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1. General introduction

This work propose a number of improvements in the area of macro-..nance
models, which consists of combinations of term structure and macroeconometric
models.

There are multiple applications of term structure models with dicerent ends.
Some of which are given in the following: 1) ..nancial market practitioners need
models for interest rate and credit risk derivatives; 2) in order for the Central Bank
to conduct the monetary policy and monitor the yield curve, it need to know how
the curve is related to macroeconomic indicators; 3) the Treasury continuously
demands assessments of current and future interest rates to manage the emission
and maintenance of the stock of public debt.

We assess the impact of macro factors on the yield curve of emerging countries,
where data is relatively scarce and volatile as compared to developed countries’.
Also, frequent changes of regime, crisis episodes and defaults limit the extent of the
existing historical series.

In those markets, the Monetary Authorities may respond to other factors be-
sides the expected intation and the output gap. The exchange rate, for instance,
is an important variable.

Moreover, the relevance of explicitly including macro factors into the term
structure models may dicer when dealing with developed or with emerging markets.
The ..xed income markets are huge and very sophisticated markets in which assets
are traded in almost continuous-time. Do bond investors already process all the
markets information eCciently?

In contrast, macroeconomic indicators have a low frequency nature as they must
be collected and processed by institutions; they are not real-time information. For
this reason, traditionally the macro-..nance models are discrete-time, and estimated
with monthly or quarterly data. Ang and Piazzesi (2003) estimated their model
with a quarterly series containing roughly 50 years of data.

On the other hand, the limitations of emerging market samples may require the
use of daily data. In this case, continuous-time models constitute a natural choice.

In our ..rst article, we analyze the relation between the Brazilian domestic term
structure and macroeconomic variables.

We construct a novel dataset consisting of daily samples of 1) DI x Pre interest
rate swaps, traded on the BM&F, proxy for zero-coupon constant maturity term
structure, 2) INPC x DI swaps (available since 2002), which provide a measure of
daily infation, and 3) the US Dollar/ Brazilian Real exchange rate.

We show that the inclusion of macro factors signi..cantly improves the goodness-
of-..t of the term structure models by comparing yields alone and macro-augmented
a¢ne models.

Continuous and discrete-time Gaussian a¢ne models are considered. The mea-
surement errors are treated with either Kalman ..Iter or Chen-Scott inversion.
Three dicerent Taylor rules and two dizerent lag sizes are considered, and the
parameters are inferred through maximum likelihood or Monte Carlo Markov chain
(MCMQC).

Among our empirical ..ndings, we remark that macro factors explain about
40% of the movements of the yield curve, and that imposing restrictions on the
speci..cation of the model - such as macro-to-yield dynamics or standard Taylor
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rule - signi..cantly modi..es the response of the yield curve, and should thus be
carefully considered.

In chapter two, we extend the models by adding default risk and address the
problem of ..nding the factors behind the movements of emerging market sovereign
interest rates. The models are estimated again with daily data, allowing for the
interaction between macro variables and credit spreads.

The emerging markets’ Central Banks do not have direct infuence on sovereign
interest rates, which are traded on international markets. Thus, contrary to the
domestic case, there are no obvious candidates as the most important macro factors
infuencing the external rates.

We calculate default probabilities implied from the estimated model and the
impact of macro shocks on those probabilities.

Our empirical results show that, given our tested variables and horizon, the VIX
(a volatility index calculated using S&P 500 option prices) is the most important
macro factor acecting short term bonds and default probabilities, while the Fed
Fund is the most important factor behind long term default probabilities. Regarding
tested domestic factors, only the slope of the domestic yield curve showed relevant
eoect.

Before estimating the models, they must ..rst be identi..ed. In fact, we show
that the likelihood function of the Gaussian a¢ne models with macro factors and
default using Chen-Scott inversion are invariant to certain operators.

The question of identi..cation is not completely discussed by the literature. Our
contributions to this topic are the subject of our third article, where we extend the
method of Dai and Singleton (2002) to term structure models with macro factors.

There many possible identi..cations, but we prove that the choice of identi..ca-
tion does not arect the response of the yield curve or of the macro factors to state
variable shocks. However, it does arect the latent factor response.

Next, in article four, we focus our attention on the out-of-sample predictive
capacity of a number of term structure models. The models are estimated with
Brazilian and U.S. daily samples, so that we obtain results that contrast speci..c
characteristics of emerging and developed markets data.

In particular, we compare the a€¢ne and the Nelson-Siegel models, including
the Diebold-Li 2-step model, which list among the most popular in the ..nancial
and econometric literature.

We test whether macro-..nance models outperforms yields alone models. For
Brazil, we consider a version with the IBovespa (Sao Paulo Stock Exchange Index)
besides versions with expected infation and output gap.

We show that for U.S. yields-only models already present good performance,
and that the addition of macro factors does not improve the predictions.

For Brazilian data, both the yields only or macro-..nance models present low
performance. However, the IBovespa signi..cantly contributes to the forecasting
performance of the models.

On overall, the best model was the unrestricted dynamic Nelson-Siegel model.

In our ..nal article, chapter 5, we further examine the properties of the macro-
..nance models proposed in article 4. However, instead of forecasting, our focus
turn to calculate impulse response functions and variance decompositions so as to
analyze the nature of the impact of the dizerent indicators on the yield curves of
both markets.
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We discuss a novel model combining monthly macro data and daily term struc-
ture data (a “pooled” model), which provides more accurate results than purely
monthly models, specially for the case of Brazil.

We also propose a simple extension that incorporates change of regime. It
speci..cally tries to capture possible changes of monetary policy. It is estimated
with Greenspan and Bernanke periods, and presidents Lula and Cardoso’s periods.

All models in chapter 4 and 5 are estimated via MCMC. In the appendix we
perform a series of simulation exercises were we show that our MCMC algorithm
correctly recovers the true parameters, and that the chains generated by the Gibbs
sampling and Metropolis-Hastings converge under the Gelman-Rubin diagnostics.






CHAPTER 1

Assessing Macro Infuence on Brazilian Yield
Curve with Ac€¢ne Models

1. Introduction

The term structure of interest rates synthesizes agents’ perceptions about the
future state of the economy. The interaction between that perception and macroe-
conomic variables is an important element for consideration by the monetary au-
thorities (MA) for policy decisions and by market participants for forecasting. Ang
and Piazzesi (2003), A&P, discuss that interaction proposing a model that combines
ideas from the ..nancial and the macroeconometric literature.

In the ..nancial literature, the a¢ne term structure models (Du¢e and Kan,
1996), constitute a popular class of models, in which the yield and the risk premiums
are modeled in continuous time as a¢ne functions of unobserved state variables.
However, since standard aC¢ne models do not contain macroeconomic variables,
they cannot be directly related to the yield curve or latent factors.

Macroeconometric models usually analyze the emect of observed variables on
the yield curve, and model the dynamics of the rates and of the e=ects of ..nancial
and macro shocks. But they do not take into account the no-arbitrage restrictions
among the rates of the diverse maturities, which can potentially lead to an over-
parameterization of the model and a reduction of its forecasting capacity.

A&P’s model incorporates observed macro variables - the output gap and in-
fation - into a discrete-time a¢ ne model and a MA reaction function to nominal
shocks - the Taylor rule - to study the relation between the economic cycle and
the yield curve. This is an extension of small-scale macro models such as that of
Svensson (1997). In this way, some of the exogenous shocks on the state factors
and their erects on the yield curve become identi..able in a model with no arbitrage
restrictions among the yield maturities.

By including macro variables, the task of the inference of the parameters be-
comes more diCcult, due to the nonlinear character of the model. This fact mo-
tivated us and Ang et al. (2005) to use the Monte Carlo Markov chain (MCMC)
algorithm, a Bayesian approach, which is less vulnerable to dimensional issues than
maximum likelihood.

Our work addresses the Brazilian market, which requires dicerent choices of
frequency and macro factors. In A&P, the unity of time is the quarter, the frequency
with which the output gap is measured. This is not possible for analyzing the
Brazilian economy.

The behavior of emerging countries’ ..nancial markets can be distinguished from
that of developed countries’ markets by the lower liquidity, shorter term structure
(less than 3 years until recently), more interventions that result in changes of regime
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and of rules of operation, existence of credit risk in public debt, greater vulnerability
associated with volatile exchange rates, and limited data availability.

Also, up to 1994 the Brazilian economy experienced a long period of high
intation. Intation rates as high as 90% a month occurred during this period.

However, even in this environment, the Central Bank was able to preserve the
credibility of the domestic currency as a denomination of public debt and means of
legal payment, thanks to an ample indexation system that included the Brazilian
currency and the U.S. dollar exchange rate as a reference.

The Real Plan (including introduction of the present currency, the Real) was
implemented in 1994 as a regime that pegged the domestic currency to the U.S. dol-
lar until 1998, drastically reducing the infation rates that prevailed at the time. In
January 1999, this ..xed exchange rate regime collapsed after a series of speculative
attacks.

After that, the monetary authorities decided to adopt a free exchange rate
combined with intation targeting. The Central Bank issued local currency bonds
linked to the dollar exchange rate index. A substantial fraction of the public debt
was indexed to the dollar in this way. Together, these facts attest the importance
of the exchange rate for the Brazilian economy.

One of the tools for monitoring the infation targeting regime was developed
by Bogdanski et al (2000). It consists of a macro model similar to that of Svens-
son (1997), extended with the emect of currency devaluations on the equation that
determines the intation rate. This modi..cation was inspired by an extensive litera-
ture on emerging countries (see Fraga et al., 2003). Other articles produced by the
Brazilian Central Bank (Almeida et al., 2003, Fachada, 2001, Freitas and Muinhos,
2001, Goldfajn and Werlang, 2000, Minella et al., 2003, Muinhos and Alves, 2003,
Rodrigues et al., 2000) emphasize the importance of the exchange rate in price
formation.

Backed by that evidence, we choose the infation and exchange rate as our
macro factors. And since our sample starts only after the alteration of the monetary
regime in 1999, with the adoption of the infation targeting, we use daily data. The
unit of time used in A&P, the quarter (the frequency with which the output gap is
measured), is not feasible for us.

Also, the sample size does not allow analysis of the iteration between real
variables and the yield curve, infation and exchange rate. Instead, we ignore the
real variables and consider a reduced-form macro model with daily data.

A source of zero-coupon constant maturity rates of Brazilian domestic bonds
is the BM&F Bovespa, the S8 Paulo Stock Exchange, which trades various types
of interest rate swaps. Two of them are used here, the DIXPre and the INPCxDI.
The ..rst swap trades foating for ..xed interest rates, and the second swap yields
the toating rate on one side, and the expected consumer price index rates (INPC)
on the other. The ..rst swap permits the construction of the yield curve, and both
together can be used to extract the expected intation for certain horizons. The
trading volumes of these two swaps are on average about U.S.$30 million each.

By using daily data, we focus on the ..nancial, high frequency, aspects of the
relation among interest rates, the exchange rate and expected intation, as opposed
to macroeconomic, low frequency aspects and larger horizons.

Due to the chosen unit of time, our model omits the output gap, which indicates
the state of the economic cycle. However, the exect of the output gap is not absent:
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since the yield curve summarizes the state of the economy, the latent factors contain
information from omitted variables, and thus can capture economic cycle ezects.

One version of our model, (C), follows the tradition of a large body of ..nancial
literature that uses daily samples, speci..es the model in continuous-time and es-
timates it via maximum likelihood. Another version, (D), follows the econometric
tradition, specifying a discrete-time model, and is estimated through MCMC.

It is not immediately evident how to choose the most adequate speci..cation
and method of inference. Other technical questions, such as the forecasting horizon
and the de..nition of the latent variable (discussed later), have to be decided by
empirical testing. Thus, dicerent speci..cations are estimated. We discuss the
goodness-of-..t and impulse response functions in such a way that the two versions
can be compared.

Many authors emphasize the importance of incorporating macro variables to
..nancial models. For example, Diebold et al. (2005) remarks that pure a¢ne mod-
els add little insight into the nature of the underlying economic forces driving the
yield curve movements. Adding macro factors would shed light to the fundamental
determinants of the interest rates. They point out the importance of the short rate
as a fundamental building block to price all the bonds and as a policy instrument
under direct control of the central bank to achieve its economic stabilization goals.

A&P estimate via maximum likelihood a macro-to-yield model, in the sense
that macro factors acect, but are not acected by, monetary factors. Ang et al.
(2005) improve that model by estimating a bidirectional model with one latent
factor and two macro factors using MCMC. They report that the model forecasts
better than the unrestricted VAR.

Rudebusch and Wu (2003) develop a no arbitrage macro-structural model with
macro variables and latent monetary factors that jointly drive yields. They report
that output shocks have a signi..cant impact on intermediate yields and curvature
and that intation surprises have large ecects on the level of the yield curve. They
also ..nd that including macro factors improve the forecasts of the usual latent
factor models. Dai and Philippon (2004) estimate a no arbitrage VAR model with
one latent factor and government de..cit, intation and real activity. They argue
that the de..cit is an important factor behind the yield curve. Nelson-Siegel models
are discussed by Diebold et al. (2006).

Wu (2003) considers the impact of macro shocks on U.S. term structure using a
structural VAR model, and concludes that monetary-policy and aggregate-supply
shocks are important determinants of the slope and level of the yield curve, re-
spectively. Hejazi (2000), on the other hand, examines whether information in the
U.S. yield curve can be useful for predicting monthly industrial output. Using a
GARCH-M model, he shows that while T-bill spreads contain little or no predictive
content, increases in term premiums, which are linear functions of the conditional
variance of excess returns, have predictive content.

Kalev and Inder (2006) and Chen (2001) test the rational expectations theory
using U.S. term structure data. The former authors investigate how much informa-
tion about the future yields is contained in the current spot rates, and their results
suggest that a signi..cant amount of freely available information is not incorporated
in forming agents’ expectations. The latter author incorporates intation in a model
that allows for changes in regime, and concludes that the regime-switching model
does not reconcile the data with the expectations hypothesis.
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All these papers use discrete-time model and monthly or quarterly data.

To summarize, our objectives include: i) assessing the importance of macro
variables in an a€¢ne term structure model for a Brazilian sample; ii) given the high
number of parameters, evaluating the imposition of restrictions; iii) estimating the
eoect of the identi..ed shocks, such as the exchange rate and intation, on the yield
curve, and vice-versa.

We ..nd that macro factors improve the performance of the models. Also,
variance decompositions show that the macro variables are important factors for
yield curve movements in the Brazilian local market, a result that is similar to that
of Diebold et al. (2006) for the U.S. bond market.

Finally, we remark that identi..cation has two meanings here. First, it is used
as in the ..nancial context as the elimination of free parameters that cannot be
estimated, as in Dai and Singleton (2000). Second, itis used as in the VAR literature
as the exogeneity ordering of the state variables.

2. Acne Model

2.1. Continuous-Time. A probability space (—,F,P) is .xed and no arbi-
trage is assumed. The pricejat time ﬁof a zere-cougon bond paying $1 at maturity

date t + 7 is P(t,7) = E exp i fﬂ rdt  JF; . The conditional expectation
is taken under the equivalent martingale measure Q, and r; is the stochastic in-
stantaneous discount rate. Below, we discuss the pricing equations (see also Duce,
2001).

The vector X; 2 RP represents the state of the economy, and the short rate
and risk premium process are given by time-varying processes r; = dg +441 ¢ X; and
At = X + A1 ¢ X It is assumed that X; follows a Gaussian process with mean

reversion. Under the objective P-measure,
2.1) dX; = K i X,)dt + 8dw;.

The p£p and p£1 parameters K and £ represent the mean reversion coeGcient and
the long-term mean short rate, and 887 is the instantaneous variance-covariance
matrix of the p-dimensional standard Brownian shocks wy.

By Girsanov, under the martingale measure Q, dX; = K*(£* i X,;)dt + 8dwj},
where dw} = dw; + A\, dt is a standard Q-Brownian motion, and K* = K + 8,
& = K*il(K¢ i 8)o).

H\/Iul&fathor Feynman-Kac formula states that, given technical conditions, if

t+7

EQ exp i . r(XWdu jF, =vu(Xy,t,7), thenv(z,t,7) must satisfy Dv(z, ¢, 7) i
r(x)v(z,t,7) = 0,v(x,t,0) = 1, where the operator D is given by

Do, 1,7) = w0, £,7) + 0o 17V KA § ) + 3 (88w (.1, )]

Applying Feynman-Kac to our pricing equation, it turns out that P(¢, 7, X;) =
e(M*+BTNX: where

(22) () = id1 i K*'B(),

23) 0l(r) = 0+ €K () + 35()' 881 ().
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are Riccati dicerential equations whose explicit solutions exist only in some special
cases, such as when K is diagonal, but Runge-Kutta numerical integration e¢ciently
solves equations (2.2) and (2.3).

The yield function is Y (t,7) = %% j 42 ¢ X,, or, de.ning A() = j <=
and B(r) = iﬂP, Y (@, 7) = A(r) + B(7) ¢ X;. Stacking the equations for the n
yield maturities, we arrive at a more concise expression:

(2.4) Y, = A+ BX,,

where Y, = (Y(t,71),....Y (£, 7u))!.

Let 7" be the number of observations. The log-likelihood is the log of the density
function of the sequence of observed yields (Y, ..., Yr). To calculate it we must ..rst
..nd the transition density of X, j,, ., by integrating the equation (??):

z,
(2_5) Xtijtiil — (1 i 6iK(tiiti;l))‘Xt“l +€iK(tiitiil)£ + el K(t: iu)§dwu.
tq il
The stochastic integral term above is Gaussian with zero mean and variance
nZ . #2 Z 4
(2.6) E eiK(t”u)§dwu = eiK(tiiu)§§|(eiK(tiiu))ldu_
tij1 tig1
dtien N(ui’gzz) , where 1, = (1 j eiK(tiitiil))Xtiil + eiK(tiitiil)g
and of is the above integral. When dt = ¢, § t;;1 is small, which is the case with
daily data, the integral (2.6) can be well approximated using

@7) of = eihUggl (TN dt,
. . P—
and we have Xyj;,,, = p; +0; N(0,1),with o; = eiX4'§" qt.
Now suppose the vectors X; and Y; have the same dimension, that is, the
number of yield maturities equals the number of state variables. Then, we can invert

the linear equation (2.4) and ..nd X, as a function h of ¥;: X, = Bil(Y; i A) =
h(Y;). Using change of variables, it follows that

Hence, X,

X
28)  logfy (Vi Yis® = (l0gfy, jx,,,, (Xi,;2) + logj det rhj).
=2

If we want to use additional yields, the direct inversion is not possible (a fact
known as “stochastic singularity”). This problem is circumvented following Chen
and Scott (1993), adding measurement errors to the extra yields.

Let Y;* denote p out of n maturities to be priced without error. The other
yields are denoted by Y2, and they will have independent normal measurement
errors u(t, 7) » N(0,02(7)). This is the method chosen for our continuous time
versions. Thus,

Y, 7)=A(r) + B(7) ¢ Xi + o,us.
The model depends on the set of parameters & = (9,01, K, &, Ao, A1, 8,04)-

The Gaussian a¢ne model has constant volatility and is the simplest speci-
..cation of the a¢ne family. It was chosen since the inclusion of macro factors
substantially complicates the estimation of the parameters given the scarcity of
data. Also, note that macro factors such as the VIX (the Chicago Board volatility
index calculated from S&P 500 stock index option prices) can approximately take
the role of stochastic volatility for Gaussian models.
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2.1.1. Adding Macro Factors. Let now X; = (M, 60,), where M, and #; denote
vectors with p macro and ¢ latent variables. The dﬁnamics of the state vector is

dMy © _  Kum Ko Em ’i M, + 8Sum O dwM *
df, Ko Koo &o 0, 8om 8o dw?

and the short rate equation combines a Taylor Rule and an a¢ne model, r, =
0o + 611 ¢ My + 012 ¢ 0,. This permits the study of the inter-relations between
macroeconomic questions, such as infation target in monetary policy, and ..nance
problems, such as derivative pricing, while a€ne tractability is retained. In fact, the
pricing equations are simply higher dimensional versions of the earlier equations:

Y(t,7)= A(r) + BM(r) ¢ M, + BO(7) ¢ 0, + o uy,

where A, B are still solutions of Riccati equations.
The likelihood is calculated as follows. As discussed before, Y;* and Y2 denote
yield maturitieszwitho%t aréd Wit%measurement errors ué. We ha:\%/e

s s

M, 0 1 0 o0 M,
(2.9) 4ytl 5=4 41 5+4 pM1 Bl 054 ¢, 5.
Ytz A2 BM2 po2 g u

Denote by h the function that maps the state vector (M, 0, u;) to (M, Y.}, Y;?).
One obtains 6, inverting on Y,}, 0, = (B1)1Y(Y! i A' § BMY¢ M) = (Y}, My),
and wu; by solving for it in the last equation. Thus,

(2.10)
109 fy (Yey, -y Yo @) = 109f x (Xoy s ooy Xips 2) +109f 0 (uey,... ue,) + logj det rhj? it

X
= (T i Dlogjdet B?Yj + 109 fx,ix, ;1 (Xe; =) + 109 fu ().
t=2
In a model in which the macro factors are not acected by the yield curve like
Ang and Piazzesi (2003), the macro factors can be estimated separately in a ..rst
step.

2.2. Discrete-Time. Following the A&P approach, we derive the discrete
time equations. Again, no arbitrage is assumed. The price at time ¢t of a zero
coupon bond maturing s + 1 periods ahead is pf*l = ER[exp(ir)pi,1iF:], where,
as before, Q » P is the martingale measure, F; the ..Iltration, and r; = dp + 01X}
and \; = Ao + A1 X; are the short rate and risk premium equations. The dynamics
of the state vector is the multifactor autoregression X, = 4+ ©X,;1 + 8¢;.

Denote by &, the Radon-Nikodym derivative ﬂﬁ% = ¢,. A discrete-time “ver-
sion” of Girsanov theorem is assumed setting £,,.1 = £,.exp(i -'2'->\t CAe T Av€r+1),
where fe;g are independent normal errors. Then, the pricing kernel becomes
my = exp(i rt)%‘tﬂ, so that, by induction, one proves that the price of the bond is
an exponential a¢ne function of the state vector, i.e., p;' = exp(as, +5LXt), where

(2.11) Bler = i1+ 0O" + . + 0O,
1
aner = ido+a,+flut+5518816,,

with initial condition a; = jdg, 81 = 01, and © = © j 8\, pu* = p | 8.
Then Y = jlogp!/n = A, + B)X,, where A, = ja,/n and B, = if,/n.
Forming a vector of yields, we arrive at the same expression as in the continuous
case, Y, = A+ BX,.



2. AFFINE MODEL 11

The procedure to include macro factors is the same as in the continuous-time
case. The yield curve is described by means of the state vector X = (M,0). The
observation equation relates the evolution of the yield curve to the state through
matrices A and B, whose coeCcients depend on the monetary rule that determines
the short rate given the state of the economy, the acne risk premium, and the
idiosyncratic variance error o 1:

th = A((SOv §§I mu*a@*) + B((Sla@*)Xt + ouy,
(2.12) Xi = p+0OXy501 + 8¢,
ry = Y =60 + 61X, + oquf,

where z* = ;i 8'Xo, © = © j A& . The parameters (u, ©) characterize the
P-dynamics of the state variables, (dg,d1) the monetary rule that determines the
short rate given the state of the economy, (\g, A1) the risk premiums describing
the dynamics of the cross-section, and §8! the covariance among the shocks. As
in Johannes and Polson (2003), (u*,©*) are directly estimated, from which the
premium is inferred.

