then uqp € C ([O,Tj’ﬁ) ;fﬁf).

Proof. Take o, > 0. Note that jfﬁ'l”%nz is a Banach algebra, for s > 1 and ry,75 > 0. Thus, as in the
proof of the Theorem 2.4.1 and using the Lemma 2.3.8, one obtain a local solution of the equation (2.3) in

the complete space
E (T) = {’U S C <|:0,T:| 7"}'1‘97752) : ‘/I}lz S ||u0||71s,2},

72, for some T > 0. By the uniqueness of the solution in H?*, this
1,s

where |v|z = sup |[v(t) — Uy g(t)uol
te[0,7]

solution must be u, g. Therefore, it only remains to prove that it belongs to jFOO”SZ for t € {O,T o, ﬂ>, by
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using the Theorem 2.5.2. So it is enough to estimate ||y°uq, ||, > for all t € [O, T] Note that for ¢ € [07 f} ,
youlb, 50pua,p(t) € L2, since

Hysui,ﬁaa:ua,ﬂ<t)‘ < C(S)ﬂqg 1y* a5l 2 -

L2
By using (2.16) and Lemma 2.5.1, one can easily see that y*D“u, 5(t) and y*dyu, 5(t) are in L? for all

te (0, f} and |w| = 2. Therefore, using some integration by parts, one obtains that

2 2
O 1y ua, (W2 < Clly*va,s(®)7

where C' = C(s, a, () is increasing in « and §. Thusly
ly*ttas @72 < e (lyuols + CT2). (2.34)

This allows us to extend the solution u, g to its interval of existence in H*.
For the case 8 = 0, observe that by (2.34) and the Theorem 2.4.1, there exists 7' > 0 such that

ff‘,‘f) ’
for any 8 € (O,ﬁ), B > 0 arbitrary and for any ¢ € [0,T]. Then for any ¢t € [0,7T], there exists a se-

quence (3, such that uqg,(t) = v(t) in L? ((1+ y**) dzdy), for some v(t) € L* ((1+ y**) dedy). But
since L? ((1 + y?*) dedy) < L?, v = uq,0. The inequality (2.34) follows also for 8 = 0 by the weak lower
semicontinuity of the norm L? ((1 + st) dwdy) . Finally, an extension argument yields the result. |

s 2 a
ly* a5 (8)72 < C (T3, 5, |luo]

REMARK 2.5.4 Note that we are able to prove that the ill-posedness of the ZKB equation the anisotropic
spaces; indeed , in [27], we proved that, when p =1, the ZKB equation (2.3) is ill-posed (in some sense) in
H*0 (Rz) for s < —%. Further more we obtained some explicit traveling wave solutions of (2.3), by using
the improved tanh method.

2.6 Equation with Higher Order Dissipation
In this section, We are going to investigate the Cauchy problem of the Benney equation :

Up + Uy + Qg + Aug + BA%u =0, (1,y) € R? (2.35)
where o > 0, 8 > 0, and A? = ((‘3% + 85)2. In fact we wish to obtain local and global well posedness of

initial value problem of (2.35) in Sobolev spaces. If we assume that u(t) is sufficiently regular in [0, 7],
then

PROPOSITION 2.6.1 For any t € [0, 7],

1 ¢ ¢ 1
IO 48 [ [ a2 )+ 202, (0) 4l (¢) dedyat = [ [ () dodyat + 3 Juoll
0 JR2 ' 0 JR2
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The linear problem associated to equation (2.35) is :

U + Aty + QUgy + fA%u =0, (z,y) € R?, tER,
(2.36)
u(xa Y, 0) = UO(xa y)

where ug € H*(R?), s € R. The unique solution of (2.36) is given by the semigroup {U(t)};>0, that is,
u(t) = Ut)ug = / et (i€ +ign*+ag? —p(€*+n*)?) gi(z€+yn) fo (&, ) dédn.
R2

It is convenient to define :
K(€m,t) = (66 o€ io(€407)%)
b b - .

In fact, U(t)ug = K(&,n,t)ug. The following lemma provides a very useful inequality.
LEMMA 2.6.2 For any o, 3 >0 and a > 0, we have for all £,n € R,

F(fan) — (62 + 772)!1 ea§2_6(£2+n2)2 < Qa e%(ozg—a)7 (237)
2
where g — A V02 + 848
46
Proof. By calculating the gradient of the function F' and its Hessian matrix we obtain that (£,1)max =
(v/2,0)- n

Now, the following properties of U(t) can be derived.
LEMMA 2.6.3 Let s,\,a > 0 and 8 > 0. Then U(t) € E(HS (RQ) 7 R (Rz)) for all t > 0 and

satisfies the estimate
4\ M2
a“t E2.Y:
1+,/1+aﬂ HVEE) i fle, @39

for all f € H*(R?), where < means the inequality needs to a constant depending on \. Moreover, the map
t € (0,00) — U(t)f is continuous with respect to the topology of H***(R?).

0@ s < e+ ()
Hstx e 4/8

Proof. The first part and (2.38) is a direct consequent of Lemma 2.6.2. For the continuity result, assume,
without loss of generality, that ¢ > ¢’ and apply the dominated convergence theorem to deduce that

U] = UE)fIlzer

2 2 ,2)2 ’ 2 2, 21272 ~
_ /]Rz (1+¢ +n2)s+)\ et(a§ -B(¢2+n%)*) . (ag2-p(g2+n?) )} ‘f(fﬂ])r sedn

2 2 2\2 , 2 2 o\ 2 2 .
/& (14 €2 4 p2)" T o€ B |y et (aet-nle +n>>] [Fien)| dedn

tens to zero as t — t'. [ ]

In fact, Lemma 2.6.3 expresses a regularizing property of the semigroup U(¢). Now we state our result
on local well-posedness in H*(R?).
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THEOREM 2.6.4 Let o > 0, 3 > 0 be fized and suppose ug € H*(R?) to be given, where s > 1. Then
there exists Ts > 0 depending on s, ||uol| g+ w2y, @ and B; and a unique solution u(t) of the equation (2.35)
such that u(0) = ug and

u(t) € C ([0, T5); H* (R?)) .

Proof. We define the operator
t
D(u(t)) = U(t)ug +/ Ut —t")u(t)ug (t') dt’ (2.39)
0

and the complete metric space
E(T,) ={ue C([0,T.; H* (R?)) : |ulg < |luollm=} . (2.40)

where |u|lg = sup |lu(t)—U(t)uo||m=- Let u € E(Ts). By the Holder inequality and (2.38)(Lemma 2.6.3),
t€[0,Ts]
we have

\@@@»—U@wMFScAHU@—ﬂM@mmwuw

1/2
L N a 48 o2t (14, /1422, 2
<o e s M<Hﬂﬂ+ﬁy> VI . ar
. . — 1 1/2 a2tl(1+\/1<‘,»74ﬁ)
< % T = 11+ = @ a2 )| dt!
< clulfe [ |5+ 55 (11 ) e

= clluollFr-g2) Y (1).

Therefore ®(u) € E(Ts) for Ty small enough; in fact for this Ty, ®(E(T)) C E(Ts). One can also see that
Y (Ts) tends to zero as Ty tends to zero. A similar computation shows that ® is a contraction (by choosing
T, smaller if necessary). In fact, for t € [0, 7], one has

[@(u(t)) = v®)lm: <c sup [u?(t) —v* ()], T(TY)
te[0,T%]

<c sup |jut) —vo(@)|[g:([u@®)llas + 0@ a:)T(Ts) < e sup u(t) —v(E)]|a- (6 ¥+ 1> [[uol[rr=T(T5),
t€[0,T%] t€[0,T%]
a2 s
where we used this fact that ||u(t)| gs < (64; + 1) lluollzrs, by (2.38). Choosing T small enough gives

us the contraction. So there exists a unique solution u(t) of the equation (2.35) with initial data ug. W

PROPOSITION 2.6.5 Let u € C([0,Ts]; H¥(R?)) be the solution of equation (2.35) with initial condi-
tion ug in H*(R?), where s > 1, « >0 and 3> 0. Then u € C([0,Ts]; H*(R?)).

Proof. The proof follows from an easy bootstrapping argument similar what we mentioned in the equa-
tion (2.3), by using Lemma 2.6.3. [ |
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Now we are going to obtain a global a priori estimates that enable the local solutions to be extended
to temporal half line [0, c0).

LEMMA 2.6.6 Consider the initial value problem (2.35) with initial data ug € H* (RQ) for some integer
k> 0. Let u be a solution of (2.35) in C([0,T]; H* (R?)) for some T > 0. Then we have

ull 2 r2) < € lluoll L2 g2, (2.41)
if there exists a constant € > 0 such that € < (8. Furthermore, we have

lull o g2y < g (luoll mi-1(r2)) [uol| (w2 (2.42)
for j =1,---, where g(|luo||ri—1(r2)) is a nondecreasing function of ||uol gi—1(w2), o, B and T'.

Proof. We begin by proving the lemma in L?-norm. Multiplying the equation (2.35) by u and integrating

over R?, we obtain that
1d

2dt
where the inner product is that of L2. Integration by parts and the Cauchy-Schwarz inequality then imply

HUH%P + a<uaux9¢> + ﬂ<u; A2u> =0, (2.43)

1d
iaIIUHiz < af|ull p2l|ugs | L2 — BllAullZ..

By using Young’s inequality, for any £ > 0, we obtain that

042

12 ullze + (6 = B)lluaallze.

1d,
—— , <
S Zluls <
By using the hypothesis and applying Gronwall’s lemma, we conclude
o?r
lullre < e 5= [lug| 2. (2.44)

In H! space, by differentiating the equation (2.35) with respect to x and y; and multiplying them by u,
and u, respectively, we obtain that

1d
o% (||uz\|%2 + ||uy\|%2) + (Ug, (W) z) + (uy, (Utg)y) + a((Ugs Ugzs) + (Uy, Uzzy)) + B(Vu, VAZu) = 0.
Integration by parts and the Cauchy-Schwarz inequality then imply

1d 2 2 2 2

9 dt (”UIHLZ + ”uy”L?) < (U, Ugaa) | + u auzyy>| + a (|Juz |l 22 |teze L2 + ”uz”L?”uryy”LQ)

-p (HumzH%? + 3||umy||%2 + 3||uryyH%2 + ||“yyy||2L2) .
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By using the Cauchy-Schwarz inequality, Young’s inequality and the Gagliardo-Nirenberg inequality, we
obtain that
14 (luallze + lluylI22) < llullgslluessellcz + lulZslluzyyll
2 dt x|l 1.2 yllr2) > L4 ||Uzxx || L2 LA Uzyy || L2
+ 51@”“96“%2 + 0610‘”'%70::6”%2 + 52@”“90”%2 + CszaHuryy”%Z - ﬂ”“mr”%P - 36”“961/11”%2
< esflullzs + ey ltazallte +eallulzs + coy llullze
+ (e1+ 52)0‘”1‘1“%2 + C€1a||umrz||%2 + C62O‘||uﬂtyy||2L2‘ - /BHUIMH%,? - 3/8”“13#/“%2
< (e3 + ea)ull 22| Vullze + (cey + cey = B) [tz
+ (ces + e, 0 = 3P)l|uayyl[72 + (61 + €2)ajual 72
= l[ullZ2l|VulZe + kollusealZe + Kslluayy T2 + Kallue||Ze.
By choosing 1, €2, €3 and €4 suitably such that ks, k3 < 0, applying Gronwall’s lemma and using (2.44)
we obtain (2.42). Now by applying the operators 92, 85 and 0,0, on the equation (2.35) and multiplying
them by ug,, uyy and ug, respectively, we obtain that
1d .
37 Z | DIul|22 + (wg, h(u)) + altige, h(u)) + B{A%u, h(u)) = 0, (2.45)
li1=2

where h(4) = Uggps + Ugzyy + Uyyyy. By integration by parts, the Cauchy-Schwarz inequality and the
Gagliardo-Nirenberg inequality, we have that

5
(Ut Uggaa)| = §\<um,uim>| < H“:v||L2||u:rx||i4 < ”quQLQ||UMH%2||VUMH%2

< Nlall7e twall72 tana 72 + ltal|Z [ tasl |7 tary |7

(2.46)

On the other hand, by using Young’s inequality and the Gagliardo-Nirenberg inequality, we have
: 1/2
et 13 2 [tk | 2 et S €1 [l T2 + ey 2 @) ull 7 [ 13 S €1 lltaalle + cey g (w)l[ullFa,  (247)
where g(u) =37,y | DJul| 2. Similarly, we obtain
|22 luze |72 luwey |2 S eolluaslZe + cog? (w)lullZe, (2.48)
for any 2 > 0. Therefore,
(Wt Usaoa)| S (€1 + €2)l[uaallT2 + (cey + c2)g” (u)|ullZ-- (2.49)
Also we can analogously obtain
(€3 + e0)lluzellFe + (cog + ccy)g? (w22, (2.50)
(5 + €6)luzall7e + (co5 + ) g? (w)]|ul|Z2. (2.51)

(Ut Uy )

|(utty, “myy>

IZANRZAN

Thusly, by using Young’s inequality, we have
1d ,
9 dt Z [1D7ul|22 < a((er + €8 + €9) luaallF2 + co; [ tawaal T
l71=2
2 2 2 2
+ CegltyyyyllT2 + ceolUaayyllzz) — Blluesesllz2 + 3lucsayllz

+ 4||UTTyy||2L2 + ||Uyyyy||%2 + 3||“Tyyy||2L2) — (U, h(u)),
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for any e1,--- ,e9 > 0. Now by (2.49), (2.50), (2.51) and the above inequality and choosing €1, ,&9 > 0
suitably, we obtain (2.44).
In general, for j > 2 in N, we have

1d
§£||U||%n + (u, wug) g+ (u, Aug) s + o, we) i + B{u, A%u) s =0, (2.52)
where (u,v) g = E‘ o< <Deu7 D€v> 2 Therefore, by integration by parts, the Cauchy-Schwarz inequality,
the Gagliardo-Nirenberg inequality and Young’s inequality we obtain

1d / /
5l < )+ > (alDfulf D ul?: - 81D ul} )
|£]<j
1€ |=[¢]+2 (2.53)
S lull gz lullys + 2 1D%ula = (Jullf + Dl
le|<j

The Gronwall inequality implies (2.44).
[ |

The Global well posedness follows from the local theory and the a priori estimates obtained in the previous
lemma, when s > 2 is integer. For non-integer values of s, nonlinear interpolation theory is applied. We
will use the following theorems [15].

THEOREM 2.6.7 Let Bg, B{ be Banach spaces such that Bg D B{ with inclusion mapping, j = 1,2.
Let A, q lie in the ranges 0 < A <1, 1< q < oo. Suppose that A : B;\,q — B? and for f,g € B}\’q,

1Af = Agllsg < co (I lsy, +lgllsy, ) I = glly
and A : B — B? and for h € Bj,
148l 53 < 2 (IRlsy ) Il 5

where ¢; : RT — RT are continuous nondecreasing functions, i = 0,1. Then if (0,p) > (\,q), A maps Bép

into B, and for f € By, |1ATllgz, < e (I/llsy, ) 1/]lz; . where fory > 0, e(y) = deo(4)'~7ex (37)".

THEOREM 2.6.8 Let B/, \,q and A, i = 0,1, j = 1,2
BY, B has a (,p) approzimate identity for some (6,p) >
B}. Then A is a continuous map from Bé’p to Bg’p.

be as in Theorem 2.6.7. Assume that the pair
(A, q) and A is continuous as a map of Bi to

THEOREM 2.6.9 Let o > 0, 8 > 0 and s > 2. Then the equation (2.35) is globally well posed for
initial data in H*(R?).

