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Aplicada - IMPA-OS

ESCOAMENTOS FRICCIONAIS DO AR

Paul Krause

Tese apresentada para a obtenção do grau de
Doutor em Ciências

Rio de Janeiro
1o de Julho de 2002



RESUMO

Propomos um modelo para a previsão em baixa resolução da evolução de escoa-
mentos na grande escala. O modelo representa um levantamento estat́ıstico das
equações de Euler em um mecanismo de equiĺıbrio local que satisfaz o prinćıpio
da conservação da energia total e é fenomenologicamente estendido para capturar
efeitos viscosos de massa.

Propomos um modelo para a previsão em baixa resolução da evolução de escoa-
mentos na grande escala. O modelo representa um levantamento estat́ıstico das
equações de Euler em um mecanismo de equiĺıbrio local que satisfaz o prinćıpio da
conservação da energia total e é fenomenologicamente estendido para descrever pro-
cessos irreverśıveis nas transformações de tempo finito de grandes massas de fluido.
Testamos a descrição qualitativa unidimensional que o modelo faz dos escoamentos
planares de Couette e Poiseuille, e dos escoamentos de Ekman.

Palavras-chave: dinâmica dos fluidos, multi-escalas, levantamento estat́ıstico
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1. Introduction

Due to incompleteness of initial data or to limitations in storage space and pro-
cessing time, the smallest scales cannot be resolved in computer simulations of real
flows. Since all involved scales interact, underresolved simulations of real flows fre-
quently have poor predictive value. This is the case with frictional flows.

We are looking for a model that yields fair predictions of the large scale evolution
of flows without the need to resolve the smallest scales, that is, a model for underre-
solved predictions of the large scale evolution of flows. Our approach is to “Reynolds

This work was supported by: CNPq under Grant 143210/97-1 and IM-AGIMB, FAPERJ under
Grant E-26/151.893/2000.
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average” the Euler equations. Currently, “Reynolds averaging” is regarded as a mod-
elling approach to describe the statistical mean values of the flow variables together
with a finite subset of their joint central moments conveniently chosen in each prob-
lem. Here, instead, we regard it as a modelling approach to describe local balances
of 〈ρ〉〈φ〉 and of 〈ρ′φ′〉, for any flow variable φ built upon the fluid density ρ, so
as to provide a statistical upscaling of ρφ into 〈ρφ〉 = 〈ρ〉〈φ〉 + 〈ρ′φ′〉. Therefore,
we split each “Reynolds averaged” Euler equation into a pair of local statistical
balance equations. By doing so we obtain two coupled mechanisms: a reversible
“bulk” mechanism of large scales and an irreversible “turbulence” mechanism for
the small scales effects on the large scales. Then, we close the turbulence mechanism
so as to satisfy the total energy conservation principle in the upscaled description.
Finally, we extend the reversible bulk mechanism to an irreversible bulk mechanism
by means of molecular viscosities, following the linear thermodynamic phenomeno-
logical approach for irreversible processes ([7, 10]). This gives rise to the Extended
Upscaled Euler model (EUE).

Among the features of EUE, we mention: it is an extension of the compressible
Navier-Stokes model (see Eqs. (2.70)–(2.76) and Remark 6); it can be derived from
the Euler equations either in material derivative or flux form (see Remark 1); the
closure assumptions apply to both the enthalpy and the internal energy representa-
tions of heat balance (see Remark 2); its total energy is governed by a conservation
law (see Eq. 3.18); the pressure gradient arises as an affinity ([7, 11]) of the entropy
source term in the upscaled description (see Eq. (3.22)); the turbulence mecha-
nism has a curl formulation (see Eq. 2.64); the model can be readily extended to
comprise a compressible turbulent mixing mechanism for passive species (see Eqs.
(5.1)–(5.2)).

Based on experimental studies of transition to turbulence in pipe flows, Reynolds
(1883) proposed to describe such flows by superposing mean and perturbation fields.
Considering the perturbation fields as unpredictable, he time-averaged the Navier-
Stokes equations and arrived at the so called Reynolds averaged Navier-Stokes
(RANS) equations. This view of turbulence encouraged further observations of
flows under various averagings, leading to significant development in instrumenta-
tion (hot-wire anemometry, laser-Doppler velocimetry etc). Because the statistical
average is appropriate, this view of turbulence is bolstered by the success of the
statistical approach in several fields of theoretical physics, especially the statistical
mechanics approach to the kinetic theory of gases. There is an extensive body of
literature on turbulence within the statistical framework. The works of Taylor, von
Karman, Heisenberg, Kolmogoroff, Loitsianskii and Kraichnan must be mentioned.
The books of McComb ([14]) and Frisch ([9]) summarize the legacy of these works.
We refer to [2, 15] for several current practical issues and models, to [20, 12] for sev-
eral current physical issues and models, to [4, 5, 6] for current stochastic methods
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in underresolved predictions.

The Large Eddy Simulation (LES), introduced by Deardorff, uses space or time-
filtering to compute flow features down to a certain space or time scale. For an
overview on LES, we refer to [18].

In Chapter 2 we derive the EUE model. In Chapter 3 we find the evolution laws
for the total energy and the entropy in the upscaled description resulting from EUE.
In Chapter 4, regarding ρ′ as a thermodynamical quantity that vanishes identically
only in a static state, we test the energy transfer mechanism of EUE in the context of
stationary one-dimensional solutions for the Couette and Poiseuille frictional flows
between planar plates, by checking the qualitative behavior of the resulting profiles
and the qualitative behavior of the entropy source term in the upscaled description.
The Ekman frictional flows are examined briefly in Appendix A. In Chapter 5 we
draw the conclusions.

2. Reynolds modelling

2.1. The open Upscaled Euler model. Under a gravitational field g0 and in a
coordinate system rotating with constant angular velocity Ω, the Euler model reads:

enthalpy: ρdth = dtp, (2.1)

momentum: ρdtu = ρu× 2Ω+ ρg −∇p, (2.2)

mass: dtρ = −ρ∇ · u, (2.3)

state: κρh = p, (2.4)

where h is the enthalpy per unit mass, u × 2Ω is the Coriolis acceleration, g ≡
g0 +Ω× (Ω× x) is the apparent gravitational field and dt ≡ ∂t + (u · ∇) is the ma-
terial derivative. We adopt the ideal gas state equation with constant cp, therefore
h = cpT ([21]). In (2.4), κ denotes R/cp = (cp − cv)/cp = 1− 1/γ.

We remind that the statistical average 〈 · 〉 of random functions is a linear trans-
formation possessing the properties:

〈1〉 = 1, (2.5)

〈∂sf〉 = ∂s〈f〉 for s = x, y, z, t, (2.6)

〈f1〈f2〉〉 = 〈f1〉〈f2〉. (2.7)

The following relations follow from (2.5)–(2.7) together with linearity:

〈〈f〉〉 = 〈f〉, (2.8)

〈f ′〉 = 0, (2.9)

〈f1f2〉 = 〈f1〉〈f2〉+ 〈f
′
1f
′
2〉, (2.10)
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where

f ′ ≡ f − 〈f〉 is the deviation of f with respect to its bulk value 〈f〉. (2.11)

Here, (2.8) comes from (2.5) and (2.7); (2.9) comes from (2.8), the definition of f ′

and the linearity of 〈 · 〉; (2.10) comes from (2.5), (2.7), (2.8), (2.9) and the linearity
of 〈 · 〉.

In the following sections, we split each statistically averaged Euler equation into
a pair of local statistical balance equations.

2.1.1. The local statistical balance equations of enthalpy. Applying 〈 · 〉 on Eq. (2.1),
we use the linearity of this operator to write 〈ρdth〉 as 〈ρdt〈h〉〉 + 〈ρdth

′〉 and 〈dtp〉
as 〈dt〈p〉〉 + 〈dtp

′〉. Then, we split the statistically averaged enthalpy equation into
the following two local balance equations:

〈ρdt〈h〉〉 = 〈dt〈p〉〉, (2.12)

〈ρdth
′〉 = 〈dtp

′〉. (2.13)

Next, we use the mass conservation equation (2.3) and the properties of 〈 · 〉 to
transform Eqs. (2.12)–(2.13) into evolution laws. The flux version of (2.3) yields

〈〈h〉(∂tρ+∇ · (uρ))〉 = 0, (2.14)

〈h′(∂tρ+∇ · (uρ))〉 = 0. (2.15)

Adding (2.14) to (2.12) and (2.15) to (2.13), we use the linearity of 〈 · 〉 to write:

〈ρdt〈h〉〉 = 〈ρdt〈h〉〉+ 〈〈h〉(∂tρ+∇ · (uρ))〉 = 〈∂t(ρ〈h〉) +∇ · (uρ〈h〉)〉,

〈ρdth
′〉 = 〈ρdth

′〉+ 〈h′(∂tρ+∇ · (uρ))〉 = 〈∂t(ρh
′) +∇ · (uρh′)〉.

Then, by applying properties (2.5)–(2.10) on each right hand side we obtain the
identities:

〈ρdt〈h〉〉 = ∂t(〈ρ〉〈h〉) +∇ · (〈u〉〈ρ〉〈h〉+ 〈ρ
′u′〉〈h〉), (2.16)

〈ρdth
′〉 = ∂t〈ρ

′h′〉+∇ · (〈u〉〈ρ′h′〉+ 〈ρu′h′〉). (2.17)

Properties (2.5)–(2.10) also yield the identities:

〈dt〈p〉〉 = ∂t〈p〉+ 〈u〉 · ∇〈p〉, (2.18)

〈dtp
′〉 = 〈u′ · ∇p′〉. (2.19)

Therefore, taking (2.16)–(2.19) into account, Eqs. (2.12)–(2.13) read:

∂t(〈ρ〉〈h〉 − 〈p〉) +∇ · (〈u〉(〈ρ〉〈h〉 − 〈p〉) + 〈ρ
′u′〉〈h〉) = −〈p〉∇ · 〈u〉, (2.20)

∂t〈ρ
′h′〉+∇ · (〈u〉〈ρ′h′〉+ 〈ρu′h′〉) = 〈u′ · ∇p′〉. (2.21)
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2.1.2. The local statistical balance equations of momentum. Applying 〈 · 〉 on Eq.
(2.2), we write 〈ρdtu〉 as 〈ρdt〈u〉〉 + 〈ρdtu

′〉, expand 〈ρu× 2Ω〉 into 〈ρ〉〈u〉 × 2Ω +
〈ρ′u′〉× 2Ω and expand 〈ρg−∇p〉 into 〈ρ〉g−∇〈p〉. Then, we split the statistically
averaged momentum equation into the following two local balance equations:

〈ρdt〈u〉〉 = 〈ρ〉〈u〉 × 2Ω+ 〈ρ〉g −∇〈p〉, (2.22)

〈ρdtu
′〉 = 〈ρ′u′〉 × 2Ω. (2.23)

Next, by using the mass conservation equation (2.3) and the properties of 〈 · 〉 we
transform Eqs. (2.22)–(2.23) into evolution laws:

∂t(〈ρ〉〈u〉) + ∂j(〈uj〉〈ρ〉〈u〉+ 〈ρ
′u′j〉〈u〉) = 〈ρ〉〈u〉 × 2Ω+ 〈ρ〉g −∇〈p〉, (2.24)

∂t〈ρ
′u′〉+ ∂j(〈uj〉〈ρ

′u′〉+ 〈ρu′ju
′〉) = 〈ρ′u′〉 × 2Ω. (2.25)

2.1.3. The local statistical mass conservation equations. Applying 〈 · 〉 on Eq. (2.3),
we write 〈dtρ〉 as 〈dt〈ρ〉〉+〈dtρ

′〉 and expand 〈ρ∇·u〉 into 〈ρ〉∇·〈u〉+〈ρ′∇·u′〉. Then,
we split the statistically averaged mass conservation equation into the following two
local balance equations:

〈dt〈ρ〉〉 = −〈ρ〉∇ · 〈u〉, (2.26)

〈dtρ
′〉 = −〈ρ′∇ · u′〉. (2.27)

Next, we expand 〈dt〈ρ〉〉 and 〈dtρ
′〉 to obtain:

∂t〈ρ〉+∇ · (〈u〉〈ρ〉) = 0, (2.28)

∇ · 〈ρ′u′〉 = 0. (2.29)

2.1.4. The open Upscaled Euler model. Collecting Eqs. (2.20)–(2.21), (2.24)–(2.25)
and (2.28)–(2.29), we are led to the open Upscaled Euler model:

bulk mechanism

∂t(ρh− p) +∇ · (u(ρh− p) + χρh) = −p∇ · u, (2.30)

∂t(ρu) + ∂j(ujρu+ χjρu) = ρu× 2Ω+ ρg −∇p, (2.31)

∂tρ+∇ · (uρ) = 0; (2.32)

turbulence mechanism

∂t(ρζ) +∇ · (uρζ + 〈ρu′h′〉) = 〈u′ · ∇p′〉, (2.33)

∂t(ρχ) + ∂j(ujρχ+ 〈ρu′ju
′〉) = ρχ× 2Ω, (2.34)

∇ · (χρ) = 0; (2.35)

state equation

κρ(h+ ζ) = p. (2.36)
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where

ζ ≡ 〈ρ′h′〉/〈ρ〉, (2.37)

χ ≡ 〈ρ′u′〉/〈ρ〉, (2.38)

〈 · 〉 is omitted from 〈h〉, 〈u〉, 〈ρ〉, 〈p〉. (2.39)

Remark 1. The open Upscaled Euler model can also be derived from the Euler
equations in flux form: one uses the linearity of 〈 · 〉 to write

〈∂t(ρh) +∇ · (uρh)〉 as 〈∂t(ρ〈h〉) +∇ · (uρ〈h〉)〉+ 〈∂t(ρh
′) +∇ · (uρh′)〉,

〈∂t(ρu) + ∂j(ujρu)〉 as 〈∂t(ρ〈u〉) + ∂j(ujρ〈u〉)〉+ 〈∂t(ρu
′) + ∂j(ujρu

′)〉,

and 〈∂tρ+∇ · (uρ)〉 as 〈∂t〈ρ〉+∇ · (u〈ρ〉)〉+ 〈∂tρ
′ +∇ · (uρ′)〉

before splitting the averaged equations.

2.2. The closed Upscaled Euler model. The terms 〈u′ ·∇p′〉, 〈ρu′h′〉 and 〈ρu′ju
′〉

in the turbulence mechanism (2.33)–(2.35) require closure.

The ideal gas state equation (2.4) yields 〈u′κρh〉 = 〈u′p〉. Applying the properties
of 〈 · 〉, this equation becomes κ(〈h〉〈ρ′u′〉+ 〈ρu′h′〉) = 〈u′p′〉. Therefore, we have:

〈ρu′h′〉 = −〈ρ′u′〉〈h〉+ 〈u′p′〉/κ. (2.40)

The flux terms 〈ρu′h′〉 and 〈ρu′u′i〉 refer to enthalpy and momentum transfers by
the turbulence mechanism. According to (2.40), this transfer mechanism involves
〈ρ′u′〉. Therefore, we write

〈ρu′u′i〉 ≡ −〈ρ
′u′〉〈ui〉+ Pi, (2.41)

for some tensor P ≡ (pji).