In order to identify monetary factors, we imposed the condition (2.17) discussed
below in each iteration, implying that only a subset of the elements of 8 is free.
The parameters are & = (u,©, 0,0, (), where ¢ = (o, 61, u*, ©*, 881).

In the discrete-time case, normal measurement errors u, are added to all ma-
turities since Kalman ..Iter is used.

Another dicerence is that we estimate a monthly model using daily data, by
choosing a 21 days lag:

(213) Xt :M+©Xti21+§6tv € > N(O,I)

2.2.1. Impulse Response and Variance Decomposition. Impulse response func-
tions (IRF) and variance decompositions (VD) are used to analyze the impact of
macro shocks on yields and default probabilities. In discrete-time case, the IRF is
X; = 8¢, + ©8¢y; 1 + ©?8e;;» +©38¢;3+ ... When Y, = A + BX,, clearly the
response of the yield curve Y; to the shocks becomes

B§Et B©§Et B©2§8t B©3§Et

t+0 t+1 t+2 t+3
In continuous time, we have
) . %Z ti § k+1+1 ; ;
Xtiitsn ZGIK(t“t“k)Xiik"' G'K(t“u)§dwu.
1=0 tiik+l

Using the approximation (2.7), it follows that the response of X; to a shock ¢; in a
interval of time of dt is

— o P— . P— . p_
8 dter eV KUg dig; ei2Kdg (ig; ei8KAg (igy

(214) t+0 t+1 t+ 2 t+ 3

Similarly, the response of the yield Y; is given by

ngEtgt Beinf§pEst BeiZKdtngtgt Bei3Kdt§pEfet

(2.15) t+0 t+1 t+2 t+3

To ..nd the variance decomposition, note ..rst that, in discrete time, the Mean
Squared Error (MSE) of the s-periods ahead error X;., i £X,. is calculated as
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follows:
MSE = g8l + ogglo! + %88l (©?)! + ... +©°88! (©9)!.
The contribution of the j-th factor to the M SE of X,., will be then be
§,8! +o8;8lo! + e?5,8! (@H)! + .. +o'8,8! (@)!.
The j-th factor’s contribution to the M SFE of Y, is
BS§;8!B! + Bog;gle! B! + Bo?g;8!(¢*)! B! + .. + Bo*§;8! (@) B.

In continuous time, it turns out that the s-period ahead M SFE of is the integral:
z t+s
MSE = eiK(t+siu)§§l(eiK(t+siu))Idw
t
Hence, the contribution corresponding to the j-th factor in the variance decompo-
sition of X+, and Y;4, at time ¢ are

j”s e i K(t+si u)§j§; (eFE+rsiwyl gy, .

(2.16) Bl Rtt+s el K(t+siu)§j§J|_ (ei K(t+si u))l du B.

2.3. Model Speci..cation. The discrete (D) and continuous-time (C) ver-
sions dizer in two aspects. In (C), the latent factor is de..ned using Chen-Scott
inversion, in which we choose some yield maturities to be exactly priced, and the
transition equation has a one-day lag.

The discrete version was speci..ed admitting that all maturities have observa-
tion errors, and using the Kalman Filter algorithm to estimate the latent factor.
The lag is chosen to be 21 days, which equals the average number of commercial
days in a month. This lag smooths intra-monthly seasonalities. The estimator will
not take into account the serial correlation that appears with the lag size, but the
associated loss in e€ ciency disappears with longer series. Also, the correlation does
not produce bias.

In summary, the model has two time dimensions, the historical time in which
the sample is collected, and the time of the maturities of the yield curve. The ..rst
is always daily, while the latter was ..xed as 1-day in (C) and as 1-month in (D).
The dizerence of daily or monthly transition acects the de..nition of ©.

In order to identify the model, we impose
T _ k=T

< il
EX=X= M

H ©MM ©M0
0 I ) 0 ) © = ©9M ©00 )

(217) §=H§MM 0

where ©yy is lower triangular. It is shown in chapter 3 that this speci..cation is
exactly identi..ed.

3. Inference

3.1. Continuous-time case. In the (C) version, we ..nd the parameters by
maximizing the log-likelihood with respect to the parameters, given the data.
This estimation method produces asymptotically consistent, non-biased and nor-
mally distributed estimators. Let L = logfy denote the log-likelihod. When
T ¥ 1,81 &gas and T2(® §3) ¥ N(0,V) in distribution, where Vil =
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3 - 3 -
.an ay 2 .a " R . R . -
p ALERALR o jp SR ysing the information inequality. An esti-

mator for Vil is the empirical Hessian
1 XM o iy T
T aaZ ’
t=1
where L; represents the likelihood of the vector with ¢ elements. More details can
be found in Davidson and Mackinnon (1993), chapter 8.

Con..dence intervals for the parameter estimates are found using the empirical
Hessian. If the number of observations T is large enough, then the variance of
& i 2 will be given by the diagonal of N(0,V/T). Alternatively, one could obtain
con..dence intervals via simulation.

Our estimation strategy consisted in many trial optimizations using Matlab.
Beginning with more restricted models, dimerent starting vectors are chosen in
numerical optimization trials until stable results are obtained.

The resultant parameters are posteriorly used in the initial vectors of the higher
dimensional models maximization. Independent new trial maximizations from ran-
dom vectors are also conducted and compared to other results.

In the end, the maximal results are chosen. Although this procedure may be
path-dependent, the “curse of dimensionality” does not allow the use of a complete
grid of random starting points as would be desirable. However, (C) models results
can be checked against (D) models results, which are estimated through an entirely
dizerent method.

Pil:.=

3.2. Discrete-time case. Version (D) is estimated via MCMC, a Bayesian
approach, which obtains the joint distribution f(®,60jM,Y") of the parameters and
latent variables conditional on observed data.

The description of the MCMC involves i) the presentation of the Gibbs sampling
and Metropolis-Hastings algorithms; ii) the Clicord-Hammersley theorem; and iii)
Markov process limit theorems.

General references for this estimation method are Robert and Casella (2005),
Gamerman and Lopes (2006), and for the speci..c case of ..nancial econometrics,
the survey by Johannes and Polson (2003).

Although f(=, 0jM,Y’) is generally unknown and extremely complex, the Clisord-
Hammersley theorem guarantees that if the positivity condition is satis..ed, it can
be uniquely characterized by the lower dimensional complete conditional distribu-
tions f(&M,Y,0) and f(OjM,Y,=), which, in turn, can be characterized by even
lower dimensional complete distributions. For instance, if the set of parameters is
divided into subsets, & = (&4, .., ®,), the complete distributions f(=;j%;:,M,Y,0)
determines f(&jM,Y,0).

The MCMC method provides algorithms through which the full conditional
distribution is recovered from lower dimensional ones. They avoid high dimensional
nonlinear optimizations.

The Gibbs sampling algorithm sequentially samples and updates the set of
complete conditional distributions, and generates a Markov chain whose invariant
measure is f(=,0jM,Y).

Ergodic and the central limit theorems can be applied to give conditions under
which chains formed by the Gibbs sampling converge to desired distribution. The
positivity condition, besides technical conditions, su¢ce.
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When complete conditionals are unknown, the Metropolis-Hastings (M-H) method
is used instead. In this case, the sampling comes from a candidate distribution,
whose realizations are accepted or not with a probability given by the ratio be-
tween the current and the new realization of the likelihood.

In practice, it is easier to obtain convergence with Gibbs sampling. Thus, we
must carefully break the set of parameters & = (8o, 61, i1, ©, 88!, u*,©*, 5, 6) into
convenient subsets which can be analytically sampled.

Details of the speci..c implementation of the algorithms to our models are
given next. Subproblems 1-3 below are cases of Gibbs sampling, corresponding
to, respectively, the estimation of a VAR model, the estimation of the variance of
independent time series, and the joint distribution of latent factors. Subproblem (4),
relative to ¢ = (6o, 01, u*, ©*, 881), does not have known closed expressions and is
sampled via M-H, with a proposal obtained from a normal or Wishart distribution,
centered on the value of the previous iteration, and with an arbitrarily ..xed variance
such that the acceptance rate remains in the interval [0.2, 0.5].

The algorithm consists of the following steps. Given an initial vector (22, %),
repeat for £k = 1..N,

(1) Draw (u*,©%) » p(u, ©jo*1*,¢* 11 0%y, M),

(2) Draw o* » p(oju®, ©F, ¢kt kit v, M),

(3) Draw 6" » p(0ju*,©% o it Y, M),

(4) Draw ¢} » p((,ju”, ©F, o* 0% kit v, ).
More speci..cally, for the step &, we have:
Subproblem 1:

(31) f(/u7©ja-ki17<ki179ki17Y7M) > N((XIX)ilXIX*7(XlX)il - §)v

where X = (Xl7---7XTil)|: X*= (X27...7XT)I R X = (M,G)
Subproblem 2:

3.2) flojp® " ¢ 0F 1t Y, M) » 16(diag(U' U/T), T),

where U =Y j A j BX, and IG is the inverse gamma distribution.
Subproblem 3:

(3:3) fOip*,©F o*, ¢Fit Y, M).

This problem is solved via the FFBS algorithm de..ned in the next subsection.
Subproblem 4:
34) FQCACEEE b, ©F, o 0", Y, M).
Here the M-H is used. Except for the 88! case, we use random walk Metropolis:
draw a candidate (f » gfil + N(0, c), where c is a constant. If
(3.5)
k: kil k k k pk - kEil;~kil Kk k k pk
L(CzJCiIZ )y K 7© O ,9 7Y7M) [] L(Cz. JCilz ) K 7© y O 79 7Y7M) > IOg(Z),

where L is the loglikelihood, detailed in the next section, and z » U(0, 1), then
accept ¢¥, otherwise ¢¥ = ¢¥i. cCalibrating ¢, the acceptance ratio is maintained
in the [20%, 50%] range.

In the 88! case, we use independent random walk, where the candidate distri-
bution is the inverted Wishart distribution.
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3.3. Kalman ..Iter and FFBS algorithm. This subsection gives details of
the Kalman ..Iter and the forward-..Itering backward sampling (FFBS) algorithms
of the dynamic linear model (DLM) in which part of the state vector is observed
(M). See also West and Harrison (1997). We have

Y, = A+ BX; +o,us, uy » N(0, 1), diagonal o,
Xy = p+0X, ;) + 8et, e » N(O, 1),
Xy = [My;04],

where A and B are given by (2.11).
The algorithm works as follows:

A = (0, 01,0, p, Mo, A1, 8);
D, =f&Yy,....Y,, My,..., M;Q;
0o » N(mo, Cop) is given;
Prior of the state variables: X;jD; ;5 » N(at, R);
E(X4D¢in) = ar = p+Omy g,
V(XijDiin) = Ry =0C] 01 + V;
Forecast of the yields: (Y;jD:; 1) » N (fi, Qr)
where
fi = A+ Ba;, Q.= BR,B! +olo;
Posterior of the state variables: (X:jD;) » N(m¢, C});
E(XiDy) = my = (M, my);
0 07
0 ¢
m{ = af + REB'VQFNY: i £
¢ =R+ RIBNQIBRIV.
The marginal log-likelihood L of the yields is

X 1o i1 |
iE[IOQJQtJ +Yii QN (Ye i f)'l

V(XyDy) = C, =

. Q .
L=1logf(Yj® N)=log =~ f(YijDi;n) =
t t
The step 4 of the MCMC requires a realization of

(3.6) 0y » 0;,jDr,t=1,..T,

which is obtained by FFBS. In what follows, we present a modi..cation of the FFBS
algorithm where part of the state variables is observable.

Carter and Kohn (1994) proved that the sampling of (3.6) is obtained by the
reverse recursive sampling of 6" » 6jDr, 0+1:

9%]DT >»> N(mT, CT),

0y » N (ht, Hy),
where
hi =mi+ Gi(0+1 i ar+1),
Hy =G i Gth...thl,
B, =C©Ri}

t+1"
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In the case with observed variables, we have:

s s s

_ 0 0 Oum Owp i 00
G= 0 cf ©gm  Opg Rie= Gém g%
po= M T 00 Megiaf, o M,
my G G P ioaf hy o
o= 00T 0 0 CURrm R0 oGPt _ 0 0 0°
T oo Y oam o RMORY 0 g T 0 H

hi = GI™ (M1 i afiy) + GEP(0141 i af),
Ht9 - Gmezan?mI + ZGf(’RGfmI + Gf@]{?GGfGI ,
0y > N(hY,HY) repeated for t =T j 1,..,2.

4. Results

The expected infation and the yield curve were extracted from contracts traded
on BM&F Bovespa. Our sample contains DIXPRE swap contracts with maturities
f1,2,3,6,9,12,18, 24, 36g-months, which represent the term structure, and INPCxDI
swaps, which provide the dicerence between the intation rate measured by the con-
sumer price index and the foating interest rate observed at the contracted maturity.
The ratio between the earnings of the latter asset and of the corresponding DIXPRE
swap was taken as a measure of the expected intation for that maturity. However,
this ratio contains a risk premium that was supposed constant and disregarded.
We chose the 6-month ahead expected infation. Our sample was determined by
the availability of those contracts at the time we collected the data, and it goes
from April 2002 to October 2005, totaling 870 days. Figures 1 and 2 illustrate the
evolution of the term structure and of the macro factors. As remarked in the intro-
duction, itis di¢cult to ..nd historical series that span many economic cycles in the
Brazilian economy, because of the profound changes of regime that have occurred
until recently.

Following Litterman and Scheinkman (1991), we analyzed the yield curve in
Brazil, which indicated that 99% of the variance of the nine yield maturities in
our sample can be described by two principal components (90% and 9% for the
..rst and second component). This motivated us to ..x two unobserved monetary
factors. Then, the main sources of nominal shocks in the economy, the log of the
nominal exchange rate and the expected infation rate, were added. The indepen-
dent structural shocks associated with those variables were identi.ed supposing
that the innovation of the exchange rate is more exogenous than the innovation of
expected intation, and zero correlation between the latent and observed shocks.
Thus, the model has four independent exogenous shocks acecting the short rate.

Summary statistics are given in Table A.

In the A&P model, the relation between the short rate and the state variables is
interpreted as a reaction function of the MA to changes in the state of the economy
(Taylor rule). In our model, speci..ed for a daily sample, this relation will also
retect the market reaction to new information arriving continuously between the
MA meetings to decide the benchmark rate, regarding future changes by the MA
and macroeconomic values. Even though other market conditions infuence the
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short rate, the systematic reaction of the MA to shocks azecting infation and the
exchange rate is contained in the impulse response function of the identi..ed shocks.

Table A. Summary statistics

Central moments Autocorrelations

mean std dev  skew kurt lag21 lag42 lag 63
1m 0.1961 0.0361 0.7789 2.2146 0.9524 0.8640 0.7372
2m 0.1975 0.0366 0.7195 2.1556 0.9458 0.8632 0.7480
3m 0.1990 0.0370 0.6570 2.0985 0.9403 0.8636 0.7609
6m 0.2034 0.0398 0.5898 2.0248 0.9196 0.8425 0.7665
9m 0.2070 0.0440 0.6654 2.0919 0.9040 0.8208 0.7536
12m 0.2104 0.0486 0.7671 2.2406 0.8998 0.8137 0.7463
18m 0.2168 0.0574 0.9009 2.4791 0.8973 0.8017 0.7329
24m 0.2227 0.0645 0.9586 2.5737 0.8973 0.7959 0.7248
36m 0.2330 0.0754 0.9973 2.6376 0.8945 0.7899 0.7149
EX 1.0870 0.1100 0.3787 3.2437 0.7616 0.5721 0.3460

intation 0.0748 0.0311 -0.2446 3.0408 0.7991 0.6703 0.5394
Data description. Theyield data is composed of daily rates obtained from the DIxPre

swaps, provided by BM&F Bovespa, which approximates the Brazilian Government Bonds
zero-coupon constant maturity rates. The exchange rate series is provided by IPEADATA.
The intation data refers to a daily six-month ahead expected infation series constructed
using the DIxPre and INPCxDI swaps. The table contains yield sample means, standard
deviations, skewness, kurtosis and autocorrelations. The sample period goes from April
2002 to October 2005.

In the A&P model, the relation between the short rate and the state variables is
interpreted as a reaction function of the MA to changes in the state of the economy
(Taylor rule). In our model, speci..ed for a daily sample, this relation will also
retect the market reaction to new information arriving continuously between the
MA meetings to decide the benchmark rate, regarding future changes by the MA
and macroeconomic values. Even though other market conditions intuence the
short rate, the systematic reaction of the MA to shocks arecting intation and the
exchange rate is contained in the impulse response function of the identi..ed shocks.

The identi..ed monetary factors have dicerent characteristics. The unobserved
factor 1 is highly correlated to the dimerence between the long and the short rate,
and so we call it slope. The unobserved factor 2 is highly correlated to the mean
value of the rates, and is denoted by level. This is shown in Tables 1 and 2. In
Rudebusch and Wu (2003), the estimated monetary factors show similar character-
istics. Their model contains two unobserved monetary factors - slope and level -
a MA reaction rule, and a transition equation derived from a “macro structural”
model.

They interpreted the innovation that increases all the yield rates as a shock
on the preferences of the MA with respect to the level of infation, that is, as an
alteration of the infation target. The innovation of the factor 2 was interpreted as
an alteration of the monetary policy determinants, which could be caused by credit
crunches, price misalignments or increases of risk perception because of events like
the terrorist attack in the U.S. in 2001. In other words, it is an innovation that
is not linked to a movement of infation, but rather to recurring ..nancial market
crises. An example in Brazil was the crisis preceding the presidential election in
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Figure 1. Evolution of the Brazilian domestic yield curve from
April 2002 to October 2005.

2002, when local currency government bonds maturing after the election started to
carry a spread due to the perceived risk of default.

We now comment about numerical issues in the estimation process. In the
likelihood optimizations of (C) versions, lower dimensional models are estimated
..rst and serve as initial points of other models. In the MCMC estimations of (D)
versions, six chains are constructed and the one that presents the highest mean
value of the log likelihood after convergence of the chain is chosen.

The analysis of the results includes three aspects: 1) the adherence, 2) the
degree of the interdependence among macro shocks and yields, and 3) the dynamic
eoect of the identi..ed shocks on the yield curve and on macro variables.

4.1. Evaluating Speci..cations. The inclusion of the macro variables and
the imposition of parameter restrictions will be considered, motivated by economic
arguments or parsimony. Restrictions can be of two types: on the state variables
transition equation or on the short rate equation.

In the bilateral model (B), the dynamics of the latent variables and observed
variables are joined through the transition equation. The macro variables directly
acect the yield curve via the Taylor rule, or indirectly through the transition equa-
tion. In the yield-to-macro unilateral model (U), the macro variables do not acect
the transition of the latent variables (©y5; = Agps = 0), but arect them through
the Taylor rule. This is the speci..cation estimated by A&P.
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Figure 2. Historical series of the log of the exchange rate and of
the 6-month ahead expected intation as inferred from BM&F’s
swaps.

Ang et al. (2005) shows that restrictions in the short rate equation r;, =
do + 0y My + 098, emulate alternative monetary policies. We estimate three types
of rule, the standard (s), the forward-looking (f) and the backward-looking (b):

2 Standard Taylor rule: if 65 = 0, the MA reacts based on the present value
of the variables.

2 Forward-looking: if dn = 0, the MA reacts based on the in..nite no
discount future expectations of the macro variables.

2 Backward-looking: if there are no restrictions, the MA smoothly reacts to
past and present prices.

All the models have the same identi..cation assumption: contemporaneous
macro and monetary shocks are not correlated, and the exchange rate is more
exogenous than expected intation.

Speci..cations with dizerent number of macro variables are tested: (m) no
macro, purely monetary: X = 6; (i) including expected infation: X = (i,6); (e)
including exchange rate: X = (e,6); (ei) including both macro factors: X = (e, , 6).

The maximizations of the likelihood in the (C) versions use numerical search
algorithms, while in the (D) versions the mean value of the likelihood of the path
is obtained after an initial number of iterations are discarded.

The models will are compared according to four criteria: 1) Akaike information
= j2(log Likelihood/# obser) + 2(# par/ # obser); 2) number of parameters; 3)
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Figure 3. Compares the in-sample ..tting of the continuous-time
bilateral backward-looking speci..cation with two macro and two
latent factors, with actual data.

mean (of maturities) of normalized in-sample goodness-of-..t:

AP o 11
M(In) = EP d(Yf ! ptjtﬁl)z :
5 » TGy

4) correlation between the factors and the level and slope of the yield curve; and
5) mean standard deviation of measurement error M(c). The Akaike information
provides a normalized likelihood that penalizes the number of parameters.

We now discuss the results contained in Tables 1 and 2. The measurement
errors and the in-sample adherence of both versions are generally similar. The
monetary factor 61 is highly correlated to the slope and the monetary factor 6, to
the level of the yield curwe.

The Akaike information indicates that: i) the macro variables add information;
i) infation is more informative than the exchange rate; iii) combined, the two
macro variables are more informative; iv) in the discrete model with two macro
factors, the bilateral model (B) is worse than the unilateral model (U); v) in the
continuous case, the bilateral is only marginally higher than the unilateral; vi) the
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standard rule restriction is the worst speci..cation, and the backward-looking the

best.

The models showed good ..t in most of the speci..cations, as seen by the
measurement errors. Figure 3 compares the model implied yield curves of the

continuous-time backward-looking version with the data.

Table 1: Comparison of discrete-time speci..cations.

discrete Akaike #par M(In) C(0y,slo) C(02,lev) M(o)

yields only -87 19 1.20 0.92 0.9
backward-looking Taylor rule: infation

unilateral  -108 28 0.97 0.97 0.74

bilateral -105 32 0.96 0.87 1.00
backward-looking Taylor rule: exchange rate

unilateral  -106 28 0.97 0.98 0.64

bilateral -86 32 1.06 0.90 0.98
backward-looking Taylor rule: intation, exchange rate

unilateral  -111 42 0.92 0.99 0.94

bilateral -104 50 0.91 0.94 0.86
standard Taylor rule: infation, exchange rate

bilateral -84 48 1.35 0.90 0.86
forward-looking Taylor rule: infation, exchange rate

bilateral -98 48 1.41 0.87 0.98

57

63
42

65
59

128

56

175

56

Summary of results of the discrete-time model. The ..rst line corresponds to a purely
monetary speci..cation and the others to speci..cations with intation, exchange rate or
both, with unilateral or bilateral dynamics. The Taylor rule can be backward, standard
or forward-looking. The columns show the Akaike information, the number of parameters,
the mean over the maturities of the in-sample model ..tting normalized by the random
walk ..tting, M(In), the correlation between the factors and the slope, C(#4,slo), or the
level, C(0,,lev), of the yield curve, and the mean measurement errors in basis points,

M(o).