Proof. Let k—1 < s < k. To use Theorems 2.6.7 and 2.6.8, we put B} = L?(R?), BZ = C([0,T]; L*(R?)),
Bl = HE(R2), B2 = C([0,T); H*(R?)), A = &% and 6 = £. Thus Bl , = [Bo, H*(R)],, = HE"1(R2),
B}, = [Bo, H*(R?)]g2 = H*(R?), By, = C([0,T]; H*"'(R?)) and B}, = C([0,T]; H*(R?)). Let ® be
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the map which takes the initial data uy € H*(R?) into the unique solution u € C([0,T]; H*(R?)) of the
equation (2.35) obtained in Theorem 2.6.4. It follows from Lemma 2.6.6 that

[@(uo) [z < 1 (uoll r—r) [[uol| e, (2.54)
for all ug € H*(R?), where ¢; : Rt — RT is continuous, nondecreasing function. Now let ug,vy €

HFY(R?), u = ®(up), v = ®(vg), w = u — v and wy = up — vo. It is easy (see (2.44)) to obtain that
[lwl]lzz < ¢|lwol|r2, where ¢ depends on «, § and T. Thus ® is continuous; in fact

@ (uo) — @ (vo)llc(o,1);22®R2)) < colluo — vol|2- (2.55)

On the other hand, we have

w(t) = U(t)wo +/0 Ut — 7)(u(T)ug (1) — v(r)vg (7)) dr. (2.56)

By using Lemma 2.6.3, it follows that

24 t
[wll e < e [lwol| g +/ U (t =)0z (w? (1) = v*(7))ll g dr
0

a2t
< e |lwol g+

t a?(t—1)

e % 4u

||u2 - UQHHk dr

1/2
1 1+ — )] emHrantimn 1T |

p(t—7

S~

o (=)'

1/4 t
sup(HuHHk + ”vHH’“) [efkﬁT <1+ <u> >6—5+Q}LT+/LQ/(12T2+4015T‘| Hw(T)HH’C dT,
t

where p = % Now we use a generalization of Gronwall’s inequality (see for example [71]):

LEMMA 2.6.10 Let 6 > 0 be a real constant and f(t) be a nonnegative function locally integrable on
[0,7] (some T < o0) and let g(t) be a nonnegative, nondecreasing continuous function defined on [0, T],
g(t) < M (constant). Suppose that u(t) is nonnegative and locally integrable on [0, T] with

u(t) < £(1) + 5t) / (t— )" Vu(r) dr

on this interval. Then
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QQ
By using the above lemma with 6 = 2, there obtains [[w(t)|| g < e [[wol| g 22 (Kt), Where

3\ 3
&= ( s (e + 1ol 08,77 (5)) (257)

1/4
C(a, 8, T) = e% <1 + <T> ) ¢~ FHanT+py/a? T2+ 4apT (2.58)
1

0 opt—1
Z,(z) = . 2.59
The proof is completed by using Theorems 2.6.7 and 2.6.8. |

2.7 Negative Sobolev Indices

In this section, we are going to extend our well-posedness results for the equation (2.35) to the Sobolev
spaces with lower indices. In fact, we state the local well-posedness in the following.

THEOREM 2.7.1 Let o,3 > 0 be fived and s > —2, then for all ug € H*(R?), there exists T =
T (lluol| = r2)) > 0, a space

x5 — C ([0, T]; H*(R?))
and a unique solution u(t) of (2.35) such that u(0) = uy. Moreover, u satisfies u € C((0,T); H*(R?)) and

the map solution
F: H*(R*) — x5 nC ([0,T); H*(R?)), wuo+— u,

18 smooth.

In order to prove Theorem 2.7.1, we will make the assumption —2 < s < 0, since the case 0 < s < 2
follows by similar arguments. Our strategy is again to use a contraction argument on the integral equation
associated to (2.35)

u(t) = B(u(t)) == U(t)uo + /0 Ut — #)ult Yua(t)) dt, (2.60)

in some well-adapted function space, where as before U(t) is the semigroup associated to the linear part of
(2.35). In order to do this, we will adapt the spaces like ones used by Dix [25] for the dissipative Burgers
equation. For 0 < T <1, we define

xp ={ueC(0,T];H*(R?) : |ul

X,f‘<oo}7

where
[Jul

Isl
.= ([0l + 04 )l

)

First, we will turn our attention to estimate the linear part.
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PROPOSITION 2.7.2 Leta,3>0,0<T <1, s <0 and ug € H*(R?), then

o7
sup ||U(t)’LL0||Hs(R2) <e 4B ||U0||H5(]R2)a (261)
t€[0,T]
and "
sup_ ¢ |U (ol e ey S T () ol e e, (2.62)
t€[0,T]
where " "
t\ 4 « E PN
s 1) = ut ,Ll; ,ut\/1+2m
Lot =t |(2) T (5) eV,

2
is continuous nondecreasing function on [0,1], p = %ﬁ and < means < with a constant depending on s.

Proof. The inequality (2.61) follows immediately from Lemma 2.6.3 with A = 0 . To prove the inequality
(2.62), we first observe , since 0 < T' < 1, that

sl
2

M (1 I t%n2)
ti < sl

(1+&+n?)=

for all t € [0,T]. Hence, by using the Plancherel theorem and the definition of U(t), we deduce that

lsl
t2 [|U(t)uoll 2 (re)

Lsl
<[ (13 adyp) T et 1 2 P T )P
L2(R2)
< ate?—Bt(e2+n?)? L8 ‘ 2 2yl ate?—Be(e+n?)? .
~ (‘ (& Lo (82) + (5 +n ) € Lo ®?) ||u0||H (R2)
Lemma 2.6.3 implies the inequality (2.62). |

Next step is to derive the bilinear estimates.

PROPOSITION 2.7.3 Let a,>0,0<t<T <1 and s € (—2,0] , then

for all u,v € X3, where S means < with a constant depending on s.

Proof. Let 0 <t <T. We have (1 + &2 +n?)%/2 < (€2 + ?)*/2, since s < 0. So by using the Minkowski
inequality and the definition of U(t), we obtain that

2T 1 s
S e TS|y
Xf

X3

/t Ut —t')0,(uv) dt’
0

tl

/t Ut —t')0,(uv)
0

t
S/ “5(1_’_52_’_,’72)% e(t—t’)(a€2—ﬁ(fz+’r]2)2)(u(t/)v(tl>)/\(€7,r])‘
) 0

S/
0

Hs (R2 L2(R?)

/

€(€2 4+ 1?)5 (=t (a€?=B(E3+n%)?)

[u(®) + o(#)(&,m)

L2(R2) HLOO(R2)
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The Young inequality implies that

—

a0y m)

ellacs 10 x;

HLOO(]R?) o |t’||7‘

Therefore we obtain

t dt/
< —r | lullxg v
He(R2) 0 L2(R2) [t — 1|2
(2.64)

To estimate the integral on the right-hand side of (2.64), we use a change of variable to deduce that

Is]

sl ’ ’ 2
E(E2+n2) 7 ot £2—pt' (£%+4n?)

Xp+

/t Ut —t")0z(uv)
0

sl , , 2
(@) ¥ erversriem)

LA@®%) (2.65)

‘(52 n 7]2)% |£|e—§(£2+n2)2 < e“;ﬁ’f' |t/|—i(2+s).
L2 (R?)

< | EER) VTG ()’

Lo (R2)

Therefore, we get from (2.64) and (2.65) that

t o2 s 1 s
/ Ut —t')0, (uv) < e pa(1+3) (/ e dt’) 2l [0z,
0 Hs (R2) 0 (2.66)
012 S
< e TH08) lu|| g o]l g
for all 0 < ¢ < T. On the other hand, by a similar argument, we deduce that for all 0 <¢ < T,
|| [ ol M1l (=) (ag? e +n?)?) wanieren
tT Ut —t')0, (uv gT'TngeH af"=pfle +n ‘ut’*vt’ g,nH t
%] [ ve-ooe| <r# | e @ < @],
t /
1 AVTE2— (€2 4+m2)? dt
< ([ 1 ig enre-se) — %Y fullag ollzs
0 L2R?) |t — /|7
OL2 E 1 s OL2 S
SeF T ([t o1 at ) fulg ol £ T30 ulg ol
0
]

This completes the proof.

Next, we derive a regularity property.

PROPOSITION 2.7.4 Let o, >0,0<t<T <1, s€(-2,0] and k € [0,8+2) , then
t
Vitr— / Ut — )0, (u?)(t) dt!
0

is in C ([0, T]; H*T#(R?)), for all u € X;.
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Proof. Consider ty,t; € [0,T] be fixed such that tg < ¢;. Then by the Minkowski inequality, we have
IV(t1) = V(to)|| grs+=r2)y < Vi(to,t1) + Va(to, 1),

where Vy(tg,t1) = HU (t1 — )0y (u dt’, and

([ p—

to
Va(to, t1) =/ [(Utr = 1) = Ulto = 1) 00 (u®)]| o g2y "
0

By performing a change of variable, we obtain

t
Is]

Vi(to, t1) < == dt’ 2.

1(to,t1) < (/0 LQ(RZ,)\ | ) [l s,

t1 w2(t
5 (/ |t1 _tll—%(2+s+n) TR ‘t _tol—f dt) ||u|2
to

X
1
S (-0 5 | [ e iere = o jug,,
0

£(e2 +772)% o=t (a€® =B +n*)?)

Now, by using the hypotheses, we get that lims, .+, V1 (to,%1) = 0. On the other hand, we have

to
Va(to, t1) < (/ I f(tost1, ', & m)|lL2@ey |t~ 7 dt) HUH?(;,
0

where

f(t07t17t/7£a77) = (§2 + 2)5
(@)

It is clear that f(to,t1,t',€,m) tends to zero pointwise for almost every (£,1) € R? and ' € [0,ty] when
|t1 — t0| — 0. So

5" €| {e(trt’)(a?fﬁ(§2+n+2)2) ei(tﬁt'xg%sn?)}

“ ¢l [ (to—t')(a€?—B(E%+n+2)?) ei(to*t’)(ésﬁnz)}.

£t 1, €] Sy (O 4 (€ ) fglelom (o),

Thusly, we deduce from the Lebesgue dominated convergence theorem that || f(to,t1,t',£,n)||2r2) — 0, as
t; — to. Using again the Lebesgue dominated convergence theorem, we conclude that limy, ¢, Va(to,t1) =
0. This completes the proof. |
Now we are in the position to give the proof of Theorem 2.7.1.

Proof of Theorem 2.7.1. Let o, 3 > 0, s € (—2,0] and uy € H*(R?). We are going to show that

the operator ® defined in (2.60) is a contraction in some closed ball of xX7. By Propositions 2.7.2 and 2.7.3,
there exists two positive constants C' = C(s, o, §) and 6 = 6(s) such that

12 (w)]

x5 < C (luollzeesy + T ull3; ) (2.67)
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and
[®(u) = @(0)lxz. < CTlu— vl |l + v]|xz. (2.68)

for all u,v € X§ and 0 < T < 1. Now we define X7(a) = {u € X5 : |lulxs <a} with a = 2C]|ug|| g+ (r2);
and we choose 0 < T' < min {1, (2Ca)~ } The estimates (2.67) and (2.68) imply that ® is a contraction

on the Banach space X7.(a); so that we deduce by the fixed point theorem, the existence of a unique solution
u of the integral equation (2.35) in X7 (a) with the initial data u(0) = ug. Note that the Proposition 2.7.4
assures that ®(u) € C ([0, T]; H*(R?)).

The uniqueness of the solution of (2.35) on the whole space X and the smoothness of the flow map
solution follow by the standard arguments as we did before.

Note that a similar contraction argument shows that the existence result holds for any s’ > s > —2,
in the time interval [0,7] with 7" = T'(|Juol|r+(r2)). Finally, we know that the map ¢t —— U(t)uo is
continuous in the time interval (0, 7] with respect to the topology of H>(R?). Since our solution u belongs
to X7, we deduce from the Proposition 2.7.4 that there exists x > 0 such that the map V belongs to
C ([0, T]; H***(R?)), so that

ue C((0,T); H(R?)) .

Therefore, by a standard bootstrapping argument, using the uniqueness result and the fact that the time
interval of the existence of the solutions only depends on the H*(R?)-norm of the initial data, we deduce
that
ue C([0,T); H*(R?)).
|

Similarly, as before, by using the global a priori estimates, we can extend the local solutions to be ex-
tended to temporal half line [0, 00).

THEOREM 2.7.5 Let « > 0, 8 > 0 and s > 0. Then the equation (2.35) is globally well posed for
initial data in H*(R?), provided that there exists a constant € > 0 such that ¢ < 3.

REMARK 2.7.6 By a similar argument, one can obtain the global well-posedness in n dimensional case
of the equation (2.35):

Up + Uy + QUgy + Aug + BA%u =0, (z,y) e Rx R"!, teRT.
In fact, one can show that the associated initial value problem is globally well-posed in Sobolev spaces
H* (R") for s > 5§ — 3.

REMARK 2.7.7 One can see that for s > 2, there exists T; > 0 and a positive function 2~ € C([0,Ts))
independent of a and 3 such that solution uq,g of (2.35), associated to ug € H®, o and B, is defined in
[0,Ts) (possibly extended) and ||uq.5(t)||ms < ZV/2(t), for all t € [0,Ty).

REMARK 2.7.8 One can see that for ug € H*(R?), s > —2, the time existence of the solution u. o g of
the equation
g+ Uty + EAUL + Qg + BA*U =0, (z,y) €R?*, tE€RT

in Theorem 2.7.1 is independent of e > 0, therefore the limit u® = lim._,o Uc o,g exists in C ([O7 T|;H® (RQ))
and is the unique solution of the biharmonic equation

U+ Uty + Uy, + BA*u =0, (2,y) € R?, t€RT;
with continuity of the map ug € H*(R?) — u° € C([0,T]; H*(R?)).
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REMARK 2.7.9 We are able to show that our results are sharp [29]. We establish that the flow map
of the Benney equation fails to be C? in H® (RQ) for s < —2. This means that a Picard iteration cannot
be used to obtain solution of (2.35). We proved that solutions of the Benney equation tend to solutions of
the ZK equation in the C([0,T); H® (RQ)) topology when o and 3 tend to zero and s > 2. Furthermore, we
used the improved tanh method to obtain some explicit traveling wave solution s of Benney equation.



Chapter 3

BO-ZK Equation

3.1 Introduction

This chapter is concerned with (non)-existence, stability and properties of solitary wave solutions for the
two dimensional BO-ZK equation:

Uy + uPUy + AUy + EUgyy =0,  (x,y) € R2, t e RT, (3.1)

where the constant e measures the transverse dispersion effects and is normalized to +1 and the constant « is
real. When p = 1, the equation (3.1) appears in electromigration and the interaction of the nanoconductor
with the surrounding medium [41, 49], by considering Benjamin-Ono dispersive term with the anisotropic
effects included via weak dispersion of ZK-type. The instability of solitary waves, the well-posedness and
the unique continuation property of the equation (3.1) and the generalized higher dimensional BO-ZK have
been studied in [28].

In fact, the equations (3.1) is generalizations of the one dimensional Benjamin-Ono equation (see also
[30]). The questions of existence, asymptotic and stability of solitary wave solutions of the Benjamin-Ono
type equations were studies by Benjamin in [4, 5]. The initial value problem associated to the Benjamin-
Ono equation has been studied by several authors [20, 46, 69].

We will investigate the existence of solitary wave solutions of (3.1) and their properties.

It can be seen the flow associated to (3.1) satisfies the conservation quantities #(-) = 1| - [|r2 and E,

where
1 2

Bu(t) = /]R 2 <su§ — autu, — szﬁ“) ddy.

Indeed, we are looking for a solution of (3.1) of the form u = p(z — ct,y) decaying to zero at infinity; so,
substituting this form of u in (3.1) and integrating once, we see that ¢ must satisfy

1
- — Pt 4 a0, =0. 3.2
cso+p+1@ +ad . +epyy (3.2)

72
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REMARK 3.1.1 Note that we can assume that |c| = 1, since the scale change

U
w( ay)_‘ | <)0<|C|7\/H>a

transforms (3.2) in @, into the same in 1, but with |c| = 1.

REMARK 3.1.2 The scale-invariant spaces for the BO-ZK equations (3.1) are H552(R2), 251 4 s5 =

% — % Hence a reasonable framework for studying the local well-posedness of the BO-ZK equations (3.1)

is the family of spaces H52(R?), 25, + s3 > 3 - % (see [28]).

