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Abstract

The main focus of this thesis is to study some generalizations of
a theorem of Burachik and Svaiter to non-reflexive Banach spaces,
and its theoretical implications in the theory of maximal monotone
operators, with special emphasis for maximal monotone operators
of type (NI).
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Klinger, Rolando Gárciga Otero e Susana Scheimberg por parcici-
parem da comissão examinadora.

A todos os amigos e colegas fica o meu muito obrigado por tudo.
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Introduction

Maximal monotone operators appear in several branches of applied
mathematics such as optimization, partial differential equations,
and variational analysis. These operators were object of intense
research between 1960 and 1980, when Brezis, Browder, Minty and
Rockafellar established the fundamental results about them. The
theory of convex representations of maximal monotone operators
emerged at the end of the 1980s with the work [20] of S. Fitz-
patrick1. It took some years until the Fitzpatrick’s results were
rediscovered by Mart́ınez-Legaz and Théra [35] and Burachik and
Svaiter [17]. Since then, this subject has called the attention of
several researchers and has been object of intense research in the
field of convex analysis, monotone operator theory and optimiza-
tion [2, 3, 4, 11, 7, 9, 8, 10, 18, 33, 34, 31, 30, 29, 32, 36, 43]. We
refer the reader to [17] for exploiting the relationship between convex
representations and enlargements of maximal monotone operators.

The main point on Fitzpatrick’s result is that it allows the use of
convex analysis in the study of maximal monotone operators. The
proof of many basic results can be simplified and also new results
obtained, mostly in non-reflexive Banach spaces, with this new tool.

In this thesis we will present some of the new results on max-
imal monotone operators, as well as a simple proof of Rockafellar
theorem on the maximality of the subdifferential. This thesis is
build around the generalization of a Burachik-Svaiter theorem about
maximal monotonicity on reflexive Banach spaces [18]. We general-
ized this result to non-reflexive Banach spaces. Together with some
techniques used for this generalization it allowed us to obtain some
other results, which are also presented here. A classical theorem
of Rockafellar states that the subdifferential is maximal monotone.
Unfortunately, most of the techniques Rockafellar used for proving
this fact could not be adapted to our aims. For these reasons, a new
and simpler proof of the maximal monotonicity of the subdifferential
was the first result we obtained.

1http://www.maths.uwa.edu.au/Members/tributes/fitzpatr
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Presentation of chapters

Chapter 1: In this chapter we present the results of Fitzpatrick and
Burachik-Svaiter on convex representations of maximal monotone
operators. Fitzpatrick’s results are summarized in Theorem 1.1.1.
In Section 1.2, we called “The starting point”, Burachik-Svaiter’s
results in this direction of research are presented.

Chapter 2: This chapter is the first step toward the study of
maximal monotonicity in non-reflexive Banach spaces. We start, in
Section 2.1, by presenting a new proof of maximality of the subdif-
ferential of a convex function. This proof is simpler than Rockafel-
lar’s classical proof, and makes use of classical results from subdif-
ferential calculus as Brøndsted-Rockafellar’s Theorem and Fenchel-
Rockafellar duality Theorem. We also observe that the proof can be
simplified in reflexive spaces, and that it can be seen as a particular
case of a more general maximality result presented in Theorem 2.2.5.

Section 2.2 is devoted to the study of monotone operators rep-
resentable by convex functions satisfying condition (1.13). Theo-
rem 2.2.5, states that condition (1.13) is a sufficient condition for
maximal monotonicity in non-reflexive spaces, generalizing Theo-
rem 1.2.3 for this non-reflexive setting. In Theorem 2.2.7 and Theo-
rem 2.2.8, we shall prove that such operators satisfies a Brøndsted-
Rockafellar type property. In this context, we futher prove, in The-
orem 2.2.10, that maximal monotone operators of type (NI) also
satisfies this Brøndsted-Rockafellar type property. In Theorem 2.3.1
and Lemma 2.3.2, of Section 2.3, we prove some additional proper-
ties of operators of type (NI) and a sum theorem for this class of
operators, respectively.

The results of this chapter were published in [28, 29, 31].

Chapter 3: This chapter is about surjectivity of perturbation of
maximal monotone operators in non-reflexive Banach spaces. The
results presented are from [30]. In a reflexive Banach space surjectiv-
ity of a monotone operator plus the duality mapping is equivalent to
maximal monotonicity. This is a classical result of Rockafellar [38].

In [21] Gossez introduced an “enlarged” version of the duality
mapping and proved similar Rockafellar’s surjectivity results for the
class of maximal monotone operators of type (D), introduced by
himself.

The class of maximal monotone operators of type (NI), intro-
duced by S. Simons in [39], encompasses the Gossez type (D) oper-
ators.

2



We shall make use of the analytical tools developted in Chapter 2
in order to obtain surjectivity results of perturbations of operators
of type (NI) by using the Gossez “enlarged” duality mapping. The
main results of the Chapter are present in Theorem 3.2.3.

Chapter 4: Any maximal monotone operator T : X ⇉ X∗ is
also a monotone operator T : X∗∗ ⇉ X∗ and admits one (or more)
maximal monotone extension in X∗∗×X∗ that (in general) will not
be unique.

This chapter approaches the problem of under which conditions a
maximal monotone operator T : X ⇉ X∗ has a unique extension to
the bidual. The Gossez type (D) maximal monotone operators have
a unique maximal monotone extension to the bidual [21, 22, 23, 24].

We will prove that maximal monotone operators of type (NI)
admit a unique extension to the bidual and that, for non-linear
operators, the condition (NI) is equivalent to the unicity of maximal
monotone extension to the bidual. For proving this equivalence we
will show that if T ⊂ X × X∗ is maximal monotone and convex
then T is an affine subspace. The results of this chapter are from
the paper [31].

Notations

BX [0,M ] closed ball of X with radius M
cl f largest l.s.c. function majorized by f

conv f largest convex function majorized by f
cl conv f largest l.s.c. convex function majorized by f
dom(f) effective domain of f

δA indicator function of A
ϕT Fitzpatrick function of T
FT Fitzpatrick family of T
J duality mapping J = ∂ 1

2
‖ · ‖2

Jε enlarged duality mapping Jε = ∂ε
1
2
‖ · ‖2

Λh Λh(x, x∗) = h∗(x∗, x)
π duality product in X × X∗

π∗ duality product in X∗ × X∗∗

R̄ extended real system {−∞} ∪ R ∪ {∞}
R̄

X set of functions of X into R̄

R(T ) range of T
R R : X∗∗ × X∗ → X∗ × X∗∗, R(x∗∗, x∗) = (x∗, x∗∗)

ST S-function of T
T−1 inverse of T

3



Chapter 1

Basic results and notation

Let X be a real Banach space with topological dual X∗. For x ∈ X
and x∗ ∈ X∗ we will use the notation 〈x, x∗〉 = x∗(x). A point to
set operator T : X ⇉ X∗ is a relation on X × X∗:

T ⊂ X × X∗

and x∗ ∈ T (x) means (x, x∗) ∈ T . An operator T : X ⇉ X∗ is
monotone if

〈x − y, x∗ − y∗〉 ≥ 0,∀(x, x∗), (y, y∗) ∈ T

and it is maximal monotone if it is monotone and maximal (with
respect to the inclusion) in the family of monotone operators of X
into X∗.

1.1 Fitzpatrick functions

Brezis and Haraux defined in [12], for a maximal monotone operator
T : X ⇉ X∗, the function

βT ∈ R̄
X×X∗

, βT (x, x∗) = sup
(y,y∗)∈T

〈x − y, y∗ − x∗〉. (1.1)

Note that if (x, x∗) ∈ T then the above inner product is always
nonpositive, being equal to zero for (y, y∗) = (x, x∗). So, βT = 0
in T . If (x, x∗) /∈ T , since T is maximal monotone we conclude
that 〈x − y, x∗ − y∗〉 < 0 for some (y, y∗) ∈ T and so βT (x, x∗) > 0.
Therefore, for any (x, x∗) ∈ X × X∗

βT (x, x∗) ≥ 0, βT (x, x∗) = 0 ⇐⇒ (x, x∗) ∈ T.

The function βT provides a representation of the maximal monotone
operator, but it lacks properties to be explored.
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Fitzpatrick defined [20], for a maximal monotone operator T , the
function

ϕT (x, x∗) = sup
(y,y∗)∈T

〈x − y, y∗ − x∗〉 + 〈x, x∗〉 (1.2)

= sup
(y,y∗)∈T

〈y, x∗〉 + 〈x, y∗〉 − 〈y, y∗〉. (1.3)

Using (1.2) and the previous observations we conclude that

ϕT (x, x∗) ≥ 〈x, x∗〉, ϕT (x, x∗) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ T. (1.4)

Note also from (1.3) that ϕT , being a sup of linear functions on
(x, x∗), is convex and lowersemicontinuous. The above equation
generalizes, in some sense, Fenchel-Young inequality (2.1). Fitz-
patrick also defined a family of convex functions associated with
each maximal monotone operator T ,

FT =



h ∈ R̄

X×X∗

∣∣∣∣∣∣

h is convex and lower semicontinuous
h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗

(x, x∗) ∈ T ⇒ h(x, x∗) = 〈x, x∗〉



 .

(1.5)
and proved the next result:

Theorem 1.1.1 ([20, Theorem 3.10]). Let T : X ⇉ X∗ be maximal
monotone. Then for any h ∈ FT

(x, x∗) ∈ T ⇐⇒ h(x, x∗) = 〈x, x∗〉 (1.6)

and ϕT is the smallest element of the family FT .

Proof. Inclusion of ϕT in FT has already been proved in (1.4), and
in the preceding discussion. To prove that ϕT is minimal in FT , take
h ∈ FT and (y, y∗) ∈ T . For any (x, x∗) and p, q ≥ 0, p + q = 1, we
have

〈px + qy, px∗ + qy∗〉 ≤ h(px + qy, px∗ + qy∗)

≤ ph(x, x∗) + qh(y, y∗) (1.7)

where the first inequality follows for the fact that h majorizes the
duality product and the second one from the convexity of h. Since
(y, y∗) ∈ T , h(y, y∗) = 〈y, y∗〉, which combined with (1.7) yields

p〈x, x∗〉 + q[〈x, y∗〉 + 〈y, x∗〉 − 〈y, y∗〉] ≤ h(x, x∗).

Now, taking limit as p → 0 (q → 1) in the above inequality and
supremum over (y, y∗) ∈ T in the resulting inequality we conclude
that ϕT ≤ h. Therefore, ϕT is minimal in FT and (1.6) follows from
this minimality.
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It is worth to note that by (1.6), each Fitzpatrick function fully char-
acterizes the operator T which defines the family FT . This is exactly
what we mean by a convex representation of a maximal monotone
operator T . For instance, if f is a proper, lower semicontinuous con-
vex function on X, then hs ∈ F∂f , where hs(x, x∗) = f(x) + f ∗(x∗).

1.2 The starting point

In this section we will discuss previous results of Burachik and
Svaiter, which are the starting point of this thesis. Fitzpatrick
function combines duality product and conjugation. Before showing
that, we will establish some notation and conventions.

Recall that the conjugate of f ∈ R̄
X is

f ∗ ∈ R̄
X∗

, f ∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x). (1.8)

From now on we will denote the duality product by π,

π ∈ R
X×X∗

, π(x, x∗) = 〈x, x∗〉. (1.9)

We will also identify X with its image under the canonical injection
into X∗∗. With these conventions, we have

ϕT (x, x∗) = (π + δT )∗(x∗, x)

where δT ∈ R̄
X×X∗

is the indicator function of T :
{

0, on T,

∞, otherwise

In [17] Burachik and Svaiter observed that the family FT is closed
under the supremum operation and defined its largest element, the
so called S-function:

ST ∈ R̄
X×X∗

, ST = sup
h∈FT

h, (1.10)

Hence, ST ∈ FT .
The next theorem gives an “explicit” expression of ST and use

this function (together with ϕT ) to provide an alternative charac-
terization of FT (to be used in Theorem 4.3.1).

Theorem 1.2.1 ([17, Corollary 4.1, Remark 5.4]). Let ϕT and ST

be the Fitzpatrick and S-function associated to T , respectively, as
defined in (1.2) and (1.10). Then,

6



1. ST = cl conv(π + δT ),

2. for any convex lower semicontinuous function h ∈ R̄
X×X∗

,

h ∈ FT ⇐⇒ ϕT ≤ h ≤ ST ,

3. for any (x, x∗) ∈ X × X∗, ϕT (x, x∗) = (ST )∗(x∗, x),

4. if X is reflexive, then for any (x, x∗) ∈ X × X∗
ST (x, x∗) =

(ϕT )∗(x∗, x).

If we define,

Λ : R̄
X×X∗ → R̄

X×X∗

, Λh(x, x∗) := h∗(x∗, x), (1.11)

according to the above theorem, ΛST = ϕT ∈ FT . So, it is natural
to ask whether Λ maps FT into itself. Burachik and Svaiter also
proved that this happens in fact:

Theorem 1.2.2 ([17, Theorem 5.3]). Suppose that T is maximal
monotone. Then

Λh ∈ FT , ∀h ∈ FT ,

that is, if h ∈ FT , and

g : X × X∗ → R̄, g(x, x∗) = h∗(x∗, x),

then g ∈ FT . In a reflexive Banach space ΛϕT = ST .

It is interesting to note that Λ is an order-reversing mapping of
FT into itself. This fact suggests that this mapping may have fixed
points in FT . Svaiter proved [43] that if T is maximal monotone,
then Λ always has a fixed point in FT .