Table 2: Comparison of continuous-time speci..cations

discrete Akaike #par M(In) C(0y,slo) C(02,lev) M(o)

yields only -90 17 0.9 0.90 0.68
backward-looking Taylor rule: infation

unilateral  -101 26 0.95 0.92 0.9

bilateral -101 30 0.94 0.83 0.88
backward-looking Taylor rule: exchange rate

unilateral -99 26 0.97 0.93 0.85

bilateral -99 30 0.95 0.70 0.86
backward-looking Taylor rule: intation, exchange rate

unilateral  -109 40 0.94 0.85 0.63

bilateral -110 48 0.92 0.55 0.89
standard Taylor rule: infation, exchange rate

bilateral -109 46 1.00 0.87 0.94
forward-looking Taylor rule: infation, exchange rate

bilateral -110 46 0.93 0.50 0.91

45

42
42

44
43

37
40

42

40

Summary of results of the continuous-time model, containing the same items as Ta-

blel.
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4.2. Comparing Model Dynamics. The (C) and (D) versions describe the
interaction between the macro and the yield curve in distinct forms. As said before,
in the continuous version some maturities are selected for the determination of the
latent factors and the dynamics is daily, while the discrete version is a monthly
model de..ned based on daily data, in which the latent factors are obtained through
the Kalman ..Iter. We consider in this subsection six speci..cations that include
the two macro factors to compare how the imposition of restrictions and choice of
version alter the macro-yield interaction. All speci..cations were identi..ed consid-
ering that macro and latent shocks are contemporaneously uncorrelated, and that
the exchange rate is more exogenous than expected infation.

The variance decomposition of the speci..cations is contained in Tables 3 and
4. They show the proportion of the variance of the 18-month ahead forecast of
the {1,9,36}-month yields and of the macro factors that are attributable to the
monetary shocks and macro shocks, respectively.

In the unrestricted model, the macro variables arect the yield curve directly
through the Taylor rule, and indirectly through the state vector transition equation.
The unilateral speci..cation eliminates the indirect channel, but the macro still af-
fects the curve through the monetary policy channel. However, the decomposition
of the yield movements of the backward-looking unilateral models showed no par-
ticipation of the macro variables. This indicates that the macro-to-yield channel
occurs mainly through the transition equation.

Table 3: Variance decomposition of macro shocks 18 months ahead
discrete  unilateral backward bilateral backward bilateral forward
respnshock ex inf slo lev ex inf slo lev ex inf slo lev

ex 77 3 20 0 24 55 11 9 60 3 37 O
inf 3 58 16 23 3 8 14 3 2 32 63 3
Im 0 0 7 92 1 3 11 58 1 25 64 10
Im 0 0 23 77 2 45 16 37 0 10 8 5
3y 0 0 52 48 4 58 17 21 3 5 91 2

Variance decomposition of the exchange rate, intation, and {1, 9, 36}-month yields
using the discrete-time versions with two macro factors, backward or forward-looking
Taylor rule and unilateral or bilateral dynamics. The lines contain the contributions of
the exchange rate, intation and latent factors.

Table 4: Variance decomposition of latent shocks 18 months ahead
discrete  unilateral backward bilateral backward bilateral forward
respnshock ex inf slo lev ex inf slo lev ex inf slo lev
ex 31 05 55 10 77 04 19 00 78 3 19 Q0
inf 03 40 53 05 21 64 14 00 22 64 14 00
im 00 00 78 22 22 24 20 34 21 21 21 36
9m 00 00 96 04 21 07 40 33 20 07 38 35
3y 00 00 00 00 28 01 47 24 27 02 45 26
Variance decomposition of the exchange rate, infation and {1, 9, 36}-months vyields
using the continuous-time versions with two macro factors, backward or forward-looking
Taylor rule and unilateral or bilateral dynamics. The lines contain the contributions of
the exchange rate, intation and latent factors.
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Now, consider the second type of restriction, associated with the short rate
formation. The forward- and backward-looking speci..cations show the same de-
composition in the continuous case, while in the discrete case the emect on macro
variables is roughly the same.

For the bilateral models, the intation shock amects the variance of the yields, in
accordance with the intation target mechanism. Also, both versions show that the
macro and latent variables are intertwined. Macro shocks impact the latent factors
and vice-versa. However, we remark that in the continuous version, the impact in
the macro-to-yield direction is greater, which is in accordance with Diebold et al.
(2006).

4.3. Dynamic Properties of the Continuous-Time Unrestricted Model.
During the sample period, the Brazilian MA successfully implemented an explicit
intation targeting regime. Hence, if our measure of market expectation of intation
is a good proxy for the measure of infation used by the MA for policy decisions,
then intation would be an important factor to explain short rate movements. The
other rates, being nominal variables, would also be arected. Also, the infation tar-
get remained relatively stable. With daily data, we interpret the determination of
the short rate as the market updating the reaction function of MA, whose decisions
only occur at certain intervals.

Exchange Rate Shock Expected Inflation Shock
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Figure 4. Impulse response functions of the continuous-time bi-
lateral backward-looking speci...cation with two macro and two la-
tent factors. Response of the macro factors.

Since a relatively short sample period is used, and since the frequency is daily,
the model is more suited to describe the transmission mechanism from the exchange
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Figure 5. Impulse response functions of the continuous-time bi-
lateral backward-looking speci..cation with two macro and two la-
tent factors. Response of yields.

rate and infation to interest rates (and vice-versa) in the short run. We chose the
unrestricted continuous-time model to analyze details of this transmission, avoiding
unnecessary restrictions and focusing on one type of model. The variance decom-
position for the forecasting horizons of one and nine months are given in Table
5.

Table 5: Variance decomposition of the continuous-time version

H=1m H=9m
respnshock EX int slope level EX inf slope level
e 99 00 00 00 84 01 14 00
i 09 91 00 00 18 70 12 00
1m 05 14 24 57 24 29 09 38
9m 14 20 13 53 07 10 4 41

36m 17 03 39 41 11 02 58 30
Variance decomposition of the exchange rate, intation and {1, 9, 36}-month yields.
The model is the bilateral backward-looking continuous-time version with two macro fac-
tors one and nine month horizons. Macro and latent shocks.

The results reveal that exchange rate shocks are important for the Brazilian
economy, corresponding to roughly 20% of the variation of intation and interest
rates. The infation shock corresponds to another roughly 20% of the variation of
the interest rates. Thus, macro factors are responsible for roughly 40% of interest
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rate movements, a proportion that is lower than the A&P macro-to-yield model
and higher than the bilateral model of Diebold et al. (2006), both for the U.S.
market. Ang et al. (2005) report a greater infuence of macro shocks on the spread
of the rates (long rate minus short rate), but they use only one latent variable. Our
estimation indicates that slope ezects, absent in single latent factor models, are
very important.

Factor Loadings
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Figure 6. Shows the factor loadings of the continuous-time bilat-
eral backward-looking speci..cation.

The market receives the expected infation and exchange rate variations in dif-
ferent ways. The exchange rate has greater ecect on the long rates than ination,
indicating that the emect of infation on the short rate is perceived as more tran-
sitory. This represents a change in Brazilian market behavior in relation to the
relatively recent past.

On the other hand, monetary shocks do not explain much of the macro vari-
ables, accounting for 12% over a nine-month horizon. Thus, the macro-to-yield di-
rection is stronger, in accordance with the result obtained by Diebold et al. (2006)
for the U.S. market.

The latent factors are still responsible for most of the yield variation, similar to
the ..ndings of Rudebusch and Wu (2003) and Ang et al. (2005). This is not to say
macro variables are not important, since latent variables contain macro information
by construction. Besides, they may also refect omitted macro factors.

The impulse response functions are shown in Figures 4 and 5. Each graph
contains the response of the short, medium and long rates to the indicated shock.
The intation shock is less expressive than other shocks; it equally raises all the
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rates and causes an initially upward and then downward impact on the exchange
rate. The MA controls the short rate, but the long rate is formed in the market,
suggesting that the market perceives that the rise is transitory.

The level shock raises all the nominal variables without changing the slope,
as expected, followed by a smooth decrease over longer horizons. Indeed, if the
intation target regime works as an expectations organizer, than we would expect
target changes to produce smooth rate changes.

The response to exchange rate shocks deeply alters the slope of the curve,
raising the three-year yield, causing a strong but temporary eaect. The ecect on
short rate is more modest but more persistent, which reveals the type of response
of the MA.

Table 6: Parameters of the continuous-time bilateral backward-looking model

with two macro factors
61 0.019 -0.024 0.021 0.028

(0.007) (0.016) (0.002) (0.001)
K*¢ 3.07 0.84 6.38 -6.22
(0.61) (0.10) (1.26) (1.21)
K~ 1.12 27.54 3.38 0.29
(4.78) (11.90) (0.22) (0.08)
-0.50 8.34 091 -0.04
(0.97) (1.86) (0.05) (0.01)
1.02 -2.16 6.58
(6.44) (13.90) (0.50)
-4.00 -120.17 -7.89 -1.30
(14.33) (27.47) (0.70) (0.25)
K 199 -3.02 0.18 0.03
(1.27) (457 (0.11) (0.11)
-1.22 7.99 0.10 0.02
(0.69) (2.51) (0.06) (0.06)
-9.79 -34.46 041
(8.62) (39.83) (0.60)
393 -58.23 0.5 0.96
(6.60) (29.32) (0.58) (0.60)
g 0.18 0 0 0
(0.005)
0.02 010 0 O
(0.004) (0.003)
0 0 10
0 0 0 1
o (inb.p.) 175 26.6 333 221 408 77.2 138
(0.5 (0.7) (0.9 (0.6) (1.1) (2.00 (3.6)
Jo=Y1
£=0
Mean values, and the corresponding standard deviations in parenthesis, of the Monte
Carlo parameter chains of the continuous-time bilateral backward-looking model with two
macro factors.
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Finally, the emects of the slope shock also strongly alter the slope of the yield
curve, being responsible for most of the variation of the yields. Rudebusch and
Wu (2005) interpret this shock as a response to shocks not contained in the chosen
macro variables.

Factor loading - matrix B - represents the ecect of state variables along the
maturities and is presented in Figure 6. The level factor loading, as expected, is
tat, and the slope factor loading decays over the maturities.

The parameter estimates of this section’s speci..cation and their standard errors
are given in Table 6.

5. Conclusion

This text follows the tradition of the ..nance literature of using high-frequency
data to estimate a®ne models with macro variables. Methodological questions
about inference, choice of speci..cation of latent factors and ad hoc parameter re-
strictions occurring in existing models motivated the consideration of a number of
versions of the model. One group of versions is speci..ed in continuous-time with
daily data, where latent factors are de..ned via Chen-Scott inversion, and estimated
using maximum likelihood. Another group is speci..ed in discrete time with monthly
dynamics, with factors extracted through the Kalman ..Iter, and estimated using
MCMC. We estimated three of the monetary policy speci..cations proposed by Ang
et al. (2005).

The models were used to analyze the Brazilian yield curve, which, because the
country is an emerging market, has singular characteristics. The Brazilian economy
evolved from a regime of high intation and indexation up to 1994 to one of low
intation under a new currency, with a ..xed exchange rate regime (a “sliding peg”)
that limited monetary policy options up to 1999, and then to an infation targeting
regime with a foating exchange rate. This poses great challenges for the inference
of the a¢ne models.

The main results are the following:

(1) The exchange rate and the expected intation improve the model’s capacity
to explain yield curve movements.

(2) In spite of the cited dizerences, the continuous and the discrete versions
show qualitatively similar results in most cases.

(3) Ingeneral, restrictions on the number of parameters had a low exect on the
adherence, but signi..cantly altered the dynamic properties of the model.
Care must be taken in the use of arbitrary restrictions.

(4) An important part of the variance of the yields is due to monetary factor
shocks, which do not allow a direct interpretation, but is related to the
level and slope of the yield curve and may accommodate omitted macro
variables.

(5) The impulse response analysis showed that intation shocks produce a tem-
porary rise of moderate magnitude in the level, and exchange rate shocks
produce signi..cant changes in the slope of the curve, mostly through the
long-term yields.






CHAPTER 2

The Role of Macroeconomic Variables in
Determining Sovereign Risk

1. Introduction

Sovereign risk is a subtype of credit risk related to the possibility of a govern-
ment failing to honor its payment obligations. It is a fundamental component of
emerging countries’ yield curves. Sovereign risk is also very important for emerging
market ..rms, since the cost of foreign ..nancing typically rises with the country risk.
Accordingly, the following questions are of particular interest: What are the factors
most arecting the sovereign yield curve? Which variables have greatest impact on
default probabilities? This study presents an empirical investigation of these ques-
tions by using an a¢ne term structure model with macroeconomic variables and
default risk?.

There are two main approaches in credit risk modeling: structural and reduced
form models2. While the former provides a link between the probability of default
and ..rms’ fundamental variables, the latter relies on the market as the only source
of information regarding ..rms’ credit risk structure. Black and Scholes (1973) and
Merton (1974) proposed the initial ideas concerning structural models based on
options theory. Black and Cox (1976) introduced the basic structural framework
in which default occurs the ..rst time the value of the ..rm’s assets crosses a given
default barrier. More recently, Leland (1994) extended the Black and Cox (1976)
model, providing a signi..cant contribution to the capital structure theory. In his
model, the ..rm’s incentive structure determines the default barrier endogenously.
That is, default is determined endogenously as the result of an optimal decision
policy carried out by equity holders.

All the papers cited above deal with the corporate credit risk case. However,
the sovereign credit risk dicers markedly from corporate risk®. For instance, it is
not obvious how to model the incentive structure of a government and its optimal
default decision, or what “assets” could be seized upon default. Moreover, post-
default negotiating rounds regarding the recovery rate can be very complex and
uncertain. Consequently, the use of structural models to assess the default risk of
a country is a delicate question. Not surprisingly, it is di¢cult to ..nd studies of

LIn this article, the term “macroeconomic (macro) variable” refers to any observable factor.

2Giesecke (2004) provides a short introductory survey about credit risk models.

3As discussed by Du¢e et al. (2003), the main digerences are: (i) A sovereign debt investor
may not have recourse to a bankruptcy code at the default event. (ii) Sovereign default can be a
political decision. (iii) The same bond can be renegotiated many times. (iv) It may be di¢cult
to collateralize debt with assets into the country. (v) The government can opt for defaulting on
internal or external debt. (vi) In the case of sovereign risk, it is necessary to take into account the
role played by key variables such as exchange rates, ..scal dynamics, reserves in strong currency,
level of exports and imports, gross domestic product, and infation.

29
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sovereign debt pricing based on the structural approach®. Therefore, we opt to use
reduced models, where the default time is a totally inaccessible stopping time that
is triggered by the ..rst jump of a given exogenous intensity process®. This means
that the default always comes as a “sudden surprise”, which provides more realism
to the model. In contrast, within the class of structural models, the evolution of
assets usually follows a Brownian dicusion, in which there are no such surprises
and the default time is a predictable stopping time.

Lando (1998), and Du¢e and Singleton (1999) develop versions of reduced
models in which the default risk appears as an additional instantaneous spread in
the pricing equation. The spread can be modeled using state factors. In partic-
ular, it can be incorporated into the a¢ne framework of Du¢e and Kan (1996),
a widely used model o=ering a good compromise between fexibility and numer-
ical tractability®. Duce et al. (2003) extend the reduced model to include the
possibility of multiple defaults (or multiple “credit events”, such as restructuring,
renegotiation or regime switches). The model is estimated in two steps. First,
the risk-free reference curve is estimated. Next, the defaultable sovereign curve is
obtained conditional on the ..rst stage estimates. As an illustration, they apply
their model to analyze the term structure of credit spreads for bonds issued by
the Russian Ministry of Finance (MinFin) over a sample period encompassing the
default on domestic Russian GKO bonds in August, 1998. They investigate the
determinants of the spreads, the degree of integration between dicerent Russian
bonds and the correlation between the spreads and the macroeconomic variables.
Another paper applying reduced model to emerging markets is Pan and Singleton
(2008), who analyze the sovereign term structures of Mexico, Turkey, and Korea
through a dynamic approach.

Nevertheless, DucCe et al. (2003) and Pan and Singleton (2008) use a pure la-
tent variables model. Thereby, the impact of macro factors changes on bond yields
can be evaluated only indirectly through, for instance, a regression between observ-
able and unobservable variables. Moreover, in pure latent models, the unobserv-
able factors are abstractions that can, at best, be interpreted as geometric factors
summarizing the yield curve movements, as shown by Litterman and Scheinkman
(1991).

The modern literature linking the dynamics of the term structure with macro
factors starts with Ang and Piazzesi (2003), who propose an ingenious solution
to incorporate observable factors in the original framework of a®¢ne models. In
their model, the macroeconomic factors acect the entire yield curve. However, the
interest rates do not arect the macroeconomic factors, which means that monetary
policy is inemective. Similarly to Duce et al. (2003), they employ a two-step
estimation procedure, ..rst determining the macro dynamics and then the latent
dynamics conditional on the macro factors. Ang et al. (2007) also combine macro
factors and no-arbitrage restrictions. Nevertheless, they use a Markov Chain Monte
Carlo (MCMC) technique, which allows asingle step estimation. On the other hand,
Amato and Luisi (2006) estimate defaultable term structure models of corporate

4Exceptions are Xu and Ghezzi (2002) and Moreira and Rocha (2004).

5A stopping time is totally inaccessible if it can never be announced by an increasing sequence
of predictable stopping times (see Schénbucher, 2003).

6An a¢ne model is a multifactor dynamic term structure model, such that the state process
X is an a¢ne diausion, and the short short-term rate is also a¢ne in X
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bonds with the inclusion of macroeconomic variables following a conditional three-
step procedure: macro factors, then U.S. yield curve, and in the end corporate
bonds.

Following the advances brought by these previous studies, we examine the im-
pact of macro factors on a defaultable term structure through an ad¢ne model
similar to that of Ang and Piazzesi (2003). We provide a comparison among a
variety of speci..cations in order to determine the macro factors that most acect
credit spreads and default probabilities of an emerging country. We also use impulse
response and variance decomposition techniques to analyze the direct infuence of
observable macro factors on yields and default probabilities.

However, before estimating the parameters, one must choose an identi..cation
strategy. Not all parameters of the multifactor acne model can be estimated,
since there are transformations of the parameter space preserving the likelihood.
When sub-identi..ed, parameters can be arbitrarily rotated, while over-identi..ed
speci..cations may distort the true response of the state variables. Based on the
..ndings of Dai and Singleton (2000), we propose an identi..cation strategy for a¢ne
models with macro factors and default.

We select Brazil as the case study. The reason for this choice is that Brazil is one
of the most important emerging countries with arich history of credit events’. When
using Brazilian data, one must take into account that frequent regime switches have
occurred until recently, such as change from very high infation to a stable economy
(Real Plan, July 1994), change from ..xed to foating exchange rate in a currency
crisis in January 1999, and change of monetary policy to intation targeting in
July 1999. Thus, our sample comprises ..ve and a half years of historical series.
This sample size is compatible with that found in other recent academic studies
containing data from emerging economies (see, for instance, Pan and Singleton,
2008, and Almeida and Vicente, 2009). Furthermore, following these authors, we
decided to employ continuous-time modeling with high-frequency data in order to
avoid small-sample biases.

Our main model contains ..ve state variables: one latent factor for the reference
default-free curve, one external macro factor, one internal macro factor, and two
latent factors for the Brazilian sovereign yield curve. We test the following observ-
able variables: Fed interest rates, VIX (index of implied volatility of options in
the Standard & Poor’s index), Brazilian Real/US Dollar exchange rates, Sdo Paulo
Stock Exchange index (IBovespa), and Brazilian interest rate swaps. In the estima-
tion stage we follow common practice and use a two-step procedure as implemented
by Duce et al. (2003).

In a nutshell, we contribute to the international empirical ..nance literature in
at least two aspects. First, we extend the works of Duce et al. (2003) and Pan
and Singleton (2008) by incorporating macro variables in a dynamic term structure
model with default risk. Second, our model allows a full interaction between latent
and observable sovereign factors, which in a sense extends the study of Ang and
Piazzesi (2003)8.

"Jointly with India, Russia and China, Brazil is considered as among the faster growing
developing economies in the world. Goldman Sachs refers to these countries as BRICs, an acronym
that means Brazil, Russia, India and China (see Goldman Sachs, 2007).

8Diebold et al. (2006), using a simple statistical model, ..nd strong evidence of two-way
interaction between latent and macro factors.
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Our main ..ndings can be summarized as follows. First, VIX and Fed rates
strongly acect the default probabilities in the short and in the long term, respec-
tively. Second, VIX has a great ecect on Brazilian sovereign yields, more than any
investigated domestic macro indicator. This result agrees with one of Pan and Sin-
gleton’s (2008) conclusions that VIX has the most explanatory power for Mexican
credit default swap (CDS) spreads. Third, among the observable domestic factors
only the slope of yield curve presents signi..cant explanatory power of the Brazilian
credit risk spread. Finally, a latent factor highly correlated with the level of the
Brazilian sovereign curve predicts a substantial fraction of the yield and default
probability movements. Since the Fed short rate has greater impact on the de-
fault probabilities than Brazilian domestic short rate, our model suggests that U.S.
monetary policy is more important to the Brazilian term structure of credit spreads
than the Brazilian monetary policy. We also assert that volatility of international
market (measured in our model by VIX) is more important to determine Brazilian
spread than local conditions. On the other hand, the moderate signi..cance of the
domestic yield curve slope indicates that expectations of Brazilian investors play
an important role in determining the sovereign yield and default probabilities.

The rest of this article is organized as follows. In Section 2 we present the model.
Section 3 describes the dataset used. Section 4 details the estimation procedure.
Section 5 presents the results of implementing the dynamic models. Section 6 ozers
concluding remarks.

2. Ac¢ne Model with Default Risk and Macro Factors

Uncertainty in the economy is characterized by a ..Itered probability space
(=, (F¢); o, F,P)where(F), isa ...Itcration generated by astandard N-dimensional

Brownian motion WP = 'Wf, ...,WE de.nedon (-, F,P) (see Du¢e, 2001). We
assume the existence of a pricing measure Q under which discounted security prices
are martingales with respect to (F;), ,. The price PP of a defaultable bond at
time ¢ that pays $1 at maturity time t+Tis given by )

h - R t+T - R t+T 1
@1) PPT) = EQ 1pmragel ¢ ) 4z a0 el rude)
where 14 is the indicator function of the set A. The ..rst part of the right-hand
side of (2.1) represents what the bondholder receives if the maturity time comes
before the default time 7,4, a totally inaccessible stopping time. In case of default,
the investor receives the random variable 7., at the default time. Lando (1998),
and Duc¢e and Singleton (1999) prove that if 74 is doubly stochastic with intensity
n,, the recovery upon default is given by Z., = (1 j ¢;,)PP (74, T), where ¢, is the
loss rate in the market value, and if other technical conditior;s are satis..ed, then

A o
2.2) PP, TY=E° exp i (ru+ su)du
t

where s, = ¢;n, is the spread due to the possibility of default.

