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Abstract

The core-flow is a technique to make the production and the trans-
portation of heavy oil through pipe technically and economically vi-
able. In this technique we form a film of water around the heavy oil
core in the pipe. The numerical simulation is of great importance for
the development of the technology. However, the software for numer-
ical simulation available nowadays are inefficient when dealing with
problems that have high jumps in the viscosity such as the core-flow
model. In order to obtain a robust and efficient preconditioner for such
model we focus our attention on the linearized Navier-Stokes equations
and on the advection-diffusion equation.

Balancing domain decomposition (BDD) algorithms are substruc-
turing methods that have been previously shown to be effective for
solving large finite element approximations of symmetric positive defi-
nite elliptic and certain saddle point problems with jump in the coeffi-
cients. In this thesis, we extend the BDD methods for solving the stabi-
lized advection-diffusion equation, the enhanced Stokes equations and
the stabilized Oseen equations on unstructured meshes. Our methods
are shown to be almost scalable with respect to the number of subdo-
mains or processors. Our work is an extension of the previous works by
Mandel, Pavarino, Widlund and Goldfeld on BDD methods for Poisson,
Stokes and elasticity equations, and an extension of the BDDC method
of Dohrmann for Poisson equation.

We consider a Galerkin least square stabilization on the discretiza-
tion of the model equations, since when the advective part dominates
the diffusive one, the numerical solution presents spurious oscillations
when the mesh is not refined enough to resolve the small scales. The
discretization of these models lead to non-symmetric linear systems,
which introduces some difficulties on the design of effective precondi-
tioners. The linear system has positive definite symmetric part, how-
ever very small compared to the skew-symmetric part. The resulting
linear system is very ill-conditioned and presents a real challenge for
preconditioning purposes.

In this thesis, we develop substructuring methods for non-symmetric
problems using non-overlapping domain decompositions where we par-
tition the unknowns into interior and interface variables. We then
perform the elimination of the interior degrees of freedom by static
condensation obtaining a Schur complement system. We develop hy-
brid preconditioners of BDD type for the Schur complement systems
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obtained from the stabilized advection-diffusion equation, the Stokes
equations and the Oseen equations. The coarse space is based on the
kernel of the operators in order to obtain solvability of the Neumann
local problems and to obtain scalability by broadcasting the solution
among the subdomains. In addition, in the case of Stokes equations
the coarse space should be rich enough to obtain inf-sup stability on
the coarse space.

We also develop coarse spaces suitable for the implementation on
unstructured meshes of the Stokes/Oseen version of the preconditioner.
We present numerical results for the implemented coarse spaces. All
the algorithms discussed have been implemented in parallel codes for
unstructured meshes using the PETSc library. Those implementations
have been successfully tested on large sample problems.

Keywords: Domain decomposition, balancing preconditioner, non-
symmetric problems, advection-diffusion, Stokes, Oseen, BDD, BDDC.
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CHAPTER 1

Introduction

The transportation of fluids of very high viscosity (such as heavy oil
in petroleum industry) through pipe is very inefficient in terms of en-
ergy consumption and it is, in general, technically limited to be imple-
mented. In petroleum industry the production and the transportation
through pipe of heavy oil lead to analougous difficulties. One of the
most prominent technology in petroleum engineering to make the pro-
duction and the transportation of heavy oil through pipe technically
and economicaly viable is the core-flow technique. It is generated a
lubricated flow in the pipe using water in the annular space between
the pipe wall and the the oil core (see Figure 1.1(a)). The water being
immiscible in the oil acts as a lubricant for the oil core. By other hand,
as a gift of nature, since the oil is very viscous the core tends to keep
away of the pipe wall.

This technique was first discussed in Issacs and Speed (1904, US
Patent No. 759374) for the water lubrication of lighter oils, although
this technique is more effective when the oil is very viscous. Since
then oil companies have had an intermittent interest in the technol-
ogy. However, the technology seems to have never been tested for
heavy and ultraviscous oil production/transportation. This technology
could be a very good alternative in deep-water fields such as in the
Brazilian coast, since no heat addition is required.

An introduction to the model equations can be found in [29] and also
some stability analysis of the interface using assimptotic analysis. A
review on the research in core-flow is presented in [28]. Lately in

1
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Figure 1.1: (a) 3-D visualization of the perfect core-flow in a pipe sec-
tion and (b) section sketching the bamboo waves in the interface be-
tween the heavy oil and the water.

(a) Water

Oil

(b)

Brazil, the experimental research of this technology have been carried
out by Bannwart et al. in [4, 5]. In [2, 35], it is presented numerical
experiments for the analysis of the interface’s stability between the
fluids.

In laboratory experiments it is verified that the pressure gradient
necessary to transport the heavy oil using the core-flow technique is
of the same order for transporting only water, which shows the great
economic advantage of core-flow. These experiments also show that
when the oil core is sufficiently fast so that the core is continuous, the
interface shows the formation of bamboo waves, as sketched in Figure
1.1(b).

The numerical simulation is of great importance for the develop-
ment of the technology. However, the software for numerical simu-
lation available nowadays are inefficient when dealing with problems
that have high jumps in the viscosity such as the core-flow model. The
system of equations modelling the core-flow is composed of two Navier-
Stokes equations (one for each phase) and an interface equation relat-
ing the jump of the normal stress and the jump in pressure accross the
interface, and the mean curvature of the surface (i.e., the interface).

Observing that the numerical solution of the Navier-Stokes equa-
tions can be made by discretizing in space using finite element method
(FEM, [27, 6]) and in time using Newton’s method. This leads essen-
tially to a problem of solving the linearized Navier-Stokes equations,
also known as Oseen equations. Hence, the main difficulty to obtain
an efficient preconditioner for the core-flow model is the development
of a preconditioner for the Oseen equations problems with high jump

Lab. of Fluid Dynamics/IMPA 2 May 9, 2006
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in the viscosity.
Balancing domain decomposition (BDD) preconditioners have been

extensivelly used to solve Stokes problems with high jump in viscosities
with great efficiency. The extension of these type of preconditioners to
the Oseen problems is of great interest for the numerical simulation of
the Navier-Stokes equations. In order to develop such preconditioners,
we first develop BDD preconditioners for the steady advection-difusion
equation which can be thought as the scalar version of the Oseen equa-
tions. The steady advection-difusion equation is the Poisson equation
with the addition of an advective term a.∇u. The advection-diffusion
equation describe the transport of solutes in groundwater and surface
water, the movement of aerosol and trace gases in the atmosphere, and
many other important applications.

The goal of domain decomposition methods is to solve efficiently on
parallel machines the numerical solution of partial differential equa-
tions that model a physical problem, such as incompressible fluid flow.
The most desirable property of a domain decomposition preconditioner
is scalability with respect to the number of subdomains, which can be
defined in the following way: suppose that to solve a linear system of
size n on N processors and the preconditioined iterative method takes
p iterations to converge, then a domain decomposition preconditioner
is said to be scalable if solving the new linear system of size 2n on 2N
processors, the iterative method takes p iterations to converge.

The most common domain decomposition methods are additive and
hybrid Schwarz methods, and iterative substructuring methods ([47,
52]). We restrict our development to finite element discretizations
([27, 6]), however Schwarz methods and others domain decomposition
methods could be applied to other kind of discretizations such as finite
differences.

The Schwarz method is an overlapping method, i.e., the domain is
decomposed into overlapping subregions with an overlap of size δ. This
preconditioner uses the local stiffness matrices of the subdomains to
build an additive preconditioner. The convergence of Schwarz methods
depend on the overlapping size δ.

In substructuring methods, the domain is partitioned into non-over-
lapping subdomains and the variables of the linear system which dis-
cretize a PDE are splitted into interior variables and interface vari-
ables. Using static condensation, the interior variables are eliminated
obtaining a Schur complement system in the interface variables. The
main methods of this type are the FETI (Finite Element Tearing and
Interconnecting [18, 17, 32]), FETI-DP [16, 33, 34], BDD (Balancing

Lab. of Fluid Dynamics/IMPA 3 May 9, 2006
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Domain Decomposition) and the BDDC (Balancing Domain Decompo-
sition with Constraints). However these preconditioners are very effi-
cient they are developed and built based on the structure of the discrete
model of the PDE.

The BDD and BDDC methods, which are the focus of this thesis,
have been tested successfully on several challenging large scale appli-
cations [43, 23, 42, 39, 12]. Coarse space and weighting diagonal ma-
trices play crucial roles in making the BDD algorithms scalable with
respect to the number of subdomains guaranteeing the consistency of
the local Neumann subproblems on each iteration of the preconditioned
system. The first BDD method introduced was due to Le Tallec and
De Roeck [43] for the Poisson equation and without a coarse space,
thus obtaining a non scalable preconditioner with inconsistent local
problems. Later, in the work of Mandel [39], a coarse space was in-
troduced based on the kernel of the Laplace operator thus solving the
unresolved difficulties of the early version. Extensions of the BDD
preconditioner for elliptic problems with possibly large jumps on coeffi-
cients were treated subsequently in [40, 14, 45, 46]. The extension
of the BDD preconditioner for the Stokes equations was made only
recently in the work by Pavarino and Widlund [42]. For the Stokes
problem not only are the local Neumann problems singular for floating
subdomains but additionally the boundary values of the local Dirichlet
problems should satisfy the zero flux condition on the boundary of the
subregions. Such issues are discussed in detail in [42] and in Chapter
3.

The BDDC method were introduced by C. Dohrmann in [12] for the
Poisson equation and its convergence analysis in [41] shows similar
bounds as for the BDD preconditioning. This preconditioner shares
some similarities with the BDD method and the FETI-DP method. In
[37], Li and Widlund extend the BDDC method for the Stokes case and
its numerical results show that the convergence of the BDDC is similar
to the FETI-DP method.

An analysis of some saddle-point preconditioners for the discrete
Oseen equations is presented in [15].

Preconditioning techniques for non-symmetric problems has been
proposed under many domain decomposition point of view, although a
research under the light of balancing domain decomposition is missing
in the literature. In [31], Kay, Loghin and Wathen consider a precon-
ditioner based on the Green’s tensor for Oseen equations that has a
little dependence on the mesh size. Overlapping methods have been
considered in [10, 9, 11]. In [1], Achdou et al. developed a Neumann-

Lab. of Fluid Dynamics/IMPA 4 May 9, 2006
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Figure 1.2: Plot of the discrete solution of the advection-diffusion
equation on a mesh of size 16 × 16, viscosity=0.01 and advection
field=(1,3). In picture (a) we plot the solution of the system without
stabilization and in picture (b) we plot the solution of the system with
stabilization.
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Neumann type preconditioner, by using Robin boundary condition in-
stead of a Neumann one. Toselli extended the FETI preconditioner in
his work [51], obtaining iteration counts that are very similar to those
for the corresponding Robin-Robin methods in [1]. In this thesis we
develop coarse problems for balancing domain decomposition methods
that are more efficient obtaining almost scalability.

The advection-diffusion equation and the Oseen equations present
spurious oscillations (see Figure 1.2) when the mesh is not fine enough
to resolve the boundary and interior layers. The introduction of a
stabilization on the discrete variational formulation of the problem is
essential and is introduced in our models. These stabilizations where
introduced in [7, 8] by Brooks and Hughes as the stream-line upwind
Petrov-Galerkin (SUPG). In [21], Hughes and Franca developed the
Galerkin least square stabilization which is better than the SUPG for
higher order discretizations. Subsequently, Douglas and Wang [13]
introduced a modification in the GLS stabilization obtaining a stabi-
lization less sensible to the choice of the stabilization parameters. A
similar formulation is also proposed by Lube and Auge [38].

In Chapter 2 we present the stabilized advection-diffusion equation
model. Our main concern in this chapter is the development of the
BDD and BDDC methods in the advective regimes.

Chapter 3 is devoted to the Stokes equations and the development
of coarse spaces for the BDD preconditioner suitable for unstructured
meshes. We also develop higher order discretizations, which by us-
ing a static condensation, can be thought as a stabilized lower order
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discretization.
In Chapter 4 the BDD method for Stokes equations is extended to

the stabilized Oseen equations exploring the kernel of the Oseen equa-
tions.

Lab. of Fluid Dynamics/IMPA 6 May 9, 2006



CHAPTER 2

BDD Preconditioners for Advection-Diffusion
Equation

The spaces L2(Ω) and H1(Ω) = {v ∈ L2(Ω); (∇v,∇v)Ω < ∞} are
Hilbert spaces in which we introduce the norms

‖u‖2
0 =

∫

Ω
u2(x) dx

and
‖u‖2

1 = ‖u‖2
0 + |u|21

where | · |1 is the semi-norm

|u|21 =
∫

Ω
∇u.∇u dx.

We also define the space
H1

0,γ(Ω) = {v ∈ H1(Ω); v|γ = 0},
where γ ⊂ ∂Ω is a subset with a positive measure. In the case we omit
the set γ it should be considered as ∂Ω.

2.1 The Advection-Diffusion Equation
We assume Ω ⊂ R

d to be a polygonal domain. The model problem is
{ −ν4u + a.∇u = f in Ω

u = ud on ∂Ω (2.1)

7
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where ν > 0 is the diffusion coefficient and a ∈ L∞(Ω)d is the advection
vector field which we assume to be incompressible, i.e., ∇.a = 0. Since
the reduction of the non-null Dirichlet ud to a null one does not present
difficulties, then we assume for simplicity ud = 0.

The variational formulation is defined on the space V = H1
0(Ω).

