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Abstract

This work is composed by two distinct parts. In Chapter 1 we analyze the
problem of introduction of capital requirements to cover market and credit
risks by a general equilibrium model. We start setting necessary conditions
to the existency of equilibrium. Next, we study the social welfare problem in
this economy and we determine conditions to the Pareto Efficiency. Finally,
we assess the consequences about assets prices, forecast variances of the assets
returns, bankrutcy probability of the financial institution and contagion due
to such practice.

In the second part (Chapter 2) we investigate the incompleteness of the
fixed income market in Brazil. Firstly, we study two classical no-arbitrage
multi-factor models, namely the Gaussian model and the Cox-Ingerssoll-Ross
model. The results indicate evidences that the bond market is unable to span
the fixed income market as a whole. Next, we propose a model (a variation of
Unspanned Stochastic Volatility model proposed by Collin-Dufresne & Gold-
stein, 2001) in which there are souces of uncertainties driving the short term
rate volatility not captured by the bond market. This model is a promising
candidate to reconcile theory with empirical findings.
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tristes. Por que então a minha foi diferente? Porque sempre contei com
um alicerce familiar insuperável. Portanto, se não tivesse a sorte de ter
tido o lar que tive, muito provavelmente não estaria agora escrevendo esse
agradecimento.

i



Sorte ainda maior foi poder montar essa mesma estrutura familiar junto
com minha esposa e minha filha. Mais da metade da minha vida passei
junto da Christiane, desde os tempos de 2o grau, passando pela graduação
e agora no doutorado. Sempre ouvindo minhas queixas e aturando minha
personalidade racionalista, nunca faltou com um incentivo e um apoio nos
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Por fim, sei que é desnecessário dizer mas gostaria de frisar que qualquer
erro que por ventura permaneça nesse trabalho é de minha inteira respons-
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ii



Nos meus tempos de menino
Porém menino sonha demais

Menino sonha com coisas
Que a gente cresce e não vê jamais
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Chapter 1

Risk Regulation in a Financial
Market

1.1 Introduction

Banking crises have continually occurred throughout time. Usually, due to
the connection of banks to different economic branches, the bankruptcy of a
financial institution is more detrimental to society than that of a nonfinancial
one.

In an attempt to reduce the frequency and intensity of such crises, some
regulations have been proposed for this sector1. The major regulation is cer-
tainly the Basel Agreement, which resulted from a process under the heading
of the Basel Committee on Banking Supervision.

The Basel Committee was set up in 1974 under the auspices of the Bank
for International Settlements (BIS) by the central banks of the G10 mem-
bers2. The main aim of the Committee is to strengthen cooperation between
financial supervisors. It should be highlighted that the Committee itself
does not have any superior authority over governments, and therefore, its
recommendations do not have legal force.

1There is no consensus agreement in the academic literature on the reasons for banking
regulation. The two major reasons are: the risk of systemic crises and the inability of
depositors to monitor banks. See Santos (2000) for a review of the literature on theoretical
explanations for banking regulation.

2The current members of the Basel Committee are: Belgium, Canada, France, Ger-
many, Italy, Japan, Luxembourg, Netherlands, Spain, Sweden, Switzerland, England, and
the United States.
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In December 1987, the Committee submitted a document to be considered
by the member countries, establishing minimum capital requirements for
credit risk. In July 1988, after approval by the G10 member countries, this
document (known as the Basel Capital Accord or as the 1988 Basel Accord)
was released to banks. Since then, the recommendations of this agreement
have been gradually introduced not only into the member countries but also
into all countries whose banks are internationally active.

Basically, the 1988 Basel Accord imposes a capital requirement of at least
8%3 of the risk-adjusted asset, defined as the sum of asset positions multiplied
by asset-specific risk weights.

The second step was to define criteria for capital requirements to account
for market risk. So, in January 1996, the Amendment to the Capital Ac-
cord to Incorporate Market Risks (Basel Committee on Banking Supervision,
1996a)4 set the minimum capital requirement for a financial institution as the
sum of a capital charge to cover credit risk (at least 8% of the risk-adjusted
asset) and another charge to cover market risk.

In order to meet the requests of the financial industry, the Basel Accord
Amendment of 1996 allowed the use of internal or standard models to gauge
market risk. In a standard model, the regulatory authority defines the criteria
for minimum capital requirement that should be met by financial institutions.
The internal model, however, gives banks the option to use their own risk
measurement models to determine their capital charge. Nevertheless, in order
to use this model, banks must fulfill a series of requirements. From the
quantitative point of view, the 99% confidence interval Value-at-Risk (VaR)5

over a 10-day horizon is used as the basis for calculating market risk. The
capital requirements to cover market risk should be equal to the maximum
between: (i) the average VaR on the previous 60 business days multiplied
by a factor (known as multiplier), and (ii) the previous day’s VaR. However,

3In Brazil, the capital requirement is 11% instead of 8%.
4For an overview on the Amendment to the Capital Accord to Incorporate Market

Risk, see the Basel Committee on Banking Supervision (1996b).
5VaR is a risk metric proposed by the J.P. Morgan Bank in 1994 and represents the

maximum loss to which a portfolio is subject for a given confidence interval and time
horizon. For instance, a one-day 99% VaR of R$ 10 million means that there is only 1 in
100 chance of the portfolio loss to exceed R$ 10 million at the end of the next business
day. Undeniably, the widespread use of VaR-based risk management models results from
the fact that this risk metric is easy to interpret. For an overview of VaR, see, for instance,
Duffie & Pan (1997).
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as the factor is always larger than three6, the value specified in item (i) is
almost always larger than the value stipulated in item (ii).

Although Brazil is not a member of the Basel Committee, its banking
system follows the principles established by the Basel Accord. In 1994, the
National Monetary Council (CMN), through Resolution 2,0997, took the first
step towards adapting the Brazilian financial system to the international
standards outlined by the Committee. This rule established that all financial
institutions have to hold a minimum total capital equal to 11% of their risk-
adjusted assets.

The rules for calculating the required net worth have been changing over
time in order to increase their efficiency and to include several types of risks.
Up to the end of 2005, financial institutions were required to allocate cap-
ital to cover the credit risks of their assets (with a different treatment for
credit risk of swap agreements), to cover currency risks and gold investment
risks and operations in Reais with fixed interest rates. However, there is
yet no capital requirement for covering market risks related to stocks and
commodities8.

The capital charge necessary to cover credit risk follows a model that
closely resembles the one proposed by the 1988 Basel Accord. On the other
hand, the charge necessary to cover market risk includes two risk factors: (i)
currency and gold, and (ii) fixed interest rates.

Coverage of currency risk follows the standard model. In short, capital
requirement to cover currency risk corresponds to 50% of the net worth of
operations involving gold and assets and liabilities denominated in foreign
currency9.

For the coverage of market risk of fixed interest rates, the Central Bank
of Brazil (Bacen) used an intermediate approach between the standard and
internal models10. The capital charge necessary to cover this type of risk
is calculated according to the Committee’s guidelines, i.e., the maximum

6In Brazil, the multiplication factor ranges between 1 and 3.
7Banking regulation rules in Brazil can be obtained from the Central Bank of Brazil

(Bacen) website: <http://www.bacen.gov.br>.
8Bacen’s Communiqué 12,746, dated December 9, 2004 sets the end of 2005 as the

deadline for the regulating agency to lay down guidelines for capital requirement to cover
market risk that are not provided by the current regulations.

9See Bacen’s Circular 3,229 dated March 26, 2004
10Arcoverde (2000) gives an in-depth description of the method used by Bacen for the

establishment of regulations for market risk of fixed interest rates.
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value between the VaR over the previous 60 business days multiplied by
a factor and the previous day’s VaR. Nevertheless, the rule established by
Bacen includes two different aspects: (i) the parameters for VaR calculation
(covariance matrix of the assets) are stipulated by Bacen on a daily basis,
and (ii) the VaR multiplier is a decreasing function of market volatility, i.e.,
the larger the market turbulence, the lower the multiplier11.

Regardless of legal requirements, several financial institutions have re-
cently adopted internal VaR-based models for market risk management. Most
of this self-discipline process was a demand from stockholders and investors
who were concerned with the increase of volatility in a globalized world and
who wanted transparency in the management of their resources. Nowadays,
even in emergent countries like Brazil, all banks with some market activity
calculate their VaR on a daily basis.

The aim of the present study is to assess the economic implications of
risk regulation by means of a general equilibrium model. The model used is
similar to the one proposed by Dańıelsson et al. (2004).

Firstly we analyze the welfare effects of the introduction of capital require-
ments to cover market risk. Surprisingly, we show that some institutions can
be better in a regulated economy (i.e., an economy where all financial insti-
tutions must satisfy the risk constraint) than an unregulated economy (i.e.,
an economy where there are no risk limits). Next, in opposition to the aca-
demic consensus that VaR is not an appropriate risk measure, we will see
that when it is used with regulatory purposes, it can reduces the financial
fragility of the market (defined as the sum of the bankruptcy probabilities of
all financial agents) and the contagion.

In Section 1.5 we analyze the effects of peculiar rules established by Ba-
cen. To do this we implemented two changes in the above-mentioned model,
namely: (i) the covariance matrix of the assets is defined by the regulat-
ing agency, and may therefore not match the market expectation and (ii)
the multiplier associated with the VaR constraint is a decreasing function
of market volatility. The purpose of the variable factor is to prevent high
capital requirements after economic crises (see Arcoverde, 2000).

The consequences of the first change are often ambiguous and depend on
how Bacen estimates the covariance matrix. Predicting the behavior of the
economy is only possible under some special circumstances. For instance, if
Bacen overestimates the volatility of all risky assets, then the negative effects

11See Bacen’s Circular 2,972 dated March 23, 2000 as well as its Technical Note.
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of VaR-based capital requirement shown in Dańıelsson et al. (2004) (namely:
decrease in equilibrium price and increase in volatility) are enhanced. This
suggests that the internal model can be more accurate in estimating market
risk than the standard model12.

The advantage of the second change is that it guarantees equilibrium in
critical situations, which does not occur in the original model proposed by
Basel.

In the last Section of this chapter we address by a numerical example the
economic implications of credit risk regulation13. Basically, we show that if
the regulating agency improperly choose the risk weights then the financial
fraglity can be higher in a regulated economy than an unregulated one.

1.2 Review of the Literature

After the implementation of VaR as the standard procedure for market risk
management in the second half of the last decade, a wide range of academic
studies (either empirical or theoretical) have been carried out in order to
assess the economic consequences of such practice.

Basak & Shapiro (2001) investigated the implications of the investment
decision problem when the trader is subject to an exogenous VaR limit. They
showed that agents who suffer such restriction divide adverse states of nature
into two classes: bad states and intermediate states. Since these agents are
only concerned with the probability of loss and not with its magnitude, they
opt to protect themselves against intemediate states of nature and become
completely vulnerable to bad states. As a result, the expected loss, consid-
ering a loss occurred, is larger for the agents that manage risk by means of a
VaR model than for those who do not manage the market risk at all. To con-
trol the magnitude of losses, the authors suggest the Expected Shortfall14 as
an alternative risk metric, i.e., the expected loss, considering there was a loss.
With this metric, the undesirable effects of a VaR-based risk management
are eliminated.

12Bacen’s Communiqué 12,746 sets the end of 2007 as the deadline for the regulating
agency to establish the eligibility criteria for the adoption of internal models for market
risk and for the validation of these models.

13Jackson et al. (1999) review the literature on the effects of minimum capital require-
ments for credit risk, as established by the 1988 Basel Accord.

14For further information about Expected Shortfall, see Acerbi & Tasche (2002).
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Dańıelsson & Zigrand (2003) used a two-period economy with a con-
tinuum of financial institutions characterized by a constant absolute risk
aversion coefficient and subject to a VaR constraint They showed that:

• Optimal risk sharing is impaired.

• If all financial institutions are regulated (i.e., if they must satisfy the
risk constraint), an equilibrium might not exist.

• Volatility of positive-beta assets in a regulated economy is greater than
in an unregulated economy (i.e., an economy where there are no risk
limits).

• Prices of positive-beta assets in a regulated economy are lower than
prices of assets in an unregulated economy.

• Liquidity in a regulated economy is smaller than in an unregulated
economy.

Dańıelsson et al. (2004) used a numerical simulation to extend the model
proposed by Dańıelsson & Zigrand (2003) to a multiperiod environment, and
assessed the intensity of adverse impacts of VaR-based risk constraint.

Leippold et al. (2003) considered the implications of VaR-based risk
management for a continuous-time economy with intermediate consumption,
stochastic opportunity set and heterogeneous attitude towards risk. By using
asymptotic approximation methods, they showed that VaR-based risk man-
agement can lead banks to increase their exposure to risk in highly volatile
states of nature. However, the effects on volatility and expected asset re-
turn are ambiguous, depending on the dynamics of the model. On the other
hand, the interest rate will always be lower and the Sharpe ratio will always
be greater in a regulated economy.

Cuoco & Liu (2004) analyzed the dynamics of the investment and VaR
reporting problems faced by financial institutions that are subjected to a
VaR-based risk constraint, following the internal modeling approach, consid-
ering the effects of adverse selection and moral hazard. They showed that
when institutions which regularly underreport its true VaR (the accuracy of
the risk measurement model is checked by backtesting) are punished, internal
models can be very effective not only in curbing portfolio risk, but also in
inducing truthful revelation of this risk.
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While many papers have discussed the financial investment problem with
credit risk constraint, we are not aware of any that have actually modelled
the equilibrium effects of this kind of risk regulation.

Kim & Santomero (1988) investigated the credit risk regulation problem
utilizing a simple mean-variance model and concluded that the use of simple
capital ratios regulation is an ineffective means to bound the insolvency of
banks. As solution to this inefficiency, they derived explicitly the theoreti-
cally correct risk weights that minimizes the insolvency of banks and showed
that the correct weigths are independent of the individual bank’s preferences.

Rochet (1992) studied the consequences of capital regulations on the port-
folio choices of banks and obtained results very similar to ones obtained by
Kim & Santomero (1988). He showed that the optimal risk weigth must be
proportional to the systemics risk of the assets (their betas).

Blum(1999) pointed out that, in a dynamic framework, a capital intertem-
poral effect can arise which leads to an increase in bank’s risk. The key insight
is that under binding capital requirements an additional unit of equity to-
morrow is more valuable to a bank. If raising equity is excessively costly, the
only possibility to increase equity tomorrow is to increase risk today.

1.3 The Basic Model

Consider a two period economy (t = 0, 1) according to proposed by Dańıelsson
& Zigrand (2003). At t = 0 agents (financial institutions) invest in N + 1
assets that mature at t = 1. The asset 0 is risk-free and yields payoff d0. The
risky assets are nonredundant and promise at t = 1 a payoff

d =

 d1
...
dN

 ,

that follow a Gaussian distribution with mean µ and covariance matrix Σ.
The price of asset i is denoted by qi. The return on asset i is defined by

Ri ≡
di
qi
.

We follow common modelling practice by endowing financial institutions
with their own utility functions (such as in Basak and Shapiro, 2001, for
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instance). There is a continuum of small agents characterized by a constant
coefficient of absolute risk aversion (CARA) h. The population of agents is
such that h is uniformly distributed on the interval [`, 1]. To guarantee that
all agents are risk-averse, let us suppose that ` > 0.

Let xh and yhi be the number of units of the risk-free asset and of the
risky asset i, respectively, held by financial institution h at t = 0. Then the
wealth of agent h at time t = 1 is

W h
1 = d0x

h +
∑
i

diy
h
i .

The agents choose the portfolio that maximizes the expected value of
their wealth utility uh

(
W h

1

)
subject to budget and risk constraints.

The time-zero wealth of an agent of type h comprises initial endowments
in the risk-free asset, θh0 , as well in the risky assets, θh =

(
θh1 , . . . , θ

h
N

)′
.

The budget constraint of institution h at t = 0 is

q0x
h +

∑
i

qiy
h
i ≤ W h

0 ,

where W h
0 = q0θ

h
0 +

∑
i qiθ

h
i is the initial wealth of agent h.

The role of the regulating agency consists to limiting the set of invest-
ments opportunities in the risky assets. That is, the regulating agency intro-
duces a new constraint (hereafter, denominated risk constraint) that can be
written as

yh ∈ Υ, ∀h ∈ [`, 1], (1.1)

for some Υ ⊆ RN . Of course, the regulating agency’s aim is to choose Υ
so as to minimize the financial fragility of the market, damaging as little as
possible the economy.

The investment problem of financial institution h is15

Max E
(
uh
(
W h

1

))(
xh,yh

)
s.a. q0x

h +
∑N

i=1 qiy
h
i ≤ q0θ

h
0 +

∑N
i=1 qiθ

h
i ,

yh ∈ Υ

15Hereafter, when there isn’t any doubt about which we want to tell, for x ∈ R and
y ∈ RN we write simply (x,y) on the contrary (x,y′).
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As the budget constraint is homogeneous of degree zero in prices, we can
normalize, without loss of generality, the price of risk-free asset to q0 = 1.
Moreover, since uh is strictly increasing, the budget constraint must be bind.
The next lemma is a direct consequence of the properties of a continuous
function defined on compact set.

Lemma 1.1 If Υ is compact and convex then the problem of financial insti-
tution has only one solution.

A competitive equilibrium for the economy in question is an asset price
vector (q0, q) = (q0, q1, . . . , qN) and a mapping h ∈ [`, 1] 7→

(
xh,yh

)
, such

that

1.
(
xh,yh

)
solves the problem of financial institution h when assets prices

are equal to (q0, q
′).

2. Market clearing, that is,
∫ 1

`
yhdh = θ and

∫ 1

`
xhdh = θ0, where θ =∫ 1

`
θhdh is the aggregate amount of risky assets and θ0 =

∫ 1

`
θh0dh is

the aggregate amount of risk-free asset.

1.4 Market Risk - Homogeneous Beliefs

First we suppose that the regulating agency and the financial institutions
agree with the parameters (mean and covariace matrix) of the risky assets
distribution. Hereafter, we will call this assumption homogeneous belief16.
Note that homogeneous beliefs is similar to adoption of internal model by
the regulating agency.

To limit market risk of financial institutions, the regulating agency follows
the standard methodology known as Value-at-Risk (VaR). VaR is defined by

V aRα ≡ − inf
{
x ∈ R;P

[
W h

1 − E
(
W h

1

)
≤ x

]
> α

}
, (1.2)

where P is the probability measure corresponding to risky assets payoff dis-
tribution, E is the expected value relative to this measure and α is the sig-
nificance level adopted (the probability of losses exceeding the VaR)17. The

16Moreover, we suppose (although it isn’t necessary to the results of this Section) that
the regulating agency and financial institutions not only agree with the risky assets dis-
tribution but also they know this distribution perfectly.

17VaR when defined by Equation 1.2 is known as relative VaR, while the absolute VaR
is defined as V aRα = − inf

{
x ∈ R;P

[
Wh

1 ≤ x
]

> α
}

(see Jorion, 2001).
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risk constraint is fixed as a uniform upper bound to VaR, that is,

V aRα ≤ V aR, (1.3)

where V aR is a VaR exogenous bound set by the regulating agency that
depends on a market volatility index. By using normal distribution proper-
ties, the risk constraint can be rewritten as an exogenous upper limit for the
portfolio variance

Υ =
{
y ∈ RN ;y′Σy ≤ ν

}
, (1.4)

where the paramater ν, called nonseverity of the risk constrain, depends on
α and V aR.

The next proposition characaterizes the solution of the problem of fi-
nancial institutions. The demonstration of this proposition can be found in
Dańıelsson & Zigrand (2003).