We now briety explain the concept of doubly stochastic stopping time (for
more details, see Schénbucher, 2003 or Dude, 2001). De.ne N(t) = 1[,-q
as the associated counting process. It can be shown that N(t) is a submartin-
gale. Applying the Doob-Meyer theorem (see Shiryaev, 1995), we know there ex-
ists a predictable, non-decreasing process C(t) called the compensator of N(t).
One property of the compensator is to give information about the probabilities of
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the jump time. The expected marginal increments of the compensator dC(t) are
equal to the probability of the default occurring in the next increment of time:
EQ [CE+cCt) j CH=Q[N(E+ ¢t) | N(t) =1jF,]. An intensity pro&ess n, for
N(¢) exists if it is progressively measurable and non-negative, and C'(t) = n(u)du
Under regularity conditions, it turns out that

. 1 .
2.3) n(t) = JLTOE&Q[M - t+ Ctjry > t].
Thus, n(t) represents the evolution of the instantaneous probability of default-
ing by ¢ + d¢ if default has not occurred up to ¢. Finall;gRTd is said-to be doubly

stochastic with intensity n if N(t2) i N(¢1)jn >»Poisson ttf n(u)du . Therefore,

in the reduced model, the default event is essentially given by the ..rst jump of a
Poisson process with stochastic intensity.

Our model is within the class of acne models analyzed by Du¢e and Kan
(1996). The state vector ¥, 2 RY incorporates information about the United

States, XS = 0Y3 _MPS | and Brazil, XER = MER 92R | that is, X, =

i ¢
695 MYS MBR 9BR | where the variables , = 6YS 0BR and M, = ' MUS, MBR

represent latent and observable factors, respectively. In the a¢ne model with de-
fault, s; and r; are speci..ed as a€¢ne functions of the state vector. In other words,
we assume that s, = &5 + 05 ¢ X, and r, = &5+ (67Y5,67BR) ¢ X, = o + o7 ¢ X,
where 63, 65 2 Rand 67, 67 2 RY. Then the default-adjusted short-rate process is
(24) Rt = R(Xt) =r+ s = (56 +(56 + (5{ +6i)¢Xt = (50 +(51 ¢Xt

The dynamics of the state variables is given by:
deys
dary’® é_
dMBR 57
doBR
US ,Us 0 0 0

2

us us us,us

g Ké4Fé0US K%I§A6S Bg BR BR BR zgg 5
Ky~ K

dXx; =

2 US

MUS é§

U'N\JOO

KBF% us K()Bzus KgB?[BR KBF% BR £5R gtBR
2
éj’“s 0 0 0 2 dWOP’US(t)
S,US us,us 7
"'E §éMR€US §¥R’%S BF?BR 0 zg AWy O
810 8y Bu 0 W; zi(t)
55 s SRS SRSt aw R

Q5% K(¢ i X.)dt +8dWP (@),

where K and § are N£N matricesand ¢ 2 RY. That is, X follows an adne process
with constant volatility. Similar to Duce et al. (2003), we set a “block-triangular”
form for the dynamics of the state variables. The zeros above the main diagonal
of & and K imply that the American yield curve factors acect the Brazilian yield
curve factors, but not vice versa. Furthermore, unlike Ang and Piazzesi (2003), we
allow the macro and yield factors to interact fully.

The connection between martingale probability measure Q and objective prob-
ability measure P is given by Girsanov’s Theorem with a time-varying risk premium:



342. THE ROLE OF MACROECONOMIC VARIABLES IN DETERMINING SOVEREIGN RISK

(2.6) dw? =dWR i (Ao + A\ X,)dt,

3 -~

where Ao = A5°,A8R 2RY and A, is N £ N matrix given by

T Us,Us B

_ A 0

AL = BR,US BR.BR
Ay A

As a result, tlhe price PBR of a defaultable bond is exponential acne, that is,
PBR(t,T) =exp aBR(7) +bBR(7)X, , where 7 =T j t, and aBR and BR solve a
system of Riccati dicerential equations:

VER(M0 = §(61+07) i K*WBR(7)
@7 aBR(M)0 i (0 +05) + EVKBR (1) + %bBR (1)'88"%BR (1),

with K* = K+8); and &* = K*11(K¢ j 8)\o). An explicit solution for this system
of dicerential equations exists only in some special cases, such as diagonal K.
However, the Runge-Kutta method provides accurate numerical approximations.
Thus, the yield at time ¢ with time to maturity 7 is given by

YR (1) = ABR (1) + B ()65 +

(2.8)
BYPS () MPS + BSFBR(mMPE + BFRBR(1)0FR.

If the loss given default rate is constant, i.e. ¢, = ¢ for all ¢, then the term
structure of default probabilities is given by (see Schénbucher, 2003):
" 1

Z vt
(2.9) Pr(t,T) =1 EY exp i S—é‘du ,
t
which can be calculated similarly to the conditional expectation contained in the
pricing equation, with the objective measure replacing the martingale measure. It
turns out that Pr(t,7) =1 j exp(a”"(7) + bP"(1)X,), where «""and bP" are again
solutions of Riccati dizerential equations:

(2.10) bPUT) = ie/0 i KP(r),
a"r) = ;53/z+g“K%F’f(T)+—;bpf(f)°§§°bpf(7).

We close this section with two remarks. First, the reduced model can be re-
placed by a standard term structure model with macro factors: it su¢ces to let the
US factors take the role of macro factors for the defaultable bonds. However, the
interpretation of the spread as the instantaneous expected loss and the computation
of model implied default probabilities are no longer possible. Second, all the models
in this article are in the class of Gaussian models, the simplest speci..cation of the
acne family. The inclusion of macro variables and default substantially compli-
cates the model and its estimation. Therefore, we decided not to use a model with
stochastic volatility. However, note that macro factors such as the VIX volatility
can approximately play the role of stochastic volatility of the non-Gaussian a¢ne
models. Furthermore, models with constant volatility are the best choice matching
some stylized facts (as shown, for instance, by Duzee, 2002, and Dai and Singleton,
2002) and to describe corporate CDS spreads (see Berndt et al., 2004).
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2.1. Impulse Response and Variance Decomposition. One way to eval-
uate the impact of macro shocks on the term structure of interest rates and default
probabilities is through impulse response functions (IRF) and variance decomposi-

tions (VD).
The response of the yield Y; = A + BX; is given by
@11) ikergP o ierergP s iskergP o
B§ ¢t€t Bel § ¢t€t Betl § ¢t€t Bel § ¢t€t
t+0 t+1 t+2 t+3

and the response of the logarithm of the survival probability, log Pr(¢,7) = a"" +
bPTX,, is
(212) P p— p—
'8 Cte, bPTeilFg Cte, rei2KTlg ¢te, PTIZRTIE Cte
t+0 t+1 t+2 t+3

Moreover, the contribution corresponding to the jt factor in the variance de-
composition of Y, (7) and log Pr.+,(7) at time ¢ are
3

-~

R
VDj(Y) — BO(T) 5 t"'heiK(t+hi“)§j§%(eiK(t+hiu))odu ,B(T),

(2.13) 0 t+h - . ; i
VD,(log) = bPP(r) P eiKUrning §)(ei KR inYdy 1Pr(r).

3. Data

Our sample consists of a daily series of the following variables: (i) constant
maturity zero-coupon term structure of U.S. yields provided by the Federal Reserve
(Fed); (ii) constant maturity zero-coupon term structure of Brazilian sovereign
yields constructed by Bloomberg®; (iii) the implied volatility of S&P 500 index
options measured by the Chicago Board Options Exchange Volatility Index - VIX;
(iv) Brazilian Real/US Dollar exchange rate, (v) Sdo Paulo Stock Exchange index
- IBovespal®, (vi) Brazilian domestic zero coupon yields extracted from DI x Pre
swaps obtained from Brazilian Mercantile and Futures Exchange (BM&F)!. The
..rst two data set are used as basic yields and the others take the role of observed
(macro) factors in our model.

The sample begins on February 17, 1999, and ends on September 15, 2004, with
a total of 1320 days. The sample starts one month after the change of the exchange
rate regime from ..xed to foating in January 1999, forced by a devaluation crisis.
The maturities of the US and Brazilian sovereign yields are the same, namely 3 and 6
months, 1, 2, 3, 5, 7, 10, and 20 years while the maturities of the Brazilian domestic
yields are 1, 3, and 36 months. Figure 1 depicts the US and Brazilian sovereign
yields. Figure 2 shows the observed variables. Note that the American yield curve is
almost tat in the beginning of the sample. After January 2001, short-yields decline
over time and the shape of the term structure changes to upward sloping. In end
of 2002, there is a stress movement in the Brazilian market due to a presidential
succession process in which the candidate of the opposition won the election.

9The dataset of sovereign yields provided by Bloomberg is extracted from Brazilian Global
bonds.

101hovespa is the main Brazilian stock market index.

11T he ID rate is the average one-day interbank borrowing/lending rate, calculated by CETIP
(Center of Custody and Financial Settlement of Securities) every business day. The ID rate is
expressed in ezective rate per annum, based on 252 business-days.
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Figure 1. U.S. and Brazilian sovereign yields. This ..gure con-
tains time series of U.S. (top panel) and Brazilian sovereign (bot-
tom panel) yields with time to maturity of 3 and 6 months, 1, 2,
3,5, 7, 10 and 20 years between February 17, 1999 and September
15, 2004.

4. Estimation

The parameters are estimated via the maximum likelihood method. Although
it is possible to make one-step estimations of the U.S. and Brazilian sovereign yield
curves, it is computationally more interesting to work with asimpler technique using
a two-step procedure, as in Duce et al (2003). We use the U.S. term structure as
the reference curve (default-free curve) for our analysis. In the ..rst step we estimate
the reference curve using only latent factors. Then, conditional on the parameters
and state vector of the U.S. curve we estimated the Brazilian sovereign yield curve.

We now describe the procedure adopted for a model with macro variables and
default. The estimation of U.S. parameters is a particular case of this general frame-
work. By stacking the parameters and state variables, the yield of a defaultable
bond (Equation 2.8) can be written as

(4.1) YPR(r) = APR(r) + BER(7)X,,

where the dynamics of X, is given by Equation 2.5.

The likelihood is the joint probabilityidensity functign of the sequence of ob-
served Brazilian sovereign yields V2% = "v2® ... ¥B®" and macro factors M.
It is possible to show that the transition density of X, jX; _,, denoted by fx, is
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Figure 2. Observable variables. This ..gure contains time series
of variables used as observable factors in our model between Febru-
ary 17, 1999 and September 15, 2004. The upper left panel shows
the evolution of the VIX (implied volatility of S&P 500 index op-
tions). The upper right panel presents the logarithm of the Brazil-
ian Real/US Dollar exchange rate. The left lower panel presents
the logarithm of the Ibovespa (Sdo Paulo Stock Exchange index),
and the right lower panel shows the Brazilian domestic zero-coupon
yields with time to maturity of 1, 3 and 36 months.

5 .
normally distributed with mean p8R = ei KUiitian x,  + [y jeiKUiitian) ¢

tq

and variance (05R)* = i K(tiinggli Kt:iiw’y, (see. for instance, Fackler,
tig1

2000).

Suppose ..rst the vectors #%F and Y;®R have the same dimension, that is, we
observe as many yields as latent variables. Then, we can invert a linear equation
and .nd the unobserved factors §2% as a function of yields Y;2BR and observable
factors MER. Using change of variables, the log-likelihood function can be written
as

X
LYy, My, 2) = logfx (XijXi51,2) + (H i DlogdetjJag,
t=2
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where H is the sample size, & = (00,01, K,&, 8, Mo, A1) IS a vector stacking the

model parameters, and the Jacobian matrix is
2 3

BB®R(71)
4.2) Jac= BBR(r, ... 7xer) = 3 .5,
BBR(7yer)

where 71,...,7y8r are the time to maturities of the observable Brazilian yields.
If we want to use additional yields, direct inversion is not possible. This is

known as “stochastic singularity”. One solution is to follow Chen and Scott (1993),

and add measurement errors to the extra yields. Let NER be the number of Brazil-

ian sovereign yields observed on each day, N3% > NB®R where NBR is the size of

XBR. We select NBR yields to be priced without error. The other (Vg% j NBR) are
priced with independent normal measurement errors. Therefore, the log-likelihood

function is

X 1 X )
L(Vi, My, @) = logfx (XijXi31,2) + (H i DlogdetjiJag +7  ui="tuy,
t=2 t=2
where u; is the vector of yield measurement errors and — represents the covariance
matrix for u;, estimated using the sample covariance matrix of the u;’s implied by
the extracted state vector, and Jac = BBR (74,00t ST NBR)-

In order to complete the estimation procedure, it is necessary to identify the
model. If the model is sub-identi..ed then there are more than one set of parameters
that generate the same likelihood. Therefore, not all parameters can be estimated.
On the other hand over-identi..ed models produce sub-optimal results that may
distort the impulse response functions. However, identi..cation of parameters in
a state-space system is tricky. In the next subsection, we provide identi..cation
strategies for some speci..cations of our model based on the results of Dai and
Singleton (2000).

4.1. Model Identi..cation. Here, we show how to identify the parameters of
a Gaussian a€ne model with macro factors and credit spreads. This approach is
based on the study of Dai and Singleton (2000).

First we consider the default-free case. Suppose there are p macro variables M
and g latent variables 6. The vector X = (,0) follows a Gaussian a¢ne dynamics:

- K- T

. dnM, -~ - Kyv Ky v - M,
dX; = = ’ ' dt
K do, Kou Kop &g ' 0
) 5 P 5
(4.3) w S Sao T AW T e x a4+ saw ().

8om 8o dwp(t)

The instantaneous short-term rate is given by r; = §p+41¢X; while the market price
of risk obeys Equation 2.6. Hence, the dynamics of X in the risk-neutral measure
isdX = K*(¢* j X,)dt + 8dW Q(t) and the yield curve is an a¢ne function of X,
Yi(r) = A(r) + BM(r)M, + BY(r)0 = A(r) + B(r)X,. The parameter vector is
denoted by & = (4, 41, K, £, Mo, M1, 8).

Some of the above parameters must be arbitrarily .xed, otherwise there are
multiple solutions to the estimation problem since we can de..ne operators that
preserve the likelihood as shown below.
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Let L 2 R+ DE(P+49) he 3 non-singular matrix and v 2 RP*7 a vector such that
H il HooT
L= 0 and v = 0

a f vg

where | 2 RPE? s the identity matrix, o 2 R?EP, 3 2 R1£4, and v 2 R4. Consider
the following maps:

“4.4)

TLﬂ,fa, Xg =

(0o i O\ L0, (L1160, LKLY v+ L& Ng § M Litv, A\ L' L8), LX +vg
and
(45) TOfa7Xg :f(doaélaKvga)‘OvAlv§OO)7X93

where O 2 RPTDE®+9) js 3 rotation matrix.

Proposition 1. The operators T}, , and T, preserve the likelihood of the a€ne
model de..ned above under the Chen-Scott (1993) estimation procedure.

Proof
The log-likelihood L of the a®¢ne model under the Chen-Scott (1993) inversion
is
L(a7 X) = IngY(Y;E17 sy Y;ijav X) =
log fx (Xiy, ooy Xt D) T;,'ngu(utl,...,UtH) + logjdet Jacj” it =
(H i Dlogjdet B+ |1, logfx i, (Xii®) + 10gf,(u) =, j
. . 9; = 1 , i kel gaol ine
(H i Dlogjdet B%j j 2(H j 1)logdet ¢t ef 88’ ei

P P UL N S AL El
+ Tologfu(u) i3 (X iop)! Gt iR 88 i KT (X, ),

where = ei K+ (1 jei K®) X, 0, €L =1; § t;;1 8¢, H is the sample size, and
BY(¢) is evaluated at the time to maturities of yields without measurement errors
(see Equation 4.2).

We begin by proving that L (2, X) = L(T,, (&, X)). The strategy of the proof
is to analyze what happens with each of the four terms of the log-likelihood when the
operator T, , is applied. First, note that the expression under the last summation
symbol is preserved. The transformation of y is

3 .
(T (2, X)) = P LKL St [ 41§ i LKLCL [y, =
LeiK®tLilre + (1 §j LeiK®LilY[X,;1 = Lp.

Then, applying 77, ,, on the last summation expression of the log-likelihood, we have

"3 -3

p— p— oil

(LX, i Lp)® eitKkLi'etpgt gy eilKLY® g ¢t (LX, j Lp) =
-3 -3 '0>i1
i n Leikeiinirgter  reiwerinzser | L(x, ) =
: 3 — 013 i1 e
(X i w)L' LUt einorgPg 1 einergPe pn L(Xy i p)=

3

3
— 0§ 1 —_— i1l
i eikeigPq ' eixergPg

(X 1w
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The second term of the log-likelihood changes to
"3 -3 -
] i P— ) ; P— o
iL(H j Dlogdet eilKL''eirg gy eilKLUeirg gy =
73 -3 -3 - Ya

oop—3  p_ e
(46) i2(H il) logdet eiX®'s ¢t eifk®'§ ¢t +2logdetl =
-3 -3 '>

— 0
i2(H i 1)[logdet eiK¢t§pa eiK‘”§p¢t i (H i DlogdetL.

Itis easy to see that

(H i 1)logjdet B?j (Tr,.,(*,X))=(H i Dlogj det 311 B0
= (H i 1)logjdet 5] + (H i 1)logjdet3*"].

Since det L = det 3, the last term that appeared in (4.6) cancels out with the last
term in the expression above.

Moreover, it is also easy to see that u; does not change under the transformation
TL.v-

Finally, L(&, X) = L(To (&, X)) since the only expression arected by the ro-
tation is preserved:

-3 -3
eiK¢t§00pa eiK¢t§Oopa

3 -3 ’,i]_
— eiK¢t§pa eiK¢t§| ¢t ’ )

’0°i1

2

Therefore, there are in..nite parameter vectors with the same likelihood. Hence,
before estimation through the maximum likelihood method, some parameters must
be ..xed. On the other hand, the imposition of over-identifying restrictions may
produce sub-optimal results that distort the impulse response functions. The model
can be considered identi..ed if all the degrees of freedom of the model, which are
given by «, 3, vy and O, are eliminated.

Note that vy can always be used to set {, = 0. In addition, the rotation O
implies that & must be a triangular matrix for a given state vector order. Hence,
we choose 8y and &), to be lower triangular and 8,, = 0. Finally, « and g
can be setsothat 899 =1, 879 = 0, and Ky g is lower triangular. This completes
the identi..cation of the default-free case.

We now turn to the case with default. Formally speaking, the reduced credit
risk model of Duc¢e and Singleton (1999) is simply a higher-dimensional a¢ne
model and the same identi..cation procedure can be applied. There are, however,
two subtleties involved.

The ..rst is that there are natural restrictions that can be placed to the default
model coming from economic considerations. For instance, we have considered that
the American yield curve and macro factors acect the Brazilian curve, but not
vice versa. However, the model must be ..rst identi..ed from the econometric point
of view before additional restrictions are imposed, otherwise the same parameters
might be ..xed twice, leaving unresolved degrees of freedom.

The second point is that in the default-free case was illustrated supposing
that the macro factors are “more endogenous” than the latent factors. In the
default case, X = (8Y5, MYS, MBR ¢BR), thus the American latent factors come
before the Brazilian factors, which would in principle change the operator 77, ,, and
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consequently the degrees of freedom. The other inversion, namely the American
macro vector coming after the latent vector, is due to the fact that only the VIX is
considered and it does not interfere with the identi..cation procedure.

However, since we use a two-step procedure, the parameters and state factors
related to the American term structure are estimated ..rst. So, we can think of
the American latent factors as if they were “macro” factors and proceed to the
identi..cation considering that #BR = (Y MYS MBR) is in fact the macro vector
for the default case.

In summary, the economic restrictions impose that §; = (5§’US,O) and that
the matrix K is block-triangular, which means that Brazilian factors do not acect
American factors. Therefore the identi..ed 8 is given by:

1 T © v o o 1

g 0 USs,US
MM , Where §MM=@ 0 §M,M 0 A
0 | §BRUS gBRUS gBRBR
M,8 M, M M, M

5. Results

In this section we analyze the results of three dizerent speci..cations of our
model estimated by the maximum likelihood method described in Section 4. We
begin with a simple macro-to-yield without default speci..cation. In order to avoid
local maxima, many trial numerical optimizations are performed using the Nelder-
Mead Simplex algorithm until stable results are obtained. Then, taking advantage
of these results, we select starting vectors for the estimation of two higher di-
mensional models with default. After that, other independent trial maximization
starting from random vectors are performed. Finally we choose the best results.
Although this procedure may be path-dependent, the “curse of dimensionality”
does not allow the use of a complete grid of random starting points as would be
desirable.

5.1. Macro-to-yield without default. The simplest speci..cation of our
model is characterized by a macro-to-yield dynamics without default. It is ex-
actly the model of Ang and Piazzesi (2003) applied to the Brazilian yield curve.
The absence of default implies that American latent factors (9”°) are unnecessary.
In a macro-to-yield model the observable factors azect the latent factors but not
vice versa. This means that KJZR(;BR is a matrix of zeros.

The macro-to-yield without default speci..cation presents three state variables,
X = (M, 65R,658R). 1t serves to indicate the relevant macro factors for the sovereign
yield curve, which are then selected for use in the other models. To extract Brazilian
latent factors, we set the 3-month and 5-year sovereign yields to be fawless. Nine
versions are estimated, each having a direrent observed factor AM: (1) VIX; (2)
logarithm of the Brazilian Real/US Dollar exchange rate (LEX); (3) logarithm of
the IBovespa (LIBOV); (4) BM&F 1-month yield (B1m); (5) BM&F 3-year yield
(B3y); (6) BM&F slope (Bsl) = B3y - B1m; (7) Fed 1-month yield (F1m); (8) Fed
10-year yield (F10y), and (9) Fed slope (Fsl)= F10y - F1m.

Table 1 presents the log-likelihood divided by the number of observations (L/ H)
and the mean (for the nine maturities) of the absolute measurement errors in basis
points (MAE) for all speci..cations. These measures can be used to evaluate the
dicerent versions of a model. Table 1 also presents the correlations between factor
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1 (#2R) and the slope of the Brazilian sovereign term structure (p1,s) and between

factor 2 (637) and the level of the Brazilian sovereign term structure (p,,). The
likelihood does not vary signi..cantly, but the speci..cations that included US rates
show slightly higher values. The mean absolute measurement error is around 60
basis points. The latent factor OER represents the level, since it is highly correlated
with this factor in all cases, while G?R can be interpreted as the slope due to its
positive correlation with the slope of the yield curve.

Table 1. Summary of results of the macro-to-yield without de-
fault model.

