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Abstract

This thesis proposes models of choices under ambiguity and presents some studies about
the connections between ambiguity and incomplete markets
In ambiguity theory, this thesis presents two new axiomatizations: the first takes the

notion of confidence function, which generalize the multiple priors model when there exists
a worst consequence; in the second approuch, the existence of referential consequence is
supposed and the sign-dependents confidence functions generalizes cumulative prospect
theory with ambiguity aversion on gains and losses.
The last part presents some preliminaries results about cost function and incomplete-

ness of financial markets. Some cases of incompletness entails interesting formulas for
the cost functions using Choquet integral.
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Choices under Ambiguity.
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Chapter 1

Choice Theory and Ambiguity: a

general review.

1.1 Introduction

The human decision-making process may well be one of the most complicated systematic

phenomena studied by sciences. Decision Theory is a branch of human sciences concern-

ing to it where the axiomatic method is the main methodology and Functional Analysis,

Measure Theory and Convex Analysis are very useful. In Economic Theory this branch

presents a very important influence in areas such as general equilibrium and game theory.

There are two main aspects in a model of individual choice: the decision maker and the

avaliable object of choice. For example, in the pure general equilibrium theory proposed

by Arrow and Debreu (1954) we have as decision makers I consumers, and the avaliable

objects of choice are commodity bundles xi = (x1i, ..., xni) ∈ Rn+ for each consumer i.
Other important example is in game theory: in a game as proposed by Nash (1951) the

decision makers are players and the objects of choices are sets of individual strategies.

A decision maker is characterized by a binary relation on the choice set or, in a more

restritive setting, by a real valued object function on the choice set. For example, the

consumers in the Arrow and Debreu’s model are summarized by binary relations or utility
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functions.

Formally, let X be a nonempty set, called choice set, a decision maker is characterized

by a binary relation % on X, which we call a preference relation. Given two elements x, y
belonging to X, the expression x % y (or, (x, y) ∈%) means that x is at least as good
as y. From %⊆ X × X, we can derive two other relations on X: the strict preference
relation or asymetric component Â is defined by

Â:= {(x, y) ∈%: (y, x) /∈%},

and the indifference relation or symetric component ∼ is defined by

∼:= {(x, y) ∈%: (y, x) ∈%}.

1.2 General Representation

For a preference relation % on X, a crucial property is

Definition 1 A function u : X → R is a utility function representing preference relation

%⊆ X ×X if, for any x, y ∈ X,

x % y ⇔ u(x) ≥ u(y).

The representability of preferences by a utility function is closely linked to the as-

sumption of the following two properties below for %:

Definition 2 A preference relation %⊆ X ×X is complete if for any x, y ∈ X we have
x % y or y % x.

The completeness of preference relation says that the decision maker has a well-defined

preference between every pair of possible alternatives.
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Definition 3 A preference relation %⊆ X ×X is transitive when for any x, y, z ∈ X, if
x % y and y % z, then x % z.

An immediate result say that %⊆ X × X can be represented by a utility function

only if it is complete and transitive. The converse is true when X is finite or countable

infinite, but it is false in general; e.g., take the well known example where X = R2+ and

%l is the lexicographic preference: x %l y ⇔ x1 > y1 or x1 = y1 and x2 ≥ y2. Another
trivial result says that any arbitrary increasing transformation of a given utility function

woud result on other utility function for the same preference.

Now, we consider the choice set X as a topological space and always assume that

%⊆ X × X is complete and transitive. The first proof of existence of a continuous

utility function representing a preference relation was given by Wold1 in the case where

X = Rn+ and under the restritive class of strictly monotone preferences. For the most

classical result on the existence of a continuous representation we need the following

property for a preference relation:

Definition 4 A preference relation % on the topological space X is continuous when for

any x ∈ X the sets Lx = {y ∈ X : x % y} and Ux = {y ∈ X : y % x} are closed.

It is well known that if X is a connected and separable topological space, then every

continuous preference relation given on X admits a continous utility representation, this

is a result due to Eilenberg (1941). Moreover, by Debreu’s representation theorem,

the assumption of connectedness can be replaced by another topological condition: the

topological spaceX has a countable basis2. Therefore, ifX is a Banach space, Eilenberg’s

theorem implies that the norm separability is a sufficient condition for a norm continuous

preference to have a norm continuous representation, and by a result of Estévez and

Hervés (1995) norm separability is also a necessary condition.

1See, for instance, Bearton and Mehta (1994).
2We note that in the context of connected metric spaces, the Eilenberg and Debreu theorems are

equivalent. This is because a metric space X is separable iff X has a countable basis.
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However, it is well known that in many important economic applications, the choice

set to deal with are typically nonseparable3. Monteiro (1987) shows that, for a path

connected topogical space X, a continuous preference % has a continuous utility repre-
sentation iff it is countably bounded, i.e., there is some countable subset bX of X such

that for all x ∈ X there exist y, z ∈ bX such that y % x % z. For a Banach space X,

Campión, Candeal and Induráin (2005) proved that every weakly continuous preference

on X can be represented by a weakly continuous utility function.

1.3 Risk, Uncertainty and Ambiguity.

Decision theory with risk or uncertainty describes a class of models designed to formalize

the manner in which a decision maker chooses among alternative courses of action that

implies in consequences that are not known at the time the choice is made.

1.3.1 Choice under Risk

One of the most well known models in the modern economic theory is the von Neumann

and Morgenstern expected utility theory with risk. The essence of the von Neumann-

Morgenstern theory is a set of restrictions imposed on the preference relations over lot-

teries that allows their representation by the mathematical expectation of a real function

on the set of outcomes. A main aspect of the model is the specific functional form of the

representation, namely, the linearity in the probabilities. This functional is known as the

von Neumann-Morgenstern utility function.

Formally, the first primitive of the theory is a nonempty convex subset X of a linear

space. An special case of particular importance is when X is a set of distributions with

3See, for instance, section 4 of Mas-Colell and Zame (1991).
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finite supports over a arbitrary set W of prizes or outcomes,

X =

(
x :W → [0, 1]/ x(w) 6= 0 for finitely many w0s in W and

X
w∈W

x(w) = 1

)
.

The elements of X are random outcomes or (roulette) lotteries. Denote by δw the

element of X that assigns the unit probability to w ∈ W . Let x, y ∈ X, since X is a

convex subset of the linear space of measures on W , the mixed lottery αx + (1 − α)y,

is a lottery in X yielding the outcome w ∈ W with probability αx(w) + (1 − α)y(w).

It is customary to interpret it as a compound lottery in order to assign the behavioral

meaning of the mixture operation.

The other primitive of theory is a binary (preference) relation over X to be denoted

by %. Now, we present the axioms:
Axiom (vN-M1): % is a weak order, i.e., % is complete and transitive.
Axiom (vN-M2): For all x, y, z ∈ X, if x Â y and y Â z, then there exist α,β ∈ (0, 1)

such that αx+ (1− α)z Â y and y Â βx+ (1− β)z.

This axiom is known as the Archmedean Axiom and it is equivalent to the Mixture

Condition:

For any x, y, z ∈ X, the sets {α ∈ [0, 1] : αx+ (1− α)y % z}
and {α ∈ [0, 1] : z % αx+ (1− α)y} are closed.

Axiom (vN-M3): For any x, y, z ∈ X, and α ∈ [0, 1]

x ∼ y ⇒ αx+ (1− α)z ∼ αy + (1− α)z.

This last axiom is known as Independence Axiom. This axiom says that the preference

between the compound lotteries αx + (1 − α)z and αy + (1 − α)z is determined by the

preference between x and y, for any lottery z and weight α.

A real valued function u on X is affine if u(αx + (1 − α)y) = αu(x) + (1 − α)u(y)
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for any α ∈ (0, 1). Hence, if X is the set of lotteries over W , the affinity of u implies

u(x) =
P
w∈W

x(w)u(δw).

The most common version of von Neumann-Morgenstern expected utility theorem is

given by:

Theorem 5 Let X be a convex subset of some linear space, with a binary relation %
on it. A necessary and sufficient condition for the relation % to satisfy axiom (vN-M1),

axiom (vN-M2) and axiom (vN-M3) is the existence of an affine real valued function u

on X such that for all x and y in X: x % y iff u(x) ≥ u(y). Furthermore, an affine
real valued function v on X can replace u in the above statement iff there exist a positive

number α and a real number β such that v(x) = αu(x) + β on X ( i.e., u is unique up to

positive affine transformation).

For the proof of this theorem the reader is referred to Fishburn (1970).

The function u : X → R is usually referred to as the von Neumann-Morgenster utility.

The original theorem differs from this version in several aspects, in particular, instead

of the operation of convex combination in linear space, von Neumann and Morgenstern

introduce an abstract mixture operation that satisfies almost all the conditions of mixture

sets as presented in Herstein and Milnor (1953). A minor variant of the previous theorem

has been proved by Herstein and Milnor (1953) for the more general framework in which

the set of consequences is a mixture set. In their version, the independence axiom is

replaced by the weaker condition: if x, y ∈ X and x ∼ y, then for any z ∈ X, 1
2
x+ 1

2
z ∼

1
2
y + 1

2
z, and the Archmedean axiom is replaced by the mixture condition as mentioned

earlier.

Experimental studies of decision making and risk reveal systematic violations of in-

dependence axiom, e.g., Allais (1953) and Kahneman and Tversky (1979). Prompted

by some experimental results, several alternatives theories were proposed by weakening

the independence axiom. For a nice survey of these theories see section 3 of Karni and

Schmeidler (1991).

10



1.3.2 Choice under Uncertainty and Ambiguity

Most economic problems involve decision making under uncertainty rather than risk. The

usual argument is that risk implies the existence of objective probabilities, as is implicit

in von Neumann-Morgenstern theory. Savage’s theory (1954) of decision making under

uncertainty takes the notions of consequences, states of nature and acts as primitives.

Acts are functions assigning consequence to states. Savage (1954, Chapters1-5) proposed

a set of axioms for a preference relation on acts that allows the representation of it as

the mathematical expectation of a real function on the set of outcomes with respect to

a unique probability measure on the set of states. As in von Neumann-Morgenstern

model, an essential aspect of Savage’s theory is the linearity of the preference functional.

However, unlike the von Neumann-Morgenstern model, in Savage’s theory the existence

of probabilies is established jointly with that of the utility function. In this fact, Savage’s

theory differs from the usual statistical models where the existence of a family of prob-

ability laws is postulated. Hence, Savage’s work resolved the conceptual problem of the

existence of purely subjective probability and it is well known as Subjective Expected

Utility (SEU) theory.

Anscombe and Aumann (1963) suggested a model of preference relation over acts

which allows the derivation of a unique subjective probability over a finite set of states

of nature4. To do this they extended the set of acts by enlarging the set of consequences

to include all lotteries over the set of outcomes, i.e., they assumed that the set of conse-

quences is the choice set X as in the von Neumann-Morgenstern theory. Hence an act is

a mapping from the set of states of nature S to a convex subset X of a linear space. This

setting is much more ameable to mathematical treatment than Savage’s. This is specially

aparent in Fishburn’s (1970) reformulation and extention of Anscombe-Aumann analysis

for an arbitrary state space.

4In Savage’s approach there is an axiom, namely non-atomicity axiom, which implies that there are
infinitely many states of nature. For an approach of purely subjective probability with a finite set of
states of nature see Gul (1992).
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The Bayesian paradigm has as the main tenet the assumption that whenever a fact

is not kown, one should have probabilistic beliefs about it. Hence, SEU theory from

Savage or Anscombe and Aumann provided a behaviorial foundation for this feature of

Bayesianism. But, it was shown by Ellsberg (1961) to be an inaccurate description of

people’s behavior (see Chapter 2 for details). Ever since the seminal thought experi-

ment of Ellsberg, it has been acknowledged that the awareness of missing information,

ambiguity in Ellsberg’s terminology, affects the subject’s willingness to bet. Moreover,

Ellsberg emphasized the relevance of aversion to ambiguity. Below, we present the basic

framework that entails the Anscombe-Aumann result, as well the most popular mod-

els of ambiguity aversion: Choquet Expected Utility of Schmeidler (1989) and Maxmin

Expected Utility of Gilboa and Schmeidler (1989).

Mathematical preliminaries

Consider a set S of states of nature (world), endowed with a σ-algebra Σ of subsets called

events, and a non-empty setX of consequences. We denote by F the set of all the (simple)
acts: finite-valued functions f : S → X which are Σ-measurable5. Moreover, we denote

byB0(S,Σ) the set of all real-valued Σ-measurable simple functions a : S → R. The norm

in B0(S,Σ) is given by kak∞ =sup
s∈S

|a(s)| (called sup norm) and we can define the space

of all bounded and Σ-measurable functions by B(S,Σ) := B0(S,Σ)
k·k∞, i.e., B(S,Σ)

consists of all uniform limits of finite linear combinations of characteristic functions of

sets in Σ (see Dunfort and Schwartz 1988, page 240).

Clearly, we note that u(f) ∈ B0(S,Σ) whenever u : X → R and f belongs to F , where
the function u(f) : S → R is the mapping defined by u(f)(s) = u(f(s)), for all s ∈ S.
Let x belong to X, define x ∈ F to be the constant act such that x(s) = x for all

s ∈ S. Hence, we can identifyX with the set Fc of the constant acts in F . Given f, g ∈ F
and E ∈ Σ, we denote by fEg ∈ F the act that yields the consequence f(s) if s ∈ E

5Let %0 be a binary relation on X, we say that a function f : S → X is Σ-measurable if, for all
x ∈ X, the sets {s ∈ S : f(s) %0 x} and {s ∈ S : f(s) Â0 x} belong to Σ .
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and the consequence g(s), otherwise.

Additionally, we assume that X is a convex subset of a vector space. For instance,

this is the case if X is the set of all finite-support lotteries on a set of prizes Z, as it

happens in the classic setting of Anscombe and Aumann (1963).

Using the linear structure of X we can define as usual for every f, g ∈ F and α ∈ [0, 1]
the act:

αf + (1− α)g : S → X

(αf + (1− α)g)(s) = αf(s) + (1− α)g(s)

The decision maker’s preferences are given by a binary relation % on F , whose sym-
metric and asymmetric components are denoted by ∼ and Â:

∼ := {(x, y) ∈% ∧ (y, x) ∈%}
Â := {(x, y) ∈% ∧ (y, x) /∈%}

If f ∈ F , an element cf ∈ X is a certainty equivalent of f if cf ∈ {x ∈ X : x ∼ f}.
By ba(S,Σ) will be undertood the family of all bounded finitely additive set functions

with domain Σ and range R.The set ba(S,Σ) endowed with the norm kλk =sup
E∈Σ

|λ(E)| is
a Banach space, where by definition, given E ⊂ S :

v(λ, E) = sup{
X

|λ(Ei)| : {Ei} is any finite sequence of disjoint sets in Σ with Ei ⊂ E}.

From the well known inequality v(λ, S) ≤ 2 sup
E∈Σ

|λ(E)| , the total variation v(λ, S) is
a norm in ba(S,Σ)which is equivalent to the norm kλk. Moreover, (ba(S,Σ), v(·, S)) is
isometrically isomorphic to the norm dual of the Banach space (B(S,Σ), k·k∞) (Dunford
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and Schwartz(1988), page 258), where the duality being6

hλ, ai =
Z
S

a(s)λ(ds),

for any a ∈ B(S,Σ) and λ ∈ ba(S,Σ). Hence, the weak∗ topology σ(ba,B) on ba(S,Σ)

is the weakest topology for which all functionals ba(S,Σ) 3 λ 7→ hλ, ai are continuous,
where a ∈ B(S,Σ).
Given a functional I : B(S,Σ) → R, we say that I is: monotonic if I(a) ≥ I(b) for

all a, b ∈ B(S,Σ) such that a(s) ≥ b(s) for all s ∈ S; constant additive if I(a + k1S) =
I(a) + k for all a ∈ B(S,Σ) and k ∈ R; positively homogeneous if I(λa) = λI(a) for

all a ∈ B(S,Σ) and λ ≥ 0; constant linear if it is constant additive and positively

homogeneous.

Representation theorem

The decision makers prefences are given by a binary relation % on F , whose symmetric
and asymmetric components are denoted by ∼ and Â .
We introduce the basic preference model that entails the Anscombe-Aumann theo-

rem as a particular case, and some popular models of ambiguity-sensitive preferences of

Schmeidler (1989) and Gilboa and Schmeidler (1989).

The model is characterized by the following four axioms:

Axiom 1 (weak order nondegenered). For all f, g, h ∈ F : (1) either f % g or g % f ,
(2) if f % g and g % h, then f % h, (3) there are f, g ∈ F such that f Â g.

6The integral is in the sense of Dunford and Schwartz (1988) (see page 112). But, in the importante
case where λ is such that λ ≥ 0 and λ(S) = 1, an equilivant definition is given by the using of Lebesgue
integration: Z

S

a(s)λ(ds) =

0Z
−∞

[λ({s : a(s) ≥ α})− 1] dα+
+∞Z
0

λ({s : a(s) ≥ α})dα.

As is usual, we adopt the notion
R
S

a(s)λ(ds) =
R
adλ.

14



Axiom 2 (Certainty independence). If f, g ∈ F , x ∈ X, and λ ∈ (0, 1] then

f ∼ g ⇔ λf + (1− λ)x ∼ λg + (1− λ)x.

Axiom 3 (Mixture continuity). For all f, g, h ∈ F the sets:

{α ∈ [0, 1] : αf + (1− α)g % h}, {α ∈ [0, 1] : h % αf + (1− α)g} are closed.

Axiom 4 (Monotonicity). For all f, g ∈ F :

if f(s) % g(s) for all s ∈ S then f % g.

The following representation result is easily proved by mimicking the arguments of

Gilboa and Schmeidler (1989, Lemmas 3.1-3.3).

Lemma 6 A binary relation % on F satisfies axioms 1-4 if and only if there exists a

monotonic, constant linear functional I : B0(S,Σ)→ R and a nonconstant affine function

u : X → R such that

f % g ⇔ I(u(f)) ≥ I(u(g)).

Moreover, I is unique and u unique up to positive affine transformation.