Proposition 1.1 Let
(
xh,yh

)
be the solution of the problem of financial

institution h when the price vector of risky assets is q. We have:

1. If h ≥
√

ρ
ν

then

yh =
1

h
Σ−1 (µ− r0q) , (1.5)

where ρ = (µ− r0q)′ Σ−1 (µ− r0q) and r0 is the risk-free rate.

2. If h <
√

ρ
ν

then

yh =

√
ν

ρ
Σ−1 (µ− r0q) . (1.6)

In any case xh = θh0 +
∑

i qiθ
h
i −

∑
i qiy

h
i .

Note that the introduction of the risk constraint prevents optimal risk
sharing since all institutions with CARA less than or equal to

√
ρ
ν

choose
the same portfolio.

After solving the problem of the financial institutions, the market clearing
condition automatically provides the equilibrium prices, as presented in the
following proposition (again, the demonstration is in Dańıelsson & Zigrand,
2003):
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Proposition 1.2 Suppose that Ri > r0 for all i = 1, . . . , N . Then, the
equilibrium price vector of risky assets is

q =
1

r0
(µ−ΨΣθ) , (1.7)

where Ψ is the market price of risk scalar (see Dańıelsson & Zigrand, 2003).
Denoting by F (·) the non-principal branch of the Lambert correspondence18,
we have

Ψ =



1
ln `−1 if 0 ≤ κ ≤ ` ln `−1

− κ+`
κF (−(κ+`)e−1)

if ` ln `−1 < κ < 1− `

any number ≥ 1
1−` if κ = 1− `,

(1.8)

where

κ =

√
θ′Σθ

ν
.

An equilibrium fails to exist if κ > 1− `.

Figure 1.1 illustrates Ψ as a function of κ. When κ = 1−` the equilibrium
is undetermined. If exists equilibrium and at least one institution hits the
risk constraint then ` ln `−1 < κ < 1 − `, hence Ψ is a strictly increasing
function of κ and so a strictly decreasing function of ν. This implies that
tighter is the regulation (that is, smaller is ν) lesser will be the risky assets
equilibrium prices.

1.4.1 Pareto Efficiency and Welfare of Financial Insti-
tutions

A classic and fundamental question in the economic theory is to determine
if the equilibrium allocations are or not Pareto efficient. That is, if the
economy is in equilibrium, is it possible, using only the initial endowments,
to reorganize the distribution of assets such as makes some agent better
withuot making some another agent worse? If the answer is positive, then

18The non-principal branch of the Lambert correspondence is the inverse of the function
f : (−∞,−1] 7→

[
−e−1, 0

)
defined by f(x) = xex. For more details and properties of the

Lambert correspondence see Corless et al (1996).

11



Figure 1.1: Illustration of Ψ.

the equilibrium is not efficient. In this Section we propose a definition of
Pareto efficiency accordingly to the intuition explained above and show that
for the economy analysed in Section 1.3, the equilibrium allocation complies
this criterion.

Definition 1.1 An allocation
{(
xh,yh

)}
h∈[`,1]

is feasible if
∫ 1

`
xhdh ≤ θ0 and∫ 1

`
yhdh ≤ θ19.

Definition 1.2 A feasible allocation
{(
xh,yh

)}
h∈[`,1]

is Pareto efficiency if

there is no other feasible allocation
{(
x̂h, ŷh

)}
h∈[`,1]

such as E
[
uh
(
x̂h, ŷh

)]
≥

E
[
uh
(
xh,yh

)]
for all h, and strict inequality holds for h ∈ H ⊆ [`, 1] with

L (H) > 0, where L is the Lebesgue measure on [`, 1].

The next proposition asserts that, in spite of the risk constraint to intro-
duce a fricction on the market, the equilibrium, when it exist, is still efficient.

19If x, y ∈ RN then x ≤ y means that xi ≤ yi for all i.
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Proposition 1.3 Suppose that exists equilibrium for the economy with VaR
constraint and that yh ≥ 0, ∀h. Then the equilibrium allocation is Pareto
efficient.

To measure the financial institutions welfare we suppose that we have a
linear-in-utilitily welfare function, also called Bergson welfare function (see
Varian, 1992), which the weigth of each agent is equal to the inverse of
your CARA. That is, we suppose that the regulating agency consider more
important the financial institutions less risk averse. Of course, other schemes
can be consider such as put the same weights for all institutions or else put
the riskier averse institutions with higher weight.

Definition 1.3 Let
{(
xh,yh

)}
h∈[`,1]

be an feasible allocation for the economy

under analysis. We define the financial institutions welfare function by:

Λf (ν) = −
∫ 1

`

ln
{
−E
[
uh
(
W h

1

)]}
h

dh.

Proposition 1.4 Suppose that for the economy considered here exists equi-
librium and at least one financial institution hits the risk constraint, then the
financial institutions welfare function is given by:

Λf (ν) = r0θ0 + µθ +
θ′Σθ

4κ2

[
(κΨ)2 − (`+ κ)κΨ + `2

]
Proposition 1.5 If equilibrium exists and at least one financial institution
hits the risk constraint, the financial institutions welfare function is increas-
ing in ν.

Proposition 1.5 tells us that tigher is the risk regulation lower is the wel-
fare of financial institutions as a whole. But, what happens at individual
level? Would be possible for an agent to increase its utility in a regulated
economy? Proposition 1.6 (below) states that, under certain conditions, the
answer to the last question is positive. The intuition is immediate: At a
regulated economy, agents less risk averse decrease their positions in riskier
assets, then prices of these assets fall, tha makes interesting for other agents
to buy them, thus increasing the agents’ utility. Therefore, each financial in-
stitution maximizes its utility for a certain value of the nonseverity parameter

13



that doesn’t correspond necessarily to the situation of an unregulated econ-
omy (ν = ∞). Before presenting Proposition 1.6 we are going to estabilish
some preliminary calculations and notations.

Denote by ν the maximum value of ν such as at least one institution hits
the risk constraint and by ν the lower value of ν for which exists equilibrium,
in other words,

ν = θ′Σθ
(` ln `−1)2

and ν = θ′Σθ
(1−`)2 .

Consider the following functions:

1. g1(ν) : [ν, ν] 7→ [`, 1], defined by g1(ν) = κΨ + κ3Ψ′ (κ)
(

1
1−` −

1
κ

)
,

2. g2(ν) : [ν, ν] 7→ [`, 1], defined by g2(ν) = κΨ and

3. g3(ν) : [ν, ν] 7→
[

1−`
ln `−1 , 1

]
, defined by g3(ν) = Ψ (1− `) ;

where Ψ′ (κ) is the derivate of Ψ, that is

Ψ′ (κ) =
1

κF (− (κ+ `) e−1)

[
`

κ
+

1

F (− (κ+ `) e−1) + 1

]
.

It is easy to see that g1 (ν) = g2 (ν) = g3 (ν) = 1. Since κ, Ψ and Ψ′

are strictly decreasing functions of ν20 we have that g1, g2 and g3 are strictly
decreasing function of ν too. Figure 1.2 shows graphs of these three functions.

If we fix the market parameters (Σ and µ) then the welfare of financial
institution h is given by its expected utility at t = 1:

E
(
uh
(
W h

1

))
= r0

(
θh0 + qθh − qyh

)
+ µyh − h

yh
′
Σyh

2
.

Therefore, in equilibrium, the welfare of institution h depends on the
nonseverity parameter ν. If the aggregate endowment of the risky assets
is uniformly distributed between all agents (that is, θh = θ

1−`) then, after
some algebraic manipulations, it is possible to show that to analyze the
welfare of institution h as function of ν is equivalent to study the function
fh(ν) : [ν, ν] 7→ R defined by:

20Ψ′ is a decreasing function of ν because Ψ (κ) is a convexity function thus Ψ′′ (κ) > 0.
Hence Ψ′ (κ) is increasing in κ and therefore decreasing in ν.
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Figure 1.2: Graphs of functions g1, g2 and g3.

fh (ν) =


Ψ2

2h
− Ψ

1−` if ν ≥ g−1
2 (h)

Ψ
κ
− h

2κ2 − Ψ
1−` if ν < g−1

2 (h)

(1.9)

Greater is fh(ν) greater is the welfare of the institution h.
Now we are apt to present the main result of this Section.

Proposition 1.6 Let fh(ν) defined by Equation 1.9 then

1. For 1−`
ln `−1 < h ≤ 1 we have

• If g−1
3 (h) < ν ≤ ν then fh(ν) is strictly increasing.

• If g−1
2 (h) < ν ≤ g−1

3 (h) then fh(ν) is strictly decreasing.

• If g−1
1 (h) < ν ≤ g−1

2 (h) then fh(ν) is strictly decreasing.

• If ν < ν ≤ g−1
1 (h) then fh(ν) is strictly increasing.

2. For ` ≤ h ≤ 1−`
ln `−1 we have

15



• If g−1
2 (h) < ν ≤ ν then fh(ν) is strictly decreasing.

• If g−1
1 (h) < ν ≤ g−1

2 (h) then fh(ν) is strictly decreasing.

• If ν < ν ≤ g−1
1 (h) then fh(ν) is strictly increasing.

In any case fh(ν) = 1
ln `−1

(
1

2h ln `−1 − 1
1−`

)
and fh(ν) = − h

2(1−`)2

The next proposition shows that between the tighest level (ν = ν) and
the softest level (ν = ν) of regulation, all the financial institutions prefer the
last one.

Proposition 1.7 For all h we have fh(ν) ≥ fh(ν).

By Proposition 1.7 we have that if ` ≤ h ≤ 1−`
ln `−1 then the maximum of

fh(ν) occurs when ν = g−1
1 (h). However, if 1−`

ln `−1 < h ≤ 1 there are two
possible candidates for the maximum of fh(ν): the same g−1

1 (h) or ν. The
next proposition gives conditions that allow us to decide in which of these
points the function fh(ν) assumes its maximum.

Proposition 1.8 Let t(h) :
[

1−`
ln `−1 , 1

]
7→ R defined by

t(h) =
Ψ

κ
− h

2κ2
− Ψ

1− `
− 1

ln `−1

(
1

2h ln `−1
− 1

1− `

)
,

where κ and Ψ are calculated at ν = g−1
1 (h). The function t(h) is strictly

decreasing and has only one root. Denoting by h∗ this root we have

1. If 1−`
ln `−1 ≤ h ≤ h∗ then the maximum of fh(ν) occurs when ν = g−1

1 (h).

2. If h∗ ≤ h ≤ 1 then the maximum of fh(ν) occurs when ν = ν.

Figures 1.3, 1.4 and 1.5 illustrate the graphs of fh(ν) for h ∈
[
`, 1−`

ln `−1

]
,

h ∈
[

1−`
ln `−1 , h

∗] and h ∈ [h∗, 1], respectively.
Observe that if the institution is sufficiently little risk averse (that is, h >

h∗) then the best to this institution is that does not have capital requirement
for market risk covering (ν ≥ ν)
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Figure 1.3: Function fh for h ∈
[
`, 1−`

ln `−1

]
.

Figure 1.4: Function fh for h ∈
[

1−`
ln `−1 , h

∗].
17



Figure 1.5: Function fh for h ∈ [h∗, 1].

1.4.2 Bankruptcy Probability

The financial institution h goes to bankrupty if its wealth at t = 1 is less or
equal zero. If equilibrium exists and at least one institution reaches the risk
constraint the probability of this to occur is

pbh ≡ P
[
W h

1 < 0
]

= Φ

(
−m

h

sh

)
,

where mh = r0W
h
0 + Ψθ′Σyh and sh =

√
yh′Σyh are, respectively, the mean

and the standard deviation of W h
1 , and Φ represents the cumulative standard

normal distribution function. Since Φ is strictly increasing, to analyze the
behavior of pbh as a function of the nonseverity parameter ν, it is enough to
study how mh

sh varies when the regulating agency modifies ν. Greater is this
quotient, lower is the default probability of institution h. Using Propositions
1.1 and 1.2 it is easy to see that in equilibrium we have
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1. If h < g2 (ν) then

mh

sh
=
κr0W

h
0√

θ′Σθ
+ Ψ

√
θ′Σθ.

2. If h ≥ g2 (ν) then

mh

sh
=

r0W
h
0 h

Ψ
√

θ′Σθ
+ Ψ

√
θ′Σθ.

For the purpose of comparison, the value of this quotient in an unregu-
lated economy is

mh

sh
=
r0W

h
0 h ln `−1

√
θ′Σθ

+

√
θ′Σθ

ln `−1
∀h.

Proposition 1.9 Assume that equilibrium exists and at least one institution
hits the risk constraint. Let ν̃ be the nonseverity parameter value such as

Ψ = Ψ̃, where Ψ̃ ≡
√

hr0Wh
0

θ′Σθ
. That is, considering Ψ as function of ν we have

ν̃ = Ψ−1
(
Ψ̃
)

(if Ψ̃ ≤ 1
ln `−1 set ν̃ = ν and if Ψ̃ ≥ 1

1−` set ν̃ = ν).

1. If ν̃ ≤ g−1
2 (h) then mh

sh is a decreasing function of ν on the interval[
ν, g−1

2 (h)
]

and increasing on the interval
[
g−1
2 (h), ν

]
.

2. If g−1
2 (h) < ν̃ ≤ ν then mh

sh is a decreasing function of ν on the interval
[ν, ν̃] and increasing on the interval [ν̃, ν] .

3. If ν̃ > ν then mh

sh is a decreasing function of ν.

Proposition 1.9 gives interesting conclusions on the effectiveness of the
risk regulation (effectiveness understood here as the reduction of the bank-
ruptcy probability):

1. Greater is W h
0 less is ν̃, then if the institution is highly capitalized, the

regulation can increase its bankruptcy probability. On the other hand,
if the net worth of an institution is small, then, from the regulating
agency point of view, the regulation is always beneficial, since more
severe it is, less is the default probability of the institution.
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Figure 1.6: Graphs of the function mh

sh . At (a) ν̃ ≤ g−1
2 (h) and at (b) ν̃ > ν.

2. More nervous will be the market more effective will be the regulation.

3. The regulation is more effective for the institutions less risk averse
(smaller h). If the institution will be super conservative then the reg-
ulation can increase its bankruptcy probability.

Figure 1.6 presents the graphs of mh

sh (solid line) for cases 1 and 3 of
Proposition 1.9. The horizontal dash-dot line represents the same relation in
an unregulated economy.

Evidently, the regulating agency must consider the system as a whole
and not an institution in particular. Therefore, it is interesting to analyze
the total bankruptcy probability, defined as the sum (integral) of the default
probability of all institutions,

pgb ≡
∫ 1

`

pbhdh. (1.10)

Directly related (and more treatable from the algebraic point of view)
with the metric defined by Equation 1.10 we have the integral in h of the
quotient mh

sh ,

Λs (ν) ≡
∫ 1

`

mh

sh
dh. (1.11)

If the initial endowment of the assets is uniformly distributed between
the agents, then W h

0 = W0 for all h. In this case
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Figure 1.7: Graphs of the function Λs. In the letter (a) the level of capital-
izaton of the financial institutions is high and in the letter (b) the opposite
occurs.

Λs (ν) =
r0W0√
θ′Σθ

(
κ2Ψ

2
+

1

2Ψ
− κ`

)
+ Ψ (1− `)

√
θ′Σθ. (1.12)

The first and the second terms of the left side of Equation 1.12 are, re-
spectively, increasing and decreasing functions of ν. Then the phenomenon
already observed individually happens again in global level: If the level of
capitalization of the financial institutions is high or the degree of market ner-
vousness is low, then the regulation can have contrary effect to the planned
one (that is, to increase the financial fragility of the institutions). On the
other hand, if the institutions have a small initial wealth or the market is
nervous then the risk regulation presents the benefit to diminish the number
of bankruptcies. Figure 1.7 shows these two situations.

1.4.3 Financial Market Contagion

In this section we analyze the problem of financial market contagion. Con-
tagion is the transmission of shocks to other financial institutions, beyond
any fundamental link among the institutions and beyond common shocks.
Contagion can take place both during “good times” and “bad times”. Then,
contagion does not need to be related to crises. However, contagion has been
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emphasized during crisis times. Examples of recent contagious episodes are
the Tequila crisis of 1994-95, the East Asian crisis of 1997 and the Russian
crisis of 1998 (for details about these episodes see Kaminsky & Reinhart,
1998).

Some recent studies have addressed the problem of financial market con-
tagion. Bae et al. (2000) propose an approach to measure contagion based
on the co-incidence of extreme returns shocks across countries within a re-
gion. Bordo (2000) uses principal component analysis to assess the extent of
comovement across all markets. Morris and Shin (2000) suggest an argument
stemming from co-ordination failure and switching strategies that offers an
explanation for some of the recent currency crises. Tsomocos (2003) charac-
terises contagion and financial fragility as an equilibrium phenomenon.

Based on the model presented in Section 1.3 we develop a new approach
to evaluate the contagion in an economic in which financial institutions are
subject to market risk constraint. To introduce the possibility of contagion we
increase the portfolios space of each financial institution allowing investments
among them. To avoid an infinite dimensional optimization problem, instead
of a continuum of financial institutions considered in the basic model we
suppose that there is a finite number of them. Let’s describe in more details
a simple version of the contagion model where there is only three financial
institutions. Generalizations of this particular case are immediate.

Consider a two period economy with three financial institutions A, B and
C. There are two risky assets with payoff d normaly distributed. To become
interesting investments of one financial institution in another one we have
to introduce a friction on the market. There is many ways that this can be
done. Here we opt to prevent that some financial institutions have access
to all assets. More specifically, financial institution C can invest in both
risky assets and in the risk-free assets. Its portfolio is (xc, c1, c2), where xc
is number of units of the risk-free asset held by C, c = (c1, c2)

′ is the risky
asset portfolio of C. The initial endowment of C is (θC0 , θ

C
1 , θ

C
2 ). Financial

institution B can invest in the risky asset 1, in the risk-free asset and in
financial institution C. Its portfolio is (xB, b1, zBC) where zBC is the sharing
of B in C and its initial endowment is (θB0 , θ

B
1 ). Finally, financial institution

A can invest only in B and C and in the risk-free asset. Its portfolio is
(xA, zAB, zAC) where zAB is the sharing of A in B and zAC is the sharing
of A in C and its initial endowment is θB0 . The CARA of these financial
institutions are hC , hB and hA, respectively. To avoid situations where a
financial institution fully buy another institution we suppose hA ≥ hB ≥ hC .
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Figure 1.8: Financial market contagion model.

Figure 1.8 illustrate the model.
The wealths of institutions at t = 1 are

WC = r0xC + d · c,

WB = r0xB + d1b1 + zBCWC

= r0xB + zBCr0xC + d · β and

WA = r0xA + zABWB + zACWC

= r0xA + zABr0xB + zABzBCr0xC + zACr0xC + d ·α,

where

β =

(
b1 + zBCc1
zBCc2

)
and

α =

(
zABβ1 + zACc1
zABβ2 + zACc2

)
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The budget constraints for A, B and C are respectively:

xA + zAC
KC

P

1−zAB−zBC
+ zAB

KC
P

1−zAB
= θA0 ,

xB + q1b1 + zBC
KC

P

1−zAC−zBC
=

KB
P

1−zAB
and

xC + q · c =
KC

P

1−zAC−zBC
,

where KC
P = θC0 + q · θ and KB

P = θB0 + q1θ
B
1 are the equity capital of C and

B, respectively.
The risk constraints for A, B and C are respectively:

c′Σc ≤ ν,

β′Σβ ≤ ν and

α′Σα ≤ ν.

Each institution maximize the expected value of its wealth utility subject
to the budget and risk constraints. To solve the problem of financial institu-
tion we proceed in the same way that was done in Section 1.3. If the risky
asset price is q, then the optimum portfolios are:

1. If hC ≥
√

ρC

ν
then

c =
1

hC
Σ−1eC , (1.13)

where ρC = e′CΣ−1eC and eC = (µ− r0q).

