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Chapter 1

Introduction

A common task in optimization and real-life applications is to minimize some
quantity subject to some constraints. The complexity of this problem depends
on the nature of the functions involved in the problem and on the size of the
data. In this work we shall deal with these two aspects in a number of different
contexts.

First, instead of considering only one agent trying to minimize a given quan-
tity, we consider a group of agents each one minimizing its quantity, and all the
agents facing conflicting interests. The natural way of modeling this situation is
the Generalized Nash Equilibrium Problem (GNEP). However, the Nash Equi-
librium concept usually leads to multiple solutions, many of them without any
special significance or even with economically inconsistent meanings. Since the
very beginning of research in this area, economists have been defining refine-
ments for the concept of equilibrium. For the models considered in this work
we use the so-called Variational Equilibrium (VE), which is a refinement that
privileges points that lead to equal marginal values for all the players in the
game. We believe this property is useful/meaningful because of its fairness for
all the players. Another advantage of the VE has to do with the task of actu-
ally finding it with computational tools. Whereas computing an arbitrary Nash
Equilibrium is equivalent to solving a Quasi Variational Inequality (QVI), com-
puting a VE requires to solve a Variational Inequality (VI). Numerical methods
for QVI cannot be currently considered as well developed. The VI problem, on
the other hand, is comparatively well studied, there is considerable theory and
some efficient software designed for it. Of course, the efficiency/applicability
still depends on the structure of the problem and its size, which is the other
issue of this work.

Concerning the modeling aspect, we consider the deterministic and stochas-
tic cases. In the deterministic case, where the models are based on GNEP, our
main contribution consists in reducing some extended market models based on
Mixed Complementarity Problem (MCP) to the GNEP approach. To be more
specific, whereas in GNEP all the variables present in each player’s problem
belong to this player, there exist models where players’ objective functions in-
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volve exogenous variables that do not belong to any player. That is, variables
that are exogenous to all the players in the game. This is the typical case of
market prices. The players try to maximize their profit using these market
prices, satisfying at the same time some constraints, called market-clearing con-
ditions, whose role is “to keep the market working”. For solving this problem,
the common approach consists in putting together the optimality conditions
of all the players’ profit maximization problems and the market-clearing condi-
tions, building in this way an MCP where the initial exogenous variables become
variables of the whole problem (and are treated the same as all the other vari-
ables). The main drawback of this approach is that it involves a large number
of variables and does not allow to perceive and use some special decomposable
structures that are, in fact, intrinsic to the nature of this type of problems. We
show that this MCP model can be reformulated as GNEP whose VE provides
the same solution. Moreover, the VI associated to this VE of GNEP has “good”
structure, amenable to decomposition techniques.

Some of our main contributions consist precisely in developing new results
on decomposition of VIs, and in numerical validation of the benefits of the asso-
ciated techniques when applied to structured but large-scale problems. Specifi-
cally, in Chapters 3 and 4 we present a new class of Dantzig-Wolfe and Benders
type decomposition algorithms for VIs, which include the previously available
methods as special cases and also improve the previously known convergence
results.

In Chapter 5 we explore the relations between MCP and game-theoretical
models for finding equilibrium prices in energy markets. This is done both
in a deterministic and stochastic setting. For the latter, we consider players
whose objective functions and decision variables are affected by some random
vector. Like in the deterministic framework, we compare the stochastic game
and the complementarity formulations, only that in this case the models are
not always equivalent. The equivalence depends on the perception of risk of
the players, that now can be risk neutral or risk averse. In the first case, the
players are trying to minimize the expected value of their objective functions,
and we can define a risk neutral GNEP that is equivalent to a risk neutral MCP.
The main issue, however, is when we are dealing with risk-averse players. In
this setting, instead of the expected value of the players’ objective functions,
risk measures are involved, such as the so-called average value at risk (AV@R), a
recent renaming of the Conditional Value-at-Risk. We show that, in the presence
of risk aversion, the MCP and game models are different in essence.

Another contribution of this work is in the solution of stochastic games, and
this is the subject of Chapter 6. The use of risk measures yields nondifferentiable
objective functions for the players problems and, consequently, the associated
VI mapping is multi-valued. This makes the model hard to solve, as for this
class of problems there is currently no established efficient software available.
Thus, for solving this multi-valued VI we build a family of approximating VIs
whose mappings are single-valued. This construction is by ways of smooth
approximations of the risk-measure. We consider the risk-measure most widely
used in applications, the AV@R, that is convex but nondifferentiable, due to the
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positive-part function that enters its definition. We build a family of smooth
approximations to AV@R based on twice differentiable approximations of the
positive-part function, and establish the validity and convergence of the resulting
approximation scheme for solving stochastic GNEPs.

In addition to the nondifferentiability of the functions (or multi-valued VI
mappings), the number of variables involved constitutes yet another challenge
for solving a stochastic GNEP. In this sense, the decomposition chapters of this
work can be useful to deal with this issue. No matter how good are the solvers
available or how powerful are the computers being used, the size of a stochastic
problem always might present a challenge.

This work is organized as follows. We start in Chapter 2 with some basic
notions and introductory material: the Dantzig-Wolfe and Benders decomposi-
tion algorithms for linear programming problems; facts and notions concerning
the Variational Inequality and Generalized Nash Equilibrium problems; and a
general framework for modeling energy markets using GNEPs. These concepts
will be useful for the subsequent material, containing the main contributions of
this work, summarized below.

• Chapter 3 describes a Dantzig-Wolfe decomposition approach for VIs pub-
lished in [49], which is applicable to nonmonotone single-valued continuous
operators, or to set-valued maximal monotone operators. The method is
useful for VIs having feasible sets given by the intersection of two closed
convex sets, with one of them coupling the variables while the other one
being simple. This situation is typical when searching for variational equi-
libria of GNEPs.

• Chapter 4 derives, via duality, Benders decomposition from the Dantzig-
Wolfe method in the case of VIs of a certain structure.

• Chapter 5 explores the relations between mixed complementarity, vari-
ational inequality, and game-theoretical formulations of energy markets,
both in deterministic and stochastic settings.

• Chapter 6 addresses the problem of finding variational equilibria for risk-
averse stochastic counterparts of GNEPs, by suitably combining smooth-
ing and approximation techniques.

Chapters 3 to 6 start with an introduction that gives the specific context and
places the work with respect to the state-of-the-art literature.

The dissertation ends with concluding remarks and a discussion of possible
lines of future research.
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Chapter 2

Preliminaries

In this chapter we review some concepts that either will be used in the sequel or
are important for putting our developments in context. In the first two sections
we recall the Dantzig-Wolfe and Benders decomposition algorithms for linear
programming problems (the setting for which those techniques were developed
originally, and where they are easy to explain). The third section is devoted
to some basic notation, facts and notions concerning the Variational Inequality
Problem (VI), the Generalized Nash Equilibrium Problem (GNEP), and some
relations between them. The last section describes a general framework for
modeling markets using GNEPs.

Our notation is mostly standard. For x, y in any given space, we denote by
〈x, y〉 the usual (Euclidean) inner product; then ‖ · ‖ stands for the associated
norm. When convenient, we write x ⊥ y to say that 〈x, y〉 = 0. If clear from
the context, for a vector x the notation |x| refers to its dimension. For any
set D, convD denotes its convex hull and iD its indicator function. If D is
convex, PD(x) denotes the projection of a point x onto D. By ND(x) we denote
the normal cone to the convex set D at x, that is ND(x) = {w : 〈w, y − x〉 ≤
0, for all y ∈ D} if x ∈ D and ND(x) = ∅ otherwise. In the space Rn+1, we

denote by Ωn its unitary simplex, that is Ωn = {α ∈ Rn+1 : α ≥ 0,
∑n+1
i=1 αi =

1}. The positive-part function is [·]+ = max{·, 0}.
Given a convex function f : Rn → R, we denote by ∂f(x) = {y ∈ Rn :

f(z) ≥ f(x) + 〈y, z − x〉 ∀ z ∈ Rn} its subdifferential at a point x ∈ Rn. For
any differentiable function f : Rn ×Rm → R, we denote by f ′(x, y) its gradient
at (x, y) ∈ Rn × Rm, i.e., the derivative with respect to all the variables; and
by ∇xf(x, y) its partial derivative at (x, y) with respect to x (this derivatives
notation is therefore a bit inconsistent, but there are reasons why we adopt it
and it surely should not lead to any confusion).

Given a polyhedral set D and C = {x ∈ Rn : h(x) ≤ 0} where the compo-
nents of the vector-function h : Rn → Rq are convex, we say that the (general-
ized) Slater constraint qualification holds for the set C ∩D if there exists x ∈ D
such that h(x) < 0.

A mapping F : Rn ⇒ Rn (from Rn to the subsets of Rn) is monotone if
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it holds that 〈u − v, x − y〉 ≥ 0 for all x, y ∈ domF = {z : F (z) 6= ∅} and
all u ∈ F (x), v ∈ F (y). It is further maximal monotone if, in addition, its
graph {(x, u) : u ∈ F (x), x ∈ domF} is not contained in the graph of any other
monotone operator. The function F is strictly monotone if 〈u − v, x − y〉 > 0
for all x, y ∈ domF and u ∈ F (x), v ∈ F (y) with x 6= y; and it is c-strongly
monotone if for c > 0 it holds that 〈u − v, x − y〉 ≥ c‖x − y‖2 for any choices
above.

We say that F : Rn ⇒ Rq is outer semicontinuous if for any sequences
{xk}, {yk} such that {xk} → x̄ and {yk} → ȳ with yk ∈ F (xk), it holds that
ȳ ∈ F (x̄). We say that a family of set-valued functions {F k} is equicontinuous
on compact sets if for every compact set D and every ε > 0 there exists δ >
0 such that for any x, y ∈ D with ‖x − y‖ < δ, for every k it holds that
dH(F k(x), F k(y)) < ε, where dH is the Hausdorff distance between the sets
defined by

dH(A,B) = inf{r > 0 : A ⊂ B +B(0, r) and B ⊂ A+B(0, r)}.

Note that a maximal monotone mapping is outer semicontinuous. The inverse
of a mapping F : Rn ⇒ Rq is given by F−1(u) = {x ∈ Rn : u ∈ F (x)} for
u ∈ Rq.

2.1 Dantzig-Wolfe decomposition for linear pro-
gramming

As is well documented, the field of (modern) Optimization started with Linear
Programming (LP). Even though by now there exist very efficient LP solvers,
there are still problems whose size makes them hard to solve, or whose structure
allows them to be solved considerably faster if special decomposition techniques
rather than general-purpose solvers are applied. This was even more critical
around the middle of the XXth century, when George Dantzig and Philip Wolfe
published their decomposition algorithm [16] taking advantage of a special de-
composable structure of some constraints to solve fast certain LPs.

In this section we describe the Dantzig–Wolfe decomposition algorithm for
LPs in order to give a general idea of the nature of this technique, and to set
the stage for its generalization to the setting of VIs presented in Chapter 3.

Given affine functions f : Rn → R, h : Rn → Rp and g : Rn → Rq (there is no
need for our purposes to define them here explicitly as matrix/vector products),
consider the LP

min f(x) s.t. h(x) ≤ 0, g(x) ≤ 0. (2.1)

We accordingly split the feasible set of (2.1) into

Sh = {x : h(x) ≤ 0}, Sg = {x : g(x) ≤ 0}.

Assuming that the structure of the problem data is such that linear optimiza-
tion over the set Sg can be carried out easily (as compared to minimizing over
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Sh ∩ Sg), the idea of the Dantzig–Wolfe method is to perform the Lagrangian
relaxation of the h-constraints, and to apply the cutting-plane algorithm [5,
Sec. 9.3.2] for nonsmooth optimization to solve the Lagrangian dual

max θ(µ) s.t. µ ∈ Rq+,

where
θ(µ) = inf{f(x) + 〈µ, h(x)〉 : x ∈ Sg}. (2.2)

(Note that θ is a concave function.)
When set in an iterative framework, Dantzig-Wolfe method means the fol-

lowing. Given the current dual iterate µkM ∈ Rq+, the k-th subproblem computes

the value of the dual function θ(µkM ), which means obtaining a minimizer xk+1
S

for the LP in (2.2). By construction, xk+1
S ∈ Sg and we have a subgradi-

ent −h(xk+1
S ) ∈ ∂(−θ)(µkM ). For k ≥ 1, suppose we have computed solutions

of the previous subproblems {x0
S , . . . , x

k
S} ⊂ Sg. Then the k-th master prob-

lem replaces the set Sg in the original problem (2.1) by the approximation
conv{x0

S , . . . , x
k
S}, and solves the following LP: min f(x)

x ∈ conv{x0
S , . . . , x

k
S}

x ∈ Sh
⇔


min f

(∑k
i=0 αix

i
S

)
=
∑k
i=0 αif(xiS)

α ∈ Ωk

h
(∑k

i=0 αix
i
S

)
=
∑k
i=0 αih(xiS) ≤ 0.