Ghirardato and Marinacci (2001) called a preference % satisfying axioms 1-4 an in-
variant biseparable preference. Invariant refers to the mentioned invariance of I to utility

normalization. Biseparable means that the representation on binary acts of such pref-

erences satisfies the following separability condition: Let µ : Σ → [0, 1]be defined by

µ(E) := I(1E). Then, µ is a normalized and monotone set-function (a capacity) and for

all x, y ∈ X such thatx % y and E ∈ Σ

I(u(xEy)) = u(x)µ(E) + u(y)(1− µ(E)).

Some of the best-known models of decision making in the presence of ambiguity

employ invariant biseparable preferences. However, these models incorporate some ad-

ditional assumptions on how the decision maker reacts to ambiguity, i.e., whether he
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exploits hedging opportunits or not. These assumptions are summarized in the following

axiom:

Axiom 5. For all f, g ∈ F such that f ∼ g :

(a) (Ambiguity neutrality) 1
2
f + 1

2
g ∼ f.

(b) (Comonotonic ambiguity neutrality) 1
2
f + 1

2
g ∼ f if f and g are comonotonic7.

(c) (Uncertainty Aversion) 1
2
f + 1

2
g % f.

Axiom 5(c) is due to Schmeidler (1989), and it says that the decision maker will in

general prefer the mixture, possibly a hedge, to its components8. The others are simple

variations on that property.

Proposition 7 Let % be a preference satisfying axioms 1-4. Then
(i) (Anscombe-Aumann representation): % satisfies axiom 6(a) iff there ex-

ists a probability p ∈ ba1+(S,Σ) = {p ∈ ba(S,Σ) : p ≥ 0 and p(S) = 1}9 and I(f) =R
u(f)dp for any f ∈ F. In this case p = µ.
(ii) (Schmeildler representation) % satisfies axiom 6(b) iff there exists a capacity

µ : Σ → [0, 1] and I(f) =
R
u(f)dµ for any f ∈ F, where the integral is taken in the

sense of Choquet (for the definition of Choquet integral see Chapter 2, Section 2.5.2).

(iii) (Gilboa-Schmeidler representation) % satisfies axiom 6(c) iff there exists a

nonempty, weakly∗ compact and convex set C ⊂ ba1+(S,Σ) such that I(f) = minp∈C
¡R
u(f)dp

¢
for

all f ∈ F. Moreover, C is unique and µ(E) = minp∈Cp(E) for all E ∈ Σ.

Thus, a decision maker who satisfies axioms 1-4 and is indifferent to hedging oppor-

tunities satisfies the SEU model. We note that we can replace axioms 2 and 6(a) by the

classical independence axiom of Anscombe-Aumann: if f, g, h ∈ F and β ∈ (0, 1] then

f ∼ g ⇒ βf + (1− β)h ∼ βg + (1− β)h.

7A pair of acts f, g ∈ F is comonotonic when there are no states s, s0 ∈ S such that f(s) Â f(s0) and
g(s0) Â g(s).

8Another termilogy for this property is ambiguity hedging.
9We note that if p ∈ ba1+(S,Σ) then sup

E∈Σ
|p(E)| = v(p, S) = 1.
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A decision maker who is indifferent to hedging opportunities when they involve

comonotonic acts, but may care otherwise, satisfies the CEU model of Schmeidler (1989),

with beliefs given by the capacity µ. A decision maker who uniformly likes ambiguity

hedging oppportunities chooses according to a maxmin decision rule. Indeed, axioms

1-4 and 6(c) are the axioms proposed by Gilboa and Schmeidler (1989) to characterizes

maxmin expected utility preferences.
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Chapter 2

Ambiguity through Confidence

Functions

2.1 Introduction

The presence of vagueness in probability judgements is an important issue in decision

making, as Frank Knight (1921, page 227) commented: The action which follows upon

an opinion depends as much upon the amount of confidence in that opinion as it does

upon the favorableness of the opinion itself. Here, we may understand an opinion as

some probability judgement and following Knight’s argument we think that a decision

maker may have different degrees of confidence in his own probability assignments, and

that this is a crucial factor in the decision making process.

In order to make the preceding discussion more concrete we consider the Ellsberg’s

seminal article (Ellsberg, 1961) that presented the following mind experiments: there are

two urns A and B, each containing one hundred balls. Each ball is either red or black.

In urn A there are fifty balls of each color and there is no additional information about

urn B. One ball is chosen at random from each urn. There are four states of nature,

denoted by S = {(r, r), (r, b), (b, r), (b, b)} where (r, r) denotes the event that the ball
chosen from urn A is red and the ball chosen from urn B is red, etc. We can construct
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four bets denoted by Ar, Ab, Br, Bb, where the bet Ar yields $100 if the state (r, r) or

(r, b) occurs and zero if it does not, i.e., Ar is a bet on a red ball in urn A. According

to Ellsberg most decision makers are indifferent between betting on a red ball in urn A

and betting on a black ball in urn A and are similary indifferent between bets on a red

ball in urn B or a black ball in urn B. However, there is a nonnegligible proportion of

decision makers who prefer every bet from urn A (red or black) to every bet from urn B

(red or black).

A confidence function describes the degree of confidence on the alternative probabilis-

tic model governing the relevant phenomenon. If we assume the existence of a confidence

function over probabilities concerning urn A, it is plausible to take ϕA such that

ϕA((α, 1− α)) = 0 if α 6= 1/2 and ϕA((1/2, 1/2)) = 1

where (β, 1−β) denotes the lotteries that assign weight β for a red ball and 1−β for a black
ball. On the other hand, in urnB the situation is less simple due to the lack of information

about the proportion of balls. For example, taking considerations of symmetry into

account we may assume a confidence function ϕB, such that, ϕB((α, 1−α)) = 4(α−α2)

is the degree of confidence in distribution (α, 1 − α). This latter example illustrates a

situation where a decision maker has a subjective judgement that reflects a better amount

of confidence in distributions closer to the symmetrical case (1
2
, 1
2
).

Savage (1964) proposed a theory that relies solely upon behavioral data and gave a

set of axioms upon preferences amongst acts (i.e., maps from states to consequences)

under which choice under uncertainty reduces to choice under risk, i.e., the decision

maker’s preference can be represented by a pair u and p, where u is a utility function

over the consequences and p is a probability over the states of nature. In a setting where

objective probabilities are embedded in the consequence space, Anscombe and Aumann

(1963) gave an alternative and simpler axiomatic treatment. This treatment is especially

apparent in Fishburn’s (1970) well-known reformulation and extension of Anscombe and
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Aumann’s approach which employs usual linear-space arguments1 and entails the same

representation. Hence, if we assume the axiomatizations of subjective expected utility

(SEU) and consider the Ellsberg’s preceding experiment, the decision maker’s confidence

function in urn B would have assigned the value one to a unique probability p. This

view can be interpreted as the extreme binary assignment of confidence degree over the

priors, that is, one decision maker à la SEU may have total confidence in a unique

prior2. However, as it is well known, a decision maker consistent with the observations

from Ellsberg’s experiment is not consistent with the SEU characterization. Such an

example illustrates the fact that in situations where some events come with probabilistic

information and some events do not, subjective probabilities do not always suffice to fully

encode all aspects of an individual’s uncertain beliefs.

Ellsberg Paradox and some normative failures of SEU3 have inspired the develop-

ment of non-probabilistic models of preferences over subjectively uncertain acts. One

important line of research replaces the subjective expected utility function with a more

general functional, such as the Choquet expected utility (CEU) of Schmeidler (1989) or

the maxmin expected utility (MEU) of Gilboa and Schmeidler (1989). Decision makers

with MEU preferences evaluate an act using the minimun expected utility over a non-

empty, convex and (weakly∗) compact set of probabilities, while decision makers with

CEU preferences evaluate an act using its expected utility computed according to a ca-

pacity (a non additive probability). Although these models are not the same in general,

they coincide in the case of ambiguity aversion, that is, CEU with a convex capacity.

In this case, the Choquet expected utility with respect to a capacity v reduces to the

1Ghirardato, Maccheroni, Marinacci and Siniscalchi (2003) provide a simple definition of subjective
mixture of acts that makes it possible to exploit all the advantages of the set-up pioneered by Anscombe
and Aumann and Fishburn relying solely on behavioral data, and hence retaining the conceptual appeal
of Savage’s approach.

2One stronger example in economics is the rational expectation hypothesis: under this assumption
all agents share the same probability on some relevant economic phenomenon. But it is important to
highlight that the axioms from Savage or Anscombe and Aumann imply no restricitions on the form of
the probabilistic expectations, in particular, they do not imply that expectations are rational.

3For a stimulant discussion see Gilboa, Postlewaite and Schmeidler (2004), section 3.2.
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minimum expected value over the set of probability distribution given by the core of the

capacity v (definitions can be found in the section 2.5.2). Formally, a decision maker

with MEU preferences ranks acts according to the following criterion

J(f) =min
p∈C

Z
u(f)dp

An ambiguity aversion decision maker a la CEU or MEU exibits a behavior com-

patible with the Ellsberg Paradox. In this case, we may think that the decision-maker’s

confidence function is the characteristic function of some nonempty, convex and (weakly∗)

closed set C of probabilties: if the prior belongs to C the (normalized) confidence is one,

otherwise the confidence is null. Hence, the MEU criterion can be written as follows

J(f) = min
{p:1C(p)≥α}

1

1C(p)

Z
u(f)dp

for any α ∈ (0, 1], where

1A(p) =

 1, p ∈ C
0, p /∈ C

However, in general, it is not reasonable that the decision-maker has null confidence

on priors close to set C: e.g., consider the Ellsberg Paradox and an ambiguity aversion

decision maker with a set of priors given by C = {(β, 1 − β) : β ∈ [0.4, 0.6]}, which
implies in a confidence function given by

ϕ((β, 1− β)) =

 1, if β ∈ [0.4, 0.6]
0, if β /∈ [0.4, 0.6]

.

We think that it is questionable to associate null confidence on priors such as (0.39, 0.61).

Fortunately, our setting shows that the decision maker à la MEU may have a non-zero

degree of confidence on priors that does not belong to C.

In a setting where we consider the case of Anscombe and Aumann’s bounded below

acts, our representation has as its main component a mapping ϕ from the set ∆ ≡
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ba1+(S,Σ) of all finitely additive probabilities on the unit interval [0, 1], a minimal level

of confidence α0 ∈ (0, 1], and a real-valued affine function u on X, such that

J(f) = min
{p:ϕ(p)≥α0}

1

ϕ(p)

Z
u(f)dp.

Function ϕ belongs to the class of fuzzy set on ∆ (mappings from ∆ to [0, 1]) that

presents the following properties: quasi-concavity, normality, and (weakly∗) upper semi-

continuity4. A mapping in this class is called a confidence function, and models the

ambiguity. Hence, the term ambiguity refers purely to the vague perception of the likeli-

hood subjectively associated with an event by a decision maker, e.g., when asked about

his subjective estimate of the probability of an event, the decision maker replies: It is

more or less 70 percent. The number α0 ∈ (0, 1] is the minimal level of confidence that
matters for the decision maker: a prior with a confidence of less than α0 is not relevant,

and if ϕ(p1) ≥ ϕ(p2) ≥ α0 then the decision maker presents a greater confidence on p1

than p2.

We axiomatize the previous representation by showing how it rests on a simple set of

axioms that generalizes the MEU axiomatization of Gilboa and Schmeidler (1989).

2.2 Axioms

We assume there exists x∗ ∈ X such that f % x∗ for every f belonging to F , x∗ is called
the worst consequence.

(Axiom 1) Weak order non-degenerate. If f, g, h ∈ F :

(complete) either f % g or g % f

(transitivity) f % g and g % h imply f % h

there exists (f, g) ∈ F2 such that (f, g) ∈Â

4We recall that C ⊂ ∆ is weakly∗ compact iff 1C is weakly∗ upper semicontinous. Normality says
that {p : ϕ(p) = 1} is nonempty.
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(Axiom 2) Continuity. For all f, g, h ∈ F the sets:

{α ∈ [0, 1] : αf + (1− α)g % h}, {α ∈ [0, 1] : h % αf + (1− α)g} are closed.

(Axiom 3) Monotonicity. For all f, g ∈ F :

if f(s) % g(s) for all s ∈ S then f % g.

(Axiom 4) Uncertainty aversion. If f, g ∈ F and α ∈ (0, 1) :

f ∼ g ⇒ αf + (1− α)g % f

(Axiom 5) Worst independence. For all f, g ∈ F and α ∈ (0, 1) :

f ∼ g ⇒ αf + (1− α)x∗ ∼ αg + (1− α)x∗.

(Axiom 6) Independence on X. For all x, y, z ∈ X :

x ∼ y ⇒ 1
2
x+ 1

2
z ∼ 1

2
y + 1

2
z.

(Axiom 7) Bounded attraction for certainty. There exists δ ≥ 1 such that for all
f ∈ F and x, y ∈ X :

f ∼ x⇒ 1
2
x+ 1

2
y % 1

2
f + 1

2
(1
δ
y + (1− 1

δ
)x∗).

Axioms 1, 2, 3 and 6 are standard and well understood5. We note that these axioms

imply that the restriction of%⊂ F×F toX×X, denoted by%|X×X , has a von Neumann-
Morgenstein representation (Lemma 10). Moreover, it is well known that if a preference

relation % satisfies axioms 1, 2 and 3 then each act f ∈ F admits a certainty equivalent

cf ∈ X.
Axiom 4 is due to Schmeidler (1989) and it says that the decision maker will, in

general, prefer the mixture to its components.

5Axiom 3 says that the preference is monotone and is essentially a state-independent condition saying
that the decision maker always weakly prefers acts delivering statewise weakly better payoffs, regardless
of the state where better payoffs occur.
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The classical independent axiom among acts is due to Anscombe and Aumann and

it imposes the idea that if f, g, h ∈ F and β ∈ (0, 1] then

f ∼ g ⇒ βf + (1− β)h ∼ βg + (1− β)h,

and it says that the preference among mixtures βf + (1 − β)h and βg + (1 − β)h is

completely determined by the preference between f and g. An important weakening

of this axiom, called certainty independence, was introduced by Gilboa and Schmeidler

(1989) in their characterization of MEU preferences: it imposes only that h belongs to

the set of constant acts X. Our axiom 5 requires that independence holds whenever acts

are mixed with the worst consequence x∗.

Axiom 7 says that the decision maker, despite of uncertainty aversion, presents a

bounded attraction to certainty. For concreteness, consider the following example where

we suppose that consequences are monetary payoffs: There are two states of nature s1

and s2, consider two acts f ≡ 1{s1}4 and g ≡ x = 2 and a decision maker (risk neutral)
who has a preference where f ∼ x. The certainty independence axiom implies that

3/2{s1}3 ≡ 1
2
f + 1

2
x ∼ x = 2 but, if we impose only our axiom 7, we may obtain that

3/2{s1}3 Â 2 and that (note that y = x and x∗ = 0)

2 % 1

2
f +

1

2

µ
1

δ
2 +

µ
1− 1

δ

¶
0

¶
≡
µ
1

2
+ δ−1

¶
{s1}

¡
2 + δ−1

¢
Hence, the set {f ∈ F/X : x % f} becomes small when we drop the certainty

independence axiom for axiom 7. This axiom should be viewed as a behavioral feature

of bounded attraction of certain acts, if we compare it to the certain independece axiom

of Gilboa and Schmeidler.

24



2.3 Main Theorem

We can now state our main theorem, which characterizes preferences satisfying axioms

A.1-A7.

Let X be an arbitrary set, a fuzzy set in X is any function ϕ : X → [0, 1], which

generalizes characteristic functions 1A : X→ [0, 1] where A ⊂ X, 1A(x) = 1 if x ∈ A and
1A(x) = 0 if x /∈ A. This notion is due to Zadeh (1965).
Here we take X = ba1+(S,Σ), the set of all finitely additive probabilities on Σ endowed

with the natural restriction of the weak∗ topology on ba(S,Σ).

Let Cc(ba1+(S,Σ)) denote the collection of all nonempty convex weakly∗ closed subsets
of ba1+(S,Σ). As an extension of Cc(ba1+(S,Σ)) we define:

Definition 8 The set FR∗(ba1+(S,Σ)) of regular∗ fuzzy sets consists of all mappings ϕ :

ba1+(S,Σ)→ [0, 1] with the properties6:

(a) ϕ is normal;

{p ∈ ba1+(S,Σ) : ϕ(p) = 1} 6= ∅

(b) ϕ is weakly∗ upper semicontinuous;

{p ∈ ba1+(S,Σ) : ϕ(p) ≥ α} is weakly∗ closed for any α ∈ [0, 1]

(c) ϕ is quasi-concave;

ϕ(βp1 + (1− β)p2) ≥ min{ϕ (p1) ,ϕ (p2)} for any β ∈ [0, 1].

Remark 1 We note that the weak∗ support of ϕ, denoted by

supp∗ϕ := {p ∈ ba1+(S,Σ) : ϕ(p) > 0}
σ(ba,B)

6For an exposition of the concept of regular fuzzy sets over Rn see Puri and Ralescu (1985), page
1374.
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is weakly∗ compact by Alaoglu’s theorem (see Dunford and Schwartz (1988), page 424).

Remark 2 We can embed Cc(ba1+(S,Σ)) into FR∗(ba1+(S,Σ)) by the natural mapping
P 7→ 1P . We will use the notation for level sets

Lαϕ = {p ∈ ba1+(S,Σ) : ϕ(p) ≥ α} for any α ∈ (0, 1].

Moreover, we note that ϕ ∈ FR∗(ba1+(S,Σ)) if and only if the correspondence

α 7→ Lαϕ

takes values only on Cc(ba1+(S,Σ)). Because of this previous result, a quasi-concave fuzzy
set ϕ is called fuzzy convex (all level sets Lαϕ are convex).

The main theorem is:

Theorem 9 Let % be a binary relation on F, the following conditions are equivalent:
(i) % satisfies conditions A.1-A.7;
(ii) there exists a non-constant affine function u : X → R+, a α0 ∈ (0, 1] and a

regular∗ fuzzy set ϕ : ba1+(S,Σ)→ [0, 1] such that, for all f, g ∈ F

f % g ⇔ inf
p∈Lα0ϕ

1

ϕ(p)

Z
S

u(f)dp ≥ inf
p∈Lα0ϕ

1

ϕ(p)

Z
S

u(g)dp

Futhermore, given u in (ii) then for all λ > 0 we can adopt the tranformation λu in our

representation.