The following equation provides the advective term of the varia-
tional formulation of the problem and can be verified using Green for-
mula.
Lemma 1. Given a ∈ L∞(Ω)d and u, v ∈ H1(Ω)

(a.∇u, v)Ω =
1
2
[
(a.∇u, v)Ω − (u, a.∇v)Ω

]

− 1
2

∫

Ω
(∇.a)uv dx− 1

2

∫

∂Ω
(a.n)uv dx

(2.2)

where n is the outward normal to Ω.
Since we assume ∇.a = 0 and v ∈ V the resulting formula of

Lemma 1 simplifies, and then we obtain that the advective term of the
variational formulation is skew-symmetric. Using the last equation we
obtain the following variational formulation of the advection-diffusion
equation

Find u ∈ V such that

ã(u, v) = F̃(v) ∀u ∈ V (2.3)

where ã(u, v) = adiff(u, v) + askew(u, v) in which

adiff(u, v) = ν

∫

Ω
∇u.∇v dx

and
askew(u, v) =

1
2
[
(a.∇u, v)Ω − (u, a.∇v)Ω

]
.

Furthermore, F̃(v) = ( f , v)Ω.
The decomposition of the bilinear form ã(·, ·) in these two bilinear

forms is very useful for analysis and for numerics since adiff(·, ·) is sym-
metric and askew(·, ·) is skew-symmetric.

In the case of non-null advection field a the bilinear form ã(·, ·) is
not symmetric, however it is still coercive. In fact, using Friedrichs in-
equality, the continuous bilinear form adiff(·, ·) is coercive. In addition,
askew(·, ·) is skew-symmetric, so ã(·, ·) is coercive in V. This implies,
using the Lax-Milgram theorem, that the variational problem (2.3) has
a unique solution in V.
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2.2 Discretization
Let Th be a regular triangulation of the domain Ω where h is the char-
acteristic mesh size. We discretize the space V with continuous and
piecewise linear functions on each element of the mesh, i.e,

Vh = {v ∈ V; v|K ∈ P1(K) ∀K ∈ Th}.
The discrete variational formulation of the problem then reads

Find u ∈ Vh such that
ã(u, v) = F̃(v) ∀v ∈ Vh. (2.4)

This leads to a non-singular linear system Au = b. We note however
that such Galerkin discretization is numerically unstable for advective
dominated problems, hence we consider stabilized finite elements.

2.2.1 Stabilization of Advective Problems
Let us define the Péclet number as the quotient of inertia and viscous
forces in the discrete model, i.e.,

Pe =
‖a‖∞L
ν

, (2.5)

where ‖a‖∞ = supx∈Ω‖a(x)‖2 and L is the characteristic size of the do-
main. We have a diffusive-dominated problem when Pe ≤ O(1), and an
advection-dominated problem when Pe > O(1). The discrete Galerkin
advection-dominated problem (2.4) is numerically unstable and the so-
lution will usually present spurious oscillations when the mesh size is
not fine enough.

In order to avoid such instabilities we introduce a stabilization in
a Galerkin least square fashion in the variational formulation (2.3) of
the problem (2.1). We present here the main stabilization formulations.
The first stabilization of this kind to appear was the SUPG (streamline-
upwind-Petrov-Galerkin) introduced by Hughes and Brooks (see [7, 8,
25, 26]). Later, the Galerkin least square stabilization was developed
by Franca in [21] and subsequently the Douglas-Wang modification of
the GLS method was introduced in [13].

The stabilized formulation is

a(u, v) = F(v)

where for each stabilization we have the following bilinear and linear
forms:
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1. SUPG:

a(u, v) = ã(u, v) + ∑
K∈Th

τK(−ν4u + a.∇u, a.∇v)0,K

F(v) = ( f , v) + ∑
K∈Th

τK( f , a.∇v)0,K

2. GLS:

a(u, v) = ã(u, v) + ∑
K∈Th

τK(−ν4u + a.∇u,−ν4v + a.∇v)0,K

F(v) = ( f , v) + ∑
K∈Th

τK( f ,−ν4v + a.∇v)0,K

3. DW:

a(u, v) = ã(u, v) + ∑
K∈Th

τK(−ν4u + a.∇u,ν4v + a.∇v)0,K

F(v) = ( f , v) + ∑
K∈Th

τK( f ,ν4v + a.∇v)0,K

Remark 2. When employing linear elements the Laplacian term in the
summation above vanishes, then the three stabilization methods coin-
cide reducing to the SUPG stabilization method.

In this chapter, we write V for Vh. Once we discretize the space
with piecewise linear elements, by the previous remark, we redefine
the bilinear form ã(·, ·) that discretizes the problem (2.1) to incorporate
a stabilization as

a(u, v) = adiff(u, v) + askew(u, v) + ∑
K∈Th

τK(a.∇u, a.∇v)0,K

and consequently, the right hand side is

F(v) = ( f , v) + ∑
K∈Th

τK( f , a.∇v)0,K

Before defining the local stabilization parameter τK, we introduce
as in [20] the local Péclet number for any element K in Th as

PeK =
mh‖a‖∞,KhK

2ν (2.6)

Lab. of Fluid Dynamics/IMPA 10 May 9, 2006



BDD Precoditioners for Non-symmetric Problems Duilio T. da Conceição Junior

where mh = min{1/3, 2/Ch} and Ch is the constant appearing in the
following inverse inequality

∑
K∈Th

h2
K‖4v‖2

0,K ≤ Ch‖∇v‖2
0,K v ∈ Vh.

An analysis of the discretization space V shows that for P1 elements
the constant Ch is 0, since for a linear function 4v = 0 (see [24]).

The parameter of stabilization τK is defined on each element K ∈ Th
as

τK =
h

2‖a‖
∞,K

ξ(PeK)

where

ξ(PeK) =

{
PeK; 0 ≤ PeK < 1
1; PeK ≥ 1.

We also can decompose the bilinear form a(u, v) as

a(u, v) = asymm(u, v) + askew(u, v)

where

asymm(u, v) = ν(∇u,∇v) + ∑
K∈Th

τK(a.∇u, a.∇v)0,K .

We define the semi-norm

|v|2symm = ν‖∇v‖2
0 + ∑

K
τK(a.∇v, a.∇v)0,K

By Poincaré inequality, the bilinear form a(·, ·) is coercive in the
semi-norm |v|symm.

On each Ωi we define the local bilinear form a(i)(·, ·) by replacing Ω
in the integrals that defines a(·, ·) byΩi. Similarly we define a(i)

symm(·, ·),
a(i)

skew(·, ·) and the semi-norm | · |symm,Ωi .

2.3 BDD Preconditioning for Advection-
Diffusion

The extension of the balancing preconditioner from Poisson equation
to advection-diffusion equation follows naturally by formulating the
problem in terms of symmetric and skew-symmetric parts, however
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its analysis is quite difficult and interesting since the operator is not
longer symmetric.

Let us decompose the domain Ω into N non-overlapping connected
subdomains Ωi and let Γ = (∪N

i=1∂Ωi)\∂Ω be the interface between the
subdomains, so that we have

Ω = (∪iΩi) ∪ Γ .

Furthermore, we define Γi = ∂Ωi\∂Ω, the interface associated to sub-
domain Ωi. We also define the characteristic size of the subdomain Ωi
by Hi and let H = maxi=1,··· ,N Hi.

In order to perform the Schur complement of the linear system we
introduce the reordering of the variable u as

uI ← interior variables
uΓ ← variables on interface Γ ,

so that the linear system Au = f takes the following form
(

AI I AIΓ
AΓ I AΓΓ

)(
uI
uΓ

)
=

(
f I
fΓ

)
.

We eliminate the interior variable uI by static condensation obtaining
the Schur complement system

SuΓ = f̃Γ (2.7)

where
S = AΓΓ − AΓ I A−1

I I AIΓ (2.8)
and f̃Γ = fΓ − AΓ I A−1

I I f I . Once solved the linear system (2.7), we can
recover the interior solution u I by solving the linear system

uI = A−1
I I ( f I − AIΓuΓ )

which can be performed in parallel.
Given u defined on Γi, we define its local advection-diffusion exten-

sion as

H(i)
advu =

(
−A(i)−1

I I A(i)
IΓ u

u

)

This is equivalently defined as the solution of the discrete variational
problem on Ωi by





a(i)(H(i)
advu, v) = 0 ∀v ∈ H1

0(Ωi) ∩V
H(i)

advu = u on Γi
H(i)

advu = 0 on ∂Ωi ∩ ∂Ω
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Using these local extensions, we define the advection-diffusion ex-
tension operator Hadv of a vector u defined on Γ as

Hadvu =





H(i)
advu in Ωi

u on Γ
0 on ∂Ω

Equivalently, Hadvu =

(−A−1
I I AIΓu
u

)
.

Since the bilinear forms a(i)(·, ·) are coercive on H1
0(Ωi) ∩V, by Lax-

Milgram’s theorem the harmonic extensions are well defined.
Reordering the interior variables by subdomain, we obtain that

AI I =




A(1)
I I 0

. . .
0 · · · A(N)

I I


 ,

which allow us to apply A−1
I I in parallel, that is, by solving the Dirichlet

local problems in parallel. We remark that this is the most expensive
part when applying the Schur complement S to a vector u ∈ VΓ .

If we define the local Schur complements Si = A(i)
ΓΓ − A(i)

Γ I A(i)−1
I I A(i)

IΓ
and the restriction operator Ri : Γ → Γi, one can easily check that

S =
N
∑
i=1

RT
i SiRi.

Remark 3. We note that Si 6= RiSRT
i , since the later involves con-

tribution from neighbor subdomains. However, given u ∈ V(i)
Γ then

uT Siu ≤ uT(RiSRT
i )u, since S and Si are positive definite.

2.3.1 BDD Preconditioning
In order to present the variational setting of the preconditioner, we
decompose the space V as

V = ⊕N
i=1Vi ⊕VΓ

where Vi = H1
0(Ωi) ∩V and

VΓ = {u ∈ V; u|Ωi = H(i)
adv(u|Γi) for i = 1, . . . , N}.
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We introduce the bilinear form s(·, ·) and its symmetric part ŝ(·, ·)
defined on VΓ as: given u, v in VΓ

s(u, v) = vT Su (2.9)

and
ŝ(u, v) = vT Ŝu, (2.10)

respectively, where Ŝ = 1
2 (S + ST) is the symmetric part of the matrix

S. We use the symbol ̂ over an operator or matrix to denote its
symmetric part.

In order to define the local and coarse problems as projection-like
operators we decompose the space VΓ in the non-direct sum

VΓ =
N
∑
i=1

V(i)
Γ + V0

where
V(i)
Γ = {u ∈ VΓ ; u|Γ\Γi = 0}

and V0 is a coarse space which is defined in Subsection 2.3.3. We remak
that a function v on V(i)

Γ is uniquely defined by its restriction v|Γi to Γi.
By other side, a function on Γi is uniquely defined by the nodal values
on the nodes of the discrete Γi, hence, sometimes we will refer a function
v ∈ V(i)

Γ
as the same as a vector defined by the nodal values of v|Γi Γi.

Our objective now is to develop a preconditioner for the Schur com-
plement system (2.7), so that the resulting linear system is scalable
and well-conditioned.

An initial attempt was initially proposed for the Poisson equation
by De Roeck and Le Tallec in [43]. Their idea was to use an additive
Schwarz like preconditioner of the form

M−1 = ∑
i

RT
i S−1

i Ri

where Ri : Γ → Γi is a weighted restriction operator defined as Ri =
D−1

i Ri, Si is the Schur complement of the local stiffness matrix A(i), Ri :
Γ → Γi is the discrete restriction operator to Γi, and D−1

i is a diagonal
matrix defining a partition of unity on Γ , i.e., ∑N

i=1 RT
i D−1

i Ri = I, where
I is the identity on Γ . The partition of unity may be defined through
the counting functions, which for each subdomain Ωi is defined as the
operator δi : Γi → R such that δi(x) = number of subdomains sharing
the node x ∈ Γi. Then, define Di = diag {δi}.
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Note that this preconditioner does not have a mechanism to broad-
cast the local solutions among the subdomains, therefore the conver-
gence deteriorates when the number of subdomains increases. So, a
usual way to overcome this is to introduce a coarse solver in the method.
This coarse solver will help us also avoid some issues concerning the
solvability of the local problems, which we make it clear soon.

This modification was first proposed by Mandel in [39]. In order
to present the matricial form of the preconditioner, let V0 ⊂ VΓ be a
coarse space to be defined later and let RT

0 be the extension matrix
whose columns are basis vectors of the coarse space.

So, the preconditioner is defined as
M−1 = Q0 + (I −Q0S) ∑

i
Qi(I − SQ0)

where Qi = RT
i S†i Ri, Q0 = RT

0 S−1
0 R0 and S0 = R0SRT

0 .
Then the preconditioned operator is

M−1S = P0 + (I − P0) ∑
i

Pi(I − P0)

where P0 = Q0S is a projection on the coarse space V0 and Pi = QiS is
a projection-like operator on the local space V(i)

Γ .

2.3.2 Local Problems
We introduce the local problems in a variational context as a projection-
like operator P̃i : VΓ → V(i)

Γ as: for a given u ∈ VΓ we define its projec-
tion P̃iu as the solution of the variational problem

si(P̃iu, vi) = s(u, RT
i vi) ∀vi ∈ V(i)

Γ .

From this formulation, we can obtain P̃i = S−1
i RiS. Finally, we define

Pi : VΓ → VΓ as Pi = RT
i P̃i = RT

i S−1
i Ri S.

