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Abstract

We analyze one-step direct methods for nonsmooth variational inequality problems,

establishing convergence under paramonotonicity of the operator. Previous results on

the method required much more demanding assumptions, like strong or uniform mono-

tonicity, which imply uniqueness of solution, which is not the case for our approach.

We introduce a fully explicit method for solving monotone variational inequalities

in Hilbert spaces, where orthogonal projections onto the feasible set are replaced by

projections onto suitable hyperplanes. We prove weak convergence of the whole gener-

ated sequence to a solution of the problem, under the only assumptions of continuity

and monotonicity of the operator and existence of solutions.

We also introduce a two-step direct method, like Korpelevich’s. The advantage of

our method over that one is that ours converges strongly in Hilbert spaces, while only

weak convergence has been proved for Korpelevich’s algorithm. Our method also has

the following desirable property: the sequence converges to the solution of the problem

which lies closest to the initial iterate.

Keywords: Armijo-type search, Convex minimization problem, Korpelevich’s me-

thod, Nonsmooth optimization, Maximal monotone operators, Monotone variational

inequalities, Point-to-set operator, Projected gradient method, Projection method,

Quasi-Fejér convergence, Relaxed method, Strong convergence, Variational inequality

problem, Weak convergence.
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Resumo

Analisamos métodos diretos, de um passo, para problemas de desigualdades varia-

cionais não suaves, estabelecendo convergência quando o operador é paramonotono.

Resultados anteriores sobre o método exigem hipóteses muito mais fortes, como mono-

tonia forte ou monotonia uniforme, que implicam unicidade de solução, o que não é o

caso na nossa abordagem.

Apresentamos um método totalmente expĺıcito para resolver desigualdades varia-

cionais monótonas em espaços de Hilbert, onde projeções ortogonais sobre o conjunto

viável são substituidas por projeções sobre hiperplanos adequados. Provamos con-

vergência fraca de toda a seqüência gerada para uma solução do problema, sob as

únicas hipóteses de continuidade e monotonia do operador e existência de soluções.

Introduzimos também um método direto com dois passos, como o método de Kor-

pelevich. A vantagem do nosso método sobre o dela é que o nosso converge fortemente

em espaços de Hilbert, sendo que só foi provada convergência fraca para o algoritmo de

Korpelevich. Nosso método também tem a seguinte propriedade desejável: a sequência

converge para a solução do problema mais próxima ao iterado inicial.

Palavras Chaves: Busca de Tipo Armijo, Problema de Minimização Convexo, Método

de Korpelevich, Otimização Não Suave, Operador Monótono Maximal, Desigualdades

Variacionais Monótonas, Método do Gradiente Projetado, Convergência Quase-Fejér,

Convergência Forte, Convergência Fraca.
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Basic Notation and Terminology

H: a real Hilbert space,

VIP(T, C): the variational inequality problem whose objective operator is T and whose

feasible set is C,

S(T,C): the solution set of VIP(T, C),

〈·, ·〉: the inner product of the space,

‖·‖: the norm of the space,

Rn: the n-dimensional Euclidean space,

R+: the set of nonnegative real numbers,

R++: the set of positive real numbers,

dom(g): the domain of a function g,

dom(T ): the domain of an operator T ,

∂g: the subdifferential of a convex function g,

NC(x): the normal cone of a set C at a point x,

IC : the indicator function of a set C,

P(C): the power set of a set C,

∂C: the boundary of a set C,

B(x, δ): the open ball with radius δ centered at x,

co(C): the convex hull of a set C.
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Chapter 1

Introduction

In this chapter we collect some mathematical facts, including definitions and theorems,

used in sequel. Most of the material has been taken from [13], [36], [20], [64] and [60].

1.1 Elements of topology and convex analysis

Here, we introduce some standard functional analysis results. We start with some basic

definitions. Let H be a real Hilbert space with inner product 〈·, ·〉 and P(H) the set

of all subsets of H. Define ‖x‖ := 〈x, x〉 1
2 , for all x ∈ H.

Definition 1.1. A sequence {xk} ⊂ H is said to be:

i) strongly convergent to x ∈ H if and only if limk→∞ ‖xk − x‖ = 0,

ii) weakly convergent to x ∈ H if and only if limk→∞〈xk − x, y〉 = 0, for all y ∈ H.

Definition 1.2. Let f : H → R ∪ {−∞, +∞} be a real function.

i) f is proper if dom(f) 6= ∅ and f(x) > −∞ for all x ∈ dom(f).

ii) f is convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all x, y ∈ H and all

λ ∈ [0, 1].

iii) f is concave if −f is convex.
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vi) For each convex function f , the set

∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y − x〉, ∀y ∈ H}

is called the subdifferential of f at x.

v) f is (weakly) lower semicontinuous if for each x ∈ dom(f), it holds that f(x) ≤
lim inf

y→x
f(y) where

lim inf
y→x

f(y) := sup
U∈Ux

inf
y∈U

f(y)

where Ux ⊂ P(H) denotes the family of neighborhoods of x in the (weak) topology.

Hilbert spaces enjoy the following properties, which we will use frequently in this thesis.

Proposition 1.1. Let H be a Hilbert space and f : H → R ∪ {−∞, +∞} a real

function. Then

i) If C is convex subset of H, then C is weakly closed if and only if C is strongly

closed.

ii) If C is a closed, convex and bounded subset of H, then C is weakly compact.

iii) Every bounded sequence in H has a weakly convergent subsequence.

iv) If f is a weakly lower semicontinuous function, then f has at least one minimizer

over each nonempty, closed, convex and bounded subset of H.

Proof. See pages 38-50 of [13].

Corollary 1.1. If f is a proper, convex and lower semicontinuous function, then f is

weakly lower semicontinuous.

Proof. It follows from Proposition 1.1.

Proposition 1.2. Let f : H → R ∪ {−∞, +∞} be a convex function whose domain

has nonempty interior. Then the following statements hold.

i) For any x ∈ dom(f), the subdifferential ∂f(x) is convex and weakly closed.

3



ii) If f is continuous on int(dom(f)), then for each x ∈ int(dom(f)), the set ∂f(x)

is nonempty and weakly compact.

iii) If f is lower semicontinuous, then its subdifferential ∂f is locally Lipschitz on

int(dom(f)).

Proof. See pages 6 and 8 of [20].

Proposition 1.3. Assume that f : Rn → R ∪ {−∞, +∞} is a convex function whose

domain has nonempty interior. Then f is locally Lipschitz on int(dom(f)), and con-

sequently ∂f(x) is a nonempty subset of Rn for each x ∈ int(dom(f)).

Proof. See Proposition 1.2 and page 174 of [36].

Next we present the definition of the convex hull.

Definition 1.3. Given A ⊂ H, the convex hull of A, denoted by co(A), is the set of

all convex combinations of elements of A, i.e.,

co(A) =

{
k∑

j=1

αjx
j : xj ∈ A, αj ∈ R+,

k∑
j=1

αj = 1, k = 1, 2, . . .

}
.

1.1.1 Supremum of convex functions

In this subsection we consider the particular case of H = Rn. We come now to

an extremely important calculus rule. It has no equivalent in classical differential

calculus, and is of constant use in optimization. We study the following situation: J

is an arbitrary index set, {fj}j∈J is a collection of finite convex functions from Rn to

R, and we assume that

f(x) := sup{fj(x) : j ∈ J},
for all x ∈ Rn. It is known that f is convex, see Proposition 2.1.2 of [36]. We are

interested in computing its subdifferential. At a given x, let

J(x) := {j ∈ J : fj(x) = f(x)}
be the active index set.
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Theorem 1.1. If J is a compact set in some metric space such that the functions

j 7→ fj(x) are upper semicontinuous for each x ∈ Rn, then

∂f(x) = co{∪∂fj(x) : j ∈ J(x)}.

Proof. See Theorem 4.4.2 of [36].

As a special case of Theorem 1.1, when each fj is differentiable, we have the fol-

lowing result.

Corollary 1.2. Assume that J is a compact set in some metric space such that the

functions j 7→ fj(x) are upper semicontinuous for each x ∈ Rn, and that each fj is

differentiable. Then

∂f(x) = co{∇fj(x) : j ∈ J(x)}.

Proof. See Corollary 4.4.4 of [36].

1.2 Monotone operators

Here we state some definitions and properties of point-to-set operators.

Definition 1.4. Let H be a Hilbert space.

i) A point-to-set operator is a map T : H → P(H).

ii) The set dom(T ) := {x ∈ H : T (x) 6= ∅} is called the domain of T .

iii) The set G(T ) := {(x, v) ∈ H ×H : v ∈ T (x)} is called the graph of T .

iv) T is locally bounded at x if there exists a neighborhood U of x such that the set

T (U) := ∪x∈UT (x)

is a bounded subset of H.
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v) The graph of T is demiclosed if for all sequences {xk} ⊂ H, weakly convergent

(strongly convergent) to x ∈ H and for all {vk} ⊂ H strongly convergent (weakly

convergent) to v ∈ H, with {(xk, vk)} ⊂ G(T ), it holds that v ∈ T (x), i.e.

(x, v) ∈ G(T ).

Monotone operators were first introduced in [54] and [70], and can be seen as a

two-way generalization: a nonlinear generalization of linear endomorphisms with pos-

itive semidefinite matrices, and a multi-dimensional generalization of nondecreasing

functions of a real variable. Monotone operators are the key ingredient of monotone

variational inequalities, which extend to the realm of point-to-set mappings the con-

strained convex minimization problem.

In order to study and develop new methods for solving variational inequalities, it is

therefore essential to understand the properties of this kind of point-to-set mappings.

Definition 1.5. Let T : H → P(H) be a point-to-set operator.

i) T is monotone if and only if 〈u− v, x− y〉 ≥ 0 for all x, y ∈ H and all u ∈ T (x),

v ∈ T (y).

ii) T is maximal monotone if T is monotone and additionally T = T ′ for all mono-

tone operator T ′ : H → P(H) such that G(T ) ⊂ G(T ′).

Due to the next result, we can deal mostly with maximal monotone operators,

rather than just monotone ones.

Proposition 1.4. If H is a Hilbert space and T : H → P(H) a monotone point-to-set

operator, then there exists T̂ : H → P(H) maximal monotone (not necessarily unique),

such that G(T ) ⊂ G(T̂ ).

Proof. See Proposition 4.1.3 in [19].

We introduce next some important examples of maximal monotone operators.

Proposition 1.5. Let f : H → R ∪ {−∞, +∞} be a proper convex function. Then

the subdifferential ∂f of f is maximal monotone.
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Proof. The fact that ∂f is monotone is straightforward from the definition. The max-

imality has been proved by R. T. Rockafellar in [62].

Example 1.1. The normality operator of a convex set C, called NC, is defined as

follows:

NC(x) :=

{
w ∈ H : 〈w, x− z〉 ≥ 0, ∀z ∈ C if x ∈ C

∅ if x /∈ C.

It can be checked that NC(x) = ∂IC(x), where IC is the indicator function of C,

which is defined as

IC(x) :=





0 if x ∈ C

∞ otherwise.

Thus, we have from Proposition 1.5 that NC is a maximal monotone operator. Note

that for some x∗ ∈ C and u∗ ∈ H, we have

0 ∈ u∗ + NC(x∗) if and only if 〈u∗, x− x∗〉 ≥ 0 for all x ∈ C. (1.1)

Example 1.2. A linear mapping T : H → H is maximal monotone if and only if T is

positive semidefinite, i.e. 〈T (x), x〉 ≥ 0 for all x ∈ H.

We recall that a mapping T : H → H is Gâteaux differentiable at x ∈ H if for all

y ∈ H the limit

δT (x)y := lim
t→0

T (x + ty)− T (x)

t

exists and is a linear and continuous function of y. We say that T is Gâteaux differen-

tiable when it is Gâteaux differentiable at every x ∈ H.

Note that when T : H → H is linear, it is Gâteaux differentiable and δT = T .

Thus, the previous example is a particular case of the following result.

Proposition 1.6. A Gâteaux differentiable mapping T : H → H is monotone if and

only if its Gâteaux derivative at x, δT (x), is positive semidefinite for all x ∈ H. In

this situation, T is maximal monotone.

7



Proof. See Proposition 4.1.6 in [19].

Now we present an important maximal monotone operator, called the saddle point

operator.

Definition 1.6. Let H1 and H2 be real Hilbert spaces and S1 and S2 be closed and

convex subsets of H1 and H2, respectively. Given L : S1 × S2 → R, convex in its first

argument and concave in the second one, the saddle point operator TL : H1 × H2 →
P(H1)× P(H2) is defined as

TL(x, y) := (∂xL(x, y), ∂y(−L(x, y)), (1.2)

where ∂xL and ∂y(−L) denote the subdifferentials of L(·, y) and −L(x, ·), respectively.

Proposition 1.7. Saddle point operators TL are maximal monotone.

Proof. See Theorem 4.7.5 of [19].

Saddle point operators are an important family of maximal monotone operators,

which has the following associated problem. Given closed and convex subsets S1 and

S2 of H1 and H2 respectively, the saddle point problem is defined as:

find (x∗, y∗) ∈ S1 × S2 such that

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) for all (x, y) ∈ S1 × S2. (1.3)

This problem is called the constrained saddle point problem CSP (L, S1, S2). A

solution (x∗, y∗) of CSP (L, S1, S2) is called a saddle point. The connection between

the saddle point problem CSP (L, S1, S2) and the saddle point operator TL is given the

following proposition.

Proposition 1.8. The constrained saddle point problem (CSP (L, S1, S2)) is equivalent

to the following problem: find (x∗, y∗) ∈ S1 × S2 such that

0 ∈ TL(x∗, y∗) + (NS1(x
∗), NS2(y

∗)) .
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Proof. Suppose that

0 ∈ TL(x∗, y∗)+(NS1(x
∗), NS2(y

∗)) = (∂xL(x∗, y∗)+NS1(x
∗), ∂y(−L(x∗, y∗))+NS2(y

∗)).

By (1.1), the above inclusion is equivalent to the existence of u∗ ∈ ∂xL(x∗, y∗) such

that 〈u∗, x− x∗〉 ≥ 0 for all x ∈ S1, and the existence of v∗ ∈ ∂y(−L(x∗, y∗)) such that

〈v∗, y − y∗〉 ≥ 0 for all y ∈ S2. Using the definition of the subdifferential, we obtain

L(x, y∗)− L(x∗, y∗) ≥ 〈u∗, x− x∗〉 ≥ 0 (1.4)

for all x ∈ S1 and

−L(x∗, y) + L(x∗, y∗) ≥ 〈v∗, y − y∗〉 ≥ 0 (1.5)

for all y ∈ S2. Combining (1.4) and (1.5), we obtain both inequalities in (1.3).

Conversely, using the second inequality of (1.3), we get that

L(x∗, y∗) ≤ min
x∈S1

L(x, y∗).

Therefore, x∗ is a minimizer of L(·, y∗) in S1. Since L(·, y∗) is a convex function and

S1 is a closed and convex set, we have

0 ∈ ∂xL(x∗, y∗) + NS1(x
∗). (1.6)

Now, using the first inequality of (1.3), we get that

−L(x∗, y∗) ≤ min
y∈S2

−L(x∗, y).

Therefore, y∗ is a minimizer of −L(x∗, ·) in S2. Since −L(x∗, ·) is a convex function

and S2 is a closed and convex set, we have

0 ∈ ∂y(−L(x∗, y∗)) + NS2(y
∗). (1.7)

Combining (1.6) and (1.7), we obtain that

0 ∈ TL(x∗, y∗) + (NS1(x
∗), NS2(y

∗)) .

9



1.2.1 Properties of monotone operators

In this subsection we present some results concerning maximal monotone operators in

Hilbert spaces.

Lemma 1.1. Let T : H → P(H) be a maximal monotone operator and C a closed and

convex set. Then

i) T is locally bounded at any point in the interior of its domain.

ii) G(T ) is demiclosed.

iii) If H is finite dimensional then T is bounded on bounded subsets of the interior

of its domain.

iv) If T is point-to-point then T is continuous.

Proof. i) See Theorem 4.6.1(ii) of [19].

ii) See Proposition 4.2.1(ii) of [19].

iii) It follows easily from (i) using a compactness argument.

iv) See Theorem 4.6.3 of [19].

Let T1, T2 : H → P(H) be maximal monotone operators. The operator T1 + T2 is

defined by

(T1 + T2)(x) := {u1 + u2 : u1 ∈ T1, u2 ∈ T2},

for all x ∈ dom(T1) ∩ dom(T2). Then dom(T1 + T2) := dom(T1) ∩ dom(T2).

It is clear that if T1 and T2 are monotone, then T1 + T2 is also monotone. But if T1

and T2 are maximal, it does not necessarily follow that T1 + T2 is maximal. Some sort

of condition is needed, since for example the graph of T1 + T2 can even be empty (as

happens when dom(T1) ∩ dom(T2) = ∅ ). The following example establishes that the

sum of two maximal monotone operators may fail to be a maximal monotone operator.
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First, we define the weak derivative. Let x be a function in L2(R). We say that x′

in L2(R) is the weak derivative of x if

∫ +∞

−∞
x(t)ϕ′(t)dt = −

∫ +∞

−∞
x′(t)ϕ(t)dt,

for all ϕ ∈ C∞c (R), that is, for all infinitely differentiable functions with compact

support in R.