We shall denote, & = () (R?). By Theorem 1 in [48] (see also [62, 63]) and Remark 0.0.13 imply the
following embedding 2 in L? (R?) spaces:

Z — LP (R?), forall p € [2,6]. (3.3)

3.2 (Non)existence

THEOREM 3.2.1 The equations (3.2) do not admit any nontrivial solitary wave solution p € % if
none of the following cases occurs:

i) e=1,¢>0,a<0,p<A4,
(i) e=—-1,¢< 0, a>0, p <4,
(iii) e=1,¢< 0, a <0, p >4,
(iv) e=-1,¢>0,a>0,p>4.

Sketch of the proof. To prove, we apply a truncation argument to gain the regularity we need (see
Chapter 4), then by using the Lebesgue dominated convergence theorem, we obtain some useful identities.
In fact, by multiplying the equation (3.2) by ¢, ¢, and ye,, respectively, integrating over R? and using
(0.3)-(0.11), we obtain the following relations:

1

/R? (—c¢2 + I oy — £y + p—|—1g0p+2> dxdy = 0, (3.4)
2
2 2 p+2 _

/]R2 (cgo +epy, (p+1)(p+2)30 ) dxdy = 0, (3.5)

2
02—04%”1,—52—”2) dxdy = 0. 3.6
fo (65 - aestonc6i - i) aot 50

By adding (3.4) and (3.5), we get

o I N A zdy = 0. .
/Rz( Wf%+(p+1)(p+2)@ ) drdy =0 (37)
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Also by adding (3.5) and (3.6) yields

2 @ 2 +2
——pHp, — —— P dxdy = 0. 3.8
/RQ(csD Pk e 14 )wy (3.8)
Eliminating P2 from (3.7) and (3.8) leads to
/ (2pcp® + a(4 — p)pp,) dady = 0. (3.9)
R2

On the other hand, adding (3.4) and (3.6) yields

/]Rz <2€<p§ - Wl;’mw*?) dxdy = 0. (3.10)

Plugging (3.5) in (3.10) we obtain
/ (pep® +e(p — 4)@5) dxdy = 0. (3.11)
R2

The proof follows from (3.9) and (3.11). |

THEOREM 3.2.2 Let ag,ca < 0 and p = % < 4, where m € N is odd and m and k are relatively
prime. Then the equation (3.2) admits a nontrivial solution ¢ € Z.

Sketch of the proof. The proof is based on Lemma 0.0.1. We suppose that « < 0. The proof for a > 0
is similar. Without loss of generality we assume that &« = —1 and ¢ = 1. We consider the minimization
problem

. 1
I, = inf {I(w) =5 /RZ (0% + @0ps + @2) dady ; o€ Z, J(p) = |lp|2tF: = A} , (3.12)
where A > 0. Let {¢,} C 2 be a minimizing sequence of Iy. By using (3.3), we obtain that
pt2
A= ‘/R Pt dxdy’ < COllely? < o1

for any ¢ € 2 and p < 4. Hence I, < oo and I) > 0 for any positive \. Also, since I(¢) ~ ||¢[|%, so
lnllz < co. Now we define the concentration functions

Qn(r)= sup / Pn dzdy,
(@y)erz _ J
B (Z,y)

2
+ |8ygpn|2. If the evanescence occurs, i.e., that for any R > 0,

where p, = |S0n‘2 + ’Dimcpn

lim  sup / pn dxdy =0,
nTHeO (@) eR?
Br(Z,9)
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then by using (3.3), we obtain that lim,eco ||¢n||rs+2 = 0, which would contradict the constraint of the
minimization problem. Now suppose that v € (0, I)), where

y= lim lim sup / Pn dzdy.

T oo (5 ) eR2
B,.(%,)

By the definition of v, for € > 0, there exist 11 € R and N € N such that y—e < Q,(r) < Q,(2r) < v < y+e,

for any r > r; and n > N. Hence, there exists a sequence {(Z,,¥,)} C N such that

Pn dxdy > v — €, / pn dzdy < v+ €.

Br(Tn,¥n) Bar (Tn,¥n)
Let (¢,1) € (C§°(R?))? satisfy
e supp ¢ C By(0),¢=1o0n B1(0) and 0 < ¢ <1,
e supp ¢ C R?\ By(0), v =1 on R?\ B1(0) and 0 < < 1.

Now we define

gn(z,y) = ¢r((2,y) = (Zn, Un))pn  and  hy(z,y) = ¥r((2,y) = (Zn, Un))Pn,

where

br(,y) = 6 (@) and ¥y (z,) = (W) .

r

It is easy to see that g,, h, € Z. The following splitting lemma is proved similar to Lemma 4.2.5, by using
Lemma 4.2.7.

LEMMA 3.2.3 For every € > 0, there exists a §(e) with lim._,00(e) =0, o € (0,1x), p € (0,A) and two
sequences {gn tnen and {hy}tnen in & with satisfying the following for n > ny.

L(p0) = I(ga) — I(ha)] < 8(6), (3.13)
[(9.) — o < 5(e), [ I(hn) = In + o] < 5(e), (3.14)
17 (pn) — T(gn) — T(ha)] < 5(c), (3.15)
17(g0) = pl < 6(0), | (ha) = A+ pl < 3(e). (3.16)

The previous lemma imply that Iy > I, +I5_,. This inequality contradicts the subadditivity condition
of I, coming from I = A>/(*+2) ], Therefore the remaining case in the Lemma 0.0.1 is locally compactness.
There exist a sequence {(zn, yYn) tnen C R2, such that for all € > 0, there exists a finite R > 0 and ng > 0,

with
/ Pn dzdy > 1) — €,
Br(Tn,Yn)

for n > ng, where ¢y = lim,, f]R2 pn dxdy. This implies that for n large enough

/ lon|? dzdy > / lon|? drdy — 2e.
BR("L'n;yn) R2
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Since ¢, is bounded in the Hilbert space 2, there exists ¢ € 2 such that a subsequence of {@,(- —
(ZnyYn)) tnen (denoted by the same) converges weakly in 2. We then have

/ lo|? dady < liminf/ lon|? dedy < liminf/ lon|? dody + 2e.
R2 n—-+00 R2 n—-4oo B

R(Tn,Yn)

But we know the compactness embedding 2 into L? on bounded intervals. Consequently {u,(-—(Zn, ¥n)) }nen
converges strongly in LZQOC(RQ). But the last inequality above implies that this strong convergence also takes
place in L?(R?). Thus by (3.3), {@n(- — (Zn,yn)) }nen also converges to ¢ strongly in LP*2(R?) so that
J(p) =Xand Iy =lim,— 1o I(n) = I(p), that is, ¢ is a solution of I,.

Now by using the preceding theorem and the Lagrange multiplier theorem, there exists # € R such that

@ — alpy — pyy = 0(p+2)" ", (3.17)

in 2. By a scale change, ¢ satisfies (3.2). |

We are also able to prove that our solitary wave solutions are the ground state solutions of BO-ZK equation
28]

3.3 Stability

The following Theorem is a consequence of Theorem 3.2.2 and it will be main key to obtain our stability
results of the solutions of BO-ZK equations. Hereafter, without loss of generality we assume that o = —1.

THEOREM 3.3.1 Let A > 0. Then

(i) every minimizing sequence to Iy converges, up to a translation, in % to an element of the minimizers
set

My={pc Z; I(p) = Ir, J(p) = A}
(ii) Let {¢n} be a minimizing sequence for I. Then we have

I inf W+ 2) =Pz =0, 3.18
Jm o pinf o lon(+2) =Yl (3.18)

lim inf — || = 0. 1
i inf lpn —llzr =0 (3.19)

The following lemma easily show that there exists a A > 0 such that every element in the set of minimizers
satisfies (3.2).

p+2
LEMMA 3.3.2 For A= (2(p+ 1)I1) » in our minimization problem, we have that if ¢ € My, then ¢
is a solitary wave solution for the BO-ZK equation (3.2).

Now for A in the above lemma, we define the set A, = {p € 2% J(p) =2(p+ 1)I(p) = A\}. It is easy to
see that My = .. Now for any ¢ > 0 and any ¢ € A, we define the function d(c) = E(p) + c¢F (p).

LEMMA 3.3.3 d(c) is constant on A, and is differentiable and strictly increasing for ¢ >0 and p < %.
Moreover, d”(c) > 0 if and only if p < %.
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Proof. It is easy to see that

1 P pQ2(p+1)F =2
d(c) = I(g) — I(p) = = I
R P [ A TR I M R
Therefore, d(c) = $c%7%'](¢), where ¥(z,y) = cfiga (x’ y) Note that 1 satisfies (3.2),
2(p+1)(p+2) ¢ Ve
with ¢ = 1. But we know that 1 4
c
J(p) = F
R M i
2 2 5
Thusly, we obtain that d’(c) = <p - 2) cr 2 F (V). |

Now we are going to study the behavior of d in a neighborhood of the set .4, .

LEMMA 3.3.4 Let ¢ > 0. Then there exists a small positive number ¢ and a C*-map v : B(Ne) —
(0, +00) defined by

o(u) =d* (p J > ;
W= ey’
such that v(p) = ¢ for every p € A, where B (M) ={p € Z ; infyc s, |l¢ — V|2 < €}.

Proof. Without loss of generality we assume that ¢ = 1. It is easy to see that .4, is a bounded set in 2.
Moreover

A. C B(0,r) C &,

p+2
where r = (2(p + 1))%.71T and B(0,7) is the ball of radius r > 0 centered at the origin in 2. Let p > 0
be sufficiently large such that .4, C B(0,p) C Z. Since the function v — J(u) is uniformly continuous on
bounded sets, then there exists ¢ > 0 such that if u,v € B(0, p) and ||u —v| 2 < 2¢ then |J(u) — J(v)| < p.
Considering the neighborhoods .# = (d(c) — p,d(c) + p) and B.(A¢) of d(c) and .4;, respectively, we have
that if u € B.(A.) then J(u) € #. Therefore v is well defined on B.(.A4.) and satisfies v(p) = ¢, for all
Y E M. |

Next, we establish the main inequality in our study of stability.

LEMMA 3.3.5 Let ¢ > 0 and suppose that d"(c) > 0. Then for all u € B.(A,) and any ¢ € A,
1
E(u) = E(p) + v(u) (F (u) = F(¢)) = 3d"(c)|v(u) = c]*,

Proof. Denote the functional I, (p) = % fW (wgoQ + @I, + 9012/) dzdy, and ¢, any element of .4,,. Then
we have

1
P+1p+2)
On the other hand, we have J(u) = J (pu)), since d(v(u)) = mj(u) for u € B.(A) and
d(o(u)) = mJ (ga,,(u)). Thusly I, (u) > I, (gay(u)). Therefore by using the Taylor expansion

E(u) + o(u).Z (u) = L (uw) —
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of d at ¢, we obtain that

B(u) + o(w)Z (w) > Ttuy (9o()) — 7 (¢0)

(p+1)(p+2
= d(v(u)) = d(c) + F(p)(v(u) = ¢) + id"(C)\v(U) —cf

= B(u) + o(9)F(p) + 3" (O)lo(u) — P
]

First we state a well-posedness result for (3.1); which can be proved by using an argument similar to
Section 2.2.

THEOREM 3.3.6 Let s > 2. Then for any ug € H*(R?), there exists T = T(||uo||zs) > 0 and there
exists a unique solution u € C([0,T]; H*(R?)) of the equation (3.1) with u(0) = vy and u(t) depends on
ug continuously in the H*—norm. In addition, u(t) satisfies E(u(t)) = E(ug), Z(u(t)) = F(ug), for all
tel0,T).

Now we will prove our nonlinear stability result of the set 4, in Z.

+2
P

THEOREM 3.3.7 Let ¢ > 0 and A = (2(p+ 1)[1)L, Then the set A = M) is & -stable with regard

4
to the flow of the BO-ZK equation if p < 3

Proof. Assume that A4, is Z-unstable with regard to the flow of the BO-ZK equation. Then there is a
sequence of initial data u(0) € B1 (A2) N H* (R?), s > 2, such that

sup inf |Jug(t) — @|le > ¢ (3.20)
te[0,+00) PENe

where ug () is the solution of (3.1) with initial data ux(0). So we can find, for k large enough, a time t;

such that c

inf tr) — g = — 3.21
wlen%nuk(k) ollz 5 (3.21)

by continuity in t. Now since E and .# are conserved, we can find ¢ € 4, such that

|E(uk(tr)) — E(er)| = [E(uk(0)) — E(pr)| — 0, (3.22)
| T (ug(tr)) — F ()| = |7 (u(0)) — F (pr)| — 0, (3.23)

as k — 4o00. By using Lemma 3.3.5, we have

E(uk(te)) — E(por) + v(ur(te)) (F (ur(tr)) — F(or)) 2 id”(C)lv(Uk(tk)) —cf,

by choosing k large enough. This implies that »(ux(tx)) — ¢ as k — +o0, since u (¢x) is uniformly bounded
for k. Hence, by the definition of v and continuity of d, we have

lim J(u(t)) = 22 D@2

Jim . d(c). (3.24)
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On the other hand, by Lemma 3.3.3, we have

1

T(uk(t)) = Bux(te)) + e (ux(te)) + oy

J (up(te))
1

=d(c) + E(uk(tr)) — E(pr) + ¢ (F (uk(tr)) — F(¢x)) + mﬂuk(tk))-
Then by (3.24), we obtain that
i T(us(te)) = 22d(e) = @(p+1)3 17 . (3.25)

k— 400

By defining 9y (tx) = (J(uk(tk)))fﬁuk(tk), in &, we obtain that J (9x(tx)) = 1. Therefore by using
(3.24), (3.25) and Lemma 3.3.3, we obtain that

Hence {¥(tx)} is a minimizing sequence of Iy, so, from Theorem 3.3.1, there exists a sequence ¥, C M;
such that

S [0k (te) = Yl = 0. (3.27)
On the other hand, from the Lagrange multiplier theorem, there exist 6, € R such that
H (i), + et = (Yn),,, = Oulp + 207 (3.28)

so 21 = 65 (p+2), which implies 05, = 0 for all k. By scaling ¢y, = ppg with p? = 0(p+1)(p+2) = 2(p+1)11,
we obtain that ¢y satisfy (3.2) and 2(p + 1)I(px) = J(pr) = pP+2, which implies that o5, € A, for every
k. Also, by (3.24)-(3.27) and Lemma 3.3.3, we have

lur(tr) — erllz = (J(ur(ty))) 7

(4 (6)) 77 (un(t0) = 1) |,
< (T (te) 7 ([90t8) = 1 n] o + 1 rll = (Tn(ta))"77)

This implies that limy_ oo [|uk(tx) — wrllzz = 0, as k — +oo; which contradicts (3.21); and the proof is
complete. m

3.4 Decay and Regularity

In order to investigate the regularity and the decaying properties of the solitary wave solutions of (3.1), we
need to study the kernel of (3.2).

REMARK 3.4.1 Note that by using the Residue theorem, the kernel of the solution of (3.2) can be
written in the following form

oo Vi e’(“*%)

dt,
o 2+ a2z?

K(,I,y) =C
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where C > 0, independent of o, x and y, and I?({,n) =
that

W' Also by Fubini’s theorem, we obtain
c—a n

+oo * (e 42 +oo

|IK||: = C/ / % e ( t+ 4‘) dxdydt = C(a)/ et dt.
0 R2 0

Therefore,

LEMMA 3.4.2 K is an even (in x and y), positive and decreasing function and K € L> (R?\ {0}) N
C> (R?\ {0}). Furthermore, K € LP(R?), for any p € (3/2,+00] and K € LP(R2), for any p € [1,+00).