2. If hC <
√

ρC

ν
then

c =

√
ν

ρC
Σ−1eC , (1.14)

for financial institution C.

1. If hB ≥
√

ρB

ν
then

β =
1

hB
Σ−1
B eB, (1.15)
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where ρB = e′B (BΣB′)
−1

eB, eB = (µ1 − r0q1, (µ− r0q) · c)′, ΣB =
BΣ and

B =

 1 0

c1 c2

 .
2. If hB <

√
ρB

ν
then

β =

√
ν

ρB
Σ−1
B eB, (1.16)

for financial institution B.

1. If hA ≥
√

ρA

ν
then

β =
1

hA
Σ−1
A eA, (1.17)

where ρA = e′A (AΣA′)
−1

eA,
eA = ((µ1 − r0q1)b1 + zBC(µ− r0q) · c, (µ− r0q) · c)′, ΣA = AΣ and

A =

 β1 β2

c1 c2

 .
2. If hA <

√
ρA

ν
then

β =

√
ν

ρA
Σ−1
A eA, (1.18)

for financial institution A.
To find the equilibrium prices we have to use the market clearing condi-

tion:

c1 + b1 = θ1 = θB1 + θC1

c2 = θ2 = θC2

To solve this system we have to use numerical methods since that the system
is non-linear and there isn’t a close form solution.
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Now we are ready to define metrics of contagion that allow us to evaluate
the impact of risk regulation on the level of financial institutions contagion.
Since WA, WB and WC are normal with mean and variance known it is easy
to compute the following probabilities:

pA ≡ P [WA ≤ 0] ,

pB ≡ P [WB ≤ 0] and

pC ≡ P [WC ≤ 0] .

Besides the probabilities above, to measure the contagion we need to com-
pute conditional probabilities like P [Wi ≤ 0 ∩Wj ≤ 0] where i, j = A,B,C.
Let DBC be the region of the payoff plane such as

c · d ≤ −r0xC

β · d ≤ −r0xB − r0zBCxC

then

pBC ≡ P [WB ≤ 0 ∩WC ≤ 0] =

∫
DBC

N (µ,Σ) ,

where N (µ,Σ) is the density probability function of a bidimensional normal
distribution with mean vector µ and covariance matrix Σ.

Let DAC be the region of the payoff plane such as

c · d ≤ −r0xC

α · d ≤ −r0xA − r0zABxB − r0(zAC + zABzBC)

then

pAC ≡ P [WA ≤ 0 ∩WC ≤ 0] =

∫
DAC

N (µ,Σ) .

Finally, let DAB be the region of the payoff plane such as

β · d ≤ −r0xB − r0zBCxC

α · d ≤ −r0xA − r0zABxB − r0(zAC + zABzBC)

then
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pAB ≡ P [WA ≤ 0 ∩WB ≤ 0] =

∫
DAB

N (µ,Σ) .

We define the contagion metric of institution i on institution j (i > j
in a lexicographic order i, j = A,B,C) by the bankruptcy probability of j
conditional on the bankruptcy probability of i, that is

CCB = P [WB ≤ 0|WC ≤ 0] =
pBC
pC

(1.19)

CCA = P [WA ≤ 0|WC ≤ 0] =
pAC
pC

(1.20)

CBA = P [WA ≤ 0|WB ≤ 0] =
pAB
pB

(1.21)

It is interesting to compare the probabilities above (that represent the
probability of contagion) with the bankruptcy probability of an single in-
stitution. For example, if we compare CCB with pB we have an idea of the
bankruptcy probability of B due to its own operations, that is, we have a
notion of the bankruptcy probability of B not due to the contagion of C on
B.

The contagion metrics CCB, CAC and CAB are increasing functions of the
nonseverity parameter ν, i.e, tighter is the regulation smaller is the contagion.
Figure 1.9 illutrates CCB for ` = 0.0011, θ = (1.5, 0.9)′, µ = (1.5, 1.2)′,
r0 = 1.00013, hA = 0.5, hB = 0.4, hC = 0.1 and

Σ =

 0.6 0.25

0.25 0.4


In Subsection 1.4.1 we show that for h < h∗ the financial institution h in

an economy without contagion prefer that the regulation is fixed in a specific
level ν < ν. If h > h∗ then financial institutions h prefer no regulation (that
is, ν ≥ ν). The intuition is very simple: to get benefit with the regulation
these financial institutions would like a level of regulation tigher than ν, but
in this case there isn’t equilibrium. Since it is impossible, they have no gain
with regulation hence they prefer ν = ν. Figure 1.10 shows the optimum ν
as a function of h.

The same question about the optimum level of regulation for each finan-
cial institution can be done to an economy with possibility of contagion.
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Figure 1.9: Contagion probability of C on B.

Figure 1.10: Optimum level of regulation (ν) as a function of h in an economy
without contagion.
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hB hC σ2
1 σ2

2 νB
0.4 0.1 0.8 0.2 1.12
0.4 0.1 0.6 0.4 1.88
0.4 0.1 0.2 0.6 2.43
0.3 0.26 0.2 0.25 4.57
0.27 0.26 0.01 0.25 7.93

Table 1.1: Diferrents values of νB

Let νh the value of the parameter of nonseverity that maximizes the utility
function of financial institution h. That is,

νh ∈ Arg Máx E
[
uh(Wh)

]
, (1.22)

where Wh is the wealth of financial institution h in an equilibrium allocation.
Of course, since financial institution C is the less risk averse one, it has

no benefit with regulation, that is, νhC
= ∞. For institutions B and C

νh depends on factors like market conditions and the difference among the
coefficients of risk aversion. Let’s analyze in more details νhB

when these
factors varies. The analyze of νhA

is very similar and we don’t make it here.
On the one hand financial institution B prefers a tighter level of regula-

tion. For example, since B invests on C, it would like that this institution
doesn’t take excessive risk to prevent that C go to bankrupt. Also, if asset
1 volatility is greater than asset 2 volatility then regulation is benefit to B
since the only way that B has to invest on asset 2 is investing in C and the
regulation can become the portfolio of C more concentrated on asset 2. On
the other hand, it is possible, for example, that institution B wishes to invest
a big amount of resources on asset 2 and the preferences of B and C are very
similar (that is, hB ≈ hC). But asset 2 is accessible only by institution C
which has an upper limit on its investments in asset 2 and institution B has
an upper limit on its investments in institution C. Then, in equilibrium, the
number of units of asset 2 effectively hold by institution B can be smaller
than in unregulated economy. In this case institution B prefer a softer level
of regulation.

Table 1.1 shows values of νB as a function of hB, hC , asset 1 variance and
asset 2 variance. The other model parameters are fixed and equals to the
same values used in the exercise described in Figure 1.9.

The tighter level of regulation that B prefers occurs when the difference
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between hB and hC is big and asset 1 is much more volatile than asset 2.
In this case financial institution B loves regulation because it becomes the
portfolio of C concentrated on asset 2. But if the preferences of B and C
are very similar and the asset 1 variance is very small then regulation is
undesirable for financial institution B since it prejudices C and consequently
B too.

Observe that in economy with contagion and incomplete asset structure,
institution B wants that institution C has preferences very similar to its. But
we showed in Section 1.3 that regulation can affect the effective degree of risk
aversion. Then what B desires is that the C effective degree of risk aversion
coincides with its.

1.4.4 The Regulating Agency Problem

The regulating agency is responsible for choosing of the regulation level (rep-
resented by the nonseverity parameter). The regulating agency would like
to work with a regulation level that maximizes Λs. However, it cannot dis-
dain the welfare of financial institutions. As we saw in Subsection 1.4.1 the
welfare of financial institutions is represented by Λf . Thus, the problem of
the regulating agency is possible to be described as choosing ν > ν that
maximizes the following function:

Λ (ν) ≡ Λf (ν) + λΛs (ν) , (1.23)

where λ is a positive constant.
However, the solution of this type of problem has little value since we

would have to arbitrate a λ and moreover we are adding utilities with prob-
abilities. The most important is to note that the regulating agency must
assume a commitment between:

1. To fix ν sufficently small in order to control the bankruptcy probability.
Special attention must be given to the situation in which the level of
capitalization of the financial institutions is low.

2. To fix ν sufficently large in order to not impact the financial institutions
welfare.

A more realistic approach for the problem of risk regulation consists of
extending the model considered here taking in account the existence of lob-
bies of financial institutions. In other words, we admit that the financial
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institutions try to persuade the regulating agency that their preferred posi-
tions would also serve the regulating agency’s interests and perhaps those of
the general public. So ν is endogenous and becomes only to be determined
by equilibrium conditions. Let us see in general lines as such model can be
specified21.

A lobby can appear when the interests of a group are not perfectly lined
up with the ones of the public power. The regulation (whatever may be) is
a fertile land for the occurrence of lobbies. In the case of risk regulation the
financial institutions have interest in maximizing its utility and the regulating
agency desires to guarantee the soudness of the financial system. Not always
these interests coincide perfectly.

In Subsection 1.4.2 we show that the regulating agency must consider
information about the net worth of financial institutions (represented by
W0

22) and the level of market nervousness (represented by σ). These vari-
ables constitute facts about the world and financial institutions have better
information about them than the regulating agency. We assume that only
one of these two variables is not perfectly known by the regulating agency
and let us denote it by γ. The welfare of the regulating agency is represented
by G (ν, γ). A reasonable choice for G (ν, γ) is λs (ν, γ).

We still assume the existence of only lobby group represented by the
financial institutions h such as h ∈ H where H ⊆ [`, 1]. The welfare of the
lobbyist will be denoted by U (ν, γ) and represents the aggregation of the
preferences of the members of the lobby group. Based on Definition 1.3 we
can make

U (ν, γ) = −
∫
H

ln
{
−E
[
uh
(
W h

1

)]}
h

dh.

The lobbyist knows γ. In the first period he sends a message of a set
of possibilities B to the regulating agency. The strategy of the lobbyist
is described by a function A (γ) such as when the lobbyist observes γ he
communicates the message b = A (γ) for some b ∈ B.

Initially, the regulating agency believes that γ is a random variable dis-
tributed in [γmin, γmax] accordingly to the density fγ (γ). Let â (γ) be the
strategy that the regulating agency suspects that is used by the lobbyist. Let

f̂γ

(
·|b, Â

)
be the probability density of the distribution of γ after the reg-

ulating agency to interpret the lobbyist’s message and to update his beliefs.

21For details on lobby theory see, for example, Grossman & Helpman (2002).
22Once more we are admitting that Wh

0 = W0, ∀h.
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Then the regulating agency chooses the regulation level such as

νG
(
b|Â
)

= arg max
∫
G (ν, γ) f̂γ

(
·|b, Â

)
dγ.

ν

We assume that the lobbyist knows how the regulating agency will inter-
pret his messages and also knows the regulating agency’s preference. Then
the optimun strategy of the lobbyist is constructed by finding, for each value

of γ, the message b ∈ B that maximizes U
[
νG
(
b|Â
)
, γ
]
. Moreover, in the

equilibrium we must have â (γ) = a (γ).
It is easy to see that a full revelation equilibrium occurs if and only if

arg max U (ν, γ) = arg max G (ν, γ) ∀γ ∈ [γmin, γmax] .
ν ν

Also it is easy to see that a babbling equilibrium always exists. A inter-
mediate case and closer to a real situation consists of representing the equi-
librium through partitions. In partitions equilibrium, the lobbyist chooses
one of a finite number n of messages, say b ∈ {b1, . . . , bn}. The regulating
agency interprets the message bi to mean that γi−1 ≤ γ ≤ γi for some set
of numbers {γ0, γ1, . . . , γn} such as γ0 = γmin and γn = γmax. When the
regulating agency hears the message bi he updates his beliefs to exclude the
possibility that γ lies outside the interval

[
γi−1, γi

]
. After that, he chooses

the regulation level ν(bi) such as

ν(bi) = arg max
∫ γi

γi−1
G (ν, γ) f̂γ (γ|bi) dγ.

ν

In the problem of regulation just presented the welfare functions of the
regulating agency and the lobby are very complex. Then to analyze the
behavior of the economy in equilibrium, numerical procedures are necessary.
For example, assume that there is only one risky asset with volatility σ. Also
assume that the capital of the financial institutions is of public knowledge
and take γ = σ. The lobbyist chooses between two messages: calm market
and nervous market. In the first case, the regulating agency considers σ
uniformly distributed on [0.02, 0.025] and in the second on [0.025, 0.03]. The
lobby is formed by the financial institutions such as h ∈ [0.9, 1]. In other
words, the riskier averse institutions are the ones that are able to influence
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regulador23. If W0 = 2 then, solving numerically the equilibrium problem,
we find that the regulating agency chooses ν as regulation level. This means
that the regulation do not have some effects on the financial institutions.

This example portraies a common situation: the regulation often is fixed
in a little severe level. In practical terms, few financial institutions worry
about the risk regulated limit in their investment decisions.

Finally, it is necessary to emphasize that this regulated analysis with
lobby is only one initial study, or better saying, a proposal for future stud-
ies. Undoubtly more general situations must be considered. For example,
including others lobbies and also the cost of the lobbyist activity.

1.5 Market Risk - Heterogeneous Beliefs

In addition to the internal model, the 1996’s Amendment of the Basel Accord
gives the option of adopting a standard model. In this case, the capital
allocation is done through a plan of weight factors of assets as a degree of
risk established for the regulating agency. Brazil adopted a hybrid system
concerning capital requirement for covering market risk of interests rates.
The VaR is used as metric of risk, however, the distribution parameters of
the assets returns are fixed by the regulating agency. This situation will be
called heterogeneous beliefs.

On our model, heterogeneous beliefs cause an modification of the set Υ.
The regulating agency considers that the risky assets payoff at t = 1 obeys a
normal distribution with mean m and covariance matrix S, that implies the
following form for Υ:

Υ = {y;y′Sy ≤ ν} .

Since S is positive definite by Lemma 1.1, there is only one solution of
the financial institution problem.

The hypothesis of heterogeneous beliefs introduces an additional difficulty
in the solution of the financial institutions investment problem and conse-
quently also in the problem to find equilibrium prices. We should therefore
begin with a particular case. More specifically, we will first analyze an econ-
omy in which there exists only one risky asset. In this situation, the matrix

23This hypothesis are very common since the institutions riskier averse are in general
the biggest one.
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algebra consists of operations with real numbers, which substantially facili-
tate the calculations.

Proposition 1.10 Consider an economy with only one risky asset, i.e., N =
1. Let (µ, σ) be the agents’ beliefs about the mean and variance of the risky
asset payoff, and θ the net supply of this asset. Let st be the expectation
of the regulating agency about the variance of the risky asset. Suppose that
R > r0, where R is the risk asset return. The solution to the problem of the
financial institution h,

(
xh, yh

)
, when the risky asset price is q, is given by:

yh =

{
1
h
σ−1 (µ− r0q) if h ≥

√
ρ
ν√

ν
s

if h <
√

ρ
ν
,

(1.24)

where ρ = (µ− r0q)
2 σ−2s.

In any case, xh = W h
0 − qyh.

To finding equilibrium prices, it is necessary, one more time, to use the
market clearing condition, as presented in the following proposition.

Proposition 1.11 Under the same conditions of Proposition 1.10, the equi-
librium price of the risky asset is

q =
1

r0
(µ−Ψσθ) ,

where Ψ is given by Equation 1.8 with κ = θ
√

s
ν
. Once again, an equilibrium

fails to exist if κ > 1− `.

After analyzing this particular case, we will now turn our attention to
a more general situation in which there are N risky assets. The proposi-
tions in the sequel characterize the solutions to the problems of the financial
institutions and of finding equilibrium prices.

Proposition 1.12 Let
(
xh,yh

)
be the solution of the problem of financial

institution h when the price vector of risky assets is q. Let (µ,Σ) be agents’
beliefs about the mean and covariance matrix of risky assets payoffs. We
have:

1. If h ≥
√

ρ
ν

then

yh =
1

h
Σ−1 (µ− r0q) , (1.25)

where ρ = (µ− r0q)′ Σ−1SΣ−1 (µ− r0q).
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2. If h <
√

ρ
ν

then

yh =

√
ν

ρ
Σ−1 (µ− r0q) . (1.26)

In any case xht = W h
0 −

∑
i qiy

h
i .

Proposition 1.13 Assume that Ri > r0 for all i. Then, for the economy
specified in this Section, the equilibrium price of the risky assets is

q =
1

r0
(µ−ΨΣθ) , (1.27)

where Ψ is given by Equation 1.8 with

κ =

√
θ′Sθ

ν
.

An equilibrium fails to exist if κ > 1− `.

Proposition 1.13 is a generalization of the result obtained by Dańıelsson
& Zigrand (2003), who considered an economy with risk constraint in which
the beliefs of the agents and of the regulating agency are the same, that is,
Σ = S and µ = m (see Proposition 1.1). Comparing this economy to the one
presented herein, we can infer that the first one represents the regulation via
internal models and that the second one is an intermediate approach between
the standard model and the internal model adopted in Brazil. The following
proposition compares the equilibrium prices in these two situations.

Proposition 1.14 Consider again an economy with only one risky asset.
Suppose also that θ > 0. Then, if s > σ and at least one financial institution
hits the risk constraint, the risky asset price is higher when internal models,
instead of the intermediate approach, are used.

1.6 Economics Effects of the Market Risk Reg-

ulation - Analysis by Simulation

A simple and efficient way to observe the economics effects of a risk regu-
lation consists of carrying through simulation financial market behavior. In
this Section we will study an economy of infinite horizon that is a multi-
period extension of the two period economy analyzed in Section 1.5. The
next Subsection presents the model of infinite periods. Basically, we will set
notation and adapt the previous results to this new situation.
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1.6.1 The Infinite Horizon Model

Consider an infinite-period economy constructed by the sequence of two-
period economies as proposed in Section 1.5. Time is discrete and indexed
by t ∈ T = {0, 1, 2, . . .}. At each period t the agents (financial institutions)
invest in N + 1 assets with maturity at t+ 1. Asset 0 is risk-free and yields
payoff d0,t+1 at t + 1. The risky assets are non-redundant and promise to
yield a payoff at t+ 1

dt =

 d1,t+1
...

dN,t+1

 ,

which conditioned on the information available up to t follows a Gaussian
distribution.

Let qit be the price of asset i at t. The return on asset i between periods
t and t+ 1 is defined as

Ri,t+1 ≡
di,t+1

qit
.

Let xht and yhit be the number of units of the risk-free asset and of the
risky asset i, respectively, held by financial institution h between periods t
and t+ 1. Then the wealth of agent h at time t+ 1 is

W h
t+1 = d0,t+1x

h
t +

∑
i

di,t+1y
h
it.

Agents have a very short time horizon, so they choose the portfolio that
maximizes the expected value of the wealth utility in the next period subject
to budget and risk constraints.

Admit that there is a fixed, deterministic time-invariant net supply of θi
units of the ith risky asset. Let θ be the vector that represents the aggregate
endowments of the risky assets, i.e.,

θ =

 θ1
...
θN

 .

For reasons that will be clearer further ahead, the net supply of the risk-
free asset depends on t and will be denoted by θ0t.
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Dańıelsson & Zigrand (2003) showed that in this economy equilibrium
prices depend only on aggregate endowment, no matter how this wealth is
distributed between the agents. Therefore, we may suppose the new supply
of risky assets at each period belongs to other individuals rather than to the
financial institutions24.

The budget constraint between periods t and t+ 1 is

q0tx
h
t +

∑
i

qity
h
it ≤ d0tx

h
t−1 +

∑
i

dity
h
i,t−1.

The regulating agency considers that the payoffs of the risky assets at t+1
conditioned on the information available at t follow a normal distribution
with mean mt and covariance matrix St

Υt =
{
y ∈ RN ;y′Sty ≤ νt

}
.