Remark 3 As soon as δ > 1 or equivalently α0 < 1, our preference is not invariant, that

is, we cannot change u by a positive affine transformation v = λu+β when β 6= 0; but it
is not a surprise. For the Anscombe and Aumann framework Ghirardato, Maccheroni and

Marinacci (2005) proved that invariance is equivalent to the axiom introduced by Gilboa

and Schmeidler (1989) in their characterization of MEU preferences, as we remarked in

the previous section:
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Certainty Independence: If f, g ∈ F, x ∈ X, and λ ∈ (0, 1] then

f ∼ g ⇔ λf + (1− λ)x ∼ λg + (1− λ)x.

It requires that independence holds whenever acts are mixed with a constant act. This

axiom implies that δ = 1. For more details see Remark 4.

We interpret the regular∗ fuzzy set ϕ (which we called confidence function), in our

representation, as the degree of confidence over each probability and α0 as the minimal

level of confidence held by the decision maker. The confidence function models the am-

biguity, hence the term ambiguity refers purely to the vague perception of the likelihood

subjectively associated with an event by a decision maker.

We note that if ϕ = 1P , where P ∈ Cc(ba1+(S,Σ)), we obtain the representation of
Gilboa and Schmeidler (1989) under the existence of a worst consequence.

We turn now to the proof of Theorem 9.

Part (ii)⇒(i) is straightforward. The (i)⇒(ii) will result from Lemma 10 to Lemma

15 and its Corollary 19.

Lemma 10 There exists an affine u : X → R non-constant function such that for all

x, y ∈ X : x % y iff u(x) ≥ u(y). Moreover, we can choose u such that u(x∗) = 0.

Proof: By axioms 1,2 and 6 the premises of the von Neumann-Morgenstern theorem

are satisfied [see Schmeidler (1989), page 577] and there exist an afine function u : X → R

such that for all x, y ∈ X : x % y iff u(x) ≥ u(y). Therefore, we can choose u(x∗) = 0.
By axiom 1, there exists f, g ∈ F s.t. f Â g; given x, y ∈ X such that x % f(s) and

g(s) % y for all s ∈ S, then by monotonicity (axiom 3) we have that x Â y, then u cannot
be constant. Finally, we can suppose that there exists x ∈ X s.t. u(x) = 1.

Lemma 11 For any u : X → R satisfying Lemma 10 there exists a unique J : F → R

such that

(i) f º g iff J(f) ≥ J(g) for all f, g ∈ F .
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(ii) If f = x1S ∈ Fc ≡ X (the set of constant functions) then J(f) = u(x).

Proof: On Fc the functional J is uniquely determined by (ii). Since for all f ∈ F
there exists a cf ∈ Fc such that f ∼ cf , we set J(f) = u(cf) and by construction J

satisfies (i), hence it is also unique.

We denote by B0(S,Σ,K) the functions in B0(S,Σ) that assume finitely many values

in K ⊂ R and by B+0 (S,Σ) = B0(S,Σ,R+). For k ∈ R, let k1S ∈ B0(S,Σ) be the
constant function on S such that k1S(S) = {k}.

Lemma 12 Let u and J be defined as in Lemmas 10 and 11, then there exists a functional

I : B+0 (S,Σ)→ R

where for every f ∈ F I(uof) = J(f), such that:

(i) I is superadditive, i.e., for a, b ∈ B+0 (S,Σ) : I(a+ b) ≥ I(a) + I(b);
(ii) I is positively homogeneous,i.e., for a ∈ B+0 (S,Σ),λ ≥ 0 : I(λa) = λI(a);

(iii) I is monotonic, i.e., for a, b ∈ B+0 (S,Σ) : a ≥ b⇒ I(a) ≥ I(b);
(iv) I is normalized, i.e., I(1S) = 1;

(v) For every a ∈ B+0 (S,Σ) and ξ ≥ 0

I(a+ ξ1S) ≤ I(a) + δξ.

Proof: We begin with B0(S,Σ, u(X)) and then extend I to all B+0 (S,Σ). If f ∈ F then
u(f) ∈ B0(S,Σ, u(X)). Now, if a ∈ B0(S,Σ, u(X))we have that there exists {Ei}ni=1 ⊂ Σ

a partition of S and {xi}ni=1 ⊂ X such that

a :=
nX
i=1

u(xi)1Ei ,

hence, we can choose f ∈ F such that f(s) = xi when s ∈ Ei and we conclude that
a = u(f).
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From this, we can write B0(S,Σ, u(X)) = {u(f) : f ∈ F}; therefore, u(f) = u(g) ⇔
u(f(s)) = u(g(s)), ∀s ∈ S ⇔ f(s) ∼ g(s), ∀s ∈ S; and, by axiom 3 (monotonicity),

f ∼ g, i.e., u(f) = u(g)⇔ J(f) = J(g).

Define I(a) = J(f) whenever a = u(f).Hence, we have it that I is well defined over

B0(S,Σ, u(X)).

Now, if a = u(f) and b = u(f) ∈ B0(S,Σ, u(X)) and a ≥ b, then u(f(s)) ≥ u(g(s)) for
any s ∈ S and, by axiom 3 (monotonicity), we have it that f % g, i.e., J(f) ≥ J(g) and
I(a) = I(u(f)) = J(f) ≥ J(g) = I(u(g)) = I(b); which proves that I is monotonic.
Set k ∈ u(X), then there exists some x ∈ X such that k = u(x) and I(k1S) =

I(u(x)1S) = J(x) = u(x) = k, i.e., I is normalized. In particular, since 1 ∈ u(X), I(1S) =
1.

We now show that I is positively homogeneous. Assume a = αb, where a, b ∈
B0(S,Σ, u(X)) and 0 < α ≤ 1. Let g ∈ F satisfy u(g) = b and define f = αg+(1−α)x∗.

Hence u(f) = αu(g) + (1− α)u(x∗) = αb = a, so I(a) = J(f). We have it that J(cg) =

J(g) = I(b). By axiom 5 (worst independence), αcg + (1− α)x∗ ∼ αg + (1− α)x∗ = f ,

hence J(f) = J(αcg + (1− α)x∗) = αJ(cg) + (1− α)J(x∗) = αJ(cg) and we can write

I(αb) = I(a) = J(f) = αJ(cg) = αI(b).

Furthermore, this implies positive homogeneity for α > 1 : a = αb⇒ b = α−1a⇒ I(b) =

α−1I(a)⇒ I(a) = αI(b).

Now, by positive homogeneity we can extend I to all B+0 (S,Σ), since u(X) is a non-

empty interval of R+ containing 0.

Next, we show that (v) is satisfied. Let there be given a ∈ B+0 (S,Σ) and ξ ≥ 0. By ho-
mogeneity we may assume without loss of generality that 2a and 2δξ1S ∈ B0(S,Σ, u(X)).
Now we define β = I(2a) = 2I(a). Let f ∈ F such that u(f) = 2a and y, z ∈ X satisfy
u(y) = β and u(z) = 2δξ, then J(f) = I(u(f)) = 2I(a) = β = I(β1S) = I(u(y)) = J(y),
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i.e., f ∼ y. By axiom 7 (bounded attraction for certainty), there exists δ ≥ 1 such that

1

2
y +

1

2
z º 1

2
f +

1

2
(
1

δ
z + (1− 1

δ
)x∗)

hence
1

2
J(y) +

1

2
J(z) ≥ J(1

2
f +

1

2
(
1

δ
z + (1− 1

δ
)x∗))

then
1

2
I(u(y)) +

1

2
I(u(z)) ≥ I(1

2
u(f) +

1

2
u(
1

δ
z + (1− 1

δ
)x∗))

from the facts above

1

2
I(β1S) +

1

2
I(2δξ1S) ≥ I(1

2
2a+

1

2
(
1

δ
u(z) + (1− 1

δ
)u(x∗)))

we obtain

I(a) + δξ ≥ I(a+ 1
δ
δξ1S) = I(a+ ξ1S)

It remains to show that I is superadditive. Let there be given a, b ∈ B+0 (S,Σ) and,
once again, by homogeneity we assume that a, b ∈ B0(S,Σ, u(X)). First, we note that
axiom 4 (ambiguity aversion) implies that I is quasi-concave, in fact:

Since a, b ∈ B0(S,Σ, u(X))we can choose f, g ∈ F such that a = u(f) and b = u(g),
since αa+(1−α)b = αu(f)+(1−α)u(g) = u(αf+(1−α)g), we obtain I(αa+(1−α)b) =
J(αf + (1− α)g) and, by axiom 4 (uncertainty aversion), αf + (1− α)g % g if f % g,
hence J(αf + (1− α)g) ≥ min{J(f), J(g)}, i.e., I(αa+ (1− α)b) ≥ min{I(a), I(b)}.
Now, since I is positively homogeneous it follows that I is concave (see Berge, 1965),

then 1
2
I(a+ b) = I(1

2
a+ 1

2
b) ≥ 1

2
I(a) + 1

2
I(b), that is, I(a+ b) ≥ I(a) + I(b).

Remark 4 We note that I : B+0 (S,Σ) → R as in the previous Lemma is constant

additive, i.e., for any a ∈ B+0 (S,Σ) and ξ ≥ 0

I(a+ ξ1S) = I(a) + ξ
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if δ = 1. In fact,

I(a) + ξ = I(a) + I(ξ1S) ≤ I(a+ ξ1S) ≤ I(a) + δξ.

Lemma 13 There exists a unique continuous extension of I to B+(S,Σ). Clearly, this

extension satisfies (i), (ii), (iii) and (v) from the last lemma on B+(S,Σ).

Proof:

Since a = b+ a− b ≤ b+ ka− bk∞, by monotonicity:

I(a) ≤ I(b+ ka− bk∞)

and by (v):

I(a) ≤ I(b) + δ ka− bk∞

that is

I(a)− I(b) ≤ δ ka− bk∞ ,

therefore

|I(a)− I(b)| ≤ δ ka− bk∞

and by equality B+(S,Σ) = B+0 (S,Σ)
k·k∞, there exist a unique continuous extension of I.

Building upon Fan’s Theorem 14 below, we give in the next Lemma 15, the key result

for our representation theorem 9. This Lemma can be seen as a generalization of the

representation Theorem proposed by Chateauneuf (1991) for Gilboa and Schmeidler’s

model. In fact, both models coincide if δ = 1.

Consider a real Banach space E and denote by E∗ the dual space of E:

Theorem 14 (Fan, 1956; page 126) Given an arbitrary set Λ, let the system

hf, xii ≥ αi, i ∈ Λ ($)
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of linear inequalities; where {xi}i∈Λ be a family of elements, not all 0, in real normed
linear space E, and {αi}i∈Λ be a corresponding family of real numbers.
Let σ := sup

nP
j=1

rjαij when n ∈ N, and rj vary under conditions: rj ≥ 0, ∀j ∈

{1, ..., n}and
°°°°° nP
j=1

rjxij

°°°°°
E

= 1. Then the system ($) has a solution f ∈ E∗ if and only if
σ is finite. Moreover, if the system ($) has a solution f ∈ X∗, and if the zero-functional

is not a solution of ($), then σ = min {kfkE∗ : f is a solution of ($)}.

Lemma 15 Let Σ be a σ-algebra of subsets of a set S and let I be a functional on the

set B+(S,Σ).The following two assertions are equivalent:

Assertion 1: I satisfies the properties:

1) I is superadditive: for a, b ∈ B+(S,Σ)

I(a+ b) ≥ I(a) + I(b);

2) I is positively homogeneous: for a, b ∈ B+(S,Σ), λ ≥ 0 :

I(λa) = λI(a);

3) I is monotonic: for a, b ∈ B+(S,Σ) :

a ≥ b⇒ I(a) ≥ I(b);

4) I is normalized:

I(1S) = 1;

5) There exists δ ≥ 1 such that for all a ∈ B+(S,Σ) and k ≥ 0:

I(a+ k1S) ≤ I(a) + δk.

Assertion 2: there exists α0 ∈ (0, 1] and a normal fuzzy set ϕ : ba1+(S,Σ)→ [0, 1] such
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that for any a ∈ B+(S,Σ) :

I(a) = inf
p∈Lα0ϕ

1

ϕ(p)

Z
S

adp

Proof: In order to simplify the notation we set ba1+(S,Σ) = ∆, B+(S,Σ) = B+, andR
S

adp = Ep(a) for every (a, p) ∈ B+ ×∆.

Assertion 2 implies Assertion 1 is straighforward.

In order to prove that Assertion 1 implies Assertion 2 we need the following lemma:

Lemma 16 The mapping

ϕ∗ : ∆→ R

p 7→ ϕ∗(p) = inf
a∈B+

Ep(a)

I(a)

is a normal fuzzy set7. Moreover, the functional

I∗ : B+ → R

a 7→ I∗(a) =inf
p∈∆

Ep(a)

ϕ∗(p)

satisfies I∗(a) = I(a), for any a ∈ B+.
Proof: Since for all a ∈ B+, Ep(a) ≥ 0 and I(a) ≥ 0, clearly ϕ∗(p) ≥ 0 and Ep(1S)

I(1S)
= 1

implies that ϕ∗(p) ∈ [0, 1] for all p ∈ ∆.

Let us show that ϕ∗ is normal, i.e., that there exists a p0 ∈ ∆ such that ϕ∗(p0) = 1,

since ϕ∗(p0) ≤ 1 it is enough to show that there exists p0 ∈ ∆ such that

Ep0(a) ≥ I(a) ∀a ∈ B+

Setting E = B, we need to show that there exists f ∈ E∗ such that f(1S) ≥ 1, f(−1S) ≥

7Note that we adopt the usual convention 0/0 = 1 and r/0+ = +∞ if r > 0.
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−1 and f(a) ≥ I(a) for all a ∈ B+. Then we have a system of linear inequalities and

can now use Fan’s theorem:

Let us consider λ1,λ2, ...,λn ≥ 0 and 1S, −1S, aj ∈ B+, 3 ≤ j ≤ n such that:°°°°°λ11S + λ2(−1S) +
nX
j=3

λj aj

°°°°°
∞
= 1

it follows that

λ11S − λ21S +
nX
j=3

λj aj ≤ 1S

hence

λ11S +
nX
j=3

λj aj ≤ (λ2 + 1)1S

from (1),(3),(4) and (2) it comes that:

λ1 +
nX
j=3

λjI( aj) ≤ λ2 + 1

therefore

λ1 − λ2 +
nX
j=3

λjI( aj) ≤ 1

i.e.,
nP
j=1

λjαj
≤ 1; where α1 = 1, α2 = −1, and αj = I(aj), 3 ≤ j ≤ n. Hence σ is finite

and from Fan’s theorem there exists p0 ∈ ∆ such that Ep0(a) ≥ I(a) for all a ∈ B+.
Now, we have that for any a ∈ B+, I∗(a) =inf

p∈∆
Ep(a)
ϕ+(p)

∈ R+. It remains to prove that
I∗(a) = I(a), for any a ∈ B+.
Let a0 be chosen in B+, and first prove that I∗(a0) ≥ I(a0) : If I(a0) = 0 this is

immediate. Assume, now, I(a0) > 0. Note that it is enough to prove I∗(a0) ≥ I(a0)

if 1 ≥ I(a0) > 0. Actually, let a0 such that I(a0) > 1 and choose λ > 0 such that

λI(a0) ≤ 1, since I∗ and I are positively homogeneous, one obtains:

λI(a0) = I(λa0) ≤ I∗(λa0) = λI∗(a0)
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hence I(a0) ≤ I∗(a0). Considering a0 ∈ B+ such that 1 ≥ I(a0) > 0,we have that

ϕ∗(p) = inf
a∈B+

Ep(a)

I(a)
≤ Ep(a0)
I(a0)

, ∀p ∈ ∆,

hence,

I(a0) ≤ Ep(a0)
ϕ∗(p)

, ∀p ∈ ∆

and from the definition of I∗ : I∗(a0) ≥ I(a0).
Let us now prove that I∗(a0) ≤ I(a0) for any chosen a0 ∈ B+. Clearly, it is enough

to prove this inequality when I∗(a0) > 0. Since I∗(a0) is the greatest lower bound of the

set of real numbers given by
n
Eq(a0)
ϕ∗(q) : q ∈ ∆

o
if we find p ∈ ∆ such that Ep(a0)

ϕ∗(p) ≤ I(a0)
then the result will be proved:

Let us first show that there exists f ∈ E∗ such that δ ≥ f(1S) ≥ 1, f(a0) = I(a0) and
f(a) ≥ I(a) for all a ∈ B+., i.e., f ∈ E∗ such that

f(1S) ≥ 1, f(−1S) ≥ −δ, f(a0) ≥ I(a0)
f(−a0) ≥ −I(a0) and f(a) ≥ I(a) ∀a ∈ B+

Again, we use Fan’s theorem:

Let us consider λ1, ...,λn ≥ 0 and 1S, −1S, a0, −a0, aj ∈ B+, 5 ≤ j ≤ n such that:°°°°°λ11S + λ2(−1S) + λ3a0 + λ4(−a0) +
nX
j=5

λj aj

°°°°°
∞
= 1

it follows that

λ11S − λ21S + λ3a0 − λ4a0 +
nX
j=5

λj aj ≤ 1S

hence

λ11S + λ3a0 +
nX
j=5

λj aj ≤ λ4a0 + (λ2 + 1)1S
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By properties of I in assertion 1 it comes that:

λ1 + λ3I(a0) +
nX
j=5

λjI( aj) ≤ λ4I(a0) + (λ2 + 1)δ

therefore

λ1 + λ2 + λ3I(a0)− λ4I(a0) +
nX
j=5

λjI( aj) ≤ δ

By Fan’s theorem, it comes that there exists η ∈ [1, δ], p ∈ ∆ such that:

(1) ηEp(a0) = I(a0), and

(2) ηEp(a) ≥ I(a) for all a ∈ B+

From (2) it comes that Ep(a)/I(a) ≥ η−1, for all a ∈ B+. Actually, by the initial
convention, Ep(a) = 0 implies I(a) = 0 and then Ep(a)/I(a) = 1 ≥ η−1. Moreover, if

Ep(a) > 0 and I(a) = 0 then Ep(a)/I(a) = +∞≥ η−1.

