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Abstract

This work presents new results about several nonlinear equations. We investigate the (non)existence of
solitary waves of the ZK equation and some of the their properties by using the variational methods.
Next we study the initial value problem associated to some dissipative ZK equations (ZKB and Benney
equations). We will also investigate the (non)existence and stability of solitary wave solutions of BO-ZK;
and their properties. Furthermore, we are interested in studying the solitary wave solutions of the high
dimensional Benjamin equations and their characteristics.
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Preliminaries

Let SL = R× (−L,L). We define a concentration function for nonnegative function u ∈ L1(SL). Let ξ ∈ R
and r > 0, then we define Sr(ξ) as the rectangle of the form

[ξ − r, ξ + r]× [−L,L].

We define the concentration function of u as

Q(r) = sup
ξ∈R

x

Sr(ξ)

dµ, (0.1)

for the measure on SL given by dµ = u dxdy.
The concentration compactness principle of Lions [52, 53] is a way of compensating for the well known

failure of precompactness of bounded sets in infinite-dimensional Banach spaces (i.e. that bounded se-
quences need not have convergent subsequences). The principle, roughly speaking, asserts that given any
bounded sequence, there exists a subsequence which resolves into the superposition of convergent sequences
that have been shifted by an asymptotically orthogonal set of unitary group actions, plus an error term
which goes to zero in certain coarse norms which are weaker than the original norm topology (but sig-
nificantly stronger than the weak topology). It is useful in generating nonlinear profiles of solutions to
nonlinear equations, and also combines well with the induction on energy method. For r ∈ R and x ∈ Rn,
we denote the ball with radius r, centered at x, by Br(x).

LEMMA 0.0.1 (Concentration-Compactness) Suppose that µm is a sequence of probability measures
on Rn such that µm ≥ 0 and

∫
Rn dµm = 1. There exists a subsequence {µm} such that one of the three

following conditions holds:

(i) (Evanescence) For all R > 0 there holds

lim
m→∞

(
sup
x∈Rn

∫
BR(x)

dµm

)
= 0.

(ii) (Compactness) There exists a sequence {xm} ⊂ Rn such that for any ε > 0 there is a radius R > 0
with the property that ∫

BR(xm)

dµm ≥ 1− ε

for all m.

1
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(iii) (Dichotomy) There exists a number λ, 0 < λ < 1, such that for any ε > 0 there is a number R > 0
and a sequence {xm} ⊂ Rn with the following property:
Given R′ > R, there are non-negative measures µ1

m and µ2
m such that

• 0 ≤ µ1
m + µ2

m ≤ µm,
• supp(µ1

m) ⊂ BR(xm) and supp(µ2
m) ⊂ Rn\BR′(xm),

• lim sup
n→∞

(∣∣∣∣λ− ∫
Rn

dµ1
n

∣∣∣∣+ ∣∣∣∣(1− λ)−
∫

Rn

dµ2
n

∣∣∣∣) ≤ ε.

LEMMA 0.0.2 (Periodic Concentration-Compactness) Suppose that {µn} is a sequence of positive
measures on SL such that limn→∞Qn = L, where Qn are defined by (0.1) corresponding to µn. Then there
exists a subsequence of measures, denoted the same, such that one of the following three conditions holds:

(i) (Evanescence) For all r > 0,
lim
n→∞

sup
ξ∈R

x

Sr(ξ)

dµn = 0.

(ii) (Compactness) There exists a sequence ξn in R such that for any ε > 0, there is a r > 0 such that
x

Sr(ξn)

dµn ≥ L− ε for every n ∈ N.

(iii) (Dichotomy) There exists l ∈ (0, L) such that for any ε > 0, there exists a positive number r > 0 and
a sequence ξn in R with the following property: Given r′ > r there exists nonnegative measures µ1

n

and µ2
n such that

• 0 ≤ µ1
n + µ2

n ≤ µn,

• supp(µ1
n) ⊂ Sr(ξn) and supp(µ2

n) ⊂ SL \ Sr′(ξn),

• lim sup
n→∞

(∣∣∣∣∣l − s

SL

dµ1
n

∣∣∣∣∣+
∣∣∣∣∣(L− l)−

s

SL

dµ2
n

∣∣∣∣∣
)
≤ ε.

We consider Lp(Ω) spaces of complex-valued functions. Ω being an open subset of Rn, Lp(Ω) denotes the
space of (classes) measurable functions u : Ω → C such that ‖u‖Lp(Ω) <∞ with

‖u‖Lp(Ω) =
(∫

Ω

|u(x)|p dx
)1/p

,

if p ∈ [1,∞), and
‖u‖Lp(Ω) = ess sup

Ω
|u|,

if p = ∞.

LEMMA 0.0.3 (Refined Fatou lemma) Let p ∈ (0,∞) and {uj}j be a bounded sequence in Lp(Rn)
such that uj → u a.e. in Rn. Then

‖uj‖pLp(Rn) − ‖uj − u‖pLp(Rn) − ‖u‖pLp(Rn) −→ 0.

The assumption uj → u a.e. can be removed if p = 2.
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To a proof, see [18].
We will use following variants of the Hörmander-Mikhlin multipliers theorem [56].

PROPOSITION 0.0.4 (Lizorkin) Let Υ : RN −→ R be CN for |ξj | > 0, j = 1, . . . , N. Assume that
there exists M > 0 such that ∣∣∣∣∣ξk11 . . . ξkN

N

∂kΥ
∂ξk11 . . . ∂ξkN

n

(ξ)

∣∣∣∣∣ ≤M,

with ki = 0 or 1 and k = k1 + k2 + · · · + kN = 0, 1, . . . , N. Then Υ is a Fourier multiplier on Lr(RN ),
1 < r < +∞.

PROPOSITION 0.0.5 Let 1 ≤ p ≤ ∞, T be a operator in L(Lp(Rn)) and Λ be a lattice in Rn. Suppose
Φ is the multiplier corresponding to T which is continuous at each point of Λ. Then there exists a unique
periodized operator T̃ defined by

T̃ f =
∑
m∈Λ

λmame
im.x,

where f(x) =
∑
m∈Λ ame

im.x and λm = Φ(m) for every m ∈ Λ, such that T̃ is in L(Lp(Tn)) and
∥∥∥T̃∥∥∥ ≤

‖T‖.

THEOREM 0.0.6 ([3]) Let {A(t)} be a family of bounded linear operators of a Hilbert space V into
V ∗ (dual of V ). Let also {B(t)} be a family of operators belonging to L2([0, T ];L(V, V ∗). Suppose that the
following conditions hold:

(i) There is A′(t) ∈ L1([0, T ];L(V, V ∗)) such that for all (u, v) ∈ V × V , one has d
dt (A(t)u, v) =

(A′(t)u, v),

(ii) for t ∈ [0, T ], the operator A(t) is self-adjoint,

(iii) there is a real number α > 0 such that (A(t)u, u) ≥ α‖u‖2, for all u ∈ V and t ∈ [0, T ].

If u ∈ L2([0, T ];V ) is a solution of u′ +A(t)u+B(t)u = 0 verifying u(T ) = 0, then u ≡ 0 on [0, T ].

We will use the standard multi-index notation. A multi-index α = (α1, · · · , αn) is a n−tuple of
nonnegative integers. We define the symbols |α| :=

∑n
i=1 αi, x

α := xα1
1 xα2

2 · · ·xαn
n and

Dα :=
∂|α|

∂α1
x1 ∂

α2
x2 · · · ∂αn

xn

.

Define for each (α, β) ∈ N2n the semi-norm, ‖ · ‖α,β , by

‖f‖α,β := ‖xαDβf‖L∞ .

DEFINITION 0.0.7 We define the Schwartz space, S (Rn), as

S (Rn) = {ϕ ∈ C∞(Rn) : ‖ϕ‖α,β <∞ for any (α, β) ∈ N2n}
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The topology in S (Rn) is that induced by the family of semi-norms {‖ · ‖α,β}(α,β)∈N2n . We say that a
linear functional Ψ : S (Rn) → C, defines a tempered distribution if Ψ is continuous (and we denote S ′(Rn)
as the set of all tempered distribution). Consider an open subset Ω of Rn. For m ∈ N and 1 ≤ p ≤ ∞, the
Sobolev space Wm,p(Ω) is defined by

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for any |α| ≤ m} .

Wm,p(Ω) is a Banach space when equipped with the norm ‖ · ‖Wm,p(Ω) defined by

‖u‖Wm,p(Ω) =
∑

0≤|α|≤m

‖Dαu‖Lp(Ω).

When p = 2, set Wm,p(Ω) = Hm(Ω).

THEOREM 0.0.8 (Gagliardo-Nirenberg’s inequality) Let 1 ≤ p, q, r ≤ ∞ and let j,m be two in-
tegers such that 0 ≤ j < m. If

1
p

=
j

n
+ θ

(
1
r
− m

n

)
+

(1− θ)
q

for some θ ∈
[
j
m , 1

]
(θ < 1 if r > 1 and m− j − n

r = 0), then there exists C = C(n,m, j, θ, q, r) such that

∑
|α|=j

‖Dαu‖Lp ≤ C

 ∑
|α|=m

‖Dαu‖Lr

θ

‖u‖1−θLq

for every u ∈ S (Rn).

DEFINITION 0.0.9 Given s ∈ R, one defines Sobolev spaces

Hs(Rn) =
{
u ∈ S ′(Rn) :

[(
1 + |ξ|2

) s
2 û
]∨

∈ L2(Rn)
}

and
‖u‖Hs(Rn) =

∥∥∥∥[(1 + |ξ|2
) s

2 û
]∨∥∥∥∥

L2(Rn)

.

Let Ω be an open set in Rn with smooth boundary. The Sobolev space Hs(Ω) is defined by the restriction
of the elements of Hs(Rn) to Ω, and with the norm

‖f‖Hs(Ω) = inf{‖ϕ‖Hs(Rn) : ϕ coincides with f in Ω}.

DEFINITION 0.0.10 Let s1, · · · , sn ∈ R. We define the anisotropic Sobolev spaces Hs1,··· ,sn (Rn)
endowed with the norm

‖ϕ‖2Hs1,··· ,sn (Rn) =
∫

Rn

|ϕ̂(ξ1, · · · , ξn)|2
n∏
i=1

(
1 + ξ2i

)si
dξ1 · · · dξn

for any ϕ ∈ S ′ (Rn).
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One can easily prove the following interpolation in the anisotropic spaces.

LEMMA 0.0.11 If s1,i ≤ %i ≤ s2,i, 1 ≤ i ≤ n , with

(%1, · · · , %n) = θ(s1,1, · · · , s1,n) + (1− θ)(s2,1, · · · , s2,n)

and θ ∈ [0, 1], then
‖f‖H%1,··· ,%n (Rn) ≤ ‖f‖θHs1,1,··· ,s1,n (Rn) ‖f‖

1−θ
Hs2,1,··· ,s2,n (Rn)

. (0.2)

DEFINITION 0.0.12 Let r1, · · · , rn ∈ R. We define the fractional Sobolev-Liouville space

H(s1,··· ,sn) (Rn) := Hs1,0,··· ,0 (Rn) ∩ · · · ∩H0,··· ,0,sn (Rn)

equipped with the norm ‖f‖H(s1,··· ,sn)(Rn) = ‖f‖L2(Rn) +
∑n
i=1

∥∥Dsi
xi
f
∥∥
L2(Rn)

, where D̂si
xif(ξ1, · · · , ξn) =

|ξi|si f̂(ξ1, · · · , ξn).

If for all 1 ≤ k ≤ n, rk = r, are integers, then H(r1,··· ,rn) (Rn) is the Sobolev space W r,2 (Rn).

REMARK 0.0.13 If n
2 −

n
p ≤ s ≤ min{s1, · · · , sn} and p ∈ [2,∞), then the following embedding are

continuous
Hs1+···+sn (Rn) ↪→ Hs1,··· ,sn (Rn) ↪→ Hs (Rn) ↪→ Lp (Rn)

THEOREM 0.0.14 (Young’s inequality) Let f ∈ Lp(Rn) and g ∈ Lq(Rn), 1 ≤ p, q ≤ ∞ with 1
p+ 1

q ≥
1. Then f ∗ g ∈ Lr(Rn) where 1

r = 1
p + 1

q − 1. Moreover

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn)‖g‖Lq(Rn).

LEMMA 0.0.15 Let 1 ≤ p, q, p1, q1, p2, q2 ≤ ∞ with 1 + 1
p = 1

p1
+ 1

p2
and 1 + 1

q = 1
q1

+ 1
q2

. Then

‖f ∗ g‖Lp
xL

q
y(R2) ≤ ‖f‖Lp1

x L
q1
y (R2)‖g‖Lp2

x L
q2
y (R2),

LEMMA 0.0.16 If si > 1
2 , for all i = 1, · · · , n, then Hs1,··· ,sn (Rn) is an algebra.

THEOREM 0.0.17 (Embedding) If s > n
2 + k, then Hs(Rn) is continuously embedded in Ck∞(Rn),

the space of the functions with k continuous derivatives vanishing at infinity. In other words, if f ∈ Hs(Rn)
and s > n

2 + k then (after a possible modification of f in a set of measure zero) f ∈ Ck∞(Rn) and

‖f‖Ck(Rn) ≤ cs‖f‖Hs(Rn).

THEOREM 0.0.18 (Embedding) The space Hs(Ω) is continuously embedded in Lp(Ω), if 2 ≤ p <∞
and

1
p
≥ 1

2
− s

n
. Moreover, Hs(Ω) is continuously embedded in L∞(Ω) if s > n/2. This embedding is

compact if
1
p
>

1
2
− s

n
.

LEMMA 0.0.19 For any f ∈ Hn/2+ε(Rn) and ε ∈ (0, 1/2], we have

‖f‖L∞(Rn) ≤ c(n)ε−1/2‖f‖Hn/2+ε(Rn).
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THEOREM 0.0.20 If s > n
2 , then Hs(Rn) is a algebra with respect to the product of the functions.

That is, if f, g ∈ Hs(Rn), then fg ∈ Hs(Rn) with

‖fg‖Hs(Rn) ≤ ‖f‖Hs(Rn)‖g‖Hs(Rn).

DEFINITION 0.0.21 Let H be a Hilbert space and I : H → R be a functional. We say I satisfies the
Palais-Smale condition if I ∈ C1(H,R), and if every sequence {uk}∞k=1 ⊂ H such that:

• {I[uk]}∞k=1 is bounded, and

• I ′[uk] → 0 in H,

is precompact in H.

DEFINITION 0.0.22 Let H be a Hilbert space and I : H → R be a functional. We say u ∈ H is a
critical point if I ′[u] = 0. Also the number c is a critical value if Kc 6= ∅, where

Kc := {u ∈ H | I[u] = c, I ′[u] = 0}.

The mountain pass theorem (see [19]) is an existence theorem from the calculus of variations. Given
certain conditions on a function, the theorem demonstrates the existence of a saddle point. The theorem
is unusual in that there are many other theorems regarding the existence of extremum, but few regarding
saddle points.

THEOREM 0.0.23 (Mountain Pass) Let H be a Hilbert space and I : H → R be a functional. As-
sume that I satisfies the following conditions:

• I ∈ C1(H,R),

• I ′ is Lipschitz continuous on bounded subsets of H,

• I satisfies the Palais-Smale compactness condition,

• I[0] = 0,

• there exist positive constants r and a such that I[u] ≥ a if ‖u‖ = r, and

• there exists v ∈ H with ‖v‖ > r such that I[v] ≤ 0.

If we define:
Γ = {g ∈ C([0, 1];H) |g(0) = 0,g(1) = v}.

Then
c = inf

g∈Γ
max
0≤t≤1

I[g(t)],

is a critical value of I.

THEOREM 0.0.24 (Mountain Pass) Let X be a Banach space. Let M0 be a closed subspace of the
metric space M and Γ0 ⊂ C(M0, X). Define

Γ := {γ ∈ C(M,X) : γ|M0 ∈ Γ0}.
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If ϕ ∈ C1(X,R) satisfies

∞ > c := inf
γ∈Γ

sup
u∈M

ϕ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

ϕ(γ0(u)),

then, for every ε ∈ (0, (c− a)/2), δ > 0 and γ ∈ Γ such that

sup
M

ϕ ◦ γ ≤ c+ ε,

there exists u ∈ X such that

• c− 2ε ≤ ϕ(u) ≤ c+ 2ε,

• dist(u, γ(M)) ≤ 2δ,

• ‖ϕ′(u)‖ ≤ 8ε/δ.

We recall the Hilbert Transform H , defined by

H (f)(x) =
1
π
p.v.

1
y
∗ f(x) =

1
π
p.v.

∫
f(x− y)

y
dy,

is a unitary operator on L2(R); we remember that for any f ∈ Lp(R), 1 ≤ p < ∞, the Hilbert transform
H f(x) exits and is finite a.e.. Moreover, the Hilbert transform operator H : f → H f for f ∈ Lp(R),
1 < p <∞, is bounded. Some properties of the Hilbert transform H , for f, g ∈ S :∫

gH (f) = −
∫
fH (g), (0.3)

Ĥ (f)(ξ) = −isgn(ξ)f̂ , (0.4)
‖H (f)‖L2 = ‖f‖L2 , (0.5)

∂xH = H ∂x, (0.6)
H (f(a ·))(x) = sgn(a)H (f)(ax), for every a ∈ R, (0.7)

H (xfx(x))(y) = yH (fx)(y), (0.8)
H (f(·+ a))(x) = H (f)(x+ a), for every a ∈ R, (0.9)∫

xfxH fx = 0, (0.10)

H (fg) = fH (g) + gH (f) + H (H (f)H (g)) . (0.11)

We will explain now the notation of well-posedness that will be used. Let X and Y be Banach spaces such
that X ↪→ Y and suppose that f ∈ C(X,Y ). Consider the initial value problem:

du

dt
= f(u) (0.12)

u(0) = ϕ. (0.13)
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DEFINITION 0.0.25 We will say that (0.12)-(0.13) is locally well-posed in X if for any ϕ ∈ X there
exists T > 0 such that the following conditions hold,

• there exists a unique u ∈ C([0, T ];X) ∩ C1([0, T ];Y ) such that satisfies (0.12)-(0.13);

• u depends continuously on ϕ in the sense that if ϕn → ϕ in X, then for n large enough un ∈
C([0, T ];X) and un → u in C([0, T ];X).

If T can be taken arbitrary large, then the initial value problem is called globally well-posed.
Observe that the first condition expresses the persistence of u(t) in the space X. The second condition says
that the local flow defined by (0.12)-(0.13) is continuous.
In what follows different constants may denoted by the same letter when their precise values are of no
relevance to our arguments. When necessary, dependence on other quantities will be indicated.



Chapter 1

Solitary Waves of ZK equation

1.1 Introduction
The Korteweg-de Vries (KdV) equation depicts the evolution of the weakly nonlinear and weakly dispersive
waves in such physical as plasma physics, ion-acoustic waves, stratified internal waves, and atmospheric
waves [6]. Kakutani and Ono have shown that the modified KdV equation governs the propagation of Alfvén
waves at a critical angle to the undisturbed magnetic field. The presence of the transverse dispersion has
been physically attributed to the finite Larmor radius effects [1]. But, despite its overt fame, the KdV
equation is restricted as a model by being spatially one-dimensional. On the basis of the great success
in the soliton theory, a lot of works have recently been directed to thrive higher-dimensional models
and investigations of soliton properties in multi-dimensional systems, particularly two and three spatial
dimensions. There are several two-dimensional generalizations of the KdV equation, but the Kadomtsev-
Petviashvili (KP) and Zakharov-Kuznetsov (ZK) [1] equations are the most well-known ones.

The ZK equation
ut + ∆ux + uux = 0, (x, y) ∈ R× Rn−1

was first derived in three dimensional form to describe nonlinear ion-acoustic waves in a magnetized Plasma.
But a variety of physical phenomena, in the purely dispersive limit, are governed by this type of equation
such as the long waves on a thin liquid film, the Rossby waves in rotating atmosphere, and the isolated
vortex of the drift waves in three-dimensional plasma. Spatially localized solitary wave solutions decaying
in all directions were also obtained analytically but the conclusion is restricted to specific situations. When
the localized pulses decaying in all directions preserve their forms in the interaction with other pulses, they
are called solitons in higher dimensional space. The multi-dimensional localized pulses are often actually
observed in a variety of physical phenomena and some of them turn up to imply soliton-like properties;
magmons in porous flow and vortex solitons in plasmas [1]. However, detailed investigation, either ana-
lytical or numerical, of those properties based on sound models of nonlinear differential equations are still
defective.

A cylindrically symmetric solitary wave solution (bell-shaped pulse) of ZK equation was obtained nu-
merically [40, 67]. The numerical study of the ZK equation shows that the cylindrically symmetric solitary
wave solution are fundamental because these solutions arise from an arbitrary initial condition. In fact, the
interesting issue is the existence of ground states of −∆u + f(u) = 0 which is well known, under suitable
assumptions over the nonlinearity. It follows, for example, from the results of Berestycki and Lions [9].

9
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The well-posedness of the ZK equation with the nonlinearity upux (generalized ZK equation) can be
seen using Kato’s Theory for the general nonlinearity [42]. Faminskii showed the ZK equation is globally
well-posed in Hs

(
R2
)

for s ≥ 1 [31]. Biagioni and Linares proved the modified ZK equation (p = 2) is
globally well-posed in Hs

(
R2
)

for s ≥ 1 [12]. Recently, Linares and Saut obtained some results in the
three dimensional case [51].

The present Chapter of this thesis is devoted to define a suitable space for traveling wave solutions and
give a necessary condition for the existence related to the speed c. Then, we obtain periodic traveling wave
solutions from a constrained minimization problem when the nonlinearity is 1

p+1u
p+1 and p = k

` , where
k ∈ N is even and k and ` are relatively prime. We use the Steiner Symmetrization to extend our result to
the arbitrary p, also we will show that the found solution is, in fact, a smooth solitary wave solution with
symmetry and decay (is called bell-shaped pulse). We also use the ideas of Pankov and Pflüger ([64, 65])
to show that the sequence of solitary wave solutions of ZK in cylinder tends to a traveling wave solution
of ZK equation in Rn. Next, we use other approach to obtain the solitary waves for a general nonlinearity
of the ZK equation. Note that these results, in a appropriate context, can be repeated for other higher-
dimensional models such as the generalization of the BBM equation, which one dimensional models the
unidirectional propagation of long waves in a channel and is an alternative model for the Korteweg-de Vries
equation. In Section 1.9, we will study instability of some of the minimizers of generalized KdV equation.
We use the variational properties of our solutions and show that they are unstable for p > 4.

1.2 Nonexistence
We will study existence of traveling wave solutions of the equation of Zakharov-Kuznetsov of the form

ut + ∆ux + (f(u))x = 0 (1.1)

in two dimensional cylinder and some of their properties. However, note that a similar procedure can
be applied to the case of Rn × Tm. One can easily show that the equation (1.1) inherits the following
invariants:

E1(u) =
1
2

x
(|∇u|2 − F (u)) dxdy, E2(u) =

1
2

x
u2 dxdy.

As far as we know 5 invariants for ZK equation, other three invariants are the following:

My(u) =
∫
u dx, M(u) =

∫ ∫
u dxdy,

I(u) =
∫ ∫

(xi + yj )u dxdy − ti
∫ ∫

1
2
u2 dxdy,

where i and j denote the unit vectors in the x and y-directions; and the extent of integrals is over the
total region under consideration. By a solitary wave solution we mean a solution of (1.1) of the form
u(x, y, t) = ϕ(x− ct, y), where (ξ = x− ct, y) ∈ R× T, where c ∈ R represents the speed of the wave and

ϕ −→ 0, (1.2)
∆ϕ −→ 0, (1.3)
∇ϕ −→ 0, (1.4)
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as the variable |ξ| approaches to +∞, where ∆ = ∂2
ξ + ∂2

y and ∇ = (∂ξ, ∂y); and also

ϕ(·,−L) = ϕ(·, L), ∇ϕ(·,−L) = ∇ϕ(·, L). (1.5)

We consider f(x) =
xp+1

p+ 1
. So putting this form of u in (1.1) and integrating once, we see that ϕ must

satisfy the partial differential equation

− cϕ+ ∆ϕ+
ϕp+1

p+ 1
= 0. (1.6)

We will see that c has to be positive; in fact, there is no solution of (1.6) when c < 0. We start by defining
the natural spaces needed to find a weak solution of equation (1.6). Hereafter we change the role of ξ by
x.

DEFINITION 1.2.1 Let C∞per(R2) be the space of smooth functions which are L-periodic in y and have
compact support in x and define

H1
L(SL) :=

{
ϕ|SL

: ϕ ∈ C∞per(R2)
}
, SL = R× (−L,L). (1.7)

Let HL denote the closure of H1
L(SL) with respect to the norm given by

‖ϕ‖21 =
x

SL

ϕ2 + ϕ2
x + ϕ2

y dxdy.

Similarly, we can define Lp, with the norm ‖ϕ‖pLp =
s

SL

|ϕ|pdxdy.

THEOREM 1.2.2 Let c > 0 and p ∈ R. Then there exists no nontrivial solutions in HL of

cϕ+ ∆ϕ+
ϕp+1

p+ 1
= 0, (1.8)

such that (1.2− 1.5) hold.

Proof. We will use Pohozaev-type identities to prove this result.
Let ϕ ∈ HL. Multiplying (2.2) by ϕ and integrating over SL, one gets

x

SL

cϕ2 − |∇ϕ|2 +
ϕp+2

p+ 1
dxdy = 0. (1.9)

Similarly, multiplying (2.2) by xϕx and yϕy and integrating over SL, one obtains

x

SL

−cϕ2 − ϕ2
x + ϕ2

y −
2 ϕp+2

(p+ 1)(p+ 2)
dxdy = 0, (1.10)

and x

SL

−cϕ2 + ϕ2
x − ϕ2

y −
2 ϕp+2

(p+ 1)(p+ 2)
dxdy = 0. (1.11)
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By summing (2.4) and (2.5), we have

x

SL

cϕ2 +
2 ϕp+2

(p+ 1)(p+ 2)
dxdy = 0. (1.12)

From (2.3) and (2.6), we have x

SL

p c ϕ2 + 2|∇ϕ|2 dxdy = 0.

So, ϕ ≡ 0. �

Therefore, c ∈ R in the equation (1.6) must be positive.

1.3 Existence
We are going to make use of a variational method applied to a suitable minimization problem to prove the
existence of the solitary wave solution of the ZK Equation in SL. We consider the case that p = k

` , where
k ∈ N is even and k and ` are relatively prime. We will prove there is a solution of (1.6) by variational
methods. We start by defining the nonlinear continuous functional I on HL

I(ϕ) =
1
2

x

SL

|∇ϕ|2 + cϕ2 dxdy

and the following constrained minimization problem on HL,

Iq = inf

I(ϕ) : ϕ ∈ HL , J(ϕ) =
x

SL

ϕp+2 dxdy = q > 0

 . (1.13)

Also, we consider the set of minimizers

Gq = {ϕ ∈ HL : I(ϕ) = Iq , J(ϕ) = q} . (1.14)

We call a sequence {ϕn} ⊂ HL a minimizing sequence to Gq if

lim
n→∞

I(ϕn) = Gq, , J(ϕn) = q, for all n ∈ N.

We endeavor to show that Gq 6= ∅. If g ∈ Gq then by the Lagrange Multiplier theorem, there exists
θ ∈ R such that δI(g) + θδJ(g) = 0, where δI(g) and δJ(g) are the Fréchet derivatives of I and J at g.
Now δI and δJ are given (as distributions in H−1

L ) by

δI(g) = −∆g + cg, δJ(g) = (p+ 2)gp+1.

By the change of the scale ϕ = sgn(θ)(|θ|(p + 2)(p + 1))1/pg, we obtain that ϕ satisfies in (1.6). Let
q > 0, and {ϕn} be a minimizing sequence to Iq. Therefore, since I(ϕn) → Iq and I(ϕ) represents a
equivalent norm to the ‖ϕ‖21, it follows that there exists K > 0 such that ‖ϕn‖21 ≤ K. Also, it is clear that
Iq > 0 for every q > 0. So,
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LEMMA 1.3.1 For all q > 0, one has 0 < Iq <∞.

To each minimizing sequence {ϕn}, we associate a sequence of nondecreasing functions Qn : [0,∞) →
[0, q] defined by

Qn(r) = sup
ζ∈R

∫ L

−L

∫ ζ+r

ζ−r
ϕp+2
n dxdy.

An elementary argument shows that any uniformly bounded sequence of nondecreasing functions on
[0,∞) must have a subsequence which converges pointwise to a nondecreasing limit function on [0,∞).
Hence {Qn} has such a subsequence, which we denote again by {Qn}. Let Q : [0,∞) → [0, q] be the
nondecreasing function to which Qn converges, and define α = limr→∞Q(r); then 0 ≤ α ≤ q. In fact, we
are going to use the Lemma 0.0.2 and show that the evanescence and dichotomy do not occur for Qn(r).
Suppose α = q. Then there exists r0 > 0 such that for all sufficiently large values of n we have

Qn(r0) = sup
ζ

∫ L

−L

∫ ζ+r0

ζ−r0
ϕp+2
n dxdy > q/2.

Hence for each sufficiently large n we can find xn such that∫ L

−L

∫ xn+r0

xn−r0
ϕp+2
n dxdy > q/2.

Now, let z > q/2 be given. Since α = q then we can find r0(z) and N(z) such that if n ≥ N(z) then∫ L

−L

∫ xn(z)+r0(z)

xn(z)−r0(z)
ϕp+2
n dxdy > z

for some xn(z) ∈ R. Since
∫
SL
ϕp+2
n dxdy = q, it follows that for large n the intervals [xn − r0, xn + r0]

and [xn(z) − r0(z), xn(z) + r0(z)] must overlap. Thus, by defining r = r(z) = 2r0(z) + r0, we have that
[xn − r, xn + r] contains [xn(z)− r0(z), xn(z) + r0(z)] and therefore∫ L

−L

∫ xn+r0

xn−r0
ϕp+2
n dxdy > z,

for all sufficiently large n. Note that the case of z ≤ q/2 is clear. We define ϕ̃n(x, y) = ϕn(x+ xn, y). Now

if we put z = 1− 1
k

for every k ∈ N, then there exists rk such that for all sufficiently large n ∈ N,

∫ L

−L

∫ rk

−rk

ϕ̃p+2
n dxdy > 1− 1

k
.

We have the fact that {ϕ̃n} is bounded in HL, then compactness embedding HL into Lp+2 on bounded
intervals, it follows that some subsequence of {ϕ̃n} converges in Lp+2([−rk, rk]× [−L,L]) norm to a limit
function g ∈ Lp+2([−rk, rk]× [−L,L]) satisfying∫ L

−L

∫ rk

−rk

gp+2 dxdy > 1− 1
k
.
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By Cantor diagonalization argument, together with the fact that J(ϕ̃n) = q for all n, we have then that
some subsequence of {ϕ̃n} converges in Lp+2 norm to a function g ∈ Lp+2 satisfying

s

SL

gp+2 dxdy = q.

By weak compactness and the weak lower semicontinuity of the norm in HL, we know that ϕ̃n converges
weakly to g in HL, and that ‖g‖1 ≤ lim infn→∞ ‖ϕ̃n‖1. It follows that I(g) ≤ lim infn→∞ I(ϕ̃n) = Iq,
whence I(g) and g ∈ Gq. Furthermore, I(g) = lim

n→∞
I(ϕ̃n), whence ‖g‖1 = lim

n→∞
‖ϕ̃n‖1 and ϕ̃n converges

to g in HL norm. So, Gq is nonempty. In fact, we have proved

LEMMA 1.3.2 Suppose α = q. Thence there exists a sequence of real numbers {x1, x2, x3, · · · } such
that for every z < q there exists r = r(z) such that

∫ L
−L
∫ xn+r

xn−r ϕ
p+2
n dxdy > z for all sufficiently large n.

Moreover, the sequence {ϕ̃n} defined by ϕ̃n(x, y) = ϕn(x+xn, y) has a subsequence which converges in HL

norm to a function g ∈ Gq.

Now, we are going to show that the cases α = 0 (evanescence) and 0 < α < q (dichotomy) do not
occur. First, we show the sub-additivity property of Iq. Let q > 0 and ϕ ∈ HL. We define the function ϕθ
by ϕθ(x, y) = θ

1
p+2ϕ(x, y). Then J(ϕθ) = θJ(ϕ), and I(ϕθ) = θ

2
p+2 I(ϕ). Hence

Iθq = inf {I(ϕθ) : J(ϕθ) = θq} = inf
{
θ

2
p+2 I(ϕ) : J(ϕ) = q

}
= θ

2
p+2 Iq.

Therefore Iq1 =
(
q1
q2

) 2
p+2

Iq2 for all q1, q2 > 0. Now, if γ ∈ (0, q) then there exists θ ∈ (0, 1) such that

γ = θq. Since the function f(θ) = θ
2

p+2 + (1 − θ)
2

p+2 satisfies in f(θ) > 1 for all θ ∈ (0, 1) and Iq > 0 ,
thereupon one has

Iγ + Iq−γ = θ
2

p+2 Iq + (1− θ)
2

p+2 Iq =
(
θ

2
p+2 + (1− θ)

2
p+2

)
Iq > Iq.

Therefore,

LEMMA 1.3.3 For all γ ∈ (0, q), one has Iq < Iq−γ + Iγ .

We choose a function φ ∈ C∞0 (R) such that φ ≡ 1 on [−1, 1] , φ = 0 for x /∈ [−2, 2] and |φ′| ≤ K
for some K > 0. Also we choose a function ψ ∈ C∞0 (R) such that φ2 + ψ2 = 1 on R, and we define
φr(x) = φ

(
x
r

)
and ψr(x) = ψ

(
x
r

)
. Let ε > 0. By the definition of α, there exists r1 such that for every

r ≥ r1, α− ε < Q(r) ≤ Q(2r) ≤ α. Since Qn converges pointwise to Q, there is N ∈ N such that for every
n ≥ N , |Qn(r) − Q(r)| < ε/2, and |Qn(2r) − Q(2r)| < ε/2. Thus α − ε < Qn(r) ≤ Qn(2r) < α + ε ,for
every n ≥ N . Now by the definition of Qn, for every n ≥ N there exists xn such that∫ L

−L

∫ xn+r

xn−r
ϕp+2
n dxdy > α− ε,

∫ L

−L

∫ xn+2r

xn−2r

ϕp+2
n dxdy < α+ ε. (1.15)

Now we define gn(x, y) = φr(x − xn)ϕn(x, y) and hn(x, y) = ψr(x − xn)ϕn(x, y). It is obvious that
gn(x, y), hn(x, y) are in HL. We have∫ L

−L

∫
R
gp+2
n dxdy =

∫ L

−L

∫ 2r

−2r

φp+2
(x
r

)
ϕp+2
n (x+ xn, y) dxdy

≤
∫ L

−L

∫ 2r

−2r

ϕp+2
n (x+ xn, y) dxdy =

∫ L

−L

∫ xn+2r

xn−2r

ϕp+2
n (x, y) dxdy < α+ ε
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and ∫ L

−L

∫
R
hp+2
n dxdy =

∫ L

−L

∫ 2r

−2r

φp+2
r (x)ϕp+2

n (x+ xn, y) dxdy

≥
∫ L

−L

∫ 2r

−2r

ϕp+2
n (x+ xn, y) dxdy =

∫ L

−L

∫ xn+2r

xn−2r

ϕp+2
n (x, y) dxdy > α− ε.

Consequently,
|J(gn)− α| < ε for every n ≥ N, (1.16)

since J(ϕn) = q. Likewise we have,

|J(hn)− (q − α)| < ε for every n ≥ N (1.17)

from the inequalities of (1.15). Now, we have

I(gn) + I(hn) =
1
2

x

SL

|∇gn|2 + c g2
n + |∇hn|2 + c h2

n dxdy

=
1
2

x

SL

φ′r
2
ϕ2
n + φ2

r(ϕn)
2
x + 2φrφ′rϕn(ϕn)x

+ φ2
r(ϕn)

2
y + c φ2

rϕ
2
n dxdy +

1
2

x

SL

ψ′r
2
ϕ2
n

+ ψ2
r(ϕn)

2
x + 2ψrψ′rϕn(ϕn)x + ψ2

r(ϕn)
2
y

+ cψ2
rϕ

2
n dxdy =

1
2

x

SL

|∇ϕn|2 + c ϕ2
n dxdxy + O

(
1
r

)
,

since φ2 + ψ2 = 1 and |φ′r|∞ = |φ′|∞/r, |ψ′r|∞ = |ψ′|∞/r. We make the choice r so large such that the
O(1/r) term in the preceding paragraph is less than ε in absolute value. In consequence, |I(ϕn)− I(gn)−
I(hn)| < ε for all n ≥ N(r). Therefore,

LEMMA 1.3.4 For every ε > 0, there exists a number N ∈ N, sequences {gn} and {hn} of HL functions
such that for every n ≥ N ,

• |J(gn)− α| < ε

• |J(hn)− (q − α)| < ε

• I(ϕn) ≥ I(gn) + I(hn)− ε.

Now, suppose the case 0 < α < q occurs. Let ε > 0 be given. We consider N and {gn}n≥N , {hn}n≥N
in HL as above.
For n ≥ N , we set

g̃n =
α

1
p+2

‖gn‖p+2
gn , h̃n =

(q − α)
1

p+2

‖hn‖p+2

hn.
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Then J(g̃n) = α and J(h̃n) = q − α. So, it follows that I(g̃n) ≥ Iα and I(h̃n) ≥ Iq−α. Accordingly,

I(gn) ≥
‖gn‖2p+2

α
2

p+2
Iq , I(hn) ≥

‖hn‖2p+2

(q − α)
2

p+2
Iq−α.

From (1.16) and (1.17), it follows

I(ϕn) ≥ I(gn) + I(hn)− ε ≥
‖gn‖2p+2

α
2

p+2
Iq +

‖hn‖2p+2

(q − α)
2

p+2
Iq−α − ε

≥ (α− ε)
2

p+2

α
2

p+2
Iq +

(q − α− ε)
2

p+2

(q − α)
2

p+2
Iq−α − ε.

For a fixed ε, we take n→∞, and then as ε→∞, we obtain

THEOREM 1.3.5 (Ruling out Dichotomy) If 0 < α < q then Iq ≥ Iα + Iq−α.

This theorem contradicts the sub-additivity property of Iq if we consider α ∈ (0, q). So, we have ruled
out the case 0 < α < q. Now, we will use ideas of Albert and Lied to rule out the evanescence case [2, 50].
Let ξ ∈ S (R) (Schwartz space) such that supp ξ(x) = [−2, 2] and ξ is positive in [−2 , 2]. We define
z(x) =

∑
n∈Z ξ(x − n). Then for every x, the sum defining z(x) has not more than four of the terms in

the sum being nonzero. So, z(x) > 0 for every x ∈ R. We define ω(x) =
ξ(x)
z(x)

. Therefrom ω ∈ C∞(R)

and supp ω ⊆ [−2 , 2]. We have∑
n∈Z

ω(x− n) =
∑
n∈Z

ξ(x− n)
z(x− n)

=
1

z(x)

∑
n∈Z

ξ(x− n) = 1

by the equalities
z(x−m) =

∑
n∈Z

ξ(x− n−m) =
∑
n∈Z

ξ(x− n) = z(x).

Also, since
∑
n∈Z ξ(x− n) ≥ ξ(x), it follows that ω(x) ≤ 1 for every x ∈ R.

LEMMA 1.3.6 Let ω ∈ C∞(R) be given such that 0 ≤ ω ≤ 1, ω(x) = 0 for x /∈ [−2 , 2], and∑
n∈Z ω(x− n) = 1 for all x ∈ R. Then there exists a positive constant k such that for all ϕ ∈ HL,∑

n∈ Z
‖ω(x− n)ϕ‖21 ≤ k ‖ϕ‖21. (1.18)

Proof. We define ωn(x) = ω(x−n) for n ∈ Z. Also, let l2(HL) denote the Hilbert space of all sequences
{fn}n∈ Z such that fn ∈ HL for each n ∈ Z and

∑
n∈ Z ‖fn‖21 <∞. So we have

‖{ωnϕ}n‖2l2(HL) =
∑
n∈Z

‖ωnϕ‖2HL
=
∑
n∈Z

(
‖ωnϕ‖2L2 + ‖(ωnϕ)x)‖2L2 + ‖(ωnϕ)y‖2L2

)
=
∑
n∈Z

x

SL

(
|ωnϕ|2 + |(ωnϕ)x|2 + |(ωnϕ)y|2 dxdy

)
.

