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Abstract

There is a renewed interest in using combustion for medium viscosity oil recovery. In-situ

combustion involves the injection of air, pure oxygen or air enriched with oxygen or nitrogen

to enable the combustion of oil and other consecutive reactions within the reservoir formation

leading to the release of heat. Heat is conducted ahead of the combustion front, reduces

the oil viscosity and leads to in situ distillation (upgrading). Carbon dioxide created during

combustion can also assist the recovery by increasing pressure and by mixing with the oil, thus

reducing its viscosity and enhancing flow.

To perform computations with the model we need data on the combustion process, which

is described in terms of chemical and transport aspects. Data on the combustion process must

be converted to a form that can be used in the modeling. We describe in detail how this can

be done.

In this work one dimensional gas-solid combustion is studied with the combustion rate

described by the first order mass action law combined with the Arrhenius’ law. We consider

a thermally insulated cylindrical porous rock containing solid fuel. Standard simplifications

are made in order to formulate the physical model, for example, the gas thermal capacity is

considered small.

The reactive flow of air in porous rock containing solid fuel is governed by a system of

balance laws for gas mass, oxygen mass and enthalpy. We are interested in examining the

Riemann solutions for the parabolic partial differential equations governing the system, which

support a combustion traveling wave. The Riemann problem for adiabatic forward combustion

between gas and solid fuel is solved and the combustion wave profile is obtained.

In order to solve the Riemann problem we use an asymptotic expansion to construct a

first order approximation of the traveling wave for a given combustion wave speed. Thus we

obtain the internal structure of the combustion traveling wave. The results are validated with

numerical simulations using a time-step adaptive, hybrid finite difference scheme.

Key words: porous media, combustion wave, traveling wave, singular perturbation, finite dif-

ference scheme.
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Resumo

Há um renovado interesse na utilização da técnica de combustão para recuperação de óleo

de viscosidade média. A combustão in-situ consiste na injeção de ar, oxigênio puro, ou ar

enriquecido com oxigênio ou nitrogênio no reservatório. Assim, gera-se combustão e outras

reações qúımicas, além da libertação de calor. O calor é transportado para a frente da zona

de combustão, reduzindo a viscosidade do óleo, produzindo destilação de componentes leves

do óleo. O dióxido de carbono criado durante a combustão ajuda na recuperação através do

aumento da pressão no reservatório e, ao dissolver-se no óleo, reduzindo sua viscosidade.

Para trabalhar com o modelo precisamos de dados sobre o processo de combustão descrito

em termos qúımicos. É necessário converter estes dados para uma forma que permita seu uso

na modelagem do processo. Neste texto descrevemos detalhadamente como isso é feito.

Estudamos um modelo de combustão gás-sólido sob escoamento unidimensional, com a

taxa de reação descrita pela lei da ação das massas de primeira ordem, combinada com a

lei de Arrhenius. Consideramos um cilindro longo de rocha porosa contendo o combust́ıvel

sólido; o cilindro é isolado termicamente pelos lados. Para formular o modelo f́ısico, outras

simplificações comuns são feitas, por exemplo a capacidade térmica do gás é desconsiderada

frente à capacidade térmica da rocha porosa.

O fluxo no meio poroso é governado por um sistema de leis de balanço relativas à massa de

combust́ıvel, massa de gás, massa de oxigênio e entalpia. Queremos estudar soluções de Rie-

mann para as equações diferenciais parciais que governam o sistema. O problema de Riemann

para o problema de combustão gás-sólido foi resolvido neste trabalho e o perfil da onda viajante

de combustão foi obtido.

Para resolver o problema Riemann, usamos uma expansão assintótica até a primeira ordem

para obter uma aproximação da onda viajante. Assim, obtivemos a estrutura interna da onda de

combustão. Os resultados foram validados através da simulação numérica, usando um método

de diferenças finitas h́ıbrido adequado às peculiaridades do sistema de equações diferencias

parciais.

Palavras chave: Meios porosos, ondas de combustão, ondas viajantes, perturbação singular,

esquemas de diferenças finitas
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Chapter 1

Introduction

Frequent high oil prices have renewed interest in heavy oil recovery techniques such as in situ

combustion (ISC). This technique involves the injection of pure oxygen or air, or air enriched

with oxygen or nitrogen to enable combustion of oil and other consecutive reactions within the

reservoir formation leading to the release of heat. Heat is conducted ahead of the combustion

front, reduces the oil viscosity and leads to in situ distillation (upgrading). Carbon dioxide

created during combustion can also assist the recovery by increasing pressure and by mixing

with the oil reducing its viscosity and enhancing flow, see [9, 37].

Another thermal recovery technique is steam injection. It is of interest to compare the

advantages and disadvantages of these two thermal recovery techniques. Steam is formed by

passing treated water through a boiler system which comprises a considerable energy cost.

ISC avoids these heat-related costs, but requires compressors for the injected air. ISC has

other benefits relative to steam injection. For example, steam generation produces CO2 at the

surface, representing a significant environmental impact, and heat is lost during its transport

to the formation. ISC produces CO2 downhole, which will be partially sequestered in the

formation, see [37].

The primary limitation of ISC is that the combustion front is hard to control. This difficulty

supports the research interest in this subject in different areas such as Engineering, Physics,

Computer Science and Mathematics.

We summarize the literature on chemical processes occurring during ISC. We use the

schematic division of the ISC processes shown in Figure 1.1, see [24]. Following upstream

the flow (right to left or from the production to the injection well) we can separate the light

hydrocarbons (HC) zone, the steam zone, the cracking zone, the coke formation zone and the

1



coke combustion zone.

Figure 1.1: Schematic representation of ISC process.

According to [1] there are three overlapping processes caused by temperature elevation due

to heat transfer downstream the reaction zone. The first process is distillation (evaporation) of

light oil components, which occurs at lower temperatures. Next, we separate the “visbreaking”

stage that occurs at mild temperatures and breaks the initial oil into low volatile components

and a “visbroken” oil (with smaller viscosity and specific gravity). Finally, the severe cracking

(coking) reaction transforms the visbroken oil into coke and some lighter components.

Condensation of all light oil that has been produced elsewhere occurs inside the light hydro-

carbon zone. In some cases, oxygen can break through the coke zone and come into contact with

the light hydrocarbons where the reaction is described by the “Low Temperature Oxidation”

(LTO) mechanism, see [27].

In addition to initial water in the reservoir, which evaporates due to high temperature,

steam is formed from the combustion products. This water condenses inside the steam zone

downstream of the combustion process. Heat released during condensation elevates the reservoir

temperature and increases the evaporation of light oil components.

Continuing upstream we find the cracking zone, where visbreaking and coking stages [1]

occur and the coke zone that has only formation of coke, which is consumed during the com-

bustion reaction. The processes occurring inside the cracking zone influence the distribution of

coke inside the reservoir. This distribution is related to surface tensions between rock, viscous

oil and gas coexisting before the combustion. Because of the high temperature, inside the coke

and cracking zones there is no significant quantity of water and light components of oil.
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Inside the combustion zone the residual coke reacts with the injected oxygen. The micro-

porous structure of coke and related parameters, such as reactive area of coke particles and

transport of oxygen into the pores, are important to describe this process, see [8] and [35].

There is abundant literature, for example [22, 44], focusing on the reaction kinematics for

general materials containing carbon. However, the reaction rates for general carbon containing

materials can vary by up to some orders of magnitude. The situation for petroleum coke is

more clear. We explain in detail the reaction happening inside this zone in Chapter 8. The

combustion zone is typically tens of feet wide and the temperature of the combustion front is

usually around 430-540oC.

In this work, we model ISC in a 1D configuration. There are reasons to do so, besides

simplicity. One of them is that due to gravitation the oxygen tends to occupy the top part of

the reservoir, thus we can consider a thin layer containing most of the oxygen. To complete the

model we can take into account heat losses to other layers of the porous media. These losses

have no significant effect on the combustion zone because it is thin and the reaction is fast, but

they will influence the thermal wave that trails the combustion wave.

In this text we study only the processes happening inside the combustion zone. We assume

that the porous medium is filled with petroleum coke and the only chemical reaction occurring

is the coke oxidation (combustion).

The combustion wave at the reservoir side can be controlled by the lack of oxygen or by low

temperature. Most of the literature studies the phenomenon controlled by low temperature,

which is more common in practice. This case is not so amenable to analysis as oxygen controlled

case. The techniques used to study the combustion wave controlled by low temperature are

very different from presented here. For example, in [11] an approximate solution was obtained,

it is a slowly varying transient wave. In this text we address the fuel and oxygen controlled

case.

For the model described in Chapter 2 there are two possible types of motion for the com-

bustion wave. In co-flow combustion the ignition takes place at the injection end of the cylinder

and propagates in the same direction as the injected gas. The analysis of this situation is made

in Chapter 4. From the Engineering point of view this method is more practical, see Figure 1.1.

The second possibility is counter-flow combustion, for which the ignition occurs on the

production end of the cylinder and the combustion wave moves in the opposite direction to the

injected gas. The advantage of this technique is temperature increase near the production well,

where it can increase the recovery. We do not study this technique here, however one can find

3



details in [21, 40].

This work is organized as follows. In Chapter 2 we introduce two physical models describing

the ISC process. First we present the physical model in terms of mass balances [2] and explain

its limitations. Next, we formalize a model in terms of molar balance, which is better in many

respects. The equations for both models have the same dimensionless form.

In Chapter 3 we apply the geometrical singular perturbation method developed in [31] in

order to obtain an approximation of the heteroclinic orbit joining two equilibria of certain

ordinary differential equations that describe the profile of the combustion wave. The case of

our interest corresponds to a system of ODEs where one of the flux functions is much smaller

than the remaining ones.

In Chapter 4 we review briefly the literature on combustion waves in porous media. The

Riemann problem for the system describing the physical model with reaction rate given by

the Arrhenius’ law is formulated. Next, we use the singular perturbation method developed in

Chapter 3 in order to obtain the combustion wave profile in the form of an asymptotic series

expansion. We obtain the zero-order approximation and validate it by analyzing the first order

correction. In this chapter we present strong evidence of the existence of such traveling wave

solution.

In Chapter 5 we give a physical interpretation to the zero-order approximation obtained

in Chapter 4. We present a simplification of the physical model [2]. In this simplification, all

diffusive and conductive terms are neglected. We obtain the exact traveling wave solution for

the combustion wave of this non-diffusive system. It turns out that the combustion wave profile

of such system coincides with the zero-order approximation of the diffusive model obtained in

Chapter 4.

In Chapter 6 we show that the the classical Crank-Nicolson scheme is not indicated to

simulate the physical model [2]. We develop a hybrid finite difference scheme to circumvent this

difficulty and simulate this system numerically. The numerical results confirm the combustion

wave profile obtained in Chapter 4 by means of the singular perturbation technique.

In Chapter 7 we introduce a simpler model for the ISC process. This model possesses some

properties of the physical model [2]. For example, the wave sequence in the Riemann solution

possesses three contact waves for both models. However, it is more amenable to analysis and

it can be simulated using the classical Crank-Nicolson finite difference scheme. We obtain

the combustion traveling wave profile for this simpler model using the singular perturbation

technique and validate it by numerical simulations. Next we present some heuristic calculations

4



for this simpler model and discuss the stability of the combustion wave obtained using the

singular perturbation method.

Finally, in Chapter 8 one can find an introduction to chemistry of coke combustion with a

brief literature review and a description of the reaction kinetics.
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Chapter 2

Physical formulation

In this chapter we formulate physical models used to study combustion fronts in in-situ com-

bustion and compare them to models in the literature. First of all we restrict our efforts to one

dimensional models. Some works formulate mathematical theory on the interaction between

the combustion zone and other zones as represented in Figure 1.1. For example, in [11] the

interaction of combustion and steam zone is discussed. However this work ignores the existence

of the cracking zone and the chemical processes that occur. In [12] the interaction of combus-

tion and cracking zones is considered. Here we will discuss only the behavior of the combustion

zone.

Let us introduce certain physical hypotheses common to all models discussed in this text.

We consider a thin cylindrical tube filled with porous medium containing coke, schematically

represented on Figure 2.1. As we are interested in the combustion zone, it is assumed that there

is no liquid phase in the porous medium and that the only chemical reaction is the oxidation

of coke.

In formulating the conservation equations we make the following assumptions: the pore

space and the solid matrix are in thermal equilibrium so that a one-temperature model is used

for the energy balance; heat transfer by radiation, energy source terms due to pressure increase,

and work from surface and body forces are all negligible; the ideal gas law is the equation of state

for the gas phase; thermodynamic and transport properties, such as conductivity, diffusivity,

heat capacity of the solid, heat of reaction, etc., all remain constant. We also neglect heat

loss to the surrounding rock formation. We assume that gas heat capacity is negligible with

respect to the rock heat capacity. The heat loss will be taken to be zero as we study only the

adiabatic case. We assume that pressure changes within any wave are negligible compared to
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Figure 2.1: Schematic representation of the one-dimensional model for ISC.

the pressure drop across the system, so that in the ideal gas law and in other physical properties

the pressure can be approximated by a constant. Next we introduce and discuss some models

used in this work.

2.1 Mathematical model

The original model, which is formulated in terms of mass conservation, can be found in [2].

Here we present the simplified version of this model used in [46]. We assume that air is injected

at the leftmost part of a porous rock cylinder containing solid fuel, so that all wave propagation

is one dimensional. Balance equations are written for the total energy, the total gas mass, the

oxygen mass and the fuel mass. For the latter, we define the fuel density per total volume

ρf and introduce the extent of conversion depth, η(x̃, t̃ ) = 1 − ρf (x̃, t̃)/ρo
f (ρo

f is the initial

fuel concentration), such that η = 0 corresponds to complete availability of fuel (denoted by

superscript o) and η = 1 to the complete lack of fuel (the latter may occur because the fuel was

never present or because it was completely consumed). The primary dependent variables are

the temperature, T̃ (x̃, t̃ ), the oxygen concentration in terms of mass fraction, Ỹ (x̃, t̃ ) and the

fuel conversion depth η(x̃, t̃ ). The gas density ρg(T̃ , p̃ ) is expressed by the ideal gas equation

of state in terms of temperature, gas composition and total gas pressure p̃(x̃, t̃ ).
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The dimensional form (indicated by the superscript tilde) of the energy balance, the oxygen

mass balance, the gaseous phase mass balance and the combustion kinetics equations are:

(1− φ)
∂(csρsT̃ )

∂t̃
+

∂(cgρgṽT̃ )

∂x̃
= λ̃

∂2T̃

∂x̃2
+ Qρo

fW, (2.1)

φ
∂(ρgỸ )

∂t̃
+

∂(ρgṽỸ )

∂x̃
= DM

∂

∂x̃

(
ρg

∂Ỹ

∂x̃

)
− µ̃ρo

fW, (2.2)

φ
∂(ρg)

∂t̃
+

∂ (ρgṽ)

∂x̃
= µ̃gρ

o
fW, (2.3)

∂η

∂t̃
= W, (2.4)

where W is the reaction rate. The four equations (2.1)-(2.4) correspond to the three primary

unknowns T̃ , Ỹ , η and the secondary unknown ṽ, which is the volumetric flow rate of the

gas phase. In the above, cg, cs denote the average specific heat capacity of gas or solid at

constant pressure, ρg, ρs are the volumetric densities of gas or solid, λ̃ is the effective thermal

conductivity, Q is the heat released due to reaction (per unit mass of solid). Other constants

are explained in Table 2.1. Changes in the porosity φ are considered to be negligible so that φ

is constant. DM is an effective diffusion coefficient in the gas phase (DM = φD, where D is the

molecular diffusion coefficient), while µ̃ = γ̃Mo/Mf and µ̃gp = γ̃gpMgp/Mf are mass-weighted

stoichiometric coefficients for oxygen and for combustion gaseous products, respectively. Mo,

Mf and Mgp are the molecular weight of oxygen, fuel and gaseous products, respectively. The

net gas mass production is determined from µ̃g = µ̃gp − µ̃, so that positive or negative sign

for µ̃g correspond to net gaseous phase mass production or consumption, respectively. We will

assume µ̃g > 0. For the rate of reaction, we use the first order law of mass action and Arrhenius’

Law:

W = kce
−E/RT̃ Ỹ (1− η), (2.5)

with activation energy E and pre-exponential factor kc given by:

kc = k0
asp0

RT̃0

, (2.6)

where as is the specific surface area of the coke particles (see Table 2.1 for the typical values of

k0, as, p0, R and T̃0), more details on the Chemistry of coke combustion are found in Chapter 8.

We use the ideal gas equation of state in terms of density:

p̃Mg = ρgRT̃ , (2.7)
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Table 2.1: Typical values of dimensional parameters. Source: [2].

Physical quantity Symbol Value Unit

heat release due to reaction Q 39542 kJ/kg

activation energy E 7.35 · 104 kJ/kmole

universal gas constant R 8.314 kJ/kmole-K

pre-exponential factor2 ko 0.00224 kW-m/Pa-kmole

initial reservoir temperature T̃o 373.15 K

initial total gas pressure2 (1 atm) po 101325 Pa

inlet oxygen mass concentration Ỹ i 1.0 (kg/kg)

effective molecular diffusion coefficient DM 2.014 · 10−6 m2/s

effective thermal conductivity λ̃ 8.654 · 10−4 kW/m-K

volumetric heat capacity of the gas cgρ
i
g 1.2339 kJ/m3-K

initial fuel concentration ρo
f 19.2182 kg/m3

volumetric heat capacity of the matrix (1− φ)csρs 2.012 · 103 kJ/m3-K

mass of oxygen/unit mass of fuel µ̃ 3.018 (kg/kg)

net mass production of gas/unit mass of fuel µ̃g 1.000 (kg/kg)

molecular weight of gaseous products1 Mg 0.044 kg/mole

molecular weight of coke Mf 0.235 kg/mole

gaseous products density1 ρi
g 1.98 kg/m3

coke particles specific surface area as 1.41 · 105 m2/m3

porosity of the medium φ 0.3 m3/m3

where R is the universal gas constant, while Mg is the effective molecular weight of the gas

phase. Notice that Mg and ρg depend on the molecular weight of the gas, i.e. Mg = Mg(Y ) and

ρg = ρg(Y ) as the only reaction occurring is the oxidation of coke. In the models analyzed in

Chapters 4, 5 and 7 we neglect the effect of changes in these variables resulting from composition

changes due to the reaction, and we approximate Mg by constant so that ρg does not depend

on Y . Notice that if we replace the system (2.1)-(2.4) in terms of molar densities instead of

mass densities the equation (2.7) becomes exact. We discuss it in detail in Section 2.3. All the

dimensional constants used in this section are given in Table 2.1. In [2] the injected gas was

pure oxygen Ỹ i = 1.

1These values where taken for CO2 gas at 1 atm pressure.
2In [2] the pressure was given in [atm], the value of k0 was 227 [kW ·m/atm · kmole].
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2.2 The nondimensionalization

The nondimensionalization of the problem is performed as follows. One introduces characteristic

value for the speed v∗, from which we define the reference length1 l∗ = αs/v
∗ and time t∗ = l∗/v∗.

Following [2], we define scaled effective thermal diffusivity αs = λ̃/((1− φ)csρs) [m2/s]. These

quantities are defined in such way that the coefficient of the diffusion term in the energy

conservation equation is one. In short, the nondimensional variables are:

v =
ṽ

v∗
; θ =

T̃

T̃0

; t =
t̃

t∗
=

t̃v∗2

αs

; x =
x̃

l∗
=

x̃v∗

αs

; Y =
Ỹ

Ỹ i
; η = 1− ρf

ρ0
f

; ρ =
ρg

ρi
g

. (2.8)

where T̃0 is the prevailing reservoir temperature, Ỹ i is the injected oxygen fraction in the total

gas mass, ρ0
f is the initial fuel concentration and ρi

g is the produced gas concentration. The

variables with tilde are physical: T̃ is temperature in [K], Ỹ is oxygen fraction in the total gas

and ṽ, t̃, x̃ are the gas speed [m/s], time [s] and length [m]. Substituting (2.8) into (2.1)-(2.4)

with some simple manipulations we obtain:

∂θ

∂t
+

cgρ
i
g

(1− φ)csρs

∂(ρvθ)

∂x
=

∂2θ

∂x2
+

Qρo
f

(1− φ)csρsT̃0

t∗W, (2.9)

φ
∂(Y ρ)

∂t
+

∂(ρvY )

∂x
=

DM t∗

(l∗)2

∂

∂x

(
ρ
∂Y

∂x

)
− µ̃ρo

f

ρi
gỸi

t∗W, (2.10)

φ
∂ρ

∂t
+

∂(ρv)

∂x
=

µ̃gρ
o
f

ρi
g

t∗W, (2.11)

∂η

∂t
= t∗W, (2.12)

Using (2.8) with (2.5) we obtain the nondimensional reaction rate Φ:

Φ = t∗W = kcỸit
∗ Y (1− η)e−(E/RT̃0)/θ. (2.13)

Finally, applying (2.8) for T and ρg in (2.7), where we approximate the pressure by a constant

(p0 = 1 [atm]), we obtain the dimensionless ideal gas equation:

ρθ =
p0Mg

Rρi
gT̃0

. (2.14)

We collect all the nondimensional constants of (2.9)-(2.14), obtaining:

a =
cgρ

i
g

(1− φ)csρs

, q =
Qρo

f

(1− φ)csρsT̃0

, Le =
(l∗)2

DM t∗
=

αs

DM

, µ =
µ̃ρo

f

ρi
gỸi

, µg =
µ̃gρ

o
f

ρi
g

,

b = p0Mg/(Rρi
gT̃0), γ = E/RT̃0, α = kct

∗Ỹi.