THEOREM 3.4.3 Any solitary wave solution ¢ of (3.2), withp € N , belongs to W+ (R?), for all k € N
and all v € [1,+00]. Furthermore, any solitary wave solution ¢ is continuous and in L>°(R?); and tends
to zero at infinity, for any 0 < p < 4.

p+1

. ¥
Proof. Setting g = — ,
& p+1

(3.2) yields

~

g

_ 3.29
¢ — alé| + en? ( )

(/’5:

This implies that ¢ € Hz'(R2) N H%2(R?) N H'°(R?). By using Lemma 0.0.11 and the embedding (3.3),
we obtain that ¢ € H*2(1=%)(R?), for any s € [0, 1]. By a bootstrapping argument and using Lemma 0.0.11
and Lemma 0.0.16, the proof of first part will be complete. The second part follows from the embedding
(3.3), the Young inequality and the properties of K in Lemma 3.4.2. |

REMARK 3.4.4 Note that H(*2%) (R?) is an algebra if s > 3 (see Proposition 2.5 in [33]).

Now, we are going to study the symmetry properties of the solitary wave solutions of (3.1). Here, for
u: R? — R, u? will represent the Steiner symmetrization of u with respect to {z = 0} and u* the Steiner
symmetrization of u with respect to {y = 0} (see Section 1.6).

LEMMA 3.4.5 If f € &, then f*, f*,|f| € Z.

Proof. By setting g = |f]|, then we have

(ffKxf)<(9,K*g),
for every ¢ > 0. Therefore
/R2 K(&m) ‘f(é,n)r dédn = (f, K+ f) < (9, K * g) = /Rz K(&m) [g(¢,m)[* dedn.

So, we have

| e(1=ck) e asan< [ o(1-ck) |[fiem| den (3.30)
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since Hﬂ e 191l 12 (g2 By taking the limit as ¢ — +o00 on both sides of (3.30) and using the Monotone

Convergence Theorem, we obtain that

[ (g=2) atenP asan< [ (i+2) [Fen)| dean
R2 R2

which shows that |f| € Z.
Let us prove that f# € 2. One can see that K* = K = K*. Then Theorem 1.6.12 implies that

flz,y)f(s,t)K(x — s,y — t) dsdt dedy < / A, y) f (s, t) K (z — s,y — t) dsdt dxdy.
R4 R4
Then it follows that ) )
/ K(&,m) ‘f(évn)‘ < / K(&,m) ‘f”(f,n)‘
R2 R2
On the other hand, by using the fact that

17 gy = 10y = 0 e, = [ P

a similar analysis as in the preceding proof shows that ff € 2. Analogously, one can prove that f* € Z.
[ |

LEMMA 3.4.6 If ¢ € My, then ©f, p* € M.

L2(R? L2(R2)’

Proof. Since Steiner symmetrization preserves the LP*2—norm, it follows that J(¢) = J(¢*). So, by using
Lemma 3.4.5, we get
My <1 (¢) < I(p) = My.

Therefore, we have that f € My. Similarly, ¢* € M. ]

Now, we prove our theorem concerning the symmetry properties of the solitary wave solutions of the
equation (3.1).
THEOREM 3.4.7 The solitary wave solutions of the equation (3.1) are radially symmetric with respect

to the transverse direction and the propagation direction.

Proof. By Theorems 3.2.2 and 3.4.3, there is the function 1 satisfying (3.2). By choosing ¢ = 1#* = *%
we have that ¢ is a solitary wave solution of the equation (3.1) which is symmetric with respect to {z = 0}
and {y = 0}. [ ]

THEOREM 3.4.8 The solitary wave solution ¢ obtain in Theorem 3.2.2 is positive.

Proof. The proof follows from the proof of Theorem 3.2.2, Lemma 3.4.2, Lemma 3.4.5 and the following
identity

1
o(z,y) = ]mK « Pz, y). (3.31)
m

Regarding on the decay properties of the solitary wave solutions of (3.1), one can prove the following
properties of the kernel K.
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LEMMA 3.4.9 K € g5 (R2) N HOs2 (Rz), for any s1 < i and sy < % Moreover K € H™* (R2) N
H(s1:52) (]RQ), where 785 + 551 = s182 and r € [0,1].

LEMMA 3.4.10 (i) H10 (R2) N HY®2 (Rz), for any s1 < 5 and so € R. Moreover K €

K €
H™s (R2) N H(s1:52) (RQ), where rsy + s81 = 5182 and r € [0,1].

[\l

o 1
(i) K € H]g 1,52) (]RQ), for any s1 <1+ —, p>2 and so € R. Moreover |z|*t|y|*2K € LP (RQ), for any
p
1 1
51 <2——, 251+5223(1) and p > 1.
p p

LEMMA 3.4.11 Let ¢ and m be two constants satisfying 0 < £ < m — n. Then there exists C > 0,
depending only on £, m and n, such that for all € > 0, we have

ly|* C |zl
dy < —T g > 1, 3.32
/ Qv (e =g “ S Treapn (3.32)
1 C
dy< —5 __ VreR" 3.33
/Rn Tr ) (e g™ ¥ Tt eanm (3.33)

The proof of Lemma 3.4.11 is elementary and is essentially the same as the proof of Lemma 3.1.1 in [13].
THEOREM 3.4.12 For any solitary wave solution of (3.2), we have
(i) |=|“lylep(z,y) € LP (R?) for all p € (1,+00), any £ € [0,1) and any o > 0,
(ii) |(z,y)|%¢(z,y) € LP (R?) for all p € (1,+00) and any 6 € [0,1),
(ili) ¢ € L' (R?).

1 1
Proof. (i) Choose ¢ € {0, s1—1+ ) and p > 1, where s; <2 — —. For 0 < € < 1, we denote
p p

he(z,y) = A(z,y) o(2,9),

|z|ly|¢

(1 + efa[)*(1 + ey
ity, we obtain that

1 /
where 4(z,y) = = and sy > 3 <1 - p). Then f. € L? (R?). Using Holder’s inequal-

1
Y

el < Clonsan) ([ Il dzaw)

tpt1

p+1

where g(t) =

9

4(p)(z,w)
Ltz = 2] (1 + [y — wl)*
and C(s1, s2,p) = [(1 + |2])** (1 + |y[)*2 K[| 1» (z2)- Note that the fact that ¢ — 0 as |(z,y)| — +oo implies
that for every d > 0, there exists Rs > 1 such that if |(z,y)| > Rs, we have |g(¢)(z,y)| < 8l¢(z,y)|. By

g(zaw) = (
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using Hélder’s inequality, we obtain that

/ |fe(@, )P dady = / ez, y) [P " 2" (2, y) (2, y)|" ddy
R?\B(0,R5) R2\B(0,Rs)
< Clsvsa)” | e, I 7 A7 (2, ) 161 oy iy
]R2\B(O,R5)

T

: "I eyt | 2 161 )|
< Olor 52DVl om0,y || A NG @) | oy 50,

Thusly,

|ﬁe(£li,y)|p, dxdy < C(s1, Szvp)p’/ 7’ (x,y)Hgng,(Rz) dxdy.
R2\B(0,Rs) R2\ B(0,Rs)

Using Fubini’s theorem and Lemma 3.4.11, we obtain
A (@, )| G} g, ddy
/R?\B’(o,m) L (&%)

= - ‘ﬂ(@)(Z,w)‘p/ </R A (@,y) dxdy) dzdw

2\ B(0,Rs) (L + [ —2|)P'51 (1 + |y — w|)P's2

< C/ 9(9) (2, w)!p' v (z,w) dzdw
R2\B(0,Rs)

’ ar (z,y)
—|—/ ©)(z,w P / y — dxdy | dzdw.
0.0y 2P0 ( e,y (L o= 27 (1 + [y — w7

The last integral is bounded by a constant ¢’ depending on ¢ and Rs and independent of €. Therefore, by
using the fact that |g(¢)(z,y)| < dle(z,y)| on R?\ B(0, Rs), we get

/ Vfie(z,y) [P dady < C(s1,s2,p)" | c6” / (2, y)[P" dady + C" ) .
R2\ B(0,Rs) R2\B(0,Rs)

Choosing ¢ such that C(sq, sa, p)5Ci < 1, from the last inequality, we deduce that

/ [he(, y)|”" daedy < C, (3.34)
R2\B(0,R5)

where C is a constant independent of e. Now, we let ¢ — 0 in (3.34) and apply Fatou’s lemma to obtain
that

/ || |y| ¥ |p (2, y) [ dedy < c.
]R2\B(O,R,;)

_P
p—1

Now by taking the limits p — 1 and p — 400, we obtain that £ — 1 and p’ € (1,400). This proves the
theorem.

(ii) The proof follows from (i).

Hence |z|‘|y|%p(z,y) € L¥' (R?), for p' =
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1
iii) Let s > 1 and g, 0 and Rs be the same in (i). Define 4.(z,y) = ——— . Therefore, we
w ! v ) = T D
ave

/ lo(z, )| A (z,y) dedy
R2\B(O,R5)

19(0) (2, w)| ( / Az, 9)K (@ — 2,y — w) dmy> dzdw
R2 R2\B(0,Rs)

l7(0) (2, w)]| (/ a7z — 2y —w)K (z— 2,y —w) dmdy)
R2 ]RQ\B(O,Rg)

1

2
' (/RQ\B( o) A (x = 2y = w) A (2,9) dwdy) dzdw
0,Rs

< C(s)C% /]R2 19(0) (2, 0)| Ac(z,w) dzdw

< C(s)cts (ol WAt w) dadu+ Ot [ gle)(ew)]| dedw,
R2\B(0,Rs) B(0,Rs)

by using Fubini’s theorem, Lemma 3.4.11 and this fact that o, 4. € L? (RZ) and 04, € L! (Rz). Hence by
the restriction on §, and using Fatou’s lemma as € — 0, it concludes that ¢ € L! (Rz). |

The following corollary is an immediate consequence of (3.31), the Theorem 3.4.12 and the inequality

it <c(t—s’+1s). (3.35)

COROLLARY 3.4.13 Suppose that ¢ € L™ (R?) satisfies (3.2) and ¢ — 0 at infinity. Then
(1) \x|z|y|9<p(x,y) € L™ (RQ), for all £ €[0,1) and any 0 > 0,
(ii) [(z,9)|%¢(z,y) € L= (R?), for all 6 € [0,1).

LEMMA 3.4.14 |z|*|y|¢K € L* (R?), for any ¢ <2 and any o > 0.

Proof. Suppose that |z| > 1, so we have

“+o0 —ct “+oo —ct 4
K(x,y) <C’/ \[_dt<C’/ \[<t) dt = ¢

y? z2[y|>”
for any v > 0. On the other hand, for 0 < |z| < 1, by a change of variables, we have that

7t|:r\
\[e 4““ dt = C|x|

C +oo
\/|x/o 14t lyl>

for any v > 0. This completes the proof. |

V**

K(z,y) <
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COROLLARY 3.4.15 |z|‘|y|?p(z,y) € L™ (R?), for any { < 2 and any o > 0.

Proof. Without loss of generality, we assume that ¢ = 0. Let £ < 1 and v = min{2, (p + 1)¢}. Because

2 e @) < (1o wllel7T) (et g)llal77)”

then by using (3.35), Corollary 3.4.13, Lemma 3.4.14 and Theorem 3.4.12, we obtain that |z|Yp(z,y) €
L> (R?). If v = (p + 1){, one may use the above argument to show that |z[7¢(z,y) € L™ (R?) for
v = min {2, (p 4+ 1)%(}. Then repeating this argument at most finitely many times leads to the conclusion.

The following corollary follows from (3.35), Corollary 3.4.13 and Theorem 3.4.12.
COROLLARY 3.4.16 (i) |z|*|y|%p(z,y) € L* (R?), for all £ € [0,1) and any o > 0,
(ii) |(z,y)|%¢(z,y) € L' (R?), for all 6 € [0,1).
LEMMA 3.4.17 There exists oo > 0 such that for any o < ¢ and any s < 3 5, we have
(i) |z|*e?lVIK € L? (R?),
(ii) K € LnglC (RQ); for any 1 < p < oo,

(iii) |z|*e’V K € L2 (R?); where || - |

rgez) = [zl 1y

Proof.
By a change of variables, K can be written in the following form

oo —clx|t 3 2
e t Y
K = - [ — a2t dt.
(z,9) |OZ\/O o2 + 12 (|x|> €

+o0 %
< 25—1 726\z|t/ 20]y| 2\ \’r dud dt
2) < OZ/O a2 + t2 </ ‘ | € yax

§ 28 —|— +oo 4l
< C(a)/ ti / |$L"28 —2|w\t(c o )dSU V / t2 dt,
C — 0'2 5+4 a? + t2

which is finite for any ¢ < 1/c and any s < % The proof of (ii) follows from the identity

00 gmet—Y; C(a)
Kl =C(a / dt = L Velyl,

The proof of (iii) is similar. |

Hence,

H|x e

The following corollary is a consequence of Lemma 0.0.15.
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COROLLARY 3.4.18 ¢ € Lly’L; (Rz), forany 1 <p < oo.

Now we state our main result of decaying of the solitary wave solutions.

THEOREM 3.4.19 There exists og > 0 such that for any o € [0,00) and any s < %, we have that
|z|*e7l¥lp(z,y) € L' (R?) N L™ (R?).

Proof. Without loss of generality we assume that s = 0. By using Lemma 3.4.17 and the proof of Corollary
3.14 in [13], with natural modifications, there exists & > o such that e?¥lp(z,y) € L' (R?), for any 0 < 7.
Now by using the following inequality:

()™ < / K (@ — 2,y —w)[e”V (2, 0)[e”1 o (2, w) [P dzduw, (3.36)
R2

and the facts ¢(z,y)e’Vl € L (]Rz)7 p € L> (RQ) and K (z,y)e’ ¥ € L? (RQ), for any o < ¢, we obtain
that o(z,y)e? ¥l € L (R?), for any o < o0. [ |

Finally, the following theorem shows that analyticity of our solitary wave solutions.

THEOREM 3.4.20 There exists ¢ > 0 and an holomorphic function f of two variables z1 and za,
defined in the domain H, = {(z1,22) € C?; |Im(z1)| < o, [Im(z2)| < o'} such that f(z,y) = ¢(z,y) for all
(z,y) € R%

Proof. By the Cauchy-Schwarz inequality, we have that @ € L! (RQ). Equation (3.2) implies that

p+1

€111 (€5 m)

&l *
Il 1] (§,m) < |@] *

<|
<|
p+1

We denote 771 (|p]) = |@| and for m > 1, F511(|@]) = Tm(|@]) * |P|. It can be seen by induction that
™81 ) < (m =D p+ )" Tpa (1B)(E, m), (3.39)

where r = |(£,1)|. Then we have

P81 m) < (m =D (m + 1) Tt (18D e ey < (m= DY (1 4+ D)™ | Tp (18D 2 ey 18|22

< (m = 1) 4 DG 1813 e

(m _ ]_)' (m+ )m 1||§0||L1 (R2) ||§5||%2(R2)
m!

Let a,, = , then it is clear that

Am+1 ~
L s (o 1) |80
as m — ~+oo. Therefore the series Y - t™r™|3|(£,n)/m! converges uniformly in L>*(R?),if 0 <t <o =
pﬁH(ﬁHZf’(R%. Hence e'"p(€,m) € L*°(R?), for t < 0.