(1.19)
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By the definition of ωn, we have∑
n∈Z

‖(ωnϕ)y‖2L2 =
∑
n∈Z

x

SL

ω2(x− n)|ϕy|2 dxdy =
x

SL

|ϕy|2 dxdy
∑
n∈Z

ω2(x− n)

≤
x

SL

|ϕy|2 dxdy
∑
n∈Z

ω(x− n) =
x

SL

|ϕy|2 dxdy
(1.20)

and ∑
n∈Z

‖(ωnϕ)x‖2L2 =
∑
n∈Z

‖ω′nϕ+ ωnϕx‖2L2 .
∑
n∈Z

‖ω′nϕ‖2L2 + ‖ωnϕx‖2L2 . (1.21)

Also, we have∑
n∈Z

‖ω′nϕ‖2L2 ≤
∑
n∈Z

∫ L

−L

∫ 2

−2

(ω′)2|ϕ(x+ n, y)|2 dxdy ≤ k(ω)
∑
n∈Z

∫ L

−L

∫ n+2

n−2

|ϕ(x, y)|2 dxdy

≤ 4k(ω)
∫ L

−L

∫
R
|ϕ|2 dxdy = 4k(ω) ‖ϕ‖2L2 .

(1.22)

Therefore from (1.19), (1.20), (1.21) and (1.22), we obtain (1.18). �

LEMMA 1.3.7 Suppose B > 0 and δ > 0 are given. Then there exists η = η(B, δ) such that if f ∈ HL

with ‖f‖1 ≤ B and ‖f‖Lp+2 ≥ δ, then

sup
r

∫ L

−L

∫ r+2

r−2

|f |p+2 dxdy ≥ η.

Proof. Let ω be as in the preceding lemma. Since
∑
n∈Z ω(x−n) = 1, it implies that no more than four

of the terms in the sum are nonzero at any given value of x, it follows that there exists a constant k1 > 0
such that

∑
n∈Z ω

p+2(x − n) ≥ k1 for all x ∈ R. Suppose there exists f (which is not identically zero)
such that ‖f‖1 ≤ B and

‖ωnf‖21 ≥
(
1 + k2‖f‖−p−2

Lp+2

)
‖ωnf‖p+2

Lp+2 (1.23)

for every n ∈ Z where k2 =
k B2

k1
. By summing over n and using Lemma 1.3.6, we have

kB2 ≥ k‖f‖21 ≥
(
1 + k2‖f‖−p−2

Lp+2

)∑
n∈Z

‖ωnf‖p+2
Lp+2 =

(
1 + k2‖f‖−p−2

Lp+2

)∑
n∈Z

x

SL

ωp+2
n |f |p+2

≥
(
1 + k2‖f‖−p−2

Lp+2

)
k1‖f‖p+2

Lp+2 = k1‖f‖p+2
Lp+2 + k1k2 = k1‖f‖p+2

Lp+2 + kB2.

But it is impossible, since f is not identically zero. So, there exists n0 ∈ Z such that

‖ωn0f‖21 ≤
(
1 + k2‖f‖−p−2

Lp+2

)
‖ωn0f‖

p+2
Lp+2 , (1.24)

where k2 =
k B2

k1
. Therefore, from (1.24) and Sobolev embedding, we have

‖ωn0f‖2Lp+2 ≤ k2
3‖ωn0f‖21 ≤ k2

3

(
1 +

k2

δp+2

)
‖ωn0f‖

p+2
Lp+2 .
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Then, ∫ L

−L

∫ n0+2

n0−2

|f |p+2 dxdy ≥
∫ L

−L

∫
R
|ωn0f |p+2 ≥

[
k2
3

(
1 +

k2

δp+2

)]−p−2
p

≡ η.

�
Now, for every minimizing sequence {ϕn} of Iq, we know that ‖ϕn‖p+2

Lp+2 ≥ q and ‖ϕn‖1 ≤ B for every
n ∈ Z. Thus by preceding lemma, there exists η > 0 such that Qn(2) ≥ η for all n. Therefore,

α = lim
r→∞

Q(r) ≥ Q(2) = lim
n→∞

Qn(2) ≥ η > 0.

Therefore, we have showed

THEOREM 1.3.8 (Ruling out Evanescence) For every minimizing sequence of Iq , α > 0.

Thus, we have ruled out the evanescence case; hence the Compactness case occurs, i.e. α = q.

1.4 Regularity of the Solitary Waves
In this section, we prove that any solitary wave of (1.6) is a C∞ function, for all p ∈ N. More precisely we
have

THEOREM 1.4.1 Any solitary wave solution of (1.6) belongs to H∞
L := H∞

L (SL).

Proof. There may exist many ways to prove this, but we will proceed by bootstrapping argument, using
Lemmata 0.0.4 and 0.0.5. Setting ψ ≡ −1

p+1ϕ
p+1, (1.6) yields

FxFy(ϕyy) = −n2 FxFy(ϕ) = q(ξ, n) FxFy(ψ),

where q(ξ, n) =
n2

c+ ξ2 + n2
, n ∈ π

LZ , ξ ∈ R and Fx, Fy are the Fourier transforms with respect to x and

y (respectively). It can be rewrited as follows

Fy(ϕyy) = F−1
x [q(ξ, n) FxFyψ] = q̃(n) ψ,

where q̃(n) is the operator F−1
x q(·, n) Fx for any fixed n. It is easy to verify that q̃(n) ∈ L

(
L2(Rx)

)
,

the space of bounded linear operators in L2(Rx). As well, it is easily checked out that q(ξ, n) satisfies the
assumption of Proposition 0.0.4, if we take n ∈ R, so q(ξ, n) is a multiplier in L2(R2). Thusly, so is it for q̃(n)
in the space L2

(
Ry, L2(Rx)

)
= L2

(
R2
)
. Additionally, we have that q̃(n) depends continuously on n with

respect to the norm in L
(
L2(Rx)

)
at any point n 6= 0. Using the Proposition 0.0.5, for every x ∈ R fixed,

it follows that q̃(n) is a multiplier in the space L2
(
(−L,L), L2(Rx)

)g = L2(SL)g considered as the space
of L-periodic functions in y, where superscript g means that for functions from this space Fy ϕ vanishes at
n = 0. Since q(ξ, 0) = 0, the corresponding multiplier vanishes on

{
ϕ ∈ L2(SL) : Fyϕ = 0 if n = 0

}
and,

hence, is a bounded operator on the entire space L2(SL). In fact, here, we need an extension of that theorem
for operator-valued multipliers which may be discontinuous at the point zero; nevertheless, the proof
presented in [68] of Proposition 0.0.5 brings about without any change; although the last argument does
not need for ϕxx. So, since ϕp+1 ∈ L2(SL), we obtain that ϕyy ∈ L2(SL), and analogously ϕxx ∈ L2(SL).
So ϕ ∈ H2(SL). By differentiating of (1.6) in the sense of distribution with respect to x, y and reiteration
of the process leads to proof of Theorem 1.4.1. �
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REMARK 1.4.2 Theorem 1.4.1 implies that we do not initially need to put the conditions (1.2)− (1.4)
on ϕ.

THEOREM 1.4.3 Suppose p ∈ N and 1 ≤ q ≤ ∞ and ϕc is a solution of (1.6) which we obtained by
minimization. Then ϕc ∈W 1,q(SL).

Proof. By (1.44), we have FxFy
(
∂ϕc

∂x

)
= iξ FxFy(ϕc) = iξK̂c(ξ, n)FxFy(ψ), where ψ = 1

p+1 ϕ̂c
p+1. By

a similar argument as the one used obtaining the regularity, we obtain that ∂ϕc

∂x is in Lq(SL). Similarly
∂ϕc

∂y ∈ Lq(SL). Combining these estimates, we have

‖ϕc‖W 1,q(SL) = ‖ϕc‖Lq(SL) +
∥∥∥∥∂ϕc∂x

∥∥∥∥
Lq(SL)

+
∥∥∥∥∂ϕc∂y

∥∥∥∥
Lq(SL)

≤ C‖ϕp+1
c ‖Lq(SL).

So ϕc ∈W 1,q(SL). �

REMARK 1.4.4 In fact, one can show that ‖ϕc‖W 2,q(SL) is equivalent to ‖ϕc‖p+1
Lq(p+1)(SL)

. Furthermore,
it can be shown that ϕc ∈W k,p(SL) for 1 ≤ k, p ≤ ∞.

1.5 Traveling Wave Solution of ZK in the Plane
We proved the existence of the traveling wave solution uk of the Zakharov-Kuznetsov equation of period k
in y-direction, for every k ∈ Z. In this section, we are going to demonstrate the sequence {uk}k converges
to a solitary wave solution of the Zakharov-Kuznetsov in R2 as k → ∞. Let k ∈ N and Sk = R× (−k, k)
and Hk be as in the Definition 1.2.1. As we saw before, we obtained, uk, a solitary wave solution of the
ZK equation in Sk. By a simple calculation we see that uk is a critical point of Jk, where

Jk(u) =
1
2

∫
Sk

cu2 + |∇u|2 − 2
(p+ 1)(p+ 2)

up+2 dxdy.

We define the functional

J (u) =
1
2

∫
R2
c u2 + |∇u|2 − 2

(p+ 1)(p+ 2)
up+2 dxdy,

We will show that there exists a minimizer of Iq in R2. We denotes Sr(ξ) the cube with the side length
r, centered at the point ξ ∈ R2.

LEMMA 1.5.1 If un ∈ Hk, n = 1, 2, . . . is a bounded sequence and there exists a r > 0 such that

lim
n→∞

sup
ξ∈Sk

∫
Sr(ξ)

|un|2 dxdy = 0,

then ‖un‖Lp(Sk) −→ 0, for all 2 ≤ p <∞.

Proof. By Hölder’s inequality we have∫
Sr(ξ)

|un|p dxdy ≤

(∫
Sr(ξ)

|un|2 dxdy

)1/2(∫
Sr(ξ)

|un|2(p−1) dxdy

)1/2

(1.25)
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To proceed, we use the embedding theorem, so by (6.1) we have

∫
Sr(ξ)

|un|p dxdy ≤

(∫
Sr(ξ)

|un|2 dxdy

)1/2

‖un‖p−1
Hk(Sr(ξ)) ≤ Ap−1‖un‖L2(Sr(ξ)).

On the other hand, for r > 0, we can choose a fixed number m = m(r) ∈ N such that the countable set

U =
{
Sr(ξ) : ξ = (a, b) ∈ 1

2r
Z2 , |b| ≤ k

}
can cover Sk and any point of Sk is contained in at most m of the cubes of U . Summing up, using the
inequality above, we find that

∫
Sk

|un|p dxdy ≤ Ã

(
sup
ξ∈Sk

∫
Sr(ξ)

|un|2 dxdy

)1/2

.

By the assumption we conclude that ‖un‖Lp(Sk) → 0, for 2 ≤ p <∞. �

LEMMA 1.5.2 Let {un} ⊂ Hk be a sequence of y-periodic functions of period k such that it is uniformly
bounded in the Hk-norm and satisfies J ′

k(uk) → 0, then the following alternative holds: Either

(i) ‖uk‖Hk
→ 0 as k →∞ , or

(ii) There exist r, η > 0 and a sequence of the points ξk ∈ R2 such that, up to a subsequence,

lim
k→∞

(∫
Sr(ξ)

|uk|2 dxdy

)
> η.

Proof. Assume that the case (ii) does not hold, then from Lemma 1.5.1, we get ‖uk‖Lp(Sk) → 0 for all
2 ≤ p <∞. By the definition of J , we have

Jk(uk)−
1
2
〈J ′

k(uk), uk〉 =
p

2(p+ 1)(p+ 2)

∫
Sk

up+2
k dxdy. (1.26)

So, we obtain

min{1, c}
2

‖uk‖2Hk
≤
∫
Sk

1
2
cu2
k +

1
2
|∇uk|2 dxdy = Jk(uk) +

1
(p+ 1)(p+ 2)

‖uk‖p+2
Lp+2(Sk) =

=
1
2
〈J ′

k(uk), uk〉+
1

2(p+ 1)
‖uk‖p+2

Lp+2(Sk) ≤
1
2
‖J ′(uk)‖‖uk‖+

1
2(p+ 1)

‖uk‖p+2
Lp+2(Sk).

So, the right hand side tends to zero, which implies the condition (i) holds. �

LEMMA 1.5.3 Any critical point uk of Jk satisfies the estimate ‖uk‖Hk
≤ Ck with a constant Ck > 0

only depending on the critical value.
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Proof. Since ck = Jk(uk) and J ′
k(uk) = 0, then we obtain

ck = Jk(uk)−
1
2
〈J ′

k(uk), uk〉 =
p

2(p+ 1)(p+ 2)

∫
Sk

up+2
k dxdy.

This implies

min{1, c}‖uk‖2Hk
≤
∫
Sk

cu2
k + |∇uk|2 dxdy = 2Jk(uk) +

2
(p+ 1)(p+ 2)

∫
Sk

up+2
k dxdy

= 2ck +
2

(p+ 1)(p+ 2)

∫
Sk

up+2
k dxdy =

(
2 +

4
p

)
ck.

Therefore ‖uk‖2Hk
≤ (2+ 4

p )

min{1,c}ck. �

LEMMA 1.5.4 Let uk ∈ Hk and u ∈ H1(R2) be nontrivial solutions of y-periodic and non-periodic
equations which satisfy 〈J ′

k(uk), uk〉 = 0 and 〈J ′(u), u〉 = 0, respectively. Then there exist ε1 > 0, ε2 > 0
not depending on k such that ‖uk‖Hk

≥ ε1, ‖u‖H1 ≥ ε1, Jk(uk) ≥ ε2 and J (u) ≥ ε2.

Proof. Since 〈J ′
k(uk), uk〉 = 0 then we get

min{1, c}‖uk‖2Hk
≤
∫
Sk

cu2
k + |∇uk|2 dxdy =

1
p+ 1

∫
Sk

up+2
k dxdy ≤ C

p+ 1
‖uk‖p+2

Hk
,

where C > 0 depends on the embedding constants.
So, this shows that

‖uk‖Hk
≥
(

min{1, c}(p+ 1)
C

) 1
p

.

On the other hand, we have

Jk(uk) =
∫
Sk

cu2
k + |∇uk|2 −

1
(p+ 1)(p+ 2)

up+2
k dxdy ≥ min{1, c}‖uk‖2Hk

− 1
(p+ 1)(p+ 2)

up+2
k dxdy.

By the assumptions, we obtain

Jk(uk) ≥ min{1, c}‖uk‖2Hk
− 2
p
Jk(uk).

Therefore, we get
Jk(uk) ≥ min{1, c} p

p+ 2
‖uk‖2Hk

.

This together with the first estimate, gives the desired lower bound. Clearly, the arguments for u ∈ H1(R2)
are similar. �

In the following constructions, we need a operator from Hk to H1(R2). Let χk be a C∞0 (R) cut-off
function satisfying χk(s) = 1 for |s| ≤ k, χk(s) = 0 for |s| ≥ k+ 1

2 and |χ′k|, |χ′′k | ≤ c0. We define the cut-off

operator Pk : Hk −→ H1(R2) by Pku(x, y) = ∂y

(
χk(y)∂−1

y,ku(x, y)
)
, where ∂−1

y,ku(x, y) =
∫ y
−k u(x, s) ds.

Then we have the following lemma.
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LEMMA 1.5.5 Pk is a uniformly bounded (with respect to k) linear operator from Hk into H1(R2) and
Pku(x, y) = u(x, y) for (x, y) ∈ Sk.

Proof. For u ∈ Hk we have

x

R2

|Pku(x, y)|2 dxdy ≤ 2
x

R2

(
|χk(y)u(x, y)|2 +

∣∣∣χ′k(y)∂−1
y,ku(x, y)

∣∣∣2) dxdy. (1.27)

The first integral on the right hand side can easily estimated by 2‖u‖2L2(Sk). To estimate the second one,
we denote N1 = [−k− 1

2 ,−k] and N2 = [k, k+ 1
2 ]. For y ∈ N1, by the Cauchy-Schwarz inequality, we have

∣∣∣∂−1
y,ku(x, y)

∣∣∣2 ≤ ∣∣∣∣∫ y

−k
|u(x, s)| ds

∣∣∣∣2 .
∫

N1

|u(x, s)|2 ds,

and for y ∈ N2, by the Cauchy-Schwarz inequality, we have∣∣∣∂−1
y,ku(x, y)

∣∣∣2 ≤ ∣∣∣∣∫ y

k

|u(x, s)| ds
∣∣∣∣2 .

∫
N2

|u(x, s)|2 ds.

The second integral in (1.27) can now estimated by

x

R2

∣∣∣χ′k(y)∂−1
y,ku(x, y)

∣∣∣2 dxdy =
∫

N1∪N2

∫
R

∣∣∣χ′k(y)∂−1
y,ku(x, y)

∣∣∣2 dxdy

≤
∫

N1∪N2

∫
R

|χ′k(y)|2
k∫

−k

|u(x, s)|2 ds dxdy

≤ C2
0

∫
N1∪N2

‖u‖2L2(Sk) dy ≤ C2
0 ‖u‖2L2(Sk).

This shows that x

R2

|Pku(x, y)|2 dxdy ≤ C1 ‖u‖2L2(Sk).

Similarly, we can estimate
x

R2

|(Pku(x, y))y|2 dxdy ≤ 4
x

R2

[
|χkuy|2 + 2 |χ′ku|

2 + |χ′′k∂y,ku|
2
]
dxdy

≤ C2

(
‖uy‖2L2(Sk) + ‖u‖2L2(Sk)

)
.

Finally, we get
s

R2

|(Pku(x, y))x|2 dxdy ≤
s

R2

|ux(x, y)|2 dxdy. This shows that Pk : Hk −→ H1(R2) is

uniformly bounded. The second statement of the lemma is obvious. �
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THEOREM 1.5.6 Let uk ∈ Hk be a minimizer for Jk. Then there exists a sequence ξk ∈ R2 and a
function u ∈ H1(R2) such that Pkuk(· + ξk) converges weakly to u along a subsequence. Moreover, u is a
nontrivial solution of the Zakharov-Kuznetsov equation, a minimizer of Iq in R2 and

lim
k→∞

‖uk − u(·+ ξk)‖Hk
= 0.

Proof. For k ≥ 1 we can choose % ∈ C∞0 (S1) having
∫
S1
%p+2 dxdy > 0. Since supp % ⊂ S1 ⊂ Sk, we

define a periodic extension of % such that %k(x, y) = %(x, y) when (x, y) ∈ S1 and %k(x, y) = 0 when
(x, y) ∈ Sk \ S1. We take β ∈ R in such way that ek = β%k satisfies that ek ∈ Hk. Then, this leads
us to conclude that Jk(ek) = J1(e1). Therefore from Lemma 1.5.3 and Lemma 1.5.4 we have ‖uk‖Hk

is
uniformly bounded from below and above. Thus, case (i) of Lemma 1.5.2 is not possible and from case
(ii), we obtain a sequence ξk ∈ R2 such that the shifted functions ũk = uk(·+ ξk) satisfy (for large k)∫

Sr(0)

|ũk|2 dxdy > η/2,

with appropriate r, η > 0. Clearly, ũk is also critical points of Jk. Since the sequence Pkũk is bounded in
H1(R2), there exists a subsequence which converges weakly in H1(R2) to a nontrivial function u ∈ H1(R2).
We claim that u is a nontrivial solution of Zakharov-Kuznetsov equation. Since the embedding H1(Ω) ↪→
Lp+2(Ω) is compact for any bounded domain Ω in R2, we claim ũk → u strongly in Lp+2(Ω). Let ϑ ∈
C∞0 (R2). Then for sufficiently large k we have that supp ϑ ⊂ Sk and so, ϑ can be considered as an element
of Hk for k large just by defining its periodic extension.
Now, we have

〈Pkũk, ϑ〉H1 =
∫

Ω

Pkũkϑ+∇(Pkũk) · ∇ϑ dxdy =
∫
Sk

Pkũkϑ+∇(Pkũk) · ∇ϑ dxdy = 〈ũk, ϑ〉Hk
.

This clearly implies 〈ũk, ϑ〉Hk
→ 〈u, ϑ〉H1 . On the other hand, since ϑ is also a member of H1, for large

k, then we see

〈J (u), ϑ〉 = 〈u, ϑ〉H1 − 1
p+ 1

∫
Ω

up+1ϑ dxdy = lim
k→∞

(
〈ũk, ϑ〉Hk

− 1
p+ 1

∫
Ω

ũp+1ϑ dxdy

)
= lim
k→∞

〈J ′
k(uk), ϑ〉 = 0;

that means u is a nontrivial weak solution of ZK. We want to show that u ∈ Gq, where

Gq =
{
u ∈ H1(R2) : I(u) = Iq , J(u) = q

}
, (1.28)

Iq = inf

{
I(u) : u ∈ H1(R2) , J(u) =

x

R2

up+2 dxdy = q

}
, (1.29)

I(u) =
1
2

x

R2

c u2 + |∇u|2 dxdy, (1.30)

Gkq =
{
u ∈ Hk : Ik(u) = Ikq , J

k(u) = q
}
, (1.31)

Ikq = inf

Ik(u) : u ∈ Hk , J
k(u) =

x

Sk

up+2 dxdy = q

 , (1.32)

Ik(u) =
1
2

x

Sk

c u2 + |∇u|2 dxdy. (1.33)
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First note that for given w ∈ H1(R2) such that J(w) = q, there exists a sequence wk ∈ C∞0 (Sk) such
that ‖wk − w‖H1(R2), as k → ∞. By the Sobolev embedding, we have ‖wk − w‖Lp+2(R2) → 0 implying∣∣‖wk‖Lp+2(R2) − ‖w‖Lp+2(R2)

∣∣ → 0. So, we obtain J(wk) = q, hence Jk(wk) = q. Moreover J(u) = q

because u is a critical point of J and a nontrivial weak solution of the ZK equation, and uk ∈ Gkq . From
continuity for the functional I, we conclude that I(wk) → I(w), as k → ∞. Thus for given ε > 0, there
exists kε such that I(wk) ≤ I(w) + ε, which implies that lim sup Ikq ≤ I(w) + ε for any w ∈ H1(R2) with
J(w) = q and for any ε > 0. Moreover lim sup Ikq ≤ Iq. Now, note that for a given bounded D ⊂ R2, we
have that D ⊂ Sk for k large enough, and so

Iqk = Ik(ũk) ≥
1
2

x

D

c ũ2
k + |∇ũk|2 dxdy.

Taking lim inf, we get that

lim inf Ikq = Ik(ũk) = lim inf
1
2

x

D

c ũ2
k + |∇ũk|2 dxdy ≥

1
2

x

D

c u2 + |∇u|2 dxdy,

due to the local compactness result. In other words, we have shown that lim inf Ikq ≥ I(u), since D
is arbitrary. But u is a nontrivial weak solution of the ZK equation, then lim inf Ikq ≥ Iq. In other
words, limk→∞ Ikq = Iq = I(u), which is equivalent to say that u is a nontrivial solution of ZK. Now, let
wk ∈ C∞0 (Sk) such that wk → u in H1(R2). Then, a direct computation shows that

lim
k→∞

‖uk − u(·+ ξk)‖Hk
= lim
k→∞

‖ũk − u‖Hk
= 0 ⇔ lim

k→∞
‖ũk − wk‖Hk

= 0.

On the other hand, we have that

Ik(ũk − wk) = Ik(ũk) + Ik(wk)− 2
x

Sk

ũk wk +∇ũk · wk dxdy

= Ik(ũk) + Ik(wk)− 2
x

Sk

ũk u+∇ũk · ∇u dxdy

− 2
x

Sk

ũk (wk − u) +∇ũk · ∇(wk − u) dxdy

= Ik(ũk) + Ik(wk)− 2〈ũk, u〉1 − 2〈ũk, wk − u〉1.

Since wk converges strongly to u in H1(R2) and ‖ũk‖Hk
is bounded, we conclude that |〈ũk, wk−u〉| = o(1).

But we proved that 〈ũk, u〉 → I(u). So, taking limit as k →∞ and using Ik(·) ∼ ‖ · ‖Hk
, I(·) ∼ ‖ · ‖H1(R2),

‖ũk − wk‖2Hk
∼ Ik(ũk − wk) = o(1).

So, limk→∞ ‖uk − u(·+ ξk)‖2Hk
= 0. �

1.6 Extension
We studied the equation (1.6) in the case that p = k

` , where k ∈ N is even and k and ` are relatively prime.
The evenness of k was necessary to define the concentration functions Qn(·). Now, we want extend our
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results to the case p is arbitrary. Let q > 0 and SL = R × (−L,L). We define the functional I on HL as
before,

I(ϕ) =
1
2

x

SL

|∇ϕ|2 + cϕ2dxdy

and the following constrained minimization problem on HL,

Iq = inf

I(ϕ) : ϕ ∈ HL , J(ϕ) =
x

SL

ϕp+2(x, y)dxdy = q > 0

 . (1.34)

Also, we consider the set of minimizers Gq = {ϕ ∈ HL : I(ϕ) = Iq , J(ϕ) = q}. But, here, we cannot
define the concentration functions, because we do not know the sign of J(·). So, we consider the following
constrained minimization on HL,

IEq := inf

I(ϕ) : ϕ ∈ HL , J
E(ϕ) :=

x

SL

|ϕ(x, y)|p+2 dxdy = q > 0

 . (1.35)

Also, associated to this minimization problem we consider the set of minimizers GE
q , defined by

GE
q :=

{
ϕ ∈ HL : I(ϕ) = IEq , JE(ϕ) = q

}
.

To each minimizing sequence {ϕn} of IEq , we can define the concentration functions QE
n : [0,∞) → [0, q]

defined by

QE
n (r) = sup

ζ

∫ L

−L

∫ ζ+r

ζ−r
|ϕ(x, y)|p+2 dxdy.

Now, the method of Section 1.3 works analogously, and we have

THEOREM 1.6.1 Let c > 0, and let {ϕn} be a minimizing sequence to IEq . Then there is a subsequence
{ϕnk

} and a sequence of numbers {xnk
} ⊂ R2 such that ϕnk

(· + xnk
) converges strongly in HL to some

ϕ ∈ HL. The limit ϕ is a minimizer for IEq ; i.e., GE
q 6= ∅.

In the rest, we use the ideas of [8].

Rearrangement
In this section, we rearrange the region in a suitable way that we are able to use the results of Section 1.3.

Monotone Decreasing Rearrangement
Let Ω be a bounded open subset of Rn and u : Ω ⊆ Rn −→ R+

0 = [0,∞) be a nonnegative measurable
function. We define level sets Ωs := {x : u(x) ≥ s}, s ∈ R of u. We denote a point x ∈ Rn by (x′, y) with
x′ ∈ Rn−1. Furthermore, we introduce the notation Ω(x′) = Ω∩{(x′, y) ∈ Rn ; y ∈ R}, for fixed x′ ∈ Rn−1.
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The length of this one-dimensional set Ω(x′) can be calculated as follows m(Ω(x′)) =
∫
R
χΩ(x′, y) dy, where

χΩ is the characteristic function of Ω and m denotes the Lebesgue measure. Now, we define

Ω?(x′) :=

 {(x′, y) ∈ Rn : 0 ≤ y ≤ m(Ω(x′))} if Ω(x′) 6= ∅

∅ if Ω(x′) = ∅

and Ω? :=
⋃
x′∈Ω′ Ω?(x′), where Ω′ ⊆ Rn−1 is the set of those x′ ∈ Rn−1 for which Ω(x′) is not empty.

Then the set Ω? is a bounded open subset of Rn whose measure is equal to m(Ω), and is connected if and
only if the projection of Ω on hyperplane {y = 0} is connected; this will be called the monotone decreasing
rearrangement of Ω relative to the direction y. It is included in Rn+ := {x ∈ Rn, x = (x′, y), x′ ∈ Rn−1, y ∈
R+

0 }.

DEFINITION 1.6.2 We define the monotone decreasing rearrangement in the direction y of u by

u?(x) := sup{s ∈ R ; x ∈ Ω?s}.

u? is the unique function defined on Ω?, which is decreasing in the y-direction (that is, for any x′ ∈ Rn−1,
a > b > 0, u?(x′, a) ≤ u?(x′, b)) and y-equimeasurable with u, i.e., satisfies

m ({ζ ∈ Ω(x′), u(x′, ζ) > τ}) = m ({ζ ∈ Ω?(x′), u?(x′, ζ) > τ}) (1.36)

for all τ ≥ 0, and all x′ ∈ Rn−1.

REMARK 1.6.3 If u is a function with compact support, we can choose for Ω either the support of u or
any open set containing it, without changing u?; therefore, we shall not always indicate Ω in the following,
for the rearrangement of functions with compact support.

REMARK 1.6.4 In particular, it is clear that Ω = Ω? when Ω is the cylinder SL = R× (−L,L), and u
and u? have the same domain of definition.

Steiner Symmetrization
Let u : Ω ⊆ Rn −→ R+

0 be a nonnegative measurable function.
We define

Ω?(x′) :=


{
(x′, y) ∈ Rn ; 0 ≤ |y| ≤ 1

2m(Ω(x′))
}

if Ω(x′) 6= ∅

∅ if Ω(x′) = ∅

and Ω? :=
⋃

x′∈Ω′
Ω?(x′). Then we define Steiner symmetrization to {y = 0} of u by u#(x) := sup{s ∈

R ; x ∈ Ω?s}.

REMARK 1.6.5 The monotone decreasing rearrangement just described is equivalent to Steiner sym-
metrization applied to y-even functions (those verifying u(x′, y) = u(x′,−y)). To see that, let u be a
function with compact support, and define u‡ by u‡(x′, y) = u(x′,−y), and U = u + u‡. If U# is the
Steiner symmetrization of U relative to the y, then u? and U# coincide on Rn+. Therefore all properties of
Steiner symmetrization are possessed by the monotone decreasing rearrangement.
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REMARK 1.6.6 The monotone decreasing rearrangement is order-preserving, for sets (i.e. Ω1 ⊆ Ω2

imply Ω?1 ⊆ Ω?2) and for functions (u ≤ v imply u? ≤ v?).

REMARK 1.6.7 One of the very useful properties of any equimeasurable rearrangement is that if F is
any continuous function defined on Rn−1 × R, then∫

Ω

F (x′, u(x)) dx =
∫

Ω?

F (x′, u?(x)) dx. (1.37)

This is a clear consequence of (1.36). As a particular case, we have

‖u‖Lp(Ω) = ‖u?‖Lp(Ω?) (1.38)

for all p ∈ [1,∞].

REMARK 1.6.8 It will be easy to see that for all s > 0, (us)? = (u?)s pointwise.

Inequalities
There are some inequalities between u and u? that are important and useful.

LEMMA 1.6.9 (Hardy-Littlewood) Let Ω = SL and u, v be two nonnegative functions of L2(Ω).
Then we have ∫

Ω

u(x)v(x) dx ≤
∫

Ω

u?(x)v?(x) dx. (1.39)

This property is proved for the Steiner symmetrization in one dimension in [36], and for all equimeasurable
and order-preserving rearrangement in [45]. Also a similar property is valid for functions with arbitrary
sign: ∣∣∣∣∫ uv

∣∣∣∣ ≤ ∫ |u?||v?|.

REMARK 1.6.10 This inequality and (7.5) imply that the monotone decreasing rearrangement is con-
tinuous and 1-Lipschitz in the L2 norm:∫

Ω

|u?(x)− v?(x)|2 dx ≤
∫

Ω

|u(x)− v(x)| dx.

LEMMA 1.6.11 (Riesz) Let u1, . . . , uk be nonnegative measurable functions on Ω such satisfying m({x ;ui(x) ≥
s}) <∞ for all s > 0 and all 1 ≤ i ≤ k. Then |(u1 ∗ u2 ∗ · · · ∗ uk)(0)| ≤ (u?1 ∗ u?2 ∗ · · · ∗ u?k)(0), in the sense
that if the right hand side is finite, then the left hand side exists and the inequality holds.

THEOREM 1.6.12 (Riesz-Sobolev) Let u and v be two nonnegative functions in L2(Ω), and w a
function with support in Rn+, positive and nonincreasing in the y-direction in Rn+, verifying w(x′, a) ≥
w(x′, b) > 0, for all x′ ∈ Rn−1, and for all a > b > 0. Then we have:

x

Ω×Ω

u(x1)v(x2)w(x′1 − x′2, |y1 − y2|) dx1dx2 ≤
x

Ω×Ω

u?(x1)v?(x2)w(x′1 − x′2, |y1 − y2|) dx1dx2,

and x

Ω×Ω

u(x1)v(x2)w(x1 + x2) dx1dx2 ≤
x

Ω×Ω

u?(x1)v?(x2)w(x1 + x2) dx1dx2,

where x1 = (x′1, y1) and x2 = (x′2, y2) ∈ Rn.
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For the monotone decreasing rearrangement or Steiner symmetrization we have

THEOREM 1.6.13 Let Ω = SL and u be a function in HL := H1
L(SL). Then u? belongs to HL, and∫

Ω

|∇u?|2 dx ≤
∫

Ω

|∇u|2 dx. (1.40)

Proof. Let t > 0, and Kt(x, y) be the Heat kernel in Ω. We know that Kt is in all the Lp(Ω) spaces, so

Bt(u) = t−1

(∫
Ω×Ω

|u|2 dxdy −
∫

Ω×Ω

u(x)Kt(x, y)u(y) dxdy
)

is well-defined. Due to Theorem 1.6.12, we have Bt(u) ≥ Bt(u?), since Bt(u) is symmetric decreasing. We
have u? ∈ L2(Ω), since u ∈ L2(Ω). To complete the proof, by a similar argument in [45, Lemma 2.6] in the
case of cylinder Ω, limt→0 Bt(f) = ‖f‖2L2 if f ∈ HL and limt→0 Bt(f) = ∞ if f /∈ HL. �

It is easy to generalize (1.40) with a separation of y and the other coordinates:

LEMMA 1.6.14 Under the assumptions of Theorem 1.6.13, we have∫
Ω

|∇x′u
?|2 dx ≤

∫
Ω

|∇x′u|2 dx and
∫

Ω

|∂yu?|2 dx ≤
∫

Ω

|∂yu|2 dx. (1.41)

DEFINITION 1.6.15 If u : Ω −→ C, we define u? = |u|? and u# = |u|#.

REMARK 1.6.16 Note that all the results above hold for this definition.

Now, we come back to our problem.

LEMMA 1.6.17 If ϕ ∈ GE
q then |ϕ|? ∈ Gq. moreover, Iq ≤ IEq .

Proof. By (1.38), we know that the rearrangement preserves Lp-norm, so it follows that JE(|ϕ|?) =
JE(ϕ) = q. On the other hand, from [35, Lemma 7.6], we know that if ϕ ∈ HL then |ϕ| ∈ HL. Therefore
by Theorem 1.6.13, we have IEq = I(ϕ) ≥ I(|ϕ|?) ≥ IEq . Hence, we have |ϕ|? ∈ GE

q . Since J(|ϕ|?) =
JE(ϕ) = q, it follows Iq ≤ IEq . Now, suppose that |ϕ|? 6= Gq. Then there exists ψ ∈ HL such that
J(ψ) = q and I(ψ) < I(|ψ|?). By defining

ζ =
q

1
p+2

‖ψ‖Lp+2
ψ,

we have JE(ζ) = q and I(ζ) =
q

2
p+2

‖ψ‖Lp+2
I(ψ) ≤ I(ψ), since q = J(ψ) ≤ JE(ψ). Therefore,

I(|ϕ|?) = IEq ≤ I(ζ) ≤ I(ψ) < I(|ϕ|?).

which is a contradiction. So |ϕ|? ∈ Gq. �
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PROPOSITION 1.6.18 If ϕ ∈ Gq then ϕ? ∈ Gq. Moreover Iq = IEq and Gq ⊆ GE
q .

Proof. Let ϕ ∈ Gq. Since ϕp, ϕ2 ∈ L2(SL), it follows from the properties of the decreasing monotone
rearrangement that

0 < q =
∫
SL

ϕpϕ2 dxdy ≤
∫
SL

(ϕp)?(ϕ2)? dxdy =
∫
SL

(ϕ?)p+2 dxdy =: τ. (1.42)

We want to show that q = τ and I(ϕ) = I(ϕ?). Indeed, considering υ ∈ Gτ and defining β = ( qτ )
1

p+2 , we
have J(β−1ϕ) = τ and J(βυ) = q. Whence, we obtain that I(υ) ≤ β−2I(ϕ) = I(β−1ϕ) and I(ϕ) ≤
β2I(υ) = I(βυ). Thusly, we have I(υ) ≤ β−2I(ϕ) ≤ I(υ) implying I(ϕ) = β2I(υ). By (1.42) and the
properties of the decreasing monotone rearrangement we have that I(ϕ?) ≤ I(ϕ) = β2I(υ) ≤ I(υ) ≤ I(ϕ?),
so it follows that I(ϕ?) = I(ϕ) and the equality β2I(υ) = I(υ) implies that q = τ .

For the second part, if ϕ ∈ Gq thence by the first part of proposition, we obtain that JE(|ϕ|?) =
J(|ϕ|?) = q, since ϕ? ≡ |ϕ|? ≥ 0. So, IEq ≤ I(|ϕ|?) = I(ϕ) = Iq. Now, by Lemma 1.6.17, we obtain that

Iq = IEq . (1.43)

It remains to prove that Gq ⊆ GE
q . Let ϕ ∈ Gq. Then by the first part and the properties of the decreasing

monotone rearrangement we have that q = J(ϕ) = J(ϕ?) = JE(ϕ?) = JE(ϕ). Now, by (1.43), we get
I(ϕ) = Iq = IEq . Thusly, ϕ ∈ GE

q . �

Now, by the Lemma 1.6.17, we have that Gq 6= ∅. So if ψ ∈ Gq then by the Lagrange multiplier the-
orem, there exists θ ∈ R such that δI(ψ) + θδJ(ψ) = 0. By a scaling change, we obtain that ψ satisfies in
equation (1.6) in the pointwise sense, similar to Section 1.4. Thus, by choosing ϕ = |ψ|? with ψ ∈ GE

q , we
have that ϕ is a solitary wave solution of the ZK equation, which is a nonnegative smooth function and is
even decreasing in y-direction. We see that ϕ is strictly positive. In fact, we have

ϕ(x, y) =
1

p+ 1
Kc ∗ ϕp+1(x, y), (1.44)

where Kc(x, y) is the inverse Fourier transform of K̂c(ξ, n) = 1
c+ξ2+n2 , for all ξ ∈ R and n ∈ (π/L)Z ; and

* is the convolution operator in SL defined by

f ∗ g(x, y) =
∫

R

∫ L

−L
f(x− σ, y − ρ)g(σ, ρ) dσdρ.

By an integral approximation, one can show that Kc is positive, so if ϕ(x0, y0) = 0, then ϕ ≡ 0, which is
contradiction. In fact

THEOREM 1.6.19 For every c > 0 and p ∈ N, the ZK equation (1.6) has a solitary wave solution
ϕ ∈ H∞

L which is cylindrically symmetric, strictly positive and decreasing in y-direction (bell-shaped pulse).

REMARK 1.6.20 Note that the Fourier transform of Kernel of generalized BBM is in the form of

K̂c(ξ, n) =
1

c′ + c(ξ2 + n2)
.
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1.7 A General Nonlinearity
In this section we want to study the existence of the solitary wave solution, u(x, y) = ϕ(x − ct, y), of the
equation (1.1) with a general nonlinearity such that (x, y) ∈ R×T, with periodic L. Indeed, we are looking
for a solution of

− cϕ+ ∆ϕ+ f(ϕ) = 0 (1.45)

with the conditions (1.2)-(1.5) where ∆ = ∂2
x+∂2

y . We assume that f is a differentiable real-valued function
on R such that f(0) = 0; and denote F (x) =

∫ x
0
f(s) ds as the primitive function of f . We define the

energy functional

E(ϕ) =
∫
SL

1
2
(cϕ2 + |∇ϕ|2)− F (ϕ) dxdy.