VIX | LEX] LIBOV | BIm | B3y | Bsl | Fim | F10y | Fsl
L/H | 44.7| 44.3 44.3 448 | 44.8 | 45.0| 475 | 475 | 47.1
12 0.20 ] 0.37 0.29 0.59 [ 0.56] 0.57( 0.66 [ 0.69 | 0.61
po; 1099 0.83 0.98 0.94 [0.94] 1.00f 0.94 | 0.84 | 0.94
MAE | 54 66 56 62 62 | 58 62 61 62

This table presents the log-likelihood divided by the number of observations (L/ H), the
mean (for the nine maturities) of the absolute measurementerrors in basis points (MAE),
and the correlations between factor 1 (#2R) and the slope of the Brazilian sovereign yield
curve (p, ;) and between factor 2 (65%) and the level of the Brazilian sovereign yield curve
(p2,)- The macro-to-yield without default model presents only one observable factor in
each speci..cation. They are (1) VIX; (2) logarithm of the BR Real/US Dollar exchange
rate (LEX); (3) logarithm of the Ibovespa (LIBOV); (4) BM&F 1-month yield (B1m);
(5) BM&F 3-years yield (B3y); (6) BM&F slope (Bsl) = B3y - Blm; (7) Fed 1-month
yield (F1m); (8) Fed 10-years yield (F10y), and (9) Fed slope (Fsl)= F10y - F1m.

In order to measure the relative contributions of the macro and latent factors
to forecast variances we perform variance decompositions. Table 2 presents the
proportion of the 1-month and 9-month ahead forecast variance of the {3m, 3y,
20y}-yields attributable to each observable factor used in each of the nine versions.
This provides a comparison of the importance of the dimerent macro variables for
the sovereign yield curve by showing the macro participation on the variance of the
yields 1 and 9 months after the shock. The order of the impact can be summarized
as follows: VIX and BM&F slope present the largest exect, accounting for up to 69%
and 79% of the 20-year yields 9 months after the shock. Although still signi..cant,
the contribution of Brazilian Real/US Dollar exchange rate, 10-years Fed yield, Fed
slope, and IBovespa are much smaller. Finally, BM&F 1-month and 3-year yields,
and Fed 1-month yield show negligible ecect.

5.2. Macro-to-yield with default. In this subsection, we introduce default
risk into the previous speci..cation. Again, we assume that the state variables
follow a macro-to-yield dynamics. There is a need for another latent factor besides
the macro factor and the two Brazilian latent factors. The job of this new factor
is to capture the US term structure, which represents the reference curve. The
parameters corresponding to the US latent factor are estimated in a ...rst step, while
the other parameters are estimated conditional on the ..rst step. The American
latent factor is obtained from the yield with 3 months maturity while the Brazilian
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Table 2. Variance decompositions of the macro-to-yield without
default model.

Yields 1 month ahead
VIX | LEX | LIBOV | Blm | B3y | Bsl { FIm | F10y | Fsl
3m 15 7 1 0 0 16 0 0 0
3y 23 9 0 0 0 23 0 4 0
20y 54 9 6 0 0 50 0 8 0
Yields 9 months ahead
VIX | LEX | LIBOV | Bim | B3y | Bsl | FIm | F10y | Fsl
3m 31 7 22 0 0 46 0 0 6
3y 46 11 13 0 0 61 0 10 7
20y 69 14 21 0 0 79 0 16 7

This table presents the proportion (in percent) of the one month and nine months ahead
forecast variance of the {3m, 3y, 20y}-yields attributable to each observable factor. The
macro-to-yield without default model presents only one observable factor in each speci..-
cation. They are (1) VIX; (2) logarithm of the BR Real/US Dollar exchange rate (LEX);
(3) logarithm of the Ibovespa (LIBOV); (4) BM&F 1-month yield (B1m); (5) BM&F
3-years yield (B3y); (6) BM&F slope (Bsl) = B3y - B1m; (7) Fed 1-month yield (F1m);
(8) Fed 10-years yield (F10y), and (9) Fed slope (Fsl)= F10y - F1m.

latent factors are obtained from the sovereign yields with maturities of three months
and ..ve years.

Table 3. Summary of results of the macro-to-yield with default model.

y.o. | VIX]| Bsl | Fsl | B3y
L/H |421|47.0 | 48.2| 49.9 | 47.8
p, | 028]0.37] 042 -0.17 [ 0.19
pr; 1 0.99]0.97]0.98| 0.96 | 0.86
MAE| 68 | 53 | 50 59 54

This table presents the log-likelihood divided by the number of observations (L/ H), the
mean (for the nine maturities) of the absolute measurementerrors in basis points (MAE),
and the correlations between factor 1 (§2R) and the slope of the Brazilian sovereign yield
curve (py ) and between factor 2 (65R) and the level of the Brazilian sovereign yield
curve (p, ;). The macro-to-yield with default model presents one observable factor, one
latent factor driving the US curve and two latent factors driving the Brazilian curve. The
observable factors are (1) VIX; (2) BM&F slope (Bsl) = B3y - B1m, (3) Fed slope (Fsl)=
F10y - F1m, and (4) BM&F 3-years yield (B3y). The y.0. model refers to a speci..cation
in which only yields are used, that is, a speci..cation without observable factors.

In view of the results of the previous subsection, we divide the observable
factors into three groups. The ..rst one is composed of the VIX and BM&F slope
which are the factors that have the largest impact on the yields. The intermediate
group consists of the Brazilian Real/US Dollar exchange rate, 10-year Fed yield,
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Fed slope, and IBovespa. The third group presents little esect on yields, being
formed of BM&F 1-month and 3-year yields, and Fed 1-month yield. In order to
understand the impact of macro variables on the yields in a model with default, we
use both factors of the ..rst group, one factor of the second group (Fed slope), and
one factor of the third group (BM&F 3-years yield)'2.

Table 4. Variance decompositions of the yields of the macro-to-
yield with default model.

Model y.0. VIX Bsl Fsl B3y
Factor | Yield [ Im [ 9m [ Im | 9m | Im | 9m | Im | 9m | Im | 9m
0vs am|[o| 1|0l 4ol 1]o|6] 1|24
3y o]Jo|lo|l2]o]o|o]|]s]|1]2
20y | o]Jo|lo]1]lo]o|lo]|s5]|]1]2
Macro | 3m - - 151 37| 1 7 2 141 1 11
3y -] - ]2s|5s0] 28| 1|16 0] 2
200 | - | - |s6]70|l 5] 9| 1]a7|] 4] 3
3R | 3m [ 13| 26| 10| 8 | 25| 14| 51| 23| 30| 32
3y | 1|20 1| 2| 8 ]11|24]27|79] 89
20y | 18|12 9| 5| 7| 11| 2 | 13] 85] 91
65R 3m | 87| 74| 75| 51| 74| 77| 47| 57| 68| 53
3y | 99| 80| 74| 47| 89| 80| 75| 63|20 7
20y | 82| 88| 35| 24| 88| 80| 96| 65| 10| 4

This table presents the proportion (in percent) of the one month and nine months ahead
forecast variance of the {3m, 3y, 20y}-yields attributable to each observable factor in the
macro-to-yield with default model. The macro-to-yield with default model presents one
observable factor, one latent factor driving the US curve and two latent factors driving
the Brazilian curve. The observable factors are (1) VIX; (2) BM&F slope (Bsl) = B3y
- B1lm, (3) Fed slope (Fsl)= F10y - F1m, and (4) BM&F 3-years yield (B3y). The
y.0. model refers to a speci..cation in which only yields are used, that is, a speci..cation
without observable factors.

Table 3 summarizes the results of some versions of the macro-to-yield with
default model. It shows the likelihood, correlations and measurement errors of the
yields of each speci..cation. The ..rst column refers to the yields only model (y.o0.)
in which only latent factors are used. The others are macro-to-yield models with
VIX, BM&F slope, Fed slope, and BM&F 3-years yield as observable factors. The
inclusion of the U.S. reference curve produces a gain in likelihood and in ..t, because
the measurement errors are lower. The latent factor 6, remains highly linked to
the level of the sovereign yields.

Table 4 presents the variance decomposition of the {3m, 3y, 20y}-yield for one
and nine months ahead. We see that the VIX is still very important, contributing
with up to 70% of the 20-years yield variation. Other variables accounted for less,
but still some ezect can be attributed to them. Furthermore, in the y.0. version
the US factor seems to be insigni..cant.

12Models with other observable factors from the second and third groups were also tested
providing similar qualitative results.
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Table 5. Variance decompositions of the default probabilities of
the macro-to-yield with default model.

Model y.0. VIX Bsl Fsl B3y
Factor | Term | Im | 9m | Im|9m | Im | O9m | Im | 9m | Im | 9m

gY> am | o|lo]Jof1fofof21f[af[of1
3y | ol 119|600 0| 4] 4]12]|25

20y | 0| 1|69]92| 5| 6| 3] 3]|51]65

Macro| 3m | - | - | 54|61 5| 9| 4 [18] 8] 25
3y | - | - 48| 26| 9 [10|20]22]10] 26

20y | - | - 19| 5| 9| 9]22]23] 9] 09

R | 3m [ 22|28 9| 7|15 12|34 19| 12|21
3y |27 29| 6 | 3| 12| 11| 17| 15| 11| 18
20y | 2729 2| 1 |11 11f[a15] 15[ 11] 24
¢2R | 3m | 78| 72| 37| 30| 80| 79| 62| 60| 70| 56
3y | 73| 71| 27| 11| 79| 78| 60| 59| 45| 31
20y | 73| 71| 10| 02| 74| 74| 59| 59| 16| 6

This table lists the contribution (in percent) of each factor to the one month and nine
months ahead forecast of the {3m, 3y, 20y} default probabilities within the macro-to-yield
with default model.

We also calculate the variance decompositions of the logarithm of the default
probabilities, which can be seen in Table 5. All results presented in this paper are
obtained using a ..xed loss given default ¢ = 50%. This particular choice is, of
course, arbitrary, however there is empirical evidence that the mean of the loss rate
is around this value (see, for instance, Moody’s, 2008)*%. The VIX is responsible
for the greatest ecect, especially in the short-term. According to the model, in
the 1- and 9-month horizon, VIX accounts, respectively, for 54% and 61% of the
3-month default probability. The BM&F and Fed slopes and BM&F 3-year yield
explain 5%, 4% and 8% for 1-month ahead, and 9%, 18% and 25% for 9-month
ahead, respectively, of the 3-month default probability. On the other hand, the Fed
slope has the highest explanatory power for long-term default probability among
the macro factors.

5.3. Bilateral models. In this subsection we present our main model. It has
one American latent factor, one American macro factor (V1X), one Brazilian macro
factor and two Brazilian latent factors. The Brazilian macro factor has a bilateral
interaction with the Brazilian sovereign factors, that is, the macro factors and the
sovereign yield curves fully interact. This means that K5*;®® & 0. Once more, the
American latent factor is obtained from the yield with fnaturity of three months
while Brazilian latent factors are extracted considering that sovereign yields with
maturities of three months and ..ve years are priced without error.

We .x VIX as the American macro factor since it presents the best explanatory
power for the simpler models analyzed in the previous subsections. We test four

13In order to verify the sensitivity of the results to the loss rate, we tested other values
(¢ = 25% and ¢ = 75%) in the macro-to-yield with default model. From a qualitative point of
view the results were very similar.
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Table 6. Summary of results of bilateral model with default.

VIX Bsl [ VIX LIBOV-EX | VIX B3m | VIX B3y
L/H| 525 55.6 52.9 52.9
5. | 048 0.86 0.08 0.04
p,, | 0.93 0.96 0.92 0.93
MAE | 47 51 46 46

This table presents the log-likelihood divided by the number of observations (L/ H), the
mean (for the nine maturities) of the absolute measurementerrors in basis points (MAE),
and the correlations between factor 1 (957) and the slope of the Brazilian sovereign yield
curve (p, ;) and between factor 2 (05R) and the level of the Brazilian sovereign yield curve
(p2,)- The bilateral model with default presents one observable American factor (VIX),
one latent factor driving the US curve, two latent factors driving the Brazilian curve and
one observable Brazilian factor. The observable Brazilian factors are (1) BM&F slope
(Bsl); (2) logarithm of the Bovespa index in US dollar (LIBOV-EX) (3) BM&F 3-months
yield (B3m), and (4) BM&F 3-years yield (B3y).

speci..cations, which only dicer with respect to the Brazilian macro factor. The ..rst
speci..cation takes the BM&F slope as the Brazilian macro factor. This is a very
natural choice because this slope is the observable Brazilian factor that best explains
the yield variations according to the macro-to-yields models. The second use the
logarithm of the IBovespa in U.S. Dollars. This variable combines in single factor
the information of two sources of uncertainty that present fairly good explanatory
power in the macro-to-yield without default framework. Finally, although Brazilian
domestic yields present little ecect, we consider the 3-month and 3-year Brazilian
yields as domestic factors just to implement a robustness test.

Table 6 contains statistical measures of some versions of the bilateral model.
Their likelihoods have increased in relation to the previous models, which indicates
that the second macro factor and the bilateral dynamics add information and im-
prove the in-sample ..t, with the speci..cation containing the IBovespa presenting
slightly higher likelihood. Also, the mean measurement errors of yields decreased
to about 50 basis points. The unobservable factor 6, can still be interpreted as the
level of the sovereign curve, but 6, is in some cases uncorrelated to the slope.

Table 7 reports the variance decomposition of {1m, 3y, 20y}-yields for forecast
horizons of one and nine months ahead. In line with the preliminary models, the
VIX is again the most important macro factor infuencing the yields. The ecect
is stronger on the long end of the curve. Among the domestic variables, only the
BM&F slope presents signi..cant explanatory power. Note that the latent factor
related with the level of the sovereign curve is responsible for a large amount of
yield variations. This suggests the existence of idiosyncratic sources of uncertainty
in the sovereign yield curve that are not explained by the observable factors used
in our model. This result is in agreement with the ..ndings of Ang and Piazzesi
(2003) and Diebold et al. (2006).

Table 8 presents the variance decomposition of the default probabilities. We
now analyze in more details the 9-month horizon decomposition, since in this case
the eoect of the initial condition is attenuated. Note that in all speci..cations,
the US latent factor (approximately the Fed short rate) shows almost no exect on



5. RESULTS 47

Table 7. Variance decompositions of the yields of the bilateral
model with default.

Model VIX Bsl | VIX LIBOV-EX | VIX B3m | VIX B3y
Factor | Yield | Im | 9m | 1m om Im| 9m | Im | 9m
[ s3m [ 0] 2|1 3 1 2 | 1|3
3y [0 1] 0 5 0] 1 ]o0| 1
20y J]olofo 4 ol o Jofo
MYS [ 3am [ 2 [20] 2 21 4 26 | 4| 32
3y | 2|23 4 21 5|33 | 5|39
20y | 27 | 38 | 36 16 20 | 48 | 20| 53
MBR [ 3am [ 2] 7o 0 o] 2 11
3y | 3|10] 0 1 0] 2 o1
20y | 3] 9o 0 0] 1 ]1]2
95R 3m | 38| 22|68 50 76 12 [ 17| 9
3y [13]| 9 | 19 52 3] 4 |21
20y | 2| 4|5 70 0] 1 ]o]f 1
057 | 3m [ 58| 48] 29 25 19| 57 [ 77| 56
3y [ 81|57 76 21 91 | 61 | 93| 58
20y | 67 | 49 | 59 9 80 | 50 | 79| 43

This table presents the proportion (in percent) of the one month and 9 months ahead
forecast variance of the {3m, 3y, 20y}-yields attributable to each observable factor in the
bilateral model with default. The bilateral model with default presents one observable
American factor (MYS = VIX), one latent factor driving the US curve, two latent factors
driving the Brazilian curve and one observable Brazilian factor (M2R). The observable
Brazilian factors are (1) BM&F slope (Bsl); (2) logarithm of the Bovespa index in US
dollar (LIBOV-EX) (3) BM&F 3-months yield (B3m), and (4) BM&F 3-yearsyield (B3y).

short-term default probabilities. However, for the long-term (20 years), it is the
principal factor, explaining around 80% of changes of implied default probabili-
ties nine months ahead. The exect of the VIX is smaller over the long-term, but
about 50% of changes in implied short-term default probabilities are attributable
to changes in this observable factor. Among the domestic factors, only the slope of
the Brazilian local term structure has a relatively important exect, accounting for
11% of changes in implied short-term default probabilities. Thus, we can conclude
that, given our model and sample, the domestic rates, and also the IBovespa are
not relevant sources driving default probability movements.

Figure 3 compares the evolution of the 1-year survival probabilities (one minus
default probabilities) over the sample period. It can be seen that changing the
domestic macro factor does not signi..cantly alter the probabilities. Observe that
all versions capture the Brazilian electoral crisis in the second half of 2002, with
the y.0. model having the largest impact on survival probability. The 1-year ahead
survival probabilities fell from an average of 85% to around 70%, recovering later
to around 90%.

In order to gauge the response of yields due to an unexpected change in state
variables, we calculate impulse response functions. Figures 4, 5 and 6 show the
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Table 8. Variance decompositions of the default probabilities of
bilateral model with default.

Model VIX Bsl | VIX LIBOV-EX [ VIX B3m | VIX B3y
Factor | Term | Im | 9m | 1m Im Im| 9m [ Im | 9m
oYS 3m [ 0] o | 2 2 ol oo o
3y | 72121 59 8 29 | 9| 29
20y | 47| 73] 80 93 51| 79 | 52| 78
MYS | 3m |19 32| 16 31 29| 42 | 34| 56
3y | 31|31 26 18 36| 33 | 55| 51
20y |18 | 11| 7 3 20| 10 | 29| 16
MBR | 3m | 8 [11] O 0 1 3 1] 1
3y |11|10] 1 1 3 3 2] 2
20y | 6 | 3] 0 0 1 1 111
95R 3m |21 |12 61 49 12| 9 | 6| 3
3y |11 | 6 | 38 16 9 7 1110
20y | 6 | 2 | 10 3 5 2 o] o
057 | 3m [52 4422 18 59| 46 |59 | 39
3y | 41|31 14 6 43| 29 [ 33| 17
20y | 24|11 3 1 23| 8 | 18] 5

This table lists the contribution (in percent) of each factor to the the one month and
nine months ahead forecast of the {3m, 3y, 20y} default probabilities within the bilateral
model with default.

eoect of a shock to US latent factor (Gfs), VIX and observable domestic factors
(BM&F yields and slope and IBovespa in US Dollars), respectively, on the Brazilian
{3m, 3y, 20y}-yields up to 18-months after the shock. The size of the shock is one
standard deviation of a monthly variation of a state variable. In the next three
months after a shock on VIX, yields rise about 1% and then fall. Changes in either
the domestic short or long rate do not result in changes of the sovereign yields. The
same is true for the domestic stock exchange index (IBovespa). However, a positive
BM&F slope shock causes an increase in the yields. This may indicate a change of
expectations of a future rise in infation.

We now turn to survival probabilities. Figures 7, 8, 9 show the impact of a
one deviation increase of a monthly variation of the US latent factor, VIX and
observable domestic factors, respectively, on the survival probabilities in the next
three months, three years and twenty years. It shows that the survival probability
falls by up to 4% in relative terms due to a shock in the Fed short rate. An increase
in VIX also decreases the survival probability about 1.5% in relative terms. Among
the domestic factors, only the BM&F slope has some impact, decreasing the long-
term survival probability by about 0.7% in relative terms.

6. Conclusion

We proposed a model that combines an a&ne yield dynamics with macro factors
and credit risk. The model was estimated in two steps using the US and Brazilian
sovereign yield curves. The credit spreads, the macro factors and the US yield curve
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Figure 3. Survival probabilities. This ..gure shows the 1-year
survival probabilities extracted from some versions of the bilat-
eral model and from y.0o. model between February 17, 1999 and
September 15, 2004. The bilateral model presents one observable
American factor (VIX), one latent factor driving the US curve,
two latent factors driving the Brazilian curve and one observable
Brazilian factor. The observable Brazilian factors are (1) BM&F
slope (Bsl); (2) logarithm of the IBovespa in U.S. dollars (LIBOV-
EX) (3) BM&F 3-month yield (B3m), and (4) BM&F 3-year yield
(B3y). The y.o. model refers to a speci..cation in which only yields
are used, that is, a speci..cation without observable factors.

have contemporaneous and lagged interaction. We were able to test how selected
domestic and external macro factors such as the Brazilian Real/US Dollar exchange
rate, VIX (volatility index of S&P 500), IBovespa (S&o Paulo stock exchange index)
and domestic yield curve infuence the spreads and default probabilities. The model
was identi..ed before making restrictions motivated by economic assumptions. Our
..ndings indicate that the VIX and U.S. yield curve are the most important factors
driving the Brazilian sovereign term structure and default probabilities. This result
is consistent with the fact that credit risk premia of sovereign bond are highly
correlated with the US economic conditions. The VIX has a high impact on 20-
year bond yields and on short-term default probabilities, while the fed fund rate
has high explanatory power on the long-term default probabilities. Among the
domestic factors, only the slope of the local yield curve shows a signi..cant ecect on
the Brazilian credit spread. However, a signi..cant portion of variations in yields and
default probabilities are explained by an unobservable factor highly correlated with
the level of the Brazilian sovereign curve. Due to lack of an extensive historical
dataset, we estimated a continuous-time version with daily observations, which
limited the choices of macro variables. Future work can test monthly models,
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Figure 4. Impulse response of shocks to Fed factor on yields.
This ..gure shows the eaect of a shock to Fed factor 47 on the
Brazilian sovereign yields with maturities of 3 months, 3 years
and 20 years up to 18 months after the shock. The shock is one
standard deviation of a monthly variation of the Fed factor. The
responses are evaluated considering the bilateral model.
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Figure 5. Impulse response of shocks to the VIX on yields. This
..gure shows the ecect of a shock to the VIX on the Brazilian sov-
ereign yields with maturities of 3 months, 3 years and 20 years up
to 18 months after the shock. The shock is one standard deviation
of a monthly variation of the VIX. The responses are evaluated
considering the bilateral model.

allowing the use of important variables such as Central Bank reserves, real activity
and infation.
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Figure 6. Impulse response of shocks to observable Brazilian fac-
tors on yields. This ..gure shows the ezect of a shock to observable
Brazilian factors on the Brazilian sovereign yields with maturities
of 3 months, 3 years and 20 years up to 18 months after the shock.
The shock is one standard deviation of a monthly variation of the
observable factor. The responses are evaluated considering the bi-
lateral model.
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Figure 7. This..gure shows the ecect of ashock to Fed factor 67 °
on the 3 months, 3 years and 20 years survival probabilities up to
18 months after the shock. The shock is one standard deviation of
a monthly variation of the Fed factor. The responses are evaluated
considering the bilateral model.
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Figure 8. Impulse response of shocks to VIX on survival proba-
bilities. This ..gure shows the ecect of a shock to VIX on the 3
months, 3 years and 20 years survival probabilities up to 18 months
after the shock. The shock is one standard deviation of a monthly
variation of the VIX. The responses are evaluated considering the
bilateral model.
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Figure 9. Impulse response of shocks to observable Brazilian fac-
tors on survival probabilities. This ..gure shows the erect of a
shock to observable Brazilian factors on the 3 months, 3 years and
20 years survival probabilities up to 18 months after the shock.
The shock is one standard deviation of a monthly variation of the
observable factor. The responses are evaluated considering the bi-
lateral model.



CHAPTER 3

Identi..cation of Term Structure Models with
Observed Factors

1. Introduction

Multifactor term structure models possess better ..tting and forecasting per-
formance than single factor models, at the cost of demanding more computational
time and greater samples for estimation. Hence, it is not surprising that many
authors restrict the parameter space, sometimes using some economic criteria.