According to the statistical identity 〈ρφ〉 = 〈ρ〉〈φ〉 + 〈ρ′φ′〉, the variables in the
upscaled description are obtained by superposing corresponding bulk and turbulence
variables. Then, taking into account (2.40)–(2.41), the evolution law for the total
energy in the upscaled description resulting from Eqs. (2.30)–(2.36) is:

∂t(ρ
1
2v

2 + ρε+ ρφ) +∇ · (u(ρ 12v
2 + ρω) + v(ρφ) + Pv + 〈u′p′〉/κ) = 〈u′ · ∇p′〉 − Φ̃− χ · ∇p,

where the definitions (2.37)–(2.39) are employed, and

v ≡ u+ χ, ω ≡ h+ ζ, ε ≡ ω − p/ρ, ∇(−φ) ≡ g, (2.42)

Φ̃ ≡ (µc∇χi) · ∇(ui + χi). (2.43)

We omit the derivation of this equation because the steps are analogous to those in
Section 3.1 to derive the evolution law for the total energy in the upscaled descrip-
tion resulting from the final model.
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We want the total energy conservation principle to be satisfied in the upscaled
description. Therefore, we take:

〈u′ · ∇p′〉 ≡ Φ̃ + χ · ∇p. (2.44)

Now we consider the turbulent flux terms 〈u′p′〉/κ and Pi appearing in Eqs. (2.40)
and (2.41). Assuming that the turbulence mechanism (2.33)–(2.35) is dissipative,
we take:

〈u′p′〉/κ ≡ −λc∇Θ, (2.45)

Pi ≡ −µc∇χi, (2.46)

where

Θ ≡ 〈ρ′T ′〉/〈ρ〉. (2.47)

After closure, Eqs. (2.33)–(2.34) become:

∂t(ρζ) +∇ · (uρζ − χρh− λc∇Θ) = Φ̃ + χ · ∇p, (2.48)

∂t(ρχ) + ∂j(ujρχ− χjρu− µc∂jχ) = ρχ× 2Ω. (2.49)

Substituting Eqs. (2.33)–(2.34) by Eqs. (2.48)–(2.49), we are led to the closed
Upscaled Euler (UE) model:

bulk mechanism

∂t(ρh− p) +∇ · (u(ρh− p) + χρh) = −p∇ · u, (2.50)

∂t(ρu) + ∂j(ujρu+ χjρu) = ρu× 2Ω+ ρg −∇p, (2.51)

∂tρ+∇ · (uρ) = 0; (2.52)

turbulence mechanism

∂t(ρζ) +∇ · (uρζ − χρh− λc∇Θ) = Φ̃ + χ · ∇p, (2.53)

∂t(ρχ) + ∂j(ujρχ− χjρu− µc∂jχ) = ρχ× 2Ω, (2.54)

∇ · (χρ) = 0; (2.55)

state equation

κρ(h+ ζ) = p, (2.56)

where the definitions (2.37)–(2.39), (2.43) and (2.47) are employed.

Remark 2. The internal energy versions of Eqs. (2.50) and (2.53) are:

∂t(ρe) +∇ · (uρe+ χρe) = −p∇ · u, (2.57)

∂t(ρε) +∇ · (uρε− χρe− λc∇Θ) = Φ̃ + χ · ∇p. (2.58)
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Here, ε ≡ 〈ρ′e′〉/〈ρ〉 (where e is the internal energy per unit mass) and 〈 · 〉 is
omitted from 〈e〉. Indeed, after applying 〈 · 〉 on the internal energy balance equation
ρdte = −p∇ ·u, we split the resulting statistically averaged internal energy equation
into the following two local balance equations:

〈ρdt〈e〉〉 = −〈p〉∇ · 〈u〉, (2.59)

〈ρdte
′〉 = −〈p′∇ · u′〉. (2.60)

Then, by using the mass conservation equation (2.3) and the properties of 〈 · 〉 we
transform Eqs. (2.59)–(2.60) into the evolution laws:

∂t(〈ρ〉〈e〉) +∇ · (〈u〉〈ρ〉〈e〉+ 〈ρ
′u′〉〈e〉) = −〈p〉∇ · 〈u〉, (2.61)

∂t〈ρ
′e′〉+∇ · (〈u〉〈ρ′e′〉+ 〈ρu′e′〉) = −〈p′∇ · u′〉. (2.62)

Given that κ ≡ R/cp = (cp − cv)/cp = 1 − 1/γ, h = cpT and e = cvT , one
has p = κρh = (γ − 1)ρe. Consequently 〈u′p〉 = 〈u′(γ − 1)ρe〉, that is 〈u′p′〉 =
(γ− 1)(〈e〉〈ρ′u′〉+ 〈ρu′e′〉). Then 〈ρu′e′〉 = −〈e〉〈ρ′u′〉+ 〈u′p′〉/(γ− 1). Substituting
〈ρu′e′〉 and 〈p′∇ · u′〉 = ∇ · 〈u′p′〉 − 〈u′ · ∇p′〉 in Eq. (2.62), we obtain

∂t〈ρ
′e′〉+∇ · (〈u〉〈ρ′e′〉 − 〈ρ′u′〉〈e〉+ 〈u′p′〉/κ) = 〈u′ · ∇p′〉. (2.63)

Under the closure assumptions used for Eq. (2.33), equation (2.63) becomes (2.58).

Remark 3. Using the vector identity ∂j(ujρχ− χjρu) = ∇× (ρχ× u), Eq. (2.54)
also reads:

∂t(ρχ) +∇× (ρχ× u) = ρχ× 2Ω+ ∂j(µc∂jχ). (2.64)

Remark 4. For χ = 0 and Θ = 0 identically, the Upscaled Euler model (2.50)–
(2.56) reduces to the Euler model (2.1)–(2.4).

Remark 5. Landau’s words ([13], §33) on L. Richardson’s description (1922) of
the energy transfer process in frictional flows are:

“The energy passes from large eddies to smaller ones, practically no dissipation oc-
curring in this process. (...) This flow of energy is dissipated in the smallest eddies,
where the kinetic energy is transformed into heat.”

In the Upscaled Euler model (2.50)–(2.56), we interpret that the opposite sign terms
+χρh and −χρh appearing in Eqs. (2.50) and (2.53) as well as +χjρu and −χjρu
appearing in Eqs. (2.51) and (2.54) model the enthalpy and the momentum transfers
between bulk and fluctuation scales; we interpret that the terms (−λc∇Θ), (−µc∇χi)
and Φ̃ model mixing and dissipation at fluctuation scales.

2.3. The Extended Upscaled Euler model. We follow the linear thermody-
namic phenomenological approach for irreversible processes ([7, 10]) to extend the
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reversible bulk mechanism (2.50)–(2.52) to describing irreversible processes in finite-
time transformations of bulk elements of fluid. Thus, we model the molecular con-
duction of bulk heat and bulk momentum by introducing the flux term Jh ≡ −λ∇T
in Eq. (2.50) and the flux term Jui

≡ −µ∇ui in Eq. (2.51); we model the molecular
dissipation of bulk kinetic energy into bulk heat by introducing a source term Φ̄ in
Eq. (2.50). In the phenomenological approach, the dissipation term is modelled in
such a way that the total energy is conserved. Here, we take Φ̄ in such a way that
the total energy is conserved in the upscaled description.

Extending Eqs. (2.50)–(2.51) to

∂t(ρh− p) +∇ · (u(ρh− p) + χρh− λ∇T ) = Φ̄− p∇ · u, (2.65)

∂t(ρu) + ∂j(ujρu+ χjρu− µ∂ju) = ρu× 2Ω+ ρg −∇p, (2.66)

the evolution law for the total energy in the upscaled description resulting from Eqs.
(2.65)–(2.66) together with Eqs. (2.52)–(2.56) is:

∂t(ρ
1
2v

2 + ρε+ ρφ) +∇ · (u(ρ 12v
2 + ρω) + v(ρφ) + Pv − λ∇T − λc∇Θ) = Φ̄ + Φ̃− Φ,

where the definitions (2.37)–(2.39), (2.42)–(2.43) and (2.47) are employed, and

P ≡ (pji) ≡ −µ∂jui − µc∂jχi, (2.67)

Φ ≡ (µ∇ui + µc∇χi) · ∇(ui + χi). (2.68)

We omit the derivation of this equation because the steps are analogous to those in
Section 3.1 to derive the evolution law for the total energy in the upscaled descrip-
tion resulting from the final model.

Thus, we take

Φ̄ ≡ Φ− Φ̃ = (µ∇ui) · ∇(ui + χi), (2.69)

so that the total energy conservation principle is satisfied in the upscaled description.
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Substituting Eqs. (2.50)–(2.51) by Eqs. (2.65)–(2.66), we are led to the Extended
Upscaled Euler (EUE) model:

extended bulk mechanism

∂t(ρh− p) +∇ · (u(ρh− p) + χρh− λ∇T ) = Φ̄− p∇ · u, (2.70)

∂t(ρu) + ∂j(ujρu+ χjρu− µ∂ju) = ρu× 2Ω+ ρg −∇p, (2.71)

∂tρ+∇ · (uρ) = 0; (2.72)

turbulence mechanism

∂t(ρζ) +∇ · (uρζ − χρh− λc∇Θ) = Φ̃ + χ · ∇p, (2.73)

∂t(ρχ) + ∂j(ujρχ− χjρu− µc∂jχ) = ρχ× 2Ω, (2.74)

∇ · (χρ) = 0; (2.75)

state equation

κρ(h+ ζ) = p, (2.76)

where the definitions (2.37)–(2.39), (2.43), (2.47) and (2.69) are employed.

Remark 6. For χ = 0 and Θ = 0, identically, EUE reduces to the compressible
Navier-Stokes model.

3. Energy laws in the upscaled description

Let e = cvT be the internal energy per unit mass and ε ≡ 〈ρ′e′〉/〈ρ〉. We call
“upscaled variables” the following variables of the upscaled description:

ρ mass per unit volume, (3.1)

p pressure, (3.2)

T ≡ T + Θ temperature, (3.3)

v ≡ u+ χ linear momentum per unit mass, (3.4)

ω ≡ h+ ζ = cpT enthalpy per unit mass, (3.5)

ε ≡ e+ ε = cvT internal energy per unit mass, (3.6)

∇(−φ) ≡ g apparent grav. potential energy per unit mass, (3.7)

where 〈 · 〉 is omitted from 〈ρ〉, 〈p〉, 〈T 〉, 〈u〉, 〈h〉, 〈e〉.

Here, by applying 〈 · 〉 on the thermodynamic relation ρh = ρe + p one obtains
〈ρ〉〈h〉 + 〈ρ′h′〉 = 〈ρ〉〈e〉 + 〈ρ′e′〉 + 〈p〉, and the following relation between upscaled
variables is found:

ω = ε+ p/ρ, (3.8)
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where 〈 · 〉 is omitted from 〈p〉, 〈ρ〉.

In the following sections, we find the evolution laws for the total energy ( 12v
2+ε+φ)

and the entropy in the upscaled description resulting from EUE. Before doing so,
let us write for future use the evolution laws for the upscaled enthalpy ω and the
upscaled momentum v: we add Eq. (2.70) to Eq. (2.73) and Eq. (2.71) to Eq.
(2.74), to obtain

∂t(ρω − p) +∇ · (u(ρω − p)− λ∇T − λc∇Θ) = Φ + χ · ∇p− p∇ · u, (3.9)

∂t(ρv) + ∂j(ujρv − µ∂ju− µc∂jχ) = ρv × 2Ω+ ρg −∇p, (3.10)

or else, by using the mass conservation equation (2.72),

ρdt(ω − p/ρ) = Φ + χ · ∇p− p∇ · u+∇ · (λ∇T + λc∇Θ), (3.11)

ρdtv = ρv × 2Ω+ ρg −∇p+ ∂j(µ∂ju+ µc∂jχ), (3.12)

where

dt ≡ ∂t + (u · ∇) is the upscaled material derivative. (3.13)

Here, 〈 · 〉 is omitted from 〈u〉.

Remark 7. The evolution laws for the upscaled enthalpy and the upscaled momen-
tum can be written in either flux or material derivative form.

Remark 8. The evolution law for the upscaled internal energy ε can be obtained in
either flux or material derivative form, by substituting (3.8) in Eq. (3.9) or in Eq.
(3.11).

Remark 9. Equation (2.72) may be written ρdt(1/ρ) = ∇ · u, for dt as in (3.13).
Then, we have ρdt(p/ρ) = ρ(dtp (1/ρ) + p dt(1/ρ)) = dtp+ p∇ · u. Thus (3.11) may
be written as:

ρdtω − dtp = Φ + χ · ∇p+∇ · (λ∇T + λc∇Θ). (3.14)

3.1. The total energy law in the upscaled description. Because the potential
energy φ is time-independent, we have

∂t(ρ
1
2v

2 + ρε+ ρφ) = (12v
2)∂tρ+ ρ∂t(

1
2v

2) + ∂t(ρε) + φ∂tρ. (3.15)

Let us obtain ∂t(ρε) and ∂t(
1
2v

2). Substituting (3.8) in the time-derivative term of
Eq. (3.9) and expanding ∇ · (up), one readily obtains:

∂t(ρε) = −∇ · (uρω − λ∇T − λc∇Θ) + v · ∇p+ Φ. (3.16)

Taking the inner product of v with each member of Eq. (3.12), one has:

v · ρdtv = v · (ρv × 2Ω+ ρg −∇p+ ∂j(µ∂ju+ µc∂jχ)), or

ρv · (∂tv + (u · ∇)v) = v · (ρg −∇p+ ∂j(µ∂ju+ µc∂jχ)), or

ρ∂t(
1
2v

2) = −ρv · ((u · ∇)v) + v · (ρg −∇p+ ∂j(µ∂ju+ µc∂jχ)),
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where

(i) −ρv · ((u · ∇)v) ≡ −ρvj(ui∂ivj) = −ρui(vj∂ivj)
= −ρui∂i(

1
2v

2) ≡ −ρu · ∇(12v
2),

(ii) v · ∂j(µ∂ju+ µc∂jχ) ≡ vi∂j(µ∂jui + µc∂jχi)
= ∂j((µ∂jui + µc∂jχi)vi)− (µ∂jui + µc∂jχi)∂jvi
≡ −∇ · (Pv)− Φ (see the definitions (2.67)–(2.68)),

(iii) v · (ρg) = −ρv · ∇φ.

Thus, we obtain:

ρ∂t(
1
2v

2) = −ρu · ∇(12v
2)− ρv · ∇φ− v · ∇p−∇ · (Pv)− Φ. (3.17)

Finally, we substitute Eqs. (3.16)–(3.17) in (3.15) and use Eq. (2.72) and Eq. (2.75)
to obtain the evolution law for the total energy in the upscaled description resulting
from EUE:

∂t(ρ
1
2v

2 + ρε+ ρφ) +∇ · (u(ρ 12v
2 + ρω) + v(ρφ) + Pv − λ∇T − λc∇Θ) = 0. (3.18)

Remark 10. The total energy in the upscaled description is governed by a conser-
vation law.

