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To Paulo Sad.
To Carlos Gustavo Moreira, Jacob Palis and Marcelo Viana.
To CNPq for the financial support along these four years.
To the DynEurBraz program, specially to Renaud Leplaideur.
To all EDAI’s people.
To Alvaro Rovella and Mart́ın Sambarino.
To Andrés Sambarino.
To the whole dynamical systems group in Montevideo. Specially to Juan

Alonso, Diego Armentano, Alfonso Artigue, Joaqúın Brum, Mat́ıas Carrasco,
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Abstract

We prove that any two C3 critical circle maps with the same irrational rota-
tion number of bounded type and the same odd criticality are conjugate to
each other by a C1+α circle diffeomorphism, for some universal α > 0. The
proof is based on the existence of a Cω-compact set of real-analytic critical
commuting pairs with the following property: given a C3 critical circle map f
with any irrational rotation number there exists a sequence

{
fn
}

, contained
in that compact set, such that Rn(f) is C0-exponentially close to fn at a
universal rate, and both have the same rotation number. Here R denotes
the renormalization operator for critical commuting pairs.

Keywords: Critical circle maps, rigidity, renormalization, commuting
pairs.
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Resumo

Provamos que quaisquer dois mapas cŕıticos do ćırculo de classe C3 com
o mesmo número de rotação irracional do tipo limitado e a mesma ordem
no ponto cŕıtico são conjugados por um difeomorfismo de classe C1+α, para
um α > 0 universal. A prova está baseada na existência de um conjunto
Cω-compacto de pares cŕıticos comutantes reais-anaĺıticos com a seguinte
propriedade: dado um mapa cŕıtico do ćırculo f de classe C3 com qualquer
número de rotação irracional existe uma sequência {fn}, contida nesse con-
junto compacto, tal que Rn(f) e fn estão C0-exponencialmente perto, e têm
o mesmo número de rotação. Aqui R denota o operador de renormalização
para pares cŕıticos comutantes.

Palavras-chave: Mapas cŕıticos do ćırculo, rigidez, renormalização, pares
comutantes.
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Introduction

0.1 Critical Circle Maps

0.1.1 Rigidity in dynamics

In the theory of real one-dimensional dynamics there exist many levels of
equivalence between two systems: combinatorial, topological, quasi-symmetric
and smooth equivalence are major examples.

In the circle case, a classical result of Poincaré [45, Chapter 1, Theorem
1.1] states that circle homeomorphisms with the same irrational rotation
number are combinatorially equivalent : for each n ∈ N the first n elements
of an orbit are ordered in the same way for any homeomorphism with a given
rotation number. This implies that circle homeomorphisms with irrational
rotation number are semi-conjugate to the corresponding rigid rotation and,
therefore, they admit a unique invariant Borel probability measure.

By Denjoy’s theorem [7], any two C2 circle diffeomorphisms with the
same irrational rotation number are conjugate to each other by a C0 home-
omorphism (actually we just need C1 maps such that the logarithm of the
modulus of the derivative has bounded variation). This implies that C2 dif-
feomorphisms with irrational rotation number are minimal, and therefore,
the support of its unique invariant probability measure is the whole circle.

By a fundamental result of Herman [20], improved by Yoccoz [62], any
two C2+ε circle diffeomorphisms whose common rotation number ρ satisfies
the Diophantine condition: ∣∣∣∣ρ− p

q

∣∣∣∣ ≥ C

q2+δ
, (0.1.1)

1
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for some δ ∈ [0, 1) and C > 0, and for every positive coprime integers p and
q, are conjugate to each other by a circle diffeomorphism. More precisely, if
0 ≤ δ < ε ≤ 1 and ε − δ 6= 1, any such diffeomorphism is conjugate to the
corresponding rigid rotation by a C1+ε−δ diffeomorphism [27]. This implies
that its invariant probability measure is absolutely continuous with respect to
Lebesgue, with Hölder continuous density with exponent ε−δ. Moreover, any
two C∞ circle diffeomorphisms with the same Diophantine rotation number
are C∞-conjugate to each other, and real-analytic diffeomorphisms with the
same Diophantine rotation number are conjugate to each other by a real-
analytic diffeomorphism [45, Chapter I, Section 3].

These are examples of rigidity results: lower regularity of conjugacy im-
plies higher regularity under certain conditions.

Since rigidity is totally understood in the setting of circle diffeomorphisms
we continue in this thesis the study of rigidity problems for critical circle maps
developed by de Faria, de Melo, Yampolsky, Khanin and Teplinsky among
others.

By a critical circle map we mean an orientation preserving C3 circle
homeomorphism with exactly one non-flat critical point of odd type (for
simplicity, and for being the generic case, we will assume in this thesis that
the critical point is of cubic type). As usual, a critical point c is called non-flat

if in a neighbourhood of c the map f can be written as f(t) = ±
∣∣φ(t)

∣∣d+f(c),
where φ is a C3 local diffeomorphism with φ(c) = 0, and d ∈ N with d ≥ 2.
The criticality (or type, or order) of the critical point c is d.

The main reference for background in real one-dimensional dynamics is
the book of de Melo and van Strien [45].

0.1.2 The Arnold family

Classical examples of critical circle maps are obtained from the two-parameter
family f̃a,b : C→ C of entire maps in the complex plane:

f̃a,b(z) = z + a−
(
b

2π

)
sin(2πz) for a ∈ [0, 1) and b ≥ 0. (0.1.2)

Since each f̃a,b commutes with unitary horizontal translation, it is the lift
of a holomorphic map of the punctured plane fa,b : C \ {0} → C \ {0} via

the holomorphic universal cover z 7→ e2πiz. Since f̃a,b preserves the real axis,
fa,b preserves the unit circle S1 =

{
z ∈ C : |z| = 1

}
and therefore induces a

two-parameter family of real-analytic maps of the unit circle. This classical
family was introduced by Arnold in [3], and is called the Arnold family.

Instituto de Matemática Pura e Aplicada 2 March, 2012
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For b = 0 the family fa,b : S1 → S1 is the family of rigid rotations
z 7→ e2πiaz, and for b ∈ (0, 1) the family is still contained in the space of
real-analytic circle diffeomorphisms.

For b = 1 each f̃a,b still restricts to an increasing real-analytic homeomor-
phism of the real line, that projects to an orientation-preserving real-analytic
circle homeomorphism, presenting one critical point of cubic type at 1, the
projection of the integers. Denote by ρ(a) the rotation number of the circle
homeomorphism fa,1. It is well-known that a 7→ ρ(a) is continuous, non-
decreasing, maps [0, 1) onto itself and is such that the interval ρ−1(θ) ⊂ [0, 1)
degenerates to a point whenever θ ∈ [0, 1) \ Q (see [20]). Moreover the set{
a ∈ [0, 1) : ρ(a) ∈ R\Q

}
has zero Lebesgue measure, see [56]. For 0 ≤ p < q

coprime integers we know that ρ−1
(
{p
q
}
)

is always a non-degenerate closed
interval. In the interior of this interval we find critical circle maps with two
periodic orbits (of period q), one attracting and one repelling, which collapse
to a single parabolic orbit in the boundary of the interval, see [9].

For b > 1 the maps fa,b : S1 → S1 are not invertible any more (they
present two critical points of even degree). These examples show how criti-
cal circle maps arise as bifurcations from circle diffeomorphisms to endomor-
phisms, and in particular, from zero to positive topological entropy (compare
with infinitely renormalizable unimodal maps [45, Chapter VI]). This is one
of the main reasons why critical circle maps attracted the attention of physi-
cists and mathematicians interested in understanding the boundary of chaos
([8], [15], [23], [30], [31], [34] [35], [46], [49], [50], [51], [54]).

0.1.3 Further examples

Another important class of critical circle maps is provided by the one-parameter
family fγ : C→ C of Blaschke products in the complex plane:

fγ(z) = e2πiγz2

(
z − 3

1− 3z

)
for γ ∈ [0, 1). (0.1.3)

Every map in this family leaves invariant the unit circle (Blaschke prod-
ucts are the rational maps leaving invariant the unit circle), and its restric-
tion to S1 is a real-analytic homeomorphism with a unique critical point at
1, which is of cubic type (see Figure 1). Furthermore, for each irrational
number θ in [0, 1) there exists a unique γ in [0, 1) such that the rotation
number of fγ|S1 is θ. With this family at hand, the developments on rigidity
of critical circle maps were very useful in the study of local connectivity and
Lebesgue measure of Julia sets associated to generic quadratic polynomials
with Siegel disks ([47], [40], [58], [48]).

Instituto de Matemática Pura e Aplicada 3 March, 2012
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Figure 1: Topological behaviour of the Blaschke product fγ (0.1.3) around
the unit circle, for γ approximately equal to 1/8. At the left of Figure 1
we see the preimage under fγ of the annulus around the unit circle drawn
at the right (in both planes, the unit circle is dashed). The complement of
the annulus A ∪ B in the complex plane has two connected components, C
and D. The preimage of C is the union C ′ ∪ C ′′, where the notation C ′

means that fγ : C ′ → C has topological degree 1 (equivalently fγ : C ′′ → C
has topological degree 2). In the same way, the preimage of D is the union
D′ ∪D′′, the preimage of B is B′1 ∪B′2 ∪B′3 and the preimage of A is A′′′.

0.2 Statement of the results

Since our goal is to study smoothness of conjugacies we will focus on critical
circle maps without periodic orbits, that is, the ones with irrational rotation
number. In [63] Yoccoz proved that the rotation number is the unique invari-
ant of the topological classes. More precisely, any C3 orientation preserving
circle homeomorphism presenting only non-flat critical points (maybe more
than one) and with irrational rotation number is topologically conjugate to
the corresponding rigid rotation. For the sake of completeness we present
Yoccoz’s proof in Appendix A (Theorem A.4.2), where we also state and
prove Denjoy’s result (Theorem A.2.9) as an introduction to the techniques.

From the topological rigidity we get that any C3 critical circle map with
irrational rotation number is minimal and therefore the support of its unique
invariant Borel probability measure is the whole circle. However let us point
out that this invariant measure is always singular with respect to Lebesgue
measure (see [25, Theorem 4, page 182] or [17, Proposition 1, page 219]). We
remark also that the condition of non-flatness on the critical points cannot
be removed: in [19] Hall was able to construct C∞ homeomorphisms of the
circle with no periodic points and no dense orbits.

Instituto de Matemática Pura e Aplicada 4 March, 2012
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Recall that an irrational number is of bounded type if it satisfies the Dio-
phantine condition (0.1.1) for δ = 0, that is, θ in [0, 1] is of bounded type if
there exists C > 0 such that: ∣∣∣∣θ − p

q

∣∣∣∣ ≥ C

q2
,

for any integers p and q 6= 0. On one hand this is a respectable class: the
set of numbers of bounded type is dense in [0, 1], with Hausdorff dimension
equal to one. On the other hand, from the metrical viewpoint, this is a
rather restricted class: while Diophantine numbers have full Lebesgue mea-
sure in [0, 1] (see Lemma A.1.8), the set of numbers of bounded type has zero
Lebesgue measure (see Lemma A.1.3).

Since a critical circle map cannot be smoothly conjugate to a rigid rota-
tion, in order to study smooth-rigidity problems we must restrict to the class
of critical circle maps. Numerical observations ([15], [46], [54]) suggested
in the early eighties that smooth critical circle maps with rotation number
of bounded type are geometrically rigid. This was posed as a conjecture in
several works by Lanford ([30], [31]), Rand ([49], [50] and [51], see also [46])
and Shenker ([54], see also [15]) among others:

Rigidity Conjecture. Any two C3 critical circle maps with the same ir-
rational rotation number of bounded type and the same odd criticality are
conjugate to each other by a C1+α circle diffeomorphism, for some α > 0.

The conjecture has been proved by de Faria and de Melo for real-analytic
critical circle maps [13] and nowadays (after the work of Yampolsky, Khanin
and Teplinsky) it is understood without any assumption on the irrational
rotation number: inside each topological class of real-analytic critical cir-
cle maps the degree of the critical point is the unique invariant of the C1-
conjugacy classes. In the following result we summarize many contributions
of the authors quoted above:

Theorem A (de Faria-de Melo, Khmelev-Yampolsky, Khanin-Teplinsky).
Let f and g be two real-analytic circle homeomorphisms with the same irra-
tional rotation number and with a unique critical point of the same odd type.
Let h be the conjugacy between f and g (given by Yoccoz’s result) that maps
the critical point of f to the critical point of g (note that this determines h).
Then:

1. h is a C1 diffeomorphism.

2. h is C1+α at the critical point of f for a universal α > 0.

Instituto de Matemática Pura e Aplicada 5 March, 2012
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3. For a full Lebesgue measure set of rotation numbers (that contains all
bounded type numbers) h is globally C1+α.

On one hand, the presence of the critical point gives us more rigidity
than in the case of diffeomorphisms: smooth conjugacy is obtained for all
irrational rotation numbers, with no Diophantine conditions. On the other
hand, there exist examples ([4], [12]) showing that h may not be globally
C1+α in general, even for real-analytic dynamics.

Item (1) of Theorem A was proved by Khanin and Teplinsky in [26],
building on earlier work of de Faria, de Melo and Yampolsky ([10], [11], [12],
[13], [58], [59], [60], [61]). Item (2) was proved in [29] and Item (3) is obtained
combining [12] with [61]. The proof of Theorem A relies on methods coming
from complex analysis and complex dynamics ([39], [41]), and that is why
rigidity is well understood for real-analytic critical circle maps, but nothing
was known yet for smooth ones (even in the C∞ setting). In this thesis we
take the final step and solve positively the Rigidity Conjecture:

Theorem B (Main result). Any two C3 critical circle maps with the same
irrational rotation number of bounded type and the same odd criticality are
conjugate to each other by a C1+α circle diffeomorphism, for some universal
α > 0.

The novelties of this thesis in order to transfer rigidity from real-analytic
dynamics to (finitely) smooth ones are two: the first one is a bidimensional
version of the glueing procedure (first introduced by Lanford [30], [31]) de-
veloped in Chapter 5, and the second one is the notion of asymptotically
holomorphic maps, to be defined in Chapter 4 (Definition 4.1.2). Asymptot-
ically holomorphic maps were already used in one-dimensional dynamics by
Graczyk, Sands and Świa̧tek in [16], but as far as we know never for critical
circle maps.

Let us discuss the main ideas of the proof of Theorem B: a C3 critical
circle map f with irrational rotation number generates a sequence

{
Rn(f) =

(ηn, ξn)
}
n∈N of commuting pairs of interval maps, each one being the renor-

malization of the previous one (see Definition 1.4.1). To prove Theorem B
we need to prove the exponential convergence of the orbits generated by two
critical circle maps with a given combinatorics of bounded type (see Theorem
0.3.1).

Our main task (see Theorem D in Chapter 2) is to show the existence of

a sequence
{
fn = (η̃n, ξ̃n)

}
n∈N that belongs to a universal Cω-compact set of

real-analytic critical commuting pairs, such that Rn(f) is C0-exponentially
close to fn at a universal rate, and both have the same rotation number. In
Chapter 2, using the exponential contraction of the renormalization operator

Instituto de Matemática Pura e Aplicada 6 March, 2012
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on the space of real-analytic critical commuting pairs (see Theorem 0.3.3),
we conclude the exponential contraction of the renormalization operator in
the space of C3 critical commuting pairs with bounded combinatorics (see
Theorem C in Section 0.3), and therefore the C1+α rigidity as stated in
Theorem B.

To realize the main task we extend the initial commuting pair to a pair of
C3 maps in an open complex neighbourhood of each original interval (the so-
called extended lift, see Definition 4.1.4), that are asymptotically holomorphic
(see Definition 4.1.2), each having a unique cubic critical point at the origin.

Using the real bounds (see Theorem 1.1.1), the Almost Schwarz inclusion
(see Proposition 4.2.1) and the asymptotic holomorphic property we prove
that for all n ∈ N, greater or equal than some n0, both ηn and ξn extend to a
definite neighbourhood of their interval domains in the complex plane, giving
rise to maps with a unique cubic critical point at the origin, and with ex-
ponentially small conformal distortion (see Theorem 4.0.4). Theorem 4.0.4
gives us also some geometric control that will imply the desired compact-
ness (we wont study the dynamics of these extensions, just their geometric
behaviour).

Using Ahlfors-Bers theorem (see Proposition 3.3.2) we construct for each
n ≥ n0 a C3 diffeomorphism Φn, exponentially close to the identity in definite
domains around the dynamical intervals, that conjugates (ηn, ξn) to a C3

critical commuting pair (η̂n, ξ̂n) exponentially close to (ηn, ξn), and such that

η̂−1
n ◦ ξ̂n is an holomorphic diffeomorphism between complex neighbourhoods

of the endpoints of the union of the dynamical intervals (see Section 5.1).
Using this holomorphic diffeomorphism to glue the ends of a band around
the union of the dynamical intervals we obtain a Riemann surface conformally
equivalent to a rounds annulus ARn around the unit circle. This identification
gives rise to a holomorphic local diffeomorphism Pn mapping the band onto
the annulus and such that, via Pn, the pair (η̂n, ξ̂n) induces a C3 map Gn from
an annulus in ARn to ARn , having exponentially small conformal distortion,
that restricts to a critical circle map on S1 (see Proposition 5.1.7). The

commuting condition of each pair (η̂n, ξ̂n) is equivalent to the continuity of
the corresponding Gn, and that is why we project to the annulus ARn . The
topological behaviour of each Gn on its annular domain is the same as the
restriction of the Blaschke product fγ (0.1.3) to the annulus A′′′ ∪ B′1, as
depicted in Figure 1.

Using again Ahlfors-Bers theorem we construct a holomorphic map Hn,
on a smaller but definite annulus around the unit circle, that is exponentially
close to Gn and restricts to a real-analytic critical circle map with the same
combinatorics as the restriction of Gn to S1 (see Proposition 5.2.1 for much

Instituto de Matemática Pura e Aplicada 7 March, 2012



Pablo Guarino Rigidity Conjecture for C3 Critical Circle Maps

more properties).
Finally, using the projection Pn, we lift each Hn to a real-analytic criti-

cal commuting pair fn = (η̃n, ξ̃n) exponentially close to (η̂n, ξ̂n), having the
same combinatorics and with complex extensions C0-exponentially close to
the ones of Rn(f) produced in Theorem 4.0.4 (see Proposition 5.3.1). Com-
pactness follows then from the geometric properties obtained in Theorem
4.0.4 (see Lemma 5.3.2).

0.2.1 Some geometric consequences of the main result

For a C3 critical circle map f with irrational rotation number θ and critical
point c in S1, define the n-th scaling ratio as:

sn(f) =
d
(
f qn+1(c), c

)
d
(
f qn(c), c

) ,

where {qn}n∈N is the sequence of return times given by the continued fraction
expansion of θ (see Chapter 1 and Appendix A) and d denote the standard
distance in S1.

The smoothness of the conjugacy leads to a geometric classification since,
being essentially affine at small scales, the conjugacy preserves the small-scale
properties of the dynamics. Some examples of these geometric properties are
the following:

Corollary 0.2.1. If f and g are C3 critical circle maps with the same irra-
tional rotation number of bounded type and the same odd degree at the critical
point, we have asymptotic geometric rigidity:

lim
n→+∞

(
sn(f)− sn(g)

)
= 0

For real-analytic critical circle maps, Corollary 0.2.1 was first obtained
by de Faria in his PhD thesis (see [10] and [11]).

Corollary 0.2.2. Let µ be the unique invariant Borel probability of a C3

critical circle map with rotation number of bounded type θ, and let HD(µ)
denote the Hausdorff dimension of µ (the infimum of the dimensions of full
measure sets). Then HD(µ) only depends on θ and the degree at the critical
point.

See [17] for some estimates.
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0.3 A first reduction of the main result

As in the case of unimodal maps, the main tool in order to obtain smooth
conjugacy between critical circle maps is the use of renormalization group
methods [42]. As it was already clear in the early eighties ([15], [46]) it is
convenient to construct a renormalization operator R (see Definition 1.4.1)
acting not on the space of critical circle maps but on a suitable space of
critical commuting pairs (see Definition 1.2.1).

Just as in the case of unimodal maps (see for instance [45, Chapter VI,
Theorem 9.4]), the principle that exponential convergence of the renormaliza-
tion operator is equivalent to smooth conjugacy also holds for critical circle
maps. The following result is due to de Faria and de Melo [12, First Main
Theorem, page 341]. For any 0 ≤ r < ∞ denote by dr the Cr metric in the
space of critical commuting pairs (see Definition 1.3.1):

Theorem 0.3.1 (de Faria-de Melo 1999). There exists a set A in [0, 1],
having full Lebesgue measure and containing all irrational numbers of bounded
type, for which the following holds: let f and g be two C3 critical circle maps
with the same irrational rotation number in the set A and with the same odd
type at the critical point. If d0

(
Rn(f),Rn(g)

)
converge to zero exponentially

fast when n goes to infinity, then f and g are C1+α conjugate to each other
for some α > 0.

Roughly speaking, the full Lebesgue measure set A is composed by irra-
tional numbers in [0, 1] whose coefficients in the continued fraction expansion
may be unbounded, but their growth is less than quadratic (see Chapter 6
or [12, Appendix C] for the precise definition). In sharp contrast with the
case of diffeomorphisms, let us point out that A does not contain all Dio-
phantine numbers, and contains some Liouville numbers (again see Chapter
6). The remaining cases were more recently solved by Khanin and Teplinsky
[26, Theorem 2, page 198]:

Theorem 0.3.2 (Khanin-Teplinsky 2007). Let f and g be two C3 critical
circle maps with the same irrational rotation number and the same odd type
at the critical point. If d2

(
Rn(f),Rn(g)

)
converge to zero exponentially fast

when n goes to infinity, then f and g are C1-conjugate to each other.

To obtain the smooth conjugacy (Item (1) of Theorem A), Khanin and
Teplinsky combined Theorem 0.3.2 with the following fundamental resut:

Theorem 0.3.3 (de Faria-de Melo 2000, Yampolsky 2003). There exists a
universal constant λ in (0, 1) with the following property: given two real-
analytic critical commuting pairs ζ1 and ζ2 with the same irrational rotation

Instituto de Matemática Pura e Aplicada 9 March, 2012



Pablo Guarino Rigidity Conjecture for C3 Critical Circle Maps

number and the same odd type at the critical point, there exists a constant
C > 0 such that:

dr
(
Rn(ζ1),Rn(ζ2)

)
≤ Cλn

for all n ∈ N and for any 0 ≤ r < ∞. Moreover given a Cω-compact set K
of real-analytic critical commuting pairs, the constant C can be chosen the
same for any ζ1 and ζ2 in K.

Theorem 0.3.3 was proved by de Faria and de Melo [13] for rotation num-
bers of bounded type, and extended by Yampolsky [61] to cover all irrational
rotation numbers.

With Theorem 0.3.1 at hand, our main result (Theorem B) reduces to
the following one:

Theorem C. There exists λ ∈ (0, 1) such that given f and g two C3 critical
circle maps with the same irrational rotation number of bounded type and the
same criticality, there exists C > 0 such that for all n ∈ N:

d0

(
Rn(f),Rn(g)

)
≤ Cλn ,

where d0 is the C0 distance in the space of critical commuting pairs.

This thesis is devoted to proving Theorem C. Of course it would be
desirable to obtain Theorem C for C3 critical circle maps with any irrational
rotation number, but we have not been able to do this yet (see Chapter 6 for
more comments).

Let us fix some notation that we will use along this thesis: N, Z, Q, R and
C denotes respectively the set of natural, integer, rational, real and complex
numbers. The real part of a complex number z will be denoted by <(z), and
its imaginary part by =(z). B(z, r) denotes the Euclidean open ball of radius

r > 0 around a complex number z. H and Ĉ denotes respectively the upper-
half plane and the Riemann sphere. D = B(0, 1) denotes the unit disk in the
complex plane, and S1 = ∂ D denotes its boundary, that is, the unit circle.
Diff3

+(S1) denotes the group (under composition) of orientation-preserving
C3 diffeomorphisms of the unit circle. Leb(A) denotes the Lebesgue measure
of a Borel set A in the plane, and diam(A) denotes its Euclidean diameter.
Given a bounded interval I in the real line we denote its Euclidean length
by |I|. Moreover, for any α > 0, let:

Nα(I) =
{
z ∈ C : d(z, I) < α|I|

}
,

where d denotes the Euclidean distance in the complex plane.
The organization of this thesis is the following: in Section above 0.2 we

stated some geometric consequences of the main result, while in Section 0.3
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we reduced Theorem B to Theorem C, which states the exponential conver-
gence of the renormalization orbits of C3 critical circle maps with the same
bounded combinatorics. In Chapter 1 below we introduce the renormaliza-
tion operator in the space of critical commuting pairs, and review its basic
properties. In Chapter 2 we reduce Theorem C to Theorem D, which states
the existence of a Cω-compact piece of real-analytic critical commuting pairs
such that for a given C3 critical circle map f , with any irrational rotation
number, there exists a sequence

{
fn
}

, contained in that compact piece, such
that Rn(f) is C0-exponentially close to fn at a universal rate, and both have
the same rotation number. In Chapter 3 we state a corollary of Ahlfors-Bers
theorem (Proposition 3.3.2) that will be fundamental in Chapter 5 (its proof
will be given in Appendix D). In Chapter 4 we construct the extended lift of
a C3 critical circle map (see Definition 4.1.4), and then we state and prove
Theorem 4.0.4 as described above. In Chapter 5 we develop a bidimensional
glueing procedure in order to prove Theorem D. Finally in Chapter 6 we
review further questions and open problems in the area.

This thesis has four appendices: in Appendix A we briefly review one of
the main tools in real one-dimensional dynamics, namely the distortion of
the cross-ratio, and then we apply it in order to prove topological rigidity
of critical circle maps (Yoccoz’s theorem). In Appendix B we give the proof
of Theorem 1.5.1, stated at the end of Chapter 1 and used in Chapter 2, in
Appendix C we review some basic fact about Riemann surfaces used along
the text, while in Appendix D we apply Ahlfors-Bers theorem in order to
prove Proposition 3.3.2.
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CHAPTER 1

Renormalization of critical commuting pairs

In this chapter we define the space of C3 critical commuting pairs (Definition
1.2.1), and we endow it with the C3 metric (Definition 1.3.1). This metric
space, which is neither compact nor locally-compact, contains the phase space
of the renormalization operator (Definition 1.4.1). Each C3 critical circle
map with irrational rotation number gives rise to an infinite renormalization
orbit in this phase space, and the asymptotic behaviour of these orbits is the
subject of this thesis.

We remark that, since there is no canonical differentiable structure (like
a Banach manifold structure) in the space of C3 critical commuting pairs
endowed with the C3 metric, we cannot apply the standard machinery from
hyperbolic dynamics (see for instance [24, Chapters 6, 18 and 19]) in order
to obtain exponential convergence as stated in Theorem C.

As we said in the introduction, a critical circle map is an orientation-
preserving C3 circle homeomorphism f , with exactly one critical point c ∈ S1

of odd type. For simplicity, and for being the generic case, we will assume in
this thesis that the critical point is of cubic type. Suppose that the rotation
number ρ(f) = θ in [0, 1) is irrational, and let

[
a0, a1, ..., an, an+1, ...

]
be its

continued fraction expansion (see Definition A.1.1):

θ = lim
n→+∞

1

a0 +
1

a1 +
1

a2 +
1

. . .
1

an

12
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We define recursively the return times of θ by:

q0 = 1, q1 = a0 and qn+1 = anqn + qn−1 for n ≥ 1.

Recall that the numbers qn are also obtained as the denominators of the
truncated expansion of order n of θ:

pn
qn

= [a0, a1, a2, ..., an−1] =
1

a0 +
1

a1 +
1

a2 +
1

. . .
1

an−1

Let Rθ be the rigid rotation of angle 2πθ in the unit circle. The arithmeti-
cal properties of the continued fraction expansion (see Section A.1.1) imply
that the iterates {Rqn

θ (c)}n∈N are the closest returns of the orbit of c under
the rotation Rθ:

d
(
c, Rqn

θ (c)
)
< d
(
c, Rj

θ(c)
)

for any j ∈ {1, ..., qn − 1}

where d denote the standard distance in S1. The sequence of return times
{qn} increase at least exponentially fast as n → ∞, and the sequence of
return distances {d(c, Rqn

θ (c))} decrease to zero at least exponentially fast as
n→∞. Moreover the sequence {Rqn

θ (c)}n∈N approach the point c alternating
the order:

Rq1
θ (c) < Rq3

θ (c) < ... < R
q2k+1

θ (c) < ... < c < ... < Rq2k
θ (c) < ... < Rq2

θ (c) < Rq0
θ (c)

By Poincaré’s result quoted at the beginning of the introduction, this
information remains true at the combinatorial level for f : for any n ∈ N the
interval [c, f qn(c)] contains no other iterates f j(c) for j ∈ {1, ..., qn − 1}, and
if we denote by µ the unique invariant Borel probability of f we can say that
µ
(
[c, f qn(c)]

)
< µ

(
[c, f j(c)]

)
for any j ∈ {1, ..., qn − 1}. A priori we cannot

say anything about the usual distance in S1.
We say that ρ(f) is of bounded type if there exists a constant M ∈ N

such that an < M for any n ∈ N (it is not difficult to see that this definition
is equivalent with the one given in the introduction, see [28, Chapter II,
Theorem 23]). As we said in the introduction, the set of numbers of bounded
type has zero Lebesgue measure in [0, 1] (see Lemma A.1.3).
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1.1 Dynamical partitions

Denote by In the interval [c, f qn(c)] and define Pn as:

Pn =
{
In, f(In), ..., f qn+1−1(In)

}⋃{
In+1, f(In+1), ..., f qn−1(In+1)

}
A crucial combinatorial fact is that Pn is a partition (modulo boundary

points) of the circle for every n ∈ N. We call it the n-th dynamical partition
of f associated with the point c. Note that the partition Pn is determined
by the piece of orbit:

{f j(c) : 0 ≤ j ≤ qn + qn+1 − 1}

The transitions from Pn to Pn+1 can be described in the following easy
way: the interval In = [c, f qn(c)] is subdivided by the points f jqn+1+qn(c) with
1 ≤ j ≤ an+1 into an+1 + 1 subintervals. This sub-partition is spreaded by
the iterates of f to all the f j(In) = f j([c, f qn(c)]) with 0 ≤ j < qn+1. The
other elements of the partition Pn, which are the f j(In+1) with 0 ≤ j < qn,
remain unchanged.

As we are working with critical circle maps, our partitions in this thesis
are always determined by the critical orbit. A major result for critical circle
maps is the following:

Theorem 1.1.1 (real bounds). There exists K > 1 such that given a C3

critical circle map f with irrational rotation number there exists n0 = n0(f)
such that for all n ≥ n0 and for every pair I, J of adjacent atoms of Pn we
have:

K−1|I| ≤ |J | ≤ K|I|.

Moreover, if Df denotes the first derivative of f , we have:

1

K
≤
∣∣Df qn−1(x)

∣∣∣∣Df qn−1(y)
∣∣ ≤ K for all x, y ∈ f(In+1) and for all n ≥ n0, and:

1

K
≤
∣∣Df qn+1−1(x)

∣∣∣∣Df qn+1−1(y)
∣∣ ≤ K for all x, y ∈ f(In) and for all n ≥ n0.

Theorem 1.1.1 was proved by Świa̧tek and Herman (see [21], [56], [18] and
[12]). The control on the distortion of the return maps follows from Koebe
distortion principle (see [12, Section 3]). Note that for a rigid rotation we
have |In| = an+1|In+1| + |In+2|. If an+1 is big, then In is much larger than
In+1. Thus, even for rigid rotations, real bounds do not hold in general.
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1.2 Critical commuting pairs

The first return map of the union of adjacent intervals In ∪ In+1 is given
respectively by f qn+1 and f qn . This pair of interval maps:(

f qn+1|In , f qn|In+1

)
motivates the following definition:

Definition 1.2.1. A critical commuting pair ζ = (η, ξ) consists of two
smooth orientation-preserving interval homeomorphisms η : Iη → η(Iη) and
ξ : Iξ → ξ(Iξ) where:

1. Iη = [0, ξ(0)] and Iξ = [η(0), 0];

2. There exists a neighbourhood of the origin where both η and ξ have
homeomorphic extensions (with the same degree of smoothness) which
commute, that is, η ◦ ξ = ξ ◦ η;

3.
(
η ◦ ξ

)
(0) =

(
ξ ◦ η

)
(0) 6= 0;

4. η′(0) = ξ′(0) = 0;

5. η′(x) 6= 0 for all x ∈ Iη \ {0} and ξ′(x) 6= 0 for all x ∈ Iξ \ {0}.