However, restrictions are actually necessary to identify the model: Dai and
Singleton (2000), DS, showed that there are transformations of the parameters
and state variables of the a¢ne models that preserve the yield curve. Therefore,
multiple sub-identi..ed models correspond to the same data.

Arbitrary restrictions, on the other hand, may over-identify some parameters,
distorting model properties. Thus, one must ..nd a well-de..ned set of restrictions
leading to exact identi..cations. There are 2 approaches in the a¢ne literature, the
one by DS and another proposed by Du¢e and Kan (1996) and re..ned by Collin-
Dufresne et al. (2006), which uses speci..c transformations of the state factors into
observed state variables, thereby eliminating unnecessary parameters.

Our contribution relies on the observation that when observed factors are in-
cluded in the state vector, new restrictions are needed that take into account the
additional degrees of freedom given by the choice of the relative weight of the
observed factors. Also, we extend the method to other term structure models:
the common factor, the Nelson-Siegel, the Legendre and a proposed “quasi” a¢ne
model.

We de..ne invariant operators for each model, and prove that they preserve the
likelihood. Then, we show how to identify.

There are alternative identi..cation choices, which could in principle induce
dicerent model properties. However, we prove that the yield curve response is the
same for any identi..cation choice. On the other hand, the latent factors response
does depend on the choice.

Pericoli and Taboga (2006) also point out to one correctly identi..ed speci..ca-
tion of an a®ne model with observed factors, but they require additional assump-
tions.

2. Models

Let Y; = (Y}, ... Y/)! be the vector of bond yields, X, = (M,,6,)! the state
vector. M; 2 R? and 6, 2 R? denote the observed and latent factors, respectively.

53
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The general equations,

@2.1) Yr = Au()+ BY()0+ BMM, +oul,
My = pp +OpprMign +Onobeyp, + 8 el
0: = g +OoniMign+©poly;in + Bonel + 8ppel,

accommodate the following 5 models:
2 Ac¢ne (na): the factor weights are given by

A, = ja,/nand B, = ibl/n,

where a,, and b,, are obtained by recursive equations:

ay = jdo, by = jd1, and, for every n,
b11+1 = jol +bl(© i 8N),
1
Gner = id0+an +0)(u i 8Xo)+ b, 88 b,

We denote © =© j 8)\; and pu* = j 8\, the dynamics under Q.

2 “Unrestricted” a¢ne or “quasi” a¢ne (gn). It is more fexible and easier
to estimate than the a€¢ne model, but relaxes no-arbitrage conditions. B,,
is calculated as above, but A,, is now determined such that

ou =Y, i A i Beby i BuM,

has zero mean.
2 Common factor (cf): unrestricted A, B.
2 Nelson-Siegel (ns): A and BM are unrestricted, and

o i i . ¢ i ¢ ¢
2.2) B =1, 1je" [yn, 1j et [yn jei? .
2 egendre (Ig): A and BM are unrestricted, and
i ¢
BY = |17$,(3m2 i 1)/2,(5302 i3xz)/2,
where x =2n/N j 1 and N is the longest maturity.
The set of parameters in each case is:
na : &= (607515)‘07)‘17,U‘7©7§70-);
qn 2= (617 >\1:/'L7©7§a0');
Cf : a:(A7B7/u’7©7§7O-);
ns : az(A7BM:77,u7©7§7U);
Ig a:(A7BM?/L7©7 §7O)

3. ldenti..cation

We begin with the de..nition of the invariant operators. Consider anon-singular
matrix L 2 R+OE(+a)
M 1

I
(3.1) L= . 5
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where | 2 RPEP js the identity, and o 2 RPE9, 3 2 R4, The operator T}, acts on
= Xg:

na : f2 Xg& (6, (L") 161, Ao, 1LY, Ly, LOLY L8, 5), LXg;

gn : 2 XgA f(L") 6, MLV Ly, LOL'Y L8, 5), LX(;

cf : f2 Xg@A f(A, BL' Ly, LOL'Y L8, o), LXq;

ns : & Xg@A f(A,BM § B°Bi'a,~, Lp, LOLY, LS, 0), LX(Q;

lg : f= Xg@ f4,BM j B°3"'a, Ly, LOL' LS, 0), LXQ.
In the ns and Ig cases 5 = I, because B? is ..xed.

T, transforms the latent factor and adjusts its “macro” content:

(3.2) 0, @ aM,+ B6,.
Let v 2 RP*4, 1 = (0,%)!. The operator T, shifts the latent factors:
na : f2XgA (S0 i 6lv, 01,0 i M, A, u+ (i ©Ov,0,8,0), X +vg;
gn : A XgA (61, \,p+ (i ©Ow,0,8,0), X +vg;
e : f2 Xg& f(AjBv,B,u+({jOr,080)X+vg;
ns : f2 Xg@ f(4i Bv,BM ., v,u+ (U i ©)v,0,8,0), X +vg;
lg : 2 XgA f(AjBv,BM u+({ j©)r,08,0), X +uvg.
The last operator, Tp, where O 2 R?£4 s a rotation matrix, rotates the pa-
rameters related to the Brownian motion and preserves X:
(33) g§m 80!

To is related to the VAR ordering of the state variables with respect to endogeneity.

The operators are constructed so as to preserve the short rate, the risk premium
and the observed factors. In fact, they preserve the likelihood, as is shown next.
The format of the likelihood depends on the type of treatment for the stochastic
singularity that appears when there are more maturities than latent factors. The
case with Chen-Scott inversion was discussed in chapter 2.

Proposition 2. Given initial conditions ®¢ = Lmo and € = LCoLl, the
invariant transformations preserve the likelihood with the Kalman Filter.

Proof. We show that the marginal and full-information likelihoods are pre-
served, i.e.,

L(YjM,=) = L(YjM,®) and L(Y]X,=) = L(Y]%,®),

where (X, ®) are the transformed variables and parameters. This is easily seen for
the full information likelihood, which is\given by

(34 LiX,®) = f(Vii0, My, )

o

Y © £
@5 = exp il/2Injoolj+ (¥, i Ai BX) (00) (Y, i 4§ BX,)
We turn to the marginal likelihood ce;e, given by
LM, 2 = f(ViYisa, Mig1, =)

Y © £ o o
(3.6) = ep i2jQd+ (i QI i f)



56 3. IDENTIFICATION OF TERM STRUCTURE MODELS WITH OBSERVED FACTORS

which depends on the Kalman ..Iter equations (see West and Harrison, 1997): Given
Xo » N(myo, Cp), the prior of the state variables is de..ned as

XeiYii1, Mej1,2 » N(ae, Ry),
the forecast of the yields as
YiiVii1, My 1,2 > N(ft, Q4),
and the posterior of the variables as
XijYs, Mt,a » N(my,Ch),

where
ag = p+Omy;1,
R, = oc) ol +v,v =88l
fi = A+ Bay,
Q: = BRB! +olo,
where V = 88!, and A and B are the factor weights. Also, due to the fact that
M, is observable, u - q
mgy = (M“m?) and Ct = 0 cg ,
t
where
mf = af + [R,B! Q} i ),

¢! = [Ry+RB'QIBR!P.
Now, consider the operator T;,. Observe that ¥ = 881 = LV LI, g* = Ly* =
Lu+ L8 =p+8), & =LO*Lil = L(©+ 8\ )Lil =©+ 8%;. We prove by
induction that if it is assumed that &y = Lmo and € = LCyL!, then
(3.7) @ = Lm,, € = LC, L', e, = Lay, B, = LR, L', £ = f,, € = Q..
For t = 1, we have

@1 = g+O©mo=Lu+ LOL'Lmo= Lay,

B = ©€® +¢=roLi'Le,L' L' oL' + LvLit= LR, L',

B = &+Be =A+BL'La; = fy,

©®: = BRB'+e=BLi'LRLILH B +6=BR,B! +0=0Qq,

] = [er+RiB'@'(vii A’ =[Las+ LRALV(LIH' BIQI* (v1 i )T,

e = [Ri+R.BOM'BRIY! =[LR. L' + LR, L' @ H)'B'QI*BL*LRILI)”.

Hence ®{ = [Lm1]’ and & = [LC1L!]%, and therefore @y = Lm; and €, =
LC,L'. Thus, for t = 1 (3.7) holds. Now, suppose property (3.7) is true for
t. Then, analogous calculations show that (3.7) holds for ¢ + 1. It follows that
LY M, =) = L(Y,jM, #).

Similar calculations prove that 7, and T, preserve L(YjM,&). o

Thus, we proved that the operators indeed represent the degeneracy of the
likelihood. The next result will show how to identify the models, by eliminating
the degrees of freedom «, 3, v, O of the operators.

Proposition 3. The following procedure identi..es the models.



3. IDENTIFICATION 57

Proof. i) For all models, the operator T, can be used to set ;. =0, and the
operator Tp to impose a lower triangular form for 8.

i) However, the use of T, will depend on the type of model. Consider the na
case. The identi..cation is achieved by spending the restrictions on any parameter,
but mainly on §, ©, ©* or ;.

iii) Restriction on 8§: « and 3 are chosen such that &,,, =0and &, =1, i.e.,
1T 1 1T
se b0 e o U _Mauy o
a B 8o 8o 0 [

where 8 = L8. This does not exhausts the free parameters. So, we apply the trans-
formation Tg := Trjo = 0,8 = S rotation matrix, such that ©4 or ©;, becomes
lower triangular. The operator Ts commutes with L8 so that it will only rotate
orthogonal Brownian motions, preserving other parameters. This completes the
identi..cation. Another option is obtained by choosing 3 such that 8, is diagonal
and then apply Tp = Trja = 0,8 = D diagonal matrix, such that ¢y = 1:

Sl mTu T 1
(Di1)|§: I 0 (51\[ — (SM
0 Dil dg 1
iv) Restriction on )\;:
K A\MM Mo Tu I 0 1 A MM M6 !
)\1Li 1 1 1 1 1 = g1 g1 s
MY ifia Bl 0 [

so that we eliminate \{™ and A{’. Similarly, we could restrict \o instead of .

V) Restriction on © or ©*. This case is harder, because it involves quadratic
equations. To avoid this, we assume that © can be decomposed as PaP il, where
o is a real diagonal matrix. If © has real and distinct eigenvalues, this is always
possible. Since © = PaPil then LOLi! = LPo(LP)il. Now, a can be chosen
such that L P becomes upper block triangular (ubt), that is,

H T T K l
p= 10 Pyrve o Puo —  Pum  Pume
a B Poy oo 0 Poo

Then (LP)i! and the transformed ® = LOL* will also be ubt. That is, ®,; = 0.
The ..rst identi..cation of this type is the following. Choose S such that 5Py is a
diagonal matrix, then ®;y will also be diagonal. Next, use Tp such that §y = 1,
completing the identi..cation. Alternatively, we could have started with © =
Po*Pil Yetanother possibility is to impose a lower triangular 5Py, which implies
in a lower triangular ®49. Then use Ty := Trjoo = 0,3 = T lower triangular matrix
to impose a diagonal 8yy. Finally, the identi..cation ..nishes by applying Tp such
that g = 1.

vi) For the other models, the procedure is entirely analogous, except that in
the case of Ig and ns models, there are less degrees of freedom, for 5 = I. o

Table 1 shows a summary of identi..cations for the ad¢ne model. Type 2 assume
that © or ©* can be decomposed as PaPil. Otherwise, we call Type 1.
Table 1. Summary of identi..cations (a¢ne case).
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©mr ©w O ©5 8Sou 8o & Ny A

Typel Full Full FRll LTr O I Full - -
Typel Full Full FRll LTr O Diag I - -
Typel Full LTr FRll FRll 0 I Full - -
Typel Full LTr FRull FRll 0 Diag I - -
Typel Full Full - - Full LTr Full O I
Typel - - Full  Rull Full LTr Full 0 I

Type2 Full Full 0 Diag Full LTr I - -

Type2 Full Full 0 LTr Full Diag I - -

Type2 0 Diag FRull FRull Full LTr I - -

Type2 0 LTr FRull FRull Full Diag I - -

Since there are many options, it is not clear how to choose a speci..cation.
At least, our next proposition shows that the response of the yield and observed
variables to state factor shocks (IRFY, IRFM) and the variance decomposition of
the yield (VDY) is the same for any case. In practice, however, at the inference
stage, some alternatives may prove easier to be estimated.

Proposition 4. T, and T, preserve IRFY, VDY and IRFM. All operators
preserve the yield curve.

Proof. First note that for the gn, cf, ns and Ig models, the invariance of the
yields is immediate. Consider the na model. The weights A, Bjf®, Xg change to
A, BL1YT 2 Xg when Ty, is applied, for b! _ Lit = jslLit+pl Lit(LOLit j
L8MLiY)yand ayey = §do+a, +bLLil(Ly j LENo)+2b) LitLESILI(Li1)lb,,.
It follows that Y; = A + BLi1LX, + ou,, which proves the invariance under T7.

Furthermore, similar computations show that A, Bjf®, Xg changes to A i
By, BT, f&,Xg. Thus, a,+1jf®, Xg becomes a,+1 i b7'1,+lujT,,fa,Xg, so that
Y; = A j Bv+ B(X; +v) + ous, Which proves the invariance under T,.

Now, IRFY, VDY; and IRFM, given by fBO"8¢,g,, fB§;(B§;)! + ... +
B©O"§,(B©"8§;)lg, and the .rst p lines of LBO"8e,, are all easily seen to be
preserved under Ty, and 7, . o}

On the other hand, the response of the latent factors to factor shocks, IRF6,
depends on the identi..cation: L©"8e¢,. This has implications on the interpreta-
tion of the latent factors, specially regarding monetary policy rules, since dicerent
speci..cations will give dicerent “weights” to the macro content of the latent factors.

4. Conclusion

We specify invariant operators and prove that they preserve the likelihood of
term structure models with observed factors. Hence, restriction choices must be
made in order to identify the model, and we show ways of achieving it.

It turns out that any speci..cation, if correctly estimated, lead to the same
observable model properties such as the response of the yield curve to state variable
shocks. However, some speci..cations can be numerically simpler to estimate. Also,
the interpretation of the latent factors varies with the speci..cation.



CHAPTER 4

Forecasting the Yield Curve: Comparing Models

1. Introduction

The modeling of the term structure of interest rates is a challenging task that
has, from a practical perspective, at least three purposes. Firstly, with this tool
available, one can price ..xed income instruments and manage risk of bonds and
derivatives. Secondly, it allows monitoring of observed and unobserved economic
variables such as risk premium, default risk, infation and real activity. Finally, it
is possible to forecast futures interest rates.

In this study, we address the latter issue using a rich class of linear factor mod-
els. Examples of users of yield curve forecasts are numerous. Treasuries manage the
emission and maintenance of the stock of public debt, which continuously demands
an assessment of current and future interest rates. Investors must track their port-
folios performance against the cost of opportunity of investing in low risk bonds.
Central Banks react to the expected intation and economic activity adjusting the
short rate, thereby a acecting the whole curve.

Term structure models can be classi..ed in dicerent ways. If restrictions to the
evolution of the yields are imposed in order to avoid risk-free pro..t opportunities,
then the model is known as arbitrage-free. Otherwise the model is said to be purely
statistical. Arbitrage-free models contain some ingredients arising from equilibrium
models having thus a strong economic appeal. Seminal works within this class are
Vasicek (1977), Cox et al. (1985) and Heath et al. (1992) while Nelson and Siegel
(1987) and Svensson (1994) are pioneer works in the class of statistical models.
Moreover, term structure models may directly include or not macroeconomic and
..nancial factors driving the yield curve. Among others, we can cite the works of Ang
and Piazzesi (2003), Diebold et al. (2005), Hérdahl et al. (2006), and Ludvigson
and Ng (2007) that use macroeconomic variables to model the term structure of
interest rate. Finally, the relation between factors and interest rates may be linear
or assume a more general speci..cation. Examples of linear models are the class
of a¢ne models studied by Du¢e and Kan (1996), while Longstaa (1989) and
Leippold and Wu (2003) constitute examples of non-linear models.

Although several works from macroeconomics, ..nance and econometrics have
been devoted to term structure models, few of them analyzed the out-of-sample fore-
casting performance. Predictability questions regarding yield curve are ..rst studied
by Fama and Bliss (1987) who investigated the relationship between forward and
future spot rates. More recently, Duree (2002) documents that the a® ne models
produced poor U.S. yields forecasts. Diebold and Li (2006) propose a two-stage
model based on the Nelson and Siegel (1987) framework to forecast the U.S. term

1An a¢ne model is an arbitrage-free term structure model, such that the state process X is
an a¢ne dicusion, and the yields are also a¢ne in X.
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structure that presented better results than some competing models. Nevertheless,
Almeida and Vicente (2008) show that the inclusion of no-arbitrage conditions in
a latent model improves the out-of-sample ..t. Ang and Piazzesi (2003) ..nd that
an ac¢ne model with macroeconomic variables outperforms the unrestricted VAR
model containing the same observable factors. They also show that models with
macro factors forecast better than models with only unobservable factors. In the
same line, Hordahl et al. (2006) con..rm that the forecasting performance of a
model with observable factors is superior to models based on latent factors.

The papers cited in the last paragraph deal with models where the interest rates
are linear functions of state factors (observable or latent). Due to variety of reasons
(the more important is the ease of implementation), linear models are nowadays the
workhorse of yield curve modeling. However, to the best of our knowledge there is
no study based on the same dataset that provides a full comparison of the in-sample
and out-of-sample performance of dicerent speci..cations of linear models. In this
article we try to ..ll this gap in the ..nance literature. Although some recent studies
have addressed the forecasting performance of dicerent linear interest rate models?,
we believe that no one has implemented a comparative analysis as comprehensive
as ours. We analyze arbitrage-free and purely statistical models, with or without
observable variables. In addition to testing the models with U.S. data as usual, we
also consider a database from a emerging country. For instance, Laurini and Hotta
(2007), Pinheiro et al. (2007), Almeida et al. (2007A, 2007B) and Shoucha (2005)
present models estimated for Brazilian data.

All the models analyzed in this study present constant volatility. Although sto-
chastic volatility processes have some desirable properties, the standard approach
in the interest rates forecasting has been using homocedastic models. Besides the
parsimonious, constant volatility models seems to be a natural choice when the aim
is forecasting since in this family there is no factor collecting information about the
volatility process. Therefore, it is expected that the mean of the yields distribution
can be better captured.

We estimated the models via MCMC (see chapter 1), which will allow the
measurement of the uncertainty associated to the information available for the
estimation of a given model.

2. Models

As before, Y denote the vector of n interest rate yields, X = (M, ) the state
vector composed of p macro factors and ¢ latent factors. As explained in the
previous chapter, the general equations for the latent factor models are:

(2.1) Y, = A() + B’()0, + BM M, + ouy, uy » N(O, I,,),

(22) Xt = pu+0OXi;n + 8ey, &> N(O, Ip+g),

where h denotes the lag size, and A(.) and B(.) dicerentiate the models.

For the Fama-Bliss case, the data is monthly and » = 1. The other samples
are daily and h = 1,5 or 21. This last choice turns a daily model into a sum of
monthly models: since there are on average 21 business days in a month, when
h = 21, the sample can be decomposed into 21 disjoint series and the full data

2Besides the works cited above, we can also include Vicente and Tabak (2008) and Moench
(2008).
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loglikelihood L can be thought of as the sum of 21 monthly loglikelihoods. Denote
by the superscript d the monthly model estimated with data formed with the day
d of each month:

(2.3) L(3,0)M,Y) = Pff:l i@ odinrd, v,

Itis assumed above that the monthly models are independent, but that the set of
parameters is the same: &¢ = & |n this way, we estimate a monthly model using
all available data, and not a particular sub-sample or average. Likewise, DL use
monthly data and 6 or 12-month lags.

Next, we discuss the versions of the Nelson-Siegel (ns) and a®ne (nha) models
that are considered here.

2.1. BM = 0. All the models are estimated .xing B = 0. This can be
justi..ed in the a¢ne model as a choice of monetary policy, as explained in what
follows.

In the a¢ne model, the parameters are given by A = [A;;..; Ax], B =[B1; .., Bn],
A, = iay/nand B, = iﬁ,!L/n, where

(24) Bl = iU+ O,
Up+1 = i(SO +a, + ﬁ»!LN* + _;BL §§Iﬁn,

with initial condition a; = jdo.

However, as we saw in chapter 3, some restrictions are necessary to identify the
models, but there are many equivalent alternatives to do it. In particular ©},, =0,
©;, =0, 6? =1, in which case © and (I +©* + ..+ ©*™) are upper triangular.

It turns out that if we also impose 62 = 0, in which case the short rate follows
an in..nite no-discount forward looking Taylor rule (see Ang et al., 2007), then
BM = .

Hence, BM = 0 is consistent with a Taylor rule choice of an identi..ed a¢ne
model.

2.2. Unrestricted. We propose “unrestricted” versions of the a¢ne and Nelson-
Siegel models. In the case of the a¢ne models, B is calculated as usual, but A is
now unrestricted. Then, since BM = 0 and we impose that the stochastic process ¢
has zero mean for identi..cation purposes, the estimation can be simpli..ed by ..xing
A =Y, so that equations (2.1,2.2) are replaced by

Vi =Y + BY()0: +oup, u » N(O, ),
Xt = ©Xtih + §Et7 Et N(O, Ip+q)-
By subtracting the mean of the observed indicators, we have ¢ = 0 and conse-

quently x = 0. This model is called unrestricted a¢ne.
Now, consider the standard Nelson-Siegel model:

(25) Y, = B ()0, + ous, w » N(O,1,),

(26) Xt =K + ©Xtih + §€t7 &t »> N(Ov Ip+q)-

In the unrestricted version, the parameter vector A is added, which is then set
equal to Y as in the unrestricted a®¢ne model. In this case, to be identi..ed, it is
necessary to impose p = 0. The equations then become

2.7) Y, =Y +B?()0; + ouy, us » N0, 1),
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(2.8) Xt =0OXyin + 8ey, &> N(0, Ip+q).
Note that by adding A, we can exactly ..t the long term mean of the yield curve

and enforce that the measurement errors u; have zero mean, which is not possible
in the standard case with A = 0 and free p.

2.3. Pooled versus aggregated. The pooled model combines daily yield
series and monthly macro series. This is discussed in chapter 5.

2.4. Other models. Our list of models also include autoregressive models,
which are estimated in univariate or multivariate versions, and yields-alone or
macro-augmented versions:

(2.9) ARIYY = + O"Y 5y, + uy,

(2.10) VAR: Y" =y +©"Z,;p +ul, Zp = (V2 Y,V2 YY),

N denotes the N-th longest maturity, Y /2 indicates the yield with the bN/2c-th
maturity. This model is in fact a simpli.ed VAR. The full VAR would require
a too high number of varibles and parameters. In the macro-augmented VAR,
7, = (YL, v,N? N M,) include macro factors.

Completing the list, there are the two-stage Diebold and Li (2006) type of
models: ..rst, one estimates ¢, for every ¢ in

(2.11) Y, = B0, + ouy, w, » N(0,1,,).
B? is either given by Laguerre weights (Nelson-Siegel) or Legendre polynomials (see

Almeida et al., 1998). Then, conditional on B,, the other parameters are estimated
via a AR or VAR:

(2.12) B = p+©B,;,+ 8y, 0> N(O, Iey).
For the version with macro factors, we have instead:
(2.13) M, = pM+eMMp,, + ©M€|9ti .+ MMM
pt — ,Ue"'@mwMtih +©Gebtih +§6M5i\4 +§«90€$.