3.2. The entropy law in the upscaled description. In Gas Dynamics, the
flow domain is supposed to be continuously covered at unobserved scales by near-
equilibrium mass elements undergoing finite-time transformations of their state (the
slower transformations the closer to equilibrium mass elements are). This is the
“local equilibrium assumption”, which accounts for intensive thermodynamic vari-
ables and densities of extensive variables to be well defined smooth functions of
space and time in non-equilibrium flows, and thus for the ideal gas state equation
(2.4) as well as for the Gibbs relation Tds = de + pd(1/ρ) −

∑

k µkdck to apply to
non-equilibrium flows ([7, 11]). We assume that EUE describes transformations of
mass element ensembles, making up larger particles, that are subject to the state
equation (2.76) (which reads κρω = p). That is, we assume that EUE stands for a
local equilibrium mechanism at larger scales. Therefore, we define the entropy rate
of change per unit mass in the upscaled description by:

T dσ = dε+ pd(1/ρ), (3.19)

where d represents the upscaled material derivative dt and 〈 · 〉 is omitted from 〈p〉
and 〈ρ〉.

Applying dt on Eq. (3.8), the identity dtε+pdt(1/ρ) = dtω− (1/ρ)dtp follows. Thus,
the upscaled enthalpy version of Eq. (3.19) is:

T dσ = dω − (1/ρ)dp. (3.20)

We substitute Eq. (3.8) in Eq. (3.11), apply Eq. (3.19) and use the mass conser-
vation equation ρdt(1/ρ) = ∇ · u, or else we substitute Eq. (3.20) in Eq. (3.14), to
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obtain:

T ρdtσ = Φ + χ · ∇p+∇ · (λ∇T + λc∇Θ). (3.21)

Then, we use the vector identity f∇ ·G = ∇ · (Gf) −G · ∇f in Eq. (3.21), with
f ≡ 1/T and G ≡ λ∇T + λc∇Θ, to obtain the evolution law for the entropy in the
upscaled description:

ρdtσ =
Φ

T
+ χ ·

∇p

T
+

Ψ

T 2
+∇ ·

(λ∇T + λc∇Θ

T

)

, (3.22)

where

Ψ ≡ (λ∇T + λc∇Θ) · ∇T . (3.23)

For future reference, we indicate by Π the entropy source term in the upscaled
description:

Π ≡ (Φ/ρ)/T + (χ/ρ) · (∇p/T ) + (Ψ/ρ)/T 2. (3.24)

Remark 11. The pressure gradient arises as an affinity ([7, 11]) of the entropy
source term in the upscaled description.

Remark 12. The viscous dissipation functions in the upscaled description are sums
of quadratic forms:

Φ ≡ (µ∇ui + µc∇χi) · ∇(ui + χi) = µ(∇ui)
2 + (µ+ µc)∇ui · ∇χi + µc(∇χi)

2,

Ψ ≡ (λ∇T + λc∇Θ) · ∇(T + Θ) = λ(∇T )2 + (λ+ λc)∇T · ∇Θ + λc(∇Θ)2.

For 0 < λ < λc and 0 < µ < µc, they satisfy:

Φ ≥ 0 if ∂jui/∂jχi /∈ (−µc/µ,−1) i, j = 1, 2, 3, (3.25)

Ψ ≥ 0 if ∂jT/∂jΘ /∈ (−λc/λ,−1) j = 1, 2, 3. (3.26)

4. Frictional air flows

We consider frictional air flows between two planar parallel plates, and describe
them as stationary flows in the upscaled description that depend only on the direc-
tion z orthogonal to the plate. This includes describing the exact (that is, in all
scales) stationary states of these flows, which occur in laminar regimes, given by the
corresponding Navier-Stokes description.

When Ω = 0, we have g = g0. In a sufficiently thin domain of fluid and for small
gradients of temperature, one can assume that ρ is constant and gravitation effects
are negligible. We employ the constant ρ thermodynamical limit, where p is treated
as a dynamic pressure through the substitution of the state equation by ∇ · u = 0.
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For solutions that vary only in the direction z orthogonal to the boundary, the EUE
model (2.70)–(2.76) reads:

dz(u3(h− p/ρ) + χ3h− υ dzT ) = (νdzui)dz(ui + χi), (4.1)

dz(u3u1 + χ3u1 − ν dzu1) = −∂x(p/ρ), (4.2)

dz(u3u2 + χ3u2 − ν dzu2) = −∂y(p/ρ), (4.3)

dz(u3u3 + χ3u3 − ν dzu3) = −∂z(p/ρ), (4.4)

dzu3 = 0, (4.5)

dz(u3ζ − χ3h− υc dzΘ) = (νcdzχi)dz(ui + χi) + χ1∂x(p/ρ) + χ3∂z(p/ρ), (4.6)

dz(u3χ1 − χ3u1 − νc dzχ1) = 0, (4.7)

dz(u3χ2 − χ3u2 − νc dzχ2) = 0, (4.8)

dz(−νc dzχ3) = 0, (4.9)

dzχ3 = 0, (4.10)

where dz stands for the derivative of a function that depends only on z, and we
define

ν ≡ µ/ρ, υ ≡ λ/ρ, νc ≡ µc/ρ, υc ≡ λc/ρ. (4.11)

Notice that we have applied ∇ · u = 0 in Eq. (2.70) to obtain Eq. (4.1), and aban-
doned the state equation (2.76).

From Eq. (4.5), u3 is constant. Hence, u3 = 0 for an impermeable boundary. In this
case, Eq. (4.4) reduces to ∂z(p/ρ) = 0. Consequently ∂z∂x(p/ρ) = ∂x∂z(p/ρ) = 0
and ∂z∂y(p/ρ) = ∂y∂z(p/ρ) = 0, that is ∂x(p/ρ) and ∂y(p/ρ) must be constant. From
Eq. (4.10), χ3 is constant. With u3 = 0 and χ3 constant, Eq. (4.3) and Eq. (4.8)
become linear. Thus, for ∂y(p/ρ) = 0 and for homogeneous boundary conditions on
u2 and χ2 we obtain u2 = 0 and χ2 = 0. Therefore, the system (4.1)–(4.10) reduces
to:

υT ′′ − ξcpT
′ = −(νu′1)(u

′
1 + χ′1), (4.12)

νu′′1 − ξu
′
1 = η1, (4.13)

υcΘ
′′ + ξcpT

′ = −(νcχ
′
1)(u

′
1 + χ′1)− χ1η1, (4.14)

νcχ
′′
1 + ξu′1 = 0, (4.15)

where we substituted h = cpT and ζ = cpΘ, and we define

f ′ ≡ dzf, (4.16)

ξ ≡ χ3, (4.17)

η1 ≡ ∂x(p/ρ). (4.18)
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The definition (4.16) is not to be confused with the definition (2.11) employed in
Chapters 2 and 3.

Remark 13. For ξ = 0, the solution of Eqs. (4.14)–(4.15) with the homogeneous
boundary conditions χ1 = 0 and Θ = 0 at z = −L and z = +L is zero. This means
that the turbulence mechanism (2.73)–(2.75) does not take place in one-dimensional
frictional flows. Thus, the strictly one-dimensional approximation of EUE is inad-
equate to describe frictional flows. Therefore, in this study our goal will be limited
to finding the EUE qualitative description of planar Couette and planar Poiseuille
flows by providing some scaling for ξ.

We show in Appendix B that the general solution of the system of ordinary dif-
ferential equations (4.12)–(4.15) is given by polynomials in z and exp(z).

Remark 14. In order to help exploring the role of Θ in the model (4.12)–(4.15),
we examine the temperature profiles produced when Θ is neglected. In this case, the
equation (2.73) reduces to:

∇ · (−χρh) = Φ̃ + χ · ∇p. (4.19)

According to this equation, the flux term (−χρh) balances the source terms Φ̃ and
χ · ∇p when Θ = 0. Substituting ∇ · (χρh) in (2.70), we obtain

∂t(ρh) +∇ · (u(ρh− p)− λ∇T ) = Φ + χ · ∇p− p∇ · u, (4.20)

where Φ is defined in (2.68). The state equation (2.76) reduces to κρh = p when
Θ = 0. However, we are interested in the constant ρ thermodynamic limit, therefore
we substitute this equation by ∇ · u = 0. Thus, for stationary one-dimensional
solutions, Eq. (4.20) reads:

υT ′′ = −(νu′1 + νcχ
′
1)(u

′
1 + χ′1)− χ1η1. (4.21)

Notice that neither cp, nor υc, appear in this formulation. Taking into account that
u1 and χ1 are given by (B.10) and (B.12), we obtain:

T = (1/(12νcυ))(η1ξa/2− ξ
2a2) z4 + (1/(6υ))((η1ξA1/νc − η1B1)

+ ((νa− ξA1 + νcB1)(ξa/νc) + ξa(a− ξA1/νc +B1))) z
3

− (1/(2υ))((νa− ξA1 + νcB1)(a− ξA1/νc +B1) + η1B0) z
2 + E2 z + E1

+ (((ξa/υ)(A2r2 − ξA2/νc) + (ξa/(νcυ))(νA2r2 − ξA2))(z/r
2
2 − 1/r32)

− (1/r32)((ξa/υ)(A2r2 − ξA2/νc) + (ξa/(νcυ))(νA2r2 − ξA2))

+ η1ξA2/(νcr
3
2υ)− (νa− ξA1 + νcB1)(A2r2 − ξA2/νc)/(υr

2
2)

− (νA2r2 − ξA2)(a− ξA1/νc +B1)/(υr
2
2)) e

r2z

− (1/(4υr22))(νA2r2 − ξA2)(A2r2 − ξA2/νc) e
2r2z, (4.22)
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where E1 and E2 stand for the constants to be determined by the boundary conditions.
For the boundary conditions

T (L) = T0, (4.23)

T ′(0) = 0, (4.24)

we obtain:

E1 = (−η1ξaL
5r52 − 2ξa2L4r52νc − 12L3r52νa

2νc − 2ξa2L4r52ν − 24T0νcr
5
2υL

+ 36a2ξ2r2L− ξ
2a2L5r52 + 60L2a2ξ2r22 − 24Lr22νcξa

2 − 24Lr22νa
2ξ

− 12L3r42ξa
2νc + 20L3r32ξ

2a2 − 12L3r42νa
2ξ − 36r42L

2a2ννc − 24r32L
2a2νξ

− 24r32L
2a2ξνc + 8η1ξar

3
2L

3 + 24L2η1ξar
2
2 + (48a2ξνcr

2
2L+ 24a2ξ2L2r22

+ 4η1ξar
3
2L

3 + 4L3r32ξ
2a2 + 24a2νξr2 + 24a2νcξr2 − 120a2ξ2r2L

+ 48a2νξr22L− 24η1ξar2L+ 48a2r32ννcL− 48a2ξ2) er2L + (6a2νξr22L

+ 6a2ξνcr
2
2L− 18a2ξ2r2L− 6a2r32ννcL− 24a2νξr2 − 24a2νcξr2 + 48a2ξ2) e2r2L)

/ (−24r52Lνcυ), (4.25)

E2 = (2η1ξr2L− 3r32νaνcL− ar
3
2ξνcL

2 + 2ξ2ar22L
2 − 2ar2ξνc + 4ξ2a− ar32νξL

2

− 2ar2νξ − ar
2
2νξL− ar

2
2ξνcL+ 5ξ2ar2L+ (2ar2ξνc − 4ξ2a+ 2ar2νξ) e

r2L)

/ (2r42Lνcυ/a). (4.26)

4.1. The planar Couette flows. We consider Couette flows between two planar
parallel plates. These flows are driven by relative motion of the plates; no pressure
gradient is imposed. We place the frame of reference at mid-distance between the
plates.

U− U−

+ U1

1

x

z

d xp =  0 2 L

Figure 4.1. The planar Couette flows.

Because of symmetry (gravity is neglected), T must be an even function of z and
u1 must be an odd function of z. We assume that the turbulence field vanishes
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at the plates and at mid-distance between them. Therefore, we take for boundary
conditions:

u1(L) = U1, χ1(L) = 0, T (L) = T0, Θ(L) = 0, (4.27)

u1(0) = 0, χ1(0) = 0, T ′(0) = 0, Θ(0) = 0. (4.28)

We show in Appendix B that the solution of the system of ordinary differential
equations (4.12)–(4.15) with the boundary conditions (4.27)–(4.28) is given by poly-
nomials in z and exp(z). See Eqs. (B.29)–(B.32) and (B.33)–(B.40) for the case
η1 = 0.

Remark 15. The compressible Navier-Stokes equations may be written as:

∂t(ρh− p) +∇ · (u(ρh− p)− λ∇T ) = Φ,

∂t(ρu) + ∂j(ujρu− µ∂ju) = ρu× 2Ω+ ρg −∇p,

∂tρ+∇ · (uρ) = 0,

where h = cpT and Φ ≡ (µ∇ui) · ∇ui = µ(∇ui)
2. For stationary one-dimensional

planar Couette flows, these equations reduce to:

υT ′′ + νu′1
2
= 0, (4.29)

u′′1 = 0, (4.30)

where f ′ ≡ dzf , ν ≡ µ/ρ, υ ≡ λ/ρ. For the boundary conditions

u1(L) = U1, T (L) = T0, (4.31)

u1(0) = 0, T ′(0) = 0, (4.32)

we obtain:

T = (νU 2
1/(2υ))(1− (z/L)2) + T0, (4.33)

u1 = U1 (z/L). (4.34)

Notice that (4.33)–(4.34) is also the solution of (4.29)–(4.30) for the boundary con-
ditions

u1(+L) = +U1, T (+L) = T0,

u1(−L) = −U1, T (−L) = T0.

Next, we discuss the planar Couette profiles resulting from Eqs. (4.12)–(4.15)
with η1 = 0, the boundary conditions (4.27)–(4.28) and the scaling s|U1| of ξ for
some constant s. The constants in these profiles are s, ν ∼ 1.5 · 10−5 m2/s, νc,
cp ∼ 103 J/(kg ·K), υ ∼ 2.0 ·10−2 J ·m2/(kg ·s ·K), υc, L, U1 and T0. The values of
s, νc and υc are determined to obtain the best qualitative fit with the experimental
profiles of Reichardt ([17]) shown in Fig. 4.2.
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Figure 4.2. Experimental profiles of momentum in planar Couette
flows, by Reichardt [17].

For comparison, Fig. 4.3.(a) shows the planar Couette momentum profiles given by
Navier-Stokes, that is, the profiles of u1/U1 resulting from (4.34). We immediatly
see that

u1/U1 = f1(z/L), (4.35)

so the profiles are independent of any parameter, in particular of the Reynolds
number

Re ≡ |U1|(2L)/ν. (4.36)

Let us consider now the planar Couette momentum profiles given by EUE, that is,
the profiles of (u1 + χ1)/U1 resulting from Eqs. (4.13) and (4.15) with η1 = 0, the
boundary conditions (4.27)–(4.28) on u1 and χ1, and the scaling s|U1| of ξ for some
constant s. The constants in these profiles are s, ν ∼ 1.5 · 10−5 m2/s, νc, L and U1.
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(a) Navier-Stokes profiles: independent of Re.
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(b) EUE profiles: Re=5.0 · 102 or lower values, 3.0 ·

103, 7.0 · 103, 1.4 · 104, 1.8 · 104 (curves from top to

bottom); s0 = 1 · 10−3; M1 = 4.

Figure 4.3. Navier-Stokes and EUE profiles of momentum for planar
Couette flows.