Any critical circle map f with irrational rotation number θ induces a
sequence of critical commuting pair in a natural way: let f̃ be the lift of f
to the real line (for the canonical covering t 7→ e2πit) satisfying f̃ ′(0) = 0 and

0 < f̃(0) < 1. For each n ≥ 1 let Ĩn be the closed interval in the real line,
adjacent to the origin, that projects to In. Let T : R→ R be the translation
x 7→ x+ 1 and define η : Ĩn → R and ξ : Ĩn+1 → R as:

η = T−pn+1 ◦ f̃ qn+1 and ξ = T−pn ◦ f̃ qn

Then the pair (η|Ĩn , ξ|Ĩn+1
) form a critical commuting pair that we denote

by (f qn+1|In , f qn|In+1) to simplify notation.
A converse of this construction was introduced by Lanford ([30], [31]) and

it is known as glueing procedure: the map η−1 ◦ ξ is a diffeomorphism from a
small neighbourhood of η(0) onto a neighbourhood of ξ(0). Identifying η(0)
and ξ(0) in this way we obtain from the interval

[
η(0), ξ(0)

]
a smooth com-

pact boundaryless one-dimensional manifold M . The discontinuous piecewise
smooth map:

fζ(t) =

{
ξ(t) for t ∈

[
η(0), 0

)
η(t) for t ∈

[
0, ξ(0)

]
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Figure 1.1: A commuting pair.

projects to a smooth homeomorphism on the quotient manifold M . By choos-
ing a diffeomorphism ψ : M → S1 we obtain a critical circle map in S1, just
by conjugating with ψ. Although there is no canonical choice for the dif-
feomorphism ψ, any two different choices give rise to smoothly-conjugate
critical circle maps in S1. Therefore any critical commuting pair induces a
whole smooth conjugacy class of critical circle maps. In Chapter 5 we pro-
pose a bidimensional extension of this procedure, in order to prove our main
result (Theorem B).

1.3 The Cr metric

We endow the space of C3 critical commuting pairs with the C3 metric.
Given two critical commuting pairs ζ1 = (η1, ξ1) and ζ2 = (η2, ξ2) let A1 and
A2 be the Möbius transformations such that for i = 1, 2:

Ai
(
ηi(0)

)
= −1, Ai(0) = 0 and Ai

(
ξi(0)

)
= 1 .
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Figure 1.2: Scheme of a commuting pair.

Definition 1.3.1. For any 0 ≤ r <∞ define the Cr metric on the space of
Cr critical commuting pairs in the following way:

dr(ζ1, ζ2) = max

{∣∣∣∣ξ1(0)

η1(0)
− ξ2(0)

η2(0)

∣∣∣∣ ,∥∥A1 ◦ ζ1 ◦ A−1
1 − A2 ◦ ζ2 ◦ A−1

2

∥∥
r

}
where ‖ · ‖r is the Cr-norm for maps in [−1, 1] with one discontinuity at the
origin, and ζi is the piecewise map defined by ηi and ξi:

ζi : Iξi ∪ Iηi → Iξi ∪ Iηi such that ζi|Iξi = ξi and ζi|Iηi = ηi

Note that dr is a pseudo-metric since it is invariant under conjugacy by
homotheties: if α is a positive real number, Hα(t) = αt and ζ1 = Hα◦ζ2◦H−1

α

then dr(ζ1, ζ2) = 0. In order to have a metric we need to restrict to normalized

critical commuting pairs: for a commuting pair ζ = (η, ξ) denote by ζ̃ the

pair (η̃|Ĩη , ξ̃|Ĩξ) where tilde means rescaling by the linear factor λ = 1
|Iξ|

. Note

that |Ĩξ| = 1 and Ĩη has length equal to the ratio between the lengths of Iη
and Iξ. Equivalently η̃(0) = −1 and ξ̃(0) = |Iη |

|Iξ|
= ξ(0)/

∣∣η(0)
∣∣.

When we are dealing with real-analytic critical commuting pairs, we con-
sider the Cω-topology defined in the usual way: we say that

(
ηn, ξn

)
→
(
η, ξ
)

if there exist two open sets Uη ⊃ Iη and Uξ ⊃ Iξ in the complex plane and
n0 ∈ N such that η and ηn for n ≥ n0 extend continuously to Uη, are holo-
morphic in Uη and we have

∥∥ηn − η
∥∥
C0(Uη)

→ 0, and such that ξ and ξn

for n ≥ n0 extend continuously to Uξ, are holomorphic in Uξ and we have∥∥ξn − ξ∥∥C0(Uξ)
→ 0. We say that a set C of real-analytic critical commuting

pairs is closed if every time we have {ζn} ⊂ C and {ζn} → ζ, we have ζ ∈ C.
This defines a Hausdorff topology, stronger than the Cr-topology for any
0 ≤ r ≤ ∞.
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1.4 The renormalization operator

Let ζ = (η, ξ) be a C3 critical commuting pair according to Definition 1.2.1,
and recall that

(
η◦ξ

)
(0) =

(
ξ◦η

)
(0) 6= 0. Let us suppose that

(
ξ◦η

)
(0) ∈ Iη

(just as in both Figure 1.1 and Figure 1.2 above) and define the height χ(ζ)
of the commuting pair ζ = (η, ξ) as r if:

ηr+1(ξ(0)) ≤ 0 ≤ ηr(ξ(0))

and χ(ζ) = ∞ if no such r exists (note that in this case the map η|Iη has a
fixed point, so when we are dealing with commuting pairs induced by critical
circle maps with irrational rotation number we have finite height). Note
also that the height of the pair (f qn+1 |In , f qn|In+1) induced by a critical circle
maps f is exactly an+1, where ρ(f) = [a0, a1, a2, ..., an, an+1, ...] (because the
combinatorics of f are the same as for the rigid rotation Rρ(f)).

For a pair ζ = (η, ξ) with
(
ξ ◦ η

)
(0) ∈ Iη and χ(ζ) = r < ∞ we see that

the pair: (
η|[0,ηr(ξ(0))], η

r ◦ ξ|Iξ
)

is again a commuting pair, and if ζ = (η, ξ) is induced by a critical circle
map:

ζ = (η, ξ) =
(
f qn+1|In , f qn|In+1

)
we have that: (

η|[0,ηr(ξ(0))], η
r ◦ ξ|Iξ

)
=
(
f qn+1 |In+2 , f

qn+2 |In+1

)
This motivates the following definition (the definition in the case

(
ξ ◦

η
)
(0) ∈ Iξ is analogue):

Definition 1.4.1. Let ζ = (η, ξ) be a critical commuting pair with
(
ξ ◦

η
)
(0) ∈ Iη. We say that ζ is renormalizable if χ(ζ) = r <∞. In this case we

define the renormalization of ζ as the critical commuting pair:

R(ζ) =
(
η̃| ˜[0,ηr(ξ(0))]

, η̃r ◦ ξ|Ĩξ
)

A critical commuting pair is a special case of a generalized interval ex-
change map of two intervals, and the renormalization operator defined above
is just the restriction of the Zorich accelerated version of the Rauzy-Veech
renormalization for interval exchange maps (see for instance [64]). However
we will keep in this thesis the classical terminology for critical commuting
pairs.
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Figure 1.3: Two consecutive renormalizations of f , without rescaling (recall

that f qn means T−pn ◦ f̃ qn). In this example an+1 = 4.

Definition 1.4.2. Let ζ be a critical commuting pair. If χ(Rj(ζ)) <∞ for
j ∈ {0, 1, ..., n−1} we say that ζ is n-times renormalizable, and if χ(Rj(ζ)) <
∞ for all j ∈ N we say that ζ is infinitely renormalizable. In this case the
irrational number θ whose continued fraction expansion is equal to:[

χ
(
ζ
)
, χ
(
R(ζ)

)
, ..., χ

(
Rn(ζ)

)
, χ
(
Rn+1(ζ)

)
, ...
]

is called the rotation number of the critical commuting pair ζ, and denoted
by ρ(ζ) = θ.

The rotation number of a critical commuting pair can also be defined
with the help of the glueing procedure described above, just as the rotation
number of any representative of the conjugacy class obtained after glueing
and uniformizing.

An immediate but very important remark is that when ζ is induced by a
critical circle map with irrational rotation number, the pair ζ is automatically
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infinitely renormalizable (and both notions of rotation number coincide): any
C3 critical circle map f with irrational rotation number gives rise to a well
defined orbit

{
Rn(f)

}
n≥1

of infinitely renormalizable C3 critical commuting
pairs defined by:

Rn(f) =
(
f̃ qn|Ĩn−1

, f̃ qn−1|Ĩn
)

for all n ≥ 1.

For any positive number θ denote by bθc the integer part of θ, that is, bθc ∈ N
and bθc ≤ θ < bθc+1. Recall that the Gauss map G : [0, 1]→ [0, 1] is defined
by (see Section A.1.1):

G(θ) =
1

θ
−
⌊

1

θ

⌋
for θ 6= 0 and G(0) = 0 ,

and note that ρ semi-conjugates the renormalization operator with the Gauss
map:

ρ
(
Rn(ζ)

)
= Gn

(
ρ(f)

)
for any ζ at least n-times renormalizable. In particular the renormalization
operator acts as a left shift on the continued fraction expansion of the rotation
number: if ρ(ζ) = [a0, a1, ...] then ρ

(
Rn(ζ)

)
= [an, an+1, ...].

1.5 Lipschitz continuity along the orbits

For K > 1 and r ∈ {0, 1, ...,∞, ω} denote by Pr(K) the space of Cr critical
commuting pairs ζ = (η, ξ) such that η(0) = −1 (they are normalized) and
ξ(0) ∈ [K−1, K]. Recall also that T denotes the translation t 7→ t+ 1 in the
real line. Let K0 > 1 be the universal constant given by the real bounds. In
the next chapter we will use the following:

Lemma 1.5.1. Given M > 0 and K > K0 there exists L > 1 with the
following property: let f be a C3 critical circle map with irrational rotation
number ρ(f) = [a0, a1, ...] satisfying an < M for all n ∈ N. There exists
n0 = n0(f) ∈ N such that for any n ≥ n0 and any renormalizable critical
commuting pair ζ = (η, ξ) satisfying:

1. ζ,R(ζ) ∈ P3(K),

2. ⌊
1

ρ(ζ)

⌋
= an ,
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3. If
(
T−pn+1 ◦ f̃ qn+1

)
(0) < 0 <

(
T−pn ◦ f̃ qn

)
(0) then:∣∣∣∣∣

∣∣∣∣∣
(
T−pn ◦ f̃ qn

)
(0)(

T−pn+1 ◦ f̃ qn+1
)
(0)

∣∣∣∣∣− ξ(0)

∣∣∣∣∣ <
(

1

K2

)(
K + 1

K − 1

)
.

Otherwise, if
(
T−pn ◦ f̃ qn

)
(0) < 0 <

(
T−pn+1 ◦ f̃ qn+1

)
(0), then:∣∣∣∣∣

∣∣∣∣∣
(
T−pn+1 ◦ f̃ qn+1

)
(0)(

T−pn ◦ f̃ qn
)
(0)

∣∣∣∣∣− ξ(0)

∣∣∣∣∣ <
(

1

K2

)(
K + 1

K − 1

)
, and

4.
(
η ◦ ξ

)
(0) and

(
T−pn+1−pn ◦ f̃ qn+1+qn

)
(0) have the same sign,

then we have that:

d0

(
Rn+1(f),R(ζ)

)
≤ L · d0 (Rn(f), ζ) ,

where d0 is the C0 distance in the space of critical commuting pairs.

We postpone the proof of Lemma 1.5.1 until Appendix B.
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CHAPTER 2

Reduction of Theorem C

In this chapter we reduce Theorem C to the following:

Theorem D. There exist a Cω-compact set K of real-analytic critical com-
muting pairs and a constant λ ∈ (0, 1) with the following property: given a
C3 critical circle map f with any irrational rotation number there exist C > 0
and a sequence {fn}n∈N contained in K such that:

d0

(
Rn(f), fn

)
≤ Cλn for all n ∈ N,

and such that the pair fn has the same rotation number as the pair Rn(f)
for all n ∈ N.

Note that K is Cr-compact for any 0 ≤ r ≤ ∞ (see Section 1.3). Note
also that Theorem D is true for any combinatorics. The following argument
was inspired by [43]:

Proof that Theorem D implies Theorem C. Let K be the Cω-compact set of
real-analytic critical commuting pairs given by Theorem D. By the real
bounds there exists a uniform constant n0 ∈ N such that Rn(ζ) ∈ Pω(K0)
for all ζ ∈ K and all n ≥ n0. Therefore there exists K > K0 such that
Rn(ζ) ∈ Pω(K) for all ζ ∈ K and all n ≥ 1. Let M > maxn∈N{an} where
ρ(f) = ρ(g) = [a0, a1, ...], and let L > 1 given by Lemma 1.5.1.

By Theorem D there exist constants λ1 ∈ (0, 1), C1(f), C1(g) > 0 and
two sequences {fn}n∈N and {gn}n∈N contained in K such that for all n ∈ N
we have ρ(fn) = ρ(gn) = [an, an+1, ...] and:
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d0

(
Rn(f), fn

)
≤ C1(f)λn1 and d0

(
Rn(g), gn

)
≤ C1(g)λn1 . (2.0.1)

Let n0(f), n0(g) ∈ N given by Lemma 1.5.1, and consider n0 = max
{
n0(f), n0(g)

}
and also C1 = max

{
C1(f), C1(g)

}
. Fix α ∈ (0, 1) such that α > logL

logL−log λ1
,

and for all n > (1/α)n0 let m = bαnc. By the choice of K > K0, and since
fm, gm ∈ K for all m ∈ N, we have that Rj(fm) ∈ P3(K) for all j ∈ N. By
the real bounds:∣∣∣∣∣

(
T−pn+1−pn ◦ f̃ qn+1+qn

)
(0)(

T−pn+1 ◦ f̃ qn+1
)
(0)

∣∣∣∣∣ ∈
[

1

K
,K

]
for all n ≥ n0 ,

and by (2.0.1) we have Item (3) and Item (4) of Lemma 1.5.1 for ζ = fn, by
taking n0 big enough. Applying Lemma 1.5.1 we obtain:

d0

(
Rn(f),Rn−m(fm)

)
≤ Ln−m · d0

(
Rm(f), fm

)
≤ C1L

n−mλm1

and by the same reasons:

d0

(
Rn(g),Rn−m(gm)

)
≤ Ln−m · d0

(
Rm(g), gm

)
≤ C1L

n−mλm1 .

Let λ2 = L1−αλα1 , and note that λ2 ∈ (0, 1) by the choice of α. Consider also
C2 = 2C1(1/λ1)L > 0. Since fm and gm are real-analytic and they have the
same combinatorics, we know by Yampolsky’s result (Theorem 0.3.3) that
there exist constants λ3 ∈ (0, 1) and C3 > 0 (uniform in K) such that:

d0

(
Rn−m(fm),Rn−m(gm)

)
≤ C3λ

n−m
3 for all n ∈ N.

Finally consider C = C2 + C3 > 0 and λ = max{λ2, λ
1−α
3 } ∈ (0, 1). By the

triangle inequality:

d0

(
Rn(f),Rn(g)

)
≤ Cλn for all n ∈ N.

Even that Theorem D is true for any irrational rotation number, we have
been able to prove that it implies Theorem C only for bounded type rotation
number (see Chapter 6 for more comments).
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CHAPTER 3

Approximation by holomorphic maps.

3.1 The Beltrami equation

Until now we were working on the real line, now we start to work on the
complex plane. We assume that the reader is familiar with the notion of
quasiconformality (the book of Ahlfors [1] and the one of Lehto and Virtanen
[32] are classical references of the subject).

If we interpret the formulas z = x + iy and z = x − iy as a change of
variables in the complex plane, and we apply the chain rule (as if z and z
were independent variables) we obtain the two basic differential operators of
complex calculus:

∂

∂z
=

(
1

2

)(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

(
1

2

)(
∂

∂x
+ i

∂

∂y

)
The second one, the ∂

∂z
derivative, is the most important for our purposes.

By the Cauchy-Riemann equations it vanish precisely at the holomorphic
maps, and in this case the ∂

∂z
derivative is the usual one. The kernel of the

∂
∂z

derivative is the set of antiholomorphic maps: ∂F
∂z
≡ 0 if and only if F is

holomorphic.
Instead of ∂F

∂z
and ∂F

∂z
we will use the more compact notation ∂F and

∂F respectively. To be more explicit, let Ω ⊂ C be a domain and let F :
Ω → F (Ω) be a C1 diffeomorphism. The isomorphism between C2 and the
vector space of real linear transformations in the complex plane LR(C,C)
that identify the pair (a, b) with the linear map z 7→ az + bz can be used
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to define
(
∂F (w), ∂F (w)

)
at any w ∈ Ω as the preimage of the derivative of

F at w, that is,
(
DF (w)

)
(z) = ∂F (w)z + ∂F (w)z for any w ∈ Ω and any

z ∈ C.

3.2 Quasiconformal homeomorphisms

We introduce first quasiconformal diffeomorphisms (Definition 3.2.2 below)
and later quasiconformal homeomorphisms (Definition 3.2.3 below). Let Ω ⊂
C be a domain and let G : Ω → G(Ω) and F : G(Ω) → F

(
G(Ω)

)
be two

orientation-preserving C1 diffeomorphisms (since both preserve orientation
we have ∂F 6= 0 and ∂G 6= 0 everywhere). The complex derivatives satisfy
the following chain rules:

∂(F ◦G)(z) = ∂F
(
G(z)

)
∂G(z) + ∂F

(
G(z)

)
∂G(z). (3.2.1)

∂(F ◦G)(z) = ∂F
(
G(z)

)
∂G(z) + ∂F

(
G(z)

)
∂G(z). (3.2.2)

If G is holomorphic, equations (3.2.1) and (3.2.2) become:

∂(F ◦G)(z) = ∂F
(
G(z)

)
G′(z). (3.2.3)

∂(F ◦G)(z) = ∂F
(
G(z)

)
G′(z). (3.2.4)

In particular:

∂(F ◦G)(z)

∂(F ◦G)(z)
=

(
∂F
(
G(z)

)
∂F
(
G(z)

))(G′(z)

G′(z)

)
and

∣∣∣∣∂(F ◦G)(z)

∂(F ◦G)(z)

∣∣∣∣ =

∣∣∣∣∣∂F
(
G(z)

)
∂F
(
G(z)

)∣∣∣∣∣ .
If F is holomorphic, equations (3.2.1) and (3.2.2) become:

∂(F ◦G)(z) = F ′
(
G(z)

)
∂G(z). (3.2.5)

∂(F ◦G)(z) = F ′
(
G(z)

)
∂G(z). (3.2.6)

In particular:
∂(F ◦G)(z)

∂(F ◦G)(z)
=
∂G(z)

∂G(z)
.

This motivates the following definition:

Definition 3.2.1. Let Ω ⊂ C be a domain and let F : Ω → F (Ω) be an
orientation-preserving C1 diffeomorphism. The Beltrami coefficient of F in
Ω is the continuous function µF : Ω→ C defined by:

µF (z) =
∂F (z)

∂F (z)
for any z ∈ Ω.
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Note that F is conformal in Ω if and only if µF ≡ 0 in Ω. From:

det
(
DF (z)

)
= |∂F (z)|2 −

∣∣∂F (z)
∣∣2

and the fact that F preserves orientation we see at once that µF (Ω) ⊂ D.

Definition 3.2.2. Let Ω ⊂ C be a domain and let F : Ω → F (Ω) be an
orientation-preserving C1 diffeomorphism. If there exists k ∈ [0, 1) such that∣∣µF (z)

∣∣ ≤ k < 1 for every z ∈ Ω we say that F is K-quasiconformal in Ω,
where K ∈ [1,+∞) is defined by K = 1+k

1−k .

In particular F is conformal if and only if it is 1-quasiconformal (since
we are still taking about diffeomorphisms, this is just the Cauchy-Riemann
equations). The constant K > 1 measures how near a map is to being
conformal: the closer K is to 1, the more nearly conformal the map is. The
geometric meaning of this is the following: the differential of F at any point
z ∈ Ω maps circles centred at the origin into similar ellipses. The ratio of
the major to the minor axis (the eccentricity of the ellipse) is given by:

|∂F (z)|+
∣∣∂F (z)

∣∣
|∂F (z)| −

∣∣∂F (z)
∣∣ =

1 +
∣∣µF (z)

∣∣
1−

∣∣µF (z)
∣∣ .

Therefore aK-quasiconformal C1 diffeomorphism is an orientation-preserving
diffeomorphism whose derivative at any point maps circles centred at the ori-
gin into similar ellipses with eccentricity at most K.

Note that K(k) = 1+k
1−k is an orientation-preserving real-analytic diffeo-

morphism between [0, 1) and [1,+∞), with inverse given by k(K) = K−1
K+1

.
Of course when restricted to a compactly contained open set in Ω, every

C1 diffeomorphism is K-quasiconformal for some K ≥ 1.
As we saw above µF◦G = µG if F is holomorphic, and

∣∣µF◦G∣∣ =
∣∣µF ◦

G
∣∣ if G is holomorphic. In particular, if G is holomorphic and F is K-

quasiconformal, both F ◦G and G ◦ F are K-quasiconformal. More general,
if F is K1-quasiconformal and G is K2-quasiconformal, the composition F ◦G
is K1K2-quasiconformal. Note also that:∣∣µF−1

∣∣ =
∣∣µF ◦ F−1

∣∣.
In particular, F and F−1 are simultaneously K-quasiconformal diffeomor-
phisms.

Now we define quasiconformal homeomorphisms. Recall that a continuous
real function h : R → R is absolutely continuous if it has derivative at
Lebesgue almost every point, its derivative is integrable and h(b) − h(a) =
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∫ b
a
h′(t)dt. A continuous function F : Ω ⊂ C → C is absolutely continuous

on lines in Ω if its real and imaginary parts are absolutely continuous on
Lebesgue almost every horizontal line, and Lebesgue almost every vertical
line.

Definition 3.2.3. Let Ω ⊂ C be a domain and let K ≥ 1. An orientation-
preserving homeomorphism F : Ω → F (Ω) is K-quasiconformal (from now
on K-q.c.) if F is absolutely continuous on lines and:

∣∣∂F (z)
∣∣ ≤ (K − 1

K + 1

) ∣∣∂F (z)
∣∣ a.e. in Ω.

This is the analytic definition of quasiconformal homeomorphisms, see
Definition C.2.5 in Appendix C for the geometric definition.

Most of the properties quoted above for quasiconformal diffeomorphisms
are still true for quasiconformal homeomorphisms. For instance a K-q.c.
homeomorphism is conformal if and only if K = 1, F and F−1 are simulta-
neously K-q.c., the composition of a K1-q.c. and a K2-q.c. homeomorphism
is a K1K2-q.c. homeomorphism (again we refer the reader to [1] and [32]).

Given a K-q.c. homeomorphism F : Ω → F (Ω) we define its Beltrami
coefficient as the measurable function µF : Ω→ D given by:

µF (z) =
∂F (z)

∂F (z)
for a.e. z ∈ Ω.

Note that µF belongs to L∞(Ω) and satisfy ‖µF‖∞ ≤ (K − 1)/(K + 1) < 1.
Conversely any measurable function from Ω to C with L∞ norm less than
one is the Beltrami coefficient of a quasiconformal homeomorphism:

Theorem 3.2.4 (Morrey 1938). Given any measurable function µ : Ω → D
such that |µ(z)| ≤ (K − 1)/(K + 1) < 1 almost everywhere in Ω for some
K ≥ 1, there exists a K-q.c. homeomorphism F : Ω → F (Ω) which is a
solution of the Beltrami equation:

∂F (z)µ(z) = ∂F (z) a.e..

The solution is unique up to post-composition with conformal diffeomor-
phisms. In particular, if Ω is the entire Riemann sphere, there is a unique
solution (called the normalized solution) that fix 0, 1 and ∞.

See [1, Chapter V, Section B] or [32, Chapter V] for the proof. Note that
Theorem 3.2.4 not only states the existence of a solution of the Beltrami
equation, but also the fact that any solution is an homeomorphism.
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Proposition 3.2.5. If µn → 0 in the unit ball of L∞, the normalized
quasiconformal homeomorphisms fµn converge to the identity uniformly on
compact sets of C. In general if µn → µ almost everywhere in C and
‖µn‖∞ ≤ k < 1 for all n ∈ N, then the normalized quasiconformal homeo-
morphisms fµn converge to fµ uniformly on compact sets of C.

See [1, Chapter V, Section C].

3.3 Ahlfors-Bers theorem

The Beltrami equation induces therefore a one-to-one correspondence be-
tween the space of quasiconformal homeomorphisms of Ĉ that fix 0, 1 and
∞, and the space of Borel measurable complex-valued functions µ on Ĉ for
which ‖µ‖∞ < 1. The following classical result expresses the analytic depen-
dence of the solution of the Beltrami equation with respect to µ:

Theorem 3.3.1 (Ahlfors-Bers 1960). Let Λ be an open subset of some com-
plex Banach space and consider a map Λ×C→ D, denoted by (λ, z) 7→ µλ(z),
satisfying the following properties:

1. For every λ the function C→ D given by z 7→ µλ(z) is measurable, and
‖µλ‖∞ ≤ k for some fixed k < 1.

2. For Lebesgue almost every z ∈ C, the function Λ → D given by λ 7→
µλ(z) is holomorphic.

For each λ let Fλ be the unique quasiconformal homeomorphism of the
Riemann sphere that fix 0, 1 and ∞, and whose Beltrami coefficient is µλ
(Fλ is given by Theorem 3.2.4). Then λ 7→ Fλ(z) is holomorphic for all
z ∈ C.

See [2] or [1, Chapter V, Section C] for the proof. In Chapter 5 we will
make repeated use of the following corollary of Ahlfors-Bers theorem:

Proposition 3.3.2. For any bounded domain U in the complex plane there
exists a number C(U) > 0, with C(U) ≤ C(W ) if U ⊆ W , such that the
following holds: let

{
Gn : U → Gn(U)

}
n∈N be a sequence of quasiconformal

homeomorphisms such that:

• The domains Gn(U) are uniformly bounded: there exists R > 0 such
that Gn(U) ⊂ B(0, R) for all n ∈ N.
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• µn → 0 in the unit ball of L∞, where µn is the Beltrami coefficient of
Gn in U .

Then given any domain V such that V ⊂ U there exist n0 ∈ N and a
sequence

{
Hn : V → Hn(V )

}
n≥n0

of biholomorphisms such that:

‖Hn −Gn‖C0(V ) ≤ C(U)

(
R

d
(
∂V, ∂U

)) ‖µn‖∞ for all n ≥ n0,

where d
(
∂V, ∂U

)
denote the Euclidean distance between the boundaries of

U and V (which are disjoint compact sets in the complex plane, since V is
compactly contained in the bounded domain U).

We postpone the proof of Proposition 3.3.2 until Appendix D. In the
next chapter we will also use the following extension of the classical Koebe’s
one-quarter theorem [6, Theorem 1.3]:

Proposition 3.3.3. Given ε > 0 there exists K > 1 for which the follow-
ing holds: let f : D → f(D) ⊂ C be a K-quasiconformal homeomorphism
such that f(0) = 0, f

(
(−1, 1)

)
⊂ R and f(D) ⊂ B(0, 1/ε). Suppose that

f |(−1/2,1/2) is differentiable and that
∣∣f ′(t)∣∣ > ε for all t ∈ (−1/2, 1/2), where

f ′ denotes the real one-dimensional derivative of the restriction of f to the
interval (−1/2, 1/2). Then:

B(0, ε/16) ⊂ f(D).

Proof. Suppose, by contradiction, that there exist ε > 0 and a sequence{
fn : D → fn(D) ⊂ C

}
n∈N of quasiconformal homeomorphisms with the

following properties:

1. Each fn is Kn-q.c. with Kn → 1 as n goes to infinity.

2. fn(0) = 0 and fn
(
(−1, 1)

)
⊂ R for all n ∈ N.

3. fn(D) ⊂ B(0, 1/ε) for all n ∈ N.

4. fn|(−1/2,1/2) is differentiable and
∣∣f ′n(t)

∣∣ > ε for all t ∈ (−1/2, 1/2) and
for all n ∈ N.

5. B(0, ε/16) is not contained in fn(D) for any n ∈ N.

Instituto de Matemática Pura e Aplicada 29 March, 2012



Pablo Guarino Rigidity Conjecture for C3 Critical Circle Maps

By compactness, since Kn → 1 and fn(0) = 0 for all n ∈ N, we can
assume by taking a subsequence that there exists f : D → C holomorphic
such that fn → f uniformly on compact sets of D as n goes to infinity (see for
instance [32, Chapter II, Section 5]). Of course f(0) = 0 and f

(
(−1, 1)

)
⊂ R.

We claim that
∣∣Df(0)

∣∣ > ε/2, where Df denotes the complex derivative of
the holomorphic map f . Indeed, note that Item (3) implies that:(

−ε
m
,
ε

m

)
⊂ fn

([
−1

m
,

1

m

])
for all n,m ∈ N,

and then by the uniform convergence we have:(
−ε
m
,
ε

m

)
⊂ f

([
−1

m
,

1

m

])
for all m ∈ N.

Since f is holomorphic this implies the claim. From the claim we see that f is
univalent in D, since the uniform limit of quasiconformal homeomorphisms is
either constant or a quasiconformal homeomorphism (again see [32, Chapter
II, Section 5]). Finally, by Koebe’s one-quarter theorem we have B(0, ε/8) ⊂
f(D), but this contradicts that B(0, ε/16) is not contained in fn(D) for any
n ∈ N.
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CHAPTER 4

Complex extensions of Rn(f )

For every C3 critical circle map, with any irrational rotation number, we will
construct in this chapter a suitable extension to an annulus around the unit
circle in the complex plane, with the property that, after a finite number of
renormalizations, this extension have good geometric bounds and exponen-
tially small Beltrami coefficient. In the next chapter we will perturb this
extension in order to get a holomorphic map with the same combinatorics
and also good bounds.

Recall that given a bounded interval I in the real line we denote its
Euclidean length by |I|, and for any α > 0 we denote by Nα(I) the R-
symmetric topological disk:

Nα(I) =
{
z ∈ C : d(z, I) < α|I|

}
,

where d denotes the Euclidean distance in the complex plane. The goal of
this chapter is the following:

Theorem 4.0.4. There exist three universal constants λ ∈ (0, 1), α > 0 and
β > 0 with the following property: let f be a C3 critical circle map with any
irrational rotation number. For all n ≥ 1 denote by

(
ηn, ξn

)
the components

of the critical commuting pair Rn(f). Then there exist two constants n0 ∈ N
and C > 0 such that for each n ≥ n0 both ξn and ηn extend (after normalized)
to R-symmetric orientation-preserving C3 maps defined in Nα

(
[−1, 0]

)
and

Nα

(
[0, ξn(0)]

)
respectively, where we have the following seven properties:

1. Both ξn and ηn have a unique critical point at the origin, which is of
cubic type.
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2. The extensions ηn and ξn commute in B(0, λ), that is, both compositions
ηn ◦ ξn and ξn ◦ ηn are well defined in B(0, λ), and they coincide.

3.
Nβ

(
ξn([−1, 0])

)
⊂ ξn

(
Nα

(
[−1, 0]

))
.

4.
Nβ

(
[−1, (ηn ◦ ξn)(0)]

)
⊂ ηn

(
Nα

(
[0, ξn(0)]

))
.

5.
ηn
(
Nα

(
[0, ξn(0)]

))
∪ ξn

(
Nα

(
[−1, 0]

))
⊂ B(0, λ−1).