Note that, by Theorem 1.2.2, if h ∈ FT then:

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗.
(1.12)

In [18] Burachik and Svaiter proved that the converse of this impli-
cation holds in a reflexive Banach space:

Theorem 1.2.3 ([18, Theorem 3.1]). Let X be a reflexive Banach
space. If h ∈ R̄

X×X∗

is proper, convex, l.s.c. and

h (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗

h∗(x∗, x) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗

then
T := {(x, x∗) ∈ X × X∗ | h (x, x∗) = 〈x, x∗〉}

is maximal monotone and h, Λh ∈ FT .
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The proof of Theorem 1.2.3 was based on Rockafellar’s surjec-
tivity theorem (see Theorem 3.0.3). Unfortunately, this technique
cannot be used in a non-reflexive setting. Motivated by this prob-
lem, in [29] we propose to replace (1.12) by the novel condition:

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.
(1.13)

The above condition generalizes (1.12) and allows one to prove The-
orem 1.2.3 in non-reflexive spaces, by replacing condition (1.12)
by (1.13) and by using the Fenchel-Rockafellar duality Theorem A.0.4.

It still remains as an open question to prove Theorem 1.2.3 in non-
reflexive Banach spaces with the original Burachik-Svaiter’s condi-
tion (1.12). In the last years, a great effort has been spent in trying
to answer affirmatively such open question. Theorem 1.2.3 would
give a affirmative answer to the celebrate Rockafellar’s conjecture
on the sum of maximal monotone operators in non-reflexive Banach
spaces (see Lemma 2.3.2).

The main focus of this thesis is to study some generalizations of
Theorem 1.2.3 to non-reflexive Banach spaces, and its theoretical
implications in the theory of maximal monotone operators, with
special emphasis for maximal monotone operators of type (NI).

The results presented in this thesis are contained in the works [28,
29, 30, 31, 32], all of them in collaboration with B. F. Svaiter.
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Chapter 2

Maximality in non-reflexive
Banach spaces

This chapter is concerned with the study of maximal monotonicity
in non-reflexive Banach spaces. In Section 2.1, we give a new proof
of the maximality of the subdifferential of a convex function. Sec-
tion 2.2 is devoted to the study of monotone operators representable
by convex functions satisfying condition (1.13). In Section 2.3 we
prove some additional properties of operators of type (NI) and a
sum theorem for this class of operators.

The results of this chapter were published in [28, 29, 31].

2.1 Maximality of subdifferentials

Recall that the subdifferential of f is the operator ∂f : X ⇉ X∗,

∂f(x) = {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉, ∀y ∈ X}.

Using the above definition, it is easy to check that if f is proper, con-
vex and lower semicontinuous (l.s.c. for short), then ∂f is monotone
and

f(x) + f ∗(x∗) ≥ 〈x, x∗〉,
f(x) + f ∗(x∗) = 〈x, x∗〉 ⇐⇒ x∗ ∈ ∂f(x). (2.1)

First proved by Rockafellar in [37], the maximal monotonicity of
the subdifferential of a convex function is still object of study and
several authors attempt to give simpler proofs to this fact (see [28]
and references therein). Rockafellar’s original proof is based on very
important tools introduced by himself in [37]. In particular, he has
proved a result of weak density for the graph of ∂f in the graph
of ∂f ∗ that has been widely used in different situations in convex

9



analysis (see Theorem 6.1 of [17] for an application) and later on was
introduced by Gossez in the context of maximal monotone operators
of type (D) [23, 24, 21, 22].

In this section we present a short proof for the maximality of sub-
differentials which makes use of classical results from subdifferential
calculus like Brøndsted-Rockafellar’s Theorem (Theorem A.0.3) and
Fenchel-Rockafellar duality Theorem (Theorem A.0.4). We also ob-
serve that our proof can be still simplified in reflexive spaces, in par-
ticular in finite dimensional spaces, and it can be seen as a particular
case of a more general maximality result presented in Theorem 2.2.5.

Theorem 2.1.1. Let X be a Banach space. If f ∈ R̄
X is proper,

convex and l.s.c., then ∂f : X ⇉ X∗ is maximal monotone.

Proof. (Marques Alves-Svaiter) Monotonicity of ∂f is easy to check.
Suppose that (x0, x

∗

0) ∈ X × X∗ is such that

〈x − x0, x
∗ − x∗

0〉 ≥ 0, ∀x∗ ∈ ∂f(x).

Define
f0 ∈ R̄

X , f0(x) := f(x + x0) − 〈x, x∗

0〉. (2.2)

Applying Theorem A.0.4 to f0 and g(x) := 1
2
‖x‖2 we conclude that

there exists x∗ ∈ X∗ such that

inf
x∈X

f0(x) +
1

2
‖x‖2 + f ∗

0 (x∗) +
1

2
‖x∗‖2 = 0. (2.3)

In particular, there exists a (minimizing) sequence {xn} such that

1

n2
≥ f0(xn) +

1

2
‖xn‖2 + f ∗

0 (x∗) +
1

2
‖x∗‖2

≥ 〈xn, x
∗〉 +

1

2
‖xn‖2 +

1

2
‖x∗‖2

≥ 1

2
(‖xn‖ − ‖x∗‖)2 ≥ 0, (2.4)

where the second inequality follows from Fenchel-Young inequality.
Using the above equation we obtain

f0(xn) + f ∗

0 (x∗) − 〈xn, x
∗〉 ≤ 1/n2.

Hence, x∗ ∈ ∂1/n2f0(xn) and by Theorem A.0.3 it follows that there
exist sequences {zn} in X and {z∗n} in X∗ such that

z∗n ∈ ∂f0(zn), ‖z∗n − x∗‖ ≤ 1/n and ‖zn − xn‖ ≤ 1/n. (2.5)

Using the initial assumption, we also obtain

〈zn, z
∗

n〉 ≥ 0. (2.6)

10



Using (2.4) we get

‖xn‖ → ‖x∗‖, 〈xn, x
∗〉 → −‖x∗‖2, as n → ∞, (2.7)

which, combined with (2.5) and (2.6) yields x∗ = 0. Therefore,
xn → 0. As f0 is l.s.c., x = 0 minimizes f0(x) + 1

2
‖x‖2 and, using

(2.3) we have
f0(0) + f ∗

0 (0) = 0.

Therefore 0 ∈ ∂f0(0), which is equivalent to x∗

0 ∈ ∂f(x0).

Notice that in a reflexive Banach space X (in particular, in finite
dimensional vector spaces) the proof of Theorem 2.1.1 can be futher
simplified by taking a minimum on (2.3). This leads to the existence
of z ∈ X such that

f0(z) + f ∗

0 (x∗) = 〈z, x∗〉, 1

2
‖z‖2 +

1

2
‖x∗‖2 + 〈z, x∗〉 = 0

and so 0 ∈ ∂f0(0), which finishes the proof.
It should also be noted that a similar (and simple) proof for The-

orem 2.1.1 can be obtained directly from Theorem 2.2.5 by using
hs(x, x∗) := f(x) + f ∗(x∗) as a convex representation for the mono-
tone operator ∂f .

2.2 Maximality and Brøndsted-Rockafellar prop-
erty

In this section we are interested in the study of maximality of mono-
tone operators representable by convex functions satisfying condi-
tion (1.13). A remarkable result is Theorem 2.2.5, in which we prove
that condition (1.13) is a sufficient condition for maximal mono-
tonicity in non-reflexive spaces, generalizing Theorem 1.2.3 for this
non-reflexive setting.

After proving Theorem 2.2.5 we will study Brøndsted-Rockafellar
property for maximal monotone operators in non-reflexive Banach
spaces. Burachik, Iusem and Svaiter [15] defined the ε-enlargement
of T for ε ≥ 0, as T ε : X ⇉ X∗

T ε(x) = {x∗ ∈ X∗ | 〈x − y, x∗ − y∗〉 ≥ −ε ∀(y, y∗) ∈ T}. (2.8)

It is trivial to verify that T ⊂ T ε. The ε-enlargement is a gener-
alization of the ε-subdifferential of a convex function and has both
theoretical and practical uses [41, 42, 19, 25, 26, 27]. An impor-
tant question concerning the study of ε-enlargements of a maximal
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monotone operator T is whether an element in the graph of T ε can
be approximated by an element in the graph of T .

A maximal monotone operator T : X ⇉ X∗ has the Brøndsted-
Rockafellar property if, for any ε > 0,

x∗ ∈ T ε(x) ⇒ ∀λ > 0, ∃(x̄, x̄∗) ∈ T, ‖x−x̄‖ ≤ λ, ‖x̄∗−x∗‖ ≤ ε/λ.

It does make sense to ask if every maximal monotone operator has
Brøndsted-Rockafellar property. This question has been successfully
solved for the extension ∂εf , of ∂f , by Brønsted and Rockafellar,
as is showed in Theorem A.0.3. In the case of a general maximal
monotone operator, the answer is affirmative in reflexive Banach
spaces [44, 16] but is negative in the non-reflexive case [40].

The operator T satisfies the strict Brøndsted-Rockafellar prop-
erty [29] if

x∗ ∈ T ε(x), η > ε ⇒ ∀λ > 0,∃(x̄, x̄∗) ∈ T,

‖x − x̄‖ < λ, ‖x̄∗ − x∗‖ < η/λ. (2.9)

In Theorem 2.2.7 and Theorem 2.2.10 we will prove that maxi-
mal monotone operators representable by convex functions satis-
fying (1.13) and maximal monotone operators of type (NI) satisfies
the strict Brøndsted-Rockafellar property.

The results of this section were published in [29, 31].

2.2.1 Preliminary results

The main result of this subsection is Theorem 2.2.4. We start by
proving some technical results.

Theorem 2.2.1. (Marques Alves-Svaiter [29]) Let h ∈ R̄
X×X∗

be a
convex and l.s.c. function. If

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,

then for any ε > 0 there exists (x̃, x̃∗) ∈ X × X∗ such that

h(x̃, x̃∗)+
1

2
‖x̃‖2+

1

2
‖x̃∗‖2 < ε, ‖x̃‖2 ≤ h(0, 0), ‖x̃∗‖2 ≤ h(0, 0),

where the two last inequalities are strict in the case h(0, 0) > 0.

Proof. If h(0, 0) < ε then (x̃, x̃∗) = (0, 0) has the desired properties.
The non-trivial case is

ε ≤ h(0, 0), (2.10)

12



which we consider now. Using the assumptions on h, we conclude
that for any (x, x∗) ∈ X × X∗,

h(x, x∗) +
1

2
‖x‖2 +

1

2
‖x∗‖2 ≥ 〈x, x∗〉 +

1

2
‖x‖2 +

1

2
‖x∗‖2

≥ −‖x‖ ‖x∗‖ +
1

2
‖x‖2 +

1

2
‖x∗‖2

=
1

2
(‖x‖ − ‖x∗‖)2 ≥ 0. (2.11)

Analogously, for all (z∗, z∗∗) ∈ X∗ × X∗∗,

h(z∗, z∗∗) +
1

2
‖z∗‖2 +

1

2
‖z∗∗‖2 ≥ 〈z∗, z∗∗〉 +

1

2
‖z∗‖2 +

1

2
‖z∗∗‖2

≥ −‖z∗‖ ‖z∗∗‖ +
1

2
‖z∗‖2 +

1

2
‖z∗∗‖2

=
1

2
(‖z∗‖ − ‖z∗∗‖)2 ≥ 0. (2.12)

Now using Theorem A.0.4 for the Banach space X × X∗ and f, g ∈
R̄

X×X∗

,

f(x, x∗) := h(x, x∗), g(x, x∗) :=
1

2
‖x‖2 +

1

2
‖x∗‖2

we conclude that there exists (ẑ∗, ẑ∗∗) ∈ X∗ × X∗∗ such that

inf
(x,x∗)

h(x, x∗) +
1

2
‖x‖2 +

1

2
‖x∗‖2 = −h∗(ẑ∗, ẑ∗∗)− 1

2
‖ẑ∗‖2 − 1

2
‖ẑ∗∗‖2.

As the right hand side of the above equation is non positive and the
left hand side is non negative, these two terms are zero. Therefore,

inf
(x,x∗)∈X×X∗

h(x, x∗) +
1

2
‖x‖2 +

1

2
‖x∗‖2 = 0, (2.13)

and

h∗(ẑ∗, ẑ∗∗) +
1

2
‖ẑ∗‖2 +

1

2
‖ẑ∗∗‖2 = 0. (2.14)

For (z∗, z∗∗) = (ẑ∗, ẑ∗∗), all inequalities on (2.12) must hold as equal-
ities. Therefore,

‖ẑ∗‖2 = ‖ẑ∗∗‖2 = −h(ẑ∗, ẑ∗∗) ≤ h(0, 0), (2.15)

where the last inequality follows from the definition of conjugate.
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Using (2.13) we conclude that for any η > 0, there exists (xη, xη
∗) ∈

X × X∗ such that

h(xη, xη
∗) +

1

2
‖xη‖2 +

1

2
‖xη

∗‖2 < η. (2.16)

If h(0, 0) = ∞, then, taking η = ε and (x̃, x̃∗) = (xη, xη
∗) we con-

clude that the theorem holds. Now, we discuss the case h(0, 0) < ∞.
In this case, using (2.15) we have

‖ẑ∗‖ = ‖ẑ∗∗‖ ≤
√

h(0, 0). (2.17)

Note that from (2.10) we are considering

ε ≤ h(0, 0) < ∞. (2.18)

Combining (2.14) with (2.16) and using Fenchel-Young inequal-
ity (A.2) we obtain

η > h(xη, xη
∗) +

1

2
‖xη‖2 +

1

2
‖xη

∗‖2 + h∗(ẑ∗, ẑ∗∗) +
1

2
‖ẑ∗‖2 +

1

2
‖ẑ∗∗‖2

≥ 〈xη, ẑ
∗〉 + 〈xη

∗, ẑ∗∗〉 +
1

2
‖xη‖2 +

1

2
‖xη

∗‖2 +
1

2
‖ẑ∗‖2 +

1

2
‖ẑ∗∗‖2

≥ 1

2
‖xη‖2 − ‖xη‖‖ẑ∗‖ +

1

2
‖ẑ∗∗‖2 +

1

2
‖xη

∗‖2 − ‖xη
∗‖‖ẑ∗∗‖ +

1

2
‖ẑ∗∗‖2

=
1

2
(‖xη‖ − ‖ẑ∗‖)2 +

1

2
(‖xη

∗‖ − ‖ẑ∗∗‖)2 .