Example 1.3. Define the linear operator T1 : L2(R) → L2(R) by

T1(x) = −x′′ with dom(T1) = H2(R) :=
{
x ∈ L2(R) : x′ ∈ L2(R)

}
.

Fix f ∈ L1(R) such that f ≥ 0, and f/Ω /∈ L2(Ω) for all open set Ω ⊂ R. It has

been shown in [49] that such a function exists.

Define T2 : L2(R) → L2(R) by

T2(x)(t) = f(t)x(t) with dom(T2) :=
{
x ∈ L2(R) : fx ∈ L2(R)

}
.

The operators T1 and T2 are linear, self-adjoint, and maximal monotone in L2(R).

Hence T1 + T2 is monotone. It is easy to check that the properties of f imply that

dom(T1 + T2) = dom(T1) ∩ dom(T2) = {0}. Note that T1 and T2 are point-to-point,

and so the same holds for T1 +T2, in fact (T1 +T2)(x) = −x′′+fx. On the other hand,

the operator T̂ : L2(R) → P(L2(R)) defined as T̂ (0) = L2(R), T̂ (x) = ∅ for x 6= 0, is

monotone and G(T1 + T2) ( G(T̂ ). Hence, T1 + T2 is not maximal. This example was

proposed and extensively studied in [4].

The problem of determining conditions under which T1 + T2 is maximal turns out

to be of fundamental importance in the theory of monotone operators. Results in this

directions have been proved in [15] and [16]. These results were improved by R. T.

Rockafellar in [61]. We state them now:

Theorem 1.2. Let T1, T2 : H → P(H) be maximal monotone operators. Suppose that

any of following conditions is satisfied:

i) dom(T1) ∩ int(dom(T2)) 6= ∅,

11



ii) there exists x ∈ cl(dom(T1)) ∩ cl(dom(T2)) such that T2 is locally bounded at x.

Then T1 + T2 is a maximal monotone operator.

Proof. See Theorem 1 of [61].

1.2.2 Some properties stronger than monotonicity

First, we define some special classes of monotone operators.

Definition 1.7. T : H → P(H) is said to be

i) strongly monotone if 〈u − v, x − y〉 ≥ ω‖x − y‖2 for some ω > 0 and for all x,

y ∈ H and all u ∈ T (x), v ∈ T (y),

ii) uniformly monotone if 〈u − v, x − y〉 ≥ ψ(‖x − y‖) for all x, y ∈ H and all

u ∈ T (x), v ∈ T (y), where ψ : R+ → R is an increasing function, with ψ(0) = 0,

iii) strictly monotone if and only if T is monotone and 〈u − v, x − y〉 = 0 with x,

y ∈ H, u ∈ T (x), v ∈ T (y) implies x = y.

It follows from Definition 1.5 and Definition 1.7 that the following implications hold:

strong monotonicity implies uniform monotonicity, which implies strict monotonicity

which in turn implies monotonicity. The reverse assertions are not true in general, as

will be shown with the following examples.

Example 1.4. Take A ∈ Rn×n positive semidefinite but not positive definite. Then,

the linear operator T : Rn → Rn defined as T (x) = Ax is monotone but not strictly

monotone.

Example 1.5. Take T : R→ R defined as T (x) = exp(x). T is strictly monotone but

not uniformly monotone.

Example 1.6. Consider the operator T : Rn → Rn defined as T (x)j := sg(xj)|xj|p,
(1 ≤ j ≤ n), with p > 1. T is uniformly monotone for all p > 1, with

ψ(t) = n
(1−p)

2 tp+1, (1.8)

but is not strongly monotone.
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We show next that T is uniformly monotone with ψ(t) as in (1.8). We claim that

(s− t) (sg(s)|s|p − sg(t)|t|p)
|s− t|p+1

≥ 1, (1.9)

for all s, t ∈ R.

We must consider all possible signs of s, t, but it easy to check that all lead to the

same calculation. Assume that s, t ≥ 0. Taking r = s − t in (1.9), this inequality is

equivalent to r
|r|p+1 ((t + r)p − tp) ≥ 1 for all r, t such that t ≥ max{0,−r}. Looking at

the problem

min ϕ(t) = r
|r|p+1 ((t + r)p − tp)

s.t. t ≥ max{0,−r},
it follows easily that its solution is t∗ = max{0,−r} with ϕ(t∗) = 1, establishing (1.9).

It follows from (1.9) that

〈T (x)− T (y), x− y〉 =
n∑

j=1

(xj − yj) (sg(xj)|xj|p − sg(yj)|yj|p)

≥
n∑

j=1

|xj − yj|p+1 = n

n∑
j=1

1

n
(|xj − yj|2)

p+1
2

≥ n

(
1

n

) p+1
2

‖x− y‖ p+1
2 = ψ(‖x− y‖),

using the convexity of t 7→ t
p+1
2 in the second inequality (note that p+1

2
> 1).

Now, we show that T is not strongly monotone. Take y = 0 and x = (t, 0, . . . , 0)

with t > 0. Then,

〈T (x)− T (y), x− y〉
‖x− y‖2

=
tp+1

t2
= tp−1.

Taking limits with t → 0+, we get that the inequality defining strong monotonicity

fails for all ω > 0, using the fact that p− 1 > 0.

Next, we define an important class of monotone operators, called paramonotone.

Definition 1.8. T : H → P(H) is said to be paramonotone if and only if T is monotone

and 〈u−v, x−y〉 = 0 with x, y ∈ H, u ∈ T (x), v ∈ T (y) implies u ∈ T (y) and v ∈ T (x).
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The notion of paramonotonicity, which is in-between monotonicity and strict mono-

tonicity, was introduced in [17], and many of its properties were established in [21] and

[39]. Among them, we mention the following:

i) If T is the subdifferential of a convex function, then T is paramonotone, see

Proposition 2.2 in [39].

ii) If T : Rn → Rn is monotone and differentiable, and JT (x) denotes the Jacobian

matrix of T at x, then T is paramonotone if and only if Rank(JT (x) + JT (x)t) =

Rank(JT (x)) for all x, see Proposition 4.2 in [39].

It follows that affine operators TA : Rn → Rn defined as TA(x) = Ax + b are

paramonotone when A ∈ Rn×n is positive semidefinite (not necessarily symmetric),

and Rank(A + At) = Rank(A). This situation includes cases of nonsymmetric and

singular matrices, which are not strictly monotone. This also can happen for nonlinear

operators, e.g. the operator defined as Tf (x) = ∂f(x) + TA(x), where f is a convex

function and TA is as above.

There exist interesting monotone operators which are not paramonotone. For in-

stance, an operator F : Rn → Rn of the form F (x) = T (x) + A(x) + b, where

T : Rn → Rn is monotone and A ∈ Rn×n is a non-null and skew-symmetric matrix.

We also mention that an important class of monotone operators that fail to be

paramonotone are the saddle point operators. We analyze a representative saddle

point problem associated to the convex optimization problem.

Consider the following problem:

min f(x) s.t. gi(x) ≤ 0 (0 ≤ i ≤ m),

with convex f , gi : Rn → R. If f , gi are of class C1, then under standard regularity

conditions (e.g. [60]), this problem is equivalent to CSP (L,Rn,Rm
+ ) where L is the

Lagrangian function, i.e. L(x, y) = f(x) +
∑m

i=1 yigi(x). Note that L is convex in its

first argument due to the convexity of f , gi (1 ≤ i ≤ m) and the fact that yi ∈ R+

(1 ≤ i ≤ m). L is concave in the second argument because it is affine as a function of

y. Therefore, the saddle point TL introduced in Definition 1.6 is given in this case by

TL(x, y) =
(∇f(x) + Jg(x)ty,−g(x)

)
, (1.10)
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where g(x) = (g1(x), . . . , gm(x)) and Jg(x) is the Jacobian matrix of g at x.

Proposition 1.9. If Jg(x) 6= 0 for some x ∈ Rn (otherwise the convex optimization

problem is unconstrained), then the saddle point operator TL defined in (1.10) is not

paramonotone.

Proof. Take x̄ ∈ Rn such that Jg(x̄) 6= 0. Thus, there exists v ∈ Rm such that

Jg(x̄)tv 6= 0. Write v = y − y′ with y, y′ ∈ Rm
+ . It follows from (1.10) that

〈TL(x̄, y)− TL(x̄, y′), (x̄, y)− (x̄, y′)〉 = 〈Jg(x̄)t(y−y′), x̄− x̄〉−〈g(x̄)−g(x̄), y−y′〉 = 0.

On the other hand, TL(x̄, y)− TL(x̄, y′) = (Jg(x̄)t(y− y′), 0) = (Jg(x̄)tv, 0) 6= (0, 0),

i.e. T is not paramonotone in Rn ×Rm
+ .

1.3 Variational inequalities

The variational inequality problem provides a broad unifying setting for the study of

optimization, equilibrium, and related problems, and serves as a useful computational

framework for the solution of a host of problems in very diverse applications. Varia-

tional inequalities have been a classical subject in mathematical physics, particularly

in the calculus of variations associated with the minimization of infinite-dimensional

functionals. This problem was first introduced by P. Hartman and G. Stampacchia in

[34].

The systematic study of the subject began in the 1960s. Variational inequalities

were used as an analytic tool for studying free boundary problems defined by nonlinear

partial differential operators arising from unilateral problems in elasticity and plasticity

theory and in mechanics. Variational inequalities have a wide range of important

applications in physics, engineering and economics. Several of them are described in

[46, 25]. Some of the earliest papers on variational inequalities are [34, 50, 51, 69].

The development of the finite-dimensional variational inequalities also began in the

mid-1960s but followed a different path. Unlike its infinite-dimensional counterpart,

which was conceived in the area of partial differential systems, the finite-dimensional

variational inequality was born in the domain of Mathematical Programming. The de-

velopments include a rich mathematical theory, a host of effective solution algorithms,
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and a multitude of interesting connections to numerous disciplines. The variational

inequality problem is considered within optimization theory as a natural extension of

minimization problems, see [33].

Let C be a nonempty closed and convex subset of a real Hilbert space H and

T : H → P(H) a point-to-set operator. The variational inequality problem for T and

C, denoted VIP(T, C), is the following:

find x∗ ∈ C such that there exists u∗ ∈ T (x∗) satisfying

〈u∗, x− x∗〉 ≥ 0 ∀x ∈ C. (1.11)

The set of solutions to this problem is denoted S(T, C).

A first geometric interpretation of VIP(T, C), defined by inequality (1.11), is that

x∗ in C is a solution of VIP(T, C) if and only if there exists u∗ ∈ T (x∗) which forms a

non-obtuse angle with every vector of the form x− x∗ with x ∈ C. We may formalize

this observation using the normality operator of C, introduced in Example 1.1. The

inequality (1.11) clearly says that x∗ ∈ S(T, C) if and only if there exists u∗ ∈ T (x∗)

such that 0 ∈ u∗ + NC(x∗). This observation will be used in Example 1.9.

1.3.1 Examples

There exist many problems which can be written as variational inequality problems.

Example 1.7 (convex optimization). When T is the subdifferential of a convex func-

tion f , then VIP(T, C) is equivalent to minimizing f on C.

Example 1.8 (complementarity problem). When T : Rn → P(Rn) and C = Rn
+, the

variational inequality problem is equivalent to the nonlinear complementarity problem,

denoted CP(T,Rn
+), which consists of finding x∗ ∈ Rn

+ and u∗ ∈ T (x∗) such that

u∗ ∈ Rn
+ and 〈u∗, x∗〉 = 0.

We prove this elementary result. First we suppose that x∗ ∈ S(T,Rn
+). By taking

x = 0 ∈ Rn
+ in (1.11), we obtain that there exists u∗ ∈ T (x∗) such that 〈u∗, x∗〉 ≤ 0.

Furthermore, since x∗ ∈ Rn
+, it follows that 2x∗ ∈ Rn

+. Thus, by taking x = 2x∗ in

(1.11), we obtain 〈u∗, x∗〉 ≥ 0.
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Combining the above two inequalities, we get 〈u∗, x∗〉 = 0. As a consequence, this

yields 〈u∗, x〉 ≥ 0 for all x ∈ Rn
+, and hence u∗ ∈ Rn

+. Therefore x∗ solves CP(T,Rn
+).

Conversely, if x∗ solves CP(T,Rn
+), then 〈u∗, x− x∗〉 = 〈u∗, x〉 ≥ 0 for all x ∈ Rn

+,

because u∗ ∈ Rn
+, i.e. x∗ ∈ S(T, C).

Example 1.9 (finding zeroes of operators). The variational inequality problem is equiv-

alent to the problem of finding a zero of T̂ := T + NC, i.e. finding x∗ ∈ H such that

0 ∈ T̂ (x∗) = T (x∗) + NC(x∗).

In effect, x∗ ∈ S(T, C) if and only if 〈T (x∗), x− x∗〉 ≥ 0 for all x ∈ C. Using (1.1),

we get the equivalence with the fact that −T (x∗) ∈ NC(x∗), i.e. 0 ∈ T (x∗)+NC(x∗) =

T̂ (x∗).

Example 1.10 (constrained saddle point problems). When T = TL, as in Defini-

tion 1.6, the variational inequality problem (V IP (TL, S1 × S2)) is equivalent to the

constrained saddle point problem in S1 × S2; see Proposition 1.8 and Example 1.9.

In several other situations the variational inequalities formulation is also useful.

We mention among them the Nash equilibrium of a n-person noncooperative game,

the generalized Nash equilibrium, the traffic assignment problem, the spatial price

equilibrium problem and the general equilibrium problem, see [50, 9, 30, 37, 33, 23].

1.4 Projected gradient method

In this section we deal the following smooth optimization problem:

min f(x) s.t. x ∈ C, (1.12)

where f : Rn → R is a continuously differentiable and C ⊂ Rn is closed and convex.

Convexity of C makes it possible to use the orthogonal projection onto C for ob-

taining feasible directions which are also descent ones; namely a step is taken from xk

in the direction of −∇f(xk), the resulting vector is projected onto C, and the direction

from xk to this projection has the above mentioned properties. We remind that a point

z ∈ C is stationary for problem (1.12) if and only if 〈∇f(z), x− z〉 ≥ 0 for all x ∈ C,

i.e., z ∈ S(∇f, C).
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We introduce next the projected gradient method. A formal description of the

algorithm is the following:

Initialization: Take x0 ∈ C.

Iterative step: If xk is stationary, then stop. Otherwise, let

zk = xk − βk∇f(xk), (1.13)

xk+1 = αkPC(zk) + (1− αk)x
k, (1.14)

where βk, αk are positive for all k. The coefficients βk and αk are called stepsizes and

PC : H → C is the orthogonal projection onto C, i.e. PC(x) = argminy∈C ‖x − y‖.
Several choices are possible for the stepsizes. Before discussing them, we mention that

in the unconstrained case, i.e. C = Rn, then the method given by (1.13)-(1.14) with

αk = 1 for all k reduces to the iteration xk+1 = xk − βk∇f(xk), called the steepest

descent method.

Following [10] and [40], we will focus in four strategies for the stepsizes:

a) Constant stepsize: βk = β where β > 0 is a fixed number and αk = 1 for all k.

b) Armijo search along the boundary of C: αk = 1 for all k and βk determined by

βk = β̄2−j(k) (1.15)

with

j(k) = min
{
j ≥ 0 : f(zk,j)− f(xk) ≤ −δ〈∇f(xk), xk − PC(zk,j)〉} (1.16)

zk,j = xk − β̄2−j∇f(xk), (1.17)

for some β̄ > 0, and δ ∈ (0, 1).
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c) Armijo search along the feasible direction: {βk} ∈ [β̂, β̃] for some 0 < β̂ ≤ β̃ and

αk determined with an Armijo rule, namely

αk = 2−j(k) (1.18)

with

j(k) = min {j ≥ 0 : f(2−jPC(zk) + (1− 2−j)xk)− f(xk)

≤ − δ2−j〈∇f(xk), xk − PC(zk)〉} (1.19)

for some δ ∈ (0, 1).

d) Exogenous stepsize before projecting: βk given by

βk =
δk

‖∇f(xk)‖
with ∞∑

k=0

δk = ∞
∞∑

k=0

δ2
k < ∞, (1.20)

and αk = 1 for all k.

Several comments are in order.

Note that Strategy (b) requires a projection onto C for each step of the inner loop

resulting from the Armijo search, i.e. possibly many projections for each k, while

Strategy (c) demands only one projection for each outer step, i.e. for each k. Thus,

Strategy (b) is competitive only when PC is very easy to compute (e.g. when C is a

halfspace, or a box, or a ball, or a subspace).