(2.15)

1Notice that the name characteristic length will be used later to denote the length of the combustion wave.
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Table 2.2: Values of dimensionless parameters given in (2.15) corresponding to Table 2.1.

Physical quantity Symbol Value

Volumetric heat capacity ratio of the filtrating gas a 6.13 · 10−4

Heat transfered to porous medium due to the reaction q 1.012

Lewis number (ratio of thermal and molecular diffusion) Le 0.21

Stoichiometric coefficient for oxygen µ 29.29

Net stoichiometric coefficient for gas production µg 9.71

Scaled ideal gas constant b 0.73

Arrhenius number (dimensionless activation energy) γ 23.69

Reaction coefficient1 α 828.15

The values of these quantities are shown in Table 2.2; they are calculated using Table 2.1.

Using (2.15) we rewrite (2.1)-(2.4) and (2.7) in nondimensional form:

∂θ

∂t
+

∂(aρvθ)

∂x
=

∂2θ

∂x2
+ qΦ, (2.16)

φ
∂(Y ρ)

∂t
+

∂(ρvY )

∂x
=

1

Le

∂

∂x

(
ρ
∂Y

∂x

)
− µΦ, (2.17)

φ
∂ρ

∂t
+

∂(ρv)

∂x
= µgΦ, (2.18)

∂η

∂t
= Φ, (2.19)

ρθ = b. (2.20)

The equations (2.16)-(2.18) were obtained in [2] exactly in this form. Equation (2.19) was

written in [2] in a similar form but equation (2.20) was written in [46] with b replaced incorrectly

by 1. The nondimensional reaction rate Φ(θ, Y, η) is:

Φ = αY (1− η)e−
γ
θ . (2.21)

The nomenclature and typical values of the nondimensional parameters given in (2.15) are

found in Table 2.2.

The basic dependent variables are the temperature, θ(x, t), the oxygen mass concentration

Y (x, t) and the fuel conversion depth η(x, t) (recall that η = 0 corresponds to complete avail-

1This reaction coefficient corresponds to injection gas speed vi = 200 m/day. In [2] injection speeds in the

range 0 < vi < 500 m/day are considered.
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ability of fuel and η = 1 to the complete lack of fuel). Eq. (2.20) allows expressing the gas

density ρ in terms of temperature. The Darcy velocity v is the volumetric flow of gas per unit

area. The physical domain of the variables (θ, Y, η, v) is given by:

θ ≥ 0, 0 ≤ Y ≤ 1, 0 ≤ η ≤ 1, v > 0. (2.22)

In order to find the time evolution of the system (2.16)-(2.21) we extract ρ from (2.20) and

substitute it into (2.16)-(2.19), obtaining:

∂θ

∂t
+ ab

∂v

∂x
=

∂2θ

∂x2
+ qΦ, (2.23)

φb
∂(Y/θ)

∂t
+ b

∂(vY/θ)

∂x
=

b

Le

∂

∂x

(
1

θ

∂Y

∂x

)
− µΦ, (2.24)

φb
∂

∂t

1

θ
+ b

∂(v/θ)

∂x
= µgΦ, (2.25)

∂η

∂t
= Φ. (2.26)

Remark 2.1 (Extra difficulty) One notices that the system (2.23)-(2.26) presents an extra

peculiarity. The variable v does not appear inside any derivative in time. It follows that when

we are solving a Cauchy problem for this system, we cannot define the value for the variable v

except at a single point for t = 0.

2.3 Improving the model

As we explained before, the equation (2.20) (as it is obtained from (2.7)) is only approximately

valid because during the chemical reaction the molar densities of different gas components vary.

When the reaction can be regarded as being C + O2 → CO2, the total number of moles in the

gas does not change during the reaction. Thus the ideal gas equation of state for the mixture

in terms of gas molar density ρm
g now is exact:

p̃ = ρm
g RT̃ . (2.27)

Notice that stoichiometric coefficients corresponding to moles of generated gas and to moles

of consumed oxygen are equal to one, thus there is no net molar generation of gas during the

reaction. We rewrite the system (2.1)-(2.4) in terms of molar densities of gas ρm
g = ρgM

−1
g and

of fuel ρm
f = ρo

fM
−1
f :

(1− φ)
∂(csρsT̃ )

∂t̃
+

∂(c̃gρ
m
g ṽT̃ )

∂x̃
= λ̃

∂2T̃

∂x̃2
+ Qρm

f MfW,

[
J

m3s

]
, (2.28)
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φ
∂(ρm

g Ỹ )

∂t̃
+

∂(ρm
g ṽỸ )

∂x̃
= DM

∂

∂x̃

(
ρm

g

∂Ỹ

∂x̃

)
− µ̂ρm

f W,

[
mole

m3s

]
, (2.29)

φ
∂ρm

g

∂t̃
+

∂(ρm
g Mgṽ)

∂x̃
= 0,

[
mole

m3s

]
, (2.30)

∂η

∂t̃
= W,

[
1

s

]
, (2.31)

where we have introduced the stoichiometric coefficient µ̂ = µ̃Mf/Mg and specific heat capacity

of gas c̃g = cgMg in terms of moles. The reaction rate is governed by the Arrhenius’ law (2.5).

One has to notice that when we used the equation (2.20) to eliminate the variable ρ from

the system (2.16)-(2.19) to obtain system (2.23)-(2.26) we introduced an error due to the fact

that the equation (2.7) in terms of mass is only an approximation of the equation of state for

mixtures of ideal gases. This error is avoided by using the exact ideal gas law in terms of molar

density (2.27).

The term c̃gρ
m
g in (2.28) is the average heat capacity of the gases in the mixture at constant

pressure. As O2 and CO2 are linear molecules they have the same number of degrees of freedom

and their molar heat capacity (at constant pressure) is practically the same. Therefore, as O2

reacts and is replaced by the same number of moles of CO2, the average molar heat capacity

of the mixture stays (practically) constant. That was not the case in (2.1) where the specific

heat of the mixture was written in terms of mass rather than in terms of moles.

As for the physical mass conservation model (2.1)-(2.5) we nondimensionalize (2.27)-(2.31)

using (2.8), obtaining the system in dimensionless form (2.16)-(2.20) with dimensionless con-

stants given by (2.15) except that µg = 0.

There is no formal differences between the approximate physical model written in terms of

mass densities or the exact model written in terms of molar densities.

2.4 Other values of dimensionless parameters

In [46] the values for dimensionless constants used were different, see Table 2.3. These values

can be obtained from the data presented in Table 2.4 instead of Table 2.1.
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Table 2.3: Values of dimensionless parameters (2.15) used in [46].

Physical quantity Symbol Value

Volumetric heat capacity ratio of the filtrating gas a 6.13 · 10−4

Heat transfered to porous medium due to the reaction q 1.0121

Lewis number (ratio of thermal and molecular diffusion) Le 0.214

Stoichiometric coefficient for oxygen µ 205.8

Net stoichiometric coefficient for gas production µg 68.19

Scaled ideal gas constant b 1.0

Arrhenius number (dimensionless activation energy) γ 23.69

Reaction coefficient α 0.027

Table 2.4: Values of dimensional parameters compatible with the values of dimensionless pa-

rameters used in [46] and given in Table 2.3.

Physical quantity Symbol Value Unit

inlet oxygen mass concentration Ỹ i 1.0 (kg/kg)

molecular weight of gaseous products Mg 0.0086 kg/mole

gaseous products density ρi
g 0.2818 kg/m3

coke particles specific surface area as 1000 m2/m3

gas injection speed vi 2950 [m/day]
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Chapter 3

Geometrical singular perturbation

3.1 Introduction

Many different works describe and use singular perturbation methods in order to study multiple

scale and stiff problems [23, 30, 31, 50]. In this chapter we follow the singular perturbation

theory presented in [31]. However, here we will apply this theory in order to obtain stable

heteroclinic orbits of the dynamical system given by the system of ODEs, which were not

studied in [31]. This chapter use slightly different notation as we describe later. Consider an

autonomous system of ODEs for x ∈ Rn and y ∈ R:





dx

dt
= f(x, y)

dy

dt
= εg(x, y),

(3.1)

where f = (f 1, . . . , fn)T and g are smooth (C1) functions of x and y, and ε is a small positive

parameter (bold indicates vectors). The parameter ε implies that the change of y is small when

compared to the change of x. Let us assume that (3.1) has two isolated equilibria named (−)

and (+):

f(x−, y−) = f(x+, y+) = 0 and g(x−, y−) = g(x+, y+) = 0. (3.2)

Let us assume the existence of an heteroclinic orbit x(t), y(t) of system (3.1), which connects

(x−, y−) at t = −∞ to (x+, y+) at t = +∞. We are interested in finding tjhis orbit. We

consider the case y− 6= y+ when the slow component y(t) undergoes a finite change. It is

convenient to introduce the slow time t̂ = εt and using the notation ẋ = dx/dt̂, one rewrites
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the system (3.1) as {
εẋ = f(x, y)

ẏ = g(x, y).
(3.3)

Geometric aspects of such singularly perturbed equation were studied in [23, 31]. Quantitative

study in the case of three equations was done in [18, 19].

3.2 Quasi-stationary limit

Let us denote by (x0(t̂), y0(t̂)) the quasi-stationary limit ε → 0 of the heteroclinic solution

(x(t̂), y(t̂)). By taking ε = 0 in system (3.3), we obtain

f(x0, y0) = 0, (3.4)

ẏ0 = g(x0, y0). (3.5)

Notice that (3.4) is a system of n scalar algebraic equations with n + 1 unknowns. We

assume that this system defines a curve Γ0 in the space (x, y), which connects the equilibria

(−) and (+), see Fig. 3.1a. We also assume that

det fx 6= 0 on Γ0, (3.6)

where fx = [∂f/∂x] is the Jacobian matrix of the function f(x, y) for fixed y. By the im-

plicit function theorem, equation (3.4) has a solution x0 = ϕ(y0) such that the curve Γ0 is

parametrized as (ϕ(y0), y0) for y0 between y− and y+. Of course, ϕ(y±) = x±.

Figure 3.1: Heteroclinic orbit in quasi-stationary approximation: a) dependence of x0 on y0,

b) dependence of y0 on t̂.
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By substituting ϕ(y0) into Eq. (3.5), we obtain a scalar ODE for y0:

ẏ0 = g(x0(y0), y0). (3.7)

According to (3.2), g(ϕ(y0), y0) = 0 at y0 = y±. Hence, there exists a solution y0(t̂) such that

y0 → y± as t̂ → ±∞ if and only if

(y+ − y−)g(x0, y0) > 0 along Γ0, except at (x, y)±, (3.8)

of course g(x, y)± = 0. This solution is a monotone function of t̂, see Fig. 3.1b. The function

y0(t̂) is a heteroclinic orbit of scalar ODE (3.7). Since the heteroclinic orbit of an autonomous

system is invariant under translations in time, equation (3.7) can be solved with the initial

condition

y0(0) = y̌0, (3.9)

where y̌0 is an arbitrary number between y− and y+. Thus we recover the asymptotic hetero-

clinic solution as follows in terms of the slow time t̂ = εt.

The above discussion can be used as proof of the following proposition.

Proposition 3.1 Let us assume that the equation f(x0, y0) = 0 determines a curve Γ0 =

(ϕ(y0), y0) connecting the equilibria (x−, y−) to (x+, y+), satisfying the hypotheses (3.6), (3.8).

Then the asymptotic heteroclinic solution of system (3.1) in the quasi-stationary limit ε → 0

is given by (x0(t̂) = ϕ(y0(t̂)), y0(t̂)), where y0(t̂) is a solution of equation (3.7) with initial

condition (3.9).

3.3 Asymptotic series expansion

The approximate solution given by Prop. 3.1 is sufficient for many purposes. For example, if ε

is very small, then the higher order approximations contain little useful information. However,

in order to obtain more accuracy or estimate the error of approximation, one has to find higher

order correction terms. Let us look for a solution of system (3.3) as an asymptotic power series

in ε:

x(t̂) = x0(t̂) + εx1(t̂) + ε2x2(t̂) + · · · , y(t̂) = y0(t̂) + εy1(t̂) + ε2y2(t̂) + · · · . (3.10)

By substituting the expansions (3.10) into the functions f(x, y) and g(x, y), after expanding

them in a power series in ε, we obtain

f(x, y) = f0 + εfxx
1 + εfyy

1 + · · · , g(x, y) = g0 + εgxx
1 + εgyy

1 + · · · . (3.11)
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Here f0 = f(x0, y0), g0 = g(x0, y0) and

fx =




∂f1

∂x1
· · · ∂f1

∂xn

...
. . .

...
∂fn

∂x1
· · · ∂fn

∂xn


 , fy =




∂f1

∂y
...

∂fn

∂y


 , gx =

[
∂g
∂x1

· · · ∂g
∂xn

]
, gy =

[
∂g
∂y

]
, (3.12)

are functions of t̂ evaluated at (x0(t̂), y0(t̂)). Substituting (3.10)–(3.11) into (3.3), we obtain





ε(ẋ0 + εẋ1 + · · · ) = f0 + εfxx
1 + εfyy

1 + · · ·
ẏ0 + εẏ1 + · · · = g0 + εgxx

1 + εgyy
1 + · · · .

(3.13)

Since, for any ε, x(t̂) → x± and y(t̂) → y± as t̂ → ±∞, the components of the expansions

(3.10) must satisfy the following conditions for all k = 1, 2, . . .:

x0 → x±, y0 → y±, xk → 0, yk → 0 as t̂ → ±∞. (3.14)

Equating terms with the same power of ε, we obtain a series of equations for the unknown

functions x0(t̂),x1(t̂), . . . and y0(t̂), y1(t̂), . . .. For the zero-th order terms we recover equations

(3.4) and (3.5); thus, x0(t̂) and y0(t̂) are given by Prop. 3.1.

For the first order terms in ε, (3.13) yields:

ẋ0 = fxx
1 + fyy

1,

ẏ1 = gxx
1 + gyy

1.
(3.15)

The solution of this system is given in the following proposition.

Proposition 3.2 Let us assume the hypotheses of Prop. 3.11. Then the first order terms x1(t̂)

and y1(t̂) in the asymptotic expansion (3.10) have the form

x1(t̂) = fx
−1(t̂)

(
ẋ0(t̂)− fy(t̂)y

1(t̂)
)
, (3.16)

y1(t̂) = g0(t̂)

∫ t̂

0

B(τ)dτ , B(t̂) = gx(t̂)fx
−2(t̂)fy(t̂). (3.17)

Proof: Let us write (3.15) as:

ẋ0 − fyy
1 = fxx

1, (3.18)

ẏ1 = gxx
1 + gyy

1. (3.19)

1in particular it means that the function g0(t̂) is monotone for large |t̂|.
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Then (3.16) follows from (3.18) from multiplication by the inverse of the matrix fx (which is

nonsingular by the assumptions of Prop. 3.1). Using (3.4), (3.5) and the chain rule one obtains

ẋ0 = −fx
−1fyẏ

0 = −fx
−1fyg

0. (3.20)

Substituting this expression into (3.16) and using the result in (3.19) one gets

ẏ1 = −gxfx
−1(fx

−1fy g0 + fyy
1) + gyy

1. (3.21)

Now using (3.20) with the chain rule, we find the expression

ġ0 = gxẋ
0 + gyẏ

0 = −gxfx
−1fyg

0 + gyg
0, (3.22)

which can be used in (3.21) to get
d

dt̂

(
y1

g0

)
= −B, (3.23)

where B is defined in (3.17). Solving (3.23) one obtains

y1 = cg0(t̂) + g0(t̂)

∫ t̂

0

B(τ)dτ , (3.24)

where c is an arbitrary constant. The term cg0 corresponds to the time-translations of the

heteroclinic orbit. Thus, we can take c = 0, yielding (3.17).

Now we have to prove that x1 and y1 given by (3.16) and (3.17) satisfy the conditions (3.14).

As fx is nonsingular, B = gxfx
−2fy is a smooth (C1) function of t̂ with finite limits as t̂ → ±∞.

Thus, B is bounded: |B(t̂)| < Bmax for some Bmax. Then y1 satisfies the inequalities

|y1(t̂)| =
∣∣∣∣∣g

0(t̂)

∫ t̂

0

B(τ)dτ

∣∣∣∣∣ ≤ Bmax

∣∣g0(t̂)t̂
∣∣ ≤ Bmax

(∣∣g0(t̂)T
∣∣ +

∣∣g0(t̂)(t̂− T )
∣∣) ≤

≤ Bmax

(
∣∣g0(t̂)T

∣∣ +

∣∣∣∣∣
∫ t̂

T

g0(τ)dτ

∣∣∣∣∣

)
≤ Bmax

(∣∣g0(t̂)T
∣∣ +

∣∣y0(t̂)− y0(T )
∣∣) ,

(3.25)

where t̂ and T are arbitrary (large) numbers belonging to the region where g0(t̂) is monotone

by the hypothesis of the proposition. Here we also used the relation ẏ0 = g0. Now keeping T

fixed and taking the limit t̂ → ±∞ in (3.25), we obtain limt̂→±∞ |y1(t̂)| ≤ Bmax|y± − y0(T )|.
Since y0(T ) → y± as T → ±∞, then y1 → 0 as t̂ → ±∞. By using this property in (3.16), it

is straightforward to show that x1 → 0 as t̂ → ±∞.

¤
Similarly, under the same assumptions, one could find formulae for higher order correction

terms in the expansions (3.10).
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Remark 3.1 The hypothesis of monotonicity of g0(t̂) for large t̂ in Prop. 3.2 is very natural:

it is equivalent to the monotonicity of the function g(ϕ(y), y) in the neighborhood of y±. It

holds, for example, if g(ϕ(y), y) has nonzero derivative (of any order) with respect to y at y±.

In this work, we deal with the (exotic) non-hyperbolic case where all the derivatives of g(ϕ(y), y)

vanish at y+. However, the monotonicity condition is satisfied.
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Chapter 4

Coflow combustion

4.1 Introduction

A large number of studies on the structure of the combustion front have been reported since the

1950s, see [2, 4, 5, 7, 10, 32, 40], for instance. However, these studies present two peculiarities.

First, they do not take into account other waves that occur in the combustion problem. As

there are interactions between the combustion wave and these other waves, the solution of the

Riemann problem taking into account all possible waves is relevant. Secondly, the combustion

wave at the reservoir side (see Figure 2.1) can be controlled by the lack of oxygen or by low

temperature. The works cited above study the more common temperature controlled case,

which is not so amenable to analysis as the oxygen controlled case. The techniques used

to study the combustion wave controlled by low temperature are very different from those

presented here. For example, in [11] the approximate solution is a transient wave, i.e., this

wave has a profile which changes very slowly. In this text we address the oxygen controlled

case. A first step in this direction was taken in [46] for flow in reservoirs at relatively high

temperatures: we now summarize the main results in [46].

Under the assumption that the combustion front governed by (2.23)-(2.26) moves forward

exhausting all oxygen and fuel, i.e., the combustion reaction is fuel deficient behind the front

and oxygen deficient ahead of it, the following theorem was proved in [46]: assuming that the

combustion front has a traveling wave profile, given the injection and the reservoir conditions,

then the constant states and the speeds of all waves in the wave sequence defining the Riemann

solution are uniquely determined.

The theorem quoted above is scientifically incomplete, since it does not address the existence
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of the traveling wave profile for the combustion wave: this is the main issue of this chapter.

We performed numerical simulations for the model, obtained the traveling wave profile and

compared it to the quasi–stationary approximation calculated semi-analytically. In this sense,

this text completes the results of [46].

In Chapter 2 we presented the physical model (2.1)-(2.4), (2.7) in terms of masses and im-

proved it by constructing analogous model (2.28)-(2.31), (2.27) in terms of molar masses. Both

models generate the same dimensionless system of equations (2.23)-(2.26). From the mathe-

matical point of view the difference between these two models is that the scaled stoichiometric

coefficient µ is equal to 0 for the model in terms of molar masses. In order to maintain the

generality we keep µ for our analysis in this chapter and also in Chapters 5 and 6.

4.2 The combustion wave

We consider the forward combustion wave with speed V > 0. Physically, there is no combustion

ahead or behind this front, i.e, the reaction rate Φ must vanish. We consider that there is

lack of fuel behind the combustion front, which is translated by condition (4.1); ahead of the

combustion front, we consider oxygen deficiency as given by condition (4.2):

Y b = 1, ηb = 1, vb > 0, (4.1)

θu = 1, Y u = 0, ηu = 0, vu > 0. (4.2)

The superscripts b and u stand for burned and unburned. Of course, the reaction rate defined

in (2.21) vanishes for the boundary conditions (4.1)–(4.2).