As the two terms in the last inequality are non negative,

‖xη‖ < ‖ẑ∗‖ +
√

2η, ‖xη
∗‖ < ‖ẑ∗∗‖ +

√
2η.

Therefore, using (2.17) we obtain

‖xη‖ <
√

h(0, 0) +
√

2η, ‖xη
∗‖ <

√
h(0, 0) +

√
2η.

For finishing the proof, take in (2.16)

0 < η <
ε2

2h(0, 0)
(2.19)

and let

τ =

√
h(0, 0)√

h(0, 0) +
√

2η
x̃ = τ xη, x̃∗ = τ xη

∗. (2.20)

Then,

‖x̃‖ <
√

h(0, 0), ‖x̃∗‖ <
√

h(0, 0).
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Now, using the convexity of h and of the square of the norms and
(2.16), we have

h(x̃, x̃∗) +
1

2
‖x̃‖2 +

1

2
‖x̃∗‖2 ≤ (1 − τ) h(0, 0)

+τ

(
h(xη, xη

∗) +
1

2
‖xη‖2 +

1

2
‖xη

∗‖2

)

< (1 − τ) h(0, 0) + τ η

= h(0, 0) − τ(h(0, 0) − η).

Therefore, using also (2.19)

ε −
(

h(x̃, x̃∗) +
1

2
‖x̃‖2 +

1

2
‖x̃∗‖2

)
≥ ε − h(0, 0) + τ(h(0, 0) − η)

> ε − h(0, 0) + τ(h(0, 0) − 2η)

= ε − h(0, 0) +
√

h(0, 0)
(√

h(0, 0) −
√

2η
)

= ε −
√

2h(0, 0)η > 0.

which completes the proof.

In Theorem 2.2.1 the origin has a special role. In order to use
this theorem with an arbitrary point, define [33], for h ∈ R̄

X×X∗

and
(z, z∗) ∈ X × X∗, h(z,z∗) ∈ R̄

X×X∗

,

h(z,z∗)(x, x∗) := h(x+z, x∗+z∗)−
[
〈x, z∗〉+〈z, x∗〉+〈z, z∗〉

]
. (2.21)

Notice that

h(z,z∗)(x, x∗)− 〈x, x∗〉 = h(x + z, x∗ + z∗)− 〈x + z, x∗ + z∗〉. (2.22)

The operation h 7→ h(z,z∗) preserves many properties of h, as con-
vexity, lower semicontinuity and can be seen as the action of the
group (X × X∗, +) on R̄

X×X∗

, because
(
h(z0,z∗

0
)

)
(z1,z∗

1
)
= h(z0+z1,z∗

0
+z∗

1
).

The proof of Theorem 2.2.5 will be heavily based on these nice
properties of the map h 7→ h(z,z∗). In the next proposition we prove
that the class of l.s.c. convex functions h ∈ R̄

X×X∗

such that h ≥ π
and h∗ ≥ π∗ is invariant under the map h 7→ h(z,z∗):

Proposition 2.2.2. (Marques Alves-Svaiter [29]) For any h ∈ R̄
X×X∗

it holds that:

1. h is proper, convex and l.s.c. ⇐⇒ h(z,z∗) is proper, convex
and l.s.c., ∀(z, z∗) ∈ X × X∗;
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2.
(
h(z,z∗)

)
∗

= (h∗)(z∗,z), where the rightmost z is identified with
its image under the canonical injection of X into X∗∗;

3. h ≥ π, h∗ ≥ π∗ ⇐⇒ h(z,z∗) ≥ π,
(
h(z,z∗)

)
∗ ≥ π∗, ∀(z, z∗) ∈

X × X∗.

Proof. Item 1 is trivial to check. For proving item 2, take (x∗, x∗∗) ∈
X∗ × X∗∗. Then, using (2.21) we obtain
(
h(z,z∗)

)
∗

(x∗, x∗∗) = sup
(y,y∗)

〈y, x∗〉 + 〈y∗, x∗∗〉 − h(z,z∗)(y, y∗)

= h∗(x∗ + z∗, x∗∗ + z) −
[
〈x∗, z〉 + 〈z∗, x∗∗〉 + 〈z∗, z〉

]

= (h∗)(z∗,z)(x
∗, x∗∗). (2.23)

It remains to prove item 3. For proving the “if”, note that h(0,0) = h.
For proving the “only if”, use (2.22) to conclude that h(z,z∗) ≥ π

whenever h ≥ π. By the same reasoning,
(
h∗

)
(z∗,z)

≥ π∗ whenever

h∗ ≥ π∗ and so that using item 2 we end the proof of item 3.

Corollary 2.2.3. (Marques Alves-Svaiter [29]) Let h ∈ R̄
X×X∗

be
a convex and l.s.c. function. If

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,

then for any (z, z∗) ∈ X×X∗ and ε > 0 there exist (x̃, x̃∗) ∈ X×X∗

such that

h(x̃, x̃∗) < 〈x̃, x̃∗〉 + ε,

‖x̃ − z‖2 ≤ h(z, z∗) − 〈z, z∗〉,
‖x̃∗ − z∗‖2 ≤ h(z, z∗) − 〈z, z∗〉,

where the two last inequalities are strict in the case 〈z, z∗〉 < h(z, z∗).

Proof. If h(z, z∗) = 〈z, z∗〉 then (x̃, x̃∗) = (z, z∗) satisfy the desired
conditions. Assume that

0 < h(z, z∗) − 〈z, z∗〉. (2.24)

Using Proposition 2.2.2 and Theorem 2.2.1 we conclude that there
exists (ỹ, ỹ∗) ∈ X × X∗ such that

h(z,z∗)(ỹ, ỹ∗) +
1

2
‖ỹ‖2 +

1

2
‖ỹ∗‖2 < ε,

‖ỹ‖2 < h(z,z∗)(0, 0),

‖ỹ∗‖2 < h(z,z∗)(0, 0). (2.25)
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Using (2.22), we obtain h(z,z∗)(0, 0) = h(z, z∗) − 〈z, z∗〉. Let

x̃ := ỹ + z, x̃∗ := ỹ∗ + z∗.

Therefore, using (2.25) and (2.24), we have

‖x̃ − z‖2 < h(z, z∗) − 〈z, z∗〉, ‖x̃∗ − z∗‖2 < h(z, z∗) − 〈z, z∗〉.

For finishing the proof of the corollary, use (2.22) and (2.25) to
obtain

h(x̃, x̃∗) − 〈x̃, x̃∗〉 = h(z,z∗)(ỹ, ỹ∗) − 〈ỹ, ỹ∗〉
≤ h(z,z∗)(ỹ, ỹ∗) + 1

2
‖ỹ‖2 + 1

2
‖ỹ∗‖2 < ε.

Now we come with the main result of this subsection. It is im-
portant by itself and will be used in the next sections, specially for
proving Theorem 2.2.5.

Theorem 2.2.4. (Marques Alves-Svaiter [29]) Let h ∈ R̄
X×X∗

be
convex, l.s.c. and

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

If (x, x∗) ∈ X × X∗, ε > 0 and

h(x, x∗) < 〈x, x∗〉 + ε,

then, for any λ > 0 there exists (x̄λ, x̄
∗

λ) ∈ X × X∗ such that

h(x̄λ, x̄
∗

λ) = 〈x̄λ, x̄
∗

λ〉, ‖x̄λ − x‖ < λ, ‖x̄∗

λ − x∗‖ <
ε

λ
.

Proof. First, suppose that λ =
√

ε. If h(x, x∗) − 〈x, x∗〉 = 0, then
(x, x∗) has the desired properties. So, suppose also that h(x, x∗) −
〈x, x∗〉 > 0. Let ε0 > 0 and θ ∈ (0, 1) be such that

0 < h(x, x∗) − 〈x, x∗〉 < ε0 < ε,

√
ε0

1 +
√

θ
<

√
ε. (2.26)

Define inductively a sequence {(xk, x
∗

k)} as follows: For k = 0, let

(x0, x
∗

0) = (x, x∗). (2.27)

Given k and (xk, x
∗

k), use Corollary 2.2.3 to conclude that there
exists some (xk+1, x

∗

k+1) such that

h(xk+1, x
∗

k+1) − 〈xk+1, x
∗

k+1〉 < θk+1ε0 (2.28)
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and
‖xk+1 − xk‖ ≤

√
h(xk, x∗

k) − 〈xk, x∗

k〉,
‖x∗

k+1 − x∗

k‖ ≤
√

h(xk, x∗

k) − 〈xk, x∗

k〉.
(2.29)

Using (2.26) and (2.28) we conclude that for all k,

0 ≤ h(xk, x
∗

k) − 〈xk, x
∗

k〉 < θkε0, (2.30)

which, combined with (2.29) yields

∞∑

k=0

‖xk+1−xk‖ <
√

ε0

∞∑

k=0

√
θk,

∞∑

k=0

‖x∗

k+1−x∗

k‖ <
√

ε0

∞∑

k=0

√
θk.

The second part of (2.26) gives

∞∑

k=0

‖xk+1 − xk‖ <
√

ε,
∞∑

k=0

‖x∗

k+1 − x∗

k‖ <
√

ε. (2.31)

In particular, the sequences {xk} and {x∗

k} are convergent. Let

x̄ := lim
k→∞

xk, x̄∗ := lim
k→∞

x∗

k.

Then, using (2.31) we have

‖x̄ − x‖ <
√

ε, ‖x̄∗ − x∗‖ <
√

ε.

Using (2.30) we have

lim
k→∞

h(xk, x
∗

k) − 〈xk, x
∗

k〉 = 0.

As h is l.s.c. and the duality product is continuous (in the strong
topology of X × X∗),

h(x̄, x̄∗) − 〈x̄, x̄∗〉 ≤ 0.

Therefore, h(x̄, x̄∗)−〈x̄, x̄∗〉 = 0, which ends the proof of the theorem
for λ =

√
ε. To prove the general case, use in X the norm

|||x||| :=

√
ε

λ
‖x‖,

and apply the previous case in this re-normed space.

2.2.2 Maximality of representable monotone operators

Next we present one of the main results of this thesis. It gener-
alizes Theorem 1.2.3 for non-reflexive Banach spaces by replacing
condition (1.12) by condition (1.13).
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Theorem 2.2.5. (Marques Alves-Svaiter [29]) Let h ∈ R̄
X×X∗

be a
convex and l.s.c. function. If

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,

then
T := {(x, x∗) ∈ X × X∗ | h (x, x∗) = 〈x, x∗〉}

is maximal monotone and h, Λh ∈ FT .

Proof. The duality product π : X ×X∗ → R is everywhere differen-
tiable and

π′(x, x∗) = (x∗, x).

Suppose that h(x, x∗) = 〈x, x∗〉 = π(x, x∗). Then, by Lemma A.0.5
(x∗, x) ∈ ∂h(x, x∗), that is,

h(x, x∗) + h∗(x∗, x) = 〈(x, x∗), (x∗, x)〉. (2.32)

Take (x, x∗), (y, y∗) ∈ T . Then, as was explained above,

(x∗, x) ∈ ∂h(x, x∗), (y∗, y) ∈ ∂h(y, y∗).

Since ∂h is monotone,

〈(x, x∗) − (y, y∗), (x∗, x) − (y∗, y)〉 ≥ 0,

which gives 〈x − y, x∗ − y∗〉 ≥ 0. Hence, T is monotone.
Now, if h(x, x∗) = 〈x, x∗〉, then using (2.32) we have h∗(x∗, x) =

〈x, x∗〉. Conversely, if h∗(x∗, x) = 〈x, x∗〉, then by the same reason-
ing h∗∗(x, x∗) = 〈x, x∗〉. As h is proper, convex and l.s.c., h(x, x∗) =
h∗∗(x, x∗). Thus,

T = {(x, x∗) ∈ X × X∗ | h∗ (x∗, x) = 〈x, x∗〉}. (2.33)

For proving maximal monotonicity of T , take (z, z∗) ∈ X ×X∗ and
assume that

〈x − z, x∗ − z∗〉 ≥ 0, ∀(x, x∗) ∈ T. (2.34)

Using Theorem 2.2.1 and Proposition 2.2.2 we know that

inf
(x,x∗)∈X×X∗

h(z,z∗)(x, x∗) +
1

2
‖x‖2 +

1

2
‖x∗‖2 = 0.

Therefore, there exists a minimizing sequence {(xk, x
∗

k)} such that

h(z,z∗)(xk, x
∗

k) +
1

2
‖xk‖2 +

1

2
‖x∗

k‖2 <
1

k2
, k = 1, 2, . . . (2.35)
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Note that the sequence {(xk, x
∗

k)} is bounded and

h(z,z∗)(xk, x
∗

k) − 〈xk, x
∗

k〉 ≤ h(z,z∗)(xk, x
∗

k) + ‖xk‖ ‖x∗

k‖

≤ h(z,z∗)(xk, x
∗

k) +
1

2
‖xk‖2 +

1

2
‖x∗

k‖2.

Combining the two above inequalities we obtain

h(z,z∗)(xk, x
∗

k) < 〈xk, x
∗

k〉 +
1

k2
.

Now applying Theorem 2.2.4, we conclude that there for each k
there exists some (x̄k, x̄

∗

k) such that

h(z,z∗)(x̄k, x̄
∗

k) = 〈x̄k, x̄
∗

k〉, ‖x̄k − xk‖ < 1/k, ‖x̄∗

k − x∗

k‖ < 1/k.