We mention that Strategy (d), as its counterpart in the unconstrained case, fails

to be a descent method. Finally, it it easy to show that for Strategy (d) it holds that

‖xk+1 − xk‖ ≤ δk for all k, with δk exogenous and satisfying (1.20). In view of (1.20),

this means that all stepsizes are small, while Strategies (c) and (b) allow for occasionally

long steps. More important, Strategy (d) does not take into account the information

available at iteration k for determining the stepsizes, which in general entails worse
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computational performance. Its redeeming feature is that its convergence properties

also hold in the nonsmooth case, in which the Armijo searches given by (b) and (c)

may be unsuccessful. Throughout this thesis we will work with this type of stepsize,

which does not make any searches, because it allows us to obtain direct methods for

solving VIP, where the orthogonal projections onto C are replaced by projections onto

suitable hyperplanes, which produces very significant savings in term of computation

time.

Without assuming convexity of f , the convergence results for these methods closely

mirror the ones for the steepest descent method in the unconstrained case: cluster

points may fail to exist, even when (1.12) has solutions, but if they exist, they are

stationary and feasible, i.e. all cluster points of {xk} belong to S(∇f, C). These

results can be found in Section 2.3.2 of [10]. In the case of Strategy (a) it is necessary

to assume Lipschitz continuity of ∇f and to choose β̄ ∈ (0, 2
L
), where L is the Lipschitz

constant, in order to ensure that the cluster points of {xk} are stationary, see [10].

The convergence results for Strategy (b) can be found in [31]. In order to ensure

existence of cluster points, it is necessary to assume that the starting iterate x0 belongs

to a bounded level set of f .

On the other hand, when f is convex, it is possible to prove for Strategies (b) and

(c) convergence of the whole sequence to a minimizer of f under the sole assumption

of existence of minimizers, i.e., without any additional assumption on boundedness of

level sets. These results can be found in [40].

The projected gradient method under Strategy (d) keeps its good convergence prop-

erties in an arbitrary Hilbert space also when f is convex but nonsmooth, after replacing

∇f(xk) by a subgradient uk of f at xk. See [3], [2] for convergence properties in this

setting, which are related to results in this thesis. It is proved in these references that

the whole sequence {xk} converges weakly to a solution of problem (1.12) under the

sole assumption of existence of solutions.
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1.5 Direct methods for VIP

An excellent survey of methods for finite-dimensional variational inequality problems

(H = Rn) can be found in [23]. Methods for the solution of VIP(T, C) were first pro-

posed in an infinite-dimensional setting by M. Sibony in [65], building on the previous

work [14].

Here, we are interested in direct methods for solving VIP(T, C). They are called

direct because the solution of subproblems at each iteration is not required. Iterate xk+1

is computed using only information on the previous point xk and easy computations.

The basic idea consists of extending the projected gradient method for constrained

optimization. Remember that the stationary points of the constrained optimization

problem, defined as min f(x) s.t. x ∈ C, are solutions of VIP(T, C), taking T = ∇f .

For the case in which T is point-to-point, an immediate extension of the method

(1.13)-(1.14) to VIP(T, C), taking αk = 1 for all k, is the iterative procedure given by

x0 ∈ C, (1.21)

xk+1 = PC(xk − βkT (xk)). (1.22)

It has been proved in [24] that when T is strongly monotone and Lipschitz contin-

uous, i.e. there exists L > 0 such that ‖T (x) − T (y)‖ ≤ L‖x − y‖ for all x, y ∈ Rn,

then the scheme (1.21)-(1.22) converges to the unique solution of VIP(T, C), provided

that βk ∈
(
ε, 2ω

L2

)
for all k and for some ε > 0, where ω is the constant of the strong

monotonicity which appears in Definition 1.7(i).

Ya. I. Alber extended this method in three directions: he considers point-to-set

operators, works in a general Hilbert space, and demands uniform monotonicity of T

instead of strong monotonicity. Under these assumptions he proved that the iterative

procedure given by

x0 ∈ C, (1.23)

xk+1 = PC(xk − βku
k) , (1.24)

where uk ∈ T (xk), and the sequence βk satisfies some conditions related to the function

ψ in Definition 1.7(ii), is strongly convergent to a solution of VIP(T, C), see [1].
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These results are somewhat undesirable for several reasons. The hypotheses of

strong or uniform monotonicity are too demanding, since they imply uniqueness of the

solution of VIP(T,C). Even if they hold, it may happen that the constants ω, L or the

function ψ are not known “a priori”, and even when they are known they may lead to

too small estimates of the stepsize βk, entailing a slow convergence of the method.

We remark that for the method given by (1.23)-(1.24) there is no chance to relax the

assumption on T to plain monotonicity. For example, consider T : R2 → R2 defined

as T (x) = Ax, with

A =

(
0 1

−1 0

)
.

T is monotone and the unique solution of VIP(T, C) is x∗ = 0. However, it is easy

to check that ‖xk − βkT (xk)‖ > ‖xk‖ for all xk 6= 0 and all βk > 0, and therefore the

sequence generated by (1.23)-(1.24) moves away from the solution, independently of

the choice of the stepsize βk.

Thus, the scheme (1.23)-(1.24) fails to converges for arbitrary monotone operators.

In order to overcome this weakness of the method, we analyze a modified approach,

called the extragradient algorithm. The general iteration is given by:

Initialization: Take x0 ∈ C.

Iterative step: Given xk define

zk = xk − βkT (xk). (1.25)

If xk = PC(zk) stop. Otherwise take

yk = αkPC(zk) + (1− αk)x
k, (1.26)

xk+1 = PC(xk − γkT (yk)), (1.27)

where βk, αk and γk are positive stepsizes, for which, again several choices are possible.

a) Constant stepsizes: βk = γk = β where β > 0 is a fixed number, and αk = 1 for

all k.
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b) Armijo-type search along the boundary of C: αk = 1 for all k and βk determined

with an Armijo-type stepsize rule, namely

βk = β̄2−j(k) (1.28)

with

j(k) := min

{
j ≥ 0 :

∥∥T (xk)− T (PC(zk,j))
∥∥ ≤ δ

β̄2−j

∥∥xk − PC(zk,j)
∥∥2

}
,

zk,j = xk − β̄2−jT (xk),

for some β̄, and δ ∈ (0, 1). In this approach, we take γk = βk for all k or

γk =
〈T (yk), xk − yk〉

‖T (yk)‖2
. (1.29)

c) Armijo-type search along the feasible direction: {βk} ⊂ [β̂, β̃] for some 0 < β̂ ≤ β̃,

αk determined with an Armijo-type stepsize rule, namely

αk = 2−j(k) (1.30)

with

j(k) := min { j ≥ 0 :
〈
T (2−jPC(zk) + (1− 2−j)xk), xk − PC(zk)

〉

≥ δ

βk

‖xk − PC(zk)‖2

}
,

for some δ ∈ (0, 1), and

γk =
〈T (yk), xk − yk〉

‖T (yk)‖2
. (1.31)

Several comments are in order.

Observe that Algorithm (1.23)-(1.24) can be seen as a simplification of the extrag-

radient method, given in (1.25)-(1.27), taking αk = 1 and γk = 0 for all k.
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Note that Strategy (b), as in the case of the projected gradient method, requires

a projection onto C for each step of the inner loop resulting from the Armijo-type

search, i.e. possibly many projections for each k, while Strategy (c) demands only one

projection for each outer step, i.e. for each k. Thus, Strategy (b) is competitive only

when PC is very easy to compute (e.g. when C is a halfspace, or a box, or a ball, or a

subspace).

In order to establish convergence, it must be assumed that T is Lipschitz continuous

and that an estimate of the Lipschitz constant (called L) is available. It has been proved

in [47] that the extragradient method with Strategy (a) is globally convergent if T is

monotone and Lipschitz continuous on C and β ∈ (
0, 1

L

)
.

In Strategies (b) and (c), T is evaluated at least twice and the projection is com-

puted at least twice per each iteration. The resulting algorithm is applicable to the

whole class of monotone variational inequalities. It has the advantage that it does not

require exogenous parameters.

The extragradient method with Strategy (a) was introduced by G. Korpelevich in

[47], in order to overcome the already mentioned drawbacks of the method defined by

(1.23)-(1.24).

Strategy (b) was presented in [45] (see also [38] and [52] for another related ap-

proach). Strategy (c) was presented in [43]. This strategy for determining the stepsizes

guarantees convergence under the only assumptions of monotonicity and continuity of

T and existence of solutions of VIP(T, C), without assuming Lipschitz continuity of

T . Also, this strategy demands only two projections onto C per iteration, unlike other

variants, like (b), with projections onto C inside the inner loop for the search of the

stepsize, as we mentioned earlier.

The extragradient method has generated much interest and is currently the subject

of intense research activities. The extragradient method with Strategy (c) can be

extended to infinite dimensional Banach spaces, achieving weak convergence under

mild assumptions, see [42]. Other direct algorithms for VIP(T, C), less directly related

to the extragradient method, can be found in [35], [66] and [68].
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1.6 Approximate projection methods for VIP

Now we will consider some computational strategies for solving the constrained opti-

mization problem:

min f(x) s.t. x ∈ C, (1.32)

where C is a closed subset of Rn.

From the computational point of view, the constrained optimization problem presents

more difficulties for its solution than the unconstrained optimization problem. There

exist many different strategies for solving constrained problems.

As a first option we can transform the constrained problem into a sequence of

unconstrained minimization problems. The basic idea is to eliminate some or all the

constraints and add to the function a penalty term that prescribes a high cost to

infeasible points. Examples of methods that fall into this category are penalty methods

and Augmented Lagrangian methods, which have an extensive treatment in [10] and

[12].

A second option consists of replacing the original problem by a sequence of prob-

lems with simpler constraints. As an example of this strategy we mention Sequential

Quadratic Programming methods (SQP), see [12], [11] and [29].

A third option consists of treating alternatingly the optimality and the feasibility

issues. In these algorithms, the resolution process alternates steps that reduce the

value of the objective function with steps that reduce some measure of the infeasibility,

for instance d(·, C). Example of this strategy are the inexact restoration algorithms,

see [53], [26] and [27].

When C is convex, an important instance of this third option is the projected

gradient method, already discussed in Section 1.4. We can describe it in the following

way. Each step consists of two phases: first it moves in the direction opposite to the

gradient of f , producing a point zk closer to the set of zeros of ∇f ; see (1.13). In

this phase it is possible to lose feasibility. In the second phase, given by (1.14) with

αk = 1, the method projects the auxiliary point zk onto the feasible set restoring the

feasibility. Thus, the projected gradient method can be seen as an inexact restoration
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algorithm for optimization problems, where exact restoration is achieved through the

projection onto C. Observe that except in special cases (e.g. when C is a halfspace,

or a ball, or a subspace, or a box) the exact calculation of the orthogonal projection is

a computationally nontrivial task.

The use of projections in the restoration step is possible because we assume that C

is convex. We mention that inexact restoration algorithms for optimization problems,

e.g. [53], are designed also for the case in which the feasible set in not convex. In the

convex case, it makes sense to replace at iteration k the set C by a simpler set Ck ⊃ C,

such that the orthogonal projection onto Ck is easily computable, and take

xk+1 = PCk
(zk) (1.33)

instead of (1.14). In this case the iterates {xk} are not feasible in general, and hence the

restoration phase is indeed inexact. This type of methods for optimization problems

have been studied, e.g. in [53], [26] and [27].

In the case of the variational inequality problem the natural extension of the pro-

jected gradient method are Algorithms (1.23)-(1.24) and (1.25)-(1.27). In both of them

it is necessary to compute orthogonal projections at each step.

In this setting, it also makes sense to consider the above mentioned inexact restora-

tion strategy, replacing C at iteration k by a simpler set Ck. Convexity of C allows us

to use separating hyperplanes as such simpler sets. Again, in this methods the iterates

are not necessarily feasible, and hence they may be seen as inexact restoration methods

for variational inequalities.

A method of this kind for solving VIP(T, C) was proposed by M. Fukushima in

[28]. He considered the case in which C is of the form

C = {z ∈ Rn : g(z) ≤ 0}, (1.34)

where g : Rn → R is a convex function, satisfying Slater’s condition, i.e. there exists

a point w such that g(w) < 0. The differentiability of g is not assumed and the

representation (1.34) is therefore rather general, because any system of inequalities

gj(x) ≤ 0 with j ∈ J , where all the gj’s are convex, may be represented as in (1.34)

with g(x) = sup{gj(x) : j ∈ J}.
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The method uses the following relaxed (or inexact) iteration:

xk+1 = PCk

(
xk − βk

T (xk)

‖T (xk)‖
)

, (1.35)

where βk is an exogenous stepsize and Ck is defined as

Ck := {z ∈ Rn : g(xk) + 〈vk, z − xk〉 ≤ 0},

with vk ∈ ∂g(xk), where ∂g(xk) is the subdifferential of g at xk, i.e. ∂g(xk) = {v :

g(x) ≥ g(xk) + 〈v, x− xk〉}.
M. Fukushima proved convergence of {xk} to a point in S(T, C), under quite de-

manding assumptions: T must be strongly monotone and it must satisfy the following

coerciveness condition:

(P) There exist z ∈ C, β > 0, and a bounded set D ⊆ Rn such that

〈T (x), x− z〉 ≥ β‖T (x)‖ for all x /∈ D. (1.36)

Methods of this type are called explicit, because they do not require the solution of

subproblems at each iteration, and it is easy to compute xk+1 using only the previous

point xk.

In Chapter 3 we propose an extension of this method to the case of point-to-set

operators, with much better convergence properties.

1.7 Proximal point methods

In this section we consider another class of methods for solving variational inequalities,

where at each iteration the current iterate is obtained by solving a nontrivial subprob-

lem. We call such algorithms implicit algorithms. One of the most important methods

of this type is the proximal point algorithm.

The proximal point algorithm, whose origins can be traced back to [48] and [56],

attained its basic formulation in the work of R. T. Rockafellar [63], where it is presented

as an algorithm for finding zeroes of a maximal monotone point-to-set operator. As

mentioned in Example 1.9, this problem is equivalent to VIP. Given a Hilbert space H
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and a maximal monotone point-to-set operator T : H → P(H), the algorithm generates

a sequence {xk} ⊂ H, starting from some x0 ∈ H, where xk+1 is the unique zero of the

operator T k defined as

T k(x) := T (x) + αk(x− xk),

with {αk} being a bounded sequence of positive real numbers, called regularization

coefficients.

The essential fact that the algorithm is well defined, i.e. that xk+1 exists and is

unique, is a consequence of the fundamental result due to G. Minty, proved in [55],

which states that T +αI is onto if and only if T is maximal monotone. This procedure

can be seen as a dynamic regularization of the (possibly ill-conditioned) operator T .

It has been proved in [63] that for a maximal monotone operator T , the sequence

{xk} is weakly convergent to a zero of T when T has zeroes, and is unbounded otherwise.

In [63], R. T. Rockafellar also left an open question: the strong convergence of the

sequence generated by the method. This question was resolved in the negative by O.

Güler in [32], who exhibited a proper closed convex function f in an infinite-dimensional

Hilbert space `2, for which the proximal point algorithm (in our framework, applied

to finding a zero of T = ∂f) converges weakly but not strongly to a minimizer of f .

Naturally, the question arises whether the proximal point method can be modified,

preferably in a simple way, so that strong convergence is guaranteed.

In this sense, M. Solodov and B.F. Svaiter proposed a new proximal-type algorithm

in [67] which does converge strongly, if the problem has a solution. They considered

the following iterative procedure:

Take

x0 ∈ H. (1.37)

Given σ ∈ [0, 1), choose µk > 0 and find (yk, vk), an inexact solution of

0 ∈ T (x) + µk(x− xk) (1.38)

with tolerance σ. Define
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Hk :=
{
z ∈ H : 〈z − yk, T (yk)〉 ≤ 0

}
,

Wk :=
{
z ∈ H : 〈z − xk, x0 − xk〉 ≤ 0

}
,

xk+1 := PHk∩Wk
(x0). (1.39)

It has been proved in [67] that strong convergence is achieved by combining the

proximal point iteration (1.38) with the projection step onto the intersection of the

two halfspaces Hk, Wk which contain the solution set.

We will not work with this kind of method, because we will focus our attention

on direct methods (note that finding an inexact solution of the subproblem (1.38)

requires the use of some auxiliary algorithm), but we mention this method because we

will use a similar technique in Chapter 5, for upgrading the weak convergence of the

extragradient method to strong convergence.

1.8 Contents of the thesis

1.8.1 Direct methods for VIP

In order to solve variational inequality problems, after introducing some preliminary

material in Chapter 2, we will consider the Algorithm (1.23)-(1.24) in Chapter 3, which

we repeat here:

xk+1 = PC

(
xk − βk

ηk

uk

)
, (1.40)

where uk ∈ T (xk) and ηk = max{1, ‖uk‖}.
Assuming that T is a paramonotone operator, we will obtain that the sequence

generated by (1.40) is globally convergent to some point on S(T,C), if S(T, C) is

nonempty and the stepsizes {βk} satisfy:
∑∞

k=0 βk = ∞, and
∑∞

k=0 β2
k < ∞.

This selection rule has been considered several times for similar methods (see [58],

[3] and [2]).