Consequentely, ϕ∗(p) ≥ η−1, and therefore ϕ∗(p) > 0.

Let us show that this entails Ep(a0) > 0. In fact, 0 < I∗(a0) ≤ Ep(a0)/ϕ∗(p), so we
get Ep(a0) > 0. Hence, (1) entails Ep(a0) > 0. Consequently,

Ep(a0)

I(a0)
=
1

η
≤ ϕ∗(p),

that is,
Ep(a0)

ϕ∗(p)
≤ I(a0),

as desired.

Corollary 17 Set α0 = 1/δ and Lα0ϕ
∗ = {p ∈ ∆ : ϕ∗(p) ≥ α0}, then for every a ∈ B+

I(a) = inf
p∈Lα0ϕ∗

Ep(a)

ϕ∗(p)
:= I 0(a)

Proof:
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First, it is immediate that I 0(a) ≥ I∗(a) = I(a) for any a ∈ B+. In order to show that
I 0(a) = I(a) for every a ∈ B+, it is enough to show that for a given a0 belonging to B+
such that I 0(a0) > 0, there exists p0 ∈ Lα0ϕ

∗ such that Ep0(a0)/ϕ
∗(p0) ≤ I(a0). However,

we know, by the previous lemma, that there exists p0 ∈ ∆ such that Ep0(a)/I(a) ≥ 1/δ
for every a ∈ B+, i.e., p0 ∈ Lα0ϕ

∗. Since I 0(a) > 0, it follows that Ep0(a0) > 0 and,

again by the previous lemma, Ep0(a0)/I(a0) = ϕ∗(p0), and then I(a0) = Ep0(a0)/ϕ
∗(p0).

Remark 5 Let ϕ be a normal fuzzy set satisfying the model, i.e.

I(a) = inf
p∈Lα0ϕ

1

ϕ(p)

Z
adp for all a ∈ B+,

and let ϕ∗ be defined by

ϕ∗(p) = inf
a∈B+

Ep(a)

I(a)
,

then for any p ∈ Lα0ϕ one obtains ϕ
∗(p) ≥ ϕ(p).

Proof:

Let p ∈ Lα0ϕ then for all a ∈ B+, I(a) ≤ Ep(a)/ϕ(p). Hence, ϕ(p)I(a) ≤ Ep(a) for
all a ∈ B+. Since ϕ(p) > 0, if Ep(a) = 0 then I(a) = 0 and in this case Ep(a)/I(a) = 1 ≥
ϕ(p). If Ep(a) > 0 in any case, due to the convention r/0 = +∞ if r > 0, one obtains
that Ep(a)/I(a) ≥ ϕ(p). Hence, ϕ(p) ≤ Ep(a)/I(a) for all a ∈ B+ and, therefore,

ϕ∗(p) ≥ ϕ(p).

Remark 6 From Lemma 16, there exists a normal fuzzy set ϕ such that

I(a) =inf
p∈∆

Ep(a)

ϕ(p)
for all a ∈ B+.

In fact, for any such ϕ, one obtains that ϕ∗(p) ≥ ϕ(p) for all p ∈ ∆.

Proof:

Take p ∈ ∆, then for all a ∈ B+, I(a) ≤ Ep(a)/ϕ(p); if ϕ(p) = 0, clearly Ep(a)/I(a) ≥
ϕ(p) for all a ∈ B+ and ϕ∗(p) ≥ ϕ(p). If ϕ(p) > 0, the same proof as for Remark 5

applies.
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Corollary 18 The mapping ϕ∗ : ∆→ R is a regular fuzzy set.

Proof:

We know that ϕ∗ is a normal fuzzy set. Now, let us show that ϕ∗ is fuzzy convex.

In fact, we have it that ϕ∗ is concave: taking p1, p2 ∈ ∆ and r ∈ [0, 1], denote by pr =
rp1 + (1− r)p2. Hence for every a ∈ B+ Epr(a) = rEp1(a) + (1− r)Ep2(a) and

ϕ∗(pr) = inf
a∈B+

rEp1(a) + (1− r)Ep2(a)
I(a)

≥ r inf
a∈B+

Ep1(a)

I(a)
+ (1− r) inf

a∈B+
Ep2(a)

I(a)

= rϕ∗(p1) + (1− r)ϕ∗(p2).

in particular, ϕ∗ is quasiconcave.

Finally, let us show that ϕ∗ is weakly∗ upper semicontinuous. For each a ∈ {b ∈ B+ :
I(b) > 0} := {I > 0}, define

ψa : ∆→ R

p 7→ ψa(p) = Ep(a)/I(a).

By the definition of weak∗ topology we have it that ψa is weakly∗ upper semicontinuous

for any a ∈ {I > 0}. Note that

ϕ∗(p) = inf
a∈B+

Ep(a)

I(a)
= inf
{I>0}

Ep(a)

I(a)

Since the sets {p ∈ ∆ : ψa(p) ≥ α} are weakly∗ closed for any a ∈ {I > 0} and for any
α ∈ [0, 1], we obtain that

{p ∈ ∆ : ϕ∗(p) ≥ α} =
\
{I>0}

{p ∈ ∆ : ψa(p) ≥ α}

is weakly∗ closed as desired (in fact, we have an infimun over continuous functions and
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is well known that it is upper semicontinuous).

Using the maximal confidence function ϕ∗ we can write:

Corollary 19 Under the conditions on the Main Theorem for each u, there is a (unique)

maximal confidence function ϕ∗ : ∆→ [0, 1] such that:

J(f) =min
p∈∆

1

ϕ∗(p)

Z
u(f)dp

given by

ϕ∗(p) =inf
f∈F

µR
u(f)dp

u(cf)

¶
This corollary completes the proof of the Main Theorem.

Function ϕ∗ should be viewed as the upper confidence function, specifying maximal

confidence among priors that the decision maker may face in order to be consistent with

our main representation.

In contrast with the MEUmodel, a decision maker that presents a behavior consistent

with our set of axioms, in general, does not evaluate the acts by their minimal expected

utility on the set of priors that matters, i.e., on the set Lα0ϕ
∗. Hence, we obtain a non-

extremely pessimistic behavior over Lα0ϕ
∗ and this is true because in general we do not

have a decision maker with a uniform confidence on the priors. For instance, we may

observe two decision makers who share the same sets of priors but one is more cautious

than the other. This can occur when there are differents personal confidence functions8.

Another preference representation that has the Gilboa and Schmeidler model as a

particular case and uses a mapping on the set of probabilities is the variational prefer-

ences9 proposed by Maccheroni, Marinacci and Rustichini (2004): variational preferences

8Another model of decision making under ambiguity that has a similar non-extremely pessimistic
behavior interpretation is the smooth model proposed by Klibanoff, Marinacci and Mukerji (2005). In
their representation the doubt about the right probability is given by a subjective probability over ∆.
In our case, we recall that this doubt is given by the confidence function (a regular∗ fuzzy set).

9The multiplier preferences of Hansen and Sargent (2001) and the mean-variance preference of
Markovitz (1952) and Tobin (1958) are also special cases. The worst consequence is not required in
the axiomatization of the variational preferences.
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have the following representation

V (f) =min
p∈∆

µZ
u(f)dp+ c∗(p)

¶

where c∗ : ∆→ R∪{+∞} is a convex, weakly∗ lower semicontinuous function, such that
{p ∈ ∆ : c∗(p) = 0} is nonempty.
We note that function c∗ generalizes the indicator functions from Convex Analysis:

δP : ∆ → R ∪ {+∞} where δP (p) = 0 if p ∈ P and δP (p) = +∞ if p /∈ P . In

our representation, we saw that ϕ∗ generalizes the characteristic function from Measure

Theory. Function c∗ can be interpreted as the index of ambiguity aversion and has a nice

expression for the minimal index of ambiguity aversion:

c∗(p) =sup
f∈F

µ
u(cf)−

Z
u(f)dp

¶
.

Moreover, if u(X) is unbounded then the index of ambiguity aversion c∗ is unique.

We note that variational preferences are not positively homogeneous. Hence, our

preference and the variational preference captures different designs of behavior under

uncertainty. It follows from the different axiomatic foundations.

An alternative interpretation of variational preference, where the function c∗ : ∆ →
R∪{+∞} should be viewed as a cost function of a malevolent Nature10, can be translated
for our preference: function ϕ∗ : ∆→ [0, 1] should be viewed as a plausibility function of

a malevolent nature. Each number ϕ∗(p) captures the decision maker’s perception of the

relative plausibility of the different models p that Nature can choose in order to make the

decision maker the most possible worst off; if ϕ∗(p1) ≥ ϕ∗(p2) then model p1 is weakly

10In this interpretation, decision makers ranking payoff profiles according to maxmin rules can be
viewed as believing they are playing a zero-sum game againt Nature. For a interesting discussion see
pages 5-7 of Maccheroni et. al. (2004).
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more plausible than model p2. Hence, the decision maker’s play follows the rule

max
f∈F

min
p∈∆

½
1

ϕ∗(p)

Z
u(f)dp

¾

where the strategies are pairs (f, p) ∈ F ×∆, and F is the decision maker’s set of pure

strategies and ∆ is the Nature’s set of pure strategies.

2.4 Ambiguity Attitudes

We now analyse ambiguity attitude features for the class of preferences that satisfies

the list of axioms A.1 to A.7. By our mean theorem, each preference in this class is

represented by a utility functional J on F , such that:

J(f) =min
p∈∆

1

ϕ∗(p)

Z
u(f)dp

where u : X → R+ is an affine function such that u(x∗) = 0 and ϕ∗ is a confidence

funtion, i.e., it belongs to FR∗(ba1+(S,Σ)). As the maximal confidence function, ϕ
∗ has

the expression:

ϕ∗(p) =inf
f∈F

µR
u(f)dp

u(cf)

¶
Ghirardato and Marinacci (2002) proposed a notion of absolute ambiguity aversion

by building on a notion of comparative ambiguity. The comparative ambiguity attitude

says: Given two preferences %1 and %2, the preference relation %1 is more ambiguity
averse than %2 if for all f ∈ F and

x ∈ X, f %1 x⇒ f %2 x.

The absolute notion of ambiguity aversion defined by Ghirardato and Marinacci

(2002) considers SEU preferences as benchmarks for ambiguity neutrality: We say that

a preference relation % is ambiguity averse if it is more ambiguity averse than some SEU
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preference.

Now, if we consider the behavioral assumptions present in our main theorem, which

includes the preference for randomization of Schmeidler (1989) described by the uncer-

tainty aversion axiom, it is not surprising that we obtain in a precise sense:

Proposition 20 The preference % as in our main theorem is ambiguity averse.

Proof:

We have it that J(f) = minp∈∆ {ϕ∗(p)−1Ep (u(f))} with ϕ∗ ∈ FR∗(ba1+(S,Σ)), in
particular the normality of ϕ∗ says that we can take some p0 ∈ ∆ such that ϕ∗(p0) =

1. Now, we define V (f) = Ep0(u(f)) and obtain a SEU preference %V . Furthermore,
inequality V (f) ≥ J(f) entails that f %J x⇒ f %V x.

For any pair of preferences, we have an affine utility index on consequences that

assigns null utility for the worst consequence x∗. Hence, given two preferences we can

suppose the same index u on the set of consequences.

Proposition 21 Consider ϕ∗1, ϕ
∗
2 ∈ FR∗(ba1+(S,Σ)) and let be u : X → R+ an affine

function such that u(x∗) = 0 where the pair (u,ϕ∗i ) represents %i, i = 1, 2. Are equivalent:
(1) %1 is more ambiguity averse than %2;
(2) ϕ∗1 ≥ ϕ∗2.

Proof:

(1)⇒ (2): For any f ∈ F, if f ∼1 x then f %2 x, moreover:

J1(u(f)) = u(x) ≤ J2(u(f))

i.e., J1 ≤ J2. Hence,

ϕ∗1(p) =inf
f∈F

Ep(u(f))

J1(u(f))
≥inf
f∈F

Ep(u(f))

J2(u(f))
= ϕ∗2(p)

as desired.
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(2)⇒ (1) : For any f ∈ F and x ∈ X, if f %1 x then

inf
p∈∆

µR
u(f)dp

ϕ∗1(p)

¶
≥ u(x),

since ϕ∗1 ≥ ϕ∗2 implies that

inf
p∈∆

µR
u(f)dp

ϕ∗2(p)

¶
≥inf
p∈∆

µR
u(f)dp

ϕ∗1(p)

¶

we conclude that f %2 x.

This proposition says that more ambiguity averse preference relations are character-

ized, up to index normalization, by greater functions ϕ∗. If ϕ∗1 ≥ ϕ∗2, we may think

that decision maker 1 has a greater doubt about the likehood of the events than decision

maker 2.

Example 22 The maximal ambiguity aversion behavior is characterized by ϕ∗(p) = 1

for any p ∈ ∆. In this case

J(f) = minp∈∆ (Ep(u(f))) =min
s∈S

u(f(s))

is an expression that reflects extreme ambiguity aversion.

Example 23 The minimal ambiguity aversion corresponds here to ambiguity neutral-

ity, as we know that our preferences are ambiguity averse. The least ambiguity averse

functions ϕ∗ are associated with SEU preferences. In this case we obtain that

ϕ∗(p) = inf
{E∈Σ:q(E)>0}

p(E)

q(E)

where q ∈ ∆ is the subjective probability of the decision maker. For details see Proposi-

tions 26 and 27. Note that ϕ∗(p) = 0 if and only if there exists an event E0 such that

q(E0) > p(E0) = 0, that is, p and q disagree about some miracle.
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Example 24 Consider

Jv(f) =

Z
u(f)dv,

where v : Σ → [0, 1] is a capacity (see Section 2.5.2) such that there exist λ ∈ (0, 1) and
q ∈ ∆

v(E) = λq(E), if Σ 3 E 6= S,
v(S) = 1.

The functional Jλq is the well known ε-contaminated model. Denote by ϕ∗q the max-

imal confidence function of a SEU preference with subjective probability q, and ϕ∗λq the

maximal confidence function of ε-contamined model for λ = 1− ε. We then obtain that,

ϕ∗λq(p) = inf
{E∈Σ:q(E)>0}

½
p(E)

λq(E)
∧ 1
¾
=

ϕ∗q(p)
λ
∧ 1.

Hence, ϕ∗λq(p) = 1 iff ϕ∗q(p) ≥ λ. That is, the set of full confidence for a preference in

accordance with Jλq is the same as the level set Lλϕ∗q, which is the set of priors with a

confidence level greater than λ for the decision maker that presents subjective probability

q. On the other hand, we can obtain that

Jv(f) = min
p∈λq+(1−λ)∆

Z
u(f)dp,

and, by Section 2.5.1, ϕ∗v(p) = 1 iff p = λq + (1− λ)p0 for some p0 ∈ ∆.

2.5 Special Cases

Suitably choosing the confidence function, we can obtain well known cases in the litera-

ture:
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2.5.1 Maxmin Expected Utility

Gilboa and Schmeidler (1989) characterized preference relations over acts, which has a

numerical representation by a functional I on B(S,Σ) that satisfies the formula

I(a) =min
p∈C

Ep(a)

where C ⊂ ∆ is non empty, convex and σ(ba,B)-compact set.

Here we focus on non negative functions. Recall that the confidence function ϕ∗ :

∆→ R is given by

p 7→ ϕ∗(p) = inf
a∈B+

Ep(a)

I(a)

By our main result, ϕ∗ is the maximal confidence function that satisfies the Gilboa

and Schmeidler representation.

We note that for all p ∈ C, I(a) ≤ Ep(a) for any a ∈ B+, since I(1S) = p(S) = 1 we
obtain that ϕ∗(p) = 1, ∀p ∈ C.
If p /∈ C by a separation theorem for locally convex linear topological space (Dunford

and Schwartz (1988), page 418) there exists a0 ∈ B+ such that

Ep(a0) < min{Eq(a0) : q ∈ C} = I(a0)

therefore

ϕ∗(p) = inf
a∈B+

Ep(a)

I(a)
≤ Ep(a0)
I(a0)

< 1

and we conclude that ϕ∗(p) = 1 if and only if p ∈ C. However, it is not true that if p /∈ C
then ϕ∗(p) = 0.

Example 25 Taking the Gilboa and Schmeidler’s functional with S = {s1, s2} and C =
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{(λ, 1− λ) : λ ∈ [0.4, 0.6]} we obtain that:

ϕ∗(λ) =
½ 1, if λ ∈ [0.4, 0.6]

λ/0.4, if λ ∈ [0, 0.4)
(1− λ)/0.4, if λ ∈ (0.6, 1]

that is ϕ∗ 6= 1C.
It is worth noting that the confidence function decreases while the probability moves

away from the full confidence set of priors C and, in a sufficiently fast way, in order to

keep our decision maker a maxmin expected utility agent with respect to C. We know

that ϕ∗ is maximal by Remark 6. Consider, for example, a distortion ϕ∗r of ϕ
∗ given by

ϕ∗r(λ) =
½ 1, if λ ∈ [0.4, 0.6]

(1− λ)/0.4, if λ ∈ (0.6, 1]³
0.5(λ−0.4)
0.2+r

´
+ 1, if λ ∈ [0.2− r, 0.4)¡

0.5
0.2−r

¢
λ, if λ ∈ [0, 0.2− r)

where r ∈ (0, 0.2) and note that lim
r&0

ϕ∗r (λ) = ϕ∗ (λ) for any λ ∈ [0, 1]. Define for any
a ∈ R2+

I∗(a) =min
λ∈[0,1]

µ
λa1 + (1− λ) a2

ϕ∗r(λ)

¶
,

in this case we obtain that I∗((1, 0)) = 0.4− 2r < 0.4 = I((1, 0)).

2.5.2 Choquet Expected Utility

Let a functional I : B+(S,Σ)→ R be defined by

I(a) =

Z
adv =

Z +∞

0

v ({a ≥ λ}) dλ

where the set-function v : Σ→ [0, 1] is a capacity, i.e:

(i) v(∅) = 0, v(S) = 1
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(ii)E,F ∈ Σ such that E ⊂ F ⇒ v(E) ≤ v(F )
Moreover, we assume that v is a convex capacity, i.e:

(ii)For all events E,F ∈ Σ : v(E ∪ F ) + v(E ∩ F ) ≥ v(E) + v(F ).
When v is convex, the well known result of Schmeidler (1986) says that the core of v

C(v) = {p ∈ ∆ : p(E) ≥ v(E), ∀E ∈ Σ}

is nonempty (convex and weakly∗ compact). Moreover,

Z
adv =min

p∈C(v)
Ep(a).