6.

max
z∈Nα([−1,0])\{0}

{∣∣∂ξn(z)
∣∣∣∣∂ξn(z)
∣∣
}
≤ Cλn.

7.

max
z∈Nα([0,ξn(0)])\{0}

{∣∣∂ηn(z)
∣∣∣∣∂ηn(z)
∣∣
}
≤ Cλn.

In this chapter we prove Theorem 4.0.4 (see Section 4.3), and in Chapter
5 we prove Theorem D.

4.1 Extended lifts of critical circle maps

In this section we lift a critical circle map to the real line, and then we extend
this lift in a suitable way to a neighbourhood of the real line in the complex
plane (see Definition 4.1.4 below).

Let f and g be two C3 critical circle maps with cubic critical points cf and
cg, and critical values vf and vg respectively. Recall that Diff3

+(S1) denotes
the group (under composition) of orientation-preserving C3 diffeomorphisms
of the unit circle, endowed with the C3 topology. Let A and B in Diff3

+(S1)
defined by:

A =
{
ψ ∈ Diff3

+(S1) : ψ(cf ) = cg
}

and B =
{
φ ∈ Diff3

+(S1) : φ(vg) = vf
}
.

There is a canonical homeomorphism between A and B:

ψ 7→ Rθ1 ◦ ψ ◦Rθ2 ,

where Rθ1 is the rigid rotation that takes cg to vf , and Rθ2 is the rigid rotation
that takes vg to cf . We will be interested, however, in another identification
between A and B:
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Lemma 4.1.1. There exists a homeomorphism T : A → B such that for any
ψ ∈ A we have:

f = T (ψ) ◦ g ◦ ψ .

S1 S1

S1 S1

-
f

?

ψ

-
g

6
T (ψ)

The lemma is true precisely because the maps f and g have the same
order at their respective critical points:

Proof. Let ψ in Diff3
+(S1) such that ψ(cf ) = cg, and consider the orientation-

preserving circle homeomorphism:

T (ψ) = f ◦ ψ−1 ◦ g−1,

that maps the critical value of g to the critical value of f . To see that T (ψ)
is in Diff3

+(S1) note that when z 6= vg we have that T (ψ) is smooth at z,
with non-vanishing derivative equal to:

(
DT (ψ)

)
(z) = Dψ−1

(
g−1(z)

)(Df((ψ−1 ◦ g−1
)
(z)
)

Dg
(
g−1(z)

) )
.

In the limit we have:

lim
z→vg

[
Dψ−1

(
g−1(z)

)(Df((ψ−1 ◦ g−1
)
(z)
)

Dg
(
g−1(z)

) )]
= Dψ−1(cg)

((
D3f

)(
cf
)(

D3g
)
(cg)

)
,

a well-defined number in (0,+∞). This proves that T (ψ) is in B for every
ψ ∈ A. Moreover T is invertible with inverse T−1 : B → A given by T−1(φ) =
g−1 ◦ φ−1 ◦ f .

Let A : S1 → S1 be the map corresponding to the parameters a = 0 and
b = 1 in the Arnold family (0.1.2), defined in the introduction of this thesis,
and recall that the lift of A to the real line, by the covering π : R → S1 :
π(t) = exp(2πit), fixing the origin is given by:

Ã(t) = t−
(

1

2π

)
sin(2πt).

The critical point of A in the unit circle is at 1, and it is of cubic type
(the critical point is also a fixed point for A). Now let f be a C3 critical
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circle map with a unique cubic critical point at 1, and let f̃ be the unique
lift of f to the real line under the covering π satisfying f̃ ′(0) = 0 and 0 <

f̃(0) < 1. By Lemma 4.1.1 we can consider two C3 orientation preserving
circle diffeomorphisms h1 and h2, with h1(1) = 1 and h2(1) = f(1), such
that the composition h2 ◦A◦h1 agrees with the map f , that is, the following
diagram commutes:

S1 S1

S1 S1

-
f

?

h1

-A

6
h2

For each i ∈ {1, 2} let h̃i be the lift of hi to the real line under the covering

π determined by h̃i(0) ∈ [0, 1). In Proposition 4.1.3 below we will extend both

h̃1 and h̃2 to complex neighbourhoods of the real line in a suitable way. For
that purposes we recall the definition of asymptotically holomorphic maps:

Definition 4.1.2. Let I be a compact interval in the real line, let U be a
neighbourhood of I in R2 and let H : U → C be a C1 map (not necessarily
a diffeomorphism). We say that H is asymptotically holomorphic of order
r ≥ 1 in I if for every x ∈ I:

∂H(x, 0) = 0 and
∂H(x, y)(

d((x, y), I)
)r−1 → 0

uniformly as (x, y) ∈ U \ I converge to I. We say that H is R-asymptotically
holomorphic of order r if it is asymptotically holomorphic of order r in com-
pact sets of R.

The sum or product of R-asymptotically holomorphic maps is also R-
asymptotically holomorphic. The inverse of an asymptotically holomorphic
diffeomorphism of order r is asymptotically holomorphic map of order r.
Composition of asymptotically holomorphic maps is asymptotically holomor-
phic.

In the following proposition we suppose r ≥ 1 even though we will apply
it for r ≥ 3. In the proof we follow the exposition of Graczyk, Sands and
Świa̧tek in [16, Lemma 2.1, page 623].

Proposition 4.1.3. For i = 1, 2 there exists Hi : C → C of class Cr such
that:

1. Hi is an extension of h̃i: Hi|R = h̃i;
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2. Hi commutes with unitary horizontal translation: Hi ◦ T = T ◦Hi;

3. Hi is asymptotically holomorphic in R of order r;

4. Hi is R-symmetric: Hi(z̄) = Hi(z).

Moreover there exist R > 0 and four domains BR, UR, VR and WR in C,
symmetric about the real line, and such that:

• BR =
{
z ∈ C : −R < =(z) < R

}
;

• H1 is an orientation preserving diffeomorphism between BR and UR;

• Ã(UR) = VR;

• H2 is an orientation preserving diffeomorphism between VR and WR.

• Both infz∈BR
∣∣∂H1(z)

∣∣ and infz∈VR
∣∣∂H2(z)

∣∣ are positive numbers.

Proof. For z = x + iy ∈ C, with y 6= 0, let Px,y be the degree r polynomial

map that coincide with h̃i in the r + 1 real numbers:{
x+

(
j

r

)
y

}
j∈{0,1,...,r}

Recall that Px,y can be given by the following linear combination (the
so-called Lagrange’s form of the interpolation polynomial):

Px,y(z) =

j=r∑
j=0

h̃i
(
x+ (j/r)y

) l=r∏
l=0
l 6=j

z −
(
x+ (l/r)y

)(
x+ (j/r)y

)
−
(
x+ (l/r)y

)
=

j=r∑
j=0

h̃i
(
x+ (j/r)y

) l=r∏
l=0
l 6=j

z − x− (l/r)y(
(j − l)/r

)
y

We define Hi(x+ iy) = Px,y(x+ iy), that is:

Hi(x+ iy) = Px,y(x+ iy) =

j=r∑
j=0

h̃i
(
x+ (j/r)y

) l=r∏
l=0
l 6=j

ir − l
j − l

After computation we obtain:

Hi(x+ iy) = Px,y(x+ iy) =
1

N

j=r∑
j=0

(−1)j
(
r
j

)
1 + i(j/r)

 h̃i
(
x+ (j/r)y

)
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where:

N =

j=r∑
j=0

(−1)j
(
r
j

)
1 + i(j/r)

 6= 0

Note that Hi is as smooth as h̃i, and Hi(x) = h̃i(x) for any real number

x (item (1)). Since h̃i is a lift we have for any j ∈ {0, 1, ..., r} that h̃i
(
x +

1 + (j/r)y
)

= h̃i
(
x+ (j/r)y

)
+ 1, but then Px+1,y

(
x+ 1 + (j/r)y

)
= Px,y

(
x+

(j/r)y
)

+ 1 for any j ∈ {0, 1, ..., r} and this implies Px+1,y ◦ T = T ◦ Px,y in
the whole complex plane. This proves item (2).

To prove that Hi is asymptotically holomorphic of order r in R note that:

∂Hi(x+ iy) =
1

2N

j=r∑
j=0

(−1)j
(
r
j

)
h̃′i
(
x+ (j/r)y

)
and for any k ∈ {0, ..., r}:

∂k

∂yk
∂Hi(x+ iy) =

(
1

2N

)(
1

rk

) j=r∑
j=0

(−1)jjk
(
r
j

)
h̃i

(k+1)(
x+ (j/r)y

)

Now we claim that for any k ∈ {0, ..., r−1} we have
∑j=r

j=0(−1)jjk
(
r
j

)
=

0. Indeed, for any j ∈ {0, ..., r} we have ∂j

∂tj
(1−t)r = (−1)j

(
r!

(r−j)!

)
(1−t)r−j,

and this gives us the equality (1−t)r =
∑j=r

j=0(−1)j
(
r
j

)
tj for r ≥ 1. Putting

t = 1 we obtain the claim for k = 0. Since t ∂
∂t

(1− t)r =
∑j=r

j=0(−1)jjtj
(
r
j

)
,

we obtain the claim for k = 1 if we put t = 1. Putting t = 1 in t ∂
∂t

[
t ∂
∂t

(1−t)r
]

we obtain the claim for k = 2, and so forth until k = r − 1.
With the claim we obtain for any x ∈ R that:

∂Hi(x) =

(
1

2N

)
h̃′i
(
x
) j=r∑
j=0

(−1)j
(
r
j

)
= 0

and for any k ∈ {0, ..., r − 1}:

∂k

∂yk
∂Hi(x) =

(
1

2N

)(
h̃i

(k+1)
(x)

rk

)
j=r∑
j=0

(−1)jjk
(
r
j

)
= 0
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By Taylor theorem:

lim
y→0

∂Hi(x+ iy)

yr−1
= 0

uniformly on compact sets of the real line, and from this follows that Hi

is asymptotically holomorphic of order r in R (item (3)). To obtain the

symmetry as in item (4) we can take z 7→ Hi(z)+Hi(z̄)
2

, since this preserves all
the other properties.

Finally note that the Jacobian of Hi at a point x in R is equal to |h̃′i(x)|2 6=
0. This gives us a complex neighbourhood of the real line where Hi is an
orientation preserving diffeomorphism, and the positive constant R. Since
we also have

∣∣∂Hi

∣∣ =
∣∣h̃′i∣∣ at the real line, and each h̃i is the lift of a circle

diffeomorphism, we obtain the last item of Proposition 4.1.3.

These are the extensions that we will consider:

Definition 4.1.4. The map F : BR → WR defined by F = H2 ◦ Ã ◦ H1 is
called the extended lift of the critical circle map f .

BR WR

UR VR

-F

?

H1

-Ã

6
H2

We have the following properties:

• F is Cr in the horizontal band BR;

• T ◦ F = F ◦ T in BR;

• F is R-symmetric (in particular F preserves the real line), and F re-

stricted to the real line is f̃ ;

• F is asymptotically holomorphic in R of order r;

• The critical points of F in BR are the integers (the same as Ã), and
they are of cubic type.

We remark that the extended lift of a real-analytic critical circle map will
be C∞ in the corresponding horizontal strip, but not necessarily holomorphic.

The pre-image of the real axis under F consists of R itself together with
two families of Cr curves {γ1(k)}k∈Z and {γ2(k)}k∈Z arising as solutions of
=(F (x+iy)) = 0. Note that γ1(k) and γ2(k) meet at the critical point ck = k.
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Let γ+
i (k) = γi(k) ∩ H and γ−i (k) = γi(k) ∩ H− for i = 1, 2. We also

denote γ+
i (0) just by γ+

i .

Lemma 4.1.5. We can choose R small enough to have that γ+
1 is contained

in T =
{

arg(z) ∈
(
π
6
, π

2

)}
∩ BR (that is, the open triangle with vertices 0,

iR and (
√

3 + i)R), γ+
2 is contained in −T , γ−1 is contained in −T and γ−2

is contained in T .

Proof. The derivative of H1 at real points is conformal, so the angle between
γ1 and γ2 with the real line at zero is π

3
.

4.2 Poincaré disks

Besides the notion of asymptotically holomorphic maps, the main tool in
order to prove Theorem 4.0.4 is the notion of Poincaré disk, introduced into
the subject by Sullivan in his seminal article [55].

Given an open interval I = (a, b) ⊂ R let CI =
(
C \R

)
∪ I = C \

(
R \ I

)
.

For θ ∈ (0, π) let D be the open disk in the plane intersecting the real line
along I and for which the angle from R to ∂D at the point b (measured
anticlockwise) is θ. Let D+ = D ∩ {z : =(z) > 0} and let D− be the image
of D+ under complex conjugation.

Define the Poincaré disk of angle θ based on I as Dθ(a, b) = D+∪I∪D−,
that is, Dθ(a, b) is the set of points in the complex plane that view I under
an angle ≥ θ (see Figure 4.1). Note that for θ = π

2
the Poincaré disk Dθ(a, b)

is the Euclidean disk whose diameter is the interval (a, b).
We denote by diam

(
Dθ(a, b)

)
the Euclidean diameter of Dθ(a, b). For

θ ∈
[
π
2
, π
)

the diameter of Dθ(a, b) is always |b − a|. When θ ∈
(
0, π

2

)
we

have that:
diam

(
Dθ(a, b)

)
|b− a|

is an orientation-reversing diffeomorphism between
(
0, π

2

)
and

(
1,+∞

)
, which

is real-analytic. Indeed, when θ ∈
(
0, π

2

)
the center of D+ is

(
a+b

2

)
+i
(
b−a

2 tan θ

)
,

and its radius is b−a
2 sin θ

, thus we obtain:

diam
(
Dθ(a, b)

)
= 2

(
b− a

2 tan θ

)
+ 2

(
b− a
2 sin θ

)
=

(
1

tan θ
+

1

sin θ

)
(b− a)

=

(
1 + cos θ

sin θ

)
(b− a).
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Therefore we have:

diam
(
Dθ(a, b)

)
|b− a|

=
1 + cos θ

sin θ
for any θ ∈

(
0,
π

2

)
.

In particular when θ goes to zero the ratio diam
(
Dθ(a, b)

)
/|b − a| goes

to infinity like 2/θ.

Figure 4.1: Poincaré disks.

Poincaré disks have a geometrical meaning: CI is an open, connected and
simply connected set which is not the whole plane. By the Riemann mapping
theorem we can endow CI with a complete and conformal Riemannian metric
of constant curvature equal to −1, just by pulling back the Poincaré metric
of D by any conformal uniformization. Note that I is always a hyperbolic
geodesic by symmetry.

For a given θ ∈ (0, π) consider ε(θ) = log tan
(
π
2
− θ

4

)
, which is an

orientation-reversing real-analytic diffeomorphism between (0, π) and (0,+∞).
An elementary computation (see Lemma C.1.1) shows that the set of points
in CI whose hyperbolic distance to I is less than ε is precisely Dθ(a, b).

In particular we can state Schwarz lemma in the following way: let I and
J be two intervals in the real line and let φ : CI → CJ be a holomorphic map
such that φ(I) ⊂ J . Then for any θ ∈ (0, π) we have that φ

(
Dθ(I)

)
⊂ Dθ(J).

With this at hand (and a very clever inductive argument, see also [33]),
Yampolsky was able to obtain complex bounds for critical circle maps in the
Epstein class [58, Theorem 1.1]. The reason why we chose asymptotically
holomorphic maps to extend our (finitely smooth) one-dimensional dynamics
(see Proposition 4.1.3 and Definition 4.1.4 above) is the following asymptotic
Schwarz lemma, obtained by Graczyk, Sands and Świa̧tek in [16, Proposition
2, page 629] for asymptotically holomorphic maps:
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Proposition 4.2.1 (Almost Schwarz inclusion). Let h : I → R be a C3

diffeomorphism from a compact interval I with non-empty interior into the
real line. Let H be any C3 extension of h to a complex neighbourhood of I,
which is asymptotically holomorphic of order 3 on I. Then there exist M > 0
and δ > 0 such that if a, c ∈ I are different, θ ∈ (0, π) and diam

(
Dθ(a, c)

)
<

δ then:
H
(
Dθ(a, c)

)
⊆ Dθ̃

(
h(a), h(c)

)
where θ̃ = θ −M |c− a| diam

(
Dθ(a, c)

)
. Moreover, θ̃ > 0.

Let us point out that a predecessor of this almost Schwarz inclusion, for
real-analytic maps, already appeared in the work of de Faria and de Melo
[13, Lemma 3.3, page 350].

4.3 Proof of Theorem 4.0.4

With Proposition 4.2.1 at hand, we are ready to start the proof of Theorem
4.0.4. We will work with f̃ qn+1 |In , the proof for f̃ qn|In+1 being the same.

Proposition 4.3.1. Let f be a C3 critical circle map with irrational rotation
number, and let F be its extended lift (according to Definition 4.1.4). There
exists n0 ∈ N such that for any n ≥ n0 there exist two numbers Kn ≥ 1 and
θn > 0 satisfying Kn → 1 and θn → 0 as n→ +∞, and:

lim
n→+∞

∣∣∣∣∣diam
(
Dθn/Kn

(
f̃(In)

))∣∣f̃(In)
∣∣ −

diam
(
Dθn

(
f̃ qn+1(In)

))∣∣f̃ qn+1(In)
∣∣

∣∣∣∣∣ = 0

with the following property: let θ ≥ θn, 1 ≤ j ≤ qn+1 and let J be an open
interval such that:

In ⊆ J ⊆
(
f̃ qn−1−qn+1(0), f̃ qn−qn+1(0)

)
.

Then the inverse branch F−j+1 mapping f̃ j(J) back to f̃(J) is well defined

over Dθ

(
f̃ j(J)

)
, and maps this neighbourhood diffeomorphically onto an open

set contained in Dθ/Kn

(
f̃(J)

)
.

To simplify notation we will prove Proposition 4.3.1 for the case J = In
and j = qn+1.

Proof. For each n ∈ N and j ∈ {1, ..., qn+1 − 1} we know by combinatorics

that f̃ is a C3 diffeomorphism from f̃ j(In) to f̃ j+1(In). Let Mj,n > 0 and
δj,n > 0 given by Proposition 4.2.1 applied to the corresponding inverse
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branch of the extended lift F . Moreover, let Mn = maxj∈{1,...,qn+1−1}{Mj,n}
and δn = minj∈{1,...,qn+1−1}{δj,n}. For each n ∈ N let An and Bn be the affine
maps given by:

An(t) =
(
1/
∣∣f̃ qn+1(In)

∣∣)(t− f̃ qn+1(0)
)

and Bn(t) =
(
1/
∣∣f̃(In)

∣∣)(t− f̃(0)
)
.

By the real bounds, the C3 diffeomorphism Tn : [0, 1]→ [0, 1] given by:

Tn = Bn ◦ f̃−qn+1+1 ◦ A−1
n

has universally bounded distortion, and therefore:

inf
t∈[0,1]
n≥n0

{∣∣T ′n(t)
∣∣} > 0.

In particular M = supn≥n0
{Mn} is finite, and δ = infn≥n0{δn} is posi-

tive. Let dn = max1≤j≤qn+1

∣∣f̃ j(In)
∣∣, and recall that by the real bounds the

sequence {dn}n≥1 goes to zero exponentially fast when n goes to infinity. In
particular we can choose a sequence

{
αn
}
n≥1
⊂
(
0, π

2

)
also convergent to

zero but such that:

lim
n→+∞

(
dn

(αn)3

)
= 0 .

Let ψ : (0, π)→ [1,+∞) defined by:

ψ(θ) = max

{
1,

1 + cos θ

sin θ

}
=

{
1+cos θ

sin θ
for θ ∈

(
0, π

2

)
1 for θ ∈

[
π
2
, π
)

Note that ψ is an orientation-reversing real-analytic diffeomorphism be-
tween

(
0, π

2

)
and

(
1,+∞

)
. As we said before, for any θ ∈ (0, π) and any real

numbers a < b, we have that diam
(
Dθ(a, b)

)
= ψ(θ)|b− a|. Now define:

θn = αn + ψ(αn)(δM)

qn+1−1∑
j=0

∣∣f̃ j+1(In)
∣∣2 > αn > 0

and:

Kn =
θn
αn

= 1 +

(
ψ(αn)

αn

)
(δM)

qn+1−1∑
j=0

∣∣f̃ j+1(In)
∣∣2 > 1 .

By the choice of αn we have:

lim
n→+∞

(
ψ(αn)

αn

)
dn = 0 ,
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and since:
qn+1−1∑
j=0

∣∣f̃ j+1(In)
∣∣2 ≤ dn

we have that θn → 0 and Kn → 1 when n goes to infinity. We also have:

∣∣ψ(θn/Kn

)
− ψ

(
θn
)∣∣ ≤

 max
θ∈
[
θn/Kn,θn

] ∣∣ψ′(θ)∣∣
 ∣∣θn − θn/Kn

∣∣
=
∣∣ψ′(θn/Kn)

∣∣∣∣θn − θn/Kn

∣∣
=

(
ψ(θn/Kn)

sin(θn/Kn)

) ∣∣θn − θn/Kn

∣∣
=

(
ψ(αn)

sin(αn)

) ∣∣θn − αn∣∣
= (δM)

((
ψ(αn)

)2

sin(αn)

)
qn+1−1∑
j=0

∣∣f̃ j+1(In)
∣∣2

≤ (δM)

((
ψ(αn)

)2

sin(αn)

)
dn ,

and this goes to zero by the choice of αn. In particular:

lim
n→+∞

∣∣∣∣∣diam
(
Dθn/Kn

(
f̃(In)

))∣∣f̃(In)
∣∣ −

diam
(
Dθn

(
f̃ qn+1(In)

))∣∣f̃ qn+1(In)
∣∣

∣∣∣∣∣ = 0

as stated. We choose n0 ∈ N such that for all n ≥ n0 we have ψ(αn)dn < δ.
Define inductively {θj}j=qn+1

j=1 by θqn+1 = θn and for 1 ≤ j ≤ qn+1 − 1 by:

θj = θj+1−M
∣∣f̃ j+1(In)

∣∣ diam
(
Dθj+1

(
f̃ j+1(In)

))
= θj+1−Mψ(θj+1)

∣∣f̃ j+1(In)
∣∣2

We want to show that θj > αn = θn
Kn

for all 1 ≤ j ≤ qn+1. For this we
claim that for any 1 ≤ j ≤ qn+1 we have that:

θj ≥ αn + ψ(αn)(δM)

j−1∑
k=0

∣∣f̃k+1(In)
∣∣2 > αn .

The claim follows by (reverse) induction in j (the case j = qn+1 holds
by definition). If the claim is true for j + 1 we have ψ(θj+1) < ψ(αm), this

implies θj > θj+1−ψ(αn)(δM)
∣∣f̃ j+1(In)

∣∣2 and with this the claim is true for
j. It follows that:

diam
(
Dθj

(
f̃ j(In)

))
= ψ(θj)

∣∣f̃ j(In)
∣∣ < ψ(αn)dn < δ ≤ δj for all 1 ≤ j ≤ qn+1 .
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By Proposition 3.3.3 the inverse branch F−1 mapping f̃ j+1(In) back to

f̃ j(In) is a well-defined diffeomorphism from the Poincaré diskDθj+1

(
f̃ j+1(In)

)
onto its image, and by Proposition 4.2.1 we know that:

F−1
(
Dθj+1

(
f̃ j+1(In)

))
⊆
(
Dθj

(
f̃ j(In)

))
.

The claim also gives us:

θ1 ≥ αn + ψ(αn)(δM)
∣∣f̃(In)

∣∣2 > αn =
θn
Kn

,

and this finish the proof.

Corollary 4.3.2. There exist constants α > 0, C1, C2 > 0 and λ ∈ (0, 1)
with the following property: let f be a C3 critical circle map with irrational
rotation number, and let F be its extended lift. There exists n0 ∈ N such that
for each n ≥ n0 there exists an R-symmetric topological disk Yn with:

Nα

(
f̃(In)

)
⊂ Yn ,

such that the composition F qn+1−1 : Yn → F qn+1−1(Yn) is a well defined C3

diffeomorphism and we have:

1.

C1 <
diam

(
F qn+1−1(Yn)

)∣∣f̃ qn+1(In)
∣∣ < C2 , and

2.

sup
z∈Yn

{∣∣∂F qn+1−1(z)
∣∣∣∣∂F qn+1−1(z)
∣∣
}
≤ C2λ

n .

Proof. For each n ∈ N let:

• In be the closed interval whose endpoints are 0 and
(
T−pn ◦ f̃ qn

)
(0),

• Jn be the open interval containing the origin that projects to:(
f qn+1(1), f qn−qn+3(1)

)
under the covering π(t) = e2πit, and

• Kn be the open interval containing the origin that projects to(
f qn−1−qn+1(1), f qn−qn+1(1)

)
under the covering π.
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Figure 4.2: Relative positions of the relevant points in the proof of Corollary
4.3.2.

Note that In ∪ In+1 ⊂ Jn ⊂ Jn ⊂ Kn (see Figure 4.2). By combinatorics,

the map f̃ : f̃ j(Kn)→ f̃ j+1(Kn) is a diffeomorphism for all j ∈ {1, ..., qn+1−
1}, and therefore all restrictions f̃ : f̃ j(Jn) → f̃ j+1(Jn) are diffeomorphisms
for any j ∈ {1, ..., qn+1 − 1} (just as in the proof of Proposition 4.3.1).

Recall that the extended lift F : BR → WR is given by the composition
F = H2 ◦ Ã ◦ H1 (see Definition 4.1.4). Let n0 ∈ N given by Proposition
4.3.1, and for each n ≥ n0 let Kn ≥ 1 and θn > 0 also given by Proposition
4.3.1. Fix θ ∈ (0, π) such that θ > θn for all n ≥ n0 and such that:

∣∣µHi(z)
∣∣ < (1

2

)(
d
(
z, f̃ j(Jn)

))2

for any z ∈ Dθ/Kn

(
f̃ j(Jn)

)
, any j ∈ {1, ..., qn+1 − 1} and any i ∈ {1, 2}

(as before µHi denotes the Beltrami coefficient of the quasiconformal home-
omorphism Hi, and d denotes the Euclidean distance in the complex plane).
The existence of such θ is guaranteed by Proposition 4.3.1, the fact that
both Hi are asymptotically holomorphic in R of order 3, and the last item
in Proposition 4.1.3.

Let Yn ⊂ F−qn+1+1
(
Dθ

(
f̃ qn+1(Jn)

))
be the preimage of Dθ

(
f̃ qn+1(Jn)

)
under F qn+1−1 given by Proposition 4.3.1, and note that:

• Yn is an R-symmetric topological disk,

• f̃(In) ⊂ Yn,

• f̃(In+1) ⊂ Yn.

• By Proposition 4.3.1, F j(Yn) ⊂ Dθ/Kn

(
f̃ j+1(Jn)

)
for all j ∈ {0, 1, ..., qn+1−

1}.
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Moreover:

diam
(
F qn+1−1(Yn)

)
= diam

(
Dθ

(
f̃ qn+1(Jn)

))
= ψ(θ)

∣∣f̃ qn+1(Jn)
∣∣ ,

and by the real bounds
∣∣f̃ qn+1(Jn)

∣∣ and
∣∣f̃ qn+1(In)

∣∣ are comparable (with
universal constants independent of n ≥ n0). Again the map ψ is the same
as in the proof of Proposition 4.3.1. This gives us Item (1), and now we
prove Item (2). For each n ≥ n0 let kn ∈ [0, 1) be the conformal distortion
of F qn+1−1 at Yn, that is:

kn = sup
z∈Yn

{∣∣∂F qn+1−1(z)
∣∣∣∣∂F qn+1−1(z)
∣∣
}
.

Moreover, for each j ∈ {1, ..., qn+1 − 1} let Kn,j, Kn,j(1) and Kn,j(2) in
[1,+∞) be the quasiconformality of F at F j−1(Yn), of H1 also at F j−1(Yn),

and of H2 at (Ã ◦H1)
(
F j−1(Yn)

)
respectively. Since Ã is conformal we have

that:

kn ≤ log

(
qn+1−1∏
j=1

Kn,j

)
=

qn+1−1∑
j=1

logKn,j

=

qn+1−1∑
j=1

(
logKn,j(1) + logKn,j(2)

)
≤

qn+1−1∑
j=1

M0

(
diam

(
F j−1(Yn)

))2
(for some M0 > 1)

≤
qn+1−1∑
j=1

M0

(
diam

(
Dθ/Kn(f̃ j(Jn))

))2

=

qn+1−1∑
j=1

M0

(
ψ(θ/Kn)

)2∣∣f̃ j(Jn)
∣∣2 < M1

(
qn+1−1∑
j=1

∣∣f̃ j(Jn)
∣∣2) .

The last inequality follows from the fact that Kn → 1 when n goes to

∞. By combinatorics the projection of the family
{
f̃ j(Jn)

}qn+1−1

j=1
to the unit

circle has finite multiplicity of intersection (independent of n ≥ n0), and
therefore:

qn+1−1∑
j=1

∣∣∣f̃ j(Jn)
∣∣∣2 < M2

(
max

j∈{1,...,qn+1−1}

∣∣∣f̃ j(Jn)
∣∣∣) , (4.3.1)

where the constant M2 > 0 only depends on the multiplicity of intersection

of the projection of the family
{
f̃ j(Jn)

}qn+1−1

j=1
to the unit circle. By the real
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bounds, the right hand of (4.3.1) goes to zero exponentially fast at a universal
rate (independent of f), and therefore we obtain constants λ ∈ (0, 1) and
C > 0 such that:

kn = sup
z∈Yn

{∣∣∂F qn+1−1(z)
∣∣∣∣∂F qn+1−1(z)
∣∣
}
≤ Cλn for all n ≥ n0.

To finish the proof of Corollary 4.3.2 we need to obtain definite domains
around f̃(In) contained in Yn. As in the proof of Proposition 4.3.1, for each
n ≥ n0 let An and Bn be the affine maps given by:

An(z) =
(
1/
∣∣f̃ qn+1(In)

∣∣)(z − f̃ qn+1(0)
)

and Bn(z) =
(
1/
∣∣f̃(In)

∣∣)(z − f̃(0)
)
,

and also let Zn = An
(
Dθ

(
f̃ qn+1(Jn)

))
. By the real bounds there exists a

universal constant α0 > 0 such that:

Nα0

(
[0, 1]

)
⊂ Zn for all n ≥ n0.

The R-symmetric orientation preserving C3 diffeomorphism Tn : Zn →
Tn(Zn) given by:

Tn = Bn ◦ F−qn+1+1 ◦ A−1
n

induces a diffeomorphism in [0, 1] which, again by the real bounds, has
universally bounded distortion. In particular there exists ε > 0 such that∣∣T ′n(t)

∣∣ > ε for all t ∈ [0, 1] and for all n ≥ n0. By Proposition 3.3.3 there
exists α > 0 (only depending on α0 and ε) such that (by taking n0 big
enough):

Nα

(
[0, 1]

)
⊂ Tn(Zn) for all n ≥ n0,

and therefore:
Nα

(
f̃(In)

)
⊂ Yn for all n ≥ n0.

Proposition 4.3.3. There exist constants α > 0, C1, C2 > 0 and λ ∈ (0, 1)
with the following property: let f be a C3 critical circle map with irrational
rotation number, and let F be its extended lift. There exists n0 ∈ N such that
for each n ≥ n0 there exists an R-symmetric topological disk Xn with:

Nα(In) ⊂ Xn , where In =
[
0, (T−pn ◦ f̃ qn)(0)

]
,

such that the composition F qn+1 is well defined in Xn, it has a unique critical
point at the origin, and we have:
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1.

C1 <
diam

(
F qn+1(Xn)

)∣∣f̃ qn+1(In)
∣∣ < C2 , and

2.

sup
z∈Xn\{0}

{∣∣∂F qn+1(z)
∣∣∣∣∂F qn+1(z)
∣∣
}
≤ C2λ

n .

