SIMPLICITY OF THE LYAPUNOV SPECTRUM OF

MULTIDIMENSIONAL CONTINUED FRACTION ALGORITHMS

ALIEN HERRERA TORRES

ABSTRACT. We prove that the Lyapunov spectrum of the Selmer Multidimen-
sional Continued Fractions Algorithm is simple. The proof is based on the sim-
plicity criterium used by Avila and Viana for proving the Zorich-Kontsevich
conjecture. But our approach for checking the pinching and twisting conditions
of the criterium is different, with a flavor from algebraic geometry. We expect
this approach to apply in great generality for continued fraction algorithms.
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1. INTRODUCTION

In a recent paper [2], Avila and Viana prove that the Lyapunov spectra of all
Rauzy-Veech-Zorich linear cocycles [20, 26, 29, 30] are simple. Their methods sug-
gest that simplicity may actually be a very general feature for multidimensional
continued fraction algorithms, and the present work may be viewed as a contri-
bution towards establishing this fact. We prove here that Selmer’s Continued
Fractions Algorithm has simple Lyapunov spectrum in any dimension. The defi-
nition of the Selmer algorithm will be recalled in a while; see also Lagarias [15]
and Schweiger [22]. Our approach for checking the assumptions of the Avila-Viana
criterium is different, with a flavor from algebraic geometry, and we expect it can
be applied in great generality for continued fraction algorithms and specially to
the algorithm of Brun [7, 8]. Beforehand, let us recall some important background
material.

1.1. One-dimensional continued fractions.

Recall that the classical continued fraction expansion of a real number z € (0,1) is
defined by

1
0 o= 1
ai + 1
a2 as + -
where a,41 = [1/T"(z)] for n > 1 and
T -0 T =5 |
Y Y

is the Gauss transformation. This is a powerful tool for studying the arithmetic
properties of real numbers, and exhibits several important properties. For one
thing, € (0,1) is rational if and only if the algorithm stops after finitely many
steps, that is, T%(z) = 0 for some k > 1. Moreover, as observed by Lagrange, z is
an algebraic number of degree 2 if and only if its continued fraction expansion is
periodic. Most important, the convergent
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1

provide the best approximations of each (irrational) z € (0,1), in the sense that

|x—§—n|§\m—§| for all ¢ > gp.

n

Moreover, these approximations are uniformly good, in the sense that

P 1 1
o - =< = < o
™ ¢

where ¢ = (1 ++/5)/2 is the golden mean.
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As one interesting application, let us mention Lagrange’s solution of Pell’s Dio-
phantine equation

z? —cy? =1, where ¢ is a square-free integer.

A pair (z1,y1) of positive integers is called fundamental solution if it satisfies the
equation and z; is minimal among all (positive) solutions. Lagrange showed that
the fundamental solution may be found by considering the continued fraction ex-
pansion of /c and testing each successive convergent p,/q, until a solution to
Pell’s equation is found in the form (z1,y1) = (Pn,¢n). Then all the other solutions
(z,y;) may be calculated algebraically through

zi +yive = (z1 + y1ve)"

1.2. Multidimensional algorithms.

The use of multidimensional analogs of this algorithm goes back to C. G. J.
Jacobi, whose goal was to extend to the cubic case Lagrange’s characterization of
quadratic algebraic numbers that was mentioned previously. To this end, Jacobi
proposed a continued fraction algorithm for pairs (z1, z2) of real numbers which he
hoped would yield a periodic expansion if and only if 27 and x5 belong to the same
cubic field. It remains an open problem whether such an algorithm does exist.

Multidimensional continued fractions arise naturally in many other areas, par-
ticularly in connection to renormalization. One important class of applications
in Dynamics is to KAM theory, where the properties of invariant tori are very
closely linked to the arithmetics of the corresponding rotation vectors. See Khanin,
Sinai [13], Kosygin [14], MacKay [16], Khanin, Lopes Dias, Marklof [12], and refer-
ences therein for some of the applications in this direction.

In general terms, a continued fraction algorithm in dimension d > 1 assigns to
each 0 = (01,...,04) € (0,1]% a sequence (L%), in GL(d + 1,Z) such that the
vector © = (61,...,04,1) belongs to the positive quadrant Lj - Riﬂ for every n.
Let {e1,...,eq,eq4+1} denote the canonical basis of R4*1, so that e = Ly - ey,
j=1,...,d,d + 1 are the column vectors of each Ly. The algorithm is weakly
convergent if for (almost) every 6, the sequence of positive quadrants converges to
the direction of ©. In other words, weak convergence means that the directions of
all 07, 7 =1,...,d,d+ 1 converge to the direction of © as n — oo. Then

n nd
J,1 J,
(3) om Ty
j,d+1 J,d+1

provide rational approximations to the vector § € R?. One speaks of strong conver-
gence if the base vectors E?, j=1,...,d,d+1 themselves, not just their directions,
converge to the radius R4 © as n — oo.

The theory of multidimensional continued fractions is currently much less sat-
isfactory than its one-dimensional counterpart. Several different algorithms have
been proposed, usually with properties particularly suited to some specific goal,
but an algorithm combining all the nice properties of the classical construction can
not exist in dimension larger than one (see Szekeres [24] for a discussion). For
the vast majority of models in the literature, strong convergence either fails or is
unknown (see [12] for a discussion and references) and, in some cases, even weak
convergence fails (see Nogueira [17]). Another important issue that is largely open,
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and which is of even more direct concern for our work, is the quantitative analysis
of the convergence for rather general families of expansion algorithms. To discuss
this issue we focus on a class of dynamically defined continued fraction algorithms
that contains many of the most important models.

1.3. Some motivation to Selmer’s algorithm.

Consider the question: Are the components of a given vector the base of some
algebraic field?. It was historically the first motivation for the introduction of
multidimensional continued fractions algorithms and the Jacobi-Perron algorithm
was the first attempt in this direction. As a consequence this algorithm has been
the earliest and most extensively studied. A lot of research, without success, in the
question of periodicity for the Jacobi-Perron algorithm has been conducted by many
notable mathematicians. Some partial results on periodicity has been obtained and
it was also proved that the algorithm is weakly convergent in every dimension.

Nevertheless some skepticism have been expressed about the performance of the
Jacobi-Perron algorithm. The difficulty of the problem of periodicity led some
mathematicians to introduce variations on the algorithm or even to propose very
different algorithms and modifications of them.

Poincaré [19] proposed an algorithm for two dimensions motivated by a geometric
idea. But his algorithm is not convergent for some particular examples. Attempting
to remove this defect Brun [7, 8] proposed in 1919 a rather simple algorithm with
very interesting periodicity properties first for n = 2, later for general n. In 1977
Greiter [11] brought the state of knowledge about Brun’s algorithm to the level of
that of Jacobi-Perron when he proved that Brun’s algorithm is weakly convergent in
any dimension. This together with some other arguments led him to enounce that
Brun’s algorithm was a more natural generalization of classical continued fractions
than that of Jacobi-Perron. But Brun’s algorithm has some defect, it is not strongly
convergent as some counterexamples for its 2-dimensional version show.

Selmer [23] introduced a variation in the algorithm of Brun which apparently
could give more approximations than Brun’s. A very remarkable property of this
algorithm being the fact that the expansions can essentially be codified by two
symbols. So the algorithm is simpler than that of Brun and maybe more suitable
to investigate periodicity properties. Other good properties like weak convergence
has been established for this algorithm too making it subject of many recent inves-
tigations.

1.4. Lyapunov exponents.

Many continued fraction algorithms can be defined in terms of a transformation
T : X — X, defined on some positive, or even full measure subset X of (0, 1]¢, and
a function A : X — GL(d + 1,Z), in the sense that the sequence (Lj),, of linear
operators is given by

(4) n=AO)A(T(9))--- A(T"(0)), for each n.

See Lagarias [15] for the closely related notion of Markovian Multidimensional Con-
tinued Fractions Algorithms. Notice the one-dimensional continued fraction fits in
this class:
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Example 1.1. Let T : (0,1] — [0, 1] be the Gauss map, T'(8) = (1/6) — [1/6] and
A:(0,1] — SL(2,Z) be defined by

201 o )

It follows directly from the definitions that, for every @,
(5) (0,1) is collinear to A(0) - (T'(0),1).

By induction, this ensures that (6, 1) is in the positive quadrant of L} for every n.
Also by induction,

711 = Lg : (1a0) = (pn—lvqn—l) and gn = Lg : (Oa 1) = (p'rHQTL)a
where the integer sequences (p,,), and (g, ), are as in (2).

Suppose that the map T admits some interesting (e.g. absolutely continuous)
invariant probability measure p. This is a rather general property: existence of
an absolutely continuous invariant probability was first observed by Gauss himself
for the one-dimensional continued fraction algorithm and it is now been verified
for many models in higher dimensions as well. In particular, it holds for Selmer’s
multidimensional continued fractions algorithm (Lagarias [15]) which is of particular
relevance for our purposes here.

Then, assuming the function log || A~1|| is p-integrable, for y-almost every 6 there
exists a stratification

(6) {0} =E) < E} <E?<...< Ef =R!

into vector subspaces such that A=1(6) - Eg = E%(a) and the Lyapunov exponents
1 ny—
A;(0) = —lim —log [(Lg) el

are well-defined for every v € EJ \ EJ ", with A;(8) > Aa(f) > --- > A.(6). This
follows directly from applying the multiplicative ergodic theorem of Oseledets [18]
to the linear cocycle (T, A™'): notice that (L)™' coincides with A~"(), where
the latter is defined by the cocycle chain rule

ATMO) = A(TTHO)) T A(T(9)) T AO)

These objects provide important information on the convergence properties of the
continued fraction algorithm, as we are going to explain.

To begin with, weak convergence (for almost every #) can often be deduced from
knowing that the largest Lyapunov exponent A; is simple, that is,

dimE' =1 almost everywhere.

Indeed, it is easy to see that for typical cones C C Rt their iterates under Ly
converge exponentially fast to the direction of Ej, with exponent given by A; — a.
In many cases, one can check this holds for C' = R‘ﬁl and the Oseledets subspace
E} coincides with the direction of © = (6,1), and then weak convergence follows.

Example 1.2. Suppose T and A are such such that A=1(0) - (,1) is collinear to
(T'(0),1) almost everywhere. This holds for the one-dimensional continued frac-
tion algorithm, as we have seen in (5). More generally, it holds for the linear
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simplex-splitting algorithms (Lagarias [15]), where the map T corresponds to the
projectivization of A=!. Then the line bundle

(7) 61— RO =R(6,1)

is invariant under the cocycle. Suppose, in addition, that there exists n > 1 such
that Lj > 0 (all entries positive) almost everywhere. Then a Perron-Frobenius
type argument proves that (7) is the unique invariant line bundle inside Ri and
it coincides with the Oseledets subbundle Ej. See [27, Section 5] for a detailed
presentation of this argument in a related situation.

Similarly, strong convergence is closely related to knowing that \; is the only non-
negative Lyapunov exponent. Few multidimensional continued fraction algorithms
are known to be strongly convergent (see for instance the discussions in Baladi,
Nogueira [3], Khanin, Lopes Dias, Markloff [12], and Tourigny, Smart [25]).

1.5. Simplicity of the Lyapunov spectrum.

A much finer property has been proved recently by Avila, Viana [2] for the Rauzy-
Veech-Zorich multidimensional continued fraction algorithms: their Lyapunov spec-
tra are simple, meaning that the stratifications (6) have

(8) dim E/ = j for every j  (almost everywhere).

This leads to a particularly detailed description of the convergence for this algo-
rithm: each approximating vector £7 may be written as a sum

0 =0l +viy+ -+ 0}y, wherev); € RO

and all the terms have well defined and distinct rates of growth:
1
lim —log ||vjl| =X fori=1,2,...,d+1
n

(possibly, restricted to an infinite subset of values of n).

The argument of Avila, Viana is based on an abstract simplicity criterium that
they improve [1, 2] from Bonatti, Viana [4]: for a broad class of linear cocycles,
if the monoid generated by the cocycle is pinching and twisting then the Lyapunov
spectrum is simple. Pinching and twisting monoid are transversality type conditions
whose definitions will be recalled later. For the time being let us just mention that
they both measure how “rich” the monoid is: in particular, any monoid that has
some pinching submonoid is also pinching, and the same is true for twisting . Then
the bulk of the work in [2] is devoted to proving that the monoid generated by
every Rauzy-Veech-Zorich cocycle satisfies these conditions. This the authors do by
induction on the complexity of the corresponding base dynamics or, more precisely,
on the genus and the number of singularities of the stratum of Teichmiiller space
associated to each Rauzy-Veech-Zorich cocycle.

Here we develop a very different and perhaps more direct approach to proving the
pinching and twisting properties, and we apply it to the Selmer continued fraction
algorithm in any dimension. It is worth pointing out that the monoid generated by
Selmer’s algorithm is relatively “poor”, as it admits a generating set with only two
elements. Yet, our arguments show that it is indeed pinching and twisting.

For proving the pinching property, we find in the Selmer monoid in any dimen-
sion an infinite family of pinching matrices, that is, such that all their eigenvalues
are real numbers with different absolute values. The proof that the eigenvalues of
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our matrices are indeed real and distinct in absolute values uses ideas from the the-
ory of orthogonal polynomials, taking advantage of the fact that certain sequences
of orthogonal polynomials arise among the characteristic polynomials of those ma-
trices. For proving the twisting property we find an algebraic curve containing
the eigenvectors of all our pinching matrices and which exhibits a beautiful prop-
erty of linear independence of all non-trivial sets of vectors over the curve. These
arguments apply directly to any monoid with pinching matrices having only one
row depending on a parameter and, presumably, can be extended to even greater
generality.

In particular, this approach should apply without major modifications to Brun’s
algorithm.

Before we outline the structure of the paper let us mention one more implication
of simplicity of the Lyapunov spectrum on the convergence of the algorithm.

Lagarias [15] defines the uniform approzimation exponent n*(-) of a multidimen-
sional continued fraction algorithm by

n—oo 1

n*(0) = lim inf] SIj‘fflglgl_~_177(lj‘ .0)]

where

LO) = log || (Il 1a) — lgsr0
n(a) 10g||ld+1|| Og”(la 7d) d+1 ||

He proves that n*(0) < 1+ é and calls the algorithm optimal if the equality holds
for almost every 6. For a class of Markovian (dynamically defined) algorithms he
obtains

A2

OH=1—=

n"(6) N
almost everywhere. Using that the sum of all the exponents is zero, one easily
concludes that in this case the algorithm is not optimal unless Ao = -+ = Ag11. So

if simplicity of the Lyapunov spectrum is as general as we believe, them optimal
algorithms might actually not exist in this dynamically defined class. A large part
of the information given by the fact of simplicity of Lyapunov Spectrum is obviously
not been used here.

1.6. Outline of the work.

This work is organized as follows:

In section 2 we introduce a class of Multidimensional Continued Fractions Algo-
rithms containing almost all of the classical algorithms. Selmers algorithm pertains
to this class, so we present it in subsection 2.3, thereafter in subsection 2.4 some of
its already known properties. Preparing the ground for the inducing argument in
section 4 we give in subsection 2.5 a conjugation of the base application for Selmer’s
algorithm, restricted to some domain containing essentially all the dynamics, to
some map on the projective plane.

The theoretical tools we need in the proof of simplicity for Selmer’s algorithm
are given in section 3. Here we introduce some important definitions involved in
the proof and the basic simplicity criterium. In the last three subsections we touch
superficially the fundamentals steps (inducing, pinching, twisting) to be verified.

These fundamentals steps we formalize in sections 4, 5 and 6. The argument
used in section 4 is standard and there is no novelty here. Ideas used in sections 5
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and 6 are rather elementary, and we believe a rigorous reader could follow them
letting calculations and details for the Appendices.

2. SELMER’S MCFA

In this section we introduce Selmer’s Multidimensional Continued Fractions Al-
gorithm and state some of its known properties. This algorithm is a particular case
of a class of algorithms which Lagarias [15] called Markovian multidimensional con-
tinued fractions algorithms and, more specifically, of the subclass of linear simplez-
splitting multidimensional continued fractions algorithms. In our proof of simplicity
of the Lyapunov spectrum for Selmer’s algorithm we first apply a standard induc-
tive procedure to reduce the problem to the question of simplicity of the Lyapunov
spectrum of a suitable projective map then we just have to prove that the associ-
ated monoid is pinching and twisting. We will be a little more specific on the three
final subsections.

2.1. Markovian MCF algorithms.

Brentjes [6] and Szekeres [24] developed a general concept of multidimensional
continued fractions (briefly MCF). A MCF algorithm associates to each 6 € [0, 1]¢
a sequence {A"(0) : n > 1} of matrices of partial quotients A™(0) € GL(d + 1, Z2)
with the convergent matrices associated defined by:

Cm(0) = A™(0) - A" (0) - AY(0)

Simultaneous Diofantine approximations for # will be obtained from the rows of
C"(0) by:

S>

n n
e (e d )
' Cirfd-s-l C£d+1
Where the denominator will be the last element C{?d 41 from each row of Cg. A

MCEF algorithm is called weakly convergent if for any @ € [0, 1]¢ the approximating
vectors satisfy:

W—— 0= (01, 04 for 1<i<d+1

n—oo

Lagarias [15] introduced the concepts of Markovian MCF algorithm and Simplex
Splitting MCF Algorithm . A Markovian MCF Algorithm is determined by a pair
(T, A) where T and A are two functions

T:00,1] — [0,1)¢
A:[0,1)¢ - GL(d+1,2)
continued by parts. The n-th matrix of the partial quotients of § € [0, 1] is:
A™(0) = A(T"1(9))

and C™(0) = A™(6)- A"~1(0) - - - AL(6). Observe that A™(6) is a function of T"~1(9)
so for determining A™(#) we don’t need to know 6, T1(6),--- ,T"~2(f). Hence the
algorithm ”forgets” the initial orbit motivating the name of Markovian for these
algorithms. For arbitrary MCF Algorithms given by a pair (T,A) like before the
rows of the matrices C™(6) may have not approximation properties to 6. Therefore
we call Markovian MCF those with the weak convergence property.
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2.2. Linear simplex-splitting multidimensional continued fractions algo-
rithms.

Must of the Markovian MCF Algorithms constructed until now are of a spe-
cial class called linear simplex-splitting multidimensional continued fractions al-
gorithms. They arise from some piecewise linear map 7" on the cone:

R = {(y1,+ vyar1) ERT iy, >0,1<i<d+1, yge1 = 1Sr?2§(+1yi}

where d € {1,2,3,---}. Hence

o yass) € R {0} = (2o, 4 1y e 0,19 x {1}
Yd+1 Yd+1

The cone Riﬁl is partitioned into a (finite or infinite) family of subcones, and on
each subcone the map T is linear, with

(9) T(y) = Aly)-y

where /T(y) € GL(d+ 1, Z) is constant on each subcone. T respect the rays, thus
the set of rays can be identified with [0,1]? choosing as representative of the ray
[y] = {t-(y1, - ,ya+1) : t > 0} the unique vector with yz41 = 1. This permits us,
given the projection

. A+l d
p: R+++ - [Oa 1]
o Y
Yarr  Yde1
to define the map 7' : [0,1]¢ — [0, 1] making commutative the following diagram:

(yla"' 7yd+1) L (

d+1 T d+1
RYY RYY

pl lp
0,19 —X— [0,1]¢

We can also induce the map:
A:[0,1] = GL[d+ 17]

(xla e 7.’Ed) = ((Av(‘rla s, Td, 1))T)_1
So that the pair (T, A) constitutes a Markovian MCF algorithm whenever it has
the weak convergence property.

2.3. Selmer’s algorithm.

As explained before, Selmer’s algorithm was originally introduced [23] in connection
with Brun’s algorithm [7, 8], one main advantage being that the base dynamics can
be codified (eventually) with only two symbols. Let us give the precise definition
of this algorithm.