Then,
(ȳk, ȳ

∗

k) := (x̄k + z, x̄∗

k + z∗) ∈ T,

and from (2.34)

〈x̄k, x̄
∗

k〉 = 〈ȳk − z, ȳ∗

k − z∗〉 ≥ 0.

The duality product is uniformly continuous on bounded sets. Since
{(xk, x

∗

k)} is bounded and limk→∞ ‖xk−x̄k‖ = limk→∞ ‖x∗

k−x̄∗

k‖ = 0
we conclude that

lim inf
k→∞

〈xk, x
∗

k〉 ≥ 0.

Using (2.35) and the fact that h majorizes the duality product, we
have

0 ≤ 〈xk, x
∗

k〉+
1

2
‖xk‖2+

1

2
‖x∗

k‖2 ≤ h(z,z∗)(xk, x
∗

k)+
1

2
‖xk‖2+

1

2
‖x∗

k‖2 <
1

k2
.

Hence, 〈xk, x
∗

k〉 < 1/k2 and lim supk→∞
〈xk, x

∗

k〉 ≤ 0, which implies
limk→∞ 〈xk, x

∗

k〉 = 0. Combining this result with the above inequal-
ities we conclude that

lim
k→∞

(xk, x
∗

k) = 0.

Therefore, limk→∞ (x̄k, x̄
∗

k) = 0 and {(ȳk, ȳ
∗

k)} converges to (z, z∗).
As h(ȳk, ȳ

∗

k) = 〈ȳk, ȳ
∗

k〉 and h is lower semicontinuous,

h(z, z∗) ≤ 〈z, z∗〉.

which readily implies h(z, z∗) = 〈z, z∗〉. Therefore (z, z∗) ∈ T and
so that T is maximal monotone and h ∈ FT . Finally, using (2.33)
we conclude that Λh ∈ FT .
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The duality product is continuous in X×X∗. Therefore, if a con-
vex function majorizes the duality product then the convex closure
of this function also majorizes it and has the same conjugate. This
fact can be used to remove the assumption of lower semicontinuity
of h in Theorem 2.2.5:

Theorem 2.2.6. (Marques Alves-Svaiter [29]) Let h ∈ R̄
X×X∗

be a
convex function. If

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,
(2.36)

then
S := {(x, x∗) ∈ X × X∗ |h∗(x∗, x) = 〈x, x∗〉}

is maximal monotone and cl h, Λh ∈ FS.

Proof. Define h̄ := cl h. Then, h̄ is proper, convex, l.s.c. and (h̄)∗ =
h∗. Since the duality product is continuous, h̄ also satisfies (2.36).
Thus, applying Theorem 2.2.5 to h̄, we have that S is maximal
monotone and cl h, Λh ∈ FS.

2.2.3 Brøndsted-Rockafellar type theorems for representable
and of type (NI) operators

The class of maximal monotone operators of type (NI) was intro-
duced by S. Simons for generalizing some results in reflexive Banach
spaces to non-reflexive spaces:

Definition 2.2.1. ( [39]) A maximal monotone operator T : X ⇉

X∗ is of type (NI) if

inf
(y,y∗)∈T

〈y∗ − x∗, y − x∗∗〉 ≤ 0, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

As pointed out before, in this subsection we aim to prove that
maximal monotone operators representable by convex function sat-
isfying (1.13) and operators of type (NI) satisfy the strict Brøndsted-
Rockafellar property.

Theorem 2.2.7. (Marques Alves-Svaiter [29]) Let h ∈ R̄
X×X∗

be a
convex and l.s.c. function. If

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,

then the maximal monotone operator (see Theorem 2.2.5)

T := {(x, x∗) ∈ X × X∗ | h (x, x∗) = 〈x, x∗〉}
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satisfies the strict Brøndsted-Rockafellar property: If η > ε and
x∗ ∈ T ε(x), that is,

〈x − y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T,

then, for any λ > 0 there exists (x̄λ, x̄
∗

λ) ∈ X × X∗ such that

x̄∗

λ ∈ T (x̄λ), ‖x − x̄λ‖ < λ, ‖x∗ − x̄∗

λ‖ <
η

λ
.

Proof. Assume that η > ε > 0 and

〈x − y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T.

The Fitzpatrick function of T is

ϕT (x, x∗) = sup
(y,y∗)∈T

〈x, y∗〉 + 〈y, x∗〉 − 〈y, y∗〉

= sup
(y,y∗)∈T

−〈x − y, x∗ − y∗〉 + 〈x, x∗〉.

Therefore
ϕT (x, x∗) ≤ 〈x, x∗〉 + ε < 〈x, x∗〉 + η.

Now recall that, as T is maximal monotone, ϕT is the smallest
element of the family FT . In particular h ≥ ϕT . Hence,

ϕ∗

T ≥ h∗,

which implies that ϕT satisfies the hypothesis of Theorem 2.2.4.
Thus, there exists (x̄λ, x̄

∗

λ) such that

ϕT (x̄λ, x̄
∗

λ) = 〈x̄λ, x̄
∗

λ〉, ‖x − x̄λ‖ < λ, ‖x∗ − x̄∗

λ‖ <
η

λ
.

The first equality above says that (x̄λ, x̄
∗

λ) ∈ T , which ends the proof
of the theorem.

Theorem 2.2.8. (Marques Alves-Svaiter [29]) Let h ∈ R̄
X×X∗

be a
convex function. If

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,

then the maximal monotone operator (see Theorem 2.2.6)

S := {(x, x∗) ∈ X × X∗ | h∗(x∗, x) = 〈x, x∗〉}
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satisfies the strict Brøndsted-Rockafellar property: If η > ε and
x∗ ∈ Sε(x), that is,

〈x − y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ S,

then, for any λ > 0 there exists (x̄λ, x̄
∗

λ) ∈ X × X∗ such that

x̄∗

λ ∈ S(x̄λ), ‖x − x̄λ‖ < λ, ‖x∗ − x̄∗

λ‖ <
η

λ
.

In Theorem 2.2.10 we shall prove that the class of maximal mono-
tone operators of type (NI) satisfies the strict Brøndsted-Rockafellar
property. The starting point of the proof is a characterization of the
class of operators of type (NI) given by the S-function:

Proposition 2.2.9. (Marques Alves-Svaiter [31]) A maximal mono-
tone operator T : X ⇉ X∗ is of type (NI) if, and only if,

(ST )∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

Proof. Recall that ST = clconv(π + δT ). The proof follows directly
from the identity below:

(ST )∗(x∗, x∗∗) = (π + δT )∗(x∗, x∗∗)

= sup
(y,y∗)∈T

〈y, x∗〉 + 〈y∗, x∗∗〉 − 〈y, y∗〉

= − inf
(y,y∗)∈T

〈x∗ − y∗, x∗∗ − y〉 + 〈x∗, x∗∗〉

Theorem 2.2.10. (Marques Alves-Svaiter [31]) Let T : X ⇉ X∗

be a maximal monotone operator of type (NI). Then, T satisfies the
strict Brøndsted-Rockafellar property: If η > ε and x∗ ∈ T ε(x),
that is,

〈x − y, x∗ − y∗〉 ≥ −ε, ∀(y, y∗) ∈ T,

then, for any λ > 0 there exists (x̄λ, x̄
∗

λ) ∈ X × X∗ such that

x̄∗

λ ∈ T (x̄λ), ‖x − x̄λ‖ < λ, ‖x∗ − x̄∗

λ‖ <
η

λ
.

Proof. Recall that ST ∈ FT and so

T = {(x, x∗) ∈ X × X∗ | ST (x, x∗) = 〈x, x∗〉}.
Using the fact that ST ∈ FT and Proposition 2.2.9, we have that

ST (x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

(ST )∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,

Thus, the result follows from Theorem 2.2.7.
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2.3 A new characterization and a sum theorem
for operators of type (NI)

Proposition 2.2.9 says that if a maximal monotone operator T :
X ⇉ X∗ is of type (NI) then there exits h ∈ FT , namely h = ST ,
such that

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.
(2.37)

In Theorem 2.2.5 we used the fact that if h satisfies condition (2.37),
then it also satisfies the following variational condition:

inf
(x,x∗)

h(x0,x∗

0
)(x, x∗) +

1

2
‖x‖2 +

1

2
‖x∗‖2 = 0, ∀(x0, x

∗

0). (2.38)

In Theorem 2.3.1 we will show that conditions (2.37) and (2.38)
are equivalent and that if some h ∈ FT satisfies condition (2.37),
then all function in the Fitzpatrick family of T satisfies condi-
tion (2.37). Remember that if h ∈ FT , then h ≥ π holds by definition
of FT . In particular, (2.38) provides a sort of variational character-
ization of the class of maximal monotone operators of type (NI).

Theorem 2.3.1. (Marques Alves-Svaiter [32]) Let T : X ⇉ X∗ be
maximal monotone. The following conditions are equivalent:

1. T is of type (NI),

2. there exists h ∈ FT such that

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

3. for all h ∈ FT ,

h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗,

h∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

4. there exists h ∈ FT such that

inf
(x,x∗)

h(x0,x∗

0
)(x, x∗)+

1

2
‖x‖2+

1

2
‖x∗‖2 = 0, ∀(x0, x

∗

0) ∈ X×X∗,

5. for all h ∈ FT ,

inf
(x,x∗)

h(x0,x∗

0
)(x, x∗)+

1

2
‖x‖2+

1

2
‖x∗‖2 = 0, ∀(x0, x

∗

0) ∈ X×X∗.
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Proof. First let us prove that item 2 and item 4 are equivalent. Using
Theorem 2.2.1 we conclude that item 2 implies item 4. For proving
that item 4 implies item 2, first note that, for any (z, z∗) ∈ X ×X∗,

h(z,z∗)(0, 0) ≥ inf
(x,x∗)

h(z,z∗)(x, x∗) +
1

2
‖x‖2 +

1

2
‖x∗‖2.

Therefore, using item 4 we obtain

h(z, z∗) − 〈z, z∗〉 = h(z,z∗)(0, 0) ≥ 0.

Since (z, z∗) is an arbitrary element of X × X∗ we conclude that
h ≥ π.

For proving that h∗ ≥ π∗, take some (y∗, y∗∗) ∈ X∗ ×X∗∗. First,
use Fenchel-Young inequality to conclude that for any (x, x∗), (z, z∗) ∈
X × X∗,

h(z,z∗)(x, x∗) ≥〈x, y∗ − z∗〉 + 〈x∗, y∗∗ − z〉 −
(
h(z,z∗)

)
∗

(y∗ − z∗, y∗∗ − z).

As
(
h(z,z∗)

)
∗

= (h∗)(z∗,z),

(
h(z,z∗)

)
∗

(y∗−z∗, y∗∗−z) = h∗(y∗, y∗∗)−〈y∗, y∗∗〉+〈y∗ − z∗, y∗∗ − z〉.

Combining the two above equations we obtain

h(z,z∗)(x, x∗) ≥〈x, y∗ − z∗〉 + 〈x∗, y∗∗ − z〉
− 〈y∗ − z∗, y∗∗ − z〉 + 〈y∗, y∗∗〉 − h∗(y∗, y∗∗).

Adding (1/2)‖x‖2 +(1/2)‖x∗‖2 in both sides of the above inequality
we have

h(z,z∗)(x, x∗) +
1

2
‖x‖2 +

1

2
‖x∗‖2 ≥〈x, y∗ − z∗〉 + 〈x∗, y∗∗ − z〉 +

1

2
‖x‖2 +

1

2
‖x∗‖2

− 〈y∗ − z∗, y∗∗ − z〉 + 〈y∗, y∗∗〉 − h∗(y∗, y∗∗).

Note that

〈x, y∗ − z∗〉+1

2
‖x‖2 ≥ −1

2
‖y∗ − z∗‖2, 〈x∗, y∗∗ − z〉+1

2
‖x∗‖2 ≥ −1

2
‖y∗∗ − z‖2.

Therefore, for any (x, x∗), (z, z∗) ∈ X × X∗,

h(z,z∗)(x, x∗) +
1

2
‖x‖2 +

1

2
‖x∗‖2 ≥− 1

2
‖y∗ − z∗‖2 − 1

2
‖y∗∗ − z‖2

− 〈y∗ − z∗, y∗∗ − z〉 + 〈y∗, y∗∗〉 − h∗(y∗, y∗∗).

Using now the assumption we conclude that the infimum, for (x, x∗) ∈
X×X∗, at the left hand side of the above inequality is 0. Therefore,
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taking the infimum on (x, x∗) ∈ X ×X∗ at the left hand side of the
above inequality and rearranging the resulting inequality we have

h∗(y∗, y∗∗) − 〈y∗, y∗∗〉 ≥ −1

2
‖y∗ − z∗‖2 − 1

2
‖y∗∗ − z‖2 − 〈y∗ − z∗, y∗∗ − z〉.

Note that

sup
z∗∈X∗

−〈y∗ − z∗, y∗∗ − z〉 − 1

2
‖y∗ − z∗‖2 =

1

2
‖y∗∗ − z‖2.

Hence, taking the sup in z∗ ∈ X∗ at the right hand side of the
previous inequality, we obtain

h∗(y∗, y∗∗) − 〈y∗, y∗∗〉 ≥ 0

and item 4 holds. Now, using that item 2 and item 4 are equivalent
it is trivial to verify that item 3 and item 5 are equivalent.

The second step is to prove that item 4 and item 5 are equivalent.
So, assume that item 4 holds, that is, for some h ∈ FT ,

inf
(x,x∗)∈X×X∗

h(x0,x∗

0
)(x, x∗)+

1

2
‖x‖2+

1

2
‖x∗‖2 = 0, ∀(x0, x

∗

0) ∈ X×X∗.