We define the function

Flarza) = [ =g dean
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By the Paley-Wiener Theorem, f is well defined and analytic in #; and by Plancherel’s Theorem, we have
F(x,y) = ¢(z,y) for all (z,y) € R2. [ |



Chapter 4

High Dimensional Benjamin Equations

The Benjamin equation
U + 2Uly + PUgze + 07 Uz = 0,

where # = (%) is the Hilbert transform with respect to x variable, governs the propagation of straight-
crested unidirectional weakly nonlinear long waves on the interface of this two-fluid system, ignoring the
effects of viscosity and assuming that interfacial tension is large and the fluid densities are nearly equal.
Under these flow conditions, the two dimensional Benjamin equation

Up + QUggy + BIUze + €vy + uPu, =0, (4.1)
Uy = Vg, (I,y) €R27 t>0,

and three dimensional Benjamin equation

Ut + QUggy + BI Uz + avy + bw, + uPu, =0, (4.3)
Uy = Vg, ( . )

Uy = Wy, (X,y,2) € R3, ¢t>0,

are some extensions of the Benjamin equation that allows for weak spatial variations transverse to the
propagation direction, and can be derived by a standard weakly nonlinear long-wave expansion, where the
constants €, a, b measure the transverse dispersion effects and are normalized to &1 and the constants
« and ( are real. These equations are some models for interfacial gravity-capillary waves; namely, we
consider an extension to two spatial dimensions of the evolution equation derived by Benjamin ([4]) for
weakly nonlinear long waves on the interface of a two-fluid system, in the case that the upper layer is
bounded by a rigid lid and lies on top of an infinitely deep fluid. The usual 2-DB equation and 3-DB
equation correspond to the nonlinearity uu, (see [47] and references therein). When § = 0, the 2-DB and
3-DB equations are known as two and three dimensional KP equations, respectively.

This Chapter is devoted to nonexistence, existence of the solitary wave solutions of generalized n-
dimensional Benjamin equation. We also use the variational properties of the problem to obtain the
symmetry and blow-up results. Furthermore, we will show that some regularity and decay of the solitary
wave solutions.

88
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4.1 (Non)Existence

In order to give a precise definition of our needed spaces, we use the following spaces. We shall denote, 2
the closure of 9, (C§°(R™)) for the norm

102 011% = IVllZ2eny + 10500172 &n) (4.6)

where n = 2,3 and 9,(C5°(R™)) denotes the space of functions of the form 9, with ¢ € 9,(C5°(R™)), that
is, the space of functions ¢ € 9,(C5°(R™)) in 9,(C5°(R™)) such that [ (z,y) dz = 0, for every y € R"~1.
R

By a solitary wave solution of 2-DB equation (respectively 3-DB equation), we mean a solution of
(4.1)-(4.2) (respectively (4.3)-(4.5)) of the type u(x — c1t,y — cat) (respectively u(x — c1t,y — cat, z — c3t)),
where u € £, ¢1,c2,c3 € R are the speeds of propagation of the wave along each direction. So we are
looking for localized solutions of the systems

—C1Uy — Coly + QUggy + B Uz, + €vy + uPuy, =0
(4.7)
Uy = Uy

and
—CilUg — Coly — C3U; + QUgyy + BI UL, + avyvy + bw, + uPuy, =0

Uy = Vg (4.8)

Uy = Wy,

respectively. By a change of variables 2 = z, y = y — %ECQ.’E in the two dimensional case, and = = =,
y=vy— %0021'7 Z=z- %60333 in the three dimensional case, after dropping the tilde, we obtain the new
systems

—Clg + QUygy + BI Uz + €Vy + uPu, =0

(4.9)
Uy = Vg
with c =c¢; + iecg and
—ClUg + QUggs + BI Ugy + aUyvy + bw, + uPu, =0
Uy = Vg (4.10)

with ¢ = cl—i—%acg—l—iﬁcg. By using the Pohozaev type identities, we obtain the situations of the nonexistence
of the solitary wave solutions. We apply the following truncation argument to gain the regularity we need.

THEOREM 4.1.1 Let |a| + |3] > 0. The equation (4.9) does not admit any nontrivial solitary wave
satisfying

u=0,0€ %, uec H (R*)NLY(R?),

Oy € Lio(R?), 07 € L (R?),

loc loc
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(I) if e =1 and one of the following cases occurs:
(i) a,8>0,¢c<0 and p > 4/3,
(i) «<0,8>0,¢c>0 and p <4/3,
(iii) «<0,5>0,c<0 andp >4,
(iv) >0, 8 <0, c € R* and p is arbitrary,
(v) a,<0,¢>0 andp <4,
or

(I1) if e = —1 and one of the following cases occurs:

(i) a,8>0,¢<0 and p <4,

(i) « <0, 8>0, c € R* and p is arbitrary,
(iii) « >0, 8<0,¢c>0 andp > 4,

(iv) a>0,3<0,c<0andp<4/3,

(v) a,8<0,¢c>0 andp > 4/3.

THEOREM 4.1.2 Let |a| + |5] > 0. The equation (4.10) does not admit any nontrivial solitary wave
satisfying

u=30,0€ X, ue H (R®NLZ (RN L2PTY(R?),

loc

0y € Line(R%), 0Zp € Lipo(R%), 97p € Li,(R%),

loc loc

(1) if ab = —1, or
(IT) if a= 6 =1 and one of the following cases occurs:

(i) o,6>0,¢<0 andp>2/3,

(i) «<0,8>0,¢c>0 and p <2/3,

(iii) « <0, >0,c< 0 andp > 4/3,

(iv) « >0, 8 <0, c e R* and p is arbitrary,

(v) ,6<0,¢>0 andp <4/3,

or

(ITI) if a= b = —1 and one of the following cases occurs:

(i) a,6>0,c<0 andp<4/3,

(i) « <0, 8>0, c € R* and p is arbitrary,
(iii) «>0,3<0,c>0andp>4/3,

(iv) «a>0,8<0,c<0 andp<2/3,

(v) a,0<0,¢c>0 andp >2/3.
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Proof of Theorem 4.1.1. Let xo € C§°(R), such that 0 < xo < 1 and xo(s) = 1if 0 < |s] <1,
2

Xo(s) = 01if |s| > 2. We set x,(x,y) = Xxo (7’2>’ where 72 = 22 + 9%, j € Nand y € R" ! for n = 2,3.
J

First, we consider the two dimensional case.
We multiply the first equation of the system (4.9) by zuy; and we integrate over R? to get

—c/xxjuuz dxdy + /:vxjuﬁluac dxdy + oz/arxjuuzm dxdy + ﬂ/a:xju%um dxdy + e/xxjuvy dxdy = 0.

By using the integration by parts we obtain

2 3
Ozg/xj'u?d;{:dy—f—g/mxo(r)u dmdy_j/ I( )u dzdy — 6/ ( )u%ﬂuzdmdy
J J J
6o ,,(7"2) 5 Ga/ ,,(r2> 9 4a/ 3 ,,,(r > 3 / <r2>
- — — |Ju dxdy— — | = —|Ju - — [ x wWdrdy+ = [ = udacd
]4 Xo _]2 Y ]4 Xo ]2 ]6 Xo ] Y XO j Y
3o 9 € 9 2e 7"2
+ 5 [ Xita dxdy + 3 [ XV dxdy — B | xjudluy drdy — j—z TYX, 7 uv drdy

1 1 2 2 2
_ m Xjup+2 dzdy + ]—2 /xXo (; ) v* dady — m /$2X6 (;) uP™? dedy — ﬁ/mxjumffuw dzdy.

Now by using Lebesgue dominated convergence theorem, we get
2
/ <cu2 + 3au? — 2Bu A u, + ev? — up+2> dzdy = 0. (4.11)
R2 p+2

Next we multiply the first equation of the system (4.9) by yvy; and we integrate over R?; similar to above,
by using the integration by parts and Lebesgue dominated convergence theorem, we obtain

2
—cu? — aul + putu, — ev® — up+2> dzdy = 0. 4.12
L PERVE) 2

Now we multiply the first equation of the system (4.9) by ux; and we integrate over R?; similar to above,
by using the integration by parts and Lebesgue dominated convergence theorem, we obtain

1
/ (—cu2 — au? + BuHuy, + ev* + up+2) dzdy = 0. (4.13)
R2 p+1
By adding (4.11) and (4.12) we get
/ (2au2 — Pustu, — 2pup+2> dzdy = 0. (4.14)
R2 ’ (p+1)p+2)

By subtracting (4.11) from (4.12) we obtain

/ ] <cu2 + 2au? — gﬂu%ux - up+2> dady = 0. (4.15)
R

+1
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Adding (4.14) and (4.13) yields
/ (—cu2 + @u%ux + ev? + up+2) dzxdy = 0. (4.16)
R2 2 (p+1)p+2)
By adding (4.15) and (4.13) we have
/ (202 — Bustu, + 4ev?) daxdy =0, (4.17)
R2
which rules out (I)(iv) and (II)(ii).
Subtracting (4.17) from (4.14) yields
p 2
2e0” + ———— Pt ) dxdy = 0. 4.18
fo (o s ’ s
Eliminating u?*? by (4.18) and (4.16) leads to
—4
/ [—cu2 + éuj‘fux +e (p) U2:| dzdy = 0, (4.19)
R2 2 p
which rules out (I)(iii), (I)(v), (IT)(i) and (IT)(iii).
Adding (4.11) and 2 times (4.12), and using (4.18), we obtain
/ {ch +au? + ¢ (3]9_4> ’U2:| dzdy = 0, (4.20)
R2 p
which rules out (I)(i), (I)(ii), (II)(iv) and (II)(v). |

Proof of Theorem 4.1.2. In dimension three, by the aforementioned truncation process, by multiplying
the first equation of the system (4.10) by zuy;, yvx;, 2wy, and wy; respectively; integration by parts,
and Lebesgue dominated convergence theorem, we obtain the following relations:

2
/RS (cu2 + 3au? — 2BuHu, + av® + bw? — Mu””) drdydz = 0,

2 2 2 2 +2
—cu” — aui + fulu, — av” + bw* + ———uP >
/Rs( (p+1)p+2)

2

2 2 2 2 +2
—cu” — aul + fuluy + av® — bw” + —————u” )
/Rs( (p+1)(p+2)

dxdydz = 0,

dxdydz = 0,

1
/ <cu2 — au? + BuAu, + av® + bw® + up+2) dxdydz = 0.
R3 p+1

By subtracting (4.22) from (4.23) yields

/ (a1)2 — sz) dxdydz = 0,
R3

(4.21)
(4.22)
(4.23)

(4.24)

(4.25)
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which rules out (I).
By adding (4.22) and (4.23) we obtain

2
2 2 p+2
—cu® — au’ + BuHfu, + ——M8M drdydz = 0. 4.26
/3 < ¢ x z (P ])(p 2)“ ) Y ( )

Subtracting (4.24) from (4.26), using (4.25), we infer

2av? + pup+2) dadydz = 0. 4.27
/( (EDES) y (4.27)

Adding 3 times (4.24) and 2 times (4.21) yields

p+4

—2cu? 4 BuAuy + 8av? + ——
fu(oates STE )

up+2> dxdydz = 0. (4.28)

Eliminating u?*2 by (4.28) and (4.27) leads to

2 6p — 8 2 _
/]Rg [—2cu + Buu, + ( ’ ) av } dzdydz = 0, (4.29)
which rules out (IT)(iii), (IT)(v), (III)(i) and (III)(iii).

Adding twice (4.26) and (4.11), using (4.27), we obtain

2
/ [ “u? + fu +a <3p ) U2:| dxdydz = 0, (4.30)
R3 2 p
)

which rules out (II)(i), (IT)(ii), (IIT)(iv) and (III)(v).
Adding (4.21) and (4.24), plugging the identity (4.25) and (4.27), yields

/ (202 — Buitu, + 6av®) drdydz =0, (4.31)
R3

which rules out (II)(iv) and (III)(ii). [ |

4.2 The Existence

In this section, we prove the existence of solitary wave solutions of equations (4.9) and (4.10) by using the
minimization problem as before. The main theorems are stated in the following.

THEOREM 4.2.1 Let a,c > 0, € R and p = m, where m € N is odd and m and k are relatively
prime. We also suppose that if >0, then 8 € (0,2v/ac).

(I) Letn=2,0<p <4 and e = —1, Then the system (4.9) admits a nontrivial solution u € Z .

(IT) Letn=3,0<p<4/3 and a= 6= —1. Then the system (4.10) admits a nontrivial solution u € Z .
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The proof will be done by using Lemma 0.0.1. The help of an embedding theorem for anisotropic Sobolev
spaces due to Besov et al. [10] is needed to encounter the fact that 2" is not embedded in H?(R"). In
particular, our minimizing sequence is not bounded in H!(R™) and we have to apply a compactness lemma
in L2(R") of bounded sequences of 2°, a minimizing sequence u,, in 2" leads to a minimum .

THEOREM 4.2.2 Let n,m € N, p € (1,+00)™, q € (1,+0), 0 € Ny, {k;}72, C N” and pn € (0,1)™
such that |p] = 1 and satisfying

SZ*J and Qi_;:ZNj<’fji_1.>7

pj

for each 1 < i <n. Then there exists constant C > 0 such that || D f||La@ny < C T2, [ID" flLrs @ny, for
all f € Cg°(R™).

Using this theorem, one can induce embedding of 2" into the LI(R™) spaces.

LEMMA 4.2.3 Let p, = ‘212::2,), n =2,3. Then for any p € [2,p,], there exists C > 0 such that

ull Lamny < Cllull 2 (4.32)

As a consequence of this lemma we have, the following, if v € 2 and n = 3, then u = J,¢p where
p€eLf (R3);and if n=2and u € 27, then u = 9, where p € L] (R?), for any g € [2,+00).
In fact, the proof follows from the previous theorem:

6-q _ a=2
el gy < Clull Zgey e |92y 0] 3ge) @ € [2.6] (4.33)
3(

10—3gq q—2) a=2 q=2
el sy < Cllull gy Totel sy ol Ry ol Egsys @ € [2.10/3]. (4.3)

Proof of Theorem 4.2.1(I). We consider the minimization problem

I, = inf {f_)(u) lue &, J(u) = /]R2 uP*2(z,y) dedy = )\} , (4.35)

2
1/2
where w = gu, A > 0 and $(u) = clpelFagun + loulfages) + olleal o — 8 D2 e |, 0

REMARK 4.2.4 Note that according to the assumptions of the Theorem 4.2.1, $(u) > 0, for all 0 #
we X. Alsoif B € R\ [2y/ac,+x), then H(u) ~ |[ul|%-. However H(-) defines an equivalent norm to
I |2 whenever 5 <0.

Let {u, }nen be a minimizing sequence of Iy in 2. Then there exists a sequence of functions ¢,, € L5(R?)
satisfying u, = d,p,. We set v, = dyp, = D 0yu, and

P = |unl® + |vn|* + |Opun .
By using (4.32), we can not have

lim pn dzdy = 0.
R3

n—-+oo
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By using again of (4.32), we obtain that

A=

/3 uP+? dxdy’ < C’||u|\";;2 <CIt?,
R.

for any v € Z". Hence I, > 0 for any positive A. Since $(u,) — I as n — oo and by Remark 4.2.4,
there exists C' > 0 such that H(u,) < C, p, < C and |luy|l2 < C, for all n € N.
Now suppose the evanescence occurs, i.e. that for any R > 0,

lim  sup / pn dady = 0, (4.36)
(z,y)+Br

n=+00 (3 5)ER?

where Bp, is the ball of radius R centered at zero. By (4.32), for q € (2,6), there exists a constant C' > 0,
independent of (x,y) € R? such that,

q/2
/ |02 |? dzdy < C / [un|? + |vn|? + |0pun|? dody
(z,9)+B1 (z,9)+B1

a/2 (g—-2)/2
<C / Pn dxdy <C sup / pn dxdy / pn dxdy | .
(Z,9)+B1 (z,9)€R? J (7,9)+B1 (@,9)+B1

Since R? can be covered by balls of radius one in such a way that each point is at most included in three

balls, one infers
(g—2)/2
/ |0z pn|? dady < C sup / Pr dxdy (/ pn) .
R2 (7,9)eR? J(Z,9)+B1 R2

Now this inequality and the vanishing assumptions imply that lim,, . o [|tn||za(r2) = 0 for any ¢ € (2,6),
which contradicts that the constraint in I.

Assume now that dichotomy occurs, i.e. that there exists v € (0, ) such that , li£n A (t) = 7, where
— T 00

A (t) = lim  sup / pn dxdy, for all t > 0.
(z,9)+Bs

=00 (7 ) ER?

Dichotomy implies the splitting of u, in two sequences w; , and ug, with disjoint support. To keep
U, Ul m, U2, € X, we focus on ¢, and localize it. This splitting lemma is stated as follows.