First of all define AS™ and B¢ by

AL =y e R0 <y < < yapr)
Bl ={z=(r1,...,20):0< 21 < <xq <1} C R



SIMPLICITY OF THE LYAPUNOV SPECTRUM 11

AT is a cone with AT ¢ RUE and B ¢ Af' = A, Consider now the
partition {B% (i) : 0 < i < d} of B where the B¢ (i) are given by:

Bl0)=B¢n{z=(z1,...,2q): 0< 1z <1— 24}
={zeB} vg+a1 <1<1+mz}

Bi)=Bén{z=(21,...,2q): 1 —2g <x1 <1 —24 1}
:{:rEB%:xd,1+x1§1<:vd+x1}

Bi2)=Bén{z=(21,...,00): 1 —2zg_1 <21 <1— 14 2}

:{.TEBgil'd,Q-i-xl§1<$d,1+.’)31}

Bid—1)=Bin{(x1,...,2q): 1 —zp <21 <1—11}
:{xeBg:m1+x1§1<x2+x1}
Bl(d)=B¢n{(x1,...,2q): 1 -2y <z <1}
={zeBd:x; <1<z +x1}

Then Bﬁ(i) ={ze Bg CZgi1—itx1 > 1> xg a1}, 0<i<dwherexyy1 =0
and zg = 0.

Selmer’s multidimensional continued fractions algorithm is a Linear Simplex-
Splitting MCF algorithm. The corresponding map

(10) Ty : RItD — REH!

being defined by:

Ify e R‘ﬁf \ AdLH then Ty(y) is the vector obtained by permuting the coor-

dinates of y in a way that the resulting vector has its coordinates in increasing
order. So Ty (R \ AT € ATHL

Ify € AdLH then fy(y) is obtained from (y1,y2," " ,Yd,Ya+1 — Y1) making the
necessary permutations on its coordinates for getting a vector in A‘i‘“.

Then T (RN ¢ AT and it suffice to describe the action of Ty on AL et
us describe the regions of A‘é“ corresponding to the different expressions defining
T . First observe that

(11) 00+ <+ <y+y < <yi—1+v1 <Ya+y1 < Yap1 + U1
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And the implications:

@ Ty(ylay27"'ayd+l) = (ylayQ,"'ay(byd-i-l _yl)
<0<y <y2<-<ys <Yi+1 — %1
= Ya+y1 < Yatr1
Ty(ylay27"'ayd+l) = (y].ay27"'ayd+l _y17yd)
S0<y1 <y < <Yi—1 < Yir1 — Y1 < Yd
= Yd—1 T Y1 S Yd+1 S Ya+ U1
fy(ylay27"'ayd+l) = (ylayQ,"'ayd72ayd+1 _y17yd717yd>
S0<y1 <Y< <yg2<Yar1— Y1 < Ya-1 < Ya
= Yd—2 + Y1 S Yd+1 < Yd-1 + Y1

d—1| To(yi, v, - Yar1) = (Y1 Yas1 — Y1, Y2, - - Ya)
S0<y1<yat1 — 1 <yY2<---<ya

=Syt Y S Yar1 S Y2ty

T (1,2, - -, Yar1) = (Yar1 = Y1, Y1, Y2 - -, Ya)
SO0<ygr1—mn<mn<yp<---<y

=0+y1 <yar1 <1 +wn

So we can decompose A% in some mutually disjoint regions A%1(0), -+, A% (d)
such that

(12) AT = ATTH0) U UATTHA)

Where

ATTH0) = AT N {ya + y1 < Yarr < Yas1 +u1)
:A‘zﬂﬂ{yzogsclgl—a:d}
AT = AT N {ya-1 + 11 < Yarr <ya+ i)

=AM N{y: 1 —zg<
A%H@) = A%H N{Ya—2 + 1 < Ya+1 < Ya—1 + 1}
:AdLﬂﬁ{y:l—xd,l <x1 <1—m4-9}

21 <1—mz4-1}

AT A =1) = AT N {yn + 91 < Yagr <2+ o1}
:A%+1ﬁ{y:17:172<x1 <1l-—xz}
AP d) = AT {0+ y1 < yarr <y1+ )
zA%+1ﬂ{y:1—x1<z1§1}

and (21, -+ ,2q) = (ygjrl’ 7ygj_1) satisfy

0<z <x2<---<12g<1
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So (1, ,xq) € B}. The projection p verifies p(A4T (k)) = B¢ (k);

13

0<k<d.

Then we get a pair (T's», A) like at the end of subsection 2.2. And we can re-
cover the expressions for T's» and the matrices defining the map A as follows:

1=0
T
W1s- -5 Yas1) € ATTH0) —Z— AT S (y1,+ -, Yds Yarr — 11)
”l l”
Y1 Y d T d Y1 Y.
(yd+1 v ydil ) € BL(O) BL > (yd+1—y1 o yd+1d—y1)
(e, By (B o)
Yar1 Y1 -l
Then
€T x .
Ty(xla"'7xd):(1_1x17"'71_dx1) if (xla axd)EBz(O)
1 0 0 O 00 0 O
0O 1 0 0 00 0 O
0 0 1 0 00 0 O
~ 0 0 0 1 0 0 0 O
Ag= |
0 0 0 O 1 0 0 O
0 0 0 0 01 0 O
0 0 0 O 00 1 0
-1 0 0 0 00 0 1
and
1 0 0 O 0 0 0 1
01 0 O 00 0 O
00 1 0 00 0 O
~ 00 0 1 00 0 O
((Ao)fl)T = .
0 0 0 O 1 0 0 O
00 0 O 01 0 0
00 0 O 00 1 0
00 0 O 0 0 0 1
=1
T
(y17 .. 7yd+1) € A%+1(1) - A([i,+1 = (y17 <y Yd+1 — yhyd)
pl lp
T, B _
(o) € BHY) T2 BE > (.. e, masiom)
Y Y Y1 Yao1 1 w1
1 Yd+1 Yd+1 Yd+1
= e et , )
Yd+1 Yd+1 ygil ydyﬁ ygﬁ
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Then
o 1-
TY(Ilf"axd):(ﬂa”'axd 13 ml) if (zla"'axd)eBz(l))
Zd Tq Zq
1 0 0 0 0 0 0 O
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 O
~ 0 0 0 1 00 0 O
A=
0 0 0 O 1 0 0 0
0 0 0 O 01 0 0
-1 0 0 O 0 0 0 1
0 0 0 O 00 1 0
and
1 0 0 0 0 0 0 1
01 0 0 0 0 0 O
0 0 1 0 0 0 0 O
~ 00 0 1 00 0 O
(AT = |
0 0 0 O 1 0 0 0
0 0 0 0 01 0 0
0 0 0 O 0 0 0 1
00 0 O 0 0 1 0
T
(W1, yar1) € AL A —1) —Z—= AT S (y1, Yasr — Y1, Y2, Yd—1,Yd)
pl lp
T —y1 Yd—
(garzre- o> gy) € BLd— 1) = BL 3 (g T e )
y Ya Y1 _ Y Y2 Ya—1
1 Yd41 Yd+1  Yd+1 Yd+1
= PR = ( ) ) sty
gort ) i T )
Then
z1 1—21 22 Td—1, . d
T —( -2 f Bl (d—1
y(xlv axd) (-rd’ Tq 737(1’ ) Tq 1 (xla 7=Td) € L( )
1 0 0 0 0 0 0O
-1 0 0 0 0 0 0 1
0O 1 0 O 0 0 0 O
~ 0O 0 1 0 0 0 0 O
Agv= |
0O 0 0 O 0 0 0 O
0 0 0 O 1 0 0 0
0 0 0 O 01 00
0O 0 0 O 0 0 1 0
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and
1 0 0 O 0 0 0 1
0 0 0 O 0 0 0 1
01 0 0 0 0 0 O
~ 0 0 1 0 0 0 0 O
(g T = |
0 0 0 O 0O 0 0 O
0 0 0 O 1 0 0 O
0 0 0 O 01 0 O
0 0 0 O 0 0 1 0
i=d
T
(1, gar1) € ATTHA) —Z—= AT 3 (Yar1 —y1,91,92, -, Ya)
pi lp
1 T 1 1 —1
(v i) € BH T B > (e
y " 1 vy Ya—1
1 Yd+1  Yd+1 Yd+1
= PR ) = ( ’ y Ty ))
Yd+1 Yd+1 #j‘:l ﬁ y?jﬁ
Then
l—z1 x Tg—1 . d
T . - LN £ .. B (d
Y(xla ,.’I,'d) ( Ty 71’(17 9 T4 ) I (‘rh ,ZL‘d) S L( )
-1 0 0 O 0 0 0 1
1 0 0 O 0 0 0 O
0 1 0 O 0 0 0 O
~ 0O 0 1 0 0 0 0 O
Ag=| ...
0O 0 0 O 0 0 0 O
0O 0 0 O 1 0 0 O
0O 0 0 O 01 0 O
0O 0 0 O 0 0 1 0
and
0 0 0 O 0 0 0 1
1 0 0 O 0 0 0 1
01 0 O 0 0 0 O
~ 0 0 1 0 0 0 0 O
(A T = |
0 0 0 O 0 0 0 O
0 0 0 O 1 0 0 O
0 0 0 O 01 0 O
0 0 0 O 0 0 1 0
From now on we will denote the matrices (A% )~ and (A%)~! by A; and A,

respectively.
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2.4. Some known properties.

This presentation of Selmer’s algorithm we have just given looks different from the
one in [22] but, in fact, the two versions are conjugated by the diffeomorphism f
defined as

f:B? —— B¢

(LEl, e 71'(1) — (fl;d,l’d_17 e 5'1:1)
So the following diagram conmutes

BdLBd

/| 5 |7

B —Z- B¢

We are going to state some of the nice properties proven for T in [22] which can
be rewritten as analogous assertions for T's». Observe that not all of them are
necessary for us.

For example Lemma 16, page 55 in [22] becomes

f(BY@) = f{z € B tai+ 24 212> zig1 +2a)}
={(xa, -+, 71) @i+ 24 > 1> Ti11 + T4}
={(y1,-* ,¥a) Yar1—i + 1 > 1 > ya—i + 1} = Bf
Then taking Dy, = B¢ (d — 1) U B¢(d) we have
Dy = f(BYd—1) U f(BYd)) = f(BY(d — 1) UB%(d))
=f{zxeB g +xg>1})={x € B} ag+x >1}
And Theorem 22 page 55, Lemma 16 page 55 in [22] can be rewritten as

Theorem 2.1. Dy, is an absorbing set, which means:
(i) T Dy, = Dy,

(ii)For almost all x € B¢ there exists N = N(z) such that TY (z) € Dy,.

Lemma 2.1. For 0 < i < d we have Bé(i) = {x € B¢ : 2441 +ax1 > 1 >
ZTa—i + w1} which implies

TyBi(i)={zr € B¢ 2401 i+x1 >1} for0<i<d—1. So
Ty Bi(i) = U B{(j)
j=>1

So that Dy, contains essentially all the dynamics of T'» and we call it the funda-
mental domain. The following Lemma shows that 7 = T |p, have a nice Markov
structure.

Lemma 2.2. 7 : Bg71 — D and T : B% — Dy, are bijections.
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Proof.

T |pa(a—1) is a bijection:
From Lemma 1
TyBY =B} ,UBY=D,
and T |B§71 is surjective.
Suppose now that (z1,---,24) € B*d — 1) is such that

T(xlv"' a‘rd):(yh'" ayd) €D

Then:

I 1—$1 i) Td—1

(77 sy T Ty ):(yh'"vyd)

Zq Tq Zd Zd
which implies that

Y1 Y3 Yd 1
(1"17"'%1:(1):( ’ sty )
Y2+ yr Y2+ Y1 Y2ty Y2+ Y1

and 7 |ga(q—1) is injective.

T |pa(q) is a bijection:
Observe that (z1,---,74) € B4(d) is equivalent to
0<z; < <ag<L; 1-2 <1 <1

which implies

1—2x T x Tg— T 1—2x 1
F< =<2 S — >
Zd Zd Td Td Zd Zd Zd
so that )
— 1 I Td—1
T(mlv“';xd):( P )GDL
Td Td Tq

and 7 (B%(d)) C D
Let (y1,--- ,ya) and (x1,--- ,x4) be such that:

1—$1 X1 Td—1
13 - = ... =
( ) ( Tq 7=’Ed’ ) Tq ) (y17 ayd)
Then:
_ Y2 Y3 Yd 1
(Ila"'axd)_( ) P ’
Y2+ Y1 Y2+ U1 Y2+ Y1 Y2+

Now observe that
(Y1, ,ya) € Dr,
is equivalent to
O<y1<y2<--<ya<ly y2t+y1 =1
which implies
Y2 >

1
0<z; < <29<1 and ;= =
Y2ty 2

so that (z1, -+ ,zq) € Br(d)

By the above 7 |p, (q) is a bijection.
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Now Lemma 19 page 58 and Theorem 23 page 60 in [22] translates to:
Lemma 2.3. (22, B¢ (ki(z),- - ,ks(z)) = {x} for any x € B} where
Bi (ki (), k() = {z € B} : T}, (2) € B (kjs1(z)), 0<j<s—1}

Theorem 2.2. Selmer’s algorithm is ergodic in relation to the Lebesque measure
and admits an absolutely continous invariant measure wr,, (which is finite for d >
2) with density:

1

hr, () = T1Ty 1y

The cylinders for the application 7 coincide with those for T'» in the form
Bl (ky,--- ,ks), where ki,---,k,€{d—1,d}

We then conclude from Lemma 2.2 and Theorem 2.2 that all the cylinders B¢ (ky, - - - , k)
are non empty and that 7;(B¢ (k1,- -+ ,ks)) = Dr. Also from Lemma 2.3 and The-
orem 2.2 we get the

Proposition 2.1. 7 is ergodic and admits an absolutely continuous invariant mea-
sure u(A) = —L— - pp, (A) with density h(z) = ———— and

nrg, (D) My (D)1 2q

lim diamBY(ky,--- ks) =0

S— 00
Observe that if (z1,- -+ ,z4) € Dy, is such that 2; = 0, then from ¢ > 1 we deduce
that ©1 = 29 = --- = x; = 0 and 22 +x1 = 0 which is a contradiction. So i = 1 and
x1 = 0 which implies zo =290+ 21 > 1, 22 =1 and finally 2o =23 =--- =24 = 1.

We thus get
Remark 2.1. The density h(z) is infinite in and only in the point

2.5. Projectivization of the fundamental domain.

For understanding the inducing procedure to be applied on section 4 it is useful
to see Selmer’s cocycle as a cocycle over some map defined on a convenient subset
of the projective plane. This is our next objective.

Let now D? be defined by

D¢ = {(z1, - ,2q,1) : (x1,- ,2q) € D} c R4t!
and D¢ = A4TY(d — 1) U ATL(d). Tt is true that
DY ={(y1, ,Ya+1) 0 <y1 <+ < a1, Y2 + Y1 > Yatr}

because

(y17--«7yd+1)GNLHl(d—l)=>y2+y1 > Yd+1 N
(Y1, Yas1) €ATTHA) = yo +y1 > w1 + 1 > Yara

=D C{(y1,  yar1) :0<yr < <Yagp1, Y2+ Y1 > Yas1)
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We also have that if (y1, -+ ,yq+1) issuch that 0 < yy <+ < wygr1, Yot+y1 > Yar1
there are two possibilities:
Dya+v1 <Yar1 = Y1 +v1 <Yar1 <Y +vy1 = W1, - ,Ya+1) € A%H(d— 1)
yar1 <ya+y1 = 0+y1 <yayr <yi+u1 = (Y1, ,yap1) € ALT(d)
Observe that if (y1,- -+ ,ya+1) € D then (y1,ys, -, Ya+1,Y2+y1) € ArL“'l(dfl) and

(14) To(Y1,y3, - s Yar1: Y2 +y1) = (Y1, ¥2,¥3, -+ s Yd+1)

Analogously (y2,Y3, -, Yar1,¥2 +y1) € A4T(d) and

(15) To (Y293, sYa+1:Y2 +y1) = (Y1, Y2, Y3, s Yd+1)

It follows that Ty(AdH( 1)) =D="Ty (A%TL(d)). By construction the maps
Ty |Ad+1(d 1 and Ty |Ad+1(d) are injective so we deduce that the maps Ty :
A41(d—1) — D and Ty A%T(d) — D are bijections. Also

(Ty ‘A’Z'H(dfl))i D — A%+1(d — 1) and (Ty ‘Az+l(d))71 D — A‘i+1(d)
1

are restrictions of the linear applications given by the non negative matrices (fld,l)_
and (A4)~! from Ri"'l to R‘f‘l.

Let Agy1 = {(21,+ ,2a41) € RT : 21 4+ -+ + 2411 = 1} and define the maps:
j:D%—>]3d
(xla"' 7.’L'd)’—>(.'1?]_,"' ,$d71)
p:D—>Ad+1
Y1 Yd+1
s, — yt
(o1 bar1) (y1+-~-+yd+1 Y1+ -+ Yt
h:DLHAd_H
(xh'" 7$d)’—>poj(fﬂ17"' 7xd)
y T T4 1 )
Cmi et za+ 1l Tt ag+ U+ aa+ 1

Where A denotes the closure of A.
Being Dy a compact set, Agy; Hausdorff, h € C™ injective it follows that
h is a homeomorphism onto its image. Observing that (xy,---,24) € D =
m #0=yar1 # 0if (y1, - ,yat1) € h(Dy) and that b~ (y1, -+ ,ya+1) =
yd+1 - ,y”d ) results that h is a diffeomorphism C*° between Dy and h(Dp).
And it is easy to prove that

h(BE(d—1)) = Agpr NATT (A —1), h(BE(d) = Ags1 NATT(d)
Let fp : h(Dr) — Agy1 be the projectivization of fy. Since
Ty (AP (d—1)) =D = AL (d - 1)U AT (d) = D = Ty (AT (d))
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it’s clear that:

Tp(h(BE(d = 1)) = Tp(Aae1 N AT = 1)) = Aga N (AT (d = 1) UATTH(A))
=Ag1ND
Tp(h(BE(d))) = Tp(Aar1 N ATTHA)) = Aggr N (AT (d = 1) UATT(d))
= Ad+1 ﬁ ]D)

Let us now define 8 = h(Dyr), B(1)=h(Bi(d—-1)), B(2)=h(B¢(d)). Then:

(y1,yd+1 —Y1,Y2," ,ydq,yd)
Y2 +ys+ -+ Y1
(Yd+1 — Y1, Y1, Y2, , Yd)
Yo+ ys+ -+ Yt

Ty sy Wi s yas1) =

Ty a2y Wi+ s yas1) =

So we can easily prove that

(16) T(x1,--,2q) =h~ o Tyoh(zy,- -, a4)
and therefore 7, fp are conjugated by the diffeomorphism C*° h.
Remark 2.2. 3(2) = h(B%(d)) is compactly contained in A, ;.

Proof. Observe that if (zq, -+ ,2q) € Bg(d) then % <z <--- < x4 <1 so that
%+1 <z1+---+x4+1<d+1 and, consequently

1 1 1
< <
d+1 " x4+ Faza+17~ £+1
1 )
2 < o <1 ici<a
d+1 - zm+-+zg+1 7 $41

O

By the conjugation (16) we can substitute the cocycle (Dp, T, u, ((A)T)~1) by
the cocycle (3, Ty, hupt, (AT)~1(h~1)). The Markov structure for the new cocycle
given by 8 = B(1) U 5(2) with T,(8(1)) = 5 = T,(3(2)).

Remark 2.3. Simplicity of the Lyapunov Spectrum for the cocycle (3, fp, Eops (AT)_l)(h_l))
imply simplicity of the Lyapunov Spectrum for the cocycle (D, 7T, u, (AT)71).

3. THE SIMPLICITY CRITERIUM AND OUTLINE OF THE PROOF

Sufficient conditions for Simplicity of Lyapunov Spectrum given by Avila-Viana
in [1], and [2] will permit us to prove simplicity for Selmer’s Multidimensional
Continued Fractions Algorithm. For our purposes its enough Theorem 7.1 from [2].
The following closely resembles this work.



SIMPLICITY OF THE LYAPUNOV SPECTRUM 21
3.1. Simplicity criterium.

Let (A, o) be a probability space, and let
T: U AW A
(HeA
be a transformation where A is finite or countable, AW c A for all (1) € A,
MO( U ) = 17 MO(A(“) > Ov V(l) €A
(HeA

T: A® - A is an invertible transformation and T.(po |awm) is equivalent to .
Let 2 be the set of finite sequences of elements of A, including the empty sequence.
Ifl = (I, -, 1) € A, let us define AL by

Al={zeA:TFz)e Al=+) for 0<k<m}
and T def. Tm « AL — A. Note that Tt is an invertivel and measuravel transfor-
mation.