Define the application

eϕ : ∆→ R

p 7→ eϕ(p) =inf
E∈Σ

p(E)

v(E)

Proposition 26 The mapping eϕ is a normal fuzzy set and, for every a ∈ B(S,Σ),
(1) I(a) = inf

p∈Lα0ϕ

Ep(a)eϕ(p) := I 0(a)
for any level of minimal confidence α0 ∈ (0, 1].
Proof:

Let us first prove that eϕ is a normal fuzzy set. Take p ∈ ∆, clearly eϕ(p) ∈ R+, and
since p(S) = v(S) = 1 it turns out that eϕ(p) ∈ [0, 1].
Finally eϕ is normal: since v is convex we saw that C(v) is nonempty. Note thateϕ(p) = 1 if and only if p ∈ C(v).
Let us first prove equality (1), when a belongs to B+0 (S,Σ), the set of real-valued
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Σ-measurable, non-negative simple functions. Then

a =
mX
i=1

xi1Ei

where {Ei}mi=1 ⊂ Σ is a partition of S where x1 > x2 > ... > xm ≥ 0 = xm+1.
First, let us prove that

I 0(a) = inf
p∈Lα0ϕ

Ep(a)eϕ(p) ≥ I(a).
It is enough to show that for any given p ∈ Lα0eϕwe have:

(2)
Ep(a)eϕ(p) ≥

Z
adv.

Set d1(p) = Ep(a)− eϕ(p) R adv; hence (2) is equivalent to d1(p) ≥ 0. We note that
d1(p) =

mX
i=1

(xi − xi+1)
"
p

Ã
i[
j=1

Ei

!
− eϕ(p)vÃ i[

j=1

Ei

!#
,

since for all i ∈ {1, ...,m}

eϕ(p) ≤ p
Ã

iS
j=1

Ei

!

v

Ã
iS
j=1

Ei

!
and (xi − xi+1) ≥ 0, we obtain d1(p) ≥ 0.
It remains to show that I 0(a) ≥ I(a) : taking p0 ∈ C(v) such thatZ

adv =min
p∈C(v)

Ep(a) = Ep0(a).

Since eϕ(p0) = 1, we obtain
I∗(a) ≤ Ep0(a) = I(a).
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Therefore, I 0(a) = I(a) for all a ∈ B+0 .
Let us take now a belongs to B+: We know that there exists an ∈ B+0 , an → a

uniformly. From the previous case, I 0(an) = I(an) for all n ≥ 1. From Lemma 13

I 0(an)→ I 0(a), but I(an)→ I(a). Hence, I 0(a) = I(a).

In fact, it is true that

Proposition 27 For any probability p ∈ ∆ we have that eϕ(p) = ϕ∗(p).

Proof:

Note first that E ∈ Σ implies that 1E ∈ B, then 0 ≤ ϕ∗(p) ≤ eϕ(p), so the proof has
only to be done if eϕ(p) > 0.
In the previous proposition, when restricting to B+0 , we obtain that

Ep(a)eϕ(p) ≥
Z
adv, for every a ∈ B+0

so, by continuity,
Ep(a)eϕ(p) ≥

Z
adv, for every a ∈ B+.

Hence, Ep(a) ≥ eϕ(p)I(a) for any a ∈ B+. If I(a) = 0 either Ep(a) = 0 and Ep(a)/I(a) =
1 ≥ eϕ(p), or Ep(a) > 0 and Ep(a)/I(a) = +∞ ≥ eϕ(p). Finally, if I(a) > 0, clearly

Ep(a)/I(a) ≥ eϕ(p) and therefore ϕ∗(p) ≥ eϕ(p).
Remark 7 An interesting result is that the minimal confidence function, in accordance

with our main representation, related with the CEU model is given by

ϕ∗(p) = inf
a∈B+

e
R
adp

e
R
adv

= inf
a∈B+

e(
R
adp−R adv), for any p ∈ ∆.

If p ∈ core(v), since R adp− R adv ≥ 0 for any a ∈ B+, we obtain that ϕ∗(p) = e0 = 1.
Now, if q /∈ core(v), then there exists some event E0 such that v(E0) > q(E0). Consider
the sequence of simple functions an = n1E0:

ϕ∗(q) ≤inf
n∈N

en(q(E0)−v(E0)) = 0,
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that is,

ϕ∗ ≡ 1core(v).

Moreover, we note that ϕ∗(p) = e−c
∗(p), where c∗ is the ambiguity index of Variational

Preference related to the MEU model (see, for instance, Proposition 12 of Maccheroni et

al. (2005))11.

Removing the restriction of non-negativity, one obtains in the general case the fol-

lowing result:

Proposition 28 If we define the confidence function ϕ for any p ∈ ∆ by:

ϕ(p) =inf
E∈Σ

½
p(E)

v(E)
∧ 1− v(E)
1− p(E)

¾

then, for every function a ∈ B(S,Σ), we have that

(2)

Z
adv = inf

p∈La0ϕ

½
Ep(a

+)

ϕ(p)
+ ϕ(p)Ep(a

−)
¾
,

for any level α0 ∈ (0, 1]; where a+ = a∨0, a− = a∧0, and the Choquet integral of a with
respect to v is given by

Z
adv =

Z 0

−∞
[v ({a ≥ λ})− 1]dλ+

Z +∞

0

v ({a ≥ λ}) dλ.

Proof:

The proof is similar to the proof of Proposition 26: Take p ∈ ∆, clearly ϕ(p) ∈ [0, 1].
In order to prove that ϕ is normal, note that since v is convex then C(v) is non empty.

Moreover, p ∈ C(v) if and only if p(E) ≥ v(E), or equivalently, 1− v(E) ≥ 1− p(E) for
every E ∈ Σ, and then ϕ(p).

Let us prove now equality (2), where a belongs to B0(S,Σ) the set of real-valued Σ-

11Using separation argument, this result holds for the MEU model.
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measurable simple functions. Then

a =
mX
i=1

xi1Ei +
nX
k=1

yi1Ak = a
+ + a−

where {Ei}mi=1 , {Ak}nk=1 ⊂ Σ are partitions of S where x1 > x2 > ... > xm ≥ 0 = xm+1
and 0 ≥ y1 > y2 > ... > yn with yn+1 = 0.
First let us prove that

I 0(a) := inf
p∈Lα0ϕ

µ
Ep(a

+)

ϕ(p)
+ ϕ(p)Ep(a

−)
¶
≥ I(a) = I(a+) + I(a−)

It is enough to show that for a given p ∈ Lα0eϕwe have:
(2)

Ep(a
+)eϕ(p) ≥

Z
a+dv

(3)ϕ(p)Ep(a
−) ≥

Z
a−dv

Set d1(p) = Ep(a)− ϕ(p)
R
adv; hence (2) is equivalent to d1(p) ≥ 0, which we proved

in Proposition 26.

Setting now d2(p) = ϕ(p)Ep(a
−)− R a−dv, (3) is equivalent to d2(p) ≥ 0.

We note that

ϕ(p) ≤ 1− v(A)
1− p(A) ,∀A ∈ Σ

implies ϕ(p)p(A)− v(A) ≥ ϕ(p)− 1 for every event A ∈ Σ. Now, since yk− yk+1 ≥ 0 for
every k < n:

d2(p) = (y1 − y2) [ϕ(p)p(A1)− v(A1)]
+(y2 − y3) [ϕ(p)p(A1 ∪A2)− v(A1 ∪A2)]
+...+

+(yn−1 − yn)
"
ϕ(p)p

Ã
n−1[
k=1

Ak

!
− v

Ã
n−1[
k=1

Ak

!#
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+yn [ϕ(p)− 1]
≥ (y1 − y2) [ϕ(p)− 1]

+(y2 − y3) [ϕ(p)− 1]
+...+

+(yn−1 − yn) [ϕ(p)− 1]
+yn [ϕ(p)− 1]

= (y1 − yn)(ϕ(p)− 1) ≥ 0

It remains to show that I 0(a) ≥ I(a) : taking p0 ∈ C(v) such thatZ
adv =min

p∈C(v)
Ep(a) = Ep0(a).

Since ϕ(p0) = 1, we obtain

I 0(a) ≤ Ep0(a+) +Ep0(a−) = I(a).

Therefore, I 0(a) = I(a) for all a ∈ B0(S,Σ).
Let us take now a belonging to B(S,Σ): We know that there exists an ∈ B0(S,Σ),

an → a uniformly. From the previous case I 0(an) = I(an) for all n ≥ 1. From Lemma

13, I 0(an)→ I 0(a), but I(an)→ I(a). Hence, I 0(a) = I(a).

2.6 Concluding Remarks

1. Proposition 28 suggests a more general functional that defines a preference without

the bounded below assumption: functional J on F is determined by a confidence

function ϕ : ∆ → [0, 1], a non constant affine function u : X → R, and a minimal
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level of confidence α0 ∈ (0, 1], where for any act f ∈ F :

J(f) = min
p∈La0ϕ

Z
S

u(f)ϕ(p)−sgn{u(f)}dp,

which is the subject of future research.

2. An important property for a functional I : B+(S,Σ) → R is to be continuous at

certainty. This property says that if a sequence of events {En}n≥1 ⊂ Σ is such that

En % S then I(1En)% 1. Obviously, En % S ; 1En % 1S uniformly, e.g., S = R

and En = [−n, n], n ∈ N.

Let Σ 3 En % S, consider the functional I obtained in Lemma 16 and suppose

that it satisfies the continuity at certainty. Consider an arbitraryprior p ∈ Lαϕ∗
for some α ∈ (0, 1], by the formula of ϕ∗we obtain that,

p (En)

I(1En)
≥ ϕ∗(p) ≥ α,

and,

1 ≥lim
n
p (En) ≥lim

n
αI(1En) = α,

that is,

lim
n
p (En) ∈ [α, 1].

Hence, when we consider α = 1 the prior p is a countably additive probability. Since

ϕ∗ is weakly∗ upper semicontinuous, L1ϕ∗ is weakly∗ closed subset of ∆, it follows

that Lαϕ∗ is weakly compact because a subset of ca1+(S,Σ) := {q ∈ ba1+(S,Σ) : q
is countable additive} is weakly∗ compact iff it is weakly compact. Moreover, there
exist a probability q ∈ L1ϕ∗ such that for any p ∈ L1ϕ∗, p ¿ q (p is absolutely

continuous with respect to q). In the CEU case (Section 2.5.2) this fact entails the

well konwn result of Schmeidler (1972): the core of a convex capacity v : Σ→ [0, 1]

that satisfies the continuity at certainty is a weak compact subset of ca1+(S,Σ).
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Moreover, for multiple prior model (Section 2.5.1) we obtain the same result for

the set of priors C, which agree with results from Epstein and Wang (1995) and

Chateauneuf, Maccheroni, Marinacci and Tallon (2005).
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Chapter 3

Sign-Dependent Confidence

Functions

3.1 Introduction

The subjective expected utility (SEU) theory of Savage (1954) or Anscombe and Aumann

(1963) is the most well known model of preference under uncertainty in economic theory.

The main feature of this model is that the decision maker’s beliefs are represented by

a probability measure over states of nature. However, a substancial body of evidence

showed that decision makers systematically violated SEU’s basic tenet: decision makers’s

behavior is not consistent with a probability measure when the likelihoods of alternatives

states are not objective. A gamble with known payoffs over states with probabilities that

are not well defined is termed ambiguous. Motivated by evidences, some alternatives

models have been proposed in order to model choices under ambiguity. The most well

known models that study the belief’s attitudes about the likelihood of states include

Choquet expected utility (CEU) of Schmeidler (1989) and maxmin expected utility of

Gilboa and Schmeidler (1989).

Other important issue in decision making is the attitude about payoffs (gains and

losses). A model where we can identify the attitudes towards likelihood and payoffs is
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given by Tversky and Kahneman’s (1992) cumulative prospect theory (CPT). They called

an act a : S → X an uncertain prospect (henceforth prospect) and argued that what

matters for utility are gains and losses, not final assets. To represent a preference relation

% amongst prospect, CPT generalized CEU model in a setting where we have a finite

set of states S, and the set of consequences X are monetary outcomes (real numbers):

the outcome 0 is interpreted as the status quo, and all positive number is a gain and all

negative number is a loss. CPT makes use of two normalized and monotone set-functions

(capacities) ρ+, ρ− : 2S → [0, 1], as well as a value function v : X → R, which is continous

strictly increasing with v(0) = 0.

For a prospect a, the gains of a is given by a+ = a∨ 0, and the losses of a is given by
a− = a ∧ 0 . A CPT’s preference if represented by a functional on RS, such that

V (f) =

Z
v(a+)dρ+ +

Z
v(a−)dρ−,

where the integrals are in the sense of Choquet. CPT model coincides with CEU model

when the Choquet integral of a prospect is calculed with respect to a capacity ρ such

that, for any E ∈ 2S, ρ(E) = ρ+(E) = 1 − ρ−(Ec). We note that the value function is

unique up to positive affine transformation if and only if V satisfies the CEU model, that

is, the functional V is not sign-dependent iff V is the Choquet integral with respect to ρ

above.

Some recent experimental results demonstrated that attitudes about payoffs and be-

liefs about the likelihood of states exhibit interaction effects both behaviorally an neu-

rally. Decision-making research on choice under uncertainty finds experimental evidences

where the participants are ambiguity-seeking in neither gains and losses1. In the CEU

model an ambiguity averse preference is characterized by a convex capacity. Following

this fact and the experimental evidence we may suppose that both capacities ρ+ and ρ−

1For example, Smith, Dickhaut, McCabe and Pardo (2002) agree with this conclusion and their
experimental results showed that the brain does not honor a classical assumption of economics: the
separation of payoffs and beliefs. For risk setting, we recall that the decision-making research on choice
behavior finds risk-avoiding in gains and risk-seeking in losses, e.g., Kahneman and Tversky (1979).
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are convex. But, in general they are different.

In a setting where we consider the case of Anscombe and Aumann’s acts (prospects)

under the assumption of a referential consequence x ∈ X, our representation has as main
component two mappings ϕ+ and ϕ− from the set ∆ ≡ ba1+(S,Σ) of all finitely additive
probabilities on the unit interval [0, 1], a minimal level of confidence α0 ∈ (0, 1], and a
real-valued affine function u on X such that u(x) = 0, such that

J(f) = inf
p∈Lα0ϕ1

1

ϕ1(p)

Z
S

u(f)+dp+ inf
p∈Lα0ϕ2

ϕ2(p)

Z
S

u(f)−dp

The functions ϕ+ and ϕ− belong to the class of fuzzy set on ∆ (mappings from ∆ to

[0, 1]) that presents the following properties: quasi-concavity, normality, and (weakly∗)

upper semicontinuity. A mapping in this class is called a confidence function and it

models the ambiguity. Hence, the term ambiguity refers purely to the vague perception

of the likelihood subjectively associated with an event by a decision maker. Moreover,

since in general confidence functions for gains and losses are different, its captures the

notion of dependence between payoffs (gains or losses) and beliefs.

We axiomatize the previous representation by showing how it rests on a simple set of

axioms that generalizes the CEU axiomatization of Schmeidler(1989) under additional

requirement of ambiguity aversion. In particular, we obtain the CPT model of Tversky

and Kahneman (1992) with ambiguity aversion behavior in the Anscombe and Aumann’s

setting. Indeed, we impose only ambiguity aversion on gains and on losses for the general

case proposed here.

3.2 Axioms

We take a binary relation % on F and assume that there exists a referential consequence
x ∈ X with respect to %: a consequence y ∈ X such that y Â x is a gain and a

consequence z ∈ X such that x Â z is a loss. Hence the status-quo x describe if an

57



consequence is perceived to be a gain or a loss. A value function is an affine mapping

u : X → R such that u(x) = 0.

Given an act f ∈ F we define the gains and the losses of f respectively by:

f+ : S → X

s 7→ f+(s) =

½
f(s), if f(s) % x
x, if x Â f(s)

and

f− : S → X

s 7→ f−(s) =
½
x, if f(s) % x
f(s), if x Â f(s)

(Axiom 1) Weak order non-degenerate. If f, g, h ∈ F :

(complete) either f % g or g % f

(transitivity) f % g and g % h imply f % h

there exist (f, g) ∈ F2 such that (f, g) ∈Â

(Axiom 2) Continuity. For all f, g, h ∈ F the sets:

{α ∈ [0, 1] : αf + (1− α)g % h}, {α ∈ [0, 1] : h % αf + (1− α)g} are closed.

(Axiom 3) Monotonicity. For all f, g ∈ F :

if f(s) % g(s) for all s ∈ S then f % g.

(Axiom 4) Weak Uncertainty aversion. If f, g ∈ F and α ∈ (0, 1) :

4.1) f+ ∼ g+ ⇒ αf+ + (1− α)g+ % f+

4.2) f− ∼ g− ⇒ αf− + (1− α)g− % f−

4.3) f+ ∼ x and f− ∼ y ⇒ 1
2
f + 1

2
x ∼ 1

2
x+ 1

2
y

4.4) If 1
2
f(s) + 1

2
g(s) ∼ x for any s ∈ S then

x % 1
2
(1
2
f+ + 1

2
g+) + 1

2
(1
2
f− + 1

2
g−)
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(Axiom 5) Referential independence. For all f, g ∈ F and α ∈ (0, 1) :

f ∼ g ⇒ αf + (1− α)x ∼ αg + (1− α)x.

(Axiom 6) Independence on X. For all x, y, z ∈ X :

x ∼ y ⇒ 1
2
x+ 1

2
z ∼ 1

2
y + 1

2
z.