The combustion front is modeled as a steady traveling wave of system (2.23)–(2.26) with

propagation speed V . The states along such a traveling wave depend only on the moving

coordinate ξ = x− V t, i.e, θ(x, t) = θ̂(ξ), Y (x, t) = Ŷ (ξ) and η(x, t) = η̂(ξ). Then Eqs. (2.23)–

(2.26) are transformed into (4.3)-(4.6), with hats omitted (for simplicity we use b = 1):

d

dξ
(av − V θ) =

d2θ

dξ2
− q

d

dξ
(V η), (4.3)

d

dξ

(
1

θ
(v − φV )Y

)
=

1

Le

d

dξ

(
1

θ

dY

dξ

)
+ µ

d

dξ
(V η), (4.4)

d

dξ

(
1

θ
(v − φV )

)
= −µg

d

dξ
(V η), (4.5)

d

dξ
(V η) = −Φ(θ, Y, η), (4.6)
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where Eq. (2.20) was used to eliminate ρ. Integrating the equations (4.3)-(4.5) from ξ to +∞
we obtain:

dθ

dξ
− qV η − av + V θ = −qV ηu − avu + V θu; (4.7)

1

Leθ

dY

dξ
+ µV η − v − φV

θ
Y = µV ηu − vu − φV

θu
Y u; (4.8)

v − φV

θ
+ µgV η =

vu − φV

θu
+ µgV ηu. (4.9)

A traveling wave modeling the combustion front is an orbit of system (4.6),(4.7)-(4.9), connect-

ing the burned state (4.1) to the unburned state (4.2). Using the fact that the burned and the

unburned states must be equilibria of the system (4.3)-(4.6) we obtain:

dθ

dξ
− qV η − av + V θ = −avu + V ; (4.10)

1

Leθ

dY

dξ
+ µV η − v − φV

θ
Y = 0; (4.11)

v − φV

θ
+ µgV η = vu − φV. (4.12)

We can use (4.12) to obtain the volumetric flow rate v of the gas phase:

v = φV + θ(vu − φV )− V θµgη. (4.13)

Substituting (4.13) in (4.10) we obtain:

dθ

dξ
= a(φV + θ(vu − φV )− V θµgη)− (avu − V ) + qV η − V θ. (4.14)

Now we use (4.12) in (4.11) to obtain:

1

Leθ

dY

dξ
= Y (vu − φV − µgV η)− µV η. (4.15)

Using the condition (4.1) and manipulating the equations (4.13)–(4.15) we obtain the following

expressions for the combustion wave speed V , the scaled temperature θb and the gas speed vb:

V =
vu

(µ + µg + φ)
, θb =

1 + q − a(µ + µg)

1− aµ
and vb = φV + θbV µ. (4.16)

These relations coincide with the Rankine–Hugoniot shock conditions for system (2.23)–(2.26)

with left and right states defined by (4.1)–(4.2): they show that the injection gas speed vu,

the production gas speed vb and the combustion wave speed V are proportional, and that the
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nondimensional temperature behind the combustion front does not depend on the injected gas

speed.

Using the relations (4.16), we derive from (4.14), (4.15) and (4.6) the traveling wave system

of ordinary differential equations that models the combustion front:

dθ

dξ
= f θ ≡ V

(
a(θ(µ + µg − µgη)− µ− µg) + 1 + qη − θ

)
, (4.17)

dY

dξ
= fY ≡ V Leθ

(
(µ + µg − µgη)Y − µη

)
, (4.18)

dη

dξ
= f η ≡ − 1

V
Φ(θ, Y, η), (4.19)

where the notation f θ, fY , and fη will be used later.

4.2.1 Parameter analysis

As we have shown in Chapter 3, in order to apply the singular perturbation method to solve

system (4.17)–(4.19), the right-hand sides of equations (4.17)–(4.19) have to satisfy the rela-

tions:

f η ¿ f θ, f η ¿ fY . (4.20)

We define the parameter ε as:

ε =
α

V
exp

(−γ

θb

)
. (4.21)

Thus the inequality f η < ε is always satisfied. Among all the parameter that appear in the

problem the reservoir temperature T res and gas injection speed vi are more likely to vary. In

Table 2.1 the reservoir temperature was fixed T res = T̃0, however it typically varies between

273K and 1000K [37], the typical value for vi is between 200 [m/day] and 500 [mday], see [2].

We compare the value of the parameter ε with the largest terms in f θ, fY using the values of

Table 2.2 and 2.3. The regions in parameter space T res×vi that correspond to first and second

inequality of (4.20) are plotted respectively with dark and light colors. Figure 4.1 corresponds

to parameter values used in [2] summarized in Tables 2.1 and 2.2. Figure 4.2 corresponds to

parameter values used in [46] summarized in Tables 2.3 and 2.4.

4.2.2 Combustion wave profile

In Chapter 3 we proved several results on singular perturbation theory that will be used here.

The difference between the application to combustion waves in this section and the theory
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Figure 4.1: Regions in parameter space T res × vi corresponding to small epsilon. The region

that satisfies the first inequality of (4.20) is printed in dark gray. The region that satisfies the

second inequality of (4.20) is printed in light gray. Here we use the parameter values from

Tables 2.1 and 2.2.
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Figure 4.2: Regions in parameter space T res × vi corresponding to small epsilon. The region

that satisfies the first inequality of (4.20) is printed in dark gray. The region that satisfies the

second inequality of (4.20) is printed in light gray. Here we use the parameter values from

Tables 2.3 and 2.4.
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described in Chapter 3 is that here we have decided to maintain the small parameter ε hidden

inside the field component fη. This change of notation does not affect any result. Another

notational difference is that in system (7.1) we have used (x1, x2, y), (f 1, f 2, εg), and t instead

of (θ, Y, η), (f θ, fY , f η) and ξ in (4.17)-(4.19).

The quasi-stationary combustion wave

According to (3.4), for a fixed value of V the quasi-stationary approximation of the system

(4.17)-(4.19) is obtained by neglecting dθ/dξ and dY/dξ, yielding:

θ0(η0) =
1 + qη0 − a(µ + µg)

1− a(µ + µg − µgη0)
, Y 0(η0) =

µη0

µ + µg − µgη0
. (4.22)

The quasi-stationary approximation of the heteroclinic orbit parameterized by η0 is:

Γ0 =
(
θ0(η0), Y 0(η0), η0

)
. (4.23)

We want Γ0 to be a connected curve joining the equilibria of the vector field in (4.17)–(4.19).

Thus we need the denominators in (4.22) not to vanish for any η0 ∈ [0, 1]; this is true for the

parameter values given in Table 2.3.

In order to obtain the approximate solution of system (4.17)-(4.19), we have to find η0 in

terms of ξ in (4.23). For this purpose, we substitute expressions in (4.22) for θ0 and Y 0 into

(4.19) and solve the resulting ODE for η0(ξ) with arbitrary initial data η0(ξ = 0) taken in the

interval (ηu, ηb) = (0, 1).





dη0

dξ
= fη(Γ0) ≡ −α

V

µη0(1− η0)

µ + µg − µgη0
exp

(
−γ

1− a(µ + µg − µgη
0)

1 + qη0 − a(µ + µg)

)

η0(0) = 0.5

(4.24)

Once the problem parameters are specified, this initial value problem can be solved (at least

numerically). The numerical solutions for the parameter values from Tables 2.3 and 2.2 are

shown in Figures 4.3 and 4.4 respectively.

First order approximation for combustion waves

We use the notation ∂θf
θ(ξ), ∂Y f θ(ξ), ∂ηf

θ(ξ), ∂θf
Y (ξ), . . . for the partial derivatives evaluated

along the quasi-stationary solution (θ0(ξ), Y 0(ξ), η0(ξ)). These derivatives can be easily calcu-

lated, see [14]. Let us look at the first order approximation of the solution as a perturbation of
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Figure 4.3: Zero-order approximation of the traveling wave. We used dimensionless parameter

values from Table 2.2.

the quasi-stationary one.

θ(ξ) = θ0(ξ) + θ1(ξ), Y (ξ) = Y 0(ξ) + Y 1(ξ), η(ξ) = η0(ξ) + η1(ξ). (4.25)

The equations for the first order corrections θ1, Y 1, η1 obtained from the system (4.17)-(4.19)

take the form:

θ̇0 = (∂θf
θ)θ1 + (∂Y f θ)Y 1 + (∂ηf

θ)η1, (4.26)

Ẏ 0 = (∂θf
Y )θ1 + (∂Y fY )Y 1 + (∂ηf

Y )η1, (4.27)

η̇1 = (∂θf
η)θ1 + (∂Y fη)Y 1 + (∂ηf

η)η1, (4.28)

(see (3.15) in Chapter 3, where the equations (4.26), (4.27) correspond to (3.18), and (4.28)

corresponds to (3.19)). Using (4.22) one obtains ∂Y f θ = ∂θf
Y = 0. Thus (4.26), (4.27) can be

rewritten as:
[

θ1

Y 1

]
=

[
(∂θf

θ)−1 0

0 (∂Y fY )−1

]([
θ̇0

Ẏ 0

]
−

[
∂ηf

θ

∂ηf
Y

]
η1

)
. (4.29)

Using (4.22) and (4.24) in (4.29) we obtain explicitly θ1 and Y 1 as linear functions of η1. Now

substituting θ1 and Y 1 into Eq. (4.28) we obtain the ODE for η1(ξ). As it is shown in Prop. 3.2,

the solution of the resulting ODE has the form:

η1(ξ) = fη

∫ ξ

0

B(τ)dτ , B = −
[

∂θf
η ∂Y fη

] [
∂θf

θ ∂Y f θ

∂θf
Y ∂Y fY

]−2 [
∂ηf

θ

∂ηf
Y

]
. (4.30)
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Figure 4.4: Zero-order approximation of the traveling wave (monotone) and the combustion

rate Φ (hump) scaled by 2 · 107. In (a) γ = 2.0 and α = 1.6 · 10−6 were used. In (b) the original

dimensionless values from Table 2.3 were used.

It is possible to evaluate B explicitly, (see [14]). The equations (4.29) and (4.30) make sense

if the Jacobian determinant ∂(f θ, fY )/∂(θ, Y ) (denoted det(fx) in Chapter 3) does not vanish

for appropriate parameters. It can be shown that:

det

[
∂θf

θ ∂Y f θ

∂θf
Y ∂Y fY

]
= −V 2Le(K + aµgη

0)
(µ + µg − µgη

0)(K + qη0)

K − aµgη0
, (4.31)

where K = 1 − a(µ + µg). For V given in (4.16) and the parameter values given in Table 2.3

the factors in (4.31) do not vanish and the first order approximation of the combustion wave is

well defined. We have plotted the corrections η1(η0), θ1(η0) and Y 1(η0) in Figures 4.5 and 4.6.

We have shown that the amplitude of the first-order approximation is small. This means that

the parameter ε is indeed small as described in Propositions 3.1 and 3.2 and that the zero-order

approximations shown in Figures 4.4 and 4.3 are good approximations of the combustion wave

profile.

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

η0

θ1

Y1

η1

Figure 4.5: The plot represents the first order correction η1(η0), θ1(η0) and Y 1(η0) corresponding

to zero-order approximation from Figure 4.3. Here we have used the dimensionless parameter

values from Table 2.2.
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Figure 4.6: The plot represents the first order correction η1(η0), θ1(η0) and Y 1(η0) corresponding

to zero-order approximation from Figure 4.4. Here we have used the dimensionless parameter

values from Table 2.3.

Monotonicity

In order to use Proposition 3.2 we have to verify that fη
(
θ0(η0(ξ)), Y 0(η0(ξ)), η0(ξ)

)
is monotone

in ξ in the neighborhood of the equilibria. However, the quasi-stationary approximation of the

traveling wave solution of (2.16)–(2.19) coincides with the solution of the model solved in

Chapter 5. We prove the monotonicity hypotheses in Section 5.3.1.
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Explicit formulae of the approximate solution

In Section 4.2.2 we have solved the ODE (4.24) numerically. Here we obtain explicitly an

approximation of the solution using the fact that a << 1 to modify the exponent:

γ
1− a(µ + µg − µgη)

a(µ + µg)− 1− qη
≈ −γ

1 + qη
. (4.32)

Then we can rewrite the pre-exponential factor as:

−α

V

µη(1− η)

µ + µg − µgη
= −α

V

(µ/µg)η(1− η)

µ/µg + 1− η
=

Aη(1− η)

B − η
, (4.33)

where A = (−αµ)/(V µg), B = 1 + µ/µg. The ODE for the approximate solution is:

dη

dξ
=

Aη(1− η)

B − η
exp

( −γ

1 + qη

)
, η(0) = 0.5. (4.34)

In order to solve it we use the Exponential Integral function, [38]:

E1(x) =

∫ ∞

x

exp(−t)

t
dt. (4.35)

Solving the ODE (4.34):
∫ η

η̄

B − η

Aη(1− η)
exp

(
γ

1 + qη

)
dη =

1

A

∫ η

η̄

(
B

η
+

B − 1

1− η

)
exp

(
γ

1 + qη

)
dη. (4.36)

Substituting x = γ/(1 + qη), η = (γ − x)/(qx), dη = −γ/(qx2)dη, x(η) = x, x̄ = x(η̄) in the

RHS of (4.36), it becomes:

B

A

∫ x

x̄

qx

(γ − x)
ex−γ

qx2
dx +

B − 1

A

∫ x

x̄

qx

(−γ + (1 + q)x)
ex−γ

qx2
dx =

=
−γB

A

∫ x

x̄

ex

x(γ − x)
dx− γ(B − 1)

A

∫ x

x̄

ex

x(−γ + (1 + q)x)
dx.

(4.37)

Now we will calculate both integrals from the right hand side of (4.37) separately. The first

one is:

−γB

A

∫ x

x̄

ex

x(γ − x)
dx =

−γB

A

∫ x

x̄

(
1

x
+

1

γ − x

)
ex

γ
dx =

−B

A

∫ x

x̄

ex

x
dx +

−B

A

∫ x

x̄

ex

(γ − x)
dx =

−B

A

∫ x

x̄

ex

x
dx +

−B

A

∫ γ−x

γ−x̄

eγ−x

x
d(γ − x) =

−B

A

∫ x

x̄

ex

x
dx +

Beγ

A

∫ γ−x

γ−x̄

e−x

x
dx =

=
−B

A
(E1(−x̄)− E1(−x)) +

Beγ

A
(E1(γ − x̄)− E1(γ − x)).

(4.38)
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The second one is:

γ(B − 1)

A

∫ x

x̄

ex

x(−γ + (1 + q)x)
dx =

γ(B − 1)

A

∫ x

x̄

(
1

x
− 1 + q

(1 + q)x− γ

) −ex

γ
dx =

−(B − 1)

A

∫ x

x̄

ex

x
dx +

(B − 1)

A

∫ x

x̄

(1 + q)ex

(1 + q)x− γ
dx =

−(B − 1)

A

∫ x

x̄

ex

x
dx +

(B − 1)

A

∫ x

x̄

ex

x− γ/(1 + q)
dx.

(4.39)

Define K̄ = γ/(1 + q), (4.39) becomes:

−(B − 1)

A

∫ x

x̄

ex

x
dx +

(B − 1)eK̄

A

∫ x−K̄

x̄−K̄

ex

x
dx = (4.40)

−(B − 1)

A
(E1(−x̄)− E1(−x)) +

(B − 1)eK̄

A
(E1(K̄ − x̄)− E1(K̄ − x)). (4.41)

Substituting (4.38) and (4.40) into (4.36) we obtain x as function of ξ in the implicit form:

−B

A
(E1(−x̄)− E1(−x)) +

Beγ

A
(E1(γ − x̄)− E1(γ − x))+

(B − 1)

A
(E1(−x̄)− E1(−x))− (B − 1)eK̄

A
(E1(K̄ − x̄)− E1(K̄ − x)) = ξ.

(4.42)

Using the Exponential Integral function, [38], the implicit solution of the ODE (4.34) is:

− 1

A

(
E1

( −γ

1 + qη̄

)
− E1

( −γ

1 + qη

))
+

Beγ

A

(
E1

(
γqη̄

1 + qη̄

)
− E1

(
γqη

1 + qη

))
−

−(B − 1)

A
exp(

γ

1 + q
)

(
E1

(
γq(η̄ − 1)

(1 + q)(1 + qη̄)

)
− E1

(
γq(η − 1)

(1 + q)(1 + qη)

))
= ξ.

(4.43)

Now we notice that not all terms in the solution (4.43) are important. First we combine all

constants:

K̃ =
1

A

[
−E1

( −γ

1 + qη̄

)
+ BeγE1

(
γqη̄

1 + qη̄

)
− (B − 1) exp(

γ

1 + q
)E1

(
γq(η̄ − 1)

(1 + q)(1 + qη̄)

)]

(4.44)

and eliminate the term E1(−γ/(1 + qη)), as it is small compared to the other ones, obtaining:

−BeγE1

(
γqη

1 + qη

)
+ (B − 1) exp(

γ

1 + q
)E1

(
γq(η − 1)

(1 + q)(1 + qη)

)
= (ξ − K̃)A. (4.45)

The solution in (4.45) is implicit in η and not very easy to work with directly. We can

simplify it utilizing the series expansion of the Exponential Integral function, see [38], and

taking the real part, getting the approximation:

(ξ − K̃)A = Beγ log

(
γqη

1 + qη

)
− (B − 1) exp(

γ

1 + q
) log

(
γq(η − 1)

(1 + q)(1 + qη)

)
. (4.46)

We can compare the solution of (4.46) with the numerical solution of (4.24) on Figure 4.7.
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Figure 4.7: The numerical solution of (4.24) (solid), the analytical solution (4.43) of the ap-

proximate ODE (4.34) (circles) and the logarithmic approximation (4.46) (dotted). We use

γ = 2.0.

Remark 4.1 There is another possible simplification. We present it here, however it is not

very accurate for the values of the parameters we use. By analyzing the profile of the numerical

solution of (4.24) we conclude that the unburned part of the wave (at the right) is much larger

that the burned part (at the left). Having this in mind we simplify the pre-exponential coefficient

from the right hand side of (4.33). Taking B ≈ 1 and µ ≈ µg, the pre-exponential coefficient

becomes −αη/V . Next we use the simplification (4.32) for the exponential and obtain the

simplified ODE:
dη

dξ
= −αη

V
exp

( −γ

1 + qη

)
, η(0) = 0.5. (4.47)

We compare the solutions of the ODEs (4.24), (4.34) and (4.47) on Figure 4.8. One can see

that the analytical solution (4.43) (circles) coincides with the numerical solution of (4.24) (solid

line), while the solution of the simplified equation (4.47) (dotted) is an acceptable approximation

to the numerical solution only for positive ξ.

Remark 4.2 Analogously to (4.34) it is possible to use the Exponential Integral functions and

obtain the implicit solution of the simplified ODE (4.47):

[
E1(

−2γ

2 + q
)− E1(

−γ

1 + qη
)

]
− eγ

[
E1(

γq

2 + q
)− E1(

γqη

1 + qη
)

]
=

αξ

V
. (4.48)
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Figure 4.8: The numerical solution of (4.24) (solid), the analytical solution (4.43) of the ap-

proximate ODE (4.34) (circles) and the numerical solution of (4.47) (dotted). We use γ = 2.0.

Making the series expansions, taking the real part of it and combining all the constants into K̃

we get the simpler expression:
[
− log(

−γ

1 + qη
)

]
+ eγ

[
log(

γqη

1 + qη
)

]
=

αξ

V
− K̃. (4.49)

4.2.3 Physical reasonability

So far we have studied the nondimensional equations and made nondimensional analysis. How-

ever, in order to better understand the underlying physical phenomena, it is important to study

the dimensional problem. The variables θ, Y and η have been nondimensionalized in a natural

way as scaled temperature, oxygen saturation and scaled fuel, respectively. We now investigate

the characteristic length of our problem.

In order to obtain the characteristic length of the solution, we first determine the interval δξ

where the combustion occurs. From the fuel consumption rate in equation (4.24) we conclude

that the reaction occurs close to the region where η ≈ 0.5; from the numerical experiments we

conclude that it happens for 0.4 ≤ η ≤ 0.8.

We are interested in the approximate length of the combustion wave, thus we use Figure

4.3 and get δξ ≈ 103.
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For the parameter values taken from Table 2.3 from (4.46), with some simplifications, we

have:

δξ ≈ 2V

α
exp(

γ

1 + q
) ≈ 105. (4.50)

This last approximation is not accurate. However, we are only interested in the approximate

length.

To find the values for physical variables we use (2.8) with the characteristic injection speed

v∗ = vi. We use Table 2.1 and obtain the scaled effective thermal diffusivity αs = λ̃/((1 −
φ)csρs) = 4.3 · 10−7 [m2/s] and the reference length l∗ = αs/v

∗. We recover all dimensional

variables: temperature T̃ = T̃0θ, where T̃0 is the reservoir temperature; time t̃ = t∗ = t̂αs/(v
∗)2;

length x̃ = l∗x̂.