Proof. From the construction of the extended lift F in Section 4.1 (see also
Lemma 4.1.5) there exists a complex neighbourhood Ω of the origin such
that the restriction F : Ω → F (Ω) is of the form Q ◦ ψ, where Q(z) =

z3 + f̃(0), and ψ : Ω→ Q−1
(
F (Ω)

)
is an R-symmetric orientation preserving

C3 diffeomorphism fixing the origin. In particular there exist ε > 0 and
δ > 0 such that if t ∈ (−δ, δ) then

∣∣(ψ−1)′(t)
∣∣ > ε, where (ψ−1)′ denotes the

one-dimensional derivative of the restriction of ψ−1 to Q−1
(
F (Ω)

)
∩ R. Let

K > 1 given by Proposition 3.3.3 applied to ε > 0. Since ψ is asymptotically
holomorphic of order 3 in Ω, we can choose Ω small enough in order to have
that ψ is K-quasiconformal. By taking n0 ∈ N big enough we can assume
that

∣∣ψ(In)
∣∣ < δ and Yn ⊂ F (Ω) for all n ≥ n0, where the topological disk

Yn is the one given by Corollary 4.3.2. By Corollary 4.3.2 and elementary
properties of the cube root map (see for instance [58, Lemma 2.2]) there
exists a universal constant α0 > 0 such that for all n ≥ n0 we have that:

Nα0

(
ψ(In)

)
⊂ Q−1(Yn) . (4.3.2)

Define Xn ⊂ Ω as the preimage of Yn under F , that is, Xn = F−1(Yn) =
ψ−1

(
Q−1(Yn)

)
. Item (1) follows directly from Item (1) in Corollary 4.3.2

since F qn+1(Xn) = F qn+1−1(Yn). By (4.3.2) and Proposition 3.3.3 there exists
a universal constant α > 0 such that:

Nα(In) ⊂ Xn ⊂ Ω for all n ≥ n0.

To obtain Item (2) recall that by Item (2) in Corollary 4.3.2 we have:

sup
z∈Yn

{∣∣∂F qn+1−1(z)
∣∣∣∣∂F qn+1−1(z)
∣∣
}
≤ Cλn .

Since Q is a polynomial, it is conformal at its regular points, and since∥∥µψ∥∥∞ ≤ K−1
K+1

< 1 in Ω we have:

sup
z∈Xn\{0}

{∣∣∂F qn+1(z)
∣∣∣∣∂F qn+1(z)
∣∣
}
≤ Cλn .
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Theorem 4.0.4 follows directly from Proposition 4.3.3 and its analogue
statement for f̃ qn|In+1 .
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CHAPTER 5

Proof of Theorem D

As its tittle indicates, this chapter is entirely devoted to the proof of Theorem
D, and recall that Theorem D implies our main theorem (Theorem B in the
introduction) as we saw in Chapter 2.

First let us fix some notation and terminology (see Appendix C for com-
plete proofs and much more information). By a topological disk we mean an
open, connected and simply connected set properly contained in the complex
plane. Let π : C→ C \ {0} be the holomorphic covering z 7→ exp(2πiz), and
let T : C → C be the unitary horizontal translation z 7→ z + 1 (which is a
generator of the group of automorphisms of the covering). For any R > 1
consider the band :

BR =
{
z ∈ C : − logR < 2π=(z) < logR

}
,

which is the universal cover of the round annulus :

AR =

{
z ∈ C :

1

R
<
∣∣z∣∣ < R

}
via the holomorphic covering π. Since BR is T -invariant, the translation
generates the group of automorphisms of the covering. The restriction π :
R→ S1 = ∂D is also a covering map, the automorphism T preserves the real
line, and again generates the group of automorphisms of the covering.

The map UR : D→ BR defined by:

UR(z) =

(
logR

π2

)
log

(
1 + z

1− z

)
49



Pablo Guarino Rigidity Conjecture for C3 Critical Circle Maps

is a biholomorphism sending (−1, 1) onto the real line, and preserving the
sign of the imaginary part. Here log denotes the principal branch of the
logarithm (for z = reiθ with 0 ≤ θ < 2π, we have log z = log r + iθ).

In particular we can endow the band BR with the Riemannian metric
obtained by pushing the Poincaré metric from the unit disk, via the biholo-
morphism UR. It is easy to check1 that this metric is invariant under the
translation T , and therefore we can project it to the annulus AR with the
holomorphic covering π. This hyperbolic metric in the annulus AR induces a
complete distance (by computing the infimum among the hyperbolic lengths
of all piecewise smooth curves joining two points), that we denote by dAR .

More generally, an annulus is an open and connected set A in the complex
plane whose fundamental group is isomorphic to Z. By the Uniformization
Theorem such an annulus must be conformally equivalent either to the punc-
tured disk D\{0}, to the punctured plane C\{0}, or to some round annulus
AR =

{
z ∈ C : 1/R <

∣∣z∣∣ < R
}

. In the last case the value of R > 1 is unique,
and there exists a holomorphic covering from D to A whose group of deck
transformations is infinite cyclic, and such that any generator is a Möbius
transformation having exactly two fixed points at the boundary of the unit
disk (for instance, U−1

R ◦ T ◦ UR fixes the points −1 and 1).
Since the deck transformations are Möbius transformations, they are

isometries of the Poincaré metric on D and therefore there exists a unique
Riemannian metric on A such that the covering map provided by the Uni-
formization Theorem is a local isometry. This metric is complete, and in
particular, any two points can be joined by a minimizing geodesic. There
exists a unique simple closed geodesic in A, whose hyperbolic length is equal
to π2/ logR. The length of this closed geodesic is therefore a conformal in-
variant (all these statements are reviewed in full detail in Appendix C of this
thesis).

We denote by Θ the antiholomorphic involution z 7→ 1/z̄ in the punctured
plane C\{0}, and we say that a map is S1-symmetric if it commutes with Θ.
An annulus is S1-symmetric if it is invariant under Θ (for instance, the round
annulus AR described above is S1-symmetric). In this case, the unit circle is
the core curve (the unique simple closed geodesic) for the hyperbolic metric in
A. In this chapter we will deal only with S1-symmetric annulus. In particular
any time that some annulus A0 is contained in some other annulus A1, we
have that A0 separates the boundary components of A1 (more technically,
the inclusion is essential in the sense that the fundamental group π1(A0)
injects into π1(A1)).

1For instance by noting that
(
U−1
R ◦T ◦UR

)
(z) = z−α

1−αz for all z ∈ D, where α ∈ (−1, 0)

is equal to (e−π
2/ logR − 1)/(e−π

2/ logR + 1).
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Besides Theorem 4.0.4 (stated and proved in Chapter 4), the main tool
in order to prove Theorem D is Proposition 3.3.2 (stated in Chapter 3, and
proved in Appendix D as a corollary of Ahlfors-Bers Theorem). The proof
of Theorem D will be divided in three sections. Along the proof, C will
denote a positive constant (independent of n ∈ N) and n0 will denote a
positive (big enough) natural number. At first, let n0 ∈ N given by Theorem
4.0.4. Moreover let us use the following notation: W1 = Nα

(
[−1, 0]

)
, W2 =

W2(n) = Nα

(
[0, ξn(0)]

)
, W0 = B(0, λ) and V = B(0, λ−1), where α > 0 and

λ ∈ (0, 1) are the universal constants given by Theorem 4.0.4. Recall that
ηn(0) = −1 for all n ≥ 1 after normalization.

5.1 A first perturbation and a bidimensional

glueing procedure

From Theorem 4.0.4 we have:

Lemma 5.1.1. There exists an R-symmetric topological disk U with:

−1 ∈ U ⊂ W1 \W0,

such that for all n ≥ n0 the composition:

η−1
n ◦ ξn : U →

(
η−1
n ◦ ξn

)
(U)

is an R-symmetric orientation-preserving C3 diffeomorphism.

For each n ≥ n0 denote by An the diffeomorphism η−1
n ◦ ξn. Note that

‖µAn‖∞ ≤ Cλn in U for all n ≥ n0, and that the domains
{
An(U)

}
n≥n0

are

uniformly bounded since they are contained in ∪jW j
2 . Fix ε > 0 and δ > 0

such that the rectangle:

V =
(
− 1− ε,−1 + ε

)
×
(
− iδ, iδ

)
is compactly contained in U , and apply Proposition 3.3.2 to the sequence of
R-symmetric orientation-preserving C3 diffeomorphisms:

{An : U → An(U)}n≥n0

to obtain a sequence of R-symmetric biholomorphisms:{
Bn : V → Bn(V )

}
n≥n0

such that: ∥∥An −Bn

∥∥
C0(V )

≤ Cλn for all n ≥ n0.

From the commuting condition we obtain:
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Lemma 5.1.2. For each n ≥ n0 there exist three R-symmetric topological
disks Vi(n) for i ∈ {1, 2, 3} with the following five properties:

• 0 ∈ V1(n) ⊂ W0;

•
(
ηn ◦ ξn

)
(0) =

(
ξn ◦ ηn

)
(0) = ξn(−1) ∈ V2(n) ⊂ W2;

• ξn(0) ∈ V3(n) ⊂ W2;

• When restricted to V1(n), both ηn and ξn are orientation-preserving
three-fold C3 branched coverings onto V and V3(n) respectively, with a
unique critical point at the origin;

• Both restrictions ξn|V and ηn|V3(n) are orientation-preserving C3 diffeo-
morphisms onto V2(n).

In particular the composition η−1
n ◦ ξn is an orientation-preserving C3

diffeomorphism from V onto V3(n) for all n ≥ n0.

For each n ≥ n0 let U1(n), U2(n) and U3(n) be three R-symmetric topo-
logical disks such that:

• U1(n), U2(n) and U3(n) are pairwise disjoint;

• V
⋂
Uj(n) = ∅ and Vi(n)

⋂
Uj(n) = ∅ for i, j ∈ {1, 2, 3};

• U1(n) ⊂ W1 and U2(n)
⋃
U3(n) ⊂ W2;

and such that:

Un = interior

[
V
⋃(

i=3⋃
i=1

Vi(n)

)⋃(
j=3⋃
j=1

Uj(n)

)]
is an R-symmetric topological disk (see Figure 5.1). Note that:

Iξn ∪ Iηn ⊂ Un ⊂ W1 ∪W2 for all n ≥ n0,

and that Un \
(
V ∪ V1(n) ∪ V2(n) ∪ V3(n)

)
has three connected components,

which are precisely U1(n), U2(n) and U3(n). By Theorem 4.0.4 we can choose
U1(n), U2(n) and U3(n) in order to also have:

Nδ

(
[−1, 0]

)
∪Nδ

(
[0, ξn(0)]

)
⊂ Un for all n ≥ n0,

for some universal constant δ > 0, independent of n ≥ n0. Note also that
each Un is uniformly bounded since it is contained in Nα

(
[−1, K]

)
, where

α > 0 is given by Theorem 4.0.4, and K > 1 is the universal constant given
by the real bounds.

For each n ≥ n0 let Tn be an R-symmetric topological disk such that:
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Figure 5.1: The domain Un.

• V , V1(n), V2(n) and Bn(V ) are contained in Tn,

• Tn \
(
V ∪Bn(V )

)
is connected and simply connected,

• The Hausdorff distance between Tn and Un is less or equal than:∥∥An −Bn

∥∥
C0(V )

≤ Cλn,

Lemma 5.1.3. For each n ≥ n0 there exists an orientation-preserving R-
symmetric C3 diffeomorphism Φn : Un → Tn such that:

• Φn ≡ Id in the interior of V ∪ U1(n) ∪ V1(n), in particular Φn(0) = 0.

• Bn = Φn ◦
(
η−1
n ◦ ξn

)
◦ Φ−1

n in V , that is, Φn ◦ An = Bn ◦ Φn in V .

•
∥∥Φn − Id

∥∥
C0(Un)

≤ Cλn.

• ‖µΦn‖∞ ≤ Cλn in Un.

Proof of Lemma 5.1.3. For each n ≥ n0 we have ‖An−Bn‖C0(V ) ≤ Cλn and
therefore: ∥∥Id− (Bn ◦ A−1

n

)∥∥
C0
(
V3(n)

) ≤ Cλn.
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If we define Φn|V3(n) = Bn ◦ A−1
n we also have ‖µΦn‖∞ = ‖µA−1

n
‖∞ in V3(n),

which is equal to ‖µAn‖∞ in V . In particular ‖µΦn‖∞ ≤ Cλn in V3(n), and
then we define Φn in the whole Un by interpolating Bn ◦ A−1

n in V3(n) with
the identity in the interior of V ∪ U1(n) ∪ V1(n).

Consider the seven topological disks:

X1(n) = interior
(
V ∪ U1(n) ∪ V1(n)

)
⊂ W1 ∩ Un ,

X2(n) = interior
(
V1(n) ∪ U2(n) ∪ V2(n) ∪ U3(n) ∪ V3(n)

)
⊂ W2 ∩ Un ,

X̂1(n) = {z ∈ X1(n) : ξn(z) ∈ Un} , X̂2(n) = {z ∈ X2(n) : ηn(z) ∈ Un} ,

T̂n = Φn

(
X̂1(n)

)
∪ Φn

(
X̂2(n)

)
⊂ Tn ,

Y1(n) = X1(n) ∩ Φn

(
X̂1(n)

)
and Y2(n) = X2(n) ∩ Φn

(
X̂2(n)

)
.

Note that V , V1(n) and Bn(V ) are contained in T̂n for all n ≥ n0. Moreover,
we have the following two corollaries of Theorem 4.0.4:

Lemma 5.1.4. There exists δ > 0 such that for all n ≥ n0 we have:

Nδ

(
[−1, 0]

)
⊂ Y1(n) and Nδ

(
[0, ξn(0)]

)
⊂ Y2(n) .

Lemma 5.1.5. Both:

sup
n≥n0

{
sup

z∈Y1(n)

{
det
(
Dξn(z)

)}}
and sup

n≥n0

{
sup

z∈Y2(n)

{
det
(
Dηn(z)

)}}
are finite, where det(·) denotes the determinant of a square matrix.

Let:

ξ̂n : Φn

(
X̂1(n)

)
→
(
Φn ◦ ξn

)(
X̂1(n)

)
defined by ξ̂n = Φn ◦ ξn ◦ Φ−1

n ,

and:

η̂n : Φn

(
X̂2(n)

)
→
(
Φn ◦ ηn

)(
X̂2(n)

)
defined by η̂n = Φn ◦ ηn ◦ Φ−1

n .

Since each Φn is an R-symmetric C3 diffeomorphism, the pair
(
η̂n, ξ̂n

)
re-

strict to a critical commuting pair with the same rotation number as (ηn, ξn),
and the same criticality (that we are assuming to be cubic, in order to sim-
plify). Note also that η̂n(0) = −1 for all n ≥ n0. Moreover, from Lemma
5.1.5 and

∥∥Φn − Id
∥∥
C0(Un)

≤ Cλn we have:∥∥∥ξn − ξ̂n∥∥∥
C0
(
Y1(n)

) ≤ Cλn and ‖ηn − η̂n‖
C0
(
Y2(n)

) ≤ Cλn for all n ≥ n0.
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Therefore is enough to shadow the sequence
(
η̂n, ξ̂n

)
in the domains Y1(n)

and Y2(n), instead of (ηn, ξn) (the shadowing sequence will be constructed
in Section 5.3 below). The main advantage of working with the sequence(
η̂n, ξ̂n

)
is precisely the fact that η̂−1

n ◦ ξ̂n is univalent in V for all n ≥ n0

(since it coincides with Bn). In particular we can choose each topological
disk Un and Tn defined above with the additional property that, identifying
V with Bn(V ) via the biholomorphism Bn, we obtain from Tn an abstract
annular Riemann surface Sn (with the complex structure induced by the
quotient).

Let us denote by pn : Tn → Sn the canonical projection (note that pn is
not a covering map, just a surjective local diffeomorphism). The projection
of the real line, pn(R ∩ Tn), is real-analytic diffeomorphic to the unit circle
S1. We call it the equator of Sn.

Since complex conjugation leaves Tn invariant and commutes with Bn, it
induces an antiholomorphic involution Fn : Sn → Sn acting as the identity
on the equator pn(R ∩ Tn). Note that Fn has a continuous extension to ∂Sn
that switches the boundary components.

Since Sn is obviously not biholomorphic to D \ {0} neither to C \ {0}
we have mod(Sn) < ∞ for all n ≥ n0, where mod(·) denotes the conformal
modulus of an annular Riemann surface (see Definition C.2.4). For each
n ≥ n0 define a constant Rn in (1,+∞) by:

Rn = exp

(
mod

(
Sn
)

2

)
,

that is, Sn is conformally equivalent to ARn =
{
z ∈ C : R−1

n < |z| <
Rn

}
(see Theorem C.2.3). Any biholomorphism between Sn and ARn must

send the equator pn
(
R ∩ Tn

)
onto the unit circle S1 (because the equator

is invariant under the antiholomorphic involution Fn, and the unit circle is
invariant under the antiholomorphic involution z 7→ 1/z̄ in ARn , see Lemma
C.2.1). Let Ψn : Sn → ARn be the conformal uniformization determined by
Ψn

(
pn(0)

)
= 1 (again see Lemma C.2.1), and let Pn : Tn → ARn be the

holomorphic surjective local diffeomorphism:

Pn = Ψn ◦ pn.

See Figure 5.2. Note that Pn(0) = 1 and Pn(Tn ∩R) = S1 for all n ≥ n0.
Moreover Pn(z)Pn(z) = 1 for all z ∈ Tn and all n ≥ n0. From now on we
forget about the abstract cylinder Sn.
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Lemma 5.1.6. There exist two constants δ > 0 and C > 1 such that for all
n ≥ n0 and for all z ∈ Nδ

(
[−1, ξ̃n(0)]

)
we have z ∈ T̂n ⊂ Tn and:

1

C
<
∣∣P ′n(z)

∣∣ < C .

Proof of Lemma 5.1.6. By the real bounds there exists a universal constant
C0 > 1 such that for each n ≥ n0 there exists wn ∈

[
− 1, ξ̃n(0)

]
such that:

1

C0

<
∣∣P ′n(wn)

∣∣ < C0 .

To prove Lemma 5.1.6 we need to construct a definite complex domain
around

[
− 1, ξ̃n(0)

]
where Pn has universally bounded distortion. Again by

the real bounds there exist δ > 0 and l ∈ N with the following properties:
for each n ≥ n0 there exists z1, z2, ..., zkn ∈

[
− 1, ξ̃n(0)

]
with kn < l for all

n ≥ n0 such that:

•
[
− 1, ξ̃n(0)

]
⊂ ∪kni=1B(zi, δ).

• B(zi, 2δ) ⊂ T̂n ⊂ Tn for all i ∈ {1, ..., kn}.

• Pn|B(zi,2δ) is univalent for all i ∈ {1, ..., kn}.

By convexity we have for all n ≥ n0 and for all i ∈ {1, ..., kn} that:

sup
v,w∈B(zi,δ)

{ ∣∣P ′n(v)
∣∣∣∣P ′n(w)
∣∣
}
≤ exp

(
sup

w∈B(zi,δ)

{∣∣P ′′n (w)
∣∣∣∣P ′n(w)
∣∣
})

,

and by Koebe distortion theorem (see for instance [6, Section I.1, Theorem
1.6]) we have:

sup
w∈B(zi,δ)

{∣∣P ′′n (w)
∣∣∣∣P ′n(w)
∣∣
}
≤ 2

δ
for all n ≥ n0 and for all i ∈ {1, ..., kn}.

Now we project each commuting pair (η̃n, ξ̃n) from T̂n to the round an-
nulus ARn .

Proposition 5.1.7 (Glueing procedure). The pair:

ξ̂n : Φn

(
X̂1(n)

)
→ Tn and η̂n : Φn

(
X̂2(n)

)
→ Tn
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Figure 5.2: Bidimensional Glueing procedure.

projects under Pn to a well-defined orientation-preserving C3 map:

Gn : Pn
(
T̂n
)
⊂ ARn → ARn .

For each n ≥ n0, Pn(T̂n) is a Θ-invariant annulus with positive and finite
modulus. Each Gn is S1-symmetric, in particular Gn preserves the unit circle.

When restricted to the unit circle, Gn produce a C3 critical circle map
gn : S1 → S1 with cubic critical point at Pn(0) = 1, and with rotation
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number ρ(gn) = ρ
(
Rn(f)

)
∈ R \Q.

T̂n ⊂ Tn Tn

Pn
(
T̂n
)
⊂ ARn ARn

-

(
η̂n,ξ̂n

)

?

Pn

?

Pn

-Gn

Moreover the unique critical point of Gn in Pn
(
T̂n
)

is the one in the unit
circle (at the point 1) and:∣∣∂Gn(z)

∣∣ ≤ Cλn |∂Gn(z)| for all z ∈ Pn
(
T̂n
)
\ {1}, that is:

‖µGn‖∞ ≤ Cλn in Pn
(
T̂n
)
.

Proof of Proposition 5.1.7. This follows from:

• The construction of Un and Tn.

• The property Bn = Φn ◦
(
η−1
n ◦ ξn

)
◦ Φ−1

n in V .

• The commuting condition in V1(n).

• The symmetry Pn(z)Pn(z) = 1 for all z ∈ Tn and all n ≥ n0.

• The fact that Pn : Tn → ARn is holomorphic, Pn(0) = 1 and Pn(Tn ∩
R) = S1 for all n ≥ n0.

Note that each gn belongs to the smooth conjugacy class obtained with
the glueing procedure (described in Section 1.2) applied to the C3 critical

commuting pair
(
η̂n, ξ̂n

)
. As we said in the introduction, the topological

behaviour of each Gn on its annular domain is the same as the restriction of
the Blaschke product fγ (0.1.3) to the annulus A′′′∪B′1, as depicted in Figure
1. In the next section we will construct a sequence of real-analytic critical
circle maps, with the desired combinatorics, that extend to holomorphic maps
exponentially close to Gn in a definite annulus around the unit circle (see
Proposition 5.2.1 below).
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5.2 Main perturbation

The goal of this section is to construct the following sequence of perturba-
tions:

Proposition 5.2.1 (Main perturbation). There exist a constant r > 1 and
a sequence of holomorphic maps defined in the annulus Ar:

{Hn : Ar → C}n≥n0

such that for all n ≥ n0 the following holds:

• Ar ⊂ Pn(T̂n) ⊂ Pn(Tn) = ARn.

•
∥∥Hn −Gn

∥∥
C0(Ar)

≤ Cλn.

• Hn(Ar) ⊂
(
Gn ◦ Pn

)(
T̂n
)
⊂ Pn(Tn) = ARn.

• Hn preserves the unit circle and, when restricted to the unit circle, Hn

produces a real-analytic critical circle map hn : S1 → S1 such that:

– The unique critical point of hn is at Pn(0) = 1, and is of cubic
type.

– The critical value of hn coincide with the one of gn, that is, hn(1) =
gn(1) ∈ Pn(V ∩ R).

– ρ(hn) = ρ(gn) = ρ
(
Rn(f)

)
∈ R \Q.

• The unique critical point of Hn in Ar is the one in the unit circle.

The remainder of this section is devoted to proving Proposition 5.2.1. We
wont perturb the maps Gn directly (basically because they are non invert-
ible). Instead, we will decompose them (see Lemma 5.2.2 below), and then
we will perturb on their coefficients (see the definition after the statement
of Lemma 5.2.2). Those perturbations will be done, again, with the help of
Proposition 3.3.2 of Chapter 3.

Let A : C \ {0} → C \ {0} be the map corresponding to the parameters
a = 0 and b = 1 in the Arnold family (0.1.2), defined in the introduction. The
lift of A to the complex plane by the holomorphic covering z 7→ exp(2πiz) is

the entire map Ã : C→ C given by:

Ã(z) = z −
(

1

2π

)
sin(2πz).
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Then A preserves the unit circle, and its restriction A : S1 → S1 is a
real-analytic critical circle map. The critical point of A in the unit circle is
at 1, and is of cubic type (the critical point is also a fixed point for A). The
following is a bidimensional version of Lemma 4.1.1 in Chapter 4:

Lemma 5.2.2. For each n ≥ n0 there exist:

• Sn > 1,

• an S1-symmetric orientation-preserving C3 diffeomorphism ψn : Pn
(
T̂n
)
→

ASn and

• an S1-symmetric biholomorphism φn : A(ASn) →
(
Gn ◦ Pn

)
(T̂n) such

that:

Gn = φn ◦ A ◦ ψn in Pn
(
T̂n
)
.

The diffeomorphisms ψn and φn are called the coefficients ofGn in Pn
(
T̂n
)
.

Pn
(
T̂n
) (

Gn ◦ Pn
)(
T̂n
)

ASn A(ASn)

-Gn

?

ψn

-A

6
φn

Proof of Lemma 5.2.2. For each n ≥ n0 let Sn > 1 such that A(ASn) is a
Θ-invariant annulus with:

mod
(
A(ASn)

)
= mod

((
Gn ◦ Pn

)
(T̂n)

)
.

In particular there exists a biholomorphism φn : A(ASn)→
(
Gn ◦Pn

)
(T̂n)

that commutes with Θ. Each φn preserves the unit circle and we can choose
it such that φn(1) = Gn(1), that is, φn takes the critical value of A into the
critical value of Gn.

Since both Gn and A are three-fold branched coverings around their criti-
cal points and local diffeomorphisms away from them, the equation Gn = φn◦
A ◦ ψn induces an orientation-preserving C3 diffeomorphism ψn : Pn

(
T̂n
)
→

ASn , that commutes with Θ and such that ψn(1) = 1, that is, ψn takes the
critical point of Gn into the one of A. The fact that ψn is smooth at 1 with
non-vanishing derivative follows from the fact that the critical points of Gn

and A have the same degree (see Lemma 4.1.1 in Chapter 4).
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Note that, at the beginning of the proof of Lemma 5.2.2, we have used
the fact that the image under the Arnold map A of a small round annulus
around the unit circle is also an annulus. This is true, even that A has a
critical point in the unit circle (placed at 1, and being also a fixed point
of A). Even more is true: the conformal modulus of the annulus A(As)
depends continuously on s > 1 (and we also used this fact in the proof). The
topological behaviour of the restriction of A to each round annulus ASn is
the same as the restriction of the Blaschke product fγ (0.1.3) to the annulus
A′′′ ∪B′1, as depicted in Figure 1 in the introduction of this thesis.

As we said, the idea in order to prove Proposition 5.2.1 is to perturb each
diffeomorphism ψn with Proposition 3.3.2. In order to control the C0 size
of those perturbations we will need some geometric control, that we state
in four lemmas, before entering into the proof of Proposition 5.2.1. From
Lemma 5.1.6 we have:

Lemma 5.2.3.

1 < inf
n≥n0

{Rn} and sup
n≥n0

{Rn} < +∞.

Lemma 5.2.4. For all n ≥ n0 both Pn(T̂n) and
(
Gn◦Pn

)
(T̂n) are Θ-invariant

annulus with finite modulus. Moreover there exists a universal constant K >
1 such that:

1

K
< mod

(
Pn(T̂n)

)
< K for all n ≥ n0.

Proof of Lemma 5.2.4. By Lemma 5.2.3 we know that R = supn≥n0
{Rn} is

finite, and since for all n ≥ n0 both Pn(T̂n) and
(
Gn◦Pn

)
(T̂n) are contained in

the corresponding ARn , we obtain at once that both Pn(T̂n) and
(
Gn◦Pn

)
(T̂n)

have finite modulus, and also that supn≥n0

{
mod

(
Pn(T̂n)

)}
is finite. Just

as in Lemma 5.2.3, the fact that infn≥n0

{
mod

(
Pn(T̂n)

)}
is positive follows

from Lemma 5.1.4 and Lemma 5.1.6.

Lemma 5.2.5. There exists a constant r0 > 1 such that Ar0 ⊂ Pn
(
T̂n
)

for
all n ≥ n0.

Proof of Lemma 5.2.5. By the invariance with respect to the antiholomor-
phic involution z 7→ 1/z̄, the unit circle is the core curve (the unique closed

geodesic for the hyperbolic metric) of each annulus Pn
(
T̂n
)
. Since:

inf
n≥n0

{
mod

(
Pn(T̂n)

)}
> 0 ,

the statement is well-known, see for instance [38, Chapter 2, Theorem 2.5].
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Lemma 5.2.6. We have:

s = inf
n≥n0

{Sn} > 1 and S = sup
n≥n0

{Sn} < +∞.

Proof of Lemma 5.2.6. Since µψn = µGn in Pn
(
T̂n
)
, we have ‖µψn‖∞ ≤ Cλn

in Pn
(
T̂n
)

for all n ≥ n0. By the geometric definition of quasiconformal
homeomorphisms (see Definition C.2.5 in Appendix C, or [32, Chapter I,
Section 7]) we have:(

1− Cλn

1 + Cλn

)
mod

(
Pn(T̂n)

)
≤ 2 log(Sn) ≤

(
1 + Cλn

1− Cλn

)
mod

(
Pn(T̂n)

)
for all n ≥ n0, and we are done by Lemma 5.2.4.

With this geometric control at hand, we are ready to prove Proposition
5.2.1:

Proof of Proposition 5.2.1. Let r0 > 1 given by Lemma 5.2.5 (recall that

Ar0 ⊂ Pn
(
T̂n
)

for all n ≥ n0), and fix r ∈
(
1, (1 + r0)/2

)
. How small r − 1

must be will be determined in the course of the argument (see Lemma 5.2.7
below). For any r ∈

(
1, (1+r0)/2

)
consider r = r0−(r−1) ∈

(
(1+r0)/2, r0

)
.

The sequence of S1-symmetric C3 diffeomorphisms{
ψn : Ar0 → ψn(Ar0)

}
n≥n0

satisfy the hypothesis of Proposition 3.3.2 since:

• µψn = µGn in Pn
(
T̂n
)

and therefore ‖µψn‖∞ ≤ Cλn for all n ≥ n0, and

• ψn(Ar0) ⊂ ASn ⊂ AS for all n ≥ n0 (see Lemma 5.2.6 above).

Apply Proposition 3.3.2 to the bounded domain Ar, compactly contained in
Ar0 , to obtain a sequence of S1-symmetric biholomorphisms{

ψ̂n : Ar → ψ̂n(Ar)
}
n≥n0

such that: ∥∥ψ̂n − ψn∥∥C0(Ar)
≤ Cλn for all n ≥ n0.

Fix n0 big enough to have ψ̂n(Ar) ⊂ ASn , and note that we can suppose that

each ψ̂n fixes the point 1 (just as ψn) by considering:

z 7→

(
1

ψ̂n(1)

)
ψ̂n(z) .
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Since
∣∣ψ̂n(z)

∣∣ ≤ S for all z ∈ Ar and for all n ≥ n0 (where S ∈ (1,+∞) is

given by Lemma 5.2.6) and since
∣∣∣ψ̂n(1)− 1

∣∣∣ ≤ Cλn for all n ≥ n0, we know

that this new map (that we will still denote by ψ̂n to simplify) satisfy all the

properties that we want for ψ̂n, and also fixes the point z = 1.
For each n ≥ n0 consider the holomorphic map Hn : Ar → C defined by

Hn = φn ◦ A ◦ ψ̂n. We have:

• Hn(Ar) ⊂
(
Gn ◦ Pn

)(
T̂n
)
⊂ ARn .

• Hn is S1-symmetric and therefore it preserves the unit circle.

• When restricted to the unit circle, Hn produces a real-analytic critical
circle map hn : S1 → S1.

• The unique critical point of Hn in Ar is the one in the unit circle, which
is at Pn(0) = 1, and is of cubic type.

• The critical value of Hn coincide with the one of Gn, that is, Hn(1) =
Gn(1) ∈ Pn(V ∩ R).

We divide in three lemmas the rest of the proof of Proposition 5.2.1. We
need to prove first that, for a suitable r > 1, Hn is C0 exponentially close
to Gn in the annulus Ar (Lemma 5.2.7 below), and then that we can choose
each Hn with the desired combinatorics for its restriction hn to the unit circle
(Lemma 5.2.8 below). This last perturbation will change the critical value
of each Hn (it wont coincide any more with the one of Gn). We will finish
the proof of Proposition 5.2.1 with Lemma 5.2.9, that allow us to keep the
critical point of Hn at the point Pn(0) = 1, and to place the critical value of
Hn at the point gn(1) for all n ≥ n0. This will be important in the following
section, the last one of this chapter.

Lemma 5.2.7. There exists r ∈
(
1, (1 + r0)/2

)
such that in the annulus Ar

we have: ∥∥Hn −Gn

∥∥
C0(Ar)

≤ Cλn for all n ≥ n0.