Observe that we are allowing that the risk constrain varies in the course
of time. This situation reflects what it occurs in the Brazilian market, since
the Central Bank of Brazil has the power to modify the multiplier.

The investment problem of the financial institution h at time t can be
written as

Max Et
(
uh
(
W h
t+1

))(
xht ,y

h
t

)
s.a. q0tx

h
t +

∑N
i=1 qity

h
it ≤ d0tx

h
t−1 +

∑N
i=1 dity

h
i,t−1

yht
′
Sty

h
t ≤ νt,

where Et is the expected value with respect to the agents beliefs at t25.
In each period t, an equilibrium for the economy in question is an asset

price vector (q0t, q1t, . . . , qNt) = (q0t, qt) and a mapping h ∈ [`, 1] 7→
(
xht ,y

h
t

)
,

such as

1.
(
xht ,y

h
t

)
solves the problem of financial institution h at time t when

asset prices are equal to (q0t, qt).

2. Market clearing, that is,
∫ 1

`
yht dh = θ and

∫ 1

`
xht dh = θ0t.

24The same assumption applies to the supply θ0t of the risk-free asset.
25All financial institutions expected the same behaviour of risky assets.
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Propositions in the sequel characterize the solution of the financial in-
stitution problem and of finding the equilibrium price for the economy of
infinite periods considered here. The demonstrations of them are similar to
the demonstrations of the Propositions 1.12 and 1.13 presented in Section
1.5 and will not be done here.

Proposition 1.15 Let
(
xht ,y

h
t

)
be the solution to the problem of financial

institution h at time t when the price vector of risky assets is equal to qt. Let
(µt,Σt) be the agents’ beliefs about the mean and covariance matrix of risky
asset payoffs between t and t+ 1. We have:

1. If h ≥
√

ρt

νt
then

yht =
1

h
Σ−1
t (µt − r0,t+1qt) , (1.28)

where ρt = (µt − r0,t+1qt)
′ Σ−1

t StΣ
−1
t (µt − r0,t+1qt).

2. If h <
√

ρt

νt
then

yht =

√
νt
ρt

Σ−1
t (µt − r0,t+1qt) . (1.29)

In any case xht = 1
q0t

(
d0tx

h
t−1 +

∑
i dity

h
i,t−1 −

∑
i qity

h
it

)
.

Proposition 1.16 Suppose that Ri,t+1 > r0,t+1 for all i. Then, for the econ-
omy specified in this Section, the equilibrium price of risky assets at date t
is

qt =
1

r0,t+1

(µt −ΨtΣtθ) , (1.30)

where Ψt is given by Equation 1.8 with

κt =

√
θ′Stθ

νt
.

An equilibrium fails to exist if κt > 1− `, for all t.

Intuitively, Proposition 1.16 shows that the regulating agency acts by
changing the average effective risk aversion across all agents (Ψ). Observe
that the variable non severity of the risk constraint guarantees the equilibrium
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in more general situations than in the case where νt = ν. For instance, in
moments of crisis, θ′Stθ tends to increase, however, since νt is an increasing
function of the market volatility, κt is kept under control.

For each t, the total bankruptcy probability is defined naturally as

pgbt =

∫ 1

`

pbht dh,

where pbht is the default probability of financial institution h at t+ 1 condi-
tioned to the information available at t. Hence,

pbht = Pd
t

[
W h
t+1 ≤ 0

]
,

where Pd
t is the probability measure conditioned on the information available

at t corresponding to the payoffs of risky assets distribution.
To compute pbht it is necessary to know xht . According to Proposition 1.15

xht depends on q0t which in equilibrium, can be obtained by Walras’ Law:

q0t = d0t +
(dt − qt)

′ θ

θ0t

. (1.31)

Analytically, it is possible to set θ0t constant over time, as it is done to
the net supply of risky assets. However, a computationally simpler procedure
is to:

1. Keep the price of the risk-free asset constant and equal to 1 in the
unregulated economy.

2. Calculate θ0t using Equation 1.31.

3. Run the same simulation for the regulated economy with the θ0t ob-
tained in the previous item.

Note that this procedure is equivalent to the existence of a monetary
authority that controls the supply of risk-free assets to keep the interest rate
constant for the unregulated economy.
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1.6.2 Dynamics of the Simulation

In order to our results become close to the reality, we admit that neither
the financial institutions and the regulating agency know the distribution of
asset payoff26. Soon they must forecast the mean and the covariance matrix
of this distribution in each time t. Therefore, the key issue to the simulation
of the economy specified in the previous Section lies in the modeling of three
major processes:

1. The data generating process (DGP) for asset payoffs.

2. The belief revision process of the agents;

3. The belief revision process of the regulator.

In choosing the DGP, our primary objective was to mirror important
stylized facts regarding financial returns, in particular volatility clustering,
unconditional non-normality, and the relative size difference between returns
and volatility for equities. Bearing this in mind, we considered a multivariate
GARCH(1,1) process to be a DGP. Since multivariate GARCH models are
difficult to use due to the large number of parameters and their nonlinear
relationships, simplifications have been proposed. Here we use an approach
known as BEKK GARCH (see Santos, 2002 for further details on multivariate
GARCH models). Data generation was done inMatLabTM using the function
full bekk simulate.m of the toolbox UCSD GARCH (Sheppard, 1999).

Financial institutions do not know the DGP, then they can only infer it
from historical data. Let us admit that the agents update their beliefs about
the asset returns according to the Exponentially Weighted Moving Average
(EWMA) method, as recommended by RiskMetricsTM . Therefore, financial
institutions believe that asset returns at t+1 conditioned on the information
available at t are normal with mean

µt =

 µ1t
...
µNt


26That is, in addition to heterogeneous beliefs we are admitting imperfect information.

40



and covariance matrix

Σt =

 σ11
t · · · σ1N

t
...

. . .
...

σ1N
t · · · σNNt

 ,

where µit is the expected value of Ri,t+1 and σijt is the covariance between
Ri,t+1 and Rj,t+1.

The updating rule for agents’ beliefs can be expressed as follows:

((µt,Σt) , Rt+1) 7→
(
µt+1,Σt+1

)
,

where
σijt+1 = ρσijt + (1− ρ) (Ri,t+1 − µit)

(
Rj,t+1 − µjt

)
and

µt+1 = ρµt + (1− ρ) Rt+1.

The decay factor ρ is set at 0.97 as recommended by RiskMetricsTM .
The regulating agency revises its expectations every two months (44 busi-

ness days). This window is consistent with the average periodicity of param-
eter updates stipulated by Bacen’s Circular 2,97227. The regulating agency’s
belief is still conditional normal, however the covariance matrix and the mean
payoff are estimated, respectively, by the sample covariance matrix and by
the sample mean of the payoffs of the last 43 observations.

In addition to the update of beliefs, it is necessary to establish a rule for
the variable multiplier. This can be achieved by making the nonseverity of
the risk constraint, νt, an increasing function of a market turbulence index.
Theoretical sophistications do not add much in this case; so, we take νt as
a linear function of the variance of a portfolio formed by the supply of risky
assets, that is,

νt = Mθ′Stθ, (1.32)

where M is a positive constant.
The dynamics of our model are generated in the following fashion. The

economy begins with an initial arbitrary set of beliefs {(µ0,Σ0) ;S0}. Based

27Bacen revises the parameters of Circular 2,972 within no longer than one month.
However, under normal market conditions, the parameters have remained unchanged, on
average, for two months.
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on these beliefs, agents make their portfolio choices. Given the portfolio
choices, the aggregate demand functions can be defined. Together with the
aggregate endowments, by market clearing, we can calculate the assets prices.
Then, the realizations of payoffs {d1} determine the returns R1 for the risky
assets, and the agents and financial institutions update their beliefs. This
process is repeated until the simulation ends at t = T .

1.6.3 Results

The following table shows the parameters used in the simulation. As the aim
here is to show how the assets behave in a regulated economy, we consider
the existence of only two risky assets. If we consider N > 2 would complicate
numerical calculations without adding any important information.

Endowments θ =

(
1.9
0.5

)
Risk-free asset payoff r0,t+1 = 1.00013,∀t
Lowest risk aversion ` = 0.0011
Linear function coefficient νt M = 40

Unconditional covariance matrix of risky assets

(
0.6 0.25
0.25 0.4

)
Unconditional mean of risky assets payoff

(
1.5
1.2

)

Table 1.2: Parameters used in the simulation.

To make sure the results are not affected by initial conditions, the econ-
omy adjusts for 500 periods and only after that we start to record the data.
Thus, date 1 corresponds to the 501st period of the simulation.

The main numerical conclusions of the simulation are shown in a series of
figures. First, we analyze the evolution of the total bankruptcy probability
of an economy à la Dańıelsson et al. (2004), i.e., the agents’ beliefs are
identical with those of the regulating agency and the risk constraint multiplier
is constant or equivalently νt = ν for all t. Then, by maintaining the agents’
expectations identical with those of the regulating agency, we examine the
characteristics of a variable risk constraint multiplier according to the rule
defined in Equation 1.32. Finally, we assess the consequences of different
beliefs between the agents and the regulating agency. Then to not bias the
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results with another piece of information, we set, once again, νt = ν for all t
in the last simulation.

Regulated Economy versus Not Regulated

Initially, let us analyze the behavior of the total bankruptcy probability in a
regulated economy and in an unregulated economy in which the agents and
the regulating agency share the same beliefs and where νt = ν = 100. The
sampling period corresponds to 250 business days (approximately one year).
In order to prevent simulation uncertainties from influencing the results, 1000
independent simulations were made. Thus, the reported data correspond to
the mean of these simulations.

Figure 1.11 shows the evolution of the mean of the asset 1 equilibrium
price throughout the sampled period. The asset price in an unregulated
economy is approximately 12% higher than the price in a regulated economy.
Figure 1.12 shows agents’ forecast variance for the return of risky asset 1.
Clearly, the imposition of a VaR-based risk constraint increases the expected
forecast variance. These results mirror those obtained by Dańıelsson et al.
(2004). Intuitively, the reduction in prices and the increase in volatility oc-
cur because risk constraint causes a transfer of risky assets from the least
risk-averse agents to the most risk-averse ones. But this only happens if the
asset price is reduced, which implies increase in volatility, since payoffs are
generated exogenously. Figure 1.13 shows the estimates for the correlation
coefficient between the risky assets in both situations analyzed. Risk regula-
tion causes a small decrease in the correlation between assets. This suggests
that VaR-based capital requirements can reduce the probability of systemic
crises.

Figure 1.14 plots the total bankruptcy probability. The graph shows that
the total bankruptcy probability in an unregulated economy is approximately
18% higher than in a regulated one. Basically, this occurs because risk con-
straint forces the agents to choose portfolios that are more focused on less
risky assets. This is probably one of the reasons that justify the use of the
VaR as a regulation instrument for risk control.

Multiplier of the Risk Constraint Variable

Let us now analyze the economic implications when risk limit νt depends
on a market turbulence index. We ran 1000 independent simulations. The
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Figure 1.11: Average price of asset 1 in 1000 simulations.

Figure 1.12: Average variance of asset 1 in 1000 simulations.
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Figure 1.13: Average correlation coefficient in 1000 simulations.

Figure 1.14: Total bankruptcy probability.
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Figure 1.15: Prices with constant and variable risk limits.

reported results correspond to the mean of these 1000 simulations. In each
simulation, we first calculated prices and variances using νt as specified by
Equation 1.32. Afterwards, we performed a new run with the same payoffs
generated in the previous one, but making the risk limit constant and equal
to the mean risk limits of the 250 observations, i.e., ν =

∑250
t=1 νt/250. The

aim of this procedure is to compare the effects of a variable risk limit with a
constant risk limit, but keeping similar capital requirement in both situations.
To simplify, let us consider that the beliefs of the regulating agency and of
the agents are the same.

Figure 1.15 shows the equilibrium price series of asset 1. As can be ob-
served, the variable risk limit causes a small decrease in the equilibrium price
(around 0.33%). Figure 1.16 shows the variance estimate in both runs. The
variable risk limit introduces the undersirable effect of increasing the vari-
ance. However, this is a small shortcoming (less than 4%). The explanation
for these results is that the regulating agency must be very strict under nor-
mal market conditions when the risk limit is variable in order to maintain
the same average capital requirement in both situations.
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Figure 1.16: Variance with with constant and variable risk limits.

Differences between Beliefs of Regulator and Agents

Finally, let us look at the effects on equilibrium prices and variance when
the agents’ beliefs do not match those of the regulating agency. To eliminate
possible noises with regard to the use of a variable nonseverity risk constraint,
consider that νt = 100 for all t. Again, the reported results correspond to
the mean of 1000 simulations.

Let us first analyze two extreme cases:

1. St =

(
0.2 0.25
0.25 0.1

)
, ∀t;

2. St =

(
0.9 0.25
0.25 0.7

)
, ∀t.

In situation 1, the regulating agency underestimates the volatilities, whe-
reas the opposite is true for situation 228. The simulation results in these
two cases are shown in Figures 1.17 and 1.18. In situation 1, the equilibrium

28If we generate a large number of paths for the payoff of risky assets according to
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Figure 1.17: Prices with homogeneous beliefs and in two extremes cases.

prices and variances of asset 1 are respectively higher and lower than in the
case in which the regulating agency and the agent share the same beliefs.
The opposite occurs in situation 2.

As a theoretical exercise, let us analyze an intermediate situation (and
more realistic) in which the updating of beliefs of the regulating agency is
made according to the rule described in Section 1.6.2. Figures 1.19 and 1.20
respectively show the equilibrium prices and the forecast variance of asset 1.
When the beliefs of agents and of the regulating agency differ, the equilibrium
price and the forecast variance are higher than in a regulated economy with
homogeneous expectations. This shows that the updating method used by
the regulating agency underestimates the variance of asset 1, which, as a
result, causes an increase in the equilibrium price. Nevertheless, the effect on
variance is detrimental. This is mainly due to imperfections in the covariance
estimate between assets 1 and 2 or in variance of asset 2.

the rule defined in Subsection 1.6.2 and using the parameters shown in Table 1.2, then,
the variance of risky assets estimated by financial agents (via EWMA) is larger than in
situation 1 and smaller than in situation 2.
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Figure 1.18: Variances with homogeneous beliefs and in two extremes cases.

Figure 1.19: Prices with homegenous and heterogenous beliefs.
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Figure 1.20: Variances with homegenous and heterogenous beliefs.

1.7 Credit Risk

In this Section we will study the economics effects of the capital requirement
for covering credit risk. The model is the same presented in Section 1.3.
This model, although its simplicity, is sufficiently flexible to cover a series of
interest situations. In contrast to the analysis of market risk, that was deep,
in the study of credit risk we will work in a more informal way. The main
conclusions will be extracted from simple numerical examples.

The Basel proposal to covering credit risk consists in using what is known
by risk-adjusted assets. Basically, the idea is to separate the assets of the
financial institutions in I groups and in each group to apply an asset-specific
risk weight. The positions bought and sold in different assets must be added
in absolute value. The result of this account is the Risk-Adjuted Asset
(RAA). The RAA must be less or equal to a fraction of the institution net
worth.

To facilitate the analysis, we are going to introduce a small alteration in
the basic model (see Section 1.3). The wealth of the institution h at t = 0
will not come from an initial endowment of assets. It will be an amount of
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equity capital generated in a previous period being independent of the assets
prices29. In order to detach this alteration let us denote by Kh, instead of
W h

0 , the wealth of the institution h at t = 0. Finally, we are also going to
assume that the asset supply belongs to other agents and not to the financial
institutions.

Made these comments, the risk constraint assumes the following form:

Υ =
{
y ∈ RN ; β1 |q1y1|+ . . .+ βN |qNyN | ≤ Kh

}
,

where β = (β1, . . . , βN) ∈ RN
++ are weight factors. Of course, if N > I then

at least two β’s are equal, that is, if there is more assets than groups then at
least two assets have the same weigh factor.

When we have only two risky assets and the prices of these assets are
positive then the risk constraint are a lozenge as illustrated in the Figure
1.21. The institution h problem can be written as

Min (r0q− µ)′ yh + hyh′Σyh

2

yh

s.a. β1q1y
h
1 + β2q2y

h
2 ≤ Kh

β1q1y
h
1 − β2q2y

h
2 ≤ Kh

−β1q1y
h
1 + β2q2y

h
2 ≤ Kh

−β1q1y
h
1 − β2q2y

h
2 ≤ Kh

Hence to solve the previous problem we have to consider nine different
cases (depending on which restrictions are active in the optimum). For ex-
ample, yh = 1

h
Σ−1 (µ− r0q) is an interior solution of this problem.

In order to avoid a tedious sequence of calculations in the same way that it
was done for market risk, we are going to restrict our analysis to a particular
example. Suppose N = 2, Kh = 2 for all h, r0 = 1.00013, µ = (1.5, 1.2)′ and

Σ =

(
0.6 0.25
0.25 0.4

)
.

29In a way, it already had occurred in the model of infinite periods presented in Section
1.6, when the wealth of the institutions in any period is resulted of asset payoff of the
previous period.
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Figure 1.21: Credit risk constraint (N = 2).

Figure 1.22 presents the equilibrium prices of assets 1 and 2 as function
of β1 (β2 fixed and equal to 0.3). Note that, except for small imperfections,
these prices are decreasing functions of the weight factor of asset 1. Figure
1.23 illustrates the default probability of financial institutions as function of
its CAAR. In Figure 1.23a the weight factors are well adjusted (β1 = 0.5 and
β2 = 0.3) and the regulating agency apparently obtains its intention, namely,
decreasing the bankrupt probability of the less risk averse institutions. How-
ever, in Figure 1.23b the regulating agency was not very sucessful in the
choice of the weight factors (β1 = 0.5 and β2 = 0.05), since it attributed to
asset 2 a weight not compatible with its volatility. As a consequence there
was an increase of bankrupt probability of institutions less risk averse in a
regulated economy. Finally, Figure 1.24 presents the total bankruptcy proba-
bility (the sum of the bankrupt probabilities of all institutions) as function of
β1. Note that exist a region (β1 between 0.1 and 0.7) in which the regulating
agency does not have to act.

1.8 Conclusion

The primary aim of this chapter was to analyze the economic impacts of risk
regulation of financial institutions by means of a general equilibrium model.
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Figure 1.22: Prices of assets 1 e 2 with credit risk constraint.

Figure 1.23: Default probability of institution h. In (a) β1 = 0.5 and β2 =
0.3. In (b) β1 = 0.5 and β2 = 0.05.
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Figure 1.24: Total bankruptcy probability as a function of β1.

In terms of economic welfare properties in an economy with market risk
constraint we showed that:

• Under usual conditions, the equilibrium allocations are Pareto efficient.

• For each institution there is a level of regulation that maximizes its
utility. We point out that this level is not necessarily equivalent to the
absence of regulation.

• If the net worth of a financial institution is high or the market volatility
is small then the VaR-based risk regulation can increase its bankruptcy
probability.

• The VaR-based risk regulation decreases the bankruptcy probability
only if there is a market problem, for example, high volatility.

• The VaR-based risk regulation decreases the probability of contagion.

In terms of economic impacts of Brazilian peculiarities regarding market
risk regulation of financial institutions (i.e. the risk constraint multiplier de-
pends on market volatility and heterogeneous beliefs between the regulating
agency and agents), the major conclusions are:
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• When nonseverity is variable, prices are lower and variance is higher
than in the case in which nonseverity is constant. However, these un-
desirable effects are negligible. On the other hand, variable nonseverity
guarantees the existence of equilibrium in periods of market turbulence.
This equilibrium would not be achieved if nonseverity were constant.

