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Abstract

This thesis concerns the study of strategies and the development of math-
ematical methods to deal with three specific problems in quantitative finance.

In the first problem, we address the use of Fourier methods for derivative
pricing. We present a novel method to compute options prices, which extends
the existing literature of Fourier methods in finance. The method makes
it possible to price several payoffs not treated in the literature and also a
portfolio of derivatives with different maturities.

We study the approximation of Fourier operators in different frameworks,
having the financial application as a particular case. We also present a non-
uniform fast Fourier transform (NUFFT) for the approximations used here
and several numerical results.

The second problem concerns commodity pricing. We present a model
for the liquefied natural gas (LNG) market based on a multidimensional
stochastic process. Several derivatives over LNG are also presented with a
numerical method to evaluate them.

In the third problem, we present a way of using interest rate derivatives
to recover market expectation regarding future decisions by the monetary
authority. This chapter describes a model that has monetary decisions as
input and it proposes some regularization techniques in order to recover
interest rate expectations from real data.
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Introduction

The development of mathematical finance goes back to Bachelier, a student
of Henri Poincaré, who in 1900 presented his PhD thesis [Bac00]. Bachelier
developed (before Einstein) the first theory of Brownian motion and used it
to model the price of a stock in time. He even managed to find prices for call
and put options. Bachelier’s work was neglected until Jimmie Savage and
Paul Samuelson rediscovered it in the 1950s.

After the work of Bachelier, several others presented important works in
the mathematical finance field, but the major breakthrough was achieved by
Black-Scholes-Merton [BS73] [Mer73]. In 1973, they proved a pricing formula
for call options, under accepted assumptions. This result had tremendous
practical implications and eventually led the authors to be awarded the Nobel
prize in 1997 (Black died in 1995).

At the time Scholes and Merton received the Nobel prize, they were al-
ready partners at the hedge fund Long-Term Capital Management (LTCM).
The bailout of LTCM happened a year after Merton and Scholes received
the Nobel prize. In September 21, 1998 the Business Week had the following
headline:

“Misfire Wall Street’s Rocket Scientists thought they had a sure-
fire way to beat the markets. Boy, were they wrong!” (Business-
Week 09/21/1998)

After the bailout, LTCM kept operations. In 2000, when the fund was
liquidated, the banks that financed LTCM had been paid back. The main
problem with LTCM was the risk management. After the bailout of LTCM,
risk management became a major issue in the financial industry. Until today,
regulation for hedge funds is an important topic of debate.

Despite their unpleasant experience in the markets, the work of Black-
Scholes-Merton had, and still has, a great influence among practitioners and
scholars. After their seminal papers, several other works have followed and
the mathematical finance field have received a large amount of attention.
Since their work, which involves stochastic calculus and partial differential
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equations, an increasing number of mathematical techniques have been ap-
plied to finance, ranging from asymptotic methods [FPS00], [SZ07], to con-
trolled Markov Processes [FS06].

In the present thesis, we make a contribution to the mathematical finance
field by presenting new models for some problems in quantitative finance
and developing new mathematical techniques with applications in finance.
To do so, we address three different problems in quantitative finance, always
presenting solid solutions, from the mathematical model to the numerical
methods.

Most of the mathematical techniques used in each problem of this thesis
are similar and a brief review of it is given in Chapter 1. For the reader’s
convenience, we try to make each part self-contained.

The first problem this thesis addresses is the use of Fourier methods in
derivative pricing. Fourier methods have been widely used in finance, see
Chapter 2 for a review. Our work extends the literature by presenting a
rigorous analysis of the discretization of Fourier operator that are related to
mathematical finance.

In Chapter 2, we present a Fourier analytic solution of the pricing prob-
lem. This solution expresses derivative prices in terms of Fourier inversion.
It uses explicit formulas for the characteristic functions of the underlying
price, that are known for several models in the financial literature.

Numerical evaluations of the Fourier transform is a non-trivial computa-
tion due to the oscillatory nature of the integral. We present bounds for the
numerical approximation of the Fourier transform for some different func-
tions, including the Fourier transform of the principal value of a function.
We pay special attention to the heat kernel case, where the estimate results
in a spectral resolution for the heat kernel. The results for these numerical
evaluations of the Fourier transform are presented in Chapter 3. The heat
kernel case is addressed in Section 3.3.

The estimates for the computations of the Fourier transform of Chap-
ter 3 are based on a non-uniform grid, so it is not possible to use FFT as a
fast algorithm for the computations. To overcome this issue, we present a
non-uniform fast Fourier transform (NUFFT) in Chapter 4. Another simple
reason for the need of such techniques is the ubiquitous change of variable
from prices to their logarithms.

Putting together the bounds of Chapter 3 and the NUFFT algorithm
of Chapter 4, we construct a fast algorithm for the Fourier approximation,
where less nodes are needed than in the uniform case. We present several
numerical examples in Section 4.3. We also show some numerical results for
the formulas of Chapter 2.

In Chapter 5, we address the study of a commodity model in the pres-
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ence of an arbitrageur. We develop a multi-dimensional stochastic model
that describes market prices when a specific seller has some price or logistic
advantages over the majority of the market.

We use this model to explain the liquefied natural gas (LNG) market
price, which has typically very little data. The model overcomes such lack
of data by modeling LNG as a derivative of natural gas in several countries,
which have plenty of data available. Using this model, we are able to study
several derivatives over LNG.

Numerical methods for such multi-dimensional problems are time con-
suming. To overcome this difficulty, we employ Monte Carlo methods to
compute derivative prices.

The third and final problem we study deals with interest rates modeling.
We present a model that mixes two processes: one continuous and another
with pure jumps. The continuous process represents the uncertainty of in-
terest rates originated by small market fluctuations, while the pure jump
process represents the monetary authority changes in the target rate.

The mathematical challenge imposed by this problem is the model’s cal-
ibration to market data. We use regularization techniques to overcome this
challenge. The model is presented in Chapter 6, where some numerical results
are shown.

We believe the reader will find in this thesis that the development of
quantitative models in finance goes hand in hand with the development of
the appropriate mathematical techniques to solve them.
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Chapter 1

Preliminaries and Notation

In this chapter, we give a brief overview of the mathematical techniques used
in this work and present the notation used.

1.1 Fourier Transform

In this section, we recall the Fourier transform definition, both for notational
reasons and for the reader’s convenience.

The Fourier transform, for f ∈ S(Rm), is denoted here as

f̂(ξ) := F [f ](ξ) :=

∫

Rm

eiξxf(x)dx , (1.1)

where S(Rm) is the Schwartz space of C∞(Rm) functions of rapid decrease,
see [RS75]. This is not the usual definition found in the mathematical liter-
ature. However, it is standard in probability, see [Chu01] and in the finance
literature, see [CT04].

The Fourier transform is a linear bijection from S(Rm) onto S(Rm), whose
inverse is given by the Fourier inversion formula

f(x) = F−1[f̂ ](x) =
1

(2π)m

∫

Rm

e−iξxf̂(ξ)dξ . (1.2)

We also recall the Fourier transform for f ∈ S ′(Rm), where S ′(Rm) is the
space of tempered distributions, which is the dual of S(Rm), the Fourier
transform can be defined as

(F [f ], ϕ) = (2π)m
(
f,F−1[ϕ]

)
ϕ ∈ S(Rm) , (1.3)

see [RR04]. This definition makes the Fourier transform in S ′(Rm) an exten-
sion of the Fourier transform in S(Rm). The Fourier transform for L1(Rm)
and L2(Rm) are restrictions of the Fourier transform for S ′(Rm).
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The Fourier transform has several useful properties. Some of them are
reviewed below with the purpose of calling attention to the notation used
here:

• F [f(x− a)] (ξ) = eiaξf̂(ξ)

• Dαf̂ (ξ) = F [(ix)αf ] (ξ)

• (−iξ)αf̂ (ξ) = F [Dαf ] (ξ)

Some specific distributions are often used in this thesis. To present the nota-
tion, we give a brief overview of them. First, consider the Cauchy principal
value

1/x : S (R) → R

f → (1/x, f) := −
∫∞
−∞

f(x)
x

dx ,

where

−
∫ ∞

−∞

f(x)

x
dx := lim

ǫ↓0

(∫ ∞

ǫ

f(x)

x
dx+

∫ −ǫ

−∞

f(x)

x
dx

)
.

This defines a distribution in S ′ (R).
Another important distribution is the Heaviside function

H(x) :=

{
1 ifx > 0

0 ifx ≤ 0
.

In this work, we use the notation

Xx0(x) :=

{
1 ifx > x0

0 ifx ≤ x0

and XA(x) :=

{
1 if x ∈ A

0 if x /∈ A
. (1.4)

Hence H(x) = X0(x). The Fourier transform of the Heaviside function is
given by

Ĥ(ξ) =

(
− 1

iξ
+ πδ0

)
, (1.5)

where 1/iξ is interpreted as a principal value and δ is the delta function at
the origin given by δ(f) := f(0), for f ∈ S (R).

Another concept we recall is the convolution, which is defined for f, g ∈
S(R) as

(f ∗ g)(y) =

∫

R

f(y − x)g(x)dx .

8



The convolution can be defined for f ∈ S(R) and T ∈ S ′(R) as

(T ∗ f)(ψ) = T (f̃ ∗ ψ) ∀ ψ ∈ S(R) ,

where f̃(x) := f(−x). It is possible to define the Fourier transform in this
case as

F [T ∗ f ] = F [f ]F [T ] ,

see [RS75].
For functions defined on compact spaces, the Fourier transform has a

special form: the Fourier series. We briefly review the notation we use. Let
f ∈ L1[−πL, πL], then we can define

ck =

∫ πL

−πL
f(x)e

ikx
L dx , (1.6)

and the Fourier series of f is given by

1

2πL

∑
cke

− ikx
L . (1.7)

Several results on the convergence of the Fourier series to the function f are
known. For example, if f ∈ L2[−πL, πL], then the Fourier series converges in
L2 to f , which is a consequence of the fact that φk(x) = exp(ikx/L), k ∈ Z
forms a maximal orthogonal set in L2(−πL, πL).

We are most interested in the discrete Fourier transform (DFT), which is
the discrete version of the Fourier transform. For X ∈ RN the DFT of X is
given by

X̂j =
∑

n

Xne
2πikn

N (1.8)

and the inverse of the DFT is given by

Xn =
1

N

∑

j

X̂je
−2πikn

N . (1.9)

DFT arises in several applications, in this thesis, it appears as an approxi-
mation of the Fourier transform by finite sums and also as the truncation of
the Fourier series.

The naive computation of the DFT demands N2 operations. A fast
algorithm, known as fast Fourier transform (FFT), reduces the computa-
tion of the DFT to O(N logN) operations. The FFT became popular af-
ter the work of [CT65], but a fast algorithm for the computations of DFT
goes back to Gauss around 1805, see [HJB85]. The main idea of FFT is
to find a clever factorization of the DFT matrix FN ∈ RN×N , given by
FN (k, n) = exp(−2πikn/N), see [Van92] for the computational aspects.
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1.2 Probability and Stochastic Processes

In this section, we present a brief overview of the topics on probability and
stochastic processes used herein. References on the subject are [CW90] and
[Sat99].

In this thesis, the triple (Ω,F ,P) denotes a complete probability space,
where Ω is a set of points ω, F is a σ-algebra containing all P-null sets, and
P is a probability measure. When we say that X is a random variable on
the probability space (Ω,F ,P), we mean that X is real-valued function on
Ω, measurable with respect to F .

The characteristic function of a random variable is defined as

ϕ(z) = E
[
eizX

]
. (1.10)

For properties of the characteristic function and a review of probability theory
we refer to [CW90].

The filtered complete probability space is denoted by (Ω,F ,F,P), where,
as in [Pro04], we write F for the filtration (Ft)0≤t≤∞ and we assume that

F0 contains all the P-null sets. We use
P−→ to denote convergence in proba-

bility, see [CW90] and the French acronyms càdlàg (continu à droite, limité
à gauche) is used to define the right continuous, left limited process, see
[Pro04].

The main class of stochastic processes we are interested in this work are
the Levy processes, see [Sat99] for a comprehensive treatment of the subject.
We briefly review the definition of a Levy process

Definition: A Levy process is a càdlàg stochastic process, (Xt)t≥0, on (Ω,F ,F,P)
taking values in R and with the following properties:

• Independent increments. That is, given t0 ≤ . . . ≤ tN , and defined
Yn := Xtn −Xtn−1 we have {Yn}Nn=1 independent;

• Stationary increments. That is, the distribution of Xt+s −Xt does not
depend on t;

• Stochastic continuity. That is,

Xt+h
P−→
h↓0

Xt .

An important stochastic process is the Brownian motion.

Definition: A Brownian motion is a adapted continous stochastic process
(Wt)t≥0, on (Ω,F ,F,P) taking values in R and with the following properties:
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• W0 = 0.

• Independent increments. That is, given t0 ≤ . . . ≤ tN , and defined
Yn := Wtn −Wtn−1 we have {Yn}Nn=1 independent;

• The distribution of Yn is normal with mean zero and variance tn− tn−1.

A very important result is that Levy processes can be characterized, in
the Fourier domain, by the Levy-Khinchin theorem, see [Fel66].

Theorem 1.2.1 (Levy-Khinchin) Let the adapted process (Xt)t≥0 be a
Levy process, then

E
[
eizXt

]
= etψ(z)

ψ(z) = −1

2
σz2 + iγz +

∫ ∞

−∞

(
eizx − 1 − izxX|x|≤1

)
dν ,

(1.11)

where ν is called the Levy measure and it is a positive Radon measure on
R\{0} such that

∫ 1

−1

x2dν ≤ ∞ and

∫

|x|≥1

dν ≤ ∞ .

The reciprocal of Theorem 1.2.1 is also proved in [Fel66].

1.3 Mathematical Finance

Several concepts of stochastic processes, stochastic calculus, partial differen-
tial equations, among other mathematical topics, have been used to model
financial markets. The use of such advanced mathematical concepts to model
financial markets became known as mathematical finance.

A standard introduction to stochastic calculus is [Oks05], see [Pro04] for a
more advanced treatment. For an introduction to stochastic calculus applied
to finance there are [CT04] or [Shr04]. In this section, we present a short
overview on the topic.

The ground work for mathematical finance is the work of Black-Scholes-
Merton [BS73], [Mer73]. They assumed that the stock prices satisfy the
following linear stochastic differential equation (SDE)

dSt
St

= µdt+ σdWt , (1.12)
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where Wt is a Brownian motion defined on the filtered complete probability
space (Ω,F ,F,P). The SDE (1.12) has an unique solution given by

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
. (1.13)

St given by (1.13) is known as geometrical Brownian motion (GBM).
One of the most important problems addressed by mathematical finance

is the pricing of a contingent claim. In this thesis, we are only interested
in European contingent claim. An European contingent claim with maturity
time T is a L2(Ω, dP), FT -measurable random variable. Several authors
make no distinction between contingent claim and derivative contract. Here,
an European derivative contract on the underlying asset S and maturity time
T is a L2(Ω, dP), σ(ST )-measurable random variable, so it can be written as
g(ST ), where g is called the payoff of the derivative. In this work, we omit
the word European.

The most important financial derivatives are the call and put options.
A call option, with maturity time T and strike K, is a contract that gives
the owner the right at the delivery time T to buy stock for the strike price
K. Considering that, the price at T is given by ST and the payoff can be
expressed as (ST −K)+, where (x)+ := max(x, 0). Similarly, the put option
gives the owner the right to sell the asset and its payoff is given by (K−ST )+.
The call and put payoff are shown in Figure 1.1.

Call option

Value

STK

Put option

Value

STK

Figure 1.1: Payoff for the call option, with strike K, is shown on the left, and
payoff for the put option, with strike K, is shown on the right.

Consider a market with d assets whose prices are given by a càdlàg process
St ∈ Rd, on a filtered complete probability space (Ω,F ,F,P), for notational
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convenience consider that one of the assets is a risk-free investment, pay-
ing interest rates r. A simple trading strategy can be defined by a simple
predictable d-dimentional process

ϕt := ϕ0X0(t) +
n∑

j=0

ϕjX(Tj ,Tj+1](t) , (1.14)

where T0 = 0 < T1 < . . . < Tn+1 = T are non-anticipating random times and
ϕj is a bounded random variable that is FTj

-measurable, see [Pro04]. In its
general form, a trading strategy is a process that can be approximated, in the
uniform convergence in (t, ω), by simple predictabel processes, see [Pro04].

Given a strategy, we can define the strategy value for a given time t as

V ϕ(t) = ϕ(0)S(0) +

∫ t

0

ϕ(s)dS(s) . (1.15)

A strategy is called self-financing if

dV ϕ(t) = ϕ(t)dS(t) . (1.16)

We say that a market is arbitrage free if there is no self-financing strategy,
ϕ, with

P
(
V ϕ(T ) ≥ erTV ϕ(0)

)
= 1 and P

(
V ϕ(T ) > erTV ϕ(0)

)
> 0 , (1.17)

where r is the risk-free rate.
In the seminal work [BS73], Black and Scholes built a self-financing strat-

egy, ϕ, using the stock price, modeled by a GBM (1.13), and the risk-free
investment. The strategy is built to have the same payoff as the call option
at time T . Such strategy is called replicating strategy. Considering that ϕ is
a self-financing strategy and that the value of V ϕ(T ) and the payoff at time
T are the same, the price of the call option at t = 0 must be V ϕ(0). That
is known as the rule of one price and is a consequence of the non-arbitrage
hypothesis. Black and Scholes found the following formula for the price of a
call option with maturity T, and strike K

C(S0, K, T ) = S0N(d+) −KerTN(d−)

d+ =
log
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

d− = d+ − σ
√
T .