Also, we will analyze an explicit algorithm given by iteration (1.35), under the

assumption that T is a point-to-set paramonotone operator, which is similar to used

by M. Fukushima. This algorithm is of the form:
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xk+1 = PCk

(
xk − βk

ηk

uk

)
, (1.41)

where uk ∈ T (xk) and ηk = max{1, ‖uk‖}.
We also assume the following condition, instead of (P), introduced in (1.36):

(Q) There exist z ∈ C and a bounded set D ⊆ Rn such that

〈u, x− z〉 ≥ 0 for all x /∈ D and for all u ∈ T (x). (1.42)

The fact that condition (Q) is weaker than (P) follows from the definition of (P)

and (Q), see (1.36) and (1.42). Each one of the following two conditions are sufficient

for establishing (Q):

i) T is monotone and there exists x∗ ∈ C such that 0 ∈ T (x∗), (we can take z = x∗

in condition (Q)).

ii) T is uniformly monotone and ψ satisfies limt→∞
ψ(t)

t
= ∞. Indeed, we have, in

view of Definition 1.7(ii),

〈u, x− z〉 ≥ 〈v, x− z〉+ ψ(‖x− z‖) ≥ ‖x− z‖
(

ψ(‖x− z‖)
‖x− z‖ − ‖v‖

)

for all (x, u), (z, v) ∈ G(T ), so that (Q) holds for any z ∈ C, taking as D a large

enough ball centered at z.

As an example of an operator satisfying (Q) but not (P), take T (x) = x − PL(x)

where L ⊂ Rn is a subspace, and C such that C ∩L 6= ∅. T is paramonotone, because

T (x) = ∇f(x) with f(x) = 1
2
(dist(x,C))2, and satisfies (Q) because the points in C∩L

are zeroes of T . It can be easily shown that T does not satisfy (P), because for all

bounded set D, there exists x̄ /∈ D such that T (x̄) = 0. (It suffices to take x̄ ∈ L \D).

We analyze the method given by (1.41), relaxing the above mentioned hypotheses

in [28] in three directions: T can be point-to-set, we assume paramonotonicity of T

instead of strong monotonicity, and use (Q) instead of (P). Under these conditions,

we prove that the sequence generated by (1.41) is bounded, the difference between

consecutive iterates converges to zero, and all its cluster points belong to S(T, C).

All these results appear in our paper [7].
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1.8.2 An explicit method for VIP

In Chapter 4 we will analyze a new algorithm for the case in which T is a point-

to-point operator, relaxing the hypotheses in [7] in two directions: we assume plain

monotonicity of T instead of paramonotonicity, and we don’t impose any coerciveness

condition. Additionally, we obtain convergence results stronger them those in [7];

namely we get weak convergence of the whole sequence to some solution of VIP(T, C),

assuming only existence of solutions, and all our results hold in a Hilbert space (of

course, in finite dimensional case we get strong, rather than weak convergence).

The main advantage over Korpelevich’s method (1.25)-(1.27) and its variants (e.g.

Strategies (a)-(c) in Section 1.5), is that it replaces orthogonal projections onto C,

which in general are not easily computable, by projections onto hyperplanes, which

have simple closed formulae. Thus, the method is indeed fully explicit.

Next we describe our method and compare it with (1.25)-(1.27). In (1.25)-(1.27) a

step is taken from the current iterate xk in the direction of −T (xk), resulting in an aux-

iliary point zk. A line search is then performed in the segment between xk and PC(zk),

resulting in a point yk. Then, a step with a specified steplength is taken from xk in the

direction of −T (yk), and the next iterate is obtained by projecting the resulting point

onto C. In our method, we construct simultaneously two sequences, the main sequence

{xk} and the auxiliary sequence {ỹk}. A step is taken from ỹk−1 in the direction of

−T (ỹk−1) with an exogenous steplength, and the resulting point is projected onto an

auxiliary hyperplane containing C. This projection step is repeated in a finite inner

loop, changing the auxiliary hyperplanes, until a point ỹk is obtained, whose distance

to C is smaller than a certain multiple of the current exogenous steplength. After this

inner loop, the next main iterate xk+1 is a convex combination with exogenous coeffi-

cients of ỹk and xk. The inner loop of projections onto hyperplanes hence substitutes

for the exact projection onto C, demanded in (1.25)-(1.27).

In connection with the algorithms which will be introduced in Chapter 3, this

algorithm, which will be introduced in Chapter 4, works under weaker assumptions on

T , but it demands continuity of the operator. Thus, it cannot be used for point-to-set

operators T , which are admissible in the convergence analysis in [7]. Extensions of

Korpelevich method to the point-to-set case can be found in [41] and [5].
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The contents of Chapter 4 appear in our paper [8].

1.8.3 An extragradient-type method with strong convergence

In Chapter 5, we will introduce a new Korpelevich-type algorithm with strong conver-

gence in Hilbert spaces. It is related to the method by M. Solodov and B. Svaiter in

[67], where a similar modification is performed upon the proximal point method for

solving VIP(T, C), with the same goal, namely upgrading weak convergence to strong

one. Strong convergence is forced by combining Korpelevich-type iterations with simple

projection steps onto the intersection of C and two halfspaces, containing S(T, C).

Additionally, our algorithm has the distinctive feature that the limit of the gen-

erated sequence is the closest solution of the problem to the initial iterate x0. This

property is useful in many specific applications, e.g. in image reconstruction. We

emphasize that this feature is of interest also in finite dimension, differently from the

strong versus weak convergence issue.

We mention that the method in [67], as all proximal point algorithm in general,

requires in each step the solution of a rather hard subproblem, while our method

inherits from Korpelevich’s a direct nature, without subproblems to be solved, up to

the projection onto the intersection of C with two half-spaces. The presence of the

half-spaces does not entail any significant additional cost over the computation of the

projection onto C itself. The computational cost of this projection is negligible as

compared to the cost of a proximal step, for instance, and thus both Korpelevich’s

method and ours can be considered as direct methods for VIP(T, C).

We impose two additional conditions on T , besides maximal monotonicity: T must

be point-to-point and uniformly continuous on bounded sets. We comment now on

these assumptions. Uniform continuity on bounded sets holds automatically in finite

dimension, due to the continuity of point-to-point maximal monotone operators (e.g.

Theorem 4.6.3 in [19]). We also mention that it is required in the analysis of [42] for

proving weak convergence of Korpelevich’s method in infinite dimensional spaces. In

connection with the possibility of considering point-to-set, rather than point-to-point

operators, we mention that a variant of Korpelevich method for point-to-set maximal

monotone operators was proposed in [41], but with the following serious limitation: in
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principle, we should replace T (xk) by some uk ∈ T (xk) everywhere in the algorithm,

but, due to the lack of inner continuity of T , an arbitrary uk ∈ T (xk) does not work;

uk must satisfy some additional conditions, which are not adequate for computational

implementation. In particular, the method cannot be applied to cases in which T is

given by an “oracle”, which provides just one u ∈ T (x) for each x. This is a rather

frequent situation for point-to-set operators. Thus, we have opted to present our

strongly convergent method only for the point-to-point setting.

It is important to mention that many real-world problems in economics and engi-

neering are modelled in infinite-dimensional spaces. These include optimal control and

structural design problems, among others.

The contents of Chapter 5 appear in our paper [6].
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Chapter 2

Preliminary material

In this chapter we present some definitions and results that are needed for the conver-

gence analysis of the methods which we will introduce in Chapters 3–5.

2.1 The projection operator

First, we state two well known facts on orthogonal projections.

Lemma 2.1. Let K be any nonempty closed and convex set in H, and PK the or-

thogonal projection onto K. For all x, y ∈ H and all z ∈ K, the following properties

hold:

i) ‖PK(x)− PK(y)‖2 ≤ ‖x− y‖2 − ‖(PK(x)− x)− (PK(y)− y)‖2.

ii) 〈x− PK(x), z − PK(x)〉 ≤ 0.

iii) 〈z − y, z − PK(y)〉 ≥ ‖z − PK(y)‖2.

Proof. See Lemma 1 in [67].

Proposition 2.1. Let T : H → P(H) be a point-to-set monotone operator and

K a closed and convex subset of H. Consider the variational inequality problem

(V IP (T,K)). If x = PK(x− βu) for some β > 0 and u ∈ T (x) then x ∈ S(T, K).
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Proof. Using Lemma 2.1(ii), we obtain

〈x− (x− βu) , z − x〉 ≥ 0 ∀z ∈ K. (2.1)

Using the fact that β > 0 and (2.1), we get 〈u, z − x〉 ≥ 0 for all z ∈ K. Since

u ∈ T (x), we conclude that x ∈ S(T,K).

2.2 Monotone and paramonotone operators

We also need the following results on monotone variational inequalities.

Lemma 2.2. Let T : H → P(H) be a maximal monotone operator and K a closed and

convex set. Then S(T, K), if nonempty, is closed and convex.

Proof. See Lemma 2.4(ii) of [6].

Proposition 2.2. Let T be a paramonotone operator in K. Take x ∈ S(T,K) and

x∗ ∈ K. If there exists u∗ ∈ T (x∗) such that 〈u∗, x∗ − x〉 = 0, then x∗ is also solution

of VIP(T, K).

Proof. See Proposition 13 in [21].

2.3 Quasi-Fejér convergence

We next deal with the so called quasi-Fejér convergence and its properties.

Definition 2.1. Let S be a nonempty subset of H. A sequence {zk} in H is said to

be quasi-Fejér convergent to S if and only if for all z ∈ S there exist k0 ≥ 0 and a

sequence {δk} ⊂ R+ such that
∑∞

k=0 δk < ∞ and ‖zk+1 − z‖2 ≤ ‖zk − z‖2 + δk for all

k ≥ k0.

This definition originates in [22] and has been further elaborated in [44].

Proposition 2.3. If {zk} is quasi-Fejér convergent to S then:

i) {zk} is bounded,
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ii) {‖zk − z‖} converges for all z ∈ S,

iii) if all weak cluster point of {zk} belong to S, then the sequence {zk} is weakly

convergent.

Proof. See Proposition 1 in [3].

A slightly stronger result holds in the finite dimensional case: it is enough to have

one accumulation point in S in order to ensure convergence of {zk}. The proof, much

easier than in the Hilbert space case, can be found in [18]. The result of Proposition

2.3(ii) in the finite dimensional case appears in Lemma 3.2.1 of [57].

2.4 Auxiliary results

It is convenient to introduce the following notation: let g : Rn → R be a convex

function, and X a nonempty, compact and convex subset of Rn. Given a point x ∈ X

and v ∈ ∂g(x), the solution of the problem

min{‖z − x‖ : g(x) + 〈v, z − x〉 ≤ 0 , z ∈ X}

is denoted by z̃(x, v). Recall that C = {z ∈ Rn : g(z) ≤ 0}.

Lemma 2.3. There exists α̃ ∈ [0, 1) such that dist(z̃(x, v), C) ≤ α̃ dist(x,C) for all

x ∈ X \ C and for all v ∈ ∂g(x), where dist(x,C) = miny∈C ‖x− y‖.

Proof. See Lemma 4 in [26].

Lemma 2.4. Take {ξk}, {νk} ⊂ R+ and µ ∈ [0, 1). If the inequalities

ξk+1 ≤ µξk + νk, k ∈ N

hold and limk→∞ νk = 0, then limk→∞ ξk = 0.

Proof. See Lemma 2 in [28].

The next lemma will be useful for proving that all weak cluster points of the se-

quence generated by the method in Chapter 4 belong to

S(T, C) = {x ∈ C : 〈T (x), y − x〉 ≥ 0 , ∀y ∈ C}.
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Lemma 2.5. Consider VIP(T, C). If T : H → H is maximal monotone and point-to-

point, then

S(T, C) = {x ∈ C : 〈T (y), y − x〉 ≥ 0 , ∀ y ∈ C}.

Proof. By the monotonicity of T , we have 〈T (x), y−x〉 ≤ 〈T (y), y−x〉 for all x, y ∈ C.

Thus, it is clear that S(T, C) ⊆ {x ∈ C : 〈T (y), y − x〉 ≥ 0 , ∀ y ∈ C}. Conversely,

assume that x ∈ {x ∈ C : 〈T (y), y − x〉 ≥ 0 ∀ y ∈ C}. Take y(α) = (1 − α)x + αy,

y ∈ C with α ∈ (0, 1). It is clear that y(α) ∈ C and therefore

0 ≤ 〈T (y(α)), y(α)− x〉 = 〈T ((1− α)x + αy), (1− α)x + αy − x〉
= α〈T ((1− α)x + αy), y − x〉.

Dividing by α > 0, we get

0 ≤ 〈T ((1− α)x + αy), y − x〉, (2.2)

for all α ∈ (0, 1). By Lemma 1.1(d), if T is point-to-point and maximal monotone then

T is continuous. Making α → 0 and using the continuity of T , we obtain from (2.2)

that 〈T (x), y − x〉 ≥ 0, for all y ∈ C, i.e. x ∈ S(T, C).

The next lemma provides a computable upper bound for the distance from a point

to the feasible set C.

Lemma 2.6. Let g : H → R be a convex function and C := {z ∈ H : g(z) ≤ 0}.
Assume that there exists y ∈ C such that g(y) < 0. Then, for all x such that g(x) > 0,

we have

dist(x, C) ≤ ‖x− y‖
g(x)− g(y)

g(x) .

Proof. Take xλ := λy + (1− λ)x with λ := g(x)
g(x)−g(y)

. Note that λ ∈ (0, 1). Then

g(xλ) = g(λy + (1− λ)x) ≤ λg(y) + (1− λ)g(x) = g(x)− λ(g(x)− g(y)) = 0.

Thus, xλ ∈ C and

dist(x,C) ≤ ‖x− xλ‖ = ‖x− (λy + (1− λ)x)‖ = λ‖x− y‖ =
g(x)

g(x)− g(y)
‖x− y‖.
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We will also need the following elementary result on sequence averages.

Proposition 2.4. Let {uk} ⊂ H be a sequence strongly convergent to ũ. Take non-

negative real numbers ζk,j (k ≥ 0, 0 ≤ j ≤ k) such that limk→∞ ζk,j = 0 for all j and
∑k

j=0 ζk,j = 1 for all k. Define

wk :=
k∑

j=0

ζk,ju
j.

Then, {wk} also converges strongly to ũ.

Proof. Since
∑k

j=0 ζk,j = 1, we get that

∥∥∥∥∥
k∑

j=0

ζk,ju
j − x∗

∥∥∥∥∥ =

∥∥∥∥∥
k∑

j=0

ζk,j(u
j − x∗)

∥∥∥∥∥

≤
k∑

j=0

ζk,j‖uj − x∗‖. (2.3)

Since limk→∞ uk = x∗, given ε > 0, take k0 such that ‖uk − x∗‖ ≤ ε
2

for all k ≥ k0.

Since limk→∞ ζk,j = 0 for all j, {ζk,j}∞k=0 is bounded for all j and {‖uk − x∗‖} is also

bounded. Take ζ ≥ ‖uk − x∗‖ for all k. Since limk→∞ ζk,j = 0 for all j, find k1 > k0

such that ζk,j ≤ ε
2ζk0

for all k ≥ k1. Thus, for all k > k1

k∑
j=0

ζk,j‖uj − x∗‖ =

k0−1∑
j=0

ζk,j‖uj − x∗‖+
k∑

j=k0

ζk,j‖uj − x∗‖

≤
k0−1∑
j=0

ε

2ζk0

ζ +
ε

2

k∑
j=0

ζk,j =
ε

2
+

ε

2
= ε,

using the fact that
∑k

j=0 ζk,j = 1. Therefore, using (2.3), we get that

lim
k→∞

wk = lim
k→∞

k∑
j=0

ζk,ju
j = x∗.
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Chapter 3

Direct methods for VIP

In this chapter we introduce two algorithms for solving VIP(T,C) in the finite dimen-

sional setting, i.e. H = Rn. Algorithm 1 is a feasible one, and does not assume any

particular structure of C. It is an extension of the classical projected gradient method

for constrained optimization. Under maximal monotonicity and paramonotonicity of

T , it is shown that the generated sequence is globally convergent to a solution of

VIP(T, C), if there exists any.

Algorithm 2 is an infeasible one, and it assumes that C is defined by convex (possibly

nonsmooth) inequalities. This algorithm replaces projections onto the feasible set by

easily computable projections onto suitable hyperplanes. Assuming that T is maximal

monotone and paramonotone, and an extra assumption (condition (Q)), it is shown

that the sequence generated is bounded, the difference between consecutive iterates

converge to zero, and all its cluster points belong to S(T,C), improving over previously

obtained results by Ya. I. Alber and M. Fukushima (see [1] and [28]). Both methods

use exogenous stepsizes.

From this point, unless otherwise stated, all results are new, to our knowledge.

3.1 Statement of Algorithm 1

Our algorithm requires an exogenous sequence {βk} ⊂ R++ of stepsizes satisfying
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∞∑

k=0

βk = ∞, (3.1)

and ∞∑

k=0

β2
k < ∞. (3.2)

The algorithm is defined as:

Algorithm 1

Initialization step: Take

x0 ∈ C.

Iterative step: Given xk take uk ∈ T (xk), ηk := max{1, ‖uk‖} and define

xk+1 = PC

(
xk − βk

ηk

uk

)
. (3.3)

If xk+1 = xk then stop.