Proof of Lemma 5.2.7. The proof is divided in three claims:
First claim: There exists β > 1 such that Aβ ⊂ A(ASn) for all n ≥ n0.
Indeed, by Lemma 5.2.6 the round annulus A(1+s)/2 is compactly con-

tained in ASn for all n ≥ n0, and therefore the annulus A
(
A(1+s)/2

)
is

contained in A(ASn) for all n ≥ n0. Thus we just take β > 1 such that
Aβ ⊂ A

(
A(1+s)/2

)
and the first claim is proved.

From now on we fix α ∈ (1, β).
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Second claim: There exists r ∈
(
1, (1 + r0)/2

)
close enough to one in

order to simultaneously have (A ◦ ψ̂n)(Ar) ⊂ Aα and (A ◦ ψn)(Ar) ⊂ Aα for
all n ≥ n0.

Indeed, since Ar ⊂ Ar, ψ̂n is holomorphic, and ψ̂n(Ar) ⊂ ASn ⊂ AS for
all n ≥ n0 (where S ∈ (1,+∞) is given by Lemma 5.2.6), we have by Cauchy

derivative estimate that supn≥n0

{∣∣ψ̂′n(z)
∣∣ : z ∈ Ar

}
is finite. Since each ψ̂n

preserves the unit circle, and since
∥∥ψ̂n − ψn∥∥C0(Ar)

≤ Cλn for all n ≥ n0,

the second claim is proved.
Another way to prove the second claim is by noting that, since Aα ⊂ Aβ ⊂

Aβ ⊂ A(ASn) for all n ≥ n0, the hyperbolic metric on any annulus A(ASn)
and the Euclidean metric are comparable in Aα with universal parameters,
that is, there exists a constant K > 1 such that:(

1

K

)
|z − w| ≤ dA(ASn )(z, w) ≤ K|z − w|

for all z, w ∈ Aα and for all n ≥ n0, where dA(ASn ) denote the hyperbolic
distance in the annulus A(ASn) (this is well-known, see for instance [6, Section

I.4, Theorem 4.3]). Since each A ◦ ψ̂n : Ar → A(ASn) is holomorphic and
preserves the unit circle, we know by Schwarz lemma that for all z ∈ Ar and
for all n ≥ n0 we have:

dA(ASn )

(
(A ◦ ψ̂n)(z), S1

)
≤ dAr

(
z, S1

)
,

where dAr denote the hyperbolic distance in the annulus Ar. Since all dis-
tances dA(ASn ) are comparable with the Euclidean distance in Aδ with uni-
versal parameters, we have for all z ∈ Ar and for all n ≥ n0 that:

d
(

(A ◦ ψ̂n)(z), S1
)
≤ KdAr

(
z, S1

)
,

where d is just the Euclidean distance in the plane. Fix r ∈
(
1, (1 + r0)/2

)
close enough to one (see Lemma C.2.2 in Appendix C for precise computa-
tions) in order to have that z ∈ Ar implies dAr (z, S1) < α−1

Kα
(and therefore

(A ◦ ψ̂n)(z) ∈ Aα for all n ≥ n0). Again since
∥∥ψ̂n − ψn∥∥C0(Ar)

≤ Cλn for all

n ≥ n0, the second claim is proved.
Third claim: There exists a positive number M such that

∣∣φ′n(z)
∣∣ < M

for all z ∈ Aα and for all n ≥ n0.
Indeed, recall that φn

(
A(ASn)

)
=
(
Gn ◦ Pn

)(
T̂n
)
⊂ ARn for all n ≥ n0.

By Lemma 5.2.3 there exists a (finite) number ∆ such that φn
(
A(ASn)

)
⊂

B(0,∆) for all n ≥ n0. Since Aα ⊂ Aβ ⊂ Aβ ⊂ A(ASn) for all n ≥ n0, the
third claim follows from Cauchy derivative estimate.

With the three claims at hand, Lemma 5.2.7 follows.
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To control the combinatorics after perturbation we use the monotonicity
of the rotation number:

Lemma 5.2.8. Let f be a C3 critical circle map and let g be a real-analytic
critical circle map that extends holomorphically to the annulus:

AR =

{
z ∈ C :

1

R
<
∣∣z∣∣ < R

}
for some R > 1.

There exists a real-analytic critical circle map h, with ρ(h) = ρ(f), also
extending holomorphically to AR, where we have:∥∥h− g∥∥

C0(AR)
≤ dC0(S1)

(
f, g
)
.

In particular:

dCr(S1)

(
h, g
)
≤ dC0(S1)

(
f, g
)

for any 0 ≤ r ≤ ∞.

Proof of Lemma 5.2.8. Let F and G be the corresponding lifts of f and g to
the real line satisfying:

ρ(f) = lim
n→+∞

F n(0)

n
and ρ(g) = lim

n→+∞

Gn(0)

n
.

Consider the band BR = {z ∈ C : − logR < 2π=(z) < logR}, which is
the universal cover of the annulus AR via the holomorphic covering z 7→ e2πiz.
Let δ = ‖F − G‖C0(R), and for any t in [−1, 1] let Gt : BR → C defined as
Gt = G+ tδ. Each Gt preserves the real line, and its restriction is the lift of
a real-analytic critical circle map. Moreover, each Gt commutes with unitary
horizontal translation in BR.

Note that ‖Gt − G‖C0(BR) = |t|δ ≤ ‖F − G‖C0(R) for any t ∈ [−1, 1].
Moreover for any x ∈ R the family

{
Gt(x)

}
t∈[−1,1]

is monotone in t, and we

have G−1(x) ≤ F (x) ≤ G1(x). In particular there exists t0 ∈ [−1, 1] such
that:

lim
n→+∞

Gn
t0

(0)

n
= ρ(F ) ,

and we define h as the projection of Gt0 to the annulus AR.

After the perturbation given by Lemma 5.2.8 we still have the critical
point of hn placed at 1, but its critical value is no longer placed at gn(1)
(however they are exponentially close). To finish the proof of Proposition
5.2.1 we need to fix this, without changing the combinatorics of hn in S1.
Until now each Hn is S1-symmetric, in the sense that it commutes with
z 7→ 1/z̄ in the annulus Ar. We will loose this property in the following
perturbation, which turns out to be the last one.
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Lemma 5.2.9. For each n ≥ n0 consider the (unique) Möbius transforma-
tion Mn which maps the unit disk D onto itself fixing the basepoint z = 1,
and which maps Hn(1) to Gn(1). Then there exists ρ ∈ (1, r) such that
Aρ ⊂Mn(Ar) for all n ≥ n0. Moreover for each n ≥ n0 we have:∥∥Mn ◦Hn ◦M−1

n −Gn

∥∥
C0(Aρ)

≤ Cλn.

Note that, when restricted to the unit circle, each Mn gives rise to an
orientation-preserving real-analytic diffeomorphism which is, as Lemma 5.2.9
indicates, C∞-exponentially close to the identity.

Proof of Lemma 5.2.9. Consider the biholomorphism ψ : H → D given by
ψ(z) = z−i

z+i
, whose inverse ψ−1 : D → H is given by ψ−1(z) = i

(
1+z
1−z

)
. Note

that ψ maps the vertical geodesic
{
z ∈ H : <(z) = 0

}
onto the interval

(−1, 1) in D. Since ψ and ψ−1 are Möbius transformations, both extend
uniquely to corresponding biholomorphisms of the entire Riemann sphere.
The extension of ψ is a real-analytic diffeomorphism between the compacti-
fication of the real line and the unit circle, which maps the point at infinity
to the point z = 1. For each n ≥ n0 consider the real number tn defined by:

tn = ψ−1
(
Gn(1)

)
− ψ−1

(
Hn(1)

)
= 2i

(
Gn(1)−Hn(1)(

1−Gn(1)
)(

1−Hn(1)
)) .

Each tn is finite since for all n ≥ n0 both Gn(1) and Hn(1) are not equal to
one. Moreover we claim that:

inf
n≥n0

{∣∣Gn(1)− 1
∣∣} > 0 and inf

n≥n0

{∣∣Hn(1)− 1
∣∣} > 0 .

Indeed, since we have
∣∣Hn(1) − Gn(1)

∣∣ ≤ Cλn for all n ≥ n0, is enough to
prove that infn≥n0

{∣∣Gn(1)− 1
∣∣} > 0, and this follows by Lemma 5.1.6 since

1 = Pn(0) and Gn(1) = Pn(−1) for all n ≥ n0. In particular, again using∣∣Hn(1)−Gn(1)
∣∣ ≤ Cλn for all n ≥ n0, we see that |tn| ≤ Cλn for all n ≥ n0.

From the explicit formula:

Mn(z) =
(2i− tn)z + tn
(2i+ tn)− tnz

=

 z −
(

tn
tn−2i

)
1−

(
tn

tn+2i

)
z

(2i− tn
2i+ tn

)
for all n ≥ n0,

we see that the pole of each Mn is at the point zn = 1 + i(2/tn), and since
|tn| ≤ Cλn for all n ≥ n0, we can take n0 big enough to have that zn ∈
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C \ B(0, 2R), where R = supn≥n0
{Rn} < +∞ is given by Lemma 5.2.3. A

straightforward computation gives:

(
Mn − Id

)
(z) =

tn(z − 1)2

(2i+ tn)− tnz
for all n ≥ n0,

and therefore: ∥∥Mn − Id
∥∥
C0(AR)

≤ Cλn for all n ≥ n0.

In particular for any fixed ρ ∈ (1, r) we can choose n0 big enough in order to
have Aρ ⊂Mn(Ar) for all n ≥ n0. Moreover given any z ∈ Aρ we have:(
Mn ◦Hn ◦M−1

n −Gn

)
(z) =

(
Mn − Id

)(
(Hn ◦M−1

n )(z)
)

+
(
Hn −Gn

)
(z)

+
(
Hn

(
M−1

n (z)
)
−Hn(z)

)
.

In particular:∥∥Mn ◦Hn ◦M−1
n −Gn

∥∥
C0(Aρ)

≤ ‖Mn − Id‖
C0
(
Hn(Ar)

) + ‖Hn −Gn‖C0(Aρ)

+ ‖Hn‖C1(Ar)

∥∥M−1
n − Id

∥∥
C0(Aρ)

.

SinceHn(Ar) ⊂ AR andAρ ⊂ Ar ⊂ AR, the three terms ‖Mn − Id‖
C0
(
Hn(Ar)

),
‖Hn −Gn‖C0(Aρ) and ‖M−1

n − Id‖C0(Aρ) are less or equal than Cλn for all
n ≥ n0.

Finally, since each Hn is holomorphic and we have Ar ⊂ Ar and Hn(Ar) ⊂(
Gn ◦Pn

)(
T̂n
)
⊂ ARn ⊂ AR for all n ≥ n0, we obtain from Cauchy derivative

estimate that:
sup
n≥n0

{∥∥Hn

∥∥
C1(Ar)

}
is finite, and therefore:∥∥Mn ◦Hn ◦M−1

n −Gn

∥∥
C0(Aρ)

≤ Cλn for all n ≥ n0.

With Lemma 5.2.9 at hand we are done since
(
Mn◦Hn◦M−1

n

)
(1) = Gn(1).

We have finished the proof of Proposition 5.2.1.
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5.3 The shadowing sequence

This is the final section of Chapter 5, which is devoted to proving Theorem D.
Let us recall what we have done: in Section 5.1 we constructed a suitable se-
quence {Gn}n≥n0 of S1-symmetric C3 extensions of C3 critical circle maps gn
to some annulus Pn

(
T̂n
)
. When lifted with the corresponding projection Pn

(also constructed in Section 5.1) each gn gives rise to a C3 critical commuting

pair
(
η̂n, ξ̂n

)
exponentially close toRn(f) and having the same combinatorics

at each step (moreover, with complex extensions C0-exponentially close to
the ones of Rn(f) produced in Theorem 4.0.4, see Proposition 5.1.7 above
for more properties).

In Section 5.2 we perturbed each Gn in a definite annulus Ar, in order to
obtain a sequence of real-analytic critical circle maps, each of them having the
same combinatorics as the corresponding Rn(f), that extend to holomorphic
maps Hn exponentially close to Gn in Ar (see Proposition 5.2.1 above for
more properties). Both the critical point and the critical value of each Hn

coincide with the ones of the corresponding Gn, more precisely, the critical
point of each Hn is at Pn(0) = 1 ∈ Pn

(
V1(n)

)
∩ S1, and its critical value

is at Hn(1) = Gn(1) ∈ Pn(V ) ∩ S1 = Pn
(
Bn(V )

)
∩ S1. Recall also that

Hn(Ar) ⊂ Pn(Tn) for all n ≥ n0.
In this section we lift each Hn : Ar → ARn via the holomorphic projection

Pn : Tn → ARn in the canonical way: let α > 0 such that for all n ≥ n0 we
have that:

Nα

(
[−1, 0]

)
∪Nα

(
[0, ξ̂n(0)]

)
⊂ T̂n ,

and that Pn
(
Nα

(
[−1, 0]

)
∪Nα

(
[0, ξ̂n(0)]

))
is an annulus contained in Ar and

containing the unit circle (the existence of such α is guaranteed by Lemma
5.1.4 and Lemma 5.1.6). Let us use the more compact notation Z1(n) =

Nα

(
[−1, 0]

)
and Z2(n) = Nα

(
[0, ξ̂n(0)]

)
. For each n ≥ n0 let η̃n : Z2(n)→ Tn

be the R-preserving holomorphic map defined by the two conditions:

Hn ◦ Pn = Pn ◦ η̃n in Z2(n), and η̃n(0) = −1 .

In the same way let ξ̃n : Z1(n) → Tn be the R-preserving holomorphic map
defined by the two conditions:

Hn ◦ Pn = Pn ◦ ξ̃n in Z1(n), and ξ̃n(0) = ξ̂n(0) .
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Z1(n) ∪ Z2(n) ⊂ Tn Tn

Ar ⊂ ARn ARn

-
(η̃n, ξ̃n)

?

Pn

?

Pn

-Hn

In the next proposition we summarize the main properties of this lift, which
are all straightforward:

Proposition 5.3.1 (The shadowing sequence). For each n ≥ n0 the pair

fn = (η̃n, ξ̃n) restricts to a real-analytic critical commuting pair with domains

I
(
ξ̃n
)

=
[
η̃n(0), 0

]
= [−1, 0] and I

(
η̃n
)

=
[
0, ξ̃n(0)

]
=
[
0, ξ̂n(0)

]
, and such

that ρ(fn) = ρ
(
η̂n, ξ̂n

)
= ρ

(
Rn(f)

)
∈ R \ Q. Moreover ξ̃n and η̃n extend to

holomorphic maps in Z1(n) and Z2(n) respectively where we have:

• ξ̃n has a unique critical point in Z1(n), which is at the origin and of
cubic type.

• η̃n has a unique critical point in Z2(n), which is at the origin and of
cubic type.

•
∥∥∥ξ̃n − ξ̂n∥∥∥

C0
(
Z1(n)∩Φn(X̂1(n))

) ≤ Cλn.

• ‖η̃n − η̂n‖
C0
(
Z2(n)∩Φn(X̂2(n))

) ≤ Cλn.

With Proposition 5.3.1 at hand, Theorem D follows directly from the
following consequence of Montel’s theorem:

Lemma 5.3.2. Let α be a constant in (0, 1) and let V be an R-symmetric
bounded topological disk such that [−1, α−1] ⊂ V. Let W1 and W2 be topo-
logical disks whose closure is contained in V and such that [−1, 0] ⊂ W1 and
[0, α−1] ⊂ W2. Denote by K the set of all normalized real-analytic critical
commuting pairs ζ = (η, ξ) satisfying the following three conditions:

• η(0) = −1 and ξ(0) ∈ [α, α−1],

• α
∣∣η([0, ξ(0)]

)∣∣ ≤ ∣∣ξ([−1, 0]
)∣∣ ≤ α−1

∣∣η([0, ξ(0)]
)∣∣,

• Both ξ and η extend to holomorphic maps (with a unique cubic critical
point at the origin) defined in W1 and W2 respectively, where we have:

1. Nα

(
ξ
(
[−1, 0]

))
⊂ ξ(W1);
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2. Nα

(
η
(
[0, ξ(0)]

))
⊂ η(W2);

3. ξ(W1) ∪ η(W2) ⊂ V.

Then K is Cω-compact.
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CHAPTER 6

Concluding remarks

The set A ⊂ [0, 1] of de Faria and de Melo (see Theorem 0.3.1) is the set of
rotation numbers ρ = [a0, a1, ...] satisfying the following three properties:

lim sup
n→∞

1

n

n∑
j=1

log aj <∞

lim
n→∞

1

n
log an = 0

1

n

k+n∑
j=k+1

log aj ≤ ωρ

(n
k

)
for all 0 < n ≤ k, where ωρ(t) is a positive function (that depends on the
rotation number) defined for t > 0 such that tωρ(t)→ 0 as t→ 0 (for instante
we can take ωρ(t) = Cρ(1− log t) where Cρ > 0 depends on the number).

The set A obviously contains all rotation numbers of bounded type, and
it has full Lebesgue measure in [0, 1] (see Corollary A.1.6 in Section A.1.1
and [12, Appendix C]).

It is natural to ask: is there a condition on the rotation number equivalent
to the C1+α rigidity? This is not clear even in the real-analytic setting. We
remark that C1+α rigidity fails for some Diophantine rotation numbers (for
instance with ρ = [2, 22, 222 , ..., 22n , ...], see [12]).

As we said at the begining, it would be desirable to obtain Theorem B for
C3 critical circle maps with any irrational rotation number, but we have not
been able to do this yet. The main difficulty is to control the distance of the
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successive renormalizations of two critical commuting pairs with a common
unbounded type rotation number (compare Lemma 1.5.1). That is why we
were able to prove that Theorem D implies Theorem C only for bounded
type rotation numbers.

If we can prove Theorem C for any irrational rotation number, then (by
Theorem 0.3.1) we can extend Theorem B to the full Lebesgue measure set
A, and using Theorem 0.3.2 (with essentially the same arguments as in [5] to
obtain exponential convergence in the C2 metric) we would be able to obtain
C1-rigidity for all rotation numbers.

Another difficult problem is the following: what can be said, in terms of
smooth rigidity, for maps with finitely many non-flat critical points? More
precisely, let f and g be two orientation preserving C3 circle homeomor-
phisms with the same irrational rotation number, and with k ≥ 1 non-
flat critical points of odd type. Denote by Sf = {c1, ..., ck} the critical
set of f , by Sg = {c′1, ..., c′k} the critical set of g, and by µf and µg their
corresponding unique invariant measures. Beside the quantity and type of
the critical points, new smooth conjugacy invariants appear: the condition
µf
(
[ci, ci+1]

)
= µg

(
[c′i, c

′
i+1]
)

for all i ∈ {1, ..., k − 1} is necessary (and suffi-
cient) in order to have a conjugacy that sends the critical points of f to the
critical points of g (the only one that can be smooth). Are those the unique
smooth conjugacy invariants?
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APPENDIX A

Topological Rigidity of Critical Circle Maps

A.1 Introduction

In this appendix we present a proof due to Jean-Christophe Yoccoz [63]
of the fact that any C3 orientation preserving circle homeomorphism, with
irrational rotation number and such that all its critical points are non-flat,
is topologically conjugate to the corresponding rigid rotation. This is an
extension of the classical Denjoy’s theorem that we state and prove before as
an introduction to the techniques.

Let f be an orientation preserving circle homeomorphism, and assume
that f has irrational rotation number θ. Recall that this is equivalent with
the assumption that f has no periodic orbits, and this implies that the non-
wandering set of f is minimal, being a Cantor set or the whole circle. As
Poincaré showed f is semi-conjugate to the rigid rotation of angle θ (denoted
by Rθ): there exists a continuous surjective map h : S1 → S1 such that
h ◦ f = Rθ ◦h. We can see this by taking a non-wandering point x in S1 and
considering its orbit Of (x) =

{
fn(x)

}
n∈Z. The map hx

(
fn(x)

)
= exp(2πinθ)

sends the point x to the point 1, and conjugates f with Rθ along the orbit
of x.

A crucial point here is that f and Rθ are combinatorially equivalent, in
the sense that for each n ∈ N the first n elements of the orbit of x under
f are ordered in the same way as the first n elements of the orbit of 1
under the rotation Rθ (otherwise f has a periodic orbit). The combinatorial
equivalence between f and Rθ implies that the map hx extends continuously
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to the closure of Of (x). This extension is surjective because any orbit of Rθ

is dense in S1, so we can extend hx as a constant function in any connected
component of the complement of Of (x). This gives us a semi-conjugacy hx
between f and Rθ that sends the point x to the point 1 (given any other
point z ∈ S1 we have hz = Rβ ◦hx with exp(2πiβ) = 1/hx(z)). Note that for
every y ∈ S1 the set h−1

x

(
{y}
)

is either a closed interval or a single point.

If we know that f is minimal in the whole circle it follows thatOf (x) = S1,
so hx is an homeomorphism and then f is topologically conjugate to the
rotation Rθ.

In any case f is uniquely ergodic: there exists a unique Borel probability
measure µ in S1 such that µ(A) = µ

(
f−1(A)

)
for every Borel set A ⊂ S1.

Recall that the property of unique ergodicity is equivalent to the property
that for every continuous function ψ : S1 → R the sequence of functions:

1

n

n−1∑
j=0

ψ ◦ f j

converge uniformly to a constant [36, Chapter I, Section 9], that must be∫
ψ dµ. The measure µ is obtained by the pull-back of the normalized circular

Lebesgue measure with any semi-conjugacy: µ(A) = Leb
(
hx(A)

)
, where Leb

denote the Lebesgue measure (the Haar measure if we consider S1 as the
multiplicative group of complex numbers of modulus 1), and x is any point
in the circle. Conversely, given any x ∈ S1 we can obtain the semi-conjugacy
hx from the measure µ defining:

hx(y) = exp
(
2πiµ([x, y])

)
=

∫ y

x

dµ (mod 1) .

Since µ is f -invariant and f has no periodic orbits, µ has no points of
positive measure and this implies that hx is continuous and surjective (of
course we have hx ◦ f = Rθ ◦ hx).

If we also know that f is minimal it follows that any open interval has
positive µ-measure (since the support of µ is an f -invariant compact set it
must be the whole circle), so hx is an homeomorphism and f is topologically
conjugate to the rotation Rθ.

Summarizing, an orientation preserving circle homeomorphism f with
irrational rotation number θ is always semi-conjugate to the rigid rotation
Rθ by a continuous surjective map h. If h is not a conjugacy there exists a
point y ∈ S1 such that J = h−1

(
{y}
)

is a non-degenerate closed interval. We
call J a wandering interval since fn(J)∩ fm(J) = ∅ if n 6= m ∈ Z, and since
J is not contained in the basin of a periodic attractor.
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The purpose of this appendix is to show some obstructions to the existence
of wandering intervals, in terms of smoothness of the dynamics and non-
flatness of the critical points. The organization is the following: in Section
A.1.1 we recall the basic properties of the continued fraction expansion of
an irrational number. In particular we prove that the coefficients of the
continued fraction expansion of Lebesgue almost every real number in [0, 1]
are unbounded, but their growth is less than quadratic. In Section A.1.2
we introduce the cross-ratio and prove that around a wandering interval
the distortion of cross-ratio is arbitrary small as we iterate the dynamics
(Lemma A.2.1). In Section A.2 we present a proof of the celebrated Denjoy’s
theorem stating that C2 diffeomorphisms have no wandering intervals. In
general C1 circle diffeomorphisms may have wandering intervals, as we will
see at the end of Section A.2. In Section A.3 we briefly recall the Schwarzian
derivative, and in Section A.4 we prove Yoccoz’s theorem and obtain the main
result of his article [63] and this appendix: any C3 orientation preserving
circle homeomorphism, with irrational rotation number and such that all its
critical points are non-flat, is topologically conjugate to the corresponding
rigid rotation.

A.1.1 Continued fractions and return times

We briefly review in this section some classical facts about approximations
of irrational numbers by continued fractions, and how this applies to circle
dynamics. For any positive number θ denote by bθc the integer part of θ:

bθc ∈ N and bθc ≤ θ < bθc+ 1

Define the Gauss map G : [0, 1]→ [0, 1] by:

G(θ) =
1

θ
−
⌊

1

θ

⌋
for θ 6= 0 and G(0) = 0

For k ≥ 1 consider Ik =
(

1
k+1

, 1
k

)
. Then G is an expanding orientation-

reversing real-analytic diffeomorphism between each Ik and (0, 1), and the
union

⋃
k≥1 Ik is a Markov partition for G. After a well-known folklore theo-

rem in one-dimensional dynamics (see [36, Chapter III, Theorem 1.2] or [45,
Chapter V, Theorem 2.2]) the map G has a unique1 invariant ergodic Borel
probability ν (called the Gauss measure) which is equivalent to Lebesgue

1The map G has infinitely many invariant ergodic Borel probabilities since it has in-
finitely many periodic orbits (dense in [0, 1]). Uniqueness comes from the equivalence with
respect to Lebesgue measure.
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measure (they share the same null sets). A straightforward computation
shows that for any Borel set A ⊂ [0, 1] we have:

ν(A) =

(
1

log 2

)∫
A

(
1

1 + θ

)
dLeb

and from this explicit formula one can prove ergodicity (and even the mixing
property) by hand.

Note that both Q∩ [0, 1] and [0, 1] \Q are G-invariant. Under the action
of G, all rational numbers in [0, 1] eventually land on the fix point at the
origin, while the irrationals remain forever in the union

⋃
k≥1 Ik.

Definition A.1.1. The continued fraction expansion of an irrational num-
ber in [0, 1] is the sequence given by its itinerary under G according to the
partition

⋃
k≥1 Ik.

More precisely, to any irrational number θ in [0, 1] we associate the se-
quence {an}n∈N defined by Gn(θ) ∈ Ian for all n ∈ N, that is:

an =

⌊
1

Gn(θ)

⌋
for all n ∈ N

Since G is expanding on the Markov partition
⋃
k≥1 Ik, the map h from

[0, 1] \Q to NN (endowed with the product topology) that associates any ir-
rational number to its itinerary is a well-defined homeomorphism, and there-
fore the action of G on [0, 1] \ Q is topologically conjugate to the left shift
σ : NN → NN that sends {an}n∈N to {an+1}n∈N:

[0, 1] \Q [0, 1] \Q

NN NN

-G

?

h

?

h

-σ

We will use the classical notation θ =
[
a0, a1, ..., an, an+1, ...

]
. The natural

numbers an are called the partial quotients of θ.

Definition A.1.2. We say that θ is of bounded type if there exists a constant
M > 0 such that an < M for all n ∈ N.

Since periodic orbits of σ are dense in NN (endowed with the product
topology), irrational numbers with periodic continued fraction expansion are
dense in [0, 1], and therefore bounded type numbers are dense in [0, 1] as
we said in the introduction of this thesis. We also mentioned, however, the
following:
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Lemma A.1.3. The set of numbers of bounded type has zero Lebesgue mea-
sure in [0, 1].

For a direct proof of Lemma A.1.3, with no ergodic arguments, see [28,
Chapter III, Theorem 29].

Proof. Consider the increasing sequence {Km}m∈N of Cantor sets in [0, 1]
defined by:

Km =
{
θ ∈ [0, 1] \Q : θ = [a0, a1, ...] with an < m for all n ∈ N

}
.

It is enough to prove that Leb
(
Km

)
= 0 for each m ∈ N, and since Gauss

measure is equivalent with Lebesgue, it is enough to prove that ν
(
Km

)
= 0

for each m ∈ N. This is just the ergodicity of ν under G since each Km is
G-invariant and contained in

(
1
m
, 1
)
.

The Birkhoff Ergodic Theorem [36, Chapter II, Theorem 1.1] gives us a
much more precise statement:

Theorem A.1.4. For Lebesgue almost every θ in [0, 1] we have that every
integer k ≥ 1 must appear infinitely many times in the continued fraction
expansion of θ =

[
a0, a1, ...

]
. Moreover if we define:

τn(θ, k) =

(
1

n

)
#
{

0 ≤ j < n : aj = k
}
,

we have that
{
τn(θ, k)

}
n∈N converges to the positive value:(

1

log 2

)
log

(
(k + 1)2

k(k + 2)

)
,

that only depends on k.

Proof. By definition of the continued fraction expansion:

τn(θ, k) =

(
1

n

)
#
{

0 ≤ j < n : Gj(θ) ∈ Ik
}

and by the Birkhoff Ergodic Theorem:

lim
n→+∞

τn(θ, k) = ν(Ik) =

(
1

log 2

)
log

(
(k + 1)2

k(k + 2)

)
for ν almost every θ in [0, 1]. Again by equivalence this is true for Lebesgue
almost every θ in [0, 1].
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Since the asymptotic frequency is strictly decreasing in k one should ex-
pect that typical numbers, even having unbounded partial quotients, have
slow growth:

Lemma A.1.5. Let {bn}n∈N be any increasing sequence of positive real num-
bers such that

∑
n∈N 1/bn <∞. For Lebesgue almost every θ =

[
a0, a1, ...

]
in

[0, 1] we have an < bn for all n large enough.

Proof. For each n ∈ N let:

Un =
{
θ : an > bn

}
and Vn =

{
θ : a0 > bn

}
We want to prove that:

Leb

(⋂
k∈N

⋃
n≥k

Un

)
= 0

Since G−n(Vn) = Un and Vn ⊂
(

0, 1
bn

)
we get:

ν(Un) ≤ ν

(
0,

1

bn

)
=

(
1

log 2

)
log

(
1 +

1

bn

)
≤
(

1

log 2

)(
1

bn

)
for all n large enough. In particular:∑

n∈N

ν(Un) <∞

and therefore the claim follows by Borel-Cantelli Lemma and the equivalence
between Gauss and Lebesgue measures.

Corollary A.1.6. For Lebesgue almost every θ =
[
a0, a1, ..., an, an+1, ...

]
in

[0, 1] we have:

lim
n→∞

1

n
log an = 0 and lim sup

n→∞

1

n

n∑
j=1

log aj <∞.

We also have:

1

n

k+n∑
j=k+1

log aj ≤ C
(
θ
) [

1− log
(n
k

)]
for all 0 < n ≤ k,

where C
(
θ
)
> 0 depends on θ.
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Note that these are the three conditions in the definition of the set A ⊂
[0, 1] introduced by de Faria and de Melo (defined in Chapter 6). The first
and second condition follow straightforward from Lemma A.1.5 by taking,
say, bn = n1+ε for any ε > 0. The fact that the third condition holds Lebesgue
almost everywhere also follows from Lemma A.1.5, but with more involved
arguments [12, Proposition C.2, page 390].

Definition A.1.7. An irrational number in [0, 1] is said to be Diophantine
if there exist constants C > 0 and δ ≥ 0 such that:∣∣∣∣θ − p

q

∣∣∣∣ ≥ C

q2+δ
, (A.1.1)

for any natural numbers p and q 6= 0. Irrational numbers which are not
Diophantine are called Liouville numbers.

As we said in the introduction of this thesis, an irrational number is of
bounded type if it satisfies condition (A.1.1) for δ = 0, that is, θ in [0, 1] is
of bounded type if there exists C > 0 such that:∣∣∣∣θ − p

q

∣∣∣∣ ≥ C

q2
,

for any natural numbers p and q 6= 0 (for the equivalence between this def-
inition and the one above see [28, Chapter II, Theorem 23]). As we saw in
Lemma A.1.3 the set of numbers of bounded type has zero Lebesgue mea-
sure. However for any small δ > 0 in condition (A.1.1) we capture Lebesgue
almost every real number in [0, 1]:

Lemma A.1.8. Given any δ > 0 the set:

Dδ =

{
θ ∈ [0, 1] : ∃ C > 0 such that

∣∣∣∣θ − p

q

∣∣∣∣ ≥ C

q2+δ
∀ p, q ∈ N

}
has full Lebesgue measure in [0, 1]. In particular the set of Diophantine num-
bers in [0, 1] has full Lebesgue measure.