(1.18)

The price is independent of the drift coefficient µ in (1.13). This is a central
result in mathematical finance.
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Following Black and Scholes, several authors developed the idea of risk
neutral pricing. This idea is based in the notion of an equivalent martingale
measure, which is an equivalent measure such that the discounted prices,
e−rtSt, are martingales, see [CT04]. The following theorem is a central result
in mathematical finance.

Theorem 1.3.1 (Fundamental theorem of asset pricing [CT04]) A mar-
ket model defined by (Ω,F ,F,P) and asset prices (St)t∈[0,T ] is arbitrage-free
if and only if there exists an equivalent martingale measure Q.

A proper mathematical statement of the fundamental theorem of asset pric-
ing is beyond the scope of this brief review. References on Theorem 1.3.1 for
discrete time are [HP81] and [MR05]. The continuous version can be found
in [DS94], [DS98], and [Yan98]. In these work the notion of non arbitrage
and admissible strategies are rigorously studied.

A consequence of the Theorem 1.3.1 is that for a given contingent claim
H , let V (t, H) denote its price. Then

V (t, H) = EQ
[
e−r(T−t)H

∣∣Ft

]
, (1.19)

this formula is known as risk neutral pricing formula. A simple example of
change of measure can be given in the geometrical Brownian case. Under the
martingale equivalent measure (1.13) becomes

St = S0e
rt−σ2

2
t+σfWt , (1.20)

where W̃t is a Brownian motion under Q, the existence of such measure is a
consequence of the Girsanov theorem, see [Oks05].

Formula 1.19 reduces the pricing problem to computing an integral. How-
ever, in general, the density of the process does not have a closed form rep-
resentation. To overcome this difficulty, we use the characteristic function.

In (1.13), logSt has normal distribution with mean µ− σ2

2
and variance σ2.

The characteristic function of a random variable with distribution N(b, σ2)
is given by

ϕ(z) = e
t
“

ibz−σ2z2

2

”

. (1.21)

Letting b = µ − σ2

2
in Equation (1.21), we have the characteristic for log

prices in the Black and Scholes model.
Following Black-Scholes-Merton, several other authors presented different

models for stock prices. For example, Merton [Mer75] introduced normally
distributed jumps in the log price. A different approach to jumps was given

14



[BS73] ln(ϕ(z)) = ibz − σ2

2
z2

[Mer75] ln(ϕ(z)) = izb − σ2

2
z2 + λ

(
eiµz−

1
2
z2δ2 − 1

)

[Kou02] ln(ϕ(z)) = izb − σ2

2
z2 + izλ

(
p

λ+ − iz
+

1 − p

λ− + iz

)

Table 1.1: The log of the characteristic functions of some processes used in
finance, with t=1.

by [Kou02] who introduced an asymmetric exponential density for the jumps.
Characteristic functions for these models can be seen in Table 1.1. For many
other models in which the characteristic function is available see [CT04].

A popular class of models used in finance are the stochastic volatility
model and among them the most popular is the Heston model [Hes93]. The
SDE for Heston model is given by

dSt = Stµdt+
√
vtStdW

1
t ,

dvt = −λ (vt − v̄) dt+ ν
√
vtdW

2
t ,

(1.22)

where W 1
t and W 2

t are Brownian motions with correlation ρ. The character-
istic function for the Heston model is given by

ϕt(z) = eC(z,t)v̄+D(z,t)v , (1.23)

where

β(z) = λ− iρνz

d(z) =
√
β(z)2 − 2 (−z2/2 − iz/2) ν2

r+(z) = (β(z) + d(z))/ν2

r−(z) = (β(z) − d(z))/ν2

g(z) = r−(z)/r+(z)

D(z, t) = r−(z)
1 − e−d(z)t

1 − g(z)e−d(z)t

C(z, t) = λ

(
r−(z)t− 2

ν2
ln

(
1 − ge−d(z)t

1 − g(z)

))
.

In [Hes93], Heston presented a closed form solution for options pricing, which
is one of the main reasons for the popularity of this model. For a review on
the Heston model see [Gat06].
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Chapter 2

Fourier Methods in Finance

Fourier methods in finance are used in a variety of situations. Several authors
used Fourier methods to find analytical formula for the price of derivatives.
Heston [Hes93] used Fourier analysis to find an explicit solution of a parabolic
partial differential equation with mixed differentiation terms, that models the
price of a call option. To do so, Heston explicitly derived the formula for the
characteristic function of a stochastic volatility model.

The characteristic function of several processes used in finance are known
in closed form. We have for example the Levy-Khinchin representation given
in Theorem 1.2.1. Duffie, Pan and Singleton [DPS00] found the characteristic
function for general jump-diffusion model and also the derivative price for a
special class of payoff functions.

In a different direction, Carr-Madan[CM99] and Lewis [Lew00] used the
Fourier transform to find the price of an European call option in the Fourier
space and then used FFT to find the price in real space. The main idea of
the method is that European derivatives are convolutions in real space of
the payoff and the density of the asset on the maturity date. In order to
compute option prices, Carr-Madan [CM99] had to set a damping constant
and Lewis [Lew00] had to set a translation in the complex plane to invert
the generalized Fourier transform.

Lee [Lee04] has shown that the accuracy of the method presented by Carr-
Madan is sensitive to the choice of the damping constant. Lee presented a
strategy to choose the damping parameter. He also extended the method
to several others payoff functions, and presented some bounds for the FFT
approximation.

The FFT approach was also used by [JJSB] and [JSB], to price American
options by the Fourier time stepping. In a different direction [LFBO07] used
Richardson extrapolation to the prices of Bermudian options in order to price
American options.
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As opposed to [CM99] and [Lew00], this thesis deals with the Fourier
transform for generalized functions. Therefore, no dumping parameter is
needed, and the characteristic function is only used in real space.

This chapter is organized as following. In Section 2.1, we briefly review
the two ground works on the application of FFT to finance. In Subsection
2.1.1, we review the work of Carr-Madan and in Subsection 2.1.2, we review
the work of Lewis. In Section 2.2, we present a new approach based on the
Fourier transform for tempered distributions. Our method applies to several
derivatives not treated by [CM99], [Lew00], [Lee04], and [DPS00].

2.1 Review of FFT Methods in Finance

In this section, we give a brief overview on the work of Carr-Madan and
Lewis. See [CM99], [Lew00], [Lee04] or [CT04] for a complete review.

2.1.1 Fourier Transformation with Attenuation Factor

In [CM99], the authors developed a method to numerically calculate the price
of call options for several strikes. The pricing formula for a given strike, ek,
is

CT (k) =

∫ +∞

k

e−rT
(
es − ek

)
ρT (s)ds ,

for some risk-neutral density, ρT for the log-prices, as in Equation 1.19. The
attenuated price is defined as

Cα
T (k) := eαkCT (k) . (2.1)

In general, CT (k) in not integrable, but Cα
T is. The Fourier transform of the

attenuated price is

Ĉα
T (ξ) =

∫ +∞

−∞
eiξkCα

T (k)dk

= erT
ϕ (ξ − (α + 1)i)

α2 + α + ξ2 + i(2α + 1)ξ
,

(2.2)

where ϕ is the characteristic function of the distributions ρ. The attenuation
factor makes it necessary to use the characteristic function defined in the
complex plane. The price can be obtained by Fourier inversion

CT (k) = e−αkF−1
[
Ĉα
T

]
(k) (2.3)
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The Fourier transform in 2.3 can be approximated by FFT. In [CT04] a
different approach was used. More precisely, let

C1
T (k) = CT (k) − (1 − ek−rT )+ , (2.4)

so,

Ĉ1
T (ξ) =

∫ +∞

−∞
eiξkC1

T (k)dk

= eiξrT
ϕ(ξ − i) − 1

iξ(1 + iξ)
.

(2.5)

The problem with (2.5) is the slow decay of Ĉ1
T (ξ) for large ξ, to improve

that they used

C2
T (k) = CT (k) − Cσ

BS(k) , (2.6)

where Cσ
BS(k) is the Black and Scholes price for an option with volatility σ,

strike ek and maturity T . So

Ĉ2
T (ξ) =

∫ +∞

−∞
eiξkC2

T (k)dk

= eiξrT
ϕ(ξ − i) − ϕBS(ξ)

iξ(1 + iξ)
,

(2.7)

where ϕBS(ξ) = exp
(
−σ2T

2
(ξ2 + iξ)

)
. The decay in (2.7) is exponential for

most of applications to finance, while the decay of (2.5), is polynomial. The
problem with (2.7) is that we need to find a good σ to improve the method
and we need to compute CBS for every strike.

2.1.2 Generalized Fourier Transform

In a different direction from Carr-Madan [CM99], Lewis [Lew00] works with
the analytic continuation of the Fourier transform. For a given asset St and
payoff f at T , the value of the contract at t = 0, for observed prices s = log S0

is

C(s) = e−rT
∫ ∞

−∞
f(es+x+rT )ρT (x)dx , (2.8)

which follows from Equation (1.19). To use the Fourier transform in (2.8)
some assumptions are needed:
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• ρ is Fourier integrable in a strip S1. That is, there are a, b ∈ R such
that

∫ ∞

−∞
e−ax|ρ(x)|dx ≤ ∞

∫ ∞

−∞
e−bx|ρ(x)|dx ≤ ∞ .

This holds for several processes used in finance. For example, log-
normal jump diffusion has S1 = C.

• g(x) = f(ex+rT ) is Fourier integrable in a strip S2 with S = S1∩S2 6= ∅.
Again this hypothesis is valid for several payoffs used in finance. For
example, consider the call option, then S2 = {z ∈ C | Im(z) > 1}.

Given z ∈ S,

∫ ∞

−∞
eizsC(s)ds = e−rT

∫ ∞

−∞
ρT (x)

∫ ∞

−∞
eizsg(x+ s)dsdx

= e−rT
∫ ∞

−∞
e−izxρT (x)

∫ ∞

−∞
eizyg(y)dydx.

(2.9)

Hence,

F [C] (z) = e−rTϕ(−z)F [g] (z) , (2.10)

where ϕ is the characteristic function ϕ(z) = F [ρT ] (z). The transform of
the call options, for Im(z) > 1, is given by

F
[(

ex+rT −K
)+]

=

∫
eixz

(
ex+rT −K

)+
dx

=
ek(iz+1)−izrT

iz − z2
.

(2.11)

The price of the call options is then given by

C(S) =
e−rT

2π

∫ iω+∞

iω−∞
e−izsF [C] (z)dz

=
e−rT

2π

∫ iω+∞

iω−∞
e−izsϕ(−z)e

k(iz+1)−izrT

iz − z2
dz ,

(2.12)

for some ω in (1, 1 + α), where α depends on the characteristic function, see
[Lew00].

19



2.2 The Fourier Transform for Tempered Dis-

tributions

In this section, we present a method to obtain derivative prices from char-
acteristic functions. This method is related to [Lew00], see Subsection 2.1.2,
but different from Lewis, we use the Fourier transform only in the real space.
We consider payoffs in S ′ (R) and densities in S (R), see Chapter 1. For a spe-
cial class of payoffs, that contains several important derivatives in financial
markets, we explicitly present the formula for the value of the derivative.

In our first result, we express the pricing formula as a convolution. In the
following theorem, we establish a simple assumption for the validity of the
pricing formula, under fairly general conditions. In Theorem 2.2.2, we use
the former result to prove a pricing formula for more general payoffs.

Theorem 2.2.1 Let f be the payoff at time T of an European derivative,
such that

g(s) := f
(
es+rT

)
∈ S ′(R).

Suppose ρT ∈ S(R), then the price is given by

Cg(s) = e−rTF−1
[
F [g] F̃ [ρ]

]
(s) ,

where f̃(x) := f(−x).

Proof: The risk-neutral pricing (1.19) can be written as

Gg(s) = e−rT
∫ ∞

−∞
f(es+x+rT )ρT (x)dx , (2.13)

so, by definition of g, it follows that

Gg(s) = e−rT
∫ ∞

−∞
g(x+ s)ρT (x)dx

= e−rT (g ∗ ρ̃)(s) .
(2.14)

The result then follows from the definition of the Fourier transform for con-
volutions.

Using Theorem 2.2.1, we can obtain an explicit formula for several payoffs
used in finance, not necessarily in S ′(R). The pricing formula is given in the
next theorem.
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Theorem 2.2.2 Consider a payoff of the form

g(x) =
n∑

j=1

(
c+j + d+

j ex
)
Xvj

(x) +
m∑

k=1

(
c−k + d−k ex

)
Xvk

(−x) , (2.15)

over an asset ST with density ρT ∈ S(R). Then the price of the contract is
given by

Gf (s) =
e−rT

2π
−
∫

e−irT ξ
F [ρ](−ξ)

iξ

(
m∑

k=1

c−k e−ivkξ −
n∑

j=1

c+j eiξvj

)
e−iξsdξ

+
e−rT

2π

∫
e−irT ξ

F [ρ](−ξ)
1 + iξ

(
m∑

k=1

+d−k e−ivkξ −
n∑

j=1

d+
j eiξvj

)
e−iξsdξ

+
e−rT

2

(
m∑

k=1

c−k −
n∑

j=1

c+j

)
+ es+rT

m∑

k=1

d+
k .

(2.16)

Proof: Notice that

gl(x) := g(x) − ex
∑

d+
k

=

n∑

j=1

c+j Xvj
(x) − d+

j exX−vj
(−x) +

m∑

k=1

(
c−k + d−k ex

)
Xvk

(−x) ,
(2.17)

so gl ∈ S ′(R). The Fourier transform of gl is given by

F
[
gl
]
(ξ) =

n∑

j=1

c+j eiξvjF [H ] + d+
j

eiξvj

1 + iξ

+
m∑

k=1

c−k e−ivkξF [H ](−ξ) + d−k
e−ivkξ

1 + iξ

=

(
1

iξ
+ πδ

)( m∑

k=1

c−k e−ivkξ −
n∑

j=1

c+j eiξvj

)

+
1

1 + iξ

(
n∑

j=1

d+
j eiξvj +

m∑

k=1

+d−k e−ivkξ

)
.

(2.18)
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Using the risk-neutral pricing formula (1.19), we obtain

Gg(s) = e−rT
∫ ∞

−∞
g(x+ s+ rT )ρT (x)dx

= e−rT

(∫ ∞

−∞
gl(x+ s + rT )ρT (x)dx+

∫ ∞

−∞
ex+s+rTρT (x)dx

m∑

k=1

d+
k

)

= e−rT
∫ ∞

−∞
gl(x+ s+ rT )ρT (x)dx+ es+rT

m∑

k=1

d+
k .

(2.19)

In the last equation, we used the martingale property of discounted prices.
So, according to Theorem 2.2.1, we have

Gg(s) =
e−rT

2π
−
∫

e−irT ξ
F [ρ](−ξ)

iξ

(
m∑

k=1

c−k e−ivkξ −
n∑

j=1

c+j eiξvj

)
e−iξsdξ

+
e−rT

2π

∫
e−irT ξ

F [ρ](−ξ)
1 + iξ

(
m∑

k=1

+d−k e−ivkξ −
n∑

j=1

d+
j eiξvj

)
e−iξsdξ

+
e−rT

2

(
m∑

k=1

c−k −
n∑

j=1

c+j

)
+ es+rT

m∑

k=1

d+
k .

(2.20)

The payoff function given by Equation (2.15) used in Theorem 2.2.2 is very
general. We now give a brief overview of some payoffs to which Theorem
2.2.2 applies. For an introduction to payoffs used in financial markets see
[Hul08].

• Call

gC(x) = Xk(x)
(
ex − ek

)

This option gives the owner the right to buy at time T the asset for
the strike price ek.

• Digital

gD(x) = Xk (x)

This option gives the owner one unit of money if the stock is above
some strike ek at maturity T.
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• Bull Spread

gBull(x) = Xk1 (x)
(
ex − ek1

)
−Xk2 (x)

(
ex − ek2

)

This payoff is made of buying a call with strike ek1 and selling a call
with strike ek2, all the calls with the same maturity and k2 > k1.

• Butterfly

gB(x) =Xk1 (x)
(
ex − ek1

)
− 2Xk2 (x)

(
ex − ek2

)

+ Xk3 (x)
(
ex − ek3

)

This payoff is made of buying a call with strikes ek1 and ek3 and selling
two calls with strike ek2 , all the calls with the same maturity, k3 > k1

and k2 = log
(
(ek1 + ek3)/2

)
.

• Straddle

gS(x) = Xk (x)
(
ex − ek

)
+ X−k (−x)

(
ek − ex

)

This payoff is made of buying a call option, and buying a put option
with the same strike, ek and the same maturity T.

The payoffs of the Digital, Butterfly, Bull Spread and Straddle are shown in
Figure 2.1, the payoffs of the call and put options are shown in Figure 1.1.