Our convergence analysis requires exogenous stepsizes. The issue of finding a similar

method which uses line searches for determining the stepsizes, while preserving the

convergence properties of this method, is left as an open problem. We emphasize that

our method can be applied to point-to-point operators.

3.2 Convergence analysis of Algorithm 1

We first establish the validity of the stopping criterion.

Proposition 3.1. If xk+1 = xk for some k, then xk ∈ S(T, C).

Proof. It follows easily from Proposition 2.1.

We continue by proving the quasi-Fejér properties of the sequence {xk} generated

by Algorithm 1.

Proposition 3.2. If Algorithm 1 generates an infinite sequence {xk} and S(T, C) is

nonempty, then:

40



i) {xk} is quasi-Fejér convergent to S(T,C).

ii) If a cluster point of {xk} belongs to S(T, C) then {xk} converges to a point in

S(T, C).

Proof. i) Take x̄ ∈ S(T, C). Thus, there exists ū ∈ T (x̄) such that

〈ū, x− x̄〉 ≥ 0 ∀x ∈ C. (3.4)

Then,

‖xk+1 − x̄‖2 =

∥∥∥∥PC

(
xk − βk

ηk

uk

)
− PC(x̄)

∥∥∥∥
2

≤
∥∥∥∥
(

xk − βk

ηk

uk

)
− x̄

∥∥∥∥
2

≤ ‖xk − x̄‖2 + β2
k − 2

βk

ηk

〈uk, xk − x̄〉

= ‖xk − x̄‖2 + β2
k − 2

βk

ηk

(〈uk − ū, xk − x̄〉+ 〈ū, xk − x̄〉)

≤ ‖xk − x̄‖2 + β2
k − 2

βk

ηk

〈ū, xk − x̄〉 ≤ ‖xk − x̄‖2 + β2
k ,

using (3.3), the fact that x̄ ∈ S(T,C) ⊂ C and Lemma 2.1(i) in the first inequality

with K = C, x = xk − βk

ηk
uk and y = x̄, the definition of ηk in the second one, the

monotonicity of T in the third one and (3.4) in the fourth one.

Using Definition 2.1 and the fact that βk satisfies (3.2), we conclude that the se-

quence {xk} is quasi-Fejér convergent to S(T,C).

ii) Follows from (i) and Proposition 2.3(iii).

Corollary 3.1. The sequences {xk}, {uk} generated by Algorithm 1 are bounded.

Proof. For {xk} use Proposition 3.2(i) and Proposition 2.3(i). For {uk}, use bounded-

ness of {xk}, maximal monotonicity of T and Lemma 1.1(iii).

In our analysis, paramonotonicity of T is used for the first time in following lemma,

which will be useful for proving that the sequence generated by our algorithm converges

to some point belonging to S(T, C).

Lemma 3.1. Let T be a maximal monotone and paramonotone operator in Rn and

K be any nonempty closed and convex set in Rn. Let {(zk, vk)} ⊂ G(T ) be a bounded
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sequence such that all cluster points of {zk} belong to K. For each x ∈ S(T, K) define

γk(x) := 〈vk, zk − x〉. If for some x ∈ S(T,K) there exists a subsequence {γjk
(x)} of

{γk(x)} such that limk→∞ γjk
(x) ≤ 0, then there exists a cluster point of {zjk} belonging

to S(T, K).

Proof. Suppose that there exist x ∈ S(T, K) and a subsequence {γjk
(x)} of {γk(x)}

such that limk→∞ γjk
(x) ≤ 0. Let (z∗, v∗) be a cluster point of the bounded subsequence

{(zjk , vjk)}. Since T is maximal monotone, v∗ ∈ T (z∗) by Lemma 1.1(ii). Without loss

of generality we assume that limk→∞(zjk , vjk) = (z∗, v∗). Therefore, limk→∞ γjk
(x) =

limk→∞〈vjk , zjk − x〉 = 〈v∗, z∗ − x〉 ≤ 0. Since x ∈ S(T, K), there exists u ∈ T (x) such

that 〈u, z∗ − x〉 ≥ 0, and using the monotonicity of T we obtain

0 ≥ lim
k→∞

γjk
(x) = 〈v∗, z∗ − x〉 ≥ 〈u, z∗ − x〉 ≥ 0. (3.5)

It follows from (3.5) that 〈v∗, z∗ − x〉 = 0, and we conclude from Proposition 2.2 that

z∗ ∈ S(T, K).

The following theorem is our main convergence result on Algorithm 1.

Theorem 3.1. Assume that T is maximal monotone and paramonotone. If S(T, C)

is nonempty then either Algorithm 1 stops at some iteration k, in which case xk ∈
S(T, C), or it generates an infinite sequence which converges to some x∗ ∈ S(T, C).

Proof. If the algorithm stops at iteration k then the result follows from Proposition 3.1.

Therefore, we assume that the sequence {xk} is infinite. By Corollary 3.1, {xk} has

cluster points. We claim that there exists a cluster point of {xk} belonging to S(T, C).

Otherwise, in view of Lemma 3.1, for each x̄ ∈ S(T, C) there exists k̄ ≥ 0 and ρ > 0

such that γk(x̄) = 〈uk, xk − x̄〉 ≥ ρ for all k ≥ k̄. Fix some x̄ ∈ S(T, C), nonempty

by hypothesis, and consider the corresponding ρ and k̄. Since {uk} is bounded by

Corollary 3.1, there exists θ > 1 such that ‖uk‖ ≤ θ for all k. Therefore

ηk = max{1, ‖uk‖} ≤ max{1, θ} = θ ∀k, (3.6)

and since limk→∞ βk = 0, we can find k̄ ≥ 0 such that

βk ≤ ρ

θ
and 〈uk, xk − x̄〉 ≥ ρ ∀k ≥ k̄. (3.7)
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Thus, for all k ≥ k̄,

‖xk+1 − x̄‖2 =

∥∥∥∥PC

(
xk − βk

ηk

uk

)
− PC(x̄)

∥∥∥∥
2

≤
∥∥∥∥
(

xk − βk

ηk

uk

)
− x̄

∥∥∥∥
2

≤ ‖xk − x̄‖2 + β2
k − 2

βk

ηk

〈uk, xk − x̄〉

≤ ‖xk − x̄‖2 − 2βk
ρ

θ
+ β2

k = ‖xk − x̄‖2 − βk

(
2
ρ

θ
− βk

)

≤ ‖xk − x̄‖2 − βk
ρ

θ
, (3.8)

using Lemma 2.1(i) in the first inequality, with K = C, x = xk − βk

ηk

uk and y = x̄, the

definition of ηk in the second one, (3.6) in the third one and (3.7) in the fourth one. It

follows from (3.8) that

ρ

θ
βk ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2. (3.9)

Summing (3.9) with k between k̄ and m,

ρ

θ

m∑

k=k̄

βk ≤
m∑

k=k̄

(‖xk − x̄‖2 − ‖xk+1 − x̄‖2
)

= ‖xk̄ − x̄‖2 − ‖xm+1 − x̄‖2

≤ ‖xk̄ − x̄‖2. (3.10)

Taking limits in (3.10) with m → ∞, we contradict the assumption
∑∞

k=0 βk = ∞.

Thus, there exists a cluster point of {xk} belonging to S(T,C). In view of Proposition

3.2(ii), {xk} converges to a point in S(T, C).

3.3 Statement of Algorithm 2

In this section we introduce an algorithm which eliminates the projection onto C,

replacing it by the orthogonal projection onto a suitable hyperplane. We assume that

H = Rn and C is of the form given in (1.34), which we repeat here:

C = {z ∈ Rn : g(z) ≤ 0}, (3.11)

where g : Rn → R is a convex function.

The algorithm is defined as follows.

43



Algorithm 2

Initialization step: Take

x0 ∈ C.

Iterative step: Given xk take uk ∈ T (xk), choose ηk := max{1, ‖uk‖}, vk ∈ ∂g(xk)

and let

Ck :=
{
z ∈ Rn : g(xk) + 〈vk, z − xk〉 ≤ 0

}
. (3.12)

Compute,

xk+1 = PCk

(
xk − βk

ηk

uk

)
, (3.13)

with βk satisfying (3.1)-(3.2).

If xk+1 = xk then stop.

Unlike other projection methods, Algorithm 2 generates a sequence {xk} which is

not necessarily contained in the set C. We observe that the step xk − βk

ηk
uk produces

a point closer than xk to the set of zeros of T . The projection PCk
produces a point

which is closer to the feasible set C, without attaining this set. Thus, this method

can be seen as an inexact restoration algorithm for VIP(T, C) in the sense discussed

in Section 1.6. Note that Algorithm 2 can be easily implemented, because PCk
has an

explicit formula, given in the next proposition.

Proposition 3.3. Define Cx := {z ∈ H : g(x)+ 〈v, z−x〉 ≤ 0} with v ∈ ∂g(x). Then

for any y ∈ H,

PCx(y) =





y − g(x) + 〈v, y − x〉
‖v‖2

v if g(x) + 〈x, y − x〉 > 0

y if g(x) + 〈v, y − x〉 ≤ 0.

Proof. See Proposition 3.1 in [59].

It follows from Proposition 3.3 that

xk+1 = PCk

(
xk − βk

ηk

uk

)
= xk − βk

ηk

uk − 1

‖vk‖2 max

{
0, g(xk)− βk

ηk

〈uk, vk〉
}

vk,

so that Algorithm 2 can be considered as a fully explicit method for VIP(T,C).
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The iteration formulae of the algorithm become more explicit in the smooth case,

i.e. when C is of the form C = {x ∈ H : gi(x) ≤ 0, 1 ≤ i ≤ m} where the gi’s are

convex and Gateaux differentiable. The set C can be rewritten in our notation with

g(x) = max1≤i≤m{gi(x)}. In this situation, Corollary 1.2 allows us to take

vk = ∇g`(k)(x
k), with `(k) ∈ Arg max

0≤i≤m
{gi(x

k)},
so that the hyperplane onto which each inner-loop iterate is projected is the first order

approximation of the most violated constraint at that iterate.

3.4 Convergence analysis of Algorithm 2

For convergence of our method, we assume that T is maximal monotone, paramonotone

and satisfies condition (Q) stated in (1.42), which we repeat here:

(Q) There exist ẑ ∈ C and a bounded set D ⊆ Rn such that 〈u, x − ẑ〉 ≥ 0 for all

x /∈ D and for all u ∈ T (x).

Observe that ∂g(x) 6= ∅ by Proposition 1.3 for all x ∈ Rn, because we assume that g

is convex and dom(g) = Rn.

Before establishing convergence of the algorithm, we need to ascertain the validity of

the stopping criterion.

Proposition 3.4. Take C, Ck and xk defined by (3.11), (3.12) and (3.13) respectively.

Then

i) C ⊆ Ck for all k.

ii) If xk+1 = xk for some k, then xk ∈ S(T, C).

Proof. i) It follows from (3.12) and the definition of subdifferential.

ii) Suppose that xk+1 = xk. Then, since xk+1 ∈ Ck, we have g(xk) = g(xk)+〈vk, xk+1−
xk〉 ≤ 0, i.e. xk ∈ C. Moreover, since xk+1 is given by (3.13), using Lemma 2.1(ii) with

x = xk − βk

ηk
uk and K = Ck, we obtain

〈
xk+1 −

(
xk − βk

ηk

uk

)
, z − xk+1

〉
≥ 0 ∀z ∈ Ck. (3.14)
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Taking xk+1 = xk in (3.14) and taking into account the facts that βk > 0, ηk ≥ 1

for all k, and C ⊆ Ck, we get 〈uk, z − xk〉 ≥ 0 for all z ∈ C. Since uk ∈ T (xk), we

conclude that xk ∈ S(T, C).

In the remainder of this section, we will suppose that the algorithm generates an

infinite sequence {xk}. The following technical lemma will be used for establishing

boundedness of {xk}.

Lemma 3.2. Take ẑ ∈ C and D as in condition (Q), let {xk} be a sequence generated

by Algorithm 2 and choose λ > 0 such that ‖x0 − ẑ‖ ≤ λ and D ⊆ B(ẑ, λ). Then,

i) if xk ∈ D then ‖xk+1 − ẑ‖2 ≤ λ2 + β2
k + 2βkλ,

ii) if xk /∈ D then ‖xk+1 − ẑ‖2 ≤ ‖xk − ẑ‖2 + β2
k.

Proof. Since ẑ ∈ C, we get from Proposition 3.4(i) that ẑ ∈ Ck for all k, i.e. ẑ = PCk
(ẑ).

Then, in view of (3.13) and Lemma 2.1(i) with K = Ck, x = xk − βk

ηk
uk and y = ẑ, we

obtain

‖xk+1 − ẑ‖2 =

∥∥∥∥PCk

(
xk − βk

ηk

uk

)
− PCk

(ẑ)

∥∥∥∥
2

≤
∥∥∥∥
(

xk − βk

ηk

uk

)
− ẑ

∥∥∥∥
2

= ‖xk − ẑ‖2 +
β2

k

η2
k

‖uk‖2 − 2
βk

ηk

〈uk, xk − ẑ〉

≤ ‖xk − ẑ‖2 + β2
k − 2

βk

ηk

〈uk, xk − ẑ〉. (3.15)

Thus,

i) if xk ∈ D, applying Cauchy-Schwartz inequality in (3.15), the definition of ηk

and the fact that D ⊆ B(ẑ, λ), we obtain that

‖xk+1 − ẑ‖2 ≤ ‖xk − ẑ‖2 + β2
k + 2

βk

ηk

‖uk‖‖xk − ẑ‖ ≤ λ2 + β2
k + 2βkλ,

ii) if xk /∈ D, it follows from (Q) that 〈uk, xk − ẑ〉 ≥ 0, and we get from (3.15) that

‖xk+1 − ẑ‖2 ≤ ‖xk − ẑ‖2 + β2
k ,

using the fact that βk

ηk
> 0 for all k.
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Next, we establish some important convergence properties of Algorithm 2.

Proposition 3.5. Let {xk}, {uk} be sequences generated by Algorithm 2. Then

i) {xk} and {uk} are bounded.

ii) limk→∞ dist(xk, C) = 0.

iii) limk→∞ ‖xk+1 − xk‖ = 0.

iv) All cluster points of {xk} belong to C.

Proof. i) Take ẑ and D as in condition (Q), λ > 0 such that ‖x0 − ẑ‖ ≤ λ and

D ⊆ B(ẑ, λ), and β̄ > 0 such that βk ≤ β̄ for all k (β̄ exists by (3.2)). Let σ =
∑∞

j=0 β2
j .

Define λ̄ := (λ2 + 2β̄λ + σ)1/2. We claim that

{xk} ⊆ B(ẑ, λ̄). (3.16)

If xk ∈ B(ẑ, λ), we have xk ∈ B(ẑ, λ̄) because λ̄ > λ. Otherwise, let `(k) :=

max
{
` < k : x` ∈ B(ẑ, λ)

}
. Observe that `(k) is well defined because ‖x0 − ẑ‖ ≤ λ,

so that x0 ∈ B(ẑ, λ). By Lemma 3.2(i),

‖x`(k)+1 − ẑ‖2 ≤ λ2 + β2
`(k) + 2β`(k)λ ≤ λ2 + 2β̄λ + β2

l(k). (3.17)

Iterating the inequality in Lemma 3.2(ii), since xj /∈ D for j between `(k)+1 and k−1,

we obtain

‖xk − ẑ‖2 ≤ ‖x`(k)+1 − ẑ‖2 +
k−1∑

j=`(k)+1

β2
j . (3.18)

Combining (3.17) and (3.18)

‖xk − ẑ‖2 ≤ λ2 + 2β̄λ +
k−1∑

j=`(k)

β2
j ≤ λ2 + 2β̄λ +

∞∑
j=0

β2
j = λ2 + 2β̄λ + σ = λ̄2.

Thus, xk ∈ B(ẑ, λ̄) and hence {xk} is bounded. For {uk} use boundedness of {xk} and

Lemma 1.1(iii).
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ii) For all k we have that

‖xk+1 − PCk
(xk)‖ =

∥∥∥∥PCk

(
xk − βk

ηk

uk

)
− PCk

(xk)

∥∥∥∥ ≤
βk

ηk

‖uk‖ ≤ βk, (3.19)

using (3.13) and Lemma 2.1(i) in the first inequality, and the fact that ηk ≥ ‖uk‖ for

all k in the second one.

We apply Lemma 2.3 with X = B(ẑ, λ̄) and conclude that there exists µ̃ ∈ [0, 1)

such that

dist(z̃(x, v), C) ≤ µ̃ dist(x,C) (3.20)

for all x ∈ B(ẑ, λ̄) \ C and all v ∈ ∂g(x).