Definition 3.1. We say that (T, uo) has approzimate product structure if there
exists C' > 0 such that

1 1 dTH(po |ar)

— <C forall [€Q
C 7 (A dpe T )

Under those conditions there exists one and only one probability measure p on
the cylinder o-algebra which is invariant under 7" and is absolutely continuous with
respect to po; (T, 1) has approximate product structure as well.

Definition 3.2. Let (T, x) have approximate product structure and H be some
finite-dimensional vector space. Let AV € SL(H), 1 € A, and define A : A —
SL(H) by A(z) = AD if z € A, We say that (T, A) is a locally constant cocycle.
The supporting monoid of (T, A) is the monoid generated by the A1’s [ € A.

If T is ergodic in relation to p and there exists Lyapunov exponents for almost
any ¢ € U(l)eA AW then it is well defined the Lyapunov spectrum for the cocycle.
Now for p > 2 we call P]Rﬁ_ the standard simplex. A projective contraction is a
projective transformation taking the standard simplex into itself or, in other words,
it is the projectivization of some matrix B € GL(p,R) with non-negative entries.
The image of the standard simplex by a projective contraction is called a simplex.
A projective expanding map T is a map T : UAW — A, where A is a simplex
compactly contained in the standard simplex, the A(!)’s form a finite or countable
family of pairwise disjoint simplexes contained in A and covering almost all of A,

and TO & 1 |am: AW — Ais a bijection such that (7))~ is the restriction of
a projective contraction.

Lemma 3.1. If T : UA® — A is a projective expanding map then it has approzi-
mate product structure with respect to Lebesgue measure.

Suppose now that we have an inner product on the vector space H. Then we
can speak of the singular values of a linear isomorphism acting on H which are
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the square roots of the eigenvalues (counted with multiplicity) of the positive self-
adjoint operator A*A. We always order them

01(A) > -+ > ogimu(4) >0

A different inner product gives singular values differing from the o;’s by bounded
factors, where the bound is independent of A.
Lets denote the supporting monoid by B.

Definition 3.3. The monoid B is pinching if for every C' > 0 there exists A € B
such that

0;(A) > Coi11(A), forall 1<i<dimH —1

Definition 3.4. We will say that the operator A is pinching if all its eigenvalues
are real and with different modules. In case H = R%! we identify A with its matrix
in the canonic base and say that A is a pinching matriz.

Let M?*! denote the set of all (d + 1) x (d + 1) matrices over the field of
complex numbers. Given a matrix A € M9, we denote the eigenvalues of A
by A1(A), A2(A), -+, Ag+1(A4), with the convention that multiple eigenvalues are
repeated according to the multiplicities and indexed so that | A;(A) |<| Aiy1(A4) |.
The singular values of A are denoted as before by o1(A), 02(A),- - ,04+1(A), where
0;(A) is the nonnegative square root of \;(A*A).

Pinching operators are useful for us because an asymptotic relation between the
eigenvalues of an operator A and the singular values of A™ given by the following
theorem first proved by Yamamoto in [28]:

Theorem 3.1. Let A€ M. For eachi=1,2,---,d+1
. s L
lim (0;(A™))™ =| Ai(4) |

n—oo
Therefore the numbers o;(A™) behaves like the numbers | A;(A) |™ for big values of
n giving us a simple way for proving pinching:

Lemma 3.2. If there exists some pinching operator in B then the monoid is pinch-
mng.

Definition 3.5. The monoid *B is twisting if for any k-dimensional subspace F' C H
for any 1 < k < dimH — 1 and for every finite subset {F;}7*; of (dimH — k)-
dimensional subspaces of H there exists A € B such that

AF)NE; ={0}, 1<i<m
Definition 3.6. The monoid B is simple if it is pinching and twisting.

Definition 3.7. Let B; and By be two (d + 1)-dimensional pinching matrices such
that any set C, constituted by d + 1 eigenvectors from By or By (C could have
eigenvectors from B; and eigenvectors from Bs), is linearly independent. Then we
say that the pair (By, Bs) is in general position.

We will see (Lemma 6.2) that any monoid which contains a pair of pinching matrices
in general position is twisting.

The fact of a monoid being pinching and twisting imply the same properties for
some kinds of submonoids.
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Lemma 3.3. Let By C B be a large submonoid in the sense that there exists a
finite subset Y C B and z € B such that for every x € B there is some y € Y such
that yxz € Bg. If B is twisting or pinching then By also is.

This Lemma is important for us because we can reduce the study of simplicity
of Lyapunov spectrum, applying an inducing process in some suitable region of the
base dynamics.

Finally the following theorem in [2], which is an adaptation of the main result
in [1], give us the promised sufficient condition to prove simplicity of the Lyapunov
spectrum in our setting.

Theorem 3.2 (Sufficient condition). Let (T, A) be a locally constant measurable
cocycle. If the supporting monoid is pinching and twisting then the Lyapunov spec-
trum is simple.

3.2. Inducing.

First of all by an inducing process explained in section 4 the problem is reduced
to the question of simplicity of the Lyapunov spectrum for a first return map
whose dynamics is codified by an infinite shift. This map satisfies the conditions
on Lemma 3.1 so that we have a locally constant cocycle and by Theorem 3.2 it
suffice to prove that the supporting monoid is simple. Because on Lemma 3.3 for
the simplicity of the supporting monoid we just need to prove that the monoid
generated by the two matrices A; and As introduced at the end of subsection 2.3
is simple.

3.3. Checking the pinching condition.

For the pinching condition we construct pinching matrices B, in the form B, =
AL A2952  where d is the algorithm’s dimension. In section 10 is obtained the
characteristic polynomial p,, of these matrices which can be written in the form:

pn(e) = m{ o (&) + aa(a)}

1 _
= m{ETdJrl(y) +qa(y)} where y=2-u

In subsection 5.1 we see that for big values of m the polynomials p,, have a root
with absolute value on the interval (2m,4m). There we prove also that if all the
roots of the polynomial g4 are real and different then all the remaining d roots of
the polynomials p,, are real and different for any m big enough and converge to
the roots of gq4. As a consequence we conclude that all the roots of p,, are real for
any m sufficiently big.

The fact that all the roots of the polynomial g4 are real and with different
modules is verified in subsection 5.2. There we exploit the fact that the polynomials
¢q can be decomposed into the product of three more elementary polynomials

Gon—1(2) = (Y — 2)$n-1(y)on-1(y)
Gon(x) = (y — 2)pn(y)gn-1(y)
The polynomials s,_1, 0p—1, Pn, gn—1 pertain to some sequences of orthogonal
polynomials so their roots are all real and distinct and different from 2 as we see in

section 7. In subsection 5.2 we check that the polynomials s,_; and o,_; do not
have roots in common and the same is true for the polynomials p,, and g,,_1.
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3.4. Checking the twisting condition.

After establishing the existence of an infinite sequence of pinching matrices we
check in subsection 6.3 that there exist a pair of such matrices in general position.
The crucial fact is that their last d rows are the same. For this king of matrices
we can express the components of their eigenvectors by means of some fixed poly-
nomials on the eigenvalues (see 6.2) depending on the last d rows. Then we just
have to establish using the properties of their characteristic polynomials that we
can find a pair of them without common eigenvalues. By means of a generalized
Vandermonde’s determinant 6.1 we conclude that this pair is in general position.
Them by the Twisting Lemma 6.2 the monoid is twisting.

4. INDUCING AND SIMPLICITY

Let us denote A = 5(2). As fp : f — B preserves the probability p,, Poincare’s
theorem guarantees that the set P of points from A which return infinitely many
times to A while iterating 7}, is of total measure in A. Let Sr be the set of points

which return to A at least one time while iterating Tp. Let § be the countable
family of subsets from A given by:

—
F={AW, >0} where AO=p5(2,1,---,1,2)

It is easy to see that O is measurable and that § constitutes a partition of Br. As
P C Br C A we have that Gg is of total measure in A.
The time of the first return is defined on each point of Gr by

m(z) = min{m >1: f;”(x) e AN}
and the application of the first return F : Br — /A is then well defined on each
point from Gg by

F(z) = T, (2)

Obviously P is invariant under F' and (see [21] for example) we know that F' |p
preserves the probability

1
BF = ——Hp |a
(D) v

Let us define the skew product (y,v) — (F(y), Ar(y) -v) on F : g — A making
Ar(y) = Ap(T;n(y)fl(y)) .-+ Ap(y). This skew-product induces a function

A: Br — SL(H)
y— Ar(y)

Observe that A is constant on each A®| so that if we denote A(z) = AY for
z € AW results:

Alz) =AW =44, for zenD, 1>0
Clearly F |pa: AW — A is a bijection for any | € N and
(F |aw)7"
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is the restriction of a projective contraction (see section 9). By Remark 9.1 we con-
clude that F' is a projective expanding map and by Lemma 3.1 it have approximate
product structure in relation to the Lebesgue measure. Then

Remark 4.1. (F, Ar) is a locally constant cocycle and is a known fact that the Lya-
punov exponents of (F, Ar) can be obtained multiplying the Lyapunov exponents
of the cocycle (8, Ty, up, Ap) by ﬁ.

D

Let My be the monoid generated by the A 1 € N. If A;, --- A, is an arbitrary
element from the monoid pr associated to the cocycle (8, Tp, up, Ap) it is easy
to see that AsA;, --- A;, As € Mp, so that by Lemma 3.3 we obtain
(17) Mz twisting and pinching = My twisting and pinching
From Proposition 5.5 and Corollary 6.2 we get that MTP is pinching and twisting.
Therefore using 17 and Theorem 3.2 we get that the spectrum of F is simple. By
Remark 4.1 it follows that the spectrum of T, is simple so by Remark 2.3 the
spectrum of 7 is simple. And we have proved that:

Theorem 4.1. The Lyapunov spectrum for Selmer’s algorithm is simple.

5. PINCHING

In this section we check the pinching condition for Selmer’s algorithm. We
will require a fine understanding of the characteristic polynomial of our candidate
pinching matrices and this will be very important for our proof of twisting too.

5.1. A first incursion on the characteristic polynomial.
Define dy4(m,x) by

dg(m, z) < Det[AT4-1 422 _ 41q)

In section 5.2 we use the following assertion proved in section 10:

dg(m,z) = rgp1(x) + m-qe(x) =m - {;rd+1(x) + Qd(x)}

Where r441(2) and g4(x) are two polynomials of degrees d + 1 and d respectively.
We can feel that for m big the localization of the zeroes of such dg(m,z) depends
strongly on the zeroes of g4(x). In fact there will be one zero far from the origin
and d zeroes converging to the zeroes of ¢4. The following two Lemmas will permit
us to formalize this affirmation.

Lemma 5.1. There exists mg such that if m > mq the characteristic polynomial
of the matriz AT A2 have one root with absolute value contained in the open
interval (2m,4m).

Proof. We know that

Spectrum( M )= e Spectrum (M)
m m
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for any matrix M. Let the matrices Vg, and C be defined by:

md—1 42d+2
Al AZ

demziz
m
3—L 4-1 4 4 4 4 4 4 5o 1\l4E!
1 2 1 1
1™ 2™ 1 g 00 0 0o L
0 T %2 1 0
0 1 0 0 0 0 0
0 0o L Z 00 0 0 0
0 0 0 0 L2 1 9 0
0 0 0 0 o L Z 1
0 0 0 0 o0 L X 1
21 g o 0o 0 L %
3444 ... 44445
c_loooo .. 00000
0000 00000

The caracteristic polynomial of C is (3 — x)z?, so that Spectrum(C) = {3,0}
where 3 is a simple zero. Clearly V;,, — C. Thus by continued dependence

of the eigenvalues it follows that if m is big enough Vg ,, have an eigenvalue A,
converging to 3. That is \,, = 3 + 6,, where 6,, — 0. This is why the matrix

AL A2 — V) have an eigenvalue ji, = mAy,. Let mg be big enough

such that | ,, |< 1 for m > mg. Then:
L = 3m + 0, - m
SO
| o — 3m |=| Oy | -m < m

and 2m <| pp, |< 4m for m > my. O
Lemma 5.2. Let g(x) and r(x) be two polynomials with degrees d and d + 1 re-
spectively and such that q have d real and different zeroes x1 < x9 < -+ < xq and
0 = minj<j<q—1 %(.’Ifi_i'_l —x;). Then for all e < 0 there exists N € N such that if

m > N the polynomial py,(z) = Lr(z) + q(x) with degree d+ 1 have d real zeroes
Yyt -y satisfying |yt —a; |< e for 1 <i<d.

Proof.
Observation: If ¢ < 6 then ¢ have no zero different from x; in [z; — €,2; + €] and
sign[q(z; — €)] = —sign[q(x; + €)].

Take A > 0 such that:
[xl _67 7xd+0] C [_A3A]
and M defined by

M= 1§Z_iéld{min{| q(xi —€) |,| qxzi +€) |}}
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Because on the continuity of r there exist N such that | Lr(z) |< $M for m > N
and —A < x < A so we get:

r(z; £€) + q(xi £+ €)]
z;te)] for, m>N, 1<i<d

sign[pm, (xz; £ €)] = sign|

|-

—~

= sign[g

Now using this and the initial Observation we deduce that p,, have at least one
real zero on the open interval (z; —e,z; +€¢) for, m>N, 1<i<d. O

5.2. The polynomials involved.

Now we define some sequences of polynomials appearing in the course of our proof
of simplicity. These polynomials satisfy an infinitude of relations and identities from
which we will need a few. So we are concentrating some of them in Proposition 5.1
and other important relations in Proposition 5.2. From now on a super-index inside
a box for a matrix specifies de order of the matrix.

Let then the sequences of polynomials (g, ), (t5), (kn), (ht), (ut), (T4), (¢a) be defined
by the following equalities:

y 1 0 0 00 0
1 y 1 0 0 0 0
1y 1 ... 000
g-1(y) =0, go(y) =1, guly)=| e, , for n>1
0000 ... y1
0 00O 1 y 1
0 00O 01 y

1 1 11 111
1 y 1 0 0
1y 1 ..000
to(y) =0, ta(y) =1 e , for n>1
00 0 0 y 1 0
00 0 0 1y 1
000 0 01 y

1 1 1 1 111
y 1.0 0 00 0
1 y 1 0 0 0 0
En(y) =1 oo , for n>1
0 0 00 1 00
00 00 y 1 0
00 0 0 1y 1
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hi(y) = ge(y)(9:(y) — ge-1(y)) for t>0
ur(y) = 9t—1(y)(9e(y) — ge—1(y)) for t>0
Fa(y) = y9a-1(y) — 39a-1(y) + y94—2(y) — yga—3(y) + ga—3(y)+

+(=3+2y)(-1)? for d>2
Ga(y) = 39a(y) — 11g4-1(y) + 6ga—2(y) + (=8 + 12y)ta—a(y) — 12t4—5(y)+
+7(-1)%? for d>3

On each item of the following Proposition assume the argument is y in the functions
involved. This is a part of the larger Proposition 10.1.

Proposition 5.1.

Dazn-1 = (y — 2)(3gn—-1 — 2¢n—2)(gn-1 — gn—2) for n =2
2)G2n = (Y — 2)(3gn + 29n-2 — 5gn-1)gn-1 for n>1
3o = (Y +2)(y —2)(gn-1—gn2)*+1 for n>1
— 2001+ gn2)? =1 for n>1
5)(y+2)(y —2)gi +4= (9 — g—2)* for n>1
6)(y +2)(gn-1 — gn—2)> = (¥ = 2)(gn-1 + gn—2)> +4 for n>1

We also postpone the tedious but easy calculations for proving next Proposition
until section 10.

il
(™)
3
+
=

Il

—~
<
_|_

[\
~
—~
s
3

Proposition 5.2. The expression Det{ AT~ . A242 _ 21d) can be written as:
Lo
m - {m(m —4m—|—1) + (—33:)}, for d=1
2)m - l(—9&3—&—49U2—1)—&—Jc(?)av—l) for d=2
m )
1
{112 0)ga(2 — 0) = 39u(2 - 0) + (2 0hgas (2 0) - (2= hga-a(2 - )+
+ga—22—2)+ (-3+2(2— f))(l)d+1:| +3g4(2 —2x) —11g4-1(2 — ) + 694—2(2 — z)+

+ (=84 12(2 —x))tg—2(2 —x) — 12t4_3(2 — ) + 7(—1)‘”2} , for d>3

For clarifying our argumentations let us define the polynomials
rat1(z) = —=(1+2)g4(2 — ) + (2 — 2)ga—1(2 — )+
+ (=14 2)ga—2(2 — 2) + (1 — 22)(-1)*"
qa(x) = 3ga(2 — ) — 11gq_1(2 — ) + 6g4_2(2 — )+

+4(4 — 3x)tg (2 — x) — 12t4_3(2 — x) + 7(—1)4+2
Observe that
Remark 5.1.

ra1(r) = Tap1(2 — x)
qa(z) = Ga(2 — x)
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So making y = 2 — x we have the following

Remark 5.2.
Det[AT4 1 A242 _ g 1d] = 1y (x) +m - qa(z) =
=Tar1(y) +m-qa(y), for d>3
Proposition 5.3. The zeroes of qq are all real and different and contained in the
semi-open interval (—2,2].
Proof. Let us first observe that by Proposition 5.1.1) and Proposition 5.1.2) we
have:
Gon-1(y) = (Y — 2)sn—1(y)on-1(y)
G2n(y) = (¥ = 2)pn(Y)gn-1(y)

where s;,-1,0n-1,Pn,gn—1 are like in section 7. By Proposition 7.3 each one of
these polynomials have all their zeroes real and distinct and contained on the open
interval (—2,2). Then it suffice to prove that s,_; and 0,—1 do not have any com-
mon zeroes and that p,, and g,_1 do not have any common zeroes.

Case 1

Sp—1 and o,—1 do not have any common zeroes because if we suppose that on the
contrary there exists yo such that s,_1(yo) = 0n—1(y0) = 0 then

39n—1(Y0) — 2gn—2(yo) =0
9n—-1(Y0) — gn—2(y0) =0/ -2 = 2¢n-1(Y0) — 29n—2(yo) =0

= gn-1(y0) = 0 = gn—2(yo) = 0 = yp is a common zero of g, and g,,_ which
contradicts the fact that the zeroes of g,_1 and g,_» strictly interlace (Proposi-
tion 7.3).

Case 2

pn and g,_1 do not have any common zeroes because if we suppose that on the
contrary there exists yg such that p,(yo) = gn—1(yo) = 0 then

39n(Y0) + 29n—2(Y0) — 5gn—1(yo) =0
In-1(yo) =0 = 39n(y0) + 2gn—2(y0) =0

= 3[Yo * gn—1(¥0) — gn—2(¥0)] + 20n—2(y0) = 0 = gn—2(y0) = 0 = gn-1(y0) =
gn—2(yo) = 0 arriving again to a contradiction because the zeroes of ¢,,—1 and g, —2
strictly interlace (Proposition 7.3). O

Proposition 5.4. If A is an eigenvalue of Agnd_lAgdJr2 then gq(\) # 0.

Proof. Suppose that on the contrary A is an eigenvalue of A’l”d_lAngr2 and that
qga(\) = 0. Let yo = 2 — A, then by Remark 5.1 and Remark 5.2:

Ga(yo) = 4a(2 = A) = qa(A) =0
Fat1(yo) = Tat1(yo) + m - Ga(yo) = Det[ATV1AZHH2 — Ald] = 0
Thus yg satisfy the system:

Fatr1(yo) =0
(18) { da(yo) = 0}
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And we have two cases:

Case 1

Using Proposition 5.1.4) and Proposition 5.1.2), the system 18 writes:

{ (%0 + 2)[9(y0) = 29n—1(y0) + gn—2(y0)]* =1 = 0}
(

(19) Y0 — 2)[39n(¥0) + 29n—2(Y0) — 59n—1(40)]gn-1(y0) =0

From the second equation of 19 we have 3 cases:

Case 1.1
Observe that g2(2) — 2¢1(2) + go(2) =0 = ¢3(2) — 2¢2(2) + g1(2) and that:

Gk — 29k—1+ gr—2 = (Ygk—1 — Gr—2) — 2(Y9k—2 — gr—3) + (Ygr—3 — Grk—4)
= y(gr—1—29k—2 + gr—3) — (Jr—2 — 29k—3 + Gr—a)
So by induction we obtain:
gn(2) - 2gn71(2) + gn72<2) =0, Vn > 2

Now substituting in the first equation of 19 we get —1 = 0 which is an absurd.