One sees from (B.30), (B.32) and (B.33)–(B.36) that

u1/U1 = f2(z/L, sRe), (4.37)

χ1/U1 = (1/M1)f3(z/L, sRe), (4.38)

where

M1 ≡ νc/ν, (4.39)

thus

(u1 + χ1)/U1 = f4(z/L, sRe,M1). (4.40)

When plotting the results of our calculations, it is observed that a Re-profile family
(that is, a family of profiles parameterized by Re) of the analytical extension of
(u1+χ1)/U1 to z/L ∈ [−1,+1] agrees qualitatively with experimental data provided
the following conditions on s and M1 are satisfied, regardless the sign of U1:

s = +s0 > 0, ∀z/L ∈ (0,+1], (4.41)

s = −s0 < 0, ∀z/L ∈ [−1, 0), (4.42)

M1 > 1. (4.43)

Remark 16. The conditions (4.41)–(4.42) on s imply that a Re-profile family of the
analytical extension of (u1 + χ1)/U1 to z/L ∈ [−1,+1] agrees qualitatively with ex-
perimental data only if the following conditions on ξ = s|U1| are satisfied (regardless
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the sign of U1):

ξ > 0, ∀z/L ∈ (0,+1], (4.44)

ξ < 0, ∀z/L ∈ [−1, 0). (4.45)

Neither the vorticity nor the shear of u have these properties: both these quantities
are single-signed throughout the layer and switch their signs when the sign of U1 is
switched.

In particular, the analytical extension of (u1 + χ1)/U1 to z/L ∈ [−1,+1] is an odd
function when the conditions (4.41)–(4.43) are satisfied. Therefore, we discuss its
restriction to z/L ∈ [0,+1]. For this purpose, we write:

(u1 + χ1)/U1 = f4(z/L,Re∗,M1), (4.46)

where

Re∗ ≡ s0Re, s0 > 0. (4.47)

In plots, Re∗ controls the boundary layer width of (u1 +χ1)/U1 at z/L = 1 (or else,
the profile slope at z/L = 1), while M1 controls the shear of (u1+χ1)/U1 at z/L = 0
(that is, the profile slope at z/L = 0). Indeed, the boundary layer width at z/L = 1
decreases (the profile slope at z/L = 1 steepens) for increasing values of Re∗, the
shear at z/L = 0 decreases for increasing values of M1. For s0 = 0 or M1 = 1, the
profiles collapse into the Navier-Stokes straight line profile (the case M1 = 1 can be
derived by adding Eqs. (4.13) and (4.15)). The Re-profile family of (u1 + χ1)/U1

that fits best qualitatively the experimental profiles of Reichardt ([17]) is obtained
for s0 ∼ 1 · 10−3 and M1 ∼ 4. Fig. 4.3.(b) shows some members of this Re-profile
family of (u1 + χ1)/U1.

Remark 17. Notice from (4.46)–(4.47) that s0 is an amplification factor for the span
of a Re-profile family of (u1+χ1)/U1. Therefore, it fixes the critical value of Re for
the laminar-turbulent threshold occurring in each Re-profile family of (u1 + χ1)/U1.
Notice from Fig. 4.3.(b) that for s0 = 1 · 10−3 the Re-profile family of (u1 + χ1)/U1

starts deviating from the laminar straight line at Re ∼ 1·103. According to Reichardt
([17]), the experimental critical value of Re is 1.5 · 103.

Like (u1 + χ1)/U1, the analytical extensions of u1/U1 and χ1/U1 to z/L ∈ [−1,+1]
are observed in plots to be odd functions when the conditions (4.41)–(4.43) are
satisfied. Therefore, we discuss their restrictions to z/L ∈ [0,+1]. For this purpose,
we write:

u1/U1 = f2(z/L,Re∗), (4.48)

χ1/U1 = (1/M1)f3(z/L,Re∗). (4.49)

Fig. 4.4 shows the profiles of u1/U1 and χ1/U1 that give rise to the profiles in figure
4.3.(b). Notice that χ1/U1 always reaches its maximum value in the buffer layer
of u1/U1. Notice also that whenever there is a boundary layer the profile of u1/U1



24 KRAUSE

0

0.2

0.4

0.6

0.8

1

u1 / U1

0.2 0.4 0.6 0.8 1
z / L

(a) Re = 5.0 ·102, 3.0 ·103, 7.0 ·103, 1.4 ·104, 1.8 ·

104 (curves from top to bottom); s0 = 1 · 10−3.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

chi1 / U1

0.2 0.4 0.6 0.8 1
z / L

(b) Re = 1.8·104, 1.4·104, 7.0·103, 3.0·103, 5.0·102

(curves from top to bottom); s0 = 1 ·10−3; M1 = 4.

Figure 4.4. EUE profiles of u1/U1 and χ1/U1 for planar Couette flows.

is flat with zero slope in the core layer, while ξ is non-zero: EUE predicts that
transverse molecular conduction is dominated by turbulent transfer in a core layer.
This is why the shear of (u1 + χ1)/U1 at z/L = 0 decreases for increasing values of
M1: one sees from (4.49) that χ1/U1 tends to zero, identically, thus (u1 + χ1)/U1

tends to u1/U1. In plots, Re∗ controls the boundary layer width of u1/U1 at z/L = 1
and the point zc/L of maximum value of χ1/U1 as well as the maximum value of
χ1/U1: for increasing values of Re∗, the boundary layer width of u1/U1 at z/L = 1
decreases, zc/L tends to 1 and the maximum value of χ1/U1 grows asymptotically
to 1/M1. For s0 = 0, the profiles of u1/U1 collapse into the Navier-Stokes straight
line profile and χ1/U1 vanishes identically.
For comparison, Fig. 4.5.(a) shows planar Couette temperature profiles given by
Navier-Stokes, that is, profiles of (T − T0)/(T (0) − T0) resulting from (4.33). We
immediatly see that

(T − T0)/(T (0)− T0) = f5(z/L). (4.50)

Let us consider now planar Couette temperature profiles given by EUE. First,
we discuss the profiles of (T − T0)/(T (0) − T0) resulting from Eq. (4.21) with
η1 = 0 and the boundary conditions (4.23)–(4.24). The constants in these profiles
are s0 ∼ 1 · 10−3, ν ∼ 1.5 · 10−5 m2/s, νc ∼ 4ν, υ ∼ 2.0 · 10−2 J ·m2/(kg · s ·K), L,
U1 and T0. One sees from (4.22) and (4.25)–(4.26) that

(T − T0)/(T (0)− T0) = f6(z/L,Re∗,M1). (4.51)

In plots, it is observed that the analytical extension of (T − T0)/(T (0) − T0) to
z/L ∈ [−1,+1] is an even function (as expected, because of symmetry) when the
conditions (4.41)–(4.43) are satisfied. Therefore, we discuss its restriction to z/L ∈
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Figure 4.5. Navier-Stokes and EUE profiles of temperature for pla-
nar Couette flows.

[0,+1]. Both Re∗ and M1 control the boundary layer width of (T − T0)/(T (0)− T0)
at z/L = 1: the width decreases for increasing values of Re∗ or M1. In addition,
when there is a boundary layer, Re∗ controls the profile slope of (T−T0)/(T (0)−T0)
in the core layer: the slope steepens for increasing values of Re∗. Fig. 4.5.(b) shows
some members of the Re-profile family of (T − T0)/(T (0)− T0) for s0 = 1 · 10−3 and
M1 = 4.

Remark 18. One sees from (4.22) and (4.25)–(4.26) that for Re >> 1,

T (0)− T0 ∼ (ν3/(8υL2))(1/M1) Re2. (4.52)

Notice that this expression is independent of s0.

Second, we discuss the profiles of (T+Θ−T0)/(T (0)−T0) resulting from Eqs. (4.12)
and (4.14) with η1 = 0, the boundary conditions (4.27)–(4.28) on T and Θ, and the
scaling s0|U1| of ξ for s0 = 1 · 10−3. The constants in these profiles are s0 ∼ 1 · 10−3,
ν ∼ 1.5 · 10−5 m2/s, νc ∼ 4ν, cp ∼ 103 J/(kg ·K), υ ∼ 2.0 · 10−2 J ·m2/(kg · s ·K),
υc, L, U1 and T0. One sees from (B.29), (B.31) and (B.37)–(B.40) that

(T − T0)/(T (0)− T0) = f7(z/L,Re∗,Pr,M1), (4.53)

Θ/(T (0)− T0) = (1/M2)f8(z/L,Re∗,Pr,M1), (4.54)

where

Pr ≡ cpµ/λ = cpν/υ is the Prandtl number, (4.55)

M2 ≡ υc/υ, (4.56)

thus

(T + Θ− T0)/(T (0)− T0) = f9(z/L,Re∗,Pr,M1,M2). (4.57)
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In plots, it is observed that the analytical extension of (T + Θ − T0)/(T (0) − T0)
to z/L ∈ [−1,+1] is an even function (as expected, because of symmetry) when
the conditions (4.41)–(4.43) are satisfied. Therefore, we discuss its restriction to
z/L ∈ [0,+1]. The value of M2 was not determined from qualitative fitting with
experimental profiles, because we were unable to find appropriate data. Instead,
we assumed Prc ∼ Pr for Prc ≡ cpνc/υc and took M2 = M1(Pr/Prc) ∼ M1. While
M1 has little effect on these profiles, Re∗ and Pr control the boundary layer width
at z/L = 1, M2 controls the slope in the core layer. Indeed, the boundary layer
width at z/L = 1 decreases for increasing values of Re∗ or Pr, the slope in the core
layer decreases for increasing values of M2. Fig. 4.5.(c) shows some members of the
Re-profile family of (T + Θ − T0)/(T (0) − T0) for s0 = 1 · 10−3, M1 = 4, Pr = 0.7
(air) and M2 = 4.

Remark 19. One sees from (B.29), (B.31) and (B.37)–(B.40) that for Re >> 1,

T (0)− T0 ∼ (ν3/(8υL2))((M1 − 1)/M1)(1/(2− Pr)) Re2
if Pr < 1, (4.58)

T (0)− T0 ∼ (ν3/(8υL2))(1/M1)(1/Pr)(1/(Pr− 1))(4/s0) Re exp(s0Re(Pr− 1)/2) if Pr > 1. (4.59)

Thus, the one-dimensional EUE description of planar Couette flows predicts differ-
ent core flow temperature relationships with Re depending on whether Pr < 1 or
Pr > 1. Notice that Eq. (4.52), which is independent of Pr, agrees with Eq. (4.58).
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Figure 4.6. EUE profiles of (T −T0)/(T (0)−T0) and Θ/(T (0)−T0)
for planar Couette flows.

Like (T +Θ−T0)/(T (0)−T0), the analytical extensions of (T −T0)/(T (0)−T0) and
Θ/(T (0) − T0) to z/L ∈ [−1,+1] are observed in plots to be even functions when
the conditions (4.41)–(4.43) are satisfied. Therefore, we discuss their restrictions to
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z/L ∈ [0,+1]. Fig. 4.6 shows the profiles of (T −T0)/(T (0)−T0) and Θ/(T (0)−T0)
that give rise to the profiles of Fig. 4.5.(c). Notice that Θ/(T (0)−T0) always reaches
its maximum absolute value in the buffer layer of (T − T0)/(T (0)− T0). Notice also
that whenever there is a boundary layer the profile of (T − T0)/(T (0) − T0) is flat
with zero slope in the core layer, while ξ is non-zero: EUE predicts that transverse
molecular conduction is dominated by turbulent transfer in a core layer. This is why
the profile slope of (T +Θ−T0)/(T (0)−T0) in the core layer decreases for increasing
values of M2: one sees from (4.54) that Θ/(T (0)−T0) tends to zero, identically, thus
(T +Θ−T0)/(T (0)−T0) tends to (T −T0)/(T (0)−T0). While M1 has little effect on
these profiles, Re∗ and Pr control the boundary layer width of (T − T0)/(T (0)− T0)
at z/L = 1 and the point zc/L of maximum absolute value of Θ/(T (0)− T0) as well
as the maximum absolute value of Θ/(T (0) − T0). Indeed, for increasing values of
Re∗ or Pr, the boundary layer width of (T − T0)/(T (0)− T0) at z/L = 1 decreases,
zc/L tends to 1 and the maximum absolute value of Θ/(T (0) − T0) grows asymp-
totically to 1/M2.
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Figure 4.7. EUE profiles of u′1/χ
′
1 and T ′/Θ′ for planar Couette flows.

Fig. 4.7 shows EUE profiles of u′1/χ
′
1 and T ′/Θ′ linked to the profiles in 4.4 and 4.6.

Notice that the conditions (3.25)–(3.26) are satisfied, therefore the entropy source
term (3.24) in the upscaled description is non-negative. The same is true for any
other value of Re.

Fig. 4.8 shows EUE profiles of the viscous dissipation functions in the upscaled
description and profiles of the entropy source term in the upscaled description, for
planar Couette flows. These quantities are defined in (2.68), (3.23) and (3.24).
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Figure 4.8. EUE profiles of the viscous dissipation functions in the
upscaled description and profiles of the entropy source term in the
upscaled description, for planar Couette flows.

Here, we have Φ/ρ = (νu′1 + νcχ
′
1)(u

′
1 + χ′1), Ψ/ρ = (υT ′ + υcΘ

′)(T ′ + Θ′) and
Π = (Φ/ρ)/(T + Θ) + (Ψ/ρ)/(T + Θ)2. Notice that the three quantities are non-
negative (as their values at z/L = 1 can be shown to be non-negative) and that
non-equilibrium occurs mainly in the boundary layer (whenever the boundary layer
exists).

4.2. The planar Poiseuille flows. We consider Poiseuille flows between two pla-
nar parallel plates. These flows are driven by a constant pressure gradient imposed
parallel to the plates. We place the frame of reference at mid-distance between the
plates.

x

z

d x 0 p < 2 L

Figure 4.9. The planar Poiseuille flows.
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Because of symmetry (gravity is neglected), T and u1 must be even functions of
z. We assume that the turbulence field vanishes at the plates and at mid-distance
between them. Therefore, we take for boundary conditions:

u1(L) = 0, χ1(L) = 0, T (L) = T0, Θ(L) = 0, (4.60)

u′1(0) = 0, χ1(0) = 0, T ′(0) = 0, Θ(0) = 0. (4.61)

We show in Appendix B that the solution of the system of ordinary differential
equations (4.12)–(4.15) with the boundary conditions (4.60)–(4.61) is given by poly-
nomials in z and exp(z). See Eqs. (B.9)–(B.12) and (B.21)–(B.28).

Remark 20. The compressible Navier-Stokes equations may be written as:

∂t(ρh− p) +∇ · (u(ρh− p)− λ∇T ) = Φ,

∂t(ρu) + ∂j(ujρu− µ∂ju) = ρu× 2Ω+ ρg −∇p,

∂tρ+∇ · (uρ) = 0,

where h = cpT and Φ ≡ (µ∇ui) · ∇ui = µ(∇ui)
2. For stationary one-dimensional

planar Poiseuille flows, these equations reduce to:

υT ′′ + νu′1
2
= 0, (4.62)

νu′′1 = η1, (4.63)

where f ′ ≡ dzf , ν ≡ µ/ρ, υ ≡ λ/ρ and η1 ≡ ∂x(p/ρ). For the boundary conditions

u1(L) = 0, T (L) = T0, (4.64)

u′1(0) = 0, T ′(0) = 0, (4.65)

we obtain:

T = (η1
2L4/(12νυ))(1− (z/L)4) + T0, (4.66)

u1 = (η1L
2/(2ν))((z/L)2 − 1). (4.67)

Notice that (4.66)–(4.67) is also the solution of (4.62)–(4.63) for the boundary con-
ditions

u1(+L) = 0, T (+L) = T0,

u1(−L) = 0, T (−L) = T0.