By (3.16), {xk} ⊆ B(ẑ, λ̄), and we obtain, using the definition of z̃(x, v), that

z̃(xk, vk) = PCk
(xk). Therefore, it follows from (3.20) that

dist(PCk
(xk), C) = dist(z̃(xk, vk), C) ≤ µ̃ dist(xk, C), (3.21)

for all k such that xk /∈ C. If xk ∈ C, (3.21) holds trivially because C ⊆ Ck by

Proposition 3.4(i). Observe that

dist(xk+1, C) ≤ ‖xk+1 − PCk
(xk)‖+ dist(PCk

(xk), C) ≤ βk + µ̃ dist(xk, C),

using (3.19) and (3.21) in the second inequality. Therefore, using Lemma 2.4 with

νk = βk, µ = µ̃ and ξk = dist(xk, C), we obtain lim
k→∞

dist(xk, C) = 0, establishing (ii).

iii) Using (3.19), we get

‖xk+1 − xk‖ ≤ ‖xk+1 − PCk
(xk)‖+ ‖PCk

(xk)− xk‖ ≤ βk + dist(xk, C). (3.22)

Since limk→∞ βk = 0 by (3.2), it follows from (ii) and (3.22) that limk→∞ ‖xk+1−xk‖ =

0.

iv) Follows from (ii).

The following lemma will be useful for proving that all cluster points of the sequence

generated by Algorithm 2 belong to S(T, C).
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Lemma 3.3. Take K ⊂ Rn closed and z /∈ K. Let {zk} ⊆ Rn be such that

limk→∞ ‖zk+1 − zk‖ = 0 and both z and some point in K are cluster points of {zk}.
Then there exist ζ > 0 and a subsequence {zjk} of {zk} such that

dist(zjk+1, K) > dist(zjk , K) (3.23)

and

dist(zjk , K) > ζ. (3.24)

Proof. Let ζ = 1
3
dist(z, K) > 0 and define

U := {x ∈ Rn : dist(x,K) ≤ 2 ζ} . (3.25)

Clearly, there exists a subsequence {zjk} of {zk} such that zjk ∈ U , zjk+1 /∈ U . Oth-

erwise either {zk} eventually remains out of U , in which case dist(zk, K) > 2 ζ for large

k and then {zk} cannot have a cluster point belonging to K, or it eventually remains

in U , in which case all its cluster points, including z, belong to U , but dist(z, K) =

3 ζ, contradicting the definition of U given in (3.25). Thus, dist(zjk+1, K) > 2 ζ ≥
dist(zjk , K) by definition of U , so that (3.23) holds.

Since limk→∞ ‖zk+1 − zk‖ = 0 there exists k̃ ≥ 0 such that ‖zjk+1 − zjk‖ < ζ for all

k ≥ k̃, so that

dist(zjk , K) ≥ dist(zjk+1, K)− ‖zjk+1 − zjk‖ > 2 ζ − ζ = ζ

for all k ≥ k̃, and hence {zjk}k≥k̃ satisfies (3.23) and (3.24).

Paramonotonicity of T is used for the first time in the convergence analysis of

Algorithm 2, in the following theorem.

Theorem 3.2. If T is paramonotone and S(T,C) 6= ∅, then all cluster points of any

sequence {xk} generated by Algorithm 2 solve VIP(T, C).

Proof. Let {xk}, {uk} be sequences generated by Algorithm 2. Define γk : S(T, C) →
R as

γk(x) := 〈uk, xk − x〉. (3.26)
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Since C ⊂ Ck by Proposition 3.4(i), we get from Lemma 2.1(i) and the definition

of ηk that

‖xk+1 − x‖2 =

∥∥∥∥PCk

(
xk − βk

ηk

uk

)
− PCk

(x)

∥∥∥∥
2

≤
∥∥∥∥
(

xk − βk

ηk

uk

)
− x

∥∥∥∥
2

= ‖xk − x‖2 +
β2

k

η2
k

‖uk‖2 − 2
βk

ηk

〈uk, xk − x〉

≤ ‖xk − x‖2 − βk

(
2
γk(x)

ηk

− βk

)
. (3.27)

First we prove that {xk} has cluster points in S(T, C). Since {(xk, uk)} is bounded

by Proposition 3.5(i), in view of Lemma 3.3 it suffices to prove that {γk(x)} has a

nonpositive cluster point for some x ∈ S(T, C). Assume that this is not true, and take

any x̄ ∈ S(T, C). Our assumption implies that {γk(x̄)} must be bounded away from

zero for large k, i.e. there exist k̄ and ρ > 0 such that γk(x̄) ≥ ρ for all k ≥ k̄. Since

{uk} is bounded, there exists θ > 1 such that ‖uk‖ ≤ θ for all k. Therefore

ηk = max
{
1, ‖uk‖} ≤ max{1, θ} = θ

for all k. Thus, we can find ρ̄ > 0 such that

γk(x̄)

ηk

≥ γk(x̄)

θ
> ρ̄

and hence, in view of (3.27), we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − βk(2ρ̄− βk) (3.28)

for all k ≥ k̄. Since limk→∞ βk = 0 by (3.2), there exists k′ ≥ k̄ such that βk ≤ ρ̄ for

all k ≥ k′. So, we get from (3.28), for all k ≥ k′,

ρ̄βk ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2. (3.29)

Summing (3.29) with k between k′ and m, we obtain:

ρ̄

m∑

k=k′
βk ≤

m∑

k=k′

(‖xk − x̄‖2 − ‖xk+1 − x̄‖2
) ≤ ‖xk′ − x̄‖2 − ‖xm+1 − x̄‖2

≤ ‖xk′ − x̄‖2. (3.30)
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Taking limits in (3.30) with m → ∞, we contradict assumption (3.1). Thus, there

exists a cluster point of {xk} belonging to S(T, C).

Finally, we prove that all cluster points of {xk} belong to S(T, C). Suppose that

{xk} has a cluster point z /∈ S(T, C). Since S(T, C) is closed by Lemma 2.2 and

limk→∞ ‖xk+1 − xk‖ = 0 by Proposition 3.5(iii), we invoke Lemma 3.3 to obtain a

subsequence {xjk} of {xk} and a real number ζ > 0 such that

dist(xjk , S(T, C)) > ζ, (3.31)

and

dist(xjk+1, S(T, C)) > dist(xjk , S(T,C)). (3.32)

Take γk(x) as defined by (3.26). Note that {γk(x)} is bounded by Proposition

3.5(i). Define γ : S(T, C) → R as

γ(x) := lim inf
k→∞

γjk
(x). (3.33)

We claim that γ(x) > 0 for all x ∈ S(T, C). Otherwise, by Lemma 3.1 {xjk} has

a cluster point in S(T, C), in contradiction with (3.31). We claim now that γ is

continuous in S(T, C). Take x, x′ ∈ S(T, C). Note that γjk
(x) = 〈ujk , xjk − x〉 =

〈ujk , xjk−x′〉+〈ujk , x′−x〉 ≤ γjk
(x′)+θ‖x−x′‖. Thus, γ(x) ≤ γ(x′)+θ‖x−x′‖, where

θ is a upper bound of {‖uk‖}. Reversing the role of x, x′, we obtain |γ(x) − γ(x′)| ≤
θ‖x− x′‖, establishing the claim.

Let V be the set of cluster points of {xk}. We have shown above that V ∩S(T, C) 6=
∅. Since {xk} is bounded, V is compact and so is V ∩S(T, C). It follows that γ attains

its minimum on V ∩S(T,C) at some x∗, so that γ(x) ≥ γ(x∗) > 0 for all x ∈ V ∩S(T, C),

using the claim above.

Take k̂ such that

γjk
(x) ≥ γ(x∗)

2
, (3.34)

and

βjk
<

γ(x∗)
θ

, (3.35)

for all k ≥ k̂. Note that k̂ exists because, for all large enough k, (3.34) holds by

virtue of (3.33), and (3.35) because limk→∞ βk = 0. In view of (3.27), we get, for all
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x ∈ V ∩ S(T,C) and all k ≥ k̂,

‖xjk+1 − x‖2 ≤ ‖xjk − x‖2 − βjk

(
2
γjk

(x)

ηjk

− βjk

)

≤ ‖xjk − x‖2 − βjk

(
γ(x∗)

θ
− βjk

)
< ‖xjk − x‖2,

using (3.34) in the second inequality and (3.35) in the third one. It follows that

dist(xjk+1, V ∩ S(T, C)) ≤ dist(xjk , V ∩ S(T, C))

for all k ≥ k̂, in contradiction with (3.32). The contradiction arises from assuming

that {xk} has clusters points out of S(T, C), and therefore all cluster points of {xk}
solve VIP(T, C).

We summarize the convergence sequence properties of Algorithm 2 in the following

corollary.

Corollary 3.2. If T is paramonotone and S(T, C) 6= ∅, then any sequence {xk} gener-

ated by Algorithm 2 is bounded, limk→∞ ‖xk+1 − xk‖ = 0 and all cluster points of {xk}
belong to S(T,C). If VIP(T, C) has a unique solution then the whole sequence {xk}
converges to it.

Proof. It follows from Proposition 3.5(i), Proposition 3.5(iii) and Theorem 3.2.

Remark 1. Note that we have convergence of the whole sequence under any hypothesis

on T ensuring uniqueness of solutions of VIP(T, C), like e.g. strict monotonicity. This

is much weaker than strong monotonicity, as demanded in [28] for obtaining a similar

result.
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Chapter 4

An explicit algorithm for VIP

In this chapter we introduce an algorithm for solving VIP(T,C), which replaces projec-

tions onto the feasible set by easily computable projections onto suitable hyperplanes.

We assume that C satisfies Slater’s condition, and that T is point-to-point and maxi-

mal monotone. Unlike the previous chapter, in this one we will work in an arbitrary

Hilbert space. The algorithm presented here, called Algorithm 3, has higher computa-

tional demands than the previous algorithms. These algorithms (Algorithm 1 and 2)

are applicable to the general case where T is a point-to-set operator. Unlike these two,

Algorithm 3 requires that the operator be point-to-point. On the other hand, we will

obtain convergence assuming only that T is monotone, while the methods in Chapter

3 require that T be paramonotone. It is important to have methods that do not re-

quire paramonotonicity, because there exist important problems where the operator is

not paramonotone. A very relevant example is the constrained saddle point problem

(CSP ) presented in Subsection 1.2.2. As shown there, this problem is equivalent to

the constrained convex optimization problem under suitable regularity conditions (see

Proposition 1.7, Proposition 1.8 and Proposition 1.9 in Chapter 1).

4.1 Statement of Algorithm 3

We need the following boundedness assumptions on ∂g and T .

(R) ∂g is bounded on bounded sets.
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(S) T is bounded on bounded sets.

In finite dimensional spaces, these two assumptions are always satisfied in view of

Lemma 1.1(iii), because T and ∂g are maximal monotone operators. We also assume

that C is of the form given in (3.11), which we repeat here:

C = {z ∈ H : g(z) ≤ 0}, (4.1)

where g : H → R is a convex function, and that a Slater point is available, i.e. we will

explicitly use a point w such that g(w) < 0.

Consider an exogenous sequence {βk} ⊆ R++ satisfying

∞∑

k=0

βk = ∞, (4.2)

∞∑

k=0

β2
k < ∞. (4.3)

The algorithm is defined as follows.

Algorithm 3

Initialization step: Fix an exogenous constant θ > 0 and define

x0 := 0 and z0 ∈ H.

Iterative step: Given zk, if g(zk) ≤ 0 then take ỹk := zk. Else, perform the following

inner loop, generating points yk,0, yk,1, . . . . Take yk,0 = zk, choose vk,0 ∈ ∂g(yk,0). For

j = 0, 1, . . . , let

Ck,j :=
{
z ∈ H : g(yk,j) + 〈vk,j, z − yk,j〉 ≤ 0

}
, (4.4)

with vk,j ∈ ∂g(yk,j). Define

yk,j+1 := PCk,j
(yk,j). (4.5)

Stop the inner loop when j = j(k), defined as

j(k) := min

{
j ≥ 0 :

g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≤ θβk

}
. (4.6)
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Let

ỹk := yk,j(k). (4.7)

Choose ṽk ∈ ∂g(ỹk) and let

Ck := Ck,j(k) =
{
z ∈ H : g(ỹk) + 〈ṽk, z − ỹk〉 ≤ 0

}
. (4.8)

Define ηk := max{1, ‖T (ỹk)‖}. Take

zk+1 := PCk

(
ỹk − βk

ηk

T (ỹk)

)
. (4.9)

If zk+1 = ỹk, stop. Otherwise , define

σk :=
k∑

j=0

βj

ηj

= σk−1 +
βk

ηk

, (4.10)

xk+1 :=

(
1− βk

ηkσk

)
xk +

βk

ηkσk

ỹk. (4.11)

Unlike other projection methods, Algorithm 3 generates a sequence {xk} which is

not necessarily contained in the set C, which also happens with Algorithm 2. This

method can be seen as an inexact restoration algorithm. The restoration requires

possibly several consecutive projections onto hyperplanes, as opposed to Algorithm 2,

which demands only one projection. As a matter of fact, it is necessary to project onto

separating hyperplanes until the current point is close to C. The computational cost

per iteration of Algorithm 3 is higher that the similar cost of Algorithm 2, due to the

inner loop in (4.5)-(4.7) and the additional step given in (4.11), but, on the other hand,

we establish convergence of Algorithm 3 assuming only monotonicity of T , while our

analysis of Algorithm 2 require paramonotonicity of T . As will be shown in the next

section, the generated sequence converges to some solution of VIP(T, C).

Algorithm 3 can be easily implemented, because PCk,j
and PCk

have explicit formu-

lae, which we present next. It follows from Proposition 3.3, (4.4), (4.5), (4.8) and (4.9)

that
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yk,j+1 = PCk,j
(yk,j) = yk,j − 1

‖vk,j‖2 max
{
0, g(yk,j)

}
vk,j,

zk+1 = PCk

(
ỹk − βk

ηk

T (ỹk)

)

= ỹk − βk

ηk

T (ỹk)− 1

‖ṽk‖2 max

{
0, g(ỹk)− βk

ηk

〈T (ỹk), ṽk〉
}

ṽk,

so that Algorithm 3 can be considered as a fully explicit method for VIP(T,C).

The iteration formulae of the algorithm become more explicit in the smooth case,

i.e. when C is of the form C = {x ∈ H : gi(x) ≤ 0, 1 ≤ i ≤ m} where the gi’s are

convex and Gateaux differentiable. The set C can be rewritten in our notation with

g(x) = max1≤i≤m{gi(x)}. In this situation, Corollary 1.2 allows us to take

vk,j = ∇g`(k,j)(y
k,j), with `(k, j) ∈ Arg max

0≤i≤m
{gi(y

k,j)}

vk = ∇g`(k)(ỹ
k), with `(k) ∈ Arg max

0≤i≤m
{gi(ỹ

k)},

so that the hyperplane onto which each inner-loop iterate is projected is the first order

approximation of the most violated constraint at that iterate.

4.2 Convergence analysis of Algorithm 3

For convergence of our method, we assume that T is point-to-point and maximal mono-

tone, and hence continuous by Lemma 1.1(iv). Observe that ∂g(x) 6= ∅ for all x ∈ H,

because we assume that g is convex and dom(g) = H.

First we establish the validity of the stopping criterion and the fact that Algorithm 3

is well defined.

Proposition 4.1. Take C, Ck,j, Ck, ỹk, zk and xk defined by (4.1), (4.4), (4.8), (4.7),

(4.9) and (4.11) respectively. Then,

i) C ⊆ Ck,j and C ⊆ Ck for all k and for all j.

ii) If zk+1 = ỹk for some k, then ỹk ∈ S(T,C).
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iii) j(k) is well defined.

Proof. i) It follows from (4.4), (4.8) and the definition of subdifferential.

ii) Suppose that zk+1 = ỹk. Then , since zk+1 ∈ Ck, we have g(ỹk) + 〈ṽk, zk+1 − ỹk〉 =

g(ỹk) ≤ 0, i.e. ỹk ∈ C. Moreover, since zk+1 is given by (4.9), using Lemma 2.1(ii)

with x = ỹk − βk

ηk
T (ỹk) and K = Ck, we obtain

〈
zk+1 −

(
ỹk − βk

ηk

T (ỹk)

)
, z − zk+1

〉
≥ 0 ∀z ∈ Ck. (4.12)

Taking zk+1 = ỹk in (4.12) and using the facts that βk > 0, and C ⊆ Ck for all k,

we get 〈T (ỹk), z − ỹk〉 ≥ 0 for all z ∈ C. We conclude that ỹk ∈ S(T, C).

iii) Assume by contradiction that
g(yk,j) ‖yk,j − w‖

g(yk,j)− g(w)
> θβk for all j. Thus, we get an

infinite sequence {yk,j}∞j=0 such that

lim inf
j→∞

g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≥ θβk > 0. (4.13)

Taking into account the inner loop in j given in (4.5) i.e. yk,j+1 = PCk,j
(yk,j) for

each k, we obtain, for each x ∈ C,

‖yk,j+1 − x‖2 = ‖PCk,j
(yk,j)− PCk,j

(x)‖2 ≤ ‖yk,j − x‖2 − ‖yk,j+1 − yk,j‖2

≤ ‖yk,j − x‖2, (4.14)

using Lemma 2.1(i) with x = yk,j, y = x and K = Ck,j. Thus, {yk,j}∞j=0 is quasi-

Fejér convergent to C, and hence it is bounded by Proposition 2.3(i). It follows that

τ :=
1

−g(w)
sup

0≤j≤∞
‖yk,j − w‖ is finite and also,

g(yk,j) > 0 for all j. (4.15)

Using (4.14), we get

lim
j→∞

‖yk,j+1 − yk,j‖ = lim
j→∞

‖PCk,j
(yk,j)− yk,j‖ = 0. (4.16)

Since yk,j+1 belongs to Ck,j, we have from (4.4) that
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g(yk,j) ≤ 〈vk,j, yk,j − yk,j+1〉 ≤ ‖vk,j‖‖yk,j − yk,j+1‖, (4.17)

using Cauchy-Schwartz in the last inequality.