3. Inference

The latent factor models are estimated via Monte Carlo Markov Chain (MCMC),
described in chapter 1 for the case of a&ne models. We now present the algorithm
for the common factor (cf), the Nelson-Siegel (ns), the unrestricted ns (ns_u), and
the unrestricted a¢ne (a¢ne__u) models.

We divide the set of parameters & = (u, ©, 0, () - where ¢ depends on the type
of model - into subsets that can be analytically sampled when possible. Otherwise,
it is sampled with Metropolis-Hastings:

cf | ns/ns u | atne | acne u
¢(=(4,B,8)|¢=(,8) | (= (6o, 61,4",0*,8) | (= (61,0, 8)

Starting from an initial vector (29,6°), the algorithm consists of the repeated
sampling of & given the observable data until some convergence criteria is met. In
the end, a distribution of parameters is obtained.

For the k-th iteration, we have:

(1) Draw (uF, ©%) » p(u, ©jor i1, (1t 0¥ 1LY, M),
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(2) Draw o* » p(gjuk,©k,gkil,9ki l,Y,M),
(3) Draw 6% » p(Bju*, ©F o* ¢Fi1t Y, M),
(4) Draw ¢} » p((,ju*, ©F, 0% 0" M1t Y, M).

Thus, the estimation problem is decomposed into a series of simpler sub-
problems. Sub-problems 1-3 use Gibbs sampling, and correspond to, respectively,
the estimation of a VAR model, the estimation of its variance, and the joint distri-
bution of latent factors:

Subproblem 1:

G f Ot FILeILY M) » N((XT X)X X (X TX) 1 - ),

where X = (Xq,..., Xr; ), X* = (Xa,..., X)), X = (M, 6).
Subproblem 2:

(32) Flojp®, ©F F it 0"t Y, M) » 1G(diag(U' U),n),

where U =Y j A j BX, and 1G is the inverse gamma distribution.
Subproblem 3:

(33) FOip*,©F %, ¢Fit Y, M).

This problem is solved via the FFBS algorithm (Carter and Kohn, 1994), seen in
chapter 1.

The step relative to ¢ is model speci..c:

Subproblem 4:

(34) FCICH uk O o, 6%, Y, M).

2 §: For the ns, a¢ne__u and cf cases, there is a known distribution, given
by the inverse wishart distribution. For the a®ne case, we sample us-
ing Independence Metropolis with an inverse wishart proposal: draw a
candidate ¢} » ¢!+ N(0,c), where c is a constant. If

(35) LI 1" 0", 0", 0%, v, M) i L(CFIC I u*, @, 0%, 0%, Y, M) > log(2),
where L is the log-likelihood and = » U(0,1), then accept it, otherwise
¢¥ = ¢Fil. By calibrating c, the acceptance ratio is maintained in the
20-50% range.

2 §p, pu*: aCne case. Usually, these parameters are estimated via Metropolis.
However, as noticed by Johannes and Polson (2006), p* appears in a
linear way on the pricing equation. Based on this, we analytically derive
a distribution for p*. Rearranging the recursive equations, one obtains:

(3.6) B, = dg+e +. . +0"iY)/np,

A, = b0+ n,ut +

N, = (Bi+..+By),

¢, = in(B188'B!+.+B,;188'B!.)).

Hence
(3.7) " = A,+ B, X;+o,uy
= do+n,pu"+(, + B, X; +onuf,
B 0 =Y i BuXei ¢, =00 +n,put +onul,

so that dg,u* can be solved by generalized least squares.
2 §1, ©*: aC¢ne case. Use random walk Metropolis with normal proposal.
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2 ~: nscase. Use random walk Metropolis with normal proposal.
2 A: cf, aCtne_u and ns_ucases. Set A=Y
2 B: cf case. The solution is a regression similar to that for u, ©.

3.1. Performance Criteria and speci..cations.

3.1.1. In-sample Information Criterion. Due to the fact that the models under
investigation have a dicerent number of parameters, it is not possible to compare
absolute values of the likelihood. Therefore, we choose as our criteria two Bayesian
measures that emphasize forecasting performance and adherence to data, taking
into account the number of parameters. Gelfand and Ghosh (1998) proposed the
minimum posterior predictive loss (PPL) criterion emphasizing forecasting per-
formance and Spiegelhalter (2002) proposed the deviance of information criterion
(DIC) emphasizing adherence.

2 PPL: For each realization of the distribution of the parameter estimators
av » (&jY), there corresponds a yield curve forecast Yj &*. Consider
a loss function penalizing both the expected error E(Yj&") i Y and the
variance of the forecasts Yj&* j E(Yj&"). In our case, the target variable
is multivariate, so that we take the mean of the expected losses calculated
for each maturity. In other words, the criterion is:

38
(38) XX N . , 1 XX 1 X
PPL = " i EQ 1D ) +5 N

n t n t w

(E(Yj2%) i EQ/'iDiin),

where N,, is the number of realizations.
2 DIC: It consists of a generalization of the Akaike criterion (AIC), based
on the distribution of the divergence D(®) = j 2logL(®):

(3.9) DIC = Ew(D(Fw)) i pa = 2E(D(F)) i D(Ew(Fw)),

where p; = E(D(®)) i D(E(®)) measures the equivalent number of pa-
rameters in the model, E(D(®)) is the mean of the divergences calculated
with the estimators’ posterior distribution, and D(E(2)) is the divergence
calculated at the mean point of the estimators’ posterior distribution.

The choice of the criterion should be linked to the objective of the estimation.
Banerjee et al. (2004) show that PPL and DIC evaluates the goodness of ..tting of
the models penalizing for the degree of complexity. DIC considers the likelihood on
the space of the parameters and PPL on the posterior predictive space. Thus, when
the main interest lies in forecasting, PPL is preferred, whereas when the capacity
of the model to explain the data is more desirable, DIC should be used.

Besides those measures, we will calculate models in-sample RMSE normalized
by the random walk (RW) RMSE.

3.1.2. Out-of-sample Criterion. To compare the out-of-sample results, we de-
..ne 3 measures using the Theil-U, the ratio between the RMSE of the model fore-
casts and the RMSE of the RW forecasts. When the processes under study have
high persistency, RW frequently adheres well to data, sometimes even more than
sophisticated models.

A 1
< o, X o
TU() = QAN A LA O A B Y

tout tout
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Note that another metric could be used to normalize the RMSE instead of the RW,

the long term average:
1
> < o,
TUMm = O P oYY
tout tout

Since a high number of models are estimated, we do not report the TU for
every maturity and model. Instead, we count the number of maturities such that
E(TU) < 1, which means that the model prediction errors were in mean lower than
the RW’s. This number is the ..rst out-of-sample criterion and is denoted by t.

The other two criterion are re..nements of t. They count the maturities such
that:

2 E(TU)+1.650(TU) < 1, which amounts to a statistically signi..cant t and
is denoted by s. This value can be computed because MCMC provides
sample distributions of functions of parameters;

2 FE(TU) < 1 and the Diebold-Mariano (see Diebold and Li, 2006) criterion
is satis..ed, which we call criterion d.

4. Data

From DIXPre interest rate swap contracts traded in the Brazilian Futures Mar-
ket (BM&F), we obtain constant maturity zero-coupon rates of the Brazilian do-
mestic term structure.

For the U.S. term structure, we use two sources. One is the daily yield series
provided by the Federal Reserve, free of coupon and with constant maturity. The
other is the Fama-Bliss sample, constituted of monthly constant maturity zero-
coupon rates, and used by other authors such as DL and Vicente and Tabak (2008).

Table 1A.Yield data description.

Brazil (BM&F) U.S. (FED) U.S. (Fama-Bliss)
in-sample Jan 99 - Mar 06 Jan 1987 - May 03 Jan 85 - Jan 92
out-of-sample Apr 06 - Mar 07 Jun 2003 - Mar 08 Fev 92 - Dec 00
forecast. hor. 1m, 6m 1m, 12m 1m, 12m

maturity (m) 1,2,3,6,9,12,18,24,36 1,3,6,12,24,36,60,84,120 3,12,36,60,120

Table 1B. Observed data source.

Brazil U.S.
C.P.l. IBGE FED
Industrial Output Gap Authors’ construction from IBGE FED
Bovespa Index Ipeadata -

Each model has a daily data (estimated as explained with a 21 days lag) and
a monthly data version. In this way, we are able to evaluate if the ecect of sample
reduction when passing from daily to monthly versions acect the estimation of the
American and Brazilian cases.

The estimation of macro-..nance versions face a trade-oa between having a
smaller set of high frequency variables to form larger samples, or having a larger
set of lower frequency variables, such as macroeconomic variables, to form smaller
samples. In this case, most of the yield information is usually discarded.

This trade-o= is specially important for emerging countries, which have rela-
tively shorter and less accurate historical series as compared to developed economies
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data, besides having much more frequent changes of regime, which further reduce
data availability.

For the Brazilian market, we evaluate the importance of observed factors for
forecasting by comparing versions with and without them. Our results indicated
that, among the tested factors, only the IBovespa (Sdo Paulo Stock Exchange
Index) provided signi..cant advantage.

The Brazilian sample begins in January 1999, shortly after a forced currency
devaluation, or speculative attack, which occurred during the transition from ..xed
to foating exchange rate regime. Furthermore, some months later, in July 1999,
the Infation Target regime was established.

Since the modi..cations of the exchange rate regime and monetary policy acect
the domestic prices formation mechanism, we decide to commence our sample from
this event. The data for estimation ends in March 2006, and the forecasting exercise
uses a further year of data.

Also, even very recent events greatly arected the domestic and sovereign bonds.
In September 2002, one month before a presidential election in Brazil, the EMBI
Plus country risk peaked 2436 basis points above the U.S. rate. In comparison, the
same index remained around 200 points in 2007.

The U.S. series starts in 1987. In August of the same year, Greenspan was
con..rmed as the Chairman of the Federal Reserve, two months before the Crash of
the NY Stock Exchange.

Among relevant events during the sample period, we list the LTCM collapse
shortly after the Russian default in August 1998, which threatened the credit mar-
kets, the Internet bubble, and the terrorist attack in 2001 that led the FED to
continuously lower the short rate until it reached 1%.

The proportion of the variance explained by the ..rst 3 principal components of
the correlation matrix is given below, and suggests that the markets have at most
3 sources of independent stochastic variance.

Table 2. ) )

| First Second Third
BR: DIxPre swap | 90.5 9.0 05
u.S.: FED 95.9 3.6 05

5. Estimation

Table 3 compares the deviance of information criterion (dic) and the posterior
predictive loss (ppl) of the yields-only and of the macro-..nance models, in the
aggregated and pooled cases. It shows that for the American yield curve, the
addition of macro factors does not improve the in-sample information. Also, dic and
ppl criteria favour ns speci..cations over a€ne speci..cations. The values are close
to the common factor model, suggesting that ns restrictions are already su¢ciently
fexible.

For the Brazilian data, the unrestricted a€¢ne and ns models scored higher
than the standard versions. The best model under the dic criterion is the a&ne,
and under the ppl the ns. Moreover, the pooled model did not improve the ppl
criterion with respect to the aggregated model. On the other hand, the addition of
the macro factors or the IBovespa improved somewhat the in-sample ..tting of the
monthly and pooled models.
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Regarding the out-of-sample results, the best results for the American yield
curve come from the unrestricted ns, which exhibits predictive capacity for 12
months ahead horizon. Neither the macro-..nance nor the pooled versions improved
the results.

Table 3a. U.S.: dic and ppl in-sample information criteria. Models: common
factor, a¢ne and Nelson-Siegel, unrestricted a¢ne and unrestricted ns.

models yields-only macro-..nance
inf. criteria dic ppl dic ppl
monthly common f. -14267 0.253
acne -12484 0.536 -10878 0.520
atne_u -13027 0.283 -12921 0.417
ns -13557 0.338 -13561 0.344
ns_u -13920 0.255 -13922 0.252
pooled a¢ne_u -263330 0.345
ns -282800 0.334 -282660 0.332
ns_u -292360 0.253 -292310 0.249
Table 3b. Brazil: dic and ppl in-sample information criteria.
models yields-only macro-..nance
inf. criteria dic ppl dic ppl
monthly common f. -3962 1.518
atne -3109 2.349 -3130 2.282
atne_u -3920 1.563 -3923 1.650
ns -3787 1.968 -3787 2.065
ns_u -3876 1.547 -3885 1.516
pooled acne_u -80755 1.631 -80861 1.651
ns -78395 1931 -78497 1.958
ns_u -80012 1.513 -80181 1.474
ns(bov) -78671 1.908
ns__u(bov) -80038 1.511

Tabled4a. U.S. case. Summary of forecasts: number of maturities such that the
TU is less than 1, for one month ahead (t1) or 12 months ahead (t12). The total
number of maturities is 9. If in addition Diebold-Mariano test is satis..ed, or if
TU plus one standard deviation is less than 1, it is counted in statistics d and s,
respectively.

model yields-only macro-..nance
t1 t12 dl d12 s1 s12 t1 t12 dl di2 sl sl2
other ar 9 0 3 0 4 0 5 1
2 step dl 0 0 3 0 4 0 5 0
month cf 3 7 2 0 0 O
acdne 0 O 0 0 0 0 0 0 0 O 0 0
actne_u 1 4 0 0 0 1 0 O 0 O 0 0
ns 0 4 0 4 0 1 0 6 0 5 0 4
ns_u 6 9 3 8 1 7 6 9 3 7 0o 7
pool actne_u 0 O 0 O 0 O
ns 0 4 0 4 0 1 0 6 0 5 0 4
ns_u 7 9 5 8 1 6 5 9 4 8 0o 7
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Contrary to the U.S. case, for Brazil the models generally showed low predictive
capacity. The exceptions are the ns model with Bovespa, the Diebold-Li and AR
models, all for the 6 months horizon.

The inclusion of the IBovespa substantially improved the long-term predictions,
but not short term results. Also, macro-augmented and pooled versions result are
similar to the standard monthly yields-only results.

Table4b. Brazilian case. Summary of forecasts: number of maturities such
that the TU is less than 1, for one month ahead (t1) or 6 months ahead (t6). The
total number of maturities is 9. If in addition Diebold-Mariano test is satis..ed, or
if TU plus one standard deviation is less than 1, it is counted in statistics d and s,
respectively.

model yields-only macro-..nance
t1 t6 dl d6 sl s6 tl1 t6 dl dé sl s6
other ar 0 0 0 O 0 5 0 2
2 steps I 0 0 0 O 0 5 0 2
monthly cf 0 2 0 0 0 O
atne 0O 0o 0o 0 0 0O 00O 0 0 0O
atneu 1 2 0 0 0O O O O O O o0 O
ns 0O 0o 0o 0 0 0O 00O 0 0 0O
ns_u 12 0 0 0 0 2 2 0 0 o0 O
pooled atneu 0 0 0 0 0O O O O O O o0 O
ns 0O 0o 0o 0 0 0O 00O 0 0 0O
ns_u 0O 0o 0o 0 0 0O 00O 0 0 0O
ns(bov) 0 8 0 8 0 5

5.1. TU. The graphs below exhibit the values of the Theil-U for the 9 yield
maturities, {1,3,6,12,24,36,60,84,120}-month for U.S. and {1,2,3,6,9,12,18,24,36}-
month for Brazil. We present the results for the ns and dl models, comparing their
speci..cations.

Each model is represented by two curves: the lower curve is the TU minus one
standard deviation and the upper curve the TU plus one deviation. The pooled and
the aggregated models are compared for the one month and the 12 months ahead
forecasts using the Brazilian and American yield curve.

Figure A contains the U.S. forecasts. In the ..rst row, the Diebold-Li (dl) model
is compared to the pooled yields-only (dnsy) or macro-..nance (dnsr) models. The
lower row considers the aggregated version. In both bases, we see that for the one
month horizon, dl and ns models are similar, but for the 12 months horizon the
dl model is outperformed by the ns versions. It also can be seen that all models
exhibit good predictive capacity.

Figure B treats the Brazilian case. In the ..rst row, dl, the aggregated (nsy)
and the pooled (dnsy) versions are compared for the one and 6 months ahead
predictions. In all cases, they are speci..ed as yields-only.

The second row shows the comparison about the choice of observed factor,
IBovespa or intation and output gap. It is seen that the only model with good
forecasts is the Nelson-Siegel with IBovespa for the 6-month horizon. The use of
macro factors or pooled versions do not help to improve the low performance of the
yields-only model.
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Figure A. TU U.S.: Pooled x Aggregated.
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Next, we conduct an exercise in which we ..xed the forecasting horizon and
varied the size of the lag (in the graph, y denotes 1-year horizon, m 1-month, w
1-week and d 1-day). In the left graph below, we calculate average TU for the
maturities (m-tu) and its standard deviation (sd-tu). The result is that for longer
horizons we obtain good forecasts no matter what lag size is used, while short
term predictions are generally poorer. In the right hand graphics, we compute the
number of maturities that are statistically lower than 1 according to the MCMC
sample (statistics s) or the Diebold-Mariano test for the same horizons (statistics
d).
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The graphics below compares the pooled and the aggregated models with re-
spect to the average TU and its standard error. Here x1, X2, .., X6 denote dicerent
models, estimated in aggregated (a) or pooled (p) form. We see that the average
TUs are not arected by the methodology, but as expected, the standard errors are
always lower for the pooled versions.
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Finally, we show below the results of the other models, composed of ar, var
and the models estimated in 2 steps, namely, Nelson-Siegel and Legendre without
or with macro, denoted dl and Ig or dlv and Igv, respectively, and recursively
estimated, denoted dlr and Igr. The forecasting performance of the two-step models
were not higher than those of the jointly estimated latent factor models. As before,
longer horizons results are superior to shorter horizons, particularly for var, nsv
and lgv.

Table 5. Brazil. Two-step estimation. AR, Diebol-Li, Legendre.
monthly ar dl Ig dir Igr var div Igv

tl 0 0 0 0 1 O 0 O

t6 0 0 01 0 5 5 3
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The last table presents results for the Fama-Bliss database. It shows the results
of yields-only 2 and 3 latent factor models (common factor and Nelson-Siegel), VAR
models, Diebold-Li model, ns and Ig and macro-augmented versions nsv and Igv.

Table 6. Fama-Bliss: U.S. Latent factor, DL type models. 12 months ahead

forecast.
Hor cf2 ns2 c¢f3 ns3 ar var ns Ig nsv lgv dlI

3 0.77 1.05 094 13 09 131 139 071 085 0.75 0.73
12 081 0.89 0.8 1.33 096 158 123 074 0.72 074 0.70
36 079 094 0.79 1.37 080 1.73 146 0.75 0.83 0.80 0.74
60 089 1.11 0.87 1.56 080 1.89 167 082 097 089 0.82
120 120 1.47 1.17 197 141 246 206 093 116 098 0.93

6. Conclusion

Using MCMC, we estimated diaerent classes of term structure models, in order
to compare the out-of-sample forecasts using American and Brazilian data.

“Pooled” versions of the macro-..nance models that combine daily yield data
and monthly macro data do not improve the forecasts, since their forecasts are
equal on average to the standard models when there are suCcient data, but the
estimates and forecasts become more accurate.

The best model for the U.S. market was the unrestricted Nelson-Siegel. Either
the yields-only or the macro-..nance versions were similar in this case.

The use of IBovespa improved the latent factor models for Brazil for 6 months
ahead forecasts. DL models are easier to estimate, but the latent factor models,
estimated in a more statistically sound way, showed at least as good results.






CHAPTER 5

Macro-Finance Models Combining Daily and
Monthly Data

1. Introduction

The movements of the YC shape may reveal speci..c features about agents’
expectations and infuences from macroeconomic and ..nancial indicators. After
Ang and Piazzesi (2003) proposed a macro-..nance model incorporating economic
indicators in a term structure model, a number of articles followed, notably Ang et
al. (2007), Rudebusch and Wu (2004), Hordahl et al. (2006), Dewachter and Lyrio
(2006), Diebold et al. (2006) and others.

This article aims to contribute to that literature in methodological and em-
pirical aspects. We propose a method that combines monthly and daily data. On
the empirical side, we analyze the dynamic properties of the models by means of
impulse response functions and variance decompositions, which are calculated for
American and Brazilian markets.

We further propose an extension of the model that takes into account changes
of regime on the reaction function of the yield curve to macroeconomic shocks.
That is compared to an alternative way to accomplish the same task, by dividing
the sample into sub-samples corresponding to the possible regimes and comparing
the results. For example, in the Brazilian case, we test sub-samples corresponding
to the president Cardoso after the adoption of the foating exchange rate and the
intation-target regime, and president Lula starting in 2003.

For the U.S. sample, sub-samples corresponding to Greenspan or Bernanke as
chairman of the Federal Reserve are compared. However, in this case we show that
the data in the Bernanke sub-sample is insu@cient for the estimation of our models.

The models used here can be classi..ed into two categories, the no-arbitrage
and the econometric. In the ..rst, the relation between the state variables and
the YC is derived considering that it is not possible to arbitrage from rates of
dicerent maturities. This condition introduce restrictions that reduce the number
of parameters at the cost of computationaly complicating the estimation.

In the econometric models, there are no such enforcements, but as Diebold and
Li (2006) argues, if the data satis...es this condition and the model has good ..tting,
then this condition is indirectly met. In any case, the advantages and limitations of
each approach, such as more formal rigor or clearer interpretation of the parameters,
are empirically confronted here.

Once estimated, the models show the dynamic ezect of the identi..ed shocks on
the YC. We compare the behavior of very dicerent markets: U.S. possesses longer
and more stable data, while Brazil, have shorter available data which may also
exhibit multiple regimes.

73
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In the macroeconomic literature, the forward versus backward looking approach
is an unsolved issue in monetary policy theory (see Rudebusch and Wu, 2004). The
macro-..nance models, when combining macro variables and the YC, revisit this
question. Since the YC is composed of variables driven by expectations, a natural
way to include expectations into a dynamic macro model is to incorporate the YC.

As shown in the previous chapter, assuming an in..nite no-discount forward-
looking policy justi..es for a¢ne models a restriction that is equivalent to consider
that the macro factors do not directly amect the yield curve in the observation
equation.

Macro and ..nancial variables have dicerent temporal unities. The former are
normally measured in monthly or quarterly frequency, which is the usual periodicity
of the macro-..nance models. Thus, the models ignore the almost continuous-time
dynamics of the ..nancial variables. Also, in the monthly models, the intra-month
variability of the daily variables is lost — by taking the monthly mean or selecting
the value observed for one day of the month —, with consequent loss of information.

We propose a “pooled” version of the macro-..nance model that avoids this yield
data, a feature that is particularly important for the case of developing markets
which lack available samples.

The models were estimated with MCMC, with which we calculate information
criteria that compare the performance of models with dicerent degrees of complex-
ity and number of parameters, and con..dence intervals of the impulse response
functions and variance decompositions.