LEMMA 4.2.5 For every e > 0, there exists a 6(g) with lime_o () =0, o € (0,1), p € (0,\) and two
sequences {u1 n tnen and {ug ,tnen in X with satisfying the following for n > ny.

ltn, — w1m — uznlla < d(e), ( )

19(un) = Hu1n) — Huzpn)| < 6(e), (4.38)
19(u1,n) — o <0(e),  [9(u2,n) — In + 0| < 6(e), (4.39)
| (un) = J(urn) = J(uzn)| < 6(e), (4.40)

| J(u1,n) — pl <6(e),  [J(u2n) — A+ p| < d(e). (4.41)
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Proof. According to the definition .#, it is an increasing function and then fix € > 0. Then there exist
Ry > 1/¢ and a sequence {(xp,Yn) }neny C R? and given ng € N such that, for all n > ng

vfsé/ pn dzdy <7y <7y +e.
(#n,Yn)+Brg

One defines

My(t) = sup / pn dxdy,
(Z,9)€R? J (3,5)+ B

for all t > 0. Hence we can find a sequence {R,, > 0}, en (taking a subsequence if necessary) such that
lim,, oo Ry = +00 and 4, (2R,,) < v+ ¢, for n > ng. It follows that

(Jtn|? + |0ptun|® + [vn]?) dzdy < 2e. (4.42)

Ro<|(z,y)—(@n,yn)|<2Rn
Let (¢,n) € C§°(R?)? satisfy
e supp ¢ C By(0),(=1on By(0) and 0 < < 1;
e suppn C R%2\ By(0), n=1o0n R?\ B;(0) and 0 <7 < 1.

For n € N, we set ¢, = ¢ (W), Mn =1 ((;"’yn)), and we define
1 n

(Cn(@n - an)); U2,n = aa:(ﬁn(@n - bn))a

Ul,n = Oy
Vi,n = Dz_l(ul,n)y = ay((n(@n - an))a V2,n = D;l(u2,n)y = ay(nn((pn - bn))a

where {an nen and {b, }nen are real sequences that will be fixed later. Obviously u; , and ug, are in 2
and supp u1,, N SUpPp Uz, =
If u,, is written as u, = u1,5, + U2, + Ay, then

1Al 2 = 110z (Pn — Culn — an) — Mu(pn — bn)) |2
<= G = m)unllL2e2y + [(1 = G — nn)vnllL2(r2) + [|02hnll L2 (R2)
+ [1(pn — an)aanHLz(R2) + [[(on — an)andHLz(]R?)

+ 1(pn — bn)Otinl| L2 (r2) + 1 (n — bn)aynnHLQ(R2)~

By using (4.42), we have

0= Go = o Jun Bagesy < [ a2 dady < 22.
R1<|(z,y) — (@n,yn) < Rn

Analogously, [[(1 — (n — 1) vn|lL2®2) < V2 .
To estimates the rest, we need a Poincaré-type lemma.

LEMMA 4.2.6 For q € [2,+00], there exists C > 0 such that, for all f € L? (R?) satisfying Vf €
L? (R?), and for every R > 0 and for all (Z,7) € R?,

loc
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1/q 1/2
|f(x,y) = mg(f)|? dedy | < CRY1 IV fI? dady
R<|(z,y)—(2,9)|<2R R<|(z,y)—(2,9)|<2R
where )
m f = — x, ded
") GG R Jlesy) dedy

R<|(w,y)—(2,9)|<2R
and B(Z,y; R) denotes the annulus {(z,y) € R?, R <|(z,y) — (Z,9)| < 2R}.

For a proof of this lemma, see [23, Lemma 3.1].
We choose the sequences {an, }nen and {b, }nen:

1

—_— pn, dxdy,
|B(Z, 5 B)| SR, <|(29)—(3.5)|<2R

an = mg, (pn) =

and
1

by = i, (o) = b o dady,
! Y B@ R SR <y -G i<2r,

Therefore, we have

1
[(en — an)aanH%ﬁ(RZ) < Ri%HQCCHQLOO(]R?) / lon — Cln|2 dzdy

B(xn,yn;R1)

T Yn ity

Similarly, one can estimate ||(p, — bn)ﬁxanQLg(RQ) < d(e),
l(¢n — an)aygzuiz(w) < d(e) and ||(¢n — bn)aynzH%z(RZ) < 6(g). On the other hand,
8gchn = (1 - Cn - Un)amun + 2unagc§n + 2Unax77n + (Sﬁn - an)a§Cn + (Qﬁn - bn)ainn

By using (4.42) and the Lemma 4.2.6, one can obtain ||(1—C,—1n)0ztin || L2(r2) < 6(€), || (n—an)02Cnl| L2(r2) <
0(e) and [[(n — bn) 21| L2(m2) < 8(e).
But by using (4.32), we obtain

B(xn,Yn;R1)

1/2
1Un02Cnll 22y < CllCell Lo (r2) </ |t | dxdy> < Cye.

Similarly, ||, 027 12?2y < d(€). From the above inequalities one obtains
1Bl 2 = llun = urn = ugnll 2 < 6(e).

We are going to estimate [$)(uy,) — H(u1.,) — H(uz,,)|. Note that

2
n) n) n < n - n — n 2 HD1/2hn .
9(un) = Hw1.0) = Dz )| < Jun — wr0 —wsaly + [ DY
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So it is enough to estimate the second term on the right hand side of the above inequality. We have

1/2 2
HDQ; Ul,n
L2(R?)

= / ((Lpn - an)aa:<n + Cnun)% ((‘pn - an)aiCn + 2unaa:<n + Cnawun) dxdy
R2

:/ (@n _an)awgn% ((‘pn _aTL)aiCn) dxdy—|—2/ Cnun% (unaa:Cn) dxdy
R2 R2
(4.43)
R2 R2

R2 R2
—|—/ Cup A0y, drdy.
R2

Before estimating we need the following classical Calder6n Commutator Theorem (see [21, 22]).
LEMMA 4.2.7 Let g € C*°(R) with g’ € L>°(R). Then [, 9]0, € L (L*(R), L*(R)) with
11,910 Fll 2y < Cllg' =@l 2

By using the fact that [|77u| 12 r2) = ||ul| 2 (r2) and other properties of ., the first five terms on the right
hand side of (4.43) are bounded as the preceding estimate. By using the Cauchy-Schwarz inequality and
the previous lemma, we have

. Cnun[%vgz}azun drdy < HCnUnHB(RZ)”[%a Cn]azun”L?(R?) < C”arCnHLOC(JRz)Hun”%Z(@(mn,yn;Rl)) < Ce.

, we obtain
Z(RQ)

2 2
L2(R?) = H (1 - Cn - ﬂn) unHLZ(]Rz) + C\ﬁ < 5(6)

Therefore, by similar estimates for Di./ 2u2’n
L

HD}/%”

Since ||u1 |2 and |lugn|l2 are bounded, then $(ui,) and $H(ug,) are bounded. From the above
inequality, one infers that there exists o(¢) € [0,])] (and taking subsequences if necessary) such that
lim,, 00 H(u1,,) = o(¢), and thus [H(uz,) — In + 0| < d(¢). Analogously, one can obtain |J(u,) —
J(u1,n)—J(u2,,)| < d(e). Therefore we assume that lim,,—, ;oo J(u1,n) = p(e) and lim,,— o J(u2,n) = p(e),
with |A — p(e) — ple)] < d(e). If lime.,op(e) = 0, then choosing ¢ sufficiently small, we have for

n large enough J(uz,) > 0. Hence by considering (ﬁ(a)J(uzn))Pﬁ U2, , we obtain that (note that

T ()T (2)) 7 ) = i(e)

I;ey < liminf §(uzn) < In — v +6(e),
n—-+o0o
which leads to a contradiction since lim._,gp(¢) = A. Thus p = lim._op(e) > 0. Necessarily p < A,
because the case p = A is ruled out in the same manner with us,, instead of uq,. Since p € (0, ), one
infers that necessarily ¢ = lime_, 1 0(¢) € (0, I)). This completes the proof of lemma. |
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Let us continue the proof of the theorem and show that the dichotomy cannot occur. The previous
lemma imply that Iy_, + I, < I. This inequality contradicts the subadditivity condition of Iy coming
from I, = \2/(P+2) ],

Therefore the remaining case in Lemma 0.0.1 is locally compactness. There exist a sequence { (2, yYn) tnen C
R2, such that for all € > 0, there exists a finite R > 0 and ng > 0, with

/ pn dzdy > 1) — €,
(Zn,yn)+Br

for n > ng, where ¢y = lim,,_, f]R2 pn dxdy. This implies that for n large enough

/ [un|? dedy > / [t |? daxdy — 2.
(n,yn)+Br R2

Since u,, is bounded in the Hilbert space 2, there exists u € 2 such that a subsequence of {u,(- —
(Tn,Yn)) tnen (denoted by the same) converges weakly in 2". We then have

/ |u|? dedy < hmlnf/ |tn|? dxdy < liminf |un|? dady + 2.

n_>+oo n_}+oo (m'ﬂ)y’!l)-i_BR

But we know there is an injection of 2 into L? (R?) (due to [23]). Consequently {u,(- — (Zn,Yn)) }nen
converges strongly in L7 (R?). But the last inequality above implies that this strong convergence also
takes place in L?(R?). Thus by the (4.32), {un(- — (Zn, Yn)) }nen also converges to u strongly in LPT2(R?)
so that J(u) = A and Iy = lim,_, o0 H(un) = H(u), that is, u is a solution of I,.

(IT) The proof for three dimensional case is basically the same. ]

Now by using the preceding theorem and the Lagrange multiplier theorem, there exists # € R such that

0
—QUgy — B Uy + cu+ D = —— Pt
p+1

in .2”. Using the scale change u = sgn(6)|0|~'/P, one can easily see that u satisfies (4.9) (and similarly

for three dimensional case (4.10)).

It is easy to see, by multiplying the previous equation by u and integrating by parts over R2, that
(p + 1)*6(’“) =0,
so 6 > 0. 6 is a continuous function of A\. Furthermore,

PROPOSITION 4.2.8 There exists Ao > 0 such that 0(A\g) = 1. Moreover
lim 6(\) = 400, and lim 6O(\) =
A—0+

—>+oo

Proof. We give a proof in two dimensional case; proof of three dimensional case is similar and we will
omit it.
Let x € C§°(R?). For any A > 0, we assume that uy is a minimizer of Iy. By defining

A 1/(p+2)
X\ — (f]RQ Xp+2 dﬂ]‘dy) X
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we obtain that
0<OMA=(p+1)H(ur) < (p+1DHxa) = (p+ DAY P 5(x).

Therefore limy_, 100 (A) = 0. On the other hand, by using (4.32) and Remark 4.2.4, we have
A= (p+1)9H(ur) = (p+ Dljul% > (p+ 1)AY @2

Thusly limy_g+ 8(A) = +oc0. [ ]

4.3 Variational Characterizations

Throughout in section we assume that g <0 .

DEFINITION 4.3.1 Let Z(-) = | - H%?(R")‘ A ground state is a solitary wave which minimizes the
action c
S(u) = B(u) + 5.7 (u), n=2.3, (z,y) €Rx R1

among all the nonzero solutions of (4.9)(resp. (4.10)), where c is the velocity of the solitary wave and E
is the energy defined by

2

E(u) = 1/11@2 [04%25 — v’ = Butu, — P+1)p+2)

5 up+2] dxdy,

i two dimensional case and

2

E(U)ZE/RB {aui—aﬁ—ﬁwz—ﬁu%ugg—ww

5 UPH} drdydz,

in three dimensional case.

We will consider two dimensional case. See [30], for the three dimensional case.

We are going to show that the solutions u obtained from (4.35) are exactly the ground states of equation
(4.9) and also gives us some interesting characterizations of those solutions, which may appear to be useful
to demonstrate the symmetry property and instability.
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Let us define the following functionals':

H ) = SF(w) + /R 2 (D;luy)2 - gu%%) dady — mJ(U), (4.44)
G (u) = /R ] <au§ - gu%ul) dedy, S (u) = H(u) — Z%J(u) (4.45)

D(u) = 24 (u) — e F (u) + % (u) + mﬂu) + g [ it dady, (4.46)
S(u) = g,@(u) 42 gp‘o’p B | wt e dedy + 3p6; 1 /R 2 [aui + (D;luy)z} dwdy, (4.47)
P(u) =9 (u) — mm), (4.48)

P(u) = ggz(u) + % /R 2 [(D;luy)Q - aug} dzdy + ’%g(u). (4.49)

LEMMA 4.3.2 Let 8 < 0; then there exists a real positive number \* such that for u* € 2, the following
assertions are equivalent:

H () =0 and 9(u*) = nf{9 (), ue X, u#0, #(u) = 0},
K (u*) = inf{H (w), ue X, G(u) =F(u*)} =0,
w*) =0 and J(u*) = inf{J(u), u€ X, u#0, 7 (u) =0} =m,
w*) = inf{ 7 (u), u€ 2, J(u) =m} =0,

where m = inf{J(u), u € A} and A is the Nehari manifold {u € 2", u# 0, #(u) = 0}.
Ifpe (%, 4), then the assertions (1)-(vi) are equivalent to the following ones:

(vii) 2(u*) =0and ¢ = S(u*) = inf{S(u), ue 2, u#0, 2(u) =0},

(viii) 2(u*) =0 and ¢’ = S(u*) = inf {g(u), ue Z,u#0, 2u) < O}.

If p € (2,4), then the assertions (i)-(viii) are equivalent to the following ones:
(ix) Z(u*)=0and p = S(u*) =inf{S(u), ue 2, u#0, P(u) =0},

(x) P(u*)=0and ¢ = §(u*) :inf{g(u)7 ue X, u#0, Pu) < O}.

1The functional .# is so-called Nehari functional.



4.3 Variational Characterizations 102

Proof. As we mentioned before, if w is a minimum of I; then there is a positive Lagrange parameter
0 such that (p + 1)Ix = A0y for each positive A. Since I = X2/(P+2) ], we get #y = 1, by choosing

Let us now prove that the lemma holds with this choice of A.

(1ii) = (iv) : Assume that (iii) holds; let v € 2" with ¥ (u) = ¥(u*). We have J# (Tu) > 0 for
7 > 0 sufficiently small, so that if #(u) < 0, then there is a 79 € (0,1) such that ¢ (rou) = 0; then by
setting & = Tou, one hasw € £, % (u) = 0 and ¥ (u) < ¥ (u) = 4 (u*), which contradicts (iii), and shows
that u* satisfies (iv) since ¢ (u*) = 0.

(iv) = (iii) : Assume that u* satisfies (iv) and let v € 2" with J#(u) = 0 and u # 0. Then
H(tu) < 0 for some 7 > 1, so that if 9(u) < ¢(u*), one can find 79 > 1 with ¥(rou) = 4(u*) and
H (Tou) < 0. This leads us a contradiction with (iv).