Next, we discuss the planar Poiseuille profiles resulting from Eqs. (4.12)–(4.15)
with the boundary conditions (4.60)–(4.61) and the scaling s(|η1|L

2/(2ν)) of ξ for
some constant s. The constants in these profiles are s, ν ∼ 1.5 · 10−5 m2/s, νc,
cp ∼ 103 J/(kg ·K), υ ∼ 2.0 · 10−2 J ·m2/(kg · s ·K), υc, L, η1 and T0. The values of
s, νc and υc are determined to obtain the best qualitative fit with the experimental
profiles of Nikuradse [16] (taken from pipes, thus inadequate) shown in Fig. 4.10.
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Figure 4.10. Experimental profiles of momentum in cylindrical
Poiseuille flows, by Nikuradse [16] (permission to reproduce re-
quested). Here, ū1 is the cross-sectional mean value of u1 in a pipe.

For comparison, Fig. 4.11.(a) shows the planar Poiseuille momentum profiles given
by Navier-Stokes, that is, the profiles of u1/u1(0) resulting from (4.67). We imme-
diatly see that

u1/u1(0) = g1(z/L), (4.68)

so the profiles are independent of any parameter.

Let us consider now the planar Poiseuille momentum profiles given by EUE, that
is, the profiles of (u1 + χ1)/u1(0) resulting from Eqs. (4.13) and (4.15) with the
boundary conditions (4.60)–(4.61) on u1 and χ1, and the scaling s(|η1|L

2/(2ν)) of ξ
for some constant s. The constants in these profiles are s, ν ∼ 1.5 · 10−5 m2/s, νc,
L and η1. One sees from (B.10), (B.12) and (B.21)–(B.24) that

u1/u1(0) = g2(z/L, sR), (4.69)

χ1/u1(0) = (1/M1)g3(z/L, sR), (4.70)
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(curves from top to bottom); s0 = 2 · 10−5; M1 = 4.

Figure 4.11. Navier-Stokes and EUE profiles of momentum for pla-
nar Poiseuille flows.

where

R ≡ |η1|L
3/ν2, (4.71)

thus

(u1 + χ1)/u1(0) = g4(z/L, sR,M1). (4.72)

When plotting the results of our calculations, it is observed that a R-profile family
(that is, a family of profiles parameterized by R) of the analytical extension of (u1+
χ1)/u1(0) to z/L ∈ [−1,+1] agrees qualitatively with experimental data provided
the following conditions on s and M1 are satisfied, regardless the sign of η1:

s = +s0 > 0, ∀z/L ∈ (0,+1], (4.73)

s = −s0 < 0, ∀z/L ∈ [−1, 0), (4.74)

M1 > 1. (4.75)

Remark 21. The conditions (4.73)–(4.74) on s imply that a R-profile family of the
analytical extension of (u1 + χ1)/u1(0) to z/L ∈ [−1,+1] agrees qualitatively with
experimental data only if the following conditions on ξ = s(|η1|L

2/(2ν)) are satisfied
(regardless the sign of η1):

ξ > 0, ∀z/L ∈ (0,+1], (4.76)

ξ < 0, ∀z/L ∈ [−1, 0). (4.77)

Neither the vorticity nor the shear of u have these properties: both these quantities
switch their signs when the sign of η1 is switched.
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In particular, the analytical extension of (u1 + χ1)/u1(0) to z/L ∈ [−1,+1] is an
even function when the conditions (4.73)–(4.75) are satisfied. Therefore, we discuss
its restriction to z/L ∈ [0,+1]. For this purpose, we write:

(u1 + χ1)/u1(0) = g4(z/L,R
∗,M1), (4.78)

where

R∗ ≡ s0R, s0 > 0. (4.79)

In plots, R∗ controls the boundary layer width of (u1+χ1)/u1(0) at z/L = 1 (or else,
the profile slope at z/L = 1), while M1 controls the profile slope of (u1 + χ1)/u1(0)
in the core layer. Indeed, the boundary layer width at z/L = 1 decreases (the profile
slope at z/L = 1 steepens) for increasing values of R∗, the slope in the core layer
decreases for increasing values of M1. For s0 = 0 or M1 = 1, the profiles collapse into
the Navier-Stokes parabolic profile (the case M1 = 1 can be derived by adding Eqs.
(4.13) and (4.15)). The R-profile family of (u1+χ1)/u1(0) that fits best qualitatively
the experimental profiles of Nikuradse ([16]) is obtained for s0 ∼ 2·10−5 and M1 ∼ 4.
Fig. 4.11.(b) shows some members of this R-profile family of (u1 + χ1)/u1(0).

Remark 22. Notice from (4.78)–(4.79) that s0 is an amplification factor for the span
of a R-profile family of (u1+χ1)/u1(0). Therefore, it fixes the critical value of R for
the laminar-turbulent threshold occurring in each R-profile family of (u1+χ1)/u1(0).
Notice from Fig. 4.11.(b) that for s0 = 2 · 10−5 the R-profile family of (u1 + χ1)/U1

starts deviating from the laminar parabola at R ∼ 2.2 · 103, which corresponds to
Re ≡ |u1(0)|(2L)/ν ∼ 2.2 · 103. According to Nikuradse ([16]), the experimental
lower limit for the critical value of Re ≡ |ū1|(2L)/ν, where ū1 is the cross-sectional
mean value of u1 in a pipe, is 2.3 · 10

3.

Remark 23. One sees from (B.10), (B.12) and (B.21)–(B.24) that for R >> 1,

u1(0) ∼ (ν/L)(4/s20)(1/R) exp(s0R/2). (4.80)

This core flow velocity relationship with pressure gradient (see the definition (4.71)
of R) is rather different from the experimental relationship for pipe flows, which
states that ū1 (the cross-sectional mean value of u1 in a pipe) is proportional to
|η1|

1/2 in turbulent regimes ([19]).

Like (u1 + χ1)/u1(0), the analytical extensions of u1/u1(0) and χ1/u1(0) to z/L ∈
[−1,+1] are observed in plots to be even functions when the conditions (4.73)–
(4.75) are satisfied. Therefore, we discuss their restrictions to z/L ∈ [0,+1]. For
this purpose, we write:

u1/u1(0) = g2(z/L,R
∗), (4.81)

χ1/u1(0) = (1/M1)g3(z/L,R
∗). (4.82)

Fig. 4.12 shows the profiles of u1/u1(0) and χ1/u1(0) that give rise to the profiles in
figure 4.11.(b). Notice that χ1/u1(0) always reaches its maximum absolute value in
the buffer layer of u1/u1(0). Notice also that whenever there is a boundary layer the
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Figure 4.12. EUE profiles of u1/u1(0) and χ1/u1(0) for planar
Poiseuille flows.

profile of u1/u1(0) is flat with zero slope in the core layer, while ξ is non-zero: EUE
predicts that transverse molecular conduction is dominated by turbulent transfer
in a core layer. This is why the profile slope of (u1 + χ1)/u1(0) in the core layer
decreases for increasing values of M1: one sees from (4.82) that χ1/u1(0) tends to
zero, identically, thus (u1 + χ1)/u1(0) tends to u1/u1(0). In plots, R∗ controls the
boundary layer width of u1/u1(0) at z/L = 1 and the point zc/L of maximum ab-
solute value of χ1/u1(0) as well as the maximum absolute value of χ1/u1(0): for
increasing values of R∗, the boundary layer width of u1/u1(0) at z/L = 1 decreases,
zc/L tends to 1 and the maximum value of χ1/u1(0) grows asymptotically to 1/M1.
For s0 = 0, the profiles of u1/u1(0) collapse into the Navier-Stokes parabolic profile
and χ1/u1(0) vanishes identically.

For comparison, Fig. 4.13.(a) shows planar Poiseuille temperature profiles given by
Navier-Stokes, that is, profiles of (T − T0)/(T (0) − T0) resulting from (4.66). We
immediatly see that

(T − T0)/(T (0)− T0) = g5(z/L). (4.83)

Let us consider now planar Poiseuille temperature profiles given by EUE. First,
we discuss the profiles of (T − T0)/(T (0) − T0) resulting from Eq. (4.21) with the
boundary conditions (4.23)–(4.24). The constants in these profiles are s0 ∼ 2 · 10−5,
ν ∼ 1.5 · 10−5 m2/s, νc ∼ 4ν, υ ∼ 2.0 · 10−2 J ·m2/(kg · s ·K), L, η1 and T0. One
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Figure 4.13. Navier-Stokes and EUE profiles of temperature for pla-
nar Poiseuille flows.

sees from (4.22) and (4.25)–(4.26) that

(T − T0)/(T (0)− T0) = g6(z/L,R
∗,M1). (4.84)

In plots, it is observed that the analytical extension of (T − T0)/(T (0) − T0) to
z/L ∈ [−1,+1] is an even function (as expected, because of symmetry) when the
conditions (4.73)–(4.75) are satisfied. Therefore, we discuss its restriction to z/L ∈
[0,+1]. Both R∗ and M1 control the boundary layer width of (T −T0)/(T (0)−T0) at
z/L = 1: the width decreases for increasing values of R∗ or M1. In addition, when
there is a boundary layer, R∗ controls the profile slope of (T − T0)/(T (0) − T0) in
the core layer: the slope steepens for increasing values of R∗. Fig. 4.13.(b) shows
some members of the R-profile family of (T − T0)/(T (0)− T0) for s0 = 2 · 10−5 and
M1 = 4.

Remark 24. One sees from (4.22) and (4.25)–(4.26) that for R >> 1,

T (0)− T0 ∼ (ν3/(υL2))(1/M1)(8/s
4
0) (1/R2) exp(s0R). (4.85)

Second, we discuss the profiles of (T+Θ−T0)/(T (0)−T0) resulting from Eqs. (4.12)
and (4.14) with the boundary conditions (4.60)–(4.61) on T and Θ, and the scaling
s0(|η1|L

2/(2ν)) of ξ for s0 = 2 ·10−5. The constants in these profiles are s0 ∼ 2 ·10−5,
ν ∼ 1.5 · 10−5 m2/s, νc ∼ 4ν, cp ∼ 103 J/(kg ·K), υ ∼ 2.0 · 10−2 J ·m2/(kg · s ·K),
υc, L, η1 and T0. One sees from (B.9), (B.11) and (B.25)–(B.28) that

(T − T0)/(T (0)− T0) = g7(z/L,R
∗,Pr,M1), (4.86)

Θ/(T (0)− T0) = (1/M2)g8(z/L,R
∗,Pr,M1), (4.87)
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thus

(T + Θ− T0)/(T (0)− T0) = g9(z/L,R
∗,Pr,M1,M2). (4.88)

In plots, it is observed that the analytical extension of (T + Θ − T0)/(T (0) − T0)
to z/L ∈ [−1,+1] is an even function (as expected, because of symmetry) when
the conditions (4.73)–(4.75) are satisfied. Therefore, we discuss its restriction to
z/L ∈ [0,+1]. The value of M2 was not determined from qualitative fitting with
experimental profiles, because we were unable to find appropriate data. Instead,
we assumed Prc ∼ Pr for Prc ≡ cpνc/υc and took M2 = M1(Pr/Prc) ∼ M1. While
M1 has little effect on these profiles, R∗ and Pr control the boundary layer width
at z/L = 1, M2 controls the slope in the core layer. Indeed, the boundary layer
width at z/L = 1 decreases for increasing values of R∗ or Pr, the slope in the core
layer decreases for increasing values of M2. Fig. 4.13.(c) shows some members of
the R-profile family of (T +Θ− T0)/(T (0)− T0) for s0 = 2 · 10−5, M1 = 4, Pr = 0.7
(air) and M2 = 4.

Remark 25. One sees from (B.9), (B.11) and (B.25)–(B.28) that for R >> 1,

T (0)− T0 ∼ (ν3/(υL2))((M1 − 1)/M1)(1/(2− Pr))(8/s4
0) (1/R2) exp(s0R) if Pr < 1, (4.89)

T (0)− T0 ∼ (ν3/(υL2))(1/M1)(1/Pr2)(1/(Pr− 1))(32/s5
0) (1/R3) exp(s0R(Pr + 1)/2) if Pr > 1.

(4.90)

Thus, the one-dimensional EUE description of planar Poiseuille flows predicts dif-
ferent core flow temperature relationships with R depending on whether Pr < 1 or
Pr > 1. Notice that Eq. (4.85), which is independent of Pr, agrees with Eq. (4.89).
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Figure 4.14. EUE profiles of (T−T0)/(T (0)−T0) and Θ/(T (0)−T0)
for planar Poiseuille flows.



36 KRAUSE

Like (T +Θ−T0)/(T (0)−T0), the analytical extensions of (T −T0)/(T (0)−T0) and
Θ/(T (0) − T0) to z/L ∈ [−1,+1] are observed in plots to be even functions when
the conditions (4.73)–(4.75) are satisfied. Therefore, we discuss their restrictions to
z/L ∈ [0,+1]. Fig. 4.14 shows the profiles of (T−T0)/(T (0)−T0) and Θ/(T (0)−T0)
that give rise to the profiles of Fig. 4.13.(c). Notice that Θ/(T (0)−T0) always reaches
its maximum absolute value in the buffer layer of (T − T0)/(T (0)− T0). Notice also
that whenever there is a boundary layer the profile of (T − T0)/(T (0) − T0) is flat
with zero slope in the core layer, while ξ is non-zero: EUE predicts that transverse
molecular conduction is dominated by turbulent transfer in a core layer. This is why
the profile slope of (T +Θ−T0)/(T (0)−T0) in the core layer decreases for increasing
values of M2: one sees from (4.87) that Θ/(T (0)−T0) tends to zero, identically, thus
(T +Θ−T0)/(T (0)−T0) tends to (T −T0)/(T (0)−T0). While M1 has little effect on
these profiles, R∗ and Pr control the boundary layer width of (T −T0)/(T (0)−T0) at
z/L = 1 and the point zc/L of maximum absolute value of Θ/(T (0)− T0) as well as
the maximum absolute value of Θ/(T (0) − T0). Indeed, for increasing values of R∗

or Pr, the boundary layer width of (T −T0)/(T (0)−T0) at z/L = 1 decreases, zc/L
tends to 1 and the maximum absolute value of Θ/(T (0)− T0) grows asymptotically
to 1/M2.
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(a) R [Re] = 6 · 105 [1.3 · 107]; s0 = 2 · 10−5;

M1 = 4.
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(b) R [Re] = 6 · 105 [1.3 · 107]; s0 = 2 · 10−5;

Pr = 0.7; M1 = 4; M2 = 4.

Figure 4.15. EUE profiles of u′1/χ
′
1 and T ′/Θ′ for planar Poiseuille flows.