The pricing method presented in this section has one main advantage over
the method presented by Carr-Madan, Subsection 2.1.1 and Lewis, Subsec-
tion 2.1.2. In Theorem 2.2.2 no extra parameter was needed, while in Lewis
and Carr-Madan, the definition of an extra parameter is needed. The gener-
alized payoff formula of Theorem 2.2.2 makes it possible to obtain a closed
form pricing formula for a portfolio of derivatives, which is often the case in
the markets.

All Fourier transforms found in this section involve either h(ξ)/ξ or h(ξ)/(1+
iξ). Numerical inversion for this kind of function will be treated in Chapter
3.
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Figure 2.1: Payoffs
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Chapter 3

Approximation of Fourier
Operators

Fourier methods have been used for several problems, ranging from physics
and electromagnetism to mathematical finance.

From the physics and engineering point of view, this chapter presents
a fast method for the evaluation of the heat potentials. Here we follow
the lines given by the work of Greengard and Lin [GL00], who developed
an approximation method based on non-uniform quadrature. This kind of
method was used in [LG07] to solve inhomogeneous heat equation in free
space.

In this chapter, we improve the approximation method developed by
Greengard and Lin [GL00] by obtaining a sharper bound, which is valid for
a class of functions having the heat kernel as a particular case. In another
direction, we present bounds for other types of Fourier transforms arising
from the lack of differentiability of the transformed function.

We start with a simple example as motivation. Consider the heat equation
problem for a finite rod,

ut = uxx t > 0, |x| ≤ Lπ

u(−Lπ, t) = u(Lπ, t) = 0

u(x, 0) = f(x) |x| ≤ Lπ .

The solution is given by

u(x, t) = KL(x, t) ∗ f(x) , (3.1)

where KL(x, t) is the heat kernel

KL(x, t) :=
1

2πL

∞∑

k=−∞
e−t(

k
L)

2

ei
k
L
x . (3.2)
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The following lemma shows the error we make when we approximate KL(x, t)
by a finite sum.

Lemma 3.0.3

Ep(t) :=

∣∣∣∣∣∣
1

2πL

∑

|k|>p
e−t(

k
L)

2

ei
k
L
x

∣∣∣∣∣∣
≤ 1

2
√
πt

e−t(
p
L)

2

. (3.3)

Proof:

Ep(t) ≤ 1

2πL

∑

|k|>p
e−t(

k
L)

2

≤ e−t(
p

L)
2

πL

∞∑

s=1

e−t(
s
L)

2

≤ 1

πL
e−t(

p
L)

2
∫ ∞

0

e−t(
s
L)

2

ds =
1

2
√
πt

e−t(
p
L)

2

For the infinite rod case, we have the following kernel

G(x, t) =
e−

x2

4t

2
√
πt

=
1

2π

∫ +∞

−∞
e−s

2teisxds . (3.4)

The heat kernel (3.2) can be seen as the equispaced approximation of
Green’s function (3.4). Thus, the uniform approximation of the integral in
(3.4) by uniform mesh of size L−1 is related to the approximation of the
infinite rod problem by the finite one in the interval [−πL, πL]. Thus, if we
let L → ∞ in (3.2), we obtain (3.4). A consequence of Lemma 3.3 is that,
for fixed L, we get a better approximation of (3.4) by increasing the number
of Fourier modes.

Consider now the truncation of the infinite interval. The next lemma
gives a bound for the error.

Lemma 3.0.4
∣∣∣∣
∫ ∞

−∞
e−s

2teisxds−
∫ p

−p
e−s

2teisxds

∣∣∣∣ ≤ min

(
1

pt
,

√
π

t

)
e−p

2t (3.5)

Proof: First notice that

E(t, x) :=

∣∣∣∣
∫ ∞

−∞
e−s

2teisxds−
∫ p

−p
e−s

2teisxds

∣∣∣∣

≤ 2

∫ ∞

p

e−s
2tds .

(3.6)
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Then, a simple integration by parts results in

E(t, x) ≤ 2

∫ ∞

p

Ds

(
e−s

2t
) −1

2st
ds

≤ −e−s
2t

st

∣∣∣∣∣

∞

p

−
∫ ∞

p

e−s
2t 1

s2t
ds ≤ e−p

2t

pt
.

(3.7)

For the other inequality observe that

E(t, x) ≤ 2

∫ ∞

p

e−s
2tds ≤ 2

∫ ∞

0

e−(y+p)2tdy

≤ 2e−p
2t

∫ ∞

0

e−y
2tdy =

√
π

t
e−p

2t .

(3.8)

Lemma 3.0.4 shows that for large values of t we need lower p to obtain the
same accuracy. In the opposite direction, consider the error for the uniform
quadrature

EQ
n =

∣∣∣∣∣

∫ p

−p
e−s

2teisxds−
N∑

k=1

e−s
2
k
teiskx

∣∣∣∣∣ , (3.9)

where sk = −p + 2p
N

(k − 1). EQ
n increases with t. In order to observe

this, notice that
∣∣∣Ds

(
e−s

2teisx
)∣∣∣ = e−s

2t
√
x2 + 4s2t2, which for x = 0 has

a maximum of
√
t
(√

2e
)−1

.
An example of the approximation of the Fourier transform by uniform

quadrature is given in Figure 3.1. In order to use FFT we must have ∆x∆s =
2π/N , so we have to define xj = xmin + j∆x, j = 0, . . . , N − 1, where
xmin = −(N/2)∆x.

The problem shown by Figure 3.1 is that for large values of t we must
have a dense sampling on a small suport, while for small t we have to en-
large the support of the sampling. In this thesis, we focus on non-uniform
approximations to overcome this limitation of uniform approximations.

3.1 Spectral Approximation of the Free-Space

Heat Kernel

In this section, we give a brief overview of the work of Greengard and Lin
[GL00], which was the starting point of this chapter. In their work, they
addressed the following question:
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Figure 3.1: The error of the uniform approximation to the Fourier transform,
as in (3.9) is shown for different values of ∆s and t.

“How many quadrature points are required on an interval [a, b] in
the Fourier domains in order to resolve the spectrum to within
some specified precision ǫ?”(Greengard and Lin [GL00])

To answer this question they presented a discretization of the heat kernel
based in the Gauss-Legendre quadrature, as seen in Theorem 3.1.1. In this
thesis, as in [GL00], we work with Gauss-Legendre quadrature. To simplify
notation consider the following definition.

Definition: From here on, we always use Sn[a,b] := (s1, . . . , sn) and Wn
[a,b] :=

(w1, . . . , wn) to denote the nodes and weights for the n-point Gauss-Legendre
quadrature on the interval [a, b].

With this definition we can present the following theorem.

Theorem 3.1.1 ([GL00]) Given n, and ǫ, let Sn[a,b] and Wn
[a,b] be the nodes

and weights for the Gauss-Legendre quadrature, where [a, b] = [2j , 2j+1] then
for t > t0, we have

∣∣∣∣∣

∫ b

a

e−ts
2

eixsds−
n∑

j=1

wje
−ts2j eixsj

∣∣∣∣∣ ≤ ǫ(b− a)

+

√
2π(b− a)√

n

(
(b− a)|x|

2n
+

√
− log(ǫ)√

n

)2n (3.10)
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∣∣∣∣∣

∫ b

a

e−ts
2

eixsds−
n∑

j=1

wje
−ts2j eixsj

∣∣∣∣∣ ≤
ǫ(b− a)

p

+

√
2π(b− a)√

n

(
(b− a)|x|

2n
+

√
− log(ǫt0)√

n

)2n (3.11)

where exp(−p2t0)/
√

7πt0 = ǫ.

A different version of this theorem will be shown in Theorem 3.3.3, which
is based in Theorem 3.2.3. We will also present results for the estimation
of the Fourier transform of h(s)/s and h(s)/(1 + is) (Theorems 3.2.4, 3.2.6,
3.3.4, and 3.3.7).

3.2 Non-uniform Quadratures

In the previous section, we have shown the problem with the uniform quadra-
ture to approximate the continuous Fourier transform. Historically, non-
uniform quadratures have been used as an improvement over the uniform
case. In this section, we present some bounds for the sampling error for
non-uniform approximations of the Fourier transform for a special class of
functions.

The first result of this section is a simple application of Stirling’s approx-
imation,

√
2πn

2n+1
2 e−n < n! < 2

√
πn

2n+1
2 e−n , (3.12)

see [AS65]. The result of the following lemma will be used in the sequel.

Lemma 3.2.1

n!4

(2n)!3
≤ 2

√
nπ

(
1

α1n

)2n

and
n!4

(2n)!2
≤ 4nπ

(
1

2

)4n

, (3.13)

where α1 := 8/e.

Proof: These results follow from Stirling’s approximation (3.12). For the
first inequality, notice that

n!4

(2n)!3
≤

(
2
√
πn

2n+1
2 e−n

)4

(√
2π(2n)

4n+1
2 e−2n

)3

≤ 2
√
nπ
( e

23n

)2n

= 2
√
nπ

(
1

α1n

)2n

.
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For the second inequality, we have

n!4

(2n)!2
≤

(
2
√
πn

2n+1
2 e−n

)4

(√
2π(2n)

4n+1
2 e−2n

)2

= 4nπ

(
1

2

)4n

.

The second result used in this chapter is the standard estimate for n-point
Gauss-Legendre quadrature (see [DR75]).

Theorem 3.2.2 Let Sn[a,b] and Wn
[a,b] be the nodes and weights for the n-point

Gauss-Legendre quadrature on the interval [a, b]. Then, if h ∈ C2n[a, b],

EQ
n (h) :=

∣∣∣∣∣

∫ b

a

h(s)ds−
n∑

j=1

wjh(sj)

∣∣∣∣∣

≤ (b− a)2n+1(n!)4

(2n + 1)(2n)!3
sup
s∈(a,b)

∣∣D2n (h(s))
∣∣ .

The approximations of Fourier transform in this section concern a specific
class of functions.

Definition: We say that h(s; β) ∈ Dn
[a,b](f) if h(s; β) ∈ C2n[a, b], and if

derivatives of h(s; β) in s is bounded by

∣∣Dj
sh(s; β)

∣∣ ≤ β
j

2 (2n)
j

2f(s) ,

for some bounded f . A short definition of Dn
[a,b](f) is given by

Dn
[a,b](f) :=

{
h(s; β) ∈ C2n[a, b];

∣∣Dj
sh(s; β)

∣∣ ≤ β
j

2 (2n)
j

2f(s) j = 1, . . . , 2n
}
.

When clear from the context, we denote Dn
[a,b](f) by D and h(s; β) by h(s).

We are particularly interested in the Heat kernel, Lemma 3.3.1 proves that

h(s; t) = e−ts
2 ∈ Dn

[a,b]

(
(4nπ)1/4e−ts

2/2
)
.

The result of the next theorem will be later shown as an extension and
improvement to [GL00]. Theorem 3.2.3, when applied to the heat kernel,
can be used, for example, to solve the inhomogeneous heat equation in free
space, see [LG07].

Using Lemma 3.2.1 and Theorem 3.2.2, we can prove our first approxi-
mation of the Fourier transform.

30



Theorem 3.2.3 Given n, let Sn[a,b] and Wn
[a,b] be the nodes and weights for

the Gauss-Legendre quadrature. Then, if h ∈ Dn
[a,b](f) it follows that

∣∣∣∣∣

∫ b

a

h(s)eixsds−
n∑

j=1

wjh(sj)e
ixsj

∣∣∣∣∣

≤
√
π(b− a)√

n
f ∗
(

(b− a)|x|
α1n

+
(b− a)

√
2β

α1

√
n

)2n

,

(3.14)

where f ∗ = maxs∈[a,b] f(s) and α1 = 8/e.

Proof: From h ∈ Dn
[a,b](f) we have

∣∣D2n
(
h(s)eisx

)∣∣ ≤
2n∑

j=0

(
2n

j

) ∣∣Djh(s)
∣∣ ∣∣D2n−j (eisx

)∣∣

≤
2n∑

j=0

(
2n

j

)
β

j

2 (2n)
j

2 f(s)|x|2n−j

≤ f(s)
2n∑

j=0

(
2n

j

)(√
2βn

)j
|x|2n−j

≤ f(s)
(
|x| +

√
2βn

)2n

.

(3.15)

Using (3.15), it follows from Theorem 3.2.2 that

EQ
n :=

∣∣∣∣∣

∫ b

a

h(s)eixsds−
n∑

j=1

wjh(sj)e
ixsj

∣∣∣∣∣

≤ (b− a)2n+1(n!)4

(2n + 1)(2n)!3
f ∗
(
|x| +

√
2βn

)2n

≤ (b− a)2n+1

(2n+ 1)

(
2
√
nπ
( e

23n

)2n
)
f ∗
(
|x| +

√
2βn

)2n

,

where we used Lemma 3.2.1 in the last inequality. The final step is given by

EQ
n ≤ (b− a)8

√
nπ

(2n+ 1)
f ∗
(

(b− a)|x|
α1n

+
(b− a)

√
2β

α1

√
n

)2n

≤ (b− a)
√
π√

n
f ∗
(

(b− a)|x|
α1n

+
(b− a)

√
2β

α1

√
n

)2n

.
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The next approximation concerns the principal value of some Fourier
transform. This kind of transformation is often seen in several different
situations. As an example, we have the Fourier transform of

v(x) =

∫ x

−∞
g(s)ds , (3.16)

which is given by

F [v](ξ) = F [g](ξ)

(
πδ − 1

iξ

)
.

Such transformation is very often found in mathematical finance, see Section
2.2, and probability, in which it is used to compute cumulative probability.

Theorem 3.2.4 Given n, let Sn[a,b] and Wn
[a,b] be the nodes and weights for

the Gauss-Legendre quadrature. Then, if h ∈ Dn
[a,b](f) with 0 /∈ [a, b], it

follows that
∣∣∣∣∣

∫ b

a

h(s)

is
eisxds−

n∑

j=1

wj
h(sj)

isj
eixsj

∣∣∣∣∣ ≤ f ∗
(
b− a

4sm

)2n+1
8πesm

√
2βn

n

+

√
π(b− a)√

n
f ∗|x|

(
(b− a)|x|
nα1

+
(b− a)

√
2β

α1

√
n

)2n

,

(3.17)

where α1 = 8/e, s = max (|a|, |b|), s = min (|a|, |b|), f ∗ = maxs∈[a,b] f(s), and
sm = arg maxs∈[a,b] exp(|s|√2βn)|s|−2n−1.

Proof: We bound the derivative
∣∣∣∣D

j
s

(
eisx

is

)∣∣∣∣ =

∣∣∣∣∣−ie
isx

j∑

k=0

(
j

k

)
(ix)k

(j − k)!(−1)j−k

sj−k+1

∣∣∣∣∣

=

∣∣∣∣∣−
i(−1)jeisxj!

sj+1

j∑

k=0

(−isx)k
k!

∣∣∣∣∣

≤ j!

|s|j+1

∣∣∣∣∣

j∑

k=0

(−isx)k
k!

∣∣∣∣∣ .

(3.18)

By Taylor’s theorem for some s̃ with |s̃| < |s|, we then have
∣∣∣∣D

j
s

(
eisx

is

)∣∣∣∣ ≤
j!

|s|j+1

∣∣∣∣e
−isx − (−ixs̃)j+1

(j + 1)!

∣∣∣∣

≤ j!

|s|j+1

(
1 +

(|x|s)j+1

(j + 1)!

)
.

(3.19)
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Using the bound (3.19), we are ready to compute

∣∣∣∣D
2n

(
h(s)eisx

is

)∣∣∣∣ ≤
2n∑

j=0

(
2n

j

) ∣∣D2n−jh(s)
∣∣
∣∣∣∣D

j

(
eisx

is

)∣∣∣∣

≤
2n∑

j=0

(
2n

j

)
(β2n)

2n−j

2 f(s)
j!

|s|j+1

(
1 +

(|x|s)j+1

(j + 1)!

)

≤ f(s)

2n∑

j=0

(
(2n)!

|s|2n+1

|s√2βn|2n−j
(2n− j)!

+

(
2n

j

)√
2βn

2n−j |x|j |x|s
|s|(j + 1)

)

≤ f(s)

(
(2n)!e|s|

√
2βn

|s|2n+1
+

|x|s
|s|
(√

2βn+ |x|
)2n
)
,

(3.20)

where the second line is a consequence of h ∈ D and (3.19). Using Lemma
3.2.1 and Theorem 3.2.2, it follows from (3.20) that

E :=

∣∣∣∣∣

∫ b

a

h(s)eixs

is
ds−

n∑

j=1

wj
h(sj)e

ixsj

isj

∣∣∣∣∣

≤ (b− a)2n+1

(2n+ 1)
f ∗

((
4π

24n

)
esm

√
2βn

s2n+1
m

+ 2
√
nπ
( e

n8

)2n

|x|
(√

2βn+ |x|
)2n
)

≤ f ∗

((
b− a

4sm

)2n+1
16πesm

√
2βn

2n+ 1
+

2
√
nπ(b− a)

2n + 1
x

(
(b− a)

√
2β

α1

√
n

+
(b− a)|x|
nα1

)2n
)

≤ f ∗

((
b− a

4sm

)2n+1
8πesm

√
2βn

n
+

√
π(b− a)|x|√

n

(
(b− a)

√
2β

α1

√
n

+
(b− a)|x|
nα1

)2n
)
.