(2.3)
This gives a solution xkM and a multiplier µkM ∈ Rq+ associated to the h-
constraint in (2.3). Then the new dual function value θ(µkM ) is computed,
as well as an associated xk+1

S in (2.2), and the process is repeated. From the
point of view of maximizing the dual function θ, the dual problem of the master
problem (2.3) corresponds to an iteration of the cutting-plane method, i.e., to
solving the LP formulation of

max θk(µ) s.t. µ ∈ Rq+,

where
θk(µ) = min{f(xiS) + 〈µ, h(xiS)〉 : i = 0, . . . , k}.

The algorithm continues iteratively until some stopping criterion is satisfied.
The usual criterion for the cutting plane algorithm is to stop when the difference
(gap) between the true value of the dual function (that is being maximized) and
its cutting plane model at the current dual variable, that is, θ(µkM ) − θk(µkM ),
becomes small enough. Note that, by construction and using the linearity of
the functions involved, it holds that

0 ≥ θ(µkM )− θk(µkM ) = (f(xk+1
S ) + 〈µkM , h(xk+1

S )〉)− f(xkM )

= (f(xk+1
S ) + 〈µkM , h(xk+1

S )〉)− (f(xkM ) + 〈µkM , h(xkM )〉)
= 〈f ′(xkM ), xk+1

S − xkM 〉+ 〈µkM , h(xk+1
S )− h(xkM )〉

= 〈f ′(xkM ) + [h′(xkM )]>µkM , x
k+1
S − xkM 〉.

(2.4)
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This relation will be useful to define the “optimality” gap and the stopping rule
for the generalization of this decomposition method for VIs in Chapter 3.

To finish, we emphasize that Dantzig–Wolfe approach for LPs is particularly
effective when h is the coupling constraint without which the minimization in
(2.2) decomposes further according to some favorable (block-separable) struc-
ture of g. For some large-scale applications the resulting method is faster than
solving the original LP (2.1) directly, even by state-of-the-art software; see, e.g.,
[41, 15]. Furthermore, stabilization techniques of bundle methods [5, Ch. 10]
can be used to define stabilized master problems and improve computational
performance of the cutting-plane scheme [3, 6].

2.2 Benders decomposition for linear program-
ming

The Dantzig-Wolfe algorithm was designed for the situation when the obstacle
for exploiting some specific structure is the presence of “coupling” constraints.
Another possible situation, in a sense dual to the above, is when we can distin-
guish two kinds of variables (say, x and y) that behave in such a way that if we
fix one of them (say, y for our development) then the problem becomes much
easier to solve.

Suppose we have affine functions f : Rn → R, r : Rm → R, g : Rn → Rp and
h : Rm → Rp. We assume, for simplicity and without loss of generality, that
f(0) = 0. The task is to solve the following LP:

min f(x) + r(y) s.t. g(x) + h(y) ≤ 0. (2.5)

As already commented, we are assuming that for any fixed value ŷ ∈ Rm the
problem

min f(x) + r(ŷ) s.t. g(x) + h(ŷ) ≤ 0 (2.6)

is easier to solve. This usually occurs when g has block-decomposable structure,
that is

g′(x) =


A1

A2

. . .

Ak


where Ai, i = 1, . . . , k, are matrices of appropriate dimensions. The dual prob-
lem of (2.5) is 

max r(0) + 〈µ, g(0) + h(0)〉
s.t. f ′(0) + [g′(0)]>µ = 0,

r′(0) + [h′(0)]>µ = 0,
µ ≥ 0.

(2.7)

Note that if g′(0) has decomposable structure, then [g′(0)]> also has decompos-
able structure. Then without the constraint r′(0) + [h′(0)]>µ = 0, (2.7) would
become an easier problem.
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The idea of Benders decomposition to solving (2.5) is to solve its dual (2.7)
using the Dantzig-Wolfe decomposition algorithm described in Section 2.1, re-
garding r′(0) + [h′(0)]>µ = 0 as the “difficult constraint” and relaxing it. In
this framework, given at iteration k a Lagrange multiplier estimate ykM , the
subproblem iteration corresponds to solving{

max r(ykM ) + 〈µ, g(0) + h(ykM )〉,
s.t. f ′(0) + [g′(0)]>µ = 0, µ ≥ 0.

(2.8)

As commented, with the structure at hand the latter is easier to solve.
Now, we need to solve (2.8) in order to get a subproblem solution µk+1

S for
performing the Master subproblem step of the Dantzig-Wolfe algorithm. But
instead of solving directly (2.8), we solve its dual:{

min f(x) + r(ykM )
s.t. g(x) + h(ykM ) ≤ 0,

(2.9)

whose solution is denoted by xk+1
S . Note also that the solution of (2.8) needed by

the Dantzig-Wolfe algorithm is just the Lagrange multiplier of (2.9). Then, after
performing this iteration, we can assume we have already computed the previous
subproblems solutions µ0

S , µ
1
S , . . . , µ

k
S . We can then perform the Dantzig-Wolfe

Master subproblem step, that consists in solving max r(0) + 〈g(0) + h(0), µ〉
s.t. r′(0) + [h′(0)]>µ = 0,

µ ∈ conv{µ0
S , µ

1
S , . . . , µ

k
S},

(2.10)

from which we obtain a Lagrange multiplier ykM associated to the constraint
r′(0)+[h′(0)]>µ = 0, so we can continue with the next Dantzig-Wolfe algorithm
subproblem.

Again, instead of solving directly (2.10), we solve its dual{
min t+ r(y)
s.t. 〈µiS , g(0) + h(y)〉 ≤ t, i = 0, 2, . . . , k,

(2.11)

which can be rewritten, using optimality conditions of (2.9), as{
min t+ r(y)

s.t. f(xiS) + 〈[h′(yi−1
M )]>µiS , y − y

i−1
M 〉 ≤ t, i = 1, 2, . . . , k.

(2.12)

Summarizing, we observe that solving (2.7) by solving iteratively (2.8) and
(2.10) following the Dantzig-Wolfe algorithm, is equivalent to solving iteratively
(2.9) and (2.11). The latter is precisely the Benders decomposition method for
LPs [4].

Here, the Benders algorithm was presented as a direct application of the
Dantzig-Wolfe algorithm, and thus much of the analysis for the former can be
based on the latter. However, it is worth to note another interpretation of the
Benders algorithm. To that end, define the value function v by

v(y) =

{
min f(x)
s.t. g(x) ≤ −h(y).
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Clearly, solving (2.9) is equivalent to computing v(ykM ). In addition, we have
that [h′(ykM )]>µk+1

S ∈ ∂v(ykM ). At iteration k, the values µ1
S , µ

2
S , . . . , µ

k
S and

x1
S , x

2
S , . . . , x

k
S are available. Then we can define a cutting plane approximation

vk of v as

vk(y) = max{f(xiS) + 〈[h′(yi−1
M )]>µiS , y − yi−1

M 〉 : i = 1, 2, . . . , k}.

Next, we observe that solving the problem (2.12) is equivalent to solving

min vk(y) + r(y). (2.13)

Then the Benders algorithm can be interpreted as follows. At the iteration
k it builds a cutting plane approximation vk of the value function v and then
computes ykM by solving (2.13). After this, using this master solution we improve
the approximation vk and iterate again. This point of view seems in fact more
natural, since the initial problem (2.5) is equivalent to solving

min v(y) + r(y).

On the other hand, viewing Benders algorithm as an application of the
Dantzig-Wolfe approach to the dual problem, has the advantage of possibly
using those ideas for other problem classes. This would be indeed the main idea
in Chapter 4, where we extend Benders technique to VI problems.

2.3 Variational inequalities and generalized Nash
equilibrium problems

The Variational Inequality (VI) [27] is a mathematical framework covering a
number of different problems and applications. The definition is easy to under-
stand. Let F : Rn ⇒ Rn be a set-valued mapping from Rn to subsets of Rn,
and let C be a convex closed subset of Rn. The VI problem defined by F and
C, denoted by VI(F,C), consists in determining a point x̄ ∈ C such that for
some w̄ ∈ F (x̄) the following inequality holds, for every y ∈ C:

〈w̄, y − x̄〉 ≥ 0. (2.14)

Note also that (2.14) means that −w̄ ∈ NC(x̄), where NC(x̄) is the normal
cone to C at x̄. This relation is in turn equivalent to PC(x̄ − w̄) = x̄. Using
the set-valued natural residual function F nat : Rn ⇒ Rn defined by F nat(x) =
PC(x − F (x)) − x, we have that x̄ is a solution of VI(F,C) if and only if 0 ∈
F nat(x̄). In the single-valued case, we can use ‖F nat(x)‖ to measure the “error”
made by taking x as an approximation to a solution of VI.

As mentioned, many problems can be considered in a VI framework. For
example, critical points of some minimization problem over a convex set C
are solutions of (2.14), where F is the derivative or the subgradient of the
objective function. Another example, more interesting for our development,
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is the Generalized Nash Equilibrium Problem (GNEP) [25]. Before dealing
with GNEPs, we describe the Nash Equilibrium Problem (NEP), an important
particular case. Suppose we have N functions f i : Rn → R and convex closed
sets Xi ⊂ Rni , where n =

∑N
i=1 ni. The pair (f i, Xi) describes the ith player

with decision variable xi ∈ Rni . The function can be regarded as a loss function,
in the sense that it can represent some production cost, payment, etc., that
the player wants to minimize. What makes NEP interesting is that the loss
function f i depends not only on the player’s decision, but also on the other
players’ decisions, denoted by x−i. In this context, the ith player makes a guess
x̂−i about the other players’ actions and then tries to take the best decision by
solving

min f i(xi, x̂−i) s.t. xi ∈ Xi. (2.15)

A point x̄ ∈
∏N
i=1X

i is called a Nash Equilibrium if for each player i, its
entry x̄i is the best decision given that the other players decided x̄−i. In other
words, if all players choose the entries of x̄, then no one will change its decision
unilaterally.

Now, if each function f i is differentiable with respect to xi, by the optimality
condition of first order in primal form, we have that for all xi ∈ Xi

〈∇xif i(x̄), xi − x̄i〉 ≥ 0.

By combining all these inequalities, we have that the Nash equilibrium x̄ solves
VI(F,

∏
iX

i) with F (x) = (∇x1f1(x),∇x2f2(x), . . . ,∇xN fN (x)). Also we can
see that if all functions f i were convex on the corresponding variable xi, then
any solution of the VI would also be a Nash equilibrium.

In fact, in the convex case, even if the functions are nondifferentiable, the two
problems are equivalent. In the nonconvex case, a VI solution provides critical
points to each players’ problem, which can be considered as Nash equilibrium
for practical purposes.

In real-life situations when we have a group of agents, not only the loss
functions but also the feasible sets depend on the decision of the other players.
This is natural, because the model usually has to consider the fact that all
players are sharing some limited resource. This is the key fact that defines
GNEP [25, 27]. In this work we consider the so called GNEP with shared, or
coupling, constraints. Suppose we have a convex closed subset S ⊂ Rn. Then
the ith player, after guessing the others’ decision variables x̂−i, is only allowed
to choose points xi in Xi that satisfy (xi, x̂−i) ∈ S. Accordingly, instead of
(2.15) this player’s problem is

min f i(xi, x̂−i) s.t. xi ∈ Xi, (xi, x̂−i) ∈ S. (2.16)

The concept of Generalized Nash Equilibrium Point is the same as the equilib-
rium concept associated to Nash Problems.

Differently from Nash games, where each equilibrium point is a solution of
the associated VI, there can be generalized equilibrium points that cannot be
obtained by solving a VI. In fact, if we repeat the steps followed to build the VI
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associated to a Nash game, we would arrive to a Quasi-Variational Inequality
(QVI) [27]. Actually, GNEP and QVI are “equivalent” as much as are NEP and
VI; and since it is known that solving a QVI is much more complex than solving
a VI, it is clear that solving a GNEP is much harder than solving a NEP.

It is known that GNEP solutions are generally not unique, and in fact, typi-
cally not isolated (thus, there is an infinite number of solutions). However, many
of the GNEP solutions are likely not interesting. For example, given (2.16) and
a set of positive numbers α1, α2, . . . , αN , we can define another GNEP replacing,
for each player, the objective function f i by αif

i. From the definition of equi-
librium point, it is easy to show that the two problems have exactly the same
equilibrium points; however, the presence of the factors αi has changed com-
pletely the nature of the problems from a practical point of view, since, although
all optimization problems still have the same solutions, the corresponding dual
variables (marginal values) have changed, which leads to different economic in-
terpretations. So, we see not all equilibrium points are useful or interesting. For
example, let us consider a two player GNEP:{

minx1
1
2 (x1 − 1)2

s.t. x1 + x2 = 2
and

{
minx2

1
2 (x2 − 1)2

s.t. x1 + x2 = 2
(2.17)

Using only feasibility considerations it is easy to show that the set of equilib-
rium points is precisely the whole (shared) feasible set. In this case, therefore,
the objective functions have no influence on determining the equilibrium points;
certainly an unreasonable situation from the practical point of view.