Take g ∈ FT , and (x0, x
∗

0) ∈ X × X∗. First observe that, for any
(x, x∗) ∈ X × X∗, g(x0,x∗

0
)(x, x∗) ≥ 〈x, x∗〉 and

g(x0,x∗

0
)(x, x∗) +

1

2
‖x‖2 +

1

2
‖x∗‖2 ≥ 〈x, x∗〉 +

1

2
‖x‖2 +

1

2
‖x∗‖2 ≥ 0.

Therefore,

inf
(x,x∗)∈X×X∗

g(x0,x∗

0
)(x, x∗) +

1

2
‖x‖2 +

1

2
‖x∗‖2 ≥ 0. (2.39)

As the square of the norm is coercive, there exist M > 0 such that
{

(x, x∗) ∈ X × X∗ | h(x0,x∗

0
)(x, x∗) +

1

2
‖x‖2 +

1

2
‖x∗‖2 < 1

}
⊂ BX×X∗(0,M),

where

BX×X∗(0,M) =

{
(x, x∗) ∈ X × X∗ |

√
‖x‖2 + ‖x∗‖2 < M

}
.

For any ε > 0, there exists (x̃, x̃∗) such that

min
{
1, ε2

}
> h(x0,x∗

0
)(x̃, x̃∗) +

1

2
‖x̃‖2 +

1

2
‖x̃∗‖2.
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Therefore

ε2 > h(x0,x∗

0
)(x̃, x̃∗) + 1

2
‖x̃‖2 + 1

2
‖x̃∗‖2 ≥ h(x0,x∗

0
)(x̃, x̃∗) − 〈x̃, x̃∗〉 ≥ 0,

M2 ≥ ‖x̃‖2 + ‖x̃∗‖2.
(2.40)

In particular,
ε2 > h(x0,x∗

0
)(x̃, x̃∗) − 〈x̃, x̃∗〉.

Now using Theorem 2.2.4 we conclude that there exists (x̄, x̄∗) such
that

h(x0,x∗

0
)(x̄, x̄∗) = 〈x̄, x̄∗〉, ‖x̃ − x̄‖ < ε, ‖x̃∗ − x̄∗‖ < ε. (2.41)

Therefore,

h(x̄ + x0, x̄
∗ + x∗

0) − 〈x̄ + x0, x̄
∗ + x∗

0〉 = h(x0,x∗

0
)(x̄, x̄∗) − 〈x̄, x̄∗〉 = 0,

and (x̄ + x0, x̄
∗ + x∗

0) ∈ T . As g ∈ FT ,

g(x̄ + x0, x̄
∗ + x∗

0) = 〈x̄ + x0, x̄
∗ + x∗

0〉,

and
g(x0,x∗

0
)(x̄, x̄∗) = 〈x̄, x̄∗〉. (2.42)

Using the first line of (2.40) we have

ε2 > h(x0,x∗

0
)(x̃, x̃∗)+

[
1

2
‖x̃‖2+

1

2
‖x̃∗‖2+〈x̃, x̃∗〉

]
−〈x̃, x̃∗〉 ≥ 1

2
‖x̃‖2+

1

2
‖x̃∗‖2+〈x̃, x̃∗〉.

Therefore,

ε2 >
1

2
‖x̃‖2 +

1

2
‖x̃∗‖2 + 〈x̃, x̃∗〉. (2.43)

Direct use of (2.41) gives

〈x̄, x̄∗〉 = 〈x̃, x̃∗〉 + 〈x̄ − x̃, x̃∗〉 + 〈x̃, x̄∗ − x̃∗〉 + 〈x̄ − x̃, x̄∗ − x̃∗〉
≤ 〈x̃, x̃∗〉 + ‖x̄ − x̃‖ ‖x̃∗‖ + ‖x̃‖ ‖x̄∗ − x̃∗‖ + ‖x̄ − x̃‖ ‖x̄∗ − x̃∗‖
≤ 〈x̃, x̃∗〉 + ε[‖x̃∗‖ + ‖x̃‖] + ε2

and

‖x̄‖2 + ‖x̄∗‖2 ≤ (‖x̃‖ + ‖x̄ − x̃‖)2 + (‖x̃∗‖ + ‖x̄∗ − x̃∗‖)2

≤ ‖x̃‖2 + ‖x̃∗‖2 + 2ε[‖x̃‖ + ‖x̃∗‖] + 2ε2

Combining the two above equations with (2.42) we obtain

g(x0,x∗

0
)(x̄, x̄∗)+

1

2
‖x̄‖2+

1

2
‖x̄∗‖2 ≤ 〈x̃, x̃∗〉+1

2
‖x̃‖2+

1

2
‖x̃∗‖2+2ε[‖x̃‖+‖x̃∗‖]+2ε2
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Using now (2.43) and the second line of (2.40) we conclude that

g(x0,x∗

0
)(x̄, x̄∗) +

1

2
‖x̄‖2 +

1

2
‖x̄∗‖2 ≤ 2ε M

√
2 + 3ε2.

As ε is an arbitrary strictly positive number, using also (2.39) we
conclude that

inf
(x,x∗)∈X×X∗

g(x0,x∗

0
)(x, x∗) +

1

2
‖x‖2 +

1

2
‖x∗‖2 = 0.

Altogether, we conclude that if item 4 holds then item 5 holds. The
converse (item 5 implies item 4) is trivial to verify. Hence item 4
and item 5 are equivalent. As item 2 is equivalent to item 4 and
item 3 is equivalent to 5, we conclude that items 2,3,4 and 5 are
equivalent.

Now we will prove that item 1 is equivalent to item 3 and conclude
the proof of the theorem. First suppose that item 3 holds. Since
ST ∈ FT

(ST )∗ ≥ π∗.

As has already been observed, for any proper function h it holds
that (cl conv h)∗ = h∗. Therefore

(ST )∗ = (π + δT )∗ ≥ π∗,

that is,

sup
(y,y∗)∈T

〈y, x∗〉 + 〈y∗, x∗∗〉 − 〈y, y∗〉 ≥ 〈x∗, x∗∗〉,∀(x∗, x∗∗) ∈ X∗ × X∗∗

(2.44)
After some algebraic manipulations we conclude that (2.44) is equiv-
alent to

inf
(y,y∗)∈T

〈x∗∗ − y, x∗ − y∗〉 ≤ 0, ∀(x∗, x∗∗) ∈ X∗ × X∗∗,

that is, T is type (NI) and so item 1 holds. If item 1 holds, by the
same reasoning we conclude that (2.44) holds and therefore (ST )∗ ≥
π∗. As ST ∈ FT , we conclude that item 2 holds. As has been proved
previously item 2 ⇒ item 3.

In the next lemma we give a sufficient condition for proving that
the sum of maximal monotone operators of type (NI) is of type (NI).

Lemma 2.3.2. (Marques Alves-Svaiter [30]) Let T1, T2 : X ⇉ X∗

be maximal monotone and of type (NI). Take

h1 ∈ FT1
, h2 ∈ FT2
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and define

h ∈ R̄
X×X∗

,

h(x, x∗) := (h1(x, ·)�h2(x, ·)) (x∗) = inf
y∗∈X∗

h1(x, y∗) + h2(x, x∗ − y∗),

PrX dom(hi) := {x ∈ X | ∃x∗, hi(x, x∗) < ∞}, i = 1, 2.

If ⋃

λ>0

λ [PrX dom(h1) − PrX dom(h2)] (2.45)

is a closed subspace then

h ≥ π, h∗ ≥ π∗, Λh ≥ π, (Λh)∗ ≥ π∗,

T1 + T2 = {(x, x∗) | Λh(x, x∗) = 〈x, x∗〉}
= {(x, x∗) | h(x, x∗) = 〈x, x∗〉}

and T1 + T2 is maximal monotone of type (NI) and

Λh, cl h ∈ FT1+T2
.

Proof. Since h1 ∈ FT1
and h2 ∈ FT2

, h1 ≥ π and h2 ≥ π. So

h1(x, y∗) + h2(x, x∗ − y∗) ≥ 〈x, y∗〉 + 〈x, x∗ − y∗〉 = 〈x, x∗〉.

Taking the inf in y∗ at the left-hand side of the above inequality we
conclude that h ≥ π.

Let (x∗, x∗∗) ∈ X∗ × X∗∗. Using the definition of h we have

h∗(x∗, x∗∗) = sup
(z,z∗)∈X×X∗

〈z, x∗〉 + 〈z∗, x∗∗〉 − h(z, z∗) (2.46)

= sup
(z,z∗,y∗)∈X×X∗×X∗

〈z, x∗〉 + 〈z∗, x∗∗〉 − h1(z, y
∗)

−h2(z, z
∗ − y∗)

(2.47)

= sup
(z,y∗,w∗)∈X×X∗×X∗

〈z, x∗〉 + 〈y∗, x∗∗〉 + 〈w∗, x∗∗〉 − h1(z, y
∗)

−h2(z, w
∗)

(2.48)

where we used the substitution z∗ = w∗ + y∗ in the last term. So,
defining H1, H2 : X × X∗ × X∗ → R̄

H1(x, y∗, z∗) = h1(x, y∗), H2(x, y∗, z∗) = h2(x, z∗). (2.49)

we have
h∗(x∗, x∗∗) = (H1 + H2)

∗(x∗, x∗∗, x∗∗).
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Using (2.45), Theorem A.0.4 and (2.49) we conclude that the con-
jugate of the sum at the right hand side of the above equation is the
exact inf-convolution of the conjugates. Therefore,

h∗(x∗, x∗∗) = min
(u∗,y∗∗,z∗∗)

H∗

1 (u∗, y∗∗, z∗∗)+H∗

2 (x∗−u∗, x∗∗−y∗∗, x∗∗−z∗∗).

Direct use of definition (2.49) yields

H∗

1 (u∗, y∗∗, z∗∗) = h∗

1(u
∗, y∗∗)+δ0(z

∗∗), ∀(u∗, y∗∗, z∗∗) ∈ X∗×X∗∗×X∗∗,
(2.50)

H∗

2 (u∗, y∗∗, z∗∗) = h∗

2(u
∗, z∗∗)+δ0(y

∗∗), ∀(u∗, y∗∗, z∗∗) ∈ X∗×X∗∗×X∗∗.
(2.51)

Hence,

h∗(x∗, x∗∗) = min
u∗∈X∗

h∗

1(u
∗, x∗∗) + h∗

2(x
∗ − u∗, x∗∗). (2.52)

Therefore, using that h∗

1 ≥ π∗, h∗

2 ≥ π∗, (2.52) and the same reason-
ing used to show that h ≥ π we have

h∗ ≥ π∗.

Up to now, we proved that h ≥ π and h∗ ≥ π∗( and Λh ≥ π). So,
using Theorem 2.2.6 we conclude that S : X ⇉ X∗, defined as

S = {(x, x∗) ∈ X × X∗ |Λh(x, x∗) = 〈x, x∗〉},

is maximal monotone. Since Λh is convex and lower semicontinuous,
Λh ∈ FS.

We will prove that T1 + T2 = S. Take (x, x∗) ∈ S, that is,
Λh(x, x∗) = 〈x, x∗〉. Using (2.52) we conclude that there exists
u∗ ∈ X∗ such that

h∗

1(u
∗, x) + h∗

2(x
∗ − u∗, x) = 〈x, x∗〉.

We know that

h∗

1(u
∗, x) ≥ 〈x, u∗〉, h∗

2(x
∗ − u∗, x) ≥ 〈x, x∗ − u∗〉.

Combining these inequalities with the previous equation we conclude
that these inequalities hold as equalities, and so

u∗ ∈ T1(x), x∗ − u∗ ∈ T2(x), x∗ ∈ (T1 + T2)(x).

h1(x, u∗) = 〈x, u∗〉, h2(x, x∗ − u∗) = 〈x, x∗ − u∗〉, h(x, x∗) ≤ 〈x, x∗〉.

We proved that S ⊂ T1 + T2. Since T1 + T2 is monotone and S is
maximal monotone, we have T1 + T2 = S (and Λh ∈ FT1+T2

). Note
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also that h(x, x∗) ≤ 〈x, x∗〉 for any (x, x∗) ∈ T1 +T2 = S. As h ≥ π,
we have equality in T1 + T2. Therefore,

T1+T2 ⊂ {(x, x∗) | h(x, x∗) = 〈x, x∗〉} ⊂ {(x, x∗) | cl h(x, x∗) ≤ 〈x, x∗〉}.

Since h ≥ π and the duality product π is continuous in X ×X∗, we
also have cl h ≥ π. Hence, using the above inclusion we conclude
that cl h coincides with π in T1 + T2. Therefore, cl h ∈ FT1+T2

and
the rightmost set in the above inclusions is T1 + T2. Hence

T1 + T2 = {(x, x∗) | h(x, x∗) = 〈x, x∗〉}.

Conjugation is invariant under the (lower semicontinuous) closure
operation. Therefore,

(cl h)∗ = h∗ ≥ π∗

and so T1 +T2 is of type (NI). We proved already that Λh ∈ FT1+T2
.

Using item 3 of Theorem 2.3.1 we conclude that (Λh)∗ ≥ π∗.
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Chapter 3

On the relation between
surjectivity of perturbations
and operators of type (NI)

In this chapter we are concerned with surjectivity of perturbation of
maximal monotone operators in non-reflexive Banach spaces. The
results presented here are collected from [30]. In a reflexive Ba-
nach space the following result due to Rockafellar gives a necessary
and sufficient condition for maximal monotonicity in terms of the
surjectivity of perturbations by the duality mapping J :

Theorem 3.0.3 ([38, Proposition 1]). Let X be a reflexive Banach
space and T : X ⇉ X∗ be a monotone operator. Then T is maximal
monotone if and only if

R(T (· + z0) + J) = X∗, ∀z0 ∈ X.