It is interesting to observe that the minimum for exp(|s|√2βn)|s|−2n−1 is

achieved at s = 2n+1√
2βn

with value
(√

2βn/(2n+ 1)
)2n+1

.
Theorem 3.2.4 is related to Theorem 3.2.3. To see this, first notice that

Theorem 3.2.4 has the extra term f ∗ ((b− a)/(4sm))2n+1 8π exp(sm
√

2βn)/n,
besides that, the second line of (3.17) is the the bound obtained in Theorem
3.2.3 times |x|.

Theorem 3.2.4 is not valid when 0 ∈ [a, b]. Thus a different approach is
needed in this case. To treat it, we find an approximation of

I1(x) := −
∫

|s|≤δ

h(s)

is
eisxds . (3.21)
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To approximate I1 we assume that the derivatives of h at 0 are available.
The following lemma gives the desired approximation.

Lemma 3.2.5 For a given δ and h ∈ Cn+1[−δ, δ], we then have

EI1(n, δ) :=

∣∣∣∣∣−
∫

|s|<δ

eixsh(s)

is
ds−

n∑

j=1

h(j)(0)
f δj−1(x)

j!i
− h(0)

∫

|s|≤δ

sin(sx)

s
ds

∣∣∣∣∣

≤ sup
|s|<δ

∣∣Dn+1h(s)
∣∣ 2δn+1

(n + 1) (n+ 1)!
,

(3.22)

where

f δn(x) :=

n∑

j=0

n!

(n− j)!

δn−j

(−ix)j+1

(
(−1)n−je−ixδ − eixδ

)
.

Proof: First notice that

I1(x) = −
∫

|s|≤δ

h(s)

is
eisxds

= −
∫

|s|<δ

eisx

is

(
n∑

j=0

h(j)(0)sj

j!
+
h(n+1)(z(s))sn+1

(n + 1)!

)
ds

= −i
∫

|s|<δ
eisx

(
n∑

j=1

h(j)(0)sj−1

j!
+
h(n+1)(z(s))sn+1

(n+ 1)!

)
ds+ h(0)−

∫

|s|<δ

eixs

is
ds ,

(3.23)

where z(s) ∈ [−s, s] ⊂ [−δ, δ] that is given by the Taylor’s theorem. The
result follows from the fact that

fn(x) =

∫

|s|≤δ
sneixsds .

Our next approximation concerns h(s)/(c + is). One example of the
appearance of such transform is

u(x) = ecx
∫ ∞

x

g(s)e−csds .
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The Fourier transform of u is given by

F [u](ξ) =
F [g](ξ)

c+ iξ
. (3.24)

Such functions are seen in several applications, for example, [CM99] used a
similar transform to find option prices. In Section 2.2, Fourier transforms
similar to (3.24) were also seen. The following theorem presents a bound for
the Fourier transform for this type of functions.

Theorem 3.2.6 Given n, let Sn[a,b] and Wn
[a,b] be the nodes and weights for

the Gauss-Legendre quadrature. Then, if h ∈ Dn
[a,b](f) it follows that

∣∣∣∣∣

∫ b

a

h(s)

c+ is
eixsds−

n∑

j=1

wj
h(sj)

c+ isj
eixsj

∣∣∣∣∣ ≤ f ∗
(

b− a

4|c+ s|

)2n+1
8πe

√
2βn(c2+s2)

n
exc

+

√
π(b− a)√

n
f ∗|x|

(
(b− a)|x|
α1n

+
(b− a)

√
2β

α1

√
n

)2n

,

where α1 = 8/e, s = max(|a|, |b|), s = min(|a|, |b|), and f ∗ = maxs∈[a,b] f(s).

Proof: To calculate a bound for the derivative consider

∣∣∣∣D
j

(
eisx

c+ is

)∣∣∣∣ =

∣∣∣∣∣e
isx

j∑

k=0

(
j

k

)
(ix)k

(j − k)!(−i)j−k
(c + is)j−k

∣∣∣∣∣

=

∣∣∣∣∣
eisxj!

(c+ is)j+1

j∑

k=0

(ix)k(−i)k(c+ is)k

k!

∣∣∣∣∣

≤ j!

|c+ is|j+1

∣∣∣∣∣

j∑

k=0

(xc + ixs)k

k!

∣∣∣∣∣ .

(3.25)

Using Taylor’s theorem for some d ∈ C with |d| < |x|
√
c2 + s2, we have

∣∣∣∣D
j

(
eisx

c+ is

)∣∣∣∣ ≤
j!

|c+ is|j+1

∣∣∣∣e
xceisx − dj+1

(j + 1)!

∣∣∣∣

≤ j!

|c+ is|j+1

(
exc +

(|x|
√
c2 + s2)j+1

(j + 1)!

)
.

(3.26)
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Using the fact that h ∈ D and (3.26), we are ready to estimate

∣∣∣∣D
2n

(
h(s)eisx

c+ is

)∣∣∣∣ ≤
2n∑

j=0

(
2n

j

) ∣∣D2n−jh(s)
∣∣
∣∣∣∣D

j

(
eisx

c+ is

)∣∣∣∣

≤
2n∑

j=0

(
2n

j

)
(2βn)

2n−j

2 f(s)
j!

|c+ is|j+1

(
exa +

(|x|
√
c2 + s2)j+1

(j + 1)!

)

≤f(s)exc
2n∑

j=0

(2n)!

|c+ is|2n+1

(√
2βn(c2 + s2)

)2n−j

(2n− j)!
+

+ f(s)
2n∑

j=0

(
2n

j

)√
2βn

2n−j |x|j |x|
(j + 1)

≤ f(s)

(
(2n)!exce

√
2βn(c2+s2)

|c+ is|2n+1
+ |x|

(√
2βn+ |x|

)2n
)
.

(3.27)

We used (3.27), Lemma 3.2.1, and Theorem 3.2.2 to obtain the following
estimate

E(n) :=

∣∣∣∣∣

∫ b

a

h(s)

c+ is
eixsds−

n∑

j=1

wj
h(sj)

c+ isj
eixsj

∣∣∣∣∣

≤(b− a)2n+1(n!)4

(2n+ 1)(2n)!2
f ∗ exce

√
2βn(c2+s2)

|c+ is|2n+1

+
(b− a)2n+1(n!)4

(2n+ 1)(2n)!3
f ∗|x|

(√
2βn+ |x|

)2n

≤8π

(
b− a

4|c+ is|

)2n+1
f ∗exce

√
2βn(c2+s2)

n

+

√
π(b− a)√

n
f ∗|x|

(
(b− a)

√
2β

α1

√
n

+
|x|(b− a)

α1n

)2n

.

It is interesting to notice that Theorem 3.2.4 and 3.2.6 are essentially the
same if we let c→ 0.

3.3 Heat Kernel

In this section, we focus on the heat kernel, h(s) = e−ts
2
. This particular case

of Section 3.2 was studied by [GL00], as seen in Section 3.1. Here, we extend
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their results to different transform and improve the bound they obtained.
We prove versions of Theorems 3.2.3, 3.2.4, and 3.2.6 for the heat kernel.

With these results, we are able to, given a precision ǫ, find for any t > t0 for
a given t0, the required quadrature points in the Fourier domain to achieve
this precision.

First, we prove that, given [a, b] and n, we have h(s) = e−ts
2 ∈ Dn

[a,b](f),
for some f .

Lemma 3.3.1 If h(s) = e−ts
2
, then we have

∣∣Djh(s)
∣∣ ≤ β

j

2n
j

2 f(s) j = 1, . . . , n (3.28)

for β = 2t
e

and f(s) = (4nπ)
1
4 e−

ts2

2 .

Proof: From [Sza51], we have the following estimate for Hermite functions

1

n!
|hn(x)| ≤

√
2
n

√
n!

e−
x2

2 , (3.29)

so, when h(s) = e−ts
2
,

Dj
(
e−ts

2
)

= t
j

2 Dj
x

(
e−x

2
)∣∣∣

x=s
√
t

= t
j

2hj

(
s
√
t
)
.

(3.30)

Using (3.29) and (3.30), we have the following bound for the derivative
∣∣∣Dj

(
e−ts

2
)∣∣∣ ≤ (2t)

j

2

√
j!e−

ts2

2 . (3.31)

Now using (3.12), we have
∣∣∣Dj

(
e−ts

2
)∣∣∣ ≤ (2t)

j

2

√
2
√
πjj+

1
2 e−je−

ts2

2

≤
(

2t

e

) j
2

n
j
2 (4nπ)

1
4 e−

ts2

2 .

All theorems in the previous section deal with integrals over finite inter-
vals. We now present some bounds for the truncation of the infinite integral.

Lemma 3.3.2∣∣∣∣∣−
∫ ∞

−∞

e−s
2t

s
eisxds−−

∫ p

−p

e−s
2t

s
eisxds

∣∣∣∣∣ ≤ min

(
1

pt
,

√
π

t

)
e−p

2t

p
∣∣∣∣∣

∫ ∞

−∞

e−s
2t

a + is
eisxds−

∫ p

−p

e−s
2t

a+ is
eisxds

∣∣∣∣∣ ≤ min

(
1

pt
,

√
π

t

)
e−p

2t

√
a2 + p2

(3.32)
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Proof: First notice that

E1(t, x) :=

∣∣∣∣∣−
∫ ∞

−∞

e−s
2t

s
eisxds−−

∫ p

−p

e−s
2t

s
eisxds

∣∣∣∣∣ ≤ 2

∫ ∞

p

e−s
2t

s
ds .

Using integration by parts, we have

E1(t, x) ≤ 2

∫ ∞

p

Ds

(
e−s

2t
) −1

2s2t
ds =

e−s
2t

s2t

∣∣∣∣∣

∞

p

−
∫ ∞

p

e−s
2t 2

s2t
ds

≤ e−p
2t

p2t
,

so we have one of the bounds. Now consider

E1(t, x) ≤ 2

∫ ∞

p

e−s
2t

s
ds = 2

∫ ∞

0

e−(y+p)2t

y + p
ds

≤ 2
e−p

2t

p

∫ ∞

0

e−y
2tds =

√
π

t

e−p
2t

p
.

(3.33)

For the second integral, notice that

E2(t, x) :=

∣∣∣∣∣

∫ ∞

−∞

e−s
2t

a + is
eisxds−

∫ p

−p

e−s
2t

a+ is
eisxds

∣∣∣∣∣ ≤ 2

∫ ∞

p

e−s
2t

√
a2 + s2

ds .

It follows from integration by parts that

E2(t, x) ≤ 2

∫ ∞

p

Ds

(
e−s

2t
)

−2st
√
a2 + s2

ds

=
e−s

2t

st
√
a2 + s2

∣∣∣∣∣

∞

p

−
∫ ∞

p

e−s
2t

√
a2 + s2

(
1

s2
+

1

a2 + s2

)
ds

≤ e−p
2t

pt
√
a2 + p2

.

Finally consider

E2(t, x) ≤ 2

∫ ∞

p

e−s
2t

√
a2 + s2

ds = 2

∫ ∞

0

e−(y+p)2t

√
a2 + (y + p)2

ds

≤ 2
e−p

2t

√
a2 + p2

∫ ∞

0

e−y
2tds =

√
πe−p

2t

√
t (a2 + p2)
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We now present the version of Theorem 3.2.3 for the heat kernel. This
result follows the line of [GL00], which proved Theorem 3.1.1. Theorem 3.3.3
has some improvements over Theorem 3.1.1, as we show next.

Theorem 3.3.3 Given n, and ǫ, let Sn[a,b] and Wn
[a,b] be the nodes and weights

for the Gauss-Legendre quadrature, where [a, b] = [2j , 2j+1] then for t > t0,
we have

∣∣∣∣∣

∫ b

a

e−ts
2

eixsds−
n∑

j=1

wje
−ts2j eixsj

∣∣∣∣∣ ≤ ǫ(b− a)

+
2(b− a)π

3
4

n
1
4

e−
t0s2

2

(
(b− a)x

α1n
+

√
− log(ǫ)

α2

√
n

)2n (3.34)

∣∣∣∣∣

∫ b

a

e−ts
2

eixsds−
n∑

j=1

wje
−ts2j eixsj

∣∣∣∣∣ ≤ ǫ
(b− a)

p

+
2(b− a)π

3
4

n
1
4

e−
t0s2

2


(b− a)x

α1n
+

√
− log

(
(ǫ
√
t0
)

α2

√
n




2n

,

(3.35)

where p =
√
− log

(
ǫ
√
t0
)
/t0, s = min(|a|, |b|), α1 = 8/e, and α2 = 4

√
2/e.

Proof: For (b − a)
√
t <

√
− log(ǫ) and (b − a)

√
t <

√
− log(ǫ

√
t0) the

theorem is a consequence of Theorem 3.2.3 and Lemma 3.3.1. For a
√
t =

(b− a)
√
t >

√
− log(ǫ), we have

∣∣∣∣
∫ b

a

e−ts
2

eisxds

∣∣∣∣ ≤ e−ta
2

∫ b

a

ds

≤ ǫ(b− a) .

(3.36)

For a
√
t = (b− a)

√
t >

√
− log(ǫ

√
t0), it follows that

∣∣∣∣
∫ b

a

e−ts
2

eisxds

∣∣∣∣ ≤ e−ta
2

∫ b−a

0

e−tx
2

dx ≤ ǫ
√
t0

∫ b−a

0

e
−

„

− log(ǫ
√

t0)
(b−a)2

«

x2

dx
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so defining y =

q

− log(ǫ
√
t0)

b−a x, we have

∣∣∣∣
∫ b

a

e−ts
2

eisxds

∣∣∣∣ ≤ ǫ

√
t0(b− a)√

− log
(
ǫ
√
t0
)
∫ q

− log(ǫ
√
t0)

0

e−y
2

dy

≤ ǫ

√
t0(b− a)√

− log
(
ǫ
√
t0
)
√
π

2
.

Now let p =

q

− log(ǫ
√
t0)√

t0
then

∣∣∣∣
∫ b

a

e−ts
2

eisxds

∣∣∣∣ ≤ ǫ
b− a

p
(3.37)

The above result improves [GL00] for large values of s, due to the fast
decay of the function e−t0s

2/2 presented in Theorem 3.3.3 that is not present
in [GL00]. Another difference is that while we use α1 ≈ 2.94, [GL00] uses 2.
The result of [GL00] has the advantage of using

√
n, where in our result we

have n1/4. See Figure 3.2 for a comparison of the results.

0 6 12 18 24
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−36

−8

n

log(error)
[1, 2], smax = −3 and t = 2

[GL00]
(4.32)

0 6 12 18 24
−70

−54

−38

−22

−6

n

log(error) [4, 8], smax = −3 and t = 0.5

[GL00]
(4.32)

Figure 3.2: Comparison of the accuracy for a given n and t of the estimates
in Equation (3.34) and [GL00].

We also study a version of Theorem 3.2.4 for the heat kernel case.

Theorem 3.3.4 Given n, and ǫ, let Sn[a,b] and Wn
[a,b] be the nodes and weights

for the Gauss-Legendre quadrature, where [a, b] = [2j, 2j+1], then for t > t0,
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we have

∣∣∣∣∣

∫ b

a

h(s)

is
eisxds−

n∑

j=1

wj
h(sj)

isj
eixsj

∣∣∣∣∣ ≤ 27/2π5/4

(
b− a

4sm

)2n+1
eκ(sm)

n
3
4

+(b− a)e−t0a
2 (4π3)1/4

n
1
4

(√
− log(ǫ)

α2

√
n

+
(b− a)x

nα1

)2n

+ ǫ log

(
b

a

)
,

(3.38)

where α1 = 8/e, α2 = 4
√

2/e, sm = arg maxs∈[a,b] e
|s|

√
2βn|s|−2n, and κ(s) =

min
(
n/e,−t0s2

m + sm
√

−4 log(ǫ)n/
√

(b− a)e
)
.

Proof: For (b− a)
√
t >

√
− log(ǫ), we have

∣∣∣∣∣

∫ b

a

e−tξ
2

iξ
eisξdξ

∣∣∣∣∣ ≤ e−ta
2

∫ b

a

1

ξ
dξ ≤ e−t(b−a)

2

∫ b

a

1

ξ
dξ

≤ ǫ

∫ b

a

1

ξ
dξ ≤ ǫ (log(b) − log(a)) .

(3.39)

For (b− a)
√
t ≤

√
− log(ǫ), observe that

max
t>0

(
−ts2 + s

√
4tn

e

)
=
n

e
, (3.40)

and

−ts2
m + sm

√
4tn

e
≤ −t0s2

m + sm

√
−4 log(ǫ)n

(b− a)e
. (3.41)

The result then follows from Lemma 3.0.4 and Theorem 3.2.3.

The bound in Theorem 3.3.4 is valid for every interval of the form [2j, 2j+1].
For practical applications, we cannot make j → −∞, so we need another ap-
proximation for an interval of the type [−δ, δ]. For this purpose, we present
a version of Lemma 3.2.5 for the heat kernel case.

Lemma 3.3.5

EI1(n, δ) :=

∣∣∣∣∣−
∫

|s|<δ

eixse−ts
2

is
ds−

n∑

j=1

h(j)(0)
f δj−1(x)

j!
− h(0)−

∫

|s|≤δ

eixs

is
ds

∣∣∣∣∣

≤ 2

π
1
4

(
2e

n+ 1

)n+1
2

t
n+1

2
δn+1

n
3
4

,

41



(3.42)

where f δn(x) is as in Lemma 3.2.5 and

h(j)(0) =

{
0 If j = 2n+ 1
(2n)!
n!