We observe that to apply S−1
i on a vector fi on Γi is equivalent to

solve the discrete problem
(

A(i)
I I A(i)

IΓ

A(i)
Γ I A(i)

ΓΓ

)(
wI
wΓ

)
=

(
0
fi

)
, (2.11)

where wΓ = S−1
i fi. We point out that (2.11) is the discretization of the

variational problem
{

ai(u, v) =
∫
Γi

fiv ds ∀v ∈ H1
0,∂Ω∩∂Ωi

(Ωi)

u = 0 on ∂Ω
(2.12)
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where the right hand side is the discretization of the Robin boundary
condition fi = ∂nu + 1

2 a.nu.
A floating subdomain Ωi is a subdomain such that ∂Ω ∩ ∂Ωi = ∅.

In this case, the problem (2.12) has pure Robin boundary condition.
So, the linear system may have a kernel, and in this case the problem
may have no solution or the solution may not be unique. The issue of
existence of solution is solved with the introduction of a coarse problem
in the preconditioner to enforce that fi be in the image of the operator
Si. This is equivalent to fi being orthogonal to the kernel of the adjoint
operator Si. So, we need to describe the kernel subspace of the adjoint
operator in order to create the coarse space.

The adjoint of the bilinear form ai(·, ·) is the bilinear form
ai(u, v) = a(i)

symm(u, v)− a(i)
skew(u, v).

Since the Lax-Friedrichs inequality holds in the subspace V̂(i) =
{v ∈ H1(Ωi);

∫
Ωi

v dx = 0}, that is, the subspace of zero average func-
tions inΩi, then the bilinear form ai(·, ·) is coercive on this space. Then
by Lax-Milgram theorem, the discrete variational problem

ai(u, v) = 0 ∀v ∈ V̂(i)

has a unique solution in V̂(i). So, the kernel of the adjoint operator is
the same as the original operator ai(·, ·), and it is the trivial one or is
the subspace of constant functions.
Remark 4. In the case of a non-vanishing constant advection field a
the operator ai(·, ·) and its adjoint kernel have only the trivial solution.
Indeed, if it were not the case, then u = 1 would be a basis of the kernel.
However, for any v ∈ V, a(i)

diff(1, v) = 0, and applying Lemma 1, we
obtain that

a(i)
adv(1, v) = (a.∇1, v) +

1
2

∫

Γi
a.nv dx =

1
2

∫

Γi
a.nv dx,

which does not vanish for any v ∈ V. This implies that the kernel is the
trivial one.

2.3.3 Coarse Problem
In balancing domain decomposition methods, one should pay great at-
tention on the choice of the coarse space. The coarse problem is intro-
duced in the preconditioner so that the local Robin problems are solv-
able, and furthermore to make the preconditioner scalable by broad-
casting information through all subdomains.
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To avoid the eventual unsolvability of the local Robin problems we
take the coarse space as a scaling of the constant functions in each sub-
domain. This choice of the constant functions is based on the possible
kernel of the adjoint of operator a(i)(·, ·), which might include the con-
stant functions. The weight functions used to define the local problems
forms the basis of the coarse space.

Then, we define the coarse space as
V0 = span {RT

i 1; i = 1, . . . , N}

where 1 ∈ V(i)
Γ is the vector of ones. We define the restriction operator

R0 as the matrix whose rows are the vectors that span the coarse space
V0, i.e., the vectors RT

i 1, for i = 1, . . . , N.
The projection operator P0 : VΓ → V0 is defined for a given u ∈ VΓ as

the vector P0u solution of the discrete variational problem
s(P0u, v) = s(u, v) ∀v ∈ V0.

A simple computation gives the matricial form of the projection
P0 = RT

0 S−1
0 R0S

where S0 = R0SRT
0 . We remark that the set {RT

i 1; i = 1, . . . , N} can
be linearlly dependent, and then S0 becomes singular. To see this,
just take the square domain [0, 1]× [0, 1] and decompose it into square
subdomains. In order to avoid this drawback one can eliminate the
coarse function associated to a non-floating subdomain.
Lemma 5. Suppose that the columns of RT

0 are linearlly independent.
Then, given u ∈ VΓ ,

P0u = 0
if and only if

< Su, RT
i 1 >= 0, ∀i = 1, . . . , N.

Proof. Just note that the kernel of RT
0 is the trivial kernel, S0 is invert-

ible, and that
RT

0 S−1
0 R0Su = P0u = 0

is equivalent to (RT
i 1)T Su = 0, ∀i = 1, . . . , N.

We define the subspace of VΓ that is S-orthogonal to V0 as
V⊥0 = {v ∈ VΓ ; s(v, w) = 0 ∀w ∈ V0}.

In particular, by definition of P0, for any u ∈ VΓ we have (I− P0)u ∈ V⊥0 .
Hence, for any v ∈ V⊥0 we obtain that P0v + (I − P0) ∑N

i=1 Pi(I − P0)v =

(I − P0) ∑N
i=1 Piv.
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2.4 BDDC - Balancing Domain Decomposi-
tion with Constraints

The balancing domain decomposition with constraints, known as BDDC,
shares some similarities with the well-known BDD methods presented
earlier, and the FETI and FETI-DP methods(see [37, 36]). FETI-DP
and BDDC methods do not require the solution of linear systems with
singular matrices, as is the case of the BDD and one-level FETI([18,
17]). The similarities of the BDDC method and the Neumann-Neumann
methods are verified for plate and shell problems [50]. Depite the
similarities, there are the differences. Just to mention, in the BDDC
method the primary variables for iterative solution are displacements
while in FETI-DP they are Lagrange multipliers. The BDD method
uses a multiplicative coarse grid correction, while the BDDC method
uses an additive one. In BDDC, constraints are introduced on the
coarse and local spaces, decomposing them into a direct sum. The
constraints also make the local spaces solvable even on the floating
subdomain case.

For each subdomainΩi we introduce constraints on the variables on
Γi through a constraint matrix Ci of size nci ×ni, where nci is the number
of local coarse degrees of freedom and ni is the number of degrees of
freedom on Γi.

To fix ideas, let us consider the vertex based BDDC. On each sub-
structureΩi we mean by a corner the vertex of Γi that shares more than
two subdomains, and let us denote by Ni the collection of such nodes on
Γi. In the vertex based BDDC, nci is the dimension of Ni and for each
vector u(i)

Γ on Γi, the vector Ciu(i)
Γ will be the values of u(i)

Γ on the nodes in
Ni.

In the BDDC methods, two consistency conditions are required:

1. a local space consistency with the weight matrices in the sense
that: for any ui ∈ Γi such that Ciui = 0 then

C jR jR
T
i D−1

i ui = 0 ∀ j = 1, · · · , N.

2. a coarse space consistency between substructures in order to de-
fine an interpolation in the sense that for any v on Γ , there exists
uc on R

nc such that

CiRiv = Rci uc ∀i = 1, · · · , N.
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As we will see in the next subsections, the vertex constraint will
impose Dirichlet condition at the corner vertices on the local problems
and coarse basis functions. We consider the coarse and local problems
in a general framework, however we particularly present Ci given by
the vertex based BDDC.

2.4.1 The Coarse Problem
On each substructureΩi we define the local coarse basis functionsΦ j

i =
wΓ ( j = 1, · · · , nci , where nci is the number of local coarse degrees of
freedom), as the solutions of




A(i)
I I A(i)

IΓ 0
A(i)
Γ I A(i)

ΓΓ CT
i

0 Ci 0






wI
wΓ
λ


 =




0
0
e j


 (2.13)

where e j is the column j of the identity matrix of size nci . Let us denote
by Φi = [Φ1

i · · ·Φ
nci
i ] the matrix whose columns are the local coarse

basis functions. Hence, in the case of the vertex based BDDC, this is
a problem with a Dirichlet condition set to one on the node j and zero
in the other nodes of Ni, and zero Neumann data on the remaining
interface nodes.

The local coarse spaces V(i)
0 are defined as

V(i)
0 = {u0 ∈ Γi; u0 = Φiuci and uci ∈ R

nci}.

In the case of the vertex based BDDC, the second consistency condi-
tion on the constraints imposes continuity on the corner vertex between
neighboring coarse spaces V(i)

0 . In fact, this consistency condition im-
poses continuity on the primal variables.

In the BDDC preconditioning method, the assembling of the coarse
matrix Sc

0 is calculated as

Sc
0 =

N
∑
i=1

RT
ciΦ

T
i SiΦiRci ,

where it is interesting to observe that its assembling can be performed
on the subdomains with very few communication steps between the
subdomains, since its computation involves only the substructures that
share the coarse degree(s) of freedom.
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The coarse problem is then defined as
Q0 = RT

0 Sc
0R0 (2.14)

where R0 is the restriction matrix of the degrees of freedom on Γ to the
coarse degrees of freedom defined as

R0 =
N
∑
i=1

RT
ciΦ

T
i D−1

i Ri

with Rci the zero-one matrix which maps the global coarse to local
coarse degrees of freedom.

We also note that Sc
0 is different of the coarse matrix S0 = R0SRT

0
whose computation is more expensive, since its computation include
the neighbor of the neighbor subdomains of the subdomains involved
in the computation of Sc

0.

2.4.2 The Local Problems
The local problems are defined on the dual of the coarse space vari-
ables. The local spaces are defined as

V(i)
Γ

= {ui ∈ Γi; Ciui = 0}.
The first consistency condition of the BDDC will impose a consistency
on the weightings D−1

i , in the sense that if ui is in V(i)
Γ

then for any
j = 1, · · · , N the vector R jR

T
i D−1

i ui is in V( j)
Γ

.
We define local problems as

Qi = RT
i D−1

i Sc−1
i D−1

i Ri (2.15)

where u(i)
Γ = Sc−1

i b̃i is defined as the solution of
(

Si CT
i

Ci 0

)(
u(i)
Γ

λi

)
=

(
b̃i
0

)

which is equivalent to solving



A(i)
I I A(i)

IΓ 0
A(i)
Γ I A(i)

ΓΓ CT
i

0 Ci 0






u(i)
I

u(i)
Γ

λi


 =




0
b̃i
0


 . (2.16)

The reader can note that the only difference of the local problems
here to the ones of the BDD method is the modification of the local
Schur complement by introducing the constraints as Lagrange multi-
pliers. In the vertex based BDDC, the constraints impose zero Dirichlet
condition on the nodes in Ni.
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2.4.3 The Constraints and Implementation Issues
In order to present some usual constraints, let us introduce some new
notation. A corner vertex is a vertex that shares more than two subdo-
mains. An edge between two substructures Ωi and Ω j is the collection
of vertices on a connected segment of Ωi ∩Ω j. The collection of cor-
ners of a substructure Ωi will be denoted as Ni and the collection of the
edges as Ei.

We consider the following constraints:
1. fix the corner values; or

2. fix the averages on the edges.
As we have presented before, the corner values constraints impose

a Dirichlet condition in the local problems and in the definition of the
coarse basis functions through the constraint matrix Ci, where Ciui
is the value of ui at the corner nodes of the substructure Ωi. These
constraints make the local problems (2.16) solvable even in the float-
ing subdomain case, hence, we do not need an extra coarse problem to
make them solvable, as it was in the case in the balancing Neumann-
Neumann preconditioner.

The introduction of the vertex constraint is made by imposing the
Dirichlet condition in the linear system. We define ΓΠ = Ni and Γ4 =
Γ\ΓΠ where Π stands for primal and 4 stands for dual. Thus the local
problems (2.16) turn to be:

(
A(i)

I I A(i)
IΓ4

A(i)
Γ4 I A(i)

Γ4Γ4

)(
u(i)

I

u(i)
Γ4

)
=

(
0
b̃i

)

and the coarse functions Φ j
i =

(
u(i)
Γ4
e j

)
are computed as

(
A(i)

I I A(i)
IΓ4

A(i)
Γ4 I A(i)

Γ4Γ4

)(
u(i)

I

u(i)
Γ4

)
=

(
−A(i)

IΓΠe j
−A(i)

Γ4ΓΠe j

)
,

where e j is the column j of the identity matrix of size nci × nci .
In the edge based version, we impose an average on each edge. To

each row j of Ci we associate an edge E j. The matrix Ci is then defined
such that the element of line j of the vector Ciui is the average of the
vector ui on the edge. Then, in a structured mesh, the rows of Ci are
zero-one entries, with one in the columns associated to the nodes of the
associated edge.

Lab. of Fluid Dynamics/IMPA 21 May 9, 2006



BDD Precoditioners for Non-symmetric Problems Duilio T. da Conceição Junior

2.4.4 Matricial Form of the Preconditioner
The local coarse spaces V(i)

0 and the local spaces Vi provide a direct sum
decomposition of the space VΓ in the following way

VΓ = R̃T
0 V0 ⊕

N
∑
i=1

RT
i Vi

where V0 = ∏N
i=1 V(i)

0 is discontinuous on the dual degrees of free-
dom and continuous on the primal degrees of freedom. For each v =

(vi)
N
i=1 ∈ V0 we define the extension operator R̃T

0 v = ∑N
i=1 RT

i D−1
i vi.

The preconditioner has a two-level additive Schwarz preconditioner
form, that is,

M−1 =
N
∑
i=1

Qi + Q0

where Qi is given in (2.15) and Q0 is given in (2.14). Thus, the pren-
coditioned operator is

M−1S =
N
∑
i=1

QiS + Q0S

2.5 Numerical Results
For the numerical experiments we consider the domain as the square
[0, 1]× [0, 1] decomposed into

√
N ×

√
N quadrilateral subdomains, as

sketched in Figure 2.1. Since the linear problems we are dealing with
are non-symmetric we consider the preconditioned GMRES method as
the iterative solver. The method iterates until we obtain the relative
residual ‖M−1rn‖2/‖M−1r0‖2 of the preconditioned system less than
10−6.