(iii) = (i) : If u* satisfies (iii), then there exists a Lagrange parameter 6 such that u* solves the

Euler-Lagrange equation
uPt1

_ p

It is easily seen, by multiplying this equation by u*, integrating by parts, and using ¢ (u*) = 0, that
6 > 0. We set u®(z,y) = 61/Py* (x,Hz/Py). Suppose that § > 1. By a simple calculation, we can see
that 4(u®) = ¢(u*); and also J# (u®) < 0. This contradicts 0 < J# (u*) < J¢(u®). Therefore 6 < 1.
On the other hand, by setting u,(x,y) = 0~ YPu*(x,0~2/Py), it can be easily seen that 4 (u,) = ¥ (u*);
and J (uo) < 01if # < 1. But this is contradicts J# (u,) > 0. Thusly € > 1, hence § = 1. Now identity
S(u) = 2 (u) + 394 (u) shows that if u is a solution of (4.9), then S(u) = $¥4(u) > 1¥(u*) = S(u*); thus
u* is a ground state.

cu + D;Quyy —

(ii) = (iii): Assume that «* satisfies (i). Let u € 2" with v # 0 and . (u) = 0. Since % (u) = 0,
so J(u) > 0 unless u = 0. Thus we set

) o (55"

We obtain J(u,) = J(u*) and # (u,) = gu(u — 1) Jgo uluy dxdy. We have 7 (u*) = 0, since u* is a
minimum of Iy+. On the other hand,

1
(p+1)(p+2)

1

* 1 *
%(u)—f—gg(u)-i- CESCES))

T) < H ) + 5 () + Ty,

which implies
G(u") < pu (g - 1) /R2 uH U, dxdy+a/R2 u? dedy < 9 (u),

and (iii) holds.
(i) = (ii) : By using the identities of the proof of Theorem 4.2.1, one has, for any solution u of (4.9),
we have J# (u) = 0 and

H(u) = /}R2 (aui + cu? — BuAu, + (D;luy)z) dxdy = (1 + ;) G (u).
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Hence if u* is a ground state, u* minimizes both ¢(u) and $(u) among all the solutions of (4.9). Let
J(u) = X and u® be a minimum of Iy. Then I = H(u®) < H(u*) and there is a positive 6 such that

0
o -2, 0 03 O o\p+1
cu® + D uy, — aug, — BA Uy = m(u )P
. . . . . o o ) A
Using the equations satisfied by «® and u*, the preceding inequality is written as I\ = P < ?;
p p

hence 6 < 1. On the other hand, by setting u, = 8Pu°®, we obtain that u, satisfies (4.9), and since u* is a
ground state, H(u*) < H(us) < 0 H(u®); so that § > 1.
Hence v* = ¢® is a minimum of I with A = \*.

(v) = (1) : Assume that u* satisfies (v). Then there exists a Lagrange parameter 6 such that
J'(u*) = 67" (u*). Tt is easily seen, by multiplying this equation by u*, integrating by parts , and using
Z(u*) =0, that § = 0. Therefore u* is a ground state.

(v) = (vi) : For w* asin (v), #(u*) = 0. Assume that there is u € 2" such that J(u) = m and
J(u) < 0. Then J(u) > 0 and there exists a 79 € (0,1) such that . (rou) = 0. But J(mou) < J(u) = m,
which is impossible.

(v) & (vi) : Let u* satisfy (vi). Then J(u*) > m. Assume that J(u*) > m. Again we have J(u*) > 0.
So there exists a 79 € (0, 1) such that J(7ou) = m. However .# (u*) > 0 and this contradicts (vi).

(i) = (v) : See [30].
(vii) = (viii): It is trivial from the definition of £ and ¢’ that ¢/ < /.

(vii) & (viii) : Note that S(u) = S(u) + %o@(u) and that S(u) > 0 for p > 3. Let u be in &
such that 2(u) < 0. Since 2(7u) > 0 for some sufficiently small 7 > 0, there exists a 9 € (0, 1) such that

2(7ou) = 0; hence we have £ < S(rou) = S(rou) = 725 (u) < S(u) = S(u). Therefore £ = ',

(1) = (viii) : Let u* be a ground state. It is easy to see that 2(u*) = 0. Hence, there exists a
minimizing sequence u; such that g(uj) — V', 2(u;) < 0 and the sequence {u;} is bounded in 2. By
using (4.32), we can obtain a subsequence of {u;}, denoting by the same {u;}, and ug € 2 N LPT2(R?)
such that u; — wug in 2 and LPT?(R?) for p € (0,4). Using the injection 2~ — L% (R?), we obtain
that u; — ug a.e. in R%. We show that ugp = u*. Note that if there is a subsequence of {u;} such that

HujHI;;ﬁQa(n@) — 0, then

2
|22/
L2(R2)

_ 2
+ ||awuj||%2(]R2) + HD:L’ luj HL2(R2) — 0,
since 2(u;) < 0 and p > 2. By using (4.33) and the conservation under L?—norm, it follows that

_ 2 4—p)/2 _ 2 3p/4
0wts5113 2 ey + (1D M0 gy S et 582 (100051132 oy + (1D s )

3p/4
< (1900513 gy + 197 532 )
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Therefore

)

_ 2 (3p—4)/4
15 <||3ruj||2L2(R2) +| Dz luj||L2(R2)>

which is impossible. Consequently irj;f ||uj||’;ﬁz(R2) =w > 0. On the other hand,

2 2 2 2
w < HUJH;Z—;+2 R2) HUJHILJ;:+2 () T HUJHZ[);)—+2 () T ||uj||1£-;+2(d3)
2 2
< sl oy + €512y + €742 |a] < M 2 o)+ 152ty + C L

where ) = {|u;| > e}, @b = {|uj| < e}, o = {e < |uj| <e '}, o = {|uj| > e} and v € (0,4 — p).
Thus, by using (4.32), we obtain that ||uj||’£ﬁ;~fw(%) < (4, and |‘uj|‘%2(ﬂ1) < (3. Choosing ¢ > 0
sufficiently small, we obtain that
_ 20, — PO
] > T >0.

€

To continue, we need the following lemma. The proof of the following lemma is similar to [54], with the
natural modifications.

LEMMA 4.3.3 Let u € 2 such that {|u| > e} > o > 0. Then there exit r,s € R such that for some
constant § = 0 (||ull 2, 0,¢€),

D2 1 Il > S} > 6,
where 7. su(z,y) = u(z +r,y + s) and D? is the unit ball in R

It follows from Lemma 4.3.3 that |]D)2 N {\uo\ > %}| > § because u; — ug a.e. in R%. Consequently ug # 0
a.e. in R2. Using Lemma 0.0.3, we have that 2(u;) — 2(u; — ug) — 2(ug) and S(u;) — S(u; — ug) — S(ug)
tend to zero as j — +o0o. Now we show that Q(uo) =0. If 2(ug) > 0, then 2(u; —up) <0asj— 400
since 2(u;) < 0. It follows from S’(uj) — ¢ and S(u] — ugp) > ¢ that S(up) < 0; which is contradiction.
Therefore ¢ < S(ug) < lim inf; 400 S(u]) = ¢; and thusly ¢’ = S(ug) and 2(ug) < 0.

Now, suppose that 2(up) < 0. Choosing a small 7 > 0 we obtain that 2(7ug) > 0. Therefore there
exists a 7o € (0,1) such that 2(roug) = 0. But ¢ < S(roup) = 728(ug) < S(ug) = ¢ leads us to a
contradiction; consequently 2(up) = 0. On the other hand, there exists a Lagrange parameter  such that

S/(Uo) + QQI(UO) =0. (450)

If 6 = 0, then S’(ug) = 0. But it can be easily seen that 2(u) = 0 for any u € £ such that S’(u) = 0.
Hence S(ug) < S(u) and up = u* in the sequence, since u* is a ground state.
So suppose that 6 # 0. Let uf(z,y) = piug(pa, p2y). Tt is easy to see that

o ’ / U % = u _L
0= <(S +02) (wo). 5 |u1> 20 DT

+46 {2/ <a(8zuo)2 + (D;layu0)2 — imﬁf@ﬂm) dxdy} .
R2

Using this fact that 2(up) =0 and p € (%, 4), it follows that

J(uo)

4—3p

0=
2

/ [a(@qu)Q + (Dm—layuo)2 — guof%ﬂ&uo} dxdy + g/ ug I Oy dxdy < 0,
R2 R2
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which is impossible; hence 6 = 0.
The proofs of (viii) = (i) and (ix) = (i) follow from the definition of the ground state.

(x) = (ix) : It is trivial from the definition of p and g’ that o’ < p.
(x) € (ix) : Note that S(:) = ﬁ() + %9() and that ﬁ() > 0 for p > 2. Suppose that u € 2 such
that &(u) < 0. Then there exists a 7 € (0, 1) such that Z(ru) =0, so p < S(Tu) = ﬁ(Tu) = T2§(u) <

Z(u). Consequently p = ¢’
The proof is basically similar to the proof of (i) = (viii) with some natural modifications.

(1) = (x):
|

COROLLARY 4.3.4 Let p € [1,4) and u* be a ground state, then S(u*) = j= 7, where
g=inf{S(u), ve Z, u#0, Y(u) =9 ")}

and j = inf{S(u), u € &', u#0, J(u) = J(u*)}.
Proof. Since S(-) = #(-) + 3¥4(), then by using the preceding lemma, we have

1
J==-G W) +inf{ A (v), ue 2, u#0, Y(u)=9u")} =9 ") = Su").
On the other hand, using again the preceding lemma, we obtain that

'—lin u), U U u) = J(u" S — u’

1 * 1 *\ U*
=390 " ey ) =50
|

Let u* be a ground state obtained above.
COROLLARY 4.3.5 Let p € [1,4) and ug be the initial data such that the corresponding solution u(t) of
equations (4.1)-(4.2) is in C([0,T); Z") for some T > 0 and satisfies E(u(t)) = E(ug) and F(u(t)) =

F(ug) fort €[0,T). Then we have the following assertions.

(i) Ifp e (%,4) and ug € M; then u(t) € M; fort €[0,T) andi=1,2;
(i) If up € 9; then u(t) € 9 fort € [0,T) and i =1,2;

(iil) If uo € W, then u(t) € W, fort € [0,T) and i =1,2;

(iv) If ug € N; then u(t) € N; fort € [0,T) andi=1,2,
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where

M ={ue Z,u#0, S(u)<Su"), 2u) >0}, Mm={ueZ,u#0, Su)<Su"), 2u) <0},
>

N={ue 2, uz0, Su)<S), 9(u) <G (u")}, %—{ue% w70, S(u) <Su’), (u) >4 (u")},
W ={ueZ, u#0, Su)<S), J(u) > J(u")}, ={ue 2, u#0, Su)<S), J(u) < J(u")},
Ni={ue 2, u0, Su)<Su), P(u)>0}, NQf{ue%,wo, S(u) < S(u*), 2(u) < 0}.

Furthermore, If ug € Mz, then 2(u(t)) < 33]0 (S(ug) — S(u*)), fort €10,T).

Proof. (i) Let up € M>. Because of the invariance of E and .#, we have S(u(t)) = S(ug) < S(u*).
Suppose that u(tg) ¢ Ma for some tg € (0,7T), so 2(u(tp)) > 0. By using 2(up) < 0 and the continuity of
2(u(t)) with respect to t, there exists a t; € (0,%o] such that 2(u(t1)) = 0. Then by using the preceding
lemma we obtain that

S(u*) > S(u(ty)) > inf{S(u), ue Z, u#0, 2u)=0}=S5u"),

which is contradiction.

Now suppose that ug € Mo, then u(t) € Ma; so S(u(t)) < S(u*) and 2(u(t)) < 0 for t € [0,T). On the
other hand, it is easy to see that 2(7u) > 0 for some sufficiently small 7 > 0. Therefore there exists a
7o € (0,1) such that 7= 0. Thus S(u*) < S(rou(t)) = 72S(u(t)) < S(u(t)). Consequently

3p *
2(u(t)) < 5 (S(uo) = S(u?)).
The other cases in (i), (ii), (1ii) and (iv) can be proved analogously. [ |
The solution of the Cauchy problem associated to (4.1)-(4.2) (see [30]) can be extend globally by us-

ing the conservation laws E and .7, if ug € Mz N Wy (see [70]). Now we are able to extend our blow-up
results in the last section to the case p > 4/3.

THEOREM 4.3.6 Let u be the solution of the equations (4.1)-(4.2) in C([0,T); Z") with u(0) = ug and
is conserved under E and % . Then there exists a finite time T* such that

lim
t—T*

uy(t)|| L2 r2) = +o0,
if one of the following cases occurs.
(i) pe (%,4) and ug € My N Wh N Y N L2 (yzdxdy),
(i) p € (2,4) and ug € My N A N L2 (y2dady).
(iii) p € [%,4), E(ug) <0 and ug € WhN % N L2 (dea:dy).
Proof. Suppose that u(t) stays in 2. In [30], we proved the following Viriel-type identity
d2

G0 =5 Q) ~ 90 + P ).
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where Z(t) = [ y*u?(2,y,t) dedy. So It follows from Corollary 4.3.5 and 2 (u*) = 0 that

2

Therefore lim;_, 7« Z(t) = 0 for a finite time T*. Using Weyl-Heisenberg’s inequality, we obtain the blow-up
result immediately. The case (ii) is similar. It can be easily checked that if ¢, is a solitary wave solution of

4.9), then ¥ (p.) — ———————J(p.) = 0. On the other hand, for every p € [4,4) there exists s € (0,2
such that ps = 4 — p, so by using the viriel identity and Corollary 4.3.5,

d'I@)<]6Eﬁdﬂ)—4sg@dﬂ)_(pi%*;ﬁzo

dt2
4(4 —p)
(p+1D(p+2)

J(u(t))

< 16B(uo) — 45 9(p.) — J(pe) = 16 (u).

This completes the proof of (iii). [ |

The preceding theorem implies the instability of solitary wave solutions of (4.1)-(4.2).

THEOREM 4.3.7 Let p € [2,4]. Suppose that ¢ is the solitary wave solution of (4.1)-(4.2) with ¢ > 0.
For any § > 0, there is an initial data ug € X4(R?), s > 2 with ||ug — ¢||2r < &, such that the solution u of

(4.1)-(4.2) with u(0) = ug blows up in finite time, where X4(R"™) = {f € H*(R™), <M> € HS(R”)} ,

13
fem\
§

Proof. Consider the initial data ug(z,y) = op(z, py), for any g, p > 0. By Theorem 4.3.6, it suffices to
show that ug is close to the solitary wave ¢, for small p and p; and ug € M5 N A;. One can easily check
that for p> = 1 — 7, with 7 > 0, p and p sufficiently small ug € My N A;. |

equipped with the norm

/]

x. = |[fllas +

Hs

Now, we use the Lemma 4.3.2 to obtain the symmetry properties of the ground state solutions of the
equation (4.9).

THEOREM 4.3.8 Let 8 < 0. Any ground state u*(z,y) of the equation (4.9) is radial iny (cylindrically
symmetric), up to a translation of the origin of the coordinates in y.

Proof. Choose r € R, in order that if
T={(z,y) eR?® : y=r},

then 1
I ) =9 () = 59,

where 4T and ¢4~ are the same ¢ with T+ and Y~ as the domains of integral, respectively; and YT and
Y~ are the half-planes delimited by Y. Let u* be defined by u™ = «* in T+ and 4™ be symmetric with
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respect to Y. Then ut € 27; indeed, if p € L7 (Rz) is such that ¢, = v* and ¢, = D;lu;;, then ¢ = u™
and HQD;/rHLz(Rz) =2 ”‘Py”L?(TJr) < +00, where cp+(x,y) = Sﬁ(l’,y), ity >rand go*(x,y) = @(‘%27’ - y)a if
y < r. Since there is a sequence ¢, € C§° (R2) such that 0., converges to ¢, = u* in 2, D;lu;j = cp;j.
Moreover, ¢ (u*) = 4 (u™). In the same way, if u~ = «* in T~ and v~ is symmetric with respect to Y, then
u” € Z and 9 (u*) = 4 (u~). Hence it follows from Lemma 4.3.2 (iv) that 2 (u™) > 0 and # (u~) > 0.
Therefore, u* and u™ satisfy (iv) of Lemma 4.3.2, since ¢ (u) + # (u™) = 2¢ (u*) = 0. Thusly, u™t
and u~ are ground states of the equation (4.9). On the other hand, since «* = v* in TT and 4~ = u* in
T, by using Theorem 4.3.9 applied to u™ — u* and u~ — u*, we conclude that u* = v~ = u and u* is
symmetric with respect to T.

THEOREM 4.3.9 Let a >0, 8 <0, a,b,c € L™(R?) and u, uy, Uy, Ugy, Uzze € L*(R?) and
Uyy — QUggay — BHUpgs = a(T,y)u + b(z, Y)ug + (2, Y)Uze 0 R2. (4.51)
Then, if u vanishes on a half-plane A in R?, it vanishes everywhere in R2.