For this reason it is desirable to have some criterion in order to choose an
equilibrium point that is most convenient in some sense [47]. One distinguished
equilibrium point is the so called variational equilibrium, that is a solution
of VI(F,

∏
iX

i ∩ S) associated to (2.16). It is not difficult to show that any
solution of this VI is in fact an equilibrium point for (2.16). This allows us to
find an equilibrium solving only a variational inequality, and in addition this
equilibrium turns out to be a better choice because it depends on the players’
objective functions.

When the sharing set S is defined by constraints, say S = {x ∈ Rn : g(x) ≤
0} for a convex differentiable function g, then at an equilibrium point x̄ we have
that for each player, the entry x̄i solves the problem

min f i(xi, x̄−i) s.t. xi ∈ Xi, g(xi, x̄−i) ≤ 0.

By assuming qualifications of constraints [77], each player will have a Lagrange
multiplier µ̄i associated to the constraint g(xi, x̄−i) ≤ 0. In [26], it was observed
that the variational equilibria are precisely those for which multipliers µ̄i in all
the players’ problems are the same. This means that at a variational equilib-
rium, the optimum value of all players will vary at the same rate (given by the
multiplier) after small perturbations that could occur on the sharing constraint.
This makes good sense in many models, from the economic point of view. The
other equilibria always benefit some players more than others, that is, they are
not “fair”; the latter being an important characteristic in various applications
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modeled as games. In Section 5.3.1 we comment on this issue for a game with
affine coupling constraints that was used to model an energy/capacity market
in [23] and the European network of natural gas in [32].

Summarizing, when dealing with GNEP, we shall aim mainly at finding
variational equilibria, as this is justified both by the advantage of reducing the
problem to a better understood and easier to solve VI, and by the desirable
properties that such equilibria have from the practical point of view.

Finally, we fix the notation used when describing a GNEP. For simplicity,
instead of emphasizing the guess made by a player about the other players’
decisions by writing, for example, x̂−i in (2.16), we drop the “hat” mark, and
simply write

minxi f i(xi, x−i) s.t. xi ∈ Xi, (xi, x−i) ∈ S,

or
minxi f i(xi, x−i) s.t. xi ∈ Xi, x ∈ S.

Sometimes, when convenient or instructive, we shall describe separately the
players’ objective functions and endogenous feasible sets, and the coupling con-
straints, by

Player
{

minxi f i(xi, x−i) s.t. xi ∈ Xi,

Coupling

constraints

{
x ∈ S.

This last notation will be useful when describing games with players of different
nature sharing exactly the same coupling constraints.

2.4 A game model for gas and electricity

In this section we describe general structure of a GNEP for modeling markets
where we make explicit two variables of different nature, that is, investment and
production decisions. The purpose of the modeling is to allow the simultaneous
consideration of capacity and energy markets, as in [23]; see Chapter 5. Our
general framework based on GNEP with shared constraints is also suitable to
model market equilibrium problems like the one in [21].

Let (zi, qi) ∈ Rni × Rmi , i = 1, . . . , N , where zi represents the investment
variables and qi represents the operational variables. We denote by z and q
the vectors (z1, z2, . . . , zN ) and (q1, q2, . . . , qN ), respectively. Let Xi be the set
of endogenous constraints of the ith player. This set gathers technological and
resource constraints. Also, there are coupling constraints that link the players’
decisions, represented by the inequality

N∑
i=1

[hi(zi) + gi(qi)] ≤ 0, (2.18)

where the functions hi and gi are convex.
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Given strategy vectors ẑ and q̂, the ith player tries to minimize the quantity
Ii(zi, ẑ−i) + ci(qi, q̂−i). This quantity can represent a loss function (i.e., the
negative of the profit function or investment), operational cost function. So,
the ith player’s problem is

min Ii(zi, z−i) + ci(qi, q−i)
s.t. (zi, qi) ∈ Xi,∑N

j=1[hj(zj) + gj(qj)] ≤ 0.
(2.19)

With respect to the notation in (2.16), we have the relations

xi ↔ (zi, qi) , f i(xi)↔ Ii(zi) + ci(qi) , and S ↔
N∑
j=1

[hj(zj) + gj(qj)] ≤ 0.

As explained before, for economic applications it is often not enough to find a
Nash equilibrium, and we look for a variational equilibrium (see [47, 26]). Since
all functions involved in (2.19) are differentiable, we can compute a variational
equilibrium by solving

VI(F,

N∏
i=1

Xi ∩ S), (2.20)

where S is the set of all points that satisfy the shared constraints (2.18) and

F = (F 1, F 2, . . . , FN )

with
F i({(zj , qj)}j) = ∇(zi,qi)[I

i(z) + ci(q)], i = 1, . . . , N.

By the convexity and smoothness of the players’ objective functions, the
function F is continuous. Hence, to ensure the existence of solutions of (2.20)

it is enough to guarantee compactness of the VI-feasible set
∏N
i=1X

i ∩ S. The
latter is typically the case in applications. Also, it is worth noting that under
constraint qualification hypotheses at a solution (z̄, q̄), there exists an “optimal”
multiplier π̄ associated to the shared constraint (2.18). Relaxing this constraint
reveals the decomposable structure in the feasible set, and for each player i the
point (z̄i, q̄i) solves the individual problem

VI(∇(zi,qi)[I
i(zi, z̄−i) + ci(qi, q̄−i)− [hi(zi) + gi(qi)]>π̄], Xi).

In other words, (z̄i, q̄i) solves the following profit maximization–like problem:{
max [hi(zi) + gi(qi)]>π̄ − ci(qi, q̄−i)− Ii(zi, z̄−i)
s.t. (zi, qi) ∈ Xi.

(2.21)

This game model (for a simple electricity market) will be used below to show
the benefits of the Dantzig-Wolfe decomposition introduced in Chapter 3.
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The reformulation of the cost-minimization game in the context of revenue
maximization (2.21) will be useful in Chapter 5, devoted to finding equilib-
ria of energy markets. In particular, the analysis in Chapter 5 shows that a
variational equilibrium together with the Lagrange multipliers of the coupling
constraints provides an equilibrium for complementarity formulations based on
(2.21). Furthermore, this equilibrium point actually provides always (without
any regularity conditions) a variational equilibrium for the GNEP described
above. As a result, equilibrium prices can be found by solving a VI with a
smaller number of variables than the one corresponding to the complementarity
approach.

Finally, as stated above, the feasible set of the VI associated to a GNEP
typically has the form

∏
iX

i ∩S, where the set
∏
iX

i has decomposable struc-
ture. Moreover, this structure must be used for some benefit, especially when
dealing with large problems. The presence of the coupling conditions that define
S prevents this, however. In the next chapter we develop a decomposition algo-
rithm to solve more easily VI problems whose feasible sets follow the described
pattern.
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Chapter 3

Dantzig-Wolfe
Decomposition for
Variational Inequalities

In this chapter, we extend the decomposition algorithm described in Section 2.1
to a fairly general VI setting. Our presentation follows [49].

Let F : Rn⇒Rn be a set-valued mapping from Rn to the subsets of Rn, and
let Sh and Sg be two closed convex sets in Rn. We consider the variational
inequality problem VI(F, Sh ∩ Sg) [27], which means to find

x̄ ∈ Sh ∩ Sg such that 〈w̄, x− x̄〉 ≥ 0 for some w̄ ∈ F (x̄) and all x ∈ Sh ∩ Sg.
(3.1)

In what follows, we assume that Sh = {x : h(x) ≤ 0} with h : Rn → Rq being
convex and differentiable, and Sg is a generic closed convex set which is easier
(in some sense) to handle than the set Sh and the intersection Sh ∩ Sg. The
set Sh is defined by inequality constraints only for simplicity; affine equality
constraints can be introduced in our developments without any difficulties. We
assume that the operator F is either single-valued and continuous (possibly
nonmonotone) or it is maximal monotone. We also assume that VI(F, Sh ∩ Sg)
has a nonempty solution set, and that Sg ⊂ int(domF ). We note that the
latter assumption could be more general; we use the stated one for simplicity,
as the issue does not seem to be of real importance in a work devoted to a
computational algorithm.

The setting just described suggests trying to deal with the constraint sets
Sh and Sg separately, i.e., by some type of decomposition of the problem
VI(F, Sh ∩ Sg). Many decomposition techniques (for monotone problems) are
explicitly derived from the proximal point method [55, 63] for maximal mono-
tone operators, e.g., [80, 19, 81, 83]. Sometimes the relation to the proximal
iterates is less direct, e.g., the methods in [9, 20, 82, 35, 58], which were never-
theless more recently generalized and interpreted in [76, 53] within the hybrid
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inexact proximal schemes of [78, 57]. As some other decomposition methods, we
might mention [44] which employs projection and cutting-plane techniques for
certain structured problems, matrix splitting for complementarity problems in
[14], and the applications of the latter to stochastic complementarity problems
in [72]. The methods cited above typically assume monotonicity and, from the
beginning, some rather specific structure in the mapping F and/or in the con-
straints defining the feasible set. In that sense, our setting VI(F, Sh ∩ Sg) and
the subsequent developments are more general, as in the single-valued case F
is allowed to be nonmonotone and no specific structural assumptions are being
made about F or about the constraints. That said, if separable features are
present, they can be exploited at the stage of solving the subproblems.

Let us recall the ideas of the Dantzig-Wolfe approach to linear programs
discussed in Section 2.1, and examine what they might mean in the present
more general setting. As is well known VI (3.1) is equivalent to the inclusion
0 ∈ F (x̄) + NSh∩Sg (x̄), where ND(x) is the normal cone to the convex set D
at the point x. Let x̄ ∈ Sh ∩ Sg. Under appropriate constraint qualification
conditions for the sets Sh and Sg (see, e.g., [27, Chapter 3.2] and [77]), it holds
that

NSh∩Sg (x̄) = NSh(x̄) +NSg (x̄),

and
NSh(x̄) = {u : u = [h′(x̄)]>µ, µ ∈ Rq+, µ ⊥ h(x̄)}.

In particular, for any solution x̄ of (3.1), there exists a multiplier µ̄ ∈ Rq+ such
that

0 ∈ F (x̄) + [h′(x̄)]>µ̄+NSg (x̄), 0 ≤ µ̄ ⊥ h(x̄) ≤ 0.

Hence, solving problem (3.1) is equivalent to finding (x̄, µ̄) such that{
(x̄, µ̄) ∈ Sh × Rq+, µ̄ ⊥ h(x̄),
x̄ solves VI(F (·) + [h′(·)]>µ̄, Sg).

(3.2)

A natural extension of the ideas of the Dantzig–Wolfe decomposition for lin-
ear programming (described in Section 2.1) to this variational setting is then
the following. Using the current multiplier estimate µkM ∈ Rq+ (instead of the
unknown “optimal” µ̄), the k-th subproblem consist in solving a variational in-
equality with the structure in (3.2), to obtain a new primal point xk+1

S . In par-
ticular, this variational problem is over the simpler set Sg, with the h-constraint
dealt with in a manner similar to the Lagrangian relaxation approach. Using
solutions of the previous subproblems {x0

S , . . . , x
k
S} ⊂ Sg, the k-th master prob-

lem solves a variational inequality with the structure in (3.1), except that the
set Sg therein is approximated by conv {x0

S , . . . , x
k
S} (recall (2.3)). This gives

a solution xk+1
M and a new multiplier estimate µk+1

M ∈ Rq+ for the h-constraint,
and the process is repeated. Thus, we iteratively generate two sequences of (ap-
proximate) solutions of the problems (3.1) and (3.2), using at each iteration the
solution of one problem to improve the solution of the other. We shall postpone
the details and various possible options to be discussed later.
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A Dantzig–Wolfe method along these lines had been introduced for (single-
valued) variational inequalities in [29, 12]. In [29] some restrictive assumptions
are employed. For example, F is required to be either strictly monotone or
to be a separable combination of a strictly monotone part with a gradient of a
differentiable convex function. The subproblems have the specific form VI(F (·)+
[h′(xkM )]>µkM , Sg). Also, the solvability of all the subproblems is an assumption.
Some of the restrictive assumptions have been alleviated in [12], where also a
useful feature of approximating F in the subproblems is introduced. The latter
can be helpful in applications where the subproblem VI(F (·)+[h′(xkM )]>µkM , Sg)
is not decomposable, but using instead of F a suitable approximation makes
it decomposable and thus easier to solve. One possibility considered in [12]
is fixing the value of F at the last master solution, i.e., solving VI(F (xkM ) +
[h′(xkM )]>µkM , Sg). The other possibility uses a Jacobi-like approximation, where
only some components of x are fixed at their values at xkM . In this work, we
shall also consider other approximations, for example of the Josephy–Newton
type [42], which approximates F (·) in the smooth single-valued case by F (xkM )+
F ′(xkM )(· − xkM ). We shall also allow combinations of various approximations.
In fact, in our numerical results in Section 3.3, we found that the combination
of the Newtonian and Jacobi approximations works best for large problems of
the structure considered there. In addition, and as compared to [29, 12], our
framework also allows for approximations to the derivative h′ (including the
option of taking the fixed value h′(xkM ) as in [29, 12] but not limited to it);
does not assume solvability of the subproblems; allows for inexact solutions of
subproblems; gives an option of generating (cheap) additional cuts by projecting
a selection of previous iterates using separation ideas [46, 75]; and can handle
the general case of F being set-valued.