LEMMA 1.7.1 Suppose that f satisfies the following assumption:

f(x) ≤ p(x), where p(x) is polynomial in the form of

p(x) = a1x+ a2x
2 + · · ·+ amx

m

for some m ∈ N , where ai ∈ R, for each 1 ≤ i ≤ m, and min{1, c} > |a1|( remember that c is velocity of
solitary wave solution.

In consequence, there exists ρ > 0 and δ > 0, independent on L, such that E(ϕ) ≥ δ > 0, if ϕ ∈ H1(SL)
and ‖ϕ‖1 = ρ.

Proof. From the assumptions of the lemma and the Sobolev embedding, we have

E(ϕ) ≥ 1
2

min{1, c}‖ϕ‖21 −
∫
SL

F (ϕ) dxdy

≥ 1
2

min{1, c}‖ϕ‖21 −
a1

2

∫
SL

ϕ2 dxdy − · · · − am
m+ 1

∫
SL

ϕm+1 dxdy

≥ 1
2

min{1, c}‖ϕ‖21 −
|a1|
2
‖ϕ‖2L2(SL) − · · · − |am|

m+ 1
‖ϕ‖m+1

Lm+1(SL) dxdy

≥ 1
2
(min{1, c} − |a1|)‖ϕ‖21 −

|a2|
3
‖ϕ‖31 − · · · − |am|

m+ 1
‖ϕ‖m+1

1 .

Now, we can choose ρ > 0 small enough such that E(ϕ) ≥ δ > 0, if ‖ϕ‖1 = ρ. �

LEMMA 1.7.2 Suppose that F satisfies the following assumption:

There exists υ ∈ C∞per(R2) such that λ−2
∫

R2

F (λυ) dxdy is sufficiently large as λ > 0 tends to infinity.

Then there exists e ∈ H1(SL) such that E(e) < 0 and ‖e‖1 > ρ, where ρ > 0 is the same constant in
the Lemma 1.7.1.
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Proof. Without loss of generality, we may assume that υ has compact support in S1. Therefore

E(λυ) =
∫
S1

λ2

2
(cυ2 + |∇υ|)− F (λυ) dxdy

is negative and small enough, as λ tends to infinity. So there exists λ0 > 0 such that E(λυ) < 0 and
‖λ0υ‖1 > ρ. We set e1 = λ0υ. For L > 1, we define

υL :=

 υ if (x, y) ∈ S1

0 if (x, y) ∈ SL \ S1.

By extending υL periodically, and setting eL = λ0υL, we have eL ∈ H1(SL), ‖eL‖H1(SL) = ‖e1‖H1(S1) > ρ
and E(eL) = E(e1) < 0. �

THEOREM 1.7.3 Suppose f satisfies the assumptions of Lemma 1.7.1 and Lemma 1.7.2. Also assume
that one of the following conditions holds:

• There exists µ > 2 such that µF (x) ≤ xf(x).

• There exists µ < 1 such that µF (x) ≥ xf(x).

Then there exists a nontrivial solution of (1.45) in H1(SL).

Proof. We define
d = inf

γ∈Γ
max
t∈[0,1]

E(γ(t))

where Γ = {γ ∈ C([0, 1],HL) ; γ(0) = 0 , γ(1) = e}, with e obtained in Lemma 1.7.2. Note that, according
to our choice of e, the set {t e ; t ∈ [0, 1]} belongs to Γ and

max
0≤t≤1

E(te) ≥ d ≥ δ > 0,

which shows that d is uniformly bounded (from below and above), independent of L. Now, by using
Lemmata 1.7.1, 1.7.2 and Theorem 0.0.24 , we obtain that there exists a sequence ϕn ∈ HL such that
E(ϕn) −→ d and ‖E′(ϕn)‖H?

L
−→ 0 as n→∞, where H?

L = H−1(SL). Note that the functional E does not
satisfy the Palais-Smale condition. For instance, if ϕ0 6= 0 is a critical point of E, then ϕ(·+ j, ·) is also a
critical point of E, for each j ∈ Z; but the sequence {ϕ(·+ j, ·)}j does not have any convergent subsequence
in HL.
We prove that the sequence {ϕn} is bounded in HL. Indeed, by the hypotheses we have

min{1, c}(1− µ)‖ϕn‖21 ≤ 〈E′(ϕn), ϕn〉 − µE(ϕn) ≤ ‖E′(ϕn)‖H?
L
‖ϕn‖1 − µd,

or (
1
2
− 1
µ

)
min{1, c}‖ϕn‖21 ≤ E(ϕn)−

1
µ
〈E′(ϕn), ϕn〉 ≤ d +

1
µ
‖E′(ϕn)‖H?

L
‖ϕn‖1.

Hence the sequence {ϕn} is bounded in HL.
Now, we use from Lemma 1.5.1 to show that this sequence has a nontrivial limit. Assume, on contrary, there
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exists r > 0 such that supξ∈SL

∫
Sr(ξ)

|un|2 dxdy −→ 0, then ‖un‖Lp(SL) tends to zero for all 2 ≤ p < ∞.
So we can choose a sequence εn such that εn → 0, and

d = E(ϕn)−
1
2
〈E′(ϕn), ϕn〉+ εn ≤

∫
SL

1
2
|f(ϕn)ϕn|+ |F (ϕn)| dxdy + εn

≤ b1‖ϕn‖2L2(SL) + · · ·+ bm‖ϕn‖m+1
Lm+1(SL) + εn

where b1, · · · , bm are positive constants. Since d > 0 and the right hand side can be made arbitrary small
as n → ∞, this arises a contradiction. Consequently, there exists a sequence {(xn, yn)} in R2 and r > 0
such that, along a subsequence, ∫

Sr(0)

|ϕ̃n|2 dxdy ≥ d > 0,

for all n, where ϕ̃n(x, y) = ϕn(x+ xn, y + yn); and there exists ϕ in HL such that ϕ̃n converges weakly in
HL and strongly in Lploc(SL) to ϕ. It is obvious that ϕ 6= 0, also for every v ∈ C∞per(R2)

〈E′(ϕ), v〉 = lim
n→∞

〈E′(ϕ̃n), v〉 = 0,

which implies that ϕ is a nontrivial solution of (1.45). �

REMARK 1.7.4 Similarly, one can show that the argument discussed in Section 1.5 holds in the general
nonlinearity case.

1.8 Asymptotic Properties
In this section we are going to study some asymptotic properties and the behavior of solitary wave solutions.
These investigations may be important in instability theory. To study the demeanors of the solutions of
(1.6), it is natural to peruse the behavior of Kc, the Kernel of the equation ZK, where

K̂c(ξ, n) := FyFx(Kc)(ξ, n) =
1

c+ ξ2 + n2
,

where ξ ∈ R and n ∈ (π/L)Z. First we will try to represent Kc in the forms which may be more convenient
to deal with them. To do this, we will need the following propositions.

PROPOSITION 1.8.1 (Poisson Summation Formula) Let f be a function on RN such that for
some δ > 0 and A > 0

|f(x)| ≤ A

(1 + |x|)N+δ
and |f̂(ξ)| ≤ A

(1 + |ξ|)N+δ
,

then ∑
m∈ZN

f(x+m) =
∑
m∈ZN

f̂(m) e2πix·m.

The proof of the following proposition is elementary.
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PROPOSITION 1.8.2 Let c > 0 and

B̂(ξ) =
1

c+ |ξ|2

where ξ ∈ RN . Then B is an even real-valued function in L1(RN ). Moreover, B decays to zero when |x|
tends to infinity.

Now, by the definition, it is easy to check that Kc(x, y) is a real-valued function for every (x, y) ∈ SL. Also
by definition,

Kc(x, y) =
∫
R

∑
n∈ π

L Z

eixξeiny

c+ ξ2 + n2
=
∫
R

∑
n∈ π

L Z

cos(xξ + ny)
c+ ξ2 + n2

=
∫
R

∑
n∈ π

L Z

cos(xξ) cos(ny)
c+ ξ2 + n2

.

By using Proposition 1.8.2, we have that
∫
R

eixξ

c+ ξ2
dξ = π√

c
e−

√
c|x|. Therefore Kc can be written by

Kc(x, y) =
√
π

∞∫
0

∑
n∈ π

L Z

cos(ny)√
t(c+ n2)

e−t−(c+n2) x2
4t dt =

∑
n∈ π

L Z

π cos(ny)√
c+ n2

e−
√
c+n2|x|. (1.46)

So we see that Kc(x, y) will increase when (x, y) moves to (0, 0). On the other hand,

Kc(x, y) =
∫ +∞

0

e−ct
∫

R

∑
n∈ π

L Z
einy+iξxe−t(ξ

2+n2).

Therefore, by Propositions 1.8.1 and 1.8.2, we obtain that

Kc(x, y) = 2L
∫ ∞

0

∑
n∈Z

e−ct

t
e−

1
4t (x2+|y+2nL|2) dt, (1.47)

for every (x, y) ∈ SL and (x, y) 6= (0, 0). Also we can write Kc in the following form

Kc(x, y) =
∫
R

eixξ
∑
n∈ π

L Z
ĥ(n) einy dξ, (1.48)

where ĥ(n) =
1

c+ ξ2 + n2
. So, for y 6= 0, by using the Poisson Summation Formula, we have

Kc(x, y) = 2L
∑
n∈Z

∫
R

cos(xξ)
e−
√
c+ξ2|y+2nL|√
c+ ξ2

dξ = 4L
∑
n∈Z

K0(
√
c(x2 + |y + 2nL|2)1/2), (1.49)

where K0 is known as the modified Bessel function of third order, or a Macdonald function; and can be
represented by

K0(r) =
(π/2)1/2

Γ( 1
2 )

r−1/2e−r
∫ ∞

0

e−t t−1/2

(
1 +

t

2r

)−1/2

dt.

Note that K0(r) ∼ log(1/r), as r → 0 and K0(r) ∼ (πr )1/2 e−r as r →∞. (See Figure 1.1 - 1.3).
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Figure 1.1: Kernel of equation (1.6) in R× T.

LEMMA 1.8.3 Kc ∈ Lp for p ∈ [1,+∞), Kc ∈ Hs for s < 1 and K̂c ∈ Hs for s ≥ 0.

Proof. It is easy to see that K̂c ∈ Lp for any p ∈ (1,+∞], Kc ∈ Lp for any p ∈ [1,+∞) and Kc ∈ Hs for
s < 1. However note that Kc ∈ L∞(SL\{0}). It is also easy to see that |∇K̂c| ∈ Lp, for any p ∈ (3/4,+∞].
So K̂c ∈ Ḣ1

p . Therefore K̂c ∈ Hs for any s ≤ 2, since Ḣ1
p ⊂ Ḣs

2 , for any s = 2
(
1− 1

p

)
. On the other hand,

it is easy to see that K̂c ∈ Hs for s ≥ 1. This completes the proof. �

LEMMA 1.8.4 rα|∇ϕ| ∈ L2, for any α > 0, where r = (1 + x2 + y2)1/2. Moreover, ϕ ∈ H1 (rα dxdy).

Proof. Multiply (1.6) by χj(x)|x|αϕ and χj(y)|y|αϕ, respectively, where χj(t) = χ0

(
t2

j2

)
and χ0 ∈

C∞0 (R), 0 ≤ χ0 ≤ 1, χ0(t) = 1 if −L/4 ≤ t ≤ L/4 and χ0(t) = 0 if |t| ≥ L/2. The proof follows by using
several integrations by parts, the properties of χj , Theorem 1.4.1 and Lebesgue’s theorem. �

LEMMA 1.8.5 rh ∈ L∞, where ĥ =
K̂c

r
. Furthermore, rαϕ ∈ L∞, for any α ≥ 0.

Proof. It is easy to see that ĥ ∈ Lp, for any p ∈ (1/2,+∞] and h ∈ Lp, for any p ∈ [1,+∞]. Since

|r(f ∗ g)| ≤ C|(rf) ∗ g|+ C|f ∗ (rg)|,

then |rh| ≤ C ‖rKc‖L∞ ‖Kc‖L1 < ∞. The second part comes from ϕ = h ∗
(
(1−∆)1/2ϕp+1

)
, for α = 1.

For general α > 0, the proof is similar. �

THEOREM 1.8.6 Let ϕc be a solution of (1.6) which we obtained by minimization. Then there exists
σ0, σ

′
L > 0 such that

|ϕc(x, y)| ≤ C1e
−σ|x| and |ϕc(x, y)| ≤ C2e

−σ′L|y|,

for any σ < σ0 and σL < σ′L. Moreover ϕc, eσ
′
L|y|ϕc and eσ|x|ϕc are in L1(SL).

Proof. The proof is strongly related to the kernel Kc. By (1.47), we have eσ|x|Kc(x, y) ∈ L2 (SL), for any
σ < σ0 =

√
c. Then by (1.44) we see ϕc decays exponentially in the x-direction. So Kc(x, y) = O

(
e−σ|x|

)
.

Similarly by (1.49), we obtain that the solution decays exponentially in y-direction. By (1.46)-(1.49),
an application of Fubini’s theorem and Young’s inequality in L1(SL), we obtain the second part, since
ϕp+1
c ∈ L1(SL). �

So that the solitary wave solution ϕc is rapidly decreasing.
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Figure 1.2: Kernel of equation (1.6) in R× R.

Figure 1.3: (left) Projection of Kernel on yz-plane, (right) Projection on xz-plane
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1.9 Instability
In this section, we consider a solitary wave solution ϕ(x, y) of ZK equation obtained from a minimization
problem such as of type of Section 1.3 such that ϕ does not depend on y; or indeed the minimizers of
the KdV equation with a suitable constraint value. We are going to show that this type of solutions are
unstable in HL for some special p. We will use the ideas of [16]. First we state a well-posedness result for
ZK equation.

THEOREM 1.9.1 Let s > 2. Then for any u0 ∈ Hs(SL), there exists T = T (‖u0‖Hs) > 0 and there
exists a unique solution u ∈ C([0, T ];Hs(SL)) of ZK equation with u(0) = u0 and u(t) depending on u0

continuously in the Hs−norm.

Proof. The proof can be obtained via Kato’s Theory ([42]). �

For anyX ⊆ HL and ε > 0, we denote the set V (X, ε) = {g ∈ HL; infv∈X ‖v − g‖HL
< ε}, the ε−neighborhood

of X in HL. Also for Y ⊆ Lp, we denote ΩY = {ταv ; α ∈ R2, v ∈ Y }, where τα denotes the translation
operator by α.

DEFINITION 1.9.2 We say X ⊆ HL is stable by the flow of ZK iff for any ε there exists δ such that
for any u0 ∈ V (X, δ), the solution of the ZK equation with initial data u(0) = u0 is in V (X, ε) for all
t ≥ 0. Otherwise we say that X is unstable.

A direct consequence of this definition is the following.

LEMMA 1.9.3 Let X ⊆ HL and ε > 0. Then V (ΩX , ε) = ΩV (X,ε).

Throughout this section, ϕ is a solitary wave as described at the beginning.

LEMMA 1.9.4 Consider ϕ which is not necessarily ϕy = 0. Then

(I) There exists ε0 > 0 such that for any v ∈ V (Ωϕ, ε0), there exists a unique N (v) ∈ Ωϕ such that
‖v − N (v)‖ ≤ ‖v − w‖, for all w ∈ Ωϕ. Moreover N : V (Ωϕ, ε0) → Ωϕ is C2.

(II) There exists a unique C2 functional Λ : V (Ωϕ, ε0) → R2 which satisfies the following for α ∈ R2 and
v ∈ V (Ωϕ, ε0):

(i) Λ(ταv) = Λ(v) + α, modulus L in the second component of α,

(ii) 〈v, τΛ(v)ϕx〉 = 0,

(iii) 〈Λ′(v), v〉 = 0, if v ∈ Ωϕ,

(iv) for any v ∈ V (Ωϕ, ε0), if D = BC −A2 6= 0, then

Λ′1(v) =
1
D

(ϕy(·+ Λ(v))A− ϕx(·+ Λ(v))C) , (1.50)

Λ′2(v) =
1
D

(ϕx(·+ Λ(v))A− ϕy(·+ Λ(v))B) , (1.51)
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where

B =
∫
v(x, y)ϕxx((x, y) + Λ(v)) dxdy, (1.52)

C =
∫
v(x, y)ϕyy((x, y) + Λ(v)) dxdy, (1.53)

A =
∫
v(x, y)ϕxy((x, y) + Λ(v)) dxdy, (1.54)

(v) if v is a function such that v(x, y) = v(x,−y), then Λ(v) = (Λ1(v), 0); and

Λ′1(v) = −
τΛ(v)ϕx

〈v, τΛ(v)ϕxx〉
. (1.55)

Proof. Let ε > 0. Define G : V (ϕ, ε)×R2 → R2, given by G(v, α) = 1
2

∫
SL
|ταϕ(x, y)−v(x, y)|2 dxdy. Then

from regularity of ϕ, we obtain G ∈ C3 and ∇αG(v, α) : V (ϕ, ε) × R2 → R2 by ∇αG(v, α) = −〈τα∇ϕ, v〉.
So we have ∇αG(ϕ, 0) = 0. Notice that Jacobian matrix of ∇αG at (ϕ, 0) is invertible and the determinant
is positive, because 〈ϕx, ϕy〉 = 0, since ϕ is cylindrically symmetric. Hence from the Implicit Function
Theorem, we get that there exists ε0 > 0 and a unique C2 function Λ : V (ϕ, ε0) → R2, such that for every
v ∈ V (ϕ, ε0), ∇αG(v,Λ(v)) = 0. We define N (v) = τΛ(v)ϕ, for v ∈ V (ϕ, ε0). For every v ∈ V (ϕ, ε0), N (v)
is the unique element of V (ϕ, ε0) satisfying ‖v−N (v)‖ ≤ ‖v−w‖, for all w ∈ V (ϕ, ε0)∩Ωα. But we know
that G(v, α) = G(τβv, α + β), for all β ∈ R2. By Lemma 1.9.3, Λ can be extensible to V (Ωϕ, ε0) in such
way that for all v ∈ V (ϕ, ε0), Λ(ταv) = Λ(v) + α, modulus the second component of α. The derivatives
(1.50) and (1.51) are obtained by differentiating the relation

〈τΛ(v)∇ϕ, v〉 = 0,

with respect to v. Now if v(x, y) = v(x,−y), analogously, by using the Implicit Function Theorem, we can
find Λ1(v) for v ∈ V (ϕ, ε0) such that 〈τ(Λ1(v),0)ϕx, v〉 = 0. Note that 〈τ(Λ1(v),0)ϕy, v〉 = 0, because of having
cylindrically symmetry of ϕ and v. Hence the uniqueness provided by the Implicit Function Theorem gives
Λ(v) = (Λ1(v), 0), taking ε0 smaller if necessary. Also, (1.55) follows by differentiating the relation

〈τ(Λ1(v),0)ϕx, v〉 = 0,

with respect to v.
�

Now, suppose that ψ is a function such that ψx and ψxx is ∈ HL. Then we define

Bψ(u) ≡ τΛ(u)ψx −
〈u, τΛ(u)ψx〉
〈u, τΛ(u)ϕxx〉

τΛ(u)ϕxx. (1.56)

LEMMA 1.9.5 Bψ is a C1 function with bounded derivatives from V (Ωϕ, ε0) into HL. Moreover

(i) Bψ commutes with translation in the x-variable,
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(ii) 〈Bψ(u), u〉 = 0 for all u ∈ V (Ωϕ, ε0),

(iii) Bψ(ϕ) = ψx if 〈ϕ,ψx〉 = 0,

(iv) if 〈ϕx, ψx〉 = 0 then 〈Bψ(u), ux〉 = 0 for all u ∈ Ωϕ.

Proof. The proof follows from the previous lemma and differentiation. �

REMARK 1.9.6 Note that in the preceding lemma we used the geometry of R×T, which does not hold
in R2.

Now we will consider the following situation

〈S ′′(ϕ)Bψ(ϕ),Bψ(ϕ)〉 < 0, (1.57)

where S = E1 + cE2 and ψ(x) = ψ(x, y) =
∫ x
−∞ ϕ(z, y) + 2zϕz(z, y) dz. Note that ϕ satisfies −cϕ+ ϕxx +

1
p+1ϕ

p+1 = 0. Now for v0 ∈ V (Ωϕ, ε0), we consider the initial value problem

d

ds
v(s) = Bψ(v(s)), v(0) = v0. (1.58)

From Lemma 1.9.5, we have that for each v0 ∈ V (Ωϕ, ε0), this system admits a unique maximal solution
v ∈ C2((−σ, σ); V (Ωϕ, ε0)) where v(0) = v0 and σ = σ(v0) ∈ (0,+∞]. Moreover, for each ε1 < ε0 there
exists σ1 > 0 such that σ(v0) ≥ σ1 for each v0 ∈ V (Ωϕ, ε1). Now for fixed ε1, σ1, we consider the flow of
(1.58)

U : (−σ1, σ1)× V (Ωϕ, ε1) → V (Ωϕ, ε0)
(s, v0) → U (s)v0,

where s→ U (s)v0 is the maximal solution of (1.58) with initial data v0. From Lemma 1.9.5, we have that
U is C1 and for each v0 ∈ V (Ωϕ, ε1), s ∈ (−σ1, σ1) → U (s)v0 is C2. Also the flow commutes with the
translations with respect to the x-variable (and then commutes with τα for each α ∈ R2). Also from the
relation

U (s)ϕ = ϕ+
∫ s

0

τΛ(U (t)ϕ)ψx dt−
∫ s

0

F (t)τΛ(U (t)ϕ)ϕxx dt,

and the properties of ϕ, we have that U (s) ∈ W 2,1(SL), for s ∈ (−σ, σ), where s ∈ (−σ, σ) → F (s)
is a continuous function. Now for every v0 ∈ V (Ωϕ, ε1), we get from Taylor’s theorem that there exists
θ ∈ (0, 1) such that

S(U (s)v0) = S(v0) + P (v0)s+
1
2

R (U (θs)v0)s2, (1.59)

where

P (v) = 〈S ′(v),Bψ(v)〉, (1.60)
R (v) = 〈S ′′(v)Bψ(v),Bψ(v)〉+ 〈S ′(v),B ′ψ(v)Bψ(v)〉, (1.61)
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are functionals defined on V (Ωϕ, ε1). Since R and U are continuous, S ′(ϕ) = 0. We are going to show that
the condition (1.57) implies the instability. In fact, by (1.57) we have R (ϕ) < 0. Therefore there exists
ε2 ∈ (0, ε1] and σ2 ∈ (0, σ1] such that

S(U (s)v0) ≤ S(v0) + P (v0)s, (1.62)

for v0 ∈ V (ϕ, ε2) and s ∈ (−σ2, σ2). We can extend the inequalities (1.62) to v0 ∈ V (Ωϕ, ε2) by Lemma
1.9.3 and the commutation between U (s)v0 and the translations. Now we put v0 = U (ρ)ϕ with ρ 6= 0
small enough. Then we obtain

S(U (s)U (ρ)ϕ) ≤ S(U (ρ)ϕ) + P (U (ρ)ϕ)s. (1.63)

Hence for s = −ρ < 0, we have
S(ϕ) ≤ S(U (ρ)ϕ)− P (U (ρ)ϕ)ρ. (1.64)

Also from (1.57) we have that the function ρ→ S(U (ρ)ϕ) has a strict local maximum at zero, so

S(U (ρ)ϕ) < S(ϕ), (1.65)

for ρ ∈ (−σ, σ2) and ρ 6= 0. From (1.64) and (1.65), we have that for some σ3 ≤ σ2,

P (U (ρ)ϕ) < 0, (1.66)

for ρ ∈ (0, σ3). But since ϕ a minimizer of S under the constraint J(u) = q, then we have from (1.57) that

〈J ′(ϕ),Bψ(ϕ)〉 6= 0, (1.67)

where J(ϕ) =
∫
SL
ϕp+2. Now we consider the function (v0, s) ∈ V (Ωϕ, ε1)× (−σ1, σ1) → J(U (s)v0). This

function is C1 and (ϕ, 0) → q. From (1.67), we have

d

ds
J(U (s)v0)|(ϕ,0) = 〈J ′(ϕ),Bψ(v)(ϕ)〉 6= 0. (1.68)

Thusly by the Implicit Function Theorem, there exists ε3 ∈ (0, ε2) and σ3 ∈ (0, σ2) such that for each
v0 ∈ V (ϕ, ε3), there exists a unique s = s(v0) ∈ (−σ3, σ3) such that J(U (s)v0) = q. Now by using (1.62)
for (v0, s(v0)) ∈ V (ϕ, ε3) × (−σ3, σ3) and since ϕ is a minimizer of S under the constraint J(u) = q, we
have that for v0 ∈ V (ϕ, ε3) there exists s ∈ (−σ3, σ3) such that

S(ϕ) ≤ S(v0) + P (v0)s. (1.69)

Therefore from Lemma 1.9.3 and the commutation between U (s)v0 and translations we can extend (1.69)
to V (Ωϕ, ε3). Note that since B−ψ(ϕ) = −Bψ(ϕ), we assume that 〈J ′(ϕ),Bψ(ϕ)〉 < 0, by using (1.67). So
for τ > 0 small enough we can get some δ small such that

J(U (τ)ϕ) = J(ϕ) +
∫ τ

0

〈J ′(U ($)ϕ),Bψ(U ($)ϕ)〉 d$ = q − δ < q. (1.70)

Note that if u0 is a function satisfying (1.65), (1.66) and (1.70) (by substituting u0 instead of U (ρ)ϕ), then
since ϕ is a minimizer of S under the constraint J(u) = q, the ZK solution u(t) corresponding to initial
data u0 satisfies (1.65), (1.66) and (1.70).

In the rest, we need the following lemma.
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LEMMA 1.9.7 Assume that u0 ∈ V (Ωϕ, ε0) and satisfies in Lemma 1.9.9. If u(t) is a solution of
(1.1) corresponding to u0 as initial data and u(t) ∈ V (Ωϕ, ε0) for t ∈ [0, T ], then for ψ(x) = ψ(x, y) =∫ x
−∞ ϕ(z, y) + xϕx(z, y) dz, we have

Aψ(u(t)) ≡
∫
SL

ψ(x− Λ1(u(t)), y)u(t) dxdy < +∞,

for all t ∈ [0, T ].

The functional Aψ is called the Lyapunov functional along ψ.
Proof. Put ω(t) = Λ1(u(t)). Therefore

Aψ(u(t)) =
∫
SL

ψ(x− ω(t), y)u(t) dxdy =∫
SL

[ψ(x− ω(t), y)− νH (x− ω(t))]u(t) dxdy +
∫ L

−L

∫ +∞

ω(t)

νu(t) dxdy,

where ν =
∫
R
ϕ+ 2xϕx dx and H is the Heaviside function. Thus we obtain

|Aψ(u(t))| . ‖ψ − νH ‖L2‖u‖L2 + |ν|

∣∣∣∣∣
∫ L

−L

∫ +∞

ω(t)

u(t) dxdy

∣∣∣∣∣ . (1.71)

By the decaying at infinity of ψ in x, we have that ‖ψ − νH ‖L2 is finite. Thusly

|Aψ(u(t))| . ‖ψ − νH ‖L2‖u0‖L2 + |ν|

∥∥∥∥∥
∫ +∞

ω(t)

u(x, ·, t) dx

∥∥∥∥∥
L∞(−L,L)

.

To estimate
∥∥∥∫ +∞
ω(t)

u(x, ·, t) dx
∥∥∥
L∞

, we use the following lemmata.

LEMMA 1.9.8 Let s > 2 and u0 ∈ F s,2
r
4 ,0

, for some r ≤ 2. Then the solution of the ZK equation
corresponding to initial data u0 ∈ C([0, T );Hs) ∩ L∞

(
[0, T );L2

((
1 + |x|r/2

)
dx
))

satisfies

‖u(t)‖L2((1+|x|r/2)dx) ≤ C(1 + t)1/2

for any t such that 0 ≤ t ≤ T1 < T , where

C = C

(
sup

t∈[0,T1]

‖u(t)‖HL
, ‖u0‖L2((1+|x|r/2)dx)

)
.

Proof. Denote w(x) = w(x, y) = (1 + |x|r)1/4, so we have (wu)t + wu∆ux + wupux = 0. By taking
L2-inner product in the last equation with wu, we obtain ‖wu‖2L2 ≤ C(1 + t), where we used the fact that(
w2
)
x

and
(
w2
)
xx

are bounded on SL. �
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LEMMA 1.9.9 Let s > 3 and u0 ∈ Hs(SL). Also, suppose that u0 ∈ F s,1
5
8 ,0

(SL) ∩ F s,2
1
2 ,0

(SL). Then∥∥∥∥∫ +∞

x

u(s, ·, t)
∥∥∥∥
L∞

≤ C
(
t−3/4(1 + |x|)5/4 + t1/4(1 + t+ |x|)1/4

)
, (1.72)

where u(t) is the solution of the ZK equation corresponding to initial data u(0) = u0 and

C = C

(
sup

0≤t≤T
‖u(t)‖HL

, ‖u0‖F s,1
5
8 ,0
, ‖u0‖F s,2

1
2 ,0

)
.

Proof. We denote W (y) =
∫

R u0(x, y) dx, then M (x, y, t) =
∫ +∞
x

u(s, y, t) ds is the solution of

Mt + ∆Mx −
1

p+ 1
up+1 = 0

with initial data M (0) =
∫ +∞
x

u0(s, y) ds. We also have

M (x, y, t) = U(t) ∗ M (0)(x, y)− 1
p+ 1

∫ t

0

U(t− τ) ∗ up+1(τ) dτ

= U(t) ∗ f1(x, y) + U(t) ∗ f2(x, y)−
1

p+ 1

∫ t

0

U(t− τ) ∗ up+1(τ) dτ,
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where U(t) =
∫
SL
ei(tξ

3+tξ|η|2+xξ+y·η) dξdη, f1(x, y) = H (−x)W (y), f2(x, y) = M (x, 0)− H (−x)W (y) and
H (x) is the Heaviside function. By Lemma 2.3.4, we have

‖M (x, ·, t)‖L∞y ≤ ‖U(t) ∗y W ‖L∞y ∗x H (−x) + ‖U(t)‖L∞y ∗x ‖M (0)− WH (−·)‖L1
y

+
1

p+ 1

∫ t

0

∫
R

∥∥U(x− s, ·, t− τ) ∗y up+1(s, ·, τ)
∥∥
L∞y

dsdτ

≤
∫ 0

−∞
‖W ‖L1

y
‖U(x− s, ·, t)‖L∞y ds+ Ct−2/3 ‖M − WH (−·)‖L1

+ Ct−3/4

∫
SL

|x− s|1/4 |M (s, y, 0)− W (y)H (−s)| dyds

+
1

p+ 1

∫ t

0

‖U(·, ·, t− τ)‖L∞y ∗x
∥∥up+1(·, ·, τ)

∥∥
L1

y

≤ C‖u0‖L1

∫ 0

−∞
t−2/3e−

2
3 (x−s)

3
2 t−1/2

H (x− s) ds

+ C‖u0‖L1

∫ 0

−∞

(
t−2/3 + t−3/4|s− x| 14

)
H (s− x) ds

+ Ct−2/3 ‖M − WH (−·)‖L1 + Ct−3/4

∫
SL

|x| 14 |M (s, y, 0)− W (y)H (−s)| dyds

+ Ct−3/4

∫
SL

(1 + |s|) 1
4 |M (s, y, 0)− W (y)H (−s)| dyds

+
1

p+ 1
‖U(·, ·, t− τ)‖L∞y ∗x ‖u(·, ·, τ)‖p+1

Lp+1
y

= Y1 + Y2 + Y3 + Y4 + t3/4Y5 +
1

p+ 1
Y6.

On the other hand, we have

Y1 ≤
∫ +∞

max{0,x}
e−

2
3η

3/2t−1/2
dη, Y2 ≤

∫ +∞

min{0,x}

(
t−2/3 + t−3/4|η|1/4

)
dη.

and

Y5 ≤ C

∫ L

−L

∫ +∞

0

∫ η

0

(1 + |s|)1/4|u0(η, y)| dsdηdy

+ C

∫ L

−L

∫ 0

−∞

∫ 0

η

(1 + |s|)1/4|u0(η, y)| dsdηdy ≤ C

∫
SL

(
1 + |s|5/4

)
|u0(η, y)| dηds.

Also

Y6 ≤ C

∫ t

0

(
(t− τ)−2/3 +

∫
R
|x− s| 14 (t− τ)−

3
4

)
‖u(τ)‖p+1

Lp+1 dτ

≤ C
(
t1/3 + |x|1/4t1/4

)
+ C

∫ t

0

∫
SL

(1 + |s|2)1/8(t− τ)−3/4|u(s, y, τ)|p+1 dsdydτ.
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But ∫
SL

(1 + |s|2)1/8|u(s, y, τ)|p+1 dsdy ≤
(∫

SL

(1 + |s|2)1/2|u(s, y)|2
)1/4

‖u‖γ2Lγ1 ,

where γ1 = 2
3 (2p+ 1) and γ2 = 9

8(p+1) . By Lemma 1.9.8, we obtain that∫
SL

(1 + |s|2)1/8|u(s, y, τ)|p+1 dsdy ≤ C(1 + τ)1/4,

and then ∫ t

0

(t− τ)−3/4

∫
SL

(1 + |s|2)1/8|u(s, y, τ)|p+1 dsdydτ ≤ Ct1/4(1 + t1/4),

and consequently
Y6 ≤ C(t1/3 + t1/4(1 + t1/4 + |x|1/4)).

This completes the proof.
�

LEMMA 1.9.10 Let s > 3 and u0 ∈ Hs(SL)∩V (Ωϕ, ε0). We also assume that u(t) is the solution of the
ZK equation corresponding to initial data u0 and ε0 < ‖ϕx‖2L2‖ϕxx‖−1

L2 . Then |Λ1(u(t))| ≤ |Λ1(u0)|+C|t|,
where C does only depend on ε.

Proof. Notice that from the ZK equation we have that u(x,y,t)=u(x,-y,t). So by differentiating the
relation 〈τ(Λ1(u),0)ϕx, u〉 = 0 in t (see Lemma 1.9.4), we obtain

Λ′1(u(t)) =
〈∆ux + upux, τ(Λ1(u),0)ϕx〉

〈u(t), τ(Λ1(u),0)ϕxx〉
.

Let u(x, y, t) = τ(Λ1(u),0)ϕ(x, y) + h(x, y, t) with ‖h(t)‖HL
≤ ε0. Denote b = (Λ1(u), 0). Since ϕ satisfies

the ZK equation, we have that

〈∆ux + upux, τbϕx〉 = 〈∆hx + cτbϕx, τbϕx〉+
1

p+ 1
〈up+1(t), τbϕx〉 −

1
p+ 1

〈
(τbϕ

p+1)x, τbϕx
〉

= c‖ϕx‖2L2 + Z(t),

where
Z(t) = −〈h(t), τb∆ϕxx〉+

1
p+ 1

〈τbϕxx, (τbϕ+ h)p+1 − τbϕxx〉.

So we obtain
|Z(t)| ≤ C1‖h‖L2 + C2‖h‖p+1

Lp+1 + C0 ≤ C1ε
p+1
0 + C0. (1.73)

On the other hand, we have

〈u(t), τbϕxx〉 = −‖ϕx‖2L2 + 〈h(t), τbϕxx〉 ≤ −‖ϕx‖2L2 + ε0‖ϕxx‖L2 < 0. (1.74)

Therefore |Λ′1(u(t))| ≤ Cε0 , and the proof is complete. �
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By Lemmata 1.9.8, 1.9.9 and 1.9.10, we conclude that for % = −3/4 and ζ = 1/2,

|Aψ(u(t))| ≤ C(t−% + tζ), (1.75)

where C does not depend on time. �

So, we have

∂tAψ(u(t)) =
∫
SL

(
〈τω(t)ψx, u(t)〉ω′(t) + τω(t)ψ

)
u(t) dxdy = −

〈
〈τω(t)ψx, u〉

d

dx
Λ′1(u(t)) + τω(t)ψx,E

′
1(u(t))

〉
= −〈Bψ(u(t)), S ′(u(t))〉+ c〈Bψ(u(t)), u(t)〉 = −P (u(t)).

(1.76)

Furthermore,
∫
SL
c|u(t)|2 + |∇u(t)|2 dxdy = 2S(u(t)) + 2

p+1J(u(t)) < 2S(ϕ) + 2q
p+1 < +∞. On the other

hand, by using (1.65), (1.66) and (1.70), we obtain that U (τ) satisfies these inequalities for τ ∈ (0, σ3).
Now we take a sequence {τj} ⊂ (0, σ3) such that τj → 0 as j → +∞; and consider uj(t) as the ZK solutions
corresponding to initial datum u0,j = U (τj)ϕ. Note that u0,j tends to ϕ in Hs(SL) (and then in HL) as
j → +∞. We are going to show that uj(t) do not stay in V (Ωϕ, ε3) for all j ∈ N. We define the maximum
time which each uj stays near to the orbit of ϕ:

Tj = sup{τ > 0 ; uj(t) ∈ V (Ωϕ, ε3), for all t ∈ (0, τ)}. (1.77)

Then it follows from (1.69) that for each j ∈ N and t ∈ (0, Tj), there exists s = sj(t) ∈ (−σ3, σ3) such that

S(ϕ) ≤ S(uj(t)) + P (uj(t))s = S(u0,j) + P (uj(t))s. (1.78)

As mentioned above, P (uj(t)) < 0, for t ∈ (0, Tj); so we have that

− P (uj(t)) ≥
S(ϕ)− S(u0,j)

σ3
= `j > 0, (1.79)

for all t ∈ (0, Tj). We will show that Tj < +∞ which implies the instability. Suppose that for some j, we
have Tj = +∞. Then from (1.76), (1.79) and the properties of the flow, we have that

Aψ(uj(t)) ≥ Aψ(u0,j) + t`j , (1.80)

for all t ∈ (0,+∞). Then from (1.75), we obtain that

Aψ(u0,j) + t`j
t−% + tζ

≤ +∞, (1.81)

for all t ∈ (0,+∞), where %+ ζ < 1. Consequently, it implies that Tj < +∞.
Now we want to investigate when the condition (1.57) occurs. Note that 〈ϕ,ψx〉 = 0, so Bψ(ϕ) = ψx.

Also, by the definition, we have S ′′(ϕ) = −∆ + c− ϕp. Therefore, we obtain that

〈S ′′(ϕ)ψx, ψx〉 = 〈S ′′(ϕ)ϕ,ϕ〉+ 4〈S ′′(ϕ)ϕ, xϕx〉+ 4〈S ′′(ϕ)(xϕx), xϕx〉

=
−p
p+ 1

∫
SL

ϕp+2 dxdy +
4p

(p+ 1)(p+ 2)

∫
SL

ϕp+2 dxdy + 4
∫
SL

ϕ2
x dxdy

=
2p− p2

(p+ 1)(p+ 2)

∫
SL

ϕp+2 dxdy + 4
∫
SL

ϕ2
x dxdy.
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On the other hand, we know that∫
SL

ϕ2
x dxdy =

p

2(p+ 1)(p+ 2)

∫
SL

ϕp+2 dxdy,

by Pohozaev-type identities. Therefore

〈S ′′(ϕ)ψx, ψx〉 =
4p− p2

(p+ 1)(p+ 2)

∫
SL

ϕp+2 dxdy. (1.82)

Thusly, we have proved

THEOREM 1.9.11 The orbit Ωϕ is unstable by the flow of ZK equation, if p > 4.