Next we obtain dimensional values for the characteristic length using two data sets we

have. Firstly, we substitute the values of the parameter from Table 2.1 with v∗ = 500 [m/day]

and obtain l∗ ≈ 7.4 · 10−5 [m], T̃ ≈ 755.4 [K], t∗ ≈ 1.28 · 10−2 [s], x̃ ≈ 0.074 [m]. Secondly

we use the parameter values from [46] given in Table 2.4 and obtain l∗ ≈ 1.26 · 10−5 [m],

T̃ ≈ 787.5 [K],t∗ ≈ 3.69 · 10−4 [s], x̃ ≈ 0.126 [m].

Both data set are compatible with experimental data, see [22].

4.3 Wave sequences

In this chapter we concentrate our efforts on the analysis of the combustion wave, however it is

important to note that there are other waves in this model. Studied in a hyperbolic framework,

i.e., neglecting the diffusion terms, these waves are contact discontinuities. The hyperbolic

analysis of these waves coincides for the current model and other model studied in Chapter 5.

We expect them to appear in the solution as waves traveling with constant speed given by the

hyperbolic theory and with smoothing effect caused by the diffusion. This behavior is observed

within the numerical experiments as shown in Chapter 6. For these reasons we postpone the

discussion about the wave sequences to Chapter 5.

In Section 5.4 we prove that given the injection conditions all combustion and non combus-

tion wave speeds, all constant states in the wave sequence and the combustion wave propagation

speed are uniquely determined.
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4.4 Conclusion

In this chapter we look for the traveling wave for the in-situ combustion model studied in

[2, 3, 46]. We present the two-terms asymptotic expansion given by θ(ξ) = θ0(ξ) + θ1(ξ),

Y (ξ) = Y 0(ξ) + Y 1(ξ) and η(ξ) = η0(ξ) + η1(ξ), where the zero-order approximations θ0, Y 0,

η0 are given by formulae (4.22a), (4.22b) and (4.24), respectively, see Fig. 4.4. The first order

approximation θ1, Y 1 and η1 are given by formulae (4.29) and (4.30), respectively.

This, by itself, is a strong evidence that the combustion wave possesses a traveling wave

profile. In Chapter 6 we will present the numerical simulations showing the formation of the

traveling wave and compared it to the approximate solution confirming our analysis, see Fig.

6.2.

Moreover, setting to zero the value of a very small parameter (the volumetric heat capacity

ratio of the filtration gas a), an explicit formula for the approximate solution was obtained,

see Figure 4.7. This formula was used to estimate the characteristic length of the combustion

wave.

We conclude that the first order expansion solution of the traveling wave ODE system exists

and justifies quasi-mathematically the Riemann solution obtained in [46]. The results discussed

in this chapter were published in [19].
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Chapter 5

Non-diffusive combustion waves in

porous media

5.1 Introduction

In order to model ISC some simplifications are commonly made. For example, the authors of

[6] use a one-dimensional model and assume limitless access to fuel and constant gas speed,

obtaining a system of two conservation laws. Next, the Lewis number is considered high in the

analysis of the stability of the combustion front.

In this chapter we follow the formulation of [14, 19, 46] explained in Chapter 4. However, we

utilize the simplification of neglecting diffusion terms (physically it is valid when the gas velocity

is very high). We also solve the corresponding Riemann problem and obtain the combustion

wave profile. It turns out that it coincides with the zero-order approximation of the combustion

wave for the model introduced in Section 2.1 and studied in Chapter 4 by using the singular

perturbation technique.

Although we use the system (2.16)-(2.19) to illustrate the result above, the result is valid

for more general systems of conservation laws. In fact, the traveling wave solution of the

system (2.16)-(2.19) with diffusion and conduction terms removed coincides with the zero-

order approximation obtained through the use of the singular perturbation technique for system

(2.16)-(2.19). In other words, when applying singular perturbation analysis to find traveling

wave solution, we can neglect the diffusion terms.
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5.2 Simplified combustion model

We analyze the following simplification of the model (2.16)-(2.19), in which the molecular

diffusion and thermal heat conductivity have been neglected:

∂θ

∂t
+

∂(aρvθ)

∂x
= qΦ (5.1)

φ
∂(Y ρ)

∂t
+

∂(ρvY )

∂x
= −µΦ, (5.2)

φ
∂ρ

∂t
+

∂(ρv)

∂x
= µgΦ, (5.3)

∂η

∂t
= Φ, (5.4)

ρθ = 1. (5.5)

We use the first order mass action law combined with the usual Arrhenius’ law (2.21):

Φ = αY (1− η)e−
γ
θ , for θ > 0 and Φ = 0, for θ ≤ 0.

Here we focus on the forward combustion front with propagation speed V > 0. The boundary

conditions for the combustion wave are the same as in (4.1)-(4.2):

Y b = 1, ηb = 1, vb > 0,

θu = 1, Y u = 0, ηu = 0, vu > 0;

where the superscripts b and u mean burned and unburned.

The states along such a traveling wave depend only on the moving coordinate ξ = x− V t,

i.e, θ(x, t) = θ̂(ξ), Y (x, t) = Ŷ (ξ) and η(x, t) = η̂(ξ). Then Eqs. (5.1)–(5.5) are transformed

into (5.6)-(5.9), with hats omitted:

d

dξ
(av − V θ) = qΦ, (5.6)

d

dξ

(
Y (v − φV )

θ

)
= −µΦ, (5.7)

d

dξ

(
v − φV

θ

)
= µgΦ, (5.8)

d

dξ
(V η) = −Φ, (5.9)
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where Eq. (5.5) was used to eliminate ρ. The boundary conditions for system (5.6)–(5.9) are

the conditions (4.1) at −∞ and (4.2) at +∞.

Notice that (5.6)-(5.9) is a first-order ODE system, which can be rewritten in a matrix form

as: 


−V 0 0 a

0
V φ− v

−θ
0 0

(V φ− v)

θ2
+

V

aθ
0 0 0

0 0 −V 0







θξ

Yξ

ηξ

vξ




=




q

−µ− Y µg

µg − q

aθ

1




Φ. (5.10)

The matrix on the left-hand side of Eq. (5.10) can be inverted, provided that:

V 6= 0 ≡ λη, V 6= v/φ ≡ λY , V 6= av/(θ + aφ) ≡ λθ, (5.11)

We will prove that the ODE system of Eq. (5.10) has a solution with boundary conditions

defined by (4.1) and (4.2) for certain values of V .

5.2.1 The Rankine-Hugoniot locus

In order to obtain relations between the boundary conditions (4.1) and (4.2) so that system

(5.10) has a solution, we substitute (5.9) into (5.6)-(5.8) obtaining:

d

dξ
(av − V θ + qV η) = 0, (5.12)

d

dξ

(
(v − φV )Y

θ
− µV η

)
= 0, (5.13)

d

dξ

(
v − φV

θ
+ µgV η

)
= 0. (5.14)

This means that the quantities inside the derivatives are constant in ξ, thus their value at some

finite ξ is the same as the one at ξ →∞:

av − V θ + qV η = avu − V − qV ηu, (5.15)

vY

θ
− φV Y

θ
− µV η = vuY u − φV Y u − µV ηu, (5.16)

v

θ
− φV

θ
+ µgV η = vu − φV + µgV ηu. (5.17)

Next we can take the limit ξ → −∞ on the left hand side of Eqs. (5.15)-(5.17) and substitute

condition (4.1) on the left hand side and condition (4.2) on the right hand side of the resulting
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system to obtain:

avu − V = avb − V θb + qV, (5.18)

0 =
vb − φV

θb
− µV, (5.19)

vu − φV =
vb − φV

θb
+ µgV. (5.20)

Physically, it is reasonable to assume that we know the Darcy velocity (vb) of the injected

gas (this choice will be useful in Section 5.4), so we have three unknowns θb, vu, V and three

equations (5.18)-(5.20). We perform the same analysis as in Section 4.2 to obtain:

V =
vu

(µ + µg + φ)
, θb =

1 + q − a(µ + µg)

1− aµ
and vb = φV + θbV µ.

These relations coincide with (4.16).

5.2.2 Combustion wave profile

In this section we use the boundary conditions defined in the introduction of Section 5.2 and the

equations (5.12)-(5.14) to obtain θ, Y, v as functions of η and of the parameters, and substitute

the result in the equation for ηξ in (5.10). Then we compare these results to the solutions for

the system (2.16)-(2.20) obtained by singular perturbation techniques in Chapter 4.

From equations (5.15)-(5.17) we obtain:

av − V θ = avu − V − qV η, (5.21)

(v − φV )

θ
Y = µV η, (5.22)

v = φV − µgV ηθ + θ(vu − φV ) = φV − µgV ηθ + V θ(µ + µg), (5.23)

where we have used (4.16) to obtain (5.23). Substituting v from (5.23) and vu from (4.16) into

(5.21), dividing by V and simplifying, we obtain:

θ =
a(µ + µg)− 1− qη

a(µ + µg − µgη)− 1
. (5.24)

Using (5.23) in (5.22) we get:

Y =
µη

µ + µg − µgη
. (5.25)

Finally, using (5.24), (5.25) and (2.21) we can rewrite the equation for ηξ in (5.10) as:

ηξ =
αY (1− η)

−V
exp

(−γ

θ

)
=

−αµη(1− η)

(µ + µg − µgη)V
exp

(
γ

1− a(µ + µg − µgη)

a(µ + µg)− 1− qη

)
. (5.26)
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We can solve this ODE with any initial condition η(0) = η0, where 0 < η0 < 1 and substitute

the result into the equations (5.23), (5.24) and (5.25) for θ, Y , v and obtain the combustion

wave profile. Solving these equations with Matlab with initial condition η0 = 0.5 we obtain the

wave profile shown on the left side of Figure 5.1. The result coincides with the quasi-stationary

approximation given in Chapter 4.

Figure 5.1: On the left: the traveling wave solution of the system (5.26). On the right: the first

order approximation of the traveling wave of the system (2.16)-(2.19) from [18]. Variables: θ

(segmented line), Y (dotted), η (circles) and combustion rate Φ (solid line) as functions of ξ.

We use γ = 2.

Approximate explicit solution

We have solved the ODE (5.26) numerically, but sometimes it is useful to have an explicit

approximation for the solution. However, the traveling wave solution of (5.1)-(5.4) coincides

with the quasi-stationary approximation studied in Chapter 4. Thus, the implicit solution of

ODE (4.34) using the exponential integral function is (4.45) and its logarithmic approximation

is (4.46).

The dimensional solution

In this section, we study the non-dimensional equations and perform non-dimensional analysis,

however for applications it is important to know the characteristic values of our solution in

actual units. As the traveling wave solution of (5.1)-(5.4) coincides with the quasi-stationary
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approximation studied in Chapter 4, the dimensional analysis coincides with that done in

Section 4.2.3. The characteristic length of the combustion wave is x̃ ≈ 0.07 [m]. This result is

compatible with experimental data [22].

5.3 Testing the solution within the combustion wave

In order to solve the linear system (5.10), the restrictions (5.11) need to be satisfied for V . On

the other hand our physical model imposes other restrictions related to the boundary conditions

(4.1) and (4.2) for the combustion waves. Verifying these restrictions is the goal of this section.

We perform this analysis using data from Table 2.3; for the Table 2.2 the calculations are

analogous.

5.3.1 Monotonicity

Here we will prove that the solutions θ(ξ), Y (ξ) and η(ξ) of system (5.10) are monotonic in ξ.

The combustion rate defined by (2.21) is always positive, thus from (5.10) or (5.26) we see that

η(ξ) is monotone decreasing.

In order to prove that θ(ξ) is monotonic we use (5.24) obtaining:

dθ

dη
=
−q(a(µ + µg − µgη)− 1) + (a(µ + µg)− 1− qη)aµg

(a(µ + µg − µgη)− 1)2
=

(q − aµg)(1− a(µ + µg))

(a(µ + µg − µgη)− 1)2
.

(5.27)

The numerator of (5.27) is independent of η and it is positive for the parameter values from

Table 2.3 and the denominator is positive. As η(ξ) is monotonic, θ(ξ) is monotone decreasing

and thus θb from (4.16) satisfies θb > θu.

In order to prove the monotonicity of Y (ξ) we use (5.25) to obtain dY/dη:

dY

dη
=

µ(µ + µg − µgη)− µη(−µg)

(µ + µg − µgη)2
=

µ(µ + µg)

(µ + µg − µgη)2
. (5.28)

As the numerator of (5.28) is constant in η and the denominator is always positive, the function

Y (ξ) is monotonic. As Y u < Y b we conclude that Y (ξ) is monotone decreasing.

For the gas speed v(η), given by (5.23) we will prove that it is monotonic close to the

equilibria. Using (4.16) we obtain that vu − φV = V (µ + µg). From (5.23) we obtain:

d

dη
(v − φV ) = V (µ + µg − µgη)

dθ

dη
− θV µg. (5.29)
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Using (5.27) and substituting the parameter values from Table 2.3 we obtain that v(η) is

monotonic close to the equilibria corresponding to the burned (η = 1) and unburned (η = 0)

states.

At this point we have proved that the functions θ(ξ), Y (ξ), η(ξ) are monotonic for −∞ <

ξ < ∞ and v(ξ) is monotonic close to the equilibria, so they satisfy the boundary conditions

given in (4.1) and (4.2). In other words, the wave speed V is physically admissible.

5.3.2 Verifying the characteristic inequalities

In this subsection we want to prove that V defined in (4.16) satisfies the restrictions (5.11).

Obviously, V satisfies (5.11a). For (5.11b,c) we will show:

av(η)

aφ + θ(η)
< V <

v(η)

φ
. (5.30)

In order to verify (5.30) we substitute v(η) from (5.23) and verify each of these inequalities

separately. For the first one we get:

a(φV + θV (µ + µg)− V θµgη)

aφ + θ(η)
< V, (5.31)

which is equivalent to:

aV (µ + µg − µgη) < 1. (5.32)

This inequality is satisfied for the parameter values from Table 2.3.

The second inequality results in:

V <
φV + θV (µ + µg)− V θµgη

φ
, (5.33)

which is equivalent to:

η < 1 +
µ

µg

. (5.34)

This inequality is always satisfied as the fuel concentration depth η has values in [0, 1].

Here we conclude that the solution of the system (5.10) for V defined in (4.16) always exists

and that V satisfies (5.30) for typical data.

5.4 Non-combustion waves and wave sequences

In the absence of combustion, the source terms representing mass transfer or sensible heat

generation containing the factor Φ vanish on the right hand side of system (5.1)–(5.5). Of
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course Φ vanishes for Y ≡ 0 or η ≡ 1. We consider smooth solutions and expand the derivatives

in the remaining terms in (5.1)-(5.4), manipulate (5.2), (5.3) and finally use (5.5) to eliminate

ρ, obtaining:
∂θ

∂t
+ a

∂v

∂x
= 0, (5.35)

φ
∂Y

∂t
+ v

∂Y

∂x
= 0, (5.36)

(
θ

a
+ φ

)
∂θ

∂t
+ v

∂θ

∂x
= 0, (5.37)

∂η

∂t
= 0. (5.38)

In increasing order, the characteristic speeds of system (5.35)-(5.38) and the corresponding

characteristic vectors are [46]:

λη = 0, (0, 0, 1, 0)T , (5.39)

λθ = a
v

θ + aφ
, (1, 0, 0,

v

θ + aφ
)T , (5.40)

λY = v/φ, (0, 1, 0, 0)T . (5.41)

It is easy to see that all characteristic speeds are constant along the integral curves defined

by the corresponding characteristic vector fields, which means that all the waves are contact

discontinuities; of course, they satisfy the Rankine-Hugoniot conditions for (5.1)-(5.5). The

characteristic speed λη corresponds to an immobile discontinuity along which only η varies, λθ

corresponds to a thermal discontinuity along which θ and v vary and λY corresponds to a gas

composition discontinuity along which only Y varies.

In Section 5.3.2 we have seen that the wave speeds in (5.39)-(5.41) are all different and satisfy

(5.30). Now we will describe the wave sequence in the Riemann solution under conditions (4.1)

and (4.2) surrounding the combustion front [46].

We indicate by U the vector containing the variables (θ, Y, η, v). In our case (hot upstream

combustion) the thermal wave is slower than the combustion wave (λθ(U b) < V ) and there

is no temperature change ahead the combustion wave, which means that θb > θu. Because

of the inequalities λη < λθ < λY , the wave sequence in the Riemann solution consists of an

immobile fuel shock, a thermal shock with speed λθ and a combustion front with speed V .

The gas composition wave with speed λY does not effectively exist due to the complete oxygen

consumption assumed in the boundary condition (4.2). We denote this sequence of waves by
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means of the following convention:

U i λη−→ U1 λθ−→ U b V−→ Uu. (5.42)

The state U i = (θi, 1, 0, vi) denotes the injection conditions, U1 = (θi, 1, 1, vi) denotes an

intermediate state in the burned region, while U b = (θb, 1, 1, vb) and Uu = (θu, 0, 0, vu) are the

burned and the unburned states surrounding the combustion front.

We summarize our results in the following theorem, which provides formulae for all the

states as well as speeds for combustion and non-combustion waves in the wave sequence (5.42)

for the Riemann solution. In this theorem we have fixed the reservoir temperature at θu = 1.

Theorem 5.1 Assume that in the wave sequence for the Riemann solution of (5.1)-(2.21) there

is a hot upstream combustion wave with left and right states satisfying (4.1)-(4.2) and θb > θu.

For given injection conditions U i = (θi, 1, 0, vi), with θi > 0, vi > 0 and scaled reservoir

temperature θu = 1, the constant states and the speeds of all waves in the wave sequence (5.42)

are uniquely determined.

Proof. First of all, analogously to [46], the characteristic pair (5.40) corresponds to a contact

discontinuity and there is a relationship between the injection conditions U i and the burned

state U b:

a
vi

θi + aφ
= a

vb

θb + aφ
. (5.43)

Now we get four independent relationships (4.16) and (5.40) between the parameters θb, θi, V ,

vb, vu and vi, so the result of the theorem is to be expected. In Figure 5.2 we see that the

speeds and the intermediate states in the wave sequence (5.42) are determined as follows.

Substituting θb from (4.16) into (5.43) and simplifying we obtain the burned gas speed vb

as function of vi and θi:

vb =
1 + q + a(φ− aφµ− µ− µg)

(1− aµ)(θi + aφ)
vi. (5.44)

Next we use (5.44) with the equations for vb from (4.16) in order to obtain the combustion wave

speed V as function of vi and θi. Finally, we substitute the resulting V into the first equation

in (4.16) and obtain vu as function of vi and θi. This completes the proof of Theorem 5.1.

5.5 Conclusion

In this chapter we describe an interesting and simple non-diffusive gas-solid co-flow combustion

model. We obtain the wave profile and solve the corresponding Riemann problem. Comparing
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Figure 5.2: Regions separated by immobile, thermal and combustion waves in the Riemann

solution. Values of θ, Y , η and v in each region.

these results to the ones obtained previously for the more general model we conclude that the

diffusion terms do not affect qualitatively the propagation of the combustion wave.

This property can be generalized in the following way. Let us assume that it is possible

to obtain a traveling wave solution for a system of conservation laws by using the singular

perturbation technique as it was done in Chapter 4. In this case the traveling wave solution of

the simplified system obtained by neglecting the diffusive terms is a good approximation to the

original traveling wave solution.

The main part of this Chapter was published in [20].
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Chapter 6

Numerical methods

6.1 Introduction

When for some reason the explicit solution for the partial differential equations is not obtainable

and we want to understand the behavior of the solution, numerical simulation is the best option.

This is our case: usually, systems of partial differential equations of the Convection-Diffusion-

Reaction type appearing in the physical formulation in Chapter 2 do not have explicit solutions.

Many different numerical methods were developed in order to solve systems of PDEs: Finite

Elements Methods, Boundary Element Methods, Finite Difference Methods and others. As all

the flows we consider in this work are one dimensional, our choice is the Finite Difference

Method.

One of the physical phenomena we want to study is the formation of stable combustion

waves, which may require simulation for long times. Large time steps are required for practical

simulation. Thus we discard all explicit schemes because of CFL condition and focus only on

implicit finite difference schemes with second order accuracy, see [47].

Our main goal here is to simulate numerically the systems of PDEs introduced in Section

2.1 and Chapter 7. In general, they can be written as systems of reaction-convection-diffusion

equations:
∂

∂t
G(W ) +

∂

∂x
F (W ) =

∂

∂x

(
H(W )

∂W

∂x

)
+ Ψ(W ), (6.1)

depending on the number of equations the model we are simulating possesses the matrix H can

be 4× 4 for the model with four equations introduced in Section 2.1, or 3× 3 for the simplified

combustion model with three equations that we will introduce in Chapter 7. The vectors W ,

G, F , Ψ will be 4× 1 or 3× 1 respectively.