Case 1.2/ g,—1(yo) =0

In this case:
9n(Y0) = 20n-1(Y0) + gn—2(¥0) = Y09n—1(Y0) — gn—2(Y0) — 29n—1(v0) + gn—2(Y0)
= gn-1(y0)(yo —2) =0

And substituting in the first equation of 19 we arrive at —1 = 0 a contradiction.

Case 1.3/ 39n(Y0) + 29n—2(y0) — 5gn—1(10) = 0‘

By Proposition 7.3 we know that yo € (—2,2). We also have the equivalences:

39n(Y0) + 29n—2(yo) — 5gn—1(yo) =0
< 3(9n(W0) = 29n-1(y0) + gn—2(y0)) + (gn-1(y0) — gn—2(y0)) =0

—(gn-1(¥0) — gn—2(¥0))
3

€ gn(Y0) = 29n-1(y0) + gn—2(yo0) =
Substituting in the first equation of 19 results:
(20) (%0 +2)(9n—1(y0) = gn—2(10))> =9 =0
Now we use Proposition 5.1.6) and the fact that yo € (—2,2) to obtain:
0= (Yo +2)(gn—1(%0) — gn-2(0))* =9 =

= (Yo — 2)(gn-1(y0) + 9n72(y0))2 -5<-5<0
=0<0

A contradiction.

Case 2

Using Proposition 5.1.3) and Proposition 5.1.1) the system 18 is written:

(0 +2) (%o — 2)[gn-1(y0) — gn—2(y0)]* +1 =10
(yo —2)[

@) 8901 (90) — 20n—20)][gn—1 (40) — gas(y0)] = 0
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from the second equation of 21 we get 3 cases:

Case 2.1-
Substitute in the first equation of 21 to obtain 1 = 0, a contradiction.

Case 2.2 g, 1(yo) — gn-—2(y0) = 0
Substitute in the first equation of 21 to obtain 1 = 0, a contradiction.

M‘ 39n-1(Y0) — 2gn—2(yo) =0 ‘
Observe the equivalence:

39n-1(Y0) — 2gn—2(yo) =0

—In—-1\Y0
< gn-1(Y0) — gn—2(y0) = %
Now substitute in the first equation of 21 to obtain:
2
(22) (0 +2) (o ~ 22108 4y — g

And use Proposition 5.1.5), 22 and the fact that 3¢,—1(yo) — 29n—2(yo) = 0 to
deduce that yg is a solution of the system:

9n(Y0) — gn-2(y0) =0
(23) { 39n-1(yo) — 29n—2(y0) = 0}

From the first equation we get that:
Yogn—1(Y0) — 29n—2(y0) =0

combining with the second equation results:

(24) (3 =40)9n-1(y0) =0

But yo being a solution of s,—1(yo) = 39n-1(Y0) — 2gn—2(y0) = 0 Proposition 7.3
guarantees that yp € (—2,2). This is why from 24 we deduce that g,_1(yo) = 0.
Now if we substitute in 23 again results that g,—2(y0) = gn—1(yo) = 0 a contradic-
tion because the zeroes of g,,_1 and g,_o strictly interlace (Proposition 7.3). O

5.3. Selmer’s algorithm is pinching.

As we explain in Lemma 3.2 for proving that Selmer’s algorithm is pinching its
enough to prove the existence of some pinching matrix in the associated monoid.
This is the content of the following Proposition.

Proposition 5.5. For any d > 1 there exists No(d) such that the matrices AT~ A29+2
are pinching for m > Ny(d). Consequently Selmer’s algorithm is pinching.

Proof. Remember that from Proposition 5.2:
1)Det[AT47AZ4F2 _ o1d] = m - {L(@?—da+1)+ (-32)}

2)Det[AT A2 — ald] = m - { L (—2% + 42 — 1) + 2(3x — 1)}
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7=
3)Det[A71 422 — p1d] = m - { Lrgpy(2) + qal(z)}

We have gq(z) = ¢q4(2 — x) and Proposition 5.3 guarantees that the zeroes of ¢4
are all real and distinct and contained in the semi-open interval (—2,2] for d > 2.
Therefore the zeroes of gg are all real and distinct and contained in the semi-open
interval [0,4) for d > 3. Thus the zeroes of g are all real and with different
modules. The same affirmation holds obviously for the polynomials (—3z) and
x(3z — 1) appearing in 1) and 2).

Now using this last fact, the expressions 1), 2), 3) and Lemma 5.2 we deduce that
the characteristic polynomial of ATd71A§d+2 has d real zeroes converging to the d
real, distinct and of different modules zeroes of g4 contained in the interval (0, 4]
for d > 1. Consequently all its d 4+ 1 zeroes are real. Lemma 5.1 guarantees the
existence of a zero with absolute module greater than 2m for m > mg. Now the
Proposition follows easily. ([

6. TWISTING

Now we can check the twisting condition for Selmer’s algorithm. Our first objec-
tive is a Twisting Lemma giving a sufficient condition for a monoid to be twisting,
we just need to find pairs of matrices in general position. Then we convince our-
selves that our pinching matrices are appropriate for applying this Lemma. Our
previous study of the characteristic polynomials make it easier to conclude the
existence of such pairs of matrices.

6.1. A Twisting Lemma.

The following Lemma constitutes a generalization of the formula for Vandermonde’s
determinant.

Lemma 6.1. Let p;(z) = Z?:o aéwj, 1 <i<d+1 be polynomials with degrees

least than or equal to d. Then there exist C € R such that:

pi(z1)  pa(z1) ... pati(r1)
Dettpteg) = | P P el feon ] ey
p1(Zav1) p2(®iv1) - Pa+1(Tatr) Isisysd

Proof. Splitting each p;(z) as the sum of its monomials, we can write the determi-
nant as a linear combination of

A xgd“
my me d+1
(25) xh xh R
mi mo mMd+1
Tat1 Tayr - Tap
with 0 < my,ma,- - ,mgp1 < d. If m; = my for some pair (7, j) then, clearly, 25= 0.

In all other cases we have a classical Vandermonde determinant

I @i-x)

1<i<j<d+1
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d

Last Lemma gives as a Corollary that if there are d + 1 linearly independent
vectors over the curve c(t) = (p1(t),- -+ ,pa+1(t)) then it is injective and have the
beautiful property that any subset of d + 1 different vectors over the curve is also
linearly independent. This constitutes the heart of our argument for proving that
Selmer’s MCFA associated monoid is twisting.

Corollary 6.1. Suppose there exist 29, - - ,x2+1 such that Det[(pi(x?))] #0, then
for any set {x1,--- ,xa11} satisfying that x; # x; if i7# j we have that

Det[(pi(z;))] # 0
and the curve c(t) = (p1(t), -, pa+1(t)) is injective.

The pinching matrices we found on Proposition 5.5 are of a very special kind
giving us the possibility of finding pairs of such matrices satisfying the conditions
on the following Proposition:

Proposition 6.1. Let My and My be two pinching matrices of order d + 1 with
eigenvalues A\, - - ’/\¢11+1 and N2, - - v>‘§+1 respectively and such that \} # )\? for
1 <id,7 <d+1. Suppose that there exist some polynomials p1,--- ,par1 of order
least than or equal to d such that for each pair (i,7) with1 <i <2, 1<j<d+1

exists one non trivial vector Z); satisfying the following equalities:
Mi-v;=X;-v;, v;=c(A;) where c(t)=(pi(t), - ,par+1(t))
—1 -1 52 —2
Then any set of vectors {v Vg Vg ,vidﬂ} with iy, # i, for m #
n, 1 <mmn<¥k andi. #is forr#s, k+1<rs<d+1 is linearly
independent for any 0 < k < d+ 1. That is the pair (My, M) is in general
position.

ip0 " i)

Proof. Observe that the vectors ?1, e ,?,11 11 constitute a linear independent sys-
tem. This is why if we take 20 = A}, --- ,x?l_H = /\¢11+1 we obtain:
nOD o paa (D)
Det[(pi (D)) = |- oo #0
pl()‘dJrl) pd+1(/\¢11+1)
because

—

(P1(A1), -+ s pas1(A) = c(A}) = vy

(p1 ()\,11+1); T apd+1()\¢11+1)) = C()‘}Hl) = Uall+1
Therefore applying Corollary 6.1 we conclude that Det[(p;(z;))] # 0 for any set of

numbers {z1,--- ,xq41} such that x; # x; if i # j.
As M; and M are pinching we know that A} # )\jl and \? # )\? for i # j. Also
the hypotheses of the Proposition 6.2 guarantee that A} # )\? for1 <i,5<d+1.
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So we deduce that if z1 = A,z = Al 2641 = A7, 2a41 = A7, then
z; # zj for i # j and so:
pi(A,)  p2(N) - pari(A])
1A, p2(AL) - pari(AG)
Pl(;\}k) P2(>2\3k) e pd+1(/¥k) = Det[(pi(z;))] # 0
pi(A,) PN L) para (AT L)
pl()\?dﬂ) pz()\ﬁ”l) e pd+1()\?d+1)
-1 o102 -2
Therefore the set {vil,~~ sV Vi s fuidﬂ} is linearly independent.

O

Proposition 6.1 give us an elegant way to prove the twisting condition by means
of the following Lemma:

Lemma 6.2 (Twisting Lemma). Let B be a monoid containing a pair of twisting
matrices in general position. Then the monoid is twisting.

Proof. Let (B, Bz2) a pair of twisting matrices in general position on the monoid 9B,

{?1, cee Zd_H} and {vy, -, 3d+1} basis of eigenvectors of By and By respectively.
Observe that if V, W are subspaces of R?T! with complementary dimensions
being sums of eigenspaces belonging to B; there exist 1 < k < d and some indices
U1,y 8k, bk+1, " ,td+1 such that
-1 =1 1 -1

V=<w S, > W=<wv,,,v,;

i

i1 td+1 >

Then by Proposition 11.2 we know that Bf (V') converge to some subspace

igr1 T Yigga
with dimension d 4+ 1 — k of R which is the sum of some eigenspaces belonging
to By. Now from the fact that the pair (B, Bs) is general position we deduce that
By (V)nW = {0} if n is big enough.

Let now F,G1,- -, G, be subspaces with dimF + dimG; =d+1, 1<i<r.
We know from Proposition 11.2 that B;(F), By *(G;), -+ ,B; °(G,) converge to
some subspaces V, Wy, -+, W, of R which are sums of eigenspaces of B; and
dimV = dimF, dimW; = dimG,, - - - ,dimW,. = dimG,.. As we observed before for
n big enough we have

BYy(V)NW,={0}, 1<i<r
Therefore for s big enough we have
By(Bi(F))NBy*(Gi) ={0}, 1<i<r
= BIBIBI(F)NG; = {0}, 1<i<r
= L(F)NG;={0}, 1<i<r
where
L= BBy B} = (A7 A7) (A7 A2 ) (A 4302

for some naturals m; and ms in case By and By are taken from our pinching
matrices. So the monoid B is twisting. g
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6.2. We can apply the Twisting Lemma.

For applying the Twisting Lemma we have just to prove that our pinching ma-
trices satisfy the conditions on Proposition 6.1. The reason is contained in the
following Proposition combined with the fact that our pinching matrices coincide
in the last d rows.

Proposition 6.2. Let M = (m;;) be a pinching matriz of order d+ 1. There exist
some polynomials p1,- -+ ,par1 with degrees least than or equal to d whose coeffi-
cients are determined by the last d rows of M and such that the vectors:

= (p1(A),  ,pa+1(N))
are mon zero for any eigenvalue \ of M and satisfy:

M-z=\-z
We comment the proof for d = 2, the general case is analogous. A detailed proof

is given in section 12.

Proof. Let v = (v1,v2,v3) be a non-zero eigenvector corresponding to the eigenvalue
A. There exist an index i such that v; = 0. Suppose without loss of generality that
i = 3. Obviously there exist one and only one vector w = (wi,ws,1) such that
(M — AId) - w = 0. So we have the following system:
marwi + (Maz — N)wg = —ma3
ma1wi + Mmagwy = —(m3z — A)

As wy and wy are uniquely determined we conclude that the last system have a
unique solution given by:

M2z — A ma3 _|Mma21 ma3

m32 m33 — A mar M3z — A
(w17w2) = ( )

Ma1 Mgz — A Ma1 Mgz — A

ma3y maz may mazz

So the vector
( M2z — A ma3 _ |21 ma3 ma1 Moz — A )
m32 maz — Al |m31 ma3 — A’ |m31 m32

satisfies M - u = X\ - u. Now observe that the components of u are the minors of
order 2 of the matrix resulting by dropping the first row of M, and so polynomials
of degree least than or equal to 2.

O

6.3. Selmer’s algorithm is twisting.
Now we are in condition to use some of our pinching matrices for proving the
twisting condition.

Proposition 6.3. There exist mi and mo naturals and different such that the
following matrices are pinching

_ mid—1 42d+2 _ mod—1 42d+2
Bl - Al AQ s B2 = A1 A2

And the pair (By, Ba) is in general position.
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Proof. Observe that if Ny is like in Proposition 5.5 then for any integer m greater
than Ny the matrix A’lnd_lflggl'|r2 is pinching. Let AT",--- A7}, be its eigenval-
ues in increasing order. As we observed during the Proof of Proposition 5.5 the
first d eigenvalues converge to the zeroes of g4 and are different from them by
Proposition 5.4. Then by Lemma 5.1 the last eigenvalue is real and contained
in the open interval (2m,4m) for m big enough. So we can easily deduce that
there exist m; and msy greater than or equal to Ny with m; # ms and such that
A 75)\;"2 Vi,je{l,---,d+1}.

If we take By = AT 47142442 B, — Am2d=1 A2442 141 equation 35 in section 8
we conclude that the last d rows of By and By coincide and so Proposition 6.2
guarantees the existence of some polynomials py,--- ,pgi1 of orders least than or
equal to d such that the vectors

vy = @A) pa (), 1<i<2, 1<j<d+]

are non trivial and solve the equation
—i P}
e ? . .
Bi-v; =X v,

where A;, 1<i<2, 1<j<d+1 arethe eigenvalues of B;, 1<1i<2. Now
Proposition 6.1 permit us to conclude that any set of vectors in the form

i) i) Vipg1? Ld+1

—1 1 2 2
(26) {v, U s SO }
is linearly independent for 0 < k < d + 1 and the pair (B, Bs) is in general
position. O
Now as a consequence of the Twisting Lemma we get

Corollary 6.2. Selmer’s algorithm is twisting.

7. APPENDIX A: ORTHOGONAL POLYNOMIALS

In general, a nondecreasing bounded function « defined on R is called an m-distribution
if it takes infinitely many distinct values, and the improper integrals

“+o0 wa
/ 2"da(z) = lim x"da(x)
w1, ——00 w1

> wg —+00

exist and are finite for n =0,1,.. ..
Using a distribution « we can define in a natural way an internal product in the
vector space P of the polynomials

(p,q) := /R pgda

The following theorem (see [5]) guarantees the existence and unicity of a sequence
of orthogonal polynomials in relation to this internal product.

Theorem 7.1. For any m-distribution « there exists a unique sequence of poly-
nomials (pn )52 with the following properties:

(i)pn(7) = Yo (z)2" + 10-1(), Y0 > 0,701 € P
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(i) o) (2)da () = {(1) A

This polynomials also satisfy a very special recurrent relation

Theorem 7.2. Suppose that (pn)Se is a sequence of orthogonal polynomials in
relation to an m-distribution «. Then:

xpn(x) = Clnpn+1(~73) + bnpn(x) + an—lpn—l(l'); n=0,1,...
where: p_1 =0, a_1=0, a,=-2>0 b,eR, n=01,...

(vn  is the mazimal coefficient of py).

In fact this is a characterization for sequences of orthogonal polynomials because
on the following converse to this theorem due to Favard (see [9]).

Theorem 7.3. Given (a,)>2, C (0,00) and (b,)32, C R, the polynomials p,, € P
are defined by:

xpn(x) = anpn-i—l(x) + bnpn(-r) + an—lpn—l(x)a

p-1=0, po=7%>0

Then there exists an m-distribution « such that:

/pn(:c)pm(x)da(x) =0
R
for any two non negative integers n and m.

Orthogonal polynomials satisfy some amazing properties a couple of them will be
very useful for us. So we are going to enunciate them in the following Proposition :

Proposition 7.1. Let (p,)S2, be a sequence of orthogonal polynomials in relation
to an m-distribution . Then:

-(Simple Real Zeros) p, has exactly n simple real zeros lying in the interior of
the smallest interval containing suppc.

-(Interlacing of Zeros) The zeros of p, and py1 strictly interlace. That is, there is
ezactly one zero of p, strictly between any two consecutive zeroes of ppi1-

7.1. Some interesting sequences of orthogonal polynomials.
Let us study for example the following sequences of polynomials (gx)32{, (k)5 ,

(01)%1, (pr)2, defined by:

9-1=0, g =1 gu(y) =ygr-1(y) —gr—2(y) Vk=>1
s-1=0, s0=3, sk(y)=3gk(y) —29k-1(y) Vk>0
0-1=0, o0=1, ox(y)=gr(y) —gr-1(y) Vk=>0

P-1=0, po=V3, pr(y) =3gk(y) +20x2(y) — 5gr-1(y) Vk>1

These polynomials appear inside the characteristic polynomials of some matrices of
the monoid associated to Selmer’s MCFA and will play a central role in our proof
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if pinching. So we will take some time to study them. First observe that:

W=y, 2@)=v"-1 gW)=y"-2 6l =y -3%"+1
(¥) =3y —2 sa(y) =3y>—2y—3, s3(y) =3y° —2y° — 6y +2
an=y-1 o@=y-y-1 oy =y -y’ -2y+1
(y)=3y—5 p2(y) =3y>—5y—1, ps(y) =3y° —5y° —dy+5
(y) = 3y* —5y® — Ty* + 10y + 1

Using the recurrent relation which define the sequence (gx)72 , it is easy to verify
that the other three sequences satisfy the same recurrent relation, that is:

sk—1(y) — sk—2(y) Vk>2

And these are sequences of orthogonal polynomials because they verify the condi-
tions in Favard’s theorem:

y-90(y) =1-go+1(y) +0-go(y) +0- g-1(y) l=ap=ar ="

Y 9n(y) =1 gnr1(y) +0-gn(y) +1- gn-1(y) I Mg (an)pzo C (0,00)
Vn > 1 O=by=0b; =---
g-1=0, go=1>0 = (bn)peo CR

2 l=ay=a1="---
y-so(y) =1-s041(y) + 5 - s0(y) +0-5-1(y) L
3 = (an)nZo C (0,00)
yosn(y) =1 8n11(y) +0-su(y) + 1-sna(y) L o 1
¥n > 1 3=bo, 0=bi=by=--
s1=0, s5=3>0 :>(bn)zo:0CR
y-o0o(y) =1-0041(y) +1-00(y) +0-0-1(y) l=ay=a1 ="
Y- on(y) =1-0n41(y) +0-0n(y) +1-0n-1(y) I M (an)nzo C (0,00)
Vn >1 1=by, 0=by=by=---
0_.1=0, 0og=1>0 = (bn)peo CR
V3 5
y~po(y)=?-po+1(y)+§-po(y)+0-p71(y) V3
V3 - =0, l=a=a=
3
yopi(y) =1 pra(y) +0-piy) + 5= - proa(y) N = (an)nzo C (0,00)
Y pu(y) =1 pat1(y) +0-puly) +1-par(y) S by Omby—by— -
Vn > 2 3
= (bn)elg CR
p-1=0, po=V3>0
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It is easy to prove that the polynomials g, s, ok, pr have all of their zeroes on the
open interval (—2,2). To see this let us first observe that if we define:

=g2(y) — go(y) = y* — 2

gp(y)
9i(y) = g3(y) — g1 (y) = ¥* = 3y
sp(y) = s2(y) —so(y) =3y° —2y — 6
si(y) = s3(y) — s1(y) = 3y” — 2y* — 9y + 4
op(y) = 02(y) —o01(y) =y* —y —2
0i(y) = 03(y) —o1(y) =y> —y* =3y +2
Pp(y) = paly) — p2(y) = 3y* — 5y® — 10y° + 15y + 2
pi(y) = ps(y) — pr(y) = 3y° — 5y* — Ty + 10
Then:
9p(—2) = 2,9,(0) = —2,9,(2) = 2 9i(=2) = =2,9:(=1) = 2,9i(1) = —2,¢:(2) = 2
5)(—2) = 10,5,(0) = —6,5,(2) =2 s;(—2) = —10,5;(—1) = 8, 5;(1) = —4, 5;(2) = 2
op(—2) =4,0,(0) = —2,0,(2) =0 0i(—2) = —4,0;(0) = 2,0;(1) = —=1,0;(2) =0
Pp(—2) = 20,pp(—1) = —15,p,(0) = 2 pi(—2) = —20,p;(0) = 10,p;(1.2) = ~0.416
pp(1.6) = —0.4192, p,(2) = 0 pi(2)=0

From there we deduce that:
1)zeroes of g, arein (—2,2) and gp(z) >0 if =< -2, gy(z)>0 if z>2
2)zeroes of g¢; arein (—2,2) and g;(x) <0 if z<-2, gi(z)>0 if z>2
3)zeroes of s, arein (—2,2) and s,(x)>0 if |z[>2

4)zeroes of s; arein (—2,2) and s;(x) <0 if z< -2, s(z)>0 if x>2

)
)
)
5)zeroes of o0, arein
)
)
)

(—2,2] and op(z) >0 if < -2, op(x) >0 if x>2
6)zeroes of o; arein (—2,2] and o;(z) <0 if z<-2, oi(x)>0 if z>2
T)zeroes of p, arein (—2,2] and py(z) >0 if z2<-2, p,(x)>0 if z>2
8)zeroes of p; arein (—2,2] and p;(z) <0 if <=2, pi(x)>0 if z>2

We also have:

92(=2) = 3,92(0) = —1,92(2) = 3,93(—2) = —4,93(—1) = 1,93(1) = —1,93(2) =4
(—=2) =13,52(0) = —3,52(2) = 5,83(—2) = —18,53(—1) = 3,3(1) = —3,53(2) =6

02(—2) =5,02(0) = —1,02(2) = 1,03(—2) = =7,03(0) = 1,03(1) = —1,05(2) =1

p2(—2) =21,p2(0) = =1, p2(2) = 1,p3(—2) = =31, p3(0) = 5,p3(1) = —1,p3(2) =1

So the polynomials gs, g3, S2, S3, 02, 03, P2, p3 have all their zeroes on the open in-

terval (—2,2) and:
ga(x) > 0, s2(x) > 0,02(x) > 0,pa(x) > 0 for | x |> 2;

g21+1(2) = g3(z) < 0,82.141(%) = s3(7) < 0,02.141(2) = 03(z) < 0,p2141(7) =
p3(x) <0 for < —2;

go1+1(z) = g3(w) > 0,s80.111(x) = s3(x) > 0,00.141(x) = 03(x) > 0,p2141(x) =
ps(x) > 0 for x > 2.
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Combining all of these observations with the following Proposition it is easy to de-
duce that all the zeroes of the polynomials gi, Sk, ok, pr are contained in the open
interval (—2,2).