Chapter 2

ZK with Dissipation

2.1 Introduction
The dispersion terms in the ZK equation appear in the Zakharov-Kuznetsov-Burgers (ZKB) equation, with
directional dispersion:

ut +
(

∆u− αux +
1
2
u2

)
x

= 0, (x, y) ∈ R2, t ∈ R+;

and the ZK equation with higher order dissipation which is known as a 2D version of the Benney equation
:

ut + uux + αuxx + ∆ux + β∆2u = 0, (x, y) ∈ R2, t ∈ R+

where α > 0, β > 0 are real constants, u is a real-valued function. The ZKB equation describes the
propagations, of nonlinear dust acoustic waves in a nonuniform magnetized dusty plasma [26, 61]. The
Benney equation describes a variety of physical phenomena in two dimensions (mainly, of hydrodynamic
origin), for example, long waves on a thin liquid film, the Rossby waves in rotating atmosphere and the
drift waves in plasma [7, 39, 58]. 2D pulses in the Benney equation were numerically identified in the
limiting case of zero dispersion [66].

In Sections 2.2 and 2.6, we will investigate the Cauchy problem associated to the generalized ZKB
equation and the Benney equation in Sobolev spaces Hs

(
R2
)
. The Benney equation can be considered as

a high dimensional generalization of the KdV-KS equation

ut + δuxxx + uux + µ(uxx + uxxxx) = 0, (2.1)

where δ, µ ∈ R are constants. In [11], using the dissipative effect of the linear part, Biagioni, Bona,
Iorio and Scialom showed that the Cauchy problem associated to (2.1) is globally well-posed in Hs(R)
for s ≥ 1. We use purely dissipative methods applied by Dix to study the initial value problem for the
KdV-Burgers equation [25] (see also Giga in [34]). The main argument consists in applying a fixed point
theorem to the integral equation associated to the Benney equation in time weighted spaces. Indeed, we
can observe that the structure of the Benney equation possesses a dissipation stronger (in some sense)
than the dispersion. So that we do not need to use Bourgain’s-type spaces as in [59, 60]. But in the ZKB
equation, the dissipation is weaker than the dispersion so we need to use the effects of the dispersion. On

46
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the other hand, the directional dissipation uxx does not permit to use the Sobolev spaces directly by linear
properties of the ZKB equation. Therefore we have to apply the techniques of Molinet and Ribaud in the
Bourgain spaces which is strongly related to the results of the ZK equation. Unfortunately, the Cauchy
problem of the (generalized) ZK equation in Bourgain’s type spaces seems not to work.

Our strategy is to use the regularization by applying more dissipative terms to the equation [37]; in
fact, we will study the following regularized ZKB problem:

ut + (∆u+ f(u)− αux)x − β∆⊥u = 0;

where β ∈ R is nonnegative.

2.2 ZKB Equation
In this section, we will study the Cauchy problem of the Zakharov-Kuznetsov-Burgers (ZKB) equation:

ut + (∆u+ f(u)− αux)x = 0, (2.2)

where α ∈ R is nonnegative and f is a differentiable real-valued function on R such that f(0) = 0 and
f ′(0) = 0. We also assume that f(x) = O(xp+1), for p ∈ N. We denote F (x) =

∫ x
0
f(s) ds as the primitive

function of f . We are going to investigate the local well-posedness of initial value problem of (2.2) in
Sobolev spaces Hs and some weighted spaces. Our strategy is to use the regularization by applying more
dissipative terms to the equation; in fact, we will study the following regularized ZKB problem:

ut + (∆u+ f(u)− αux)x − β∆⊥u = 0, (2.3)

where β ∈ R is nonnegative; and then by using the properties of (2.2) we obtain the solution of (2.3).
Here, we consider u(x, y) such that (x, y) ∈ R×Rn−1 and 4 = ∂2

x +4⊥. The directional dissipation term
uxx just provides the mass conservation. But it is worth knowing the behavior of the ZKB equation under
invariants of the ZK equation. We suppose that u(t) is sufficiently regular, then one can see that:

PROPOSITION 2.2.1 For any t ∈ [0, T ], we have

• ∫
Rn

u(t)2 dxdy + 2α
∫ t

0

∫
Rn

u2
x(t

′) dxdydt′ =
∫

Rn

u2
0 dxdy.

Consequently, ‖u(t)‖L2 is a non-increasing function of t; and

sup
t∈[0,T ]

‖u(t)‖L2 ≤ ‖u0‖L2 .

•

E(u(t)) + α

∫ t

0

∫
Rn

[
u2
xy1(t

′) + · · ·+ u2
xyn−1

(t′)
]
dxdydt′ = α

∫ t

0

∫
Rn

u2
x(t

′)f ′(u) dxdydt′ + E(u0),

where E(u) =
∫

Rn

1
2
|∇u|2 − F (u) dxdy.
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2.3 Linear Properties
Consider the initial value problem ut + (∆u− αux)x − β∆⊥u = 0

u(x, y, 0) = u0(x, y) (x, y) ∈ R× Rn−1
(2.4)

where u0 ∈ Hs, s ∈ R. Solutions of (2.4) are described by the semigroup {Uα,β(t)}t≥0, that is,

uα,β(t) = Uα,β(t)u0 =
∫

Rn−1

∫
R

et(iξ
3+iξ|η|2−αξ2−β|η|2)+ixξ+iy·η û0(ξ, η) dξdη.

In fact, ̂Uα,β(t)u0 = Kα,β(ξ, η, t)û0, where

Kα,β(ξ, η, t) = eit(ξ
3+ξ|η|2+αiξ2+βi|η|2).

By an elementary calculation, one has that∥∥∥(ξ2 + |η|2
)s

Kα,β(ξ, η, t)
∥∥∥
∞

- t−s max{α−s, β−s}, (2.5)

where - means the inequality needs to a harmless positive constant (which in fact only depends on s). So,
we can obtain a useful property of the solutions of (2.4).

LEMMA 2.3.1 Let α, β > 0 and s ∈ R, then for every δ ≥ 0 and all t > 0, Uα,β(t) ∈ L(Hs,Hs+δ);
moreover

‖uα,β(t)‖Hs+δ -
(
1 + t−s max{α−s, β−s}

)1/2 ‖u0‖Hs , (2.6)

for any u0 ∈ Hs.

However, it is straightforward that Uα,β is a contraction semigroup in Hs and is extensible to a strongly
continuous unitary group whenever α = β = 0. Next we study the Lp estimates of Uα,β(t)δ0 which may be
useful. Denote Kα,β(ξ, η, t) = g(ξ, η, t) fα,β(ξ, η, t) where g(ξ, η, t) = eit(ξ

3+ξ|η|2). By induction it is easy
to see that for any k ∈ N, ∂k

∂ξk fα,β = pk(ξ, η, t) fα,β , where pk is a polynomial of degree k in each of the

variables t and ξ with its higher order term of the form (αtξ)k. Also ∂k

∂ηk fα,β can be analogously obtained
for the components of η. On the other hand,

∂kξ g = g

k∑
j=[ k

3 ]

tjgk,j(ξ, η),

where gk,j(ξ, η) is a polynomial of degree 2j with respect to ξ and |η| and also gk,j(0, 0) = 0. Also

∂kηg = gk(ξ, η, t)g,

where pk is a polynomial of degree k+1 with its higher order term of the form (βtξη)k. Then by Leibniz’s
rule we have

∂kηi
Kα,β = Kα,β

[ k
2 ]∑
j=0

tk−j |η|k−2jhk,j(ξ, β) (2.7)
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for each component of η = (η1, · · · , ηn−1). So we can obtain the estimates of the Green function U0
α,β(t) =

Uα,β(t)δ0:

LEMMA 2.3.2 Let m = (m1, · · · ,mn), k = (k1, · · · , kn) ∈ (Z+)n, x ∈ Rn and t > 0.

(i) If 2 ≤ p ≤ ∞, then ∥∥xkDmU0
α,β(t)

∥∥
Lp ≤ C(α, β)〈t〉 1

2 |k| t−
1
2 |m|−n(1− 1

p ). (2.8)

(ii) If 1 ≤ p ≤ 2, then∥∥xkDmU0
α,β(t)

∥∥
Lp ≤ C(α, β)〈t〉

1
2 (|k|−n

2 ) t−n(1−
1
p )− |m|

2 , (2.9)

where |k| = k1 + · · ·+ kn, |m| = m1 + · · ·+mn and 〈t〉 =
(
1 + t2

)1/2.
Proof. Suppose that 2 ≤ p ≤ ∞. We have by the Plancherel theorem and the preceding lemma∥∥xkDmU0

α,β(t)
∥∥
Lp ≤ C

∥∥xmDkKα,β

∥∥
L

p
p−1

≤ C(α, β)〈t〉
|k|
2 ‖xmKα,β‖

L
p

p−1

≤ C(α, β)〈t〉
1
2 (|k|−n

2 ) t−n(1−
1
p )− |m|

2 .

The second estimate, for 1 ≤ p ≤ 2, follows from the last estimate, interpolation and the following
inequality:∥∥xkDmU0

α,β(t)
∥∥
L1 =

∫
Sr(0)

∣∣xkDmU0
α,β(t)

∣∣ dx +
∫

Rn�Sr(0)

∣∣x−1∣∣ ∣∣∣xk̂DmU0
α,β(t)

∣∣∣ dx
≤ 〈t〉n

4
∥∥xkDmU0

α,β(t)
∥∥
L2 + 〈t〉−n

4

∥∥∥xk̂DmU0
α,β(t)

∥∥∥
L2
≤ 〈t〉

1
2 (|k|−n

2 )t−
|m|
2 ,

where k̂ = k+1 = (k1 +1, · · · , kn+1), 1 = (1, · · · , 1) ∈ Rn and Sr(0) denotes the cube centered at 0 ∈ Rn
with the side length r =

√
〈t〉. �

A direct corollary of preceding lemma is Lp-estimates of the solutions uα,β(t) of (2.4):

PROPOSITION 2.3.3 Let u0 ∈ L2. Then uα,β(t) ∈ Lp for any 2 ≤ p ≤ ∞; moreover ‖uα,β(t)‖Lp ≤
Ct−θ‖u0‖, where θ = θ(p) = 1− 2

p .

Proof. By using of the Plancherel theorem and the Hölder Inequality, we have

‖uα,β(t)‖Lp ≤ C‖Kα,βû0‖
L

p
p−1

≤ C‖u0‖L2

∥∥U0
α,β(t)

∥∥
L

2p
p−2

.

But from last lemma, we have ‖Uα,β(t)‖
L

2p
p−2

≤ Ct
2
p−1. Thus ‖uα,β(t)‖Lp ≤ Ct−θ‖u0‖L2 . �

Now we will obtain some y−directional estimates of U0
α,β(t) which may be useful in the instability analysis.

LEMMA 2.3.4 Let 2 ≤ p ≤ ∞. Then for any t > 0,
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(i) if x ≥ 0 then
‖U0

α,β(t)‖Lp
y(Rn−1) ≤ C t−

1
3 (n−n−1

p ) e−
2
3x

3/2t−1/2
. (2.10)

(ii) if x ≤ 0 then

‖U0
α,β(t)‖Lp

y(Rn−1) ≤ C

(
t
− 1

3

(
1+ n−1

p′

)
+ t

1
3

(
1−2n

p′

)
− 1

4+ 1
2p′ |x|

n
p′−

3
2p′−

1
4

)
, (2.11)

where 1
p′ = 1− 1

p .

Proof. By a change of variable we have

U0
α,β(x, y, t) =

∫
Rn

et(iξ
3+iξ|η|2−αξ2−β|η|2)+ixξ+iy·η dξdη

= C t−1/3

∫
Rn

eiξ
3+it2/3ξ|η|2−αt1/3ξ2−βt|η|2+it−1/3xξ+iy·η dξdη

= C t−1/3

∫
Rn−1

Ai
(
t−1/3x+ t2/3|η|2

)
eiy·η−αt

1/3ξ2−βt|η|2 dη,

where Ai is the Airy function, defined by Ai(x) =
∫
R
eiξ

3+ixξ dξ. By using Plancherel theorem, we obtain

∥∥U0
α,β(x, ., t)

∥∥
Lp(Rn−1)

≤ C t−1/3
∥∥∥Ai(t−1/3x+ t2/3| · |2

)∥∥∥
Lq(Rn−1)

.

Now, if x ≥ 0 then we know that |Ai(x)| ≤ e−
2
3x

3/2
, (see[32]), this leads us to the inequality (2.10). If

x ≤ 0 then we divide Rn−1 to
{
η ∈ Rn−1 ; |η|2 + t−1x ≥ 0

}
and its complement, but by using the preceding

bound on the Airy function, it is clear that∫
|η|2+t−1x≥0

∣∣∣Ai(t−1/3x+ t2/3|η|2
)∣∣∣q dη (2.12)

is bounded independently of x and t > 0. On the other hand, if we consider the other region, then by a
change of variable, we have

I =
∫

|η|2+t−1x<0

∣∣∣Ai(t−1/3x+ t2/3|η|2
)∣∣∣q dη = C t

1−n
3

∫
|η|2+t−1/3x≤0

∣∣∣Ai(t−1/3x+ |η|2
)∣∣∣q dη

= C t
1−n

3

∫ 0

t−1/3x

|Ai(w)|q
(
w − t−1/3x

)n− 5
2
dw,

where C depends on
∣∣Sn−1

∣∣. Since w ≤ 0 then |Ai(w)| ≤ |w|−1/4, thusly

I ≤ C t
1−n

3

∫ 0

t−1/3x

|w|−q/4
(
w − t−1/3x

)n− 5
2
dw;

≤ C t−
2
3n+ 7

6 |x|n− 5
2

∫ 0

t−1/3x

|w|−q/4dw;≤ C t
1−2n

3 + q
12+ 1

2 |x|n−
q
4−

3
2 .

(2.13)

By (2.10), (2.11) and the bound on (2.12), we obtain (b). �

Now we want to study the initial value problem (2.4) in weighted spaces.
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DEFINITION 2.3.5 Let s ∈ R be nonnegative, p ∈ N and r = (r1, · · · , rn) ∈ (R+)n. We denote
Lp
((

1 + |x2r|
)
dx
)

the space of all real valued functions f such that

‖f‖pLp((1+|x2r|)dx) =
∫
fp(x)

(
1 + |x2r|

)
dx <∞,

where |x2r| =
n∑
i=1

x2ri
i . Also we denote F s,p

r the space of all real valued measurable functions f such that

‖f‖F s,p
r

= ‖f‖Hs + ‖f‖Lp((1+|x2r|)dx) <∞.

The following lemma is useful in the weighted spaces.

LEMMA 2.3.6 Let n = 2, p,m ∈ N, β > 0, t > 0 and ω = (ω1, ω2) ∈ R2. Then for any f ∈ F 0,p
0,m,

‖DωUα,β(t)f‖F 0,p
0,m

≤ C(m,β, |ω|)
(
1 + t−

|ω|
2 + t

m−|ω|
2

)
‖f‖F 0,p

0,m
.

Proof. The proof follows from Plancherel theorem, Leibniz’s rule, (2.6) and (2.7). In fact, we have

‖ymDωUα,β(t)f‖Lp =
∥∥∥∂mη (ξω1ηω2Kα,β(ξ, η, t)f̂

)∥∥∥
Lp

≤ C

min{m,ω2}∑
k=0

∥∥∥ξω1ηω2−k∂m−kη Kα,β(ξ, η, t)f̂
∥∥∥
Lp

≤ C
∑
k

∥∥∥∥∥∥ξω1ηω2−k
m−k∑
j=0

[ j
2 ]∑
`=0

tj−`ηj−2`(1 + |ξ|)j−2`Kα,β(ξ, η, t) ∂m−k−jη f̂

∥∥∥∥∥∥
Lp

≤ C
∑
k

∑
j

∑
`

tj−`
∥∥∥ξω1(1 + |ξ|)j−2`ηj+ω2−k−2`e−t(αξ

2+βη2)
∥∥∥
∞

∥∥∥∂m−k−jη f̂
∥∥∥
Lp

≤ C
∑
k

∑
j

∑
`

(
t

j+k−|ω|
2 + t

2`+k−|ω|
2

)∥∥∥∂m−k−jη f̂
∥∥∥
Lp

≤ C
(
t−

|ω|
2 + t

m−|ω|
2

)∥∥∥(1 + y2k)1/2f
∥∥∥
Lp
,

where C may change from line to line and depends on β, m, |ω| and the maximum of the coefficients of
∂iη f̂ . This completes the proof. �

By using the definition of the Uα,β , Lemma 2.3.1 and Lp interpolation theorem (see [68]), we can eas-
ily obtain the persistence and boundedness and regularity of the solutions in our weighted spaces.

LEMMA 2.3.7 Let n = 2, s ≥ 2, r ∈ [0, 1] and t ≥ 0. Then if f ∈ F s,2
1 and β ≥ 0, then Uα,β(t) ∈

L
(

F s,2
1

)
and

‖Uα,β(t)f‖F s,2
1

≤ C‖f‖F s,2
1
,

where C is a polynomial of first degree in t with positive coefficients depending on α and β. Moreover
Uα,β(·)f ∈ C

(
[0,+∞); F s,2

1

)
.

Furthermore, if f ∈ F s,2
r , δ ≥ 0 and β > 0, then Uα,β(t) ∈ L

(
F s,2
r ,F s+δ,2

r

)
and

‖Uα,β(t)f‖s+δ,2
r

≤ C‖f‖F s,2
r
.
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Moreover Uα,β(·)f ∈ C
(
[0,+∞); F s+δ,2

r

)
.

The following properties are some direct consequences of Lemmata 2.3.1, 2.3.6 and 2.3.7.

LEMMA 2.3.8 Let s ≥ 0, ω ∈ R2, rN, δ ≥ 0, β > 0 and t > 0. Then, if f ∈ F s,2
1,r , then Uα,β(t) ∈

L
(

F s,2
1,r ,F s+δ,2

1,r

)
and

‖Uα,β(t)f‖F s+δ,2
1,r

≤ C‖f‖F s,2
1,r
,

where C = C(t, α, β, δ) is a continuous function such that C ∼ O
(
t−

δ
2

)
as t → 0+. Moreover Uα,β(·)f ∈

C
(
[0,+∞); F s+δ,2

1,r

)
.

Furthermore, DωUα,β(t) ∈ L
(

F s,2
1,r

)
and

‖DωUα,β(t)f‖F s,2
1,r

≤ C‖f‖F s,2
1,r
,

where C = C (t, α, β, |ω|) is a continuous function such that C ∼ O
(
t−

|ω|
2

)
as t → 0+. Moreover

DωUα,β(·)f ∈ C
(
[0,+∞); F s,2

1,r

)
.

2.4 Local Existence
Now we are going to study the Cauchy problem (2.3). We use the obtained properties of linear problem
and a Poincare argument to get the existence in a suitable space. Without loss of generality we assume
that f(x) = 1

p+1x
p+1 in (2.3). The main theorem is the following:

THEOREM 2.4.1 Let α, β > 0 and s > n
2 +1. Then for any u0 ∈ Hs, there exists T sα,β = T (α, β, ‖u0‖Hs)

and a unique solution of initial value problem (2.3), uα,β(·) defined in the interval
[
0, T sα,β

]
satisfying

uα,β ∈ C
([

0, T sα,β
]
;Hs

)
∩ C1

([
0, T sα,β

]
;Hs−2

)
, (2.14)

‖uα,β(t)‖Hs ≤ ‖u0‖Hs exp
{
c

∫ t

0

‖uα,β(τ)‖p−1
L∞ ‖∇uα,β(τ)‖L∞ dτ

}
, (2.15)

for all t ∈
[
0, T sα,β

]
. Moreover uα,β ∈ C

((
0, T sα,β

]
;H∞

)
.

Proof. As usual we consider the integral equation associated to the initial value problem (2.3), that is,

uα,β(t) = Uα,β(t)u0 +
∫ t

0

Uα,β(t− τ)(∂xuα,βu
p
α,β)(τ) dτ. (2.16)

We define the operator

Φ(v(t)) = Uα,β(t)u0 +
∫ t

0

Uα,β(t− τ)(vpvx)(τ) dτ, (2.17)

and the metric space
E
(
T sα,β

)
=
{
v ∈ C

([
0, T sα,β

]
;Hs

)
: |v|E ≤ ‖u0‖Hs

}
,
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where |v|E = sup
t∈[0,T s

α,β]
‖v(t)−Uα,β(t)u0‖Hs . First we will show that Φ(v) ∈ E

(
T sα,β

)
if v ∈ E

(
T sα,β

)
and

T sα,β is suitable . In fact, by Hölder inequality and (2.6), we have

‖Φ(v(t))− Uα,β(t)u0‖Hs ≤ c

∫ t

0

∥∥Uα,β(t− τ)vp+1(τ)
∥∥
Hs+1 dτ ≤ c

∫ t

0

(1 + τ−s max{α−s, β−s})1/2‖v‖p+1
Hs dτ

≤ c‖u0‖p+1
Hs

∫ t

0

(1 + τ−s max{α−s, β−s})1/2 dτ.

Therefore Φ(v) ∈ E
(
T sα,β

)
for T sα,β small enough. A similar computation shows that Φ is a contraction

(by choosing T sα,β smaller if necessary). So the obtained fixed point via contraction is a solution of equation
(2.3) with initial data u0. Note that the obtained solution uα,β(t) with initial data u0 is more regular for
t > 0 and is in C

((
0, T sα,β

]
;H∞

)
. In fact, for any λ > 0 and T > 0, we have that Uα,β(t)u0 ∈ Hs+λ, by

(2.6). But for any ε ∈ (0, 1), we have∥∥∥∥∫ t

0

Uα,β(t− τ)upα,β(τ)∂xuα,β(τ) dτ
∥∥∥∥
Hs+ε

≤ c

∫ t

0

∥∥∥Uα,β(t− τ)up+1
α,β (τ)

∥∥∥
Hs+1+ε

dτ

≤ c sup
τ
‖uα,β(τ)‖p+1

Hs

∫ t

0

(
1 + τ−s max{α−s, β−s}

)1/2
dτ,

where c depends on ε. This implies that uα,β(t) ∈ Hs+ε for all t ∈
(
0, T sα,β

]
. By reiterating this procedure,

one gets that uα,β(t) ∈ H∞ for all t ∈
(
0, T sα,β

]
. Now suppose that t ∈

(
0, T sα,β

]
, so we have uα,β(t) and

d
dtuα,β(t) are in H∞. Define Js = (1 −∆)s/2. We know that Js ∈ L(Hr,Hr−s) for every s, r ∈ R. Thus
Jsuα,β(t) ∈ H∞. By applying Js to (2.3) and taking the inner product with Jsuα,β(t), we obtain

1
2
d

dt
‖uα,β(t)‖2Hs + 〈Js∆∂xuα,β(t), Jsuα,β(t)〉+

1
p+ 1

〈
Js∂xu

p+1
α,β (t), Jsuα,β(t)

〉
− α〈Js∂2

xuα,β(t), J
suα,β(t)〉 − β〈Js∆⊥uα,β(t), Jsuα,β(t)〉 = 0.

Since Js commutes with the derivative operators, then from integrating by parts, we have

0 =
1
2
d

dt
‖uα,β(t)‖2Hs + α‖Js∂xuα,β(t)‖2L2 + β‖Js∇⊥uα,β(t)‖2L2 .

+
〈
upα,β(t)J

s∂xuα,β(t), Jsuα,β(t)
〉

+
〈
[Js, upα,β(t)]∂xuα,β(t), J

suα,β(t)
〉

Now, we use the Kato-Ponce commutator ([44]) :

LEMMA 2.4.2 If f, g ∈ S (Rn), s > 0 and p ∈ (1,+∞), then

‖[Js,Mf ]g‖Lp ≤ C
(
‖∇f‖Lp1

∥∥Js−1g
∥∥
Lp2

+ ‖Jsf‖Lp3 ‖g‖Lp4

)
, (2.18)

‖fg‖Lp ≤ C (‖f‖Lp1 ‖Jsg‖Lp2 + ‖Jsf‖Lp3 ‖g‖Lp4 ) , (2.19)

where p2, p3 ∈ (1,+∞) such that
1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4
.
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By using the preceding lemma, we obtain that

d

dt
‖uα,β(t)‖2Hs ≤ C

∣∣∣〈up−1
α,β (t)∂xuα,β(t), (Jsuα,β(t))

2
〉∣∣∣+ C

∣∣∣〈[Js, upα,β(t)], Jsuα,β(t)〉∣∣∣
≤ C

∣∣∣〈up−1
α,β (t)∂xuα,β(t), (Jsuα,β(t))

2
〉∣∣∣+

+ C‖∇(upα,β(t))‖L∞‖J
s−1∂xuα,β(t)‖L2‖uα,β(t)‖Hs+

+ C‖∂xuα,β(t)‖L∞‖Jsupα,β(t)‖L2‖uα,β(t)‖Hs

≤ C
(
‖uα,β(t)‖p−1

L∞ ‖∂xuα,β(t)‖L∞‖uα,β(t)‖2Hs

)
+

+ C
(
‖uα,β(t)‖p−1

L∞ ‖∇uα,β(t)‖L∞‖uα,β(t)‖2Hs

)
≤ C‖uα,β(t)‖p−1

L∞ ‖∇uα,β(t)‖L∞‖uα,β(t)‖2Hs ,

where we used the fact that ‖fg‖Hs ≤ C(‖f‖L∞‖g‖Hs + ‖f‖Hs‖g‖L∞), for every s ≥ 0. The Gronwall
inequality leads to (2.15). �

Now we are going to find a time interval of existence of solutions of (2.3) which is independent of pa-
rameters α and β. This can be easily obtained by considering the solution of d

dtX = csX q(t) for t ∈ [0, T s),
with initial data X (0) = ‖u0‖2Hs , where q = p+2

2 and cs is in the inequality

d

dt
‖uα,β(t)‖2Hs ≤ cs‖uα,β(t)‖pHs + 2,

for t ∈
(
0, T sα,β

)
, by using the Sobolev embedding. Now we take T ∈ (0, T s). Thus ‖uα,β(t)‖Hs ≤ X 1/2(t),

for t ∈ [0, T ∗] where T ∗ = min{T, T sα,β}. So all solutions can be extended to [0, T ] and then to [0, T s) and
also for any T ∈ (0, T s), there is AT such that ‖uα,β(t)‖Hs ≤ AT for all α, β > 0 and 0 ≤ t ≤ T . To get
the solutions of (2.2), we need to study the behavior of the solutions of (2.3) when the parameter β varies.
In fact, we will investigate more general case where α and β vary. Let α1, α2, β1, β2 > 0 and u0, v0 ∈ Hs

where s > n
2 + 1. Also let uα1,β1(t), uα2,β2(t) ∈ C([0, T ];Hs) be the solutions of (2.3) corresponding to the

initial data and the parameters u0, α1, β1 and v0, α2, β2 respectively. Note that T does not depend on the
parameters. Denote w(t) = uα1,β1(t)− uα2,β2(t), then we have

d

dt
‖w(t)‖2L2 =

2
p+ 1

〈
up+1
α1,β1

(t)− up+1
α2,β2

(t),wx(t)
〉

+ 2α1〈wxx(t),w(t)〉+ 2β1〈∆⊥w(t),w(t)〉

+ 2(α1 − α2)〈uα1,β1(t)xx,w(t)〉+ 2(β1 − β2)〈∆⊥uα1,β1(t),w(t)〉

=
1

p+ 1
〈
g(w)(t), (w2(t))x

〉
− 2α1‖wx(t)‖2L2 − 2β1‖∇⊥w(t)‖2L2+

+ 2(α1 − α2)〈∂2
xuα1,β1(t),w(t)〉+ 2(β1 − β2)〈∆⊥uα1,β1(t),w(t)〉

≤ CK p‖w(t)‖2L2 + 2 (|α1 − α2|+ |β1 − β2|) K 2,

where g(w) = upα1,β1
+up−1

α1,β1
uα2,β2 + · · ·+uα1,β1u

p−1
α2,β2

+upα2,β2
, and C does not depend on the parameters.

Therefore by Gronwall’s inequality, we obtain that

‖w(t)‖2L2 ≤ C
(
‖w0‖2L2 + |α1 − β1|+ |β1 − β2|

)
, (2.20)
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for all t ∈ [0, T ], where w0 = u0 − v0 and C = C(s, p,K , T ). In particular, for u0 = v0, we have

‖uα1,β1(t)− uα2,β2(t)‖L2 ≤ C(|α1 − β1|+ |β1 − β2|), (2.21)

for all t ∈ [0, T ].
Now, let {uα,β(t)}β>0 be the solutions of (2.3) corresponding to initial data u0 and the parameters

α (fixed) and β. Then {uα,β(t)}β>0 is a Cauchy sequence in C([0, T ];L2), by (2.21). Denote uα(t) =
limβ→0 uα,β(t) and wα(t) = uα,β1(t)− uα,β2(t). Then we have

|〈wα(t), φ〉Hs | ≤ |〈wα(t), φ− ψ〉Hs |+ |〈wα(t), ψ〉Hs | ≤ 2AT ‖φ− ψ‖Hs + ‖wα(t)‖L2‖ψ‖Hs

for any ψ ∈ S , φ ∈ Hs and t ∈ [0, T ]. Thus uα,β(t) → uα(t) in Cw([0, T ];Hs) as β → 0 and uα ∈
Cw([0, T ];Hs). Also by interpolation, we have uα,β(t) → uα(t) in C([0, T ];Hr) for any r ∈ [0, s). So

∆∂xuα,β(t) → ∆∂xuα(t), (2.22)
∆⊥uα,β(t) → ∆⊥uα(t), (2.23)

∂2
xuα,β(t) → ∂2

xuα(t), (2.24)

in Cw([0, T ];Hs−2) ∩ C([0, T ];Hr−2), and

∂x

(
up+1
α,β (t)

)
→ ∂x

(
up+1
α (t)

)
, (2.25)

in Cw([0, T ];Hs−1) ∩ C([0, T ];Hr−1) as β → +0. But we know that

uα,β(t) = u0 −
∫ t

0

[
∆∂xuα,β(τ) +

1
p+ 1

∂x

(
up+1
α,β (τ)

)
− α∂2

xuα,β(τ)− β∆⊥uα,β(τ)
]
dτ.

By taking the limit from the last identity and using the (2.22)-(2.25), we conclude that uα is a solution
of (2.2). The uniqueness implies that there is no other solution different from uα. Also the inequality of
(2.15) can be obtained by the weak lower semicontinuity. Note that uα has right continuity at zero. In
fact,

‖u0‖Hs ≤ lim inf
t→0+

‖uα(t)‖Hs ≤ lim sup
t→0+

X 1/2(t) = ‖u0‖Hs .

Thus limt→0+ uα(t) = u0. Analogously, one can obtain that as α = β → 0, there is a unique solution
u(t) of (1.1) in C([0, T ];Hs) for s > n

2 + 1. Notice that in this case we have also the left continuity
of the solution u(t) at T ( and in fact any t ∈ [0, T ]), by the uniqueness and the invariance of (1.1) by
(x, y, t) → (−x, y, a− t) for all a ∈ R. So Theorem 2.4.1 holds for β = 0 (in the weak sense) and α = β = 0.

Now we state the continuous dependence of the solutions to the initial data.

THEOREM 2.4.3 For R > 0, the correspondence u0 → uα,β that associates to u0 ∈ BR the solution
uα,β of (2.3) with initial data u0, is continuous mapping from BR into Esα,β, where BR is the ball of radius
R centered at the origin of Hs.

Proof. To prove this, one may use the Bona-Smith approximation. The following lemma (with slight
modifications) appears in [17].

LEMMA 2.4.4 Let ϕ ∈ Hs and s ∈ R. Then we have
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(a) ‖ϕε − ϕ‖L2 → 0, as ε→ 0,

(b) ‖ϕε − ϕ`‖L2 ≤ |ε− `|‖ϕ‖L2 , for any ε, ` ≥ 0,

(c) ‖ϕε‖L2 ≤ ‖ϕ`‖L2 iff ε ≥ ` ≥ 0,

(d) ‖ϕε‖L2 ≤
( r
sε

)r/s
e−r/s‖ϕ‖L2 , for any r ∈ R+,

where ϕ̂ε(ξ) = e−ε(1+|ξ|
2)s/2

ϕ̂(ξ).

Suppose that u0,n → u0 in Hs and also uα,β,n and uα,β are the corresponding solutions of (2.3) with
uα,β,n(0) = u0,n and uα,β(0) = u0. Take T ∈ (0, T s) and denote ϕn = u0,n and ϕ = u0. By using the
preceding lemma and its notation, we have ‖ϕεn − ϕ‖Hs → 0 as ε → 0 and n → +∞. So there is ε0 > 0
and N ∈ N such that for ε ∈ (0, ε0) and n ≥ N , uα,β,n, uεα,β,n and uεα,β are defined in [0, T ]. For simplicity
we remove α and β. Therefore we have

‖un(t)− u(t)‖Hs ≤ ‖un(t)− uεn(t)‖Hs + ‖uεn(t)− uε(t)‖Hs + ‖uε(t)− u(t)‖Hs .

Denote v = uε, vn = uεn, w = u− v and wn = un− vn. By the preceding lemma and Lemma 2.4.2, we have

d

dt
‖w‖2Hs . 〈upux − vpvx, w〉Hs . (〈upwx, w〉Hs + 〈(up − vp)vx, w〉Hs)

. |〈[Js, up]wx, Jsw〉|+ |〈upJswx, Jsw〉|+ ‖(up − vp)vx‖Hs‖w‖Hs

. ‖w‖2Hs + ‖g(w)‖Hs‖wvx‖Hs‖w‖Hs . ‖w‖2Hs + ‖wvx‖Hs‖w‖Hs

. ‖w‖2Hs + ‖w‖Hs (‖[Js, w]vx‖L2 + ‖wJsvx‖L2)

. ‖w‖2Hs + ‖w‖Hs (‖w‖Hr‖v‖Hs+1 + ‖w‖Hs‖v‖L2) ,

for some r ∈ (1, s− 1) and where . means the inequalities need to a positive constant depending on p,AT .
By interpolation and the preceding lemma, we have that

‖w‖Hr ≤ C‖w‖1−
r
s

L2 ‖w‖
r
s

Hs ≤ C‖ϕε − ϕ‖1−
r
s

L2 ≤ Cε1−
r
s ,

and ‖v‖Hs+1 ≤ C‖ϕε‖HS+1 ≤ C(‖ϕ‖Hs ,T )ε
−1/2. Then

d

dt
‖w‖Hs ≤ C

(
‖w‖Hs + εθ

)
,

where C = C(AT , ‖ϕ‖Hs , r, p) and θ = 1− r+1
s . By Gronwall’s inequality, we obtain that

‖w‖2Hs ≤ C(‖ϕε − ϕ‖2Hs + εθ).

Thusly
‖w‖2Hs + ‖wn‖2Hs ≤ C(‖ϕε − ϕ‖2Hs + ‖ϕεn − ϕn‖2Hs + εθ), (2.26)

and by interpolation we obtain

‖v − vn‖2Hs ≤ C‖v − vn‖H2s‖v − vn‖L2 ≤ C‖ϕεn − ϕε‖L2 ≤ C‖ϕn − ϕ‖L2 , (2.27)

where C = C(AT , ‖ϕ‖H2s). The proof follows from (2.26) and (2.27). �
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Corollary 2.4.5 The same result holds when β = 0 (and for α = β = 0) in Cw([0, T ];Hs) (in
C([0, T ];Hs)), by weak lower semicontinuity.

THEOREM 2.4.6 If p = 1, s > n
2 + 1 and α, β > 0 then the correspondence u0 → uα,β is analytic.

Proof. We define the mapping
Λ : Hs × Esα,β → Esα,β

given by

Λ(u0, v(t)) = v(t)− Uα,β(t)u0 −
∫ t

0

Uα,β(t− τ)(vvx)(τ) dτ.

Due to (2.6), Λ is smooth for s > n
2 + 1 and α, β > 0. Let Λ(u0, u(t)) = 0, which is to say, suppose u(t) is

a solution of (2.3) with u(0) = u0. Then taking the Fréchet derivative with respect to the second variable,
we have

Λ′u(u0, u(t))φ = φ−
∫ t

0

Uα,β(t− τ)(vφ)x(τ) dτ.

But we know that
‖Uα,β(t− τ)(uφ)x(τ) dτ‖Hs ≤ C(α,β,s,T s

α,β)‖u‖Hs‖φ‖Hs .

It is deduced that for T sα,β small enough Λ′u(u0, u(t)) is invertible since it is of the form of I + Θ such that

‖Θ‖X < 1, where X = L
(
Esα,β , E

s
α,β

)
. The proof is complete by the Implicit Function Theorem. �

2.5 Weighted Spaces
Now we are going to obtain some result in weighted spaces. We state our results in two dimensional case.
By some easy calculation, one can obtain the following useful lemma.

LEMMA 2.5.1 Let W be a function with all its first and second derivatives bounded and such that

|W (x, y)| ≤ Cεe
ε(x2+y2)

for all (x, y) ∈ R2 and any ε ∈ (0, ε̃), for some ε̃ > 0 and Cε > 0. Then there exist the constants
C1, · · · , C5 > 0, independent of ε such that

‖∇Wε‖L∞ ≤ C1 ‖∇W ‖L∞ + C2, (2.28)
‖DωWε‖L∞ ≤ C3 ‖∇W ‖L∞ + C4 ‖DωW ‖L∞ + C5, (2.29)

where Wε(x, y) = W (x, y) exp
(
−ε
(
x2 + y2

))
and ω ∈ R2 such that |ω| = 2.

THEOREM 2.5.2 Let u0 ∈ Hs
(

W 2
)
, s > 2 and W be a weight function as in Lemma 2.5.1. Then the

solution uα,β of the equation (2.3) corresponding to the initial data u0 is in C
([

0, T sα,β
)

;Hs
(

W 2
))

.

Moreover, the continuous dependence of solutions of the equation (2.3) holds in Hs
(

W 2
)
.
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Proof. By Theorem 2.4.1, it suffices to prove that ‖Wu(t)‖L2 remains bounded as long as t ∈ [0, T ] for
any T ∈

(
0, T sα,β

)
. By the hypothesis, ‖Wεuα,β‖L2 < ∞ and ‖Wε∂tuα,β‖L2 < ∞, for all t ∈ (0, T ]. By

using the equation (2.3), we obtain that

d

dt
‖Wεuα,β‖2L2 = 2

〈
Wεuα,β ,Wε∂x∆uα,β − Wεu

pux + αWε∂
2
xuα,β + βWε∆⊥uα,β

〉
.

On the other hand, it is simple to see that

〈Wεuα,β ,Wε∂x∆uα,β〉 = 〈Wεuα,β , [Wε, ∂x]∆uα,β〉+ 〈Wεuα,β , ∂x[Wε,∆]uα,β〉 , (2.30)〈
Wεuα,β ,Wε∂

2
xuα,β

〉
+ ‖∂x(Wεuα,β)‖2L2 =

〈
Wεuα,β ,

[
Wε, ∂

2
x

]
uα,β

〉
, (2.31)

〈Wεuα,β ,Wε∆⊥uα,β〉+ ‖∇⊥(Wεuα,β)‖2L2 = 〈Wεuα,β , [Wε,4⊥]uα,β〉 , (2.32)∥∥∥Wεu
p
α,β∂xuα,β

∥∥∥
L2
≤
∥∥up−1∂xuα,β

∥∥
L∞

‖Wεuα,β‖L2 ≤ A p
T ‖Wεuα,β‖L2 . (2.33)

By using the integration by parts and Lemma 2.5.1, one obtain that

d

dt
‖Wεuα,β‖2L2 ≤ 2

(
C ‖uα,β‖Hs ‖Wεuα,β‖L2 + A p

T ‖Wεuα,β‖2L2

)
≤ CA 2

T + (1 + A p
T ) ‖Wεuα,β‖2L2 ;

and by Gronwall’s inequality, it follows that

‖Wεuα,β‖2L2 ≤ e1+A p
T

(
‖Wεu0‖2L2 + T (CAT )2

)
.

Applying now the Monotone Convergence Theorem yields that

‖Wuα,β‖2L2 ≤ e1+A p
T

(
‖Wεu0‖2L2 + T (CAT )2

)
.

Thus uα,β ∈ Hs
(

W 2
)

for all t ∈
(
0, T sα,β

)
. The continuity and dependence continuity can be derived from

analogous estimates, similar to Theorem 2.4.1. �

The following theorem shows the persistence of the solutions of the equation 2.3 in the weighted spaces
F s,2

1,s .