46



The system (2.23)-(2.26) with b = 1 from Section 2.1 is a particular case of (6.1) with:

W =




θ

Y

η

v




, G =




θ

φY/θ

φ/θ

η




, F =




av

vY/θ

v/θ

0




, H =




1 0 0 0

0 1
Leθ

0 0

0 0 0 0

0 0 0 0




, Ψ =




q

−µ

µg

1




Φ,

(6.2)

where Φ is given by Arrhenius’ law (7.4). The system (7.1)-(7.3) from Chapter 7 is another

particular case of (6.1) with

W =




T

Y

η


 , G =




T

Y

η


 , F =




aT

vY

0


 , H =




1 0 0

0 0 0

0 0 0


 , Ψ =




q

−µ

−1


 Φ. (6.3)

In this chapter we recall the classical (linear or nonlinear) Crank-Nicolson scheme and show

why for the models of the type (2.23)-(2.26) this scheme cannot be applied. Next we introduce

the Box scheme and combine it with the Crank-Nicolson scheme to construct two other schemes

(called the splitting scheme and the hybrid scheme) which can be used to simulate the models

of the type (2.23)-(2.26).

Nonlinear implicit finite difference method require the usage of Newton method in each

time step. The detailed analysis of this method, its convergence rate can be found in [26]. For

implementation details, see [38].

Notation

We introduce the notation used in this chapter. Following [47], the space direction denoted

by x is discretized into M grid points with index m = 1 . . . M , where m = 1 and m = M

correspond to the boundaries of the interval where the calculation takes place. The grid position

m corresponds to x = (m− 1)h, where h is the grid size. We work with uniform grids (h does

not depend on m). Analogously the time is denoted by t with time index denoted by n and

the time step is k. However, we consider timestep-adaptative finite difference schemes, so k

may change from one grid level to another. Generally we get k = k(n) and the time index n

corresponds to t =
∑n

i=1 k(i).

As all the numerical schemes we analyze are two time levels n and n+1 dependent, we sim-

plify the notation and use Wm in place of W n
m and W̄m instead of W n+1

m . Another simplification

useful for Newton’s method is used frequently. The notation X̄
(l)
m will mean the iteration l of
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Newton’s method to find the solution at position m and time n + 1. There are many functions

depending on W evaluated at different grid points. We indicate F (W̄m) by F̄m, G(W̄
(l)
m+1) by

Ḡ
(l)
m+1 and so on. Finally, the derivatives in W of function F at point (W̄

(l)
m ) is indicated by

(DW F̄ )
(l)
m .

6.1.1 Crank-Nicolson method

The Crank-Nicolson finite difference scheme is centered at position (m,n + 1/2) and uses a six

point discretization, see Figure 6.1 for its stencil. Following [47], we discretize the system (6.1)

as:
1
k

(
Ḡm −Gm

)
+ 1

4h

(
F̄m+1 − F̄m−1 − Fm−1 + Fm+1

)
=

1
4h2

[
(H̄m+1 + H̄m)(W̄m+1 − W̄m)− (H̄m + H̄m−1)(W̄m − W̄m−1)

]
+

1
4h2 [(Hm+1 + Hm)(Wm+1 −Wm)− (Hm + Hm−1)(Wm −Wm−1)] +

1
2

(
Ψ̄m + Ψm

)
.

(6.4)

Figure 6.1: Black squares - stencil for the Crank-Nicolson scheme on the left and for the Box

scheme on the right. We indicate auxiliary points with circles.

Using λ = k/h and µ = k/h2 we rewrite (6.4):

(
Ḡm −Gm

)
+ λ

4

(
F̄m+1 − F̄m−1 − Fm−1 + Fm+1

)
=

µ
4

[
(H̄m+1 + H̄m)(W̄m+1 − W̄m)− (H̄m + H̄m−1)(W̄m − W̄m−1)

]
+

µ
4

[(Hm+1 + Hm)(Wm+1 −Wm)− (Hm + Hm−1)(Wm −Wm−1)] +
k
2

(
Ψ̄m + Ψm

)
.

(6.5)
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In the general case H, F , G and Ψ are non-linear functions of W . In order to solve

these equations we use Newton’s method, which consists in linearizing H, F , G and Ψ for

the time (n + 1) over an approximate solution W̄ (l). The next approximation is defined by

W̄ (l+1) = W̄ (l) + ∆W (l); we will use ∆W (l) as the unknown rather than W (l):

Ḡ(l+1)
m = Ḡ(l)

m + (DW Ḡ)(l)
m ∆W (l)

m , Ḡ
(l+1)
m+1 = Ḡ

(l)
m+1 + (DW Ḡ)

(l)
m+1∆W

(l)
m+1, (6.6)

and proceed similarly for F , H and Ψ. In order to simplify notation we will write ∆W instead

of ∆W (l). Linearizing we rewrite (6.5) as:

(
Ḡ

(l)
m + (DW Ḡ)

(l)
m ∆Wm −Gm

)
+

λ
4

(
F̄

(l)
m+1 + (DW F̄ )

(l)
m+1∆Wm+1 − F̄

(l)
m−1 − (DW F̄ )

(l)
m−1∆Wm−1 − Fm−1 + Fm+1

)
=

µ
4
(H̄

(l)
m+1 + (DW H̄)

(l)
m+1(∆Wm+1) + H̄

(l)
m + (DW H̄)

(l)
m (∆Wm))

(W̄
(l)
m+1 + ∆Wm+1 − W̄

(l)
m −∆Wm)−

µ
4
(H̄

(l)
m + (DW H̄)

(l)
m (∆Wm) + H̄

(l)
m−1 + (DW H̄)

(l)
m−1(∆Wm−1))

(W̄
(l)
m + ∆Wm − W̄

(l)
m−1 −∆Wm−1)+

µ
4

[(Hm+1 + Hm)(Wm+1 −Wm)− (Hm + Hm−1)(Wm −Wm−1)] +
k
2

(
Ψ̄

(l)
m + (DW Ψ̄)

(l)
m ∆Wm + Ψm

)
.

(6.7)

One has to notice that DW H̄ is a tri-linear form. For example, (DW H̄)
(l)
m (∆Wm) · W̄ (l)

m is a

vector, and (DW H̄)
(l)
m (∆Wm)·W̄ (l)

m is written as 〈(DW H̄)
(l)
m , ·, W̄ (l)

m 〉∆Wm when necessary. Using

this notation we rewrite the system (6.7) as:

[
−λ

4
(DW F̄ )

(l)
m−1 − µ

4
(H̄

(l)
m + H̄

(l)
m−1) + µ

4
〈(DW H̄)

(l)
m−1, ·, (W̄ (l)

m − W̄
(l)
m−1)〉

]
∆Wm−1+

[
(DW Ḡ)

(l)
m + µ

4
(H̄

(l)
m + H̄

(l)
m+1 + H̄

(l)
m + H̄

(l)
m−1)−

µ
4
〈(DW H̄)

(l)
m , ·, (W̄ (l)

m+1 − 2W̄
(l)
m + W̄

(l)
m−1)〉 − k

2
(DW Ψ̄)m

]
∆Wm+

[
λ
4
(DW F̄ )

(l)
m+1 − µ

4
(H̄

(l)
m + H̄

(l)
m+1)− µ

4
〈(DW H̄)

(l)
m+1, ·, (W̄ (l)

m+1 − W̄
(l)
m )〉

]
∆Wm+1 =

−(Ḡ
(l)
m −Gm)− λ

4
(F̄

(l)
m+1 − F̄

(l)
m−1 + Fm+1 − Fm−1)+

µ
4

[
(H̄

(l)
m+1 + H̄

(l)
m )(W̄

(l)
m+1 − W̄

(l)
m )− (H̄

(l)
m + H̄

(l)
m−1)(W̄

(l)
m − W̄

(l)
m−1)

]
+

µ
4

[(Hm+1 + Hm)(Wm+1 −Wm)− (Hm + Hm−1)(Wm −Wm−1)] + k
2

[
Ψ̄

(l)
m + Ψm

]
.

(6.8)
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The system (6.8) ia s block tridiagonal linear system of the form:




B2 C2 0
. . .

Am Bm Cm

. . .

0 AM−1 BM−1




(M−2)×(M−2)




∆W2

...

∆Wm

...

∆WM−1




M−2

=




T2

...

Tm

...

TM−1




M−2

. (6.9)

Assuming the coefficient matrix is nonsingular, this system can be solved with the method

explained in Section 6.1.4 were the blocks are given by:

Am =
[
−λ

4
(DW F̄ )

(l)
m−1 − µ

4
(H̄

(l)
m + H̄

(l)
m−1) + µ

4
〈(DW H̄)

(l)
m−1, ·, (W̄ (l)

m − W̄
(l)
m−1)〉

]
, (6.10)

Bm =
[
(DW Ḡ)

(l)
m + µ

4
(H̄

(l)
m−1 + 2H̄

(l)
m + H̄

(l)
m+1)−

µ
4
〈(DW H̄)

(l)
m , ·, (W̄ (l)

m+1 − 2W̄
(l)
m + W̄

(l)
m−1)〉 − k

2
(DW Ψ̄)m

]
,

(6.11)

Cm =
[

λ
4
(DW F̄ )

(l)
m+1 − µ

4
(H̄

(l)
m + H̄

(l)
m+1)− µ

4
〈(DW H̄)

(l)
m+1, ·, (W̄ (l)

m+1 − W̄
(l)
m )〉

]
, (6.12)

Tm = −(Ḡ
(l)
m −Gm)− λ

4
(F̄

(l)
m+1 − F̄

(l)
m−1 + Fm+1 − Fm−1)+

µ
4

[
(H̄

(l)
m+1 + H̄

(l)
m )(W̄

(l)
m+1 − W̄

(l)
m )− (H̄

(l)
m + H̄

(l)
m−1)(W̄

(l)
m − W̄

(l)
m−1)

]
+

µ
4

[(Hm+1 + Hm)(Wm+1 −Wm)− (Hm + Hm−1)(Wm −Wm−1)] + k
2

[
Ψ̄

(l)
m + Ψm

]
.

(6.13)

The terms T2 and TM−1 are a somewhat different: in order to obtain T2 one has to substitute

W1, H1 by Wl, Hl and for TM−1 one has to substitute WM , HM by Wr, Hr respectively. The

terms W1, H1 and Wr, Hr are left and right Dirichlet boundary conditions.

Newton’s method is applied to the system (6.9) until ||∆W || < εC/||W ||, where εC is a

tolerance value; here we use the Euclidean norm || · ||.

Stability and accuracy

Usually, it is difficult to show stability of finite difference schemes for non-linear systems. In

[47] it was shown that Crank-Nicolson scheme is stable when applied to certain linear partial

differential equations with constant coefficients. One has to notice that is not our case. Also

in [47] one can find that this scheme has second order of accuracy in space and in time.
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6.1.2 Box scheme

As it will be shown in Section 6.2, the classical Crank-Nicolson scheme as described in Section

6.1.1 cannot be applied to the system (2.23)-(2.26) because of the nature of equation (2.25)

in the context of whole system. We are saying that v is not an evolutionary variable, i.e., the

equation we have for v does not provide its time derivative. The ensuing difficulty is explained

in detail in Section 6.2.1. To solve this difficulty, we use the second order accuracy Box scheme

for the following kind of equation, see [33, 42]:

∂

∂t
G(W ) +

∂

∂x
F (W ) = Ψ(W ). (6.14)

For the solution of the equation (6.14) we will use an implicit box scheme centered at the

point (m + 1/2, n + 1/2), see Figure 6.1, right. This scheme can be solved almost explicitly.

Following the notation introduced in Section 6.1 and taking into account the right stencil in

Figure 6.1 we see that (6.14) at position (m + 1/2, n + 1/2) can be approximated by:

1

2

(
∂G(W )

∂t

∣∣∣∣
n+1/2

m

+
∂G(W )

∂t

∣∣∣∣
n+1/2

m+1

)
+

1

2

(
∂F (W )

∂x

∣∣∣∣
n

m+1/2

+
∂F (W )

∂x

∣∣∣∣
n+1

m+1/2

)
=

=
1

4

(
Ψ|nm + Ψ|nm+1 + Ψ|n+1

m + Ψ|n+1
m+1

)
.

(6.15)

Approximating the derivatives we obtain a second order accuracy scheme:

1
2k

(
Ḡm + Ḡm+1 −Gm −Gm+1

)
+ 1

2h

(
F̄m+1 − F̄m − Fm + Fm+1

)
=

1
4

(
Ψ̄m+1 + Ψ̄m + Ψm + Ψm+1

)
.

(6.16)

Looking at Figure 6.1 one realizes that the system (6.16) with boundary conditions at the left

can be solved at time level (n + 1) from left to right. That is why we construct Newton’s

method for solving system (6.16) at the point (m + 1, n + 1). The iteration using Newton’s

method is analogous to that presented in Section 6.1.1, i.e., W̄ (l+1) = W̄ (l) + ∆W ; we start the

iteration with W̄
(0)
m+1 = Wm+1. Let us assume that we know the iterate solution W̄ l

m+1 for time

(n + 1) and the solution W̄m at (m,n + 1), then we can linearize the equation (6.16) around

W̄
(l)
m+1, obtaining:

1
2k

(
Ḡm + Ḡ

(l)
m+1 + (DW Ḡ)

(l)
m+1∆Wm+1 −Gm −Gm+1

)
+

1
2h

(
F̄

(l)
m+1 + (DW F̄ )

(l)
m+1∆Wm+1 − F̄m − Fm + Fm+1

)
=

1
4

(
Ψ̄

(l)
m+1 + (DW Ψ̄)

(l)
m+1∆Wm+1 + Ψ̄m + Ψm + Ψm+1

)
.

(6.17)
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System (6.17) can be rewritten as follows, with λ = k/h:
(
(DW Ḡ)

(l)
m+1 + λ(DW F̄ )

(l)
m+1 − k

2
(DW Ψ̄)

(l)
m+1

)
∆Wm+1 = k

2

(
Ψ̄

(l)
m+1 + Ψ̄m + Ψm + Ψm+1

)

−
(
Ḡm + Ḡ

(l)
m+1 −Gm −Gm+1

)
− λ

(
F̄

(l)
m+1 − F̄m − Fm + Fm+1

)
.

(6.18)

We emphasize that the Box scheme is valid only if the left boundary condition is given. In

such a case it is implicit, however it can be solved by solving many small systems, so it is

computationally advantageous.

In [33], general stability of this scheme for linear equation is proved and some implementation

particularities are discussed. A more detailed discussion of application of the Box scheme to

system (6.14) can be found in [34].

6.1.3 Boundary conditions

In this section we show two possibilities for boundary conditions and discuss it implementation.

In our simulations we need to use both Dirichlet and Neumann boundary conditions.

Dirichlet B.C.

The Dirichlet condition consists in defining the value of the depending variable on the boundary.

Numerically for the system of the form (6.1) or (6.14) this condition corresponds to:

W (x1) = WL; W (xM) = WR, (6.19)

where WL and WR are given values. Thus we have M −2 unknowns and thus at each Newton’s

iteration we need to solve the linear system of M −2 equations, where the boundary conditions

will appear only in the first and the last blocks of the block matrix in Newton’s method (6.9).

Neumann B.C.

The Neumann boundary condition consists of defining flow condition at the boundary of the

domain of interest (e.g at the points x1 and xM). For the one-dimensional numerical schemes

it will be
∂W

∂x
(x1) = ẆL;

∂W

∂x
(xM) = ẆR,

where ẆL and ẆR are given values. In order to use Neumann boundary conditions numerically

we use the ghost point method. It consists of creating one ghost (fictitious) point for each
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boundary, indicated by x0 at the left and xM+1 at the right. Now we calculate the value of

W (x0) and W (xM+1) at each time step so that the discretization gives the value of derivatives

automatically. For example, if we use the Crank-Nicolson scheme the derivatives are, with

second order accuracy:

∂W

∂x
(x1) =

W (x2)−W (x0)

2h
= ẆL;

∂W

∂x
(xM) =

W (xM+1)−W (xM−1)

2h
= ẆR. (6.20)

Thus the function value at the ghost point xM+1 is W (xM+1) = 2hẆR + W (xM−1). The

procedure for the point x0 is analogous. This method is easy to implement because in Newton’s

method we can use the same matrices as for Dirichlet boundary conditions. The only difference

will be the dimension of the problem, which is M instead of M − 2.

Finally one has to notice that the same problem can use different boundary conditions for

the left and right sides.

6.1.4 Solution of the block tridiagonal system

We will apply the standard LU decomposition to solve the following system with the assumption

that det Bm 6= 0 for m = 1, 2, . . . , M ,



B1 C1 0 · · · 0

A2 B2 C2 · · · 0

0
. . . . . . . . .

...

0 · · · AM−1 BM−1 CM−1

0 · · · 0 AM BM







X1

...

XM


 =




T1

...

TM


 . (6.21)

This system is equivalent to:



B̄1 C1 0 · · · 0

0 B̄2 C2 · · · 0

0
. . . . . . . . .

...

0 · · · 0 B̄M−1 CM−1

0 · · · 0 0 B̄M







X1

...

XM


 =




T̄1

...

T̄M


 , (6.22)

where

B̄1 = B1, T̄1 = T1, (6.23)

and for 1 < m < M :

B̄m = Bm − AmB̄−1
m−1Cm−1, T̄m = Tm − AmB̄−1

m−1Tm−1. (6.24)
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The system (6.22) can be solved by backward substitution:

B̄MXM = T̄M , (6.25)

and for 1 < m < M we have:

B̄mXm = T̄m − Cm−1T̄m−1. (6.26)

6.2 Limitations of the Crank-Nicolson scheme

In this section we explain why the Crank-Nicolson scheme cannot be applied directly to the

system of equations (2.23)-(2.26). In the next section we propose an alternative scheme for this

system.

6.2.1 Application to the physical model

In order to apply the Crank-Nicolson scheme to the system (2.23)-(2.26) we need to find the

blocks Am, Bm and Cm given in (6.10)-(6.13) with W , G, F , H and Ψ from (6.2). The

derivatives DW G and DW F are:

DW G =




1 0 0 0

−φY/θ2 φ/θ 0 0

−φ/θ2 0 0 0

0 0 1 0




, DW F =




0 0 0 a

−vY/θ2 v/θ 0 Y/θ

−v/θ2 0 0 1/θ

0 0 0 0




. (6.27)

The derivative of H is a trilinear form, so we can obtain a formula when it is applied on a

vector U = (U1, U2, U3, U4)
T :

〈DW H, V, U〉 =




0 0 0 0

0 − 1
Leθ2 V1 0 0

0 0 0 0

0 0 0 0







U1

U2

U3

U4




=




0 0 0 0

− 1
Leθ2 U2 0 0 0

0 0 0 0

0 0 0 0







V1

V2

V3

V4




, (6.28)

where V = (V1, V2, V3, V4)
T , so we will use the notation 〈DW H, ·, U〉 to mean

〈DW H, ·, U〉 =




0 0 0 0

− 1
Leθ2 U2 0 0 0

0 0 0 0

0 0 0 0




. (6.29)
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Substituting (6.2) and (6.27)-(6.29) into (6.10)-(6.13) we obtain:

Am =




−µ
2

0 0 λa
4

λv
(l)
m−1Y

(l)
m−1

4(θ
(l)
m−1)2

− µ(Y
(l)
m −Y

(l)
m−1)

4Le(θ
(l)
m−1)2

−λv
(l)
m−1

4(θ
(l)
m−1)2

− µ
4Le

(
1

θ
(l)
m

+ 1

θ
(l)
m−1

)
0

−λY
(l)
m−1

4θ
(l)
m−1

λv
(l)
m−1

4(θ
(l)
m−1)2

0 0 −λ

4θ
(l)
m−1

0 0 0 0




, (6.30)

Bm =




1 + µ 0 0 0

B1 1 B1 2 0 0

− φ

(θ
(l)
m )2

0 0 0

0 0 1 0



− kαe−γ/θ(l)

2




qY (1−η)γ
θ2 q(1− η) −qY 0

−µY (1−η)
θ2 −µ(1− η) −µY 0

µgY (1−η)

θ2 µg(1− η) µgY 0
Y (1−η)

θ2 (1− η) −Y 0




(l)

m

, (6.31)

where

B1 1 = − φY
(l)
m

(θ
(l)
m )2

+
µ(Y

(l)
m−1 − 2Y

(l)
m + Y

(l)
m+1)

4Le(θ
(l)
m )2

, B1 2 =
φ

θ
(l)
m

+
µ

4Le

(
1

θ
(l)
m−1

+
2

θ
(l)
m

+
1

θ
(l)
m+1

)
, (6.32)

Cm =




−µ
2

0 0 λa
4

−λv
(l)
m+1Y

(l)
m+1

4(θ
(l)
m+1)

2
+

µ(Y
(l)
m+1−Y

(l)
m )

4Le(θ
(l)
m+1)

2

λv
(l)
m+1

4θ
(l)
m+1

− µ
4Le

(
1

θ
(l)
m

+ 1

θ
(l)
m+1

)
0

λY
(l)
m+1

4θ
(l)
m+1

− λv
(l)
m+1

4(θ
(l)
m+1)

2
0 0 λ

4θ
(l)
m+1

0 0 0 0




. (6.33)

Also

Tm =




θm − θ
(l)
m

φ(Ym

θm
− Y

(l)
m

θ
(l)
m

)

φ( 1
θm
− 1

θ
(l)
m

)

ηm − η
(l)
m



− λ

4




a(v
(l)
m+1 − v

(l)
m−1 + vm+1 − vm−1)

(
v
(l)
m+1Y

(l)
m+1

θ
(l)
m+1

)− (
v
(l)
m−1Y

(l)
m−1

θ
(l)
m−1

) + (vm+1Ym+1

θm+1
)− (vm−1Ym−1

θm−1
)

(v
θ
)m + (v

θ
)m+1

0




+

k
2




q

−µ

µg

1




(Φ̄
(l)
m + Φm) + µ

4




T1

T2

0

0




,

(6.34)

where

T1 = 2(θm−1 − 2θm + θm+1) + 2(θ
(l)
m−1 − 2θ(l)

m + θ
(l)
m+1), (6.35)
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T2 = 1
Le

(
1

θm+1
+ 1

θm

)
(Ym+1 − Ym)−

(
1

θm
+ 1

θm+1

)
(Ym − Ym−1)+

1
Le

(
1

θm+1
+ 1

θm

)(l)

(Ym+1 − Ym)(l) −
(

1
θm

+ 1
θm+1

)(l)

(Ym − Ym−1)
(l).