The model problem we consider is

−ν4u + a.∇u = 0 on Ω

with the Dirichlet boundary condition

u(x, y) =

{
0 for (x, y) ∈ ζ1
1 for (x, y) ∈ ζ2

where ζ1 and ζ2 is the decomposition of ∂Ω as sketched in Figure 2.2.

Lab. of Fluid Dynamics/IMPA 22 May 9, 2006



BDD Precoditioners for Non-symmetric Problems Duilio T. da Conceição Junior

Figure 2.1: Sketch of mesh and subdomains

Γ

Subdomain

Figure 2.2: Dirichlet condition of test problem.

u=1
(1,3)

u=0

ζ1ζ2
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On Tables 2.1, 2.2, 2.3 and 2.4 we fix the global mesh to h = 1/512
and the element Péclet number to PeK = 0.145, PeK = 1.45, PeK = 14.5
and PeK = 145, respectively. The definition of PeK is given in (2.6). On
these tables we compare the preconditioners

1. the BDDC with corner vertex constraints.

2. the BDDC with edge average constraints.

3. the BDD with Q1 functions on the coarse mesh as the coarse
space.

4. the BDD with constant by subdomain coarse space as presented
in Section (2.3).

5. the multiplicative BDDC where we consider as coarse problem

Q0 = RT
0 S0R0

with S0 = R0SRT
0 , and the preconditioner as

M−1 = Q0 + (I −Q0S)
N
∑
i=1

Qi(I − SQ0)

We compare the preconditioners for different number of subdomains
and local meshes which we present in parenthesis.

The balancing Neumann-Neumann Preconditioner (4) presents sta-
bility in the iterations in Tables 2.1 and 2.2 when we increase the num-
ber of subdomains, however the Tables 2.3 and 2.4 show that the iter-
ations increase as we increase the Péclet number of the problem, more
notably in the case of 64 × 64 subdomains. Hence, one can conclude
that the balancing Neumann-Neumann preconditioner performs well
in the diffusive dominated models only.

On Tables 2.1, 2.2, 2.3 and 2.4 we can note that the edge based
BDDC (preconditioner (2)) presents a better behavior than precondi-
tioner (4). However, these two preconditioners present the same sensi-
bility on the Péclet number.

The Preconditioners (1), (3) and (5) present a small sensibility on
the Péclet number as can be noticed on Tables 2.1, 2.2, 2.3 and 2.4.

The BDD with a Q1 coarse space (Preconditioner (3)) presents a
good behavior on the Pèclet number and on the number of subdomains.
However it is not suitable for unstructured meshes.
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The Preconditioner (5) presents a very good behavior, presenting in
almost all the tests the better results. However, its efficient implemen-
tation is hard and the preconditioner presents much more communica-
tion than preconditioner (1).

For the numerical tests we consider the Preconditioner (1). These
results are presented on Tables 2.5 and 2.6. We remark that the pre-
conditioner is not sensible to the direction of the advection field, thus
the results of our numerical experiments for the constant advection
a = (1, 3) provides the behavior of the preconditioner for any direction
of the constant advection field.

On Table 2.5 we fix the local mesh on the substructures and in-
creases the number of subdomains in order to analyze the scalability
of the preconditioner. As we can see the preconditioner is not sensible
to the size of the local meshes. On the other hand, the number of itera-
tions depends on the number of subdomains in a coordinate direction,
i.e., on 1/H. This behavior can be better understood on the Figures 2.5
and 2.6 where we plot the first 4 intermediate solutions of the itera-
tive solver. These plots are in the case of a local mesh 8× 8 and with
4× 4 subdomains as in line 3 of Table 2.5. On these figures we observe
that the boundary condition “travels” in the direction of the advection,
subdomain by subdomain, which explains the number of iterations. We
observe that this behavior does not happen in the preconditioners that
have a coarse problem treated multiplicatively, that is, in precondition-
ers (3), (4) and (5).

In Figures 2.3 and 2.4 we plot the decay of the relative residuals
in the cases that we fix the local mesh to 16 × 16 and when we fix
the number of subdomains to 8 × 8, respectively. One can note that
the residuals do not decrease much until the number of iterations is
order of number of subdomains in the coordinate direction, i.e., when
the boundary solution has travelled on the domain. After that, the
residual decays very fast.

In Table 2.6 we fix the number of subdomains and refine the local
mesh of the substructures. In this case we can see the stability of the
preconditioner with respect to the local mesh for a fixed number of sub-
domains.

2.6 Conclusions
In this chapter we extend the use of the BDD and BDDC precondition-
ers to stabilized advection-diffusion equations, trying different coarse
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Table 2.1: Preconditioned GMRES iteration counts for viscosity equal
to 0.01 and the advection field (1, 3), which gives Pe = 316, defined in
(2.5), and PeK = 0.145., defined in (2.6). We fix the global mesh to
512 × 512, and change the number of subdomains and the local mesh
(presented in parenthesis).

Subdomains ( local mesh )
8 (64) 16 (32) 32 (16) 64 (8)

Preconditioner (1) 12 20 33 52
(2) 17 20 15 13
(3) 13 19 33 58
(4) 16 17 15 12
(5) 9 14 21 21

Table 2.2: Preconditioned GMRES iteration counts for viscosity equal
to 0.001 and the advection field is (1,3), which gives Pe = 3162 and
PeK = 1.45. We fix the global mesh to 512 × 512, and change the
number of subdomains and the local mesh (presented in parenthesis).

Subdomains ( local mesh )
8 (64) 16 (32) 32 (16) 64 (8)

Preconditioner (1) 9 17 30 53
(2) 13 21 32 37
(3) 12 19 34 46
(4) 18 26 32 30
(5) 7 13 24 34
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Table 2.3: Preconditioned GMRES iteration counts for the viscosity is
0.0001 and the advection field is (1,3), which gives Pe = 31620 and
PeK = 14.5. We fix the global mesh to 512 × 512, and change the
number of subdomains and the size of local mesh (in parenthesis).

Subdomains ( local mesh )
8 (64) 16 (32) 32 (16) 64 (8)

Preconditioner (1) 9 15 28 53
(2) 15 23 38 63
(3) 12 19 34 47
(4) 19 33 46 67
(5) 8 13 24 46

Table 2.4: Preconditionerd GMRES iteration counts for the viscosity is
0.00001 and the advection field is (1,3), which gives Pe = 316200 and
PeK = 145. We fix the global mesh to 512× 512, and change the number
of subdomains and the size of local mesh (presented in parenthesis).

Subdomains ( local mesh )
8 (64) 16 (32) 32 (16) 64 (8)

Preconditioner (1) 9 16 29 54
(2) 16 24 41 70
(3) 13 19 32 49
(4) 20 35 58 75
(5) 8 13 23 45
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Table 2.5: Preconditioned GMRES iteration counts and within paren-
thesis is the local Péclet number. We fix the local mesh size to H/h
equal to 8, 16 and 32. We consider a = (1, 3) and ν = 0.00001
(Pe = 3.16e + 5).

H/h
8 16 32

Subdomains 2× 2 4 (4.6e+3) 3 (2.3e+3) 3 (1.2e+3)
3× 3 6 (3.1e+3) 5 (1.6e+3) 4 (7.8e+2)
4× 4 7 (2.3e+3) 7 (1.2e+3) 6 (5.8e+2)
8× 8 11 (1.2e+3) 10 (5.8e+2) 10 (2.9e+2)

12× 12 15 (7.8e+2) 14 (3.8e+2) 13 (1.9e+2)
16× 16 18 (5.8e+2) 17 (2.9e+2) 16 (1.4e+2)
32× 32 31 (2.9e+2) 29 (1.4e+2) 28 (7.3e+1)

Table 2.6: Preconditioned GMRES iteration counts and within paren-
thesis is the local Péclet number. Fixing the number of subdomains
to 8 × 8 and 12 × 12. We consider a = (1, 3) and ν = 0.00001
(Pe = 3.16e + 5).

Subdomains
8× 8 12× 12

Local mesh 4× 4 14 (2.3e+3) 17 (1.5e+3)
8× 8 11 (1.2e+3) 15 (7.8e+2)

16× 16 10 (5.8e+2) 14 (3.9e+2)
32× 32 10 (2.9e+2) 13 (1.9e+2)
64× 64 9 (1.4e+2) 12 (9.7e+1)

128× 128 9 (7.2e+1) 12 (4.8e+1)
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Figure 2.3: Residuals for local mesh 16× 16. We consider a = (1, 3)
and ν = 0.00001, thus Pe = 3.16e + 5.
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Figure 2.4: Residuals for 8× 8 subdomains. We consider a = (1, 3) and
ν = 0.00001, thus Pe = 3.16e + 5.
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Figure 2.5: Iterative solutions for 4 × 4 subdomains and local mesh
8× 8. Considering ν = 0.00001 and advection field (1,3).
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Figure 2.6: Iterative solutions for 4 × 4 subdomains and local mesh
8× 8. Considering ν = 0.00001 and advection field (1,3).
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spaces. In all the numerical experiments performed in the earlier sec-
tion we also tryied some different weighting matrices without increat-
ing performace. In the tests we verify the behavior of the different
solvers with respect to the local Péclet number (2.6), the number of
subdomains, and the local mesh. The BDD with a coarse spaces of
constant functions was proven to be a good alternative for local Péclet
number of order 1. However the BDD with a coarse space of Q1 func-
tions was proven to be a good alternative for high local Péclet number,
it is unsuitable for unstructured meshes. The BDDC using edges con-
straints has been proven to have similar behavior as the BDD with
coarse space of constant functions, thus, it is also a good alternative for
local Péclet numbers of order 1.

The BDDC by vertex constraints has been shown to have a good per-
formance for high local Péclet numbers, since the iterations seems to
depend on the number of subdomains in the direction of the advection
field, and to independ on the local Péclet number. The numerical ex-
periments with this preconditioner shows that the broadcast of the so-
lution is performed in the direction of the streamlines, which indicates
why the number of iterations depends on the number of subdomains in
the streamline direction.

We also considered the BDDC by vertex constraint with a multi-
plicative aproach, which shows a better performance than the additive
approach. However, this preconditioner has the drawback that its im-
plementation is more costly.
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CHAPTER 3

BNN for Stokes equations

3.1 Introduction
The goal of this chapter is to introduce several improvements of the
Pavarino and Widlund method which are essential for its efficient ap-
plication. We are particularly concerned with aspects associated to un-
structured mesh parallel implementation and the high cost of the sub-
domain solvers when high-order Stokes discretizations are considered.
We introduce several possible choices for unstructured coarse spaces
and discuss their advantages in terms of scalability, implementation
efforts and robustness with respect to the coefficient jumps. With re-
gards to the high cost of the subdomain solvers, we explore how the
inf-sup condition of Stokes discretization are checked in order to per-
form proper element-wise static condensation and decrease the num-
ber of interior unknowns. We show that the computational complex-
ity of the two discretizations, the higher-order (P2 + Bubbles)/P1 and
the lower-order P2/P0 elements, have comparable computational costs.
The chapter is organized as follows. Sections 3.2 and 3.3 present the
Stokes equations and the variational formulation, respectively, while
on Section 3.4 we introduce the discretizations used in the numerical
experiments. Section 3.5 is devoted to the BDD preconditioner for the
Stokes equations and the coarse spaces. In Section 3.6 we discuss some
of the implementation issues, and in Section 3.7 we provide numerical
results.
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3.2 The Stokes Model
Let Ω ⊂ R

2 be a domain with a polygonal boundary. Given A = (ai j)
and B = (bi j) in M(n) we define the product

(A : B) =
n
∑

i, j=1
ai jbi j

where M(n) is the set of n× n matrices with entries in R.
For a function w ∈ L2(Ω) denote ‖w‖2

0 =
∫

Ω
w2 dx, and for a function

v ∈ H1(Ω)2 denote

|v|21 =
∫

Ω
(∇v : ∇v) dx and |v|2div =

∫

Ω
(∇ · v)2 dx = ‖∇ · v‖2

0.

Consider the Stokes equations:




−2ν∇ ·ε(u) +∇p = f in Ω
−∇ · u = g in Ω

u = ud on ∂Ω
(3.1)

where ν > 0 is the kinematic viscosity and the ε(u) = 1
2 [∇u +∇uT]

denotes the symmetric stress tensor. In this chapter, we assume only
Dirichlet boundary conditions with the compatibility condition

∫

Ω
−g dx =

∫

∂Ω
ud · n ds.

The treatment of natural boundary conditions is similar and does not
bring any extra difficulties; see also Remark 8.

Remark 6. Since we are assuming Dirichlet boundary conditions on
the whole boundary ∂Ω, the velocity solution is unique and the pressure
is unique up to a constant. To make the pressure unique, we impose the
additional condition of zero average pressure on Ω, i.e., ∫Ω p dx = 0.