THEOREM 2.5.3 Let s ∈ N, s ≥ 3 and β ≥ 0. Also suppose that uα,β ∈ C
([

0, T sα,β
)

;Hs
)

is maximal

solution of the equation (1.6) corresponding to the initial data F s,2
1,s . Then uα,β ∈ C

([
0, T sα,β

)
; F s,2

1,s

)
.

Proof. Take α, β > 0. Note that F s,2
r1,r2 is a Banach algebra, for s > 1 and r1, r2 > 0. Thus, as in the

proof of the Theorem 2.4.1 and using the Lemma 2.3.8, one obtain a local solution of the equation (2.3) in
the complete space

E
(
T̃
)

=
{
v ∈ C

([
0, T̃

]
; F s,2

1,s

)
: |v|E ≤ ‖u0‖F s,2

1,s

}
,

where |v|E = sup
t∈[0,T̃ ]

‖v(t)− Uα,β(t)u0‖F s,2
1,s

, for some T̃ > 0. By the uniqueness of the solution in Hs, this

solution must be uα,β . Therefore, it only remains to prove that it belongs to F 0,2
0,s for t ∈

[
0, T sα,β

)
, by
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using the Theorem 2.5.2. So it is enough to estimate ‖ysuα,β‖L2 for all t ∈
[
0, T̃

]
. Note that for t ∈

[
0, T̃

]
,

ysupα,β∂xuα,β(t) ∈ L2, since ∥∥∥ysupα,β∂xuα,β(t)∥∥∥
L2
≤ C(s)A p

T̃
‖ysuα,β(t)‖L2 .

By using (2.16) and Lemma 2.5.1, one can easily see that ysDωuα,β(t) and ys∂tuα,β(t) are in L2 for all
t ∈
(
0, T̃

]
and |ω| = 2. Therefore, using some integration by parts, one obtains that

∂t ‖ysuα,β(t)‖2L2 ≤ C ‖ysuα,β(t)‖2L2 ,

where C = C(s, α, β) is increasing in α and β. Thusly

‖ysuα,β(t)‖2L2 ≤ eCT̃
(
‖ysu0‖2L2 + CT̃A 2

T̃

)
. (2.34)

This allows us to extend the solution uα,β to its interval of existence in Hs.
For the case β = 0, observe that by (2.34) and the Theorem 2.4.1, there exists T > 0 such that

‖ysuα,β(t)‖2L2 ≤ C
(
T, s, β̃, ‖u0‖F s,2

1,s

)
,

for any β ∈
(
0, β̃
)
, β̃ > 0 arbitrary and for any t ∈ [0, T ]. Then for any t ∈ [0, T ], there exists a se-

quence βn such that uα,βn
(t) ⇀ v(t) in L2

((
1 + y2s

)
dxdy

)
, for some v(t) ∈ L2

((
1 + y2s

)
dxdy

)
. But

since L2
((

1 + y2s
)
dxdy

)
↪→ L2, v = uα,0. The inequality (2.34) follows also for β = 0 by the weak lower

semicontinuity of the norm L2
((

1 + y2s
)
dxdy

)
. Finally, an extension argument yields the result. �

REMARK 2.5.4 Note that we are able to prove that the ill-posedness of the ZKB equation the anisotropic
spaces; indeed , in [27], we proved that, when p = 1, the ZKB equation (2.3) is ill-posed (in some sense) in
Hs,0

(
R2
)

for s < − 3
4 . Further more we obtained some explicit traveling wave solutions of (2.3), by using

the improved tanh method.

2.6 Equation with Higher Order Dissipation
In this section, We are going to investigate the Cauchy problem of the Benney equation :

ut + uux + αuxx + ∆ux + β∆2u = 0, (x, y) ∈ R2, (2.35)

where α > 0, β > 0, and ∆2 =
(
∂2
x + ∂2

y

)2. In fact we wish to obtain local and global well posedness of
initial value problem of (2.35) in Sobolev spaces. If we assume that u(t) is sufficiently regular in [0, T ],
then

PROPOSITION 2.6.1 For any t ∈ [0, T ],

1
2
‖u(t)‖2L2 + β

∫ t

0

∫
R2
u2
xx(t

′) + 2u2
xy(t

′) + u2
yy(t

′) dxdydt′ = α

∫ t

0

∫
R2
u2
x(t

′) dxdydt′ +
1
2
‖u0‖2L2 .
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The linear problem associated to equation (2.35) is : ut + ∆ux + αuxx + β∆2u = 0, (x, y) ∈ R2, t ∈ R,

u(x, y, 0) = u0(x, y)
(2.36)

where u0 ∈ Hs(R2), s ∈ R. The unique solution of (2.36) is given by the semigroup {U(t)}t≥0, that is,

u(t) = U(t)u0 =
∫

R2
et(iξ

3+iξη2+αξ2−β(ξ2+η2)2)ei(xξ+yη) û0(ξ, η) dξdη.

It is convenient to define :
K(ξ, η, t) = e

it
(
ξ3+ξη2−iαξ2+iβ(ξ2+η2)2

)
.

In fact, Û(t)u0 = K(ξ, η, t)û0. The following lemma provides a very useful inequality.

LEMMA 2.6.2 For any α, β > 0 and a > 0, we have for all ξ, η ∈ R,

F (ξ, η) =
(
ξ2 + η2

)a
eαξ

2−β(ξ2+η2)2

≤ %a e
1
2 (α%−a), (2.37)

where % =
α+

√
α2 + 8aβ
4β

.

Proof. By calculating the gradient of the function F and its Hessian matrix we obtain that (ξ, η)max =
(
√
%, 0). �

Now, the following properties of U(t) can be derived.

LEMMA 2.6.3 Let s, λ, α ≥ 0 and β > 0. Then U(t) ∈ L
(
Hs
(
R2
)
,Hs+λ

(
R2
))

for all t > 0 and
satisfies the estimate

‖U(t)f‖Hs+λ .

eα2t
4β +

(
α

4β

)λ/2 [
1 +

√
1 +

4λβ
α2t

]λ/2
e

α2t
4β

(
1+

√
1+ 4λβ

α2t

) ‖f‖Hs , (2.38)

for all f ∈ Hs(R2), where . means the inequality needs to a constant depending on λ. Moreover, the map
t ∈ (0,∞) 7−→ U(t)f is continuous with respect to the topology of Hs+λ(R2).

Proof. The first part and (2.38) is a direct consequent of Lemma 2.6.2. For the continuity result, assume,
without loss of generality, that t > t′ and apply the dominated convergence theorem to deduce that

‖U(t)f − U(t′)f‖2Hs+λ

=
∫

R2

(
1 + ξ2 + η2

)s+λ [
e
t
(
αξ2−β(ξ2+η2)2

)
− e

t′
(
αξ2−β(ξ2+η2)2

)]2 ∣∣∣f̂(ξ, η)
∣∣∣2 dξdη

=
∫

R2

(
1 + ξ2 + η2

)s+λ
e
t
(
αξ2−β(ξ2+η2)2

) [
1− e

(t−t′)
(
αξ2−β(ξ2+η2)2

)]2 ∣∣∣f̂(ξ, η)
∣∣∣2 dξdη

tens to zero as t→ t′. �

In fact, Lemma 2.6.3 expresses a regularizing property of the semigroup U(t). Now we state our result
on local well-posedness in Hs(R2).
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THEOREM 2.6.4 Let α > 0, β > 0 be fixed and suppose u0 ∈ Hs(R2) to be given, where s > 1. Then
there exists Ts > 0 depending on s, ‖u0‖Hs(R2), α and β; and a unique solution u(t) of the equation (2.35)
such that u(0) = u0 and

u(t) ∈ C
(
[0, Ts];Hs

(
R2
))
.

Proof. We define the operator

Φ(u(t)) = U(t)u0 +
∫ t

0

U(t− t′)u(t′)ux(t′) dt′ (2.39)

and the complete metric space

E(Ts) =
{
u ∈ C

(
[0, Ts];Hs

(
R2
))

: |u|E ≤ ‖u0‖Hs

}
, (2.40)

where |u|E = sup
t∈[0,Ts]

‖u(t)−U(t)u0‖Hs . Let u ∈ E(Ts). By the Hölder inequality and (2.38)(Lemma 2.6.3),

we have

‖Φ(u(t))− U(t)u0‖Hs ≤ c

∫ t

0

‖U(t− t′)u2(t′)‖Hs+1 dt′

≤ c

∫ t

0

eα2t′
4β +

√
α

4β

(
1 +

√
1 +

4β
α2t′

)1/2

e
α2t′
4β

(
1+

√
1+ 4β

α2t′

) ‖u‖2Hs dt′

≤ c‖u0‖2Hs(R2)

∫ t

0

eα2t′
4β +

√
α

4β

(
1 +

√
1 +

4β
α2t′

)1/2

e
α2t′
4β

(
1+

√
1+ 4β

α2t′

) dt′

= c‖u0‖2Hs(R2)Υ(t).

Therefore Φ(u) ∈ E(Ts) for Ts small enough; in fact for this Ts, Φ(E(Ts)) ⊂ E(Ts). One can also see that
Υ(Ts) tends to zero as Ts tends to zero. A similar computation shows that Φ is a contraction (by choosing
Ts smaller if necessary). In fact, for t ∈ [0, Ts], one has

‖Φ(u(t))− Φ(v(t))‖Hs ≤ c sup
t∈[0,Ts]

∥∥u2(t)− v2(t)
∥∥
Hs Υ(Ts)

≤ c sup
t∈[0,Ts]

‖u(t)− v(t)‖Hs(‖u(t)‖Hs + ‖v(t)‖Hs)Υ(Ts) ≤ c sup
t∈[0,Ts]

‖u(t)− v(t)‖Hs

(
e

α2Ts
2β + 1

)
‖u0‖HsΥ(Ts),

where we used this fact that ‖u(t)‖Hs ≤
(
e

α2Ts
4β + 1

)
‖u0‖Hs , by (2.38). Choosing Ts small enough gives

us the contraction. So there exists a unique solution u(t) of the equation (2.35) with initial data u0. �

PROPOSITION 2.6.5 Let u ∈ C([0, Ts];Hs(R2)) be the solution of equation (2.35) with initial condi-
tion u0 in Hs(R2), where s > 1, α > 0 and β > 0. Then u ∈ C([0, Ts];H∞(R2)).

Proof. The proof follows from an easy bootstrapping argument similar what we mentioned in the equa-
tion (2.3), by using Lemma 2.6.3. �
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Now we are going to obtain a global a priori estimates that enable the local solutions to be extended
to temporal half line [0,∞).

LEMMA 2.6.6 Consider the initial value problem (2.35) with initial data u0 ∈ Hk
(
R2
)

for some integer
k ≥ 0. Let u be a solution of (2.35) in C([0, T ];Hk

(
R2
)
) for some T > 0. Then we have

‖u‖L2(R2) ≤ ecT ‖u0‖L2(R2), (2.41)

if there exists a constant ε > 0 such that ε ≤ β. Furthermore, we have

‖u‖Hj(R2) ≤ g
(
‖u0‖Hj−1(R2)

)
‖u0‖Hj(R2), (2.42)

for j = 1, · · · , where g(‖u0‖Hj−1(R2)) is a nondecreasing function of ‖u0‖Hj−1(R2), α, β and T .

Proof. We begin by proving the lemma in L2-norm. Multiplying the equation (2.35) by u and integrating
over R2, we obtain that

1
2
d

dt
‖u‖2L2 + α〈u, uxx〉+ β〈u,∆2u〉 = 0, (2.43)

where the inner product is that of L2. Integration by parts and the Cauchy-Schwarz inequality then imply

1
2
d

dt
‖u‖2L2 ≤ α‖u‖L2‖uxx‖L2 − β‖∆u‖2L2 .

By using Young’s inequality, for any ε > 0, we obtain that

1
2
d

dt
‖u‖2L2 ≤

α2

4ε
‖u‖2L2 + (ε− β)‖uxx‖2L2 .

By using the hypothesis and applying Gronwall’s lemma, we conclude

‖u‖L2 ≤ e
α2T
4ε ‖u0‖L2 . (2.44)

In H1 space, by differentiating the equation (2.35) with respect to x and y; and multiplying them by ux
and uy respectively, we obtain that

1
2
d

dt

(
‖ux‖2L2 + ‖uy‖2L2

)
+ 〈ux, (uux)x〉+ 〈uy, (uux)y〉+ α(〈ux, uxxx〉+ 〈uy, uxxy〉) + β〈∇u,∇∆2u〉 = 0.

Integration by parts and the Cauchy-Schwarz inequality then imply

1
2
d

dt

(
‖ux‖2L2 + ‖uy‖2L2

)
≤ |〈u2, uxxx〉|+ |〈u2, uxyy〉|+ α (‖ux‖L2‖uxxx‖L2 + ‖ux‖L2‖uxyy‖L2)

− β
(
‖uxxx‖2L2 + 3‖uxxy‖2L2 + 3‖uxyy‖2L2 + ‖uyyy‖2L2

)
.
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By using the Cauchy-Schwarz inequality, Young’s inequality and the Gagliardo-Nirenberg inequality, we
obtain that

1
2
d

dt

(
‖ux‖2L2 + ‖uy‖2L2

)
≤ ‖u‖2L4‖uxxx‖L2 + ‖u‖2L4‖uxyy‖L2

+ ε1α‖ux‖2L2 + cε1α‖uxxx‖2L2 + ε2α‖ux‖2L2 + cε2α‖uxyy‖2L2 − β‖uxxx‖2L2 − 3β‖uxyy‖2L2

≤ ε3‖u‖4L4 + cε3‖uxxx‖2L2 + ε4‖u‖4L4 + cε4‖u‖2L2

+ (ε1 + ε2)α‖ux‖2L2 + cε1α‖uxxx‖2L2 + cε2α‖uxyy‖2L2 − β‖uxxx‖2L2 − 3β‖uxyy‖2L2

≤ (ε3 + ε4)‖u‖2L2‖∇u‖2L2 + (cε1 + cε3 − β)‖uxxx‖2L2

+ (cε4 + cε2α− 3β)‖uxyy‖2L2 + (ε1 + ε2)α‖ux‖2L2

= κ1‖u‖2L2‖∇u‖2L2 + κ2‖uxxx‖2L2 + κ3‖uxyy‖2L2 + κ4‖ux‖2L2 .

By choosing ε1, ε2, ε3 and ε4 suitably such that κ2, κ3 ≤ 0, applying Gronwall’s lemma and using (2.44)
we obtain (2.42). Now by applying the operators ∂2

x, ∂2
y and ∂x∂y on the equation (2.35) and multiplying

them by uxx, uyy and uxy respectively, we obtain that

1
2
d

dt

∑
|j|=2

‖Dju‖2L2 + 〈uux, h(u)〉+ α〈uxx, h(u)〉+ β〈∆2u, h(u)〉 = 0, (2.45)

where h(u) = uxxxx + uxxyy + uyyyy. By integration by parts, the Cauchy-Schwarz inequality and the
Gagliardo-Nirenberg inequality, we have that

|〈uux, uxxxx〉| =
5
2
|〈ux, u2

xx〉| ≤ ‖ux‖L2‖uxx‖2L4 ≤ ‖ux‖2L2‖uxx‖2L2‖∇uxx‖2L2

≤ ‖ux‖2L2‖uxx‖2L2‖uxxx‖2L2 + ‖ux‖2L2‖uxx‖2L2‖uxxy‖2L2 .
(2.46)

On the other hand, by using Young’s inequality and the Gagliardo-Nirenberg inequality, we have

‖ux‖2L2‖uxx‖2L2‖uxxx‖2L2 . ε1‖uxx‖2L2 + cε1g
3/2(u)‖u‖1/2L2 ‖ux‖2L2 . ε1‖uxx‖2L2 + cε1g

2(u)‖u‖2L2 , (2.47)

where g(u) =
∑

|j|=4 ‖Dju‖L2 . Similarly, we obtain

‖ux‖2L2‖uxx‖2L2‖uxxy‖2L2 . ε2‖uxx‖2L2 + cε2g
2(u)‖u‖2L2 , (2.48)

for any ε2 > 0. Therefore,

|〈uux, uxxxx〉| . (ε1 + ε2)‖uxx‖2L2 + (cε1 + cε2)g
2(u)‖u‖2L2 . (2.49)

Also we can analogously obtain

|〈uux, uyyyy〉| . (ε3 + ε4)‖uxx‖2L2 + (cε3 + cε4)g
2(u)‖u‖2L2 , (2.50)

|〈uux, uxxyy〉| . (ε5 + ε6)‖uxx‖2L2 + (cε5 + cε6)g
2(u)‖u‖2L2 . (2.51)

Thusly, by using Young’s inequality, we have

1
2
d

dt

∑
|j|=2

‖Dju‖2L2 ≤ α((ε7 + ε8 + ε9)‖uxx‖2L2 + cε7‖uxxxx‖2L2

+ cε8‖uyyyy‖2L2 + cε9‖uxxyy‖2L2)− β(‖uxxxx‖2L2 + 3‖uxxxy‖2L2

+ 4‖uxxyy‖2L2 + ‖uyyyy‖2L2 + 3‖uxyyy‖2L2)− 〈uux, h(u)〉,
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for any ε1, · · · , ε9 > 0. Now by (2.49), (2.50), (2.51) and the above inequality and choosing ε1, · · · , ε9 > 0
suitably, we obtain (2.44).
In general, for j ≥ 2 in N, we have

1
2
d

dt
‖u‖2Hj + 〈u, uux〉Hj + 〈u,∆ux〉Hj + α〈u, uxx〉Hj + β〈u,∆2u〉Hj = 0, (2.52)

where 〈u, v〉Hj =
∑

|`|≤j
〈
D`u,D`v

〉
L2 . Therefore, by integration by parts, the Cauchy-Schwarz inequality,

the Gagliardo-Nirenberg inequality and Young’s inequality we obtain

1
2
d

dt
‖u‖2Hj ≤ |〈u, uux〉|+

∑
|`|≤j

|`′|=|`|+2

(
α‖D`u‖2L2‖D`′u‖2L2 − β‖D`′u‖2L2

)

. ‖u‖L2‖u‖2Hj +
∑
|`|≤j

‖D`u‖2L2 = (‖u‖2L2 + 1)‖u‖2Hj .

(2.53)

The Gronwall inequality implies (2.44).
�

The Global well posedness follows from the local theory and the a priori estimates obtained in the previous
lemma, when s ≥ 2 is integer. For non-integer values of s, nonlinear interpolation theory is applied. We
will use the following theorems [15].

THEOREM 2.6.7 Let Bj0, B
j
1 be Banach spaces such that Bj0 ⊃ Bj1 with inclusion mapping, j = 1, 2.

Let λ, q lie in the ranges 0 < λ < 1, 1 ≤ q ≤ ∞. Suppose that A : B1
λ,q −→ B2

0 and for f, g ∈ B1
λ,q,

‖Af −Ag‖B2
0
≤ c0

(
‖f‖B1

λ,q
+ ‖g‖B1

λ,q

)
‖f − g‖B1

0
,

and A : B1
1 −→ B2

1 and for h ∈ B1
1 ,

‖Ah‖B2
1
≤ c1

(
‖h‖B1

λ,q

)
‖h‖B1

1
,

where ci : R+ −→ R+ are continuous nondecreasing functions, i = 0, 1. Then if (θ, p) ≥ (λ, q), A maps B1
θ,p

into B2
θ,p and for f ∈ B1

θ,p, ‖Af‖B2
θ,p

≤ c
(
‖f‖B1

λ,q

)
‖f‖B1

θ,p
, where for γ > 0, c(γ) = 4c0(4γ)1−θc1(3γ)θ.

THEOREM 2.6.8 Let Bji , λ,q and A, i = 0, 1, j = 1, 2 be as in Theorem 2.6.7. Assume that the pair
B1

0 , B1
1 has a (θ, p) approximate identity for some (θ, p) ≥ (λ, q) and A is continuous as a map of B1

1 to
B2

1 . Then A is a continuous map from B1
θ,p to B2

θ,p.

THEOREM 2.6.9 Let α > 0, β > 0 and s ≥ 2. Then the equation (2.35) is globally well posed for
initial data in Hs(R2).

Proof. Let k−1 ≤ s ≤ k. To use Theorems 2.6.7 and 2.6.8, we put B1
0 = L2(R2), B2

0 = C([0, T ];L2(R2)),
B1

1 = Hk(R2), B2
1 = C([0, T ];Hk(R2)), λ = k−1

k and θ = s
k . Thus B1

λ,2 = [B0,H
k(R2)]λ,2 = Hk−1(R2),

B1
λ,2 = [B0,H

k(R2)]θ,2 = Hs(R2), B1
θ,2 = C([0, T ];Hk−1(R2)) and B2

θ,2 = C([0, T ];Hs(R2)). Let Φ be
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the map which takes the initial data u0 ∈ Hk(R2) into the unique solution u ∈ C([0, T ];Hk(R2)) of the
equation (2.35) obtained in Theorem 2.6.4. It follows from Lemma 2.6.6 that

‖Φ(u0)‖Hk ≤ c1 (‖u0‖Hk−1) ‖u0‖Hk , (2.54)

for all u0 ∈ Hk(R2), where c1 : R+ −→ R+ is continuous, nondecreasing function. Now let u0, v0 ∈
Hk−1(R2), u = Φ(u0), v = Φ(v0), w = u − v and w0 = u0 − v0. It is easy (see (2.44)) to obtain that
‖w‖L2 ≤ c‖w0‖L2 , where c depends on α, β and T . Thus Φ is continuous; in fact

‖Φ(u0)− Φ(v0)‖C([0,T ];L2(R2)) ≤ c0‖u0 − v0‖L2 . (2.55)

On the other hand, we have

w(t) = U(t)w0 +
∫ t

0

U(t− τ)(u(τ)ux(τ)− v(τ)vx(τ)) dτ. (2.56)

By using Lemma 2.6.3, it follows that

‖w‖Hk ≤ e
α2t
4β ‖w0‖Hk +

∫ t

0

‖U(t− τ)∂x(u2(τ)− v2(τ))‖Hk dτ

≤ e
α2t
4β ‖w0‖Hk+∫ t

0

eα2(t−τ)
4β + µ

[
1 +

√
1 +

1
µ(t− τ)

]1/2

e
− 1

2+αµ(t−τ)
[
1+

√
1+ 1

µ(t−τ)

] ‖u2 − v2‖Hk dτ

. e
α2t
4β ‖w0‖Hk+

sup
t

(‖u‖Hk + ‖v‖Hk)

[
e

α2T
4β

(
1 +

(
T

µ

)1/4
)
e−

1
2+αµT+µ

√
α2T 2+4αβT

]∫ t

0

‖w(τ)‖Hk

(t− τ)1/4
dτ,

where µ = α2

β . Now we use a generalization of Gronwall’s inequality (see for example [71]):

LEMMA 2.6.10 Let b > 0 be a real constant and f (t) be a nonnegative function locally integrable on
[0, T ] (some T ≤ ∞) and let g(t) be a nonnegative, nondecreasing continuous function defined on [0, T ],
g(t) ≤ M (constant). Suppose that u(t) is nonnegative and locally integrable on [0, T ] with

u(t) ≤ f (t) + g(t)
∫ t

0

(t− τ)b−1u(τ) dτ

on this interval. Then

u(t) ≤ f (t) +
∫ t

0

[ ∞∑
`=1

(g(t)Γ(b))`

Γ(`b)
(t− τ)`b−1f (τ)

]
dτ 0 ≤ t ≤ T .
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By using the above lemma with b = 3
4 , there obtains ‖w(t)‖Hk . e

α2T
4β ‖w0‖Hk Z 3

4
(k t), where

k =
(

sup
0≤t≤T

(‖u(t)‖Hk + ‖v(t)‖Hk)C(α, β, T )Γ
(

3
4

)) 4
3

(2.57)

C(α, β, T ) = e
α2T
4β

(
1 +

(
T

µ

)1/4
)
e−

1
2+αµT+µ

√
α2T 2+4αβT (2.58)

Zρ(z) =
∞∑
`=1

zρ`−1

Γ(ρ`)
. (2.59)

The proof is completed by using Theorems 2.6.7 and 2.6.8. �

2.7 Negative Sobolev Indices
In this section, we are going to extend our well-posedness results for the equation (2.35) to the Sobolev
spaces with lower indices. In fact, we state the local well-posedness in the following.

THEOREM 2.7.1 Let α, β > 0 be fixed and s > −2, then for all u0 ∈ Hs(R2), there exists T =
T
(
‖u0‖Hs(R2)

)
> 0, a space

X sT ↪→ C
(
[0, T ];Hs(R2)

)
and a unique solution u(t) of (2.35) such that u(0) = u0. Moreover, u satisfies u ∈ C((0, T );H∞(R2)) and
the map solution

F : Hs(R2) −→ X sT ∩ C
(
[0, T ];Hs(R2)

)
, u0 7→ u,

is smooth.

In order to prove Theorem 2.7.1, we will make the assumption −2 < s ≤ 0, since the case 0 < s < 2
follows by similar arguments. Our strategy is again to use a contraction argument on the integral equation
associated to (2.35)

u(t) = Φ(u(t)) := U(t)u0 +
∫ t

0

U(t− t′)u(t′)ux(t′) dt′, (2.60)

in some well-adapted function space, where as before U(t) is the semigroup associated to the linear part of
(2.35). In order to do this, we will adapt the spaces like ones used by Dix [25] for the dissipative Burgers
equation. For 0 < T ≤ 1, we define

X sT =
{
u ∈ C

(
[0, T ];Hs(R2)

)
: ‖u‖X s

T
<∞

}
,

where
‖u‖X s

T
= sup
t∈[0,T ]

(
‖u(t)‖Hs(R2) + t

|s|
4 ‖u(t)‖L2(R2)

)
.

First, we will turn our attention to estimate the linear part.
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PROPOSITION 2.7.2 Let α, β > 0, 0 < T ≤ 1, s ≤ 0 and u0 ∈ Hs(R2), then

sup
t∈[0,T ]

‖U(t)u0‖Hs(R2) ≤ e
α2T
4β ‖u0‖Hs(R2), (2.61)

and
sup
t∈[0,T ]

t
|s|
4 ‖U(t)u0‖Hs(R2) . Υs

α,β(T )‖u0‖Hs(R2), (2.62)

where

Υs
α,β(t) = eµt +

(µt
α

) |s|
4

+
(

α

4βµt

) |s|
4

 eµt√1+
|s|
2µt ,

is continuous nondecreasing function on [0, 1], µ = α2

4β and . means ≤ with a constant depending on s.

Proof. The inequality (2.61) follows immediately from Lemma 2.6.3 with λ = 0 . To prove the inequality
(2.62), we first observe , since 0 < T ≤ 1, that

t
|s|
4 ≤

(
1 + t

1
2 ξ2 + t

1
2 η2
) |s|

2

(1 + ξ2 + η2)
|s|
2

,

for all t ∈ [0, T ]. Hence, by using the Plancherel theorem and the definition of U(t), we deduce that

t
|s|
2 ‖U(t)u0‖L2(R2)

≤

∥∥∥∥∥(1 + t
1
2 ξ2 + t

1
2 η2
) |s|

2
eαtξ

2−βt(ξ2+η2)2(1 + ξ2 + η2)
s
2 |û0(ξ, η)|2

∥∥∥∥∥
L2(R2)

.

(∥∥∥eαtξ2−βt(ξ2+η2)2
∥∥∥
L∞(R2)

+ t
|s|
4

∥∥∥(ξ2 + η2)
|s|
2 eαtξ

2−βt(ξ2+η2)2
∥∥∥
L∞(R2)

)
‖u0‖Hs(R2).

Lemma 2.6.3 implies the inequality (2.62). �

Next step is to derive the bilinear estimates.

PROPOSITION 2.7.3 Let α, β > 0, 0 ≤ t ≤ T ≤ 1 and s ∈ (−2, 0] , then∥∥∥∥∫ t

0

U(t− t′)∂x(uv) dt′
∥∥∥∥

X s
T

. e
α2T
2β T

1
2 (1+ s

2 )‖u‖X s
T
‖v‖X s

T
(2.63)

for all u, v ∈ X sT , where . means ≤ with a constant depending on s.

Proof. Let 0 ≤ t ≤ T . We have (1 + ξ2 + η2)s/2 ≤ (ξ2 + η2)s/2, since s ≤ 0. So by using the Minkowski
inequality and the definition of U(t), we obtain that∥∥∥∥∫ t

0

U(t− t′)∂x(uv)
∥∥∥∥
Hs(R2)

≤
∫ t

0

∥∥∥ξ(1 + ξ2 + η2)
s
2 e(t−t

′)(αξ2−β(ξ2+η2)2)(u(t′)v(t′))∧(ξ, η)
∥∥∥
L2(R2)

dt′

≤
∫ t

0

∥∥∥ξ(ξ2 + η2)
s
2 e(t−t

′)(αξ2−β(ξ2+η2)2)
∥∥∥
L2(R2)

∥∥∥û(t′) ∗ v̂(t′)(ξ, η)∥∥∥
L∞(R2)

dt′.
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The Young inequality implies that∥∥∥û(t′) ∗ v̂(t′)(ξ, η)∥∥∥
L∞(R2)

≤
‖u‖X s

T
‖v‖X s

T

|t′|
|s|
2

.

Therefore we obtain∥∥∥∥∫ t

0

U(t− t′)∂x(uv)
∥∥∥∥
Hs(R2)

≤

(∫ t

0

∥∥∥∥ξ (ξ2 + η2
) |s|

2 eαt
′ξ2−βt′(ξ2+η2)2

∥∥∥∥
L2(R2)

dt′

|t− t′|
|s|
2

)
‖u‖X s

T
‖v‖X s

T
.

(2.64)
To estimate the integral on the right-hand side of (2.64), we use a change of variable to deduce that∥∥∥∥ξ (ξ2 + η2

) |s|
2 eαt

′ξ2−βt′(ξ2+η2)2
∥∥∥∥
L2(R2)

≤ |t′|−
1
4 (2+s)

∥∥∥eα√t′ξ2− β
2 (ξ2+η2)2∥∥∥

L∞(R2)

∥∥∥∥(ξ2 + η2
) |s|

2 |ξ|e−
β
2 (ξ2+η2)2

∥∥∥∥
L2(R2)

. e
α2t′
2β |t′|− 1

4 (2+s).

(2.65)

Therefore, we get from (2.64) and (2.65) that∥∥∥∥∫ t

0

U(t− t′)∂x(uv)
∥∥∥∥
Hs(R2)

. e
α2T
2β T

1
2 (1+ s

2 )
(∫ 1

0

|t′|− 1
4 (2+s)|1− t′|−

|s|
2 dt′

)
‖u‖X s

T
‖v‖X s

T

. e
α2T
2β T

1
2 (1+ s

2 )‖u‖X s
T
‖v‖X s

T
,

(2.66)

for all 0 ≤ t ≤ T . On the other hand, by a similar argument, we deduce that for all 0 ≤ t ≤ T ,

|t|
|s|
4

∥∥∥∥∫ t

0

U(t− t′)∂x(uv)
∥∥∥∥
L2(R2)

≤ T
|s|
4

∫ t

0

∥∥∥ξ e(t−t′)(αξ2−β(ξ2+η2)2)
∥∥∥
L2(R2)

∥∥∥û(t′) ∗ v̂(t′)(ξ, η)∥∥∥
L∞(R2)

dt′

≤

(∫ t

0

|t′|− 1
2

∥∥∥|ξ| eα√t′ξ2−β(ξ2+η2)2∥∥∥
L2(R2)

dt′

|t− t′|
|s|
2

)
‖u‖X s

T
‖v‖X s

T

. e
α2T
2β T

1
2 (1+ s

2 )
(∫ 1

0

|t′|− 1
2 |1− t′|−

|s|
2 dt′

)
‖u‖X s

T
‖v‖X s

T
. e

α2T
2β T

1
2 (1+ s

2 )‖u‖X s
T
‖v‖X s

T
.

This completes the proof. �

Next, we derive a regularity property.

PROPOSITION 2.7.4 Let α, β > 0, 0 ≤ t ≤ T ≤ 1, s ∈ (−2, 0] and κ ∈ [0, s+ 2) , then

V : t 7−→
∫ t

0

U(t− t′)∂x(u2)(t′) dt′

is in C
(
[0, T ];Hs+κ(R2)

)
, for all u ∈ X sT .
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Proof. Consider t0, t1 ∈ [0, T ] be fixed such that t0 < t1. Then by the Minkowski inequality, we have

‖V(t1)− V(t0)‖Hs+κ(R2) ≤ V1(t0, t1) + V2(t0, t1),

where V1(t0, t1) =
∫ t1
t0

∥∥U(t1 − t′)∂x(u2)
∥∥
Hs+κ(R2)

dt′, and

V2(t0, t1) =
∫ t0

0

∥∥(U(t1 − t′)− U(t0 − t′)) ∂x(u2)
∥∥
Hs+κ(R2)

dt′.

By performing a change of variable, we obtain

V1(t0, t1) ≤
(∫ t

0

∥∥∥ξ(ξ2 + η2)
s+κ
2 e(t1−t

′)(αξ2−β(ξ2+η2)2)
∥∥∥
L2(R2)

|t′|−
|s|
2 dt′

)
‖u‖2X s

T

.

(∫ t1

t0

|t1 − t′|− 1
4 (2+s+κ)e

α2(t1−t′)
2β |t′ − t0|−

|s|
2 dt′

)
‖u‖2X s

T

. e
α2T
2β (t1 − t0)

1
2 (1+ s−κ

2 )
[∫ 1

0

|1− t′|− 1
4 (2+s+κ)|t′|−

|s|
2 t′

]
‖u‖2X s

T
.

Now, by using the hypotheses, we get that limt1→t0 V1(t0, t1) = 0. On the other hand, we have

V2(t0, t1) ≤
(∫ t0

0

‖f(t0, t1, t′, ξ, η)‖L2(R2)|t′|−
|s|
2 dt′

)
‖u‖2X s

T
,

where

f(t0, t1, t′, ξ, η) =
(
ξ2 + η2

) s+κ
2 |ξ|

[
e(t1−t

′)(αξ2−β(ξ2+η+2)2) ei(t1−t
′)(ξ3+ξη2)

]
−
(
ξ2 + η2

) s+κ
2 |ξ|

[
e(t0−t

′)(αξ2−β(ξ2+η+2)2) ei(t0−t
′)(ξ3+ξη2)

]
.

It is clear that f(t0, t1, t′, ξ, η) tends to zero pointwise for almost every (ξ, η) ∈ R2 and t′ ∈ [0, t0] when
|t1 − t0| → 0. So

|f(t0, t1, t′, ξ, η)| . χ{
|ξ|≤

√
α
β

}(ξ)e
α2T
2β +

(
ξ2 + η2

) s+κ
2 |ξ|e(t0−t

′)(αξ2−β(ξ2+η+2)2).

Thusly, we deduce from the Lebesgue dominated convergence theorem that ‖f(t0, t1, t′, ξ, η)‖L2(R2) −→ 0, as
t1 → t0. Using again the Lebesgue dominated convergence theorem, we conclude that limt1→t0 V2(t0, t1) =
0. This completes the proof. �

Now we are in the position to give the proof of Theorem 2.7.1.

Proof of Theorem 2.7.1. Let α, β > 0, s ∈ (−2, 0] and u0 ∈ Hs(R2). We are going to show that
the operator Φ defined in (2.60) is a contraction in some closed ball of X sT . By Propositions 2.7.2 and 2.7.3,
there exists two positive constants C = C(s, α, β) and θ = θ(s) such that

‖Φ(u)‖X s
T
≤ C

(
‖u0‖Hs(R2) + T θ‖u‖2X s

T

)
, (2.67)
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and
‖Φ(u)− Φ(v)‖X s

T
≤ CT θ‖u− v‖X s

T
‖u+ v‖X s

T
, (2.68)

for all u, v ∈ X sT and 0 < T ≤ 1. Now we define X sT (a) =
{
u ∈ X sT : ‖u‖X s

T
≤ a

}
with a = 2C‖u0‖Hs(R2);

and we choose 0 < T < min
{

1, (2Ca)−
1
θ

}
. The estimates (2.67) and (2.68) imply that Φ is a contraction

on the Banach space X sT (a); so that we deduce by the fixed point theorem, the existence of a unique solution
u of the integral equation (2.35) in X sT (a) with the initial data u(0) = u0. Note that the Proposition 2.7.4
assures that Φ(u) ∈ C

(
[0, T ];Hs(R2)

)
.

The uniqueness of the solution of (2.35) on the whole space X sT and the smoothness of the flow map
solution follow by the standard arguments as we did before.

Note that a similar contraction argument shows that the existence result holds for any s′ > s > −2,
in the time interval [0, T ] with T = T (‖u0‖Hs(R2)). Finally, we know that the map t 7−→ U(t)u0 is
continuous in the time interval (0, T ] with respect to the topology of H∞(R2). Since our solution u belongs
to X sT , we deduce from the Proposition 2.7.4 that there exists κ > 0 such that the map V belongs to
C
(
[0, T ];Hs+κ(R2)

)
, so that

u ∈ C
(
(0, T ];Hs+κ(R2)

)
.

Therefore, by a standard bootstrapping argument, using the uniqueness result and the fact that the time
interval of the existence of the solutions only depends on the Hs(R2)-norm of the initial data, we deduce
that

u ∈ C
(
[0, T ];H∞(R2)

)
.

�

Similarly, as before, by using the global a priori estimates, we can extend the local solutions to be ex-
tended to temporal half line [0,∞).

THEOREM 2.7.5 Let α > 0, β > 0 and s ≥ 0. Then the equation (2.35) is globally well posed for
initial data in Hs(R2), provided that there exists a constant ε > 0 such that ε ≤ β.

REMARK 2.7.6 By a similar argument, one can obtain the global well-posedness in n dimensional case
of the equation (2.35):

ut + uux + αuxx + ∆ux + β∆2u = 0, (x, y) ∈ R× Rn−1, t ∈ R+.

In fact, one can show that the associated initial value problem is globally well-posed in Sobolev spaces
Hs (Rn) for s > n

2 − 3.

REMARK 2.7.7 One can see that for s > 2, there exists Ts > 0 and a positive function X ∈ C([0, Ts))
independent of α and β such that solution uα,β of (2.35), associated to u0 ∈ Hs, α and β, is defined in
[0, Ts) (possibly extended) and ‖uα,β(t)‖Hs ≤ X 1/2(t), for all t ∈ [0, Ts).

REMARK 2.7.8 One can see that for u0 ∈ Hs(R2), s > −2, the time existence of the solution uε,α,β of
the equation

ut + uux + ε∆ux + αuxx + β∆2u = 0, (x, y) ∈ R2, t ∈ R+

in Theorem 2.7.1 is independent of ε > 0, therefore the limit u0 = limε→0 uε,α,β exists in C
(
[0, T ];Hs

(
R2
))

and is the unique solution of the biharmonic equation

ut + uux + αuxx + β∆2u = 0, (x, y) ∈ R2, t ∈ R+;

with continuity of the map u0 ∈ Hs(R2) 7→ u0 ∈ C([0, T ];Hs(R2)).
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REMARK 2.7.9 We are able to show that our results are sharp [29]. We establish that the flow map
of the Benney equation fails to be C2 in Hs

(
R2
)

for s < −2. This means that a Picard iteration cannot
be used to obtain solution of (2.35). We proved that solutions of the Benney equation tend to solutions of
the ZK equation in the C([0, T ];Hs

(
R2
)
) topology when α and β tend to zero and s > 2. Furthermore, we

used the improved tanh method to obtain some explicit traveling wave solution s of Benney equation.



Chapter 3

BO-ZK Equation

3.1 Introduction
This chapter is concerned with (non)-existence, stability and properties of solitary wave solutions for the
two dimensional BO-ZK equation:

ut + upux + αH uxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+, (3.1)

where the constant εmeasures the transverse dispersion effects and is normalized to±1 and the constant α is
real. When p = 1, the equation (3.1) appears in electromigration and the interaction of the nanoconductor
with the surrounding medium [41, 49], by considering Benjamin-Ono dispersive term with the anisotropic
effects included via weak dispersion of ZK-type. The instability of solitary waves, the well-posedness and
the unique continuation property of the equation (3.1) and the generalized higher dimensional BO-ZK have
been studied in [28].