The rest of the chapter is organized as follows. In Section 3.1 we formally
state the algorithm and discuss the approximation options for F and h′, inex-
act solution of subproblems, and other details. Convergence analysis is given
in Section 3.2. Numerical results for computing variational equilibria of game-
theoretic models of electricity markets are presented in Section 3.3. In par-
ticular, we show that some specific implementations of our approach make it
possible to solve problem instances which are too large to be handled by the
widely used PATH solver [18, 28] applied directly to the full problem without
decomposition. This is also a difference with the methods in [29, 12] where
the considered examples were solved faster without decomposition than with
decomposition.

3.1 The algorithmic framework

In view of (3.2), having a current multiplier estimate µkM for the h-constraint,
perhaps the first natural approach would be to solve the subproblem

VI(F (·) + [h′(·)]>µkM , Sg). (3.3)
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This is a valid option indeed, but it may have drawbacks, at least for some types
of problem structures. For example, if (3.3) involves a general nonlinear (and
possibly nonmonotone) mapping F , it may prevent us from taking full advantage
of some special structure of the set Sg (e.g., Sg may be block-separable). The
same comment applies to the nonlinearity of the derivative of h. Another issue
is that the set Sg in (3.3) may be unbounded (even if Sh ∩ Sg were bounded),
in which case (3.3) is not guaranteed to have solutions if F is merely contin-
uous/monotone. For these reasons, we shall consider various approximations
to F and h′ that include (3.3) itself as an option, possibly regularized by a
variable-metric proximal term to induce solvability of subproblems if needed.
The algorithm is as follows.

Algorithm 3.1.1. (Dantzig-Wolfe Decomposition)

1. Choose x0
S ∈ Sg ∩Sh, such that h(x0

S) < 0 if h is not affine. Set x0
M = x0

S .
Choose µ0

M ∈ Rq+ and w0
M ∈ F (x0

M ). Set k := 0.

2. The Subproblem: Choose an approximation F k : Rn⇒Rn of F (·), an
approximation Hk : Rn → Rq×n of h′(·), a possible modification of µkM
given by µk : Rn → Rq+, and a positive (semi)definite matrix Qk ∈ Rn×n.

Find xk+1
S , an approximate solution of the problem

VI(F̂ k, Sg), (3.4)

F̂ k(x) = F k(x) + [Hk(x)]>µk(x)+Qk(x− xkM ). (3.5)

3. The Master Problem: Choose a finite set Xk+1 ⊂ Sg containing
{x0

S , . . . , x
k+1
S }. Find a solution xk+1

M of the problem

VI(F, Sh ∩ convXk+1), (3.6)

with the associated wk+1
M ∈ F (xk+1

M ) and a Lagrange multiplier µk+1
M as-

sociated to the h-constraint.

4. Set k := k + 1 and go to Step 2.

Some comments are in order.
In Step 1, choosing a feasible starting point is needed to guarantee that the

master problems (3.6) are feasible for all k. When h is not affine, the role of the
condition h(x0

S) < 0 is to ensure that the Slater constraint qualification holds
for the master problems (3.6) for all k, so that there exist Lagrange multipliers
associated to the h-constraint in (3.6). If h is affine, then (3.6) is a linearly con-
strained problem and the existence of Lagrange multipliers is automatic. That
said, computing a (strictly) feasible starting point may be nontrivial in some
applications. For this reason, Section 3.1.5 below presents a modification of the
algorithm in which the h-constraints are relaxed by introducing slack variables,
and computing a starting feasible point is required only for the set Sg (recall
that this set is assumed to be simple in our context). Master problems (3.6)
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are solved introducing simplicial parametrization of the convex hull, similarly
to (2.3) in the case of linear programs.

The options for approximations F k and Hk in the subproblems, as well
as an augmented-Lagrangian type modification µk of the multiplier estimate
µkM , will be discussed in Section 3.1.1 below. As for the regularization matrix
Qk, it should generally be taken as zero if F (and then also F k, for natural
choices) is known to be strongly monotone; if strong monotonicity does not hold
then Qk should be positive definite (e.g., a multiple of the identity; but more
sophisticated choices may be useful depending on the structure [57]). The notion
of acceptable approximate solutions of subproblems is discussed in Section 3.1.2.

The set Xk+1 in the master problem contains previous solutions of subprob-
lems, but we could also add additional points. Section 3.1.3 shows that, at least
if the projection onto the simpler set Sg is easy, we can compute explicitly (at
negligible computational cost) points that are improvements over the previous
iterates in the sense that they are closer to the solution set of (3.1).

Some remarks concerning reasonable stopping rules for Algorithm 3.1.1 will
be given in Section 3.1.4.

3.1.1 Approximating the data in the subproblems

We next discuss the options for approximating the problem data in the subprob-
lems. Roughly speaking, possible choices range from the simplest ones of taking
the fixed values computed at the previous master solution xkM , pass through
the Newtonian approximation centered at xkM , and arrive to taking the func-
tions themselves (“exact approximation”). Furthermore, different options can
be combined. For example, in the differentiable case, we can fix some compo-
nents of the functions at xkM and use Newtonian approximations for the other
components. In fact, we found such combinations to be the most efficient ones
in our numerical results reported in Section 3.3.

To be deemed admissible, approximating objects must satisfy the following
four basic conditions:

wkM ∈ F k(xkM ) ⊂ F (xkM ), (3.7a)

F k(x) + [Hk(x)]>µk(x) is maximal monotone and
its domain contains domF ,

(3.7b)

Hk(xkM ) = h′(xkM ), (3.7c)

µk(xkM ) = µkM . (3.7d)
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The mapping approximations. As already commented, F k estimates F
near xkM . Some examples are:

F kconst(x) = {wkM}, (3.8a)

F kexact(x) = F (x), (3.8b)

F kN(x) = F (xkM ) + F ′(xkM )(x− xkM ), (3.8c)

(the latter in the single-valued smooth case)

where the subscript N above stands for “Newton”. Note that all these approx-
imations are (maximal) monotone if F is (maximal) monotone, and that F kconst

is maximal monotone regardless of any assumptions.
We would like to emphasize that even if F is nonmonotone, we can always

choose a maximal monotone approximation F k. For example, taking F kconst.
Also, for specific applications there may exist other (more sophisticated options)
of choosing a monotone approximation F k for a nonmonotone F . One example
will be discussed in the sequel in the context of VI associated to generalized
Nash equilibrium problems and in our numerical results in Section 3.3.

Approximations of the derivative of the h-constraint. Similarly, the
function Hk estimates the derivative h′ near the point xkM , while preserving the
monotonicity property (of derivatives of convex functions). Some examples are:

Hk
const(x) = h′(xkM ), (3.9a)

Hk
exact(x) = h′(x), (3.9b)

Hk
N(x) = h′(xkM ) +

q∑
i=1

h′′i (xkM )(x− xkM ). (3.9c)

Note that for all the cases in (3.9), because of the convexity of h, the following
monotonicity property holds:

(Hk(y)−Hk(x))(y − x) ≥ 0, for all x, y ∈ Rn. (3.10)

Since µkM ≥ 0, it then follows that [Hk(x)]>µkM is also monotone. And if F k is
maximal monotone then (3.7b) holds if we take µk(x) = µkM .

Multiplier modifications. Choices of µk(x) different from µkM are possible
if there are linear equality constraints in the definition of the set Sh (formally, in
our setting this would correspond to taking two inequalities with opposite signs).
Suppose that these equality constraints are given by h̃(x) = Ax−a, where A and
a are a matrix and a vector of appropriate dimensions, respectively. We could
then use the augmented Lagrangian choice for the corresponding multipliers:

µ̃k(x) = µ̃kM + rkh̃(x) = µ̃kM + rkA(x− xkM ),

where rk > 0 is the penalty parameter, and we took into account that xkM ∈ Sh
and so h̃(xkM ) = AxkM − a = 0. It can be seen that this choice satisfies the
conditions in (3.7).
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Jacobi-type approximations in the block-separable case. To conclude
this section, we consider the important special case where Sg is a product of
convex sets. That is, Sg =

∏m
i=1 Sgi where Sgi ⊂ Rni are closed convex, i =

1, . . . ,m, n =
∑m
i=1 ni. Having chosen the approximations F k and Hk, the

matrix Qk, and taking µk(x) = µkM , we can write the function F̂ k for the
subproblem by blocks:

F̂ k(x) = (F̂ k1 (x), . . . , F̂ km(x)), with F̂ ki (x) ∈ Rni ,

and for every i = 1, 2, . . . ,m, define the Jacobi-like approximations F̂ kJi : Rni →
Rni ,

F̂ kJi(xi) = F̂ ki (xkM−i , xi),

where (xkM−i , xi) = (xkM1
, . . . , xkMi−1

, xi, x
k
Mi+1

, . . . , xkMm
) is the vector with all

the blocks of variables, except for the i-th, fixed to the master solution. The
corresponding estimate F̂ kJ : Rn → Rn for the subproblem is then given by

F̂ kJ (x) = (F̂ kJ1
(x1), . . . , F̂ kJm(xm)).

Accordingly, the objects in (3.5) take the form

F k(x) = (F k1 (x), . . . , F km(x)), with F ki (x) ∈ Rni ,

Hk(x) = [Hk
1 (x)| · · · |Hk

m(x)], with Hk
i (x) ∈ Rq × Rni ,

Qk = [Qkij ], with Qkij ∈ Rni × Rnj .

And, for each i = 1, 2, . . . ,m, we define the Jacobi-like approximations F kJi :

Rni → Rni and Hk
Ji

: Rni → Rq × Rni by

F kJi(xi) = F ki (xkM−i , xi), Hk
Ji(xi) = Hk

i (xkM−i , xi).

It is easy to see that

F̂ kJi(xi) = F kJi(xi) + [Hk
Ji(xi)]

>µkM +Qkii(xi − xkMi
),

and thus
F̂ kJ (x) = F kJ (x) + [Hk

J (x)]>µkM +QJ
k(x− xkM ),

where

F kJ (x) = (F kJ1
(x1), . . . , F kJm(xm)), Hk

J (x) = [Hk
J1

(x1)| · · · |Hk
Jm(xm)],

QJ
k = diag(Qk11 , Qk22 , . . . , Qkmm).

The functions F kJ and Hk
J (x) satisfy all the properties in (3.7). Moreover, since

for every i = 1, 2, . . . ,m and xi, yi ∈ Rni it holds that

〈F̂ kJi(yi)−F̂
k
Ji(xi), yi−xi〉 = 〈F̂ k(xkM−i , yi)−F̂

k(xkM−i , xi), (x
k
M−i , yi)−(xkM−i , xi)〉,
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it follows that if F̂ k were monotone, strictly monotone or strongly monotone,
then F̂ kJi would inherit the same property; and therefore so would F̂ kJ . We
again comment that in some applications (for example, VI associated to gen-
eralized Nash equilibrium problems, see Section 3.3) the full function F (x) =
(F1(x), . . . , Fn(x)) can be nonmonotone but each component Fi is monotone in
the variable xi. So, even if the approximations F kN and F kexact could be non-
monotone, the approximations F kN-J (where “N-J” stands for “Newton-Jacobi”)
and F kexact-Jacobi are monotone in that case.

As we found F kN-J particularly useful in our numerical experiments, we shall
next state it formally. By the definition above, we have F kNi(x) = Fi(x

k
M ) +

F ′i (x
k
M )(x− xkM ), and so

F kN-Ji(xi) := F kNi(x
k
M−i , xi)

= Fi(x
k
M ) + F ′i (x

k
M )((xkM−i , xi)− (xkM−i , x

k
Mi

))

= Fi(x
k
M ) + F ′i (x

k
M )(0, xi − xkMi

)

= Fi(x
k
M ) +∇xiFi(xkM )(xi − xkMi

).

Then if Fi(x) is monotone in the variable xi, we have that F kN-Ji
(xi) is monotone

and so is F kN-J(x).
The motivation for the Jacobi approach is that we can take advantage of

the separable structure of Sg when solving the subproblems even when F is
not separable. Specifically, it can be seen that xk+1

S solves the subproblem

VI(F̂ kJ , Sg) if and only if the components (xk+1
S )i solve VI(F̂ kJi , Sgi), i = 1, . . . ,m.

Thus, the subproblems in Algorithm 3.1.1 decompose according to the structure
of Sg. Clearly, such decomposition is also achieved for F kN-J(x).