Proof. Without loss of generality we assume that A is parallel to the z-axis. It suffices obviously to prove
that if u satisfying the hypotheses of Theorem 0.0.6 is such that w =0 on {(z,y) , y < 0} then it vanishes
on Ay ={(z,y), y € [0,T]} for any T' > 0. We can rewrite (4.51) as

¥y — A = =9 + au + buy + cugy,,

where
d=uy+Au, A=1+A4,

A being the operator, defined by

-~ 1/2

Au(§) = (ag* - B¢ .
Obviously, A is a self adjoint operator, continuous from H!(R) to H~*(R) which satisfies the hypotheses
of Theorem 0.0.6, yielding ¥ = 0 on Ap and therefore v = 0 on Ar. [ ]

4.4 Regularity and Decay

First, we are going to show that any solitary wave solution of (4.9) and (4.10) is analytic. Indeed,

THEOREM 4.4.1 Let a,c > 0 and 8 € R?. We also suppose that 3 < 2\/ac, if 3 > 0. Then any
solitary wave uw of (4.9) and (4.10) is continuous and tends to zero at infinity. Moreover, u is a real
analytic function, provided p is an integer.

Proof. We prove the theorem for the two dimensional case (see [30] for the three dimensional case). (4.9)
implies that u satisfies

(uwPth) =0. (4.52)

— ClUgy — uyy + QUgzzs + ﬁf%ﬂuzzaj + Tz

p+1
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We get from (4.52)

~ £ ~
u ) = ) 3
(&n) TGP T ol T 1 9(&n)
where g = fﬁuz’ﬂ. The proof is essentially the same as in [24] with natural modifications by using

the Proposition 0.0.4 and bootstrapping argument; which imply that the solution is C*°. The analyticity
of the solitary wave solution follows from the Taylor formula, the regularity of the solution and using the
following lemma ([43]).

LEMMA 4.4.2 There exist two constants C > 0 and A > 0 such that for all w € N",

0wl p2@gny < CAXITE (Jw| - 2)L.

Now, we present some results regarding the decay of the solitary wave solutions of (4.9).

LEMMA 4.4.3 Let a,c >0 and 8 € (—00,2+v/ac ). Then any solitary wave solution of (4.9) satisfies

/ r* (|[Vul|® +u2,) dady < +oo, (4.53)
R2

2

where 2 = 22 4+ y2. Furthermore,

2
/ r2 (|Vu|2 + ‘Déu) + u?m) dzdy < +00. (4.54)
R2

Proof. Let xo be the same function in the proof of Theorem 4.1.1. We set x,;(x) = xo (%), jeN. We

multiply (4.52) by x;(z)z?u and y,(y)y?u, separately, and integrate over R?. Using several integrations
by parts, the Plancherel theorem and the terms in (4.52) are computed as follows.

—/ Uge X j(7)2?u dody = / [mQXj (z)u2 — xj(z)u? — 2xx; (z)u® — m2xé’(x)u2] dxdy, (4.55)
R2 R2
- / uyyx; (2)2?u dedy = / %y (m)uz dxdy, (4.56)
R2 R2
/ Umij(x)zzU dxdy = / [l'QXj(I)Uim — 4, (z)u? — SxX;-(z)ui — ZwQX;’(x)ui] dzdy
R2 R2
Ly (4.57)
—F/R2 {6)(}’(:5)495)(}”(33) + §x2xj (x)] dxdy,

/ P ux; (2) AUy drdy = —/ [Bzuy;(x) # use — vux;(z)D3(zu)] dady
R? R?

= /}R2 [3 (ux;(z) + zux;(x) + wx; (2)ug) Huy — (ux;(z) + zux(z) + ox;(®)ug) Dy (u+ zuy)| dady,
(4.58)
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1
/ r2ux () (u”“)m dxdy = QIL X (z)uP*? dzdy — (p + 1)/ 22y (z)uPul drdy
R2 p+ 2 R2 R2 (4 59)
p+1 2 +2 .
pi-l- 5 ) [:17 X;’(;z:) + 4xx;(:c)] uP ™ dxdy,

1
~ [ sty detn = [ [0 - o] dedn— [ 2+ 32 0|  dsay. .00
R R R

- / yPux; (y) g, dedy = / y*x;(y)uz dady, (4.61)

R2 R2
/ Y2 ux; () aee drdy = / Y2 X (y)uz, dudy, (4.62)

R2 R2

3 2
[P0 tsa sy =~ [ x;0) |DEo| dey, (1.63)
R R
/R v (y) (), dedy = —(p+1) /R UG (W)uu? dedy. (4.64)
By using the properties of x;, Lebesgue’s theorem, the following equality
1 2 3 |2 12 3 |2
HD,?- (u+ zuy) = Hwau‘ - HD;uH +C’2HD,§u‘
L2(R2) L2(R?) L2(R2) L2(R2)

as j — o0, for some C1,Cs > 0 and the fact that u tends to zero as r — 400, (4.55)-(4.64) imply that

3
/ 2 (cug +u?+B|Diu
R2

2
) + auiw> dxdy < 4o0.

Now by using the analysis of the decay of the solitary wave solution, based on the convolution equations

1
u=1ihy * (WPu,) = — ho *uPT,
p+1

where )
hi(€n) = s ¢ ;
& BIEP + &t 7 & PIEP T adt 7
and the Lemmata 3.2-3.6 in [24], with some modifications, we obtain that
THEOREM 4.4.4 Let a,¢ > 0 and § € (—00,2+v/ac ). Then any solitary wave solution of (4.9) satisfies
r?u € L™ (]RQ) .
Furthermore, r°u, m7Vu, r'*Su,, € L? (R?), for any s € [0,1).
See also [30] for the three dimensional case.

REMARK 4.4.5 Note that when 8 < 0, then by using the Residue theorem, ho can be written in the

following form
+oo  ptoo e—(T-‘rCt) 2
ha(z,y) =C ———0, |e” % ) dtdr,
2(z,9) /0 ; e (6 ) T
1 (5%2 y?

where v = at + — +t> and C > 0.
T

and  ho(€,1m) =

4



4.5 (Generalized) Benjamin-Ono-KP 111

4.5 (Generalized)Benjamin-Ono-KP

In this section we will looking for solitary wave solutions of the generalized high dimensional BO-KP
equation (nBOKP)

n—1

(ut + uPuy — fDGu,), + Z eﬁiu =0, (4.65)

i=1

where D, = (—83)1/2, n>2,a>1,¢ =241 and the constant 3 is real. In fact, as before, we are looking
for a solution of (4.65) of the form u (z — cot,y1 — c1t, -+ ,Yn—1 — cn—1t). By a change of variables T = z,
Ui = Yi — %eicix, after dropping the tilde, we obtain the systems

n—1
(—cug + uPuy — BDGu,), + Z eiagiu =0, (4.66)

i=1
with ¢ = ¢ + 1 Zz | €ict.
REMARK 4.5.1 Note that we can assume that |c| = 1, since the scale change

v(@,y) = le[“Fu (|l "%, el =5 y) |

where y = (Y1, ,Yn—1), transforms (4.66) in u, into the same in v, but with |c| = 1.

DEFINITION 4.5.2 We shall denote, 2" the closure of 0,(C§°(R™)) for the norm

2

2 _ 2 /2
10:01% = IV NEageny + D50 [, o (4.67)
REMARK 4.5.3 Equation (4.65) admits the conservation quantities
1
Fu(t) = ; / W2(1) ddy, (4.68)
Bu(t) = / 3 (D"/2 ) iez #UP“@) dxdy (4.69)
2 2 )~ Y
4
LEMMA 4.5.4 Let o > 2 be given and let p < ppo = % . Then there emists C > 0,
’ 2n+ (n—3)a
depending on o, n and p, such that for any p € 2,
P2 q _ p(n—1)
122 gy < Clol a1 ey 105 00 (4.70)

where 0 € R*~1 andq—2—m—m

«@
there exists C > 0, depending on « and p, such that for any ¢ € X,

. Furthermore, whenn =2, p < pao = 72 and a € [1,2],

[0}

2 P
2 ra _ 5
||<PH]E:+2(R2) = C”SD”L (R2) ||S0||Ha/2 0 (R2) ||8m I‘Pynzz(w) ) (4.71)

2+ 2) ;o 2Aa+2)
w+2-a)p+2) ! T ta-@—a)p

where q =



4.5 (Generalized) Benjamin-Ono-KP 112

REMARK 4.5.5 Note that by an argument similar to one in [14], one can see that a solution u of (4.65)
that starts in 2~ will remain in this space throughout its period of existence, regardless of the sign of €;.

THEOREM 4.5.6 (I) The equation (4.66) does not admit any nontrivial solitary wave satisfying

u=0p €2, ue€lLy.(R"),
02 e L (R"), DY?0,p€LL (R"), 1<i<n-—1,
if one of the following cases occurs:
(1) ei€; <0, for some i # j,
(ii) €8 <0, for some i,

4
(iii)pzm,cﬁ>0 and ce; >0, forall1 <i<n-—1,
(iv)pgm,cﬁ<0 and ce; <0, for all 1 <i<n-—1.

(IT) Let ¢ > 0 and p = %, where m € N is odd and m and k are relatively prime. Then the equation

(4.66) admits a nontrivial solution uw € 2, if e, = =1 for all1 <i<n—-1,p < pna , @ > 2 for
n>2and a>1 forn =2. Furthermore, there is a positive number \* such that the minimization
problem

L =inf{B(u); ue 2, ZFu) =X}
has at least one solution.

Idea of the proof. The proof of (I) follows from the following identity:

2
(aBp+4) —pn(a+2)) 5 (Dg/Qu) dxdy = 4apc/ u? dxdy. (4.72)
RTL

n

For (IT), similar to Section 4.2, one can prove that the existence of solitary wave solutions, when ¢ > 0,
e, =—1,foralli=1,--- . n—1and

< da
PSony a(n—3)’
by the following minimization problem
I, = inf{||u|gbr sue 2, J(u) = / Pt (z,y) dedy = )\} ) (4.73)
by using Lemma 0.0.1. [ ]

REMARK 4.5.7 One can also see that the classical function d(c) = E(u) + ¢ (u) is strictly increasing

for ¢ >0 and
4o

<Pha=5——"-
P=Pna 2n 4+ a(n — 1)
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Moreover, we have d(c) = ¢*J(v), where v satisfies (4.66) with ¢ =1 and

_Ada+p((3—-n)a) —2n
N 2ap '

Therefore d"(c) > 0 if and only if p < p§, -
Let G, be the set of the ground state solutions of the equation (4.66). The stability is an immediate

4a—p(2nta(n—3)) ~
corollary of Theorem 4.5.6 by using classical arguments and the fact that I A = Ade- POnTati-1) I, by

setting

p(at2)
Uy ([E y) = \%a— p(2n+a(n 1))u()\4a p(2n+o¢(n D, A da—p(2nta(n— 1))y)

COROLLARY 4.5.8 Let p <pj, ,, ¢ >0 and . € G.; then for all positive € > 0, there is a positive § > 0
such that if ug € {u € H*(R") ; (@)v € HS(R”)}, s > 3 with ||ug — @cl| - < 8, then the solution u(t)
of (4.65) with u(0) = ug satisfies

sup Jof fu(t) — vl <e.

Now we are going to study instability by using the mechanism of blow-up. Let us denote functionals similar
to ones in Section 4.3.

G (u) = g . <D§/2u)2 dedy, 7 (u) = ||lul% — Z%J(u), (4.74)
_ np(2+a) - — Stu) — 2
2(u) = % (u) — W )+ Z / (w,y) dady, K (u) = S(u) = —F(u),  (4.75)
S(u) = E(u) + ¢Z(u), S(u) = S(u) — Weﬁ(n—l)g(u)’ (4.76)
D) = gy - I +H2020) 5y Sy gy — 2 D), (AT7)

2p+1)(p+2) p(1+n—a)+2(1-a)

where v; = 9, 'u,,. Considering the above functionals, we have a lemma similar to Lemma 4.3.2.

LEMMA 4.5.9 Let¥Y, 7, 2, S, §, Z, P and K be as above. There exists a real positive number \*
such that for u* € Z°, we have as in Lemma 4.3.2,

(I) (i)-(vi) are equivalent,

2c

m (i) (vi valent to (vii)-(viii). if
(IT) (i)-(vi) are equivalent to (vii)-(viii), if p > T—axn

(ITI) (i)-(viii) are equivalent to (ix)-(x) , if p > py, .-

COROLLARY 4.5.10 Let ¥, .7, 2, S, S, 2, P and K be as Lemma 4.5.9. Then (i)-(iil) in Corollary
4.3.5 hold. Also (i) in Corollary 4.3.5 holds if p > pf, ,. Moreover, if ug € My, then

2(u(t)) < ——(S(uo) = S(u)), (4.78)

n,o

for t € [0, 7).
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REMARK 4.5.11 Similar to Section 4.3, the quantity

(t) = / yl2u(z, ) dudy
Rn

plays an important role in our blow-up and instability results. We can similarly obtain the following Viriel-
type identity. In fact, we have

—I =4 Z el/ uy;v; daxdy, (4.79)

and

?

— (8- 2p) nzlnz /v dxderQpZez[ / (Dg/Zu)zdzdyzE(u)].

(4.80)

n—1ln—1
—I )=38 eze/ v d:cdy+ 61/ uPt? dady
dt? lezl 7 Jgn p+2 Z n
1
€€
=1

The proof of the following theorem is similar to Theorem 4.3.6, by using (4.80).

THEOREM 4.5.12 Let u be the solution of the equations (4.65) in C([0,T); H® (R™)) with u(0) = ug
and is conserved under E and % . Then there exists a finite time T* such that

hm Z [y, (¢ ||L2(Rn = +0o0,

if one of the following cases occurs.

(i) p € (150 Pna) and ug € My N Wo N % N L2 (|y|*dady),

(ii) p e (1 2 Dn, a) and ug € My NNy N L2 (|y[*dxdy),

(il)) p € [Pf.asPn,a), E(ug) <0 and ug € Wao N % N L (Jy[>dzdy).
Theorem 4.5.12 enables us to obtain strong instability of solitary wave solutions of (4.65).

THEOREM 4.5.13 Letp > py, . Suppose ¢ is the solitary wave solution of the nBOKP equation (4.66)
with ¢ > 0. Then for any § > 0, there is an initial data ug € {u € H5(R™) ; (@)v € H‘“(R")}, §>2

with ||lug — ¢||2 < &, such that the solution w of (4.65) with w(0) = ug blows up in finite time. More
precisely,

n—1

tl_lg}* z_; [ (t)”LZ(Rn) = +00.
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Proof. We define ug(x,y) = op(kz, py), where p? = (1 — ¢)k® + 2 with a sufficiently small € > 0. By
Theorem 4.5.12, it suffices to show that ug is close to the solitary wave ¢ for small ¢ > 0 and ug €
My N Wh N Y in fact, by using the facts

@) =B, ) = 2NNy,
||ijL2(R") = %g((p), .7 = 17 N 1 and S(SO) = %{4(@)’

we should show that p, 0 and x satisfy the following conditions

Bir 1 pt T 4 Bt £ By 33" < g0_27 (4.81)
n

Byk™2 +K%p~2 < Bsp~20?, (4.82)

o2k > 1, (4.83)

oPt2pl=m < K, (4.84)

where B = « (% + %p - %) -1, By = 1—%“5, By = 2(n—1), B3 = B4By and Bs = 1+ B4. By a simple

3n
computation, one can show that all conditions (4.81)-(4.84) are satisfied if k € (43, A2), where

TLBl
A =
! ((1—1—5)—2‘9—nt—

1/«
(1 g)B > , o= (1 + 6)9(1 N 6)%(a+2)(n71)ni((n73)a+2n)’
- 3

)1/7' 1
Bi(l—¢)+1 ) , 7= la(d+3p) —np(2+a)],

with sufficiently small € > 0 and 6 > 0. It is easy to verify that k > 1,0 — 1, p — 1 and ug — ¢ in 2 as
€ — 0. This completes the proof. |

REMARK 4.5.14 Note that in [30], we could obtain some local well-posedness of two and three dimen-
sional Benjamin equations in the anisotropic spaces with negative indices.
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