Fig. 4.15 shows EUE profiles of u′1/χ
′
1 and T ′/Θ′ linked to the profiles in 4.12 and

4.14. Notice that the conditions (3.25)–(3.26) are satisfied, therefore the entropy
source term (3.24) in the upscaled description is non-negative. The same is true for
any other value of R.
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Figure 4.16. EUE profiles of the viscous dissipation functions in
the upscaled description and profiles of the entropy source term in the
upscaled description, for planar Poiseuille flows.

Fig. 4.16 shows EUE profiles of the viscous dissipation functions in the upscaled
description and profiles of the entropy source term in the upscaled description, for
planar Poiseuille flows. These quantities are defined in (2.68), (3.23) and (3.24).
Here, we have Φ/ρ = (νu′1 + νcχ

′
1)(u

′
1 + χ′1), Ψ/ρ = (υT ′ + υcΘ

′)(T ′ + Θ′) and
Π = (Φ/ρ)/(T + Θ) + (χ1η1)/(T + Θ) + (Ψ/ρ)/(T + Θ)2. Notice that the three
quantities are non-negative (as their values at z/L = 1 can be shown to be non-
negative) and that non-equilibrium occurs mainly in the boundary layer (whenever
the boundary layer exists).

5. Conclusion

We propose a model for underresolved predictions of the large scale evolution of
flows, the Extended Upscaled Euler model (EUE). The model stands for a statistical
upscaling of the Euler equations onto a local equilibrium mechanism that satisfies
the total energy conservation principle and is phenomenologically extended to de-
scribe irreversible processes in finite-time transformations of bulk elements of fluid.
The closure assumptions apply to both the enthalpy and the internal energy rep-
resentations of heat balance. The pressure gradient arises as an affinity ([7, 11]) of
the entropy source term in the upscaled description. The turbulence mechanism has
a curl formulation. The model can be readily extended to comprise a compressible
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turbulent mixing mechanism for passive species, namely:

∂t(ρci) +∇ · (uρci + χρci − k∇ci) = 0, (5.1)

∂t(ρΞ) +∇ · (uρΞ− χρci − kc∇Ξ) = 0, (5.2)

where

Ξ ≡ 〈ρ′c′i〉/〈ρ〉. (5.3)

We tested the one-dimensional EUE qualitative description of planar Couette,
planar Poiseuille and Ekman flows. This was done by scaling the variable χ3, a
procedure that does not fully validate the model for these flows. The main results
are the following. The viscous dissipation functions and the entropy source term
have non-negative values in the upscaled description of planar Couette and planar
Poiseuille flows. The viscous dissipation function Φ has non-negative values in the
upscaled description of Ekman flows (the enthalpy equation was not solved for these
flows, therefore the viscous dissipation function Ψ and the entropy source term were
not discussed). Qualitative agreement with experimental profiles is found for a wide
range of the Reynolds number, including the transition ranges to turbulence. This
agreement occurs for strongly underresolved solutions (stationary one-dimensional
solutions) despite using constant values of µc and λc (this constancy reflects scale-
independence) and, remarkably, the same values for the three case studies. For un-
dercritical values of the Reynolds number, EUE profiles overlap with Navier-Stokes
profiles. In the supercritical solutions of EUE, molecular conduction is dominated
by turbulent transfer in the core layers, the variables of turbulence reach their max-
imum values in the buffer layers and non-equilibrium occurs mainly in the boundary
layers. The supercritical solutions of EUE for planar Poiseuille flows exhibit a much
higher frictional heating than the corresponding Navier-Stokes solutions, especially
for values of the Prandtl number larger than one. The same is true for planar Cou-
ette flows provided the Prandtl number is larger than one. When Θ is replaced
by zero, these effects of the Prandtl number are lost. The core flow velocity rela-
tionship with pressure gradient obtained in the supercritical solutions of EUE for
planar Poiseuille flows is rather different from the experimental relationship for tur-
bulent pipe flows. Therefore, we expect the same to be true about the core flow
temperature relationship with pressure gradient.

Appendix A. The Ekman flows

We consider frictional flows driven by a geostrophic core flow and a planar differ-
entially rotating plate ([1]), and describe them as stationary flows in the upscaled
description that depend only on the direction z orthogonal to the plate. This in-
cludes describing the exact (that is, in all scales) stationary states of these flows,
that occur in laminar regimes, given by the corresponding Navier-Stokes description.



FRICTIONAL AIR FLOWS 39

We employ the constant ρ thermodynamic limit, where p is treated as a dynamic
pressure through the substitution of the state equation by ∇ · u = 0, and disregard
the balances of enthalpy. Therefore, the EUE model (2.70)–(2.76) becomes:

∂j(uju+ χju− ν∂ju) = u× 2Ω−∇(p/ρ+ φ), (A.1)

∇ · u = 0, (A.2)

∂j(ujχ− χju− νc∂jχ) = χ× 2Ω, (A.3)

∇ · χ = 0, (A.4)

where

∇(−φ) ≡ g, ν ≡ µ/ρ, νc ≡ µc/ρ. (A.5)

We take Ω ≡ |Ω| sufficiently small for centrifugal effects to be negligible, therefore
g = g0. We assume that g0 is constant and orthogonal to the plate (as it is in a
tank experiment). Under these conditions and for solutions that depend only on the
direction z orthogonal to the boundary, Eqs. (A.1)–(A.4) read:

dz(u3u1 + χ3u1 − ν dzu1) = +2Ωu2 − ∂x(p/ρ), (A.6)

dz(u3u2 + χ3u2 − ν dzu2) = −2Ωu1 − ∂y(p/ρ), (A.7)

dz(u3u3 + χ3u3 − ν dzu3) = −g0 − ∂z(p/ρ), (A.8)

dzu3 = 0, (A.9)

dz(u3χ1 − χ3u1 − νc dzχ1) = +2Ωχ2, (A.10)

dz(u3χ2 − χ3u2 − νc dzχ2) = −2Ωχ1, (A.11)

dz(− νc dzχ3) = 0, (A.12)

dzχ3 = 0, (A.13)

where dz stands for the derivative of a function that depends only on z.

From (A.9), u3 is constant. Hence, u3 = 0 for an impermeable boundary. In this
case, Eq. (A.8) reduces to ∂z(p/ρ) = −g0. Consequently ∂z∂x(p/ρ) = ∂x∂z(p/ρ) = 0
and ∂z∂y(p/ρ) = ∂y∂z(p/ρ) = 0, that is ∂x(p/ρ) and ∂y(p/ρ) must be constant. From
Eq. (A.13), χ3 is constant. With u3 = 0 and χ3 constant, Eq. (A.7) and Eq. (A.11)
become linear. Thus, for ∂y(p/ρ) = 0 and for homogeneous boundary conditions on
u2 and χ2 we obtain u2 = 0 and χ2 = 0. Therefore, the system (A.6)–(A.13) reduces
to:

νu′′1 − ξu
′
1 + 2Ωu2 = η1, (A.14)

νu′′2 − ξu
′
2 − 2Ωu1 = η2, (A.15)

νcχ
′′
1 + ξu′1 + 2Ωχ2 = 0, (A.16)

νcχ
′′
2 + ξu′2 − 2Ωχ1 = 0, (A.17)
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where

f ′ ≡ dzf, (A.18)

ξ ≡ χ3, (A.19)

η1 ≡ ∂x(p/ρ), (A.20)

η2 ≡ ∂y(p/ρ). (A.21)

Remark 26. For ξ = 0, the solution of Eqs. (A.16)–(A.17) with the homogeneous
boundary conditions χ1 = 0 and χ2 = 0 at z = 0 and z = L is zero. This means
that the turbulence mechanism (2.73)–(2.75) does not take place in one-dimensional
frictional flows. Thus, the strictly one-dimensional approximation of EUE is inad-
equate to describe frictional flows. Therefore, in this study our goal will be limited
to finding the EUE qualitative description of Ekman flows by providing some scaling
of ξ.

We assume that the turbulence field vanishes at the plate and at some fixed height
z = L where the flow is geostrophic ([1]). Therefore, we take for boundary condi-
tions:

u1(0) = 0 , χ1(0) = 0, u2(0) = 0 , χ2(0) = 0, (A.22)

u1(L) = U1, χ1(L) = 0, u2(L) = U2, χ2(L) = 0, (A.23)

where

U1 = −η2/(2Ω), (A.24)

U2 = +η1/(2Ω). (A.25)

We show in Appendix C that the solution of the linear system of ordinary differential
equations (A.14)–(A.17) with the boundary conditions (A.22)–(A.23) is given by
polynomials in cos(z) and exp(z). See Eqs. (C.9)–(C.12) and (C.29)–(C.36).

Remark 27. The compressible Navier-Stokes equations may be written as:

∂t(ρh− p) +∇ · (u(ρh− p)− λ∇T ) = Φ,

∂t(ρu) + ∂j(ujρu− µ∂ju) = ρu× 2Ω+ ρg −∇p,

∂tρ+∇ · (uρ) = 0,

where h = cpT and Φ ≡ (µ∇ui) · ∇ui = µ(∇ui)
2. For Ekman flows, these equations

reduce to:

νu′′1 + 2Ωu2 = η1, (A.26)

νu′′2 − 2Ωu1 = η2, (A.27)
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where f ′ ≡ dzf , ν ≡ µ/ρ, η1 ≡ ∂x(p/ρ) and η2 ≡ ∂y(p/ρ). With the boundary
conditions

u1(0) = 0 , u2(0) = 0, (A.28)

u1(L) = U1, u2(L) = 0, (A.29)

we obtain:

u1 = U1(1− cos(z/δE) e
−z/δE), (A.30)

u2 = U1 sen(z/δE) e
−z/δE , (A.31)

where

δE ≡ (ν/Ω)1/2. (A.32)

Figure A.1. Experimental profiles of momentum in Ekman flows, by
Caldwell and van Atta [3] (permission to reproduce requested). Here,
Re is defined by U1/(νΩ)1/2. This number is 10 times smaller than
the Reynolds number |U1|L/ν we employ in EUE figures, where Ω ∼
ν/(0.1L)2.

Next, we show the Ekman profiles resulting from Eqs. (A.14)–(A.17) with the
boundary conditions (A.22)–(A.23) and the scaling s|U1| of ξ for some constant
s. Without loss of generality, we take U2 = 0. One sees from (C.13), (C.15) and
(C.27) that r1 ∼ +(Ω/ν)1/2 and r2 ∼ −(Ω/ν)

1/2 for ξ2 ¿ 8νΩ. Hence, from
(C.9), the boundary layer width of u1 is δ ∼ (ν/Ω)1/2 = δE. Therefore we take
Ω ∼ ν/(0.1L)2, so that δ ∼ 0.1L (where L is a fixed height where we want the flow
to be geostrophic). The constants in these profiles are s, ν ∼ 1.5 · 10−5 m2/s, νc, L
and U1. The family of (u1 +χ1)/U1 profiles parameterized by the Reynolds number
Re ≡ |U1|L/ν that fit best qualitatively the experimental profiles of Caldwell and
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van Atta ([3]), shown in Fig. A.1, is obtained for s ∼ −2 · 10−3 and νc ∼ 4ν.
The conditions ξ2/(8νΩ) ¿ 1 and Ro ¿ 1, where Ro ≡ |U1|/(2ΩL) is the Rossby
number (which must be small for the core flows to be geostrophic [1]), imply the
conditions Re ¿ (L/|s|)(8Ω/ν)1/2 and Re ¿ L2(2Ω/ν). For Ω ∼ ν/(0.1L)2 and
s ∼ −2 · 10−3, they become Re ¿ 1 · 104 and Re ¿ 2 · 102 respectively. In the
Ekman profiles soon to be shown and resulting from Eqs. (A.14)–(A.17), we explore
Re values that strongly violate the second of these conditions. Therefore, we expect
the profiles for these Re values to be non-physical. According to Caldwell, van Atta
([3]) and Faller ([8]), the onset of fluctuations in the flow velocity is observed for
U1/(νΩ)1/2 ∼ 1 · 102; for Ω ∼ ν/(0.1L)2, this value corresponds to Re ∼ 1 · 103.
Notice from Fig. A.6.(b) that the sufficient condition (3.25) is violated; this occurs
for any value of the Reynolds number. Still, one sees from Fig. A.7 that the viscous
dissipation function Φ is non-negative.
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104, 2.0 · 104, 2.5 · 104 (curves from top to bottom
at z/L = 0.2); s = −2 · 10−3; νc = 4ν; Ω ∼

ν/(0.1L)2.

Figure A.2. Navier-Stokes and EUE profiles of the first component
of momentum for Ekman flows.
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Figure A.3. EUE profiles of u1/U1 and χ1/U1 for Ekman flows.
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nent of momentum for Ekman flows.



44 KRAUSE

–0.02
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.2 0.4 0.6 0.8 1

u2 / U1

z / L

(a) Re = 1.0 ·102, 6.5 ·102, 1.3 ·103, 2.0 ·103, 3.0 ·

103, 4.0 · 103, 6.6 · 103, 1.0 · 104, 1.5 · 104, 2.0 ·
104, 2.5·104 (curves from top to bottom at z/L =

0.1); s = −2 · 10−3; Ω ∼ ν/(0.1L)2.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.2 0.4 0.6 0.8 1
z / L

chi2 / U1

(b) Re = 1.0 ·102, 6.5 ·102, 1.3 ·103, 2.0 ·103, 3.0 ·

103, 4.0 · 103, 6.6 · 103, 1.0 · 104, 1.5 · 104, 2.0 ·
104, 2.5 · 104 (curves with amplitudes ∼ vanish.,

1 · 10−5, 5 · 10−5, 1 · 10−4, 2 · 10−4, 3 · 10−4, 5 ·
10−4, 6.6 · 10−4, 6.4 · 10−4, 5.5 · 10−4, 4.7 · 10−4);
s = −2 · 10−3; νc = 4ν; Ω ∼ ν/(0.1L)2.

Figure A.5. EUE profiles of u2/U1 and χ2/U1 for Ekman flows.
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Figure A.7. EUE profiles of the viscous dissipation function Φ/ρ: Re
= 2.5 · 104, 2.0 · 104, 1.5 · 104, 1.0 · 104, 6.6 · 103, 4.0 · 103, 3.0 · 103, 2.0 · 103, 1.3 · 103 (curves from
top to bottom); s = −2 · 10−3; νc = 4ν.

Appendix B. Derivation of the stationary one-dimensional EUE
solution for planar Couette and planar Poiseuille

flows

The non-linear system (4.12)–(4.15) has a general solution: following the order
(4.13), (4.15), (4.12) and (4.14), the equations can be solved one by one as linear
equations with constant coefficients. Here, we derive this general solution.