3.1.2 Inexact solution of subproblems

By approximate solution of subproblem (3.4) we mean computing some

xk+1
S ∈ Sg such that 〈vk+1

S + ek, y − xk+1
S 〉 ≥ 0

for some vk+1
S ∈ F̂ k(xk+1

S ) and all y ∈ Sg,
(3.11)

where ek ∈ Rn is the error term accounting for inexactness. This definition
of approximate solutions of variational problems was also employed, e.g., in
[54, 75]. In our convergence analysis, we shall use the following two approaches
to controlling inexactness. One is the “relative-error” type:

〈ek, xkM − xk+1
S 〉 ≤ σ〈Qk(xkM − xk+1

S ), xkM − xk+1
S 〉, σ ∈ [0, 1), (3.12)

or its stronger version

‖ek‖‖xkM − xk+1
S ‖ ≤ σ〈Qk(xkM − xk+1

S ), xkM − xk+1
S 〉, σ ∈ [0, 1). (3.13)

The second rule is the “asymptotically exact” type:

ek → 0 as k →∞. (3.14)
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The first rule is more constructive, as it essentially means that the relative
error (the ratio between the size of the error term ek and the size of the step
xkM − x

k+1
S ) in solving the subproblems needs to be small enough but can be

fixed by the value of the parameter σ (which need not tend to zero); see [78, 57]
and references therein for discussions of the advantages of this relative-error
approach. That said, verifying (3.12) clearly requires the explicit knowledge of
ek in (3.11). Below we explain how ek can be constructed and the conditions
(3.11) and (3.12) checked explicitly in the case of continuous F̂ k, if we have
access to the iterates of the method applied to solve VI(F̂ k, Sg). Of course,
the latter is not the case when a “black-box” solver is used. In that sense, an
advantage of the “asymptotical exactness” rule (3.14) is that it can be argued
that in this case the explicit knowledge of ek in (3.11) is not necessary. The
algorithm used to solve subproblems (3.4) can be truncated according to any
suitable internal criteria, provided the precision is progressively tightened along
the iterations of the outer Algorithm 3.1.1. This would generate, at each step,
some unknown error term ek in (3.11). But as long as the inexactness in solving
the subproblems (however it is measured) asymptotically vanishes, it seems valid
that the error written in any other form, for example (3.11), must also tend to
zero.

Suppose now that F̂ k is continuous (single-valued) and strongly monotone
(recall that a monotone approximation F k of F always exists even if F is non-
monotone, and strong monotonicity of F̂ k can be induced by adding the proxi-
mal regularization with Qk positive definite when needed). Let an Algorithm A
(any suitable algorithm for solving VI(F̂ k, Sg)) generate a sequence {yk,i} which,
if continued infinitely, is known to converge to the exact solution x̄k+1

S of the sub-

problem VI(F̂ k, Sg) as i → ∞. This solution is unique, because F̂ k is strongly
monotone. As is well known, it holds that

x̄k+1
S = PSg (x̄k+1

S − F̂ k(x̄k+1
S )).

Define the auxiliary sequences {zk,i} and {ek,i} by

zk,i = PSg (yk,i − F̂ k(yk,i)),

ek,i = (zk,i − F̂ k(zk,i))− (yk,i − F̂ k(yk,i)).

Since, by continuity of F̂ k and of the projection operator, {zk,i} also converges
to x̄k+1

S as i→∞, it holds that

lim
i→∞

ek,i = 0.

Observe now that

zk,i = PSg (yk,i − F̂ k(yk,i)) = PSg (zk,i − (F̂ k(zk,i) + ek,i)),

which means that, at each iteration of Algorithm A, zk,i solves the problem
VI(F̂ k + ek,i, Sg). In other words, the condition (3.11) holds at every itera-
tion i for xk+1

S = zk,i and ek = ek,i with the known ek,i defined above. Since
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{ek,i} → 0 as i → ∞, for any reasonable criterion of measuring approxima-
tions Algorithm A would yield in a finite number of iterations an approximate
solution xk+1

S = zk,i for the subproblem VI(F̂ k, Sg) with the known, and thus
controllable, error ek = ek,i.

The only computational issue with the presented construction is the projec-
tion onto Sg to construct the auxiliary points zk,i. However, this projection
can be explicit for some problems (e.g., onto a box). Also, it may be already
computed by Algorithm A in the course of its iterative procedure anyhow. For
example, one of the most natural stopping conditions for VI(F̂ k, Sg) is precisely
to check whether ‖yk,i − zk,i‖ is small (this is the so-called natural residual of
VI [27, Chapter 1.5]; if the natural residual is zero then yk,i = zk,i = x̄k+1

S is the
exact solution). In particular, most (if not all) projection methods for VIs (see,
e.g., [27, Chapter 12.1], [79]) compute the right-hand side in the definition of
zk,i as part of the iterates update (perhaps scaled with a stepsize, but this can
be easily accounted for) and/or compute the natural residual (yk,i − zk,i) for
the stopping test. Thus, within projection methods, zk,i and then ek,i are read-
ily available. That said, solving subproblems with increasing accuracy makes
iterations progressively more expensive, of course. An interesting proposal in
the context of projection methods is presented in [44], where a fixed number of
projection steps is performed throughout, with verifiable error bounds. Natu-
rally, this leads to errors which are bounded but do not tend to zero, and would
require a different type of analysis from the one to be presented below. Given
its clear practical importance, the issue of how to handle in our setting asymp-
totically nonvanishing inaccuracy in the subproblem solution is an interesting
subject of future research.

3.1.3 Managing the feasible set of the master problem

The basic choice is to take Xk+1 = {x0
S , . . . , x

k+1
S }. As already mentioned, to

ensure feasibility of the master problems (3.6) it should hold that x0
M = x0

S ∈
Sh ∩ Sg, and for the existence of Lagrange multipliers h(x0

S) < 0 if h is not
affine.

However, when F is monotone and the projection onto Sg is cheap (and this
is indeed the case for many applications of interest), we can generate at neg-
ligible computational cost some additional “improved” points that are closer
to the solution set than the past iterates. This procedure is based on separa-
tion/projection ideas, e.g., [46, 75].

In this strategy we explicitly state that Xk ⊂ Xk+1 for all k, i.e., no points
are ever deleted from the feasible set of the previous master problem; points can
only be added. Then since xkM solves VI(F, Sh∩convXk) and xjM ∈ Sh∩convXk

for j ≤ k (since Xj ⊂ Xj+1), we have that for the associated wkM ∈ F (xkM ) it
holds that

〈wkM , x
j
M − x

k
M 〉 ≥ 0 for j = 1, . . . , k. (3.15)

On the other hand, if x̄ is any solution of VI(F, Sh ∩ Sg), since xkM ∈ Sh ∩ Sg
it holds that 〈w̄, xkM − x̄〉 ≥ 0 where w̄ ∈ F (x̄). Then monotonicity of F
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(actually, the weaker pseudo-monotonicity property is enough here) implies that
〈wkM , xkM − x̄〉 ≥ 0. Hence, for every k, the solution set of VI(F, Sh ∩ Sg) lies in
the halfspace

{x : 〈wkM , x− xkM 〉 ≤ 0}.
Thus, in view of (3.15), all the previous master problem solutions are separated
from the solution set of VI(F, Sh∩Sg) by the hyperplane {x : 〈wkM , x−xkM 〉 = 0}.
In fact, as there seem to be no reasons for the inequality (3.15) to hold as
equality, the separation should be expected to be strict for most points. It is then
clear that projecting onto the separating hyperplane (can also be with under-
or over-relaxation), would move the previous iterates closer to the solution set,
thus giving better approximations to the solution [75].

In addition, previous solutions of subproblems could be considered too, i.e.,
the points with the property

〈wkM , x
j
S − x

k
M 〉 ≥ 0 for j = 1, . . . , k such that xjS ∈ Sh.

If there are such points then they can be projected/improved also. That said,
since xjS ∈ Sh need not hold in general, the existence of candidates to project
of this kind is not a given (unlike the case with the previous master problem
solutions for which the separation property always holds).

Summarizing, we can choose any subset

Zk ⊂ {z ∈ Xk ∪ {x1
M , . . . , x

k
M} : 〈wkM , z − xkM 〉 > 0}

and define

Xk+1 = Xk ∪ {xk+1
S } ∪

{
PSg

(
z − βz

〈wkM , z − xkM 〉
‖wkM‖2

wkM

)
: z ∈ Zk

}
,

where βz ∈ (0, 2) is over/under relaxation parameter (βz = 1 corresponds to the
projection onto the separating hyperplane). See [75] for formal justifications.

3.1.4 Stopping conditions

One reasonable stopping criterion for Algorithm 3.1.1 is based on monitoring,
after solving the subproblem VI(F̂ k,Kg), the quantity

∆k = 〈wkM + [h′(xkM )]>µkM , x
k+1
S − xkM 〉. (3.16)

The motivation for (3.16) comes from the stopping test of the cutting-plane
algorithm for maximizing the dual function (2.2) in the original Dantzig–Wolfe
method for the linear program (2.1) (see Section 2.1). For this problem, using
the linearity of the data and the fact that µkM ⊥ h(xkM ) (since these solve (2.3)),
we have that

∆k = 〈f ′(xkM ) + h′(xkM )>µkM , x
k+1
S − xkM 〉

= f(xk+1
S )− f(xkM ) + 〈µkM , h(xk+1

S )− h(xkM )〉
= f(xk+1

S ) + 〈µkM , h(xk+1
S )〉 − f(xkM )

= θ(µkM )− θk(µkM ) ≤ 0,
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i.e., ∆k measures how well the dual function θ is approximated by its cutting-
plane model θk at the current dual iterate µkM . It is standard to stop the
cutting-plane method when ∆k becomes small enough [5, Sec. 9.3.2].

Let us now go back to the variational setting. Suppose xk+1
S is an inexact

solution of the subproblem VI(F̂ k,Kg) in the sense of (3.11). Since xkM ∈ Sg,
it then holds that

〈vk+1
S , xk+1

S − xkM 〉 ≤ 〈ek, xkM − xk+1
S 〉.

We can write

vk+1
S = uk+1

S +Qk(xk+1
S −xkM ), where uk+1

S ∈ F k(xk+1
S )+[Hk(xk+1

S )]>µk(xk+1
S ).

Then, for the inexactness criterion (3.12), we have that

〈uk+1
S , xk+1

S − xkM 〉 ≤ 〈ek, xkM − xk+1
S 〉 − 〈Qk(xk+1

S − xkM ), xk+1
S − xkM 〉

≤ −(1− σ)〈Qk(xk+1
S − xkM ), xk+1

S − xkM 〉.

Now, since F k(x) + [Hk(x)]>µk(x) is monotone and

wkM + [h′(xkM )]>µkM ∈ F k(xkM ) + [Hk(xkM )]>µk(xkM ),

it holds that

∆k = 〈wkM + [h′(xkM )]>µkM , x
k+1
S − xkM 〉

≤ 〈uk+1
S , xk+1

S − xkM 〉
≤ −(1− σ)〈Qk(xk+1

S − xkM ), xk+1
S − xkM 〉 ≤ 0. (3.17)

If Qk is positive definite, then ∆k = 0 implies xk+1
S = xkM , and the latter point

is a solution of VI(F, Sh ∩ Sg) (see Proposition 3.2.2 below, which also deals

with case when Qk may be positive semidefinite if F̂ k is strictly monotone). A
value of ∆k close to zero means that the difference between the points xk+1

S and
xkM is small, which justifies the stopping test based on ∆k.

3.1.5 Relaxing the constraints in the master problem

We now consider the option of relaxing the h-constraints by introducing slack
variables. This feature can be useful when computing a feasible starting point
in Sh ∩ Sg is nontrivial. A starting point in Sg is still needed, but recall that
it is assumed to be a simple set in our context. A similar technique had been
mentioned in [29, 12], but without any theoretical analysis.

Suppose that at an iteration k ≥ 0 we have a finite subset Xk+1 of Sg
containing the subproblems solutions {x0

S , . . . , x
k+1
S }. We define the relaxed

master feasible set

Dk = {(x, z) ∈ convXk+1 × Rq : h(x) ≤ z},
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and the function F kM : Rn × Rq⇒Rn × Rq by

F kM (x, z) = F (x)× {ζkz},

where ζk > 0 is a scalar parameter. Then the relaxed master problem consists
of solving

VI(F kM , Dk). (3.18)

Note that the set Dk is always nonempty and satisfies the Slater constraint
qualification automatically. Also, F kM is (strongly) monotone, if so is F .

The new algorithm is given below.

Algorithm 3.1.2. (Relaxed Dantzig-Wolfe Decomposition)

1. Choose x0
M ∈ Sg, w0

M ∈ F (x0
M ) and µ0

M ∈ Rq+. Set x0
M = x0

S and k := 0.

2. The Subproblem: Choose the function F̂ k as in Algorithm 3.1.1 and
find xk+1

S , a solution of the problem VI(F̂ k, Sg).

3. The Master Problem: Choose the set Xk+1 as in Algorithm 3.1.1 and
the parameter ζk > 0. Find a solution (xk+1

M , zk+1) of the problem (3.18),

with the associated wk+1
M ∈ F (xk+1

M ) and a Lagrange multiplier µk+1
M as-

sociated to the h-constraint.

4. Set k := k + 1 and go to Step 2.

Note that solutions of the subproblems and of the master problems belong
to the set Sg, but not necessarily to Sh. In Proposition 3.2.3 below, we shall see
that the z-component of the master solution is actually uniquely defined and is
of the form zk+1 = µk+1

M /ζk.