Proof. Fix some decreasing sequence {Cn}n∈N ⊂ (0, 1) such that Cn → 0
when n→ +∞, and consider:

Un =

{
θ ∈ [0, 1] : ∃ p, q ∈ N such that

∣∣∣∣θ − p

q

∣∣∣∣ < Cn
q2+δ

}
.

Note that {Un}n∈N is a decreasing sequence and:⋂
n∈N

Un = [0, 1] \Dδ.
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Therefore is enough to prove that limn→+∞ Leb(Un) = 0. For that fix
n ∈ N and consider for any q ∈ N \ {0}:

Un(q) =

{
θ ∈ [0, 1] : ∃ p ∈ {0, 1, ..., q − 1, q} such that

∣∣∣∣θ − p

q

∣∣∣∣ < Cn
q2+δ

}
.

Since:

Un =
⋃

q∈N\{0}

Un(q) and Leb
(
Un(q)

)
=

2Cn
q1+δ

,

we obtain:

Leb(Un) ≤ 2Cn

 ∑
q∈N\{0}

1

q1+δ


and this goes to zero when n goes to infinity by the choice of {Cn}n∈N and
the fact that δ > 0.

Incidentally we have proved that [0, 1] \Dδ is a residual set, in the Baire
sense, since each Un is open and dense in [0, 1]. This proves, with the obvious
adaptations, that the set of Liouville numbers is a residual set in [0, 1], and
in particular is uncountable and dense in [0, 1].

Now we recall without proofs the basic arithmetical properties of the
continued fraction expansion (a classical reference is the monograph [28]) and
its consequences in the dynamics of circle homeomorphisms with irrational
rotation number.

Definition A.1.9. We define recursively the return times of an irrational
number θ in [0, 1] by:

q0 = 1, q1 = a0 =

⌊
1

θ

⌋
and qn+1 = anqn + qn−1 for n ≥ 1.

The numbers qn are also obtained as the denominators of the truncated
expansion of order n of θ:

pn
qn

= [a0, a1, a2, ..., an−1] =
1

a0 +
1

a1 +
1

a2 +
1

. . .
1

an−1
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The sequence
{
pn
qn

}
n∈N

converge to θ exponentially fast (see Theorem 9

and 13 in [28, Chapter I]):

1

qn(qn + qn+1)
<

∣∣∣∣θ − pn
qn

∣∣∣∣ ≤ 1

qnqn+1

for all n ∈ N,

and that is why the rational numbers pn/qn are called the convergents of the
irrational θ. Moreover each pn/qn is the best possible approximation to θ by
fractions with denominator at most qn [28, Chapter II, Theorem 15]:

If 0 < q < qn then
∣∣θ − pn/qn∣∣ < ∣∣θ − p/q∣∣ for any p ∈ N.

Now fix any point x ∈ S1. The arithmetical properties of the continued
fraction expansion described above imply that the iterates {Rqn

θ (x)}n∈N are
the closest returns of the orbit of x under the rigid rotation Rθ:

d
(
x,Rqn

θ (x)
)
< d
(
x,Rj

θ(x)
)

for any j ∈ {1, ..., qn − 1}

where d denote the standard distance in S1. The sequence of return times
{qn} increase at least exponentially fast as n→∞ (since qn+1 = anqn+qn−1 ≥
2qn−1), and the sequence of return distances {d(x,Rqn

θ (x))} decrease to zero
at least exponentially fast as n → ∞. Moreover the sequence {Rqn

θ (x)}n∈N
approach the point x alternating the order:

Rq1
θ (x) < Rq3

θ (x) < ... < R
q2k+1

θ (x) < ... < x < ... < Rq2k
θ (x) < ... < Rq2

θ (x) < Rq0
θ (x)

By Poincaré’s result this information remains true at the combinatorial
level for any circle homeomorphism f with rotation number θ: for any x ∈ S1

the interval [x, f qn(x)] contains no other iterates f j(x) for j ∈ {1, ..., qn− 1},
and if we denote by µ the unique invariant Borel probability of f we can say
that µ

(
[x, f qn(x)]

)
< µ

(
[x, f j(x)]

)
for any j ∈ {1, ..., qn − 1}. A priori we

cannot say anything about the usual distance in S1.

A.1.2 Cross-ratio distortion

Let a < b < c < d be four distinct points in the real line. Let S1 be the
Möbius transformation determined by S1(a) = 0, S1(c) = 1 and S1(d) =∞.
Note that S1 has real coefficients since it preserves the real line. Define
Cr1(a, b, c, d) ∈ (0, 1) as Cr1(a, b, c, d) = S1(b), that is:

Cr1(a, b, c, d) =

(
d− c
c− a

)(
b− a
d− b

)
.
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If we denote by T = (a, d) and by M = (b, c) we have that:

Cr1(a, b, c, d) =

(
|L|

|L|+ |M |

)(
|R|

|R|+ |M |

)
,

where L and R are the components of T \M , and |I| denote the length of
an interval I.

The choice of the Möbius transformation S1 is quite arbitrary. We can
consider, for instance, the Möbius transformation S2 determined by S2(a) =
−1, S2(b) = 0 and S2(d) = ∞, and define Cr2(a, b, c, d) ∈ (0,+∞) as
Cr2(a, b, c, d) = S2(c), that is:

Cr2(a, b, c, d) =

(
d− a
b− a

)(
c− b
d− c

)
.

As before, if we denote by T = (a, d) and by M = (b, c) we have that:

Cr2(a, b, c, d) =
|M ||T |
|L||R|

.

Several different definitions of cross-ratio can be found in the literature,
depending on the purposes of the authors. The first definition given here
is the one used in [56], while the second definition is the one chosen in [37]
and [12]. Of course both definitions are related by a Möbius transformation.
Indeed, consider the orientation reversing real-analytic diffeomorphism S :
(0, 1) → (0,+∞) given by S(x) = 1−x

x
, whose inverse is given by S−1(x) =

1
1+x

. Then we have S
(

Cr1(a, b, c, d)
)

= Cr2(a, b, c, d) for all a < b < c < d in
R. Note that both Cr1(a, b, c, d) and Cr2(a, b, c, d) are invariant under Möbius
transformations, that is, if S is any Möbius transformation and a < b <
c < d are four distinct real numbers, we have Cri

(
S(a), S(b), S(c), S(d)

)
=

Cri(a, b, c, d) for i = 1, 2. In this appendix we will work with the second
definition given above. More precisely:

Definition A.1.10. Given intervals M ( T ⊂ S1 we define the cross-ratio
of M in T as:

Cr[M,T ] =
|M ||T |
|L||R|

,

where L and R are the components of T \M , and |I| denote the length of
an interval I. Suppose now that f is an homeomorphism in T , we define the
distortion of cross-ratio of f in M and T as:

Cr(f,M, T ) =
Cr[f(M), f(T )]

Cr[M,T ]
.

We have that f preserve cross-ratio if and only if any lift to the real line f̃
is a real Möbius transformation: there exist real numbers a, b, c, d such that
f̃(t) = (at+ b)/(ct+ d).
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A.2 Denjoy’s theory for smooth diffeomor-

phisms

In his classical article of 1932 [7], Denjoy proved the following well-known
rigidity result: any C2 circle diffeomorphism with irrational rotation number
is topologically conjugate to the corresponding rigid rotation.

Actually the original result of Denjoy (see Theorem A.2.9 below) is for
C1 diffeomorphisms such that logDf has bounded variation: there exists
a positive constant V (f) ∈ R such that given any ordered finite partition
{x0, x1, ..., xn} of the circle we have that:

n−1∑
i=0

∣∣ logDf(xi+1)− logDf(xi)
∣∣ ≤ V (f) = var(logDf) .

In this case we say that f is C1+bv, or that f ∈ Diff1+bv
+ (S1). If f ∈

Diff2
+(S1) we see at once that f ∈ Diff1+bv

+ (S1) by taking:

V (f) ≥
maxx∈S1

∣∣f ′′(x)
∣∣

minx∈S1

∣∣f ′(x)
∣∣ , or even better V (f) ≥

∫
S1

∣∣∣∣f ′′(x)

f ′(x)

∣∣∣∣ dx .
In this section we give a proof of Denjoy’s result. The proof wont be

the easiest one, but it has the flavour of Yoccoz’s proof in Section A.4. The
following result tells us that in order to prove that f ∈ Diff1+bv

+ (S1) with
irrational rotation number is conjugate to the corresponding rigid rotation,
we need to obtain a lower bound for the distortion of the cross-ratio of high
iterates.

Lemma A.2.1. Let f ∈ Diff1+bv
+ (S1) with irrational rotation number. Sup-

pose that f is not conjugate to the corresponding rigid rotation, and let J be
a maximal wandering interval. There exists a decreasing sequence {Tn}n∈N
of open intervals such that:

• J =
⋂
n∈N Tn,

• The family
{
Tn, f(Tn), ..., f qn+1−1(Tn)

}
has multiplicity of intersection

2 for all n ∈ N, and:

• limn→∞Cr(f qn+1 , J, Tn) = 0.

The sequence {qn}n∈N is the sequence of return times given by the rotation
number of f (see Section A.1.1).
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As usual, we say that a family of intervals has multiplicity of intersection
k ∈ N if the maximum number of intervals from the family that has non-
empty intersection is k. Before entering into the proof of Lemma A.2.1 let
us point out three technical results:

Lemma A.2.2 (Denjoy-Koksma inequality). Let f ∈ Hom+(S1) with ρ(f) =
θ ∈ R \ Q, and let µ be its unique invariant Borel probability measure. Let
{qn}n∈N be the sequence of return times given by θ, the rotation number of f .
For any ψ : S1 → R (non necessarily continuous) with finite total variation
var(ψ) we have:∣∣∣∣∣

qn−1∑
j=0

ψ
(
f j(x)

)
− qn

∫
S1

ψ dµ

∣∣∣∣∣ ≤ var(ψ) for all x ∈ S1 and all n ∈ N.

Proof of Lemma A.2.2. Fix x ∈ S1 and n ∈ N. By combinatorics there exist
qn pairwise disjoint open intervals {I0, I1, ..., Iqn−1} in the unit circle such that
Rj
θ(1) = e2πijθ ∈ Ij and Leb(Ij) = 1/qn for all j ∈ {0, 1, ..., qn − 1} (just take

the intervals determined by the qn-roots of unity, and label them in order to
have e2πijθ ∈ Ij for all j ∈ {0, 1, ..., qn−1}). Let h = hx be the semi-conjugacy
between f and Rθ that maps the point x to the point 1 (see the introduction
of this appendix), and for each j ∈ {0, 1, ..., qn−1} let Jj = h−1(Ij). Note that

f j(x) ∈ Jj and µ(Jj) = 1/qn for all j ∈ {0, 1, ..., qn − 1}. Moreover
{
Jj
}qn−1

j=0

is a partition of the unit circle (modulo boundary points, whose µ-measure
is zero since µ is f -invariant and f has no periodic orbits). Therefore:∣∣∣∣∣

qn−1∑
j=0

ψ
(
f j(x)

)
− qn

∫
S1

ψ dµ

∣∣∣∣∣ =

∣∣∣∣∣
qn−1∑
j=0

(
ψ
(
f j(x)

)
− qn

∫
Jj

ψ dµ

)∣∣∣∣∣
≤

qn−1∑
j=0

∣∣∣∣∣ψ(f j(x)
)
− qn

∫
Jj

ψ dµ

∣∣∣∣∣
= qn

qn−1∑
j=0

∣∣∣∣∣
∫
Jj

(
ψ
(
f j(x)

)
− ψ

)
dµ

∣∣∣∣∣
≤ qn

qn−1∑
j=0

∫
Jj

∣∣ψ(f j(x)
)
− ψ

∣∣dµ
≤

qn−1∑
j=0

sup
y∈Jj

∣∣ψ(f j(x)
)
− ψ(y)

∣∣ ≤ var(ψ) .
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Lemma A.2.3. Let f ∈ Diff1
+(S1) with irrational rotation number, and let

µ be its unique invariant Borel probability measure. Then:∫
S1

logDf dµ = 0 .

Proof of Lemma A.2.3. If f ∈ Diff1
+(S1) the function ψ : S1 → R defined by

ψ = logDf is a continuous function and therefore, by the unique ergodicity
of f , the sequence of functions:

1

n

n−1∑
j=0

ψ ◦ f j

converge uniformly to a constant [36, Chapter I, Section 9], that must be∫
S1 logDf dµ. By the chain rule:

n−1∑
j=0

ψ ◦ f j = log(Dfn) . (A.2.1)

Therefore the sequence of continuous functions log(Dfn)/n converge to
the constant

∫
S1 logDf dµ uniformly in S1. Since fn is a diffeomorphism for

all n ∈ N, this constant must be zero.

If f ∈ Diff1+bv
+ (S1) we can put together Lemma A.2.2 and Lemma A.2.3

to obtain that the sequence of iterates {f qn}n∈N is uniformly Lipschitz (and
in particular equicontinuous) on the whole circle:

Corollary A.2.4. If f ∈ Diff1+bv
+ (S1) with irrational rotation number, then

e−V (f) ≤
(
Df qn

)
(x) ≤ eV (f) for all x ∈ S1 and all n ∈ N, where {qn}n∈N is

the sequence of return times given by the rotation number of f .

Proof of Corollary A.2.4. Apply Lemma A.2.2 with ψ = logDf , and use
(A.2.1) and Lemma A.2.3.

With this at hand we are ready to prove Lemma A.2.1:

Proof of Lemma A.2.1. Let J = (a, b) be a maximal wandering interval of f ,
and let n ∈ N. The complement of the union of J and f qn(J) are two open
intervals. By combinatorics, the interval f qn+1+qn(J) is contained in one of
them, and the interval f qn+1(J) is contained in the other one. Since J is
maximal as a wandering interval both a and b are recurrent for the future,
and therefore the distance between J and f qn(J) goes to zero as n goes to
infinity. Let us suppose that for the fixed integer n we have that f qn+1+qn(J)
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is contained in the small component (this depends if n is even or odd, and
the other case can be treated in the same way). Let Ln =

(
f−qn(a), a

)
,

Rn =
(
b, f qn(a)

)
and:

Tn = Ln ∪ J ∪Rn =
(
f−qn(a), f qn(a)

)
.

By definition:

Cr(f qn+1 , J, Tn) = |Ln||Rn||f qn+1(Tn)|
(
|f qn+1(J)|
|f qn+1(Ln)|

)(
1

|f qn+1(Rn)||J ||Tn|

)
.

The key combinatorial point is that J ⊂ f qn+1(Rn), and so we have
|f qn+1(Rn)| ≥ |J |. Since we also have |Tn| ≥ |J | and |f qn+1(Tn)| ≤ 1 we
obtain:

Cr(f qn+1 , J, Tn) ≤ |Rn||f qn+1(J)|
(

|Ln|
|f qn+1(Ln)|

)(
1

|J |3

)
. (A.2.2)

Estimate (A.2.2) holds for any homeomorphism f with irrational rotation
number. Now we use the smoothness condition. By Corollary A.2.4 the
sequence:

|Ln|
|f qn+1(Ln)|

is bounded from above. Since
∑

n∈Z |fn(J)| ≤ 1 we have that |f qn+1(J)| → 0
as n goes to infinity, and since J is maximal (as a wandering interval) we
have that |Rn| → 0 as n goes to infinity. This proves that:

lim
n→∞

Cr(f qn+1 , J, Tn) = 0 .

Since Tn is of the form (f−qn(a), f qn(a)), we know by combinatorics that
the family: {

Tn, f(Tn), ..., f qn+1−1(Tn)
}

has multiplicity of intersection 2 for all n ∈ N.

A.2.1 The weak version

Theorem A.2.5. Let f be a C1 orientation preserving circle diffeomorphism
such that logDf is a Lipschitz function. If f has irrational rotation number
θ then f is topologically conjugate to the rigid rotation of angle θ.
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The proof of Theorem A.2.5 that we are giving below is based on Corollary
A.2.7, which is contained in the work of Schwartz [53] of 1963. As Denjoy,
Schwartz was interested in the dynamics of smooth flows on compact surfaces,
where one-dimensional dynamics appear when considering first-return maps
of local transverse sections.

Lemma A.2.6 (Bounded Distortion). Let f be a C1 orientation preserving
circle diffeomorphism such that logDf is a Lipschitz function of constant
C > 0. Then:

exp

(
−C

n−1∑
i=0

|f i(x)− f i(y)|

)
≤ |Df

n(x)|
|Dfn(y)|

≤ exp

(
C

n−1∑
i=0

|f i(x)− f i(y)|

)

for any x, y ∈ S1 and for any n ∈ N.

The proof of this lemma is an easy computation. What is important for
us is the following consequence:

Corollary A.2.7. Let f be a C1 orientation preserving circle diffeomorphism
such that logDf is a Lipschitz function. Let J ⊂ S1 be an interval such that:∑

n∈N

|fn(J)| <∞

Then there exists an open interval T ) J such that:∑
n∈N

|fn(T )| <∞

Proof. We will construct an open interval T ) J such that |fn(T )| ≤ 2|fn(J)|
for all n ∈ N. Fix some δ > 0 and take T ) J such that |T | ≤ (1 + δ)|J |.
We claim that it is enough to take:

0 < δ ≤ exp

(
−2C

∑
n∈N

|fn(J)|

)
< 1

where C > 0 is the Lipschitz constant of logDf . The proof goes by induction
on n (the case n = 0 is done since δ < 1): fix some n ∈ N and suppose that
|f i(T )| ≤ 2|f i(J)| for every i ∈ {0, 1, ..., n−1}. By the Mean Value Theorem
|fn(T \J)| ≤ |Dfn(x)||T \J | for some x ∈ T \J , and |fn(J)| = |Dfn(y)||J |
for some y ∈ J . With this we have:

|fn(T \ J)| ≤ |Dfn(x)||T \ J | = |Df
n(x)|

|Dfn(y)|
|fn(J)|
|J |

|T \ J |
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By Lemma A.2.6 (Bounded Distortion Lemma):

|fn(T \ J)| ≤ exp

(
C

n−1∑
i=0

|f i(x)− f i(y)|

)
|fn(J)|
|J |

|T \ J |

= exp

(
C

n−1∑
i=0

|f i(x)− f i(y)|

)
|T \ J |
|J |

|fn(J)|

≤ δ exp

(
C

n−1∑
i=0

|f i(T )|

)
|fn(J)|

≤ δ exp

(
2C

n−1∑
i=0

|f i(J)|

)
|fn(J)|

≤ δ exp

(
2C
∑
i∈N

|f i(J)|

)
|fn(J)|

≤ |fn(J)|

and so we have |fn(T )| = |fn(J)|+ |fn(T \ J)| ≤ 2|fn(J)|.

From Lemma A.2.6 we also have the following easy corollary:

Corollary A.2.8 (Cross-ratio distortion principle). Let f be a C1 orienta-
tion preserving circle diffeomorphism such that logDf is a Lipschitz function
of constant C > 0. Let J ( T ⊂ S1 intervals and let n ∈ N. Then:

Cr(fn, J, T ) ≥ exp

(
−2C

n−1∑
i=0

|f i(T )|

)
Proof. By the Mean Value Theorem we have four points x ∈ J, y ∈ T, z, w ∈
T \ J such that:

Cr(fn, J, T ) =
|Dfn(x)||Dfn(y)|
|Dfn(z)||Dfn(w)|

Now we apply the Bounded Distortion Lemma to obtain:

Cr(fn, J, T ) ≥ exp

(
−C

n−1∑
i=0

|f i(x)− f i(z)| − C
n−1∑
i=0

|f i(y)− f i(w)|

)

≥ exp

(
−2C

n−1∑
i=0

|f i(T )|

)
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We remark that these kind of estimates (and even better) hold under less
regularity conditions in the dynamics [45, Chapter IV, Section 2]. We are
ready to prove Theorem A.2.5:

Proof of Theorem A.2.5. Suppose that f is not conjugated to the rotation
and let J be a maximal wandering interval of f . In particular we have∑

n∈Z |fn(J)| ≤ 1 <∞. Let {Tn}n∈N be any sequence such that:
⋂
n∈N Tn =

J , and let T be the interval given by Corollary A.2.7 (note that we can
suppose that Tn ⊂ T for all n ∈ N). By the corollary above:

Cr(f qn+1 , J, Tn) ≥ exp

(
−2C

qn+1−1∑
i=0

|f i(Tn)|

)

≥ exp

(
−2C

qn+1−1∑
i=0

|f i(T )|

)

≥ exp

(
−2C

∑
i∈N

|f i(T )|

)
and this is a positive constant by Corollary A.2.7. This contradicts

Lemma A.2.1.

Actually we do not need cross-ratio arguments to prove Theorem A.2.5:
let J = (a, b) be a maximal wandering interval of f , and note that a and
b are recurrent since the non-wandering set of f is minimal. Let T be the
interval given by Corollary A.2.7 and let n ∈ N such that fn(a) ∈ T . Since
we can take n as big as we want eventually we will have fn(T ) ⊂ T and this
give us a contradiction since f has no periodic orbits.

A.2.2 The strong version

As we said before, the original result of Denjoy is for C1 diffeomorphisms such
that logDf has bounded variation. Note that if logDf is a Lipschitz function
of constant C > 0, then logDf has bounded variation with constant V = C.
A classical example of an homeomorphism of bounded variation which is not
Lipschitz is given by t 7→

√
t in [0, 1], so the following is a stronger result

than Theorem A.2.5:

Theorem A.2.9 (Denjoy, 1932). Let f be a C1 orientation preserving circle
diffeomorphism such that logDf has bounded variation. If f has irrational
rotation number θ then f is topologically conjugate to the rigid rotation of
angle θ.
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The proof is obtained combining Lemma A.2.1 with the following estimate
(compare with Lemma A.4.5 in Section A.4):

Lemma A.2.10. Let f be a C1 orientation preserving circle diffeomorphism
with irrational rotation number and such that logDf has bounded variation
with constant V > 0. There exists a positive constant δ = δ(V ) > 0 such
that given any interval J and any sequence {Tn}n∈N of intervals containing
J such that for any n ∈ N the first qn+1 − 1 iterates of Tn have multiplicity
of intersection 2, we have that:

Cr(fk, J, Tn) ≥ δ for any k ∈ {0, ..., qn+1}
Proof. Fix n ∈ N and k ∈ {0, ..., qn+1}, and note the following chain rule:

Cr
(
fk, J, Tn

)
=

k−1∏
i=0

Cr
(
f, f i(J), f i(Tn)

)
.

In particular:∣∣ log
(

Cr(fk, J, Tn)
)∣∣ ≤ k−1∑

i=0

∣∣ log
(

Cr(f, f i(J), f i(Tn))
)∣∣.

By the Mean Value Theorem for any i ∈ {0, ..., k − 1} there exist four
points: xi ∈ f i(J), yi,n ∈ f i(Tn), zi,n, wi,n ∈ f i(Tn) \ f i(J) such that:

Cr
(
f, f i(J), f i(Tn)

)
=
|Df(xi)||Df(yi,n)|
|Df(zi,n)||Df(wi,n)|

.

Therefore:

∣∣ log
(

Cr(fk, J, Tn)
)∣∣ ≤ k−1∑

i=0

∣∣ logDf(xi) + logDf(yi,n)− logDf(zi,n)− logDf(wi,n)
∣∣

≤
k−1∑
i=0

∣∣ logDf(xi)− logDf(zi,n)
∣∣+
∣∣ logDf(wi,n)− logDf(yi,n)

∣∣
Now consider the finite partition Pk =

{
xi, yi,n, zi,n, wi,n

}k−1

i=0
. Since the

family
{
Tn, f(Tn), ..., f qn+1−1(Tn)

}
has multiplicity of intersection 2, the last

term is less or equal than the double of the total variation of logDf in Pk,
and so we are done by taking δ = exp(−2V ).

In [7] Denjoy also proved that some assumptions on the first derivative are
needed: given any irrational number θ there exists a C1 circle diffeomorphism
with rotation number θ and wandering intervals [45, Chapter I, Section 2].
We remark that there are counterexamples even if the derivative is Hölder
continuous [20]. See also [22] for weaker conditions on the first derivative.
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A.2.3 The geometric classification

We finish Section A.2 with some remarks: let f be a circle homeomorphism
topologically conjugate to Rθ for some θ ∈ R \ Q, and let µ be the unique
Borel probability in S1 invariant under f . One motivation to understand
the measure µ is given by the Birkhoff Ergodic Theorem [36, Chapter II,
Theorem 1.1]: given any point x ∈ S1 and any interval A ⊂ S1 we have that:

lim
n→+∞

[(
1

n

)
#
{
j : 0 ≤ j < n and f j(x) ∈ A

}]
= µ(A).

Note that if f is C1 we have the following dichotomy: either µ is absolutely
continuous with respect to Lebesgue, or µ is singular (otherwise we have a
decomposition µ = ν1 + ν2, where ν1 is absolutely continuous with respect to
Lebesgue, ν2 is singular, and both are non-zero. Since f is C1 it preserves
sets of Lebesgue measure zero, and therefore both ν1 and ν2 are f -invariant,
which contradicts the unique ergodicity of f).

As we saw in the introduction of this appendix µ(A) = Leb
(
h(A)

)
for any

Borel set A ⊂ S1, where h is a circle homeomorphism that conjugates f with
Rθ. In particular µ has no atoms (i.e. no points of positive measure) and gives
positive measure to any open set. If h is absolutely continuous2 there exists a
Lebesgue integrable function h′ such that µ(A) =

∫
A
h′dLeb, but in general

this is not true: in 1961 Arnold gave examples ([3], see also [45, Chapter
I, Section 5]) of real-analytic circle diffeomorphisms that are minimal, but
where the invariant probability µ is not absolutely continuous with respect
to Lebesgue measure. In these examples the rotation number is Liouville (see
Definition A.1.7), and any conjugacy with the corresponding rigid rotation
maps a set of zero Lebesgue measure in a set of positive Lebesgue measure.

In the same work Arnold showed (using KAM methods) that any real-
analytic diffeomorphism with Diophantine rotation number, which is a small
perturbation of a rigid rotation, is conjugate to the corresponding rigid ro-
tation by a real-analytic diffeomorphism, and therefore the conjugacy can
be taken holomorphic in a neighbourhood of the circle. He also conjectured
that no restriction on being close to a rotation is needed. As we said in the
introduction of this thesis, this was proved by Herman in 1979 [20] for a large
class of Diophantine numbers, and extended by Yoccoz in 1984 [62] for all
Diophantine numbers. Nowadays the picture is completely clear: any C2+ε

2We say that h : I → R is absolutely continuous if for every ε > 0 there exists δ > 0
such that

∑n
i=1 |h(βi) − h(αi)| < ε for any n ∈ N and any disjoint collection of segments

(α1, β1), ..., (αn, βn) in I whose lengths satisfy
∑n
i=1(βi − αi) < δ. In our context this is

equivalent to the statement that h maps sets of Lebesgue measure zero to sets of Lebesgue
measure zero.
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circle diffeomorphism with rotation number θ satisfying:∣∣∣∣θ − p

q

∣∣∣∣ ≥ C

q2+δ

for every positive coprime integers p and q, with C > 0 and δ ∈ [0, 1), is con-
jugated to the corresponding rigid rotation by a C1 circle diffeomorphism.
Even more, if 0 ≤ δ < ε ≤ 1 and ε − δ 6= 1, the conjugacy is C1+ε−δ (see
also [27] and the references given there). This implies, in particular, that
its unique invariant probability is Lebesgue absolutely continuous, and its
density is Hölder continuous with exponent ε − δ. Moreover C∞ diffeomor-
phisms with the same Diophantine rotation number are C∞-conjugate, and
real-analytic diffeomorphisms with the same Diophantine rotation number
are conjugate by a real-analytic diffeomorphism [45, Chapter I, Section 3].

Now for any x ∈ S1 and n ∈ N consider the n-th scaling ratio of f and
Rθ in x defined as:

sn(f) =
d
(
f qn+1(x), x

)
d
(
f qn(x), x

) and sn(θ) =
d
(
R
qn+1

θ (x), x
)

d
(
Rqn
θ (x), x

)
where d denote the standard distance in S1 (note that for all n ≥ 1 we have
sn−1(θ) = 1

an+sn(θ)
). Herman’s result also implies the following asymptotic

geometric rigidity :
lim

n→+∞

(
sn(f)− sn(θ)

)
= 0

provided that θ is Diophantine. See Corollary 0.2.1 for the analogue result
in the context of critical circle maps.

A.3 Schwarzian derivative

In this section we briefly recall some basic definitions.

A.3.1 Non-flat critical points

Let I be a compact interval or the whole circle, and let f : I → I be a C1

map. As usually we say that c ∈ I is a critical point of f if Df(c) = 0. If for
every d ∈ N we have that:

lim
t→0

Df(c+ t)

td−1
= 0 (A.3.1)

we say that c is a flat critical point of f . This implies that f is C∞ at
the critical point and (Ddf)(c) = 0 for all d ≥ 1, where Ddf denote the
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derivative of f of order d (in particular flat critical points do not exist for
non-constant real-analytic maps). A classical example of this phenomena is
given by f : R→ R defined as:

f(t) =

{
exp(−1/t2) for t ∈ R \ {0}
0 for t = 0

Note that f is a C∞ map with a flat critical point at the origin (the
holomorphic extension of exp(−1/t2) to the punctured plane C\{0} presents
an essential singularity: in any neighbourhood of the origin the function takes
any complex value different from zero).

Otherwise we say that c is a non-flat critical point of order d, where d is
the minimum integer such that:

lim
t→0

Df(c+ t)

td−1
6= 0 (A.3.2)

Note that d is also the minimum integer such that:∫
U\{c}

(
Df(t)

)− 1
ddt <∞

for some neighbourhood U of the critical point.
This implies that f is Cd at the critical point where we have (Dnf)(c) = 0

for all n ∈ {1, ..., d− 1} and (Ddf)(c) 6= 0. In this case the limit in A.3.2 is

equal to (Ddf)(c)
(d−1)!

and we can say more:

Lemma A.3.1. The critical point c is non-flat of order d if and only if
for any C > 1 there exists an open neighbourhood U of c such that for any
t0, t1 ∈ U \ {c} we have:

C−1

∣∣∣∣t0 − ct1 − c

∣∣∣∣d ≤ ∣∣∣∣f(t0)− f(c)

f(t1)− f(c)

∣∣∣∣ ≤ C

∣∣∣∣t0 − ct1 − c

∣∣∣∣d
Proof. For any given C > 1 consider:

ε(C) =

(∣∣(Ddf)(c)
∣∣

d!

)(
C − 1

C + 1

)
Since (Ddf)(c) 6= 0 this is an orientation preserving real-analytic diffeo-

morphism between (1,+∞) and

(
0,

∣∣(Ddf)(c)

∣∣
d!

)
with inverse given by:

C(ε) =

∣∣(Ddf)(c)

∣∣
d!

+ ε∣∣(Ddf)(c)

∣∣
d!

− ε
=

∣∣(Ddf)(c)
∣∣+ d!ε∣∣(Ddf)(c)
∣∣− d!ε
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By Taylor theorem:

lim
t→c

(∣∣f(t)− f(c)
∣∣

|t− c|d

)
=

∣∣(Ddf)(c)
∣∣

d!
6= 0

Now for any given C > 1 let ε(C) in

(
0,

∣∣(Ddf)(c)

∣∣
d!

)
as above, and for this

ε let U be an open neighbourhood of c in I such that for any t ∈ U \ {c} we
have: ∣∣(Ddf)(c)

∣∣
d!

− ε ≤
∣∣f(t)− f(c)

∣∣
|t− c|d

≤
∣∣(Ddf)(c)

∣∣
d!

+ ε

Equivalently:

(∣∣(Ddf)(c)
∣∣

d!
− ε

)
|t− c|d ≤

∣∣f(t)− f(c)
∣∣ ≤ (∣∣(Ddf)(c)

∣∣
d!

+ ε

)
|t− c|d

Now for any t0, t1 in U \ {c} we have the desired estimates for the given
C. For the converse fix a neighbourhood U of c such that for any t in U :

f(t)− f(c) =
n=r∑
n=1

((
Dnf

)
(c)

n!

)
(t− c)n + r(t)

with limt→c

(
r(t)

(t−c)d

)
= 0. By hypothesis the ratio:

f(t)− f(c)

(t− c)d
=

n=r∑
n=1

((
Dnf

)
(c)

n!