In fact, the equations (3.1) is generalizations of the one dimensional Benjamin-Ono equation (see also
[30]). The questions of existence, asymptotic and stability of solitary wave solutions of the Benjamin-Ono
type equations were studies by Benjamin in [4, 5]. The initial value problem associated to the Benjamin-
Ono equation has been studied by several authors [20, 46, 69].

We will investigate the existence of solitary wave solutions of (3.1) and their properties.

It can be seen the flow associated to (3.1) satisfies the conservation quantities F (·) = 1
2‖ · ‖L2 and E,

where
E(u(t)) =

1
2

∫
R2

(
εu2
y − αuH ux −

2
(p+ 1)(p+ 2)

up+2

)
dxdy.

Indeed, we are looking for a solution of (3.1) of the form u = ϕ(x− ct, y) decaying to zero at infinity; so,
substituting this form of u in (3.1) and integrating once, we see that ϕ must satisfy

− cϕ+
1

p+ 1
ϕp+1 + αH ϕx + εϕyy = 0. (3.2)

72
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REMARK 3.1.1 Note that we can assume that |c| = 1, since the scale change

ψ(x, y) = |c|−
1
pϕ

(
x

|c|
,
y√
|c|

)
,

transforms (3.2) in ϕ, into the same in ψ, but with |c| = 1.

REMARK 3.1.2 The scale-invariant spaces for the BO-ZK equations (3.1) are Ḣs1,s2(R2), 2s1 + s2 =
3
2 −

2
p . Hence a reasonable framework for studying the local well-posedness of the BO-ZK equations (3.1)

is the family of spaces Ḣs1,s2(R2), 2s1 + s2 ≥ 3
2 −

2
p (see [28]).

We shall denote, Z = H( 1
2 ,1)

(
R2
)
. By Theorem 1 in [48] (see also [62, 63]) and Remark 0.0.13 imply the

following embedding Z in Lp
(
R2
)

spaces:

Z ↪→ Lp
(
R2
)
, for all p ∈ [2, 6]. (3.3)

3.2 (Non)existence
THEOREM 3.2.1 The equations (3.2) do not admit any nontrivial solitary wave solution ϕ ∈ Z if

none of the following cases occurs:

(i) ε = 1, c > 0, α < 0, p < 4,

(ii) ε = −1, c < 0, α > 0, p < 4,

(iii) ε = 1, c < 0, α < 0, p > 4,

(iv) ε = −1, c > 0, α > 0, p > 4.

Sketch of the proof. To prove, we apply a truncation argument to gain the regularity we need (see
Chapter 4), then by using the Lebesgue dominated convergence theorem, we obtain some useful identities.
In fact, by multiplying the equation (3.2) by ϕ, xϕx and yϕy, respectively, integrating over R2 and using
(0.3)-(0.11), we obtain the following relations:∫

R2

(
−cϕ2 + αϕH ϕx − εϕ2

y +
1

p+ 1
ϕp+2

)
dxdy = 0, (3.4)∫

R2

(
cϕ2 + εϕ2

y −
2

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0, (3.5)∫

R2

(
cϕ2 − αϕH ϕx − εϕ2

y −
2

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (3.6)

By adding (3.4) and (3.5), we get∫
R2

(
αϕH ϕx +

p

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (3.7)
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Also by adding (3.5) and (3.6) yields∫
R2

(
cϕ2 − α

2
ϕH ϕx −

2
p+ 1

ϕp+2

)
dxdy = 0. (3.8)

Eliminating ϕp+2 from (3.7) and (3.8) leads to∫
R2

(
2pcϕ2 + α(4− p)ϕH ϕx

)
dxdy = 0. (3.9)

On the other hand, adding (3.4) and (3.6) yields∫
R2

(
2εϕ2

y −
p

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (3.10)

Plugging (3.5) in (3.10) we obtain ∫
R2

(
pcϕ2 + ε(p− 4)ϕ2

y

)
dxdy = 0. (3.11)

The proof follows from (3.9) and (3.11). �

THEOREM 3.2.2 Let αε, cα < 0 and p = k
m < 4, where m ∈ N is odd and m and k are relatively

prime. Then the equation (3.2) admits a nontrivial solution ϕ ∈ Z .

Sketch of the proof. The proof is based on Lemma 0.0.1. We suppose that α < 0. The proof for α > 0
is similar. Without loss of generality we assume that α = −1 and c = 1. We consider the minimization
problem

Iλ = inf
{
I(ϕ) =

1
2

∫
R2

(
ϕ2 + ϕH ϕx + ϕ2

y

)
dxdy ; ϕ ∈ Z , J(ϕ) = ‖ϕ‖p+2

Lp+2 = λ

}
, (3.12)

where λ > 0. Let {ϕn} ⊂ Z be a minimizing sequence of Iλ. By using (3.3), we obtain that

λ =
∣∣∣∣∫

R2
ϕp+2 dxdy

∣∣∣∣ ≤ C‖ϕ‖p+2
Z ≤ CI

p+2
2

λ ,

for any ϕ ∈ Z and p < 4. Hence Iλ < ∞ and Iλ > 0 for any positive λ. Also, since I(ϕ) ∼ ‖ϕ‖2Z , so
‖ϕn‖Z <∞. Now we define the concentration functions

Qn(r) = sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy,

where ρn = |ϕn|2 +
∣∣∣D1/2

x ϕn

∣∣∣2 + |∂yϕn|2. If the evanescence occurs, i.e., that for any R > 0,

lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy = 0,
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then by using (3.3), we obtain that limn∈∞ ‖ϕn‖Lp+2 = 0, which would contradict the constraint of the
minimization problem. Now suppose that γ ∈ (0, Iλ), where

γ = lim
r→+∞

lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy.

By the definition of γ, for ε > 0, there exist r1 ∈ R andN ∈ N such that γ−ε < Qn(r) ≤ Qn(2r) ≤ γ < γ+ε,
for any r ≥ r1 and n ≥ N . Hence, there exists a sequence {(x̃n, ỹn)} ⊂ N such that∫

Br(x̃n,ỹn)

ρn dxdy > γ − ε,

∫
B2r(x̃n,ỹn)

ρn dxdy < γ + ε.

Let (φ, ψ) ∈ (C∞0 (R2))2 satisfy

• supp φ ⊂ B2(0), φ ≡ 1 on B1(0) and 0 ≤ φ ≤ 1,

• supp ψ ⊂ R2 \B2(0), ψ ≡ 1 on R2 \B1(0) and 0 ≤ ψ ≤ 1.

Now we define

gn(x, y) = φr((x, y)− (x̃n, ỹn))ϕn and hn(x, y) = ψr((x, y)− (x̃n, ỹn))ϕn,

where
φr(x, y) = φ

(
(x, y)
r

)
and ψr(x, y) = ψ

(
(x, y)
r

)
.

It is easy to see that gn, hn ∈ Z . The following splitting lemma is proved similar to Lemma 4.2.5, by using
Lemma 4.2.7.

LEMMA 3.2.3 For every ε > 0, there exists a δ(ε) with limε→0 δ(ε) = 0, % ∈ (0, Iλ), ρ ∈ (0, λ) and two
sequences {gn}n∈N and {hn}n∈N in Z with satisfying the following for n ≥ n0.

|I(ϕn)− I(gn)− I(hn)| ≤ δ(ε), (3.13)
|I(gn)− %| ≤ δ(ε), |I(hn)− Iλ + %| ≤ δ(ε), (3.14)

|J(ϕn)− J(gn)− J(hn)| ≤ δ(ε), (3.15)
|J(gn)− ρ| ≤ δ(ε), |J(hn)− λ+ ρ| ≤ δ(ε). (3.16)

The previous lemma imply that Iλ ≥ Iρ+ Iλ−ρ. This inequality contradicts the subadditivity condition
of Iλ coming from Iλ = λ2/(p+2)I1. Therefore the remaining case in the Lemma 0.0.1 is locally compactness.
There exist a sequence {(xn, yn)}n∈N ⊂ R2, such that for all ε > 0, there exists a finite R > 0 and n0 > 0,
with ∫

BR(xn,yn)

ρn dxdy ≥ ιλ − ε,

for n ≥ n0, where ιλ = limn→+∞
∫

R2 ρn dxdy. This implies that for n large enough∫
BR(xn,yn)

|ϕn|2 dxdy ≥
∫

R2
|ϕn|2 dxdy − 2ε.
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Since ϕn is bounded in the Hilbert space Z , there exists ϕ ∈ Z such that a subsequence of {ϕn(· −
(xn, yn))}n∈N (denoted by the same) converges weakly in Z . We then have∫

R2
|ϕ|2 dxdy ≤ lim inf

n→+∞

∫
R2
|ϕn|2 dxdy ≤ lim inf

n→+∞

∫
BR(xn,yn)

|ϕn|2 dxdy + 2ε.

But we know the compactness embedding Z into L2 on bounded intervals. Consequently {un(·−(xn, yn))}n∈N
converges strongly in L2

loc(R2). But the last inequality above implies that this strong convergence also takes
place in L2(R2). Thus by (3.3), {ϕn(· − (xn, yn))}n∈N also converges to ϕ strongly in Lp+2(R2) so that
J(ϕ) = λ and Iλ = limn→+∞ I(ϕn) = I(ϕ), that is, ϕ is a solution of Iλ.

Now by using the preceding theorem and the Lagrange multiplier theorem, there exists θ ∈ R such that

ϕ− αH ϕx − ϕyy = θ(p+ 2)ϕp+1, (3.17)

in Z ′. By a scale change, ϕ satisfies (3.2). �

We are also able to prove that our solitary wave solutions are the ground state solutions of BO-ZK equation
[28]

3.3 Stability
The following Theorem is a consequence of Theorem 3.2.2 and it will be main key to obtain our stability
results of the solutions of BO-ZK equations. Hereafter, without loss of generality we assume that α = −1.

THEOREM 3.3.1 Let λ > 0. Then

(i) every minimizing sequence to Iλ converges, up to a translation, in Z to an element of the minimizers
set

Mλ = {ϕ ∈ Z ; I(ϕ) = Iλ, J(ϕ) = λ}.

(ii) Let {ϕn} be a minimizing sequence for Iλ. Then we have

lim
n→+∞

inf
ψ∈Mλ, z∈R2

‖ϕn(·+ z)− ψ‖Z = 0, (3.18)

lim
n→+∞

inf
ψ∈Mλ

‖ϕn − ψ‖Z = 0. (3.19)

The following lemma easily show that there exists a λ > 0 such that every element in the set of minimizers
satisfies (3.2).

LEMMA 3.3.2 For λ = (2(p+ 1)I1)
p+2

p in our minimization problem, we have that if ϕ ∈ Mλ, then ϕ
is a solitary wave solution for the BO-ZK equation (3.2).

Now for λ in the above lemma, we define the set Nc = {ϕ ∈ Z ; J(ϕ) = 2(p+ 1)I(ϕ) = λ}. It is easy to
see that Mλ = Nc. Now for any c > 0 and any ϕ ∈ Nc, we define the function d(c) = E(ϕ) + cF (ϕ).

LEMMA 3.3.3 d(c) is constant on Nc and is differentiable and strictly increasing for c > 0 and p < 4
3 .

Moreover, d′′(c) > 0 if and only if p < 4
3 .
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Proof. It is easy to see that

d(c) = I(ϕ)− 1
(p+ 1)(p+ 2)

J(ϕ) =
p

2(p+ 1)(p+ 2)
J(ϕ) =

p(2(p+ 1))
2
p

p+ 2
I

p+2
p

1 .

Therefore, d(c) =
p

2(p+ 1)(p+ 2)
c

2
p−

1
2 J(ψ), where ψ(x, y) = c−

1
pϕ

(
x

c
,
y√
c

)
. Note that ψ satisfies (3.2),

with c = 1. But we know that
1

(p+ 1)(p+ 2)
J(ϕ) =

4c
4− p

F (ϕ).

Thusly, we obtain that d′′(c) =
(

2
p
− 3

2

)
c

2
p−

5
2 F (ψ). �

Now we are going to study the behavior of d in a neighborhood of the set Nc .

LEMMA 3.3.4 Let c > 0. Then there exists a small positive number ε and a C1-map v : Bε(Nc) →
(0,+∞) defined by

v(u) = d−1

(
p

2(p+ 1)(p+ 2)
J(ϕ)

)
,

such that v(ϕ) = c for every ϕ ∈ Nc, where Bε (Nc) = {ϕ ∈ Z ; infψ∈Nc ‖ϕ− ψ‖Z < ε} .

Proof. Without loss of generality we assume that c = 1. It is easy to see that Nc is a bounded set in Z .
Moreover

Nc ⊂ B(0, r) ⊂ Z ,

where r = (2(p + 1))
2
p I

p+2
p

1 and B(0, r) is the ball of radius r > 0 centered at the origin in Z . Let ρ > 0
be sufficiently large such that Nc ⊂ B(0, ρ) ⊂ Z . Since the function u→ J(u) is uniformly continuous on
bounded sets, then there exists ε > 0 such that if u, v ∈ B(0, ρ) and ‖u− v‖Z < 2ε then |J(u)− J(v)| < ρ.
Considering the neighborhoods I = (d(c)− ρ, d(c) + ρ) and Bε(Nc) of d(c) and Nc, respectively, we have
that if u ∈ Bε(Nc) then J(u) ∈ I . Therefore v is well defined on Bε(Nc) and satisfies v(ϕ) = c, for all
ϕ ∈ Nc. �

Next, we establish the main inequality in our study of stability.

LEMMA 3.3.5 Let c > 0 and suppose that d′′(c) > 0. Then for all u ∈ Bε(Nc) and any ϕ ∈ Nc,

E(u)− E(ϕ) + v(u) (F (u)−F (ϕ)) ≥ 1
4
d′′(c)|v(u)− c|2.

Proof. Denote the functional Iω(ϕ) = 1
2

∫
R2

(
ωϕ2 + ϕH ϕx + ϕ2

y

)
dxdy, and ϕω any element of Nω. Then

we have
E(u) + v(u)F (u) = Iv(u)(u)−

1
(p+ 1)(p+ 2)

.

On the other hand, we have J(u) = J
(
ϕv(u)

)
, since d(v(u)) = p

2(p+1)(p+2)J(u) for u ∈ Bε(Nc) and
d(v(u)) = p

2(p+1)(p+2)J
(
ϕv(u)

)
. Thusly Iv(u)(u) ≥ Iv(u)

(
ϕv(u)

)
. Therefore by using the Taylor expansion
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of d at c, we obtain that

E(u) + v(u)F (u) ≥ Iv(u)

(
ϕv(u)

)
− 1

(p+ 1)(p+ 2)
J
(
ϕv(u)

)
= d(v(u)) ≥ d(c) + F (ϕ)(v(u)− c) +

1
4
d′′(c)|v(u)− c|2

= E(u) + v(ϕ)F (ϕ) +
1
4
d′′(c)|v(u)− c|2

�

First we state a well-posedness result for (3.1); which can be proved by using an argument similar to
Section 2.2.

THEOREM 3.3.6 Let s > 2. Then for any u0 ∈ Hs(R2), there exists T = T (‖u0‖Hs) > 0 and there
exists a unique solution u ∈ C([0, T ];Hs(R2)) of the equation (3.1) with u(0) = u0 and u(t) depends on
u0 continuously in the Hs−norm. In addition, u(t) satisfies E(u(t)) = E(u0), F (u(t)) = F (u0), for all
t ∈ [0, T ).

Now we will prove our nonlinear stability result of the set Nc in Z .

THEOREM 3.3.7 Let c > 0 and λ = (2(p+ 1)I1)
p+2

p . Then the set Nc = Mλ is Z -stable with regard

to the flow of the BO-ZK equation if p <
4
3
.

Proof. Assume that Nc is Z -unstable with regard to the flow of the BO-ZK equation. Then there is a
sequence of initial data uk(0) ∈ B 1

k
(Nc) ∩Hs

(
R2
)
, s > 2, such that

sup
t∈[0,+∞)

inf
ϕ∈Nc

‖uk(t)− ϕ‖Z ≥ ε, (3.20)

where uk(t) is the solution of (3.1) with initial data uk(0). So we can find, for k large enough, a time tk
such that

inf
ϕ∈Nc

‖uk (tk)− ϕ‖Z =
ε

2
, (3.21)

by continuity in t. Now since E and F are conserved, we can find ϕk ∈ Nc such that

|E(uk(tk))− E(ϕk)| = |E(uk(0))− E(ϕk)| → 0, (3.22)
|F (uk(tk))−F (ϕk)| = |F (uk(0))−F (ϕk)| → 0, (3.23)

as k → +∞. By using Lemma 3.3.5, we have

E(uk(tk))− E(ϕk) + v(uk(tk)) (F (uk(tk))−F (ϕk)) ≥
1
4
d′′(c)|v(uk(tk))− c|2,

by choosing k large enough. This implies that v(uk(tk)) → c as k → +∞, since uk(tk) is uniformly bounded
for k. Hence, by the definition of v and continuity of d, we have

lim
k→+∞

J(uk(tk)) =
2(p+ 1)(p+ 2)

p
d(c). (3.24)
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On the other hand, by Lemma 3.3.3, we have

I(uk(tk)) = E(uk(tk)) + cF (uk(tk)) +
1

(p+ 1)(p+ 2)
J(uk(tk))

= d(c) + E(uk(tk))− E(ϕk) + c (F (uk(tk))−F (ϕk)) +
1

(p+ 1)(p+ 2)
J(uk(tk)).

Then by (3.24), we obtain that

lim
k→+∞

I(uk(tk)) =
p+ 2
p

d(c) = (2(p+ 1))
2
p I

p+2
p

1 . (3.25)

By defining ϑk(tk) = (J(uk(tk)))−
1

p+2uk(tk), in Z , we obtain that J (ϑk(tk)) = 1. Therefore by using
(3.24), (3.25) and Lemma 3.3.3, we obtain that

lim
k→+∞

I(ϑk(tk)) = I1. (3.26)

Hence {ϑk(tk)} is a minimizing sequence of I1, so, from Theorem 3.3.1, there exists a sequence ψk ⊂ M1

such that
lim

k→+∞
‖ϑk(tk)− ψk‖Z = 0. (3.27)

On the other hand, from the Lagrange multiplier theorem, there exist θk ∈ R such that

H (ψk)x + cψk − (ψk)yy = θk(p+ 2)ψp+1
k (3.28)

so 2I1 = θk(p+2), which implies θk = θ for all k. By scaling ϕk = µψk with µp = θ(p+1)(p+2) = 2(p+1)I1,
we obtain that ϕk satisfy (3.2) and 2(p + 1)I(ϕk) = J(ϕk) = µp+2, which implies that ϕk ∈ Nc for every
k. Also, by (3.24)-(3.27) and Lemma 3.3.3, we have

‖uk(tk)− ϕk‖Z = (J(uk(tk)))
1

p+2

∥∥∥(J(uk(tk)))−
1

p+2 (uk(tk)− ϕk)
∥∥∥

Z

≤ (J(uk(tk)))
1

p+2

(∥∥ϑk(tk)− µ−1ϕk
∥∥

Z
+ µ−1‖ϕk‖Z − (J(uk(tk)))−

1
p+2

)
.

This implies that limk→+∞ ‖uk(tk) − ϕk‖Z = 0, as k → +∞; which contradicts (3.21); and the proof is
complete. �

3.4 Decay and Regularity
In order to investigate the regularity and the decaying properties of the solitary wave solutions of (3.1), we
need to study the kernel of (3.2).

REMARK 3.4.1 Note that by using the Residue theorem, the kernel of the solution of (3.2) can be
written in the following form

K(x, y) = C

∫ +∞

0

|α|
√
t

t2 + α2x2
e
−

(
ct+ y2

4t

)
dt,
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where C > 0, independent of α, x and y, and K̂(ξ, η) =
1

c− α|ξ|+ η2
. Also by Fubini’s theorem, we obtain

that

‖K‖L1 = C

∫ +∞

0

∫
R2

|α|
√
t

t2 + α2x2
e
−

(
ct+ y2

4t

)
dxdydt = C(α)

∫ +∞

0

e−ct dt.

Therefore,

LEMMA 3.4.2 K is an even (in x and y), positive and decreasing function and K ∈ L∞
(
R2 \ {0}

)
∩

C∞
(
R2 \ {0}

)
. Furthermore, K̂ ∈ Lp(R2), for any p ∈ (3/2,+∞] and K ∈ Lp(R2), for any p ∈ [1,+∞).

THEOREM 3.4.3 Any solitary wave solution ϕ of (3.2), with p ∈ N , belongs to W k,r(R2), for all k ∈ N
and all r ∈ [1,+∞]. Furthermore, any solitary wave solution ϕ is continuous and in L∞(R2); and tends
to zero at infinity, for any 0 < p < 4.

Proof. Setting g ≡ −ϕ
p+1

p+ 1
, (3.2) yields

ϕ̂ =
ĝ

c− α|ξ|+ εη2
. (3.29)

This implies that ϕ ∈ H 1
2 ,1(R2) ∩H0,2(R2) ∩H1,0(R2). By using Lemma 0.0.11 and the embedding (3.3),

we obtain that ϕ ∈ Hs,2(1−s)(R2), for any s ∈ [0, 1]. By a bootstrapping argument and using Lemma 0.0.11
and Lemma 0.0.16, the proof of first part will be complete. The second part follows from the embedding
(3.3), the Young inequality and the properties of K in Lemma 3.4.2. �

REMARK 3.4.4 Note that H(s,2s)
(
R2
)

is an algebra if s > 3
2 (see Proposition 2.5 in [33]).

Now, we are going to study the symmetry properties of the solitary wave solutions of (3.1). Here, for
u : R2 → R, u] will represent the Steiner symmetrization of u with respect to {x = 0} and u? the Steiner
symmetrization of u with respect to {y = 0} (see Section 1.6).

LEMMA 3.4.5 If f ∈ Z , then f?, f ], |f | ∈ Z .

Proof. By setting g = |f |, then we have

〈f,K ∗ f〉 ≤ 〈g,K ∗ g〉 ,

for every c > 0. Therefore∫
R2
K̂(ξ, η)

∣∣∣f̂(ξ, η)
∣∣∣2 dξdη = 〈f,K ∗ f〉 ≤ 〈g,K ∗ g〉 =

∫
R2
K̂(ξ, η) |ĝ(ξ, η)|2 dξdη.

So, we have ∫
R2
c
(
1− cK̂

)
|ĝ(ξ, η)|2 dξdη ≤

∫
R2
c
(
1− cK̂

) ∣∣∣f̂(ξ, η)
∣∣∣2 dξdη, (3.30)
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since
∥∥∥f̂∥∥∥

L2(R2)
= ‖ĝ‖L2(R2). By taking the limit as c→ +∞ on both sides of (3.30) and using the Monotone

Convergence Theorem, we obtain that∫
R2

(
|ξ|+ η2

)
|ĝ(ξ, η)|2 dξdη ≤

∫
R2

(
|ξ|+ η2

) ∣∣∣f̂(ξ, η)
∣∣∣2 dξdη,

which shows that |f | ∈ Z .
Let us prove that f ] ∈ Z . One can see that K] = K = K?. Then Theorem 1.6.12 implies that∫

R4
f(x, y)f(s, t)K(x− s, y − t) dsdt dxdy ≤

∫
R4
f ](x, y)f ](s, t)K(x− s, y − t) dsdt dxdy.

Then it follows that ∫
R2
K̂(ξ, η)

∣∣∣f̂(ξ, η)
∣∣∣2 ≤ ∫

R2
K̂(ξ, η)

∣∣∣f̂ ](ξ, η)∣∣∣2 .
On the other hand, by using the fact that∥∥∥f̂∥∥∥

L2(R2)
= ‖f‖L2(R2) =

∥∥f ]∥∥
L2(R2)

=
∥∥∥f̂ ]∥∥∥

L2(R2)
,

a similar analysis as in the preceding proof shows that f ] ∈ Z . Analogously, one can prove that f? ∈ Z .
�

LEMMA 3.4.6 If ϕ ∈Mλ, then ϕ], ϕ? ∈Mλ.

Proof. Since Steiner symmetrization preserves the Lp+2−norm, it follows that J(ϕ) = J(ϕ]). So, by using
Lemma 3.4.5, we get

Mλ ≤ I
(
ϕ]
)
≤ I(ϕ) = Mλ.

Therefore, we have that ϕ] ∈Mλ. Similarly, ϕ? ∈Mλ. �

Now, we prove our theorem concerning the symmetry properties of the solitary wave solutions of the
equation (3.1).

THEOREM 3.4.7 The solitary wave solutions of the equation (3.1) are radially symmetric with respect
to the transverse direction and the propagation direction.

Proof. By Theorems 3.2.2 and 3.4.3, there is the function ψ satisfying (3.2). By choosing ϕ = ψ]? ≡ ψ?],
we have that ϕ is a solitary wave solution of the equation (3.1) which is symmetric with respect to {x = 0}
and {y = 0}. �

THEOREM 3.4.8 The solitary wave solution ϕ obtain in Theorem 3.2.2 is positive.

Proof. The proof follows from the proof of Theorem 3.2.2, Lemma 3.4.2, Lemma 3.4.5 and the following
identity

ϕ(x, y) =
1

p+ 1
K ∗ ϕp+1(x, y). (3.31)

�

Regarding on the decay properties of the solitary wave solutions of (3.1), one can prove the following
properties of the kernel K.
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LEMMA 3.4.9 K ∈ Hs1,0
(
R2
)
∩ H0,s2

(
R2
)
, for any s1 < 1

4 and s2 <
1
2 . Moreover K ∈ Hr,s

(
R2
)
∩

H(s1,s2)
(
R2
)
, where rs2 + ss1 = s1s2 and r ∈ [0, 1].

LEMMA 3.4.10 (i) K̂ ∈ Hs1,0
(
R2
)
∩ H0,s2

(
R2
)
, for any s1 < 3

2 and s2 ∈ R. Moreover K̂ ∈
Hr,s

(
R2
)
∩H(s1,s2)

(
R2
)
, where rs2 + ss1 = s1s2 and r ∈ [0, 1].

(ii) K̂ ∈ H(s1,s2)
p

(
R2
)
, for any s1 < 1 +

1
p
, p ≥ 2 and s2 ∈ R. Moreover |x|s1 |y|s2K ∈ Lp

(
R2
)
, for any

s1 < 2− 1
p
, 2s1 + s2 ≥ 3

(
1− 1

p

)
and p ≥ 1.

LEMMA 3.4.11 Let ` and m be two constants satisfying 0 < ` < m − n. Then there exists C > 0,
depending only on `, m and n, such that for all ε > 0, we have∫

Rn

|y|`

(1 + ε|y|)m(1 + |x− y|)m
dy ≤ C |x|`

(1 + ε|x|)m
, ∀|x| ≥ 1, (3.32)∫

Rn

1
(1 + ε|y|)m(1 + |x− y|)m

dy ≤ C
(1 + ε|x|)m

, ∀x ∈ Rn. (3.33)

The proof of Lemma 3.4.11 is elementary and is essentially the same as the proof of Lemma 3.1.1 in [13].

THEOREM 3.4.12 For any solitary wave solution of (3.2), we have

(i) |x|`|y|%ϕ(x, y) ∈ Lp
(
R2
)

for all p ∈ (1,+∞), any ` ∈ [0, 1) and any % ≥ 0,

(ii) |(x, y)|θϕ(x, y) ∈ Lp
(
R2
)

for all p ∈ (1,+∞) and any θ ∈ [0, 1),

(iii) ϕ ∈ L1
(
R2
)
.

Proof. (i) Choose ` ∈
[
0, s1 − 1 +

1
p

)
and p > 1, where s1 < 2− 1

p
. For 0 < ε < 1, we denote

hε(x, y) = A(x, y) ϕ(x, y),

where A(x, y) =
|x|`|y|%

(1 + ε|x|)s1(1 + ε|y|)s2
and s2 ≥ 3

(
1− 1

p

)
. Then hε ∈ Lp

′ (R2
)
. Using Hölder’s inequal-

ity, we obtain that

|f(x, y)| ≤ C(s1, s2, p)
(∫

R2
|G(z, w)|p

′
dzdw

) 1
p′

,

where g(t) =
tp+1

p+ 1
,

G(z, w) =
g(ϕ)(z, w)

(1 + |x− z|)s1(1 + |y − w|)s2

and C(s1, s2, p) = ‖(1 + |x|)s1(1 + |y|)s2K‖Lp(R2). Note that the fact that ϕ→ 0 as |(x, y)| → +∞ implies
that for every δ > 0, there exists Rδ > 1 such that if |(x, y)| ≥ Rδ, we have

∣∣g(ϕ)(x, y)
∣∣ ≤ δ|ϕ(x, y)|. By
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using Hölder’s inequality, we obtain that∫
R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy =

∫
R2\B(0,Rδ)

|hε(x, y)|p
′−rAr(x, y)|ϕ(x, y)|r dxdy

≤ C(s1, s2, p)r
∫

R2\B(0,Rδ)

|hε(x, y)|p
′−rAr(x, y) ‖G‖rLp′ (R2) dxdy

≤ C(s1, s2, p)r‖hε‖p
′−r
Lp′ (R2\B(0,Rδ))

∥∥∥ A ‖G‖Lp′ (R2)

∥∥∥r
Lp′ (R2\B(0,Rδ))

Thusly, ∫
R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy ≤ C(s1, s2, p)p

′
∫

R2\B(0,Rδ)

Ap
′
(x, y)‖G‖p

′

Lp′ (R2)
dxdy.

Using Fubini’s theorem and Lemma 3.4.11, we obtain∫
R2\B(0,Rδ)

Ap
′
(x, y)‖G‖p

′

Lp′ (R2)
dxdy

=
∫

R2

∣∣g(ϕ)(z, w)
∣∣p′ (∫

R2\B(0,Rδ)

Ap
′
(x, y)

(1 + |x− z|)p′s1(1 + |y − w|)p′s2
dxdy

)
dzdw

≤ C
∫

R2\B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣p′ Ap

′
(z, w) dzdw

+
∫
B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣p′ (∫

R2\B(0,Rδ)

Ap
′
(x, y)

(1 + |x− z|)p′s1(1 + |y − w|)p′s2
dxdy

)
dzdw.

The last integral is bounded by a constant C ′ depending on ϕ and Rδ and independent of ε. Therefore, by
using the fact that

∣∣g(ϕ)(x, y)
∣∣ ≤ δ|ϕ(x, y)| on R2 \B(0, Rδ), we get∫

R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy ≤ C(s1, s2, p)p

′

(
Cδp

′
∫

R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy + C ′

)
.

Choosing δ such that C(s1, s2, p)δC
1
p′ < 1, from the last inequality, we deduce that∫

R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy ≤ C , (3.34)

where C is a constant independent of ε. Now, we let ε → 0 in (3.34) and apply Fatou’s lemma to obtain
that ∫

R2\B(0,Rδ)

|x|`p
′
|y|%p

′
|ϕ(x, y)|p

′
dxdy ≤ C .

Hence |x|`|y|%ϕ(x, y) ∈ Lp′
(
R2
)
, for p′ =

p

p− 1
.

Now by taking the limits p→ 1 and p→ +∞, we obtain that `→ 1 and p′ ∈ (1,+∞). This proves the
theorem.

(ii) The proof follows from (i).
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(iii) Let s > 1 and g , δ and Rδ be the same in (i). Define Aε(x, y) =
1

(1 + ε|(x, y)|)s
. Therefore, we

have ∫
R2\B(0,Rδ)

|ϕ(x, y)|Aε(x, y) dxdy

≤
∫

R2

∣∣g(ϕ)(z, w)
∣∣(∫

R2\B(0,Rδ)

Aε(x, y)K(x− z, y − w) dxdy

)
dzdw

≤
∫

R2

∣∣g(ϕ)(z, w)
∣∣(∫

R2\B(0,Rδ)

A−2
1 (x− z, y − w)K2(x− z, y − w) dxdy

) 1
2

·

(∫
R2\B(0,Rδ)

A2
1 (x− z, y − w)A2

ε (x, y) dxdy

) 1
2

dzdw

≤ C(s)C
1
2

∫
R2

∣∣g(ϕ)(z, w)
∣∣Aε(z, w) dzdw

≤ C(s)C
1
2 δ

∫
R2\B(0,Rδ)

|ϕ(z, w)|Aε(z, w) dzdw + C(s)C
1
2

∫
B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣ dzdw,

by using Fubini’s theorem, Lemma 3.4.11 and this fact that ϕ, Aε ∈ L2
(
R2
)

and ϕAε ∈ L1
(
R2
)
. Hence by

the restriction on δ, and using Fatou’s lemma as ε→ 0, it concludes that ϕ ∈ L1
(
R2
)
. �

The following corollary is an immediate consequence of (3.31), the Theorem 3.4.12 and the inequality

|t|θ ≤ C
(
|t− s|θ + |s|θ

)
. (3.35)

Corollary 3.4.13 Suppose that ϕ ∈ L∞
(
R2
)

satisfies (3.2) and ϕ→ 0 at infinity. Then

(i) |x|`|y|%ϕ(x, y) ∈ L∞
(
R2
)
, for all ` ∈ [0, 1) and any % ≥ 0,

(ii) |(x, y)|θϕ(x, y) ∈ L∞
(
R2
)
, for all θ ∈ [0, 1).

LEMMA 3.4.14 |x|`|y|%K ∈ L∞
(
R2
)
, for any ` ≤ 2 and any % ≥ 0.

Proof. Suppose that |x| ≥ 1, so we have

K(x, y) < C

∫ +∞

0

e−ct
√
t

x2
e−

y2

4t dt ≤ C

∫ +∞

0

e−ct
√
t

x2

(
4t
y2

)ν
dt =

C

x2|y|2ν
,

for any ν ≥ 0. On the other hand, for 0 < |x| ≤ 1, by a change of variables, we have that

K(x, y) ≤ C√
|x|

∫ +∞

0

e−t|x|
√
t

1 + t2
e−

y2

4|x|t dt = C
|x|ν− 1

2

|y|2ν
,

for any ν ≥ 0. This completes the proof. �
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Corollary 3.4.15 |x|`|y|%ϕ(x, y) ∈ L∞
(
R2
)
, for any ` ≤ 2 and any % ≥ 0.

Proof. Without loss of generality, we assume that % = 0. Let ` < 1 and γ = min{2, (p+ 1)`}. Because

|x|γ
∣∣ϕp+1(x, y)

∣∣ ≤ (|ϕ(x, y)||x|
γ

p+1

)(
|ϕ(x, y)||x|

γ
p+1

)p
,

then by using (3.35), Corollary 3.4.13, Lemma 3.4.14 and Theorem 3.4.12, we obtain that |x|γϕ(x, y) ∈
L∞

(
R2
)
. If γ = (p + 1)`, one may use the above argument to show that |x|γϕ(x, y) ∈ L∞

(
R2
)

for
γ = min

{
2, (p+ 1)2`

}
. Then repeating this argument at most finitely many times leads to the conclusion.

�

The following corollary follows from (3.35), Corollary 3.4.13 and Theorem 3.4.12.

Corollary 3.4.16 (i) |x|`|y|%ϕ(x, y) ∈ L1
(
R2
)
, for all ` ∈ [0, 1) and any % ≥ 0,

(ii) |(x, y)|θϕ(x, y) ∈ L1
(
R2
)
, for all θ ∈ [0, 1).

LEMMA 3.4.17 There exists σ0 > 0 such that for any σ < σ0 and any s < 3
2 , we have

(i) |x|seσ|y|K ∈ L2
(
R2
)
,

(ii) K ∈ LpyL1
x

(
R2
)
; for any 1 ≤ p ≤ ∞,

(iii) |x|seσ|y|K ∈ L2
yL

1
x

(
R2
)
; where ‖ · ‖Lq

yL
p
x(R2) =

∥∥‖·‖Lp
x

∥∥
Lq

y
.

Proof.
By a change of variables, K can be written in the following form

K(x, y) = |α|
∫ +∞

0

e−c|x|t

α2 + t2

(
t

|x|

) 1
2

e−
y2

4|x|t dt.

Hence,

∥∥∥|x|seσ|y|K∥∥∥
L2(R2)

≤ α

∫ +∞

0

√
t

α2 + t2

(∫
R
|x|2s−1 e−2c|x|t

∫
R
e2σ|y|e−

y2

2|x|t dydx

) 1
2

dt

≤ C(α)
∫ +∞

0

t
3
4

α2 + t2

(∫
R
|x|2s− 1

2 e−2|x|t(c−σ2)dx
) 1

2

dt = C(α)

√
Γ
(
2s+ 1

2

)
(2(c− σ2))s+

1
4

∫ +∞

0

t
1
2−s

α2 + t2
dt,

which is finite for any σ <
√
c and any s < 3

2 . The proof of (ii) follows from the identity

‖K‖L1
x

= C(α)
∫ ∞

0

e−ct−
y2

4t

√
t

dt =
C(α)√

c
e−

√
c|y|.

The proof of (iii) is similar. �

The following corollary is a consequence of Lemma 0.0.15.
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Corollary 3.4.18 ϕ ∈ LpyL1
x

(
R2
)
, for any 1 ≤ p ≤ ∞.

Now we state our main result of decaying of the solitary wave solutions.

THEOREM 3.4.19 There exists σ0 > 0 such that for any σ ∈ [0, σ0) and any s < 3
2 , we have that

|x|seσ|y|ϕ(x, y) ∈ L1
(
R2
)
∩ L∞

(
R2
)
.

Proof. Without loss of generality we assume that s = 0. By using Lemma 3.4.17 and the proof of Corollary
3.14 in [13], with natural modifications, there exists σ̃ ≥ σ0 such that eσ|y|ϕ(x, y) ∈ L1

(
R2
)
, for any σ < σ̃.

Now by using the following inequality:

|ϕ(x, y)|eσ|y| ≤
∫

R2
|K(x− z, y − w)|eσ|y−w||ϕ(z, w)|eσ|w||ϕ(z, w)|p dzdw, (3.36)

and the facts ϕ(x, y)eσ|y| ∈ L1
(
R2
)
, ϕ ∈ L∞

(
R2
)

and K(x, y)eσ|y| ∈ L2
(
R2
)
, for any σ < σ0, we obtain

that ϕ(x, y)eσ|y| ∈ L∞
(
R2
)
, for any σ < σ0. �

Finally, the following theorem shows that analyticity of our solitary wave solutions.

THEOREM 3.4.20 There exists σ > 0 and an holomorphic function f of two variables z1 and z2,
defined in the domain Hσ =

{
(z1, z2) ∈ C2 ; |Im(z1)| < σ, |Im(z2)| < σ

}
such that f (x, y) = ϕ(x, y) for all

(x, y) ∈ R2.

Proof. By the Cauchy-Schwarz inequality, we have that ϕ̂ ∈ L1
(
R2
)
. Equation (3.2) implies that

|ξ| |ϕ̂| (ξ, η) ≤

p+1︷ ︸︸ ︷
|ϕ̂| ∗ · · · ∗ |ϕ̂|(ξ, η), (3.37)

|η| |ϕ̂| (ξ, η) ≤ |ϕ̂| ∗ · · · ∗ |ϕ̂|︸ ︷︷ ︸
p+1

(ξ, η). (3.38)

We denote T1(|ϕ̂|) = |ϕ̂| and for m ≥ 1, Tm+1(|ϕ̂|) = Tm(|ϕ̂|) ∗ |ϕ̂|. It can be seen by induction that

rm|ϕ̂|(ξ, η) ≤ (m− 1)! (p+ 1)m−1Tmp+1(|ϕ̂|)(ξ, η), (3.39)

where r = |(ξ, η)|. Then we have

rm|ϕ̂|(ξ, η) ≤ (m− 1)! (m+ 1)m−1 ‖Tmp+1(|ϕ̂|)‖L∞(R2) ≤ (m− 1)! (m+ 1)m−1 ‖Tmp(|ϕ̂|)‖L2(R2) ‖ϕ̂‖L2(R2)

≤ (m− 1)! (m+ 1)m−1‖ϕ̂‖mpL1(R2)‖ϕ̂‖
2
L2(R2).