3.2 Convergence analysis

We first formalize the arguments that show that the algorithm is well-defined,
i.e., that all the subproblems and all the master problems have solutions.

As discussed above, we can always choose F k to be maximal monotone (even
if F is not), so that F̂ k would be maximal monotone with its domain containing
the domain of F . Moreover, F̂ k can always be made strongly monotone by
taking the matrix Qk positive definite when needed. Then maximal monotonic-
ity and strong monotonicity of F̂ k ensure the existence of the unique solution
to subproblem VI(F̂ k, Sg) (by [65, Theorem 5]). In addition, as already dis-
cussed above, our choice of the starting points in both Algorithm 3.1.1 and
Algorithm 3.1.2 ensures that all the master problems are always feasible and
satisfy constraint qualifications [77], so that there exist Lagrange multipliers
associated to the solutions (if any). Now, the master problems are variational
inequalities either with a continuous mapping or with a maximal monotone one
over nonempty compact feasible sets. Solutions to this type of problems exist,
by [27, Corollary 2.2.5] and [65, Theorem 5], respectively.

We start our convergence analysis by establishing some key properties of the
master problems solutions in Algorithm 3.1.1.
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Proposition 3.2.1. For a solution xk+1
M of the master problem V I(F, Sh ∩

convXk+1) in Algorithm 3.1.1, the following assertions hold:

1. If h is affine or if there exists x̂ ∈ convXk+1 such that h(x̂) < 0, then there
exists a Lagrange multiplier µk+1

M ∈ Rq+ associated to the h-constraint.

2. For any such multiplier µk+1
M it holds that xk+1

M solves

VI(F (·) + [h′(·)]>µk+1
M , convXk+1).

3. If for any x ∈ Sg and any
v ∈ [F (xk+1

M ) + [h′(xk+1
M )]>µk+1

M ] ∩ [−NconvXk+1(xk+1
M )] it holds that

〈v, x− xk+1
M 〉 < 0 then x 6∈ convXk+1.

4. If xk+1
M is a solution of VI(F (·) + [h′(·)]>µk+1

M , Sg) then xk+1
M solves

VI(F, Sg ∩ Sh).

5. On the next iteration (k := k + 1), if xkM is a solution of the subproblem

VI(F̂ k, Sg) then xkM solves VI(F, Sg ∩ Sh).

Proof. 1. Since convXk+1 is a polyhedral set, the linearity of h in the first
case or the Slater constraint qualification in the second case guarantee
that

NSh∩convXk+1(xk+1
M ) = NSh(xk+1

M ) +NconvXk+1(xk+1
M )

and
NSh(xk+1

M ) = {[h′(xk+1
M )]>µ : µ ∈ Rq+, µ ⊥ h(xk+1

M )}.

Then, since xk+1
M solves VI(F, Sh ∩ convXk+1), we have that

0 ∈ F (xk+1
M ) +NSh∩convXk+1(xk+1

M )

= F (xk+1
M ) + {[h′(xk+1

M )]>µ : µ ∈ Rq+, µ ⊥ h(xk+1
M )}

+NconvXk+1(xk+1
M ),

which means the existence of the multiplier µk+1
M in question.

2. From the first part we have, in particular, that

0 ∈ F (xk+1
M ) + [h′(xk+1

M )]>µk+1
M +NconvXk+1(xk+1

M ),

which means that xk+1
M solves VI(F (·)+[h′(·)]>µk+1

M , convXk+1), as claimed.

3. Note that any v in question can serve as an element associated to xk+1
M

which verifies that the latter is a solution of

VI(F (·) + [h′(·)]>µk+1
M , convXk+1).

In other words, it holds that 〈v, x − xk+1
M 〉 ≥ 0 for all x ∈ convXk+1.

Thus, if this inequality does not hold for some x ∈ Rn (in particular, for
some x ∈ Sg), it must be the case that x 6∈ convXk+1.
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4. Suppose now that xk+1
M solves VI(F + [h′(·)]>µk+1

M , Sg), i.e.,

0 ∈ F (xk+1
M ) + [h′(xk+1

M )]>µk+1
M +NSg (xk+1

M ).

Since µk+1
M is a Lagrange multiplier associated to the h-constraint, we have

[h′(xk+1
M )]>µk+1

M ∈ NSh(xk+1
M ),

and hence,

0 ∈ F (xk+1
M ) +NSh(xk+1

M ) +NSg (xk+1
M ) ⊂ F (xk+1

M ) +NSh∩Sg (xk+1
M ),

which establishes the fourth assertion.

5. Finally, since by (3.7) it holds that

F̂ k(xkM ) ⊂ F (xkM ) + [h′(xkM )]>µkM ,

if xkM solves the subproblem VI(F̂ k, Sg), then the previous item implies
that it solves our problem VI(F, Sg ∩ Sh).

Note that, by the third item of Proposition 3.2.1, it follows that for the gap
defined in (3.16) whenever ∆k < 0 we have that xk+1

S 6∈ convXk. Thus, as long
as ∆k < 0, the feasible set of the master problem keeps on growing, improving
the approximation of the set Sg. If the subproblems are solved exactly then
xk+1
S ∈ convXk for some k implies that ∆k ≥ 0 (actually ∆k = 0). Then, if

F̂ k is at least strictly monotone (which can always be ensured by taking the
matrix Qk positive definite if needed) it holds that xkM = xk+1

S is a solution of
the problem VI(F, Sg ∩ Sh).

Proposition 3.2.2. Let F̂ k be strictly monotone (e.g., Qk is positive definite).
Suppose that in Algorithm 3.1.1 it holds that ∆k ≥ 〈ek, xkM − x

k+1
S 〉 for some

iteration index k. Then ∆k = 0 and xkM = xk+1
S solves VI(F, Sg ∩ Sh).

Proof. Since xk+1
S is an approximate solution, with error ek, of the subproblem

VI(F̂ k, Sg) in the sense of (3.11), and since xkM ∈ Sg, for the associated vk+1
S ∈

F̂ k(xk+1
S ) it holds that

〈ek, xkM − xk+1
S 〉 ≥ 〈vk+1

S , xk+1
S − xkM 〉. (3.19)

Then, by the definition of ∆k in (3.16), by the monotonicity of F̂ k, and by
the fact that wkM + [h′(xkM )]>µkM ∈ F̂ k(xkM ), it holds that

∆k = 〈wkM + [h′(xkM )]>µkM , x
k+1
S − xkM 〉

≤ 〈vk+1
S , xk+1

S − xkM 〉
≤ 〈ek, xkM − xk+1

S 〉, (3.20)
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where (3.19) was also used. But then the assumption that ∆k ≥ 〈ek, xkM−x
k+1
S 〉

implies that
∆k = 〈ek, xkM − xk+1

S 〉.
Then by substituting the expression for ∆k into the left-hand side of (3.19) we
obtain that

〈wkM + [h′2(xkM )]>µkM − vk+1
S , xk+1

S − xkM 〉 ≥ 0.

Strict monotonicity of F̂ k then implies that xk+1
S = xkM . Obviously, it then

holds that ∆k = 0. Also, since xk+1
S = xkM solves the subproblem VI(F̂ k, Sg),

Proposition 3.2.1 implies that this point is a solution of VI(F, Sg ∩ Sh).

We next establish the properties of solutions of the relaxed master problems.

Proposition 3.2.3. For a solution (xk+1
M , zk+1) of the relaxed master problem

VI(F kM , Dk) in Algorithm 3.1.2, the following assertions hold:

1. There exists the unique Lagrange multiplier µk+1
M associated to the h-

constraint. Moreover, it holds that

zk+1 = µk+1
M /ζk,

0 ≤ µk+1
M ⊥ h(xk+1

M )− µk+1
M /ζk ≤ 0.

(3.21)

2. The point xk+1
M solves VI(F (·) + [h′(·)]ᵀµk+1

M , convXk+1).

3. If for any x ∈ Sg and any
v ∈ [F (xk+1

M ) + [h′(xk+1
M )]>µk+1

M ] ∩ [−NconvXk+1(xk+1
M )] it holds that

〈v, x− xk+1
M 〉 < 0, then x 6∈ convXk+1.

Proof. We have that

0 ∈ F (xk+1
M )× {ζkzk+1}+NDk(xk+1

M , zk+1).

Since convXk+1 is a polyhedral set, it is easy to see that the constraints of Dk

satisfy the Slater constraint qualification. Therefore,

NDk(xk+1
M , zk+1) =

{[
[h′(xk+1

M )]>

−I

]
µ :

µ ∈ Rq+
0 ≤ µ ⊥ h(xk+1

M )− zk+1 ≤ 0

}
+

{(
d
0

)
: d ∈ NconvXk+1(xk+1

M )

}
.

In particular,
ζkz

k+1 − µ = 0,

for any multiplier µ associated to the h-constraints. Hence, µk+1
M is uniquely

defined and satisfies (3.21).
Also, it holds that

0 ∈ F (xk+1
M ) + [h′(xk+1

M )]>µk+1
M +NconvXk+1(xk+1

M ),

which establishes the second assertion.
The last assertion follows from the same considerations as those used in

Proposition 3.2.1 for Algorithm 3.1.1.
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We note that for Algorithm 3.1.2 the condition xk+1
S = xkM no longer implies

that xkM solves VI(F, Sh ∩ Sg) (although ∆k = 0 still implies that xk+1
S = xkM

when F̂ k is strictly monotone). This is the price to pay for the convenience of
relaxing the h-constraint, as the master problem solutions xkM may no longer
belong to Sh. Rather, the sequence approach this set asymptotically.

We are now in position to state the main convergence results for the Dantzig–
Wolfe schemes described above.

Theorem 3.2.4. Let the mapping F be (possibly set-valued) maximal mono-
tone or single-valued continuous, and let the function h be convex and con-
tinuously differentiable. Suppose the sequence {(xkM , µkM , x

k+1
S )} generated by

Algorithm 3.1.1 or Algorithm 3.1.2, with the subproblems (3.4) solved approxi-
mately in the sense of (3.11) with the associated error sequence {ek} satisfying
(3.12) or (3.14), is bounded. In the case of Algorithm 3.1.2, let {ζk} → +∞ as
k →∞.

Then it holds that

1. The sequence {∆k} converges to zero.

2. If the elements of {F̂ k} are strongly monotone uniformly with respect to
k and the approximation rule (3.14) is used, or if the matrices in {Qk}
are uniformly positive definite and either (3.12) or (3.14) is used, then
limk→∞ ‖xk+1

S − xkM‖ = 0.

3. If limk→∞ ‖xk+1
S − xkM‖ = 0, the sequence {Qk} is bounded, the families

of functions {F k}, {Hk} and {µk} are equicontinuous on compact sets,
and in the case of the relative-error inexactness rule condition (3.12) is
strengthened to (3.13), then for every accumulation point (x̄, µ̄) of the
sequence {(xkM , µkM )} the point x̄ is a solution of VI(F, Sh ∩ Sg) while µ̄
is a multiplier associated to the h-constraint.

Proof. 1. Using (3.17) in the case when subproblems are solved inexactly
according to the rule (3.12), and (3.20) if the rule (3.14) is employed, we
see that

∆̄ = lim inf
k→∞

∆k ≤ lim sup
k→∞

∆k ≤ 0. (3.22)

Let {kj} be any subsequence of indices such that limj→∞∆kj = ∆̄.
Passing onto a further subsequence, if necessary, we can assume that

{(xkjM , µ
kj
M , x

kj+1
S )} → (x̄, µ̄, x̂). Also, since under the stated assumptions

F is locally bounded on Sg, the sequence {wkjM} is bounded and we can

assume that {wkjM} → w̄.

By definition (3.16), we have that

lim
j→∞

∆kj = ∆̄ = 〈w̄ + [h′(x̄)]>µ̄, x̂− x̄〉.

Fix any index j. Then for every i > j we have that x
kj+1
S ∈ Xki . As a

result, by the second item of Proposition 3.2.1 in case of Algorithm 3.1.1
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or of Proposition 3.2.3 in case of Algorithm 3.1.2, it holds that

〈wkiM + [h′(xkiM )]>µkiM , x
kj+1
S − xkiM 〉 ≥ 0.

Passing onto the limit as i→∞ in the relation above, we conclude that

〈w̄ + [h′(x̄)]>µ̄, x
kj+1
S − x̄〉 ≥ 0.

Now passing onto the limit as j →∞ in the latter relation, we obtain that

〈w̄ + [h′(x̄)]>µ̄, x̂− x̄〉 ≥ 0.

Hence, ∆̄ ≥ 0. Together with (3.22) this proves the first assertion.

2. Since xk+1
S solves approximately VI(F̂ k, Sg) in the sense of (3.11), there

exists vk+1
S ∈ F̂ k(xk+1

S ) ∩ [−NSg ](xk+1
S ) such that

〈vk+1
S + ek, xkM − xk+1

S 〉 ≥ 0.