(6.36)

Now we notice that the last column of the matrix Bm in (6.31) vanishes, so Bm is singular

and the methods described in Section 6.1.4 cannot be applied here. This problem occurs because

the original system (2.23)-(2.26) is not “complete” as a system of conservation laws, i.e., there

is no time evolution term for v. We believe this problem cannot be circumvented by considering

other finite difference schemes similar to the Crank-Nicolson scheme.

6.3 The hybrid finite difference scheme

In this section we describe a numerical method for the solution of the system (2.23)-(2.26). The

solution of this system through finite differences presents two difficulties.

First, we need to obtain the long time profile of the combustion wave, which can take a

long simulation time to form. Explicit schemes can only use very small time steps because of

the CFL restriction. Implicit schemes allow for larger time steps and may be unconditionally

stable, but are computationally more expensive. As the quality of the solution is tied to its

stability, we choose to solve the system implicitly. We avoided making any compromise between

speed and accuracy by performing our simulations using a high performance parallel solver for

the large linear systems to be solved, see details in [28].

Second, the system (2.23)-(2.26) does not possess any evolution term for the variable v,

which represents the gas speed. This particularity does not allow the usage of any implicit

symmetric three-point finite difference scheme, such as Crank–Nicolson, as has been shown in

Section 6.2. The equation (2.25) requires the Box scheme.

Instead of using the Box scheme on the whole system, we can use a hybrid scheme which

consists in applying the Crank–Nicolson discretization on equations (2.23), (2.24), (2.26) and

the Box discretization on (2.25). The resulting scheme is fully implicit.

The notation used in this section is different from that used in the rest of this chapter.

This is so because here we follow the notation used in the documentation of the software for

simulations of systems similar to (2.23)-(2.26) developed in the Fluid Dynamics Laboratory at

IMPA [29]. We apologize to the reader for the inconvenience.

The equations (2.23), (2.24) and (2.26) can be written as a system of three equations of the
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form:
∂h(u)

∂t
+

∂f(u)

∂x
=

∂

∂x

(
g(u)

∂u

∂x

)
+ q(u), (6.37)

where the 4-component variable u and the functions h, f , g, h are equivalent to the variable

W and functions G, F , H, Ψ from (6.1) respectively. On the other hand, equation (2.25) can

be written as:
∂h̃(u)

∂t
+

∂f̃(u)

∂x
= q̃(u). (6.38)

We denote with tilde the function that follow the Box scheme discretization, and functions

without tilde follows the Crank-Nicolson discretization. So for (6.37), we use the Crank-Nicolson

discretization analogous to (6.4):

hn+1
i

k
+

fn+1
i+1 − fn+1

i−1

4h
−

1

4h2

(
(gn+1

i+1 + gn+1
i )un+1

i+1 − (gn+1
i+1 + 2gn+1

i + gn+1
i )un+1

i + (gn+1
i + gn+1

i−1 )un+1
i−1

)− qn+1
i

2

=
hn

i

k
− fn

i+1 − fn
i−1

4h
+

1

4h2

(
(gn

i+1 + gn
i )un

i+1 − (gn
i+1 + 2gn

i + gn
i )un

i + (gn
i + gn

i−1)u
n
i−1

)
+

qn
i

2
.

(6.39)

For (6.38), we use the Box scheme analogous to (6.16):

h̃n+1
i+1 + h̃n+1

i

2k
+

f̃n+1
i+1 − f̃n+1

i

2h
− qn+1

i+1 + qn+1
i

4
=

h̃n
i+1 + h̃n

i

2k
− f̃n

i+1 − f̃n
i

2h
+

q̃n
i+1 + q̃n

i

4
. (6.40)

We group the LHS and RHS terms into the functions F (corresponding to time step n+1) and

y (corresponding to time step n) respectively, obtaining:

G = 0, (6.41)

where

G(un
1 , . . . , u

n
M , un+1

1 , . . . , un+1
M ) ≡ F(un+1

1 , . . . , un+1
M )− y(un

1 , . . . , u
n
M). (6.42)

Now Newton’s method for solving the problem (6.41) can be written in the form analogous to

(6.9) with δu corresponding to ∆W as:

u(l+1) = u(l) + δu, where

[
∂G(u)

∂u

]

u(l)

δu = −G(u(l)). (6.43)

We need to calculate the matrix ∂G(u)
∂u

. Inspecting (6.39)-(6.40) we see that it is a system with

block tridiagonal form with blocks of 4 lines, see [29] for details. The first three lines of each
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block involve the matrices:

Ci =
∂Gi

∂ui+1

=
f ′i+1

4h
− g′i+1(ui+1 − ui) + gi+1 + gi

4h2
;

Ai =
∂Gi

∂ui

=
h′i
k
− g′i(ui+1 − 2ui + ui−1)− gi+1 − 2gi − gi−1

4h2
− q′i

2
;

Bi =
∂Gi

∂ui−1

= −f ′i−1

4h
− g′i−1(ui−1 − ui) + gi + gi−1

4h2
,

(6.44)

where we denote h′, f ′, g′ and q′ the matrices dh/du, df/du, dg/du and dq/du. The last line of

each block has a different form:

C̃i =
∂G̃i

∂ui+1

=
h̃′i+1

2k
+

f̃ ′i+1

2h
− q̃′i+1

4
;

Ãi =
∂G̃i

∂ui

=
h̃′i
2k
− f̃ ′i

2h
− q̃′i

4
;

B̃i =
∂G̃i

∂ui−1

= 0.

(6.45)

All the blocks are calculated for the generic l-th iteration of Newton’s method to obtain the

solution at time step (n+1). For the system (2.23)-(2.25) we recall that:

u =




θ

Y

η

v




, h =




θ

φY/θ

η

φ/θ




, f =




av

vY/θ

0

v/θ




, g =




1 0 0 0

0 1
Leθ

0 0

0 0 0 0

0 0 0 0




, q =




q

−µ

1

µg




Φ. (6.46)

If we put the line numbers as [·], schematically the blocks A, B and C will be:

Ci =




· · · C
[1]
i · · ·

· · · C
[2]
i · · ·

· · · C
[3]
i · · ·

· · · C̃
[4]
i · · ·




, Ai =




· · · A
[1]
i · · ·

· · · A
[2]
i · · ·

· · · A
[3]
i · · ·

· · · Ã
[4]
i · · ·




, Bi =




· · · B
[1]
i · · ·

· · · B
[2]
i · · ·

· · · B
[3]
i · · ·

· · · B̃
[4]
i · · ·




,

where the indices [1], [2], [3] corresponds to each of the three lines in (6.44) and the index [4]

correspond to (6.45).

6.3.1 Inicialization particularities

Equation (2.25) has to be taken into account to initialize the variable v at time zero. In this

section, we show a simple way to initialize the variable v using a one time step discretization.
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For example, we can use a central-space forward-time scheme. In this case equation (2.25)

gives:
φ

k

(
1

θ1
m

− 1

θ0
m

)
+

1

2h

(
v0

m+1

θ0
m+1

− v0
m−1

θ0
m−1

)
= µgΦ

0
m. (6.47)

Assuming that the temperature at the first time step do not change much we consider θ1
m = θ0

m,

obtaining:
v0

m+1

θ0
m+1

− v0
m−1

θ0
m−1

= 2hµgΦ
0
m = 2hµgαY 0

m(1− η0
m) exp(−γ/θ0

m). (6.48)

Thus, we can initialize v0 to be compatible with the data θ0, Y 0 and η0 as functions of x.

6.3.2 Application to the physical model

In the current version of software the function g(u) in (6.37) corresponding to the viscosity

term has to be constant. Fortunately the only component of g that is not constant for the

model we are considering corresponds to the term g2,2 = ρ/Le. Using (2.20) we transform it

into g2,2 = 1/(θLe). As the function θ varies in small interval 1 < θ < θb, in our simulations

we use 1/(θbLe) ≤ g2,2 ≤ 1/(Le). We made simulations for g2,2 equal to the maximum and the

minimum value in the previous inequality. Since the results of these simulations were visually

indistinguishable we make g2,2 constant, corresponding to θ = (1 + θb)/2.

As explained, we consider g′ = 0 and gi = gi+1 = gi−1 = g. Thus for the lines r = 1, 2, 3

(corresponding to (2.23), (2.24), (2.26)):

C
[r]
i =

f
[r]′
i+1

4h
− g[r]

2h2
; A

[r]
i =

h
[r]′
i

k
− q

[r]′
i

2
; B

[r]
i = −f

[r]′
i−1

4h
− g[r]

2h2
. (6.49)

For the line 4 (corresponding to (2.25)):

C
[4]
i =

h
[4]′
i+1

2k
+

f
[4]′
i+1

2h
− q

[4]′
i+1

4
; A

[4]
i =

h
[4]′
i

2k
− f

[4]′
i

2h
− q

[4]′
i

4
; B

[4]
i = 0. (6.50)

The matrices used above are:

h′ =




1 0 0 0

−φY/θ2 φ/θ 0 0

−φ/θ2 0 0 0

0 0 1 0




, f ′ =




0 0 0 a

−vY/θ2 v/θ 0 Y/θ

−v/θ2 0 0 1/θ

0 0 0 0




. (6.51)
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For the combustion rate we use Υ = α exp(−γ/θ) (then Φ = Y (1− η)Υ):

q′ =




qγ(1− η)Y/θ2 q(1− η) −qY 0

−µγ(1− η)Y/θ2 −µ(1− η) µY 0

γ(1− η)Y/θ2 (1− η) −Y 0

µgγ(1− η)Y/θ2 µg(1− η) −µgY 0




Υ. (6.52)

For y, in Newton’s method all functions are calculated at the time n, we use the equation (6.53)

for r = 1, 2, 3 and the equation (6.54) for r = 4:

y[r] =
h

[r]
i

k
− f

[r]
i+1 − f

[r]
i−1

4h
+

q
[r]
i

2
, (6.53)

y[3] =
h̃

[4]
i+1 + h̃

[4]
i

2k
− f̃

[4]
i+1 − f̃

[4]
i

2h
+

q̃
[4]
i+1 + q̃

[4]
i

4
. (6.54)

Our simulations for the parameter values taken from Table 2.3 can be seen in Figures 6.2

and 6.3. Notice that for this choice of parameter values we are inside the region where ε is small

as plotted in Figure 4.2. We studied the interval [0, 104] with 103 grid points and the activation

energy constant γ = 2.0. The initial data for the simulation is shown on the left side of Figure

6.2. Figure 6.3 shows the profile of the numerical solution of the system (2.23)-(2.26) at time

t = 2 · 107. We observe the presence of the thermal wave (the small increment in the variable θ

corresponding to the temperature near ξ = 2000) and the combustion wave. The thermal and

combustion waves shown in Figure 6.3 appear in the Riemann solution of the system (2.23)-

(2.26) as schematically represented in Figure 5.2. On the right side of Figure 6.2 we show the

combustion wave taken from Figure 6.3 on the same scale as the quasi-stationary approximation

(4.24). This Figure shows reasonable agreement between the simulated combustion wave and

that obtained by using singular perturbation technique. The discrepancy between two waves

is not caused by the difference between the zero order approximation and the exact solution

because in this case the correction parameter from (4.21) is ε ≈ 10−4. We speculate that the

discrepancy is due to the long time that the solution requires to converge to its traveling form.

The simulation of the system (2.23)-(2.26) with parameter values taken from Table 2.2 for

different initial data are plotted in Figures 6.4 and 6.5. In these simulations we use fixed time

step length equal to 1, thus the number of time steps indicated in each figure coincides with

the dimensionless time of the simulation. Analogously to Figure 6.3 one observes the formation

of the thermal and combustion waves.
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Figure 6.2: In this simulation using the hybrid scheme we use initial data as shown on the left.

On the right we compare the combustion wave profile at time t = 2 · 107 obtained through the

numerical simulation from Figure 6.3 (circles) with the semi-analytical one obtained solving

(4.24) (lines). Here we use parameter values from Table 2.3.

2000 4000 6000 8000 10000

0

0.5

1

1.5

2

ξ

 

 

T

Y
η

Figure 6.3: Numerical simulation using the hybrid method for system (2.23)-(2.26) at dimen-

sionless time t = 2 · 107 showing the formation of thermal and combustion waves (Y and η

coincide). The initial data is plotted on the left side in Figure 6.2. Here we use parameter

values from Table 2.3, except γ = 2.
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The parameter θb (temperature of the combustion wave) allows an easy comparison between

the semi-analytical solution and the numerical simulation. We find its exact value by solving

the corresponding Riemann problem, obtained in second equation in (4.16), substituting the

parameter values from Table 2.2; it is θb = 2.0651. Of course, this value coincides with that

obtained by using the zero order approximation as plotted in Figure 4.3 (from the output data

we obtain θb = 2.0651).

Observing Figures 6.4 and 6.5 one can see that the combustion wave profile requires a long

time to stabilize, this is why we performed two simulations. The first one (plotted in Figure

6.4) started with the initial data for the variable θ as 2. This simulation yields a combustion

wave temperature equal to 2.069. The second (plotted in Figure 6.4) started with the initial

data for the variable θ as 2.5. This simulation yields a combustion wave temperature equal

to 2.07. As we see the numerical simulation supports the theoretical result with relative error

close to 0.2%.

6.4 Conclusions

In this chapter we developed a hybrid finite difference scheme to solve numerically the system

(2.23)–(2.26), which cannot be solved by the Crank-Nicolson scheme.

The combustion wave profile obtained numerically was compared to the zero-order approx-

imation of the analytical solution from Chapter 4 in Figure 6.2 showing good agreement and

supporting the usage of singular perturbation method.

The simulations plotted in Figures 6.4 and 6.5 show the formation of the thermal and

combustion waves as predicted theoretically through the solution of corresponding Riemann

problem illustrated in Figure 5.2. Finally, the value for the combustion temperature θb obtained

solving the Riemann problem agrees well with the value obtained by numerical simulations.

The results discussed in this Chapter were published in part in [16, 17].
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Figure 6.4: Numerical simulation using the hybrid method for system (2.23)-(2.26) with param-

eter values from Table 2.2 showing the formation of thermal and combustion waves. Figures (a)

- initial data, (b) - after 30.000 time steps, (c) - after 200.000 time steps and (d) - after 510.000

time steps. Initial value for the variable θ at the injection end was taken as 2, the thermal wave

is almost indistinguishable because of the diffusion effect. Notice that the combustion wave has

a thin reaction layer where all the oxygen and fuel are consumed and thick thermal layer where

only thermal conduction occurs. Compare with Figure 6.5.
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Figure 6.5: Numerical simulation using the hybrid method for system (2.23)-(2.26) with param-

eter values from Table 2.2 showing the formation of thermal and combustion waves. Figures

(a) - initial data, (b) - after 50.000 time steps, (c) - after 200.000 time steps and (d) - after

510.000 time steps. Initial value for the variable θ at the injection end was taken as 2.5, the

thermal wave is smooth due the diffusion effect. Notice that the combustion wave has a thin

reaction layer where all the oxygen and fuel are consumed and thick thermal layer where only

thermal conduction occurs. Compare with Figure 6.4.
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Chapter 7

Stability analysis of combustion waves

In this chapter we introduce a simplified model for gas-solid combustion, which can be obtained

from (2.16)-(2.20). There are reasons to do so. (1) We do not know how to perform the stability

analysis of system (2.16)-(2.20). (2) Other simplifications described in Remark 7.2 have been

subject to mathematical analysis, yet they are not physical as they consider infinite supply of

oxygen and absolute zero temperature inside the reservoir, our simpler model is more physical.

(3) As shown in Chapter 6, the numerical simulations for system (2.16)-(2.20) are not easy.

Most importantly, the simplified model is more likely to be amenable to analysis.

The simplifications we will perform consist in considering the Lewis number so high that

1/Le can be replaced by 0. Instead of the ideal gas law (2.20) we assume that ρ is constant. It

follows that the gas speed v > 0 is also constant. We introduce by c = av. Thus the system

(2.16)-(2.20) can be rewritten as follows. The dependent variables are temperature θ, oxygen

fraction Y and fuel χ = 1− η, where η is the dimensionless fuel depth defined in Section 2.1:

∂θ

∂t
+ c

∂θ

∂x
=

∂2θ

∂x2
+ qΦ, (7.1)

∂Y

∂t
+ v

∂Y

∂x
= −µΦ, (7.2)

∂χ

∂t
= −Φ. (7.3)

The combustion rate is described by Arrhenius’ law:

Φ = KY χe−γ/θ. (7.4)

In Chapters 4 and 5 we find the combustion wave profile in the form of traveling wave

for certain ISC models. In Chapter 6 we present numerical evidence that these waves exist
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supporting our analysis. However, stability analysis of the combustion waves is such a delicate

issue that a mathematical study is necessary. Unfortunately, the system (2.16)-(2.20) is difficult

to work with, that is why in this chapter we present our efforts towards proving the stability

of the combustion wave using the simplified model.

In Section 7.1 we apply the singular perturbation method to obtain the combustion wave

profile for the simple model. In Section 7.2 we provide heuristic calculation for the continuous

spectrum of the perturbation around the approximate solution obtained in Section 7.1. Finally,

in Section 7.3 we summarize all we did in this chapter.

Remark 7.1 (Non-combustion waves) It is easy to perform the analysis of the hyperbolic

behavior of the system (7.1)-(7.3) as we did in Section 5.4. The characteristic speeds and

corresponding characteristic modes of the resulting system are:

λθ = c; (1, 0, 0)T ;

λY = v; (0, 1, 0)T ;

λχ = 0; (0, 0, 1)T .

(7.5)

We can see that the Riemann problem possesses three non-combustion contact waves. The

slowest one is an immobile fuel wave λχ = 0, the intermediate one is a thermal wave with speed

λθ = c and the fastest one is the oxygen composition wave with speed λY = v.

Remark 7.2 (Simplest model) There is another possible way to simplify the model (2.16)-

(2.20). We can make the previously mentioned simplifications except the Lewis number is not

considered large. Another simplification is to assume infinite availability of fuel (equivalently

one can consider infinite availability of oxygen). In this case the variables are θ - temperature

and Y - concentration of oxygen. There are two constants Le - Lewis number, β - reaction rate:

∂θ

∂t
=

∂2θ

∂x2
+ Y e−1/θ, (7.6)

∂Y

∂t
=

1

Le

∂2Y

∂x2
− βY e−1/θ. (7.7)

This model has the following difficulty. The associated ODE system for traveling wave

possesses only two equilibria, one for Y = 0 and another for θ = 0. From the physical point

of view considering θ = 0, or equivalently 0oK, does not make sense. However this model is

amenable to detailed mathematical analysis, see [6, 25].
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7.1 Co-flow combustion traveling wave

Of course the singular perturbation analysis as performed in Chapter 4 for the traveling wave

in the physical model is applicable to the simplified model (7.1)-(7.4) discussed here. Next we

obtain the zero-order approximation of the traveling wave solution of the system (7.1)-(7.3)

and compare it to the numerical solution.

7.1.1 Rankine-Hugoniot condition

Analogously to Chapter 4 we solve the Riemann problem with the following boundary conditions

for the combustion wave:

Left: θ−, Y− = 1, χ− = 0; (7.8)

Right: θ+, Y+ = 0, χ+ = 1. (7.9)

Let us assume that the variables θ, Y and χ from (7.1)-(7.3) depend only on ξ = x − V t,

i.e., with some abuse of notation we write θ = θ(ξ) = θ(x− V t), etcetera. The traveling wave

associated to (7.1) reads: 



−V θ̇ + cθ̇ = θ̈ + qΦ

−V Ẏ + vẎ = −µΦ

−V χ̇ = −Φ.