3.3 Variational Formulation
The variational formulation is introduced as follows. Let us define the
space of velocities X = H1

0(Ω)2 and the space of pressures M = L2
0(Ω),

where L2
0(Ω) stands for L2(Ω) functions with zero average in Ω. Given
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f ∈ H−1(Ω)2 and g ∈ L2(Ω), the variational formulation of the Stokes
equations is given by:

Find u ∈ X and p ∈ M such that
{

a(u, v) + b(v, p) = F(v) ∀v ∈ X,
b(u, q) = G(q) ∀q ∈ M, (3.2)

where a(u, v) = 2ν(ε(u) : ε(v))Ω, b(v, p) = −(∇ · v, p)Ω, F(v) = ( f , v)Ω,
and G(q) = (g, q)Ω. The solution (u, p) ∈ X×M of (3.2) exists and is
unique; see [22].

3.4 Discretization
Let Th be a regular triangulation of Ω. We consider the mixed finite
elements P2/P0 and (P2 + Bubbles)/P1, where the velocity is taken
continuous and the pressure discontinuous.

The P2/P0 mixed finite elements is described as follows: the velocity
space be given as

Xh = {v ∈ X; v|K ∈ P2(K)2 , ∀K ∈ Th}

while the pressure space by discontinuous piecewise constant functions

Mh = {q ∈ M; q|K ∈ P0(K), ∀K ∈ Th}.

To obtain better accurate results we consider the (P2 + Bubbles)/P1
mixed finite element space. This space can be considered as a stabi-
lization of the unstable space P2/P1. We take the bubble function as
b̂(x̂, ŷ) = x̂ŷ(1 − x̂− ŷ) defined on the reference element K̂, and then
for each element K in Th define bK(x, y) = b̂(F−1

K (x, y)), where FK is the
affine mapping from K̂ to K. The velocity space Xh is then given as

Xh = {v ∈ X; v = vP + vB, s.t. vP|K ∈ P2(K)2 , vB|K ∈ XB(K), ∀K ∈ Th},

where for each element K ∈ Th

XB(K) = {vB ∈ H1
0(K)2; vB =

(
α1bK
α2bK

)
and α1, α2 ∈ R}.

The discrete pressure space consists of discontinuous piecewise linear
functions denoted by P1 given as:

Mh = {p ∈ M; p|K ∈ P1(K), ∀K ∈ Th}.
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The two discretizations above satisfy the uniform inf-sup condition
[22], i.e., there exists a constant β (independent of h) such that

sup
v∈Xh

v 6=0

(∇ · v, q)
‖v‖H1

≥ β‖q‖0 ∀q ∈ Mh. (3.3)

The inf-sup stability of the discretization (P2 + Bubbles)/P1 can be
shown by using the macroelement technique [48, 49]. To verify this,
just consider as macroelement the union of the two elements M =
{Kref, K̃} where Kref is the element of reference and K̃ is the element
whose vertices are (1, 0), (1, 1) and (0, 1).

Thus, the discrete variational formulation of the Stokes problem
(3.1) given by:

Find u ∈ Xh and p ∈ Mh such that
{

a(u, v) + b(v, p) = F(v) ∀v ∈ Xh,
b(u, q) = G(q) ∀q ∈ Mh, (3.4)

has a unique solution (see [22]). In matricial form, the discrete linear
system (3.4) is of the form

(
A BT

B 0

)(
u
p

)
=

(
f
g

)
. (3.5)

3.5 BDD for Stokes Problem
In this section we present the matricial form of the preconditioner. De-
compose the domain Ω into N non-overlapping connected subdomains
Ωi and let Γ = (∪N

i=1∂Ωi)\∂Ω, then we have

Ω = ∪N
i=1Ωi ∪ Γ .

We denote the nodes inside Ωi by Ωh
i , the nodes on Γ by Γh and the

nodes on ∂Ωi ∩ Γ by Γ (i)
h .

3.5.1 Schur Complement System
In order to perform a static condensation of the interior variables on
Ωi we reorder and denote the variables as follows:

uI ← interior velocities
pI ← pressures with zero average in each subdomain Ωi
uΓ ← interface velocities
p0 ← constant pressure in each Ωi and with zero average in Ω
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Using this reordering, the matrix of the discrete system (3.5) can be
written as:

K =

(
KI I KIΓ
KΓ I KΓΓ

)
=




AI I BT
I I AIΓ BT

0I
BI I 0 BIΓ 0
AIΓ BT

IΓ AΓΓ BT
0

B0I 0 B0 0


 .

The submatrix B0I is null since by the divergence theorem,
∫
Ωi
∇·uI dx =

0. Eliminating the interior variables u I and pI by static condensation
we obtain the following Schur complement system:

S
(

uΓ
p0

)
=

(
f̃
Γ

g̃0

)
, (3.6)

where
S = KΓΓ − KΓ IK−1

I I KIΓ =

(
SΓ BT

0
B0 0

)
,

and (
f̃
Γ

g̃0

)
=

(
f
Γ

g0

)
− KΓ IK−1

I I

(
f I
gI

)
.

Remark 7. Since AI I is positive definite (by Korn’s inequality) and BI I
has full row rank, the KI I is invertible. We note also that since B0I is null,
it is not possible to eliminate p0.

Having solved the linear system (3.6), we can obtain the solutions
uI and pI by solving

(
u I
pI

)
=

(
AI I BT

I I
BI I 0

)−1 [( f I
gI

)
−
(

AIΓ 0
BIΓ 0

)(
uΓ
p0

)]
,

where we observe that uI and pI do not depend on p0. After a reordering
of the interior variables by subdomain we obtain

KI I =




K(1)
I I 0

. . .
0 K(N)

I I


 .

This shows that the subdomain matrices K(i)
I I are decoupled and then to

apply K−1
I I to a vector is equivalent to solve N decoupled saddle problems

in parallel. Notice that the multiplication by K(i)−1
I I represents a discrete
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Stokes problem with Dirichlet velocity data on Γ (i)
h . This solution exists

and is unique since we consider the space of pressure and test functions
qI with zero average on Ωi. Given uΓi defined on Γi we define the local
Stokes harmonic extension as

SH(i)(uΓi) =

{
−K(i)−1

I I K(i)
IΓ (uΓi)

uΓi

The velocity component of SH(i) is denoted by SH(i)
u and the pressure

component by SH(i)
p .

We also define

SH(uΓ ) =

{
SH(i)(uΓ ) in Ωi
uΓ on Γ

Our goal is to solve the linear system (3.6) by a preconditioned con-
jugated gradient method. This method does not require assembling the
matrix S of the linear system, but only how to apply S to a vector w. By
definition of S, applying S to a vector w is equivalent to applying matri-
ces KΓΓ , KIΓ , KΓ I and K−1

I I to subvectors of w. Among those applications,
the K−1

I I is the most expensive one, however as we saw previously, this
can be done in parallel.

3.5.2 BDD Preconditioning
Since all the remaining chapter is on the discrete space Xh × Mh we
simplify the notation by omitting subindex h.

Let us decompose the space X × M =
(⊕N

i=1Xi ×Mi
) ⊕ (VΓ ×M0)

where Xi = X ∩ H1
0(Ωi), Mi = M ∩ L2

0(Ωi),

VΓ = {v ∈ X; v|Ωi = SH(i)(v|∂Ωi), i = 1, . . . , N},

and
M0 = {q ∈ M; q|Ωi = const., i = 1, . . . , N}.

We observe that the function v ∈ VΓ is uniquely defined by its value on
the interface Γ , so, any function defined on Γ can be uniquely identified
to a function in VΓ .

Our objective now is to construct a parallel preconditioner M−1 for
S in order to make the solution method scalable and well conditioned.
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Following the balancing preconditioner for the Poisson equation, we
look for a preconditioner of the form

M−1 = P0 + (I − P0)
N
∑
i=1

RT
i D−1

i S(i)−1 D−1
i Ri(I − P0), (3.7)

where S(i) is the Schur complement of the local stiffness matrix K(i), the
Ri : Γh → Γ

(i)
h is the discrete restriction operator, and the D−1

i is a diag-
onal matrix defining a partition of unity on Γh, i.e., ∑N

i=1 RT
i D−1

i Ri = I
on Γh. The partition of unity may be defined through the counting func-
tions defined for each subdomain as δi : Γ (i)

h → R such that δi(x) = num-
ber of subdomains sharing the node x ∈ Γ (i)

h , define Di as Di = diag{δi}.
When the problem has piecewise constant viscosity νi in each subdo-
main, and discontinuous across the interface Γ , then a better choice is
to set

δi =
∑ j∈Nx ν

γ
j (x)

ν
γ
i (x)

, (3.8)

where γ ∈ [1/2, ∞), and Nx is the set of indices of the subdomains that
have the node x on their boundaries (see [45, 46]).

Remark 8. The local problems S(i)−1 in (3.7) use natural boundary con-
ditions

νi∇u · n− pn = r on Γ (i)
h . (3.9)

In this case the pressure is uniquely determined and therefore the pres-
sure space are now taken on L2(Ω).

When the boundary of a subdomainΩi does not intersect the bound-
ary of the domain ∂Ω, we have a floating subdomain Ωi. Since the
problem

S(i)
(

u(i)
Γ

p(i)
0

)
=

(
f̃ (i)
Γ

g̃(i)
0

)
(3.10)

is equivalent as solving

(
K(i)

I I K(i)
IΓ

K(i)
Γ I K(i)

ΓΓ

)



u(i)
I

p(i)
I

u(i)
Γ

p(i)
0


 =




0
0

f̃ (i)
Γ

g̃(i)
0


 ,

then when Ωi is a floating subdomain, S(i) has a kernel spanned by
the rigid body motions (RBM) and therefore the linear system (3.10)
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might not have a solution. In the two dimensional case the kernel
basis is composed of three functions, two translations and one rotation.
To avoid the issue of existence of solution, we introduce a coarse space
V0 ⊂ VΓ to enforce that when solving the linear system (3.10) the right
hand side (RHS) is on the image of S(i), and since S(i) is symmetric, this
is equivalent to have the RHS in Ker⊥(S(i)). In addition we will require
that the space V0 must be chosen so that the pairing (V0, M0) be stable,
i.e., satisfies the inf-sup condition. We discuss possible choices of coarse
spaces on Subsection 3.5.4.

3.5.3 Preconditioning in Matricial Form
Let L0 : V0 → Γ be the matrix whose columns are the basis of the space
V0. Then define the restriction operator

R0 =

(
LT

0 0
0 I

)
,

where I is the identity matrix of the size of the number of subdomains.
To define a coarse problem Q0, we set

S0 = R0SRT
0 =

(
LT

0 SΓL0 LT
0 BT

0
B0L0 0

)
,

and
Q0 = RT

0 S−1
0 R0.

The BDD preconditioner is then given by

M−1 = Q0 + (I −Q0S)
N
∑
i=1

Qi(I − SQ0),

and the preconditioned operator by

T = M−1S = P0 + (I − P0)
N
∑
i=1

Pi(I − P0),

where P0 = Q0S, Pi = QiS and

Qi =

(
RT

i D−1
i 0

0 0

)(
S(i)
Γ B(i)T

0

B(i)
0 0

)−1 (
D−1

i Ri 0
0 0

)
.

The minimal size coarse space V0 must be related to the local RBM
associated to each subdomain Ωi. Since the local problems are scaled
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by Di, we also scale the local RBM basis associated toΩi by Di to define
a coarse space so that the local problems (3.10) are compatible, i.e., for
any w ∈ VΓ

〈(
D−1

i Ri 0
0 ∗

)
S(I − P0)w, vi

〉

Γi

= 0 ∀vi ∈ Ker(S(i)). (3.11)

A desirable property of any parallel preconditioner is the scalability.
To obtain that, the coarse space must also satisfies the following inf-sup
condition

sup
vΓ∈VΓ ,h

vΓ 6=0

(∇.SH(vΓ ), q0)
2

a(SHvΓ , SHvΓ )
≥ β0‖q0‖2

L2 ∀q0 ∈ M0. (3.12)

We point out that the operator T is symmetric and positive definite
with respect to S. The least eigenvalue of the preconditioned operator
T in the S-norm is 1. By other side, when the inf-sup conditioin (3.12)
holds, one can show the following bound in the S-norm for the condition
of the preconditioned operator T holds (see [42]):

condS1/2(T) ≤ λmax = sup
x 6=0

< Tx, x >S
< x, x >S

≤ C(1 +
1
β0

)
1
β2 (1 + log(

H
h ))2

(3.13)
where β is the inf-sup constant of the original problem (3.3) and C is a
constant independent of H, h, β0 and β.

3.5.4 The Coarse Space
The coarse space V0 plays an important role in the BDD precondition-
ing. This space must guarantee solvability for the local Neumann prob-
lems and scalability for the preconditioner. The minimum coarse space
V0 for solvability is

V (0)
0 = Rigid Body Motion of each subdomain Ωi scaled by

diag{D−1
i } on Γi and zero on the remaining nodes on Γ .

Thus, in the two dimensional case V(0)
0 has dimension 3×(number

of subdomains). As we will see in the numerical results, the associ-
ated preconditioner T is not going to be scalable, therefore V(0)

0 must
not satisfy the uniform inf-sup stability (3.12). This indicates that the
coarse space should be enriched. Since our objective is unstructured
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mesh

V(1)
0 V(2)

0 V(3)
0 V(4)

0
Figure 3.1: Sketch of the edge enrichment functions

mesh discretization, we need to design coarse space enrichments suit-
able for such discretizations. We enrich V(0)

0 with one coarse function
per interface Ek, i.e., connected components of an interface ∂Ωi ∩ ∂Ω j.