(Axiom 7) Bounded attraction for certainty. There exist δ ≥ 1 such that for all

f ∈ F and x, y ∈ X :

f+ ∼ x and y % x⇒ 1
2
x+ 1

2
y % 1

2
f+ + 1

2
(1
δ
y + (1− 1

δ
)x)

f− ∼ x and x % y ⇒ 1
2
x+ 1

2
(1
δ
y + (1− 1

δ
)x) % 1

2
f− + 1

2
y

3.3 Main Theorem

We can now state our main theorem, which characterizes preferences satisfying axioms

A.1-A7.

Let Cc(ba1+(S,Σ)) denote the collection of all nonempty convex weakly∗ closed subsets
of ba1+(S,Σ). As an extension of Cc(ba1+(S,Σ)) we define

Definition 29 The set FR∗(ba1+(S,Σ)) of regular
∗ fuzzy sets consist of all mappins ϕ :

ba1+(S,Σ)→ [0, 1] with the properties:

(a) ϕ is normal;

{p ∈ ba1+(S,Σ) : ϕ(p) = 1} 6= ∅

(b) ϕ is weakly∗ upper semicontinuous;

{p ∈ ba1+(S,Σ) : ϕ(p) ≥ α} is weakly∗ closed for any α ∈ [0, 1]

(c) ϕ is quasi-concave;

ϕ(βp1 + (1− β)p2) ≥ min{p1, p2} for any β ∈ [0, 1].
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Remark 8 We note that the weak∗ support of ϕ, denoted by

supp∗ϕ := {p ∈ ba1+(S,Σ) : ϕ(p) > 0}
σ(ba,B)

is weakly∗ compact by the Alaoglu’s theorem (see Dunford and Schwartz (1988), page

424).

Remark 9 We can embedding Cc(ba1+(S,Σ)) into FR∗(ba1+(S,Σ)) by the natural mapping
P 7→ 1P . We will use the notation for level sets

Lαϕ = {p ∈ ba1+(S,Σ) : ϕ(p) ≥ α} for any α ∈ (0, 1].

Moreover, we note that ϕ ∈ FR∗(ba1+(S,Σ)) if only if the correspondence

α 7→ Lαϕ

take values only on Cc(ba1+(S,Σ)). Because this previous result a quasi-concave fuzzy set
ϕ is called fuzzy convex (all level set Lαϕ is convex).

The main theorem says that:

Theorem 30 Let % be a relation on F, the following conditions are equivalent:
(i) % satisfies conditions A.1-A.7;
(ii) there exist a non-constant value function u : X → R, a α0 ∈ (0, 1] and two

regular∗ fuzzy sets ϕ1,ϕ2 : ba1+(S,Σ)→ [0, 1] such that, for all f, g ∈ F

f % g ⇔ J(f) ≥ J(g)

where

J(f) = inf
p∈Lα0ϕ1

1

ϕ1(p)

Z
S

u(f)+dp+ inf
p∈Lα0ϕ2

ϕ2(p)

Z
S

u(f)−dp
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Futhermore, given u from (ii) then for all λ > 0we can adopted the tranformation λu in

our representation.

Lemma 31 There exists an affine u : X → R non-constant function such that for all

x, y ∈ X : x % y iff u(x) ≥ u(y). Moreover, we can choose u such that u(x) = 0.

proof: By axioms 1,2 and 6 the premises of the the von Neumann-Morgenstern the-

orem are satisfied and there exist an afinne function u : X → R such that for all

x, y ∈ X : x % y iff u(x) ≥ u(y). Moreover, we can choose u(x) = 0. Therefore,

there exists f, g ∈ F s.t. f Â g; given x, y ∈ X such that x % f(s) and g(s) % y for all
s ∈ S, then by monotonicity (axiom 3) we have that x Â y, and u can not be constant.
We note that we can suppose that [−1, 1] ⊂ u(X).

Lemma 32 Given a u : X → R from lema above there exists a unique J : F → R such

that

(i) f º g iff J(f) ≥ J(g) for all f, g ∈ F.
(ii) If f = x1S ∈ Fc then J(f) = u(x).
proof: On Fc the functional J is uniquely determined by (ii). Since for all f ∈ F there

exists a cf ∈ Fc such that f ∼ cf we set J(f) = u(cf) and by construction J satisfies (i),
hence it is also unique.

Lemma 33 There exists a functional

I : B0(S,Σ)→ R

where for all f ∈ F , I(uof) = J(f) such that:I satisfies the properties:

1) I is weak-superadditive: for a, b ∈ B0(S,Σ)

1.1) I(a+ + b+) ≥ I(a+) + I(b+);
1.2) I(a− + b−) ≥ I(a−) + I(b−);
1.3) I(a) = I(a+) + I(a−);

1.4) 0 ≥ I(a) + I(−a);
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2) I is positively homogeneous: for a, b ∈ B0(S,Σ),λ ≥ 0 : I(λa) = λI(a);

3) I is monotonic: for a, b ∈ B0(S,Σ) : a ≥ b⇒ I(a) ≥ I(b);
4) I is normalized: I(1S) = 1;

5) There exists a δ ≥ 1 such that for all a ∈ B0(S,Σ):

5.1)I(a+ + k1S) ≤ I(a+) + δk if k ≥ 0;
5.1)I(a− + k1S) ≤ I(a−) + δ−1k if k ≤ 0.

proof: We begin with B0(S,Σ, u(X)) domain and extend to all B0(S,Σ). If f ∈ F then
u(f) ∈ B0(S,Σ, u(X)). Now, if a ∈ B0(S,Σ, u(X))we have that there exists {Ei}ni=1 ⊂ Σ

a partition of S and {xi}ni=1 ⊂ X such that

a :=
nX
i=1

u(xi)1Ei

hence, we can choose f ∈ F such that f(s) = xi when s ∈ Ei and we conclude that
a = u(f).

From this, we can write B0(S,Σ, u(X)) = {u(f) : f ∈ F}; therefore, u(f) = u(g) ⇔
u(f(s) = u(g(s)), ∀s ∈ S ⇔ f(s) ∼ g(s), ∀s ∈ S; and by axiom 3 (monotonicity) f ∼ g,

i.e., u(f) = u(g)⇔ J(f) = J(g).

Define I(a) = J(f) whenever a = u(f); hence we have that I is well defined over

B0(S,Σ, u(X)).

Now, if a = u(f) and b = u(f) ∈ B0(S,Σ, u(X)) and a ≥ b then u(f(s)) ≥ u(g(s)) for
all s ∈ S and by axiom 3 (monotonicity) we have that f % g, i.e., J(f) ≥ J(g) and

I(a) = I(u(f)) = J(f) ≥ J(g) = I(u(g)) = I(b); this prove that I is monotonic.
Let be k ∈ u(X) then there exists a x ∈ X such that k = u(x) and I(k1S) =

I(u(x)1S) = J(x) = u(x) = k, i.e., I is normalized. In particular, since 1 ∈ u(X), I(1S) =
1.

We now show that I is homogeneous; assume a = αb where a, b ∈ B0(S,Σ, u(X))
and 0 < α ≤ 1. Let g ∈ F satisfy u(g) = b and define f = αg + (1 − α)x.Hence

u(f) = αu(g)+(1−α)u(x) = αb = a, so I(a) = J(f).We have that J(cg) = J(g) = I(b).
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By axiom 5 (referential independence), αcg + (1 − α)x ∼ αg + (1 − α)x = f , hence

J(f) = J(αcg + (1− α)x) = αJ(cg) + (1− α)J(x) = αJ(cg) and we can write

I(αb) = I(a) = J(f) = αJ(cg) = αI(b).

Futhermore, this imply equality for α > 1 : a = αb ⇒ b = α−1a ⇒ I(b) = α−1I(a) ⇒
I(a) = αI(b).

Now, by homogeneity we can extend I to all B0(S,Σ): For each b ∈ B0(S,Σ) we
have that there exists a partition {Ek}mk=1 of S and real numbers {βk}mk=1 such that b =
mP
k=1

βk1Ek. Hence is enough to define G(b) = kbk∞ I(eb), where eb = mP
k=1

(βk/ kbk∞)1Ek.
Clearly G extend I, is monotone, homogeneous and by abuse of notation we set G = I.

Next we show that satisfies (v); let there be given a ∈ B0(S,Σ) , ξ1 ≥ 0 and ξ2 ≤
0. By homogeneity we may assume without loss of generality that 2a, 2ξ11S, 2ξ21S ∈
B0(S,Σ, u(X)).

Let Let f ∈ F such that u(f) = 2a, hence u(f+) = u(f)+ = 2a+ and u(f−) =

u(f)− = 2a−.

Now we define β1 = I(2a
+) = 2I(a+) and taking y1, z1 ∈ X satisfy u(y1) = β1 and

u(z1) = 2ξ1 ≥ 0 = u(x). Then J(f+) = I(u(f+)) = 2I(a+) = β1 = I(β11S) = I(u(y1)) =

J(y1), i.e., f+ ∼ y1. By axiom 7 (bounded atrraction for certanty) there exists δ ≥ 1
such that

1

2
y1 +

1

2
z1 º 1

2
f+ +

1

2
(
1

δ
z1 + (1− 1

δ
)x)

hence
1

2
J(y1) +

1

2
J(z1) ≥ J(1

2
f+ +

1

2
(
1

δ
z1 + (1− 1

δ
)x))

then
1

2
I(u(y1)) +

1

2
I(u(z1)) ≥ I(1

2
u(f+) +

1

2
u(
1

δ
z1 + (1− 1

δ
)x))

∴
1

2
I(β11S) +

1

2
I(2ξ11S) ≥ I(1

2
2a+ +

1

2
(
1

δ
u(z1) + (1− 1

δ
)u(x)))
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∴
I(a+) + ξ11S ≥ I(a+ + 1

δ
ξ11S)

taking k = δ−1ξ1, we obtain that:

I(a+) + δk ≥ I(a+ + k)

Now the other case: We define β2 = I(2a−) = 2I(a−). Recall that we have that

u(f−) = u(f)− = 2a−, taking y2, z2 ∈ X satisfy u(y2) = β2 and u(z2) = 2ξ2 < 0 = u(x),

then J(f−) = I(u(f−)) = 2I(a−) = β2 = I(β21S) = I(u(y2)) = J(y2), i.e., f− ∼ y2. By

axiom 7 there exists δ ≥ 1 such that

1

2
y2 +

1

2
(
1

δ
z2 + (1− 1

δ
)x) º 1

2
f− +

1

2
z2

hence

I(
1

2
u(y2) +

1

2
(
1

δ
u(z2) + (1− 1

δ
)u(x)) ≥ I(1

2
u(f−) +

1

2
u(z2))

∴
1

2
I(u(y2)) +

1

2
I(
1

δ
u(z2)) ≥ I(a− + ξ21S)

∴
1

2
I(β21S) +

1

2
I(
1

δ
2ξ21S) ≥ I(a− + ξ21S)

and finally:

I(a−) +
1

δ
ξ2 ≥ I(a− + ξ21S)

It is left to show that I is weak-superadditive; let there be given a, b ∈ B0(S,Σ) and
assume that a, b ∈ B0(S,Σ, u(X)). First, we note that axiom 4, itens 4.1) and 4.2), imply
that I |B+(S,Σ) and I |B−(S,Σ)is quasi-concave. Now, since I is positively homogeneous
follows that I |B+(S,Σ) and I |B−(S,Σ) are concave (see Berge (1965)), hence I(a+ + b+) ≥
I(a+) + I(b+) and I(a− + b−) ≥ I(a−) + I(b−).
To show 1.3) let be w.l.g. a ∈ B0(S,Σ, u(X)). Let f ∈ F such that u(f) = a. Now
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taking x, y ∈ X such that f+ ∼ x and f− ∼ y we obtain by axiom 4, item 4.3),

J(
1

2
f +

1

2
x) = J(

1

2
x+

1

2
y)

∴
I(
1

2
u(f) +

1

2
u(x)) =

1

2
I(u(x)) +

1

2
I(u(y))

∴
I(a) = I(u(f+)) + I(u(f−)) = I(a+) + I(a−)

Finally, we will show that 0 ≥ I(a) + I(−a): Suppose w.l.g. we can write a = u(f)
and let be an act g ∈ F such that

1

2
f(s) +

1

2
g(s) ∼ x for every s ∈ S,

then u(f(s))+u(g(s)) = 0 for any s ∈ S, that is, −a = u(g). Now by axiom 4, item 4.4,
we have that

J(x) ≥ J
µ
1

2
(
1

2
f+ +

1

2
g+) +

1

2
(
1

2
f− +

1

2
g−)
¶

0 ≥ I
µ
1

2
(
1

2
u(f+) +

1

2
u(g+)) +

1

2
(
1

2
u(f−) +

1

2
u(g−))

¶

by 1.3) and homogeity

0 ≥ 1
2
I(
1

2
u(f+) +

1

2
u(g+)) +

1

2
I(
1

2
u(f−) +

1

2
u(g−))

by 1.1) and 1.2) we obtain:

0 ≥ 1
2
(
1

2
I(u(f+)) +

1

2
I(u(g+))) +

1

2
(
1

2
I(u(f−)) +

1

2
I(u(g−)))
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and again by 1.3)

0 ≥ 1
4
(I(u(f)) + I(u(g)))

since a = u(f) and −a = u(g)
0 ≥ I(a) + I(−a)

Finally, by the fundamental Lemma 37 in appendix, we obtain the desirade result.

Taking the confidence functions ϕ+ and ϕ− we obtain the corollary:

Corollary 34 Under the conditions on the Main Theorem, there is a two confidence

functions ϕ+,ϕ− : ∆→ [0, 1] such that:

J(f) =min
p∈∆

1

ϕ+(p)

Z
S

u(f+(s))p(ds)+ min
p∈∆

ϕ−(p)
Z
S

u(f−(s))p(ds)

where

ϕ+(p) =inf
f%x

µR
u(f)dp

u(cf)

¶
and

ϕ−(p) =inf
x%f

µ
u(cf)R
u(f)dp

¶

3.3.1 Cumulative Prospect Theory with Ambiguity-avoiding in

Gains and Losses

Let a functional I : B(S,Σ)→ R be defined by

I(a) =

Z
a+dv+ +

Z
a−dv−

=

Z 0

−∞

£
v− ({a ≥ λ})− 1¤ dλ+ Z +∞

0

v+ ({a ≥ λ}) dλ

where the set-functions v+, v− : Σ→ [0, 1] are capacities.

Moreover we suppose that v+ and v− are convex capacity such that C(v+)∩C(v−) 6= ∅.
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Define the mappings:

eϕ+ : ∆→ R

p 7→ eϕ+(p) =inf
E∈Σ

p(E)

v+(E)

eϕ− : ∆→ R

p 7→ eϕ−(p) =inf
E∈Σ

1− v−(E)
1− p(E)

Proposition 35 The mapping eϕ is a normal fuzzy set and for every a ∈ B(S,Σ)
(1) I(a) = inf

p∈Lα0 eϕ+
µ
Ep(a

+)eϕ+(p)
¶
+ inf

p∈Lα0 eϕ−
¡eϕ−(p)Ep(a−)¢

for any level of minimal confidence α0 ∈ (0, 1].
Proof:

Similar to the proof of Proposition 28.

In fact, it is true that

Proposition 36 For any probability p ∈ ∆ we have that eϕ+(p) = ϕ+(p) and eϕ−(p) =
ϕ−(p)

Proof:

Note that for eϕ+ the proof is the same as in Proposition 27.
We note that, for every event E ∈ Σ

I(−1E) =
Z 0

−∞

£
v− ({−1E ≥ λ})− 1¤ dλ = Z 0

−1

£
v− (E)− 1¤ dλ = 1− v−(E).

Since E ∈ Σ implies that −1E ∈ B(S,Σ) we obtain

eϕ−(p) =inf
E∈Σ

1− v−(E)
1− p(E) =infE∈Σ

I(−1E)
Ep(−1E) ≥ ϕ−(p).
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Now, it is enough to show when eϕ−(p) > 0. We know that for every a ∈ B−
0 ≥ eϕ−(p)Ep(a) ≥ Z adv− = I(a)

hence, if I(a) = 0 then Ep(a) = 0 and I(a)/Ep(a) = 1 ≥ eϕ−(p).
Now, when I(a) < 0 the case Ep(a) = 0 is trivial by convention r/0− = +∞ if r < 0.

If Ep(a) < 0 then by previous inequality, eϕ−(p) > 0 and
I(a)

Ep(a)
≥ eϕ−(p)

which complete the prove that ϕ−(p) ≥ eϕ−(p).
3.4 Appendix

For a ∈ B(S,Σ), one denotes the positive part a+ = a ∨ 0 of a and the negative part
a− = a ∧ 0 of a.
Building upon Fan’s Theorem (Fan, 1956), we give in the next Lemma 37, the key re-

sult for our representation theorem of Chapter 3. This Lemma can be seen as a extension

of the Lemma 15 from the Chapter 2.

Lemma 37 The following two assertions are equivalent:

Assertion 1: I satisfies the properties:

1) I is weak-superadditive: for a, b ∈ B(S,Σ)

1.1) I(a+ + b+) ≥ I(a+) + I(b+);
1.2) I(a− + b−) ≥ I(a−) + I(b−);
1.3) I(a) = I(a+) + I(a−);

1.4) 0 ≥ I(a) + I(−a);

2) I is positively homogeneous: for a, b ∈ B(S,Σ),λ ≥ 0 : I(λa) = λI(a);

3) I is monotonic: for a, b ∈ B(S,Σ) : a ≥ b⇒ I(a) ≥ I(b);
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4) I is normalized: I(k1S) = k for any k ∈ R;
5) There exists a δ ≥ 1 such that for all a ∈ B(S,Σ):

5.1)I(a+ + k1S) ≤ I(a+) + δk if k ≥ 0;
5.1)I(a− + k1S) ≤ I(a−) + δ−1k if k ≤ 0.

Assertion 2: There exists α0 ∈ (0, 1] and two normal fuzzy sets ϕ1,ϕ2 : ba1+(S,Σ) →
[0, 1] where L1ϕ1 ∩ L1ϕ2 6= ∅, such that for any a ∈ B(S,Σ) :

I(a) = inf
p∈Lα0ϕ1

1

ϕ1(p)

Z
S

a+(s)p(ds)+ inf
p∈Lα0ϕ2

ϕ2(p)

Z
S

a−(s)p(ds)

Proof: In order to simplify the notation we set ba1+(S,Σ) = ∆ and B(S,Σ) = B.