(−t)n If j = 2n
.

Proof: Using Lemma 3.2.5 and (3.12), we then have

EI1(n, δ) ≤ sup
|y|<δ

∣∣Dn+1h(y)
∣∣ 2δn+1

(n + 1) (n+ 1)!

≤ 2 (4π)
1
4 n

1
4

(
2t
e

)n+1
2 (n + 1)

n+1
2 δn+1

(n+ 1) (n + 1)!

≤ 2

π
1
4

(
2e

n+ 1

)n+1
2

t
n+1

2
δn+1

n
3
4

.

(3.43)

The bound in Lemma 3.3.5 grows with t. It is possible to find an uniform
bound version of the previous lemma.

Lemma 3.3.6 Given κ > 0 and t > t, we have

EI1(n, δ) :=

∣∣∣∣∣−
∫

|s|<δ

eixse−ts
2

is
ds−

n∑

j=1

h(j)(0)
f
√
tδ

j−1(x/
√
t)

j!
− h(0)−

∫

|s|≤δ

eixs

is
ds

∣∣∣∣∣

≤ 2

π
1
4

(
2e

n + 1

)n+1
2

t
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2
δn+1

n
3
4

+ κ ,

(3.44)

where fn(x) as in 3.2.5, h(j)(0) as in Lemma 3.3.5, and

κ =
√
π

e−tδ
2

√
tδ2

.

Proof: A simple change of variables shows that

−
∫

|s|<δ

eixse−ts
2

is
ds = −

∫ √
tδ

−
√
tδ

e
i x
√

t
y
e−y

2

iy
dy .

Then, for t > t, we have
∣∣∣∣∣−
∫

|s|<δ

eixse−ts
2

is
ds

∣∣∣∣∣ =

∣∣∣∣∣−
∫ √

tδ

−
√
tδ

e
ix y

√

t e−y
2

iy
dy

∣∣∣∣∣+
∣∣∣∣∣2
∫ ∞

√
tδ

e
ix y

√

t e−y
2

iy
dy

∣∣∣∣∣ .

The result follows from Lemma 3.3.2 and Lemma 3.3.5.
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Our final bound is a version of Theorem 3.2.6 for the heat kernel.

Theorem 3.3.7 For a given ǫ, let Sn[a,b] and Wn
[a,b] be the nodes and weights

for the Gauss-Legendre quadrature, then for t > t0, we have

∣∣∣∣∣

∫ b

a

h(s)

c+ is
eixsds−

n∑

j=1

wj
h(sj)

c+ isj
eixsj
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(
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4|c+ ia|

)2n+1
exce

n
e

“
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a2

”

n3/4

+
(4π3)

1/4
a

n
1
4

e−t0a
2 |x|

(√
− log(ǫ)

α2

√
n

+
|x|
α1n

)2n

+ ǫ

(
sinh−1

(
b

c

)
− sinh−1

(a
c

))
,

where α1 = 8/e and α2 = 4
√

2/e.

Proof: For (b− a)
√
t >

√
− log(ǫ), we have

∣∣∣∣∣

∫ b

a

e−ts
2

c+ is
eixsds

∣∣∣∣∣ ≤ e−ta
2

∫ b

a

1√
c2 + s2

ds

≤ ǫ

(
sinh−1

(
b

c

)
− sinh−1

(a
c

))
.

(3.45)

For (b− a)
√
t ≥

√
− log(ǫ), notice that

max
t≥0

(
−ts2 +

√
c2 + s2

√
4nt

e

)
=
n

e

(
1 +

c2

s2

)
. (3.46)

In Section 3.2, we made some comments about the relation between The-
orems 3.2.4 and 3.2.6. Considering that Theorems 3.3.4 and 3.3.7 are ap-
plications of Theorems 3.2.4 and 3.2.6 for the heat kernel, some relation
between these results are natural. The relation follows from the fact that,
given [a, b] = [2j, 2j+1], we have

lim
c→0

(
sinh−1

(
b

c

)
− sinh−1

(a
c

))
= log

(
b

a

)
,

so, the bounds in Theorem 3.2.6 converges to the bounds in Theorem 3.2.4.
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Chapter 4

The Algorithm for Computing
Non-uniform Quadratures

In this chapter, we introduce the non-uniform fast Fourier transform (NUFFT).
This algorithm will be used to present a fast algorithm for the bounds devel-
oped in Chapter 3.

The fast Fourier transform is used in many applications where uniformly-
spaced samples arise. But for several applications, such as iterative magnetic
resonance image (MRI) reconstruction or geology, no uniform samples are
available. To make use of the computational advantage of the FFT for non-
uniform grids, NUFFT algorithm was developed. In this chapter, we give a
brief review of the fast Fourier transform for non-uniform sampling.

To introduce the problem, consider Π :=
[
−1

2
, 1

2

)
and

IN :=

{
k ∈ Z | −N

2
≤ k <

N

2

}
.

The discrete Fourier transform for non-equispaced grid is given by

f(vj) =
∑

k∈IN

fke
−2πixkvj (j ∈ IM ) , (4.1)

where xk ∈ Π and vn ∈ NΠ. The Fourier transform in its form (4.1) is non-
uniform in both real and Fourier space. The NUFFT algorithm to address
this problem is called type 3 NUFFT. Special algorithms are available when
the grid is uniform in real or Fourier space. The problem

f(vj) =
∑

k∈IN

fke
−2πikvj (j ∈ IM) , (4.2)
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is called type 1 NUFFT. And the type 2 NUFFT is given by

f(j) =
∑

k∈IN

fke
−2πixkj/N (j ∈ IM) . (4.3)

For xk = k∆x and vj = j∆v, with ∆x∆v = N−1 we have the usual fast
Fourier transform.

The computation of the NUFFT has been addressed by several authors,
see for example [Ste98], [PST98], [AD96], [DR95] and [DR93]. The NUFFT
algorithm we present here follows closely [Ste98] and [PST98].

This chapter is organized as following. In Section 4.1, we give a brief
overview for the algorithm for type 1 NUFFT (4.2). The algorithm for type
3 NUFFT (4.1) is addressed in Section 4.2. In Section 4.3 we present some
numerical examples concerning the accuracy of NUFFT computation, the
bounds of Chapter 3 and some results for pricing financial derivatives using
the formulas of Chapter 2.

4.1 FFT for Uniform Real Space Non-uniform

Fourier Space

First, we present the algorithm for non-uniformity in Fourier space, that is
type 1 NUFFT (4.2). To compute this transform, it is necessary to define an
oversampling factor α > 1 and set n := ⌈α1N⌉, where ⌈⌉ is the notation for
the ceiling functions [GKP89]. Let ϕ be a function with period 1 that has
uniformly convergent Fourier series. We approximate f(v) by

f(v) = s1(v) :=
∑

j∈In

gjϕ

(
v − j

n

)
. (4.4)

Replacing ϕ in (4.4) by its Fourier series, we get

s1(v) =
∑

k∈Z

ĝkcke
−2πikv

=
∑

r∈Z

∑

n∈In

ĝk+nrck+nre
−2πi(k+nr)v ,

(4.5)

where

ĝk :=
∑

j∈In
gje

2πi kj
n ,

ĉk :=

∫

Π

ϕ(v)e2πikvdv .

(4.6)
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Using the fact that |ck| → 0 as |k| → ∞, we can assume that ϕ and n are so
that the summation in (4.5) can be approximated by 0 for r 6= 0. Comparing
(4.2) to (4.5), it is natural to define

ĝk :=

{
fk/ck If k ∈ IN

0 If k /∈ IN
. (4.7)

Using (4.7), we can calculate g by the Fourier inversion

gj =
1

n

∑

k∈IN

ĝke
−2πi kj

n . (4.8)

The final step towards the approximation of (4.2) is to find a function ψ1

with supp ψi ⊂ [−m/n,m/n], with m ≪ n that approximates ϕ. This
approximation makes the summation in (4.4) attractive. Finally we have the
approximation given by

f(vj) ≈
∑

j∈In,m(vj )

gjψ

(
vj −

j

n

)
, (4.9)

where In,m(v) =
{
j ∈ In| − m

n
≤ v − j

n
≤ m

n

}
. Notice that for j /∈ In,m, the

value of ψ (vj − j/n) is zero, because vj − j/n is outside the support of ψ1.
So the type 1 NUFFT makes O (α1N log(α1N)) arithmetical operations.

As in [Ste98] and [PST98], we chose ϕ as the dilated periodized Gaussian
bell

ϕG(x) :=
1√
πb

∑

r∈Z

e−n
2 (x+r)2

b , (4.10)

with b = 2αm
(2α−1)π

. The Fourier transform of ϕ is given by

ϕ̂G(k) =
1

n
e−(πk

n )
2
b . (4.11)

The truncated version of ϕG is given by

ψG(x) :=
1√
πb

∑

r∈Z

e−n
2 (x+r)2

b X[−m,m] (n(x+ r)) . (4.12)
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4.2 NUFFT: the General Case

To find an approximation for (4.1), let ϕ1 ∈ L2(R) and define

G(x) =
∑

k∈IN

fkϕ1 (x− xk) . (4.13)

Let 0 < m ≪ 1, a = 1 + 2m and α1 > 1 be given. Define n1 := ⌈α1N⌉
and n2 := an1. We can compute the Fourier transform of G by

Ĝ(v) =
∑

k∈IN

fke
−2πixkvϕ̂1(v) . (4.14)

Comparing (4.14) and (4.1), we see that if we know Ĝ(v), we can compute
f(v) by

f(vj) =
Ĝ(vj)

ϕ̂1(vj)
. (4.15)

For this, we need to compute Ĝ(v). To do so, first note that

Ĝ(v) =
1

n1

∑

k∈IN

fk

∫

R

e−2πixvϕ1 (x− xk) dx

=
∑

k∈IN

fk
∑

r∈Z

∫

aΠ

e−2πi(x+ra)vϕ1 (x+ ra− xk) dx .

(4.16)

Discretizing the integral in (4.16) by a rectangular rule with size n−1
1 , we get

Ĝ(v) ≈
∑

k∈IN

fk
∑

r∈Z

∑

j∈In2

e
−2πi

“

j

n1
+ra

”

v
ϕ1

(
j

n1

+ ra− xk

)
. (4.17)

The approximation (4.17) is more time consuming than the original problem.
To solve this problem, we approximate ϕ1 by ψ1 with suppψ1 ⊂ mΠ. Note
that (−a

2
, a

2
) +Π ⊂ (−1−m, 1+m), so replacing ϕ1 in (4.17) by ψ1 the sum

is zero for r 6= 0. Then, by changing the sum order in (4.17) we have

Ĝ(v) ≈ S(v) :=
∑

j∈In2

(
∑

k∈IN

fkψ1

(
j

n1
− xk

))
e
−2πi( j

n1
)v
, (4.18)

with this, we can compute

Fj =
∑

k∈IN

fkψ1

(
j

n1

− xk

)
(j ∈ In2) . (4.19)
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This calculation takes only mn2 multiplications and not n2N which would
make (4.19) useless. With this formulation we reduce the problem (4.1) to

S(v) =
1

n1

∑

j∈In2

Fje
−2πi( j

n1
)v
. (4.20)

Equation (4.20) is still non-uniform in v, but it is uniform in j. So problem
(4.20) is now a type 1 NUFFT that was already treated in Section 4.1.

Following [PST98], we choose for ϕ1 the dilated periodized Gaussian bell

ϕGa (x) :=
1√
πb

∑

r∈Z

e−n
2 (x+ar)2

b . (4.21)

with b = 2αm
(2α−1)π

. The Fourier transform of ϕGa is given by

ϕ̂Ga (k) =
1

n
e−(πk

n )
2
b . (4.22)

The truncated version of ϕGa is given by

ψGa (x) :=
1√
πb

∑

r∈Z

e−n
2 (x+r)2

b X[−m,m] (n(x+ r)) . (4.23)

4.3 Numerical Example

In this section, we show some results based on the bounds we presented
in Chapter 3 and the NUFFT algorithm we presented in this chapter. We
developed an algorithm that uses the bounds in Chapter 3 to construct a
grid of a given precision and then uses NUFFT to compute the value for a
non-uniform grid in s.

We are mainly interested in testing the bounds of Chapter 3, to do so
several types of error are addressed in this section.

• Total error;

ET =

∣∣∣∣
∫ ∞

−∞
h(s)eisxds− NUFFT (ωnh(sn), sn, xn)

∣∣∣∣ .

• Truncation error

Ep =

∣∣∣∣
∫ ∞

−∞
h(s)eisxds−

∫ p

−p
h(s)eisxds

∣∣∣∣ .
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• Quadrature error

EQ =

∣∣∣∣∣

∫ p

−p
h(s)eisxds−

N∑

n=1

ωnh(sn)e
isnx

∣∣∣∣∣ .

• NUFFT error

ENU =

∣∣∣∣∣

N∑

n=1

ωnh(sn)e
isnx − NUFFT(ωnh(sn), sn, x)

∣∣∣∣∣ .

First, consider the discretization of the heat kernel given by Equation
(3.4). Using Theorem 3.2.3 (or Theorem 3.3.3), which controls EQ and
Lemma 3.0.4, which controls Ep, ignoring the error due to the NUFFT ap-
proximation, ENU , it is possible to, given ǫ, find the non-uniform mesh to
achieve the desired accuracy, that is find a mesh such that Ep + EQ < ǫ.

As a first example, we construct a quadrature to achieve an accuracy
of ǫ1 = 10−5 and ǫ2 = 10−10. The numerical result of this quadrature is
compared with the true value given in (3.4). The results are shown in Figure
4.1.

−4.0 −2.4 −0.8 0.8 2.4

−1.8

−1.1

−0.4

0.3

1.0

×10
−6 Error

x −4.0 −2.4 −0.8 0.8 2.4

−2.7

−1.5

−0.3

0.9

2.1

×10
−11 Error

x

Figure 4.1: The error of the NUFFT approximation for (3.4), with mesh
given by Theorem 3.2.3 and Lemma 3.0.4. In both graphics we have t = 1.
The graphic on the left is for ǫ1 = 10−5 and uses 69 points to discretize (3.4).
The graphic on the right is for ǫ2 = 10−10 and uses 122 points.

The good result shown in Figure 4.1 depends on the right choice of the
parameters of the NUFFT approximation. In the algorithm, we only built
estimates for the errors Ep and EQ. Thus, large values of ENU can make
the algorithm fail to achieve the desired precision. This problem is shown
in Figure 4.2, where we compare the approximation results given precision
ǫ = 10−10 for different values of m, which defines the support of ψ, see Section
4.2.
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Figure 4.2: The error of the NUFFT approximation for (3.4), with mesh
given by Theorem 3.2.3 and Lemma 3.0.4. In both graphics we have t = 1
and precision 10−10. The graphic on the left has m = 25 and the graphic on
the right has m = 5.

m error (ENU)
5 6.38e− 06
10 2.91e− 11
15 9.02e− 14
25 8.03e− 14

Table 4.1: The error for different parameters m using random grid in the real
and the Fourier space, with N = 128. The results is the maximum absolute
value of the results, when compared to the results obtained by DFT.

To test the influence of the parameter m, we choose a random grid in the
real and the Fourier space with 128 points and measure the accuracy of the
NUFFT by comparing the results with the DFT. The results are shown in
Table 4.1. From now on, we assume m = 25.

Consider the quadrature error, EQ, bounds for these errors are given by
Theorem 3.2.3 and Theorem 3.3.3. In Figure 4.3, we compare the bound
obtained by Theorem 3.2.3 with the numerical error (notice that our bound
improves the one in [GL00], as seen in Figure 3.2). The numerical error
is obtained by Gauss-Kronrod quadrature, see [Sha08]. This quadrature is
chosen because it supports singularities.

In Figure 3.1, we compared the accuracy of the uniform grid for different
values of t. It is interesting to compare the accuracy of the non-uniform
approximation using NUFFT with the uniform one using FFT, in order to
check the improvements of the non-uniform quadrature over the uniform one.
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Figure 4.3: Comparison of the quadrature error, EQ, with the bound given
by Theorem 3.2.3. The solid line is the error obtained comparing the result
computed by our quadrature with the Gauss-Kronrod quadrature. The dot-
ted line is the bound from Theorem 3.2.3. The results are presented for two
different integration intervals.

To do so, we set a precision (ǫ = 10−4) and establish a non-uniform grid to
achieve the desired accuracy for t ∈ [1, 10], using the results of Chapter 3.
For the uniform approximation we use the same grid size and range as the
non-uniform one. The results are shown in Figure 4.4.
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Figure 4.4: Comparison of the accuracy of the non-uniform approximation
with the uniform one. For the non-uniform approximation, the grid is chosen
based in Theorem 3.2.3 and for the uniform approximation, the same grid
size and range as the non-uniform case is used.
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δ, as in Lemma 3.3.5
2−1 2−3 2−5

n value relative value relative value relative
0 1.85e− 01 7.84e− 02 3.83e− 03 5.19e− 03 6.10e− 05 3.25e− 04
2 1.34e− 02 5.79e− 03 1.79e− 05 2.43e− 05 1.79e− 08 9.53e− 08
4 7.82e− 04 3.43e− 04 6.67e− 08 9.04e− 08 4.15e− 12 2.22e− 11
6 3.76e− 05 1.66e− 05 2.02e− 10 2.75e− 10 3.21e− 13 2.48e− 14
8 1.53e− 06 6.78e− 07 7.70e− 12 1.04e− 11 2.42e− 12 3.53e− 13

Table 4.2: Error of the principal value approximation, EI1(n, δ), on the in-
terval [−δ, δ], as in Lemma 3.3.5. We consider the grid xk = −3 + 0.2k k =
0, . . . , 29. Table shows the maximum error value in k, and maximum relative
error in k.