Since {yk,j}∞j=0 is bounded and the subdifferential of g is bounded on bounded sets

by assumption (R), we obtain that {‖vk,j‖}∞j=0 is bounded. In view of (4.16) and (4.17),

lim inf
j→∞

g(yk,j) ≤ 0. (4.18)

It follows from (4.15) and (4.18) that

lim inf
j→∞

g(yk,j) ‖yk,j − w‖
g(yk,j)− g(w)

≤ lim inf
j→∞

g(yk,j) ‖yk,j − w‖
−g(w)

≤ 1

−g(w)
sup

0≤j≤∞
‖yk,j − w‖ lim inf

j→∞
g(yk,j)

= τ lim inf
j→∞

g(yk,j) ≤ 0,

contradicting (4.13). It follows that j(k) is well defined.

We continue by proving the quasi-Fejér properties of the sequences {zk} and {ỹk}
generated by Algorithm 3.

Proposition 4.2. If S(T, C) is nonempty, then {ỹk} and {zk} are quasi-Fejér conver-

gent to S(T,C).

Proof. Observe that ηk ≥ ‖T (ỹk)‖ and ηk ≥ 1 for all k by the definition of ηk. Then,

for all k,

1

ηk

≤ 1 (4.19)

and
‖T (ỹk)‖

ηk

≤ 1. (4.20)

Take x̄ ∈ S(T, C). Then,

‖ỹk − x̄‖ = ‖yk,j(k) − x̄‖ = ‖PCk,j(k)−1
(yk,j(k)−1)− PCk,j(k)−1

(x̄)‖
≤ ‖yk,j(k)−1 − x̄‖ = ‖PCk,j(k)−2

(yk,j(k)−2)− PCk,j(k)−2
(x̄)‖

≤ ‖yk,j(k)−2 − x̄‖ ≤ · · · ≤ ‖yk,0 − x̄‖ = ‖zk − x̄‖, (4.21)
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using Lemma 2.1(i) and (4.5).

Let θ̃ = 1 + θ T (x̄) ≥ 1 + θ
T (x̄)

ηk

, by (4.19). Then

‖ỹk+1 − x̄‖2 ≤ ‖zk+1 − x̄‖2 =

∥∥∥∥PCk

(
ỹk − βk

ηk

T (ỹk)

)
− PCk

(x̄)

∥∥∥∥
2

≤
∥∥∥∥ỹk − βk

ηk

T (ỹk)− x̄

∥∥∥∥
2

= ‖ỹk − x̄‖2 +
‖T (ỹk)‖2

η2
k

β2
k − 2

βk

ηk

〈T (ỹk), ỹk − x̄〉

≤ ‖ỹk − x̄‖2 + β2
k − 2

βk

ηk

〈T (x̄), ỹk − x̄〉

= ‖ỹk − x̄‖2 + β2
k − 2

βk

ηk

(〈T (x̄), ỹk − PC(ỹk)〉+ 〈T (x̄), PC(ỹk)− x̄〉)

≤ ‖ỹk − x̄‖2 + β2
k + 2

βk

ηk

〈T (x̄), PC(ỹk)− ỹk〉

≤ ‖ỹk − x̄‖2 + β2
k +

βk

ηk

‖T (x̄)‖‖PC(ỹk)− ỹk‖ ≤ ‖ỹk − x̄‖2 + θ̃β2
k

≤ ‖zk − x̄‖2 + θ̃β2
k , (4.22)

using (4.21) in the first inequality, Lemma 2.1(i) in the second one, the monotonicity

of T and (4.20) in the third one, the definition of S(T, C) in the fourth one, Cauchy-

Schwartz inequality in the fifth one, Lemma 2.6 and the definition of j(k) in the sixth

one, and (4.21) in the last one.

Using Definition 2.1, (4.22) and (4.3), we conclude that the sequences {ỹk} and

{zk} are quasi-Fejér convergent to S(T,C).

Proposition 4.3. Let {zk}, {ỹk} and {xk} be the sequences generated by Algorithm

3. Assume that S(T,C) is nonempty. Then,

i) {ỹk}, {xk} and {T (ỹk)} are bounded,

ii) xk+1 =
1

σk

k∑
j=0

βj

ηj

ỹj,

iii) limk→∞ dist(xk, C) = 0,

iv) all weak cluster points of {xk} belong to C.
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Proof. i) For {ỹk} use Proposition 4.2 and Proposition 2.3(i). For {T (ỹk)}, use

boundedness of {ỹk} and assumption (S). For {xk}, use boundedness of {ỹk} and

(4.11).

ii) Apply (4.11) recursively.

iii) It follows from Lemma 2.6 and (4.6)-(4.7) that

dist(ỹk, C) ≤ g(ỹk)‖ỹk − w‖
g(ỹk)− g(w)

≤ θβk. (4.23)

Define

x̃k+1 :=
1

σk

k∑
j=0

βj

ηj

PC(ỹj). (4.24)

Since 1
σk

∑k
j=0

βj

ηj
= 1 by (4.10), we get from the convexity of C that x̃k+1 ∈ C. Let

β̃ :=
∞∑

j=0

β2
j . (4.25)

Note that β̃ is finite by (4.3). Then

dist(xk+1, C) ≤ ‖xk+1 − x̃k+1‖ =

∥∥∥∥∥
1

σk

(
k∑

j=0

βj

ηj

(ỹj − PC(ỹj))

)∥∥∥∥∥

≤ 1

σk

k∑
j=0

βj

ηj

‖ỹj − PC(ỹj)‖ =
1

σk

k∑
j=0

βj

ηj

dist(ỹj, C)

≤ θ

σk

k∑
j=0

β2
j

ηj

≤ θ

σk

k∑
j=0

β2
j ≤ θ

β̃

σk

, (4.26)

using the fact that x̃k+1 belongs to C in the first inequality, (ii) and (4.24) in the first

equality, convexity of ‖ · ‖ in the second inequality, (4.23) in the third one, (4.19) in

the fourth one and (4.25) in the last one.

Take γ > 1 such that ‖T (ỹk)‖ ≤ γ for all k. Existence of γ follows from (i). Thus,

lim
k→∞

σk = lim
k→∞

k∑
j=0

βj

ηj

≥ lim
k→∞

1

γ

k∑
j=0

βj = ∞, (4.27)
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using that ηj = max{1, ‖T (ỹj)‖} ≤ max{1, γ} ≤ γ for all j in the first inequality

and (4.2) in the last equality. Thus, taking limits in (4.26), we get, using (4.27), that

limk→∞ dist(xk, C) = 0, establishing (iii).

iv) Follows from (iii).

Next we prove optimality of the cluster points of {xk}.

Theorem 4.1. If S(T,C) 6= ∅ then all weak cluster points of the sequence {xk} gen-

erated by Algorithm 3 solve VIP(T, C).

Proof. For any x ∈ C we have

‖zj+1 − x‖2 =

∥∥∥∥PCj

(
ỹj − βj

ηj

T (ỹj)

)
− PCj

(x)

∥∥∥∥
2

≤
∥∥∥∥
(

ỹj − βj

ηj

T (ỹj)

)
− x

∥∥∥∥
2

= ‖ỹj − x‖2 +
‖T (ỹj)‖2

η2
j

β2
j − 2

βj

ηj

〈T (ỹj), ỹj − x〉

≤ ‖zj − x‖2 + β2
j + 2

βj

ηj

〈T (x), x− ỹj〉, (4.28)

using Lemma 2.1(i) in the first inequality, and the monotonicity of T and (4.20) in the

last inequality. Summing (4.28) from 0 to k − 1 and dividing by σk−1, we obtain from

Proposition 4.3(ii)

(‖zk − x‖2 − ‖z0 − x‖2)

σk−1

≤
∑k−1

j=0 β2
j

σk−1

+ 〈T (x), x− xk〉. (4.29)

Let x̂ be a weak cluster point of {xk}. Existence of x̂ is guaranteed by Proposition

4.3(i). Note that x̂ ∈ C by Proposition 4.3(iv).

By (4.2), (4.3), (4.27) and boundedness of {zk}, taking limits in (4.29) with k →∞,

we obtain that 〈T (x), x − x̂〉 ≥ 0 for all x ∈ C. Using Lemma 2.5, we get that

x̂ ∈ S(T, C). Therefore, all weak cluster points of {xk} solve VIP(T, C).

For S ⊆ H, define dist(x, S) := infz∈S ‖z − x‖. It is clear that if S is a closed

and convex set then dist(x, S) = minz∈S ‖z − x‖ = ‖PS(x) − x‖ where PS(x) =

argminz∈S ‖x− z‖.
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Next, we establish two properties of quasi-Fejér convergent sequences. These prop-

erties were first introduced in [8]. The next lemma will be useful for proving that

the sequence generated by our algorithm converges weakly to some point belongs to

S(T, C).

Lemma 4.1. If a sequence {xk} is quasi-Fejér convergent to a closed and convex set

S, then

i) the sequence {dist(xk, S)} is convergent,

ii) the sequence {PS(xk)} is strongly convergent.

Proof. i) The sequence {dist(xk, S)} is bounded, because 0 ≤ dist(xk, S) ≤ ‖xk−x‖
for all x ∈ S, and {‖xk − x‖} converges for all x ∈ S, by Proposition 2.3(ii).

Assume that {dist(xk, S)} has two cluster points, say λ and µ, with λ < µ. It

follows that {dist(xk, S)2} has λ2 and µ2 as cluster points.

Take ν = (µ2 − λ2)/3, and subsequences {dist(xj(k), S)2} and {dist(x`(k), S)2} of

{dist(xk, S)2} such that limk→∞{dist(xj(k), S)2} = λ2, limk→∞{dist(x`(k), S)2} = µ2.

For each k take jk, `k such that k < `k < jk, with dist(xjk , S)2 < λ2 +ν, dist(x`k , S)2 >

µ2 − ν. Defining w = PS(xjk), we get

0 < ν = 3ν − 2ν = µ2 − λ2 − 2ν = (µ2 − ν)− (λ2 + ν)

< dist(x`k , C)2 − dist(xjk , C)2 = dist(x`k , C)2 − ‖xjk − w‖2

≤ ‖x`k − w‖2 − ‖xjk − w‖2 =

jk∑

j=`k−1

(‖xj+1 − w‖2 − ‖xj − w‖2)

≤
jk∑

j=`k−1

δj ≤
∞∑

j=k

δj.

Thus, ν <
∑∞

j=k δj for all k, contradicting the fact that
∑∞

j=0 δj < ∞. Hence,

ν = 0, i.e. λ2 = µ2, implying λ = µ. It follows that all cluster points of {dist(xk, S)}
coincide, i.e. that the sequence {dist(xk, S)} converges.

ii) We will prove that {uk} := {PS(xk)} is a Cauchy sequence, hence strongly conver-

gent. Using Lemma 2.1(i) with K = S, x = xq and y = up, we get
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‖uq − up‖2 = ‖PS(xq)− PS(up)‖2 ≤ ‖xq − up‖2 − ‖xq − uq‖2. (4.30)

Since {xk} is quasi-Fejér convergent to S and p < q, we get from (4.30) that

‖uq − up‖2 ≤ ‖xp − up‖2 − ‖xq − uq‖2 +

q∑
j=p

δj

≤ dist(xp, S)2 − dist(xq, S)2 +
∞∑

j=p

δj. (4.31)

By (i), {dist(xk, S)} converges, and using the fact
∑∞

j=0 δj < ∞, we obtain from

(4.31) that {uk} is a Cauchy sequence.

Finally, we can now state and prove our main result.

Theorem 4.2. Define x∗ = limk→∞ PS(T,C)(ỹ
k). Then either S(T, C) 6= ∅ and {xk}

converges weakly to x∗, or S(T, C) = ∅ and limk→∞ ‖xk‖ = ∞.

Proof. Assume that S(T, C) 6= ∅ and define uk = PS(T,C)(ỹ
k). Note that uk, the

orthogonal projection of ỹk onto S(T, C), exists because the solution set S(T, C) is

nonempty by assumption, and closed and convex by Lemma 2.2. By Proposition 4.2,

{ỹk} is quasi-Fejér convergent to S(T, C). Therefore, it follows from Lemma 4.1(ii)

that {PS(T,C)(ỹ
k)} is strongly convergent. Let

x∗ = lim
k→∞

PS(T,C)(ỹ
k) = lim

k→∞
uk. (4.32)

By Proposition 4.3(i) and Theorem 4.1, {xk} is bounded and each of its weak cluster

points belong to S(T, C). Let {xik} be any weakly convergent subsequence of {xk},
and let x̂ ∈ S(T, C) be its weak limit. It suffices to show that x̂ = x∗.

By Lemma 2.1(ii) we have that 〈x̂ − uj, ỹj − uj〉 ≤ 0 for all j. Define ξ =

sup0≤j≤∞ ‖ỹj − uj‖. By Proposition 4.3(i), ξ < ∞. Then,

〈x̂− x∗, ỹj − uj〉 ≤ 〈uj − x∗, ỹj − uj〉 ≤ ξ ‖uj − x∗‖ ∀j. (4.33)

Multiplying (4.33) by
βj

ηjσk−1

and summing from 0 to k − 1, we get from Proposition

4.3(ii)
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〈
x̂− x∗, xk − 1

σk−1

k−1∑
j=0

βj

ηj

uj

〉
≤ ξ

σk−1

k−1∑
j=0

βj

ηj

‖uj − x∗‖. (4.34)

Define ζk,j := 1
σk

βj

ηj
(k ≥ 0, 0 ≤ j ≤ k). In view of (4.27), limk→∞ ζk,j = 0 for

all j. By (4.10),
∑k

j=0 ζk,j = 1 for all k. Then, using (4.32) and Proposition 2.4 with

wk =
∑k

j=0 ζk,ju
j = 1

σk

∑k
j=0

βj

ηj
uj, we obtain that

lim
k→∞

1

σk−1

k−1∑
j=0

βj

ηj

uj = x∗, (4.35)

and hence

lim
k→∞

1

σk−1

k−1∑
j=0

βj

ηj

‖uj − x∗‖ = 0, (4.36)

using the fact that 1
σk−1

∑k−1
j=0

βj

ηj
= 1.

From (4.35) and (4.36), since limk→∞ xik = x̂, taking limits in (4.34) with k → ∞
along the subsequence with subindices {ik}, we conclude that 〈x̂− x∗, x̂− x∗〉 ≤ 0,

implying that x̂ = x∗.

If S(T, C) = ∅ then by Theorem 4.1 no subsequence of {xk} can be bounded, and

hence limk→∞ ‖xk‖ = ∞.

Remark 1. We have included the assumption that a Slater point w is available, only

for obtaining a fully explicit algorithm for a quite general convex set C. In fact, such

assumption can be replaced by a rather weaker one, namely:

H) There exists an easily computable and continuous g̃ : H → R such that dist(x,C) ≤
g̃(x) for all x ∈ H, and g̃(x) = 0 if and only if g(x) = 0.

Assuming (H), we can replace the left hand side of the inequality in (4.6) by g̃(yk,j),

and all our convergence results are preserved; in fact only the proof of Proposition

4.1(iii) has to modified.

Assuming existence of a Slater point w allows us to give an explicit formula for g̃,

namely

64



g̃(x) =





‖x− w‖g(x)

g(x)− g(w)
if x /∈ C

0 if x ∈ C,

but there are examples of sets C for which no Slater point is available, while (H) holds,

including instances in which int(C) = ∅.
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Chapter 5

An extragradient-type method with

strong convergence

In this chapter we introduce a new iterative method for solving VIP(T, C), which ge-

nerates a strongly convergent sequence to some point belonging to S(T, C). This is

different from the cases of Korpelevich’s method and the algorithm in the previous

chapters (Algorithms 3), for which only weak convergence has been established.

It is clear that weak and strong convergence are only distinguishable in the infinite-

dimensional setting. Therefore, from now on we will work with VIP(T,C) in infinite-

dimensional Hilbert spaces. We assume in this section that T is maximal monotone,

point-to-point, and uniformly continuous on bounded sets.

We mention that we know no examples in which of Korpelevich algorithm converge

weakly but not strongly.