Let Ek be an interface ordered by a sequence of vertices (v0, . . . , vnk)
connected by fine edges on Th(∂Ωi ∩ ∂Ω j). We define unit normal vec-
tors n j (for j = 1, . . . , (nk − 1)), by using the coordinates of v j and its
two neighboring vertices v j−1 and v j+1 on Th(∂Ωi ∩ ∂Ω j). Let η j−1/2
and l j−1/2 (η j+1/2 and l j+1/2) be the unit normal and the length of the
interval [v j−1, v j] ([v j, v j+1]), respectively. Define

n j = (l j−1/2η j−1/2 + l j+1/2η j+1/2)/‖l j−1/2η j−1/2 + l j+1/2η j+1/2‖2.

To define the different coarse space enrichments we first define the
weight functions wk on each interface Ek. We consider the following
weight functions on Ek (see Fig. 3.1):

• for defining V(1)
0 let w(1)

k ≡ 1

• for defining V(2)
0 let w(2)

k (v j) =

{
0 for j even
1 for j odd

• for defining V(3)
0 let w(3)

k (v j) =
min{d1

( j), d2
( j)}

max dist

• for defining V(4)
0 let w(4)

k (v j) =
d1

( j)d
2
( j)

(max dist)2 , where d1
( j) and d2

( j)

are defined as the l2 distances to the boundary vertices v0 and vnk ,
respectively, and let max dist = max j{d1

( j), d2
( j)}.

For each interface Ek, we define the coarse function as

U(r)
k (v j) =

{
w(r)

k (v j)n j for j = 1, . . . , (nk − 1)
0 for j = 0, nk

Lab. of Fluid Dynamics/IMPA 41 May 9, 2006



BDD Precoditioners for Non-symmetric Problems Duilio T. da Conceição Junior

and then define the enriched coarse spaces V(r)
0 , r = 1, . . . , 4, as the

space spanned by V(0)
0 and the coarse functions U (r)

k . The spaces V(1)
0

and V(2)
0 are quite easy to implement, even for the tridimensional case,

since their implementation depend only on the normal vector at the
vertices. Since the enrichment of V(1)

0 is already a basis of the RBM for
structured meshes, we do not consider V(1)

0 on the numerical tests.

3.6 Implementation Aspects
In this section we discuss some of the implementation details of the
code. A parallel software was developed in C using the PETSc library
[3] for unstructured meshes. The unstructured meshes are generated
using the 2D mesh generator EMC2 from INRIA [44]. The partitioning
of the mesh is by elements and it is performed using the ParMETIS
library [30].

3.6.1 BDD Implementation
To assemble the matrix B0 and the right hand side g0, we define a vector
e(i) in order to recover the constant pressure function in the subdomain
Ωi; in the case of P0 functions, e(i) is the vector of ones. The matrix B(i)

0 is
computed as B(i)T

0 = B(i)Te(i), while the vector components of the vector g0
are computed as g(i)

0 = e(i)T g(i). Since the discrete local pressure spaces
are subspaces of L2

0(Ωi) and the global pressure space is a subspace
of L2

0(Ω), we employ Lagrange multipliers λ(i) to enforce zero average
of each p(i)

I in Ωi and another Lagrange multiplier µ to enforce zero
average of p0 in Ω.

To apply the BDD preconditioner it remains to deal with another
issue when solving (3.10): the uniqueness of the Neumann solution for
the floating subdomains. The natural way of dealing with such diffi-
culty is to search for a solution u(i)

Γ which is orthogonal to the kernel of
S(i), i.e., orthogonal to the local RBM. This is done by introducing three
Lagrange multipliers per subdomain, i.e., one for each local RBM basis
function.
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3.6.2 A Higher Order Method
Having implemented the discretization with P2/P0 elements in PETSc
we reuse all the index sets and local to global mappings defined for the
P2/P0 elements to implement the (P2 + Bubbles)/P1 case. We add the
bubble velocities and the linear average zero pressures on each element
K ∈ Th, and then, through static condensation at the element level, we
eliminate the bubble functions and the two average zero pressures. Let
us denote by ψ1, ψ2, ψ3 the usual P1 basis functions associated to the
element of reference K̂. To preserve the zero average in the pressure
space P1(K̂), we map this basis into the new basis:





ψ̃1 = 1
ψ̃2 = x− 1/3
ψ̃3 = y− 1/3.

Observe that ψ̃2 and ψ̃3 have zero average on K̂ while ψ̃1 is the basis for
the P0. At the element level we order the variables as

up ← P2 velocities
pc ← the constant pressure ψ̃1

ub ← bubble velocities
pl ← the linear functions ψ̃2 and ψ̃3,

to obtain the following linear system



App BT
cp Apb BT

lp
Bcp 0 Bcb 0
Abp BT

cb Abb BT
lb

Bl p 0 Blb 0







up
pc
ub
pl


 =




f p
gc
f b
gl


 .

As in the Remark 7, since Abb is a positive definite matrix and Blb is
a full row rank matrix, the submatrix

(
Abb BT

lb
Blb 0

)

is invertible and hence ub and pl can be eliminated. We note that the
bubble functions vanish on the boundary of the elements, so Bcb = BT

cb =
0, and therefore the constant function pc can not be eliminated. The
resulting matrix is then of the following form

(
Ãpp BT

cp
Bcp 0

)(
up
pc

)
=

(
f̃ p
g̃c

)
, (3.14)
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and after solving the linear system (3.14) we can recover the P1 discon-
tinuous pressure solution by solving the linear systems at the element
level: (

ub
pl

)
=

(
Abb BT

lb
Blb 0

)−1 [( f b
gl

)
−
(

Abp 0
Bl p 0

)(
up
pc

)]
.

3.7 Numerical Results
A parallel software was developed in C using the PETSc library [3]. In
order to study the scalability of the coarse space enrichments without
the influence of the mesh partitioning, which may lead to irregular
interface between subdomains, we consider in Subsections 3.7.1 and
3.7.2 a structured mesh in the domain [0, 1] × [0, 1] partitioned into√

N ×
√

N square subdomains. In Subsection 3.7.3 we consider an
unstructured mesh example to study the parallel performance.

For the numerical experiments in Subsections 3.7.1 and 3.7.2 we
impose Dirichlet boundary condition with the exact solution





u1(x, y) = x(1− x) cos(x + y) cos(x + 3y)

u2(x, y) = y(1− y) sin(x + y) sin(x + y)

p(x, y) = xy exp(x + 2y) sin(x− y) cos(y− x),

where we point out that∇.u is non-zero. Since the preconditioned oper-
ator T in (3.13) is symmetric positive definite with respect to S(see [42]),
we use the preconditioned conjugated gradient (PCG) with the stopping
criterion ‖rk‖2/‖r0‖2 ≤ 10−6, where rk is the residual at the iteration
k. For solving the local problems we use the PETSc’s LU with nested
dissection reordering. The minimum eigenvalue is not presented in the
tables since it is equal to one.

For the numerical experiments reported here we use a cluster of
Linux PCs composed of 8 nodes, where each node has two Opteron pro-
cessors and 8Gbytes of shared memory among it processors. Each pro-
cessor is scored at 4.8Gflops. We remark that the code was compiled
with debugging option, thus the timings can be at least twice faster if
compiled with optimizations.

3.7.1 Constant Viscosity Tests
In this section all the numerical experiments are performed with a
fixed viscosity ν = 1 and using the discretization with (P2 + Bubble)/P1

Lab. of Fluid Dynamics/IMPA 44 May 9, 2006



BDD Precoditioners for Non-symmetric Problems Duilio T. da Conceição Junior

Table 3.1: The PCG iteration counts and the largest eigenvalues of
the preconditioned operator T (within parenthesis) for different coarse
spaces. We fix the local mesh to 32× 32 and increase the number of
subdomains.

Coarse spaces
Subdomains V(0)

0 V(2)
0 V(3)

0 V(4)
0

3× 3 19 (10.3) 19 (8.49) 17 (7.23) 16 (7.22)
4× 4 23 (12.0) 22 (9.42) 20 (7.56) 20 (7.54)
5× 5 27 (23.5) 25 (13.5) 20 (7.70) 20 (7.68)
6× 6 28 (24.1) 24 (13.7) 20 (7.80) 20 (7.78)
7× 7 30 (43.2) 26 (17.2) 20 (7.87) 20 (7.84)
8× 8 35 (41.2) 27 (17.0) 21 (7.91) 20 (7.88)

Table 3.2: The PCG iteration counts and the largest eigenvalues of
the preconditioned operator T (within parenthesis) for different coarse
spaces. We fix the number of subdomains to 4× 4 and refine the local
meshes.

Coarse spaces
Local mesh V(0)

0 V(2)
0 V(3)

0 V(4)
0

8× 8 17 (7.87) 16 (4.72) 15 (4.30) 14 (4.27)
16× 16 20 (9.83) 19 (6.80) 17 (5.82) 17 (5.79)
32× 32 23 (12.0) 22 (9.42) 20 (7.56) 20 (5.74)

elements. On Table 3.1 we fix the mesh of the subdomains to 32× 32
and increase the number of subdomains. On Table 3.2 we fix the num-
ber of subdomains to 4 × 4 and refine the mesh of the subdomains.
These tables show the number of PCG iterations and the maximum
eigenvalue (in parenthesis) for the different coarse spaces. We con-
clude from Table 3.1 that the coarse spaces V(0)

0 and V(2)
0 do not satisfy

the uniform inf-sup stability (3.12), while the coarse spaces V(3)
0 and

V(4)
0 provide scalable algorithms. From Table 3.2, we see that the per-

formance of all the preconditioner does not depend much on the size of
the local problems. This result is expected since the space V0 is large
enough to balance all the local Neumann problems.
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Table 3.3: The discretization errors of velocity for (P2 + Bubbles)/P1
and P2/P0 (within parenthesis). Fixing the number of subdomains to
4× 4 and refining the local meshes.

Discretization errors
Local mesh ‖u− uh‖0 |u− uh|1 |u− uh|div

4× 4 3.64e-5 (5.73e-4) 3.88e-3 (3.63e-2) 2.82e-3 (3.31e-2)
8× 8 3.71e-6 (1.47e-4) 9.13e-4 (1.84e-2) 6.93e-3 (1.69e-2)

16× 16 4.13e-7 (3.73e-5) 2.18e-4 (9.26e-3) 1.71e-4 (8.52e-3)
32× 32 4.97e-8 (9.40e-6) 5.39e-5 (4.64e-3) 4.27e-5 (4.27e-3)
64× 64 6.60e-9 (2.36e-6) 1.34e-5 (2.33e-3) 1.07e-5 (2.14e-3)

For the subsequent numerical experiments we consider only the
space V(4)

0 since Tables 3.1 and 3.2 show that this space is very ef-
fective.

On Tables 3.3 and 3.4 we compare the discrete errors of the P2/P0
(presented in parenthesis) and the (P2 + Bubbles)/P1 elements. We
see that the (P2 + Bubbles)/P1 discretization is by far more accurate
than the P2/P0. The convergence error rates for the (P2 + Bubbles)/P1
are 10, 4 and 4 for the velocity in the L2, H1, div norms, and 4 for the
pressure in the L2 norm, respectively. For the P2/P0 discretization the
rates are 4, 2 and 2 for the velocity in the L2, H1, div norms, and 2 for
the pressure in the L2 norm, respectively.

Next we compare the discretizations (P2 + Bubbles)/P1 and P2/P0
with respect to execution and assembling times. We present in Table
3.5 the results for the (P2 + Bubbles)/P1 discretization and in paren-
thesis the results for the P2/P0 discretization. We compare the number
of iterations, the maximum eigenvalue of the preconditioned system,
the CPU time for assembling the stiffness matrix (T1 in seconds), and
the total CPU time (T2) including the time for recovering the bubble ve-
locity and the P1 pressure. The Table 3.5 shows that the overall CPU
time for the discretization (P2 + Bubble)/P1 is not much larger than
the P2/P0 one. Also we can see that the number of PCG iterations and
the condition number are approximately the same for both discretiza-
tions.
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Table 3.4: The L2 discretization errors of pressure for
(P2 + Bubbles)/P1 and P2/P0 (within parenthesis). Fixing the
number of subdomains to 4× 4 and refining the local meshes.

Local mesh ‖p− ph‖0
4× 4 1.39e-2 (7.42e-2)
8× 8 3.81e-3 (3.72e-2)

16× 16 9.78e-4 (1.86e-2)
32× 32 2.46e-4 (9.31e-3)
64× 64 4.65e-5 (4.65e-3)

Table 3.5: PCG iteration counts (Its.), largest eigenvalue of the pre-
conditioned operator T (λmax), CPU time for assembling the ma-
trix and CPU times for all the running (T2) for the discretizations
(P2 + Bubbles)/P1 and P2/P0 (within parenthesis). Fixing the num-
ber of subdomains to 4× 4 and refining the local meshes.

Local mesh Its. λmax T1(s) T2(s)
4× 4 11 (13) 2.98 (3.42) 0.08 (0.06) 2.35 (2.30)
8× 8 14 (14) 4.27 (4.57) 0.10 (0.07) 3.12 (2.90)

16× 16 17 (16) 5.79 (5.96) 0.16 (0.10) 8.65 (8.53)
32× 32 20 (18) 7.53 (7.61) 0.58 (0.34) 108.6 (107.1)
64× 64 22 (21) 9.52 (9.51) 1.80 (0.93) 5687.1 (5682.6)
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Table 3.6: PCG iteration counts and greatest eigenvalue (within paren-
thesis). Fixing the number of subdomains to 4× 4.