Assertion 2 implies Assertion 1:

We have that 1.1), 1.2) and 1.3) are immediate.

Let bp belongs to L1ϕ1 ∩ L1ϕ2, it comes that:
I(a) ≤ Ebp(a+) +Ebp(a−)

and

I(−a) ≤ Ebp(−a−) +Ebp(−a+)
hence I(a) + I(−a) ≤ 0 and 1.3) is satisfied.
We note that 2), 3) and 4) are immediate too. Moreover, 5) is straightforward.

In order to prove that Assertion 1 implies Assertion 2 we need several lemmas:

Lemma 38 The mapping

ϕ+ : ∆→ R

p 7→ ϕ+(p) = inf
a∈B+

Ep(a)

I(a)
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is a normal fuzzy set2. Moreover, the functional

I+ : B+ → R

a 7→ I+(a) =inf
p∈∆

Ep(a)

ϕ+(p)

satisfies I+(a) = I(a), for all a ∈ B+.
Proof:

It is same as in Lemma 16 from Chapter 2, as well the colloraries and remaks below.

Corollary 39 Set α0 = 1/δ and Lα0ϕ+ = {p ∈ ∆ : ϕ+(p) ≥ α0}, then for every a ∈ B+

I(a) = inf
p∈Lα0ϕ+

Ep(a)

ϕ+(p)
:= I∗+(a)

Remark 10 Let be a normal fuzzy set satisfying the model, i.e.

I(a) = inf
p∈Lα0ϕ

1

ϕ(p)

Z
adp for all a ∈ B+,

and let ϕ+ defined by

ϕ+(p) = inf
a∈B+

Ep(a)

I(a)

then for any p ∈ Lα0ϕ one obtains ϕ+(p) ≥ ϕ(p).

Remark 11 From the mean affirmation in Lemma 37 there exists a normal fuzzy set ϕ

such that

I(a) =inf
p∈∆

Ep(a)

ϕ(p)
for all a ∈ B+.

It turns out that for any such ϕ, on obtains ϕ+(p) ≥ ϕ(p) for all p ∈ ∆.

Lemma 40 Let

ϕ− : ∆→ R

2Note that we adopt the usual convention 0/0 = 1 and r/0 = +∞ if r > 0.
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p 7→ ϕ−(p) = inf
a∈B−

I(a)

Ep(a)

then ϕ− is a normal fuzzy set. Moreover,

I− : B− → R

a 7→ I−(a) =inf
p∈∆

ϕ−(p)Ep(a)

satisfies I−(a) = I(a) for every a ∈ B−.
Proof:

Since for any a ∈ B−, Ep(a) ≤ 0 and I(a) ≤ 0, clearly ϕ−(p) ≥ 0 and I(−1S)/Ep(−1S) =
1 implies that ϕ−(p) ∈ [0, 1].
Let us show that there exists p0 ∈ ∆ such that ϕ−(p0) = 1. It is enough to show that

there exists p0 ∈ ∆ such that I(a) ≤ Ep0(a) for every a ∈ B−. Setting E = B(S,Σ)

it is equivalent to show that there exists f ∈ E∗ such that f(1S) ≥ 1, f(−1S) ≥ −1
and f(a) ≥ I(a) for any a ∈ B−. Let us consider λ1,λ2, ...,λn ≥ 0 and 1S, −1S, aj ∈
B−, 3 ≤ j ≤ n such that: °°°°°λ11S + λ2(−1S) +

nX
j=3

λj aj

°°°°°
∞
= 1

it follows that

λ11S − λ21S +
nX
j=3

λj aj ≤ 1S

hence

λ11S +
nX
j=3

λj aj ≤ (λ2 + 1)1S

hence 1.2), 2), 3) and 4) give:

λ1 +
nX
j=3

λjI( aj) ≤ λ2 + 1
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therefore

λ1 − λ2 +
nX
j=3

λjI( aj) ≤ 1

and by Fan’s theorem there exists p0 ∈ ∆ such that Ep0(a) ≥ I(a) for all a ∈ B−.
It remains now to prove that I−(a) = I(a) for every a ∈ B−. Let a0 be chosen

in B− and first prove that I−(a0) ≥ I(a0). If I−(a0) = 0 the result is obvious. If

I−(a0) < 0 then there exists p0 ∈ ∆ such that Ep0(a0) < 0 and ϕ−(p0) > 0. We have that

ϕ−(p0) ≤ I(a0)/Ep0(a0), hence ϕ−(p0)Ep0(a0) ≥ I(a0). Since this is true for any p0 such
that Ep0(a0) < 0 and ϕ−(p0) > 0, this entails I−(a0) ≥ I(a0).
Let us now prove that I−(a0) ≤ I(a0) for any a0 ∈ B−. Clearly it is enough to prove

this inequality when I(a0) < 0.

First let us prove that there exists f ∈ E∗ such that 1/δ ≤ f(1S) ≤ 1, f(a0) =

I(a0) and f(a) ≥ I(a) for every a ∈ B−, i.e., there exists f ∈ E∗ such that f(1S) ≥
1/δ, f(−1S) ≥ −1, f(a0) ≥ I(a0), f(−a0) ≥ −I(a0) and f(a) ≥ I(a) for every a ∈ B−.
Let us consider λ1, ...,λn ≥ 0 and 1S, −1S, a0, −a0, aj ∈ B−, 5 ≤ j ≤ n such that:°°°°°λ11S + λ2(−1S) + λ3a0 + λ4(−a0) +

nX
j=5

λj aj

°°°°°
∞
= 1

it follows that

λ11S − λ21S + λ3a0 − λ4a0 +
nX
j=5

λj aj ≤ 1S

hence

(1 + λ2)(−1S) + λ3a0 +
nX
j=5

λj aj ≤ (−λ1)1S + λ4a0

By properties of I in assertion 1 it comes that:

(1 + λ2)(−1) + λ3I(a0) +
nX
j=5

λj I(aj) ≤ −λ1δ−1 + λ4I(a0)
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therefore

λ1δ
−1 − λ2 + λ3I(a0)− λ4I(a0) +

nX
j=5

λjI( aj) ≤ 1

By Fan’s theorem, it comes that there exists ζ ∈ [δ−1, 1], ep ∈ ∆ such that:

(1) ζEep(a0) = I(a0), and

(2) ζEep(a) ≥ I(a) for all a ∈ B−

From (2) it come that I(a)/Eep(a) ≥ ζ, for all a ∈ B−. Actually, by the initial conven-
tion, Eep(a) = 0 implies I(a) = 0 and then Eep(a)/I(a) = 1 ≥ ζ, moreover if Eep(a) < 0
implies from (2) that I(a)/Ep(a) ≥ ζ.

Since I(a0) < 0, (1) implies that Eep(a0) < 0 and ζ = I(a0)/Eep(a0), therefore:

ϕ−(ep) = I(a0)/Eep(a0) > 0
consequenty I(a0) = ϕ−(ep)Eep(a0) ≥ I−(a0), which completes the proof.
Corollary 41 Set α0 = 1/δ and Lα0ϕ+ = {p ∈ ∆ : ϕ+(p) ≥ α0}, then for every a ∈ B−

I(a) = inf
p∈Lα0ϕ−

ϕ−(p)Ep(a) := I∗−(a)

Proposition 42 The mappins ϕ+ and ϕ− are regular∗ fuzzy sets.

Proof:

We know that ϕ+ and ϕ− are normal fuzzy sets. It is simple to show that ϕ+ is con-

cave, in particular, ϕ+ is fuzzy convex. The weakly∗ upper semicontinuity is consequence

of a result saying that infimun of continuous mapping is a upper semicontiuos mapping.

For ϕ− is similar with some additional work, but it is easy.

Lemma 43 The fuzzy set ϕ = ϕ+ ∧ ϕ− is normal.

Since for every p ∈ ∆ the values ϕ+(p) and ϕ−(p) belongs to [0, 1], it is enough to
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show that there exists p0 ∈ ∆ such that

Ep0(a)

I(a)
≥ 1 and I(−a)

Ep0(−a) ≥ 1 for every a ∈ B
+,

that is,

Ep0(a) ≥ I(a) and Ep0(−a) ≥ I(−a) for every a ∈ B+.

This is equivalent to show that there exists f ∈ E∗ such that

f(1S) ≥ 1, f(−1S) ≥ −1
f(a) ≥ I(a), ∀a ∈ B+

f(−a) ≥ I(−a), ∀a ∈ B+

Let us consider λ1,λ2 ≥ 0, β1, ..., βm ≥ 0, γ1, ..., γn ≥ 0 and 1S, −1S, a1, ..., am ∈
B+, b1, ..., bn ∈ B+ such that

λ11S + λ2(−1S) +
mX
i=1

βiai +
nX
j=1

γj(−bj) ≤ 1S

i.e.

λ11S +
mX
i=1

βiai ≤ 1S +
Ã
λ21S +

nX
j=1

γj(bj)

!

setting c = λ21S +
nP
j=1

γj(bj), from monotonicity 3), 1.1), 2), 4) and 5.1) it comes that:

λ1 +
mX
i=1

βiI(ai) ≤ δ + I(c)

we have that 1.4) implies I(c) ≤ −I(−c), then applying 1.2) one obtains:

λ1 +
mX
i=1

βiI(ai) ≤ δ − I(−λ21S)−
nX
j=1

I (γj(−bj))
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note that 1.3), 2) and 4) imply −I(−λ21S) = λ2, finally applying again 2) it comes:

λ1 − λ2 +
mX
i=1

βiI(ai) +
nX
j=1

γjI(−bj)+ ≤ δ

By Fan’s theorem it comes the desired result, which completes the proof that the fuzzy set

ϕ = ϕ+ ∧ ϕ− is normal.

Lemma 44 The functional

I∗ : B(S,Σ)→ R

a 7→ I∗(a) = I+(a+) + I−(a−)

satisfies I∗(a) = I(a) for every a ∈ B. Moreover, it turns out that:

I(a) =inf
p∈∆

Ep(a)

ϕ+(p)
+ inf

p∈∆
ϕ−(p)Ep(a)

Proof:

We know that I |B+= I+ and I |B−= I−, hence

I(a)
(1.3)
= I(a+) + I(a−) = I+(a+) + I−(a−) = I∗(a).

which completes the proof of fundamental Lemma 37.
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Part II

Equilibrium Theory and Ambiguity.
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Chapter 4

Multiple Priors, Prices and

Incomplete Markets

4.1 Cost Functions and Incomplete Markets

Since the Arrow’s Role of Securities paper the theory of equilibrium for markets in which

both spot commodities and securities are traded is the source of lot important issues such

as equilibrium existence and asset pricing under complete or incomplete markets. Arrow

(1953) proposed this approuch and used the results from Arrow and Debreu (1954) as

well as McKenzie (1954) for existence of equilibrium.

We consider cost functions (hedging prices) in the presence of a competitive and

possibly incomplete market for financial securities without arbitrage opportunities. As

is well-known, non-arbitrage principle and the assumption of complete markets enforce

linear princing rule: the cost of replication of the asset is given by the mathematical

expectation of their payoffs under the unique equivalent martigale measure. On the other

hand, the market incompleteness imply that, while some securities can be replicated by

financial portfolios feasibles on the market, in general it is not possible. Hence, while in

a complete market market every asset can be hedged perfectly, in an incomplete case it

is possible to stay on the safe side by superhedging. This concepty define a cost function

77



or hedging price.

Our framework consider a market with one period of uncertainty and a finite set S

of state of nature. Given a finite set {X0,X1, ..., Xm} of assets Xj : S → R, our goal

is to identify and study the consequences of non-arbitrage principle on the cost function

C : RS → R that satisfy a set of natural properties arising from the interaction of

price-taker agents on the market1.

4.1.1 Framework

Let S = {s1, ..., sn} a finite set of states of nature. At date one, one and only one state
s will occur, and an asset X ∈ RS bought at date t = 0 will deliver payoff X(s) at date
1 if s occurs.

Assume that at date 0 consumers can trade a finite number m+1 of assets Xj ∈ RS,
0 ≤ j ≤ m, with respective prices pj.
We suppose that X0 = 1S is the riskless bond and for sake of simplicity that p0 = 1.

A portfolio of an agent is idenfied with a vector θ = (θ0, θ1, ...θm) ∈ Rm+1, where θj
denotes the quantities of assets Xj possessed by the agent.

The market M = (Xj, pj, 0 ≤ j ≤ m) is assumed to offer no-arbitrage opportunity
(NAO):

Definition 45 (NAO): For any portfolio θ ∈ Rm+1,

mX
j=0

θjXj > 0⇒
mX
j=0

θjpj > 0,

mX
j=0

θjXj = 0⇒
mX
j=0

θjpj = 0.

Let A be the field of all subset of S and ∆ the set of probability measures on (S,A).

1An axiomatic study of (insurance) prices was proposed by Castagnoli, Maccheroni and Marinacci
(2002) by imposing some normative restriction on the price functional. But our approach is not the
same because we take in a explicit away the non-arbitrage assumption and our goal is the study of cost
functions and the kind of incompletness.
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The set

Q = {P ∈ ∆ : EP (Xj) = pj, ∀j ∈ {0, ...,m}}

is called the set of risk neutral probabilities or martingale measures.

Denote by F := span (X0,X1, ..., Xm) the subspace of income transfers or the set of

attainable claims. As is well known, if we define the functional

C : F → R
mX
j=0

θjXj = X 7→ C(X) =
mX
j=0

θjpj,

by the NAO assumption, we have that C is a strictly positive linear funtional on the

linear subspace F , which is represented by some P ∈ ∆ in the form

C(X) = EP (X) for any X ∈ F.

Moreover, P is uniquely determined if and only if F = RS. The set

Q = {P ∈ ∆ : EP (Xj) = pj, ∀j ∈ {0, ...,m}}

is called the set of risk neutral probabilities or martingale measures.

By the facts above we call pj the cost of Xj, i.e., pj = C(Xj). Let now X be arbitrary

contingent claim in RS, as an extension of C on F, we define the cost of X as the infimun

of the costs of portfolios θ such that the payoffs of these portfolios are greater or equal

to X:

C(X) = inf

(X
j

θjpj :
X
j

θjXj ≥ X
)
.

Jouini and Kallal (1995) proved that the minimum cost at which a contingent claim

can be obtained through securities trading is its largest expected value with respect to
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the risk neutral probabilities2, i.e,

C(X) =sup
P∈Q

EP (X)

and, of course, if the market is complete C(X) = EP0(X), with {P0} = Q.
A simple and important fact says that X is attainable if and only if the mapping

Φ : P 7→ EP (X) is constant over all P ∈ Q (see, for instance, El Karoui and Quenez

(1995), proposition 1.7.1). Hence, if X is attainable then the price for X can be derived

by an absence of arbitrage and EP (X)does not depend on P ∈ Q. Now, if X is not

attainable, X cannot be priced by arbitrage because the set of probabilities Q does not

agree on X, i.e., there exists P,P 0 ∈ Q such that EP (X) 6= EP 0(X). In particular, note
that if we can choose a non attainable asset such as X = 1E then we can take two

probabilities P, P 0 ∈ Q such that P (E) 6= P 0(E), i.e., the event E is ambiguous.

4.1.2 Main Result

Clearly the cost function (hedging price) of a marketM with the NAO property satisfies:

1) subadditivity:

C(X + Y ) ≤ C(X) + C(Y ), ∀X,Y ∈ RS

2)Positive homogeneity:

C(λX) = λC(X), ∀X ∈ RS, ∀λ ≥ 0

3) Monotonicity:

X ≥ Y ⇒ C(X) ≥ C(Y ),∀X,Y ∈ RS

2Another classical references on hedging prices is El Karoui and Quenez (1995) and Cvitanic and
Karatzas (1993). In this works we can found some analoguos results such as Jouini and Kallal (1995).
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4) Constant additivity:

C(X + k1S) = C(X) + k, ∀X ∈ RS, ∀k ∈ R

but does this suffice to characterize the cost functions.

Definition 46 A mapping C : RS → R will be a cost function (hedging price) if only if

there exists a subspace F of RS such that there exists a probability P on (S,A):

C(X) = EP (X) for any X ∈ F

and

C(X) =max
P∈Q

EP (X) for any X ∈ RS

where Q = {P ∈ ∆ : EP (X) = C(X), ∀X ∈ F} is a nonempty, convex, and closed set
of probabilities.

The existence of multiple risk neutral probabilities may reflects the ambiguity due to

the limited information that agents have in dealing with assets that are not replicable by

the market.

Before giving a characterization of a some particular cost functions let us introduce

a definition:

Definition 47 Let C : RS → R, denote E the set of unambiguous events, i.e.:

E = {B ∈ A : C(1B) + C(1Bc) = 1}

Remark 12 For C : RS → R we will use the notation C(A) instead of C(1A) for any

A ∈ A, and we will talk of the set-function C on A.

Definition 48 C : A→ [0, 1] is a capacity if,

(i) C (∅) = 0 and C(S) = 1
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(ii) A ⊇ B ⇒ C(A) ≥ C(B)
Moreover, C is concave if for any A,B ∈ A,

C(A ∪B) + C(A ∩B) ≤ C(A) + C(B).

Definition 49 A collection D ⊂ A is a λ-system if it has the following properties:

(i) ∅, S ∈ D;
(ii) A,B ∈ D, A ∩B = ∅ ⇒ A ∪B ∈ D;
(iii) A ∈ D⇒ Ac ∈ D.
Moreover, D ⊂ A is an algebra if it satisfies in addition:

(iv) A,B ∈ D⇒ A ∩B ∈ D.

Lemma 50 If C is a concave capacity then

E = {B ∈ A : C(B) + C(Bc) = 1}

is an algebra.

proof:

See, for instance, Nehring (1999).

Remark 13 It is well known that any concave capacity C on A has the following repre-
sentation:

C(E) = maxP∈KP (E),

see, for example, Chateauneuf and Jaffray (1989). But the conversely is not true (exam-

ples can be found in Schmeidler (1972) or Huber and Strassen (1973)).