(7.10)

Here the dot represents derivatives with respect to ξ. After one time integration we have:

θ̇ + V θ − cθ + qV χ + K1 = 0; (7.11)

−V Y + vY + µV χ + K2 = 0; (7.12)

χ̇ =
1

V
Φ. (7.13)

Substituting the left boundary conditions (7.8) into (7.11)-(7.12) one obtains

(V − c)θ− + K1 = 0;

(v − V ) + K2 = 0.
(7.14)

Substituting the right boundary conditions (7.9) into (7.11)-(7.12) we get

(V − c)θ+ + qV + K1 = 0;

µV + K2 = 0.
(7.15)
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From (7.14)-(7.15):

K1 = (c− V )θ−; K2 = V − v; V =
v

1 + µ
; θ− = θ+ +

qv

v − c(1 + µ)
, (7.16)

where the last two equations correspond to the Rankine-Hugoniot relations. Notice that from

the third equation of (7.16) follows that V > 0.

7.1.2 Approximate profile for the combustion wave

Substituting (7.16) into (7.11)-(7.13) one obtains the following system of two differential equa-

tions and one algebraic equation describing the traveling wave solution:





θ̇ = (c− V )(θ − θ−)− qV χ;

χ̇ = 1
V

Φ;

Y = 1− χ.

(7.17)

As we already know, the zero-order approximation of the system (7.17) is (θ0(χ0), Y0(χ0), χ0),

such that: 



(c− V )(θ0 − θ−)− qV χ0 = 0;

Y0 = 1− χ0;

χ̇0 = 1
V

Φ(θ0, Y0, χ0),

(7.18)

where χ0 = χ0(ξ) and χ̃ = χ0(0). This system provides equations for θ0 and Y0 in terms of χ0

and an implicit equation for χ0 in terms of ξ:





θ0(ξ) = θ− +
qV χ0(ξ)

c− V
;

Y0(ξ) = 1− χ0(ξ);
Kξ

V
=

∫ χ0

χ̃

exp

(
γ(c− V )

(c− V )θ− + qV χ

)
dχ

χ(1− χ)
.

(7.19)

Defining

A =
θ−
γ

, B =
qV

γ(c− V )
, x̃ =

1

A + Bχ̃
, x0 =

1

A + Bχ0

(7.20)

the last equality can be written as:

Kξ

V
= e

1
A

(
E1

(
1

A
− x̃

)
− E1

(
1

A
− x0

))
− e

1
A+B

(
E1

(
1

A + B
− x̃

)
− E1

(
1

A + B
− x0

))
.

(7.21)

The equations (7.20) and (7.21) define χ0 = χ0(ξ) implicitly.

68



7.1.3 Numerical simulations

In this section we apply the Crank-Nicolson scheme with adaptative time step as described in

Section 6.1.1 to simulate the simplified combustion model given by the system (7.1)-(7.3) with

combustion rate (7.4). For the details about implementation see [28]. In this simulation we

use up to 10.000 grid points and to control numerical oscillations we add a small fixed diffusion

term in (7.2). We use the parameter values c = 0.2, q = 0.9, v = 1.2, K = 10−4, µ = 2 and

γ = 4.

The initial data for the simulation is shown on left side of Figure 7.1. We show the profile

of the numerical solution of the system (7.1)-(7.3) at time t = 2 · 107 on the right side in Figure

7.1. The formation of the thermal wave (near ξ = 5 · 106) and the combustion wave (near

ξ = 8 · 106) are clearly visible. These waves were predicted by hyperbolic analysis in Remark

7.1. Immediately after the thermal wave we see a small elevation in the variable θ: it is a

transient (not numerical) effect which disappears with time.

Figure 7.1: Numerical simulation using the Crank-Nicolson scheme with adaptative time step

for the system (7.1)-(7.3) with the parameter values c = 0.2, q = 0.9, v = 1.2, K = 10−4, µ = 2

and γ = 4. The initial data is plotted on the left. Simulation results after 2 · 107 time units

showing the formation of thermal and combustion waves are plotted on the right.

On the left side in Figure 7.2 we show the quasi-stationary approximation of the combustion

wave profile obtained by numerical integration of (7.19) with χ̃ = 0.5. On the right side in

Figure 7.2 we plot the combustion wave taken from Figure 7.1 on the same scale as the quasi-

69



Figure 7.2: Singular perturbation approximation (7.19) on the left and the combustion wave

profile obtained by Crank-Nicolson simulation from Figure 7.1 on the right. Both plots are on

the same scale. We use parameter values c = 0.2, q = 0.9, v = 1.2, K = 10−4, µ = 2 and γ = 4.

stationary approximation. Both plots are visually indistinguishable.

7.2 Perturbations of the approximate traveling wave

Let us consider the system (7.1)-(7.3) in traveling wave coordinates:





∂tθ − V ∂ξθ + c∂ξθ = ∂ξξθ + qΦ

∂tY − V ∂ξY + v∂ξY = −µΦ

∂tχ− V ∂ξχ = −Φ.

(7.22)

We can rewrite this system as:

∂tU + Lξ(U) = Ψ(U), (7.23)

where U = (θ, Y, χ)T , Lξ is a linear second order differential operator in ξ and Ψ is a general

source term. Now we recall that the singular perturbation for the solution U of the system

(7.23) yields U = U0 + εU∗ + O(ε2), where U0 and U∗ do not depend on t. Thus (7.23) can be

rewritten as:

ε∂tU∗ + Lξ(U0) + εLξ(U∗) = Ψ(U0) + εΨU(U0)U∗ + O(ε2). (7.24)
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Now we rename the first order approximation of the solution U1 = εU∗ obtaining:

∂tU1 + Lξ(U0) + Lξ(U1) = Ψ(U0) + ΨU(U0)U1 + O(|U1|2). (7.25)

We can rewrite it as:

(∂t + Lξ −ΨU(U0))U1 = Ψ(U0)− Lξ(U0) + O(|U1|2). (7.26)

Notice that since the zero-order approximation U0(ξ) satisfies the boundary conditions (7.8)

and (7.9), then U1(ξ) is a correction term; this correction term satisfies:

lim
ξ→±∞

U1(ξ) = 0. (7.27)

In what follows we replace the RHS of (7.26) by zero (this is equivalent to assuming that

the zero-order approximation satisfies the system (7.22)).

Remark 7.3 Notice that, as (7.24) shows, the RHS of (7.26) is not zero. In fact the zero-

order solution does not satisfy the system (7.22) exactly. However the singular perturbation in

Chapter 4 was derived by expanding the system (7.1) as power series in ε and then equating all

terms with the same order in ε. If this analysis is valid, the right hand side of (7.26) has order

ε2, so we neglect it relative to the left hand side, which has order ε.

Neglecting the O(ε2) terms and using U = U0 + U1, (7.22) in (7.26), where the right hand side

of equation (7.26) is replaced by zero, one obtains:





∂tθ1 − V ∂ξθ1 + c∂ξθ1 = ∂ξξθ1 + qΦθθ1 + qΦY Y1 + qΦχχ1

∂tY1 − V ∂ξY1 + v∂ξY1 = −µΦθθ1 − µΦY Y1 − µΦχχ1

∂tχ1 − V ∂ξχ1 = −Φθθ1 − ΦY Y1 − Φχχ1.

(7.28)

The functions Φθ, ΦY and Φχ depend on χ0:

Φθ =
γY0χ0

θ0(χ0)2
Υ(χ0); ΦY = χ0Υ(χ0); Φχ = Y0(χ0)Υ(χ0); Υ(χ0) = K exp

( −γ

θ0(χ0)

)
. (7.29)

where Φθ, ΦY and Φχ are functions of ξ using χ0 = χ0(ξ) that is given implicitly by equations

(7.20)-(7.21). The functions θ0(χ0) and Y0(χ0) are given in (7.19).
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7.2.1 Constructing the evolution operator

Now we assume that our variables (θ1, Y1, χ1) depend on t and ξ in the following way:

(θ1(t, ξ), Y1(t, ξ), χ1(t, ξ)) = eλt(θ̂1(ξ), Ŷ1(ξ), χ̂1(ξ)), (7.30)

where we are looking for real λ. In the following we will omit the hats, keep the subscript 1,

and substitute (7.30) into system (7.28), obtaining the eigenvalue ODE problem:





λθ1 + (c− V )dξθ1 = dξξθ1 + qΦθθ1 + qΦY Y1 + qΦχχ1

λY1 + (v − V )dξY1 = −µΦθθ1 − µΦY Y1 − µΦχχ1

λχ1 − V dξχ1 = −Φθθ1 − ΦY Y1 − Φχχ1,

(7.31)

with the boundary conditions defined by (7.27). The second order system above can be reduced

to a first order system by introducing the variable θ′1 = dξθ1:





dξθ
′
1 = λθ1 + (c− V )θ′1 − qΦθθ1 − qΦY Y1 − qΦχχ1

dξθ1 = θ′1

dξY1 =
λV

V − v
+

µ

V − v
(qΦθθ1 + qΦY Y1 + qΦχχ1)

dξχ1 =
λ

V
χ1 +

1

V
(qΦθθ1 + qΦY Y1 + qΦχχ1).

(7.32)

In order to simplify notation we drop the subindex 0, so we write Y , θ, χ instead of Y0(ξ),

θ0(ξ), χ0(ξ). Thus the system (7.32) can be rewritten as:

dξ




θ′1
θ1

Y1

χ1




=




(c− V ) λ− qγΦ
θ2 −qχΥ −qY Υ

1 0 0 0

0
µγΦ

θ2(V − v)

µχΥ + λ

V − v

µY Υ

V − v

0
γΦ

θ2V

χΥ

V

Y Υ + λ

V







θ′1
θ1

Y1

χ1




. (7.33)

From the general ODE theory we know that given any initial condition the system (7.33)

possesses a unique solution for all ξ. In order to perform the analysis of the boundary value

problem we calculate the solution of the ODE in three subregions. First we analyze the limit

cases: ξ > M and ξ < −M , for some large M > 0. Then we study the behavior of U1 for

−M < ξ < M .
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7.2.2 Left limit case

First let us consider the case ξ < −M . If M is large enough, in the interval (−∞,−M) the

operator (7.33) can be approximated using the left boundary condition (7.8) (Y → 1, χ → 0)

obtaining:

dξ




θ′1
θ1

Y1

χ1




=




c− V λ 0 −qΥ−

1 0 0 0

0 0
λ

V − v

µ Υ−
V − v

0 0 0
Υ− + λ

V







θ′1
θ1

Y1

χ1




, (7.34)

where Υ− = K exp(−γθ−1
− ). We rename the matrix in (7.34) as A− and diagonalize it using

D− = Λ−1
− A−Λ−, where:

D− =




λ

V − v
0 0 0

0
Υ− + λ

V
0 0

0 0
1

2
(c− V −∆) 0

0 0 0
1

2
(c− V + ∆)




, ∆ =
√

(V − c)2 + 4λ,

Λ− =




0
Υ− + λ

V

c− V −∆

2

c− V + ∆

2
0 1 1 1

1 ∆1 0 0

0 ∆2 0 0




, with

∆1 = −µ(cV (Υ− + λ)− (Υ+λ)2 − V 2Υ−)

qV (Υ−V −Υ−v − vλ)
, ∆2 = −µ(cV (Υ− + λ)− (Υ+λ)2 − V 2Υ−)

qΥ−V 2
.

Thus the general solution of (7.34) is:

[θ′1(ξ), θ1(ξ), Y1(ξ), χ1(ξ)]
T = Λ−1

− exp(D−ξ) Λ− B−, (7.35)

where B− = [B−
1 , . . . , B−

4 ]T is a vector of real constants to be determined later. As the matrix

Λ− is constant in ξ and has full rank, we define the vector of constants C− = [C−
1 , . . . , C−

4 ]T =

Λ−B− and rewrite (7.35) as:

[θ′1(ξ), θ1(ξ), Y1(ξ), χ1(ξ)]
T = Λ−1

− exp(D−ξ) C−, (7.36)

where C− needs to be determined later.
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The boundary condition (7.27) implies:

lim
ξ→±∞

θ′1(ξ) = 0, lim
ξ→±∞

θ1(ξ) = 0, lim
ξ→±∞

Y1(ξ) = 0, lim
ξ→±∞

χ1(ξ) = 0. (7.37)

Therefore we look for solutions θ′1, θ1, Y1 and χ1 that decay to 0 as ξ → −∞. Notice that the

matrix Λ−1
− in (7.36) is constant in ξ. Then θ′1, θ1, Y1 and χ1 are linear combinations of the

elements of the vector exp(D−ξ) C−, so we just need to analyze the behavior of this vector as

ξ tends to −∞:

exp(D−ξ) C− =[
C−

1 exp
( λ

V − v
ξ
)
, C−

2 exp
(Υ− + λ

V
ξ
)
, C−

3 exp
(c− V −∆

2
ξ
)
, C−

4 exp
(c− V + ∆

2
ξ
)]T

.

(7.38)

The analysis is quite simple: if the sign of the coefficient of ξ (which is an eigenvalue) inside

the exponent is positive, the solution decays as ξ → −∞ and the corresponding coefficient Cj

represents one degree of freedom for the solution (i.e., Cj does not need to vanish). If the sign

is negative, the corresponding coefficient Cj must be zero. In the case when the coefficient of

ξ is zero we cannot conclude anything.

From the third equation of (7.16) we get V − v < 0. It follows that if λ < 0 then C−
1 is a

free parameter, and if λ > 0 then C−
1 = 0. If λ > −Υ− then C−

2 is a free parameter, and if

λ < −Υ− then C−
2 = 0. For two last eigenvalues the analysis is more delicate. The eigenvalues

are real only if λ > −(V − c)2/4, let us consider this situation first. Based on the results

for the physical model studied in Chapter 4, we may assume c < V , thus for the eigenvalue

corresponding to C−
3 to be positive it is necessary that c − V − ∆ > 0, as c < V and ∆ > 0

we conclude that C−
3 = 0 for all λ > −(V − c)2/4. If λ ≤ −(V − c)2/4 we need the real part

of the eigenvalue to be positive, however Re(∆) = 0 in this case and as c < V we get C−
3 = 0.

An analogous analysis yields C−
4 = 0 for λ < 0, and C−

4 is a free parameter for λ > 0.

We can associate the constants C−
j to the degrees of freedom that the system (7.34) possesses

when the boundary conditions (7.37) at −∞ are imposed. Schematically we can represent the

number of degrees of freedom or the nonzero constants C−
j for different regions of λ in Figure 7.3.
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Figure 7.3: Schematic representation of the degrees of freedom in different regions of λ for

ξ → −∞.

7.2.3 Right limit case

Now we consider the case ξ > M . If M is large enough the operator (7.33) can be approximated

in the interval (M,∞) using the right boundary conditions (7.9), obtaining:

dξ




θ′1
θ1

Y1

χ1




=




c− V λ −qΥ+ 0

1 0 0 0

0 0
µ Υ+ + λ

V − v
0

0 0
Υ+

V

λ

V







θ′1
θ1

Y1

χ1




, (7.39)

where Υ+ = K exp(−γθ−1
+ ). We denote the matrix in (7.39) by A+ and diagonalize it using

D+ = Λ−1
+ A+Λ+, where:

D+ =




λ

V
0 0 0

0
µΥ+ + λ

V − v
0 0

0 0
1

2
(c− V −∆) 0

0 0 0
1

2
(c− V + ∆)




, ∆ =
√

(V − c)2 + 4λ,

Λ+ =




0
µΥ+ + λ

V − v

c− V −∆

2

c− V + ∆

2
0 1 1 1

0 ∆3 0 0

1 ∆4 0 0




, with

∆3 =
(V − v)(λ(c− v) + µΥ+(c− V ))− (µΥ+ + λ)2

qΥ+(v − V )2
,

∆4 =
(v − V )(λ(v − c) + µΥ+(V − c))− (µΥ+ + λ)2

q(v − V )(V µΥ+ + λv)
.

Analogously to the left limit case the solution of (7.39) is given by:

[θ′1(ξ), θ1(ξ), Y1(ξ), χ1(ξ)]
T = Λ−1

+ exp(D+ξ) Λ+B+, (7.40)
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Figure 7.4: Schematic representation of the degrees of freedom in different regions of λ for

ξ →∞.

where B+ = [B+
1 , . . . , B+

4 ]T is a vector of real constants to be determined later. As the matrix

Λ+ is constant in ξ and has full rank, we define the vector of constants C+ = [C+
1 , . . . , C+

4 ]T =

Λ+B+ and rewrite (7.35) as:

[θ′1(ξ), θ1(ξ), Y1(ξ), χ1(ξ)]
T = Λ−1

+ exp(D+ξ) C+, (7.41)

where C+ needs to be determined later.

Because of the boundary conditions (7.37) we want θ′1, θ1, Y1 and χ1 to decay to 0 as ξ →∞.

Then θ′1, θ1, Y1 and χ1 are linear combinations of the terms of the vector exp(D+ξ)C+ and we

just need to analyze the behavior of this vector as ξ tends to −∞:

exp(D+ξ)C+ =[
C+

1 exp
(λξ

V

)
, C+

2 exp
(µΥ+ + λ

V − v
ξ
)
, C+

3 exp
(c− V −∆

2
ξ
)
, C+

4 exp
(c− V + ∆

2
ξ
)]T

.

(7.42)

In this case we need the coefficients of ξ (eigenvalues) to be negative. If λ < 0 then C+
1 is a

free parameter, and if λ > 0 then C+
1 = 0. Since V − v < 0 it follows that if λ > −µΥ+ then

C+
3 is a free parameter, and if λ < −µΥ+ then C+

3 = 0. For two last eigenvalues the analysis is

similar. When λ > −(V −c)2/4 it follows that ∆ is real and thus c−V −∆ < 0 and C+
3 is a free

parameter. If When λ ≤ −(V − c)2/4 we need the real part of the eigenvalue corresponding to

C+
3 to be negative. As in this case Re(∆) = 0 and c < V this always happens and C+

3 is a free

parameter for all λ. An analogous analysis results that if λ < 0, then C+
4 is a free parameter

and if λ > 0 then C+
4 = 0.

We associate the constants C+
i to the degrees of freedom that the system possesses and

represent them schematically in Figure 7.4.

7.2.4 Solutions that match the limit cases

Now we can show evidence that the system (7.33) possesses a solution for all ξ. Since all

functions involved are smooth we expect that there is some real number M , such that for
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Figure 7.5: Schematic representation of matching three types of solutions in the intervals

(−∞,−M ], [−M, M ] and [M,∞].

Figure 7.6: Schematic representation of the degrees of freedom in different regions of λ.

|ξ| > M the solution of the system is close to the solutions of the limit cases described before.

According to the general ODE theory we know that the system (7.33) possesses a fundamental

matrix (the solutions of this ODE forms a basis at any ξ) in the interval [−M,M ], see [45].

So we need this solution to match the solutions obtained from the limit cases as shown on

Figure 7.5. In order to do the match we perform the following heuristic analysis. We need to

match the solutions for the limit cases in ξ in the 4D space of states (θ′, θ, Y, χ). So we need to

match 4 components of the vector U1. In Figure 7.6 we combine Figures 7.3 and 7.4 to show

schematically how many degrees of freedom the system (7.33) possesses.

The system (7.33) is autonomous, thus the solutions are obtained up to some constant and

we need to fix the value at some point ξ for at least one variable θ′, θ, Y or χ. So we need to

use one degree of freedom to fix this constant. Thus we need five free parameters (or degrees

of freedom) to match together the solutions at different ξ-intervals. As represented in Figure

7.6, this happens only inside the interval [−Υ−, 0]. Inside the interval [−µΥ+, 0] we get one

extra free parameter. We conjecture that it is associated with the geometric multiplicity of

eigenvalues. Taking these facts into account we can expect that the spectrum of (7.33) is the

interval [−Υ−, 0] and that it has geometric multiplicity 2 in the interval [−µΥ+, 0].
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7.3 Conclusions

In this chapter we have introduced the gas-solid combustion model described by the system

(7.1)-(7.3), which is a simplification of the physical model (2.16)-(2.20). However, this system

still possesses the same wave sequence as the original one. We solve the Riemann problem

for (7.1)-(7.3) with boundary conditions (7.8), (7.9) and use Singular Perturbation method in

order to obtain an approximation of the combustion wave profile.

Next, we have performed some heuristic calculations and we state a conjecture about the

operator governing the evolution of perturbations around the combustion wave profile. The

conjecture is that this operator possesses the spectrum [−Υ−, 0], i.e., it satisfies a necessary

condition for stability of the combustion wave profile. For the solution obtained with the

Singular Perturbation technique the spectrum has geometric multiplicity of two in the interval

[−µΥ+, 0], see Figure 7.6. Unfortunately, we cannot conclude anything about the point 0 of

the spectrum. Of course, numerical simulations support the stability conjecture.

78



Chapter 8

Introduction to reaction kinetics

The main purpose of this work is to study certain models for the combustion wave occurring

during the ISC process. However, the input of the combustion models requires many data,

which can be found scattered in the literature. The reaction rate Rc of coke combustion with

oxygen is usually given by:

Rc = kcC
m
g exp

(−E

RT

)
[1/s], (8.1)

where m is the reaction order, Cg is the ratio of the oxygen partial pressure and atmospheric

pressure, E is the activation energy, R is the ideal gas constant. The coefficient kc is given by:

kc = ηAgk̃c [1/s], (8.2)

where η is an efficiency factor, Ag [m2/kg − coke] - specific surface area, k̃c [kg/m2s] is the

frequency factor of the reaction.