• When the regulating agency imposes its beliefs on financial institutions
for calculating the risk limit, or when the regulating agency imposes
an intermediate model between the standard and internal ones in order
to allocate capital to cover market risk, the effects on volatilities and
equilibrium prices depend on the method used by the regulating agency
to estimate the covariance matrix. This suggests that the adoption of
internal models produces a more efficient equilibrium to the economy.
In this regard, Bacen, by means of Communiqué 12,746, establishes
deadlines for the gradual shift of Brazilian rules to an internal modeling
approach. However, one should recall that this method requires much
more banking supervision.

• When an intermediate model is adopted for risk regulation (which is
the case of Brazil), special attention should be paid to the updating
of beliefs, since, if the regulating agency overestimates the volatility of
assets, there may be negative effects.

Finally, we demonstrated that when credit risk constraint is present it is
very important that the regulating agency set appropriately the risk weights.
For some set of risk weigth values the financial fragility is higher in a regulated
economy than in an unregulated one.
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Appendix - Proofs of Propositons

Proof of Proposition 1.3
The demonstration follows the usual procedure. Assume that the equilib-

rium allocation
{(
xh,yh

)}
h∈[`,1]

with prices q is not Pareto eficient. Hence,

there is another feasible allocation
{(
x̂h, ŷh

)
h∈[`,1]

}
that dominates{(

xh,yh
)
h∈[`,1]

}
in Pareto sense. That is, E

[
uh
(
x̂h, ŷh

)]
≥ E

[
uh
(
xh,yh

)]
for all h and exist H ⊆ [`, 1] with L (H) > 0 such as if h ∈ H then the strict
inequality holds.

Note that for all h we should have x̂h + qŷh ≥ W h
0 , where W h

0 = θh0 + qθh

is the initial wealth of agent h, since on the contrary, for ε > 0 sufficiently
small,

(
x̂h + ε, ŷh

)
belongs to the restriction set of institution h problem with

prices q. Since uh is strictly increasing it would result that
(
x̂h + ε, ŷh

)
is

preferable to
(
xh,yh

)
that would be in contradiction with

(
xh,yh

)
to be the

optimum of institution h problem with prices q. Moreover we must have
x̂h + qŷh > W h

0 for all h ∈ H.
Since

(
x̂h, ŷh

)
is feasible, we have:

θ0 + qθ ≥
∫ 1

`
x̂hdh+ q

∫ 1

`
ŷhdh =

∫
H
x̂hdh+

∫
[`,1]−H x̂

hdh+ q
(∫

H
ŷhdh+

∫
[`,1]−H ŷhdh

)
>

∫ 1

`
W h

0 dh = θ0 + qθ.

The contradiction demonstrates the desired result. �

Proof of Proposition 1.4
If equilibrium exists and all institutions reach the risk constraint then

θ′Σθ

(1− `)2 < ν <
θ′Σθ

(` ln `−1)2 ,

or, equivalently ` ≥ κΨ =
√

ρ
ν
< 1. In these conditions, for one given
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equilibrium allocation
{(
xh,yh

)}
H∈[`,1]

with prices q we have

Λ (ν) = −
∫ 1

`

ln{−E[uh(Wh
1 )]}

h
dh =

−
∫ 1

`

((
θh0 + qθh − qyh

)
r0 + µyh − hyh′Σyh

2

)
dh =

r0θ + µθ − 1
2

∫ 1

`
hyh

′
Σyhdh =

r0θ + µθ − 1
2

(∫ Ψκ

`
h θ

′Σθ
κ2 dh+

∫ 1

Ψκ
Ψ2

h
θ′Σθdh

)
.

Calculating the integrals and using the identity lnκψ =
(
κψ−`
κ

− 1
)

1
κ

we have

Λ (ν) = r0θ0 + µθ +
θ′Σθ

4κ2

[
(κΨ)2 − (`+ κ)κΨ + `2

]
.

�

Proof of Proposition 1.5
Since κ is a decreasing function of ν and Ψ is an increasing function of κ,

to show that Λ is an increasing function of ν is sufficient to show that

f(κ) = (κΨ)2 − 2 (`+ κ)κΨ + `2

is a decreasing function of κ. Consider the quadratic polynomial p(x) =
x2 − 2(`+ κ)x+ `2. This polynomial have two positive real roots:

x1 = `+ κ−
√
κ2 + 2κ` and x2 = `+ κ+

√
κ2 + 2κ`.

When κ increases x1 decreases and x2 increases (see Figure 1.25). Since κΨ
is an increasing function of κ and κΨ < κ+ ` follows that when κ increases,
(κΨ)2 − (`+ κ)κΨ + `2 decreases.

�

Proof of Proposition 1.6
Since κ is a strictly decreasing function of ν, to verify the intervals where

fh(ν) is increasing or decreasing it is enough to analyze fh as a function of
κ.

If ν ≤ ν ≤ g−1
2 (h) then h ≤ g2(ν) = κΨ, hence fh(ν) = Ψ

κ
− h

2κ2 − Ψ
1−` and
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Figure 1.25: Polynomial p(x) = x2 − 2(`+ κ)x+ `2 (κ1 < κ2).

∂fh

∂κ
= Ψ′(κ)

(
1

κ
− 1

1− `

)
+

h

κ3
− Ψ

κ2
.

Thus, if ν ≤ g−1
1 (h) then ∂fh

∂κ
< 0 hence fh is a strictly decreasing function of

κ and therefore a strictly increasing function of ν. Case g−1
1 (h) ≤ ν ≤ g−1

2 (h),
a similar argument shows that fh is a strictly decreasing function of ν.

If g−1
2 (h) < ν ≤ ν then

∂fh

∂κ
= Ψ′(κ)

(
Ψ

h
− 1

1− `

)
.

We have to consider two cases:

1. If ` ≤ h ≤ 1−`
ln `−1 then g3(ν) > h. Therefore ∂fh

∂κ
> 0 then fh is a strictly

increasing function of κ and a strictly decreasing of ν.

2. If 1−`
ln `−1 ≤ h ≤ 1 then the equation g3(ν) = h has only one solution.

Therefore, if g−1
3 (h) < ν ≤ ν then fh is strictly increasing function of
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ν. On the other hand, if g−1
2 (h) < ν ≤ g−1

3 (h) then fh is a strictly
decreasing function of ν.

�

Proof of Proposition 1.7
It is sufficient to show that

1

2

(
1

h (ln `−1)2 +
h

(1− `)2

)
≥ 1

(1− `) (ln `−1)
.

But the minimum of the left side of the previous equation occurs at
h = 1−`

ln `−1 and is equal to 1
(1−`)(ln `−1)

. �

Proof of Proposition 1.8
The function t(h) is continuous, moreover using the elementary differen-

tial calculus it is possible after tedious manipulation to prove that:

1. t
(

1−`
ln `−1

)
> 0 and

2. t(1) < 0.

By Bolzano’s theorem the function t(h) has at least one real root on the
interval

[
1−`

ln `−1 , 1
]
. To show that it is the only root we have to prove that

t(h) is strictly decreasing. We can write t(h) as the difference between two
functions: t(h) = t2(h)− t1(h) where

t1(h) =
1

ln `−1

(
1

2h ln `−1
− 1

1− `

)
and

t2(h) =
Ψ

κ
− h

2κ2
− Ψ

1− `
with κ and Ψ computed at ν = g−1

1 (h).

Therefore,

∂t1
∂h

= − 1

2 (h ln `−1)2 and

∂t2
∂h

= − 1

2κ2
,
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where to compute the last derivate we use the fact that at ν = g−1
1 (h),

∂t2
∂κ

= 0. Hence we must demonstrate that ∂t2
∂h
≤ ∂t1

∂h
. But this occurs because

Max ∂t2
∂h

= Min ∂t1
∂h

= − 1
2(1−`)2 .

h h

The other affirmations of the proposition are immediate consequences of
the behavior of t(h). �

Proof of Proposition 1.9
If ν < g−1

2 (h) then

∂m
h

sh

∂ν
=

r0W
h
0√

θ′Σθ

∂κ

∂ν
+
√

θ′Σθ
∂Ψ

∂ν
,

since ∂κ
∂ν
< 0 and ∂Ψ

∂ν
< 0 we have

∂mh

sh

∂ν
< 0.

If ν ≥ g−1
2 (h) then

∂m
h

sh

∂ν
=
∂Ψ

∂ν

(
− r0W

h
0 h

Ψ2
√

θ′Σθ
+
√

θ′Σθ

)
.

Hence, when ν ≤ ν̃ we have
∂mh

sh

∂ν
< 0 and when ν ≥ ν̃ we have

∂mh

sh

∂ν
> 0. �

Proof of Proposition 1.10
As the utility of agent h is strictly increasing, the budget constraint should

be bind. Therefore, the wealth of the institution h at t = 1 is given by:

W h
1 =

(
W h

0 − qty
h
)
r0 + dyh.

Since agents have a constant absolute risk aversion coefficient, without
loss of generality, we can suppose that the utility of institution h has the
form

uh (x) = −e−hx.

Thus, the investment problem of institution h is

Max E
(
−e−hW

h
1

)
yh

s.a. s
(
yh
)2 ≤ ν.
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By the normality hypothesis of the payoff one has that −hwh1 is also nor-

mal with mean −h
[(
W h

0 − qyh
)
r0 + µyh

]
and variance h2

(
yh
)2
σ. There-

fore, −e−hW
h
1 is lognormal with mean

−e−h[(W
h
0 −qyh)r0+µyh]+

h2(yh)
2

σ

2 .

Taking logarithms, eliminating the terms that do not depend on yh and
dividing by h, the problem of financial institution h becomes

Min (qr0 − µ) yh +
h(yh)

2
σ

2

yh

s.a. s
(
yh
)2 ≤ ν,

whose Lagrangean is

L
(
yh, λh

)
= (qr0 − µ) yh +

h
(
yh
)2
σ

2
+ λh

[
s
(
yh
)2 − ν

]
.

The 1st order condition is

yh =
(
hσ + 2sλh

)−1
(µ− qr0) .

If h ≥
√

ρ
ν

then is easy to show that yh = (hσ)−1 (µ− qr0) satisfies the

1st order condition with the risk constraint not bind (λh = 0).
If h <

√
ρ
ν

then the risk constraint should be active, hence λh = µ−qr0
2
√
sν
− hσ

2s

implying that yh =
√

ν
s
.

By the convexity, the first-order condition is also sufficient. According
to Lemma 1.1 the only solution to the problem of financial institution h is
given by Equation 1.24.

�

Proof of Proposition 1.11
Let Ψ = (µ−qr0)

θσ
and define the following function:

f (Ψ) =


Ψ ln `−1 if 0 < Ψ < `

κ
κΨ−`
κ

−Ψ lnκΨ if `
κ
≤ Ψ < 1

κ
1−`
κ

if Ψ ≥ 1
κ
.

The market clearing condition is equivalent to finding Ψ such as f (Ψ) = 1,
that is, the equilibrium prices are given by q = µ−Ψσθ

r0
, where Ψ is the solution

of f (Ψ) = 1. Solving this equation, we have:
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1. If 0 ≤ κ < ` ln `−1 then Ψ = 1
ln `−1 .

2. If ` ln `−1 ≤ κ < 1− ` then

f

(
`

κ

)
≤ 1 < f

(
1

κ

)
,

in other words, the solution is in the central branch of f . Therefore,
we have to solve the following equation:

κΨ− `

κ
−Ψ lnκΨ = 1,

which is equivalent to

z ln z = − (κ+ `) , (1.33)

where z = κΨe−1.

Equation 1.33 can be written as F (− (κ+ `) e−1) = z ln z. Substituting
this equality in 1.33 one has

Ψ = − κ+ `

κF (− (κ+ `) e−1)
.

3. If κ = 1− ` then Ψ is any real number greater than 1/κ.

4. If κ > 1 − ` then there is no Ψ that satisfies the market clearing con-
dition, i.e., an equilibrium fails to exist. �

Proof of Propostition 1.12
Following the same procedure used in the demonstration of the Proposi-

tion 1.10 one can easily see that the Lagrangean of the problem of financial
institution h is

L
(
yh, λh

)
= (r0q− µ)yh +

hyh
′
Σyh

2
+ λh

(
yh

′
Syh − ν

)
.

The 1st order condition is

yh =
(
hΣ + 2λhS

)−1
(µ− r0q) . (1.34)
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If h ≥
√

ρ
ν

then yh = 1
h
Σ−1 (µ− r0q) is the solution of agent h problem

with risk constraint not bind (λh = 0).
If h <

√
ρ
ν

then the risk constraint should be active, i.e, yh
′
Syh = ν.

To solve the optimization problem in this case we could substitute Equation
1.34 at the risk constraint to find λh and then to find the optimal portfolio.
This process involves serious technical difficulties since we must determine
the roots of a polynomial of order 2N . A simpler method is to use the results
obtained for the one-dimensional case and infer a possible optimizing solution
yh. Then, one should check whether this candidate satisfies the first-order
condition.

When N = 1 we show that all the institutions with the active risk con-
straint behaved as if their CAAR were equal to

√
ρ
ν
,i.e., optimal risk sharing

was impaired. Based on this observation, a natural choice for yh is given by
Equation 1.26. It is easy to see that this choice of yh satisfies the 1st order
condition with the risk constraint active. Again, by convexity, the 1st order
condition is also sufficient. By Lemma 1.1 results that the (only) solution of
the financial institution h problem is given by Equations 1.25 and 1.26. �

Proof of Proposition 1.13
We want to show that p ≡ Σ−1 (µ− r0q) = Ψθ with Ψ defined by

Equation 1.8. When 0 ≤ κ ≤ ` ln `−1 (which corresponds to the case in
which no institutions reach the risk constraint) or when κ ≥ 1 − ` (which
corresponds to the case in which risk constraints of all institutions are active,
with no equilibrium if strict inequality holds), the demonstration is trivial.
Let us focus now on the intermediate situation, i.e, ` ln `−1 < κ < 1 − `,
in other words, some institutions have an active risk constraint and others
don’t.

The market clearing condition gives∫ √ ρ
ν

`

√
ν

ρ
pdh+

∫ 1

√
ρ
ν

p

h
dh = θ,

or [
1− `

√
ν

ρ
− ln

(√
ρ

ν

)]
p = θ.

Hence, vectors p and θ are collinear. Let us make p = Ψθ, then Ψ should
satisfy the following equation:
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κΨ− `

κ
−Ψ lnκΨ = 1,

which is identical to equation for Ψ obtained in the one-dimensional case (see
the proof of Proposition 1.11) which concludes the proof. �

Proof of Proposition 1.14
The demonstration is an immediate consequence of the fact that Ψ (de-

fined by Equation 1.8) is an increasing function of κ on the interval [0, 1− `].
�
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Chapter 2

Applications of Affine Models
on the Brazilian Fixed Income
Market

2.1 Introduction

Fixed income options are intensively traded in numerous markets around
the world. Their popularity comes from their usefulness on the management
and control of interest rates risk. They are usually priced with the use of
sophisticated arbitrage-free term structure models (see Heath et al., 1992).
A prerequisite for those models to work is their adjustment to capture the
cross-sectional and dynamics of the bonds yields. However, it is not clear
that efficiently capturing information from bonds yields necessarily guaran-
tees efficiency on the pricing of options written on this market. In other
words, can in general underlying market dynamics completely characterize
its corresponding option market dynamics?

We try to answer this question by analyzing the underlying and op-
tion markets of the most popular Brazilian fixed income instrument, the
ID-Future.

The issue of reconciling underlying and derivatives market information
has been addressed before on some recent studies. Chernov and Ghysels
(2000), Ait Sahalia et al. (2001) and Pan (2002) have worked with dynamic
asset pricing models estimated based on a joint time series of S&P500 spot
and options data. Jagannathan et al. (2003) studies relative pricing of
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caps and swaptions for dynamic term structure models estimated based only
on US swaps. Heidari and Wu (2003) show, through principal component
analysis, that while three factors are enough to capture the dynamics of
US interest rate swaps, three additional factors are necessary to capture the
joint dynamics of swaps and swaptions. Bikbov and Chernov (2005) compare
Gaussian and Stochastic Volatility affine models using a joint data set of
eurodollar futures and option prices. Li and Zhao (2005) test the ability of
quadratic term structure models on pricing and hedging caps when they are
estimated based only on US swaps data. Almeida et al. (2005) show that
affine term structure models estimated based on joint US swaps/caps data
are more capable to explain excess bond returns than when estimated based
only on swaps data.

On the context of the Brazilian fixed income market, we observe that
the IDI option market contains sources of information independent from
ID-Futures market. We start presenting regression results supporting the
existence of dynamic factors driving option prices which are not spanned
by the bonds yields. After, we analysed two classical interest rate models:
the Gaussian and the Cox-Ingersoll-Ross (CIR) models. The former model
presents a very simple volatility structure that is unable to capture the in-
formation contained in the option market. The last model is the simplest
interest rate model that presents stochastic volatility. When we calibrated
this model using options on the estimation procedure we note a decrease on
call price error compared with the error when we use only ID-Futures on the
estimation procedure. In other words, there is information on IDI options
that are not on bonds yields.

With this information in hands, we propose a theoretical model which
takes into account the existence of independent dynamic sources driving the
option market but not the underlying market. Moreover, as we shall see, this
model attributes to the additional independent factors, the ability of driving
the volatility of the underlying fixed income instruments. Models like that
have been first proposed by Collin-Dufresne & Goldstein (2001), and are
denominated Unspanned Stochastic Volatility (USV) models.

Besides the analysis of the incompleteness of the Brazilian fixed income
market, this work make important contributions to pricing IDI options. IDI
options have a peculiar characteristic which is not shared by usual fixed
income international options: Their payoff depends on the integral of the
short-term rate along the path between the trading date t and the option
maturity date T . Usually the payoff of bond vanilla options depends on
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the short-term rate (or more generally the state vector) evaluated only at
the maturity date T . In an usual terminology IDI option is a kind of asian
options.

IDI options have been priced before with the use of single factor term
structure models. Silva (1997) adopted the Black et al. (1990) model, Vieira
Neto & Valls (1999) adopted the Vasicek (1977) model, Fajardo & Ornelas
(2003) adopted the CIR model (Cox et al., 1985), and Gluckstern et al.
(2002) and Almeida et al. (2002) adopted the Hull & White (1990) model.
Note that our approach generalizes theirs on at least two points. First, while
they adopt single factor models, we adopt a multi-factor model. It is well-
known that in order to capture term structure dynamics we need at least
two factors, and in general three factors1. Second, while the other studies
were interested in pricing the cross sectional of options on a single day, we are
interested in analyzing bonds yields and options prices dynamics using model
estimated parameters based on ID-Future and IDI options. This approach
demands much more from the model than the simple calculation of options
prices on a single day, and posterior comparison with market prices.

Another important innovation of this work is the pricing of IDI options in
the CIR model based on a numerical Laplace transform inversion. Fajardo &
Ornelas (2003) priced IDI options with the use of a single factor CIR model.
They obtained a close formula for the call price, but they relied on a very
strong assumption, namely the short term interest rate at any two differents
times are independent random variables. Not surprisingly, the results that
they got were very poor.

Finally, we obtained a theoretical pricing formulas for IDI options under
a multi-factor dynamic term structure models that exhibit USV.

2.2 Data and Market Description

In the following two subsections we explain how ID-Futures and IDI options
work. For more details about these contracts we recommend the Brazilian
Mercantile & Future Exchange (BM&F) webpage2.

1See Litterman and Scheinkman (1991) for a seminal factor analysis on term structure
data.