In Figure 4.4 the main advantage of non-uniform approach can be seen.
For small values of x the error is small in both uniform and non-uniform
approximation, and for large values of x, where the integral is more oscila-
tory, the non-uniform approach obtained better results. For large value of
t the function takes very small values of large s, making most points of the
uniform quadrature of little use, and so the quadrature did non acheive a
good acuracy. In an oposite direction the non-uniform grid is more dense for
small values of s.

Now we will focus our attention in the principal value quadrature for the
heat kernel case. In our first numerical example, we studied the numerical
error of the approximation given by Lemma 3.3.5. To measure the accuracy
of the approximation, we again compared our result with the adaptive Gauss-
Kronrod quadrature. We compute the result for a mesh xk = −3 + 0.2k k =
0, . . . , 29. Table 4.3 presents the worst result in k for several different values
of δ, which defines the integration interval, as in Lemma 3.3.5.

We also measure the error of the quadrature for the principal value, using
Theorem 3.3.4 and Lemma 3.3.5. Lemma 3.3.5 is used with n = 8. Table
4.3 shows the error of our approximation for several desired accuracies (ǫ)
and ranges of approximation of Lemma 3.3.5 (δ). Again, we use the adaptive
Gauss-Kronrod quadrature to estimate the error of the results.

It is worth noticing that, the error in Table 4.3, for ǫ = 10−8 and δ = 2−1,
is higher than the desired accuracy, this happens because we fix n = 8, so
the error of the approximation in [−δ, δ] is higher than ǫ, as Table 4.3 shows.

To study the bounds obtained in Theorem 3.2.4, we compared the result
obtained by the non-uniform quadrature using NUFFT with the result ob-
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δ, as in Lemma 3.3.5
2−1 2−5

ǫ #ξ EQ ET #ξ EQ ET

1e− 2 20 1.61e− 06 7.92e− 03 48 1.91e− 09 7.93e− 03
1e− 5 46 1.53e− 06 9.59e− 06 90 2.47e− 12 8.69e− 06
1e− 8 70 1.53e− 06 1.53e− 06 132 2.47e− 12 9.41e− 09

Table 4.3: Numerical results for the approximation of the principal value
Fourier transform using Theorem 3.3.4 and Lemma 3.3.5. For some desired
precision (ǫ), the table shows the number of grid points (ξ), the quadrature
error (EQ), and the total error (ET ).

tained by the Gauss-Kronrod quadrature, the results are shown in Figure
4.5.
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Figure 4.5: Comparison of the quadrature error, EQ, with the bound given
by Theorem 3.2.4. The solid line is the error obtained comparing the result
computed by our quadrature with the Gauss-Kronrod quadrature. The dot-
ted line is the bound from Theorem 3.2.4. The results are presented for two
different integration intervals.

Now consider the third quadrature, for h(s)/(c+is), given by Theorem 3.2.6.
Lemma 3.3.2 finds estimates for the truncation of the infinite integral, so we
can find a finite integration interval [−p, p] that approximates the finite one.
In Theorem 3.3.3, we used dyadic intervals to find a partition [−p, p]. The
choice of the smaller interval, [−2−j, 2−j], proves to have a significant impact
on the number of nodes, as seen in Table 4.3.

To study the bounds obtained in Theorem 3.2.6, we compared the result
obtained by the non-uniform quadrature using NUFFT with the result ob-
tained by the Gauss-Kronrod quadrature. The results are shown in Figure
4.6.
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Minimum interval [−2−j , 2−j]
j = 1 j = 3

ǫ #ξ EQ ET #ξ EQ ET

1e− 1 21 3.90e− 05 5.83e− 02 45 7.63e− 07 5.83e− 02
1e− 3 43 1.36e− 07 7.84e− 04 74 5.58e− 09 7.84e− 04
1e− 5 61 4.33e− 10 8.67e− 06 103 6.73e− 13 8.67e− 06

Table 4.4: Numerical accuracy of Theorem 3.2.6. For some desired precision
(ǫ), table shows the number of grid points (#ξ), the quadrature error (EQ),
and the total error (ET ).
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Figure 4.6: Comparison of the quadrature error, EQ, with the bound given
by Theorem 3.2.6. The solid line is the error obtained comparing the result
obtained by our quadrature with the Gauss-Kronrod quadrature. The dotted
line is the bound from Theorem 3.2.6. The results are presented for two
different integration intervals.

To our final result, we study the error obtained by the quadrature when
computing the value of a call option, as studied in Chapter 2. The results are
shown for the Black and Scholes case, for which the bounds of Theorem 3.2.4
and Theorem 3.2.6 apply directly. We used the Black and Sholes framework,
so the answer has a closed form solution given by Equation (1.18). This
makes it possible to validate the method and measure its accuracy. For
the example, we use σ = 0.3, r = 0 and K = 10. The result is shown
in Figure 4.3. In Chapter 7, numerical results for the Heston and Merton
models will be shown.
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Figure 4.7: The error for computing the price of a call option. We use 196
points to evaluate the principal value transform, and 313 points for the second
transform. We choose K = 10, σ = 0.3, r = 0 and the desired precision was
ǫ = 10−6.

55



Chapter 5

A Liquefied Natural Gas
Pricing Model

Energy commodities form an important part of most markets. Several mer-
cantile exchanges around the world trade energy commodities in different
forms. Oftentimes, the broad literature in mathematical finance is not di-
rectly applied to commodities due to their special nature.

One of the main differences between commodities and financial derivatives
is the presence of the cost of carry, which consists of the cost of holding a
position in a commodity. To enter in a long position in a commodity, which
means buying a commodity like rice, soy or oil, there is the cost of storage,
the cost of financing the position and the cash flow for owning the asset.
The important implication of the cost of carry is that we do not have a
non-arbitrage price for future prices of commodities. What we do have is a
non-arbitrage interval.

Another interesting characteristic of commodity prices is its mean revert-
ing nature [Sch97]. This makes commodities related to interest rate deriva-
tives, to establish a parallel with the financial literature.

The differences between financial derivatives and commodities resulted
in two subjects each one of them with a specific literature. See for example
[Bla76], [Sch97], [DL92].

An instance of a commodity is natural gas. It is an important source of
generation of electricity, as fuel for vehicles, and in households for heating
and cooking. The global demand for natural gas has been increasing steadily
in the last years. Because of its nature, transportation is a crucial issue for
the natural gas market. There are two ways of transporting natural gas:
pipelines and liquefied natural gas (LNG). If there is a pipeline available,
then it is the cheapest transportation option. LNG is the alternative when
no pipeline is available since it takes up to 1/600th the volume of natural gas
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and then can be transported by special ships, known as LNG carriers.
LNG has received a lot of attention in recent years. Several studies have

been made about natural gas and LNG, like [VJ06],[Jen03],[SLNv05] just
to mention some of them. Even for political reasons LNG has attracted
attention:

“Given notable cost reductions for both liquefaction and trans-
portation of LNG, significant global trade is developing, (...) And
high natural gas prices projected by distant futures prices have
made imported gas a more attractive option for us.”(Alan Greenspan,
2004)

LNG “per se” is not directly considered a commodity, because it is not
traded in any mercantile exchange. LNG trades are over-the-counter (OTC)
and in general between two countries. LNG does not constitute a local mar-
ket, we cannot try to find a proxy for the price in any specific market, the
reason being that the owner of the cargo is trying to find arbitrage oppor-
tunities among different markets. In the Asian-Pacific market, LNG prices
are indexed to crude oil prices. In Europe, there are different indices, such
as crude oil (note that crude oil prices are different in Asia and Europe), or
a basket of indexes (like oil products, coal, inflation, among others). In the
USA, LNG is usually indexed by the Henry Hub gas prices.

In this chapter, we present a model for the spot price of LNG, although
most results apply to other commodities. Our model reflects most of the
stylized facts on natural gas markets. The intuition brought up by the model
helps to explain the international correlation of natural gas prices in the
world [SLNv05], which is a consequence of the LNG seller as an arbitrageur
of international gas market. The LNG producer sells to the market with
higher prices and this causes a decrease in local prices.

One of the main advantages of our model is that no data for LNG is
used, in the sense that we find the spot price for LNG based on the prices of
natural gas for each of the local markets. This makes it possible to calibrate
the model using the huge amount of data for natural gas.

Once the spot price is modeled, we are able to treat derivatives and
introduce some contracts for LNG. The two contracts that we study are
futures for LNG and cancellation options. This second contract is uncommon
in the literature 1. It is a contract that gives the owner the right to buy LNG

1Flexibility in LNG contracts has been growing significantly
in recent years. See for example the cancellation contract
(http://www.eia.doe.gov/oiaf/analysispaper/global/lngmarket.html). It exemplifies
several new contracts for short-term markets that have been used.
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in a given date and the right to cancel the contract by paying some fee on
certain dates. Some uses and motivation of this contract are shown in Section
5.2.

5.1 Spot Price Model

The first step towards modeling LNG is finding its spot price. As it turns
out, LNG has several idiosyncrasies, such as trades over-the-counter (OTC),
generally between two countries and LNG is a global market. Furthermore,
we do not have any database regarding LNG trades. Those are some of the
aspects we considered while constructing the model.

Natural gas is a commodity in most countries. Several mercantile ex-
changes have derivatives over natural gas prices. Just to give an example, let
us consider the the USA. The most used reference pricing point in the USA
is the Henry Hub. It is the pricing point for natural gas contracts traded on
the New York Mercantile Exchange (NYMEX). The NYMEX trades future
contracts for natural gas (called Henry Hub Futures), they also have options
over Henry Hub futures. Natural gas prices are very well modeled in each
market. We use the fact that there is a model for natural gas in every country
to model LNG as a derivative using all the different prices around the globe
as primary asset for this derivative.

N

Henry Hub

NBP

JCC

max(HH − f1, NBP − f2, JCC − f3)

Figure 5.1: The LNG seller has access to several markets, and maximizes the
profit in all of them.
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In order to model the market, let us consider a specific producer like
Nigeria, for example. Nigeria can sell LNG to any country, see Figure 5.1.
For instance, if it sells in the USA, Nigeria will receive the spot price for
natural gas in the USA, which in general is related to NYMEX Henry Hub
prices. In order to sell in the USA, the producer pays the netback costs
(transport, liquefaction, re-gasification...). The profit of selling to the USA
is then the Henry Hub price subtracted by the netback cost. The price will be
given by a profit maximization by this seller. Some basic market hypotheses
will be needed:

• The seller has access to K markets, and pays fk ∈ R of netback cost
in order to sell to market k.

• The prices of natural gas are given by St ∈ RK
+ , a K-dimensional

stochastic process defined on the filtered, probability space (Ω,F ,F,Q).
In the kth market, natural gas is a commodity and the price will be
given by the stochastic process Skt . We assume that Q is a martingale
equivalent measure for a given market price of risk, see [MR05].

If the producer sells to market k, he receives a profit of Skt − fk. The
maximum profit is given by

G(St) = max
k=1,...,K

(
Skt − fk

)
(5.1)

In this model, we consider that the amount of natural gas traded by LNG is
small, so it does not affect local market prices. This is clearly a simplification.

To buy a cargo from a specific producer, the buyer has to pay no less
than G(St), assuming that he pays the netback costs. Doing so the seller is
indifferent to selling the cargo or maximizing the profit arbitrating in global
markets.

This price rule implies that buying LNG is no better than buying in the
local market. Once LNG is re-gasified and is inside a specific market, it
becomes natural gas and so has the price given by the local market.

This model reflects several aspects of the LNG market in which every
seller and buyer has different netback costs. It is common for a country to
concentrate the demand for LNG, which occurs when a market has a spike in
prices for natural gas. In this case, this same country is the natural destiny
for every free cargo.

Notice that by defining the spot value as in equation (5.1) makes the spot
price itself a derivative of natural gas price.
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The model presented here will be used in the next section, where we
introduce some derivatives for LNG. We will also introduce some applications
of the derivative markets as hedge for energy markets.

5.2 LNG Derivatives

Natural gas is a very important component in the world energy matrix. As a
consequence, hedging with this strategic resource is crucial. Changes in the
prices of local markets are important. For this kind of hedging, derivatives
over natural gas at local markets are the best choice. Those derivatives are
traded at mercantile exchanges.

Based on the LNG model presented above, it is natural to ask why should
someone hedge using LNG, when the cheapest choice is hedging in local
markets.

We now will try to explain the reasons for such hedging. There are some
countries where natural gas prices cannot be hedged in local markets. Not
every country has mercantile exchanges trading natural gas. In those cases,
LNG contracts are an interesting way of hedging.

We add that the market has its micro-structure. For instance, it is always
better for the seller, due to logistic reasons, to sell in advance. This logistic
risk is not in the model itself and may give a discount over the theoretical
price, making LNG interesting for the buyer.

Several countries, and even some firms, are worried about changes in de-
mand, which is essential to hedge against. Other reasons for hedging might be
problems in pipelines, problems in local production, excess of demand based
on bigger than expected growth. To hedge against such events, the option
to buy more gas is needed. In this context, LNG is a highly competitive
alternative.

5.2.1 Forward

Forward prices of LNG are straightforward once we have the spot price model.
The price is given by

FG(t, T, St) = E [G(ST )| Ft] , (5.2)

considering that interest rates are independent with natural gas prices. It
is interesting to notice that G(ST ) is not traded, but risk-neutral pricing
applyies because the hedging strategy can be done trading S. This is the
most basic contract possible and it is an useful hedge alternative when there
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is certainty about the future demand, so the owner of the contract is buying
in advance.

5.2.2 Cancellation Options

Future contracts are not flexible enough to cover all the hedge possibilities
needed. In this section we present a contract that is an attempt to deal with
wider hedging possibilities.

Its is natural to have a contract that gives the owner the right, but not
the obligation to buy. This makes it possible to hedge against uncertainty in
a future time.

We can generalize this flexibility. During the validity of the contract, the
owner may receive some information that allows him to know beforehand
that the cargo will not be needed. In this case, he may want to cancel the
cargo in advance.

We now define a contract that has these properties.

Definition: The cancellation option is a contract that gives the holder the
following rights:

• At times t1, . . . , tN ≤ T the holder has the right to cancel the contract
paying fees c1, . . . , cN , respectively.

• If the holder does not cancel the contract, then at time T , then he will
buy the LNG cargo paying A ·S1

T +B, where A is a proportion of some
benchmark market, and B is a fixed cost.

The value of a cancellation option at time t, for market price St is denoted
by V (t, St).

To value this contract, first note that at delivery the value of the contract
is

V (T, ST ) = GT (ST ) −
(
AS1

T +B
)
. (5.3)

Or if we can cancel at deliver tN = T

V (T, ST ) = max
(
GT (ST ) −

(
AS1

T +B
)
,−cN

)
. (5.4)

To help fix the notation, consider the example of the cancellation option for
which it is possible to cancel for t = T as in equation (5.4). The payoff is
shown in Figure 5.2.
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Figure 5.2: Payoff when it is possible to cancel at delivery time, as given by
Equation (5.4). The fee to cancel is c and B = 0. In area 1, the payoff is
positive, so it is not optimal to cancel. In area 2, the payoff is negative but
better than the fee. In Area 3, the payoff is smaller than the cancellation
fee, so it is optimal to cancel.

We can find the value of the cancellation option backwards. To do this,
we first define auxiliary functions V n(t, S) defined on [tn−1, tn]×RK . Letting
t ∈ [tn−1, tn), V

n is given by

V n(t, S) = E [V n(tn, Stn)| Ft] . (5.5)

For time tn, with n < N the value of V n is given by

V n(tn, Stn) = max
(
V n+1(tn, Stn),−cn

)
. (5.6)

If the contract does not give the right to cancel at time T , then the final
payoff is given by (5.3). So

V N+1(T, ST ) = GT (ST ) −
(
AS1

T +B
)
,

where the (N + 1)-st interval is [tN , T ] and corresponds to the period after
the last cancellation date. If the contract gives the right to cancel at T , the
final payoff would be given by (5.4). Thus, we would have

V N(T, ST ) = max
(
GT (ST ) −

(
AS1

T +B
)
,−cN

)
.

By means of such construction, we are able to find the price for every t ∈
[0, T ], where we have

V (t, S) = V n(t, S) for t ∈ [tn−1, tn) .
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We now study some properties of such contracts. Several aspects of the
contract should be considered, like monotonicity in A and B. Another natural
question is a characterization of redundant fees and when a new cancellation
date actually increases the flexibility of the contract. The following theorem
summarizes some properties of the cancellation contracts.

Theorem 5.2.1 For a cancellation contract, we have the following proper-
ties:

1. The contract value is nonincreasing in A;

2. The contract value is nonincreasing in B; and

3. If for some j < i, we have that cj < cie
−r(ti−tj), then removing the

cancellation date tj does not affect the contract value.