Then denoting vkM = wkM + [h′(xkM )]>µkM ∈ F̂ k(xkM ) we have that

−∆k = 〈vk+1
S − vkM , x

k+1
S − xkM 〉 − 〈v

k+1
S , xk+1

S − xkM 〉
≥ 〈vk+1

S − vkM , x
k+1
S − xkM 〉+ 〈ek, xk+1

S − xkM 〉
≥ c‖xk+1

S − xkM‖2 + 〈ek, xk+1
S − xkM 〉,

where c > 0 is the modulus of strong monotonicity of F̂ k, independent of
k. For the approximation rule (3.14) (that is {ek} → 0), since ∆k → 0 as
established above, it follows that ‖xk+1

S − xkM‖ → 0 as k →∞. The same
conclusion holds for the choice of uniformly positive definite Qk, as in that
case the approximations F̂ k are uniformly strongly monotone. When the
inexactness rule (3.12) is used, the assertion follows from (3.17) and the
fact that ∆k → 0.

3. Let (x̄, µ̄) be an accumulation point of {(xkM , µkM )} and let {(xkjM , µ
kj
M )} →

(x̄, µ̄) be any associated convergent subsequence. By construction of the
algorithm, the basic continuity argument implies that x̄ ∈ Sg and µ̄ ∈ Rq+.

Since x
kj+1
S solves approximately VI(F̂ kj , Sg) in the sense of (3.11), there

exists v
kj+1
S ∈ F̂ kj (xkj+1

S ) ∩ [−NSg (x
kj+1
S )] such that

〈vkj+1
S + ekj , x− xkj+1

S 〉 ≥ 0 for all x ∈ Sg. (3.23)

Since the families {F k}, {Hk} and {µk} are equicontinuous and the matri-
ces Qk are bounded, the family {F̂ k} remains equicontinuous on compact

sets. Then, on an open ball containing the sequences {xkj+1
S }, {xkjM} and

the point x̄, for every ε > 0 there is δ > 0 such that ‖x − y‖ < δ implies

dH(F̂ k(x), F̂ k(y)) < ε, for every k. Since ‖xkj+1
S − xkjM‖ → 0, there is an
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index J such that for every j > J the relation ‖xkj+1
S − xkjM‖ < δ holds,

and thus there exists u
kj
M ∈ F (x

kj
M ) such that

‖ukjM + [h′(x
kj
M )]>µ

kj
M − v

kj+1
S ‖ < ε.

On the other hand, since under the stated assumptions F is locally bounded

on Sg and outer semicontinuous, we can assume that the sequence {ukjM}
converges to a point ū ∈ F (x̄). Then

lim
k→∞

v
kj+1
S = ū+ [h′(x̄)]>µ̄. (3.24)

Next, note that {ek} → 0. In the case of the inexactness rule (3.14) this
is explicit. In the case of rule (3.13) it is an obvious consequence since
{Qk} is bounded, ‖xkM − x

k+1
S ‖ → 0, and the right-hand side of (3.13) is

quadratic in the latter quantity while the left-hand side is linear.

Now passing onto the limit in (3.23) as j →∞ and using (3.24), we obtain
that

〈ū, x− x̄〉+ 〈[h′(x̄)]>µ̄, x− x̄〉 ≥ 0 for all x ∈ Sg. (3.25)

Since µ̄ ≥ 0, the convexity of h implies that

〈µ̄, h(x)− h(x̄)〉 ≥ 〈µ̄, h′(x̄)(x− x̄)〉
= 〈[h′(x̄)]>µ̄, x− x̄〉.

Then, by (3.25), we obtain that

〈ū, x− x̄〉+ 〈µ̄, h(x)− h(x̄)〉 ≥ 0 for all x ∈ Sg.

It then holds that

〈ū, x− x̄〉 ≥ 〈µ̄, h(x̄)〉 for all x ∈ Sh ∩ Sg. (3.26)

For a sequence generated by Algorithm 3.1.1, {xkM} ⊂ Sh ∩ Sg and

〈µkM , h(xkM )〉 = 0

for all k. Hence, by continuity, x̄ ∈ Sh ∩ Sg and 〈µ̄, h(x̄)〉 = 0. For
a sequence generated by Algorithm 3.1.2, taking the limit in (3.21) as
k → ∞ and recalling the parameter choice {ζk} → +∞, it again follows
that x̄ ∈ Sh ∩ Sg and 〈µ̄, h(x̄)〉 = 0.

In either case, we have x̄ ∈ Sh ∩ Sg and ū ∈ F (x̄), with (3.26) yielding

〈ū, x− x̄〉 ≥ 0 for all x ∈ Sh ∩ Sg,

i.e., x̄ is a solution of VI(F, Sh ∩ Sg), as stated. The fact that µ̄ is a
Lagrange multiplier associated to the h-constraint follows from (3.25).
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It is clear that the families of functions {F kconst}, {Hk
const} and {Hk

exact}
defined above are equicontinuous on compact sets. For a bounded sequence
{xkM}, both {F kN} and {Hk

N} are equicontinuous. When F is single-valued and
continuous, the family {F kexact} is equicontinuous. Finally, µk(x) = µkM is al-
ways equicontinuous while the augmented Lagrangian option µ̃k(x) for linear
constraints is equicontinuous if the sequence of penalization parameters {rk} is
bounded.

3.3 Computational experiments

In this section, we describe a simplified game-theoretic model for electricity mar-
kets, and present our numerical results for computing the associated variational
equilibria. For more sophisticated but related models we refer to [43, 44, 45].
For the purposes of our development here, the version considered is sufficient.

3.3.1 Energy markets as generalized Nash games

Let Na agents generate electric energy for sale. The ith agent owns ni plants
whose total generation is represented by a vector qi ∈ Rni+ . The energy owned
by this agent is the sum of the generation of all of the agent plants; accordingly,
we define matrices Si given by a row with ni entries all equal to one, so that

Siqi =

ni∑
k=1

qik .

We suppose an inverse-demand function is available: the unitary energy
price in the market depends on the total amount of energy produced by all
agents. We model this relation by means of a quadratic concave function of
one variable, that is the total energy, so p : R→ R. The exogenous coefficients
defining this quadratic function are market-dependent and are given below.

The vector of all the agents’ generation is denoted by q−0 = (q1, q2, . . . , qNa) ∈
Rn (this peculiar notation will be clear soon). The total amount of energy avail-
able in the market, denoted below by S−0q−0, is the sum of the generation of
all of the plants in the market:

S−0q−0 =

Na∑
i=1

Siqi =

Na∑
i=1

ni∑
k=1

qik .

Since the price depends on the total energy, the i-th agent will be paid

p
(
S−0q−0

)
Siqi.

If, to generate the amount qi, the agent incurs an operating (convex) cost ci(qi),
the agent’s profit is given by

p
(
S−0q−0

)
Siqi − ci(qi).
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The profit of each agent depends on the generation level of all the agents in the
market. In turn, each generation level is constrained by technological limitations
of the power plants: for certain sets Xi ⊂ Rni , the relation qi ∈ Xi must hold.
In our simplified modeling, Xi = [0, U i] for some U i ∈ Rni+ , noting that in a
realistic model the set Xi is given by complex relations expressing how different
technologies (thermal, nuclear, hydraulic, eolic) generate power.

Remark 3.3.1. The core difficulty for solution methods that do not use de-
composition resides precisely in the fact that they handle the set

∏Na
i=1X

i as
a whole. From a numerical point of view, this usually means dealing simulta-
neously with mixed-integer variables and nonconvex relations. By contrast, a
suitable decomposition method handles the difficulties by considering separately
each technology (only thermal, only nuclear, etc.), dealing with each set Xi indi-
vidually. As a result, an individual subproblem becomes “more computationally
tractable”; for example, involving only affine functions and mixed-integer vari-
ables, or only nonlinear functions with continuous variables. Such separation of
difficulties considerably simplifies the numerical solution of large problems. In
a somewhat different context, this is also confirmed by our results below.

An additional constraint for the generation levels qi refers to the fact that
agents are encouraged to satisfy the market demand d > 0. We let q0 ≥ 0
denote a scalar slack variable, measuring the deficit of energy in the market,
sometimes called load shedding. Then, if for each agent i, the vector

q−i = (q0, q1, . . . , qi−1, qi+1, . . . , qNa)

denotes the generation level of all the other agents, including load shedding, the
relation

qi ∈ S(q−i) = Xi ∩

wi ∈ Rni : q0 +

Na∑
i 6=j=1

nj∑
k=1

qjk +

ni∑
k=1

wik = d


must hold.

Summing up, the i-th agent tries to maximize profit by solving the (concave)
problem

max p
(
S−0q−0

)
Siqi − ci(qi) s.t. qi ∈ S(q−i).

The coordination, or regulation, of the market is done by the Independent Sys-
tem Operator (ISO), whose actions in the market are considered as those of an
additional player (this is a so-called bounded rationality model). Accordingly,
letting the ISO be player number 0, if the energy deficit is penalized with a price
P > 0, the ISO tries to maximize the social welfare by solving

max p
(
S−0q−0

)
Siq−0 −

Na∑
i=1

ci(qi)− Pq0 s.t. q0 ∈ S(q−0),

where, having a maximal allowed level of load shedding U0,

S(q−0) =

{
w0 ∈ R : 0 ≤ w0 ≤ U0, w0 + S−0q−0 = w0 +

Na∑
i=1

Siqi = d

}
.
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As a result, for i = 0, . . . , Na, the convex functions fi : R1+n → R given by

f0(q) = Pq0 −
Na∑
i=1

ci(qi)− p
(
S−0q−0

)
S−0q−0

fi(q) = ci(qi)− p
(
S−0q−0

)
Siqi, i = 1, . . . , Na ,

define a generalized Nash game with Na+1 players (the ISO and the Na agents).
In this game, each player tries to maximize profit by solving

min fi(q
−i, qi) s.t. qi ∈ S(q−i).

With respect to the notation in (2.16), we have the relations

xi ↔ qi , and S ↔ q0 +

N∑
i=1

Siqi = d.

As discussed in Chapter 2, finding a generalized Nash equilibrium (GNE) of
this game is equivalent to solving a quasi-variational inequality problem, see [25].
The same considerations as in Chapter 2 apply. We briefly recall them here.
Quasi-variational problems are very hard to solve. Fortunately, in our case,
it is possible to compute some GNE points (not all) by solving a variational
inequality instead. These points are called variational equilibria and have some
good/important properties from the economic point of view, see [26, 47] and
again Chapter 2. For our problem, it is shown in [48] that variational equilibria
are solutions to VI(F, Sg ∩ Sh) where

F (q) =
(
∇q0f0(q),∇q1f1(q), . . . ,∇qNa fNa(q)

)
,

Sg = [0, U0]×
Na∏
i=1

Xi and Sh = {q ∈ R1+n : q0 + S−0q−0 = d} .

In our model each function fi(q) is convex and differentiable in the variable qi.
So the function ∇qifi(q) is monotone in the i-th component of the variable q, but
in general it is not monotone on the full variable q. Therefore, the singled-valued
function F defining the variational problem (3.1) is nonmonotone. Observe that
it also couples all the variables.

Our Dantzig-Wolfe strategy can be applied to nonmonotone single-valued
functions F , simply by taking monotone approximations to F in the subprob-
lems. In particular, any family F kconst, F

k
N-J, or F kexact-J can be used.

Another specificity of our game is that the demand constraint, that is the set
Sh, couples all variables qi. Without this constraint, the feasible set would be
separable. This makes the considered game particularly suitable for application
of our decomposition schemes.

Remark 3.3.2. As discussed above, the model considered here is simplistic in
some features; it is mostly meant to exhibit the interest of using decomposition
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schemes for problems with feasible sets having certain types of structure. In
particular, the shared constraint in our model refers to satisfaction of the (ex-
ogenous) demand, but alternative joint constraints, like the ones in [38], could
also be considered.

3.3.2 Battery of problems

We implemented Algorithm 3.1.1 in Matlab version 7.11(R2010b). The runs
were done on a PC operating under Ubuntu 11.04 with a Core(TM)2 Duo
2.00GHz processor and 4GB of memory.

We created six market configurations of the generalized Nash game, by taking
Na = 5 agents and considering a mix with n power plants, for

n ∈ {100, 250, 1000, 2500, 5000, 10000} .

As n increases, the configurations become harder and harder to solve directly,
without decomposition. Also the subproblems become harder, as we assume that
each agent owns the same number of plants ni = n/5, for i = 1, . . . , Na = 5.

Other values of the model parameters are as follows.

1. The entries of the maximum generation capacity vector U i are random
numbers in [0, 10] while the maximum allowed deficit is fixed to U0 = 5.

2. The demand is taken equal to d = 0.8
∑Na
i=1 U

i, corresponding to 80% of
the market generation capacity.

3. The deficit price is set at P = 120.

4. The inverse-demand function defines the unitary price p as a quadratic
concave function such that p(0) = P , p′(0) = 0 and p(1.5d) = 0.