Proposition 7.2. Let p be a sequence of polynomials satisfying the recurrent re-
lation p,(x) = xpp_1(x) — pr—2o(z). And suppose that there exist mg and ng such
that pam,(x) > 0 if | 2 |> 2, pang+1(x) <0 if & < =2, paye+1(z) >0 if x> 2 and

Pamo+2(T) = Pamo(®) 2 0 if [ @ > 2, Panots(®) = pangr1(z) <0 if @< =2,
Pano+3(Z) — Pang+1(x) > 0 if x > 2. Then the following chains of inequalities
are true for any k:

Dpar(x) = par—2(x) > -+ = pame(x) >0 if |2 |>2
< S o) <0 if < -2
> > popggr(x) >0 dif x>2

Proof. First of all observe that :

Prr2(@) = pn(@) = 2ppi1(2) — po(@) — po(2) =
(27) = z[apn () — pp-1(2)] — 2pn(z) =
= (2% = 2)pa(2) — 2pp1(2)
1)We will proceed by induction. For my its true that pas,,(z) > 0if |z |> 2.
Now suppose that:

Pok(x) > par—2() > -+ > pame(x) >0 if |z [>2
Using (2) and the fact that pog(z) > 0 results:

pok2(x) — par(x) = (2° — 2)pa () — apo—1(z) >
> 2pop(x) — wpog—1(x) =
= por(2) — par—a(z) if |z[>2

But pog(z) > par—o(z) if | 2 |> 2 so we obtain:
por2(x) > por(z) if| 2 |>2

2)We prove by induction too. For ng it is true that pop,+1(x) < 0 if z < —2.
Suppose now that:
pori1(z) < pop_1(z) < - < poppr1(x) <0 if 2 <=2

Using (2) and the fact that pogi1(z) < 0 we obtain:

ports(®) — portr(z) = (4 — 2)poky1(x) — 2par () <
< 2pog1(z) — zpor(z) =
= p2k+1(x) — pgk,l(x) for < -2

But pogt1(z) < pop—1(z) if z < —2s0 we get:
por+3(x) < popgr(x) for x < -2

3)By induction again. For ng we have pap,+1(z) > 0if a > 2. Suppose that :
Pok+1(x) > pog—1(x) >+ > popg1(x) >0 if z>2
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Using (2) and the fact that pogi1(z) >0 for =z > 2 we derive:

poi+3(x) — Pars1 () = (2 — 2)par1(x) — apor(z) >
> 2p2+1(7) — Tpak(w) =
= poks1(®) — pok—1(z) if z>2

But pogt1(z) > par—1(x) if x> 2 therefore:
por43(x) > popg1(x) for x>2 U

Collecting all the previous observations we get the following

Proposition 7.3. The four sequences (gr)k, (Sk)k, (0r)k, (Pk)k are sequences of
orthogonal polynomials. The zeroes of each one of the polynomials are real, sim-
ple and contained in the open interval (—2,2). And the roots of two consecutive
polynomials in the same sequence strictly interlace.

8. APPENDIX B: THE MATRICES INVOLVED

Let us first study the potences of As. In order to do this define the recurrent
sequence x,, given by:
Ty =Ty=-=29-1=23=0, Tap1 =1, Tpydr1=Tp+ Tpy1,n>1

Remark 8.1.
Tdtl+i = Titd+1 =T + 41 =0, for 1<i<d-1
T2d4+1 = Td4d+1 = Td + Tay1 = 1
Remark 8.2. There exists ng such that z,, > 0,Vn > ng

Proof

It is easy to prove that if in the sequence (z,), there are k consecutive elements
all of them greater than 0,

Tpt1 > 0,...,Z;myr > 0 then there are k+1 consecutive elements
all of them greater than 0 because

Tmgdtl = Tm + Tl > 0, Tp14d41 = Tpg1 +

Tma2 > 0,0 Tgkrdil = Tmak + Tmtkr1 > 0
Being z441 = 1 we obtain by induction that for any £ > 1 there are k consecutive
elements from the sequence greater than 0. Taking k¥ = d + 1 we conclude that
there exists IV such that

TN+1 > 0,2n42 > 0,0+, ZN1gy1 >0
Now we can proof by induction that zy4; > 0,Vi > 1. Observe that xn; > 0 for
1 <i < d+1 then its enough to proof that for all £k > d+ 1 its true that xy4; >0
for 1 < i < k. Obviously the Affirmation is true for k¥ = d + 1. Suppose its also
true for k=q¢>d+1iexnyy; >0 for 1 <i <gq. Then:

TN4(qg4+1) = T(Ntq—d)+d+1 = TN+g—d + TN+q—d+1 >0
because
N+1<N+q-d<N+4+q-1<N+q, N+2<N+q—d+1<N+gq

and zy4+; > 0 for 1 <4 < g+ 1, thus concluding the induction step and
TN+ >0, Vi>1.
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Remark 8.3.
Tn Tn+1 Tn4+d—1 Tn+4d
Tn+d Tn+4+d+1 Tn+4+2d—1 Tn+42d
9= | Tnyd—1 Tnid Tn42d—2  Tpt2d—1
Tn+41 Tn42 Tn+td Tn+d+1
Just look at:
d+1
0 0 0 1 T To Tq Ta+1
10 01 Tyl Tdq2 Tod  Tady1
1
A2 il R = Td Td+1 Tod—1 Tad
0 0 0 O0) e
0 0 1 0 T2 I3 Td+1 Td+2
And them proceeding by induction suppose that:
Tk Th41 LTk4d—1 LTk4d
) Tk+d Lh+d+1 Tk+42d—1 Tr+2d
A = | Tryd-1  Thtd Thi2d—2 Thi2d—1
Tk+1 Tk+2 Tk+d LTk+d+1
So we have the following equalities:
0 0 0 1
T Ti+1 Lk+d—1 Lk+d 1 0 0 1
Tk+d Thk+d+1 Tr+2d—1 Lk+2d 0 1 0 0
Ak+1 _AkAl _ T
9 = A9y = k+d—1 Tk+d Tk+2d—2 Lk+2d—1
................................... 0 0 0 0
Tk41 TE4-2 Tk4d LTh4d+1 0 0 10
Th+1 Th+2 Th+d Tk + Th+1
Thtd+1l Thktd+2 Tk+2d  Thktd + Thtd+1
= | Zk+td Thk+d+1 Tk42d—1 Thtd—1 + Thtd
Th+2 Th+3 Thtd+1 Th+1 + Th+2
Tk41 TE4-2 Tk4d Tk4d+1
Lkt+d+1 Lk+d+2 T+2d Th+2d+1
= Lk+d Lh+d+1 Tg+2d—1 Thk+2d
Tr42 Tk+3 Tk4d+1 Tk+4d+2
T(k+1) T(k+1)+1 T(k4+1)4+d—1 T(k4+1)+d
T(k+1)+d  T(k+1)+d+1 L(k+1)+2d—1 L(k+1)+2d
_ | T(k+1)+d-1 L(k+1)+d T(k+1)+2d—2 T(k+1)+2d—1
T(k4+1)41 T(k4+1)42 L(k41)+d T(k4+1)+d+1

ALIEN HERRERA TORRES
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From Remark 8.3 we obtain:

Tod+2 T2d+3 T2d4+4  T2d4+5 -+  T3d  T3d+1 T3d42

242 T3d+2 L3d+3 T3d+4 T3d+5 --- Tad T4d+1  Tad+2
A3 = | 23441 T3d+2 T3a4s T3d4a oo Tad—1  Tad  Tadi1
T2d4+3 T2dia T2d+5 T2d46 - T3dr1 T3dt2 T3d43

Now if observe that:

T =2o = =29 = 0,441 = 1,Zg42 = T443 = -+ = T2¢g = 0 by Remark 8.1,
and from the recurrence relation between the consecutive terms of the sequence we
have:

Togy1 = 1,Toq42 = 1, 22943 = Togya = -+ = 239 = 0,23941 = 1,23942 =
2,13943 = 1, 3944 = x3q45 =+ = T4q = 0, 04941 = 1, 24942 =3
Therefore
1 0 0 O 0 0 1 2
2 1 0 O 0 0 1 3
1 2 1 0 0 0 0 1
(28) A2 =10 1 2 1 00 0 0
0 0 0 O 1 2 1 0
0 0 0 O 01 2 1

100 01 1 1
00 0 0 1
(29) AP=10 00 ... 00 0 ... 1|, 1<m<d
010 00 0 0
00 0 100 0

1 01 1 11
0 010 0 0
(30) 4d-1 _ 0 0 01 0 0
T
0 00 0 1
0 1 00 0 0
Now multiplying by A;:
1 1 11 11
0 1 0 00
(31) A9 = Ad1 g, 0 010 00
0 0 0O 10
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Again by induction:

1 m m m m
o 1 0 ... 0 O
(32) A =10 0 1 ... 0 0
0 0 O 0 1
And using the fact that:
1 -1 0 0 0 0
0 0 1 0 0 0
_ 0 0 0 1 0 0
(33) Al 1 B
0 0 0 0 0 1
0 1 0 0 0 0
We easily arrive at:
1 m—1 m m m m
0 0 1 0 0 0
(34) A71nd_1 _ 0 0 0 1 0
0 0 0 O 0 1
0 1 0 0 0 O

3m—1 4m—1 4m 4m 4dm dm—1
1 2 1 0 0 1
0 1 2 1 0 0
@) aptagee— | 0o b LR B0
0 0 0 0 1 0
0 0 0 0 2 1
2 1 0 0 1 3

Remark 8.4. Combining Remark 8.1 and Remark 8.2 we can assert that there exists
ng such that A% is positive for all n > ng.
9. ApPENDIX C: CYLINDERS ARE SIMPLICES

The region Dy, containing the dynamics of T's» have a simple geometric structure
because it is the convex hull of certain finite set of points.

Proposition 9.1.

{reR":0< 2 <mp- < wgy <wg < lwg+a1 >1}
11

= Convez hull Of{(oala 31)7(17"' 71)7(53 5;17"' 31)7
111 1111 1

L Tl ) (=22

(27272a ) a)» a(272a2727 72)}

Proof.

Let x be such that 0 < 21 < 29+ < xg_1 <29 < 1,294+ x1 > 1. Then x4 2%
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and z3 > %, cee X > %, so that we have the following inequalities:
0<—21+22<2 <1
0<z1+22—-1<12<1
1
0§—2x2+2x3:2(9c3—x2)§2-§:1
1
0< —2w5 + 224 = 2as —3) S2- 5 =1 I
1
0 § —21’d71 +21‘d = 2(£Cd —$d,1) S 2- 5 =1

0<2zy4—1<1 }II
Observing that

(—331 +1}2)+($1 —‘rCIL‘Q—1)+(—2$2+2I3)+(—2$3+2$4)+- - -+(—21‘d,1—|—2$d) =2x4—1
and using I and II results that the vector:

(t17t27t37t47 e 7td+1) =

= (—x1 + 22,01 + 22 — 1, =20 + 223, =223 + 224, - - - , —2wq_1 + 224,

1—(—z1+x2) + (1 + 22 — 1) + (=222 + 223) + -+ - + (—224-1 + 224))
satisfy 0 < t¢; < 1,1 <1i < d+ 1. We also have that:

((El,l’g,"' 7.’17d) =

1 1 1 1
:(t2+§t3+"'+§td+1,t1 TlatSls+ -+ Slapr, i+ i3t
1

1 1
§t4+~~+§75d+1,"'at1+t2+"'+td+§td+l)

11 111
—1(0,1, - 1) to(l, - 1) 4 ta(=, =01, 1)+ ta(=y =y =1, 1
1(0a7 ,)+ 2(3 7)+ 3(272,7 7)+ 4(272327, a)+
1111 11
+t5(§7§a§a§717‘”71)+"'+td+1(§7§)
11
= (z1, - ,24) € Convex hull of{(0,1,---,1),(1,--- ,1),(5,571,--~ , 1),
111 1 1. 11 1
(57575713“'71)a"'7(535)75757"'72)}
Take
11
(z1,-- ,xq) € Convex hull of{(0,1,---,1),(1,-- ,1),(5,5,1,o~ , 1),
111 1111 1
o T e D) (222 2 2
(232;277 7)7 »(2727232a 72)}
Then:

1 1 1 1
(z1,-+ ,7q) :(t2+§t3+"'+§td+17t1 +t2+§f3+"'+itd+1,t1+t2+t3+
1

1 1
§t4+~-~+§td+1,"‘7t1+t2+"'+td+§td+l)
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forsome 0<t; <1, 1<¢<d+1, t1+--+tg+tiy1=1
Obviously:

and
To+x1 =0 +2+t3+ - Flgp1=14+122>1
So
(1, zg) €{z:0< 2y <--- <2y <1, @p4a1 > 1}
|
Lemma 3.1 requires 7" to be a projective expanding map. So the fact that 3 and
the cylinders ((iq,- - ,ix) are simplexes is relevant to conclude in section 4 that
some application has approximate product structure. In the following we proof this
fact and that some of the cylinders (i1, - - - , i) are simplexes compactly contained

in the standard simplex.
Now observe that as the vertices of the simplex Dy, are the points

)

NN

1 1
2ol 1) e (2
727 ) ) )’ 7(2’ )

N
N

11
1o D) (11 - . DA(=. 21+ .1
(07 ) ) )7( ) 3 ) )’(2727 ) ) )’(

and j(Dyp) = D then the vertices Py, --- , Pyyq of D are given by:

Pl:j(0717"'71):(()’17"" 71)
PQ:j(Lla"’71):(1317"'3151)
11 11
P3:.7(§7§71a"'71):(555,17"'7171)
111 1 111 1
P =4(Z. 2. Z ... Y= (Z.Z. 2. Z1
d+1 3(27272a 72) (272727 a27>

Let us define the linear application [ by:

iR RO

r— M-z
Where
i1 i
A 7
o |t b1 :
I I S 3
111 1 z
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From:
d+1
1 1 1
(1) (1) §1 §1 §1
T
Det(tM)=|1 0 0 —35
10 0 0 -3
1 0 O 0
1 1 1 1 @
A R et
2
_ (_1)d+1+1 0 0 _g _%
0 0 0 -5
0 0 0 -3
1., 1.,
:(_1)d+1+1(_§)d 1:_(§)d 17&0

results that [ is an isomorphism. Also I(e;) = P;,1 <i < d+1 and

I(tier + -+ + taprear1) =t - ler) + - +tasr - l(ear)
=t P+ +tarr Payr
for 0 <t; <--- <tgy1 <1witht; +---+tg,1 = 1. Therefore [(PR*!) = D, but
(3 is the projection of D in PR¥*! so we obtain that L(PR*!) = 3 for some linear

application given by a non negative matrix L.
Remember that

Blin,-++ yix) = (FLit0)=1(g) = (T )1 o [(PRA+)
Hence the S(iy,- - ,ix) are simplexes. And by Remark 2.2 we get:
. . s d+1
Remark 9.1. (3(2) is a simplex compactly contained in PRT™.

We have another easy way to conclude the existence of a compactly contained
/—Z;
simplex in PR, Let ng be like in Remark 8.4 then (TISQ’ o ’2))*1 is the projec-
tivization of a positive matrix. Also

no o ——
/_H fad ... — iad DS p—
B2 = (@) E) = (TP P) o LRYET) = NRYH)
no
where N is a positive matrix because L is non negative and (T1§2’ o ’2))*1 is

no

- — . . . . d+1
positive. Then §(2,---,2) is a simplex compactly contained in PR{™.
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10. APPENDIX D: SOME POLYNOMIALS AND IDENTITIES

Proposition 10.1.

(5] )
fn—1 9
Dgn = Ygn—1— gn—2 = Z(—1)1< , )y" ¥ for m>1

7
=0

2)ty = gn-1 —th—1 for n>0

Ntp = (—1)" "k, for n>1

Dt = (=1)%gn-1+ (=1)°gn2+ (=1)'gn-s+ -+ (=1)"gn + (=1)" g0 for n>0
5)tn = (—1)"gutn—1 + (=1)" g,_1t, for n>0

6)tn = (=1)"gn_1tn1 + (=1)"Tlgut, for n>0

Thn =tong1 for n>0

8y = ta, for n >0

9gn(gn — gn—-1) = gn-1(gn—1 — gn—2) = g2n — gon—1 for n >0

10)gn—2(gn—-1 = gn—2) = 9n-1(gn — gn—1) = g2n—2 — gan—1 for n >0
1)(39n = 29n-1)(9n — gn—1) — (3gn—1 = 2¢n—2)(gn—1 — gn—2) =
= 3g2n — 592n—1 + 292n—2 for n >0
12)(3gn+1 + 20n-1 — 59n)9n — (39n + 20n—2 — 5gn—1)gn—1 =
= 392n+1 — Dg2n + 292n—1 for m >0
Gont1 — Gan—1 = (¥ — 2)(392n — 5g2n—1 + 292n—2) for n>2
14)@2n+2 — Gan = (Y — 2)(392n+1 — 592n + 292n—1) for n>1
5 = (Y —2)(3gn-1 — 29n—2)(gn—1 — gn—2) for n =2

13)do
)
)d2n
16)5271 (y 2)(39n + 29n-2 — 5gn-1)gn-1 for n>1
)
)
)
)

—

17
18

9In — Gn— 1) = gon — 2to, for n>0

19)[(gn = gn—1) — (gn—1 — gn—2)1* = g2n + g2n—2 — 2ton + 2ton_1 — 2ytan_1 for n >0
0)[(gnt1 = gn) — (Gn — Gn-1)> = [(gn — gn—-1) — (gn-1 — gn_2)]* =

= gon+t2 — 492n41 + 6920 —4g2n—1 + gon—2 for n>1
Dfonta — Ton = (Y — 2)(y + 2)(92n — 292n—1 + gon—2) for n>1
2)P2n 43 — Tont1 = (Y + 2)(92nt2 — 492n+1 + 6920 — 4G2n—1 + g2n—2) for n>1
3o =W +2)(y—2)(gn-1 — gn—2)>+1 for n>1
Doni1 = (Y +2)(gn — 2Gn-1 + gn—2)> =1 for n>1

)

)

)

(
(gn — 9n—-1)* = (Gn-1 — Gn—2)> = gon — 2g2n—1 + gon—2 for n >0
[
[

DO

N NN N
=il

[\

59 — Yn— lgn+1—1 fOT n=0
26)(y+2)(y — 297, +4= (g1 — g1 for n>1
27)(y +2)(gn-1 — gn-2)" = (Y = 2)(gn-1 + gn—2)" +4 for n>1

Proof.
1) The first equality comes from developing the determinant defining g, (y) by the
first column. The second equality is easily proved by induction on n.
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2)Its enough to develop the determinant defining ¢,,(y) by the first column.