Proof: For t = T , properties (1) and (2) are a consequence of ST ≥ 0, and
the payoff formula (5.3) or (5.4), so V (T, ST ;A,B) is nondecreasing in A
and B. For t ∈ [0, T ), the result follows from the construction of V and the
fact that given X ≤ Y , with X and Y Fs-adapted, then for t < s we have
E [X|Ft] < E [Y |Ft], and max (X, c) ≤ max (Y, c).

To prove (3), suppose that we have cj , ci with j < i and cj ≥ cie
−r(ti−tj).

Saving cj at tj and investing at risk free rate, at ti we pay ci ≤ cje
r(ti−tj) at

ti, so the cancellation at tj can be ignored.

The results (1 ) and (2 ) of Theorem 5.2.1 show that increasing the delivery
price for LNG decreases the price of the contract. Result (3 ) of of Theorem
5.2.1 establishes conditions on the cancellation fee, so we can remove dates
that are never optimal for cancellation.

We can also study the value of the cancellation optionality. In this case,
we must define the value of the contract without any cancellation possibility.
The contract without cancellation possibility is simply a forward given by

F V (t, St) = E
[
GT −

(
AS1

T +B
)∣∣Ft

]
. (5.7)

Using (5.7), we can define the optionality value as

O(t, St) = V (t, St) − F V (t, St). (5.8)

Some properties of the optionality value are given in the next theorem.

Corollary 5.2.2 The optionality value has several properties:
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1. The optionality value is always positive;

2. The optionality value is nondecreasing in A;

3. The optionality value is nondecreasing in B; and

4. If for some j < i, we have that cj < cie
−r(ti−tj), then removing the

cancellation date tj does not affect the optionality value.

Proof: For t = T , property (1) follows from the definition V and F V . For
t in general, it follows from the fact that given X ≤ Y , where X and Y are
Fs-adapted, then for t < s we have E [X|Ft] < E [Y |Ft], and max (X, c) ≤
max (Y, c), as property (1) of Theorem 5.2.1.

To prove property (2), notice that for a given A > Ã we have F V
A (t, St)−

F V
eA
(t, St) = (A − Ã)E [S1

T | Ft] > 0. Suppose that OA(t, St) < O
eA(t, St), so

buying VA, F
eA, and selling V

eA and FA, you receive VA + F
eA − V

eA − FA > 0
at t. Then two possibilities should be considered:

• If the owner of V
eA cancels the contract, we cancel it too. We receive the

fee for the contract Ã and pay the same fee for cancelling the contract
A, so the payoff at cancellation date is zero, and at T is (A−Ã)S1

T > 0.

• If the owner does not cancel, we do not cancel it either. The payoff at
T is zero.

This is an arbitrage opportunity, so we must have OA(t, St) ≥ O
eA(t, St). The

proof of property (3) is similar to that of (2).
The value of the future does not depend on the cancellations dates, so

property (4) follows from property (4) of Theorem 5.2.1.

The result above has an intuitive explanation. Property (1 ) follows from
the fact that the cancellation contract is an option over a forward, so its value
is always above the forward value. Properties (1 ) and (2 ) of Theorem 5.2.1
show that the price of the contract drops with A and B, so the probability of
a negative payoff increases, and therefore the value of the cancellation right
is higher. This explains (2 ) and (3 ) of Corollary 5.2.2.

The final result of this section gives a restriction on parameters A and B.

Proposition 5.2.3 If A ≤ 1 and B ≤ mink=1,...,K (−fk), it is never optimal
to cancel.

Proof: At T , the owner of the contract can receive a LNG cargo, paying
AS1

T +B < GT (S).
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The result above shows a case where the optionality has null value. When
we have A and B as in Proposition 5.2.3, it is never optimal to cancel, so the
value of the optionality is zero.

The results mentioned above are useful not only for theoretical reasons,
but also because they can be used to test and validate numerical implemen-
tation.

5.3 Least-Squares Monte Carlo

Pricing the contracts of the previous section requires the use of numerical
techniques. Numerical methods for high dimensional problems have received
a lot of attention and recently several Monte Carlo methods have been pro-
posed. They turn out to be very efficient for those problems [Gla04].

In this section, we describe the method used to solve numerically the
model. The method we chose was the regression-based Monte Carlo proposed
by [LS01].

The convergence of the method, under fairly general conditions, was
proved by [CLP02]. For example, considering only Markovian processes
St ∈ Rk such that St ∈ L2(Ω, dP), ∀t ∈ [0, T ], then convergence of least-
squares Monte Carlo method for cancellation options follows from [CLP02].

The main idea of the method is to use the fact that

E [V (tn+1, S(tn+1))| Ftn]

is Ftn-measurable, so that it may be represented as

E
[
e−r(tn+1−tn)V (tn+1, S(tn+1)) | S(tn) = x

]
=

∞∑

r=1

βrγr(x) , (5.9)

for some base {γr} of L2(Rk). We can approximate (5.9) by

V (tn, S(tn)) ≈
R∑

r=1

βrγr(S(tn)). (5.10)

To compute β, we solve the following problem by least-squares



γ1(S

1(tn)) · · · γR(S1(tn))
...

. . .
...

γ1(S
J(tn)) · · · γR(SJ(tn))






β1
...
βR


 = e−r(tn+1−tn)



V (tn+1, S

1(tn+1))
...

V (tn+1, S
J(tn+1))




(5.11)
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Using equation (5.6), we have

V (tn, S(tn)) ≈ max

(
R∑

r=1

βrγr(S(tn)),−cn
)
. (5.12)

5.3.1 An Example

The goal of this section is to present some numerical results obtained by
least-squares Monte Carlo. The model we choose for the price dynamics
is the mean reverting process, which is very popular for commodities. See
[BCSS95] and [Sch97] for studies in the mean reverting nature of commodity
prices. The price dynamic in this model is given by

Sit = eX
i
t

dX i
t = κi

(
θi −X i

t

)
dt+

∑

j

Ai,jdWj(t) .
(5.13)

The solutions is then

Xi(t) = e−κi(t−s)Xi(s)+θi
(
1 − e−κi(t−s))+

∫ t

s

e−κi(t−u)
∑

j

Ai,jdWj(u). (5.14)

It is easy to see that

E [Xi] = µi = e−κi(t−s)Xi(s) + θi
(
1 − e−κi(t−s)

)

Cov [Xi(t), Xj(t) | Fs] =
1

(κi + κj)

(
1 − e−(κi+κj)(t−s)

)
(AAt)(i,j) .

(5.15)

Taking t→ ∞ in the covariance, we obtain the ergodic covariance.
We will now study the sensibility of the model and the numerical method.

Unless not otherwise specified, the following parameters will be used:

• The base is the polinomial base;

• Maximum degree of the basis is 5;

• Number of simulations: 3 × 104;

• A = 1.0, B = 2.0, r = 0;

• fee=(1, 1.25);

• Cancellation dates (0.5, 1.0) and T = 1.5;
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• κ = (3, 3);

• X0 = (3, 3);

• θ = (3, 1.5); and

• Ergodic covariance

[
1 0.1

0.1 1

]
.

We measure the computational time to evaluate the option price. The
results are expressed in Figure 5.3. Solving the least-squares problem (5.11)
takes O(JR2 + R3/3), where J is the number of simulations and R is the
elements in the base, as confirmed by results in Figure 5.3. The examples
indicate a linear increase of the computational time with the number of
simulations. Concerning the dependence on the basis degree, the number of
elements in the base is R = (K + 1)P , where P is the maximum degree of
the basis. The numerical results confirms this exponential increase of the
computational time with the maximum degree of the base.

10 50 90 130 170
7.5

37.5

67.5

97.5

127.5

Simulation Number (103)

Time
(s)

1 2 3 4 5 6 7 8 9
2

32

62

92

122

Degree of the base

Time
(s)

Figure 5.3: Computational time of least-squares Monte Carlo for different
number of simulations and different base sizes.

In Theorem 5.2.1, we proved some monotonicity results that are confirmed
in Figure 5.4. A natural result is that, for large value of A and B, the option
value is negative and the value converges to the cancellation fee.

The convergence of the algorithm is proved by [CLP02]. In Figure 5.5 we
present some numerical results about this convergence. The option value is
calculated with a total of 1× 104 to 2× 105 simulations and has a difference
of no bigger than 5.12%. If we only consider the results for more than 5×104
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Figure 5.4: Monotonicity. The option value is monotone in A and B.

simulations, the difference was no more than 1.5%. We also measured the
numerical standard error of the estimator. To calculate this, a total of 20
samples of the algorithm are used and the standard error is computed with
the usual estimator. As expected, the standard error of the estimator decays
with the number of simulations.

10 50 90 130 170
−0.74

−0.73

−0.72

−0.71

Simulation Number (103)

Optoin
Value

10 50 90 130 170
0.009

0.025

0.041

0.057

Simulation Number (103)

Std
Err

Figure 5.5: Number of simulations. The option value and numerical standard
error of the estimator for different number of simulations.

In our final results, we present results for different size of bases. In Figure
5.6 we show the results. The difference in prices for different bases appears
to be robust. The increase in standard error is expected, since we keep the
number of simulations constant.
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Figure 5.6: Base size. The option value and numerical standard error of the
estimator for different sizes of the base.
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Chapter 6

Interest Rates

In many countries, a monetary authority decides the short rate target. It
uses open market operations to execute this policy. In the United States,
the short rate role is performed by the federal funds and the target decision
is chosen by the Federal Open Market Committee (FOMC). In Brazil, the
monetary authority instrument is the Special System for Settlement and
Custody (SELIC), and the decision of the short rate target is made by the
Monetary Policy Committee (COPOM). Furthermore, there is an important
short-term rate, the Interbank Deposit (DI), that follows very closely the
SELIC rate.

The Chicago Board of Trade (CBOT) has future contracts on US federal
funds among other derivatives. The Brazilian Securities, Commodities and
Futures Exchange (BM&FBOVESPA) has one-day interbank deposit future
contracts, and options on average one-day interbank deposit rate index con-
tract. Those derivatives over short rates have received a lot of attention
recently due to the increase in their liquidity.

In this chapter we propose a model for short-term rates taking into consid-
eration monetary authority. We use such model to recover expectation about
future decisions by the monetary authority, from derivative contracts. To do
so, we were led to use regularization techniques to deal with the ill-posedness
nature of the problem.

Some work has been done to incorporate monetary decisions to interest
rate models as pure jump process [Pia05]. In a different direction, market
data can be used to recover the probability of each possible monetary policy
decision [CCM05]. The idea of recovering probabilities from derivatives data
goes back to [BL78]. More recent work has been done by [JR96]. The litera-
ture on regularization and inverse problems is quite extense. See [Zub05] for
general references and [Ave99], [EE05], [EHH06] for applications in quanti-
tative finance.
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6.1 Model and Notation

In this section, we present a model for the short rate. This model is based
on the central bank target rate and the spread between the target and the
realized rate. This chapter focus on the Brazilian market, and we will give
now a brief review of the two relevant short rates for this chapter. For a
complete review see [For08].

• Special System for Settlement and Custody (SELIC) - It is the average
one day operation guaranteed by the Brazilian federal government se-
curities. The model is based on the SELIC target (rS) decided by the
COPOM. So the rS, if expressed as an annual compounded tax, is a
multiple of 25 basis points (bp) annually compounded, where a bp is
1/100th of a percentage point.

• Interbank Deposit (DI) - It is the average one day operation guaranteed
by private securities (rDI).

Before we describe our model, we will give a brief overview of the Vasicek
interest rate model [Vas77]. This model will be later used for modeling
the spread between DI and SELIC. For a complete review of interest rate
models see [JW01]. In the Vasicek model, the interest rate process is given
by an Ornstein-Uhlenbeck process on the filtered complete probability space
(Ω1,F1,F1,P1). The dynamics for the short rate x(t), t > 0, is given by

dx(t) = k(θ − x(t))dt+ σdW (t) . (6.1)

The solution of the stochastic differential equation (6.1) for s < t is given by

x(t) = x(s)e−k(t−s) + θ
(
1 − e−k(t−s)

)
+ σ

∫ t

s

e−k(t−u)dW (u) . (6.2)

To model the SELIC target rate, note that this process is constant between
the COPOM’s meeting, we assume that the monetary authority only changes
the rate at scheduled meetings. We define τj for the time of the jth meeting
after a starting time t. We define rS on (Ω2,F2,F2,P2) as

rS(t) := H0X[t0,τ1](t) +
N∑

j=1

HjX(τj ,τj+1](t) , (6.3)

where Hj is the target rate decided at the jth meeting. Since F2
τj

correspond

to the information up to the jth meeting we must have Hj ∈ F2
τj

. The
COPOM meeting only changes the rate on 25 bp, so

ln (Hj(ω)) − 1

2.5 · 10−3
∈ N ∀j ∈ N, ω ∈ Ω2 (6.4)
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We assume Ω2 finite.
To model the DI rate, we consider the direct product and the product

measure both denoted by ⊗ and given by (Ω1⊗Ω2,F1⊗F2,F1⊗F2,P1⊗P2),
and the DI rate is given by

rDI(t) = x̄(t) + r̄S(t) , (6.5)

where, to define x and rS in this probability space, we use the projection
r̄S(ω1, ω2) := rS(ω2), and x̄(ω1, ω2) := x(ω1), but from now on, we make no
distinction between x̄ and x, and r̄S and rS.

So far, we have focused on the real measure P1⊗P2, but it is well known in
the literature of interest rate the existence of risk premium in bond markets
[FB87]. Recent studies have shown the presence of risk premium in federal
fund derivatives [PS08]. So we need to study a risk neutral measure, which
is denoted as Q := Q1 ⊗ Q2.

We assume a constant market price of risk process, λ, for the risk-neutral
measure. It will be denoted by λ, so

dx(t) = k(θP − x(t))dt+ σdW (P)

dx(t) = k(θQ − x(t))dt+ σdW (Q) ,

where

θP =
λ

σ
+ θQ .

For the SELIC target we study only the risk neutral, Q2, which is the im-
portant probability to study derivative pricing. We can also supose no risk
premium for the SELIC rate, as in the expectations hypothesis [Pia03].

6.1.1 One-Day Interbank Deposit Futures Contract

The BM&FBOVESPA has future contracts over DI. The basis of each such
contract is the unit price defined as 100.000 discounted by DI. This derivative
is quoted as the annual percentage rate compounded daily based on a 252-day
year, to two decimal places, that we denote here as cot. So, we have

PU = (1 +
cot

100
)

T−t
252 .

The daily cash flow of the owner of the contract is

PU

((
1 +

cot

100

) 1
252

− e
1

252
rDI

)
.

In the next theorem we present a pricing formula for this contract.
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Theorem 6.1.1 The price of the future contract is given by

FDI(t, T, rDI(t)) = PV (t, T, x(t))
∑

ω∈Ω2

e(−
R T

t
rS(u,ω)du)Q2(ω), (6.6)

where

PV (t, T ) = A(t, T )e−B(t,T )x(t)

B(t, T ) =
1

k

(
1 − e−k(T−t)

)

A(t, T ) = e

“

θ− σ2

2k2

”

(B(t,T )−T+t)−σ2

4k
B(t,T )2

.

Proof: The future price is given by

FDI (t, T, rDI (t)) = E
[
e−

R T

t
rDI(s)ds

∣∣∣Ft

]
.

From the definition of rDI and Equation (6.2), we have

rDI(t) = rS(t)+x(s)e−k(t−s) +θ(1−e−k(t−s))+σ

∫ t

s

e−k(t−u)dW (u) . (6.7)

To compute the integral in (6.7), note that

∫ T

t

x(t)e−k(u−t)du = x(t)
1

k

(
1 − e−k(T−t)

)
= x(t)B(t, T )

∫ T

t

θ(1 − e−k(u−t))du = θ

(
T − t− 1

k

(
1 − e−k(T−t)

))

= θ (T − t−B(t, T ))
∫ T

t

∫ u

t

e−k(u−s)dW (s)du =
1

k

∫ T

t

(
1 − e−k(T−s)

)
dW (s) .

(6.8)

Then, we have

E
[
e−

R T

t
x(s)ds|Ft

]
= e−θ(T−t−B(t,T ))−x(t)B(t,T )E

[
e−σ

R T

t
B(T,s)dW (s)

]
.

The term associated with the expectation integral above, can be computed
as

E
[
eσ

R T

t
B(T,s)dW (s)

]
= e

σ2

2

R T

t
B(T,s)2dsE

[
e−

σ2

2

R T

t
B(T,s)2(s)−σ

R T

t
B(T,s)dW (s)

]

= e
σ2

2

R T

t
B(T,s)2ds .
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The last remaining integral is given by

∫ T

t

B(T, s)2ds =
1

k2

(
T − t− 2

k

(
1 − e−k(T−t)

)
+

1

2k

(
1 − e−2k(T−t))

)

=
1

k2

(
T − t−B(t, T ) − k

2
B(t, T )2

)
.

The result now follows from

E
[
e

R T

t
(x(s)+rS(s))ds

]
= E

[
e

R T

t
x(s)ds

]
E
[
e

R T

t
rS(s)ds

]

= E
[
e

R T

t
x(s)ds

]∑
e(−

R T

t
r̄S(u,ω)du)Q2(ω) .

We remark that the future price can be written as

FDI(t, T, ω) = PV (t, T )e(−
R T

t
y(u,ω)du)

FDI(t, T ) =
∑

FDI(t, T, ω)Q2(ω) .
(6.9)

6.1.2 Options on Average One-Day Interbank Deposit
Rate Index

The Interbank Deposit Rate Index (IDI) is an index that the BM&FBOVESPA
created. It is defined as

IDIt = 105e
R t

t0
rDI(s)ds

,

where t0 was chosen as 2003-01-02.
The IDI option is a plain vanilla derivative over the IDI index. To find

its arbitrage free value, the following result is needed.