)
(t− c)n−d +

(
r(t)

(t− c)d

)
is bounded in U \ {c}. The fact that is not going to infinity implies that(
Dnf

)
(c) = 0 for n ∈ {1, ..., d − 1}, and the fact that is not going to zero

implies that
(
Ddf

)
(c) 6= 0.

If the map is smooth enough (Cr for r ≥ d) we can go further (with
essentially the same computations as in the proof of Lemma 4.1.1 in Chapter
4):

Lemma A.3.2. The critical point c is non-flat of order d if and only if there
exist Cr local diffeomorphisms φ and ψ with φ(c) = ψ

(
f(c)

)
= 0 such that

ψ ◦ f ◦ φ−1 is the map t 7→ td around zero.
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A.3.2 The Schwarzian derivative

Now suppose that r ≥ 3 and define the Schwarzian derivative in every non-
critical point of f as:

Sf(x) =

(
D3f

)
(x)(

Df
)
(x)
− 3

2

∣∣∣∣∣
(
D2f

)
(x)(

Df
)
(x)

∣∣∣∣∣
2

Maybe, the main motivation of Schwarz for consider this operator [52,
Chapter 1] was the following:

Lemma A.3.3. The kernel of the Schwarzian derivative is the group of
Möbius transformations, that is, Sf ≡ 0 if and only if there exist real num-
bers a, b, c, d such that f(t) = (at+ b)/(ct+ d).

Proof of Lemma A.3.3. The fact that the Schwarzian derivative vanish at
Möbius transformations is a straightforward computation. Now, given a C3

map f without critical points on some interval I, consider the C2 map g
defined by g = (Df)−1/2. A straightforward computation gives the identity:

Sf = −2

(
D2g

g

)
.

In particular Sf ≡ 0 if and only if D2g ≡ 0, and therefore there exist real
numbers a and b such that g(t) = at + b, that is, Df(t) = 1/(at + b)2. By
integration we get:

f(t) =

(
−1

a

)(
1

at+ b

)
+ c ,

for some real number c.

Now we recall well-known properties of the Schwarzian derivative, for
proofs see [45, Chapter II, Section 6] and [45, Chapter IV, Section 1]:

• For k ≥ 1 we have the following chain rule:

Sfk(x) =
k−1∑
j=0

Sf
(
f j(x)

)
· |Df j(x)|2 =

k−1∑
j=0

Sf
(
f j(x)

)
·
j−1∏
i=0

|Df
(
f i(x)

)
|2

In particular Sfk(x) depends only on the values of Sf and Df along
the first k iterates of the point x under the map f .

• From the chain rule we see that if a map has negative Schwarzian
derivative, all its iterates also have negative Schwarzian derivative.
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• Trivial but important, any quadratic polynomial has negative Schwarzian
derivative.

• If c is a non-flat critical point of f , there exists an open neighbourhood
U of c such that Sf(x) < 0 for all x ∈ U \ {c}.

• If f is monotone on an interval J ⊂ I, and Sf < 0 in J , then |Df |
does not have a positive local minimum on J . In particular, if f
have no critical points in J and x < y < z are in J then |Df(y)| >
min{|Df(x)|, |Df(z)|}.

• From Lemma A.3.3 we see that a C3 diffeomorphism f preserve cross-
ratio (see Section A.1.2) if and only if Sf ≡ 0. The relation between
Schwarzian derivative and cross-ratio distortion is deeper: f increase
cross-ratio if and only if Sf < 0, and decrease cross-ratio if and only if
Sf > 0.

A.4 Yoccoz’s proof

In terms of distortion estimates, the importance of the non-flatness condition
on the critical points become clear if we restate Lemma A.3.1 for critical circle
maps:

Corollary A.4.1 (Corollary of Lemma A.3.1). Let f be a Cr critical circle
map, r ≥ 3, with irrational rotation number, and let c ∈ S1 be a non-flat
critical point of f of order d ≤ r. For any C > 1 there exists n0 ∈ N such
that for any n ≥ n0:

C−1
(
sn(f)

)d ≤ ∣∣f(In+1)
∣∣∣∣f(In)
∣∣ ≤ C

(
sn(f)

)d
where sn(f) = |In+1|

|In| =
d
(
fqn+1 (c),c

)
d
(
fqn (c),c

) is the n-th scaling ratio of f (see Section

A.2.3), and the sequence {qn}n∈N is the sequence of return times given by the
rotation number of f (see Section A.1.1).

In 1984 Yoccoz [63] extended Denjoy’s result to critical circle maps with
only non-flat critical points:

Theorem A.4.2. Let f be a C1 orientation preserving circle homeomor-
phism with irrational rotation number θ and with k ≥ 1 critical points
c1, c2, ..., ck. Suppose that:
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1. logDf has bounded variation in any compact interval that contains no
critical points.

2. Given any j ∈ {1, 2, ..., k} there exist constants εj, Aj, Bj > 0 and
sj ∈ N such that:

• (Df)−1/2 is a convex3 function in (cj − εj, cj) and in (cj, cj + εj).

• Given |t| < εj we have that Aj|t|sj ≤ (Df)(cj + t) ≤ Bj|t|sj .

Then f is topologically conjugate to the rigid rotation of angle θ.

Some remarks about the second condition:

• If f is C3 then g = (Df)−1/2 is C2 away from the critical points of f ,
and D2g = (−1/2)gSf , where Sf denote the Schwarzian derivative of
f (see Lemma A.3.3). In particular g is a strictly convex function if
and only if Sf < 0, and this always happens in a neighbourhood of a
non-flat critical point, as we said in the previous section.

• As we also saw in the previous section, if f is Cr and cj is a non-flat
critical point of order d for some j ∈ {1, 2, ..., k} and some 2 ≤ d ≤
r, then the numbers Aj and Bj can be chosen defining a small open

neighbourhood of
(Ddf)(cj)

(d−1)!
, and the exponent sj is equal to d − 1 (the

last derivative vanishing at the critical point).

With this we conclude the following:

Corollary A.4.3. Any C3 orientation-preserving circle homeomorphism with
irrational rotation number and only non-flat critical points is topologically
conjugate to the corresponding rigid rotation.

In particular any C3 critical circle map (with irrational rotation number
and only non-flat critical points) is minimal and so the support of its unique
invariant Borel probability µ is the whole circle. As we said in the introduc-
tion of this thesis, however, in the case of exactly one critical point it has been
proved that the measure µ is always singular with respect to Lebesgue mea-
sure: there exists a Borel set A ⊂ S1 such that µ(A) = 1 and Leb(A) = 0 (see
[25, Theorem 4, page 182] or [18, Proposition 1, page 219]). We recall again
that the condition of non-flatness on the critical points cannot be removed:
in [19] Hall constructs C∞ homeomorphisms of the circle with no periodic

3We say that g : I → R is a convex function if for any a < b ∈ I and any t ∈ [a, b] we

have the inequality: g(t)− g(a) ≤ (t− a)
(
g(b)−g(a)
b−a

)
.
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points and no dense orbits (those examples present two critical points which
are flat).

Since flat critical points do not exist for non-constant real-analytic maps
we have:

Corollary A.4.4. Any real-analytic orientation preserving circle homeomor-
phism with irrational rotation number is topologically conjugate to the corre-
sponding rigid rotation.

A.4.1 Degenerated cross-ratio

Given an interval J ⊂ S1 with boundary points a and b we define:

M(f, J) =
|f(J)|
|J |

(
Df(a)Df(b)

)−1/2

with the convention that M(f, J) = +∞ if a or b are critical points of f .
Let ε > 0 and let Jε ) J such that both components of Jε \ J (call them

Lε and Rε) has length ε. Then:

Cr(f, J, Jε) =
|f(J)||f(Jε)|

|J |
(
|J |+ 2ε

)
Df(xε)Df(yε)

where xε ∈ Lε and yε ∈ Rε are given by the Mean Value Theorem. Since f

is C1 we have that limε→0 Cr(f, J, Jε) =
(
M(f, J)

)2
, and that is why we call

M the degenerated cross-ratio.
The main point in the proof of Theorem A.4.2 is the following estimate

on the distortion of the degenerated cross-ratio of high iterates: close to
the critical points logDf has unbounded variation, but still the map f does
not contract the degenerated cross-ratio too much, provided that the critical
points are non-flat.

Lemma A.4.5. Let f as in Theorem A.4.2. There exists a positive constant
δ > 0 such that for any n ≥ 1, any p ∈ {0, ..., qn+1}, any x ∈ S1 and
any interval J = (a, b) contained in the arc

(
f−qn(x), f qn(x)

)
we have that:

M(fp, J) ≥ δ.

Proof. Following Yoccoz we split the family
{
J, f(J), ..., f p−1(J)

}
in four

disjoint families F1, F2, F3 and F4 as follows:

• F1 contains the intervals f i(J) that are disjoint of the intervals:[
cj −

εj
2
, cj +

εj
2

]
for any j ∈ {1, ..., k}.
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• F2 contains the intervals f i(J) that contain some interval of the form:[
cj − εj, cj −

εj
2

]
or some interval of the form:[

cj +
εj
2
, cj + εj

]
Note that f i(J) may contain the critical point cj.

• F3 contains the intervals f i(J) that are contained on an interval (cj −
εj, cj + εj), intersects [cj − εj/2, cj + εj/2] but not contain the critical
point cj.

• F4 contains the intervals f i(J) that are contained in some interval
(cj − εj, cj + εj) and contain the critical point cj.

Note that:

M(fp, J) =

p−1∏
i=0

M
(
f, f i(J)

)
=

4∏
l=1

 ∏
f i(J)∈Fl

M
(
f, f i(J)

)
Note also that #F2 ≤ 4k and #F4 ≤ 2k since the family

{
J, f(J), ..., f qn+1−1(J)

}
has multiplicity of intersection 2.

• The intervals in the family F1 are treated in the same way as in Lemma
A.2.10: by the Mean Value Theorem for each f i(J) ∈ F1 there exists
a point xi ∈ f i(J) such that:

logM
(
f, f i(J)

)
= logDf(xi)−

1

2
logDf(f i(a))− 1

2
logDf(f i(b))

Let V > 0 be the total variation of logDf in the compact set:

K =

j=k⋂
j=1

(
cj −

εj
2
, cj +

εj
2

)c
Then: ∏

f i(J)∈F1

M
(
f, f i(J)

)
≥ exp(−2V )
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• Let ε = min{ε1, ..., εk}, d = minz∈K{Df(z)} > 0 with K as defined
above, and let D = maxz∈S1{Df(z)}. For any interval f i(J) in F2 we
have |f i(J)| ≥ ε

2
and so |f(f i(J))| ≥ dε

2
. In particular M

(
f, f i(J)

)
≥(

d
D

) (
ε
2

)
. Then:

∏
f i(J)∈F2

M
(
f, f i(J)

)
≥
(
d

D

)4k (ε
2

)4k

• Since (Df)−1/2 is well defined and convex in any member of F3 we
easily obtain that M

(
f, f i(J)

)
≥ 1 for any f i(J) ∈ F3: let g be the

affine map that coincide with (Df)−1/2 in the boundary points f i(a)
and f i(b), and note that:

M
(
f, f i(J)

)
=

(
g(f i(a))g(f i(b))

|f i(J)|

)(∫ f i(b)

f i(a)

Df(t)dt

)

Since (Df)−1/2 is convex, Df ≥ 1
g2

so:

M
(
f, f i(J)

)
≥
(
g(f i(a))g(f i(b))

f i(b)− f i(a)

)(∫ f i(b)

f i(a)

dt

g2(t)

)
and this is equal to 1 since g is affine. Then:∏

f i(J)∈F3

M
(
f, f i(J)

)
≥ 1

In particular this prove the well-known fact that maps with negative
Schwarzian derivative expand cross-ratio.

• Now we claim that if f i(J) ∈ F4 we have that:

M
(
f, f i(J)

)
≥ Aj

2Bj(sj + 1)

where cj is the critical point that belongs to f i(J). Indeed, let us
suppose that |f i(a) − cj| ≤ |f i(b) − cj| and let I = [cj, f

i(b)]. Note
that:

Df(f i(a))Df(f i(b)) ≤ B2
j |f i(a)− cj|sj |f i(b)− cj|sj

≤ B2
j |f i(b)− cj|2sj = (Bj|I|sj)2
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Also:

|f(I)| =
∫ f i(b)

cj

Df(t)dt ≥ Aj

∫ f i(b)

cj

|t− cj|sjdt

= Aj

(
|f i(b)− cj|sj+1

sj + 1

)
=

(
Aj

sj + 1

)
|I|sj+1

Combining these two estimates we obtain:

M
(
f, f i(J)

)
=
|f(f i(J))|
|f i(J)|

(
Df(f i(a))Df(f i(b))

)−1/2

≥ |f(I)|
2|I|

(
Df(f i(a))Df(f i(b))

)−1/2

≥ Aj
2Bj(sj + 1)

In particular if:

α = min
j∈{1,...,k}

{
Aj

2Bj(sj + 1)

}
we have that: ∏

f i(J)∈F4

M
(
f, f i(J)

)
≥ α2k

We finish the proof taking δ = exp(−2V )
(
d
D

)4k ( ε
2

)4k
α2k.

Note that the last estimates in the family F4 are false if we allow flat crit-
ical points as in Hall’s examples. Since we are working with the degenerated
cross-ratio instead of the usual one (defined in Section A.1.2), we cannot use
Lemma A.2.1 and so we prove Theorem A.4.2 from Lemma A.4.5 directly:

Proof of Theorem A.4.2. Suppose that there exists a wandering interval I ⊂
S1: fn(I) ∩ fm(I) = ∅ for all n 6= m ∈ Z.

Fix n ≥ 1. By the Mean Value Theorem there exist a ∈ f−qn−qn+1(I) and
b ∈ f−qn+1(I) such that:

Df qn+1(a) =
|f−qn(I)|

|f−qn−qn+1(I)|
and Df qn+1(b) =

|I|
|f−qn+1(I)|

Let J be the compact interval with boundary points a and b that contains
I, and let x ∈ I. By combinatorics we know that the intervals f−qn(I),
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f−qn−qn+1(I), I, f−qn+1(I) and f qn(I) are orderer in this way (or the opposite
depending if n is even or odd). In any case J ⊂

(
f−qn(x), f qn(x)

)
, and so

Lemma A.4.5 give us M(f qn+1 , J) ≥ δ, or:(
|f qn+1(J)|
|J |

)2 |f−qn−qn+1(I)||f−qn+1(I)|
|f−qn(I)||I|

≥ δ2

Equivalently:

|f−qn+1(I)|
|f−qn(I)|

≥
(

|J |
|f qn+1(J)|

)2( |I|
|f−qn−qn+1(I)|

)
δ2

Since I is a wandering interval there exists n0 ∈ N such that for all n ≥ n0

we have that: |f−qn−qn+1(I)| ≤ |I|3δ2. Using that |f qn+1(J)| ≤ 1 for all n ∈ N
we obtain:

|f−qn+1(I)|
|f−qn(I)|

≥
(
|J |
|I|

)2

> 1

since I is striclty contained in J . This contradicts the fact that the sequence
{|f−qn(I)|}n∈N goes to zero when n goes to infinity.

Yoccoz’s proof was the first time that estimates on cross-ratio distortion
were successfully applied in one-dimensional dynamics. In 1992 Martens, de
Melo and van Strien [37] went deeper with cross-ratio distortion techniques
and extended the theory to non-invertible dynamics: they proved that any
C2 map of the circle or any compact interval with only non-flat critical points
has no wandering interval. In other words: any open interval for which all
positive iterates are mutually disjoint is contained in the basin of a periodic
(maybe one-sided) attractor (see also [44] and [45, Chapter IV]).
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APPENDIX B

Proof of Lemma 1.5.1

In this appendix we prove Lemma 1.5.1, stated at the end of Chapter 1 and
used in Chapter 2. For that we need the following fact:

Lemma B.0.6. Let f1, ..., fn be C1 maps with C1 norm bounded by some
constant B > 0, and let g1, ..., gn be C0 maps. Then:

∥∥fn ◦ ... ◦ f1 − gn ◦ ... ◦ g1

∥∥
C0 ≤

(
n−1∑
j=0

Bj

)
max

i∈{1,...,n}

{∥∥fi − gi∥∥C0

}
whereas the compositions makes sense.

Proof. The proof goes by induction on n (when n = 1 we have nothing to
prove). Suppose that:

∥∥fn−1 ◦ ... ◦ f1 − gn−1 ◦ ... ◦ g1

∥∥
C0 ≤

(
n−2∑
j=0

Bj

)
max

i∈{1,...,n−1}

{∥∥fi − gi∥∥C0

}
.
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Then for any t:∣∣(fn ◦ ... ◦ f1 − gn ◦ ... ◦ g1)(t)
∣∣ ≤ ∣∣fn((fn−1 ◦ ... ◦ f1)(t))− fn((gn−1 ◦ ... ◦ g1)(t))

∣∣+
+
∣∣fn((gn−1 ◦ ... ◦ g1)(t))− gn((gn−1 ◦ ... ◦ g1)(t))

∣∣
≤ B

∣∣(fn−1 ◦ ... ◦ f1 − gn−1 ◦ ... ◦ g1)(t)
∣∣+
∥∥fn − gn∥∥C0

≤ B

(
n−2∑
j=0

Bj

)
max

i∈{1,...,n−1}

{∥∥fi − gi∥∥C0

}
+
∥∥fn − gn∥∥C0

≤

(
n−1∑
j=0

Bj

)
max

i∈{1,...,n}

{∥∥fi − gi∥∥C0

}
.

For K > 1 and r ∈ {0, 1, ...,∞, ω} recall from Chapter 1 that we denote
by Pr(K) the space of Cr critical commuting pairs ζ = (η, ξ) such that
η(0) = −1 (they are normalized) and ξ(0) ∈ [K−1, K].

Lemma B.0.7. Given M ∈ N, B > 0 and K > 1 there exists L(M,B,K) >
1 with the following property: let ζ1 = (η1, ξ1) and ζ2 = (η2, ξ2) be two renor-
malizable C3 critical commuting pairs satisfying the following five conditions:

1. ζ1, R(ζ1), ζ2 and R(ζ2) belong to P3(K).

2. The continued fraction expansion of both rotation numbers ρ(ζ1) and
ρ(ζ2) have the same first term, say a0, with a0 ≤M . More precisely:⌊

1

ρ(ζ1)

⌋
=

⌊
1

ρ(ζ2)

⌋
= a0 ∈

{
1, ...,M

}
.

3. max
{
‖η1‖C1 , ‖ξ1‖C1

}
< B.

4.
(
η1 ◦ ξ1

)
(0) and

(
η2 ◦ ξ2

)
(0) have the same sign.

5. ∣∣ξ1(0)− ξ2(0)
∣∣ < ( 1

K2

)(
K + 1

K − 1

)
.

Then we have:
d0

(
R(ζ1),R(ζ2)

)
≤ L · d0(ζ1, ζ2) ,

where d0 is the C0 distance in the space of critical commuting pairs (see
Section 1.3).
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Proof. Suppose that both
(
η1 ◦ ξ1

)
(0) and

(
η2 ◦ ξ2

)
(0) are positive, and let

V ⊂ R be the interval
[
0,max

{
(η1 ◦ ξ1)(0), (η2 ◦ ξ2)(0)

}]
. For α > 0 denote

by Tα the (unique) Möbius transformation that fixes −1 and 0, and maps α
to 1. Note that pα = α + α

(
1+α
1−α

)
is the pole of Tα. If α > K/(K + 2) then

pα /∈ [1/K,K], and if α ∈ [1/K,K/(K + 2)] then pα − α ≥
(

1
K

) (
K+1
K−1

)
. By

Item (5) in the hypothesis, and since ζ1 and ζ2 belong to P3(K) by Item (1),
there exists L0(K) > 1 such that:∥∥Tξ1(0)

∥∥
C1(V )

≤ L0 ,

∥∥Tξ1(0) − Tξ2(0)

∥∥
C0(V )

≤ L0

∣∣ξ1(0)− ξ2(0)
∣∣ ≤ L0 · d0(ζ1, ζ2) ,

∣∣ηa01

(
ξ1(0)

)
− ηa02

(
ξ2(0)

)∣∣ ≤ L0

∣∣η̃a01 (1)− η̃a02 (1)
∣∣ and

∥∥η̃1

∥∥
C1([0,1])

≤ L0

∥∥η1

∥∥
C1([0,ξ1(0)])

≤ L0B ,

where η̃i = Tξi(0) ◦ ηi ◦ T−1
ξi(0) for i ∈ {1, 2}. By Lemma B.0.6:

∣∣ηa01

(
ξ1(0)

)
− ηa02

(
ξ2(0)

)∣∣ ≤ L2
0

(
a0−1∑
j=0

Bj

)∥∥η̃1 − η̃2

∥∥
C0([0,1])

.

Defining L1(M,B,K) = L2
0

(∑M−1
j=0 Bj

)
we obtain:∣∣ηa01

(
ξ1(0)

)
− ηa02

(
ξ2(0)

)∣∣ ≤ L1 · d0(ζ1, ζ2) .

Therefore:∣∣Tξ1(0)

(
ηa01 (ξ1(0))

)
− Tξ2(0)

(
ηa02 (ξ2(0))

)∣∣ ≤ |Tξ1(0)

(
ηa01 (ξ1(0))

)
− Tξ1(0)

(
ηa02 (ξ2(0))

)
|

+ |Tξ1(0)

(
ηa02 (ξ2(0))

)
− Tξ2(0)

(
ηa02 (ξ2(0))

)
|

≤ L0

∣∣ηa01

(
ξ1(0)

)
− ηa02

(
ξ2(0)

)∣∣+ L0 · d0(ζ1, ζ2)

≤ (L0L1 + L0) · d0(ζ1, ζ2) .

Defining L2(M,B,K) = L0L1 + L0 we obtain:∣∣Tξ1(0)

(
ηa01 (ξ1(0))

)
− Tξ2(0)

(
ηa02 (ξ2(0))

)∣∣ ≤ L2 · d0(ζ1, ζ2) . (B.0.1)

Moreover there exists L3(M,B,K) ≥ L2 with the following four properties:
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• From Item (1) in the hypothesis, both Möbius transformations:

T
Tξi(0)

(
η
a0
i (ξi(0))

)
and also their inverses have C1 norm bounded by L3 in:

W =
[
0,max

{
Tξ1(0)

(
ηa01 (ξ1(0))

)
, Tξ2(0)

(
ηa02 (ξ2(0))

)}]
.

• Both Möbius transformations:

T
Tξi(0)

(
η
a0
i (ξi(0))

)
are at C0-distance less or equal than L3 · d0(ζ1, ζ2) in W (this follows
from (B.0.1) and Item (1) in the hypothesis).

• The same with their inverses, that is, both Möbius transformations:

T−1

Tξi(0)

(
η
a0
i (ξi(0))

)
are at C0-distance less or equal than L3 · d0(ζ1, ζ2) in [0, 1] (again this
follows from (B.0.1) and Item (1) in the hypothesis).

• The maps:

Tξ1(0) ◦ ηa01 ◦ ξ1 ◦ T−1
ξ1(0) and Tξ1(0) ◦ η1 ◦ T−1

ξ1(0)

have C1 norm bounded by L3 in [−1, 0] and [0, 1] respectively (this
follows from items (1), (2) and (3) in the hypothesis).

Note that for i = {1, 2} we have:

T
η
a0
i

(
ξi(0)
) ◦ ηa0i ◦ ξi ◦ T−1

η
a0
i

(
ξi(0)
) =

= T
Tξi(0)

(
η
a0
i (ξi(0))

) ◦ (Tξi(0) ◦ ηa0i ◦ ξi ◦ T−1
ξi(0)

)
◦ T−1

Tξi(0)

(
η
a0
i (ξi(0))

)
in [−1, 0], and:

T
η
a0
i

(
ξi(0)
) ◦ ηi ◦ T−1

η
a0
i

(
ξi(0)
) =

= T
Tξi(0)

(
η
a0
i (ξi(0))

) ◦ (Tξi(0) ◦ ηi ◦ T−1
ξi(0)

)
◦ T−1

Tξi(0)

(
η
a0
i (ξi(0))

)
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in [0, 1]. By Lemma B.0.6 and the four properties quoted above there exists
L4(M,B,K) ≥ L3 such that:∥∥T

η
a0
1

(
ξ1(0)
) ◦ ηa01 ◦ ξ1 ◦ T−1

η
a0
1

(
ξ1(0)
) − T

η
a0
2

(
ξ2(0)
) ◦ ηa02 ◦ ξ2 ◦ T−1

η
a0
2

(
ξ2(0)
)∥∥

C0 ≤

≤ L4 max
{∥∥T

Tξ1(0)

(
η
a0
1 (ξ1(0))

) − T
Tξ2(0)

(
η
a0
2 (ξ2(0))

)∥∥
C0 ,

d0(ζ1, ζ2),
∥∥T−1

Tξ1(0)

(
η
a0
1 (ξ1(0))

) − T−1

Tξ2(0)

(
η
a0
2 (ξ2(0))

)∥∥
C0

}
≤ L3L4 · d0(ζ1, ζ2) .

in [−1, 0], and:∥∥T
η
a0
1

(
ξ1(0)
) ◦ η1 ◦ T−1

η
a0
1

(
ξ1(0)
) − T

η
a0
2

(
ξ2(0)
) ◦ η2 ◦ T−1

η
a0
2

(
ξ2(0)
)∥∥

C0 ≤

≤ L4 max
{∥∥T

Tξ1(0)

(
η
a0
1 (ξ1(0))

) − T
Tξ2(0)

(
η
a0
2 (ξ2(0))

)∥∥
C0 ,

d0(ζ1, ζ2),
∥∥T−1

Tξ1(0)

(
η
a0
1 (ξ1(0))

) − T−1

Tξ2(0)

(
η
a0
2 (ξ2(0))

)∥∥
C0

}
≤ L3L4 · d0(ζ1, ζ2) .

in [0, 1]. Therefore we are done by taking L ≥ L3L4.

Proof of Lemma 1.5.1. Let f be a C3 critical circle map with irrational rota-
tion number ρ(f) = [a0, a1, ..., an, an+1, ...], and recall that we are assuming
that an < M for all n ∈ N. Let n0(f) ∈ N given by the real bounds, and
note that Rn(f) ∈ P3(K) for all n ≥ n0 since K > K0 by hypothesis and
therefore P3(K) ⊃ P3(K0). As a well-known corollary of the real bounds
(see for instance [12, Theorem 3.1]) there exists a constant B > 0 such that
the sequence {Rn(f)}n∈N is bounded in the C1 metric by B, and we are done
by taking L > 1 given by Lemma B.0.7.
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APPENDIX C

Annular Riemann Surfaces

In this appendix we briefly review some classical facts about Riemann sur-
faces (the book [14] is a major reference for the whole subject), we revisit the
notion of Poincaré disk (that we have used in Chapter 4) and finally we study
in some detail annular Riemann surfaces (in particular we give the precise
definition of the modulus of an annular Riemann surface, that we have used
extensively in Chapter 5).

C.1 Riemann surfaces

By a Riemann surface we mean a (connected) one-dimensional complex-
analytic manifold.

Theorem (Uniformization Theorem). Any simply connected Riemann sur-

face is conformally equivalent either to D, to C or to Ĉ.

For a complete proof of this deep result, obtained independently by Klein,
Poincaré and Koebe between 1882 and 1907, see [14, Chapter IV] (see also
[52] for an historical account).

Given a Riemann surface S, denote by π1(S) its fundamental group, and
by Aut(S) the group (under composition) of biholomorphisms of S. Since

the field of meromorphic functions of Ĉ is isomorphic to the field of rational
functions in the complex plane, we have that Aut(Ĉ) is isomorphic to the
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normalized Möbius group:

Aut(Ĉ) ∼=
{
z 7→ az + b

cz + d
: a, b, c, d ∈ C and ad− bc = 1

}
.

Let SL(2,C) be the group of 2×2 complex matrices of determinant equal
to 1 (the complex special linear group), and let PSL(2,C) the quotient of
SL(2,C) modulo the subgroup {±Id}. Both SL(2,C) and PSL(2,C) are 3-

dimensional complex Lie groups, and Aut(Ĉ) is isomorphic to PSL(2,C).

The groups Aut(C) and Aut(D) are formed by the elements of Aut(Ĉ)
that preserve C and D respectively (in particular both are Lie subgroups

of Aut(Ĉ)). It is easy to see that Aut(C) is the affine group:

Aut(C) =
{
z 7→ az + b : a ∈ C \ {0}, b ∈ C

}
,

and therefore, Aut(C) is a 2-dimensional complex Lie group.
A straightforward application of Schwarz Lemma gives the identity:

Aut(D) =

{
z 7→ eiθ

(
z − a
1− āz

)
: a ∈ D, θ ∈ R

}
,

that is, Aut(D) is diffeomorphic to the solid torus D×S1, which is isomorphic
to PSL(2,R), a 3-dimensional real Lie group.

Using the general theory of covering spaces we obtain from the Uni-
formization Theorem a complete classification of Riemann surfaces (again
see [14, Chapter IV] for a detailed proof):

Theorem (Uniformization of arbitrary Riemann surfaces). Any Riemann

surface S is conformally equivalent to S̃/Γ where S̃ is D, C or Ĉ, and Γ ∼=
π1(S) is a subgroup of Aut(S̃) acting discontinuously and without fixed points

(the conformal structure of S̃/Γ is the one induced by S̃ via the covering map).

No other Riemann surface rather than Ĉ itself is covered by Ĉ. The
plane C, the punctured plane C \ {0} (equivalently the cylinder C/Z) and
any torus (that is, any surface diffeomorphic to C/Z2) are covered by the
plane. Any other Riemann surface not conformally equivalent with one of
the above is covered by the unit disk D. In particular any Riemann surface
which is not homeomorphic to the sphere or torus (in the compact case), or
homeomorphic to the plane or the punctured plane (in the noncompact case)
is covered by the unit disk. This includes, for instance, compact Riemann
surfaces with negative Euler characteristic (genus g ≥ 2), and open sets in
the Riemann sphere whose complement contains at least three points.
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C.1.1 Riemannian metrics on surfaces

Let g1 and g2 be two Riemannian metrics on an orientable surface S. A
smooth diffeomorphism f : (S, g1) → (S, g2) is said to be conformal if there
exists a smooth function λ : S → (0,+∞) such that given z ∈ S and
v, w ∈ TzS we have:

g2

(
f(z)

)(
Df(z)v,Df(z)w

)
= λ(z)2 · g1(z)(v, w)

Equivalently, a conformal diffeomorphism is an angle-preserving diffeo-
morphism. In the complex plane the description of the group of conformal
diffeomorphisms (for the Euclidean metric) is well-known: the orientation-
preserving ones are the biholomorphisms, and the orientation-reversing ones
are the antiholomorphic diffeomorphisms. An isometry between Riemannian
metrics is a conformal diffeomorphism with λ ≡ 1. The group (under compo-
sition) of the isometries of a Riemannian metric g in S is denoted by Iso(S, g),
or simply by Iso(S) if no confusion is possible. For instance, any element of
Iso(C) is a translation composed with an orthogonal transformation, that is,
a map of the form z 7→ A(z + b) for A ∈ O(2) = {A ∈ GL(2,R) : AtA =
AAt = Id}, and b any complex number. Hence Iso(C) is a 3-dimensional real
Lie group, with two (non-compact) connected components.

A Riemannian metric g on a Riemann surface S is said to be conformal if
local charts are conformal with respect to the Euclidean metric in the plane,
that is, given a local chart U in the complex plane there exists a smooth
function λ : U → (0,+∞) such that g(z)(v, w) = λ(z)2 〈v, w〉 for any z ∈ U
and any v, w ∈ TzU , where 〈·〉 denote the Euclidean inner product in the
complex plane. The smooth function λ is called the coefficient of conformality
of the metric g. By Gauss isothermal coordinates any Riemannian metric
on an oriented surface is locally conformally equivalent to the Euclidean
metric in the plane [57, Section 2.5, Theorem 2.5.14]. One may think on
Morrey’s theorem (stated as Theorem 3.2.4 in Chapter 3, see also Ahlfors-
Bers theorem, stated as Theorem 3.3.1) as the measurable generalization of
Gauss coordinates.