This chapter serves two purposes. First we want to give a rationale for meaning of coefficients

in equations (8.1), (8.2) and secondly we want to obtain a uniform basis for a comprehensive

data set. For more details see [15].

Remark 8.1 (gas transfer effects) The reaction inside the particle produces other gases that

are expelled out of the particle. Thus the concentration of oxygen in the bulk gas layer Cg and

the concentration of oxygen on the particle surface Cs can be different due to external mass-

transfer limitations. This effect slows down the reaction rate. In [22, 44] this correction is

neglected, in our analysis we also neglect it.
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8.1 Specific surface area

In the literature it is often assumed that carbon based fuel has a porous structure. In order to

react, the oxygen present in the air has to contact the fuel present inside this porous structure.

A porous coke particle has a specific external surface area, which is of the order of the inverse

particle diameter. However, the larger contact area is within the particle. It is also referred

as the internal surface area. The internal surface area can be one to several hundreds square

meters per gram. It is clear that in such a case we can also consider that the oxygen is dissolving

inside the coke particle as the space available to the oxygen will be of the order of molecular

size. We will ignore these complications and talk about internal and external surface.

In the literature there is a concept of catalytical (reacting) surface of the particle as the

surface where the reaction occurs: it contains the internal and external surface areas. The

catalytical surface area Ag of the particle is obtained by injecting nitrogen close to the boiling

point in a sample of fuel and fitting it to a BET isotherm (using BET method) [13]. It can be

found in the literature [22, 44] for different materials in units of square meters of surface area

per kilogram of fuel.

During the reaction the surface area can change, see [35]. Here we are not considering this

possibility by assuming that the catalytical surface area remains constant.

8.2 Order of reaction

The carbon-containing molecules on the particle surface are geometrically distributed in some

way. In order to react, oxygen has to be absorbed onto the catalytical surface of the particle.

To take the Langmuir absorption into account we have to approximate the reaction rate in

a concentration range of interest as being proportional to the oxygen concentration to some

fractional power and by introduce the order of reaction. Following [36], we define the order

of reaction in the following way. If the rate of reaction can be expressed by an empirical

differential equation that contains a factor of the form k[A]α[B]β . . ., where [A], [B], etc., are

the reactant concentrations, α and β are constant exponents (independent of concentration

and time) and k is a (rate) coefficient independent of [A], [B], etc., then the reaction is said

to be of order α with respect to A, of order β with respect to B, ... , and of total order

m = α + β + . . .. In general the exponents α, β, ... can be positive or negative, integer or not.

It is also possible to consider the order α, etc., of the reaction to depend on time and to change
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with the concentration ranges.

There are two common ways to use the reaction order. One considers all the elementary

reactions that appear during the combustion. In this case the elementary reaction orders coin-

cide with the integer stoichiometric coefficients, however, one needs to know all the elementary

reactions that occur in the combustion and put them into the system of conservation laws de-

scribing the physical model. Even in ideal cases this is rather complex. As the composition of

petroleum coke can vary, the elementary reactions can vary substantially. Moreover the result-

ing system of conservation laws is very difficult to work with. Finally, using this formulation

it is not clear how the geometrical properties of the particle pores mentioned before influence

the elementary reaction orders.

That is why in this text we consider the experimentally obtained reaction order. In the

case of combustion we are interested in, the coke changes slowly. Thus we consider only the

reaction order corresponding to the oxygen concentration (rate between the oxygen pressure on

the surface and reference pressure, in our case atmospheric pressure) on the catalytical surface.

It coincides with the total reaction order and we denote it by m. This quantity is dimensionless

and its range is usually 0.3 ≤ m ≤ 1 for coke combustion, [44].

8.3 Distribution of petroleum coke in the porous media

Let us consider the reservoir under the effects of the thermal wave when the water has already

evaporated and the reservoir is filled with oil and gas. We indicate the surface tension forces

between oil and rock, oil and gas, gas and rock by FOR, FOG and FGR, the adherence force that

attracts oil to rock surface by FA and the contact angle by θ. Figure 8.1 indicates the tension

forces with the corresponding subscripts acting on the three-phase contact line. The surface

force balance equation (Young law) is written as FRG − FOR = FOG cos(θ), or equivalently:

cos(θ) =
FRG − FOR

FOG

≡ Kθ. (8.3)

We recall that the surface tension γ is defined as derivative of the Gibbs free energy G with

respect to the surface area A:

γ =

(
∂G

∂A

)

P,T,n

, (8.4)

where the subscript P, T, n means that the derivative is taken at constant pressure, temperature

and molar concentration. For a displacement ∆x perpendicular to a three phase contact line
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of length l we obtain:

γ =
dG

ldx
=

F

l
, (8.5)

where F is the resulting surface tension force. As the three phase contact line is the same for

oil and gas we can rewrite (8.3) for surface tensions:

cos(θ) =
γRG − γOR

γOG

≡ Kθ. (8.6)

One can interpret this law as resulting from the minimum energy principle. Using (8.3) we

see that during the evaporation process some possibilities can occur. If γRG > γOR + γOG the

petroleum coke covers the sand grains. Assume that all the sand grains are spherical and have

the same radius R. It is now possible to estimate the thickness of the coke layer δ around the

grain for the situation of interest to us, see Figure 8.1. From the experimental data we get the

average particle radius R, coke density inside the porous media ρ0
f [kg−coke/m3−porous media]

and coke density ρcoke [kg − coke/m3 − coke]. Thus, the ratio between ρ0
f and ρcoke is equal to

the fraction of volume occupied by coke in each particle inside porous medium:

4πR2δ

4/3πR3
(1− φ) =

ρ0
f

ρcoke

. (8.7)

We get the approximate thickness of the coke layer:

δ =
ρ0

fR

3(1− φ)ρcoke

[m]. (8.8)

Taking values R = 6.7 · 10−5 [m], ρ0
f = 20 [kg/m3] from Table 8.3, φ = 0.3 from Table 2.1 and

ρcoke = 500 [kg/m3]1, we get δ ≈ 1.28 · 10−6 [m].

If γRC < γOR +γOG, the oil may form a globule encompassing various grains before cracking

and this has profound influence on the effectiveness factor discussed below.

8.4 Effectiveness factor

It has often been stated that the molar mass of consumed carbon and the amount of released

energy during the reaction in high temperature oxidation mode (combustion) depend on the

consumed molar mass of oxygen but not on the nature of the carbon-containing material [44].

This is why it is important to know how the oxygen diffuses into the carbon-containing particles.

1Value taken from the site http://www.simetric.co.uk/si materials.htm
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Figure 8.1: Left: schematic representation of the porous media particle. Right: surface tension

forces in the porous media and the contact angle.

The ratio between the real reaction rate and the idealized one with complete gas access inside

and outside the particle is called the effectiveness factor, see [8].

There are two main effects responsible for the effectiveness factor. The first of them tends

to decrease the effectiveness factor; it is related to the entrance of oxygen into the particle.

We explain this factor in more detail later. The second one tends to increase the effectiveness

factor; The effectiveness factor is enhanced by temperature effects inside the particle as the

coke oxidation reaction is exothermic. All of this depends on diffusion rates, characteristic

pores size and particle size. The correct way of defining and estimating the effectiveness factor

taking into account both effects is still under discussion, see [48]. Also in [48] some examples

of materials with effectiveness factor greater than 1 can be found.

In this text we follow the references [8, 22, 44] and neglect the thermal part of the effective-

ness factor. Some reasons for doing so are: the layer occupied by the fuel is thin (as described

in Section 8.3 if γRC > γOR + γGC) and if the oil spreads over the grain, then the temperature

inside this layer can be considered homogeneous; certain experiments with petroleum coke (see

[49]) indicate that the thermal effect is negligible for gas diffusion inside small particles; there

is no comprehensive theory on this effect.

Following [8], we introduce the effectiveness factor in a generally accepted way by using the

Thiele modulus. This method is based on the hypothesis that the displacement of oxygen occurs

only due to diffusion and that the oxygen leaves the system only because of the reaction. Then
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it is assumed that the particles have some well defined shape (spherical, flat, long cylindrical,

etc.) and the effectiveness factor is obtained form the balance equation of the reacting oxygen

diffusing through the particle. In this case the factor is always smaller than 1.

8.4.1 Effectiveness factor for flat particles

Consider a “flat particle” as an infinite layer 0 ≤ x ≤ L on the yz plane in xyz space. We

assume that the oxygen enters the flat particle from the side x = 0. We consider the first

order chemical reaction with constant (average) reaction rate k” [35], where the double prime

indicates a reaction rate per unit surface area. We also assume that the diffusion coefficient D

is constant. Thus, the balance equation for the oxygen concentration c(x, t) inside the particle

is:
∂c

∂t
+ v

∂c

∂x
= D

∂2c

∂2x
− k”Agc

[
kgair

m3
p s

]
, (8.9)

where Ag [m2
p/kg] is the catalytical surface area of the particle, with mp indicated unit length

inside the pore. We define the boundary conditions for the oxygen concentration to c0 at x = 0

and in such way that there is no mass flux at x = L. Next we assume that the displacement

of oxygen inside the particle occurs only due to diffusion (v ≪ D) and look for stationary

solutions (c(x, t) = c(x)) of (8.9):

D
d2

dx2
c = k”Agc, c(0) = c0;

dc

dx
(L) = 0. (8.10)

The solution of (8.10) is

c(x) = c1 sinh(
√

αx) + c2 cosh (
√

αx). (8.11)

where α = k”Ag/D. Using the boundary conditions we obtain the solution:

c(x) = c0
cosh(

√
α(L− x))

cosh(
√

αL)
. (8.12)

In order to study the oxygen flux trough the particle boundary we introduce:

C(t) =

∫ L

0

c(x, t)dx (8.13)

as the total amount of oxygen in the system per unit surface area. Using (8.9) we obtain the

total accumulation of the oxygen inside the particle:

dC(t)

dt
=

∫ L

0

∂c(x, t)

∂t
dx = D

∫ L

0

∂2c

∂x2
dx− k”Ag

∫ L

0

cdx = D
∂c

∂x

∣∣∣∣
L

0

− k”Ag

∫ L

0

cdx, (8.14)

84



where the terms on the right hand side represent oxygen flux through the boundary and the

consumption of oxygen due to the reaction inside the layer. If we consider stationary solution

of (8.9), the accumulation term on the left hand side of (8.14) vanishes and the flux of the

oxygen through the boundary is equal to the consumption rate of oxygen inside the pore:

WR = D
∂ c(x)

∂x

∣∣∣∣
L

0

= −Dc0

√
α

sinh(
√

α(L− x))

cosh(
√

αL)

∣∣∣∣
L

0

= Dc0

√
α

sinh(
√

αL)

cosh(
√

αL)
. (8.15)

In order to obtain the “ideal” oxygen flux through the partice surface x = 0, we imagine that the

concentration of oxygen is constant inside the particle, c(x) = c0. For the stationary solution

of (8.14) the flux of oxygen to the particle in this case:

W0 = k”Ag

∫ L

0

c0xdx = Lk”Agc0, (8.16)

We want to compare the flux W0 with the oxygen flux WR obtained from (8.14). Following [8],

we define the effectiveness factor η as the ratio:

η =
WR

W0

=
Dc0

√
α

Lk”Agc0

sinh(
√

αL)

cosh(
√

αL)
=

sinh ϕ

ϕ cosh ϕ
[·], (8.17)

where dimensionless parameter ϕ = L
√

k”Ag/D is the Thiele modulus. In order to obtain its

value we consider L to be the coke layer thickness δ given in (8.8) and approximate the reaction

rate k” by k̃c exp(−E/(RT )). The values of the frequency factor k̃c and specific surface area

A are given in Table 8.3. The temperature T and the diffusion coefficient are considered to

be constant in the ranges 700 ≤ T ≤ 1300 and 10−14 ≤ D ≤ 10−8 [m2/s]. The corresponding

effectiveness factors are close to 1.0 as presented in Table 8.1.

Table 8.1: Effectiveness factor for the flat particles of petroleum coke for different temperatures

and diffusion coefficients, based on data from Table 8.3 for [44]

D�T 7000C 9000C 11000C 13000C

10−8 1.0000 1.0000 1.0000 1.0000

10−10 1.0000 1.0000 1.0000 1.0000

10−12 1.0000 1.0000 1.0000 1.0000

10−14 1.0000 1.0000 0.9999 0.9982
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8.4.2 Effectiveness factor for spherical particles

We consider homogeneous spherical particle of fuel with radius R. Let us assume that the

oxygen on the external surface has concentration c(r) = c0 and some constant concentration

as the center c(0) = cL. Analogously to the flat particle case we assume that oxygen transport

occurs only by diffusion and that the reaction is of first order, so that the oxygen balance

equation is:

D
1

r2

d

dr

(
r2dc(r)

dr

)
= −k′′Agc(r). (8.18)

This equation can be solved using the boundary conditions c(0) = cL, c(r) = c0 specified above

using substitution r → f = rc(r):

c(r) = c0
R

r

sinh(r
√

k′′Ag/D)

sinh(R
√

k′′Ag/D)
. (8.19)

The oxygen flux trough the surface of the particles:

WR = 4πR2D
dc

dr

∣∣∣∣
r=R

= 4πRDc0 (1− ϕ coth ϕ) , (8.20)

where ϕ = R
√

k′′Ag/D is the Thiele modulus. We can estimate the ideal flux as the maximum

oxygen consumed if the (catalytical) surface were completely exposed to the reaction:

W0 =
4πR3

3
k′′Agc0. (8.21)

We find the effectiveness factor ([8]):

η =
WR

W0

=
3

ϕ2
(ϕ coth ϕ− 1). (8.22)

Analogously to flat particle case we approximate the reaction rate k” by k̃c exp(−E/(RT )).

The values of the frequency factor kc, specific surface area A and particle radius R are given in

Table 8.3. The temperature T and the diffusion coefficient D are considered to be constant in the

ranges 700 ≤ T ≤ 1300 and 10−14 ≤ D ≤ 10−8. Typical values for coal are D = 10−11 [m2/s],

see [41] and T < 1100 [K], see [8]. The corresponding effectiveness factors are close to 1 as

presented in Table 8.2.

8.5 Activation energy and frequency factor

Finally, the quantity most interesting to us is the observed (true) reaction rate, which

represents the quantity of carbon consumed by the reaction per current carbon concentration
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Table 8.2: Effectiveness factor for the spherical particles of petroleum coke for different tem-

peratures and diffusion coefficients. Data from Table 8.3 for [44]

D�T 7000C 9000C 11000C 13000C

10−8 1.0000 1.0000 1.0000 1.0000

10−10 1.0000 1.0000 0.9999 0.9999

10−12 1.0000 0.9999 0.9898 0.8364

10−14 1.0000 0.9870 0.5679 0.1586

per time unit, denoted by Rc [1/s]. The definition of the observed reaction rate varies from text

to text. For example in [22, 44] it is defined as the consumption rate of carbon mass per unit

time per external surface area of the particle. On the other side in [39] it is defined per particle

volume instead of per surface area.

The observed reaction rate depends on all particle properties explained above, thus in [44]

the concept of intrinsic reaction rate (reactivity) is introduced. It is the reaction rate that

occurs if all the carbon containing molecules inside the particle were to contact the oxygen at

total concentration. The intrinsic reaction rate, indicated by Ri, is defined in terms of carbon

mass per catalytical surface area per unit time:

Ri = k̃c exp

(−E

RT

)
[

kg

m2s
]. (8.23)

The probability that after collision of molecules the reaction occurs is given by Arrhenius’ law,

which contains the activation energy in the exponential. The activation energy is indicated

by E [J/mole] and it is the energy necessary to “start” the reaction.

Following [22, 44], the intrinsic reaction rate is similar for combustion of any material

containing carbon (e.g: coal, graphite, diamond). In this text we use the intrinsic reaction

rates originating from several experiments, [43, 44, 49, 39].

Specimens of carbon produced from different original materials, or in different ways from

the same material, are found to burn at very different rates under otherwise similar conditions.

The speed at which an individual carbon particle of given size or mass burns depends on the

rate of oxygen transfer from the bulk gas to the particle, and on the particle reactivity. This

reactivity depends on (i) the extent and accessibility to oxygen of the pores within the particle,

and on (ii) the rate of chemical reaction between oxygen and the pore surface. The latter factor,

when properly defined, may be termed the intrinsic reactivity of carbon. In this section we
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Table 8.3: Translating intrinsic reactivity coefficient into nondimensional reaction rate.

Source 2R [m] σa [ kg
m3 ] Ag [m2

kg
] k̃c [ kg

m2s
] EA [ J

mole
] η m Cini

g ηres
f [ kg

m3 ] kc [106

s
]

[2] - 1950 7050 1.44 73500 1 1 1.0 20 0.0102

[43] 6.7 · 10−5 1730 - 200 76150 1 1 0.20 17 -

[44] 1.3 · 10−5 - 1000 3050 179400 1 1 0.20 - 3.05

[49] 2.9 · 10−3 1640 900 2216.7 167000 1 0.59 0.21 - 1.995

[49] 9 · 10−4 1660 1000 2216.7 159000 1 0.6 0.21 - 2.217

[49] 2.2 · 10−4 - 1600 2216.7 159000 1 0.59 0.21 - 3.547

summarize the results for intrinsic reactivity from different sources.

• In [44], based on the analysis of 33 different experiments from 23 papers it was shown

that the intrinsic reactivity of carbon Ri obeys the Arrhenius’ law with some average activation

energy E = 43[kcal/mole] ≈ 179.4[kJ/mole] and the corresponding frequency factor was k̃c =

3050 [kg/m2/s]. The activation energies were spread through the interval of 30−70[kcal/mole].

These results were explained theoretically in [22].

• Some work investigating ISC, for example [2, 46], use an activation energy of 17[kcal/mole],

however there are few volatile mixtures of coal that possess such a small activation energy.

• The values for frequency factor and activation energy in [44] were obtained by analyzing

the slope and displacement of the linear approximation for the intrinsic reactivity data plotted as

log(Ri) against 104/T . This method can generate many errors in the parameters of our interest;

the data for petroleum coke is parallel but at some distance from the linear approximation

obtained using the least squares method onto all other carbon data. We took only the data

for petroleum coke and using the least squares method obtained the frequency factor k̃c =

12100 [kg/m2s] and activation energy E = 159.5 [kJ/mole]. The standard deviation for the

activation energy was R2 = 0.98. We note that the expectation of kc, E(kc), is larger than

exp(E(ln(kc))). In view of the small variance of the petroleum coke data we neglect this effect.

• In [49], the intrinsic reactivity of petroleum coke was studied and the parameter values

were k̃c = 2216.7 [kg/m2s] and EA = 158.6[kJ/mole].

We summarize the results in Table 8.3.

Remark 8.2 In [39, 43, 49] the experiments were made with petroleum coke provided by a

commercial aluminium producer and prepared by the CSIRO (Australian Commonwealth Sci-
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entific and Research Organization) Division of Fossil and Fuels, the results were compared with

other experiments and the data for coke looks well defined.

8.6 The balance law equation

Now we are able to formulate the combustion rate of solid fuel RS in terms of molar mass of

fuel per cubic meter of porous media:

RS = ηAgk̃cρm

(
PO2

Patm

)m

exp

(−E

RT

)
[
mole

m3 s
], (8.24)

where ρm [mole/m3] is molar density of fuel in porous media. We define the dimensionless

oxygen concentration Cg = PO2/Patm and scale it as Cg = Y C ini
g , where C ini

g is the initial

dimensionless concentration of oxygen.

We need the reaction rate in terms of moles of fuel per cubic meters of porous medium per

second. First, we define the “dimensionless” reaction rate coefficient:

kc = ηAg(C
ini
g )mk̃c [1/s], (8.25)

and formulate the balance equation in terms of molar mass:

∂ρm

∂t
= −kcρmY m exp (−E/RT ) [

mole

m3s
]. (8.26)

In order to nondimensionalize (8.26) we follow [2] and define the dimensionless value for specific

molar density η in such way that η = 1− ρm/ρ0
m, where ρ0

m is the initial fuel concentration in

the porous medium. We rewrite (8.26) as:

∂η

∂t
= kc(1− η)Y m exp (−E/RT ) [s−1]. (8.27)

If we follow [2] and consider m = 1, the equation (8.27) coincides with (2.4):

∂η

∂t
= kc(1− η)Y exp (−E/RT ) [s−1]. (8.28)

We summarize the relevant constants in Table 8.3.

Remark 8.3 In Table 2.1 we give the initial fuel concentration as ρ0
f = 19.2182 [kg/m3] in

order to obtain ρ0
m we use the effective molecular weight of coke Mf from Table 2.1 and obtain

ρ0
m = ρ0

f · (Mf )
−1 ≈ 4.51 [mole/m3].
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