Before the estimation of the models, we performed a simulation exercise, pre-
sented in the Appendix. We tested the MCMC algorithm using the simulated data
and were able to recover the true parameters. Also, we calculate the Gelman-Rubin
convergence diagnostics of the Markov chains generated by the Gibbs sampling and
Metropolis-Hastings algorithms.

2. Term Structure

Let us rewrite the general term structure equations
2.1) Y; = A+ By My + Beby + ouy, uy » N(O, I,,),
M; = pipr +Oprar My 1, + ©nrobys o + Sararer”, f » N(O,1,),
0, = jig +Ogpr My + ©poly 51 + Sonrel’ + 8gpel, ¢f » N(0,1,),
substituting the time index ¢ by the indices day d and month m .
Consider two alternatives for the observed factor: either it is collected with

monthly frequency, in which case equation (2.3) is used, or it is collected on a daily
basis, which corresponds to equation (2.2).

2 Case where the observed factors M have daily frequency:
(2.2) Yina = A+ By Mg+ BoOma + 0md, uma » N(0,1,),
Mg =ty + Onnt My 310 + ©Ono0m i 10 + 8armrey, €M, » N(0, 1),
Omd = g + ©orr Mz 10 + ©ppbon s 10 + Sonremy + Soaelny, €0y » N(O,1,).
2 Case where observed factors M have monthly frequency:

(23) Ymd, = A+ B]\,j]\/[m + Bgemd + OUmdy Umd > N(O, In),
]\/[’m = 12378 + ©MM]\/1’H'Li1 +©M90'mi1d + §N1M€£{da €%d >> N(Oa Ip)a

_ M 0 0
Oma = g ¥ Ogar My i1+ g9l 10 + Bonicy + 8066, €nq > N(O,1,),
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A monthly model is estimated considering only the set of information relative
to a selected day d, or, alternatively, monthly averages. We, instead, take into
account all days in a joint way, under the assumption that there are d independent
models, one for each day d, and that all models share the same parameters. In
the case the observed factors M have monthly frequency, the estimator must be
corrected for the daily replications of the monthly factor. It turns out that only
one step of the MCMC algorithm is altered, as discussed in the Inference section.

The models estimated here are the standard and the unrestricted versions of
the a¢ne (na) and dynamic Nelson-Siegel (ns) models (see chapter 4).

2.1. ldenti..cation. The econometric identi..cation of the a¢ne and unre-
stricted a¢ne models is established by setting ©;,, = 0, ©}, upper triangular, ©g
lower triangular and dy = 1. For ns and Ig case, the T, operator is constrained by
B = I in order to preserve the factor weights. Using «, we require that the last ¢
(the number of latent factors) lines of B, be constituted of zeroes.

In the common factor (cf) case, the chosen conditions are: 849 = I, 8ppy =0
and ©yy lower triangular.

3. Inference

All models are estimated via MCMC. The full information likelihood (see Jo-
hannes and Polson, 2003) is given by
JOI0M 2 = [0, M, 2)
Y © £ . I il
= ,&p il/2 Injoolj+ (Vi i A1 BXy) (00))'" (Vi i A BXy)

The marginal likelihood is given by
Y Y

ga

ga

© £ .
JIM =)= (YD) = exp i1/20Q+ Vi f'QF (i )

where D; represents all observed information up to ¢ and Q;, f: are de..ned by
Kalman ..Iter equations seen in chapter 1.

For all the speci..cations, the estimation involved 7500 iterations of the algo-
rithm are evaluated, of which the ..rst 4500 are discarded (burn-in). The empirical
distribution of the parameters is calculated using 1 every 3 of the last 3000 iter-
ations to decrease the serial correlation of the Markov chain. Also, we assess the
convergence of the chains through the Gelman-Rubin diagnostics.

In the appendix we present tests using simulated data. We show that the
Monte Carlo chains converge under the Gelman-Rubin criterion, and that the true
parameters remained within the con..dence intervals of the parameter distributions
generated by the chains.

We now explain our model that mixtures daily and monthly data. In the usual
solution, the estimator uses “aggregated” or monthly data. For the case with daily
yield and monthly macro, we have:

P
va : = ded/D7

Yin = A()+B(O)Xm +oum,
Xm = /L+©Xmi1+ §6m

That is, monthly averages of the yield series are used for the estimation. An
alternative is to use the yield for a selected day d of the month for every month,
Y=Y

md’
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Next, we transform a daily model into a sum of monthly models for each day
d, whose likelihood is L(&,4jDy), where D, is the information set associated to day
d. We assume independence among the residues of each model, which allow the
partition of the full likelihood into day-d likelihoods,

. Xa )
LEp)y= _ L(&jDa).

The sum has 21 terms, the average number of business days in a month. In this
way, we turn a daily model into 21 monthly models that are jointly estimated. The
estimations are made under the assumption that

ad —a

This procedure can be used even for daily observed macro factors. In this case, the
pooled version will be more precise than monthly models, because of the decreased
variance of the estimator.

In the case the observed state factor has monthly frequency, we replicate the
observed factor 21 times for each day of the month. The new estimator has the same
mean as the aggregated estimator, except that the variance must be corrected to
account for the introduced repetitions. However, only sub-problem 1 of the MCMC
algorithm (see chapter 4) is acected by the replicated macro data, speci..cally the
parameter © of the transition equation of the observed variables. We correct the
variance of the distribution of sub-problem 1 as follows.

Estimator for day d:

ﬂilu ﬂ

MY M, ML 0,4 M M1

(Mgngmd)o egndemd egnde+l
Pooled estimator: replicate M,,, = M,,8d. Stacking the equations for the
d = 1..D days of the month, we have:

H
E (émd) =

K T;1H T
E(@ ): M?nd]\/[md M?ndemd ! ]\/[rgnde+ld
m (andemd) Vd 9271de+1(1
Moo, pg, Ve e, T
(DM’ 9, DV 0" o Mp+1a
Mo, g, 1M M3, My T 2@,
(M2,0,,) % 0,, M1 "

where @m is the monthly estimator and
— - P
Vd = gendemda V= d Vd/D7 om = d omd/D~

That is, the mean of the pooled and of the aggregated estimators are equal. How-
ever, the variances must be corrected by the factor D:

- 1.
v,y = o2 DMuM, DM,

mn (OML6,,) DV
K ﬂil

0 0
M, m M, m M &9 m

ofgy pn o =pive.

— DilO.Z

where
o? = a(Mm+1 i ©Ovn Mm i ©n60ma)? /#(md).
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3.1. Information Criterion. The in-sample criteria used to order the models
are the posterior predictive loss (ppl) and the deviance of information criterion (dic),
discussed in chapter 4.

4. Empirical Analysis

To situate our work in the literature, we briety discuss the results of 3 articles
having similar objectives. The article by Diebold et al. (2006) is a monthly model
with 3 latent factors, estimated with data from 01/1987 to 12/2001 consisting of
the U.S. yield curve (YC), output gap and intation. Using a dynamic Nelson-Siegel
model with B,; = 0 and where shocks are identi..ed such that latent factors are
more exogenous macro indicators, they conclude that: 1) the macro shocks explain
only 1% of the level and slope movements 12 months after the shock; 2) the emect
of the output gap shock on the level and slope is positive, and the ezect of the
intation shock is null.

On amore macroeconomic view, Rudebusch and Wu (2003) discuss “structural”
restrictions on the relation between macro indicators (intation and output gap) and
latent factors. Those restrictions allow the interpretation of the latent factors as
monetary policy factors. It is a monthly a¢ne model using data from 01/1988 to
12/2000. Their results are: 1) the economic indicators do not explain much of the
YC; 2) the infation and output gap shocks increase the slope but explain little of
the level movements.

Finally, Ang et al. (2007) use an a¢ne model to estimate U.S. quarterly data
from 06/1952 to 12/2004. They allow the transition of the macro variables — out-
put gap, intation — to follow an autoregressive process with order greater than 1.
Implementation of dicerent monetary policy rules, including backward and forward-
looking Taylor rules, are discussed. Impulse response functions of the YC are not
presented, but it is documented that the output gap and infation respond to about
29% and 38% of the level of the rates, and 73% and 20% of the slope. Therefore,
their article shows signi..cant macro ecects on the YC.

We now show the impulse response functions and variance decompositions of
the models. We compute the response of the yield curve and macro factors to state
variable shocks. In the notation of chapter 3, the responses are denoted IRFY
and IRFM. As proved there, these responses are independent of the latent factor
identi..cation, but are dependent on the choice of the ordering of the factors. Here,
we impose that macro factors are more exogenous than latent factors.

In the last chapter, we have seen that by the information criterion, the unre-
stricted Nelson-Siegel model is the best choice in most cases. For this reason, in
all this section we have used this model. We use 3 latent factors for U.S. and 2 for
Brazil, since in the last case the longest maturity is 3 years.

The data used here are the same as in chapter 4, and the models are estimated
using one of 2 orderings of exogeneity of the state factors. Order 1: output gap,
intation, level, slope. Order 2: output gap, intation, slope, level.

Table 1 reports the variance decompositions of the Brazilian case using the
dizerent unrestricted Nelson-Siegel versions. The macro factors explain relatively
less of the yields movements than vice-versa. Also, as expected, the standard
deviations of the pooled version are smaller.
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Table 1. Brazil. Variance decompositions 6 months after shock. Upper half: on
each column, contributions of shocks (s-gap, s-in%, s-lev and s-slop) on the variation
of the variables. Lower half: standard deviations of upper half.

resp: pooled order 1 resp: aggreg. order 1 resp: aggreg. order 2
shock gap inf shrt long gap inf shrt long gap inf shrt long
s-gap 0.69 0.05 0.03 0.01 0.59 0.07 0.12 0.03 0.70 0.05 0.03 0.01
s-inf 0.07 0.70 0.08 0.05 0.08 0.64 0.11 0.12 0.06 0.70 0.08 0.05
s-lev. 005 0.22 0.32 0.93 0.09 0.25 0.30 0.83 0.22 0.02 0.78 0.12
s-slop 019 0.03 0.57 0.01 0.24 0.04 0.47 0.03 0.02 0.23 0.11 0.82
standard deviation
s-gap 0.07 0.03 0.03 0.01 0.13 0.04 0.12 0.03 0.07 0.04 0.02 0.01
s-inf 0.04 0.08 0.04 0.02 0.05 0.08 0.11 0.07 0.04 0.08 0.04 0.01
s-lev. 0.04 0.08 0.07 0.02 0.08 0.08 0.18 0.09 0.07 0.02 0.06 0.01
s-slop 0.06 0.02 0.06 0.01 0.10 0.03 0.16 0.03 0.02 0.08 0.05 0.02

Next, we present the impulse response functions of the unrestricted model in
..gure 1. The aggregated and pooled versions are compared in each graph. The rows
present the responses of the intation, short rate and slope to industrial output gap,
intation, level and slope shocks.

Instead of plotting the mean response, we plot the one deviation above response
and the one deviation below. In some cases the impulse response con..dence interval
of the pooled version is not contained on the con..dence interval of the aggregated
model, indicating that the pooled version may contain information that cannot be
discarded.

Table 2 shows that macro factors constitute important factors to explain the
yield curve, specially the short yield. Likewise, the monetary factors explain an
important part of the macro factors, specially the industrial output gap.

Table 2. U.S. Variance decompositions 12 months after shock. Upper half:
on each column, contributions of shocks (s-gap, s-inf, s-lev, s-slop, s-curv) on the
variation of the variables. Lower half: standard deviations of upper half.

resp: pooled order 1 resp: aggreg. order 1 resp: aggreg. order 2
shock gap int shrt long gap inf shrt long gap inf shrt long
s-gap 0.68 0.00 0.17 004 0.61 0.00 0.16 0.05 0.61 0.00 0.16 0.05
s-inf 0.01 096 0.04 0.05 0.01 094 0.06 0.07 0.01 094 0.06 0.07
s-lev. 0.18 0.03 0.38 087 0.20 004 038 081 0.01 001 0.17 0.21
s-slop 0.09 0.01 0.24 0.01 0.10 001 019 0.01 0.17 0.00 0.06 0.15
s-curv 0.05 0.01 0.17 0.03 0.07 0.01 021 0.06 020 0.03 056 0.52
standard deviation
s-gap 0.08 0.00 0.02 0.01 0.08 0.00 0.06 0.02 0.08 0.00 0.05 0.02
s-inf 0.01 0.02 0.01 0.01 0.02 003 004 0.04 0.02 003 004 0.03
s-lev. 0.06 0.02 0.03 0.01 0.06 0.02 0.07 005 0.01 0.01 0.04 0.04
s-slop 0.03 0.01 0.02 0.00 0.03 001 0.06 0.01 0.04 001 0.02 0.03
s-curv  0.03 0.01 0.03 0.01 0.04 0.01 0.08 0.04 0.09 0.03 0.10 0.07

The pooled and the aggregated versions results are very similar. This result
indicates that the U.S. series is long enough, and so monthly data already produces
accurate results.
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Continuing, we show in ..gure Il the impulse response functions of the unre-
stricted Nelson-Siegel model with U.S. data. In all cases, the one deviation above
and below impulse response functions of the pooled version is contained in the aggre-
gated model con..dence interval. This means that both versions contain equivalent
information, the only dizerence being that the pooled is more accurate in some
cases.

Figure 1. Brazil. Impulse response. Thick line: pooled version. Thin line:
aggregated version. We plot 95% con..dence bands around responses.
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Figure I1. U.S. Impulse response. Thick line: pooled version. Thin line: aggre-
gated version. We plot 95% con..dence bands around responses.
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5. Change of regime: Taylor rule switching model and sub-sample

In order to allow the possibility of changes of regime associated to economic
events, we propose two extensions of the main models. We are speci..cally interested
in the change of the chairman or president of the Monetary Authority.

In approximate terms, we can consider that the Monetary Authority reaction
function is the short-run impulse response of the short rate, which is given by

Oyi _ Ovi 96,
86,5 - 89t aét

This impulse response is calculated for the a¢ne model in chapter 1. However,
it is proved there that we may choose the identi.cation scheme that .xes § =

(6™, 6% = (0,1)!. In this case, monetary policy changes translates into § changes.

(5.1) =¢ls.

Motivated by this, we propose the following “Taylor rule” switching model:

)/t =A+ BOQt +oug, ug » N(07 In)7
X =0OX;n + 8iey, & » N(07Ip):

§ = §Ol[t<to] + §11[tbto]-

This extension is estimated with the same data as in previous sections.

A simpler way to analyze change would be to consider and compare estimations
using sub-samples corresponding to the possible changes of regime, but this requires
enough data.

For Brazil, the event that marked the change point was the presidential change
from president Cardoso (FHC) to president Lula. The sample contains about 4
years of each period. In the case of U.S., we considered more sensible to mark the
event of the change of the Federal Reserve’s chair. Our sample contain the 18 years
period of Greenspan, and 2 years of Greenspan.

The variance decompositions below compare the responses before and after
those changes.

Table 3. FHCnLula. Pooled. Variance decompositions 6 months after shock.
Upper half: contributions of shocks (s-gap, s-int, s-lev, s-slop, s-curv). Lower half:

standard deviations.
FHC Lula

gap int shrt long gap int shrt long
s-gap 0.68 0.05 0.02 0.01 086 0.07 0.17 0.05
s-inf 0.07 0.68 0.12 0.03 0.07 0.79 0.03 0.17
sslop 0.05 0.25 033 095 0.01 013 0.24 0.76
s-lev. 0.20 0.02 052 0.01 0.07 001 0.56 0.01
standard deviation
s-gap 0.06 0.02 0.01 0.00 0.04 0.04 0.05 0.02
s-inf 0.03 0.06 0.03 0.01 0.04 004 0.02 0.03
sslop 0.04 0.06 0.04 0.01 0.01 0.03 0.03 0.04
s-lev  0.05 0.01 0.03 0.00 0.02 0.01 0.04 0.00
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Table 4. GreenspannBernanke. Pooled. Variance decompositions 12 months
after shock. Upper half: contributions of shocks (s-gap, s-int, s-lev, s-slop, s-curv).

Lower half: standard deviations.
Greenspan Bernanke

gap int shrt long gap int shrt long
s-gap 0.77 0.02 0.16 0.03 0.63 0.05 0.02 0.02
s-inf  0.01 0.95 0.04 0.07 0.05 093 0.04 0.16
ssslop 0.11 0.01 0.28 0.85 0.26 0.01 049 0.77
s-lev. 0.06 0.00 0.27 0.01 0.05 0.00 043 0.04
s-curv 0.06 0.01 0.26 0.04 0.01 0.00 0.03 0.1
standard deviation
s-gap 0.06 0.01 0.02 0.01 0.09 0.03 0.01 0.01
s-inf  0.01 0.03 0.01 0.01 0.03 0.04 0.01 0.03
s-slop 0.04 0.02 0.03 0.01 0.10 0.02 0.03 0.03
s-lev. 0.02 0.01 0.02 0.00 0.03 0.01 0.03 0.1
s-curv 0.03 0.02 0.03 0.01 0.01 0.00 0.01 0.00

6. Conclusion

The relation between the YC and the macro variables have been examined
by diverse authors that propose dicerent approaches to relate them, analyzing in
general developed markets, estimating with monthly or quarterly data.

Here we make a comprehensive study of this relation, examining in paral-
lel a mature market (U.S.) and a emerging market (Brazil), assessing dicerent
approaches for the speci..cation of the latent factors, using a Bayesian inference
method (MCMC), and proposing methodological improvements.

The ..nance models usually use daily or weekly samples, and macro models
usually use low frequency data. The most straightforward solution to this discrep-
ancy is to discard (or take averages of) the ..nancial data to adequate to the macro
variables frequency.

This solution can be troublesome for emerging markets such as the Brazil-
ian, which in general dispose of shorter samples of stable monetary and economic
regimes. To deal with it, we propose a modi..cation of the monthly model that uses
all information available from the ..nancial data.

We showed that for the Brazilian data, the “pooled” model produced more
accurate impulse response functions.

Finally, we considered a changes of regime model.
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Figure I1l. FHCnLula. Pooled. Impulse response. Thick line: Lula. Thin line:

1%t column: intation resp. 2" col.: short rate resp. 3" col.: slope resp.
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Figure IV. GreenspannBernanke. Pooled. Impulse response. Thick line: Bernanke.
Thin line: Greenspan. We plot 95% con..dence bands around responses.
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APPENDIX A

Convergence

1. Description of Gelman-Rubin test

Below, we give the formulas associated to the Gelman-Rubin statistics:

Within chain variance:

1 XX X
W=——- L T)A
ey i)
j=1i=1
Among chains variance:
>
__"n - =2
B_m'l_ (z; i)
=1

Estimated variance:

Pa)y=@i %)W +%B.

Gelman-Rubin statistics:

1LC
R = Q) ).
w
The Gelman-Rubin statistics R are applied to multiple chains. It indicates
convergence when R is close to 1, below a certain critical level, for example, 1.1.
Details can be found in Robert and Casella (2005).

2. Simulation exercise

To validate our MCMC estimation algorithm, we simulate series using the unre-
stricted Nelson-Siegel and a®¢ne models, and test the performance of the estimator
on the series.

We show in the following that the algorithm successfully recovers the true
parameters. We simulate a sample of 1000 observations of a term structure with
the same maturities as the U.S. market. We show that the MCMC estimates
are close to the true parameters. Moreover, the true parameters stay within the
con..dence intervals of the estimated data.

Moreover, we apply the convergence diagnostics for the parameter chains gen-
erated to estimate the above parameters.

For the Nelson-Siegel model, the results are given in Table Al.

We further plot the Markov chains produced by the MCMC algorithm for
various parameters. For each parameter, 3 independent chains were run 3000 times.
The results are given by Figures Al to A4.
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In all cases the chains converged to its invariant measure around the true pa-
rameter. We also compute the Gelman-Rubin statistics for the chains (some are
omitted).

In Table A2, we plot the Markov chains produced by the MCMC algorithm for
the unrestricted aCne case. For each parameter, 3 independent chains were run
3000 times. In all cases the chains converged to its invariant measure around the
true parameter. Gelman-Rubin statistics are given (some are omitted), as well as
the convergence diagnostics of the parameter chains.

Table Al. Nelson-Siegel with 3 factors. True parameters, estimated parameters
(mean and standard deviation of the parameter chains).

True Mean St. Dev.

© 09 00 -01 087 0.02 -0.07 002 0.02 0.02
0.1 088 -0.1 012 087 -01 0.01 0.01 o0.01
0.0 00 098 -0.01 0.00 0.98 0.01 0.01 0.01

Vol10®> 36 -0.6 06 400 -0.34 046 009 0.03 0.03
-06 10 -04 -034 101 -041 0.03 002 0.01
06 -04 18 046 -0.41 157 0.03 0.01 0.02

True Mean St. Dev.
yB10% 7 6.99 0.05

Ao l10?  True 5 5 5 5 5 5 5 5
Estim 50 50 49 49 50 50 5.0 5.0
St. Dev. - - - - - - - -

0,010 True 4 4 4 4 4 4 4 4
Estim 39 42 4.1 40 40 40 4.3 3.9
St. Dev. 02 01 0.1 0.1 02 02 0.1 0.2

Figure Al. Nelson-Siegel with 3 factors.
Chains of parameter ~.
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iterations

Gelman-Rubin test:
R(v) =[1.00,1.00,1.00]
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Figure A2. Nelson-Siegel with 3 factors.
Chains of parameter matrix ©.
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Figure A3. Nelson-Siegel with 3 factors.
Chains of parameter matrix V.
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Gelman-Rubin test:

R(V11) =[1.00,1.00, 1.00]
R(V3,) =[1.00,1.00, 1.00]
R(V33) =[1.00,1.00, 1.00]
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Figure A4. Nelson-Siegel with 3 factors.
Chains of parameter vector o.
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Gelman-Rubin test:

R(c}) =[1.00,1.00, 1.00]
R(c%) =[1.00,1.00, 1.00]
R(c!) =[1.00,1.00, 1.00]

Table A2. Unrestricted A¢ne with 2 factors. True parameters, estimated
parameters (mean and standard deviation of the parameter chains).

param  true value est. mean est. std. dev.

© 0.90 -0.05 0.90 -0.03 0.02 0.02
0.10 098 0.10 0.97 0.02 0.02

o° 0.85 0.00 0.849 0.000 0.003 0.000

0.00 095 0.000 0.950 0.000 0.002
Ve10° 1.0 -02 1.056 -0.17 0.00 0.1
-0.2 04 -0.17 039 0.00 o0.01

A0 100 true value 482 457 473 489 524 543 573 597 6.10
est. mean 471 4.46 462 479 516 537 569 594 6.08
est. st. dev. - - - - - - - - -

0,810 truevalue 4 4 4 4 4 4 4 4 4
est. mean 37 45 48 58 6.7 65 58 5.1 46
est. st. dev. 0.3 03 09 1.8 22 22 1.8 1.4 1.0
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Figure A5. Unrestricted a¢ne with 2 factors.
Chains of parameter matrix ©F.
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Figure A6. Unrestricted ac¢ne with 2 factors.
Chains of parameter matrix ©.
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Gelman-Rubin statistics:
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Figure A7. Unrestricted a¢ne with 2 factors.
Chains of parameter matrix V.
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Figure A8. Unrestricted a¢ne with 2 factors.
Chains of parameter vector o%.
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