Rearranged, the system reads:

νu′′1 − ξu
′
1 = η1, (B.1)

νcχ
′′
1 + ξu′1 = 0, (B.2)

υT ′′ − ξcpT
′ = −(νu′1)(u

′
1 + χ′1), (B.3)

υcΘ
′′ + ξcpT

′ = −(νcχ
′
1)(u

′
1 + χ′1)− χ1η1. (B.4)

The linear equation with constant coefficients (B.1) is non-homogeneous for η1 6= 0,
in which case u1p ≡ az is a particular solution of this equation for a ≡ −η1/ξ. Are

rz is
a non-trivial solution of νu′′1−ξu

′
1 = 0 only if νr2−ξr = 0 i .e. r = 0, ξ/ν. Hence,

the general solution of the homogeneous part of (B.1) reads u1h ≡ A1+A2 e
r2z, with

r2 ≡ ξ/ν. As u1 = u1p + u1h, we obtain:

u1 = az + A1 + A2 e
r2z. (B.5)
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Taking into account (B.5), the linear equation with constant coefficients (B.2) is
equivalent to

χ′1 = −(ξ/νc)u1 +B1 = −(ξ/νc)(az + A1 + A2 e
r2z) +B1,

or else, to

χ1 = −(ξ/νc)(a/2)z
2 − (ξ/νc)A1z − (ξ/νc)(A2/r2) e

r2z +B1z +B0. (B.6)

Taking into account (B.5) and (B.6), Eq. (B.3) is non-homogeneous linear with
constant coefficients, where −(νu′1)(u

′
1 + χ′1) is the source term. Tp ≡ c2z

2 + c1z +
(d1z + d0) e

r2z + d e2r2z is a particular solution of this equation if, and only if:

c1 = νa(υa− aνccp −B1νccp + ξA1cp) / (−ξc2pνc),

c2 = νa2 / (−2cpνc),

d0 = (νA2/νc)(−2ar2νcυ + 2aνcξcp − υaξ + r2ξA1υ − ξ
2A1cp

− r2B1νcυ +B1νcξcp) / (υ2r22 − 2υr2ξcp + ξ2c2p),

d1 = (νaA2ξ/νc) / (υr2 − ξcp),

d = (νA2
2/νc)(ξ − r2νc)/(4υr2 − 2ξcp).

Ase
sz is a non-trivial solution of υT ′′− ξcpT

′ = 0 only if υs2− ξcps = 0 i .e. s =
0, ξcp/υ. Hence, the general solution of the homogeneous part of (B.3) reads
Th ≡ E1 + E2 e

s2z, with s2 ≡ ξcp/υ. As T = Tp + Th, we obtain:

T ≡ c2z
2 + c1z + (d1z + d0) e

r2z + d e2r2z + E1 + E2 e
s2z. (B.7)

Taking into account (B.5), (B.6) and (B.7), Eq. (B.4) reads

Θ′′ = ((24r32ξ
2a2s2 − 12r32ξas2η1)z

2 + (24r32s2η1B1νc − 24r32s2η1ξA1

− 48r32s2ξaB1νc + 48r32s2ξcpνcc2 − 24r32s2a
2νcξ + 48r32s2ξ

2aA1)z

+ (24r32s2ξ
2A2

1 + 24r32s2aν
2
cB1 + 24r32s2η1B0νc + 24r32s2B

2
1ν

2
c

+ 24r32s2ξcpνcc1 − 48r32s2ξA1B1νc − 24r32s2aνcξA1) + (24ξcpνcs2r
3
2E2) e

s2z

+ ((24s2ξr
2
2cpνcd1 − 24s2ξr

2
2A2νca+ 48s2ξ

2r2aA2)(1 + r2z) + 48s2r
2
2ξ

2A1A2

− 48s2r
2
2ξA2B1νc − 24s2ξcpνcr

2
2d1 + 24s2ξcpνcr

3
2d0 − 24s2A2r

3
2νcξA1

+ 24s2A2r
3
2ν

2
cB1 + 24s2r

2
2aνcξA2 − 24s2r2η1ξA2 − 96s2r2ξ

2aA2) e
r2z

+ (24ξr32s2cpνcd+ 12ξ2r22s2A
2
2 − 12ξr32s2A

2
2νc) e

2r2z) / (−24s2r
3
2νcυc).
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thus we obtain:

Θ = ((2r32ξ
2a2s2 − r

3
2ξas2η1)z

4 + (4r32s2η1B1νc − 4r32s2η1ξA1

− 8r32s2ξaB1νc + 8r32s2ξcpνcc2 − 4r32s2a
2νcξ + 8r32s2ξ

2aA1)z
3

+ (12r32s2ξ
2A2

1 + 12r32s2aν
2
cB1 + 12r32s2η1B0νc + 12r32s2B

2
1ν

2
c

+ 12r32s2ξcpνcc1 − 24r32s2ξA1B1νc − 12r32s2aνcξA1)z
2 + (12F1s2r

2
2)z

+ 12F0s2r
2
2 + (24ξcpνcr

3
2E2) e

s2z + ((24s2ξr
2
2cpνcd1 − 24s2ξr

2
2A2νca

+ 48s2ξ
2r2aA2)z + 48s2r2ξ

2A1A2 − 48s2r2ξA2B1νc − 24s2ξcpνcr2d1

+ 24s2ξcpνcr
2
2d0 − 24s2A2r

2
2νcξA1 + 24s2A2r

2
2ν

2
cB1 + 24s2r2aνcξA2

− 24s2η1ξA2 − 96s2ξ
2aA2) e

r2z + (12ξr22s2cpνcd+ 6ξ2r2s2A
2
2

− 6ξr22s2A
2
2νc) e

2r2z) / (−24s2r
3
2νcυc). (B.8)

Therefore, the general one-dimensional EUE solution for planar Poiseuille flows is:

T = c2z
2 + c1z + (d1z + d0) e

r2z + d e2r2z + E1 + E2 e
s2z, (B.9)

u1 = az + A1 + A2 e
r2z, (B.10)

Θ = ((2r32ξ
2a2s2 − r

3
2ξas2η1)z

4 + (4r32s2η1B1νc − 4r32s2η1ξA1

− 8r32s2ξaB1νc + 8r32s2ξcpνcc2 − 4r32s2a
2νcξ + 8r32s2ξ

2aA1)z
3

+ (12r32s2ξ
2A2

1 + 12r32s2aν
2
cB1 + 12r32s2η1B0νc + 12r32s2B

2
1ν

2
c

+ 12r32s2ξcpνcc1 − 24r32s2ξA1B1νc − 12r32s2aνcξA1)z
2 + (12F1s2r

2
2)z

+ 12F0s2r
2
2 + (24ξcpνcr

3
2E2) e

s2z + ((24s2ξr
2
2cpνcd1 − 24s2ξr

2
2A2νca

+ 48s2ξ
2r2aA2)z + 48s2r2ξ

2A1A2 − 48s2r2ξA2B1νc − 24s2ξcpνcr2d1

+ 24s2ξcpνcr
2
2d0 − 24s2A2r

2
2νcξA1 + 24s2A2r

2
2ν

2
cB1 + 24s2r2aνcξA2

− 24s2η1ξA2 − 96s2ξ
2aA2) e

r2z + (12ξr22s2cpνcd+ 6ξ2r2s2A
2
2

− 6ξr22s2A
2
2νc) e

2r2z) / (−24s2r
3
2νcυc), (B.11)

χ1 = −(ξ/νc)(a/2)z
2 − (ξ/νc)A1z − (ξ/νc)(A2/r2) e

r2z +B1z +B0, (B.12)
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where

r2 ≡ ξ/ν, (B.13)

s2 ≡ ξcp/υ, (B.14)

a ≡ −η1/ξ, (B.15)

c1 ≡ νa(υa− aνccp −B1νccp + ξA1cp) / (−ξc
2
pνc), (B.16)

c2 ≡ νa2 / (−2cpνc), (B.17)

d0 ≡ (νA2/νc)(−2ar2νcυ + 2aνcξcp − υaξ + r2ξA1υ − ξ2A1cp − r2B1νcυ +B1νcξcp)

/ (υ2r22 − 2υr2ξcp + ξ2c2p), (B.18)

d1 ≡ (νaA2ξ/νc) / (υr2 − ξcp), (B.19)

d ≡ (νA2
2/νc)(ξ − r2νc)/(4υr2 − 2ξcp) (B.20)

and A1, A2, B0, B1, E1, E2, F0, F1 are the constants to be determined by the
boundary conditions.

From u′1(0) = 0 and u1(L) = 0, we obtain:

A1 = (−a/r2)(r2L− e
r2L), (B.21)

A2 = (−a/r2). (B.22)

From χ1(0) = 0 and χ1(L) = 0, we obtain:

B0 = ξA2/(νcr2), (B.23)

B1 = ξ(2A1Lr2 + 2A2e
r2L + aL2r2 − 2A2)/(2Lνcr2). (B.24)

From T ′(0) = 0 and T (L) = T0, we obtain:

E1 = (−1/s2)(c1Ls2 + c2L
2s2 − T0s2 − (c1 + d1 + d0r2 + 2dr2) e

s2L

+ (d0s2 + d1Ls2) e
r2L + (ds2) e

2r2L), (B.25)

E2 = (−1/s2)(c1 + d1 + d0r2 + 2dr2). (B.26)
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From Θ(0) = 0 and Θ(L) = 0, we obtain:

F0 = (−4ξcpνcr
3
2E2 − 8s2r2ξ

2A1A2 + 8s2r2ξA2B1νc + 4s2ξcpνcr2d1

− 4s2ξcpνcr
2
2d0 + 4s2A2r

2
2νcξA1 − 4s2A2r

2
2ν

2
cB1 − 4s2r2aνcξA2

+ 4s2η1ξA2 + 16s2ξ
2aA2 − 2ξr22s2cpνcd− ξ

2r2s2A
2
2 + ξr22s2A

2
2νc)

/ (2s2r
2
2), (B.27)

F1 = (48s2r2ξA2B1νc + 24s2ξcpνcr2d1 − 48s2r2ξ
2A1A2 − 24ξcpνcr

3
2E2

+ 6ξr22s2A
2
2νc − 12ξr22s2cpνcd− 24s2r2aνcξA2 + 24s2A2r

2
2νcξA1

− 24s2ξcpνcr
2
2d0 − 24s2A2r

2
2ν

2
cB1 + 96s2ξ

2aA2 + 24s2η1ξA2 − 6ξ2r2s2A
2
2

− 24r32L
2s2ξA1B1νc − 12r32L

2s2aνcξA1 + 12r32L
2s2ξcpνcc1 + 12r32L

2s2B
2
1ν

2
c

+ 12r32L
2s2aν

2
cB1 + 12r32L

2s2η1B0νc + 12r32L
2s2ξ

2A2
1 + 8r32L

3s2ξ
2aA1

− 4r32L
3s2a

2νcξ − r
3
2ξaL

4s2η1 − 4r32L
3s2η1ξA1 + 4r32L

3s2η1B1νc

− 8r32L
3s2ξaB1νc + 2r32ξ

2a2L4s2 + 8r32L
3s2ξcpνcc2 + (24ξcpνcr

3
2E2) e

s2L

+ (24s2A2r
2
2ν

2
cB1 − 24s2A2r

2
2νcξA1 − 96s2ξ

2aA2 − 24s2η1ξA2

+ 24s2r2aνcξA2 + 24s2ξr
2
2Lcpνcd1 − 24s2ξr

2
2LA2νca+ 48s2ξ

2r2LaA2

− 24s2ξcpνcr2d1 + 48s2r2ξ
2A1A2 + 24s2ξcpνcr

2
2d0 − 48s2r2ξA2B1νc) e

r2L

+ (12ξr22s2cpνcd+ 6ξ2r2s2A
2
2 − 6ξr22s2A

2
2νc) e

2r2L) / (−12Ls2r
2
2). (B.28)

The case η1 = 0 implies a = c1 = c2 = d1 = 0 in (B.13)–(B.20), therefore (B.9)–
(B.12) simplifies to:

T = d0 e
r2z + d e2r2z + E1 + E2 e

s2z, (B.29)

u1 = A1 + A2 e
r2z, (B.30)

Θ = −((12r32s2ξ
2A2

1 + 12r32s2B
2
1ν

2
c − 24r32s2ξA1B1νc)z

2 + (12F1s2r
2
2)z

+ (12F0s2r
2
2) + (24ξcpνcr

3
2E2) e

s2z + (48s2r2ξ
2A1A2 − 48s2r2ξA2B1νc

+ 24s2ξcpνcr
2
2d0 − 24s2A2r

2
2νcξA1 + 24s2A2r

2
2ν

2
cB1) e

r2z

+ (12ξr22s2cpνcd+ 6ξ2r2s2A
2
2 − 6ξr22s2A

2
2νc) e

2r2z) / (24s2r
3
2νcυc), (B.31)

χ1 = −(ξ/νc)A1z − (ξ/νc)(A2/r2) e
r2z +B1z +B0, (B.32)

where

r2 ≡ ξ/ν,

s2 ≡ ξcp/υ,

d0 ≡ (νA2/νc)(r2ξA1υ − ξ2A1cp − r2B1νcυ +B1νcξcp) / (υ
2r22 − 2υr2ξcp + ξ2c2p),

d ≡ −(νA2
2/νc)(r2νc − ξ) / (4υr2 − 2ξcp)
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and A1, A2, B0, B1, E1, E2, F0, F1 are the constants to be determined by the
boundary conditions. This is the general one-dimensional EUE solution for planar
Couette flows.

From u1(0) = 0 and u1(L) = U1, we obtain:

A1 = +U1/(1− e
r2L), (B.33)

A2 = −U1/(1− e
r2L). (B.34)

From χ1(0) = 0 and χ1(L) = 0, we obtain:

B0 = ξA2/(νcr2), (B.35)

B1 = ξ(A1Lr2 + A2 e
r2L − A2)/(Lνcr2). (B.36)

From T ′(0) = 0 and T (L) = T0, we obtain:

E1 = (1/s2)(T0s2 − d0s2 e
r2L − ds2 e

2r2L + (r2d0 + 2r2d) e
s2L), (B.37)

E2 = (−r2/s2)(d0 + 2d). (B.38)

From Θ(0) = 0 and Θ(L) = 0, we obtain:

F0 = (−4ξcpνcr
3
2E2 − 8s2r2ξ

2A1A2 + 8s2r2ξA2B1νc − 4s2ξcpνcr
2
2d0

+ 4s2A2r
2
2νcξA1 − 4s2A2r

2
2ν

2
cB1 − 2ξr22s2cpνcd− ξ

2r2s2A
2
2 + ξr22s2A

2
2νc)

/ (2s2r
2
2), (B.39)

F1 = (−24ξcpνcr
3
2E2 + 12r32L

2s2ξ
2A2

1 + 12r32L
2s2B

2
1ν

2
c − 24r32L

2s2ξA1B1νc

− 12ξr22s2cpνcd− 24s2ξcpνcr
2
2d0 + 24s2A2r

2
2νcξA1 − 24s2A2r

2
2ν

2
cB1

+ 48s2r2ξA2B1νc − 48s2r2ξ
2A1A2 + 6ξr22s2A

2
2νc − 6ξ2r2s2A

2
2

+ (24ξcpνcr
3
2E2) e

s2L + (24s2ξcpνcr
2
2d0 − 48s2r2ξA2B1νc + 48s2r2ξ

2A1A2

+ 24s2A2r
2
2ν

2
cB1 − 24s2A2r

2
2νcξA1) e

r2L + (12ξr22s2cpνcd− 6ξr22s2A
2
2νc

+ 6ξ2r2s2A
2
2) e

2r2L) / (−12Ls2r
2
2). (B.40)

Appendix C. Derivation of the stationary one-dimensional EUE
solution for Ekman flows

We derive the general solution of the linear system with constant coefficients
(A.14)–(A.17).
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In terms of the deviation ũ ≡ u−U from the geostrophic fieldU ≡ (− η2
2Ω
,+ η1

2Ω
, 0),

the system reads:

νũ′′1 − ξũ
′
1 + 2Ωũ2 = 0, (C.1)

νũ′′2 − ξũ
′
2 − 2Ωũ1 = 0, (C.2)

νcχ
′′
1 + ξũ′1 + 2Ωχ2 = 0, (C.3)

νcχ
′′
2 + ξũ′2 − 2Ωχ1 = 0. (C.4)

Eqs. (C.1) and (C.2) give an homogeneous linear system with constant coefficients.
αke

kz is a non-trivial solution of this system only if νk2 − ξk + 2Ω i = 0 (in which
case αk,2 = +i αk,1) or νk2 − ξk − 2Ω i = 0 (in which case αk,2 = −i αk,1). That is,
only if:

k = (ξ ± (ξ2 − i 8νΩ)1/2) / (2ν) =
(

ξ ± (ξ4 + (8νΩ)2)1/4 e−i arc tan(8νΩ/ξ
2)/2

)

/ (2ν)

or

k = (ξ ± (ξ2 + i 8νΩ)1/2) / (2ν) =
(

ξ ± (ξ4 + (8νΩ)2)1/4 e+i arc tan(8νΩ/ξ
2)/2

)

/ (2ν).