5.1 Statement of Algorithm 4

The algorithm requires the following exogenous parameters: δ ∈ (0, 1), β̂, β̃ satisfying

0 < β̂ ≤ β̃, and a sequence {βk} ⊆ [β̂, β̃]. It is defined as follows:
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Algorithm 4

Initialization step. Take

x0 ∈ C. (5.1)

Iterative step. Given xk define

zk := xk − βkT (xk). (5.2)

If xk = PC(zk) stop. Otherwise let,

j(k) := min { j ≥ 0 : 〈T (2−jPC(zk) + (1− 2−j)xk), xk − PC(zk)〉
≥ δ

βk

‖xk − PC(zk)‖2

}
, (5.3)

αk := 2−j(k), (5.4)

yk := αkPC(zk) + (1− αk)x
k. (5.5)

Define

Hk :=
{
z ∈ H : 〈z − yk, T (yk)〉 ≤ 0

}
,

Wk :=
{
z ∈ H : 〈z − xk, x0 − xk〉 ≤ 0

}
,

xk+1 := PHk∩Wk∩C(x0). (5.6)

5.2 Convergence analysis of Algorithm 4

First, we establish that Algorithm 4 is well defined.

Proposition 5.1. Suppose that Algorithm 4 generates an infinite sequence. Then,

i) xk ∈ C for all k ≥ 0.

ii) j(k) is well defined.

iii) yk ∈ C for all k ≥ 0.
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Proof. i) Follows from (5.6).

ii) Assume by contradiction that the minimum in (5.3) is not achieved. In this case,

for all α > 0, it holds that

〈T (yk(α)), xk − PC(zk)〉 <
δ

βk

‖xk − PC(zk)‖2, (5.7)

where yk(α) = αPC(zk) + (1− α)xk. Note that

‖xk − PC(zk)‖2 ≤ 〈xk − zk, xk − PC(zk)〉 = βk〈T (xk), xk − PC(zk)〉 ≤ δ‖xk − PC(zk)‖2,

using Lemma 2.1(iii) in the first inequality, (5.2) in the equality and (5.7) in the

second inequality, after taking limits with α → ∞, in view of the continuity of T .

Since ‖xk − PC(zk)‖ > 0 by the stopping criterion and δ ∈ (0, 1), we arrive at a

contradiction.

iii) Follows from (5.1) and (5.5), taking into account that αk ∈ [0, 1] for all k ≥ 0 by

(5.3) and (5.4).

Next, we establish some properties of Algorithm 4.

Proposition 5.2. For all k,

‖xk+1 − x0‖2 ≥ ‖xk − x0‖2 + ‖xk+1 − xk‖2, (5.8)

and

‖xk+1 − xk‖ ≥ αk
δ

β̃

‖xk − PC(zk)‖2

‖T (yk)‖ . (5.9)

Proof. Since xk+1 ∈ Wk,

0 ≥ 〈xk+1 − xk, x0 − xk〉 =
1

2

(‖xk+1 − xk‖2 − ‖xk+1 − x0‖2 + ‖xk − x0‖2
)
,

which implies (5.8).

Now, using that ‖xk−PHk
(xk)‖ ≤ ‖z−xk‖ for all z ∈ Hk, since xk+1 ∈ Hk, we have

that ‖xk+1 − xk‖ ≥ ‖xk − PHk
(xk)‖. Since PHk

(xk) = xk − 〈T (yk), xk − yk〉 T (yk)

‖T (yk)‖2
,

we obtain that

‖xk+1 − xk‖ ≥ ‖xk − PHk
(xk)‖ =

〈T (yk), xk − yk〉
‖T (yk)‖ = αk

〈T (yk), xk − PC(zk)〉
‖T (yk)‖

≥ δ
αk

βk

‖xk − PC(zk)‖2

‖T (yk)‖ ≥ αk
δ

β̃

‖xk − PC(zk)‖2

‖T (yk)‖ ,
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using (5.2)-(5.5) in the second inequality and the fact that βk ≤ β̃ for all k in the third

one.

Next we prove optimality of the weak cluster points of {xk}.

Theorem 5.1. Suppose that Algorithm 4 generates an infinite sequence {xk}. Then

either {xk} is bounded and each of its weak cluster points belongs to S(T, C) 6= ∅, or

S(T,C) = ∅ and limk→∞ ‖xk‖ = ∞.

Proof. If {xk} is bounded, we obtain from (5.8) that the sequence {‖xk − x0‖} is

nondecreasing and bounded, hence convergent. By (5.8) again, 0 ≤ ‖xk+1 − xk‖2 ≤
‖xk+1 − x0‖2 − ‖xk − x0‖2, and we conclude that

lim
k→∞

‖xk+1 − xk‖ = 0. (5.10)

It follows from (5.9) and (5.10) that

lim
k→∞

αk
‖xk − PC(zk)‖2

‖T (yk)‖ = 0.

The sequence {PC(zk)} is bounded, using boundedness of {xk} and (5.2), and (5.3)-

(5.5) imply that {yk} is bounded. It follows from the uniform continuity of T that

{T (yk)} is also bounded. Thus,

lim
k→∞

αk

∥∥xk − PC(xk)
∥∥ = 0. (5.11)

Since {xk} is bounded, there exists a subsequence {xik} of {xk} that converges weakly

to some x∗.

We consider now two cases.

Case 1. Suppose that {αk} does not converge to 0, i.e. there exists a subsequence

{αik} of {αk} and some α > 0 such that αik ≥ α for all k. In this case, we define

wk := PC(zk) and it follows from (5.11) that

lim
k→∞

‖xik − wik‖ = 0. (5.12)

Since T is uniformly continuous, we have

lim
k→∞

‖T (xik)− T (wik)‖ = 0. (5.13)
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Let x∗ be a weak cluster point of {xik}. By (5.12), it is also a weak cluster point of

{wik}. Without loss of generality, we assume that {xik} and {wik} converge weakly to

x∗. Let NC(x) be the normal cone to C at x ∈ C, i.e., NC(x) = {z ∈ H : 〈x− y, z〉 ≥
0 ∀y ∈ C}. Define

T̂ (x) := T (x) + NC(x). (5.14)

It is known that T̂ , as given in (5.14), is maximal monotone and that 0 ∈ T̂ (x) if and

only if x ∈ S(T, C); see [61] and Example 1.1 in Section 1.2.

In order to prove that x∗ ∈ S(T, C), take (x, u) ∈ G(T̂ ), so that x ∈ C and

u ∈ T̂ (x) = T (x) + NC(x), implying that u− T (x) ∈ NC(x). So, we have

〈x− y, u− T (x)〉 ≥ 0 ∀y ∈ C. (5.15)

On the other hand, since wk = PC(xk − βkT (xk)) and x ∈ C, it follows from Lemma

2.1(ii), with K = C and x = xk − βkT (xk), that

〈x− wk, xk − βkT (xk)− wk〉 ≤ 0 ∀x ∈ C and k ≥ 0. (5.16)

Since βk is positive for all k, we get from (5.16)
〈

x− wk,
xk − wk

βk

− T (xk)

〉
≤ 0 ∀ x ∈ C and k ≥ 0. (5.17)

Thus,

〈x− wk, u〉 ≥ 〈x− wk, T (x)〉 ≥ 〈x− wk, T (x)〉+

〈
x− wk,

xk − wk

βk

− T (xk)

〉

= 〈x− wk, T (x)− T (wk)〉+ 〈x− wk, T (wk)− T (xk)〉
+

〈
x− wk,

xk − wk

βk

〉

≥ 〈x− wk, T (wk)− T (xk)〉+

〈
x− wk,

xk − wk

βk

〉

≥ −‖x− wk‖
(
‖T (wk)− T (xk)‖+

1

βk

‖wk − xk‖
)

≥ −‖x− wk‖
(
‖T (wk)− T (xk)‖+

1

β̂
‖wk − xk‖

)
, (5.18)

using (5.15) with y = wk because wk ∈ C in the first inequality, (5.17) in the second

inequality, the monotonicity of T in the third one, Cauchy-Schwartz inequality in the

fourth one and the fact that βk ≥ β̂ > 0 for all k in the last one.
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Now, using (5.12) and (5.13), we obtain that the subsequences {wik − xik} and

{T (wik) − T (xik)} strongly converge to zero. Then, we can take limits with k → ∞
in (5.18) over the subsequence with superindices {ik} and, using that {wik} converges

weakly to x∗, we obtain that

〈x− x∗, u〉 ≥ 0 ∀ (x, u) ∈ G(T̂ ). (5.19)

Since T̂ is maximal monotone, it follows from (5.19) that (x∗, 0) ∈ G(T̂ ) i.e. 0 ∈
T̂ (x∗) = T (x∗) + NC(x∗) and hence x∗ ∈ S(T, C).

Case 2. Suppose that limk→∞ αk = 0. Taking

ŷk = 2αkPC(zk) + (1− 2αk)x
k, (5.20)

it follows from the definition of j(k) in (5.3) that

〈T (ŷk), xk − PC(zk)〉 <
δ

βk

‖xk − PC(zk)‖2. (5.21)

Note that ŷk−xk = 2αk(PC(xk)−xk) by (5.20). Since, as discussed above, {PC(zk)} and

{xk} are bounded, it follows from the assumption of this case that limk→∞ ‖ŷk−xk‖ = 0.

Thus, we get from (5.21),

δ

βk

‖xk − PC(zk)‖2 > 〈T (ŷk), xk − PC(zk)〉
= 〈T (ŷk)− T (xk), xk − PC(zk)〉+ 〈T (xk), xk − PC(zk)〉
= 〈T (ŷk)− T (xk), xk − PC(zk)〉+

1

βk

〈xk − zk, xk − PC(zk)〉

≥ −‖T (ŷk)− T (xk)‖‖xk − PC(xk)‖+
1

βk

‖xk − PC(xk)‖2,

using (5.2) in the second equality, and Cauchy-Schwartz inequality and Lemma 2.1(iii)

in the second inequality. Now, an elementary rearrangement yields

‖T (ŷk)− T (xk)‖‖xk − PC(xk)‖ ≥ (1− δ)

βk

‖xk − PC(xk)‖2

≥ (1− δ)

β̃
‖xk − PC(xk)‖2, (5.22)

using the fact that βk ≤ β̃ for all k in the second inequality. Since ‖xk − PC(xk)‖ > 0

for all k because xk /∈ S(T, C) for all k in view of Proposition 2.1, it follows from (5.22)
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that

‖T (ŷk)− T (xk)‖ ≥ (1− δ)

β̃
‖xk − PC(xk)‖ ≥ 0. (5.23)

Since limk→∞ ‖ŷk−xk‖ = 0 and T is uniformly continuous on bounded sets, we obtain

lim
k→∞

‖T (ŷk)− T (xk)‖ = 0. (5.24)

Taking limits with k →∞ in (5.23) and using (5.24), we get

0 ≥ lim
k→∞

‖xk − PC(xk)‖ ≥ 0.

Therefore, limk→∞ ‖xk − PC(xk)‖ = limk→∞ ‖xk − wk‖ = 0. From here on, we can

proceed as in the previous case, from (5.12) on, considering the whole sequences {xk},
{wk} instead of {xik}, {wik}, in order to complete the proof of the first assertion.

Suppose now that S(T, C) = ∅. Using the previous assertion in this proposition,

we obtain that {xk} is unbounded. Since the sequence {‖xk − x0‖} is nondecreasing

by (5.8), it follows that limk→∞ ‖xk − x0‖ = ∞ and so limk→∞ ‖xk‖ = ∞.

We assume from now on that S(T, C) is nonempty. Define

Y := {x ∈ H : 〈z − x, x0 − x〉 ≤ 0 ∀z ∈ S(T, C) }. (5.25)

Next we show that the generated sequence {xk} is contained in Y .

Proposition 5.3. If xk ∈ Y then

i) S(T, C) ⊆ Hk ∩Wk ∩ C,

ii) xk+1 is well defined and xk+1 ∈ Y .

Proof. i) Note that

〈T (yk), x∗ − yk〉 = 〈T (yk)− T (x∗), x∗ − yk〉+ 〈T (x∗), x∗ − yk〉
≤ 〈T (x∗), x∗ − yk〉 ≤ 0, (5.26)

for any x∗ ∈ S(T, C), using the monotonicity of T in the first inequality, and the

definition of S(T, C) together with Proposition 5.1(iii) in the second inequality. It

follows from (5.26) that S(T, C) ⊆ Hk.
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Since xk ∈ Y , we have that 〈x∗ − xk, x0 − xk〉 ≤ 0 for all x∗ ∈ S(T, C). By

definition of Wk, we obtain that S(T, C) ⊆ Wk. We conclude that S(T, C) ⊆ Hk ∩
Wk ∩ C.

ii) Since S(T, C) ⊆ Hk ∩Wk ∩C and S(T, C) is nonempty, it follows that Hk ∩Wk ∩C

is nonempty. Thus the next iterate xk+1 is well defined, in view of (5.6). By Lemma

2.1(ii), we have that

〈z − xk+1, x0 − xk+1〉 ≤ 0 ∀z ∈ Hk ∩Wk ∩ C. (5.27)

Since S(T, C) ⊆ Hk∩Wk∩C for all k, (5.27) holds for all z ∈ S(T, C), and so xk+1 ∈ Y

by (5.25).

Corollary 5.1. Algorithm 4 is well defined and generates infinite sequences {xk}, {yk}
and {uk} such that {xk} ⊂ Y and S(T, C) ⊆ Hk ∩Wk ∩ C for all k.

Proof. It is enough to observe that x0 ∈ Y and apply inductively Proposition 5.3.

Corollary 5.2. The sequence {xk} generated by Algorithm 4 is bounded and each of

its weak cluster points belong to S(T, C).

Proof. If the solution set is nonempty, in view of (5.6) we have that ‖xk+1 − x0‖ ≤
‖z − x0‖ for all z ∈ Hk ∩Wk ∩ C. Since S(T,C) ⊆ Hk ∩Wk ∩ C by Corollary 5.1, it

follows that ‖xk+1− x0‖ ≤ ‖x∗− x0‖ for all x∗ ∈ S(T, C). Thus, {xk} is bounded, and

by Theorem 5.1, all its weak cluster points belong to S(T, C).

Finally, we can now state and prove our main result on Algorithm 4.

Theorem 5.2. Assume that S(T,C) 6= ∅ and let {xk} be a sequence generated by

Algorithm 4. Define x∗ = PS(T,C)(x
0). Then {xk} converges strongly to x∗.

Proof. Note that x∗, the orthogonal projection of x0 onto S(T, C), exists because the

solution set S(T, C) is nonempty by assumption, and closed and convex by Lemma 2.2.

By the definition of xk+1, we have that

‖xk+1 − x0‖ ≤ ‖z − x0‖ ∀ z ∈ Hk ∩Wk ∩ C. (5.28)
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Since x∗ ∈ S(T, C) ⊆ Hk ∩Wk ∩ C for all k, it follows from (5.28) that

‖xk − x0‖ ≤ ‖x∗ − x0‖, (5.29)

for all k. By Corollary 5.2, {xk} is bounded and each of its weak cluster points

belongs to S(T, C). Let {xik} be any weakly convergent subsequence of {xk}, and let

x̂ ∈ S(T, C) be its weak limit. Observe that

‖xik − x∗‖2 = ‖xik − x0 − (x∗ − x0)‖2

= ‖xik − x0‖2 + ‖x∗ − x0‖2 − 2〈xik − x0, x∗ − x0〉
≤ 2‖x∗ − x0‖2 − 2〈xik − x0, x∗ − x0〉,

where the inequality follows from (5.29). By the weak convergence of {xik} to x̂, we

obtain

lim sup
k→∞

‖xik − x∗‖2 ≤ 2(‖x∗ − x0‖2 − 〈x̂− x0, x∗ − x0〉). (5.30)

Applying Lemma 2.1(ii) with K = S(T, C), x = x0 and z = x̂ ∈ S(T, C), and

taking into account that x∗ is the projection of x0 onto S(T, C), we have that

〈x0 − x∗, x̂− x∗〉 ≤ 0. (5.31)

Now, using (5.31) we have

0 ≥ −〈x̂− x∗, x∗ − x0〉 = −〈x̂− x0, x∗ − x0〉 − 〈x0 − x∗, x∗ − x0〉
≥ −〈x̂− x0, x∗ − x0〉+ ‖x∗ − x0‖2.

It follows that

〈x̂− x0, x∗ − x0〉 ≥ ‖x∗ − x0‖2. (5.32)

Combining (5.32) with (5.30), we conclude that {xik} converges strongly to x∗.

Thus, we have shown that every weakly convergent subsequence of {xk} converges

strongly to x∗. Hence, the whole sequence {xk} converges strongly to x∗ ∈ S(T, C).
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[36] Hiriart-Urruty, J.-B., Lemaréchal, C. Convex Analysis and Minimization Algo-

rithms . Springer, Berlin (1993).

[37] Ichiishi, T. Game Theory for Economic Analysis. Academic Press, New York

(1983).

78



[38] Iusem, A.N. An iterative algorithm for the variational inequality problem. Com-

putational and Applied Mathematics 13 (1994) 103-114.

[39] Iusem, A.N. On some properties of paramonotone operators. Journal of Convex

Analysis 5 (1998) 269-278.

[40] Iusem, A.N. On the convergence properties of the projected gradient method for

convex optimization. Computational and Applied Mathematics 22 (2003) 37-52.
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