3) We will proceed by induction. So observe that:

ti(y) =1= (=" ki(y)

1 1 1 1
o =|; |=-[ 1 =0

Now if we suppose that 3) is true for n = k we have:

111 1 11 kL
1y 10 00 0
1y 1 00 0
tk+1(y): .......................
0000 - y 10
00 0 0 1y 1
00 0 0 01 y
lk+1
111 1 11 1
y 1.0 0 00 1
1y 10 00 0
= (=0
000 0 10 0
000 0 y 10
000 0 1y 0
= (=1)F[(-1) g 4+ (1)1, ]
= (1) P2 (=1)*2(g), — t3)
= (=1)FP2[(=1)F2gp + (—1)F 1ty
— (71)k+2[(71)1+k+1gk + kk]
1111 11 qktl
100 00 0
1y 10 00 0
(D)2
000 0 100
000 0 y 10
000 0 1 y 0
(=) 2k 11 (y)
11

4) Tts enough to observe that t; = (—1)'Tlgy, to = ’ ’ = g1 + (=1)*Tgo

and then proceed by induction using 2).

5)For n = 2,n = 3 the identity is satisfied trivially:
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1 1

t2_’1 y’:y—lz(yz—l)'l—y(y—l)Zgz'tl—gl't2
11 1

_ .2 _ 3 2 2

ts=1 y l=y"—y==@w -2y -+ -1 -y
01 y

= —g3-ta+gs-t3

Now we can prove by induction differentiating the cases n even and n odd.
Case n even

Suppose that 5) is true for n = 2k, that is:
lok = G2k - tak—1 — g2k—1 - L2k

Observe the equivalences:

1+91—90=yg0

< l—-guo-2+t+gok-—3—"+gs—9g2+91—go=

= —G2k—2 + 92k—3 — -+ + g3 — 92 T Y9o

< 1 —to

= —92k + 92k—1 — G2k—2 + g2k—3 — -+ + 93 — g2 + Ygo + G2k — 92k—1
&1 —top—1 =

= (Y9261 + Y92k—2 — Yg2r—3 + Yg2k-a — = + Y92 — Y91 + ygo)+

+ (92k-2 — gok—3 + -+ + g2 — g1 + go) + (92 — g2r—1)
1 —top—1 = —ytor + (g2r — g2k—1) + tax—1
& gok — Gaktak—1 + Gak—1t2r = —YGartar + g2k (g2r — gor—1)+
+ Gok—1tak + gortor—1
& gor — tar = —(Ygar — gor—1)tar + g2 (92r — gor—1 +tar—1)
< log+1 = —gak+1t2k + G2ktok+1

and 5) holds for n = 2k + 1.

Case n odd
Now suppose that 5) is true for n = 2k + 1, that is:

torr1 = —g2k41 - Lok + 9ok - ot

Analogously we have the equivalences:

14+ 91— 90 =yg0

S 1+gk-1—9gok—2+-+9g3—92+91—go=
=092k—1 — g2k—2+ -+ 93— g2+ Y90

< 14ty

= gok+1 — 92k + 92k—1 — G2k—2 + -+ g3 — 92 + Y90 — (92k+1 — 92k)
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S 14ty =
= (Ygor — Ygar—1+ -+ yg2 — Yg1 + ygo)—
— (92k-1 — g2k—2 + -+ g1 — 90) — (g2k+1 — Gor)
& 1+ tor = ylogy1 — ok — (92641 — g2r)
& gokt1 + Gorritar — Gorlont1 = Ygort1lont1 — 92r+1(gort1 — Gor)—
— 92ktok+1 — G2k+1lok
& gory1 — tarr1 = (Y92r+1 — 92k)torr1 — Gort1(g2kt1 — gk + tor)
< tak+2 = gak+2lok+1 — G2r+1t2k+2
and 5) holds for n = 2k + 2.

6)For n = 2,n = 3 the identity is satisfied trivially:

11
tg:Det<1 y> =y—1=y’—y) - -Dy-D=nts—g bt

1 1 1
ts=Det [1 y 1) =y —y= (-1 - D*—v* —y)+
01 y
D'y’ —2y) (1 —y) = (—1)’ga - ta+ (=1)"gs - t3
Like in 5) we will prove by induction and making distinction for the cases n even
and n odd. Case n even

Suppose that 6) is valid for n = 2k, that is:

tor = gok—1 - Lokt1 — g2k - tok

Its enough to observe the following equivalences:

1+g1—90=1y90

< l+go1—9gok—2+--+93—9g2+g1—

= g2k—1 — g2k—2 + -+ g3 — g2+ Ygo

S 1+t

= —gokt1 + g2k + (g2rt1 — g2k + Gor—1 — Gor—2 + - + g3 — g2 + Y90)
S 14ty =

= —Gok+1 + gak + (Yg2r — Yg2k—1 + - + Y92 — yg1 + ygo)—

— (9261 — 92k—2+ -+ 93— g2+ 91 — go)

< 1+ 1o = —gort1 + g2k + Ylogt1 — lok

& gok — Gok—1tok+1 + Gortor = —92r(92r+1 — Gor) + Y92rtorn+1 — Gortor — gok—1t2k41
& gok — tor = —g2k(G2k41 — 92k + tor) + (Y921 — G2k—1)t2k+1
< lok+1 = —9goklokt2 + 92k+1t2k+1

and 6) holds for n = 2k + 1.

Case n odd
Suppose that 6) is true for n = 2k + 1, that is:
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lok+1 = —92k - t2k+2 + G2k+1 - Lok41
Again we have some equivalences:

1+91—90=yg0

S1l—g+tgok-1—+9g3—g2+g1—go=

= —92k + 92k-1— -+ 93— g2+ Ygo

< 1—topy1 =

= gok+2 — 92k+1 + (—g2rr2 + Gort1 — Gor + Gor—1 — - + 93 — g2 + Y9o)
< 1—topy1 =

= Gok+2 — G2k+1 + (—Y9G2k+1 + Ygar — -+ — Y93 + yg2 — Y91 + ygo)+

+(92k — g2k—1+ -+ 92 — g1 + go)

< 1 —top11 = gort2 — Jokt1 — Yloky2 + tap1

& Gokt1 + Gortort2 — Garritort1 = Gart1(92rt2 — 92k+1) — YGort1takt2 + Goryitors1 + Gonlonto
& gokt1 — tart1 = Garr1(92k12 — Gorr1 +lony1) — (Y92k41 — Gor)tori2

< tak+2 = G2k+1t2k+3 — Jok+2l2k+2

and 6) holds for n = 2k + 1.

7T)Expand the determinant defining ts,,41 by its last n columns, using Laplace’s
formulae, and then apply 5). We are marking the numbers of rows and columns for
convenience:

J={n+2,n+3,---,2n,2n+1}

, = e(J) = (=)D = 1
J ={1,2,- ,n+1}

K={n+2n+3,---,2n,2n+1}
’ iE(K) = (—1)n(n+1) =1
K ={1,2,---,n+1}
K={n+1n+3,---,2n,2n+ 1}
/ = e(K) = (1)t =
K ={1,2,---,n,n+2}

K={1,n+3,---,2n,2n+ 1}

, = E(K) _ (_1)(n—1)(n+1) _ (_1)n+1
K ={2,3,--- ,n+1,n+2}



53

SIMPLICITY OF THE LYAPUNOV SPECTRUM

ton+1

~| N ™~

L
LS

N M|~

+
<

gl

oo oo

Toocoo

oo~ >
O —H S
L D> O

IR OO

T O O O

oo oo

on+ 1

n+4

n+2 n+38

n+ 1

n

~

— - O

—_ -0 O

>

0 0 0 O

1

S O

Y

1

A
+
N
* o oo = —
—
IT oo FHO
N
— oo 0D - DO o D oo
— >— 0O
. leHOO
— o - & OO ”
N — O o .0 O
- S OO :
: ===
—— OO .0 O
— o O >
=]
cee = —-— > oo
— >— - OO
. —_-—o .o o
O D OO —
. +
° &= oo g
. i
—_-—o .o O |
—
! +

Intnt1 — Gn—1tn + (_1)n+1tn
= gn(gn —9n-1+ tnfl) — Gn_1tn + (_1)n+1tn

5)

9n(gn = gn—1) + Gntnot — Gnoitn + (=1 [(=1)"gntn_1 + (—1)" g_1t,]

g"(gn - gn—l)

hy,
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8)Expand the determinant defining t9, by its last n columns, by means of
Laplace’s formulae and then apply 6):

J ={1,2,-- ,n}
K={n+1n+2---,2n—1,2n} .

, =e(K)=(-1)""=(-1)"
K ={1,2,---,n}

K={nn+2--,2n—1,2n}

, e(K)
K ={1,2,---,n—1,n+1}
K={l,n+2---,2n—1,2n}
K ={2,3,--,n,n+1}

J={n+1,n+2---,2n—1,2n}
= e(J)

_ (_1)n—1+n(n—1) — (_1)n+1

} =¢(K)= (-1 Y =1

ton =
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 4
|0 1 Y 1 0 0 0 0 0 n
0 0 1 Y 1 0 0 0 0 n+1
0 0 0 1 Y 1 0 0 0 n+2
0 0 0 0 0 0 0 Y 1 2n—-1
0 0 0 0 0 0 0 1 Y 2n
1 n—1 n n+1 n+2 n+38 n+4 2n—1 2n
1111 1o
y 1 0 0 00
1y 10 0 0
1 y 10 00
W 01 y 1 0 0
=(=D)"(=D)" o o0 1y 0 ol T
00 00 y 1
0000 Ly 0000 1y
n+1
1 1 1 1 1 1
—-1 0 0 0 0 O 1 y 1 0 0 O
1 1 0 0 0 01 y 1 0 O
F (=)= 00 1 y 0 0
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1111 .. 1y o001

01y 1 ... 00

1y 10 00 00 1 0 0
O L R y

8888 3{1 0000 1y

y 0000 0 1

= gnln — Gn—1tpn—1 + (*1)ntn

6
:) gntn - gnfltnfl + (_1)n[(_1)ngn71tn+1 + (_1)n+lgntn]

= —gn—1tn—1+ gn—1tnt1

= gn-1(tnr1 —tn-1)

= gn-1(gn = gn—1 +tn—1 — tn—1)
= gn-1(9n — gn-1)

= u,

9)By 7) we have
hn = tant1 = gon — 92n—1 +t2n—1 = g2n — g2n—1 + hn_1

= hp —hp_1= g2n — g2n-1
= gn(gn - gn—l) - gn—l(gn—l - gn—2) = Gg2n — 92n—-1

10)By 8) we have

Un—1 — Up, = tapn—2 — ton = ton—2 — (Gan—1 — Gan—2 + tan—2) =
= 92n—2 — 92n—1
= gn—2(gn—1 - gn—2) - gn—l(gn - gn—l) = 92n—2 — 92n—1

11)By 9) and 10) we have

3lgn(gn — gn-1) — Gn—-1(gn—1 — gn—2)] = 3(g2n — g2n—1)
2[gn72(gn71 - gn—2) - gnfl(gn - gnfl)] = 2(92n72 - anfl)

summing

3[9n(gn — gn—-1) = gn—1(gn—1 = gn—2)] + 2[gn—2(gn—1 — Gn—2) — gn—1(gn — gn—1)] =
= 3(92n — 92n—1) + 2(g2n—2 — g2n—1)

< (39n —29n-1)(9n — gn—1) — 3gn—1 — 29n—2)(gn-1 — gn—2) =

= 3¢on — Sgon—1 + 2G2n—2
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12)

(3Gn+1 + 29n—1 — 5gn)gn — (39gn + 29n—2 — 5gn—1)gn-1 =

= 3(gn+19n — Ingn—1 = Yngn + gn—19n—1) + 2(gn-19n — In—29n—-1 — Ingn + In—19n—1)
= 3[gn(gn+1 — 9n) — Gn—1(gn — 9n-1)] + 2[=9n(gn — gn—-1) + gn-1(gn-1 — gn—2)]

= 3un+1 — un) + 2[—hy + hp—1]

7,8
L8 3[tont2 — ton] + 2[—tont1 + tan—1]

= 3[92n+1 — g2n + ton — ton] + 2[—g2n + g2n—1 — ton—1 + tan—1]
= 392n+1 - 59277, + 2927171

13)Observe that:

Gon—1 = 392n—1 — 11gan—_2 + 6gan_3 + (=8 + 12y)tan_3 — 12t, 4 + 7(—1)2"" 112
= 392n-1 — 11g2n—2 + 692n—3 + (=8 + 12y)(g2n—1 — tan-a) — 12t2—4 — 7
=39g2n—1 — 11gan—2 + 6923 — 8gan—4 — 4tan_a + (12yg2n—4 — 12yt2, 4 —7)
Analogously

Qont1 = 392n+1 — 11925 + 69201 — 8g2n—2 — dton—o+
+ (12ygon—2 — 12ytop_o — 7)
= 3gant1 — 11gan + 6g2n—1 — 8g2n—2 — 4(92n—3 — gan—a + tan_a)+
+ (12ygan—2 — 12yg2n—3 + 12ygan—a — 12yton—4 — 7)
= (3g92n-1 — 11g2n—2 + 69203 — 8gan—4) — 4ton_a+
+ (12yg2n—a — 12yton—4 — 7) — (3g2n—1 — 11g2n—2 + 6g2n—3 — 8g2n—a)+
+ (392n+1 — 11g2n + 6g2n—1 — 8g2n—2 — 49203 + 4g2n—a)+
+ (12yg2n—2 — 12ygon—3)
= Gon—1 + 392n+1 — 11g2n + 3g2n—1 + 12(yg2n—2 — g2n—3)+
+392n—2 + 29203 — 12(yg2n—3 — g2n—1)
= Goan+1 — Q2n—1 = 392n+1 — 11g2n + 392n—1 + 12g2n—1 + 392n—2 + 292n—3 — 12922
= 3(yg2n — g2n—1) — 692, — Bg2n + 15g2n—1 — 992n—2 + 2g2n—3
=3(y — 2)gon — 592n + 12921 — 9g2n_2 + 2gon_3
=3(y — 2)g2n — 5(¥g2n—1 — g2n-2) + 529201 + 29201 — 992n—2 + 29203
= (y —2)(392n) — 5(y — 2)g2n—1 + 5g2n—2 + 292n—1 — 9g2n—2 + 29203
= (y —2)(392n — 592n-1) + 2(Y92n—2 — g2n—3) — 4g2n—2 + 2g2n-3
= (y — 2)(3g2n — 592n-1) + 2(y — 2)g2n—2
= (y — 2)(392n — 592n—1 + 2g2n-2)

Qd

2)
2)
2)
)

14)Observe that:
Gon = 3gan — 11gan_1 + 6g2n_o + (=8 + 12y)ton o — 12y, 5 + 7(—1)*"T1+1
= 3g2n — 11gan—1 + 692n—2 + (—8 + 12y)(gan—3 — ton—3) — 12tap_3 + 7
= 392n — 11gan—1 + 692n—2 — 8g2n—3 — 4tan—3 + (12ygon—3 — 12ytan_3 + 7)
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Analogously:

Gant2 = 392n+2 — 11gany1 + 692n — 8g2n—1 — 4lan—1 + (12yg2n—1 — 12yt2n 1 +7)
= 392n+2 — 11g2nt1 + 6920 — 8g2n—1 — 4(g2n—2 — g2n—3 + tan—3)+
+ (12yg2n—1 — 12ygon—o + 12ygon_3 — 12yto, 3 + 7)
=392n — 11g2n—1 + 692n—2 — 892n—3 — 4l2n—3+
+ (12yg2n_3 — 12ytan 3+ 7) — (3g2n — 11gon_1 + 6922 — 8g2n_3)+
+ (392n+2 — 11g2nt1 + 6920 — 8g2n—1 — 49202 + 4g2n—3)+
+ (12yg2n—1 — 12ygan—2)
= Gon + 392n+2 — 1gant1 + 3g2n + 3(4y + 1)g2n—1—
—2(6y +5)g2n—2 + 129203
= G2n+2 — G2n = 392n+2 — 11g2n+1 + 3920 + 12(Yg2n—1 — g2n—2)+
+392n—1 + 292n—2 — 12(y92n—2 — g2n—3)
= 392n+2 — 1192041 + 3920 + 12925 + 39201 + 29202 — 1221
= 3g2n+2 — 11gan+1 + 1592, — 992n—1 + 29202
= 3(yg2n+1 — g2n) — 692n+1 — Bg2n+1 + 15g2n — 9g2n—1 + 29201
=3(y — 2)g2n+1 — 592n+1 + 12920 — 992n—1 + 29202

=3(y — 2)g2n+1 — 5(Y92n — g2n—1) + 5 2925 + 2920 — 9g2n—1 + 29202
=3(y — 2)g2n+1 — 5(y — 2)920 + 5g2n—1 + 2920 — 9g2n—1 + 29202

= (¥ — 2)(392n+1 — 592n) + 2(¥92n—1 — g2n—2) — 492n—1 + 2g2n—2

= (y — 2)(392n+1 — 592n + 292n-1)

15)For n = 2 we have:
Goo—1 = 43 = 393 — 11go + 6g1 + (—8 + 12y)t; — 12t + 7(—1)*27 112
=3(y*—2y) —11(y* — 1) +6-y+ (—8+12y) -1 —12- 0+ 7(-1)
=3y — 11y + 12y — 7
=-2)By-2)(y-1)
= (y—2)(392-1 — 292-2)(92-1 — g2—2)
Suppose now the validity of 15) for n = k, that is:

(36) Gok—1 = (¥ — 2)(3gk—1 — 29k —2)(gk—1 — gr—2)
From 13) we have:

Gok+1 = Gok—1 + (¥ — 2)(3926 — Bgak—1 + 2g2k—2)

11)
2 Gok—1 + (¥ — 2)[(3gk — 29k—1)(9x — gr—1) — (3gk—1 — 29k—2)(gr—1 — gr—2)]

17
= (y —2)(3gr—1 — 29x—2)(gr—1 — gr—2)+

+ (¥ — 2)[(3g9x — 29r—1)(gr — gr—1) — (3gr—1 — 29x—2)(9k — 1 — gr—2)]
= (y—2)(39x —29x—1)(gr — gr—1)
and (17) holds for n = 2k + 1.
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16)For n = 2 we have:
Go2 = Gs = 394 — 11g3 + 692 + (=8 + 12y)ty — 12t + 7(—1)*+?
=3(y* —3y% +1) — 11(y° — 2y) + 6(y* — 1)+
+(-8+12y)(y—1)—12-147
=3yt —119° + 9% + 2y
=(y—-2)3y* —3+2—"5y)y
= (y —2)(392 + 290 — 591)91
Suppose now the validity of 16) for n = k,that is:
(37) Gor = (y — 2)(39k + 29k—2 — 5gk—1)gk—1
From 14) we have:

Gok+2 = Qo + (¥ — 2)(392k+1 — 592k + 292k—1)

12) _
2 o+ (v —2)[(3gr+1 + 29k-1 — 59k) g — (3gk + 29K—2 — 5gr—1)gr—1]

18
W (v —2)(3gk + 29k—2 — 5gk—1)gr—1+

+ (v — 2)[(3gx+1 + 29k—1 — 59k )gr — (3gk + 29k —2 — 5gk—1)9k—1]
= (y — 2)(39k+1 + 29K—1 — 59k) 9k
and (18) holds for n = 2k.