2http://www.bmf.com.br/indexenglish.asp
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2.2.1 ID-Futures

The One-Day Interbank Deposit Future Contract (ID-Future) with maturity
T is a future contract whose underlying asset is the accumulated daily ID
rates3 capitalized between the trading time t (t ≤ T ) and T . The contract
size corresponds to R$ 100,000.00 (one hundred thousand Brazilian Real)
discounted by the accumulated rate negociated between the buyer and the
seller of the contract. Then, if one buys an ID-Future at a price ID4 at time
t and holds it until the maturity T , his gain/loss is

100000 ·

(∏ζ(t,T )
i=1 (1 + IDi)

(1/252)(
1 + ID

)ζ(t,T )/252
− 1

)
,

where IDi denotes the ID rate i − 1 days after the trading time t. The
function ζ(t, T ) represents the numbers of days between times t and T 5.

This contract is very similar to a zero coupon bond. The only difference
is that it presents a sequence of cash flows paid every day. Each daily cash
flow is the difference between the settlement price6 on the current day and
the settlement price on the day before corrected by the ID rate of the day
before.

BM&F is the entity that offers the ID-Future. The number of authorized
contract-maturity months is fixed by BM&F (on average, there are about
twenty authorized contract-maturity months for each day but only around ten
are liquid). Contract-maturity months are the first four months subsequent
to the month in which a trade has been made and, after that, the months
that initiate each following quarter. Expiration date is the first business day
of the contract-maturity month.

3The ID rate is the average one-day interbank borrowing/lending rate, calculated by
CETIP (Central of Custody and Financial Settlement of Securities) every workday. The
ID rate is expressed in effective rate per annum, based on 252 business-days.

4The ID-Future is quoted in interest rate per annum based on 252 bussiness-days.
5Without any loss of generality, in this paper, we associate the continuously-

compounded ID rate to the short term rate rt. Then the gain/loss can be written as
100000 ·

(
e
∫ T

t
(ru−r)du − 1

)
, where r = ln(1 + ID).

6The settlement price at time t of a ID-Future with maturity T is equal to R$ 100,000.00
discounted by its closing price quotation.
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2.2.2 IDI and its Option Market

The IDI index is actually defined as the accumulated ID rate. Using the asso-
ciation between the short term rate rt and the continuously-compounded ID
rate we can write the IDI index value as the exponential of the accumulated
short term interest rate

IDIt = IDI0 · e
∫ t
0 rudu. (2.1)

This index has been fixed to the value of 100000 points in January 2, 1997.
It has actually been resettled to its initial value sometimes, most recently in
January 2, 2003. This index is computed every workday by BM&F.

An IDI option with time of maturity T is an European option where the
underlying asset is the IDI and whose payoff depends on IDIT . When the
strike is K, the payoff of an IDI option is Lc(T ) = (IDIT −K)+ for a call
and Lp(T ) = (K − IDIT , 0)+ for a put.

BM&F is also the entity that offers the IDI option. Strike prices (ex-
pressed in index points) and the number of authorized contract-maturity
months are established by BM&F. Contract-maturity months can happen to
be any month and expiration date is the first business day of the maturity
month. A series is just a set of characteristics of the option contract, which
determine its expiration date and strike price. The series is identified by a
specific code established by BM&F. On average, there are about 30 autho-
rized series within each day for call options and ten for put options, but not
more than ten call options series and only two or three put options series are
liquid. The liquidity of put options is low, being common finding a sequence
of days where no put option trade took place.

2.2.3 Data

Data consists of time series of yields of ID-Futures for all different liquid
maturities, and values of IDI options for different strikes and maturities.
The data covers the period from January 02, 2003 to December 30, 2005.

BM&F maintains a daily historical database with the price and number
of trades of every ID-Future and IDI option that have been traded in some
day. With the ID-Future database and a time series of ID interest rates, it is
direct by cubic interpolation to estimate the interest rates for fixed maturities
for all trading days. For each fixed time to maturity, a reference bond is a
zero coupon bond with that time to maturity. We adopt the fixed times
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to maturity of 1, 21, 63, 126, 189, 252 and 378 days. For the options, we
select two diferents data base. The first is formed by the more liquid IDI
call in each day with price greater or equal to 150. The second is constituted
by a synthetic at-the-money IDI call7 with time to maturity equals to 95
days8. The former option data base is used to test the ability of the models
to pricing IDI calls. The latter data base is used to calibrate the models.

After excluding weekends, holidays, and workdays where no deal took
place, we have a total of 748 yields for the reference bonds for each fixed
maturity and 748 prices of IDI call options in our sample.

2.3 Evidence that Bonds do not Span the Fi-

xed Income Market

For motivate the model proposed in Section 2.6 we present an empirical
evidence of extra factors driving option prices not existent on the bonds
market. Specifically we run regressions where the dependent variable is the
price of the synthetic at-the-money IDI call, while the independent variables
are the yields of the reference bonds for all the previously fixed maturities,
1, 21, 63, 126, 189, 252, and 378 days. Setting up the notation, let cst
represent the time t price of the synthetic at-the-money IDI call. Let also
rbt(τ) represent the time t yield of the reference bond with time to maturity
τ , expressed in years. We basically run two types of regressions. The first, a
standard multiple linear regression:

cst = β0 + β1rbt(
1

252
) + β2rbt(

21
252

) + β3rbt(
63
252

)

+β4rbt(
126
252

) + β5rbt(
189
252

) + β6rbt(1) + β7rbt(1.5) + ε1t =

β0 + β · rbt + ε1t ,

(2.2)

where β = (β1, β2, . . . , β7) and rbt =
(
rbt(

1
252

), rbt(
21
252

), . . . , rbt(1.5)
)
.

7An at-the-money option is an option with moneyness equal to one. The moneyness is
defined by the quocient between the present value of the strike and the IDI at the current
time.

8In each day, the synthetic at-the-money IDI call is obtained by an interpolation scheme
on Black volatility for the time to maturity equals to 95 days. Again, we elimated options
with price less than 150.
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The second, a non-linear regression:

cst = a · rbt + b · rb2t + c · rb3t + d · erbt + ε2t , (2.3)

where a, b, c and d are seven-dimensional vectors, and powers and exponen-
tials of rb’s are calculated using matrix algebra, meaning that operations are
performed on each element of the vector at the same time.

The R2s (or explained variance) are respectively 14.23% and 45.48% for
linear and non-linear regressions9. Results of these regressions suggest the
existence of factors driving options dynamics with sources of uncertainty
independent of the underlying market.

2.4 The Gaussian Model

2.4.1 Model Specification

The uncertainty in the economy is characterized by a filtered probability
space (Ω, (Ft)t≥0 ,F ,P) satisfying the usual conditions. We assume the exis-
tence of a pricing measure Q under which discounted bond prices are mar-
tingales. The Gaussian model is specified through by defining the short term
rate rt as a sum of N normal random variables:

rt = φ0 +
N∑
i=1

X i
t , (2.4)

where the dynamics of process X is given by

dXt = −κXtdt+ ρdWQ
t , (2.5)

with WQ being an N -dimensional brownian motion under Q, κ a diagonal
matrix with κi in the ith diagonal position, and ρ is a matrix responsible for
correlation among the X factors. The connection between martingale prob-
ability measure Q and physical probability measure P is given by Girsanov’s
Theorem with an essentially affine (Duffee, 2002)10 market price of risk

dW P
t = dWQ

t − λXXtdt, (2.6)

9The non-linear regression, is non-linear on the ID yields but can be solved by trans-
formations of variables which turn the regression into a linear one. In this sense, the R2 of
this non-linear regression is that of a corresponding transformed linear multiple regression.

10Constrained for admissibility purposes (see Dai and Singleton, 2000).
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where λX is an N ×N matrix and W P is a brownian motion under P.
An IDI option is just an asian option whose payoff is a function of the

instantaneous rate (the underlying) over the whole of its life-time. Then to
price it, we have to know the distribution of the integral of instantaneous
rate. The next Lemma characterizes this distribution under the Gaussian
model.

Lemma 2.1 Let Y (t, T ) =
∫ T
t
rudu. Then, under the measure Q and con-

ditional on the sigma field Ft, Y is normally distributed with mean M(t, T )
and variance V (t, T ), where

M(t, T ) = φ0τ +
N∑
i=1

1− e−κiτ

κi
X i
t (2.7)

and

V (t, T ) =
∑N

i=1
1
κ2

i

(
τ + 2

κi
e−κiτ − 1

2κi
e−2κiτ − 3

2κi

)∑N
j=1 ρ

2
ij+

+2
∑N

i=1

∑
k>i

1
κiκk

(
τ + e−κiτ−1

κi
+ e−κkτ−1

κk
− e−(κi+κk)τ−1

κi+κk

)∑N
j=1 ρijρkj,

(2.8)
where τ = T − t.

2.4.2 Pricing Zero Coupon Bonds

Let P (t, T ) denote the time t price of a zero coupon bond maturing at time
T , paying one monetary unit. It is well known that Multi-factor Gaussian
models offer closed-form formulas for zero coupon bond prices. The next
lemma presents a simple proof of this fact for the particular model in hand.

Lemma 2.2 The price at time t of a zero coupon bond maturing at time T
is

P (t, T ) = eA(t,T )+B(t,T )′Xt , (2.9)

where A(t, T ) = −φ0τ+
1
2
V (t, T ) and B(t, T ) is a column vector with −1−e−κnτ

κn

in the nth element.

Using Equation 2.9 and Itô’s lemma we can obtain the dynamics of a
bond price under the martingale measure Q

dP (t, T )

P (t, T )
= rtdt+B(t, T )′ρdWQ

t . (2.10)
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To hold this bond, the investors will ask for an instantaneous expected excess
return (zi(t, T )). Then, under the physical measure, the bond price dynamics
is

dP (t, T )

P (t, T )
= (rt + zi(t, T ))dt+B(t, T )′ρdW P

t . (2.11)

Applying Girsanov’s Theorem to change measures we have

zi(t, T ) = B(t, T )′ρλXXt. (2.12)

2.4.3 Pricing IDI Options

IDI options have been priced before with the use of single factor term struc-
ture models11. We directly generalize those models adopting multiple factors
supporting multiple movements driving the term structure as suggested to
be true by empirical factor analysis (see Litterman and Scheinkman, 1991).
Option pricing is provided in what follows.

Denote by c(t, T ) the time t price of a call option on the IDI, with time
of maturity T and strike price K, then

c(t, T ) = EQ
t

[
e−Y (t,T )Lc(T )

]
= EQ

t

[(
IDIt −Ke−Y (t,T )

)+]
= IDItE

Q
t

[(
1− K

IDIT

)+
]

=
∫
y≥log K

IDIt

(IDIt −Ke−y) fY |Ft(y)dy.

(2.13)

where fY |Ft(y) is the probability density of Y (t, T )|Ft
By Lemma 2.1 we know that Y |Ft is normally distributed. Using a simple

property of normal distribuition it is easy to compute c(t, T ), how demon-
strated in the following Lemma.

Lemma 2.3 The price at time t of the above mentioned option is

c(t, T ) = IDItΦ(d)−KP (t, T )Φ(d−
√
V (t, T )), (2.14)

11Silva (1997) adopted the Black et al. (1990) model, Vieira Neto & Valls (1999) adopted
the Vasicek (1977) model, and Fajardo & Ornelas (2003) adopted the CIR (1985) model.
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where Φ denotes the cumulative normal distribution function, and d is given
by

d =
log IDIt

K
− logP (t, T ) + V (t, T )/2√

V (t, T )
. (2.15)

If p(t, T ) is the price at time t of the IDI put with strike K and maturity
T then, by the put-call parity, we have

p(t, T ) = KP (t, T )Φ(
√
V (t, T )− d)− IDItΦ(−d).

2.4.4 Parameters Estimation

In this Subsection we estimate a three factor Gaussian model using Brazilian
ID-Futures data and IDI option prices. The model parameters are estimated
using a maximum likelihood procedure (see Appendix A for details) with two
different strategies:

• First, we adopt only ID-Futures data. The reference market instrument
observed without error are the reference ID bonds maturiting at 1, 126
and 252 days. Then to find the states vector at each time t we have to
solve the following linear system:

rbt(0.00397) = −A(0.00397,φ)
0.00397

− B(0.00397,φ)′

0.00397
Xt

rbt(0.5) = −A(0.5,φ)
0.5

− B(0.5,φ)′

0.5
Xt

rbt(1) = −A(1,φ)
1

− B(1,φ)′

1
Xt.

(2.16)

For the reference ID bond with maturities 21, 63, 189 and 378 days, we
assume observations with gaussian errors ut uncorrelated along time:

rbt(0.0833) = −A(0.0833,φ)
0.0833

− B(0.0833,φ)′

0.0833
Xt + ut(0.0833)

rbt(0.25) = −A(0.25,φ)
0.25

− B(0.25,φ)′

0.25
Xt + ut(0.25)

rbt(0.75) = −A(0.75,φ)
0.75

− B(0.75,φ)′

0.75
Xt + ut(0.75)

rbt(1.5) = −A(1.5,φ)
1.5

− B(1.5,φ)′

1.5
Xt + ut(1.5).

(2.17)
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The Jacobian matrix is

Jact =


−B(0.00397,φ)′

0.00397

−B(0.5,φ)′

0.5

−B(1,φ)′

1

 ; (2.18)

• Second, we introduce options information on the estimation procedure.
Again, we assume that the yields of the reference ID bond with maturi-
ties 1, 126 and 252 days are observed without error. Then it is possible
to obtain the values of the state vector at each time t solving the linear
system 2.16. The difference between the two strategies appears only
on the errors definitions. In the second strategy we include options
price errors12, that is, for each t the vector ut has length five and its
components are

rbt(0.0833) = −A(0.0833,φ)
0.0833

− B(0.0833,φ)′

0.0833
Xt + ut(0.0833)

rbt(0.25) = −A(0.25,φ)
0.25

− B(0.25,φ)′

0.25
Xt + ut(0.25)

rbt(0.75) = −A(0.75,φ)
0.75

− B(0.75,φ)′

0.75
Xt + ut(0.75)

rbt(1.5) = −A(1.5,φ)
1.5

− B(1.5,φ)′

1.5
Xt + ut(1.5)

cst = c(t, T ) + ut(call).

(2.19)

In both cases the transition probability from Xt−1 to Xt in the real world is

p(Xt|Xt−1;φ) = Ψ (Xt,m∆t, V∆t) ,

with:

• Ψ (x,m, V ) =
(
(2π)3/2|V |

)− 1
2 e−

1
2
(x−m)′V −1(x−m),

• m∆t = e(ρB−κ)∆tXt−1 and

12Alternatively, we can use implied volatility instead of prices to construct the options
errors.
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• V∆t = Ξ(∆t)
[∫ ∆t

0
Ξ−1(u)ρ (Ξ−1(u)ρ)

′
du
]
Ξ(∆t)′, where Ξ(t) is the ex-

ponential of the matrix (ρB − κ)t.

2.4.5 Empirical Results

Tables 2.1 and 2.2 present respectively the values of the parameters estimated
for the model which does not adopt options and for the model that adopts
options on its estimation procedure13. Standard deviations are obtained by
the BHHH method 14. Note that the majority of the parameters is significant
at a 95% confidence interval (parameters whose ratio column presents bold
values), except for the risk premia parameters, which are usually the hardest
ones to pin down (see for instance Duffee, 2002 or Dai and Singleton, 2002
and 2000 for comparisons of results). Note also that the introduction of
options information has a little effect on parameters estimation.

The mean absolute interest errors for the reference ID bond with matu-
rities 21, 63, 126 and 378 days are respectively 0.18%, 0.07%, 0.02%, 0.12%
and 0.28% both when we don’t use options on the estimation procedure and
when we use them. The mean absolute price error of the liquid IDI calls
are 17.53% (when we use only the ID reference bonds) and 17.43% (when
options are taken into account). Just for comparison purposes, using US
LIBOR and swaps data to price the cap market, Jaganathan et al. (2003)
presented a three-factor model which obtains an average relative pricing error
of 30% on the first year of their sample period (February, 1995 to June, 1999),
achieving errors higher than 50% on the remaining portion of their sample.
Figure 2.1 shows the observed and the theoretical option price (estimated
use only ID reference bonds) for the liquid calls15. Observe that Gaussian
model sub-estimates the prices of liquid IDI calls.

The results obtained suggest that the use of options to calibrate Gaussian
model has no effects on the parameters estimation and consequently on pric-
ing bonds and options. Therefore, the Gaussian model is not appropriated
to capture the information about the fixed income market contained on op-

13Parameters don’t show on the tables are fixed equals to zero.
14See Davidson & MacKinnon (1993).
15Due the little difference between the two sets of parameters estimated, the theoretical

IDI call price when synthetic calls are taken into account in the esimation procedure are
very close to the theoretical option price when we use only ID reference bonds in the
parameters estimation.
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Parameter Value Standard Error ratio abs(Value)
Std Error

κ11 6.3518 0.0039 1609.29
κ22 1.6206 0.0021 775.07
κ33 0.0003 0.0000 54991.03
ρ11 0.0916 0.0012 78.93
ρ21 -0.0215 0.0011 19.41
ρ22 0.0401 0.0004 98.52
ρ31 -0.0008 0.0003 2.54
ρ32 -0.0193 0.0001 149.27
ρ33 0.0109 0.0001 144.66

λX(11) -3.1285 124.0011 0.03
λX(21) 0.4265 69.3241 0.01
λX(22) 0.0052 11.1908 0.00
λX(31) -1.9877 38.4728 0.05
λX(32) 2.5641 10.1220 0.25
λX(33) -0.7475 7.8156 0.10
φ0 0.18 - -

Table 2.1: Parameters and standard errors for the Gauss model estimated
using only ID-Future reference bonds.
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Parameter Value Standard Error ratio abs(Value)
Std Error

κ11 6.3521 0.0019 3371.18
κ22 1.6232 0.0022 745.86
κ33 0.0003 0.0000 7623834
ρ11 0.0923 0.0011 84.29
ρ21 -0.0215 0.0009 23.70
ρ22 0.0404 0.0003 130.23
ρ31 -0.0008 0.0002 4.20
ρ32 -0.0194 0.0001 174.36
ρ33 0.0109 0.0001 152.14

λX(11) -3.1471 117.7430 0.03
λX(21) 0.4286 66.7649 0.01
λX(22) 0.0052 11.4283 0.00
λX(31) -1.9990 37.6906 0.05
λX(32) 2.5783 10.1888 0.25
λX(33) -0.7518 7.8895 0.10
φ0 0.18 - -

Table 2.2: Parameters and standard errors for the Gauss model estimated
using ID-Future reference bonds and synthetic IDI call option.
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tions (a well-known empirical fact)16. The problem with Gaussian model is
that the volatility structure of the interest rate is very simple which becomes
impossible to the maximum likelihood estimator to extract information from
options.

Figure 2.1: Observed IDI call price and model IDI call price (parameters
estimated using only ID reference bonds).

2.5 The CIR Model

2.5.1 Model Specification

In the CIR model, the short term rate process is specified as a sum of N
Feller process:

16We tried to introduce options information on the estimation procedure by assuming
that the reference market instrument observed without error are the reference ID bonds
maturiting at 1 and 252 days and the synthetic at-the-money IDI call option. But this
strategy worsens the mean absolute value of the options prices errors. Probably, it hap-
pened because the errors for the other reference bonds are higher since we inverted only
two ID reference bonds. For future work we will intend to calibrate a four-factor Gaussian
model (three factors to invert ID reference bonds and one factor to invert options).
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rt = φ0 +
N∑
n=1

Xn(t), (2.20)

where φ0 is a constant and the dynamics of process Xn is given by

dXn(t) = κn (θn −Xn(t)) dt+ σn
√
Xn(t)dW

Q
n (t), n = 1, . . . , N, (2.21)

with WQ =
(
WQ

1 , . . . ,W
Q
N

)
being an N -dimensional Brownian motion un-

der Q; κn, θn and σn are positive constants satisfying the Feller’s condition
2κnθn > σ2

n for all n.
Further, we assume that the market price of risk process

λX(t) =
(
λX1 (t), . . . , λXN(t)

)
has the particular functional form

λXn (t) =
λn
σn

√
Xn(t), n = 1, . . . , N. (2.22)

Then, the connection between martingale probability measure Q and
physical probability measure P is given by Girsanov’s Theorem

dW P
n (t) = dWQ

n (t)− λXn (t)dt. (2.23)

Substituing (2.23) in (2.21) we obtain the dynamics of Xn in the real world

dXn(t) = κn
(
θn −Xn(t)

)
dt+ σn

√
Xn(t)dW

P
n (t), n = 1, . . . , N, (2.24)

where κn = κn − λn and θn = κnθn

κn−λn
.