γ Local mesh ν2 = 10 ν2 = 100 ν2 = 1000
8× 8 19 (11.2) 25 (44.5) 26 (172)

γ = 0.25 16× 16 23 (16.0) 31 (65.3) 35 (254)
32× 32 25 (22.0) 35 (90.5) 43 (352)

8× 8 15 (5.72) 17 (7.71) 17 (8.70)
γ = 0.5 16× 16 18 (7.93) 19 (10.7) 19 (12.1)

32× 32 20 (10.6) 22 (14.3) 22 (16.1)
8× 8 13 (4.42) 11 (4.09) 11 (4.04)

γ = 1 16× 16 14 (5.72) 13 (5.13) 12 (5.04)
32× 32 16 (7.08) 15 (6.17) 13 (6.03)

8× 8 13 (5.05) 11 (4.15) 11 (4.05)
γ = 2 16× 16 15 (6.57) 13 (5.21) 12 (5.05)

32× 32 17 (8.17) 15 (6.26) 13 (6.04)

3.7.2 Discontinuous Viscosities
In this section we assume that the viscosity is constant in each subdo-
main, however with a jump across the subdomains. We study the case
where the viscosity is given by two constant values ν1 and ν2, in such
a way that it has a checker-board pattern.

We consider the discretization (P2 + Bubbles)/P1 and fix ν1 = 1.
In Table 3.6 we provide the number of iterations and the maximum
eigenvalue (in parenthesis), for different values of the exponent γ; see
(3.8). The best result is obtained when γ = 1, although for γ > 1 the
condition numbers present similar behavior. In addition, as predicted
in [45, 46], we confirm the strong deterioration on the performance of
the algorithms when γ is less than 1/2 and ν2 is large.

3.7.3 Parallel Performance
In order to analyze the parallel performance of the code we consider the
discretization (P2 + Bubble)/P1 and the coarse space enrichment V(4)

0
in the preconditioner. We also consider the domain Ω as in the Figure
(3.2) with an unstructured mesh. We impose the following Dirichlet
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boundary conditions

u(x, y) =





y(1− y); for x = 0 (inflow)
y(1− y); for x = 6 (outflow)
0; otherwise (no-slip condition)

In Table 3.7 we run problems with a mesh of 23008 elements (the
system then have 116283 dofs). In order to study the scalability we
solve a problem in one processor only with LU using nested dissection
reordering. The speedup in N processors (SN) is calculated as the ratio
of total execution time in 1 processor (T1) and in N processors (TN) as
SN = T1/TN. The efficiency in N processors is computed as the ra-
tio of the speedup in N processors and the number of processors, i.e.,
SN/N. The CPU times show that the proposed preconditioner is more
effective when the size of the local problems is small. This is due to the
high cost of the local LU factorizations of the Dirichlet and Neumann
matrices. The CPU time in assembling and in LU factorization of the
coarse matrix is very small. The speedup factor grows super linearly
when we increase the number of processors due to the smaller sizes
of the local factorizations. The efficiency of the method grows due to
the same reason; we point out that in the latter case of 32 subdomains
there is an overload of the processors. We also mention that a postpro-
cessing of the mesh partition can improve a little the iteration counts
by smoothing the interface between the subdomains.

In Table 3.8 we fix the local mesh to 3222 elements. We point out
that to setup the preconditioner for more than one subdomain it is re-
quired two LU factorizations, while in one subdomain we need just
one. We remark that the band of the matrix in the one subdomain
case is smaller than in the cases with more subdomains, due to the
shape of the domain. Thus, the execution time for one subdomain is
more than twice faster than the 4 subdomains case, however, from the
case of 4 subdomains to 16 subdomains the increase in the execution
time is almost all due to the iterative solver, that takes 15 more itera-
tions than in the 4 subdomains case. Hence, by comparing the 4 and
16 subdomain cases, the scalability is obtained. We expect that the
iteration counts will stabilize for large number of subdomains due to
the theory and Table 3.1.
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Figure 3.2: Domain for parallel performance test and sketch of an un-
structured mesh.
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Table 3.7: This table shows the iteration counts (It.), total execution
time (Ttot), the speedup factors, the efficiency (Eff.), and the CPU times
to solve iteratively the linear system (TS), to compute the LU factor-
izations of the local problems (TF) and to compute the coarse matrix
(this includes the LU factorization of the coarse matrix and is denoted
TC). The cases of 32 subdomains is performed by overloading some
processors.

Subs. Its. Ttot (s) Speedup Eff. TS(s) TF(s) TC(s)
1 (LU) – 4.91e+4 – – – – –

2 10 1.67e+4 2.94 1.47 1.06e+2 1.65e+4 1.15e+1
4 13 2.11e+3 23.3 5.82 3.85e+1 2.06e+3 5.83e+0
8 17 3.21e+2 153 19.1 2.17e+1 2.95e+2 3.49e+0

12 22 1.17e+2 420 35.0 2.56e+1 8.65e+1 2.52e+0
16 28 6.48e+1 758 47.4 2.09e+1 4.01e+1 1.84e+0
32 31 3.47e+1 1420 44.4 1.55e+1 1.13e+1 7.57e-1

Table 3.8: The local mesh is fixed to 3222 elements. The legends are
the same as in the Table 3.7.

Subs. Its. Ttot(s) TS(s) TF(s) TC(s)
1 (LU) – 1.41e+2 – – –

4 11 4.06e+2 1.32e+1 3.88e+2 2.80e+0
16 25 4.71e+2 5.43e+1 4.06e+2 5.38e+0
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3.8 Conclusions
We propose four coarse spaces suitable for BDD preconditioning on un-
structured meshes. We verify that the coarse spaces V(0)

0 and V(2)
0 are

not stable, while the coarse spaces V(3)
0 and V(4)

0 are stable and scal-
able.

We introduce a new inf-sup stable discretization (P2 + Bubble)/P1
which has been shown to be much more accurate than the P2/P0, with-
out significant extra computational cost. This new discretization also
has been shown to be scalable with the BDD preconditioner presenting
similar iteration counts as the P2/P0 finite elements. As predicted in
the theory developed in [45, 46] we have shown that the choice γ ≥ 1 in
the definition of the diagonal scaling (3.8) is a robust choice for highly
discontinuous viscosities.

We develop a code based on PETSc library for 2D unstructured
meshes, extensible to 3D meshes, with very impressive efficiency and
speedup factors. In addition, as indicated by the numerical results, we
can increase the performance of the local LU factorizations with the
use of better reorderings.
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CHAPTER 4

BDD Methods for Oseen type Equations

In this chapter we present the balancing domain decomposition meth-
ods for Oseen equations. Let us consider Ω ⊂ R

d a polygonal domain.
These equations are obtained by linearization of the non-linear term
u.∇u in the incompressible Navier-Stokes equations resulting in the
system of partial differential equations:





−2ν∇.ε(u) + a.∇u +∇p = f in Ω
−∇.u = g in Ω

u = ud on ∂Ω
(4.1)

where a is the advection vector field which we assume∇.a = 0, and ν >
0 is the kinematic viscosity. The Oseen equations mix the difficulties of
the Stokes and the advection-diffusion equations.

We point out that as in the Stokes equations, the Dirichlet boundary
condition ud should satisfy the compatibility condition:

∫

Ω
g dx =

∫

∂Ω
ud.n ds.

In order to simplify the presentation we assume zero Dirichlet bound-
ary conditions, since the reduction to this case does not bring any extra
difficulty.

The following relation is the analogous of Lemma 1 in a vectorial
case and can be obtained similarly.
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Lemma 9. For all u, v ∈ H1(Ω)d and a ∈ L∞(Ω)d

(a.∇u, v)Ω =
1
2 [(a.∇u, v)Ω − (a.∇v, u)Ω]

− 1
2

∫

Ω
(∇.a)u.v dx− 1

2

∫

∂Ω
(a.n)u.v dx

(4.2)

Remark 10. In the model problem we assume that ∇.a = 0, so, the
third term in the right hand side of equation (4.2) vanishes. In the case
that u or v be in H1

0(Ω)d the fourth term also vanishes.

When dealing with balancing domain decomposition precondition-
ing we will need to solve local problems with natural boundary con-
ditions, which for Oseen equations is different from Stokes equations.
This natural boundary condition is:

ν∇ui.n +
1
2 (a.n)ui − pni = ri (i = 1, 2, . . . , d)

where ui is the i-th component of u. The problem with this natural
boundary condition has a unique pressure solution. In the case of a
constant advection field the velocity solution is also unique.

4.1 The Variational Formulation
We restrict the presentation to the case d = 2, although it can be easily
extended to higher dimensional cases. Defining X = H1

0(Ω)2 and M =
L2

0(Ω), the variational formulation of the Oseen equations is:
Find u ∈ X and p ∈ M such that

{
ã(u, v) + b̃(v, p) = F(v) ∀v ∈ X

b̃(u, q) = G(q) ∀q ∈ M
(4.3)

where we define the bilinear forms

ã(u, v) = 2ν(ε(u) : ε(v))Ω +
1
2 [(a.∇u, v)Ω − (a.∇v, u)Ω]

b̃(v, q) = −(∇.v, q)Ω
and the linear forms

F(v) = ( f , v)Ω

G(q) = −(g, q)Ω .
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Remark 11. The bilinear form

a∗(u, v) = 2ν(ε(u) : ε(v))Ω + (a.∇u, v)Ω

is equivalent to the bilinear form ã(·, ·) when the problem has Dirichlet
conditions prescribed on all the boundary ∂Ω, since v ∈ H1

0(Ω)2.

To verify the existence and uniqueness of a solution, let us start
defining the space Xdiv,g = {v ∈ H1

0(Ω); ∇.v = g} and observing that
the variational problem (4.3) is equivalent to the following:

Find u ∈ Xdiv,g such that

ã(u, v) = F(v) ∀v ∈ Xdiv,0 (4.4)

For analysis it is suitable to decompose the bilinear form ã(·, ·) as

ã(u, v) = avisc(u, v) + askew(u, v)

where
avisc(u, v) = 2ν(ε(u) : ε(v))Ω

and
askew(u, v) =

1
2
[
(a.∇u, v)− (a.∇v, u)

]
.

The continuity of the bilinear form ã(·, ·) can be proven by using the
Cauchy-Schwarz inequality. The coercivity follows by applying Korn’s
inequality to the bilinear form avisc(·, ·) and by noting that askew(·, ·) is
skew-symmetric. This implies that the variational problem (4.4) has a
unique solution.

4.2 Discretization
Let Th a regular triangulation of the domain Ω. We consider the mixed
finite element space with P2/P0 elements which was analyzed in the
previous chapter and described in Section 3.4. As it was shown, this
pairing of spaces satisfy the inf-sup stability condition.

The advection dominated problems are numerically unstable due to
the advective part, as we pointed out in the first chapter. So, as in the
advection-diffusion equation we also introduce a stabilization in the
variational formulation. This stabilization also avoids the need of the
discretization spaces to satisfies the inf-sup condition.
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4.3 Stabilization of Advection Dominated
Flows

We define the Reynolds number as Re = ‖a‖∞L
ν

which is the quotient of
inertia forces and stress forces, where L is the size of Ω. We say that a
flow is advective-dominated when Re is greater than one, and in other
case to be diffusive-dominated.

It is well known that discretizing the variational problem (4.3) with
finite elements even satisfying the inf-sup stability condition, will suf-
fer oscillations on boundary layer and interior discontinuities in the
advective-dominated case when the mesh in not sufficiently fine to re-
solve small scales. This problem can be avoided by introducing stabi-
lizations in the variational formulation. The stabilizations we consider
are the Galerkin least-squares and the Douglas-Wang (DW) variation
of the GLS method. These stabilizations are presented and analysed in
[19] with respect to convergence and stability. The variational formu-
lation is: Find (u, p) ∈ X×M such that

B(u, p; v, q) = W(v, q) ∀(v, q) ∈ X×M

where the bilinear form B(·, ·; ·, ·) and the linear form W(v, q) = F(v) +
G(q) are defined in the GLS and in the DW stabilization methods as:

1. GLS:

B(u, p; v, q) = ã(u, v) + b̃(v, p) + b̃(u, q) + ∑
K
δK(∇.u,∇.v)+

∑
K
τK(−2ν∇.ε(u) + a.∇u +∇p, 2ν∇.ε(v) + a.∇v−∇q)0,K

F(v) = ( f , v) + ∑
K
τK( f , 2ν∇.ε(v) + a.∇v)

G(q) = (g, q) + ∑
K
τK( f ,−∇q)

2. DW:

B(u, p; v, q) = ã(u, v) + b̃(v, p) + b̃(u, q) + ∑
K
δK(∇.u,∇.v)+

∑
K
τK(−2ν∇.ε(u) + a.∇u +∇p,−2ν∇.ε(v) + a.∇v−∇q)
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F(v) = ( f , v) + ∑
K
τK( f ,−2ν∇.ε(v) + a.∇v)

G(q) = (g, q) + ∑
K
τK( f ,−∇q)

We remark that these discretizations differ only in the sign of the
term 2ν∇.ε(v). In order to define the stabilization parameters δK and
τK we introduce the elementwise Reynolds number

ReK =
mk‖a‖∞h

4ν

which is mesh and discretization dependent. The term mk is defined as

mk = min{1
3 , 2Ck}

where Ck is the constant of the inverse inequality

Ck ∑
K

h2
K‖∇.ε(v)‖2

0,K ≤ ‖ε(v)‖2
0 ∀v ∈ Vh.