Here, by (x, x∗) ∈ T (· + z0) we means (x + z0, x
∗) ∈ T . Recall

that the duality mapping is the point to set operator J : X ⇉ X∗

defined by

J(x) = ∂
1

2
‖x‖2.

The point is that J is surjectivity if and only if X is reflexive. In
order to overcome this difficult, J.-P. Gossez introduced [21] an “en-
larged” version of the duality mapping, Jε : X ⇉ X∗ defined by

Jε(x) = ∂ε
1

2
‖x‖2,

and obtained similar resuts of Theorem 3.0.3 for a special class of
maximal monotone operators he introduced in non-reflexive Banach
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spaces, the operators of type (D). Notice that for any ε > 0, Jε is
always surjectivity.

Recall that a maximal monotone operator T : X ⇉ X∗ is of type
(NI) if

inf
(y,y∗)∈T

〈y∗ − x∗, y − x∗∗〉 ≤ 0, ∀(x∗, x∗∗) ∈ X∗ × X∗∗.

The class of maximal monotone operators of type (NI) encompasses
the Gossez type (D) operators and was introduced by S. Simons [39]
to generalize some results concerning maximal monotonicity in re-
flexive Banach spaces for non-reflexive Banach spaces.

The general framework of convex representations of maximal
monotone operators developted in the previous chapters allows us
to characterize the operators of type (NI) by the existence of a Fitz-
patrick function in the Fitzpatrick family such that the conjugate
majorizes the duality product (see Theorem 2.3.1). In the next
sections, we will use this results to obtain surjectivity results for
perturbations of maximal monotone operators of type (NI).

3.1 Preliminary results

We begin with two elementary technical results which will be useful.

Proposition 3.1.1. (Marques Alves-Svaiter [30]) The following state-
ments holds:

1. For any ε ≥ 0, if y∗ ∈ Jε(x), then | ‖x‖ − ‖y∗‖ | ≤
√

2ε.

2. Let T : X ⇉ X∗ be a monotone operator and ε,M > 0. Then,

(T + Jε)
−1 (BX∗ [0,M ])

is bounded.

Proof. For proving item 1, let ε ≥ 0 and y∗ ∈ Jε(x). The desired
result follows from the following inequalities:

1

2
(‖x‖ − ‖y∗‖)2 ≤ 1

2
‖x‖2 +

1

2
‖y∗‖2 − 〈x, y∗〉 ≤ ε.

For proving item 2, take (z, z∗) ∈ T . If x ∈ (T + Jε)
−1 (B[0,M ])

then there exists x∗, y∗ such that

x∗ ∈ T (x), y∗ ∈ Jε(x), ‖x∗ + y∗‖ ≤ M.
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Therefore, using Fenchel Young inequality (A.2), the monotonicity
of T and the definition of Jε we obtain

1

2
‖x − z‖2 +

1

2
‖x∗ + y∗ − z∗‖2 ≥ 〈x − z, x∗ + y∗ − z∗〉

≥ 〈x − z, y∗〉

≥
[
1

2
‖x‖2 +

1

2
‖y∗‖2 − ε

]
− ‖z‖‖y∗‖.

Note also that

‖x − z‖2 ≤ ‖x‖2+2‖x‖‖z‖+‖z‖2, ‖x∗ + y∗ − z∗‖2 ≤ (M+‖z∗‖)2.

Combining the above equations we obtain

1

2
‖z‖2 +

1

2
(M + ‖z∗‖)2 ≥ 1

2
‖y∗‖2 − ‖x‖‖z‖ − ‖z‖‖y∗‖ − ε.

As y∗ ∈ Jε(x), by item 1, we have ‖x‖ ≤ ‖y∗‖ +
√

2ε. Therefore

1

2
‖z‖2 +

1

2
(M + ‖z∗‖)2 ≥ 1

2
‖y∗‖2 − 2‖y∗‖‖z‖ − ‖z‖

√
2ε − ε.

Hence, y∗ is bounded. In fact,

‖y∗‖ ≤ 2‖z‖ +

√
4‖z‖2 + 2

[
‖z‖

√
2ε + ε

]
+ ‖z‖2 + (M + ‖z∗‖)2.

As we already observed, ‖x‖ ≤ ‖y∗‖ +
√

2ε and so, ‖x‖ is also
bounded.

Now we will prove that under monotonicity, dense range of some
perturbation of a monotone operator is equivalent to surjectivity of
that perturbation.

Lemma 3.1.2. (Marques Alves-Svaiter [30]) Let T : X ⇉ X∗ be
monotone and µ > 0. Then the conditions below are equivalent

1. R(T (· + z0) + µJε) = X∗, for any ε > 0 and z0 ∈ X,

2. R(T (· + z0) + µJε) = X∗, for any ε > 0 and z0 ∈ X.

Proof. It suffices to prove the lemma for µ = 1 and then, for the
general case, consider T ′ = µ−1T . Now note that for any z0 ∈ X
and z∗0 ∈ X∗, T−{(z0, z

∗

0)} is also monotone. Therefore, it suffices to

prove that 0 ∈ R(T + Jε), for any ε > 0 if and only if 0 ∈ R(T +Jε),
for any ε > 0. The ”if” is easy to check. To prove the ”only if”,
suppose that

0 ∈ R(T + Jε), ∀ε > 0.
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First use item 2 of Proposition 3.1.1 with M = 1/2 to conclude that
there exists ρ > 0 such that

(T + J1/2)
−1 (BX∗ [0, 1/2]) ⊂ BX [0, ρ].

By assumption, for any 0 < η < 1
2

there exists xη ∈ X, x∗

η, y
∗

η ∈ X∗

such that

x∗

η ∈ T (xη), y∗

η ∈ Jη(xη) and ‖x∗

η + y∗

η‖ < η <
1

2
. (3.1)

As Jη(xη) ⊂ J1/2(xη), xη ∈ (T + J1/2)
−1(x∗

η + y∗

η) and so,

‖xη‖ ≤ ρ, ‖y∗

η‖ ≤ ρ + 1.

where the second inequality follows from the first one and item 1 of
Proposition 3.1.1. Therefore

1

2
‖x∗

η‖2 ≤ 1

2

(
‖x∗

η + y∗

η‖ + ‖y∗

η‖
)2 ≤ 1

2
η2 + η(ρ + 1) +

1

2
‖y∗

η‖2,

〈xη, x
∗

η〉 = 〈xη, x
∗

η + y∗

η〉 − 〈xη, y
∗

η〉 ≤ ρη − 〈xη, y
∗

η〉.

Combining the above inequalities we obtain

1

2
‖xη‖2 +

1

2
‖x∗

η‖2 + 〈xη, x
∗

η〉 ≤
1

2
‖xη‖2 +

1

2
‖y∗

η‖2 − 〈xη, y
∗

η〉 + η(2ρ + 1) +
1

2
η2.

The inclusion y∗

η ∈ Jη(xη), means that,

1

2
‖xη‖2 +

1

2
‖y∗

η‖2 − 〈xη, y
∗

η〉 ≤ η. (3.2)

Hence, using the two above inequalities we conclude that

1

2
‖xη‖2 +

1

2
‖x∗

η‖2 + 〈xη, x
∗

η〉 ≤ 2η(ρ + 1) +
1

2
η2.

For finishing the prove, take an arbitrary ε > 0. Choosing 0 < η <
1/2 such that,

2η(ρ + 1) +
1

2
η2 < ε,

we have

1

2
‖xη‖2 +

1

2
‖x∗

η‖2 + 〈xη, x
∗

η〉 < ε, x∗

η ∈ T (xη).

According tho the above inequality, −x∗

η ∈ Jε(xη). Hence 0 ∈ (T +
Jε)(xη).
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3.2 Main results

As we pointed out in the introduction of the present chapter, in a
reflexive Banach space, surjectivity of a monotone operator plus the
duality mapping is equivalent to maximal monotonicity. This is a
classical result of Rockafellar [38]. For obtaining a partial extension
of this result for non-reflexive Banach spaces, we must consider the
“enlarged” duality mapping [21].

Lemma 3.2.1. (Marques Alves-Svaiter [30]) Let T : X ⇉ X∗ be
monotone and µ > 0. If

R(T (· + z0) + µJε) = X∗, ∀ε > 0, z0 ∈ X

then T , the closure of T in the norm-topology of X×X∗, is maximal
monotone and of type (NI).

Proof. Note that T + µJε = µ(µ−1T + Jε). Therefore, it suffices to
prove the lemma for µ = 1 and then, for the general case, consider
T ′ = µ−1T . The monotonicity of T̄ follows from the continuity of
the duality product.

Using the assumptions on T and Lemma 3.1.2 we conclude that
T (·+ z0) + Jε is onto, for any ε > 0 and z0 ∈ X. Therefore, for any
(z0, z

∗

0) ∈ X × X∗ and ε > 0, there exists xε, x∗

ε such that

x∗

ε + z∗0 ∈ T (xε + z0) and − x∗

ε ∈ Jε(xε). (3.3)

Note that the second inclusion in the above equation is equivalent
to

1

2
‖xε‖2 +

1

2
‖x∗

ε‖2 ≤ 〈xε,−x∗

ε〉 + ε. (3.4)

For proving maximal monotonicity of T̄ , suppose that (z0, z
∗

0) ∈
X × X∗ is monotonically related to T̄ . As T ⊂ T̄

〈z − z0, z
∗ − z∗0〉 ≥ 0, ∀ (z, z∗) ∈ T.

So, taking ε > 0 and xε ∈ X, x∗

ε ∈ X∗ as in (3.3) we conclude that

〈xε, x
∗

ε〉 = 〈xε + z0 − z0, x
∗

ε + z∗0 − z∗0〉 ≥ 0,

which, combined with (3.4) yields

1

2
‖xε‖2 +

1

2
‖x∗

ε‖2 ≤ ε.

Since (xε + z0, x
∗

ε + z∗0) ∈ T , and ε is an arbitrary strictly positive
number, we conclude that (z0, z

∗

0) ∈ T̄ , and T̄ is maximal monotone.
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It remains to be proved that T̄ is of type (NI). Consider an ar-
bitrary (z0, z

∗

0) ∈ X × X∗ and h ∈ FT̄ . Then, using (3.3), (3.4) we
conclude that for any ε > 0, there exists (xε, x

∗

ε) ∈ X × X∗ such
that

h(xε+z0, x
∗

ε+z∗0) = 〈xε + z0, x
∗

ε + z∗0〉,
1

2
‖xε‖2+

1

2
‖x∗

ε‖2 ≤ 〈xε,−x∗

ε〉+ε.

The first equality above is equivalent to h(z0,z∗
0
)(xε, x

∗

ε) = 〈xε, x
∗

ε〉.
Therefore,

h(z0,z∗
0
)(xε, x

∗

ε) +
1

2
‖xε‖2 +

1

2
‖x∗

ε‖2 < ε,

that is,

inf h(z0,z∗
0
)(x, x∗) +

1

2
‖x‖2 +

1

2
‖x∗‖2 = 0.

Now, use item 5 of Theorem 2.3.1 to conclude that T̄ is of type
(NI).

Direct application of Lemma 3.2.1 gives the next corollary.

Corollary 3.2.2. (Marques Alves-Svaiter [30]) If T : X ⇉ X∗ is
monotone, closed, µ > 0 and

R(T (· + z0) + µJε) = X∗, ∀ε > 0, z0 ∈ X

then T is maximal monotone and of type (NI).

Proof. Use Lemma 3.2.1 and the assumption T = T̄ .

The next result gives a complete characterization (in non-reflexive
Banach spaces) of maximal monotone operators of type (NI) in
terms of the surjectivity of perturbations, by J and Jε.

Theorem 3.2.3. (Marques Alves-Svaiter [30]) If T : X ⇉ X∗ is a
closed monotone operator then the conditions bellow are equivalent

1. R(T (· + z0) + J) = X∗, for all z0 ∈ X,

2. R(T (· + z0) + Jε) = X∗, for all ε > 0, z0 ∈ X,

3. R(T (· + z0) + Jε) = X∗, for all ε > 0, z0 ∈ X,

4. T is maximal monotone and of type (NI).

Proof. Item 1 trivially implies item 2. Using Lemma 3.1.2 we con-
clude that, in particular, item 2 implies item 3. Now use Corol-
lary 3.2.2 to conclude that item 3 implies item 4. Up to now we
have 1⇒2⇒3⇒4.
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For completing the proof we will show that item 4 implies item
1. So, assume that item 4 holds, that is, T is of type (NI). Take
z∗0 ∈ X∗ and z0 ∈ X. Define T0 = T − {(z0, z

∗

0)}. Trivially

z∗0 ∈ R(T (· + z0) + J) ⇐⇒ 0 ∈ R(T0 + J).

As the class of operators of type (NI) is invariant under translations,
in order to prove item 1, it is sufficient to prove that if T is of
type (NI), then 0 ∈ R(T + J). Let h ∈ FT and ε > 0. Define
p : X × X∗ → R,

p(x, x∗) =
1

2
‖x‖2 +

1

2
‖x∗‖2. (3.5)

Item 5 of Theorem 2.3.1 ensures us that there exists (xε, x
∗

ε) ∈ X ×
X∗ such that

h(xε, x
∗

ε) + p(xε,−x∗

ε) < ε2. (3.6)

Direct calculations yields p ≥ π and p∗ ≥ π∗. We also know that
p ∈ FJ and so J is of type (NI). Define H : X × X∗ → R̄,

H(x, x∗) = inf
y∗∈X∗

h(x, y∗) + p(x, x∗ − y∗).

As dom(p) = X ×X∗, we may apply Lemma 2.3.2 to conclude that
T + J is of type (NI) and cl H ∈ FT+J . Using (3.6) we have

H(xε, 0) ≤ h(xε, x
∗

ε) + p(xε,−x∗

ε) < ε2.