17)
(90 — 9n—1)> = gn(gn — In—-1) — Gn—1(gn — Gn—1)
= hp — Uy,
7,8
LY tont+1 — ton
= 0g2n — ton, — ton
= 9gon — 2t2n
18)

(9n = gn-1)% = (gn-1 — gn—2)° g (92n — 2t2n) — (g2n—2 — 2t2n—2)
= gon — 2(g2n—1 — Gan—2 +tan—2) — gon—2 + 2t2, o
= 92n — 292n—1 + g2n—2

19)

[(gn - gn—l) — (gn_l — gn_g)]2 -

= (gn - gnfl)2 + (gnfl - gn72)2 - 2gn(gn71 - gn72) + 297171(97171 - gn72)
= gon — 2ton + Gon—2 — 2ton—2 4+ 2hpn—1 — 2(Ygn—1 — gn—2)(Gn—1 — Gn—2)

7)
= gon + Gan—2 — 2ton + 2ton—1 — 2topn_2 — 2Ygn—1(gn—1 — gn—2) + 29n—2(gn—1 — gn—2)
= gon + gan—2 — 2ton + 2top_1 — 2t2p_2 — 2yhp_1 + 2up_1

7),8)
=" gon + Gon—2 — 2tan, — 2ton_o — 2yton_1 + 2tan_2

= gon + 92n—2 — 2ton + 2ta, 1 — 2ytan 1
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20)

[(9n+1 = gn) = (gn — 9n71)]2 = [(gn = gn-1) = (gn-1 — gnfz)}Q =

2 (92n+2 + g2n — 2tonto + 2toni1 — 2ytopy1)—
— (92n + 92n—2 — 2tan + 2top 1 — 2yt _1)

= Gon+2 + Gan — 2(g2n+1 — g2n + tan) + 2(920 — t2n) — 2y(g2n — t2n)—
— G2n — 92n—2 + 22, — 2t2p 1 + 2ytan 1

= Gon+2 = 202n+1 + 4920 — 2Yg2n — G2n—2 — 2(g2n—1 — t2n—1)+
+2y(g2n—1 — tan—1) — 2tan—1 + 2ytan 1

= G2n+2 — 292n+1 — 2y92n + 492n + 2Yg2n—1 — 29201 — g2n—2

= g2n+2 — 202n+1 — 2(Y92n — 92n—1) + 4920 + 2Yg2n—1 — 49201 — g2n—2

= Gon+2 — 292n+1 — 292n+1 + 2(Y92n—1 — g2n—2) + 4920 — 4g2n—1 + gon—2

= Gon+2 — 492n+41 + 2920 + 4920 — 49201 + G2n—2

= gon+2 — 492n+1 + 6920 — 4g2n—1 + gan—2

21)

Tont2 — Ton =
= (Y92n+1 — 392n+1 + Y92n — Y92n—1 + g2n—1 + 2y — 3)—
— (Yg2n—1 — 392n-1 + Yg2n—2 — Y92n—3 + gon—3 + 2y — 3)
= Y92n+1 — 392n+1 + Y92n — 2Yg2n—1 + 492n—1 — Y92n—2 + Yg2n—3 — J2n-3
Y= 2)g2n+1 — (Y92n — J2n—1) + Y920 — 2Y92n—1 + 492n—1 — Y92n—2 + Y9203 — Y2n—3

= (

= (¥ —2)g2n+1 — 2(¥ — 2)92n—1 + G2n—1 — Y92n—2 + Y92n—3 — gan—3
= (Y = 2)(92n+1 — 2920—1) + (Y92n—2 — 92n—3) — Yg2n—2 + Yg2n—3 — G2n—3
= (¥ — 2)(92n+1 — 29201 + g2n-3)

= (¥ — 2)(yg2n — 92n-1 — 292n—1 + g2n—3)

=(y—2)((y+2)92n — 2920 — 392n—1 + Jon—3)

= (y —2)((y +2)g2n — 2(yg2n-1 — g2n—2) — 392n—1 + g2n—3)

=y —2)((y +2)g2n — 2(y +2)g2n—1 + g2n—1 + 2920—2 + g2n—3)

= (¥ —2)((y +2)(92n — 292n-1) + Y92n—2 — g2n—3 + 2g2n—2 + g2n—3)
= (y —2)(y +2)(g2n — 2g2n—1 + g2n—2)

22)

Tont3 — Tongl =
= (Yg2n+2 — 392n+2 + Yg2n+1 — Yg2n + g2n + 2y — 3)—
— (Y92n — 392n + Y92n-1 — Yg2n—2 + gon—2 — 2y + 3)
= Y9an+2 — 392n+2 + YY2n+1 — 2Y92n + 4920 — Y92n—1 + YY2n—2 — J2n—2
= (Y + 2)g2n+2 — 592n+2 + Yg2n+1 — 2Yg2n + 4920 — Yg2n—1 + Yg2n—2 — g2n—2
= (Y +2)g2n+2 — 5(¥92n+1 — 920) + Y92n+1 — 2Yg2n + 4920 — Yg2n—1 + Y92n—2 — g2n—2
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= (Y +2)g2n+2 — 4y + 2)g2n+1 + 892n+1 — 2Yg2n + 9920 — Yg2n—1 + Yg2n—2 — gon—2

= (y + 2)(92n+2 — 492n+1) + 8(y92n — g2n—1) — 2ygan + 9920 — Yg2n—1 + Yg2n—2 — gan—2

= (y +2)(92n+2 — 492n+1) + 6(y + 2)g2n — 3920 — Y92n—1 — 892n—1 + Yg2n—2 — J2n—2

= (y + 2)(g2n+2 — 492n+1 + 692n) — 3(Yg2n—1 — g2n—2) — Y92n—1 — 8G2n—1 + Yg2n—2 — Gan—2
= (Y +2)(92n+2 — 492041 + 692n) — 4(y + 2)g2n—1 + Y9g2n—2 + 29202

= (¥ +2)(92n+2 — 492n+1 + 6920 — 49201 + g2n—2)

23)For n = 1 we have:
o1 = Yg2.1-1 — 39211 + Yg21—2 — Yg2.1-3 + ga.1—3 + (=3 + 2y)(=1)*"
=y-y—3y+y-1—y-0+0-3+2y
=92-3
=(y—2)(y+2)(1-0)*+1
=y -2 +2) (11— g12)°+1
Now if we suppose that 23) holds for n = k, that is:
(38) ok = (Y = 2)(y + 2)(gk—1 — gr—2)* + 1

Results:

_ 21) _
Fokt2 = Tor + (¥ — 2)(y + 2)(92r — 29261 + g2r—2)

A1) (y—2)(y+2)(gr—1 — gr—2)* + 1+ (y = 2)(y + 2)[(9x — gr—1)* — (go—1 — gr—2)"]
= -2)(y+2)(gr —gr—1)*+1
and (19) holds for n=k+1.

24) For n = 1 we have:

Fo141 = Yg2.1 — 3921 + Yga.1-1 — Yg2.1-2 + ga.1—2 + (=3 + 2y)(=1)* 1+

=y (P -1)-3-(-+y-y—y-1+1+3-2y
=3 =2 —dy+7
=(+2)(y—-27°-1
=(W+2)(y—2)(g1 —290+9g-1)>—1
Now suppose that 24) holds for n = k:
(39) Fort1 = (Y + 2)(gr — 29k—1 + gr—2)® — 1

Then:

_ 22) _
Tok+3 2 Tok+1 + (U + 2) (92642 — 4926+1 + 692k — 4g2k—1 + Gok—2)

20),(20
1.20) (y+2)(gr — 2951 + gr_2)* — 1+

+ (y+ 2{[(gr+1 — 9r) — (gr — g6-1)1 = [(9k — gr—1) — (g6—1 — gr—2)]°}
= (y+2)(gr — 2gk—1 + gr—2)* — 1+

+ Y+ 2)[(grr1 — 29k + gr—1)* — (9k — 2951 + gr—2)"]
= (Y +2)(ghs1 — 206 + gr1)> — 1
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and (20) holds for n = k + 1.

25) For n = 0 it is trivial.
Suppose that 25) holds for n = k, the induction step follows from:
9r = Gk—1gk1 =1
= grr1(—Gr1 + gre1 — gk—1) + gp = 1
= grr1 (=Yg + g1 + Grr1 — gk—1) + gk = 1
= grr1(gri1 —ygr) +gi =1
= a1 T 9 — YRR = 1
= i1 — Oe(Ygk11 — ) = 1
= 912g+1 — GrkGrt2 =1

and 25) holds for n =k + 1.

26) Using 25) we get:
gn " Gn—-2 = 93_1 -1
2 2 2 _ 2 2
S Gt 92— 49,1+ 29n9n—2+4 =9, +3gn_o— 2GnGn—2
<~ (gn + 2901+ 97L—2)(gn =291+ gn—2) +4= (gn - gn—2)2
S (Ygn-1 — gn—2 + gn—2 + 20n-1) Ygn—1 — Gn—2 + gn—2 — 20n—1) + 4 = (g — gn—2)*
& (Ygn—1 4 29n-1)(Ygn—1 — 29n-1) + 4 = (gn — gn—2)"
& (Y+2)(y—2)ga1+4= (90— gn-2)?

27) Using 25) we get:
921 = gnGn-2+1
St o= Gngn2+gno+1
S92 1+ 90 5= (YGn-1— Gn-2+ Gn-2)gn—2+1
S gh 9 o =YGn-1Gn—2+1
S YGE_ L+ YIE s — 2YGn-19n—2 + 297 1 + 2075 — 4Gn—1Gn—2
= Y92+ Y9E o+ 2YGn—10n—2 — 297 1 — 2025 — AGn—1Gn—2 + 4
S W+2)(gn-1—9n-2)>= G —=2)(gn-1+gn-2)" +4

Now we prove Proposition 5.2

Proof. :

1) [d=1]

In this case

1
i_ 41 (1 1y _ (11 (1 -1
AlAl(o 1> (0 1)’ A (0 1)
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By induction

md _ gm-1 _ 1 m md—1 __ 1 m-—1
AT =4 _<o 1) 74 =0

As
o 1\" /2 3

2:d42 _ 44 _ _

()6
we get

md— 3Im—1 5m—2

Ald 1_A§d+2:< 5 5 )
So

md—1_ 42d+2 _Bm—-1-2 5m-2_ 1 o B

Det[A7 A; x[d]‘ 3 5_p | =M {m(x dx+1)+ (—32)}
2)d=2]
Now

1o 1\ /111 1 -1 0

Ad=A2=10 0 1| ={0o 1 0], A7'=(0 0 1
0 1 0 0 0 1 0O 1 0

And by induction

1 m m 1 m—1 m
APt =A7?=(0 1 0 |=A7""'=[0 o0 1
0 0 1 0 1 0
But
o 1\° /11 2
AZ2 = A5=(1 0 1| =(2 2 3
10 1 2 2
So we get
3m—1 4dm—-1 5m—1
A;ndfl . A§d+2 — 1 1 2
2 2 3
And finally

3Im—1—x 4m—-1 b5m-—1
2—x 2 =
2 3—x

Det[A7d71 . AZIH2 _ p1d] =

1
2
=m- {7711(_963+4x2 — 1)+ 2z(3x — 1)}

SLEE]

Let us first prove some preliminary identities marked by 4), ii),and #ii):
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+ (DT + (1) %9a-2(9) }

d>3

for
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1y 1 00 0 ofl¢d=?
0 1 y 00 00
L (=D)¥Bm—-1)10 0 0 1y 10 -
0 0 0 01 y 1
0 0 0 00 1 y
0 0 0 00 0 1
d—2
4dm  4m  4m dm 4m 4dm  4dm
1y 1 0O 0 0 0
A +
0 0 0 1 y 1 0
0 0 0 0o 1 y 1
0O 0 0 0 0 1
d—2
dm 4dm 4dm dm 4dm 4dm  4dm
1 y 1 ... 0 0 0 0
HA+Y) e g 1y 1 0 +
0 0 0 0o 1 y 1
0 0 0 0o 0 1 g
y 1 0 0000d_2
1y 1 00 0 0
_d+1_d_ .......................
FEDTEDTEm =D 0 0 1 o
0 0 0 01 y 1
0 0 0 00 1 vy
d—2
dm 4dm 4dm dm 4dm 4dm  4dm
y 1 0 0 0 0 0
1y 1 0O 0 0 0
+ frng
0 0 0 1 y 1 0
0 0 0 0 1 y 1

= (@4m —1){-ga-3(y) + (1 +y)ga—2(y)} —
—{(=D)45m —1) —dm - ta—s(y) + (1 + y)(dm)ta_2(y) } +
+ (=DM (=D)Y5m = 1)ga—2(y) + (4m)kg-2(y)} for d>3
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i
dm—-1 4m 4m 4m ... 4m 4m 4dm 4m 5Hm—1
y 1 0 0o ... 0 0 0 0 1
1 Y 1 0 0 0 0 0
0 1 Y 1 0 0 0 0 0 _
0 0 0 0 1 Y 1 0 0
0 0 0 0 0 1 Y 1 0
0 0 0 0 0 0 1 Y 1
y 1 0 O 0O 0 0 O H
1 v 1 0 0O 0 0 O
01 y 1... 0O 0 0 O
=(=DMGBM =) | +
0 0 O 0 1 vy 1 0
0 0 O 0 01 gy 1
0 0 O 0 0 0 1 y
d—1
dm—1 4m 4m 4m dm 4dm 4m  4dm
1 Y 1 0 0 0 0 0
0 1 Y 1 ... 0 0 0 0
) +
0 0 0 0 1 Y 1 0
0 0 0 0 0 1 Y 1
0 0 0 0 0 1 Y
d—1
dm -1 4m 4m 4m ... 4m 4m 4dm 4dm
y 1 0 0o ... 0 0 0 0
1 Y 1 0 0 0 0 0
+ 0 1 Y 1 0 0 0 0 =
0 0 0 0 1 Y 1 0
0 0 0 0 0 1 y 1
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y 1 0 0 0 0 O
1y 1 0 0 0 O
_ _ d+1 _ _ d+2 I Y AR LN I
= (=) (5m — 1)ga—1(y) + (-1) @m-=11"0"0 g 10
0 0 O 01 y 1
0 0 O 0 01 y
d—2
dm 4m 4dm ... 4dm 4dm 4m 4m
1 y 1 0 0 0 0
“lo 0o o 1y 1 0 +
0 0 0 0 1 Y 1
0 0 0 0 0 1 y
1 00 0 0 0 ol?=2
y 1 0 0 0 0 O
n (4m—1)1 y 1 ... 0 0 0 O B
0 0 O 1 vy 1 0
0 0 O 0 1 y 1
d—2
4m 4m  4m 4m 4dm  4m  4m
Y 1 0 0 0 0 0
1 1 0 0 0
—y Y 0 +
0 0 0 1 Y 1 0
0 0 0 0 1 y 1
d—2
4m 4m  4m 4m 4dm  4m  4m
1 0 0 0 0 0
+ |1 y 1 0 0 0 0 —
0 0 0 1 Y 1 0
0 0 0 0 1 Y 1
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= (=1 (5m — )ga-1(y) + (=1)72 {(4m — 1)ga-2(y) — (4m)ta_2(y)} +
+{(m —1) —y(dm)ka—2(y) — (4m)ka-s(y)} for d=3

4)Now combining 1), #4),44) and making 2 — x = y we get:
Det[AT471A29H2 _ g 1d) =

d+1
3Im—1—xz 4m—1 4m dm  4dm ... 4dm  4m 4m dm  Sm—1
1 2—x 1 0 0o ... 0 0 0 0 1
0 1 2—x 1 0 0 0 0 0 0
0 0 1 2—xz 1 0 0 0 0 0
0 0 0 0 0 1 2—=x 1 0 0
0 0 0 0 0 0 1 2—x 1 0
0 0 0 0 0 0 0 1 2—x 1
2 1 0 0 0 0 0 0 1 3—x
y 1 0 0 0 0 0 O 1
1 v 1 0 0 0 0 O 0
01 y 1 0 0 0 O 0
=Gm=1=2"0 0 0 1y 10 0 -
0 0 0 O 01 y 1 0
0 0 0 O 0 0 1 y 1
1 0 0 O 00 0 1 1+y
4dm—1 4m 4m 4m dm 4m 4dm  4dm 5m71
1 Y 1 0 0 0 0 0 0
0 1 Y 1 0 0 0 0 0
1o 0 0 0 1 5y 1 0 0 *
0 0 0 0 0 1 Y 1 0
0 0 0 0 0 0 1 y 1
1 0 0 0 0 0 0 1 14y
dm—1 4m 4m 4m dm 4m 4dm  4dm 5m—1
y 1 0 0 0 0 0 0 1
1 Y 1 0 0 0 0 0
+(_1)d+2.2 0 1 y 1 ... 0 0 0 0 0 _
0 0 0 0 1 y 1 0 0
0 0 0 0 0 1 Y 1
0 0 0 0 0 1 Y 1
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= (3m —1—2) {y[~ga-3(y) + (1 +9)ga—2(¥)] — [=9a-1(y) + (1 +y)ga—s(y) + (1) +
(D)™ 1+ (=1)%ga-a(y)]} -
{(dm —1)[~ga—3(y) + (1+y)gd 2(y)]—

= [(=D%5m — 1) — (4m)ta—s(y) + (4m)(1 + y)ta—a(y)]+
(=) (=D* (5m — 1)ga—2(y) + (A4m)ka—2(y)]} +
(=) 2{(=1)" (5m = 1)ga—1(y) + (=1)*?[(4m — 1)ga—2(y) — (4m)ta_2(y)] +
[(4m — 1) — y(4m)kq_2(y) — (4m)kq_s(y)]} =
= (
(-
—{(4m
(-
(-
[

I+

+ o+ o+

3m —1—2) {ylga1(y) + ga—2(v)] — [9a-3(y) + ga—2(y) + (=1)*] +
1)d+1[1 + (=1)%ga—2(y)]} —
)ga-1(y) + ga—2(y)] = (1) (5m — 1) = (4m)ta—s(y) + 4m(1 + y)ta—a(y)] +
1)d+1[( 1) (5m — 1)ga—2(y) + (4m)ka—2(y)]} +
2 2{ (=)' (5m — 1)ga—1(y) + (- )d+2[(4m —1)ga-2(y) — (dm)ta—2(y)]+
(4m — 1) — y(dm)ka—2(y) — (4m)ka-3(y)]} =

+

n

i

4

= Bm—1-2){ga(y) + ga—1(y) — ga—2(y) + 2(-1)**"'} -

—{(4m = 1)ga-1(y) + (4m = 1)ga—2(y) + (~=1)"(5m — 1) + (4m)tg—3(y)+

+ 4m(=1 = y)ta—a(y) — (5m — 1)ga—a(y) + (m) (=) (=1)"* 14 5(y)} +

+ (=10m + 2)ga-1(y) + (8m = 2)ga-2(y) — (8m)ta—2(y) + (=8m +2)(-1)""'+

+2(=1) 4y (am) (1) ey o (y) + 2(=1) T am) (1) 3 s (y) =
=Bm-1-—2)ga(y) +Bm—-1—z—4m+1—10m + 2)ga—1(y)+

+(-3m+1+zx—4m+1+4+5m—148m —2)gq—2(y)+

+ (dm + dmy — 4dm — 8m + 8my)tq_2(y) + (—4m — 4dm - 2)t4_3(y)+

+ (6m — 5m — 8m) (1) 4 (=2 — 2z 4+ 1 +2)(—-1)%"! =

= —(1+2)ga(y) + (2 = 2)ga-1(y) + (=1 + 2)ga—2(y) + (1 — 22)(=1)"* '+

+m - [3ga(y) — 11ga-1(y) + 6ga—2(y) + (=8 + 12y)ta—2(y) — 12ta_3(y) + 7(=1)"*?]

= —(14+2)ga2—2)+ (2 —2)ga—1(2 — ) + (—1 + 2)ga_2(2 — z) + (1 — 2z)(—1)*F '+

+m-[3ga(2 —2) —11g4-1(2 — x) + 6g4—2(2 — z) + 4(4 — 32)tq—2(2 — x)—

—12tq_3(2 — 2) + 7(=1)*+?]

=(2-2)94(2 - %) = 394(2 - 2) + 2 — )ga—1(2 — @) — (2 — 2)ga—2(2 — x)+

+ga—22—2) + (=3+22—2)) (- +m - [3g4(2 — 2) — 11ga—1(2 — ) +

+ 6ga—2(2 — ) + (-8 +12(2 — 2))tq_2(2 — z) — 12t4_3(2 — x) + 7(-1)**?] | for d >3

O
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11. APPENDIX E: SUBSPACES CONVERGENCE

Consider R™ endowed with the standard scalar product and the corresponding

norm || z ||= (321, | zi [2)2. The norm of an n x n matrix id defined accordingly:
|| Az ||
H A ||: MaXzeRn\ {0} || - H

Now we introduce a concept that serves as a measure of distance between subspaces
(see [10]).