Lemma 6.1.2 ([BM01]) Let log(X) be a log-normal random variable with
mean (µ) and variance (σ2). Then

E

[(
K̂ −X

)+
]

= −e(µ+ 1
2
σ2)N

(
−µ + log(K̂) − σ2

σ

)
+K̂N

(
−µ+ log(K̂)

σ

)
.

where N is the cumulative standard normal distribution

N(y) =
1√
2π

∫ y

−∞
e−z

2/2dz .

Using Lemma 6.1.2 we can prove a pricing formula for the IDI options, which
is given in the next theorem.
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Theorem 6.1.3 The IDI call options price is given by

CIDI(t, T,K, x(t), ω) = IDItN (d1(ω)) −KFDI(t, T, ω)N (d2(ω)) ,

where

d1(ω) =
−µ + ln (V (ω))

σ
,

d2(ω) =
−µ + ln (V (ω)) − σ2

σ
,

V (ω) =
1

K

(
IDIte

R T

t
y(s,ω)ds

)
,

µ = −x(t)B(t, T ) − θ (T − t− B(t, T )) ,

σ2 =
σ2

k2

(
T − t−B(t, T ) − k

2
B(t, T )2

)
.

Proof: The price of a call option is given by

CIDI(t, T, x(t), ω) = E

[
e−

R T

t
rDI(s)ds

(
105e

R T

0 rDI(s)ds −K
)+
∣∣∣∣Ft

]

= Ke−
R T

t
rS(s,ω)dsE

[(
V (ω) − e−

R T

t
x(s)ds

)+
∣∣∣∣Ft

]
,

where

V (ω) =
105

K
e(

R t

0
r(s)ds+

R T

t
rS(s,ω)ds)

=
1

K

(
IDIte

R T

t
rS(s,ω)ds

)
.

Defining µ and σ for the mean and variance of the process

−
∫ T

t

x(s)ds,

respectively. Using (6.8), it follows that

µ = −x(t)B(t, T ) − θ (T − t−B(t, T ))

σ2 =
σ2

k2

(
T − t−B(t, T ) − k

2
B(t, T )2

)
.

Then,

CIDI(t, T,K, x(t), ω) = IDItN (d1(ω)) −KFDI(t, T, ω)N (d2(ω)) ,
(6.10)
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where

d1(ω) =
−µ+ ln (V (ω))

σ
,

d2(ω) =
−µ+ ln (V (ω)) − σ2

σ
.

Since the space Ω2 is taken to be discrete, the price of the Call option
can be written as

CIDI(t, T, x(t)) =
∑

ω∈Ω2

CIDI(t, T, x(t), ω)Q2(ω) . (6.11)

The same arguments can be used to find the price of the put option

PIDI(t, T,K, x(t), ω) = KFDI(t, T, ω)N (−d2(ω)) − IDItN (−d1(ω)) .
(6.12)

6.2 Recovering Probabilities

The main target of this chapter is to use the model presented in Section 6.1
to recover the probabilities associated to the paths of the short rate target,
rS. First, the spread is studied, then the problem of recovering the target
rate path’s probability is addressed.

For the real probability of the spread model, P1, we use daily quotes for
DI, and SELIC. The maximum likelihood [BM01] is applied to calibrate the
real measure. For risk neutral probability, future contracts where there was
no uncertainty about the SELIC rate, are used. Those contracts are the ones
that have no COPOM meeting before the maturity, so rS is deterministic
until maturity. The result is shown in Table 6.1.

Parameter Value
k 128.18
θ −2.89e−4

θQ −6.89e−4

σ2 1.82e−5

Table 6.1: Parameter estimation for the real and risk neutral dynamic of rDI .

We assume that Ω2 is finite and has only paths with positive probability,
that is ω ∈ Ω2 ⇒ Q2(ω) > 0. This reduces the problem of recovering the
probability Q2 to that of finding p = (Q2(ω1), . . . ,Q2(ωU))t.
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Suppose there are future contract quotes, {F̂i}fi=1, with expiration, {T Fi }fi=1,

and call options quotes,{Ĉj}cj=1, with the associated pair of strikes and ma-
turity, {Kj , T

C
j }cj=1. Using (6.9) and (6.11), we can try to recover Q2 solving

F̂DI(t, Ti) =
∑

FDI(t, Ti, ω)Q2(ω) i = 1, . . . , f

ĈIDI(t, Tj , Kj) =
∑

CIDI(t, Tj , Kj, ω)Q2(ω) j = 1, . . . , c
(6.13)

This problem is linear although its dimension is quite high. We use the
following notation

Ek,u =

{
F̂DI(t, Tk) − FDI(t, Tk, ωu) if 0 < k ≤ f

ĈIDI(t, Tj, Kj) − CIDI(t, Tj, Kj, ωu) 0 < j = k − f + 1 ≤ c
.

(6.14)

Using the notation in Equation (6.14), the problem (6.13) is simply Ep = 0,
so finding a risk neutral probability is equivalent to finding a positive solution
of a linear system. The next theorem gives a very simple condition for non
arbitrage of market prices.

Theorem 6.2.1 A set of prices, {F̂i}fi=1, {Ĉj}cj=1 is arbitrage free, if and
only if, there is p ∈ Rn

++ such that Ep = 0, where R++ denotes the set of
strictly positive real numbers.

Proof: The result follows from the Fundamental Theorem of asset pricing
(Theorem 1.3.1) and by noticing that, by assumption, Q2(ω) > 0 for ω ∈
Ω2.

The next theorem gives some characterization of the set of arbitrage free
prices.

Theorem 6.2.2 ([Rom08]) Let S be the row space of E, then

• S ∩ Rn
+ = ∅ ⇔ S⊥ ∩ Rn

++ 6= ∅ ; and

• S ∩ Rn
++ = ∅ ⇔ S⊥ ∩ Rn

+ 6= ∅.

The problem of solving Ep = 0 is ill-posed. In this chapter, we propose
some regularization for this problem. The main idea of regularization is find
a family (Rγ)γ>0, such that

lim
γ↓0

RγEp = p ∀p ∈ Rn .
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Where the solutions of the regularizated problem

Rγp = 0,

s.t. p ∈ Rn
++

n∑

j=1

pj = 1

(6.15)

is well-posed. In our case, instead of solving Ep = 0 for some p ∈ Rn
++, we

solve

min
p
‖DEp‖2 + gγ(p, p

∗)

s.t.

n∑

j=1

pj = 1

pj ≥ 0 j = 1, . . . , n

Where p∗ is a prior probability. In this sections we present a choice for D,
several choices for the family (gγ)γ>0 and different priors.

For market data, the condition number of E is usually very high, some-
times above 1014. One of the reasons for this problem is the different mag-
nitudes of the assets treated. To mitigate it, we use a preconditioner matrix
D, defined as

D = Diag(‖E1,1:U‖−1, . . . , ‖Ef+c,1:U‖−1) , (6.16)

where Ej,1:U is the jth row of the matrix E.

From now on, E denotes the preconditioned Ê = DE.
As in many Inverse Problems and in Approximation Theory, one has to

consider different notions of distance. In particular we shall use the follow-
ings:

• dJ(r1, r2) = ‖r′1 − r′2‖2
2 =

∑
n ((r1 (t̄+n ) − r1 (t̄−n )) − (r2 (t̄+n ) − r2 (t̄−n )))

2
.

This distance represents the geometric Euclidean distance of jumps
size, it is related to the quadratic variation of the paths’ differences.
The distance dJ focus on the idea that the distance of the paths are
based on the change of interest rate on each COPOM meeting.

• dA(r1, r2) = ‖r1 − r2‖1 =
∫ T
t
|r1(s) − r2(s)| ds. This distance repre-

sents the difference of accumulated interest rates. The distance dA
focuses on the difference of interest rate applied in the economy during
a certain period of time.

78



Regularization techniques are heavily dependent on the existence of pri-
ors. We shall denote this prior as p∗. Some options for p∗ considered here
are:

• p∗ = pn−1, that is, the result for tn−1 is used as a prior for the problem
in tn.

• p∗i = d(rS(ωi), r
∗), where

r∗(t) := r0X[t0,τ1](t) +

N∑

j=1

rjX(τj ,τj+1](t) ,

where rj ∈ R ∀j is the deterministic path that better fits the future
prices. It is the deterministic version of (6.3) with no restriction about
possible values of the target. In case of more than one solution, the
one with lower dJ(r, r) is used.

• p∗i =
∑c+f

k=1 (Ek,i)
2, that is, the sum of the error for every contract.

Tikhonov

A popular way of regularization is the so-called Tikhonov regularization
[BL05]. For our purposes, we choose a prior p∗ and solve the following regu-
larizated version of the problem

min
pn

1

2
ptn
(
EtE

)
pn + γ‖pn − p∗‖2

∑
pin = 1

pin ≥ 0 .

(6.17)

Smoothness

In [JR96] a regularization was proposed, which was based on finding the
smoothest distribution. They minimized the discretization of the second
order differential operator. There is no natural order in Ω2, the notion of
smoothness is based on a distance between paths.

Given a distance d, the matrix of distances S will be defined as follows

Si,j = d(ωi, ωj) .
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The regularizated problem is

min
pn

1

2
ptn
(
EtE + βS

)
pn + γpnp

∗

∑
pin = 1

pin ≥ 0 .

(6.18)

Entropy

The last proposed regularization is entropy, which is given by

min
p

1

2
pt
(
EtE

)
p+

∑ pi
p∗i

log
pi
p∗i∑

pi = 1

pi ≥ 0 .

(6.19)

We notice that we must have
∑
p∗i = e−1 as prior. Indeed

x∗ = arg min
x

x

ex∗
ln

x

ex∗
. (6.20)

6.3 Numerical Results

In this section, we present a back-test of the model’s capacity of forecast on
future decisions of the monetary authority. To do so, we consider quotes for
futures over DI, and options over IDI ranging from 2007-12-18 to 2008-03-05.
The COPOM had a meeting on this day, when they have chosen 11.25 as
the SELIC rate. In order to construct the back-test, we present the model’s
probability addressed to the rate of 11.25 in every day of the time window
of the data set.

Our first result concerns prior probability choice. If we focus on Figure
6.1, where the Tikhonov regularization (6.17) is used, it is clear the crucial
role played by the prior. In any case, the model shows good forecast ability.

The right choice of the parameters is a central issue in regularization of
ill-posed problems. In Figures 6.2 and 6.3, we show the results based on
the smoothness regularization, (6.18), for different parameters. The wrong
choice of the parameters, like β = 1, in Figure 6.2, can produce bad results,
but in general we obtain good results for a large range of parameters.
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Figure 6.1: Probability of having interest rate of 11.25% at the meeting of
2008-03-05. The probability is based on the solution of (6.17), using a mixed
probability, error as prior, and γ = 10−1.
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Figure 6.2: Probability of having interest rate of 11.25% at the meeting of
2008-03-05. The probability is based on the solution of (6.18) for γ = 10−5,
using pn−1 as prior.

Our final result presents the forecast based on the entropy regularization
(6.19), and can be seen in Figure 6.4.
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Figure 6.3: Probability of having interest rate of 11.25% at the meeting of
2008-03-05. The probability is based on the solution of (6.18) for β = 10−2,
using the vector based on the distances as prior.

γ 1

γ 10−2

Probability

2007-12-18 2008-01-14 2008-02-07 2008-02-28
0.00

0.15

0.30

0.45

0.60

0.75

0.90

Figure 6.4: Probability of having interest rate of 11.25% at the meeting of
2008-03-05. The probability is based on the solution of (6.19), using error as
prior.
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6.4 Conclusion

The objective of this chapter was to recover the monetary authority decision
probabilities, using market data on derivatives over interest rates. The results
of this section show that our goal was achieved. The model, when combined
with the proper regularization techniques can recover with good accuracy
market expectation from data.

The choice of the right regularization technique plays a central role in
recovering the probabilities due to the ill-posed nature of the problem. Some
regularization techniques did not present good results for this problem, such
as the entropy (6.19), while others such as smoothness (6.18) and Tikhonov
(6.17) presented good results. The Tikhonov method achieved even better
results, as seen in Figure 6.1, and it is interesting to notice the effect of the
right prior in the quality of the results.
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Chapter 7

Final Considerations and
Future Work

Quantitative finance is the source of a number of mathematical problems
in a wide range of areas with immediate impact to market applications. In
this thesis, we addressed three different problems in quantitative finance and
while studying them, we worked on the development of new mathematical
techniques and new applications of well known mathematical methods to
relevant problems in finance.

In this final chapter, we draw some final comments on the results pre-
sented in this thesis and also point out some directions towards future work.

In Chapters 2, 3, and 4 we focused our attention on Fourier methods and
its use in finance. In Chapter 2, we presented a pricing formula for several
derivatives. It is valid for a broad range of stochastic processes models,
including Heston, Merton, and Kou models. Some numerical results were
shown in Section 4.3 based on quadrature techniques presented in Chapter 3.

One of the applications of the results of this part of the thesis is that
putting together the pricing formula of Chapter 2, the bounds for Fourier
transform in Chapter 3, and the algorithm of Chapter 4, it is possible to find
a grid that achieves a desired accuracy in pricing a portfolio of derivatives,
even when this portfolio has different maturities.

The bounds developed in Chapter 3 have Black-Sholes model as a natural
example, but to find the proper bounds for different models proved to be a
difficult task. We are now working on bounds based on the Faà di Bruno’s
formula [Har06].

It is interesting to notice that, even using the same bounds we used
for the Black-Scholes case, the non-uniform quadrature proved itself to be
very accurate for several models. In Figure 7.1, we show some results for
the Heston model, whose characteristic is given by Equation 1.23. We also
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present some preliminary results for the Merton model, given in Figure 7.2,
and Kou model, given in Figure 7.3. The characteristic function for those
last two processes are given in Table 1.1.
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3.2 Value

S 4 6 8 10 12

7.8

8.1

8.4

8.7

Error×10−6

S

Figure 7.1: The error in the price computation of a call option in the Heston
model, using the bounds of Chapter 3. The parameters used were v = 0.02,
v̄ = 0.03, ν = 0.4, ρ = −0.7, λ = 1.3, k = log(10), Sk = 5 + 0.4 · j for
j = 1, . . . , 20, precision ǫ = 10−2, r = 0, and t = 1. We used 472 mesh
points.
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Figure 7.2: The error in the price computation of a call option in the Merton
model, using the bounds of Chapter 3. The parameters used were µ = 0,
λ = 1.3, σ = 0.2, δ = 0.1, k = log(10), Sk = 5 + 0.4 · j for j = 1, . . . , 20,
precision ǫ = 10−4, r = 0, and t = 1. We used 184 mesh points.

In another direction, we are also working on different quadrature schemes
to evaluate the pricing formula of Theorem 2.2.2, but again bounds for the
derivatives of the characteristic functions must be estimated.
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Figure 7.3: The error in the price computation of a call option in the Kou
model, using the bounds of Chapter 3. The parameter used were λ = 1,
ν1 = 0.4, ν2 = 0.6, p = 0.4, σ = 0.2, k = log(10), Sk = 5 + 0.4 · j for
j = 1, . . . , 20, precision ǫ = 10−2, r = 0, and t = 1. We used 124 mesh
points.

The quadrature bounds presented in Chapter 3 have several applications.
Among them, it is possible to extend the numerical solution of the inhomo-
geneous heat equation in free space, used in [LG07], to more general initial
conditions. Even within the same class of initial conditions, the bounds de-
veloped here represent some improvement over [LG07], see Figure 3.2. A
numerical study of such application is a possible follow up of Chapter 3 and
an important extension of the numerical results presented in Section 4.3.

The bounds obtained in Chapter 3 include bounds for
∫
h(s)eixsds ,

∫
h(s)eixs

is
ds , and

∫
h(s)eixs

c+ is
ds .

We are currently working on estimates for
∫

h(s)eixs

(c+ is)n
ds ,

following the lines of the previous bounds. The difficulty here lies in the
factor n, which implies a polynomial growth of the derivative, and makes it
difficult to find a sharp estimate.

In Chapter 5, we presented a model for LNG prices, and several deriva-
tives over the spot price. The model reflects several stylized facts about this
market. We are now working on the calibration of the model for real data.
We are also working on extending the bound of Chapter 3 to the multidimen-
sional case, so it would be possible to attack the numerical solution of the
model developed in Chapter 5 with the same techniques used in Chapters 2
and 3.

Finally, in Chapter 6 we presented a model for interest rates taking into
account the monetary policy. Using inverse problem techniques we were able

86



to recover market expectation about the monetary authority decision. The
applications of these techniques in financial planning are self-evident. In
Section 6.3, we presented some numerical results obtained by the model as
well as some back-test examples.

During the development of this thesis options on One-Day Interbank De-
posit Futures Contract became liquid. Thus, we will incorporate those con-
tracts to the model in a future work. We are currently developing an algo-
rithm based on the convex hull [BDH96] in order to find the set of arbitrage
free prices. We intend to apply the ideas of Chapter 6 for general discrete
frameworks, and one possible application of such result would be the set of
arbitrage free prices for several digital options.
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