Definition 51 For a set-function C on A and E ⊂ A such that S ∈ E, denote eC the

outer set-function of C on Awith respect to E, where eC is defined by:
∀A ∈ A, eC(A) = inf {C(B) : A ⊂ B ∈ E} .
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Definition 52 Let C be a set-function on A, the anti-core of C, denoted by acore(C),
is the subset of ∆ :

acore(C) = {P ∈ ∆ : P (A) ≤ C(A), ∀A ∈ A}

A market M = (Xj, pj, 0 ≤ j ≤ m) is a market with {0, 1}-securities if for each
j = 1, ...,m there exists an event Ej ∈ A such that Xj ≡ 1Ej , i.e., any security Xj

delivery zero or one in each contingent state.

Theorem 53 Let C : RS → R be the cost function of a marketM with {0, 1}-securities
without arbitrage opportunities. Then, C satisfies 1) subadditivity, 2)Positive homogene-

ity, 3) Monotonicity, 4) Constant additivity and 5) acore(C) = acore( eC).
Proof:

By hypothesis, M =
¡
1Ej , pj, 0 ≤ j ≤ m

¢
where E0 = S and Ej ∈ A for any j =

1, ...,m. Moreover,

Q = {P ∈ ∆ : P (Ej) = C(Ej); j = 1, ...,m} 6= ∅,

by the NAO property and

C(X) =max
P∈Q

EP (X) .

Since for any E ∈ A, C(E) = maxP∈QP (E), we obtain that C (∅) = 0 and C(S) = 1,
therefore E 6= ∅.
Let us denote

Q0= {P ∈ ∆ : P (B) = C(B), for any B ∈ E} ,

we intent to show that Q = Q0:
Fix P ∈ Q0, and note that Ej ∈ E, for any j = 1, ...,m. In fact, we know that if Q ∈ Q

then Q(Ej) = C(Ej), j = 1, ...,m. Hence, Q(Ecj ) = 1−Q(Ej) = 1−C(Ej)∀Q ∈ Q, and
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then C(Ecj ) =max
P∈Q

(1−Q(Ej)) = 1 − C(Ej) as desired. Now, by definion of Q0 and E,
P (Ej) = C(Ej) for any j = 0, 1, ...,m.

Now, take P ∈ Q. For B ∈ E, P (B) ≤max
Q∈Q

Q(B) = C(B), and P (Bc) ≤ C(Bc),
hence P (B) = C(B), i.e., P ∈ Q0.
We note that for any A ⊂ S, eC(A) = inf

A⊂B∈E
C (B) ≥ C(A), hence if P is such that

P (A) ≤ C(A) for any A ⊂ S, then P (A) ≤ eC(A) for any A ⊂ S, i.e., acore(C) ⊂
acore( eC). Remains to prove acore( eC) ⊂ acore(C). Note that Q =acore( eC), in fact:
If P ∈ Q, P (A) ≤ C(A) for any A ⊂ S, hence P ∈ acore(C) ⊂ acore( eC); Let now
Q ∈ acore( eC). We will show that Q ∈ Q0 (= Q), i.e., Q(B) = C(B) for any B ⊂ S such
that C(B) + C(Bc) = 1. Since Q ∈ acore( eC), we have that Q(B) ≤ eC(B) = C(B) and
Q(Bc) ≤ eC(Bc) = C(Bc), and then Q(B) = C(B).
Now we have acore(C) ⊂ acore( eC) = Q ⊂ acore(C), i.e., acore(C) = acore( eC).
Note that the family of unambiguous events E is large than {Ej}mj=0. Then if we

denote by G = span {1B : B ∈ E}, we obtain that F ⊂ G. But, is the conversely true?

Proposition 54 B ∈ E if and only if 1B ∈ F .
If 1B ∈ F we have that C(B) = P (B) for any P ∈ Q. Hence, maxP∈QP (B) +

maxP∈QP (Bc) = P 0(B) + P 0(Bc) = 1 for any P 0 ∈ Q, i.e., B ∈ E.
If B ∈ E and 1B /∈ F , there exist P1, P2 ∈ Q such that P1(B) > P2(B). Hence,

1 = maxP∈QP (B) +maxP∈QP (Bc) > P2(B) +maxP∈QP (Bc),

that is,

maxP∈QP (Bc) < 1− P2(B) = P2(Bc),

but we taken P2 ∈ Q.

By this previous Proposition we obtain that G = F . We note that the last results
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shows that the set of primitive assets {1S,1E1, ..., 1Em} revels all unambiguous events:

B ∈ E ⇒ 1B =
X
k∈Ξ

1Ek or 1B = 1S −
X
k∈Ξ

1Ek ,

for some Ξ ⊂ {1, ...,m} , where Ek ∩Ek0 = ∅, Ξ 3 k 6= k0 ∈ Ξ.

We say that X,Y are comonotonic when

(X(s)−X(s0)) (Y (s)− Y (s0)) ≥ 0 for any s, s0 ∈ S.

A cost function C is comonotonic additive if C(X + Y ) = C(X) + C(Y ) for any pair of

comonotonic assets X and Y . This property is stronger than property 4 present in the

previous theorem. By impose this stronger requirement we obtain the following corrolary:

Corollary 55 Let C : RS → R be the cost function of a marketM with {0, 1}-securities
without arbitrage opportunities. Then, C satisfies 1) subadditivity, 2)Positive homogene-

ity, 3) Monotonicity, 4’) Comonotonic additive then for every A ∈ A,

C(A) = eC(A) := inf
{B∈E:A⊂B}

C(B).

Proof:

We have that for any A ∈ A,

C(A) =max
P∈Q

P (A),

hence, clearly C is concave, i.e., for any E,F ∈ A,

C(E ∪ F ) + C(E ∩ F ) ≤ C(E) + C(F ).

From 1), 2), 3) and 4’) we have that E = {B ∈ A : C(B) + C(Bc) = 1} is an algebra,
hence simple computation shows that eC is also concave. By definition of eC we saw that
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eC ≥ C over A. It remains to prove that eC(A) ≤ C(A) for every A ∈ A. Let A ∈ A,
since eC is concave, there exists P ∈ acore( eC) such that P (A) = eC(A), by the Theorem
53, item 5), P ∈ acore(C), hence P (A) ≤ C(A), that is, eC(A) ≤ C(A).
Remark 14 In the last proof, we saw that if the hedging price is given by a subadditive

Choquet capacity then the set of unambiguous events is an algebra of subsets. In particu-

lar, if two events E1 and E2 are unambiguous then E1∩E2 belongs to E. This fact entails
some restrictions on the incompletness of financial market, e.g., consider the case where

we have four states of nature and {s1, s2} and {s2, s3} are unambiguous. Hence, {s2} is
unambiguous what implies that if we have as primitive assets (1, 1, 0, 0) and (0, 1, 1, 0)

then (0, 1, 0, 0) is unambiguous, i.e., (0, 1, 0, 0) ∈ F .

Remark 15 The conversely of Theorem 53 says that:

Let C : RS → R be a mapping that satisfies 1), 2), 3), 4) and C and eC are such that
acore(C) = acore( eC). Then C is the cost function of a marketM with {0, 1}-securities
without arbitrage opportunities.

Futhermore, the conversely of Corrolary 55 can be statement in a similar away.

Proof: This is a subject of ongoing research.

4.2 Special Cases

Now we will discusse some exemplos and give a more specific formula for cost functions

Example 56 Consider a market M with only the riskless asset 1S (a bond). In this

case, as is easy to see, we obtain a cost function given by

C(X) =max
s∈S

X(s),

and the set of unambiguos events is given by E = {∅, S}.

86



Example 57 Suppose a market where we have S = {s1, s2, s3} and a market

M =
©
1S, 1{s1}; 1, p1

ª
that presents the bond and only one Arrow’s security. In this case we obtain a cost

function given by,

C(X) =

Z
{s1}

XdP + P ({s2, s3}) max
s∈{s2,s3}

X(s),

where, P ∈ ∆ is such that P ({s1}) = p1 and P ({s2, s3}) = 1− p1. We note that

E = {∅, S, {s1} , {s2, s3}} .

For example,

C((1, 2, 2)) = p1 + (1− p1)2 = 2− p1, (θ0 = 2 and θ1 = −1),
C((4, 2, 3)) = 4p1 + (1− p1)3 = 3 + p1, (θ0 = 3 and θ1 = 1).

4.2.1 Economies with Arrow’s securities and one bond.

Now we will consider markets where there are only Arrow securities and one bond.

Definition 58 We say that a state s∗ ∈ S is a unambiguos Arrow’s state if {s∗} belongs
to E. We denote by E0 the union of all unambiguous Arrow’s states,

E0 =
[

{s∗}∈E
{s∗} ,

and we will call this part of state space by the set of Arrow’s states.

We note that in this case the set of unambiguous events is an algebra.
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Proposition 59 Consider the market with Arrow’s securities and one bond:

M =
n
1S,
¡
1{sk}

¢
k=1,...,K

; 1, (pk)k=1,..,K

o
,

then there are a set E0 and a martingale measure P , such that, for any contingent claim

X ∈ RS,
C(X) =

Z
E0

XdP + P (Eco) max
s∈Eco

X(s).

Proof:

Main steps;

Define E0 ∈ E as above and note that for any P ∈ Q we have that

P (E0) =
KX
k=1

pk

and we set P (E ∩ E0) =
P

k∈{j:sj∈E}
pk for any E ⊂ S. Now we define the capacity v on

the field of all subsets of S by:

v(E) = P (E ∩E0), if E ⊂ E0, and
v(E) = P (E ∩E0) + P (Ec0), if E ∩Ec0 6= ∅.

Now, is simple to proof that v = C = eC.
Example 60 Consider S = {s1, ..., s5}where

M =
n
1S,
¡
1{sk}

¢
k=1,...,3

; 1, (pk)k=1,..,3

o
,

in this case

C(X) =
3X
k=1

X(sk)pk + (1− p1 − p2 − p3)max {X(s) : s ∈ {s4, s5}} ,
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and, for example,

C ((2, 0, 4, 3, 2)) = 2p1 + 4p3 + (1− p1 − p2 − p3)3
= 3− p1 − 3p2 + p3.

4.2.2 Economies with disjoint assets and one bond.

In this subsection we will consider a market where the existence of Arrow’s securities is

not necessary, but the securities does not delivery promisses in the same state.

We consider a market

M =
n
1S, (1Ek)k=1,...,K ; 1, (pk)k=1,..,K

o
where Ej ∩Ei = ∅ for any j 6= i.

Proposition 61 For a market M with disjoint assets as above, there exists disjoint

family unambiguous events {Fk}Lk=1 ⊂ E ,such that
LS
k=1

Fk = S, and for any contingente

claim X ∈ RS:
C(X) =

LX
k=1

P (Fk)maxs∈Fk {X(s)}

Proof:

The proof follows by take the capacity

v(E) =
X

k∈{j:Fj∩E 6=∅}
P (Fk), for any E ⊂ S,

where {Fk}Lk=1 is a partition of S by unambiguous events, and

P (Fk) =
X
j

pj if Fk =
[
j

Ej
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for some {Ej} ⊂ {Ek}Kk=1, and

P (Fk) = 1−
X
j

pj if Fk =

Ã[
j

Ej

!c

for some {Ej} ⊂ {Ek}Kk=1. We note that v = C = eC.
Corollary 62 Consider a marketM where there are only disjoint securities, and some

these securities are possibly Arrow’s securities. Define Λ = {k : #Fk = 1}, then

E0 =
[
k∈Λ

{s∗k} ,

where Fk = {s∗k}, and we obtain the following formula:

C(X) =

Z
E0

XdP +
X
k∈Λc

P (Fk)maxs∈Fk {X(s)} .

Example 63 Suppose a market with the state space S = {s1, s2, s3, s4} where:

M =
©
1S, 1{s1}, 1{s2,s3}; 1, p1, p2

ª
,

in this case we obtain that

E = {∅, S, {s1} , {s2, s3} , {s1, s2, s3} , {s2, s3, s4} , {s4}}

is an algebra, and

C(X) = p1X(s1) + (1− p1 − p2)X(s4) + p1maxs∈{s2,s3}X(s)
=

Z
E0

X(s)dP + P (Ec0)maxs∈E0 {X(s)} , where E0 = {s1, s4} .

Example 64 Now, we will take a case where we have a more complex financial market.

90



Suppose a market with four states of nature, where:

M =
©
1S, 1{s1,s2}, 1{s2,s3}; 1, p1, p2

ª
, where p1 6= p2 and p1 + p2 < 1.

Simple computations shows that:

C (∅) = 0, C (S) = 1, C ({s1, s2}) = p1, C ({s2, s3}) = p2,
C ({s3, s4}) = 1− p1, C ({s1, s4}) = 1− p2,
C ({s1}) = p1 ∧ (1− p2) , C ({s2}) = p1 ∧ p2,
C ({s3}) = p2 ∧ (1− p1) , C ({s4}) = (1− p1) ∧ (1− p2) ,

C ({s1, s3}) = p1 + p2, C ({s2, s4}) = 1,
C ({s1, s2, s3}) = p1 + p2, C ({s1, s3, s4}) = 1 ∧ (2− p1 − p2) = 1,
C ({s1, s2, s4}) = 1, C ({s2, s3, s4}) = 1.

We note that

C ({s1, s2, s3}) + C ({s2}) = p1 + p2 + p1 ∧ p2,

and

C ({s1, s2}) + {s2, s3} = p1 + p2,

i.e., C is not concave.

Moreover, the set of unambiguous events is given by

E = {∅, S, {s1, s2} , {s3, s4} , {s2, s3} , {s1, s4}} ,

and we have that E is a λ-system but it is not an algebra (the event {s2} = {s1, s2} ∩
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{s2, s3} do not belongs to E). Another important fact is that:

eC ({s1, s3}) = 1 > p1 + p2 = C ({s1, s3}) ,
i.e., we have eC 6= C.
4.3 Ambiguity aversion and IncompleteMarkets: some

comments about known results.

A financial market is said to be complete if the contingent payoffs from different marketed

financial contracts are varied enough to span all contingences. However, in almost every

financial market in the real world the span is less than the full set of contingencies, i.e.,

the markets are incomplete. A coherent argument given by Keynes (1936, chapter 16) for

the missing markets is that when agents face substancial uncertainty they are reluctant

to make more than limited contractual commitments for the future, that is, the attitudes

towards uncertainty can explain the endogeneous failure of some insurance and asset

markets.

Dow and Werlang (1992) studied an optimal portfolio choice problem with one risky

asset and one safe asset in a static model with ambiguity aversion agents modeled by

Choquet expect utility (CEU) functions. They proved that there is a range of prices at

which the agent has no position in the risky asset. This constitutes a striking difference

with a subjective expected utility (SEU) decision maker, for whom this price interval is

reduced to a point, as is well known.

The inertia interval presents in Dow andWerlang (1992) was simply a statement about

the optimal portfolio choice corresponding to exogenously determined prices, given an

initially riskless position. However, as Mukerji and Tallon (2001) remarked, it does not

follow from this result at the individual level that no-trade is an equilibrium when closing

the model by allowing agents to trade their risks, as is simple to see in an Edgeworth box,
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because the area of mutually advantageous trade is nonempty. Indeed, no-trade is an

equilibrium outcome in this economy if and only if endowment is Pareto optimal to begin

with. Introduction of ambiguity aversion in an economy through Choquet functionals, in

general, does not impede the trade in risk sharing contracts and would not be a reason

for incomplete risk sharing. For example, Chateauneuf, Dana and Tallon (2000) proved,

under common convex capacity, that risk sharing proceeds just as in an economy with

SEU agents.

Mukerji and Tallon (2001) studed if uncertainty aversion in a heterogeneous agent

CEU model might lead to an endogeneous breakdown in markets for some assets. By the

previous observation about an Edgeworth box economy, they saw that more assumption

would be needed, which is the introduction of a component in asset payoffs that is

independent of the endowments of both the endowments and the payoff of any other asset

as well, i.e., we have idiosyncratic components. Mukerji and Tallon (2001) proved that

when the assets available to trade risk among agents are affected by idiosyncratic risk, and

if agents perceive this idyosyncratic component as being ambiguous and the ambiguity is

high enough, then every equilibrium involves no trade over these assets3. Hence, Mukerji

and Tallon (2001) shows how ambiguity aversion may endogenously limit the scope of

risk sharing obtainable through the bonds traded in an economy, and therefore, explain

why the actual behavior of such an economy is better described by the assumption of

incomplete markets, rather than complete markets. Another useful fact presents in the

work of Mukerji and Tallon (2001), is that the theory of ambiguity aversion a la CEU

provides an endogenously generated natural explanation of why only some class of assets,

e.g., bonds issued in emerging markets, and not all assets, will be affected by the increase

in uncertainty.

On the other hand, since the result of Mukerji and Tallon (2001) only holds if asset

payoffs vary across states over which endowments are constant, and the ambiguity aver-

3Note that this is to be contrasted with the situation in which agents are SEU, in which standart repli-
cation and diversification arguments ensure that full risk sharing may be obtained and the equilibrium
is Pareto optimal, e.g., see Werner (1997).
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sion on it is sufficiently large, some cristicisms appear: in general, there are no observable

distinctions between models a la CEU and the standart SEU model4.

Another setting where conditions under which endogenous market incompleteness

can arise is given by Rigotti and Shannon (2005). They consider a standart Arrow-

Debreu exchange economy with a complete set of state-contingent security markets in

which the distinction between uncertainty and risk is formalized by assuming agents have

incomplete preferences over state-contingent consumption bundles, as in Bewley (2002).

Without completeness, individual decision making depends on a set of probabilities over

the states of nature. In this case, a bundle is preferred to another iff it has larger expected

utility for all probabilities in this set. In contrast with the result of Mukerji and Tallon

(2001), any initial endowments can be a non-trade equilibrium; it depends on the degree

of uncertainty, i.e., the size of the individual set of priors. In an intermediary situation,

Rigotti and Shannon (2005) divide the state space into two sets: risky states, in which

each agent assigns a precise probability, and uncertainty states, in which some agents

assign multiple probabilities. They proved that there may be equilibria in which securities

contingent on uncertainty states are not traded, while securities contingent on the risky

events are traded. Moreover, it can explain the endogenous failure of some insurance and

asset markets. As suggested by Rigotti and Shannon (2005), further analysis about the

connection between uncertainty and incomplete markets are a promising area for further

exploration.

4Rigott and Shannon (2005) presented a similar argument about the indeterminance of equilibrium.
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