Definition 11.1. The gap between subspaces £ and .# in R™ is defined as

0, M) =|| Py — P ||
where Py and P 4 are the orthogonal projectors on £ and .#, respectively.

It is easy from the definition to prove that (%, #) is a metric. Note that
0L, #)<1.

In the following paragraphs we denote by S« the unit sphere in a subspace .Z C R™.
And the distance from z € R™ to a set Z C R™ is defined as usual by

Z) = inf -
d(w.2) = i || =t
Theorem 11.1. Let A, L be subspaces in R™. Then

0L, %) = mal‘{ sup d(z,£), sup d(m,%)}
rESqy rESy
If exactly one of the subspaces £ and A is the zero subspace, then the right hand
side is interpreted as 1; if &£ = .M = 0 then the right hand side is interpreted as 0.

Proposition 11.1. Suppose that the sequences of vectors {v¥}ren, -+, {vE}ren
and wy, -+ ,wy, are such that:
(@), --- vk s a linearly independent system Vk €N and
[of I=---=lvsll=1
(ii)wy, - ,w, s a linearly independent system and
[wyll=- =l wn[=1
(41 ) vk Wy, vk = Wn

Let VP and W be the subspaces defined by VF =< oFf ... oF > W =<
Wi, e, Wn >
Then

H(VE W) —— 0

k—o0

Proof. Observe that

O(VE W) max{ sup d(z, Sw), sup d(z,svk)}

TES K zESw

Choose = € Sy » and T € Sy with:

x:al-v’f—l—---—i—an-vﬁ

j:a1w1++anwn
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Then:
(40) { d(z, Sw) < d(z,2) <[ ar(vf —wi) + -+ an(v; —wn) ||
k k
<o [[[o7 —wi [[ +---+ | an ||| vy —wa ||
Observing that || vf — w; ||? 0,---, || v —w, || =0 we perceive it suffice to prove
k

that aq -+, ay, are limited. And we have the hypotheses that

Jar-of+ o a0k =1

Using these fact and(33) will be easy to prove that d(z,Sw) — 0 and also that
sup d(z,Sw) — 0.

€Sk
Now we prove the convergence using just the definition of §(V* W).
Let wy,--- ,w, be a base of W and w11, -, Wpim a base of < wy,--- ,w, >+
‘We know that

v} — wy | of —wy |[—0

<~

vy — wy | vf —w, =0
There exist some scalars )\fj, k=1,2---, 1<i<n, ,1<j<n+msuch
that:

U]f = )‘Iflwl +- 4+ Alfnwn + )‘]fn+1wn+1 + -+ >‘]1€n+mwn+m

(41) v = A wn e AW A Wt o A Wn g

wn-‘rl:O'wl+"'+0'wn+1'wn+1+"'+0'wn+m

Wppm =0-w1++-+0-wy, +0-wpp1+--+ 1wy,
Observe that:

| AR w4+ (A = Dwi + - + A wn + Ay Wnat + - + Ay Wngm [|=

= ¢k — wi 0
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So we deduce that:

P
k k
Aiic1 — 0
PLALA]
k k
Aiig1 — 0
LAY
k k
Ainy1 — 0
k k
/\in—i-m —0
Thus
Ay Meo 0 1 0 0 0
A\E Ak 0| = |0 10 0
N A o o 0 1 o =1
In+1 nn+1
Moim A im0 1 0 0 0 1
= The system (34) is linearly independent for k big.
= The system vf,--- 0¥ w41, , Wpym is linearly independent for k big.
Let us apply the Gram-Smidt process to the systems of vectors:
G-S o _
{wh Wy W1, ot 7wn+m} — {wla o Why Wn1, t 0 awn-i-m} orthonormal
{vf, e ,vﬁ,wn_ﬂ, C  Whgm b &8, {ﬁf, e ,ﬁfwu’)ﬁﬂ, . ,wﬁ+m} orthonormal
Observation(1): As vf LA wy, 0k LA w,, and the Gram-Smidt process is contin-

uous we obtain that:
_ .k _ _ ok _ _ k _ _ k
| of =y |0, | Oh—wn |0, || @ 1 —Wnsr |0, || W =W | =0

Observation (2):

Wi, Wy > =< Wi, , Wy >=
S W =<wy, -, wp, >T=< w1, -+, Wy >
=< Wpy1, s Wpim >
<ob o oF s =< b 0 >
= (VHL =<k oo oF st=cph o pF St

__ =k —k
=< Wpy1: " s Whym >
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Let now v be an unitary vector || v ||= 1 such that:

(42)
_ L k=k k =k k —k k —k
=T +F T,V + Ty 1Whyq +F Ly amWnrm

{ V=T1W1 + -+ TpWy + xn+1wn+l + -+ mn+mwn+m -
Then by the orthonormality of the involved systems we have that:

laf Pt ag P+ ab g P+t 2, P=

=z P+ A | an P A T P4+ [ @ =l 0 [P=1

And from Cauchy-Schwartz’s inequality:

|af |+l |zl |+t 2h i, <

(43) <V fl @k P ok 2 ek Pt 2k, 2
=vn+m
Let now the norm ||| - ||| be defined by
[ o1 -1+ + Qngm - W [||[= max{] a1 [, | angm [}

Then by the equivalence of norms in spaces of finite dimension we have that there
exists a constant A such that:

(44) [ollzAllvll Yo

Let for each k, be ¢, defined by

er = max{|| of — @y ||, | o =@ ||, | g —Dnsr [y || @ — D (1}
Then by Observation (2) we obtain that:

(45) e 50

Now from (35) we deduce that

[ (0F = w1) - o (@5 — Brg)]+
+ (@} — @)+ (@ — Tnkm) O] =
= (2ho¥ — abwy 4 2hoy — 2@ + -+
+ (T Oy = T Bm + Ty O — T Om) =
—z1 W) + A (O — T W) =V =0 =0
= (@ = z1)w1 + -+ (@ — T Ongem =
| 23 (0F = @1) + -+ T (T, — D) [| <
xlf il @If —wy || 4+ xfm—i—m i w5+m = Wnm IS
<(laf |+ 4 [y ) e <

<vVn+m-eg
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And from(37) we have
Amax{|z¥ —xy |, | 2F L~ mpi |} =
=A|] (x]f — )0+ F ($Z+m = Tpgem)Wngm [||<

<l (af —z)@r +--- + (w']rier = Tngm ) Wntm ||

47
(47) (g)AmaX{lxlf_xl"""|$§z+m_$n+m|}§\/n—|—7m-ek
= max{| 2} — a1 |, .| 2k, — xn+m|}§@.6k
So
| Pyi(v) = P (v) || = (250F + - + akok) = (mrwn + - + zown) ||=
=|| (fvlf@]f - $Ifﬂ71 + x’fﬂjl —xyw1) + -+
+ (2hok — 2bw, + 2k w, — 2,w,) ||<

|af [ of = ||+ [ |l o = wn [1)+

<

+(laf =y [ ||+t fag =2 [ 0 ) <
<ot |+ lap ) et

+( et =zl o |+ 2y =z [l o []) <
<t |+t lap |+l appy |+t [ ahm ) et
+(lat —an @ |+ [y —an || @ |]) <

(36)

< Vntmeep+ (| af =@y [l oy || 4o+ Loy =@ [ @ ) <

n+m _ _
< viEm e+ Y oy 4t ) =

1 .
:\/n—km(l—l-Z(H w |+ +|wn ) e ¥V v with [ov]|=1
=| Pyr — Py || 50

= 0(Pyr, Py) 50

O
Proposition 11.2. Let A, , g with | Ag |<| Ag—1 |[< -+ <| A1 | be the eigen-
values of a pinching matriz M and Ui, , vq the corresponding eigenvectors with
[vill=-=lval=1
And let uq,- - , Uy be a system of linearly independent of vectors. Then there exists
some (ma,- -+ ,my) such that

OM" (W), < Uy, Uy, >) — 0
where W =< ﬂl7~-~ 751@ >

Given w = B0 + -+ + B0 4 let us define d(w) by d(w) < min{i : B¢ # 0},
that is d(w) is the index corresponding to the eigenvalue with greater modular
value such that w have a non zero component in the direction of the eigenvector
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corresponding when it is expressed in the base U1, -, vq. Then when we apply
the potences method to w, that is when we construct the sequence Wy, = %
n w
results w = Uy
Let us suppose that:
51:0&'?14—“'—!—0&?'?(1
Up=0p v+ +al-vy, 1<k<d
Applying the Gauss process to the matrix
O[% e Cll
1
O[k . Oék
we get a matrix in the form
0 0 d;nl Um,y d;rm EWQ 6/17””c ’ zmk alli _)d
0 0 0 a5+ Um, A5 Vo, ad vy
0 0 0 0 A Vo al-va

Remember that maybe it was necessary to permute the rows sometimes during the
Gauss process of elimination to get these final distribution of zeroes. Then the
vectors:

g —

— —m ~d
Ul:all'vml—i‘"'—FOﬁ'Ud
- — —d —
uQ:az 'Um,2+"'+a2'vd

— 4 —

.vmk+...+ak.fvd

M™(ay) —

— = T Um,

| M (uy) ||
M" (i -

ME) 3,

(| M () ||

So using Proposition 11.1 we obtain :
0(< Mn(l_:)l)a aMn(ﬂTl;) >, < Uml?"' 7E)mk >) —0

that is
O(M™ (W), < Upnyy e s Uy >) — 0
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12. ApPPENDIX F: WE CAN APPLY THE TWISTING LEMMA

Now we prove rigorously Proposition 6.2.

Proof. Take n = d+1. The eigenspaces of M are unidimensional and if (v1,--- ,vy,)
is a non trivial eigenvalue associated to A there exists one index k such that vy # 0.
Then there exists one and only one vector y = (y1, -, Yk—1, 1, Yk+1,* - »Yn) such
that:
My =My

Which is equivalent to the following system of equations:

(mi1 — ANyr +magya + -+ Mg 1Ye—1 + Mg - L+ Mmig1¥Yerr + -+ Minyn =0

ma1y1 + (Maz — N)yz2 + -+ + Mok 1yk—1 + Mag - 1+ Mapp1Yer1 + -+ mapyn =0

Mp—11y1 + -+ (M—1k—1 — N)Yr—1 + Mp—1k - L + Mp—1p41Yt1 + -+ Mi—1nYn =0
Mgy + -+ Mik—1Yk—1 + (Mike — A) - 1+ Mikr1Ykt1 + - + MpnYn =0

Mp+11Y1 + -+ Mip1kb—1Yb—1 + Mit1k - L+ (Mpr1p+1 — N Yk+1 + - + Mig1nYn =0

Mp1Y1 + Mp2Y2 + -+ Mpr_1Yp—1 + My - 1+ Mpk+1Yk+1 + - + (mnn - /\)yn =0

Therefore the following system have one and only one solution ¥ = (Y1, , Yk—1,Yk+1," " > Yn):
(48) Ay =
where
m21 (m22 - )\) Mmag—1 mag+1 Man
Mg—11  Mg—12 .- (Mp_1k—1 — ) Mg 1k+1 Mg—1n
A= | mp Mi2 e Mkk—1 Mkk+1 .. Mkn
Mg11  Mpgy12 - M4 1k—1 (Mig1ks1 —A) ... Mg41n
L mnp1 mnp2 Mnpk—1 Mnk+1 (mnn )\)
—Mag
—Mg—1k
b= —(mkk — /\)
—Mk+1k
—Mnpk

Now observe that DetA # 0 because if DetA = 0 we can take a non trivial solution
xo of the homogeneous system Axzg = 0, and then the vector z = y + z¢ satisfy:

Az=Ay+ Axg=Ay=1>

and z is a solution of (28) different from y which is a contradiction.
As DetA # 0 we can use Cramer’s rule for obtaining the unique solution y of (28)
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which is then given by the following formulae:

Y1 =
—Mmag (m22 - )\) mak—1 mag41 man
—Mk_1k Mig—12 - (Mp—1k—1 — A) Mk 1k+1 . Mk—1n
—(mgr — A) M2 . Mik—1 Mikt1 . Min
—Mpg41k Mit12 - Mi41k—1 (Migike1 —A) ... Mg41n
_ —Mnk mnp2 Mpk—1 Mpk+1 (mnn >\) o
DetA
(m22 - )\) mag—1 mag mak+41 man
me—12 ... (Mp_1p—1-2)  Mr_1k Mk 1k41 cee o Mp_1n
M2 . Mik—1 (mar — A) Mik41 . Min
Mpr12 - M4 1k—1 Mtk (Migieer —A) ... Mi+1n
_ ( 1);@,1 mn2 Mnk—1 Mnk Mnk+1 (mnn )\)
DetA
Y2 =
ma1 —Mayg ma3 Mak—1 Mag+1 Man
Mg_11 —Mg—1k  Mk—13 ... (Mg_1p—1 —A) Mg 1k+1 .. Mk_1n
mepr —(mee —A) mgs ... Mpk—1 Mik+1 . M
MEe411 —Mk41k mg413 ... ME41k—1 (mk+1k+1 - )\) cee Mk41n
o mni1 —Mnk mn3 Mpk—1 Mpk+1 (mnn )\) o
DetA
may ma3 Mak—1 Mok M2k+1 Manp
mg—11 Mg—-13 ... (mk—lk—l—)\) mrg—1k Meg—1k+1 ce mg_—in
M1 mEz ... Mpk—1 (Mpgr — A) Mpkt1 e Min
Mmg4+11 Mg413 - .- Me4+1k—1 MEe41k (mk+1k+1 - )\) cee MEk4+1n
_ ( 1)k—2 mnp1 mn3 Mnpk—1 Mnk Mpk+1 (mnn A)
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Yk—1 =
ma1 Mok —2 —Mog Mok41 Manp
mrg—11 MEg—1k—2 —ME—1k MEg—1k+1 Mrg—1n
M1 Mik—2  —(Mir — ) Mk+1 Min
ME411 Mgy 1k—2 —MEt1k (Mit1k+1 — A) ME+1n
o mn1 Mnpk—2 —Mnk Mnk+1 (mnn )\) o
DetA
ma1 M2k—2 Mok M2k41 Man
mrg—11 MEg—1k—2 mMi—1k ME—1k+1 Mkg—1n
M1 Mgk—2  (Mrk — A) Mkk+1 Min
ME411 Mitik—2 Mtk (Mgt1k+1 — A) ME+t1n
o (_1)1 mnp1 Mnpk—2 Mnk Mnpk+1 (mnn - )\)
DetA
Yk4+1 =
ma1 mag—1 —mag mak+2 maon
ME—11 (Mg—1k—1 — A) —Mg—1k  Mk—1k+2 MEk—1n
mp1 Mik—1 —(Mge — ) Mpkgo Mkn
Me+11 Mik+1k—1 —Mg+1k ME+1k+2 Mik+1n
| M Mpk—1 —Mnk Mnpk+2 (mnn - >\) _
DetA
mai1 mag—1 mag mak42 man
ME—11 (Mi—1k—1—A) Mi—1k  Mk—1kt2 Mi—1n
M1 Mik—1 (Mrk —A)  Mpgryo Min
ME+11 Mi+1k—1 Mk+1k Mg+1k+2 Mk+1n
mMn1 Mpk—1 Mnk Mpk+2 (mnn - /\)
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Y42 =
mai mak41 —Mmag mak43 Man
ME_11 Mk—1k+1 —Mg_1k  Mgk_1k+3 ME—1n
M1 Mk+1 —(mrk — ) Mprgs Mn
ME411 (Mit1k+1 — A) —Mgg1k  Mk41k+3 Mk41n
o mMni1 Mpk+1 —Mnk Mpk+3 (mnn )\) .
DetA
Moy Mok—1 Mok, Mak+1 Mok43 Man
Mg—11 (Mg—1k—1—A)  Mp_1k Mh—1k+1 Mg—1k+3 Mg—1n
M1 Mgk—1 (Mg — A) Mk+1 Mk+3 Mkn
ME411 M 1k—1 M1k (MEt1k+1 — A)  Mitik+3 Mp41n
o ( 1)2 mni1 Mnpk—1 Mnk Mpk+1 Mpk+3 (mnn >\)
DetA
Yn =
mai mak—1 mag+41 maon—1 —Mmag
ME—11 (Mg—1k—1 — A) ME—1k+1 Me—1n—1  —Mk—1k
M1 Mik—1 Mk+1 Min—1  — (Mg — A)
Mpg411 Mgt 1k—1 (Migikr1 — A) Mitin—1  —Mgtik
o mMn1 Mpk—1 Mpk+1 Mpn—1 —Mnk .
DetA
ma1 mak—1 mag mag+41 man—1
ME—11 (Mg—1k—1—A)  Mp_1k ME—1k+1 Mk—1n—1
M1 Mik—1 (M — A) Mk+1 Mgn—1
Mg4+11 Mg41k—1 Mig1k (Migiks1 — A) Mg4+1n—1
_ (71)717]@ mnp1 Mnpk—1 Mnk Mpk+1 Mpn—1
DetA
k1
Let us define = (21, ,2,) = (=1)*"DetA - (y1, - ,¥rk—1, 1, Ykt " »Yn)-
trivial

Being y a solution of Ay = b and DetA # 0 we deduce that z is a non
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solution of the system:
mo1Z1 + (Ma2 — AN)@a + -+ + Mop—1Tp—1 + MoapZ + -+ - + MapZy, =0
Mg—1121 + -+ (Mi—1k—1 — AN)Th—1 + Mp—16Tk + - + Mp—10Tn =
(49) mE121 + Mpaxe + -+ (Mgk — N Tk + Mpkr1Tk11 + - + MinTp =
Mp41121 + - - + Mpp16Zr + (Mep1p41 — A)Zr1 + -+ Mipinln =
Mp1T1 + Mp2Z2 + - + Mpk—1Th—1 + MpkT + -+ (Mpn — A)zp, =0
Define now the polynomials pq,--- ,p, by:
pi(t) =
Mmoo — t Mok 1 Mok Mogt1 Moy
ME—_12 (Mg—1k—1 —t)  Mp_1k Mp—1k+1 Mp—1n
2
= (—1) MEo MEk—1 (mkk — t) MEk+1 Min
M 12 Mg 1k—1 MEt1k (Mg41k41 — t) Mk tin
mnp2 Mpk—1 Mnk Mpk+1 (mnn t)
p2(t) =
ma1 ma3 Mok—1 Mok M2k+1 Manp
Mp_11 Mk—13 (Mg—1k—1 —1t)  Mi—_1k My 1k+1 Mk_1n
3
= (-1)°| mp1 mp3 Mgk—1 (mgr — 1) Mikt1 Mn,
ME4+11 ME+13 ME41k—1 M1k (Mg41k+1 — t) Mg t1n
mMn1 mnp3 Mpk—1 Mnk Mpk+1 (mnn t)
pn(t) =
ma1  (may —1t) Mok —1 Moy Mok 1 Map—1
Mp_11  Mk_12 (Mg—1k—1—1t)  Mp_1k Mg _1k+1 Mg_1n—1
1
= (=" my M2 Mik—1 (mgr —t) Mk+1 Mpn—1
mrk+11 ME412 Me+1k—1 Me+i1k (mk+1k+1 - t) Mk+in—1
mni mp2 Mpk—1 Mnk Mpk+1 (mnn - t)

Let M; be the (n — 1) x (n — 1) matrix obtained by removing the first row from the
matrix M — t - Id. Observe that p;(t),1 < i < n is the determinant of the matrix
obtained by dropping the i-th column from M,. Obviously the polynomials defined
in this way have degree least than or equal to n — 1 and:

(50) z=(p1(A), -+ ,pa(N)}
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As ) is an eigenvalue of M we have that:

Det(M—)\Id) =0
& (mi1 = A) - p1(A) +mag - pa(A) + -+ +miy - pa(A) =0
& {(m11—/\)-x1+m12-x2+~-~+m1n~xn:0}

From this and from 49 we deduce that z is a non trivial solution of

Mzx = Az
given by the expression 50 where the polynomials py,--- , p, have degree least than
or equal to n — 1 and by definition its coefficients depend only on the last n — 1
rows of M. 0
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