So, cl H(xε, 0) ≤ H(xε, 0) < 〈xε, 0〉+ ε2. Now use Theorem 2.2.4 to
conclude that there exist x̄, x̄∗ such that

(x̄, x̄∗) ∈ T + J, ‖x̄ − xε‖ < ε, ‖x̄∗ − 0‖ < ε.

So, x̄∗ ∈ R(T + J) and ‖x̄∗‖ < ε. As ε > 0 is arbitrary, 0 is in the
closure of R(T + J).

The next corollary is a immediate consequence of Theorem 3.2.3.

Corollary 3.2.4. (Marques Alves-Svaiter [30]) If T : X ⇉ X∗ is a
closed monotone operator then the conditions below are equivalent:

(a) R(T (· + z0) + µJ) = X∗ for all z0 ∈ X and some µ > 0,

(b) R(T (· + z0) + µJ) = X∗ for all z0 ∈ X, µ > 0,

(c) R(T (· + z0) + µJε) = X∗ for all ε > 0, z0 ∈ X and some µ > 0,

(d) R(T (· + z0) + µJε) = X∗ for all ε > 0, z0 ∈ X, µ > 0,
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(e) R(T (·+z0)+µJε) = X∗ for all ε > 0, z0 ∈ X, and some µ > 0,

(f) R(T (· + z0) + µJε) = X∗ for all ε > 0, z0 ∈ X, µ > 0,

(g) T is maximal monotone and of type (NI).

Proof. Suppose that item (a) holds. Define T ′ = µ−1T and use
Theorem 3.2.3 to conclude that T ′ is maximal monotone and of
type (NI). Therefore, T = µT ′ is maximal monotone and of type
(NI), which means that (g) holds.

Now assume that item (g) holds, that is, T is maximal monotone
and of type (NI). Then, for all µ > 0, µ−1T is maximal monotone
and of type (NI), which implies item (b).

Since the implication (b)⇒(a) is trivial, we conclude that items
(a), (b), (g) are equivalent.

The same reasoning shows that items (c), (d), (g) are equivalent
and so on.
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Chapter 4

On the uniqueness of the
extension to the bidual

Let us start by introducing maximal monotonicity in X∗∗×X∗. An
operator T : X∗∗ ⇉ X∗, is monotone if

〈x∗∗ − y∗∗, x∗ − y∗〉 ≥ 0,∀(x∗∗, x∗), (y∗∗, y∗) ∈ T.

An operator T : X∗∗ ⇉ X∗ is maximal monotone (in X∗∗ × X∗)
if it is monotone and maximal (with respect to the inclusion) in
the family of monotone operators of X∗∗ into X∗. The canonical
injection of X into X∗∗ allows one to identity X with a subset of
X∗∗. Therefore, any maximal monotone operator T : X ⇉ X∗ is
also a monotone operator T : X∗∗ ⇉ X∗ and admits one (or more)
maximal monotone extension in X∗∗ ×X∗. In general this maximal
monotone extension will not be unique. In this chapter, we are
concerned with the problem:

Under which conditions a maximal monotone operator T :
X ⇉ X∗ has a unique extension to the bidual, X∗∗ ⇉ X∗?

The problem of unicity of maximal extension of a generic mono-
tone operator was studied in details by Mart́ınez-Legaz and Svaiter
in [33]. That paper will be an important reference for the present
chapter.

The specific problem above mentioned, of uniqueness of extension
of a maximal monotone operator to the bidual, has been previously
addressed by Gossez [21, 22, 23, 24]. He found a condition under
which uniqueness of the extension is guaranteed [24]. Latter the
condition (NI), was studied by S. Simons in [39]. This condition
guarantees the uniqueness of the extension to the bidual and en-
compasses Gossez type (D) condition.
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We will prove that maximal monotone operators of type (NI)
admit a unique extension to the bidual and that, for non-linear
operators, the condition (NI) is equivalent to the unicity of maximal
monotone extension to the bidual. For proving this equivalence we
will show that if T ⊂ X×X∗ is maximal monotone and convex then
T is an affine manifold.

The results of this chapter are from the paper [31].

4.1 Convexity and maximal monotonicity

Recall that a linear (affine) manifold of a real linear space Z is a set
A ⊂ Z such that there exists V , subspace of Z, and a point z0 such
that

A = V + {z0} = {z + z0 | z ∈ V }.
The next lemma states that a convex maximal monotone operator
is “essentially” linear:

Lemma 4.1.1. (Marques Alves-Svaiter [31]) If T : X ⇉ X∗ is
maximal monotone and convex, then T is affine.

Proof. Take an arbitrary (x0, x
∗

0) ∈ T and define

T0 = T − {(x0, x
∗

0)} .

Note that T0 is maximal monotone and convex. So, it suffices to
prove that T0 is a linear subspace of X × X∗. Take an arbitrary
(x, x∗) ∈ T0. First we claim that

t(x, x∗) ∈ T0, ∀t ≥ 0. (4.1)

For 0 ≤ t ≤ 1 the above inclusion holds because (0, 0) ∈ T0 and T0

is convex. For the case t ≥ 1 let (y, y∗) ∈ T . Then, t−1(y, y∗) ∈ T0

and so
〈x − t−1y, x∗ − t−1y∗〉 ≥ 0.

Multiplying this inequality by t we conclude that 〈tx − y, tx∗ − y∗〉 ≥
0. As (y, y∗) is a generic element of T0, which is maximal monotone,
we conclude that t(x, x∗) ∈ T0 and the claim (4.1) holds.

We have just proved that T0 is a convex cone. Now take an
arbitrary pair

(x, x∗), (y, y∗) ∈ T0.

Then

(x + y, x∗ + y∗) = 2

[
1

2
(x, x∗) +

1

2
(y, y∗)

]
∈ T0. (4.2)
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Since (0, 0) ∈ T0, we have

〈y − (−x), y∗ − (−x∗)〉 = 〈(y + x) − 0, (y∗ + x∗) − 0〉 ≥ 0.

Since T0 is maximal monotone, we conclude that −(x, x∗) ∈ T0.
Therefore, using again (4.1) we conclude that T0 is closed under
scalar multiplication. In order to end the proof, combine this result
with (4.2) and conclude that T0 is a linear manifold.

This lemma generalizes a result of Burachik and Iusem [14, Lemma
2.14], which states that if a point to point maximal monotone op-
erator is convex and its domain has a non-empty interior, then
the operator is affine. Burachik and Iusem also proved that un-
der these assumptions, the operator is defined in the whole space.
After the submission of [31], Bauschke, Wang and Yao published, in
the arXiv.org preprint server, a preprint [5] with the same result of
Lemma 4.1.1.

4.2 Basic results and some notation

In this section we use the notation πX×X∗ , 〈·, ·〉X×X∗ for the duality
product

πX×X∗(x, x∗) = 〈x, x∗〉X×X∗ = x∗(x).

Whenever the underlying domain of the duality product is clear, we
will use the notations π and 〈·, ·〉. The indicator function of A ⊂ X
is δA,X ∈ R̄

X ,

δA,X(x) =

{
0, x ∈ A

∞, otherwise.

Whenever the set X is implicitly defined, we use the notation δA.
The S-function and Fitzpatrick function (as well as the Fitz-

patrick family) are still well defined for arbitrary sets (or operators)
T ⊂ X × X∗:

ST ∈ R̄
X×X∗

, ST = cl conv(π + δT ), (4.3)

ϕT ∈ R̄
X×X∗

, ϕT (x, x∗) = sup
(y,y∗)∈T

〈x, y∗〉 + 〈y, x∗〉 − 〈y∗, y〉. (4.4)

Mart́ınez-Legaz and Svaiter studied in [33] generic properties of ST

and ϕT for arbitrary sets and its relation with monotonicity and
maximal monotonicity. They observed that for a generic T ⊂ X×X∗

ϕT (x, x∗) = (π + δT )∗(x∗, x) = (ST )∗(x∗, x), ∀(x, x∗) ∈ X × X∗.
(4.5)
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Therefore, also for an arbitrary T , one has ΛST = ϕT .
It will be useful to define a relation µ which characterizes mono-

tonicity, and study monotonicity in the framework of this relation
and the classical notion of polarity [6].

Recall that a relation in a set V is a subset µ of V × V .

Definition 4.2.1 ([33]). The monotone relation µ in X × X∗ is
defined as

µ = {((x, x∗), (y, y∗)) ∈ (X × X∗)2 | 〈x − y, x∗ − y∗〉 ≥ 0} .

Two points (x, x∗), (y, y∗) ∈ X × X∗ are monotonically related or
in monotone relation if (x, x∗) µ (y, y∗), that is,

〈x − y, x∗ − y∗〉 ≥ 0.

Given A ⊂ X × X∗, the monotone polar (in X × X∗) of A is the
set Aµ,

Aµ = {(x, x∗) ∈ X × X∗ | (x, x∗) µ (y, y∗), ∀(y, y∗) ∈ A},
= {(x, x∗) ∈ X × X∗ | 〈x − y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ A}.

(4.6)

We shall need some results of Mart́ınez-Legaz and Svaiter which
are scattered along [33], and which we present in the next two the-
orems:

Theorem 4.2.1 ([33, Eq. (22), Prop. 2, Prop. 21]). Let A ⊂ X ×
X∗. Then

Aµ = {(x, x∗) ∈ X × X∗ | ϕT (x, x∗) ≤ 〈x, x∗〉}, (4.7)

and the following conditions are equivalent

1. A is monotone,

2. ϕA ≤ (π + δA).

3. A ⊂ Aµ.

Moreover, A is maximal monotone if and only if A = Aµ.

Note in the above theorem and in the definition of the Fitzpatrick
family, the convenience of defining as in [33, Eq. (12) and below],
for h ∈ R̄

X×X∗

:

b(h) := {(x, x∗) ∈ X × X∗ | h(x, x∗) ≤ 〈x, x∗〉},
L(h) := {(x, x∗) ∈ X × X∗ | h(x, x∗) = 〈x, x∗〉}. (4.8)
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Theorem 4.2.2 ([33, Prop. 36, Lemma 38]). Suppose that A ⊂ X×
X∗ is monotone. Then the following conditions are equivalent

1. A has a unique maximal monotone extension (in X × X∗),

2. Aµ is monotone

3. Aµ is maximal monotone,

and if any of these conditions holds, then Aµ is the unique maximal
monotone extension of A.

Moreover, still assuming only A monotone,

ϕA ≥ π ⇐⇒ b(ϕA) = L(ϕA) (4.9)

and if these conditions hold, then A has a unique maximal monotone
extension, Aµ.

4.3 Extension theorems

Let T : X ⇉ X∗ be maximal monotone. The inverse of T is T−1 :
X∗ ⇉ X,

T−1 = {(x∗, x) ∈ X∗ × X | (x, x∗) ∈ T}. (4.10)

Note that T−1 ⊂ X∗ × X ⊂ X∗ × X∗∗. The Fitzpatrick function of
T−1, regarded as a subset of X∗ × X∗∗ is, according to (4.4),

ϕT−1,X∗×X∗∗(x∗, x∗∗) = sup
(y∗,y∗∗)∈T−1

〈x∗, y∗∗〉 + 〈y∗, x∗∗〉 − 〈y∗, y∗∗〉

= sup
(y∗,y)∈T−1

〈x∗, y〉 + 〈y∗, x∗∗〉 − 〈y∗, y〉

= (π + δT )∗ (x∗, x∗∗).

where the last x∗ is identified with its image under the canonical
injection of X∗ into X∗∗∗. Using the above equations, (4.3) and the
fact that conjugation is invariant under the convex-closure opera-
tion, we obtain

ϕT−1,X∗×X∗∗ = (π + δT )∗ = (ST )∗, (4.11)

where π = πX×X∗ and δT = δT,X×X∗ .

We will use the notation (T−1)
µ,X∗

×X∗∗

for denoting the mono-
tone polar of T−1 in X∗ × X∗∗. Combing the above equation with
Theorem 4.2.1 we obtain a simple expression for this monotone po-
lar:
(
T−1

)µ,X∗
×X∗∗

= {(x∗, x∗∗) ∈ X∗ × X∗∗ | (ST )∗(x∗, x∗∗) ≤ 〈x∗, x∗∗〉}.
(4.12)
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Next we establish our first extension theorem. In order to simplify
the notation, define

R : X∗∗ × X∗ → X∗ × X∗∗, R(x∗∗, x∗) = (x∗, x∗∗).

Note that R(X × X∗) = X∗ × X.

Theorem 4.3.1. (Marques Alves-Svaiter [31]) Let T : X ⇉ X∗ be
a maximal monotone operator of type (NI). Then

1. T admits a unique maximal monotone extension T̃ : X∗∗ ⇉ X∗;

2. (ST )∗ = ϕR eT ;

3. for all h ∈ FT , h∗ ∈ FR eT , that is, h∗ ≥ π∗ and (x∗, x∗∗) ∈
RT̃ ⇒ h∗(x∗, x∗∗) = 〈x∗, x∗∗〉.

Proof. Using Proposition 2.2.9 and (4.11) we have

ϕT−1,X∗×X∗∗(x∗, x∗∗) = (ST )∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗×X∗∗.

Therefore, using Theorem 4.2.2 and Theorem 4.2.1 for A = T−1 ⊂
X∗ × X∗∗, we conclude that (T−1)

µ,X∗
×X∗∗

, the monotone polar of
T−1 in X∗×X∗∗, is the unique maximal monotone extension of T−1

to X∗ × X∗∗ and
(
T−1

)µ,X∗
×X∗∗

= {(x∗, x∗∗) ∈ X∗ × X∗∗ | (ST )∗(x∗, x∗∗) = 〈x∗, x∗∗〉}.
(4.13)

Using the above result and again Proposition 2.2.9, we conclude that

(ST )∗ ∈ F
(T−1)µ,X∗

×X∗∗ .