The probability density of Xn at time T under Q, conditional on its value
at the current time t, is given by (see Cox et al., 1985)

fXn(T )|Xn(t)(x) = cne
−un−vn

(
vn
un

) qn
2

Iqn

(
2 (unvn)

1
2

)
, (2.25)

where

cn =
2κn

σ2
n (1− e−κn(T−t))

, (2.26)

un = cnXn(t)e
−κn(T−t), (2.27)

vn = cnx, (2.28)

qn =
2κnθn
σ2
n

− 1, (2.29)

and Iqn(·) is the modified Bessel function of the first kind of order qn.
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2.5.2 Pricing Zero Coupon Bonds

From Brigo & Mercurio (2001) we know that the time t price of a zero coupon
bond maturing at time T is

P (t, T ) = eA(t,T )+B(t,T )′Xt , (2.30)

where

A(t, T ) = −φ0τ +
N∑
n=1

2κnθn
σ2
n

log

(
2γne

(κn+γn)τ
2

2γn + (κn + γn) (eτγn − 1)

)
, (2.31)

with γn =
√
κ2
n + 2σ2

n and B(t, T ) is a column vector with

Bn(t, T ) =
2 (eτγn − 1)

2γn + (κn + γn) (eτγn − 1)
, (2.32)

in the nth element.
Using Equation 2.30 and Itô’s lemma we can obtain the dynamics of a

bond price under the martingale measure Q

dP (t, T )

P (t, T )
= rtdt−B(t, T )′diag

([
σ1

√
X1(t), . . . , σN

√
XN(t)

])
dWQ, (2.33)

where for x ∈ RN , diag(x) stands for a diagonal matrix with xn in the nth
diagonal position.

To hold this bond, the investors will ask for an instantaneous expected
excess return. Then, under the physical measure, the bond price dynamics
is

dP (t,T )
P (t,T )

=

(rt + zi(t, T )) dt−B(t, T )′diag
([
σ1

√
X1(t), . . . , σN

√
XN(t)

])
dW P.

(2.34)
Applying Girsanov’s Theorem to change measures we have

zi(t, T ) = −B(t, T )′diag ([λ1, . . . , λN ])Xt. (2.35)
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2.5.3 Pricing IDI Options

Accordingly to the explanation in Subsection 2.4.3 to pricing IDI options we
have to know the distribuiton of Y (t, T ) under Q conditioned on the infor-
mation available at time t. If rt is a Gaussian process then Y |Ft is normally
distributed. But in this case there isn’t a close form for fY |Ft

17. Nevertheless,
the Laplace transform of Y (t, T )|Ft can be calculated. Following Leblanc &
Scaillet (1998) we have

L (Y |Ft) (s) = eζφ0τ

N∏
n=1

L (Yn|Ft) (s), (2.36)

where L (Yn|Ft) (s) = EQ
t

[
e−sYn

]
is the Laplace Transform of Yn(t, T ) =∫ T

t
Xn(u)du that is given by18

L (Yn|Ft) (s) =

[
2γ̃ne

(κn+γ̃n)τ
2

2γ̃n + (κn + γ̃n) (eτ γ̃n − 1)

] 2κnθn
σ2

n

· e
2(eτγ̃n−1)

2γ̃n+(κn+γ̃n)(eτγ̃n−1) ,

with γ̃n = γ̃n(s) =
√
κ2
n + 2σ2

ns.
At this point, the difficulty arises because to implement this procedure

we need a tool of numerical Laplace transform inversion.
Nagaradjasarma (2003) reviews the main approaches proposed in litera-

ture for pricing asian options on interest rate in the CIR model. As point out
above, the problem consists in inverting a Laplace transform. Each method
presents its advantages and drawbacks. We implemented the follow meth-
ods: Laguerre series expansion (Dufresne, 2000), Widder (1946) and Abate
& Whitt (1995). The last method is the most satisfactory both on the pro-
cessing time and on precision point of view.

Observe that after to invert the Laplace transform (Equation 2.36) we
would need a new numerical procedure, namely, the integration of the func-

tion (IDIt −Ke−y) fY |Ft(y) on the interval
[
log K

IDIt
,+∞

)
(see Equation

17See Dufresne (2001) for a proof that Y (t, T )|Ft has a continuos version.
18The Laplace Transform of Yn(t, T ) is just the time t bond price maturing at T when

short term rate follows a one-dimensional CIR process with parameters (κn, sθn,
√

sσn)
starting from srt.
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2.13). Nevertheless, Dassios & Nagaradjasarma (2003) showed that is pos-
sible to compute the call price in only one step as described in the next
lemma.

Lemma 2.4 For µ ≥ 0, denote by G(s, µ) the inverse Laplace transform of

EQ
t

(
e−(µ+s)

)
s

=
L (Y |Ft) (µ+ s)

s

with respect to s > 0. Hence

c(t, T ) = KG
(

log
K

IDIt
, 1

)
− IDItG

(
log

K

IDIt
, 0

)
−KP (t, T ) + IDIt.

(2.37)

2.5.4 Parameters Estimation

In this Subsection we estimate two versions of a three factor CIR model using
a maximum likelihood procedure (see Appendix A for details) in a similar
way that was done to Gaussian model. The first one employs only ID-Futures
data and the second one employs both ID-Futures data and IDI option prices.
Let us describe in more detalis these two strategies.

For both versions we assume that the ID reference bonds maturiting at
1, 126 and 252 days are observed without errors. Then to find the states
vector at each time t we have to solve the linear system 2.16 with A(t, T )
and B(t, T ) given by Equations 2.31 and 2.32, respectively. Moreover, the
Jacobian matrix is specified by Equation 2.18.

The difference between the two versions appears only on the errors def-
initions. Whereas to the first version we use errors definided by Equations
2.17, to the second version the errors are defined by Equations 2.19.

Since the dynamics of X in the real world is a Feller process and the Xn’s
are independent, the transition probability from X(t− 1) to X(t) in the real
world is

p(X(t)|X(t− 1);φ) =
3∏

n=1

fXn(t)|Xn(t−1)(x)

∣∣∣∣∣
x=Xn(t)

,

with fXn(t)|Xn(t−1)(·) given by Equation 2.25 changing κn by κn and θn by θn.
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2.5.5 Empirical Results

Tables 2.3 and 2.4 present the values of the parameters (estimated respec-
tively without and with options information) as well the asymptotic standard
deviations to test their significance. Except for the risk premia parameter λ3,
all parameters is significant at a 95% confidence interval. The mean absolute
error of the yields of the reference bonds maturiting at 21, 63, 189 and 378
days are respectively 0.21%, 0.10%, 0.03%, and 0.14% when we don’t use
options and 0.20%, 0.10%, 0.03% and 0.14% when we use them.

Parameter Value Standard Error ratio abs(Value)
Std Err.

κ1 78.5620 0.2646 296.88
κ2 0.0001 0.0000 14.47
κ3 1.7183 0.0117 146.36
θ1 0.0113 0.0001 121.55
θ2 35.3915 0.4814 73.52
θ3 0.0825 0.0003 242.76
σ1 0.3958 0.0113 34.91
σ2 0.0619 0.0003 239.84
σ3 0.3172 0.0048 66.62
λ1 33.4554 4.4172 7.57
λ2 1.8281 0.1524 12.00
λ3 -0.0013 3.7908 0.00
φ0 0 - -

Table 2.3: Parameters and standard errors for the CIR model estimated using
only ID-Future reference bonds.

The mean absolute error of the liquid IDI calls are 67.70% (without op-
tions in the estimation procedure) and 32.44% (with options). These results
point out an improvement on pricing calls when IDI options are taken into
account in the parameters estimation. Figure 2.2 shows the theoretical op-
tions prices and the real prices. Observe that without options the model
super-estimate options prices. This happens because the estimator has no
information about the options (which has information about volatility) and
consequently it understands the jumps in the interest rates as a high volatil-
ity. Figure 2.3 illustrates the instantaneous volatility of increments on the
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Parameter Value Standard Error ratio abs(Value)
Std Err.

κ1 58.1921 0.0120 4829.88
κ2 0.0000 0.0000 19.00
κ3 1.6668 0.0057 294.83
θ1 0.0109 0.0000 359.85
θ2 38.1596 0.0048 7878.28
θ3 0.0843 0.0001 655.39
σ1 0.3869 0.0029 133.52
σ2 0.0507 0.0001 413.38
σ3 0.1975 0.0011 187.93
λ1 37.0680 3.1359 11.82
λ2 -0.6328 0.0894 7.08
λ3 0.0002 1.2450 0.00
φ0 0 - -

Table 2.4: Parameters and standard errors for the CIR model estimated using
ID-Future reference bonds and options data.

short term rate for the two sets of parameters estimated. Note that without
options the estimator super-estimate the volatility.

The empirical results of the CIR model calibration permit us to conclude
that exist extra factos driving the volatility of the interest rate not present
on the bonds market.

2.6 The SVCEG Model

2.6.1 Model Specification and Bonds Price

Building on Collin-Dufresne and Goldstein (2001) and Casassus et al. (2005),
we provide in this Section the complete theoretical characterization of a dy-
namic term structure model exhibiting USV to be implemented using simul-
taneous data from the ID-Futures and IDI-options markets. We denominate
this model the Stochastic Volatility Conditional Extended Gaussian Model
(SVCEG) which is described below.

The model is within the class of affine models analysed by Duffie and
Kan (1996). It presents two stochastic factors, Xt and Zt that compose
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Figure 2.2: Options prices erros on the CIR model.

Figure 2.3: Instantaneous volatility of the increments on the short term rate
on the CIR model.
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the short term rate rt, one stochastic factor vt which represents the instanta-
neous volatility of factor Zt, and a conditionally deterministic factor θt which
represents the time varying long term mean of factor Zt:

rt = φ0 +Xt + Zt,

dXt = η(µ−Xt)dt+ σdWQ
X(t),

dZt = κ(θt − Zt)dt+
√
vtdW

Q
Z (t),

dθt = (γt − 2κθt +
vt

κ
)dt and

dvt = (α− βvt)dt+ δ
√
vtdW

Q
v (t);

(2.38)

where WQ
X , WQ

Z and WQ
v are independent brownian motions. Note that the

volatility vt follows a CIR process and by the independence assumption if we
condition on the path of volatility we have θt a deterministic function and the
short rate would follow a two factor extended Gaussian process with time-
varying long term mean θt. It directly follows from Casassus et al. (2005)
that the time t price of a zero coupon bond maturing at time T is given by:

P (t, T ) = eA(t,T )+BX(τ)Xt+BZ(τ)Zt+Bθ(τ)θt , (2.39)

where
BX(τ) = −1−e−ητ

η
,

BZ(τ) = −1−e−κτ

κ
,

Bθ(τ) = − (1−e−κτ )2

2κ
,

A(t, T ) = −φ0τ + AX(t, T ) + AZ(t, T ),

AX(t, T ) = −
(
µ− σ2

2η2

)
(BX(τ) + τ)− σ2

4η
BX(τ)2,

AZ(t, T ) =
∫ T
t
γsBθ(T − s)ds and

τ = T − t.

(2.40)

Note that the price of the bond does not depend directly on the volatility
variable creating an incomplete market where options are actually needed
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to hedge against the uncertainty of the volatility, not covered by the cross
section of bond prices.

In order to relate the brownian motions under the risk neutral measure
to the brownian motions under the physical measure, we have to define a
parametric form for the risk premia charged by investors, which under a
dynamic term structure model is represented by the market price of risk. In
the SVCEG model we work with an extended affine market price of risk (see
Cheridito et al. 2003):

dWQ
X(t) = dW P

X(t) +
1

σ

(
λX0 + λX1 Xt

)
dt, (2.41)

dWQ
Z (t) = dW P

Z(t) +
1
√
vt

(
λZ0 + λZ1 Zt

)
dt (2.42)

and

dWQ
v (t) = dW P

v (t) +
1

δ
√
vt

(λv0 + λv1vt) dt. (2.43)

Then, under the physical probability measure the dynamics of (Xt, Zt, vt) is

dXt = η̃ (µ̃−Xt) dt+ σdW P
X(t)

dZt = κ̃
(
θ̃t − Zt

)
dt+

√
vtdW

P
Z(t) and

dvt = (α̃− β̃vt)dt+ δ
√
vtdZ

P
t ,

where η̃ = η − λX1 , µ̃ = ηµ+λX
0

η−λX
1

, κ̃ = κ − λZ1 , θ̃t = κθt+λ
Z
0

κ̃
, α̃ = α + λv0 and

β̃ = β − λv1.
The risk neutral bond price dynamics is

dP (t, T )

P (t, T )
= rtdt+ σBX(τ)dWQ

X +BZ(τ)
√
vtdW

Q
Z ,

once more we can see that bond prices are insensitive to volatility-risk and
hence cannot be used to hedge it. Under the physical measure, the bond
price dynamics is

dP (t, T )

P (t, T )
= (rt + zi(t, T ))dt+ σBX(τ)dW P

X +BZ(τ)
√
vtdW

P
Z ,

where the instantaneous expected excess return is given by

zi(t, T ) = BX(τ)(λX0 + λX1 Xt) +BZ(τ)(λZ0 + λZ1 Zt).
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2.6.2 Pricing IDI Options

At time t, an IDI call with time of maturity T , and strike K can be priced
by the same technique applied by Hull & White (1987) in one of the seminal
papers on stochastic volatility models: By the independence of the brownian
motions WQ

Z and Wv
Q, conditioning on the volatility path, it does not affect

the distribution of WQ
Z and we can use the law of iterated expectations to

obtain the price as a double expectation. The inner is going to present
a Black & Scholes type of analytical formula (see Section 2.4), while the
external expectation integrates the volatility distribution, essentially a non-
central χ2 distribution. The model can be extended to deal with correlation
between the brownian motions WQ

Z and Wv
Q (see Casassus et al., 2005).

In the sequel, we present a series of lemmas which culminates in obtaining
the price of an IDI option as a function of the state variables under the
SVCEG model. These results will be useful when implementing a dynamic
version of the model.

Let Fv
t,T be the σ-field that represents the information on the volatility

process between times t and T , i.e Fv
t,T = σ {vu : u ∈ [t, T ]}. Denote by Gt,T

the σ-field generated by the union of the σ-fields Fv
t,T and Ft, i.e. Gt,T =

σ
{
Ft ∪ Fv

t,T

}
. The following lemma is a generalization of Lemma 2.1.

Lemma 2.5 Let Y (t, T ) =
∫ T
t
rudu, where rt presents the dynamics de-

scribed by Equation 2.38. Then conditional on Gt,T , Y (t, T ) is normally
distributed with mean M(t, T ) and variance V (t, T ) given by:

M(t, T ) = φ0τ +MX(t, T ) +MZ(t, T )

and
V (t, T ) = VX(t, T ) + VZ(t, T ),

with

MX(t, T ) = τµ+
1

η
(Xt − µ)

(
1− e−ητ

)
, (2.44)

VX(t, T ) =
σ2

2η3

(
4e−ητ − e−2ητ + 2ητ − 3

)
, (2.45)

MZ(t, T ) =
1− e−κ(T−t)

κ
Zt +

∫ T

t

(
1− e−κ(T−u)

)
θudu, and (2.46)

VZ(t, T ) =
1

κ2

∫ T

t

(
1− e−κ(T−u)

)2
vudu, (2.47)
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where vu : u ∈ [t, T ] is the path of the volatility conditional on Gt,T and

θu = e−2κ(u−t)
(
θt +

∫ u

t

e−2κ(t−s)
(
γs +

vs
κ

)
ds

)
, t ≤ u ≤ T. (2.48)

Lemma 2.6 The time t price of a zero coupon bond maturing a time T can
be written as

P (t, T ) = e−φ0τ−M(t,T )+
V (t,T )

2 ,

that is,

MZ(t, T ) =
VZ(t, T )

2
− AZ(t, T ) +Bz(τ)Zt +Bθ(τ)θt (2.49)

and

MX(t, T ) =
VX(t, T )

2
− AX(t, T )−BX(τ)Xt. (2.50)

Lemma 2.7 The time t price of a call option on the IDI with time to ma-
turity T and strike price K is

c(t, T ) = EQ [f (IDIt, K, t, T, V (t, T )) |Ft] , (2.51)

where
f (IDIt, K, t, T, V (t, T )) =

IDItΦ (d)−KP (t, T )Φ
(
d−

√
V (t, T )

)
,

with

d =
log IDIt

K
− logP (t, T ) + V (t, T )/2√

V (t, T )
. (2.52)

If the call option is at-the-money (i.e., IDIt = KP (t, T )) Equation 2.51
simplify to

c(t, T ) = EQ

[
IDIt

(
2Φ

(√
V (t, T )

2

)
− 1

)∣∣∣∣∣Ft
]
. (2.53)

Finally, using the well known fact that an at-the-money option is almost
a linear function on Black’s volatility, we obtain

c(t, T ) = IDIt

[
2Φ

(√
EQ (V (t, T )|Ft)

2

)
− 1

]
. (2.54)
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Lemma 2.8

EQ (V (t, T )|Ft) = VX(t, T ) +
vt
κ2
c1(t, T ) +

α

βκ2
c2(t, T ),

where:

• c1(t, T ) = 1−e−βτ

β
− 2 e−βτ−e−κτ

κ−β + e−βτ−e−2κτ

2κ−β and

• c2(t, T ) = 1
κ

(
−3

2
+ 2e−κτ − e−2κτ

2

)
+ τ − c1(t, T ).

Note that Lemma 2.7 completely characterizes the price of an IDI option as a
function of the state variables (Xt, Zt, θt, vt) while Lemma 2.8 combined with
Equation 2.54 gives an approximation to the option price which depends
only on the stochastic volatility variable vt, as long as the option is at-
the-money. For an empirical application, the approximation should be nice
because stochastic volatility can be explicitly extracted from option prices,
and its risk premia might be studied under the SVCEG model.

2.6.3 Parameters Estimation

Once more, we use a maximum likelihood estimation to obtain the parameters
of the model specified in Subsection 2.6.1. Denote by IDIspot ∈ RH the
vector of spot IDI. To simplify the estimation procedure, we consider γt = γ
for all t and taking ∆t = 1/252 years. Assume that the vector parameter is
φ = (φ0, η, µ, σ, κ, γ, α, β, δ, λ

X
0 , λ

X
1 , λ

Z
0 , λ

Z
1 , λ

v
0, λ

v
1).

By Equation 2.39 we know that

R(t, τ , φ) = −A(τ , φ)

τ
− BX(τ , φ)

τ
Xt −

BZ(τ , φ)

τ
Zt −

Bθ(τ , φ)

τ
θt, (2.55)

where BX(τ , φ), BZ(τ , φ) and Bθ(τ , φ) are given by Equation 2.40 and

A(τ , φ) = φ0τ + AX(τ , φ)− γ
2κ

[
τ + 1

κ

(
−3

2
+ 2e−κτ − e−2κτ

2

)]
.