Let am =
(m− 1)! (m+ 1)m−1‖ϕ̂‖mpL1(R2)‖ϕ̂‖

2
L2(R2)

m!
, then it is clear that

am+1

am
−→ (p+ 1)‖ϕ̂‖pL1(R2),

as m→ +∞. Therefore the series
∑∞
m=0 t

mrm|ϕ̂|(ξ, η)/m! converges uniformly in L∞(R2), if 0 < t < σ =
1
p+1‖ϕ̂‖

−p
L1(R2). Hence etrϕ̂(ξ, η) ∈ L∞(R2), for t < σ.

We define the function
f (z1, z2) =

∫
R2
ei(ξz1+ηz2)ϕ̂(ξ, η) dξdη.
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By the Paley-Wiener Theorem, f is well defined and analytic in Hσ; and by Plancherel’s Theorem, we have
f (x, y) = ϕ(x, y) for all (x, y) ∈ R2. �



Chapter 4

High Dimensional Benjamin Equations

The Benjamin equation
ut + 2uux + ρuxxx + %H uxx = 0,

where H = H (x) is the Hilbert transform with respect to x variable, governs the propagation of straight-
crested unidirectional weakly nonlinear long waves on the interface of this two-fluid system, ignoring the
effects of viscosity and assuming that interfacial tension is large and the fluid densities are nearly equal.
Under these flow conditions, the two dimensional Benjamin equation

ut + αuxxx + βH uxx + εvy + upux = 0, (4.1)

uy = vx, (x, y) ∈ R2, t ≥ 0, (4.2)

and three dimensional Benjamin equation

ut + αuxxx + βH uxx + avy + bwz + upux = 0, (4.3)
uy = vx, (4.4)

uz = wx, (x, y, z) ∈ R3, t ≥ 0, (4.5)

are some extensions of the Benjamin equation that allows for weak spatial variations transverse to the
propagation direction, and can be derived by a standard weakly nonlinear long-wave expansion, where the
constants ε, a, b measure the transverse dispersion effects and are normalized to ±1 and the constants
α and β are real. These equations are some models for interfacial gravity-capillary waves; namely, we
consider an extension to two spatial dimensions of the evolution equation derived by Benjamin ([4]) for
weakly nonlinear long waves on the interface of a two-fluid system, in the case that the upper layer is
bounded by a rigid lid and lies on top of an infinitely deep fluid. The usual 2-DB equation and 3-DB
equation correspond to the nonlinearity uux (see [47] and references therein). When β = 0, the 2-DB and
3-DB equations are known as two and three dimensional KP equations, respectively.

This Chapter is devoted to nonexistence, existence of the solitary wave solutions of generalized n-
dimensional Benjamin equation. We also use the variational properties of the problem to obtain the
symmetry and blow-up results. Furthermore, we will show that some regularity and decay of the solitary
wave solutions.

88
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4.1 (Non)Existence
In order to give a precise definition of our needed spaces, we use the following spaces. We shall denote, X
the closure of ∂x(C∞0 (Rn)) for the norm

‖∂xϕ‖2X = ‖∇ϕ‖2L2(Rn) + ‖∂2
xϕ‖2L2(Rn) (4.6)

where n = 2, 3 and ∂x(C∞0 (Rn)) denotes the space of functions of the form ∂xϕ with ϕ ∈ ∂x(C∞0 (Rn)), that
is, the space of functions ψ ∈ ∂x(C∞0 (Rn)) in ∂x(C∞0 (Rn)) such that

∫
R
ψ(x, y) dx = 0, for every y ∈ Rn−1.

By a solitary wave solution of 2-DB equation (respectively 3-DB equation), we mean a solution of
(4.1)-(4.2) (respectively (4.3)-(4.5)) of the type u(x− c1t, y− c2t) (respectively u(x− c1t, y− c2t, z− c3t)),
where u ∈ X , c1, c2, c3 ∈ R are the speeds of propagation of the wave along each direction. So we are
looking for localized solutions of the systems −c1ux − c2uy + αuxxx + βH uxx + εvy + upux = 0

uy = vx

(4.7)

and 
−c1ux − c2uy − c3uz + αuxxx + βH uxx + avyvy + bwz + upux = 0

uy = vx

uz = wx,

(4.8)

respectively. By a change of variables x̃ = x, ỹ = y − 1
2εc2x in the two dimensional case, and x̃ = x,

ỹ = y − 1
2ac2x, z̃ = z − 1

2bc3x in the three dimensional case, after dropping the tilde, we obtain the new
systems  −cux + αuxxx + βH uxx + εvy + upux = 0

uy = vx

(4.9)

with c = c1 + 1
4εc

2
2 and 

−cux + αuxxx + βH uxx + avyvy + bwz + upux = 0

uy = vx

uz = wx

(4.10)

with c = c1+ 1
4ac22+

1
4bc23. By using the Pohozaev type identities, we obtain the situations of the nonexistence

of the solitary wave solutions. We apply the following truncation argument to gain the regularity we need.

THEOREM 4.1.1 Let |α| + |β| > 0. The equation (4.9) does not admit any nontrivial solitary wave
satisfying

u = ∂xϕ ∈ X , u ∈ H1(R2) ∩ L∞loc(R2),

∂2
yϕ ∈ L2

loc(R2), ∂2
xϕ ∈ L2

loc(R2),
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(I) if ε = 1 and one of the following cases occurs:

(i) α, β ≥ 0, c < 0 and p ≥ 4/3,

(ii) α ≤ 0, β ≥ 0, c > 0 and p ≤ 4/3,

(iii) α ≤ 0, β ≥ 0, c < 0 and p ≥ 4,

(iv) α ≥ 0, β ≤ 0, c ∈ R∗ and p is arbitrary,

(v) α, β ≤ 0, c > 0 and p ≤ 4,

or

(II) if ε = −1 and one of the following cases occurs:

(i) α, β ≥ 0, c < 0 and p ≤ 4,

(ii) α ≤ 0, β ≥ 0, c ∈ R∗ and p is arbitrary,

(iii) α ≥ 0, β ≤ 0, c > 0 and p ≥ 4,

(iv) α ≥ 0, β ≤ 0, c < 0 and p ≤ 4/3,

(v) α, β ≤ 0, c > 0 and p ≥ 4/3.

THEOREM 4.1.2 Let |α| + |β| > 0. The equation (4.10) does not admit any nontrivial solitary wave
satisfying

u = ∂xϕ ∈ X , u ∈ H1(R3) ∩ L∞loc(R3) ∩ L2(p+1)(R3),

∂2
yϕ ∈ L2

loc(R3), ∂2
zϕ ∈ L2

loc(R3), ∂2
xϕ ∈ L2

loc(R3),

(I) if ab = −1, or

(II) if a = b = 1 and one of the following cases occurs:

(i) α, β ≥ 0, c < 0 and p ≥ 2/3,

(ii) α ≤ 0, β ≥ 0, c > 0 and p ≤ 2/3,

(iii) α ≤ 0, β ≥ 0, c < 0 and p ≥ 4/3,

(iv) α ≥ 0, β ≤ 0, c ∈ R∗ and p is arbitrary,

(v) α, β ≤ 0, c > 0 and p ≤ 4/3,

or

(III) if a = b = −1 and one of the following cases occurs:

(i) α, β ≥ 0, c < 0 and p ≤ 4/3,

(ii) α ≤ 0, β ≥ 0, c ∈ R∗ and p is arbitrary,

(iii) α ≥ 0, β ≤ 0, c > 0 and p ≥ 4/3,

(iv) α ≥ 0, β ≤ 0, c < 0 and p ≤ 2/3,

(v) α, β ≤ 0, c > 0 and p ≥ 2/3.
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Proof of Theorem 4.1.1. Let χ0 ∈ C∞0 (R), such that 0 ≤ χ0 ≤ 1 and χ0(s) = 1 if 0 ≤ |s| ≤ 1,

χ0(s) = 0 if |s| ≥ 2. We set χj(x, y) = χ0

(
r2

j2

)
, where r2 = x2 + y2, j ∈ N and y ∈ Rn−1 for n = 2, 3.

First, we consider the two dimensional case.
We multiply the first equation of the system (4.9) by xuχj and we integrate over R2 to get

−c
∫
xχjuux dxdy +

∫
xχju

p+1ux dxdy + α

∫
xχjuuxxx dxdy + β

∫
xχjuH uxx dxdy + ε

∫
xχjuvy dxdy = 0.

By using the integration by parts we obtain

0 =
c

2

∫
χju

2 dxdy +
c

j2

∫
x2χ′0

(
r2

j2

)
u2 dxdy − 3α

j2

∫
χ′0

(
r2

j2

)
u2 dxdy − 2β

j2

∫
χ′0

(
r2

j2

)
uH ux dxdy

− 6α
j4

∫
χ′′0

(
r2

j2

)
u2 dxdy − 6α

j4

∫
xχ′′0

(
r2

j2

)
u2 − 4α

j6

∫
x3χ′′′0

(
r2

j2

)
u2 dxdy +

3α
j2

∫
xχ′0

(
r2

j2

)
u2
x dxdy

+
3α
2

∫
χju

2
x dxdy +

ε

2

∫
χjv

2 dxdy − β

∫
χjuH ux dxdy −

2ε
j2

∫
xyχ′0

(
r2

j2

)
uv dxdy

− 1
p+ 2

∫
χju

p+2 dxdy +
1
j2

∫
xχ′0

(
r2

j2

)
v2 dxdy − 2

j2(p+ 2)

∫
x2χ′0

(
r2

j2

)
up+2 dxdy − β

∫
xχjuxH ux dxdy.

Now by using Lebesgue dominated convergence theorem, we get∫
R2

(
cu2 + 3αu2

x − 2βuH ux + εv2 − 2
p+ 2

up+2

)
dxdy = 0. (4.11)

Next we multiply the first equation of the system (4.9) by yvχj and we integrate over R2; similar to above,
by using the integration by parts and Lebesgue dominated convergence theorem, we obtain∫

R2

(
−cu2 − αu2

x + βuH ux − εv2 − 2
(p+ 1)(p+ 2)

up+2

)
dxdy = 0. (4.12)

Now we multiply the first equation of the system (4.9) by uχj and we integrate over R2; similar to above,
by using the integration by parts and Lebesgue dominated convergence theorem, we obtain∫

R2

(
−cu2 − αu2

x + βuH ux + εv2 +
1

p+ 1
up+2

)
dxdy = 0. (4.13)

By adding (4.11) and (4.12) we get∫
R2

(
2αu2

x − βuH ux −
2p

(p+ 1)(p+ 2)
up+2

)
dxdy = 0. (4.14)

By subtracting (4.11) from (4.12) we obtain∫
R2

(
cu2 + 2αu2

x −
3
2
βuH ux −

1
p+ 1

up+2

)
dxdy = 0. (4.15)
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Adding (4.14) and (4.13) yields∫
R2

(
−cu2 +

β

2
uH ux + εv2 +

2
(p+ 1)(p+ 2)

up+2

)
dxdy = 0. (4.16)

By adding (4.15) and (4.13) we have∫
R2

(
2αu2

x − βuH ux + 4εv2
)
dxdy = 0, (4.17)

which rules out (I)(iv) and (II)(ii).
Subtracting (4.17) from (4.14) yields∫

R2

(
2εv2 +

p

(p+ 1)(p+ 2)
up+2

)
dxdy = 0. (4.18)

Eliminating up+2 by (4.18) and (4.16) leads to∫
R2

[
−cu2 +

β

2
uH ux + ε

(
p− 4
p

)
v2

]
dxdy = 0, (4.19)

which rules out (I)(iii), (I)(v), (II)(i) and (II)(iii).
Adding (4.11) and 2 times (4.12), and using (4.18), we obtain∫

R2

[
−cu2 + αu2

x + ε

(
3p− 4
p

)
v2

]
dxdy = 0, (4.20)

which rules out (I)(i), (I)(ii), (II)(iv) and (II)(v). �

Proof of Theorem 4.1.2. In dimension three, by the aforementioned truncation process, by multiplying
the first equation of the system (4.10) by xuχj , yvχj , zwχj and uχj respectively; integration by parts,
and Lebesgue dominated convergence theorem, we obtain the following relations:

∫
R3

(
cu2 + 3αu2

x − 2βuH ux + av2 + bw2 − 2
p+ 2

up+2

)
dxdydz = 0, (4.21)∫

R3

(
−cu2 − αu2

x + βuH ux − av2 + bw2 +
2

(p+ 1)(p+ 2)
up+2

)
dxdydz = 0, (4.22)∫

R3

(
−cu2 − αu2

x + βuH ux + av2 − bw2 +
2

(p+ 1)(p+ 2)
up+2

)
dxdydz = 0, (4.23)∫

R3

(
−cu2 − αu2

x + βuH ux + av2 + bw2 +
1

p+ 1
up+2

)
dxdydz = 0. (4.24)

By subtracting (4.22) from (4.23) yields∫
R3

(
av2 − bw2

)
dxdydz = 0, (4.25)
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which rules out (I).
By adding (4.22) and (4.23) we obtain∫

R3

(
−cu2 − αu2

x + βuH ux +
2

(p+ 1)(p+ 2)
up+2

)
dxdydz = 0. (4.26)

Subtracting (4.24) from (4.26), using (4.25), we infer∫
R3

(
2av2 +

p

(p+ 1)(p+ 2)
up+2

)
dxdydz = 0. (4.27)

Adding 3 times (4.24) and 2 times (4.21) yields∫
R3

(
−2cu2 + βuH ux + 8av2 +

p+ 4
(p+ 1)(p+ 2)

up+2

)
dxdydz = 0. (4.28)

Eliminating up+2 by (4.28) and (4.27) leads to∫
R3

[
−2cu2 + βuH ux +

(
6p− 8
p

)
av2

]
dxdydz = 0, (4.29)

which rules out (II)(iii), (II)(v), (III)(i) and (III)(iii).

Adding twice (4.26) and (4.11), using (4.27), we obtain∫
R3

[
− c

2
u2 +

α

2
u2
x + a

(
3p− 2
p

)
v2

]
dxdydz = 0, (4.30)

which rules out (II)(i), (II)(ii), (III)(iv) and (III)(v).
Adding (4.21) and (4.24), plugging the identity (4.25) and (4.27), yields∫

R3

(
2αu2

x − βuH ux + 6av2
)
dxdydz = 0, (4.31)

which rules out (II)(iv) and (III)(ii). �

4.2 The Existence
In this section, we prove the existence of solitary wave solutions of equations (4.9) and (4.10) by using the
minimization problem as before. The main theorems are stated in the following.

THEOREM 4.2.1 Let α, c > 0, β ∈ R and p = k
m , where m ∈ N is odd and m and k are relatively

prime. We also suppose that if β > 0, then β ∈ (0, 2
√
αc ).

(I) Let n = 2, 0 < p < 4 and ε = −1, Then the system (4.9) admits a nontrivial solution u ∈ X .

(II) Let n = 3, 0 < p < 4/3 and a = b = −1. Then the system (4.10) admits a nontrivial solution u ∈ X .
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The proof will be done by using Lemma 0.0.1. The help of an embedding theorem for anisotropic Sobolev
spaces due to Besov et al. [10] is needed to encounter the fact that X is not embedded in H2(Rn). In
particular, our minimizing sequence is not bounded in H1(Rn) and we have to apply a compactness lemma
in L2(Rn) of bounded sequences of X , a minimizing sequence un in X leads to a minimum u.

THEOREM 4.2.2 Let n,m ∈ N, p ∈ (1,+∞)m, q ∈ (1,+∞), % ∈ Nn0 , {κi}mi=1 ⊂ Nn and µ ∈ (0, 1)m

such that |µ| = 1 and satisfying

1
q
≤

m∑
j=1

µj
pj

and %i −
1
q

=
m∑
j=1

µj

(
κji −

1
pj

)
,

for each 1 ≤ i ≤ n. Then there exists constant C > 0 such that ‖D%f‖Lq(Rn) ≤ C
∏m
j=1 ‖Dκjf‖Lpj (Rn), for

all f ∈ C∞0 (Rn).

Using this theorem, one can induce embedding of X into the Lq(Rn) spaces.

LEMMA 4.2.3 Let pn = 4n−2
2n−3 , n = 2, 3. Then for any p ∈ [2, pn], there exists C > 0 such that

‖u‖Lq(Rn) ≤ C‖u‖X . (4.32)

As a consequence of this lemma we have, the following, if u ∈ X and n = 3, then u = ∂xϕ where
ϕ ∈ L6

loc(R3); and if n = 2 and u ∈ X , then u = ∂xϕ where ϕ ∈ Lqloc(R2), for any q ∈ [2,+∞).
In fact, the proof follows from the previous theorem:

‖u‖qLq(R2) ≤ C‖u‖
6−q
2

L2(R2) ‖ux‖
q−2
L2(R2) ‖v‖

q−2
2

L2(R2), q ∈ [2, 6] (4.33)

‖u‖qLq(R3) ≤ C‖u‖
10−3q

2
L2(R3) ‖ux‖

3(q−2)
2

L2(R3) ‖v‖
q−2
2

L2(R3) ‖w‖
q−2
2

L2(R3), q ∈ [2, 10/3]. (4.34)

Proof of Theorem 4.2.1(I). We consider the minimization problem

Iλ = inf
{

H(u) | u ∈ X , J(u) =
∫

R2
up+2(x, y) dxdy = λ

}
, (4.35)

where u = ϕx, λ > 0 and H(u) = c‖ϕx‖2L2(R2) + ‖ϕy‖2L2(R2) + α‖ϕxx‖2L2(R2) − β
∥∥∥D1/2

x ϕx

∥∥∥2

L2(R2)
.

REMARK 4.2.4 Note that according to the assumptions of the Theorem 4.2.1, H(u) > 0, for all 0 6=
u ∈ X . Also if β ∈ R \ [2

√
αc,+∞), then H(u) ∼ ‖u‖2X . However H(·) defines an equivalent norm to

‖ · ‖X whenever β ≤ 0.

Let {un}n∈N be a minimizing sequence of Iλ in X . Then there exists a sequence of functions ϕn ∈ L6(R3)
satisfying un = ∂xϕn. We set vn = ∂yϕn = D−1

x ∂yun and

ρn = |un|2 + |vn|2 + |∂xun|2.

By using (4.32), we can not have

lim
n→+∞

∫
R3
ρn dxdy = 0.
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By using again of (4.32), we obtain that

λ =
∣∣∣∣∫

R3
up+2 dxdy

∣∣∣∣ ≤ C‖u‖p+2
X ≤ CIp+2

λ ,

for any u ∈ X . Hence Iλ > 0 for any positive λ. Since H(un) −→ Iλ as n → ∞ and by Remark 4.2.4,
there exists C > 0 such that H(un) < C, ρn < C and ‖un‖X < C, for all n ∈ N.

Now suppose the evanescence occurs, i.e. that for any R > 0,

lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
(x̃,ỹ)+BR

ρn dxdy = 0, (4.36)

where BR is the ball of radius R centered at zero. By (4.32), for q ∈ (2, 6), there exists a constant C > 0,
independent of (x, y) ∈ R2 such that,

∫
(x̃,ỹ)+B1

|∂xϕn|q dxdy ≤ C

(∫
(x̃,ỹ)+B1

|un|2 + |vn|2 + |∂xun|2 dxdy

)q/2

≤ C

(∫
(x̃,ỹ)+B1

ρn dxdy

)q/2
≤ C

(
sup

(x̃,ỹ)∈R2

∫
(x̃,ỹ)+B1

ρn dxdy

)(q−2)/2(∫
(x̃,ỹ)+B1

ρn dxdy

)
.

Since R2 can be covered by balls of radius one in such a way that each point is at most included in three
balls, one infers ∫

R2
|∂xϕn|q dxdy ≤ C

(
sup

(x̃,ỹ)∈R2

∫
(x̃,ỹ)+B1

ρn dxdy

)(q−2)/2(∫
R2
ρn

)
.

Now this inequality and the vanishing assumptions imply that limn→+∞ ‖un‖Lq(R2) = 0 for any q ∈ (2, 6),
which contradicts that the constraint in Iλ.

Assume now that dichotomy occurs, i.e. that there exists γ ∈ (0, Iλ) such that lim
t→+∞

M (t) = γ, where

M (t) = lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
(x̃,ỹ)+Bt

ρn dxdy, for all t ≥ 0.

Dichotomy implies the splitting of un in two sequences u1,n and u2,n with disjoint support. To keep
un, u1,n, u2,n ∈ X , we focus on ϕn and localize it. This splitting lemma is stated as follows.

LEMMA 4.2.5 For every ε > 0, there exists a δ(ε) with limε→0 δ(ε) = 0, % ∈ (0, Iλ), ρ ∈ (0, λ) and two
sequences {u1,n}n∈N and {u2,n}n∈N in X with satisfying the following for n ≥ n0.

‖un − u1,n − u2,n‖X ≤ δ(ε), (4.37)
|H(un)− H(u1,n)− H(u2,n)| ≤ δ(ε), (4.38)

|H(u1,n)− %| ≤ δ(ε), |H(u2,n)− Iλ + %| ≤ δ(ε), (4.39)
|J(un)− J(u1,n)− J(u2,n)| ≤ δ(ε), (4.40)

|J(u1,n)− ρ| ≤ δ(ε), |J(u2,n)− λ+ ρ| ≤ δ(ε). (4.41)
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Proof. According to the definition M , it is an increasing function and then fix ε > 0. Then there exist
R0 > 1/ε and a sequence {(xn, yn)}n∈N ⊂ R2 and given n0 ∈ N such that, for all n ≥ n0

γ − ε ≤
∫

(xn,yn)+BR0

ρn dxdy ≤ γ ≤ γ + ε.

One defines
Mn(t) = sup

(x̃,ỹ)∈R2

∫
(x̃,ỹ)+Bt

ρn dxdy,

for all t > 0. Hence we can find a sequence {Rm > 0}m∈N (taking a subsequence if necessary) such that
limn→+∞Rn = +∞ and Mn(2Rn) ≤ γ + ε, for n ≥ n0. It follows that∫

R0≤|(x,y)−(xn,yn)|≤2Rn

(
|un|2 + |∂xun|2 + |vn|2

)
dxdy ≤ 2ε. (4.42)

Let (ζ, η) ∈ C∞0 (R2)2 satisfy

• supp ζ ⊂ B2(0), ζ ≡ 1 on B1(0) and 0 ≤ ζ ≤ 1;

• supp η ⊂ R2 \B2(0), η ≡ 1 on R2 \B1(0) and 0 ≤ η ≤ 1.

For n ∈ N, we set ζn = ζ

(
· − (xn, yn)

R1

)
, ηn = η

(
· − (xn, yn)

Rn

)
, and we define

u1,n = ∂x(ζn(ϕn − an)), u2,n = ∂x(ηn(ϕn − bn)),

v1,n = D−1
x (u1,n)y = ∂y(ζn(ϕn − an)), v2,n = D−1

x (u2,n)y = ∂y(ηn(ϕn − bn)),

where {an}n∈N and {bn}n∈N are real sequences that will be fixed later. Obviously u1,n and u2,n are in X
and supp u1,n ∩ supp u2,n = ∅.
If un is written as un = u1,n + u2,n + ~n, then

‖~n‖X = ‖∂x (ϕn − ζn(ϕn − an)− ηn(ϕn − bn)) ‖X

≤ ‖(1− ζn − ηn)un‖L2(R2) + ‖(1− ζn − ηn)vn‖L2(R2) + ‖∂x~n‖L2(R2)

+ ‖(ϕn − an)∂xζn‖L2(R2) + ‖(ϕn − an)∂yζn‖L2(R2)

+ ‖(ϕn − bn)∂xηn‖L2(R2) + ‖(ϕn − bn)∂yηn‖L2(R2).

By using (4.42), we have

‖(1− ζn − ηn)un‖2L2(R2) ≤
∫
R1≤|(x,y)−(xn,yn)|≤Rn

|un|2 dxdy ≤ 2ε.

Analogously, ‖(1− ζn − ηn)vn‖L2(R2) ≤
√

2ε .
To estimates the rest, we need a Poincaré-type lemma.

LEMMA 4.2.6 For q ∈ [2,+∞], there exists C > 0 such that, for all f ∈ L2
loc(R2) satisfying ∇f ∈

L2
loc(R2), and for every R > 0 and for all (x̃, ỹ) ∈ R2,
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 ∫
R≤|(x,y)−(x̃,ỹ)|≤2R

|f(x, y)−mR(f)|q dxdy


1/q

≤ CR2/q

 ∫
R≤|(x,y)−(x̃,ỹ)|≤2R

|∇f |2 dxdy


1/2

where
mR(f) =

1
|B(x̃, ỹ;R)|

∫
R≤|(x,y)−(x̃,ỹ)|≤2R

f(x, y) dxdy

and B(x̃, ỹ;R) denotes the annulus
{
(x, y) ∈ R2, R ≤ |(x, y)− (x̃, ỹ)| ≤ 2R

}
.

For a proof of this lemma, see [23, Lemma 3.1].
We choose the sequences {an}n∈N and {bn}n∈N:

an = mR1(ϕn) =
1

|B(x̃, ỹ;R1)|

∫
R1≤|(x,y)−(x̃,ỹ)|≤2R1

ϕn dxdy,

and
bn = mRn

(ϕn) =
1

|B(x̃, ỹ;Rn)|

∫
Rn≤|(x,y)−(x̃,ỹ)|≤2Rn

ϕn dxdy.

Therefore, we have

‖(ϕn − an)∂xζn‖2L2(R2) ≤
1
R2

1

‖∂xζ‖2L∞(R2)

∫
B(xn,yn;R1)

|ϕn − an|2 dxdy

≤ ‖ζx‖2L∞(R2)

[∫
B(xn,yn;R1)

|un|2 + |vn|2 dxdy

]
≤ Cε.

Similarly, one can estimate ‖(ϕn − bn)∂xηx‖2L2(R2) ≤ δ(ε),
‖(ϕn − an)∂yζx‖2L2(R2) ≤ δ(ε) and ‖(ϕn − bn)∂yηx‖2L2(R2) ≤ δ(ε). On the other hand,

∂x~n = (1− ζn − ηn)∂xun + 2un∂xζn + 2un∂xηn + (ϕn − an)∂2
xζn + (ϕn − bn)∂2

xηn.

By using (4.42) and the Lemma 4.2.6, one can obtain ‖(1−ζn−ηn)∂xun‖L2(R2) ≤ δ(ε), ‖(ϕn−an)∂2
xζn‖L2(R2) ≤

δ(ε) and ‖(ϕn − bn)∂2
xηn‖L2(R2) ≤ δ(ε).

But by using (4.32), we obtain

‖un∂xζn‖L2(R2) ≤ C‖ζx‖L∞(R2)

(∫
B(xn,yn;R1)

|un|2 dxdy

)1/2

≤ C
√
ε.

Similarly, ‖un∂xηn‖L2(R2) ≤ δ(ε). From the above inequalities one obtains

‖~n‖X = ‖un − u1,n − u2,n‖X ≤ δ(ε).

We are going to estimate |H(un)− H(u1,n)− H(u2,n)|. Note that

|H(un)− H(u1,n)− H(u2,n)| ≤ ‖un − u1,n − u2,n‖2X +
∥∥∥D1/2

x ~n
∥∥∥2

L2(R2)
.
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So it is enough to estimate the second term on the right hand side of the above inequality. We have∥∥∥D1/2
x u1,n

∥∥∥2

L2(R2)

=
∫

R2
((ϕn − an)∂xζn + ζnun)H

(
(ϕn − an)∂2

xζn + 2un∂xζn + ζn∂xun
)
dxdy

=
∫

R2
(ϕn − an)∂xζnH

(
(ϕn − an)∂2

xζn
)
dxdy + 2

∫
R2
ζnunH (un∂xζn) dxdy

+ 2
∫

R2
(ϕn − an)∂xζnH (un∂xζn) dxdy +

∫
R2
ζnunH

(
(ϕn − an)∂2

xζn
)
dxdy

+
∫

R2
(ϕn − an)∂xζnH (ζn∂xun) dxdy +

∫
R2
ζnun[H , ζn]∂xun dxdy

+
∫

R2
ζ2
nunH ∂xun dxdy.

(4.43)

Before estimating we need the following classical Calderón Commutator Theorem (see [21, 22]).

LEMMA 4.2.7 Let g ∈ C∞(R) with g′ ∈ L∞(R). Then [H , g]∂x ∈ L
(
L2(R), L2(R)

)
with

‖[H , g]∂xf‖L2(R) ≤ C‖g′‖L∞(R)‖f‖L2(R).

By using the fact that ‖H u‖L2(R2) = ‖u‖L2(R2) and other properties of H , the first five terms on the right
hand side of (4.43) are bounded as the preceding estimate. By using the Cauchy-Schwarz inequality and
the previous lemma, we have∫

R2
ζnun[H , ζn]∂xun dxdy ≤ ‖ζnun‖L2(R2)‖[H , ζn]∂xun‖L2(R2) ≤ C‖∂xζn‖L∞(R2)‖un‖2L2(B(xn,yn;R1))

≤ Cε.

Therefore, by similar estimates for
∥∥∥D1/2

x u2,n

∥∥∥
L2(R2)

, we obtain

∥∥∥D1/2
x ~n

∥∥∥
L2(R2)

≤
∥∥(1− ζ2

n − η2
n

)
un
∥∥
L2(R2)

+ C
√
ε ≤ δ(ε).

Since ‖u1,n‖X and ‖u2,n‖X are bounded, then H(u1,n) and H(u2,n) are bounded. From the above
inequality, one infers that there exists %(ε) ∈ [0, Iλ] (and taking subsequences if necessary) such that
limn→∞ H(u1,n) = %(ε), and thus |H(u2,n) − Iλ + %| ≤ δ(ε). Analogously, one can obtain |J(un) −
J(u1,n)−J(u2,n)| ≤ δ(ε). Therefore we assume that limn→+∞ J(u1,n) = ρ(ε) and limn→+∞ J(u2,n) = ρ̃(ε),
with |λ − ρ(ε) − ρ̃(ε)| ≤ δ(ε). If limε→0 ρ(ε) = 0, then choosing ε sufficiently small, we have for
n large enough J(u2,n) > 0. Hence by considering (ρ̃(ε)J(u2,n))

1
p+2 u2,n , we obtain that (note that

J
(
(ρ̃(ε)J(u2,n))

1
p+2 u2,n

)
= ρ̃(ε))

Iρ̃(ε) ≤ lim inf
n→+∞

H(u2,n) ≤ Iλ − γ + δ(ε),

which leads to a contradiction since limε→0 ρ̃(ε) = λ. Thus ρ = limε→0 ρ(ε) > 0. Necessarily ρ < λ,
because the case ρ = λ is ruled out in the same manner with u2,n instead of u1,n. Since ρ ∈ (0, λ), one
infers that necessarily % = limε→+∞ %(ε) ∈ (0, Iλ). This completes the proof of lemma. �



4.2 The Existence 99

Let us continue the proof of the theorem and show that the dichotomy cannot occur. The previous
lemma imply that Iλ−ρ + Iρ ≤ Iλ. This inequality contradicts the subadditivity condition of Iλ coming
from Iλ = λ2/(p+2)I1.

Therefore the remaining case in Lemma 0.0.1 is locally compactness. There exist a sequence {(xn, yn)}n∈N ⊂
R2, such that for all ε > 0, there exists a finite R > 0 and n0 > 0, with∫

(xn,yn)+BR

ρn dxdy ≥ ιλ − ε,

for n ≥ n0, where ιλ = limn→+∞
∫

R2 ρn dxdy. This implies that for n large enough∫
(xn,yn)+BR

|un|2 dxdy ≥
∫

R2
|un|2 dxdy − 2ε.

Since un is bounded in the Hilbert space X , there exists u ∈ X such that a subsequence of {un(· −
(xn, yn))}n∈N (denoted by the same) converges weakly in X . We then have∫

R2
|u|2 dxdy ≤ lim inf

n→+∞

∫
R2
|un|2 dxdy ≤ lim inf

n→+∞

∫
(xn,yn)+BR

|un|2 dxdy + 2ε.

But we know there is an injection of X into L2
loc(R2) (due to [23]). Consequently {un(· − (xn, yn))}n∈N

converges strongly in L2
loc(R2). But the last inequality above implies that this strong convergence also

takes place in L2(R2). Thus by the (4.32), {un(· − (xn, yn))}n∈N also converges to u strongly in Lp+2(R2)
so that J(u) = λ and Iλ = limn→+∞ H(un) = H(u), that is, u is a solution of Iλ.

(II) The proof for three dimensional case is basically the same. �

Now by using the preceding theorem and the Lagrange multiplier theorem, there exists θ ∈ R such that

−αuxx − βH ux + cu+D−1
x vy =

θ

p+ 1
up+1,

in X ′. Using the scale change u = sgn(θ)|θ|−1/pũ, one can easily see that ũ satisfies (4.9) (and similarly
for three dimensional case (4.10)).

It is easy to see, by multiplying the previous equation by u and integrating by parts over R2, that

(p+ 1)H(u) = θλ,

so θ > 0. θ is a continuous function of λ. Furthermore,

PROPOSITION 4.2.8 There exists λ0 > 0 such that θ(λ0) = 1. Moreover

lim
λ→0+

θ(λ) = +∞, and lim
λ→+∞

θ(λ) = 0.

Proof. We give a proof in two dimensional case; proof of three dimensional case is similar and we will
omit it.
Let χ ∈ C∞0 (R2). For any λ > 0, we assume that uλ is a minimizer of Iλ. By defining

χλ =
(

λ∫
R2 χp+2 dxdy

)1/(p+2)

χ,
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we obtain that
0 < θ(λ)λ = (p+ 1)H(uλ) ≤ (p+ 1)H(χλ) = (p+ 1)λ2/(p+2)H(χ).

Therefore limλ→+∞ θ(λ) = 0. On the other hand, by using (4.32) and Remark 4.2.4, we have

θ(λ)λ = (p+ 1)H(uλ) ≥ (p+ 1)‖u‖2X ≥ (p+ 1)λ2/(p+2).

Thusly limλ→0+ θ(λ) = +∞. �

4.3 Variational Characterizations
Throughout in section we assume that β ≤ 0 .

DEFINITION 4.3.1 Let F (·) = ‖ · ‖2L2(Rn). A ground state is a solitary wave which minimizes the
action

S(u) = E(u) +
c

2
F (u), n = 2, 3, (x, y) ∈ R× Rn−1

among all the nonzero solutions of (4.9)(resp. (4.10)), where c is the velocity of the solitary wave and E
is the energy defined by

E(u) =
1
2

∫
R2

[
αu2

x − εv2 − βuH ux −
2

(p+ 1)(p+ 2)
up+2

]
dxdy,

in two dimensional case and

E(u) =
1
2

∫
R3

[
αu2

x − av2 − bw2 − βuH ux −
2

(p+ 1)(p+ 2)
up+2

]
dxdydz,

in three dimensional case.

We will consider two dimensional case. See [30], for the three dimensional case.
We are going to show that the solutions u obtained from (4.35) are exactly the ground states of equation

(4.9) and also gives us some interesting characterizations of those solutions, which may appear to be useful
to demonstrate the symmetry property and instability.
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Let us define the following functionals1:

K (u) =
c

2
F (u) +

1
2

∫
R2

(
D−1
x uy)2 −

β

2
uH ux

)
dxdy − 1

(p+ 1)(p+ 2)
J(u), (4.44)

G (u) =
∫

R2

(
αu2

x −
β

2
uH ux

)
dxdy, I (u) = H(u)− 1

p+ 1
J(u) (4.45)

Q(u) = 2K (u)− cF (u) + G (u) +
4− 3p

2(p+ 1)(p+ 2)
J(u) +

β

2

∫
R2
uH ux dxdy, (4.46)

S̃(u) =
c

2
F (u) +

2− 3p
6p

β

∫
R2
uH ux dxdy +

3p− 4
6p

∫
R2

[
αu2

x +
(
D−1
x uy

)2]
dxdy, (4.47)

P(u) = G (u)− p

(p+ 1)(p+ 2)
J(u), (4.48)

P̃(u) =
c

2
F (u) +

1
2

∫
R2

[(
D−1
x uy

)2 − αu2
x

]
dxdy +

p− 1
p

G (u). (4.49)

LEMMA 4.3.2 Let β ≤ 0; then there exists a real positive number λ∗ such that for u∗ ∈ X , the following
assertions are equivalent:

(i) u∗ is a ground state,

(ii) J(u∗) = λ∗ and u∗ is a minimum of Iλ∗ ,

(iii) K (u∗) = 0 and G (u∗) = inf{G (u), u ∈ X , u 6= 0, K (u) = 0},

(iv) K (u∗) = inf{K (u), u ∈ X , G (u) = G (u∗)} = 0,

(v) I (u∗) = 0 and J(u∗) = inf{J(u), u ∈ X , u 6= 0, I (u) = 0} = m,

(vi) I (u∗) = inf{I (u), u ∈ X , J(u) = m} = 0,

where m = inf{J(u), u ∈ N } and N is the Nehari manifold {u ∈ X , u 6= 0, I (u) = 0}.
If p ∈

(
4
3 , 4
)
, then the assertions (i)-(vi) are equivalent to the following ones:

(vii) Q(u∗) = 0 and ` = S(u∗) = inf{S(u), u ∈ X , u 6= 0, Q(u) = 0},

(viii) Q(u∗) = 0 and `′ = S̃(u∗) = inf
{
S̃(u), u ∈ X , u 6= 0, Q(u) ≤ 0

}
.

If p ∈ (2, 4), then the assertions (i)-(viii) are equivalent to the following ones:

(ix) P(u∗) = 0 and ℘ = S(u∗) = inf{S(u), u ∈ X , u 6= 0, P(u) = 0},

(x) P(u∗) = 0 and ℘′ = S̃(u∗) = inf
{
S̃(u), u ∈ X , u 6= 0, P(u) ≤ 0

}
.

1The functional I is so-called Nehari functional.



4.3 Variational Characterizations 102

Proof. As we mentioned before, if u is a minimum of Iλ; then there is a positive Lagrange parameter
θλ such that (p + 1)Iλ = λθλ for each positive λ. Since Iλ = λ2/(p+2)I1, we get θλ = 1, by choosing
λ = λ∗ = [(p+ 1)I1](p+2)/p.

Let us now prove that the lemma holds with this choice of λ.

(iii) V (iv) : Assume that (iii) holds; let u ∈ X with G (u) = G (u∗). We have K (τu) > 0 for
τ > 0 sufficiently small, so that if K (u) < 0, then there is a τ0 ∈ (0, 1) such that K (τ0u) = 0; then by
setting ũ = τ0u, one has ũ ∈ X , K (ũ) = 0 and G (ũ) < G (u) = G (u∗), which contradicts (iii), and shows
that u∗ satisfies (iv) since K (u∗) = 0.

(iv) V (iii) : Assume that u∗ satisfies (iv) and let u ∈ X with K (u) = 0 and u 6= 0. Then
K (τu) < 0 for some τ > 1, so that if G (u) < G (u∗), one can find τ0 > 1 with G (τ0u) = G (u∗) and
K (τ0u) < 0. This leads us a contradiction with (iv).

(iii) V (i) : If u∗ satisfies (iii), then there exists a Lagrange parameter θ such that u∗ solves the
Euler-Lagrange equation

cu+D−2
x uyy −

up+1

p+ 1
= θ

(
αuxx +

β

2
H ux

)
.

It is easily seen, by multiplying this equation by u∗, integrating by parts, and using K (u∗) = 0, that
θ > 0. We set u�(x, y) = θ1/pu∗

(
x, θ2/py

)
. Suppose that θ > 1. By a simple calculation, we can see

that G (u�) = G (u∗); and also K (u�) < 0. This contradicts 0 ≤ K (u∗) ≤ K (u�). Therefore θ ≤ 1.
On the other hand, by setting u�(x, y) = θ−1/pu∗(x, θ−2/py), it can be easily seen that G (u�) = G (u∗);
and K (u�) < 0 if θ < 1. But this is contradicts K (u�) ≥ 0. Thusly θ ≥ 1, hence θ = 1. Now identity
S(u) = K (u) + 1

2G (u) shows that if u is a solution of (4.9), then S(u) = 1
2G (u) ≥ 1

2G (u∗) = S(u∗); thus
u∗ is a ground state.