Now, define

T̃ = {(x∗∗, x∗) ∈ X∗∗ × X∗ | (x∗, x∗∗) ∈
(
T−1

)µ,X∗
×X∗∗

}. (4.14)

Note that RT = T−1 and R T̃ = (T−1)
µ,X∗

×X∗∗

. Therefore

(ST )∗ ∈ FR eT . (4.15)

Moreover, since R is a bijection which preserves the duality product,

we conclude that T̃ is the unique maximal monotone extension of T
in X∗∗ × X∗. This proves Item 1.

Since T ⊂ T̃ ,

ϕR eT (x∗, x∗∗) = sup
(y∗,y∗∗)∈R eT

〈x∗, y∗∗〉 + 〈y∗, x∗∗〉 − 〈y∗, y∗∗〉

= sup
(y∗∗,y∗)∈eT

〈x∗, y∗∗〉 + 〈y∗, x∗∗〉 − 〈y∗, y∗∗〉

≥ sup
(y,y∗)∈T

〈y, x∗〉 + 〈y∗, x∗∗〉 − 〈y, y∗〉 = (π + δT )∗(x∗, x∗∗).
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Combining the above equation with the second equality in (4.11) we
conclude that ϕR eT ≥ (ST )∗. Using also the fact that ϕR eT is minimal
in FR eT and (4.15), we obtain ϕR eT = (ST )∗. This proves Item 2.

By Theorem 1.2.3, ϕT (x, x∗) = (ST )∗(x∗, x). Therefore,

(ϕT )∗(x∗, x∗∗) = sup
(y,y∗)∈X×X∗

〈y, x∗〉 + 〈y∗, x∗∗〉 − ϕT (y, y∗)

= sup
(y,y∗)∈X×X∗

〈y, x∗〉 + 〈y∗, x∗∗〉 − (ST )∗(y∗, y)

≤ sup
(y∗∗,y∗)∈X∗∗×X∗

〈y∗∗, x∗〉 + 〈y∗, x∗∗〉 − (ST )∗(y∗, y∗∗)

= (ST )∗∗(x∗∗, x∗).

Take h ∈ FT . By Theorem 1.2.3 one has ϕT ≤ h ≤ sT . Using also
the fact that conjugation reverts the order, the above equation and
Proposition 2.2.9, we conclude that, for any (x∗, x∗∗),

〈x∗, x∗∗〉 ≤ (ST )∗(x∗, x∗∗) ≤ h∗(x∗, x∗∗) ≤ (ϕT )∗(x∗, x∗∗) ≤ (ST )∗∗(x∗∗, x∗).
(4.16)

Define

g ∈ R̄
X∗

×X∗∗

, g(x∗, x∗∗) := ((ST )∗)∗(x∗∗, x∗).

Using (4.15) and Theorem 1.2.2 we conclude that g ∈ FR eT . There-

fore, using again the maximal monotonicity of RT̃ in X∗ ×X∗∗, we
have

g(x∗, x∗∗) = (ST )∗∗(x∗∗, x∗) = 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ RT̃ .

Combining the above equations with (4.16) we conclude that h∗

majorizes the duality product in X∗ × X∗∗ and coincides with it in

RT̃ . Since h∗ is also convex and closed, we have h∗ ∈ FR eT . This
proves Item 3.

Item 1 in the above theorem was firstly proved in [39], while item
2 and item 3 are taken from [31]. The following partial converse of
item 1 of Theorem 4.3.1 is the third main result of this chapter.

Theorem 4.3.2. (Marques Alves-Svaiter [31]) Suppose that T :

X ⇉ X∗ is maximal monotone and has a unique extension T̃ :
X∗∗ ⇉ X∗. Then either

(ST )∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉, ∀(x∗, x∗∗) ∈ X∗ × X∗∗, (4.17)

that is, T is of type (NI), or T is affine linear and T = dom(ϕT ).
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Proof. Suppose there exists only one T̃ ⊂ X∗∗×X∗ maximal mono-
tone extension of T to X∗∗ × X∗. If T is not of type (NI), there
exists (x∗

0, x
∗∗

0 ) ∈ X∗ × X∗∗ such that

(ST )∗(x∗

0, x
∗∗

0 ) < 〈x∗

0, x
∗∗

0 〉. (4.18)

Since R is a bijection that preserves the duality product and RT =

T−1, we conclude that RT̃ is the unique maximal monotone exten-
sion of T−1 to X∗ ×X∗∗. Using now Theorem 4.2.2, Theorem 4.2.1
and (4.11) we obtain

RT̃ =
(
T−1

)µ,X∗
×X∗∗

= {(x∗, x∗∗) ∈ X∗ × X∗∗ |ϕT−1,X∗×X∗∗(x∗, x∗∗) ≤ 〈x∗, x∗∗〉}
= {(x∗, x∗∗) ∈ X∗ × X∗∗ | (ST )∗(x∗, x∗∗) ≤ 〈x∗, x∗∗〉}. (4.19)

Suppose that
(ST )∗(x∗, x∗∗) < ∞. (4.20)

Define, for t ∈ R,

p(t) := (x∗

0, x
∗∗

0 ) + t(x∗ − x∗

0, x
∗∗ − x∗∗

0 ) = (1− t)(x∗

0, x
∗∗

0 ) + t(x∗, x∗∗).

Since (ST )∗ is convex, we have the inequality

(ST )∗(p(t)) − πX∗×X∗∗(p(t)) ≤ (1 − t)(ST )∗(x∗

0, x
∗∗

0 ) + t(ST )∗(x∗, x∗∗)

−πX∗×X∗∗(p(t)), ∀t ∈ [0, 1] .

Since the duality product is continuous, the limit of the right hand
side of this inequality, for t → 0+ is (ST )∗(x∗

0, x
∗∗

0 ) − 〈x∗

0, x
∗∗

0 〉 < 0.
Combining this fact with (4.19) we conclude that for t ≥ 0 and small
enough,

(x∗

0, x
∗∗

0 ) + t(x∗ − x∗

0, x
∗∗ − x∗∗

0 ) ∈ RT̃ .

Altogether, we proved that

(ST )∗(x∗, x∗∗) < ∞ ⇒ ∃t̄ > 0, ∀t ∈ [0, t̄]

(x∗

0, x
∗∗

0 ) + t(x∗ − x∗

0, x
∗∗ − x∗∗

0 ) ∈ RT̃ .
(4.21)

Now, suppose that

(ST )∗(x∗

1, x
∗∗

1 ) < ∞, S
∗

T (x∗

2, x
∗∗

2 ) < ∞.

Then, using (4.21), we conclude that there exists t > 0 such that

(x∗

0, x
∗∗

0 )+t(x∗

1−x∗

0, x
∗∗

1 −x∗∗

0 ) ∈ RT̃ , (x∗

0, x
∗∗

0 )+t(x∗

2−x∗

0, x
∗∗

2 −x∗∗

0 ) ∈ RT̃ .

Since RT̃ is (maximal) monotone, the above points are monotoni-
cally related (in the sense of Definition 4.2.1) and

t2〈x∗

1 − x∗

2, x
∗∗

1 − x∗∗

2 〉 ≥ 0.
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Hence, 〈x∗

1 − x∗

2, x
∗∗

1 − x∗∗

2 〉 ≥ 0. Therefore the set

W := {(x∗, x∗∗) ∈ X∗ × X∗∗ | (ST )∗(x∗, x∗∗) < ∞},

is monotone. By (4.19), RT̃ ⊂ W . Hence W = RT̃ and

T̃ = {(x∗∗, x∗) ∈ X∗∗ × X∗ | (ST )∗(x∗, x∗∗) < ∞} .

Since (ST )∗ is convex, W is also convex. Therefore, RT̃ is convex
and maximal monotone. Now, using Lemma 4.1.1 we conclude that

RT̃ is affine. This also implies that T̃ is affine linear. Since

T = T̃ ∩ X × X∗,

we conclude that T is affine and

T = {(x, x∗) | (ST )∗(x∗, x) < ∞}
= {(x, x∗) | ϕT (x, x∗) < ∞}

where the last equality follows from Theorem 1.2.3.

According to the above theorems, for non-linear maximal mono-
tone operators, condition (4.17) is equivalent to unicity of maximal
monotone extension to the bidual.
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Appendix A

Basics of convex analysis

Let X be a real Banach space with dual X∗. We use the notation
π and π∗ for the duality product in X × X∗ and in X∗ × X∗∗,
respectively:

π : X × X∗ → R, π∗ : X∗ × X∗∗ → R

π(x, x∗) = 〈x, x∗〉, π∗(x
∗, x∗∗) = 〈x∗, x∗∗〉. (A.1)

The norms on X, X∗ and X∗∗ will be denoted by ‖ · ‖. Whenever
necessary, we will identify X with its image under the canonical
injection of X into X∗∗.

We denote by R̄ the extended-real system and by R̄
X the set of

extended-real valued functions defined on X:

R̄ = {−∞} ∪ R ∪ {∞}, R̄
X = {f : X → R̄}.

A function f : X → R ∪ {∞} is convex if

f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y)

whenever x, y ∈ X and t ∈ (0, 1). This is equivalent to say that the
epigraph of f , defined by epf = {(x, t) ∈ X × R | f(x) ≤ t} is a
convex subset of X ×R. Moreover, f is lower semicontinuous (l.s.c.
for short) whenever epf is a closed subset of X × R.

An extended-real valued function is said to be proper if f > −∞
it is not identically ∞. The effective domain of a proper function
f ∈ R̄

X is
dom(f) = {x ∈ X | f(x) < ∞}.

For f ∈ R̄
X , conv f ∈ R̄

X is the largest convex function majorized
by f , and cl f ∈ R̄

X is the largest l.s.c. function majorized by f . It
is trivial to verify that

cl f(x) = lim inf
y→x

f(y), f ∗ = (conv f)∗ = (cl conv f)∗.
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The functions cl f and cl conv f are usually called the l.s.c. closure
of f and the convex l.s.c. closure of f , respectively.

The concept of ε-subdiffential of a convex function f ∈ R̄
X was

introduced by Brøndsted and Rockafellar [13]. It is a point to set
operator ∂εf : X ⇉ X∗ defined at x ∈ X by

∂εf(x) = {x∗ ∈ X∗ | f(y) ≥ f(x) + 〈y − x, x∗〉 − ε, ∀y ∈ X},

where ε ≥ 0.
An special interest is given for the case ε = 0. The point to set

operator ∂f : X ⇉ X∗ defined by ∂f = ∂0f is called the subdiffential
of f . For each x ∈ X the elements x∗ ∈ ∂f(x) are called the
subgradients of f at x. In particular, ∂f(x) ⊂ ∂εf(x), for all x ∈ X
and ε ≥ 0.

The next theorem estimates how well the ε-subdiffential approxi-
mates the subdiffential of a convex function. It is known as Brøndsted-
Rockafellar Theorem.

Theorem A.0.3 ([13, Lemma]). Let f ∈ R̄
X be a proper, convex

and l.s.c. function. Given x∗ ∈ ∂ε f(x), for any λ > 0 there exist
x̄ ∈ X and x̄∗ ∈ ∂f(x̄) such that

‖x − x̄‖ ≤ λ , ‖x∗ − x̄∗‖ ≤ ε

λ
.

For a proper convex function f ∈ R̄
X , the Fenchel-Legrendre

conjugate of f is the function f ∗ ∈ R̄
X∗

defined by

f ∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x).

If f is proper, convex and l.s.c., then f ∗ is proper and f satisfies the
Fenchel-Young inequality:

f(x) + f ∗(x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X × X∗. (A.2)

Moreover, in this case, ∂εf and ∂f can be characterized using f ∗:

∂f(x) = {x∗ ∈ X∗ | f(x) + f ∗(x∗) = 〈x, x∗〉},
∂εf(x) = {x∗ ∈ X∗ | f(x) + f ∗(x∗) ≤ 〈x, x∗〉 + ε}.

(A.3)

The subdifferential and the ε-subdifferential of the function 1
2
‖·‖2

will be of special interest, and will be denoted by J : X ⇉ X∗ and
Jε : X ⇉ X∗ respectively

J(x) = ∂
1

2
‖x‖2, Jε(x) = ∂ε

1

2
‖x‖2.
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Using f(x) = (1/2)‖x‖2 in (A.3), it is trivial to verify that

J(x) = {x∗ ∈ X∗ | 1

2
‖x‖2 +

1

2
‖x∗‖2 = 〈x, x∗〉}

= {x∗ ∈ X∗ | ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉}

and

Jε(x) = {Z∗ ∈ X∗ | 1

2
‖x‖2 +

1

2
‖x∗‖2 ≤ 〈x, x∗〉 + ε}.

The operator J is widely used in convex analysis in Banach spaces
and it is called the duality mapping of X. The operator Jε was in-
troduced by Gossez [21] to generalize some results concerning maxi-
mal monotonicity in reflexive Banach spaces to non-reflexive Banach
spaces.

In what follows we present the Attouch-Brezis’s version of the
Fenchel-Rockafellar duality theorem:

Theorem A.0.4 ([1, Theorem 1.1]). Let X be a Banach space and
f, g ∈ R̄

X be two proper, convex and l.s.c. functions. If
⋃

λ>0

λ [dom(f) − dom(g)]

is a closed subspace of X, then

inf
x∈X

f(x) + g(x) = max
x∗∈X∗

−f ∗(x∗) − g∗(−x∗). (A.4)

We finish this appendix with a well known result of the theory
of convex functions:

Lemma A.0.5. Let E be a real topological linear space and f :
E → R̄ be a convex function. If g : E → R is Gateaux differentiable
at x0, f(x0) = g(x0) and f ≥ g in a neighborhood of x0, then
g′(x0) ∈ ∂f(x0).
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