Let

k1 ≡
(

ξ + (ξ4 + (8νΩ)2)1/4 e−i arc tan(8νΩ/ξ
2)/2

)

/ (2ν) = r1 + i m1,

k2 ≡
(

ξ + (ξ4 + (8νΩ)2)1/4 e+i arc tan(8νΩ/ξ
2)/2

)

/ (2ν) = r1 − i m1,

k3 ≡
(

ξ − (ξ4 + (8νΩ)2)1/4 e−i arc tan(8νΩ/ξ
2)/2

)

/ (2ν) = r2 + i m2,

k4 ≡
(

ξ − (ξ4 + (8νΩ)2)1/4 e+i arc tan(8νΩ/ξ
2)/2

)

/ (2ν) = r2 − i m2,

where

r1 ≡
(

ξ + (ξ4 + (8νΩ)2)1/4 cos(arc tan(8νΩ/ξ2)/2)
)

/ (2ν),

m1 ≡ −(ξ4 + (8νΩ)2)1/4 sen(arc tan(8νΩ/ξ2)/2) / (2ν),

r2 ≡
(

ξ − (ξ4 + (8νΩ)2)1/4 cos(arc tan(8νΩ/ξ2)/2)
)

/ (2ν),

m2 ≡ +(ξ4 + (8νΩ)2)1/4 sen(arc tan(8νΩ/ξ2)/2) / (2ν).

Here, one has k2 = k̄1 and k4 = k̄3. These numbers are distinct (ν,Ω, ξ 6= 0), thus
the functions ei ≡ ekiz are linearly independent, and therefore αk1

ek1z + αk2
ek2z +

αk3
ek3z + αk4

ek4z is the general solution of (C.1)–(C.2). Taking into account that
e2 = ē1 and e4 = ē3, one has that ũ ≡ αk1

ek1z + αk2
ek2z + αk3

ek3z + αk4
ek4z is

real only if αk2
= ᾱk1

and αk4
= ᾱk3

. Therefore, we write αk1,1 ≡ (a1 − i b1)/2,
αk3,1 ≡ (a2 − i b2)/2, and use αk1,2 = +i αk1,1, αk3,2 = +i αk3,1, to obtain:

ũ1 = (a1 cos(m1z) + b1 sen(m1z)) e
r1z + (a2 cos(m2z) + b2 sen(m2z)) e

r2z, (C.5)

ũ2 = (b1 cos(m1z)− a1 sen(m1z)) e
r1z + (b2 cos(m2z)− a2 sen(m2z)) e

r2z. (C.6)
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Taking into account (C.5) and (C.6), Eqs. (C.3) and (C.4) give a non-homogeneous
linear system with constant coefficients. We write

− ξũ′1 = (c1 cos(m1z) + d1 sen(m1z)) e
r1z + (c2 cos(m2z) + d2 sen(m2z)) e

r2z,

− ξũ′2 = (d1 cos(m1z)− c1 sen(m1z)) e
r1z + (d2 cos(m2z)− c2 sen(m2z)) e

r2z,

with ci ≡ −ξ(airi + bimi) and di ≡ −ξ(biri − aimi), and use that

(e cos(mz) + f sen(mz))erz,

(f cos(mz)− e sen(mz))erz,

is a particular solution of the system

νcχ
′′
1 + 2Ωχ2 = (c cos(mz) + d sen(mz))erz,

νcχ
′′
2 − 2Ωχ1 = (d cos(mz)− c sen(mz))erz,

if, and only if,

e = (cνcr
2 − 2mdνcr −m

2cνc − 2dΩ) / (ν2c r
4 + 2ν2cm

2r2 + 4Ω2 + 8νcrmΩ + ν2cm
4),

f = (2cΩ− νcm
2d+ 2cνcrm+ νcr

2d) / (ν2c r
4 + 2ν2cm

2r2 + 4Ω2 + 8νcrmΩ + ν2cm
4),

to obtain that

χ1p ≡ (e1 cos(m1z) + f1 sen(m1z)) e
r1z + (e2 cos(m2z) + f2 sen(m2z)) e

r2z,

χ2p ≡ (f1 cos(m1z)− e1 sen(m1z)) e
r1z + (f2 cos(m2z)− e2 sen(m2z)) e

r2z,

is a particular solution of (C.3)–(C.4) if, and only if,

ei = (ciνcr
2
i − 2midiνcri −m

2
i ciνc − 2diΩ) / (ν2c r

4
i + 2ν2cm

2
i r

2
i + 4Ω2 + 8νcrimiΩ + ν2cm

4
i ),

fi = (2ciΩ− νcm
2
i di + 2ciνcrimi + νcr

2
i di) / (ν2c r

4
i + 2ν2cm

2
i r

2
i + 4Ω2 + 8νcrimiΩ + ν2cm

4
i ).

αke
kz is a non-trivial solution of the homogeneous part of the system (C.3)–(C.4)

only if νck
2 + 2Ω i = 0 (in which case αk,2 = +i αk,1) or νck

2 − 2Ω i = 0 (in which
case αk,2 = −i αk,1), that is, only if

k = ±(−i 2Ω/νc)
1/2 = ±(2Ω/νc)

1/2 e−i π/4

or

k = ±(+i 2Ω/νc)
1/2 = ±(2Ω/νc)

1/2 e+i π/4.

One proceeds as for ũ to obtain that the general solution of the homogeneous part
of (C.3)–(C.4) reads:

χ1h = (g1 cos(n1z) + h1 sen(n1z)) e
s1z + (g2 cos(n2z) + h2 sen(n2z)) e

s2z,

χ2h = (h1 cos(n1z)− g1 sen(n1z)) e
s1z + (h2 cos(n2z)− g2 sen(n2z)) e

s2z,
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where

s1 ≡ +(2Ω/νc)
1/2 cos(π/4) = +(4Ω/νc)

1/2/2,

n1 ≡ −(2Ω/νc)
1/2 sen(π/4) = −(4Ω/νc)

1/2/2,

s2 ≡ −(2Ω/νc)
1/2 cos(π/4) = −(4Ω/νc)

1/2/2,

n2 ≡ +(2Ω/νc)
1/2 sen(π/4) = +(4Ω/νc)

1/2/2.

As χi = χip + χih, we obtain:

χ1 = (e1 cos(m1z) + f1 sen(m1z)) e
r1z + (e2 cos(m2z) + f2 sen(m2z)) e

r2z

+ (g1 cos(n1z) + h1 sen(n1z)) e
s1z + (g2 cos(n2z) + h2 sen(n2z)) e

s2z, (C.7)

χ2 = (f1 cos(m1z)− e1 sen(m1z)) e
r1z + (f2 cos(m2z)− e2 sen(m2z)) e

r2z

+ (h1 cos(n1z)− g1 sen(n1z)) e
s1z + (h2 cos(n2z)− g2 sen(n2z)) e

s2z. (C.8)

Therefore, the general one-dimensional EUE solution for Ekman flows is:

u1 = U1 + (a1cos(m1z) + b1sen(m1z))e
r1z + (a2cos(m2z) + b2sen(m2z))e

r2z, (C.9)

u2 = U2 + (b1cos(m1z)− a1sen(m1z))e
r1z + (b2cos(m2z)− a2sen(m2z))e

r2z,
(C.10)

χ1 = (e1 cos(m1z) + f1 sen(m1z)) e
r1z + (e2 cos(m2z) + f2 sen(m2z)) e

r2z

+ (g1 cos(n1z) + h1 sen(n1z)) e
s1z + (g2 cos(n2z) + h2 sen(n2z)) e

s2z, (C.11)

χ2 = (f1 cos(m1z)− e1 sen(m1z)) e
r1z + (f2 cos(m2z)− e2 sen(m2z)) e

r2z

+ (h1 cos(n1z)− g1 sen(n1z)) e
s1z + (h2 cos(n2z)− g2 sen(n2z)) e

s2z, (C.12)
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where

r1 ≡
(

ξ + (ξ4 + (8νΩ)2)1/4 cos(arc tan(8νΩ/ξ2)/2)
)

/ (2ν), (C.13)

m1 ≡ −(ξ4 + (8νΩ)2)1/4 sen(arc tan(8νΩ/ξ2)/2) / (2ν), (C.14)

r2 ≡
(

ξ − (ξ4 + (8νΩ)2)1/4 cos(arc tan(8νΩ/ξ2)/2)
)

/ (2ν), (C.15)

m2 ≡ +(ξ4 + (8νΩ)2)1/4 sen(arc tan(8νΩ/ξ2)/2) / (2ν), (C.16)

ci ≡ −ξ(airi + bimi), (C.17)

di ≡ −ξ(biri − aimi), (C.18)

ei ≡ (ciνcr
2
i − 2midiνcri −m

2
i ciνc − 2diΩ)

/ (ν2c r
4
i + 2ν2cm

2
i r

2
i + 4Ω2 + 8νcrimiΩ + ν2cm

4
i ), (C.19)

fi ≡ (2ciΩ− νcm
2
i di + 2ciνcrimi + νcr

2
i di)

/ (ν2c r
4
i + 2ν2cm

2
i r

2
i + 4Ω2 + 8νcrimiΩ + ν2cm

4
i ), (C.20)

s1 ≡ +(4Ω/νc)
1/2/2, (C.21)

n1 ≡ −(4Ω/νc)
1/2/2, (C.22)

s2 ≡ −(4Ω/νc)
1/2/2, (C.23)

n2 ≡ +(4Ω/νc)
1/2/2 (C.24)

and a1, b1, a2, b2, g1, h1, g2, h2 are the constants to be determined by the boundary
conditions. Here, we remind that

cos(arc tan(x)) = 1/(1 + x2)1/2, (C.25)

sen(arc tan(x)) = x/(1 + x2)1/2, (C.26)

and that

cos(arc tan(x)/2) = ((1 + cos(arc tan(x)))/2)1/2, (C.27)

sen(arc tan(x)/2) = sen(arc tan(x))/(2cos(arc tan(x)/2)). (C.28)
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From u1(0) = 0, u2(0) = 0, u1(L) = U1 and u2(L) = U2, we obtain:

a1 = +
(

U1 e
L(r1+r2) − (U1 tan(m2L)

2 − 2U2 tan(m2L)) e
L(r1+r2) − U1(tan(m2L)

2 + 1) e2r2L
)

/ (2(tan(m2L)
2 − 1) eL(r1+r2) + (tan(m2L)

2 + 1)(e2r1L + e2r2L)), (C.29)

b1 = +
(

U2 e
L(r1+r2) − (U2tan(m2L)

2 + 2U1tan(m2L)) e
L(r1+r2) − U2(tan(m2L)

2 + 1) e2r2L
)

/ (2(tan(m2L)
2 − 1) eL(r1+r2) + (tan(m2L)

2 + 1)(e2r1L + e2r2L)), (C.30)

a2 = −
(

U1(tan(m2L)
2 + 1) er1L + (U1 tan(m2L)

2 + 2U2 tan(m2L)− U1) e
r2L

)

er1L

/ (2(tan(m2L)
2 − 1) eL(r1+r2) + (tan(m2L)

2 + 1)(e2r1L + e2r2L)), (C.31)

b2 = −
(

U2(tan(m2L)
2 + 1) er1L + (U2 tan(m2L)

2 − 2U1 tan(m2L)− U2) e
r2L

)

er1L

/ (2(tan(m2L)
2 − 1) eL(r1+r2) + (tan(m2L)

2 + 1)(e2r1L + e2r2L)), (C.32)

where r1 + r2 = ξ/ν.

From χ1(0) = 0, χ2(0) = 0, χ1(L) = 0 and χ2(L) = 0, we obtain:

g1 = (e1 + e2 − 2(e1 + e2)cos(nL)2 − 2(f1 + f2)cos(nL)sen(nL) + (e1 + e2) e−2sL

+ (e1cos((m− n)L)− f1sen((m− n)L)) eL(s+r1) + (f1sen((m + n)L)− e1cos((m + n)L)) eL(r1−s)

+ (e2cos((m + n)L) + f2sen((m + n)L)) eL(s+r2) − (e2cos((m− n)L) + f2sen((m− n)L)) eL(r2−s))e−2sL

/ (−1− e−4sL − 2(1− 2cos(nL)2) e−2sL), (C.33)

h1 = (f1 + f2 − 2(f1 + f2)cos(nL)2 + 2(e1 + e2)cos(nL)sen(nL) + (f1 + f2) e−2sL

+ (e1sen((m− n)L) + f1cos((m− n)L)) eL(s+r1) − (e1sen((m + n)L) + f1cos((m + n)L)) eL(r1−s)

+ (f2cos((m + n)L)− e2sen((m + n)L)) eL(s+r2) + (e2sen((m− n)L)− f2cos((m− n)L)) eL(r2−s))e−2sL

/ (−1− e−4sL − 2(1− 2cos(nL)2) e−2sL), (C.34)

g2 = (e1 + e2 + (e1 + e2 + 2(f1 + f2)cos(nL)sen(nL)− 2(e1 + e2)cos(nL)2) e−2sL

+ (f1sen((m− n)L)− e1cos((m− n)L)) eL(r1−s) + (e1cos((m + n)L)− f1sen((m + n)L)) eL(r1−3s)

− (e2cos((m + n)L) + f2sen((m + n)L)) eL(r2−s) + (e2cos((m− n)L) + f2sen((m− n)L)) eL(r2−3s))

/ (−1− e−4sL − 2(1− 2cos(nL)2) e−2sL), (C.35)

h2 = (f1 + f2 + (f1 + f2 − 2(e1 + e2)cos(nL)sen(nL)− 2(f1 + f2)cos(nL)2) e−2sL

− (e1sen((m− n)L) + f1cos((m− n)L)) eL(r1−s) + (e1sen((m + n)L) + f1cos((m + n)L)) eL(r1−3s)

+ (e2sen((m + n)L)− f2cos((m + n)L)) eL(r2−s) + (f2cos((m− n)L)− e2sen((m− n)L)) eL(r2−3s))

/ (−1− e−4sL − 2(1− 2cos(nL)2) e−2sL), (C.36)

where m ≡ m2, n ≡ n2 and s ≡ s1.
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