In each element K ∈ Th we define the stabilization parameters δK
and τK as

δK = ‖a‖
∞,Khξ(ReK)

and
τK =

h
2‖a‖

∞,K
ξ(ReK)

where

ξ(ReK) =

{
ReK; 0 ≤ ReK < 1
1; ReK ≥ 1.

In [19], Franca and Frey show that the GLS stabilization is unsta-
ble for large values of τK while the Douglas-Wang variation is more
stable in terms of the choice of the stabilization parameter τK. Thus,
we choose the DW stabilization for our stabilized variational discrete
model:

Find (u, p) ∈ X ×M such that
{

a(u, v) + bp(v, p) = F(v) ∀v ∈ X
bu(u, q) + c(p, q) = G(q) ∀q ∈ M
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where the bilinear forms are given as

a(u, v) = BDW(u, 0; v, 0),

bp(v, p) = BDW(0, p; v, 0),
bu(u, q) = BDW(u, 0; 0, q)

and
c(p, q) = BDW(0, p; 0, q).

Therefore, the linear system obtained from this discretization is
(

A BpT

Bu C

)(
u
p

)
=

(
f
g

)
(4.5)

Denoting the matrix Bstab as the discretization of the term

∑
K
τK(∇p,−2ν∇.ε(v) + a.∇v)

and by Boseen the discretization of the term b(v, p), we obtain that Bp =
Boseen + Bstab and Bu = Boseen − Bstab.

4.4 BDD Method for Oseen Equations
In this section we present the balancing domain decomposition method
for Oseen equations. This is an extension of the BDD method for Stokes
equations, presented in the previous chapter.

As before, we decompose the domain Ω into N non-overlapping sub-
domains Ωi and the interface Γ = ∪N

i=1∂Ωi \ ∂Ω, so that

Ω =
N⋃

i=1
Ωi ∪ Γ .

In addition we denote by Γi the nodes on ∂Ωi \ ∂Ω.

4.4.1 Substructuring in Matrix Form
Similarly to the Stokes case, we reorder and denote the variables as
follows:

uI ← interior velocities
pI ← pressures with zero average in each subdomain Ωi
uΓ ← interface velocities
p0 ← constant pressure in each Ωi and with zero average in Ω
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As it is usual in substructuring methods we eliminate some vari-
ables of the linear system to obtain a condensated system. In balancing
domain decomposition we eliminate the interior degrees of freedom, re-
sulting in a linear system in the complementary degrees of freedom of
the velocity and the pressure variables with mean value zero in each
substructure, by now, uΓ and p0 .

Using this reordering, the matrix of the discrete system (4.5) can be
written as:

K =

(
KI I KIΓ
KΓ I KΓΓ

)
=




AI I BpT
I I AIΓ BpT

0I
Bu

I I CI I Bu
IΓ CIΓ

AIΓ BpT
IΓ AΓΓ BpT

0
Bu

0I CΓ I Bu
0 CΓΓ


 .

Since ∇.p0 = 0 and
∫
Ω∇.uI dx = 0, then the submatrices B0I, CΓ I, CIΓ

and CΓΓ are all null. On the other hand, the stabilization part of Bu
0 and

Bp
0 are also null, therefore B0 = Bu

0 = Bp
0 . Then, even though we are

introducing a stabilization in the variational model, the matricial form
of the system is analogous to the Stokes one.

Eliminating the interior variables u I and pI by static condensation
we obtain the system

S
(

uΓ
p0

)
=

(
f̃Γ
g̃0

)
(4.6)

where
S = KΓΓ − KΓ IK−1

I I KIΓ =

(
SΓ BT

0
B0 0

)
,

and (
f̃
Γ

g̃0

)
=

(
f
Γ

g0

)
− KΓ IK−1

I I

(
f I
gI

)
.

Remark 12. Since AI I is positive definite (by Korn’s inequality) and BI I
has full row rank, the matrix KI I is invertible. We note also that since
B0I is null, it is not possible to eliminate p0.

Once we have solved the linear system (4.6), we can obtain the so-
lutions uI and pI by solving

(
u I
pI

)
=

(
AI I BpT

I I
Bu

I I 0

)−1 [( f I
gI

)
−
(

AIΓ 0
Bu

IΓ 0

)(
uΓ
p0

)]
,
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where we observe that uI and pI do not depend on p0. As in the earlier
chapters, if we reorder the interior variables by subdomain we obtain

KI I =




K(1)
I I 0

. . .
0 K(N)

I I


 .

Again, as in the Stokes case these matrices are decoupled and the
computation of the multiplication of K−1

I I by a vector can be performed
in parallel. The local Oseen harmonic extension is defined as

OH(i)(uΓi) =

(−K−1
I I KIΓuΓ
uΓi

)
.

This is equivalent to solving the variational problem with Dirichlet
boundary condition





a(u, v) + bp(v, p) = F(v)

bu(u, q) + c(p, q) = G(q)
u|Γ = uΓ

where we point out that the term c(p, q) vanishes since the pressures
are constant on each element.

Analogously, we define the Oseen harmonic extension as

OH(uΓ ) =

{
OH(i)(uΓ ) in Ωi
uΓ on Γ

4.4.2 BDD preconditioning for Oseen
Since in the remaining of the chapter we only use the discrete space
Xh ×Mh we simplify the notation by omitting the subindex h.

Similarly as in the Stokes problem we decompose the space X ×M
as

X ×M = (⊕iX i ×Mi)⊕ (V Γ ×M0)

where Xi = X ∩ H1
0(Ωi), Mi = M ∩ L2

0(Ωi),

VΓ = {v ∈ X; v|Ωi = OH(i)(v|∂Ωi), i = 1, . . . , N},

and
M0 = {q ∈ M; q|Ωi = const., i = 1, . . . , N}.
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Since the local Oseen harmonic extensions OH(i) are uniquely de-
fined by the values on ∂Ωi, the functions v ∈ VΓ are also uniquely
defined by its value on Γ .

The balancing preconditioner for the Schur complement system of
the stabilized Oseen linear system is of the form

M−1 = P0 + (I − P0)
N
∑
i=1

RT
i D−1S−1

i D−1
i Ri(I − P0)

where S−1
i is the Schur complement of the local stiffness matrix K−1

i ,
P0 is a projection on a coarse space V0 to be defined in the following
sections, and Pi is a projection like operator analogous as the Stokes
one, where we need to solve local problems

S(i)
(

u(i)
Γ

p(i)
0

)
=

(
f̃ (i)
Γ

g̃(i)
0

)
, (4.7)

which is equivalent to solve the natural boundary condition problem

(
K(i)

I I K(i)
IΓ

K(i)
Γ I K(i)

ΓΓ

)



u(i)
I

p(i)
I

u(i)
Γ

p(i)
0


 =




0
0

f̃ (i)
Γ

g̃(i)
0


 .

We recall that in the Stokes balancing, the local problems of the
floating subdomains have non-trivial kernel, spanned by the rigid body
motions (RBM). The kernel of the local Oseen problems in the float-
ing subdomains, as well as in the advection-diffusion equation, is con-
tained in the kernel of the Stokes problem, that is, in the set of RBM
functions.

4.4.3 Preconditioner in Matricial Form
Suppose we have defined the coarse subspace V0 ⊂ VΓ , and let L0 :
V0 → Γ be the extension matrix whose columns are the basis of the
coarse space. Then we define the restriction operator

R0 =

(
LT

0 0
0 I

)

where I is the identity matrix whose size is the number of subdomains.
To define the coarse problem Q0 we set

S0 = R0SRT
0 =

(
LT

0 SΓ L0 LT
0 BT

0
B0L0 0

)
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and
Q0 = RT

0 S−1
0 R0 .

The preconditioner is defined as

M−1 = Q0 + (I −Q0S)
N
∑
i=1

Qi(I − SQ0),

and the preconditioned operator by

T = M−1S = P0 + (I − P0)
N
∑
i=1

Pi(I − P0),

where P0 = Q0S, Pi = QiS and

Qi =

(
RT

i D−1
i 0

0 0

)(
S(i)
Γ B(i)T

0

B(i)
0 0

)−1 (
D−1

i Ri 0
0 0

)
.

The minimal size coarse space V0 must be related to the local RBM
associated to each subdomain Ωi. Since the local problems are scaled
by Di, we also scale the local RBM basis associated toΩi by Di to define
a coarse space so that the local problems (4.7) are compatible, i.e., for
any w ∈ VΓ

〈(
D−1

i Ri 0
0 ∗

)
S(I − P0)w, vi

〉

Γi

= 0 ∀vi ∈ Ker(S(i)T
). (4.8)

4.4.4 Coarse Space
We consider the coarse space as the rigid body motions (RBM) scaled
by diag{D−1

i } enriched with quadratic functions on each coarse edge
∂Ωi ∩ ∂Ω j on the coarse grid. We choose this space since this shows the
better convergence and stability results in the Stokes case; see Section
3.7.

We remark that this choice will also introduce compatibility in the
local problems in the case of the existence of a kernel generated by
the RBM functions, which is the unique possible kernel of the Oseen
equations.
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4.5 Numerical Results
For numerical tests let us consider the domain Ω = [0, 1]× [0, 1] par-
titioned into

√
N ×

√
N square subdomains as sketched in Figure 2.1.

Since the linear system is non-symmetric we consider the GMRES me-
thod for the iterative solver. The convergence is achieved when the
relative residual ‖M−1rn‖0/‖M−1r0‖0 is less than 1.e− 6.

The tests are performed using as exact solution




u1(x, y) = exp(cos(x)− sin(y)). sin(3x + 1)

u2(x, y) = exp(2x2 + sin(y)).(cos(2x− y) + sin(2y− x))

p = exp(2x + y)

by imposing Dirichlet boundary condition. We consider in the numeri-
cal experiments a constant advection field a = (1, 3).

In this section we present the numerical results of the implementa-
tion of the Oseen problem.

On Table 4.1 we fix the global mesh to 128 × 128 and analyze, for
different Reynolds numbers, the stability of the preconditioner on dif-
ferent choices of local mesh size and number of subdomains. The itera-
tions show stability of the preconditioner for all the Reynolds numbers
we considered. On the other hand, the iterations are dependent on the
Reynolds number.

On Table 4.2 we fix the local mesh to 4× 4, 8× 8 and 16× 16, the
viscosity to ν = 0.00002 (so, Re = 1.58e + 5) and increase the number
of subdomains. The number of iterations necessary for convergence
seems to increase sub-linearly as we increase the number of subdo-
mains. Hence, this table shows an almost scalability of the precondi-
tioner.

Analysing the case of a fixed number of subdomains to 8× 8 on Table
4.2 we note that the iterations of the preconditioned GMRES seems to
increase sub-linearly, and so, the preconditioner is more dependent on
the local mesh than the number of subdomains.

4.6 Conclusions
We extend the BDD preconditioner for Stokes equations to the stabi-
lized Oseen equations, using edge enrichment for the coarse space. We
show that the kernel of the local problems is a subspace of the kernel
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Table 4.1: Preconditioned GMRES iteration counts. The global mesh
is fixed to 128 × 128, and we change the number of subdomains and
the local meshes (within parenthesis). The constant advection field is
(1, 3).

Subdomains ( local mesh )
ReK (viscosity) 32 (4) 16 (8) 8 (16) 4(32)
1.45e+5 (2.e-8) 79 72 65 39
1.45e+4 (2.e-7) 79 72 65 39
1.45e+3 (2.e-6) 78 72 65 39

145 (2.e-5) 77 71 63 39
14.5 (2.e-4) 63 62 57 37
1.45 (2.e-3) 27 42 46 33

0.145 (2.e-2) 21 22 29 27

Table 4.2: Preconditioned GMRES iteration counts and Reynods num-
ber within parenthesis. We fix the local mesh to H/h = 4, 8, 16. We
also fix the viscosity to 0.00002 and the advection field to (1, 3). The
local Reynolds number (ReK) is presented within parenthesis.

Local mesh (H/h)
Subdomains 4 8 16

3× 3 18 (1.6e+3) 20 (7.8e+2) 24 (3.9e+2)
4× 4 23 (1.2e+3) 28 (5.8e+2) 33 (2.9e+2)
8× 8 39 (5.8e+2) 48 (2.9e+2) 63 (1.5e+2)

12× 12 47 (3.9e+2) 60 (1.9e+2) 81 (9.7e+1)
16× 16 53 (2.9e+2) 71 (1.5e+2) 95 (7.3e+1)
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of the local problems associated to the equivalent Stokes problem (that
is, the problem withou the advective term).

The scalability of the preconditioner for Oseen equations is shown
to be achevied only in the cases when the local Péclet number is order of
one. Also the local solvers and the coarse solvers are somehow sensitive
to the Péclet number when it becomes greater than one. We believe
that in fact they are sensitive to the Péclet number even when it is less
than one, however without significant influence in the iterations.
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CHAPTER 5

Future Works

For future work, we plan to

• develop an enrichment of the coarse space based on stabilized
finite element technique in order to better deal with the non-
symmetric part of the coarse and local problems, and the corre-
sponding analysis of the methods;

• extend the preconditioner to the advection-diffusion and the Os-
een problems with discontinuous coeficients;

• study the behaviour of the preconditioner for advection-diffusion
and Oseen problems on rotating or complicated flow fields;

• extend the BDDC algorithm for the Oseen problems;

• develop a coarse space enrichment for unstructured meshes for
Stokes and Oseen problems that makes the setting of the coarse
space enrichment easier for implementation of the preconditioner;

• increase performance of the PETSc code by introducing better re-
orderings for LU factorization; and

• develop a preconditioner to the core-flow model, i.e., introducing
the interface equation.
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