(ii) V (iii) : Assume that u∗ satisfies (i). Let u ∈ X with u 6= 0 and K (u) = 0. Since K (u) = 0,
so J(u) > 0 unless u = 0. Thus we set

uµ = u

(
·
µ

)
, with µ =

(
J(u∗)
J(u)

)1/2

.

We obtain J(uµ) = J(u∗) and K (uµ) = β
4µ(µ − 1)

∫
R2 uH ux dxdy. We have K (u∗) = 0, since u∗ is a

minimum of Iλ∗ . On the other hand,

K (u∗) +
1
2
G (u∗) +

1
(p+ 1)(p+ 2)

J(u∗) ≤ K (uµ) +
1
2
G (uµ) +

1
(p+ 1)(p+ 2)

J(uµ);

which implies

G (u∗) ≤ βµ
(µ

2
− 1
)∫

R2
uH ux dxdy + α

∫
R2
u2
x dxdy ≤ G (u),

and (iii) holds.
(i) V (ii) : By using the identities of the proof of Theorem 4.2.1, one has, for any solution u of (4.9),

we have K (u) = 0 and

H(u) =
∫

R2

(
αu2

x + cu2 − βuH ux + (D−1
x uy)2

)
dxdy =

(
1 +

2
p

)
G (u).
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Hence if u∗ is a ground state, u∗ minimizes both G (u) and H(u) among all the solutions of (4.9). Let
J(u) = λ and u� be a minimum of Iλ. Then Iλ = H(u�) ≤ H(u∗) and there is a positive θ such that

cu� +D−2
x u�yy − αu�xx − βH u�x =

θ

p+ 1
(u�)p+1.

Using the equations satisfied by u� and u∗, the preceding inequality is written as Iλ =
θλ

p+ 1
≤ λ

p+ 1
;

hence θ ≤ 1. On the other hand, by setting u� = θpu�, we obtain that u� satisfies (4.9), and since u∗ is a
ground state, H(u∗) ≤ H(u�) ≤ θ2pH(u�); so that θ ≥ 1.
Hence u∗ = u� is a minimum of Iλ with λ = λ∗.

(v) V (i) : Assume that u∗ satisfies (v). Then there exists a Lagrange parameter θ such that
J ′(u∗) = θI ′(u∗). It is easily seen, by multiplying this equation by u∗, integrating by parts , and using
I (u∗) = 0, that θ = 0. Therefore u∗ is a ground state.

(v) V (vi) : For u∗ as in (v), I (u∗) = 0. Assume that there is u ∈ X such that J(u) = m and
I (u) < 0. Then J(u) > 0 and there exists a τ0 ∈ (0, 1) such that I (τ0u) = 0. But J(τ0u) < J(u) = m,
which is impossible.

(v) W (vi) : Let u∗ satisfy (vi). Then J(u∗) ≥ m. Assume that J(u∗) > m. Again we have J(u∗) > 0.
So there exists a τ0 ∈ (0, 1) such that J(τ0u) = m. However I (u∗) > 0 and this contradicts (vi).

(i) V (v) : See [30].

(vii) V (viii) : It is trivial from the definition of ` and `′ that `′ ≤ `.

(vii) W (viii) : Note that S(u) = S̃(u) + 2
3pQ(u) and that S̃(u) > 0 for p > 4

3 . Let u be in X

such that Q(u) < 0. Since Q(τu) > 0 for some sufficiently small τ > 0, there exists a τ0 ∈ (0, 1) such that
Q(τ0u) = 0; hence we have ` ≤ S(τ0u) = S̃(τ0u) = τ2

0 S̃(u) < S̃(u) = S(u). Therefore ` = `′.

(i) V (viii) : Let u∗ be a ground state. It is easy to see that Q(u∗) = 0. Hence, there exists a
minimizing sequence uj such that S̃(uj) → `′, Q(uj) ≤ 0 and the sequence {uj} is bounded in X . By
using (4.32), we can obtain a subsequence of {uj}, denoting by the same {uj}, and u0 ∈ X ∩ Lp+2(R2)
such that uj ⇀ u0 in X and Lp+2(R2) for p ∈ (0, 4). Using the injection X ↪→ L2

loc(R2), we obtain
that uj → u0 a.e. in R2. We show that u0 = u∗. Note that if there is a subsequence of {uj} such that
‖uj‖p+2

Lp+2(R2) → 0, then ∥∥∥D1/2
x uj

∥∥∥2

L2(R2)
+ ‖∂xuj‖2L2(R2) +

∥∥D−1
x uj

∥∥2

L2(R2)
−→ 0,

since Q(uj) ≤ 0 and p > 4
3 . By using (4.33) and the conservation under L2−norm, it follows that

‖∂xuj‖2L2(R2) +
∥∥D−1

x uj
∥∥2

L2(R2)
. ‖uj‖(4−p)/2L2(R2)

(
‖∂xuj‖2L2(R2) +

∥∥D−1
x uj

∥∥2

L2(R2)

)3p/4

.
(
‖∂xuj‖2L2(R2) +

∥∥D−1
x uj

∥∥2

L2(R2)

)3p/4

.
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Therefore
1 .

(
‖∂xuj‖2L2(R2) +

∥∥D−1
x uj

∥∥2

L2(R2)

)(3p−4)/4

;

which is impossible. Consequently inf
j
‖uj‖p+2

Lp+2(R2) = $ > 0. On the other hand,

$ ≤ ‖uj‖p+2
Lp+2(R2) = ‖uj‖p+2

Lp+2(A1)
+ ‖uj‖p+2

Lp+2(A2)
+ ‖uj‖p+2

Lp+2(A3)

≤ ‖uj‖p+2
Lp+2(A1)

+ εp‖uj‖2L2(A2)
+ ε−(p+2) |A4| ≤ εγ‖uj‖p+2+γ

Lp+2+γ(A1)
+ εp‖uj‖2L2(A2)

+ Cε |A4| ,

where A1 =
{
|uj | ≥ ε−1

}
, A2 = {|uj | ≤ ε}, A3 =

{
ε < |uj | < ε−1

}
, A4 = {|uj | > ε} and γ ∈ (0, 4 − p).

Thus, by using (4.32), we obtain that ‖uj‖p+2+γ
Lp+2+γ(A1)

≤ C1, and ‖uj‖2L2(A1)
≤ C2. Choosing ε > 0

sufficiently small, we obtain that

|A4| ≥
$ − εγC1 − εpC2

Cε
> 0.

To continue, we need the following lemma. The proof of the following lemma is similar to [54], with the
natural modifications.

LEMMA 4.3.3 Let u ∈ X such that {|u| > ε} ≥ σ > 0. Then there exit r, s ∈ R such that for some
constant δ = δ (‖u‖X , σ, ε), ∣∣∣D2 ∩

{
|τr,su| >

ε

2

}∣∣∣ > δ,

where τr,su(x, y) = u(x+ r, y + s) and D2 is the unit ball in R2.

It follows from Lemma 4.3.3 that
∣∣D2 ∩

{
|u0| > ε

2

}∣∣ > δ because uj → u0 a.e. in R2. Consequently u0 6= 0
a.e. in R2. Using Lemma 0.0.3, we have that Q(uj)−Q(uj − u0)−Q(u0) and S̃(uj)− S̃(uj − u0)− S̃(u0)
tend to zero as j → +∞. Now we show that Q(u0) = 0. If Q(u0) > 0, then Q(uj − u0) ≤ 0 as j → +∞
since Q(uj) ≤ 0. It follows from S̃(uj) → `′ and S̃(uj − u0) ≥ `′ that S̃(u0) ≤ 0; which is contradiction.
Therefore `′ ≤ S̃(u0) ≤ lim infj→+∞ S̃(uj) = `′; and thusly `′ = S̃(u0) and Q(u0) ≤ 0.

Now, suppose that Q(u0) < 0. Choosing a small τ > 0 we obtain that Q(τu0) > 0. Therefore there
exists a τ0 ∈ (0, 1) such that Q(τ0u0) = 0. But `′ ≤ S̃(τ0u0) = τ2

0 S̃(u0) < S̃(u0) = `′ leads us to a
contradiction; consequently Q(u0) = 0. On the other hand, there exists a Lagrange parameter θ such that

S′(u0) + θQ′(u0) = 0. (4.50)

If θ = 0, then S′(u0) = 0. But it can be easily seen that Q(u) = 0 for any u ∈ X such that S′(u) = 0.
Hence S(u0) ≤ S(u) and u0 = u∗ in the sequence, since u∗ is a ground state.
So suppose that θ 6= 0. Let u�0(x, y) = µ

3
2u0(µx, µ2y). It is easy to see that

0 =
〈

(S′ + θQ′) (u0),
∂u�0
∂µ

|µ=1

〉
= Q(u0)−

9θp2

4(p+ 1)(p+ 2)
J(u0)

+ θ

[
2
∫

R2

(
α(∂xu0)2 +

(
D−1
x ∂yu0

)2 − β

4
u0H ∂xu0

)
dxdy

]
.

Using this fact that Q(u0) = 0 and p ∈
(

4
3 , 4
)
, it follows that

0 =
4− 3p

2

∫
R2

[
α(∂xu0)2 +

(
D−1
x ∂yu0

)2 − β

2
u0H ∂xu0

]
dxdy +

β

2

∫
R2
u0H ∂xu0 dxdy < 0,
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which is impossible; hence θ = 0.

The proofs of (viii) V (i) and (ix) V (i) follow from the definition of the ground state.

(x) V (ix) : It is trivial from the definition of ℘ and ℘′ that ℘′ ≤ ℘.

(x) W (ix) : Note that S(·) = P̃(·) + 1
pP(·) and that P̃(·) > 0 for p > 2. Suppose that u ∈ X such

that P(u) < 0. Then there exists a τ ∈ (0, 1) such that P(τu) = 0, so ℘ ≤ S(τu) = P̃(τu) = τ2P̃(u) <
P̃(u). Consequently ℘ = ℘′.

(i) V (x) : The proof is basically similar to the proof of (i) V (viii) with some natural modifications.
�

Corollary 4.3.4 Let p ∈ [1, 4) and u∗ be a ground state, then S(u∗) =  = ′, where

 = inf{S(u), u ∈ X , u 6= 0, G (u) = G (u∗)}

and ′ = inf{S(u), u ∈ X , u 6= 0, J(u) = J(u∗)}.

Proof. Since S(·) = K (·) + 1
2G (·), then by using the preceding lemma, we have

 =
1
2
G (u∗) + inf{K (u), u ∈ X , u 6= 0, G (u) = G (u∗)} = G (u∗) = S(u∗).

On the other hand, using again the preceding lemma, we obtain that

′ =
1
2

inf {H(u), u ∈ X , u 6= 0, J(u) = J(u∗)} − 1
(p+ 1)(p+ 2)

J(u∗)

=
1
2
H(u∗)− 1

(p+ 1)(p+ 2)
J(u∗) = S(u∗).

�

Let u∗ be a ground state obtained above.

Corollary 4.3.5 Let p ∈ [1, 4) and u0 be the initial data such that the corresponding solution u(t) of
equations (4.1)-(4.2) is in C([0, T );X ) for some T > 0 and satisfies E(u(t)) = E(u0) and F (u(t)) =
F (u0) for t ∈ [0, T ). Then we have the following assertions.

(i) If p ∈
(

4
3 , 4
)

and u0 ∈ Mi then u(t) ∈ Mi for t ∈ [0, T ) and i = 1, 2;

(ii) If u0 ∈ Yi then u(t) ∈ Yi for t ∈ [0, T ) and i = 1, 2;

(iii) If u0 ∈ Wi then u(t) ∈ Wi for t ∈ [0, T ) and i = 1, 2;

(iv) If u0 ∈ N i then u(t) ∈ N i for t ∈ [0, T ) and i = 1, 2,
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where

M1 = {u ∈ X , u 6= 0, S(u) < S(u∗), Q(u) ≥ 0}, M2 = {u ∈ X , u 6= 0, S(u) < S(u∗), Q(u) < 0},
Y1 = {u ∈ X , u 6= 0, S(u) < S(u∗), G (u) ≤ G (u∗)}, Y2 = {u ∈ X , u 6= 0, S(u) < S(u∗), G (u) > G (u∗)},
W1 = {u ∈ X , u 6= 0, S(u) < S(u∗), J(u) ≥ J(u∗)}, W2 = {u ∈ X , u 6= 0, S(u) < S(u∗), J(u) < J(u∗)} ,
N 1 = {u ∈ X , u 6= 0, S(u) < S(u∗), P(u) > 0}, N 2 = {u ∈ X , u 6= 0, S(u) < S(u∗), P(u) ≤ 0}.

Furthermore, If u0 ∈ M2, then Q(u(t)) <
3p
2

(S(u0)− S(u∗)), for t ∈ [0, T ).

Proof. (i) Let u0 ∈ M2. Because of the invariance of E and F , we have S(u(t)) = S(u0) < S(u∗).
Suppose that u(t0) /∈ M2 for some t0 ∈ (0, T ), so Q(u(t0)) ≥ 0. By using Q(u0) < 0 and the continuity of
Q(u(t)) with respect to t, there exists a t1 ∈ (0, t0] such that Q(u(t1)) = 0. Then by using the preceding
lemma we obtain that

S(u∗) > S(u(t1)) ≥ inf{S(u), u ∈ X , u 6= 0, Q(u) = 0} = S(u∗),

which is contradiction.
Now suppose that u0 ∈ M2, then u(t) ∈ M2; so S(u(t)) < S(u∗) and Q(u(t)) < 0 for t ∈ [0, T ). On the
other hand, it is easy to see that Q(τu) > 0 for some sufficiently small τ > 0. Therefore there exists a
τ0 ∈ (0, 1) such that τ = 0. Thus S(u∗) ≤ S(τ0u(t)) = τ2

0 S̃(u(t)) < S̃(u(t)). Consequently

Q(u(t)) <
3p
2

(S(u0)− S(u∗)) .

The other cases in (i), (ii), (iii) and (iv) can be proved analogously. �

The solution of the Cauchy problem associated to (4.1)-(4.2) (see [30]) can be extend globally by us-
ing the conservation laws E and F , if u0 ∈ M2 ∩ W2 (see [70]). Now we are able to extend our blow-up
results in the last section to the case p > 4/3.

THEOREM 4.3.6 Let u be the solution of the equations (4.1)-(4.2) in C([0, T );X ) with u(0) = u0 and
is conserved under E and F . Then there exists a finite time T ∗ such that

lim
t→T∗

‖uy(t)‖L2(R2) = +∞,

if one of the following cases occurs.

(i) p ∈
(

4
3 , 4
)

and u0 ∈ M2 ∩ W2 ∩ Y2 ∩ L2
(
y2dxdy

)
.

(ii) p ∈ (2, 4) and u0 ∈ M2 ∩ N 1 ∩ L2
(
y2dxdy

)
.

(iii) p ∈
[
4
3 , 4
)
, E(u0) < 0 and u0 ∈ W2 ∩ Y2 ∩ L2

(
y2dxdy

)
.

Proof. Suppose that u(t) stays in X . In [30], we proved the following Viriel-type identity

d2

dt2
I(t) = 8

(
Q(u(t))− G (u(t)) +

p

(p+ 1)(p+ 2)
J(u(t))

)
,
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where I(t) =
∫

R2 y
2u2(x, y, t) dxdy. So It follows from Corollary 4.3.5 and P(u∗) = 0 that

d2

dt2
I(t) < 8

(
3p
2

[S(u0)− S(u∗)]− G (u∗) +
p

(p+ 1)(p+ 2)
J(u∗)

)
= −% < 0.

Therefore limt→T∗ I(t) = 0 for a finite time T ∗. Using Weyl-Heisenberg’s inequality, we obtain the blow-up
result immediately. The case (ii) is similar. It can be easily checked that if ϕc is a solitary wave solution of
(4.9), then G (ϕc)−

p

(p+ 1)(p+ 2)
J(ϕc) = 0. On the other hand, for every p ∈

[
4
3 , 4
)

there exists s ∈ (0, 2]

such that ps = 4− p, so by using the viriel identity and Corollary 4.3.5,

d2

dt2
I(t) ≤ 16E(u(t))− 4s G (u(t))− 4(4− p)

(p+ 1)(p+ 2)
J(u(t))

< 16E(u0)− 4s G (ϕc)−
4(4− p)

(p+ 1)(p+ 2)
J(ϕc) = 16E(u0).

This completes the proof of (iii). �

The preceding theorem implies the instability of solitary wave solutions of (4.1)-(4.2).

THEOREM 4.3.7 Let p ∈ [2, 4]. Suppose that ϕ is the solitary wave solution of (4.1)-(4.2) with c > 0.
For any δ > 0, there is an initial data u0 ∈ Xs(R2), s > 2 with ‖u0 −ϕ‖X < δ, such that the solution u of

(4.1)-(4.2) with u(0) = u0 blows up in finite time, where Xs(Rn) =

{
f ∈ Hs(Rn),

(
f̂(ξ, η)
ξ

)∨
∈ Hs(Rn)

}
,

equipped with the norm

‖f‖Xs
= ‖f‖Hs +

∥∥∥∥∥
(
f̂(ξ, η)
ξ

)∨∥∥∥∥∥
Hs

.

Proof. Consider the initial data u0(x, y) = %ϕ(x, ρy), for any %, ρ > 0. By Theorem 4.3.6, it suffices to
show that u0 is close to the solitary wave ϕ, for small ρ and %; and u0 ∈ M2 ∩ N 1. One can easily check
that for ρ2 = 1− τ , with τ > 0, ρ and % sufficiently small u0 ∈ M2 ∩ N 1. �

Now, we use the Lemma 4.3.2 to obtain the symmetry properties of the ground state solutions of the
equation (4.9).

THEOREM 4.3.8 Let β ≤ 0. Any ground state u∗(x, y) of the equation (4.9) is radial in y (cylindrically
symmetric), up to a translation of the origin of the coordinates in y.

Proof. Choose r ∈ R, in order that if

Υ = {(x, y) ∈ R2 : y = r},

then
G +(u∗) = G−(u∗) =

1
2
G (u∗),

where G + and G− are the same G with Υ+ and Υ− as the domains of integral, respectively; and Υ+ and
Υ− are the half-planes delimited by Υ. Let u+ be defined by u+ = u∗ in Υ+ and u+ be symmetric with
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respect to Υ. Then u+ ∈ X ; indeed, if ϕ ∈ L2
loc

(
R2
)

is such that ϕx = u∗ and ϕy = D−1
x u∗y, then ϕ+

x = u+

and
∥∥ϕ+

y

∥∥
L2(R2)

= 2 ‖ϕy‖L2(Υ+) < +∞, where ϕ+(x, y) = ϕ(x, y), if y ≥ r and ϕ+(x, y) = ϕ(x, 2r − y), if
y ≤ r. Since there is a sequence ϕn ∈ C∞0

(
R2
)

such that ∂xϕn converges to ϕx = u∗ in X , D−1
x u+

y = ϕ+
y .

Moreover, G (u∗) = G (u+). In the same way, if u− = u∗ in Υ− and u− is symmetric with respect to Υ, then
u− ∈ X and G (u∗) = G (u−). Hence it follows from Lemma 4.3.2 (iv) that K (u+) ≥ 0 and K (u−) ≥ 0.
Therefore, u+ and u− satisfy (iv) of Lemma 4.3.2, since K (u+) + K (u−) = 2K (u∗) = 0. Thusly, u+

and u− are ground states of the equation (4.9). On the other hand, since u+ = u∗ in Υ+ and u− = u∗ in
Υ−, by using Theorem 4.3.9 applied to u+ − u∗ and u− − u∗, we conclude that u+ = u− = u and u∗ is
symmetric with respect to Υ.

THEOREM 4.3.9 Let α > 0, β ≤ 0, a, b, c ∈ L∞(R2) and u, uy, uxx, uxy, uxxx ∈ L2(R2) and

uyy − αuxxxx − βH uxxx = a(x, y)u+ b(x, y)ux + c(x, y)uxx in R2. (4.51)

Then, if u vanishes on a half-plane Λ in R2, it vanishes everywhere in R2.

Proof. Without loss of generality we assume that Λ is parallel to the x-axis. It suffices obviously to prove
that if u satisfying the hypotheses of Theorem 0.0.6 is such that u ≡ 0 on {(x, y) , y ≤ 0} then it vanishes
on ΛT = {(x, y) , y ∈ [0, T ]} for any T > 0. We can rewrite (4.51) as

ϑy − Aϑ = −ϑ+ au+ bux + cuxx,

where
ϑ = uy +Au, A = I +A,

A being the operator, defined by
Âu(ξ) =

(
αξ4 − β|ξ|3

)1/2
û.

Obviously, A is a self adjoint operator, continuous from H1(R) to H−1(R) which satisfies the hypotheses
of Theorem 0.0.6, yielding ϑ ≡ 0 on ΛT and therefore u ≡ 0 on ΛT . �

�

4.4 Regularity and Decay
First, we are going to show that any solitary wave solution of (4.9) and (4.10) is analytic. Indeed,

THEOREM 4.4.1 Let α, c > 0 and β ∈ R2. We also suppose that β < 2
√
αc, if β > 0. Then any

solitary wave u of (4.9) and (4.10) is continuous and tends to zero at infinity. Moreover, u is a real
analytic function, provided p is an integer.

Proof. We prove the theorem for the two dimensional case (see [30] for the three dimensional case). (4.9)
implies that u satisfies

− cuxx − uyy + αuxxxx + βH uxxx +
1

p+ 1
(
up+1

)
xx

= 0. (4.52)
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We get from (4.52)

û(ξ, η) =
ξ2

cξ2 − β|ξ|3 + αξ4 + η2
ĝ(ξ, η),

where g = − 1
p+1u

p+1. The proof is essentially the same as in [24] with natural modifications by using
the Proposition 0.0.4 and bootstrapping argument; which imply that the solution is C∞. The analyticity
of the solitary wave solution follows from the Taylor formula, the regularity of the solution and using the
following lemma ([43]).

LEMMA 4.4.2 There exist two constants C > 0 and A > 0 such that for all ω ∈ Nn,

‖∂ωu‖L2(Rn) ≤ CA|ω|−1 (|ω| − 2)!.

�

Now, we present some results regarding the decay of the solitary wave solutions of (4.9).

LEMMA 4.4.3 Let α, c > 0 and β ∈ (−∞, 2
√
αc ). Then any solitary wave solution of (4.9) satisfies∫

R2
r2
(
|∇u|2 + u2

xx

)
dxdy < +∞, (4.53)

where r2 = x2 + y2. Furthermore,∫
R2
r2
(
|∇u|2 +

∣∣∣D 3
2
x u
∣∣∣2 + u2

xx

)
dxdy < +∞. (4.54)

Proof. Let χ0 be the same function in the proof of Theorem 4.1.1. We set χj(x) = χ0

(
x2

j2

)
, j ∈ N. We

multiply (4.52) by χj(x)x2u and χj(y)y2u, separately, and integrate over R2. Using several integrations
by parts, the Plancherel theorem and the terms in (4.52) are computed as follows.

−
∫

R2
uxxχj(x)x2u dxdy =

∫
R2

[
x2χj(x)u2

x − χj(x)u2 − 2xχ′j(x)u
2 − x2χ′′j (x)u

2
]
dxdy, (4.55)

−
∫

R2
uyyχj(x)x2u dxdy =

∫
R2
x2χj(x)u2

y dxdy, (4.56)∫
R2
uxxxxχj(x)x2u dxdy =

∫
R2

[
x2χj(x)u2

xx − 4χj(x)u2
x − 8xχ′j(x)u

2
x − 2x2χ′′j (x)u

2
x

]
dxdy

+
∫

R2

[
6χ′′j (x)4xχ

′′′
j (x) +

1
2
x2χ

(4)
j (x)

]
dxdy,

(4.57)

∫
R2
x2uχj(x)H uxxx dxdy = −

∫
R2

[
3xuχj(x)H uxx − xuχj(x)D3

x(xu)
]
dxdy

=
∫

R2

[
3
(
uχj(x) + xuχ′j(x) + xχj(x)ux

)
H ux −

(
uχj(x) + xuχ′j(x) + xχj(x)ux

)
Dx(u+ xux)

]
dxdy,

(4.58)
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∫
R2
x2uχj(x)

(
up+1

)
xx

dxdy = 2
p+ 1
p+ 2

∫
R2
χj(x)up+2 dxdy − (p+ 1)

∫
R2
x2χj(x)upu2

x dxdy

+
p+ 1
p+ 2

∫
R2

[
x2χ′′j (x) + 4xχ′j(x)

]
up+2 dxdy,

(4.59)

−
∫

R2
y2χj(y)uuyy dxdy =

∫
R2

[
y2χj(y)u2

y − χj(y)u2
]
dxdy −

∫
R2

[
2yχ′j(y) +

1
2
y2χ′′j (y)

]
u2 dxdy, (4.60)

−
∫

R2
y2uχj(y)uxx dxdy =

∫
R2
y2χj(y)u2

x dxdy, (4.61)∫
R2
y2uχj(y)uxxxx dxdy =

∫
R2
y2χj(y)u2

xx dxdy, (4.62)∫
R2
y2uχj(y)H uxxx dxdy = −

∫
R2
y2χj(y)

∣∣∣D 3
2
x u
∣∣∣2 dxdy, (4.63)∫

R2
y2uχj(y)

(
up+1

)
xx

dxdy = −(p+ 1)
∫

R2
y2χj(y)u2

xu
p dxdy. (4.64)

By using the properties of χj , Lebesgue’s theorem, the following equality∥∥∥D 1
2
x (u+ xux)

∥∥∥2

L2(R2)
=
∥∥∥xD 3

2
x u
∥∥∥2

L2(R2)
− C1

∥∥∥D 1
2
x u
∥∥∥2

L2(R2)
+ C2

∥∥∥D 3
4
x u
∥∥∥2

L2(R2)

as j → +∞, for some C1, C2 > 0 and the fact that u tends to zero as r → +∞, (4.55)-(4.64) imply that∫
R2
r2
(
cu2
x + u2

y + β
∣∣∣D 3

2
x u
∣∣∣2 + αu2

xx

)
dxdy < +∞.

�

Now by using the analysis of the decay of the solitary wave solution, based on the convolution equations

u = ih1 ∗ (upux) = − 1
p+ 1

h2 ∗ up+1,

where

ĥ1(ξ, η) =
ξ

cξ2 − β|ξ|3 + αξ4 + η2
and ĥ2(ξ, η) =

ξ2

cξ2 − β|ξ|3 + αξ4 + η2
,

and the Lemmata 3.2-3.6 in [24], with some modifications, we obtain that

THEOREM 4.4.4 Let α, c > 0 and β ∈ (−∞, 2
√
αc ). Then any solitary wave solution of (4.9) satisfies

r2u ∈ L∞
(
R2
)
.

Furthermore, rsu, r1+s∇u, r1+suxx ∈ L2
(
R2
)
, for any s ∈ [0, 1).

See also [30] for the three dimensional case.

REMARK 4.4.5 Note that when β ≤ 0, then by using the Residue theorem, h2 can be written in the
following form

h2(x, y) = C

∫ +∞

0

∫ +∞

0

e−(τ+ct)

√
tντ

H ∂x

(
e−

x2
4ν

)
dt dτ,

where ν = αt+
1
4

(
β2t2

τ
+
y2

t

)
and C > 0.
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4.5 (Generalized)Benjamin-Ono-KP
In this section we will looking for solitary wave solutions of the generalized high dimensional BO-KP
equation (nBOKP)

(ut + upux − βDα
xux)x +

n−1∑
i=1

εi∂
2
yi
u = 0, (4.65)

where Dx =
(
−∂2

x

)1/2, n ≥ 2, α ≥ 1, εi = ±1 and the constant β is real. In fact, as before, we are looking
for a solution of (4.65) of the form u (x− c0t, y1 − c1t, · · · , yn−1 − cn−1t). By a change of variables x̃ = x,
ỹi = yi − 1

2εicix, after dropping the tilde, we obtain the systems

(−cux + upux − βDα
xux)x +

n−1∑
i=1

εi∂
2
yi
u = 0, (4.66)

with c = c0 + 1
4

∑n−1
i=1 εic

2
i .

REMARK 4.5.1 Note that we can assume that |c| = 1, since the scale change

υ(x, y) = |c|−
1
pu
(
|c|− 1

α , |c|−
α+2
2α y

)
,

where y = (y1, · · · , yn−1), transforms (4.66) in u, into the same in υ, but with |c| = 1.

DEFINITION 4.5.2 We shall denote, X the closure of ∂x(C∞0 (Rn)) for the norm

‖∂xϕ‖2X = ‖∇ϕ‖2L2(Rn) +
∥∥∥Dα/2

x ϕx

∥∥∥2

L2(Rn)
. (4.67)

REMARK 4.5.3 Equation (4.65) admits the conservation quantities

F (u(t)) =
1
2

∫
Rn

u2(t) dxdy, (4.68)

E(u(t)) =
1
2

∫
Rn

[
β
(
Dα/2
x u(t)

)2

−
n−1∑
i=1

εiu
2
yi

(t)− 2
(p+ 1)(p+ 2)

up+2(t)

]
dxdy (4.69)

LEMMA 4.5.4 Let α ≥ 2 be given and let p ≤ pn,α =
4α

2n+ (n− 3)α
. Then there exists C > 0,

depending on α, n and p, such that for any ϕ ∈ X ,

‖ϕ‖p+2
Lp+2(Rn) ≤ C‖ϕ‖qL2(Rn)‖ϕ‖

pn
α

Hα/2,0(Rn)

∥∥∂−1
x ϕy

∥∥ p(n−1)
2

L2(Rn)
, (4.70)

where 0 ∈ Rn−1 and q = 2 − pn

α
− p(n− 3)

2
. Furthermore, when n = 2, p ≤ p2,α = 4α

4−α and α ∈ [1, 2],
there exists C > 0, depending on α and p, such that for any ϕ ∈ X ,

‖ϕ‖p+2
Lp+2(R2) ≤ C‖ϕ‖

2
q′

L2(R2)‖ϕ‖
p
2 + 2

q

Hα/2,0(R2)

∥∥∂−1
x ϕy

∥∥ p
2

L2(R2)
, (4.71)

where q =
2(α+ 2)

2p+ (2− α)(p+ 2)
, q′ =

2(α+ 2)
4α− (4− α)p

.
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REMARK 4.5.5 Note that by an argument similar to one in [14], one can see that a solution u of (4.65)
that starts in X will remain in this space throughout its period of existence, regardless of the sign of εi.

THEOREM 4.5.6 (I) The equation (4.66) does not admit any nontrivial solitary wave satisfying

u = ∂xϕ ∈ X , u ∈ L∞loc(Rn),
∂2
yi
ϕ ∈ L2

loc(Rn), Dα/2
x ∂xϕ ∈ L2

loc(Rn), 1 ≤ i ≤ n− 1,

if one of the following cases occurs:

(i) εiεj < 0, for some i 6= j,

(ii) εiβ < 0, for some i,

(iii) p ≥ 4α
2n+ (n− 3)α

, cβ > 0 and cεi > 0, for all 1 ≤ i ≤ n− 1,

(iv) p ≤ 4α
2n+ (n− 3)α

, cβ < 0 and cεi < 0, for all 1 ≤ i ≤ n− 1.

(II) Let c > 0 and p = k
m , where m ∈ N is odd and m and k are relatively prime. Then the equation

(4.66) admits a nontrivial solution u ∈ X , if εi = −1 for all 1 ≤ i ≤ n − 1, p < pn,α , α ≥ 2 for
n ≥ 2 and α ≥ 1 for n = 2. Furthermore, there is a positive number λ∗ such that the minimization
problem

Ĩλ∗ = inf {E(u) ; u ∈ X , F (u) = λ∗}

has at least one solution.

Idea of the proof. The proof of (I) follows from the following identity:

(α(3p+ 4)− pn(α+ 2))β
∫

Rn

(
Dα/2
x u

)2

dxdy = 4αpc
∫

Rn

u2 dxdy. (4.72)

For (II), similar to Section 4.2, one can prove that the existence of solitary wave solutions, when c > 0,
εi = −1, for all i = 1, · · · , n− 1 and

p <
4α

2n+ α(n− 3)
,

by the following minimization problem

Iλ = inf
{
‖u‖X ; u ∈ X , J(u) =

∫
Rn

up+2(x, y) dxdy = λ

}
, (4.73)

by using Lemma 0.0.1. �

REMARK 4.5.7 One can also see that the classical function d(c) = E(u) + cF (u) is strictly increasing
for c > 0 and

p < pcn,α =
4α

2n+ α(n− 1)
.
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Moreover, we have d(c) = cωJ(υ), where υ satisfies (4.66) with c = 1 and

ω =
4α+ p((3− n)α)− 2n

2αp
.

Therefore d′′(c) > 0 if and only if p < pcn,α.

Let Gc be the set of the ground state solutions of the equation (4.66). The stability is an immediate
corollary of Theorem 4.5.6 by using classical arguments and the fact that Ĩλ = λ

4α−p(2n+α(n−3))
4α−p(2n+α(n−1)) Ĩ1, by

setting
uλ(x, y) = λ

2α
4α−p(2n+α(n−1))u

(
λ

2p
4α−p(2n+α(n−1))x, λ

p(α+2)
4α−p(2n+α(n−1)) y

)
.

Corollary 4.5.8 Let p < pcn,α, c > 0 and ϕc ∈ Gc; then for all positive ε > 0, there is a positive δ > 0

such that if u0 ∈
{
u ∈ Hs(Rn) ;

(
û(ξ,η)
ξ

)∨
∈ Hs(Rn)

}
, s ≥ 3 with ‖u0 − ϕc‖X < δ, then the solution u(t)

of (4.65) with u(0) = u0 satisfies
sup
t≥0

inf
ψ∈Gc

‖u(t)− ψ‖ ≤ ε.

Now we are going to study instability by using the mechanism of blow-up. Let us denote functionals similar
to ones in Section 4.3.

G (u) =
β

2

∫
Rn

(
Dα/2
x u

)2

dxdy, I (u) = ‖u‖2X − 1
p+ 1

J(u), (4.74)

Q(u) = βG (u)− np(2 + α)− pα

2α(p+ 1)(p+ 2)
J(u) +

n−1∑
i=1

∫
Rn

v2
j (x, y) dxdy, K (u) = S(u)− α

n
G (u), (4.75)

S(u) = E(u) + cF (u), S̃(u) = S(u)− 2α
2np+ pα(n− 1)

Q(u), (4.76)

P(u) = G (u)− p(1− α+ n) + 2(1− α)
2(p+ 1)(p+ 2)

J(u), P̃(u) = S(u)− 2
p(1 + n− α) + 2(1− α)

P(u), (4.77)

where vj = ∂−1
x uyi

. Considering the above functionals, we have a lemma similar to Lemma 4.3.2.

LEMMA 4.5.9 Let G , I , Q, S, S̃, P, P̃ and K be as above. There exists a real positive number λ∗
such that for u∗ ∈ X , we have as in Lemma 4.3.2,

(I) (i)-(vi) are equivalent,

(II) (i)-(vi) are equivalent to (vii)-(viii), if p >
2α

1− α+ n
,

(III) (i)-(viii) are equivalent to (ix)-(x) , if p > pcn,α.

Corollary 4.5.10 Let G , I , Q, S, S̃, P, P̃ and K be as Lemma 4.5.9. Then (i)-(iii) in Corollary
4.3.5 hold. Also (i) in Corollary 4.3.5 holds if p > pcn,α. Moreover, if u0 ∈ M2, then

Q(u(t)) <
1

pcn,α
(S(u0)− S(u∗)), (4.78)

for t ∈ [0, T ).
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REMARK 4.5.11 Similar to Section 4.3, the quantity

I(t) =
∫

Rn

|y|2u2(x, y) dxdy

plays an important role in our blow-up and instability results. We can similarly obtain the following Viriel-
type identity. In fact, we have

d

dt
I(t) = 4

n−1∑
i=1

εi

∫
Rn

uyivi dxdy, (4.79)

and

d2

dt2
I(t) = 8

n−1∑
i=1

n−1∑
j=1

εiεj

∫
Rn

v2
j dxdy +

4p
(p+ 1)(p+ 2)

n−1∑
i=1

εi

∫
Rn

up+2 dxdy

= (8− 2p)
n−1∑
i=1

n−1∑
j=1

εiεj

∫
Rn

v2
j dxdy + 2p

n−1∑
i=1

εi

[
β

∫
Rn

(
Dα/2
x u

)2

dxdy − 2E(u)
]
.

(4.80)

The proof of the following theorem is similar to Theorem 4.3.6, by using (4.80).

THEOREM 4.5.12 Let u be the solution of the equations (4.65) in C([0, T );Hs (Rn)) with u(0) = u0

and is conserved under E and F . Then there exists a finite time T ∗ such that

lim
t→T∗

n−1∑
i=1

‖uyi(t)‖L2(Rn) = +∞,

if one of the following cases occurs.

(i) p ∈ (pcn,α, pn,α) and u0 ∈ M2 ∩ W2 ∩ Y2 ∩ L2
(
|y|2dxdy

)
,

(ii) p ∈
(

2α
1−α+n , pn,α

)
and u0 ∈ M2 ∩ N 1 ∩ L2

(
|y|2dxdy

)
,

(iii) p ∈
[
pcn,α, pn,α

)
, E(u0) < 0 and u0 ∈ W2 ∩ Y2 ∩ L2

(
|y|2dxdy

)
.

Theorem 4.5.12 enables us to obtain strong instability of solitary wave solutions of (4.65).

THEOREM 4.5.13 Let p ≥ pcn,α. Suppose ϕ is the solitary wave solution of the nBOKP equation (4.66)

with c > 0. Then for any δ > 0, there is an initial data u0 ∈
{
u ∈ Hs(Rn) ;

(
û(ξ,η)
ξ

)∨
∈ Hs(Rn)

}
, s > 2

with ‖u0 − ϕ‖X < δ, such that the solution u of (4.65) with u(0) = u0 blows up in finite time. More
precisely,

lim
t→T∗

n−1∑
i=1

‖uyi(t)‖L2(Rn) = +∞.
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Proof. We define u0(x, y) = σϕ(κx, ρy), where ρ2 = (1 − ε)κα + 2 with a sufficiently small ε > 0. By
Theorem 4.5.12, it suffices to show that u0 is close to the solitary wave ϕ for small ε > 0 and u0 ∈
M2 ∩ W2 ∩ Y2; in fact, by using the facts

c F (ϕ) = B1G (ϕ), J(ϕ) =
2α(p+ 1)(p+ 2)

pn
G (ϕ),

‖vj‖L2(Rn) =
α

n
G (ϕ), j = 1, · · · , n− 1 and S(ϕ) =

α

n
G (ϕ),

we should show that ρ, σ and κ satisfy the following conditions

B1κ
−1ρ1−n +B2κ

α−1ρ1−n +B3κ
−3ρ3−n <

α

n
σ−2, (4.81)

B4κ
−2 + καρ−2 < B5ρ

−2σp, (4.82)

σ2κα−1ρ1−n > 1, (4.83)

σp+2ρ1−n < κ, (4.84)

where B1 = α
(

3
2n + 2

np −
1
2

)
−1, B2 = 1− 2α

B5
, B4 = α

2n (n−1), B3 = B4B2 and B5 = 1+B4. By a simple
computation, one can show that all conditions (4.81)-(4.84) are satisfied if κ ∈ (A1, A2), where

A1 =
(

nB1

(1 + ε)−2θ − nB2 − (1− ε)B3

)1/α

, σ = (1 + ε)θ(1− ε)
1
4 (α+2)(n−1)κ

1
4 ((n−3)α+2n),

A2 =

(
B5(1− ε)

1
4 (α+2)(n−1)

B4(1− ε) + 1

)1/τ

, τ =
1
4

[α(4 + 3p)− np(2 + α)] ,

with sufficiently small ε > 0 and θ > 0. It is easy to verify that κ→ 1, σ → 1, ρ→ 1 and u0 → ϕ in X as
ε→ 0. This completes the proof. �

REMARK 4.5.14 Note that in [30], we could obtain some local well-posedness of two and three dimen-
sional Benjamin equations in the anisotropic spaces with negative indices.
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