In the sequel the word curvature means Gauss curvature. There is a
special Riemannian metric in the unit disk [14, Section IV.8.4]:

Theorem (Poincaré metric). Up to multiplication by positive scalars, there
exists a unique Riemannian metric in D whose group of isometries is the
group of conformal diffeomorphisms of D. Such a metric is complete (any
two points in D are joined by a minimizing geodesic), conformal and has con-
stant negative curvature. By normalization we can choose it with curvature
−1. The geodesics of this metric are the circles which are orthogonal to the
boundary of D.
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Note that C and Ĉ also admit a Riemannian metric of constant curvature
(zero and positive respectively). In the planar case this metric is of course
the Euclidean metric, and since it is invariant under translations projects to
any quotient. In particular any Riemann surface admits, by projecting from
the holomorphic universal covering, a complete and conformal Riemannian
metric with constant curvature. The coefficients of conformality in the simply
connected models are:

• λ(z) = 2
1+|z|2 in Ĉ;

• λ(z) = 1 in C;

• λ(z) = 2
1−|z|2 in D.

In the case of the sphere the definition is valid away from the point at
infinity, where we extend the definition with the local chart w = 1/z. Still in

this case, if we identify Ĉ with the unit sphere S2 in R3, we obtain that Iso(Ĉ)
is a 3-dimensional real compact Lie group, isomorphic to the orthogonal group
O(3).

In the three simply connected models, the group of isometries of the
Riemannian metric of constant curvature acts transitively : given any two
points there exists an isometry taking one into the other. We will see in
Lemma C.2.1 that this is no longer true for typical annular Riemann surfaces.

C.1.2 The upper half-plane

Another model for the Poincaré metric which is often very useful is the upper
half-plane H = {z ∈ C : =(z) > 0}. This model is conformally equivalent
to the unit disk via the Möbius transformation z 7→ i−z

i+z
, with inverse given

by z 7→ i
(

1−z
1+z

)
(see also the proof of Lemma 5.2.9 in Chapter 5). The group

Aut(H) is the group of Möbius transformations of the Riemann sphere that
preserve the upper half-plane. In particular they preserve the real line and
so they have real coefficients:

Aut(H) =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ R and ad− bc = 1

}
∼= PSL(2,R).

Note that Aut(H) already acts transitively in H. Moreover, given z1, z2 ∈
H, v1 ∈ Tz1H and v2 ∈ Tz2H, with ‖v1‖z1 = ‖v2‖z2 = 1, there exists ψ ∈
Aut(H) such that ψ(z1) = z2 and Dψ(z1)v1 = v2. From this follows that
Aut(H) is also diffeomorphic to T 1H, the unit tangent bundle of H for the
hyperbolic metric. This is very useful in some other contexts, for instance
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when proving that the geodesic flow for the hyperbolic metric on compact
surfaces with negative Euler characteristic is an Anosov flow [24, Section
17.5].

A straightforward computation shows that in the upper half-plane the
Poincaré metric’s coefficient of conformality is given by λ(z) = 1

=(z)
. The

geodesics in the upper half-plane are the circles and lines orthogonals to the
real axis. The group of isometries Iso(H) is generated by Aut(H) together
with the symmetry around the imaginary axis z 7→ −z̄, which is an antiholo-
morphic involution.

C.1.3 The CI spaces

A third model for the Poincaré metric, crucial in this thesis, is the following:
given an open interval I = (a, b) ⊂ R let CI =

(
C\R

)
∪I = C\

(
R\I

)
. Note

that CI is an open, connected and simply connected set which is not the whole
plane. By the Riemann mapping theorem we can endow CI with a complete
and conformal Riemannian metric of constant curvature equal to −1, just
by pulling back the Poincaré metric of D by any conformal uniformization.
Note that I is always a hyperbolic geodesic by symmetry.

We revisit in this section the notion of Poincaré disk, introduced into
the subject by Sullivan in his seminal article [55]: for θ ∈ (0, π) let D be
the open disk in the plane intersecting the real line along I and for which
the angle from R to ∂D at the point b (measured anticlockwise) is θ. Let
D+ = D ∩ {z : =(z) > 0} and let D− be the image of D+ under complex
conjugation.

Define the Poincaré disk of angle θ based on I as Dθ(a, b) = D+∪I∪D−,
that is, Dθ(a, b) is the set of points in the complex plane that view I under
an angle ≥ θ (see Figure C.1). Note that for θ = π

2
the Poincaré disk Dθ(a, b)

is the Euclidean disk whose diameter is the interval (a, b).
In Chapter 4 we mentioned the following:

Lemma C.1.1. Let I = (a, b) fixed. For a given θ ∈ (0, π) let ε(θ) =
log tan

(
π
2
− θ

4

)
. The set of points in CI whose hyperbolic distance to I is less

than ε is the Poincaré disk Dθ(a, b).

Proof. We work first in the upper half-plane. Fix some ε > 0 and denote by
Uε the set of points in H whose hyperbolic distance to the imaginary axis is
less than ε. We claim that Uε is the cone:{

z ∈ H :
<(z)

=(z)
< tanα

}
,
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Figure C.1: Poincaré disk.

where the Euclidean angle α is related to ε by the formula:

ε =

(
1

2

)
log

(
1 + sinα

1− sinα

)
.

Indeed, the geodesics orthogonal to the vertical axis are the (upper half
part of the) circles centred at zero. Since the homotheties are isometries of
the hyperbolic metric in H, Uε is a cone whose boundary is composed by
two straight lines meeting the vertical geodesic {<(z) = 0} at the origin and
with the same Euclidean angle α ∈

(
0, π

2

)
. We will focus on the right sector,

that is, the complex numbers with positive imaginary part and argument in(
π
2
− α, π

2

)
. All arcs of circles centred at the origin inside this part of the

cone have the same length (again because the homotheties are isometries).
We want to compute the angle α in terms of this length. Let γ :

(
0, π

2

)
→ H

such that γ(t) = eit. The distance between γ(t) and i is:

dhyp
(
γ(t), i

)
=

∫ π
2

t

‖γ′(s)‖hyp ds =

∫ π
2

t

‖γ′(s)‖euc
=
(
γ(s)

) ds

=

∫ π
2

t

ds

sin s
=

∫ 0

cos t

dx

x2 − 1
=

(
−1

2

)(∫ 0

cos t

dx

1 + x
+

∫ 0

cos t

dx

1− x

)
=

(
−1

2

)
log

(
1− cos t

1 + cos t

)
=

(
1

2

)
log

(
1 + cos t

1− cos t

)
.

Since α = π
2
− t, we have cos t = sinα and then:

ε =

(
1

2

)
log

(
1 + sinα

1− sinα

)
,

as was claimed. Now we translate this information to the new model CI .
Note that is enough to prove the lemma for the case I = (−1, 1) (given a < b
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in R, the map z 7→ (1/2)
(
(b−a)z+a+ b

)
is an isometry between C(−1,1) and

C(a,b) that also preserve Euclidean angles).
We need an explicit uniformization from the upper half-plane onto CI .

In this case we cannot expect a Möbius transformation: any biholomorphism
from H to CI must have two (simple) critical points in ∂H whose images
must be the points −1 and 1 (otherwise C(−1,1) would contain a complex
neighbourhood of −1 and 1). We want a uniformization sending the vertical
geodesic {<(z) = 0} onto (−1, 1), so 0 and ∞ will be its critical points.

Consider the five rational maps on the Riemann sphere Ĉ defined by:

• P (z) = z2;

• T−1(z) = z − 1;

• I(z) = 1/z;

• T1/2(z) = z + 1/2;

• M2(z) = 2z.

The first map is a quadratic polynomial, and the others four are Möbius
transformations. Then Φ : H→ CI defined by:

Φ(z) =
(
M2 ◦ T1/2 ◦ I ◦ T−1 ◦ P

)
(z) =

z2 + 1

z2 − 1

is a biholomorphism that sends the imaginary axis (the part contained in H)
onto the interval I = (−1, 1). As we said Φ has two simple critical points at
0 and ∞ (the ones of P ) whose images are, respectively, the points −1 and
1. Numbers with positive real part goes to numbers with negative imaginary
part and viceversa. Points in H symmetric about the imaginary axis are
mapped by Φ to conjugate points in CI .

Now we prove that Φ(Uε) is a Poincaré disk, and compute its angle in
terms of ε: since P sends lines passing through the origin to lines passing
through the origin, and since we will apply the involution I to lines not
containing the origin (the pole of I) we already know that the boundary of
the cone in H is transformed by Φ onto the arc of a circle bounded by −1
and 1. By the symmetry of Φ we have that Φ(Uε) is a Poincaré disk. We
only need to compute its angle. Given α ∈

(
0, π

2

)
define c(α) by:

c(α) =
1

tan(π − 2α)
=

−1

tan(2α)
.
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The map α 7→ c(α) is an orientation preserving real-analytic diffeomor-
phism between

(
0, π

2

)
and the whole real line. Now we apply our composition

Φ to the cone Uε: since P double the angle between lines meeting at the ori-
gin (this is the only moment during the composition that angles are changed,
since the other four maps involved are conformal diffeomorphisms), we need
to apply the involution I to the straight line:

l =
{
z ∈ C : <(z) = c(α)λ− 1,=(z) = λ for λ ∈ (0,+∞)

}
.

The angle at −1 between l and the interval (−1, 0) is π − 2α. Since I is
conformal and −1 is a fix point, the angle at −1 between I(l) and

(
−∞,−1

)
is also π − 2α. This give us θ = π − 2α, now we want to relate θ directly
with ε. The identities:

1 + sinα

1− sinα
=

(
1 + sinα

cosα

)2

= tan2
(π

4
+
α

2

)
= tan2

(
π

2
− θ

4

)
,

give us:

ε =

(
1

2

)
log

(
1 + sinα

1− sinα

)
= log tan

(
π

2
− θ

4

)
,

and this finishes the proof.

C.2 Annular Riemann surfaces

We say that a Riemann surface S is annular if its fundamental group π1(S) is
isomorphic to Z. For instance, any open and connected set in the Riemann
sphere Ĉ whose complement has exactly two connected components is an
annular Riemann surface. Besides C \ {0} and D \ {0}, the canonical models
are the following:

Lemma C.2.1. Let R > 1 and let AR =
{
z ∈ C : R−1 < |z| < R

}
endowed

with the conformal structure induced by the complex plane.

• The group Aut(AR) is generated by the rigid rotations and the confor-
mal involution around the unit circle z 7→ 1/z. In particular Aut(AR)
is isomorphic to O(2), and so is a non-abelian 1-dimensional real com-
pact Lie group with two connected components.

• The group of isometries of the hyperbolic metric in AR is generated
by Aut(AR) together with the antiholomorphic involution z 7→ z̄. In
particular the action of Iso(AR) is non-transitive, since the orbit of a
point z0 ∈ AR under the action is the union of the two circles {z ∈
AR : |z| = |z0|} and {z ∈ AR : |z| = 1/|z0|}.
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It follows that any biholomorphism or antiholomorphic diffeomorphism of
AR preserves the unit circle.

Proof. Let π : H→ AR be the holomorphic universal covering map given by:

π(z) =

(
1

R

)
exp

[(
2 logR

iπ

)
log z

]
where log z denote the principal branch of the logarithm (for z = reiθ with
0 ≤ θ < 2π, we have log z = log r + iθ). Since the fundamental group of AR
is isomorphic to the integers, the group of automorphisms of the covering
is generated by a single conformal diffeomorphism of the upper-half plane,
which in this case is the homothety T : H→ H such that T (z) = λz, where
λ > 1 is given by:s

λ = exp

(
π2

logR

)
.

Any biholomorphism (or antiholomorphic diffeomorphism) of AR must
lift to a biholomorphism (antiholomorphic diffeomorphism) of H, so it must
be a finite composition of the following four models:

• Parabolic: z 7→ z + b with b ∈ R (no fixed points and no invariant
geodesics);

• Hyperbolic: z 7→ az with a > 0 (no fixed points, a unique invariant
geodesic at the imaginary axis);

• Elliptic: z 7→ −1/z (with a single fixed point at i);

• Orientation-reversing : z 7→ −z̄ (symmetry around the imaginary axis).

Note that horizontal translations (parabolic model) do not project to the
annulus AR (they do not belong to the normalizer of the group generated by T
in Aut(H)). The homotheties (hyperbolic model) project to rigid rotations
(z 7→ eiθz with θ = (−2/π) logR log a) and the elliptic model z 7→ −1/z
projects to z 7→ 1/z. Finally, the orientation-reversing model projects to
z 7→ 1/z̄ in AR (geometric inversion around the unit circle).

Summarizing, if G : AR → AR is a biholomorphism or an antiholomorphic
diffeomorphism in the annulus AR it must be a finite composition of the
geometric involution around the unit circle z 7→ 1/z̄, rigid rotations and
the conformal involution around the unit circle z 7→ 1

z
. Finally, to see that

Aut(AR) ∼= O(2), consider the isomorphism that send the involution z 7→ 1/z
to the matrix:
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(
1 0
0 −1

)
,

and any rotation z 7→ eiθz to the matrix:(
cos θ − sin θ
sin θ cos θ

)
.

The unit circle is the unique simple closed geodesic for the hyperbolic
metric in AR, and that is why any isometry must preserve it. Since [i, λi] is
a fundamental domain for the covering of the unit circle by π, the hyperbolic
length of S1 in AR is equal to the hyperbolic distance between i and λi in H,
which is precisely log λ = π2

logR
(consider the parametrization by arc-length

of the imaginary axis γ : R→ H given by γ(t) = iet). In particular, log λ is
a conformal invariant of AR, and so it is R. In Chapter 5 we mentioned the
following estimate:

Lemma C.2.2. Given 1 < r < R consider α = α(r, R) ∈
(
0, π

2

)
and ε =

ε(r, R) > 0 defined by:

α =
(π

2

)( log r

logR

)
and ε =

(
1

2

)
log

(
1 + sinα

1− sinα

)
.

Then Ar =
{
z ∈ AR : dAR(z, S1) < ε

}
, where dAR is the hyperbolic

distance in the annulus AR.

Proof. As in the proof of Lemma C.2.1 above consider the holomorphic cov-
ering π : H→ AR given by:

π(z) =

(
1

R

)
exp

[(
2 logR

iπ

)
log z

]
.

The lift of the unit circle by π is the vertical geodesic of equation
{
<(z) =

0
}

, and the restriction of π to the cone {z ∈ H : <(z) < tan(α)=(z)} covers
the annulus Ar. In the proof of Lemma C.1.1 we have shown that this cone
is precisely the set of points in H at hyperbolic distance at most ε from the
vertical geodesic

{
<(z) = 0

}
.

From the Uniformization Theorem we are able to classify all annular
Riemann surfaces:
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Theorem C.2.3 (Uniformization of annular Riemann surfaces). Any annu-
lar Riemann surface is conformally equivalent either to C \ {0}, D \ {0} or
to an annulus AR =

{
z ∈ C : R−1 < |z| < R

}
. In the last case the value of

R > 1 is unique.

Proof. Let S be an annular Riemann surface, and suppose that S is not
biholomorphic to the punctured plane C \ {0}. By the Uniformization The-
orem S is conformally equivalent to a quotient H/Γ where Γ ∼= π1(S) is a
subgroup of the group of Möbius transformations of H acting discontinuously
and without fixed points. Since π1(S) ∼= Z the group Γ is generated by a
single Möbius transformation ψ : H→ H, and since ψ has no fixed points in
H and has at most two in H, we have two cases to consider:

1. If ψ has only one fix point in H we can conjugate ψ with a suitable
Möbius transformation φ̃ : H → H taking this fix point to ∞ to ob-
tain for all z ∈ H that φ̃

(
ψ(z)

)
= φ̃(z) + 1. Then φ̃ projects to a

biholomorphism φ from S to the quotient of H by the group generated
with the horizontal translation z 7→ z + 1, and this quotient is con-
formally equivalent to D \ {0}, via the holomorphic universal covering
map π : H→ D \ {0} defined by z 7→ exp(2πiz).

2. If ψ has two fixed points in H we can conjugate ψ with a suitable
Möbius transformation φ̃ : H → H taking these fixed points to 0 and
∞ to obtain for all z ∈ H that φ̃

(
ψ(z)

)
= λφ̃(z) for some λ > 1.

Then φ̃ projects to a biholomorphism φ from S to the quotient of H
by the group generated with the homothety z 7→ λz, and this quotient
is conformally equivalent to AR if (and only if) R = exp

(
π2

log λ

)
, as we

saw in Lemma C.2.1.

Any Riemann surface whose universal covering is H, not conformally
equivalent to H itself, to D \ {0} or to some annulus AR, has a non-abelian

fundamental group (if S̃ = H and π1(S) is abelian, it must be cyclic. See [14,
Section IV.6.8]). Conversely any Riemann surface with non-abelian funda-
mental group is covered by H (see the discussion after the statement of the
Uniformization Theorem for arbitrary Riemann surfaces).

Let S be an annular Riemann surface not conformally equivalent to D\{0}
neither to C \ {0}, and let R > 1 such that S ∼= AR. While the hyperbolic
metric in D \ {0} has no closed geodesics, there exists a unique simple closed
geodesic for the hyperbolic metric in S whose length, equal to π2/ logR, is a
conformal invariant of S. This motivates the following definition:
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Definition C.2.4. Let S be an annular Riemann surface not conformally
equivalent to D \ {0} neither to C \ {0}. Define the conformal modulus of S
by mod(S) = 2 logR, where the constant R > 1 is given by Theorem C.2.3.

With this definition the length of the unique simple closed geodesic of
S is equal to 2π2/mod(S). In Chapter 3 we gave the analytic definition
of quasiconformal homeomorphisms (see Definition 3.2.3). We give now the
geometric definition:

Definition C.2.5. Let K ≥ 1, and let U and V be two open and connected
sets in the complex plane. An orientation-preserving homeomorphism f :
U → V is K-quasiconformal if for any annulus A compactly contained in U
we have:

1

K
mod(A) ≤ mod

(
f(A)

)
≤ K mod(A).

We wont prove here that both definitions are equivalent, see [32, Chapter
I, Section 7]. To compute the modulus of an annulus is a very hard problem,
a classical approach is by using extremal length methods: for R > 1 let
AR =

{
z ∈ C : R−1 < |z| < R

}
be a round annulus symmetric around the

unit circle. Let Γ1 be the family of connected piecewise C1 arcs contained
in the annulus AR which join the boundary circles of AR, and let Γ2 be the
family of connected piecewise C1 closed curves contained in the annulus AR
which separate the boundary circles (they have non-zero winding number
about the origin).

For any given measurable function ρ : C → [0,+∞) denote by A(ρ) the
area of the conformal metric ρ|dz|, that is:

A(ρ) =

∫∫
C

(
ρ(x+ iy)

)2
dxdy .

We consider only those ρ such that A(ρ) ∈ (0,+∞). For any γ : (a, b) → C
denote by Lγ(ρ) its length with respect to ρ|dz|, that is:

Lγ(ρ) =

∫
γ

ρ|dz| =
∫ b

a

ρ
(
γ(t)

)∣∣γ′(t)∣∣dt
if t 7→ ρ

(
γ(t)

)
is measurable, and Lγ(ρ) = +∞ otherwise. Finally, for

i ∈ {1, 2} let:
Li(ρ) = inf

γ∈Γi

{
Lγ(ρ)

}
.

We claim that for any conformal metric ρ|dz| we have:

L2
1(ρ)

A(ρ)
≤ mod(AR)

2π
≤ A(ρ)

L2
2(ρ)

. (C.2.1)
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Indeed, fix θ ∈ [0, 2π) and let γ ∈ Γ1 be the ray given by γ(r) = reiθ for
r ∈ (1/R,R). Then we have:

L1(ρ) ≤ Lγ(ρ) =

∫
γ

ρ|dz| =
∫ R

1
R

ρ(reiθ)dr

for all θ ∈ [0, 2π). By Cauchy-Schwarz inequality we get:

(
2πL1(ρ)

)2 ≤

(∫ 2π

0

∫ R

1
R

ρ(reiθ)drdθ

)2

≤

(∫ 2π

0

∫ R

1
R

(
ρ(reiθ)

)2
r drdθ

)(∫ 2π

0

∫ R

1
R

dr

r
dθ

)

=

(∫∫
AR

(
ρ(x+ iy)

)2
dxdy

)
2πmod(AR)

≤ A(ρ)2πmod(AR).

Therefore:
mod(AR)

2π
≥ L2

1(ρ)

A(ρ)
,

as was claimed. On the other hand, for any circle γ centered at the origin
with radius r ∈ (1/R,R) we have:

L2(ρ) ≤ Lγ(ρ) = r

∫ 2π

0

ρ(reiθ)dθ

since parametrizing with γ(θ) = reiθ gives
∣∣γ′(θ)∣∣ = r. Then we have:

L2(ρ)

r
≤
∫ 2π

0

ρ(reiθ)dθ, and then L2(ρ)

∫ R

1
R

dr

r
≤
∫ R

1
R

∫ 2π

0

ρ(reiθ)dθdr .

Again by Cauchy-Schwarz inequality we get that:

L2
2(ρ)

(
mod(AR)

)2 ≤

(∫ R

1
R

∫ 2π

0

ρ(reiθ)dθdr

)2

≤

(∫ R

1
R

∫ 2π

0

(
ρ(reiθ)

)2
r dθdr

)(∫ R

1
R

∫ 2π

0

1

r
dθdr

)

=

(∫∫
AR

(
ρ(x+ iy)

)2
dxdy

)
2πmod(AR)

≤ A(ρ)2πmod(AR).
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Therefore:
mod(AR)

2π
≤ A(ρ)

L2
2(ρ)

,

as was claimed. This proves inequalities (C.2.1).
A conformal metric ρext|dz| is said to be an extremal metric of the families

Γ1 and Γ2 in the annulus AR if both inequalities in (C.2.1) are equalities.
The shortest curves in Γ2 for such a metric must be the circles around the
origin, which must have all the same length. Moreover ρext must be an
scalar multiple of |z|−1 (to have equality when applying Cauchy-Schwarz).
In particular ρext must be constant when restricted to circles around the
origin. If we normalize with the condition that those circles have length
equal to one, we obtain the conformal metric in the complex plane ρext|dz|
defined by ρext(z) = 1

2π|z| for any z ∈ AR, and ρext ≡ 0 in C \ AR. Let us

show that indeed both inequalities in (C.2.1) are equalities for ρext|dz|. Note
first that:

A(ρext) =

∫∫
AR

(
ρext(x+ iy)

)2
dxdy

=

∫ R

1
R

∫ 2π

0

(
ρext(reiθ)

)2
r dθdr

=

∫ R

1
R

∫ 2π

0

r

(2πr)2
dθdr

=
mod(AR)

2π
.

From the definition of ρext we see at once that the shortest curves joining the
boundary circles of AR are the rays γ(r) = reiθ for r ∈ (1/R,R) and fixed
θ ∈ [0, 2π). For any such ray γ we have:

Lγ(ρ
ext) =

∫
γ

ρext|dz| =
∫ R

1
R

ρext(reiθ)dr =
1

2π

∫ R

1
R

dr

r
=

mod(AR)

2π
,

and therefore:
L2

1(ρext)

A(ρext)
=

mod(AR)

2π
,

as was claimed. On the other hand, for any γ ∈ Γ2 we have:

Lγ(ρ
ext) =

∫
γ

ρext|dz| = 1

2π

∫
γ

|dz|
|z|
≥ 1

2π

∣∣∣∣∫
γ

dz

z

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
γ

dz

z

∣∣∣∣ ≥ 1 ,
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since curves in Γ2 have non-zero winding number about the origin. But for
any circle γ centered at the origin with radius r ∈ (1/R,R) we have the
equality Lγ(ρ

ext) = 1, and then L2(ρext) = 1, and then:

A(ρext)

L2
2(ρext)

= A(ρext) =
mod(AR)

2π
.

Therefore the conformal metric ρext|dz| is the extremal metric (unique up to
multiplication by a constant) for both families Γ1 and Γ2 in the annulus AR
as was claimed. For more about extremal length methods we refer the reader
to the books [1, Chapter I, Section D] and [32, Chapter I, Section 6].
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APPENDIX D

Proof of Proposition 3.3.2

In this appendix we give the proof of Proposition 3.3.2 of Chapter 3:

Proof of Proposition 3.3.2. Assume that each µn is defined in the whole com-
plex plane, just by extending as zero in the complement of the domain U ,
that is:

µn(z) ∂Gn(z) = ∂Gn(z) for a.e. z ∈ U , and µn(z) = 0 for all z ∈ C \ U .

Fix n ∈ N. If µn ≡ 0 we take Hn = Gn|V , so assume that ‖µn‖∞ > 0
and fix some small ε ∈

(
0, 1−‖µn‖∞

)
. Denote by Λ the open disk B

(
0, (1−

ε)/‖µn‖∞
)

centred at the origin and with radius (1−ε)/‖µn‖∞ in the complex

plane (note that D ⊂ Λ). Consider the one-parameter family of Beltrami
coefficients

{
µn(t)

}
t∈Λ

defined by:

µn(t) = tµn.

Note that for all t ∈ Λ we have
∥∥µn(t)

∥∥
∞ < 1−ε < 1. Denote by fµn(t) the

solution of the Beltrami equation with coefficient µn(t), given by Theorem
3.2.4, normalized to fix 0, 1 and∞. Note that fµn(0) is the identity and that,
by uniqueness, there exists a biholomorphism Hn : fµn(1)(U)→ Gn(U) such
that:

Gn = Hn ◦ fµn(1) in U .

By Ahlfors-Bers theorem (Theorem 3.3.1) we know that for any z ∈ C the
curve

{
fµn(t)(z) : t ∈ [0, 1]

}
is smooth, that is, the derivative of fµn(t) with

123
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respect to the parameter t exists at any z ∈ C and any s ∈ [0, 1]. Following
Ahlfors [1, Chapter V, Section C], we use the notation:

ḟn(z, s) = lim
t→0

fµn(s+t)(z)− fµn(s)(z)

t
.

The limit exists for every z ∈ C and every s ∈ [0, 1] (actually for every
s ∈ Λ), and the convergence is uniform on compact sets of C. Then we have:∥∥fµn(1) − Id

∥∥
C0(U)

= sup
z∈U

{∣∣fµn(1)(z)− z
∣∣} ≤ sup

z∈U

{∫ 1

0

∣∣ḟn(z, s)
∣∣ds} .

Moreover, ḟn has the following integral representation (see [1, Chapter V,
Section C, Theorem 5] for the explicit computation):

ḟn(z, s) = −
(

1

π

)∫∫
C
µn(w)S

(
fµn(s)(w), fµn(s)(z)

) (
∂fµn(s)(w)

)2
dxdy ,

for every z ∈ C and every s ∈ [0, 1], where w = x+ iy and:

S(w, z) =
1

w − z
− z

w − 1
+
z − 1

w
=

z(z − 1)

w(w − 1)(w − z)
.

Since each µn is supported in U we have:

ḟn(z, s) = −
(

1

π

)∫∫
U

µn(w)S
(
fµn(s)(w), fµn(s)(z)

) (
∂fµn(s)(w)

)2
dxdy .

From the formula:∣∣∂fµn(s)(w)
∣∣2 =

(
1

1− |s|2|µn(w)|2

)
det
(
Dfµn(s)(w)

)
we obtain:∣∣∣ḟn(z, s)

∣∣∣ ≤ 1

π

∫∫
U

(
|µn(w)|

1− |s|2|µn(w)|2

)
det
(
Dfµn(s)(w)

)∣∣S(fµn(s)(w), fµn(s)(z)
)∣∣dxdy

≤ 1

π

(
‖µn‖∞

1− |s|2‖µn‖2
∞

)∫∫
U

det
(
Dfµn(s)(w)

)∣∣S(fµn(s)(w), fµn(s)(z)
)∣∣dxdy

=
1

π

(
‖µn‖∞

1− |s|2‖µn‖2
∞

)∫∫
fµn(s)(U)

∣∣S(w, fµn(s)(z)
)∣∣dxdy .

Therefore the length of the curve
{
fµn(t)(z) : t ∈ [0, 1]

}
is less or equal than:

1

π

∫ 1

0

[(
‖µn‖∞

1− |s|2‖µn‖2
∞

)∫∫
fµn(s)(U)

∣∣S(w, fµn(s)(z)
)∣∣dxdy] ds ≤
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≤
(

1

π

)(
‖µn‖∞

1− ‖µn‖2
∞

)∫ 1

0

[∫∫
fµn(s)(U)

∣∣S(w, fµn(s)(z)
)∣∣dxdy] ds .

If we define:

Mn(U) =

(
1

π

)
sup
z∈U

{∫ 1

0

[∫∫
fµn(s)(U)

∣∣S(w, fµn(s)(z)
)∣∣dxdy] ds} ,

we get: ∥∥fµn(1) − Id
∥∥
C0(U)

≤
(
‖µn‖∞

1− ‖µn‖2
∞

)
Mn(U).

We have two remarks:
First remark: since µn → 0 in the unit ball of L∞, we know by Proposition

3.2.5 that for any s ∈ [0, 1] the normalized quasiconformal homeomorphisms
fµn(s) converge to the identity uniformly on compact sets of C, in particular
on U . Therefore the sequence Mn(U) converge to:(

1

π

)
sup
z∈U

{∫∫
U

∣∣S(w, z)∣∣dxdy} <

(
1

π

)
sup
z∈U

{∫∫
C

∣∣S(w, z)∣∣dxdy} <∞.

For fixed z ∈ C we have that S(w, z) is in L1(C) since it has simple poles
at 0, 1 and z, and is O

(
|w|−3

)
near ∞. The finiteness follows then from the

compactness of U .
Second remark: x 7→ x/(1−x2) is an orientation-preserving real-analytic

diffeomorphism between (−1, 1) and the real line, which is tangent to the
identity at the origin. In fact x/(1− x2) = x+ o(x2) in (−1, 1).

With this two remarks we obtain n1 ∈ N such that for all n ≥ n1 we have:∥∥fµn(1) − Id
∥∥
C0(U)

≤M(U)‖µn‖∞,

where:

M(U) =

(
2

π

)
sup
z∈U

{∫∫
U

∣∣S(w, z)∣∣dxdy} .
Since V is compactly contained in the bounded domain U , the boundaries

∂V and ∂U are disjoint compact sets. Let δ > 0 be its Euclidean distance,
that is, δ = d

(
∂V, ∂U

)
= min

{
|z − w| : z ∈ ∂V,w ∈ ∂U

}
. Again by

Proposition 3.2.5 we know, since µn → 0, that there exists n0 ≥ n1 in N such
that for all n ≥ n0 we have V ⊂ fµn(1)(U) and moreover:

fµn(1)(U) ⊇ B(z, δ/2) for all z ∈ V .

If we consider the restriction of Hn to the domain V we have:

‖Hn −Gn‖C0(V ) ≤ ‖H
′
n‖C0(V )

∥∥fµn(1) − Id
∥∥
C0(U)

≤ ‖H ′n‖C0(V ) M(U)‖µn‖∞.
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By Cauchy’s derivative estimate we know that for all z ∈ V :

∣∣H ′n(z)
∣∣ =

∣∣∣∣ 1

2πi

∫
∂B(z,δ/2)

Hn(w)

(w − z)2
dw

∣∣∣∣
≤

2‖Hn‖C0(fµn(1)(U))

δ

=
2‖Gn‖C0(U)

δ

≤ 2R

δ
for all n ≥ n0.

That is: ∥∥H ′n∥∥C0(V )
≤ 2R

d
(
∂V, ∂U

) for all n ≥ n0,

and we obtain that for all n ≥ n0:∥∥Hn −Gn

∥∥
C0(V )

‖µn‖∞
≤

(
R

d
(
∂V, ∂U

))( 4

π

)
sup
z∈U

{∫∫
U

∣∣S(w, z)∣∣dxdy} .
Therefore is enough to consider:

C(U) =

(
4

π

)
sup
z∈U

{∫∫
U

∣∣S(w, z)∣∣dxdy} .
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[16] Graczyk, J., Sands, D., Świa̧tek, G., Decay of geometry for uni-
modal maps: negative Schwarzian case, Annals of Math., 161, 613-677,
(2005).
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