Since ∆t = 1/252 is small, we discretize the dynamics of the SVCEG
model in the following way:

Xt = Xt−1 + η̃ (µ̃−Xt−1) ∆t+ σεX , (2.56)

Zt = Zt−1 + κ̃
(
θ̃t−1 − Zt−1

)
∆t+

√
vt−1εZ , (2.57)
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θt = θt−1 +
(
γ − 2κθt−1 +

vt−1

κ

)
∆t and (2.58)

vt = vt−1 +
(
α̃− β̃vt−1

)
∆t+ δ

√
vt−1εv, (2.59)

where εX , εZ and εv are independent normal distributions with mean zero
and variance ∆t.

In order to obtain the values of the state vector at each time t we use a
recursive procedure. First, we need to choose three instruments to be priced
without error in order to invert the state vector. Note that under the SVCEG
model we are forced to choose at least one of the instruments priced without
error to be an option, because by construction we are not able to extract the
volatility state variable from the cross sectional of bond prices alone. Let us
assume that the yield of the reference ID bonds with fixed maturity 21 and
252 days and the price of the synthetic IDI call option are observed without
error. If we know θt then (Xt, Zt, vt) can be calculated by Equations 2.54
and 2.55, and Lemma 2.8. Then, θt+1 might be calculated making use of
Equation 2.58.

Reference ID bond with maturities 63, 126, 189, and 378 are assumed to
be priced with gaussian errors ut uncorrelated throughout time.

The Jacobian matrix is

Jact =

 −BX(0.083,φ)
0.083

−BZ(0.083,φ)
0.083

0
−BX(1, φ) −BX(1, φ) 0

0 0 c1(95/252,φ)IDIspott
2κ2

√
υ

Ψ
(√

υ
2
, 0, 1

)
 ,

with

• υ = VX(t, T ) + vtc1(95/252,φ)
κ2 + αc2(95/252,φ)

βκ2 and

• c1 and c2 are given by Lemma 2.8.

The transition probability from (Xt−1, Zt−1, vt−1) to (Xt, Zt, vt), under
the physical probability measure is

p ((xt, zt, vt)|(xt−1, zt−1, vt−1);φ) = Ψ ((Xt, Zt, vt),m∆t, V∆t) ,

where

m∆t =(
Xt−1 + η̃(µ̃−Xt−1)∆t, Zt−1 + κ̃(θ̃t−1 − Zt−1)∆t, vt−1 +

(
α̃− β̃vt−1

)
∆t
) ,
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V∆t = ∆t
(
diag

[
σ2, vt−1, δ

2vt−1

])
and Ψ(·) is the three-dimensional normal probability density function (see
Subsection 2.4.4).

2.6.4 Empirical Results

Table 2.5 presents the values of the parameters and their asymptotic standard
deviations. Except for γ and λZ1 , all parameters is significant at a 95%
confidence interval.

Parameter Value Standard Error ratio abs(Value)
Std Err.

η 4.3508 0.1195 36.41
σ 0.0155 0.0001 123.54
κ 0.0000 0.0000 348.52
γ -0.4377 0.8577 0.51
α 0.0014 0.0000 42.72
β 0.2856 0.0889 3.21
δ 0.0518 0.0002 241.87

λ1
X -0.8926 0.1644 5.43

λ1
Z -0.0065 0.7926 0.0081

λ1
v -5.3205 0.0904 58.85
φ0 0.15 - -

Table 2.5: Parameters and standard errors for the SVCEG model.

The mean absolute errors of the yields are 0.13%, 0.16%, 0.10% and
0.25%. These errors are greater than those obtained both in the Gaussian
and CIR models. Of course this is a consequence of the fact that we only use
two factors to compose the instantaneous interest rate in the SVCEG model.

To pricing the liquid IDI calls we use Monte Carlo simulation19. In order
to obtain the simulated paths we discretized the stochastic differential equa-
tions of Xt and Zt in the same way that was done in Equations 2.56 and 2.57
whereas stochastic differential equation of vt was discretized via the Milstein
Scheme (Kloden & Platen, 1992):

19We can not pricing the liquid IDI calls by means of Equation 2.54 since they are not
necessarily at-the-money.

96



vt = vt−1 + (α− βvt−1)∆t+ δ
√
vt−1εv +

δ2

4
(ε2v −∆t).

To reduce the variance of the simulation error, we use antithetic variable
technique (Glasserman, 2003).

Figures 2.4 and 2.5 show the observed and the model price of the liquid
IDI call. The mean absolute error of the liquid IDI calls is 22%. Observe that
this error is lower than CIR model’s error and greater than Gaussian model’s
error. Probably the Gaussian error is lower than SVCEG error because in
the first model the yields errors are small. For future works we will intend to
extent the SVCEG model to incorporate three factors describing the short
term interest rate. Hence we will expect to observe yields errors smaller and
consequently an improvement on option pricing.

Figure 2.4: Observed price of the liquid IDI call.

Figure 2.6 illustrates the instantaneous volatility of the one-year bond
return extracted from the CIR model (without and with options) and the
USV model20. Note that on average the instantaneous volatility is smaller

20For the Gaussian model, the instantaneous volatility of the one-year bond is constant
and equal to 7.22%
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Figure 2.5: USV model price of the liquid IDI call.

and closer to the GARCH volatility one-year bond (Figure 2.7) in the USV
model than in the CIR model.

2.7 Conclusion

Recent work on empirical asset pricing theory make use of combined infor-
mation from both underlying and derivatives markets. Following this trend,
we combine information from the Brazilian ID-Future market and its corre-
sponding IDI option market. We obtain from a regression analysis, evidence
on the existence of dynamic sources of uncertainty that would be driving
the option market independently from the underlying market. Results ob-
tained with the regressions were confirmed through the implementation of a
dynamic multi-factor CIR model. The goal was to test the model ability to
price options, when its parameters were estimated by two distinct strategies.
In the first we took into account only the ID-Future market data whereas in
the second we used both ID-Future and IDI options. We observed that an
expressive improvement on pricing IDI options when the second estimation
strategy was applied.
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Figure 2.6: Instantaneous volatility of the one-year bond return.

Figure 2.7: Instantaneous volatility of the one-year bond return obtained by
GARCH method.
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At the same time we implemented a multi-factor Gaussian model. Due
to the very simple volatility strucuture of this model we didn’t obtain any
significant progress on price IDI calls when options were took into account
in the estimation procedure. However, aside its widely known imperfections
(e.g. short term rate with positive probability and constant volatility through
time), the Gaussian model presents the best results in terms of call price and
yields errors.

Based on these evidences, we propose a theoretical dynamic term struc-
ture model consistent with Unspanned Stochastic Volatility and present de-
tailed results on the pricing of bonds and options under this model, as well
as on how to implement it based on a mixed ID-Future market/IDI option
database. For future works we will intend to implement a four-factor USV
model which three factors will be related with the yields bonds and the other
will be related with IDI options. Certainly this model will present yields
error smaller than the USV model studied here and probably we will observe
an improvement on pricing IDI calls.
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Appendix A

Maximum Likelihood Estimation

On this work, we adopt the maximum likelihood estimation procedure de-
scribed in Chen and Scott (1993). We observe the following reference ID
bonds yields along H points in time: rbt(1/252), rbt(21/252), rbt(63/252),
rbt(126/252), rbt(189/252), rbt(1) and rbt(1.5)21. Let rb represents the H×7
matrix containing these ID bonds yields for all H points. In addition we ob-
serve the price cst for an at-the-money call with time to maturity of 95/252
years at the same H points. Let cs be the vector of length H that represents
these call prices. The reference ID bonds and the at-the-money call are called
reference market instruments. Denote by rmi = [rb, cs] the H × 8 matrix
containing the yields and the price of these reference market instruments.
Assume that the model parameters are represented by the vector φ and that
the difference between times t− 1 and t is ∆t. Finally, let gi(Xt; t, φ) be the
function that represents the relation between the reference market instrument
i and the state variables at time t for i = 1, . . . , 8.

In particular, we assume that the reference market instruments i1, i2 and
i3 are observed without error. To obtain the values of the state vector at
each time t we have to solve a system:

gi1(Xt; t, φ) = rmi(t, i1)

gi2(Xt; t, φ) = rmi(t, i2)

gi3(Xt; t, φ) = rmi(t, i3).

(2.60)

For the reference market instruments i4, i5, i6, i7 and i8, we assume observa-
tion with gaussian errors ut uncorrelated along time:

rmi(t,
[
i4 i5 i6 i7 i8

]
)− ut =[

gi4(Xt; t, φ) gi5(Xt; t, φ) gi6(Xt; t, φ) gi7(Xt; t, φ) gi8(Xt; t, φ)
]
(2.61)

Now, we can write the log-likelihood function as

L(φ, rb) =
∑H

t=2 log p(Xt|Xt−1;φ)−

−
∑H

t=2 log |Jact| − H−1
2

log |Ω| − 1
2

∑H
t=2 u

′
tΩ

−1ut,

(2.62)

21rbt(τ) stands for the time t reference ID bonds yields with time to maturity of τ .
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where:

1. Jact =


∂gi1

(Xt;t,φ)

∂Xt

∂gi2
(Xt;t,φ)

∂Xt

∂gi3
(Xt;t,φ)

∂Xt

 is the Jacobian matrix of the transformation

defined by Equation 2.60;

2. Ω represents the covariance matrix for ut, estimated using the sample
covariance matrix of the ut’s implied by the extracted state vector along
time;

3. p(Xt|Xt−1;φ) is the transition probability from Xt−1 to Xt in the real
world (that is, under the measure P).

Our final objective is to estimate the vector of parameters φ which max-
imizes function L(φ, rb). In order to try to avoid possible local minima
we use several different starting values and search for the optimal point by
making use of the Nelder-Mead Simplex algorithm for non-linear functions
optimization (implemented in the MatLabTM fminsearch function) and the
gradient-based optimization method (implemented in the MatLabTM fmin-
unc function).
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Appendix B

Proofs

Proof. of Lemma 2.1
It is not hard to verify by Ito’s rule that for each t < T the unique (strong)
solution of (2.5) is22

X i
T = X i

te
−κi(T−t) +

N∑
j=1

ρij

∫ T

t

e−κi(T−s)dW j
s , i = 1, . . . , N.

Then

rT = φ0 +
N∑
i=1

(
X i
te
−κi(T−t) +

N∑
j=1

ρij

∫ T

t

e−κi(T−s)dW j
s

)
.

Stochastic integration by parts implies that∫ T

t

X i
udu =

∫ T

t

(T − u) dX i
u + (T − t)X i

t . (2.63)

By definition of X, the integral in the right-hand side can be written as∫ T

t

(T − u) dX i
u = −κi

∫ T

t

(T − u)X i
udu+

N∑
j=1

ρij

∫ T

t

(T − u) dW j
u .

But∫ T
t

(T − u)X i
udu =

= X i
t

∫ T
t

(T − u) e−κi(u−t)du+
∑N

j=1 ρij
∫ T
t

(T − u)
∫ u
t

e−κi(u−s)dW j
s du.

Calculating separately the last two integrals, we have∫ T

t

(T − u) e−κi(u−t)du =

(
T − t

κi
+

e−κi(u−t) − 1

κ2
i

)
22In this Appendix we drop the superscript Q and denote the N -dimensional brownian

motion W Q simply by W .
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and, again by integration by parts,∫ T
t

(T − u)
∫ u
t

e−κi(u−s)dW j
s du =

=
∫ T
t

(∫ u
t

eκisdW j
s

)
du
(∫ u

t
(T − v) e−κivdv

)
=

=
(∫ T

t
eκiudW j

u

)(∫ T
t

(T − v) e−κivdv
)
−

−
∫ T
t

(∫ u
t

(T − v) e−κivdv
)
eκiudW j

u =

=
∫ T
t

(∫ T
u

(T − v) e−κivdv
)

eκiudW j
u =

1
κi

∫ T
t

(
T − u+ e−κi(T−u)−1

κi

)
dW j

u .

Substituting the previous terms in Equation 2.63, we obtain∫ T
t
X i
udu = (T − t)X i

t−

−κi
[
X i
t

(
T−t
κi

+ e−κi(T−t)−1
κ2

i

)
+
∑N

j=1

ρij

κi

∫ T
t

(
T − u+ e−κi(T−u)−1

κi

)
dW j

u

]
+

+
∑N

j=1 ρij
∫ T
t

(T − u) dW j
u =

= − e−κi(T−u)−1
κi

X i
t +
∑N

j=1 ρij
∫ T
t
− e−κi(T−u)−1

κi
dW j

u =

= 1−e−κi(T−u)

κi
X i
t + 1

κi

∑N
j=1 ρij

∫ T
t

(
1− e−κi(T−u)

)
dW j

u ,

that is,∫ T

t

X i
udu =

1− e−κi(T−u)

κi
X i
t +

1

κi

N∑
j=1

ρij

∫ T

t

(
1− e−κi(T−u)

)
dW j

u . (2.64)

Then Y (t, T ) = φ0 (T − t) +
∑N

i=1

∫ T
t
X i
udu conditional on Ft is normally

distributed (see Duffie, 2001) with mean

M(t, T ) = φ0 (T − t) +
N∑
i=1

1− e−κi(T−t)

κi
X i
t , (2.65)
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where we only used the fact that the stochastic integral in 2.64 is a martingale.
The variance of Y (t, T )|Ft is

V (t, T ) = varQ

[
N∑
i=1

Yi
κi
|Ft

]
, (2.66)

where Yi =
∑N

j=1 ρij
∫ T
t

(
1− e−κi(T−u)

)
dW j

u . Then

V (t, T ) =
N∑
i=1

varQ (Yi|Ft)
κ2
i

+ 2
N∑
i=1

∑
k>i

covQ (Yi, Yk|Ft)
κiκk

.

Using Ito’s isometry we have

V (t, T ) =
∑N

i=1
1
κ2

i

∑N
j=1 ρ

2
ij

∫ T
t

(
1− e−κi(T−u)

)2
du+

+2
∑N

i=1

∑
k>i

1
κiκk

∑N
j=1 ρijρkj

∫ T
t

(
1− e−κi(T−u)

) (
1− e−κk(T−u)) du.

(2.67)
At this point, simple integration produces

V (t, T ) =
∑N

i=1
1
κ2

i

(
τ + 2

κi
e−κiτ − 1

2κi
e−2κiτ − 3

2κi

)∑N
j=1 ρ

2
ij+

+2
∑N

i=1

∑
k>i

1
κiκk

(
τ + e−κiτ−1

κi
+ e−κkτ−1

κk
− e−(κi+κk)τ−1

κi+κk

)∑N
j=1 ρijρkj,

(2.68)
where τ = T − t. �

Proof of Lemma 2.2
The martingale condition for bond prices (Duffie, 2001) gives

P (t, T ) = EQ
[
e−

∫ T
t rudu|Ft

]
= EQ [e−y(t,T )|Ft

]
. (2.69)

Now the normality of variable Y (t, T )|Ft (Lemma 2.1), and a simple prop-
erty of the mean of log-normal distributions complete the proof. �

Proof of Lemma 2.3
By Equation 2.13 the proof consists of a simple calculation of the ordinary
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integral EQ [max (IDIt −Ke−y, 0) |Ft].

c (t, T ) = EQ [max (IDIt −Ke−y, 0) |Ft] =

=
∫∞
−∞

1√
2πV (t,T )

max (IDIt −Ke−y, 0) e−
(y−M(t,T ))2

2V (t,T ) dy =

=
∫∞

log(K/IDIt)
1√

2πV (t,T )
(IDIt −Ke−y) e−

(y−M(t,T ))2

2V (t,T ) dy.

(2.70)

Making the substitution z = y−M(t,T )√
V (t,T )

we have:

c (t, T ) =
∫∞
−d

1√
2π

(
IDIt −Ke−z

√
V (t,T )−M(t,T )

)
e−

1
2
z2dz =

= IDTt
∫ d
−∞

1√
2π

e−
1
2
z2dz −K

∫∞
−d

1√
2π

e−z
√
V (t,T )−M(t,T )− 1

2
z2dz =

= IDItΦ (d)−Ke−M(t,T )+
V (t,T )

2

∫∞
−d

1√
2π

e
− 1

2

(
z+
√
V (t,T )

)2

dz.

(2.71)

where d is given by Equation 2.15. Making a new substitution v = z +√
V (t, T ) and using Lemma 2.2 results in Equation 2.14. �

Proof of Lemma 2.5
By definition of rt we have

Y (t, T ) = φ0τ +

∫ T

t

Xudu+

∫ T

t

Zudu.

From Lemma 2.1 we know that
∫ T
t
Xudu conditioned on Ft is normal with

mean and variance given by Equations 2.7 and 2.8 respectively.
By an argument similar to the one presented on the proof of Lemma 2.1,

it is simple to show that∫ T
t
Zudu = κ

∫ T
t

(T − u)θudu− κ2I(t, T ) + 1−e−κ(T−t)

κ
Zt+

+
∫ T
t

(
T − u− κ

∫ T
t

(T − s)e−κ(s−u)ds
)√

vudW
Q
Z (u),

where I(t, T ) =
∫ T
t

(T − u)
∫ u
t

e−κ(u−s)θsdsdu. Then

MZ(t, T ) = κ

∫ T

t

(T − u)θudu− κ2I(t, T ) +
1− e−κ(T−t)

κ
Zt, (2.72)
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Using Ito’s isometry we have

VZ(t, T ) =
1

κ2

∫ T

t

(
1− e−κ(T−u)

)2
vudu.

Now, changing the order of integration in I(t, T ) we obtain

I(t, T ) =

∫ T

t

T − u

κ
θudu+

∫ T

t

e−κ(T−u) − 1

κ2
θudu.

Substituting this expression in Equation 2.72 we conclude the proof. �

Proof of Lemma 2.6
Equation 2.50 is a direct consequence of simple algebric manipulations of
Equations that define MX(t, T ), VX(t, T ), BX(τ) and AX(t, T ).

By Lemma 2.5 we know that

MZ(t, T ) = BZ(τ)Zt +

∫ T

t

(
1− e−κ(T−u)

)
θudu,

then is sufficient to show that∫ T

t

(
1− e−κ(T−u)

)
θudu =

VZ(t, T )

2
− AZ(t, T ) +Bθ(τ)θt.

By Equation 2.48 we have∫ T
t

(
1− e−κ(T−u)

)
θudu =∫ T

t
e−2κ(u−t) (θt + ∫ ut e−2κ(t−s) (γs + vs

κ

)
ds
) (

1− e−κ(T−u)
)
du =

θte
2κt
∫ T
t

e−2κu
(
1− e−κ(T−u)

)
du+∫ T

t

∫ T
s

e−2κu
(
1− e−κ(T−u)

)
e2κs

(
γs + vs

κ

)
duds =

θt

2κ

(
1− e−κ(T−t)

)2
+ 1

2κ

∫ T
t

(
γu + vu

κ

) (
1− e−κ(T−u)

)2
du =

Bθ(τ)θt − AZ(t, T ) + VZ(t,T )
2

,

which concludes the proof. �

107



Proof of Lemma 2.7
Using the law of iterated expectations we have

c(t, T ) = EQ [max
(
IDIt −Ke−Y (t,T ), 0

)
|Ft
]

=

EQ [EQ [max
(
IDIt −Ke−Y (t,T ), 0

)
|Gt,T

]
|Ft
]
,

by the same argument using in the proof of Lemma 2.3 and now applying
Lemmas 2.5 and 2.2 results. �

Proof of Lemma 2.8

EQ (V (t, T )|Ft) =

VX(t, T ) + 1
κ2

∫ T
t

(
1− e−κ(T−u)

)2
EQ (vu|Ft) du =

VX(t, T ) + 1
κ2

∫ T
t

(
1− e−κ(T−u)

)2 (
vte

−β(u−t) + α
β

(
1− e−β(u−t))) du,

where in last step we have used the property of the mean of a CIR process
(see Brigo and Mercurio, 2001). Expanding the terms in the right side and
calculating the ordinary integrals give the desired result. �
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