5. The operating cost is of the form

ci(qi) = bi
>
qi +

1

2
qi
>
Miq

i

where bi ∈ Rni and Mi ∈ Rni×ni is a diagonal positive definite matrix.
The corresponding values are generated randomly between [30, 60] and
[0.4, 0.8], respectively.

With this data, the simplified model is set up in a manner ensuring that
at a variational equilibrium of the game will have no deficit (q0 = 0) and the
price will be equal to p(d) = P (1 − 1

1.52 ). As a way of ensuring correctness of
the implementation, we checked that these values were obtained in all of our
numerical results below.
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3.3.3 Numerical results

For each of the six market configurations, we randomly generated 10 problem
instances. For each instance, we apply Algorithm 3.1.1 using five approximations
for F :

Fconst , FN , Fexact = F , FN-J , FJ .

Since the h-constraint is linear, we used the exact family Hexact and likewise for
the multipliers.

We also tried to solve the problem directly, without decomposition, using
PATH [18, 28]. For the two largest configurations (n = 5000, 10000) PATH
could no longer be used, stopping by lack of memory. With our computer and
for the considered instances, when n = 5000 the solver stalled after about 4
hours. Also, since the larger configurations become time consuming, for these
we only run the faster decomposition alternatives, in our case Fconst, FJ and
FN-J.

Regarding specifics of the implementation of Algorithm 3.1.1, all the sub-
problems and master problems are themselves solved using PATH. Our focus
here is on comparing various approximation options; for this reason we do not
report on the variants with inexact solution of subproblems, with generating
additional points via projections, or relaxing the master problems.

For the cases n = 100, 250, 500, 1000, and the options Fconst, FN-J, and
Fexact-J, subproblems in variables qi followed the decomposition pattern induced
by the product Sg =

∏5
i=0 Sgi , where Sg0 = [0, U0] ⊂ R and Sgi = Xi ⊂

Rn/5, i ≥ 1. With this decomposition, decision variables are precisely those of
each player. For the larger configurations we used instead the product Sg =∏n/250
i=0 Sgi = [0, U0]×

∏5
i=1X

i, with Sg0 = [0, U0] ⊂ R and Sgi ⊂ R250.
We use as stopping rules the following criteria. In PATH the stopping test

employs the residual of the full problem based on the Fischer-Burmeister merit
function [27, Chapter 1.5] with a default 10−6. For the decomposition ap-
proaches the stopping criterion is

|∆k|
1 + |∆1|

< 10−5,

where ∆k is defined in (3.16). As discussed in Section 3.1.4, this is a natural
stopping condition in the decomposition framework, as the access to the full
problem, and thus to its residual, is not presumed.

All results are reported in Table 3.1, and interpreted in the two compara-
tive Figures 3.1 and 3.2 below. For each configuration, we averaged over the
10 instances the results for each method. The table reports the average and
maximal CPU times in seconds; the percentage of the total running time spent
in the master and subproblem solution; the mean residual (the infinite-norm of
the natural merit function [27, Chapter 1.5] for VI(F (·) + [h′(·)]>µkM , Sg) at the
master solution xkM ); and the mean infinite-norm of the difference between xkM
and xk+1

S at termination. In particular, the latter distance and the residual are
not a part of the decomposition stopping test (as they are not available within
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the decomposition scheme anyway); these values were computed a posteriori, to
confirm that an approximate solution of the problem was indeed obtained.

Regarding the running times, the main point we would like to stress is that
for the configurations with n ≥ 5000, applying PATH directly appears no longer
possible even after relaxing the stopping tolerance from the default 10−6 to
10−2. Of course, the exact threshold depends on the specific computer and
implementation, yet there is always a threshold. On the other hand, some
of the approximation options in the decomposition technique still succeed in
solving the larger configurations in reasonable computational times.

The column reporting maximal CPU times in Table 3.1 gives an estimation
on how the data dispersion affected each method. For n = 2500, for exam-
ple, the percentage difference with respect to the mean CPU time was of 0.3,
7.5, 7.2, 15.8, 15.5, and 14.0%, respectively for PATH and the constant, New-
ton, Newton-Jacobi, and Jacobi approximations. As expected, the impact of
varying data on the constant approximation is much smaller than for the other
approximations, which incorporate more information. The situation is similar
for n = 10000, where the percentages are 5.8, 19.1, and 7.2 for the only three
approaches that could solve such large instances, respectively Fconst, FN-J , and
FJ.

In order to see the benefit of decomposing, we took as reference the CPU
time taken by a direct application of PATH and computed the ratio between
the CPU times of each decomposition method and the reference one. Figure
3.1 shows the corresponding ratios. We should remark though that Figure 3.1
is intended merely to illustrate the dynamics of the comparison as the size
grows and should not be taken literally. The reason is that, being a Newton-
type method, when PATH works (i.e., for problems not too large), it provides
highly accurate solutions. Generally, a comparable level of accuracy cannot be
expected from the decomposition approach.

than

PATH

Slower

than

PATH

Faster

Figure 3.1: Time ratios (decomposition divided by PATH), configurations with
n ≤ 2500
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Size and CPUMean CPUMax Master SubPbm Residual ‖xS−xM‖∞
Model (s) (s) (% time) (% time)
n = 100
PATH 0.162 0.235 - - - -
Fconst 5.199 8.081 92 8 0.001 3.006
FN 1.170 1.331 72 27 0.016 0.048
F 1.973 2.276 46 53 0.015 0.051
FN-J 2.010 4.923 89 10 0.083 0.069
FJ 8.785 10.027 17 83 0.080 0.068

n = 250
PATH 0.303 0.326 - - - -
Fconst 9.002 12.617 94 6 0.007 6.114
FN 4.397 4.819 23 77 0.016 0.043
F 2.530 2.691 41 59 0.015 0.045
FN-J 1.915 2.274 80 20 0.070 0.125
FJ 9.561 11.107 16 84 0.075 0.123

n = 500
PATH 1.413 1.713 - - - -
Fconst 19.413 30.356 95 5 0.008 8.071
FN 29.079 31.620 6 93 0.017 0.035
F 7.229 8.359 25 75 0.017 0.036
FN-J 3.313 4.067 64 36 0.087 0.099
FJ 14.285 20.401 15 85 0.086 0.100

n = 1000
PATH 13.807 13.962 - - - -
Fconst 54.202 66.884 97 3 0.009 7.641
FN 236.751 250.975 2 98 0.015 0.029
F 47.541 49.154 9 91 0.015 0.030
FN-J 11.263 13.878 40 60 0.067 0.074
FJ 40.398 48.539 11 89 0.066 0.073

n = 2500
PATH 693.439 695.626 - - - -
Fconst 255.843 275.134 98 2 0.025 8.918
FN 4590.224 4919.049 0 100 0.022 0.037
F 923.633 1069.350 2 98 0.022 0.038
FN-J 37.028 42.773 53 47 0.058 0.101
FJ 335.984 383.007 6 94 0.057 0.085

n = 5000
PATH - - - - - -
Fconst 1043.489 1257.464 99 1 0.038 9.535
FN-J 114.774 123.597 83 17 0.032 0.056
FJ 2239.637 2408.383 4 96 0.031 0.055

n = 10000
PATH - - - - - -
Fconst 4204.447 4450.205 99 1 0.066 9.857
FN-J 483.478 575.581 72 28 0.029 0.046
FJ 13891.376 14891.010 2 98 0.029 0.045

Table 3.1: Detailed list of all results
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The ordinate in Figure 3.1 uses a logarithmic scale, for convenience. In the
figure, when for a given method the value represented by a bar lies above the
0-ordinate (corresponding to 100 in the logarithmic scale), the decomposition
method took longer than the direct approach with PATH. By contrast, when the
bar is below the ordinate 100, the decomposition method was faster than PATH.
The plot in Figure 3.1 shows a natural behavior. A direct application of PATH
is very efficient for the smaller to medium sized problems. But as the size grows,
decomposition becomes more and more competitive. For n = 1000, the FN-J

decomposition already outperforms the direct approach. And for n = 2500,
three of the decomposition approaches become faster than PATH, with the
FN-J approximation being the best one, contrasting with the FN approximation
that has the worst performance because of the indecomposable structure of the
subproblems involved in the algorithm.

When the percentage distribution of time between master and subproblem
solution in Table 3.1 does not add up to 100%, this is due to some time spent
in intermediate tasks, such as communicating with PATH mex-interface. We
observe that for the larger configurations in general the best approach (Newton-
Jacobi) spends less time in solving subproblems than in dealing with the master
problems. In view of our comments in Remark 3.3.1, we conjecture that if we
were to consider difficult sets Xi, the percentage distribution of time would re-
sult in higher figures for the subproblems. Since the Jacobi-like approximations
are amenable to parallelization (thus making the subproblem solution quicker),
for such decompositions the more CPU time is spent in solving subproblems in
our current serial implementation, the faster would be the overall procedure in
parallel implementation. Moreover, it is also likely that more intricate sets Xi

would make decomposition preferable over a direct solution with PATH even for
the smaller instances (always keeping in mind that this is a problem dependent
issue).

Regarding solution quality, the two last columns in Table 3.1 report, respec-
tively, the value of the a posteriori computed residual and of the gap between
xS and xM . We observe that while the constant approximation gives system-
atically the most distant xS and xM ’s, for smaller instances this approximation
also has the lowest residual. This tendency starts changing at n = 2500 and for
n ≥ 5000 the Newton-Jacobi and Jacobi approximations become more accurate,
and practically equally so. Since the approximation FN-J is the fastest one, it
appears as the best option for large configurations, both in terms of speed and
accuracy.

We finish our analysis by considering scalability issues. Recall once again
that PATH applied to the full problem stalls for n ≥ 5000, while some de-
composition approaches still work in reasonable time. Figure 3.2 compares the
performance of Fconst, FN-J, FJ, which are the options able to handle the larger
configurations. The plot shows the corresponding mean CPU times in minutes
for each configuration, ranging from n = 100 to n = 10000. We observe that
FN-J shows the best scalability with respect to the problem size, suggesting once
more this is the best option for larger models of the type considered here.

Finally, we remark that the Dantzig-Wolfe decomposition algorithm is useful
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Figure 3.2: Scalability of the best decomposition options

for solving VI problems whose feasible set
∏
iX

i ∩ S has the structure above,
which is typical for GNEPs. By using this algorithm we reduce the compu-
tational effort from dealing directly with

∏
iX

i ∩ S to dealing with each Xi

separately. The resulting improvement may, in a number of cases, be very sig-
nificant. However, in some applications, like those described in Subsection 2.4,
Chapter 5, and Chapter 6, the setting is slightly different. Namely, the set Xi

may consist of points (z, q) that satisfy some constraints like Zz+Qq ≥ b, with
q having large dimension, but with Q having a block decomposable structure,
similar to the one discussed in Section 2.2 when describing the Benders algo-
rithm for linear programming. The next chapter is devoted to VI problems
whose feasible sets have a form amenable to Benders decomposition.
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Chapter 4

Benders Decomposition for
Variational Inequalities

In this chapter we follow the strategy described in Section 2.2 in the case of linear
programming for deriving, via duality, Benders method from the Dantzig-Wolfe
method in the case of VIs of a certain structure. In our presentation, we follow
the general lines of [51].

Consider the problem
VI(FP , SP ) (4.1)

with a certain special structure; specifically, FP : Rn ×Rm ⇒ Rn ×Rm has the
form

FP (x, y) = F (x)×G(y),

with F : Rn ⇒ Rn, G : Rm ⇒ Rm and

SP = {(x, y) ∈ Rn × Rm : Ax+By ≤ d},

where A and B are matrices of appropriate dimensions.
We further assume that after fixing the value of the variable y, the problem

VI(F, SP (y)), with SP (y) = {x ∈ Rn : Ax + By ≤ d}, is much easier to solve
than (4.1). As in the linear programming case of Section 2.2, this happens when
A has block decomposable structure, something in fact rather common in ap-
plications. For convergence analysis, we shall assume that F and G are outer
semicontinuous. The latter holds, in particular, if they are maximal monotone
(possibly multi-valued)[7, Proposition 4.2.1]. For solvability of iterative prob-
lems involved in the construction, one of F and G should also either be surjective
or its inverse has to be surjective. The latter is a technical assumption needed
to ensure the maximal monotonicity of the mapping of the dual problem ((4.3)
further below). When F or G has domain or image bounded, then this technical
assumption is automatic [7, Corollary 4.5.1].

The only other Benders type method for VIs that we are aware of is the one
proposed in [30]. The differences between our development and [30], and our
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contributions, are summarized as follows. First, we consider VI with a multi-
valued mapping, whereas in [30] the mapping is single-valued and, even more
importantly, it has a rather specific form, like (F (x), c, d) with F continuous
and invertible and c, d constant vectors. Clearly, our setting is much more gen-
eral and covers far more applications. Moreover, as it will be seen below this
generalization does not complicate too much the iterations of the algorithm, i.e.,
the subproblems will still be computationally tractable. In fact, the iterative
subproblems in our method related to the multi-valued part, that replaces the
constant part in the previous work, are independent of the variable x and can
be solved relatively easily. Second, the existence of solutions of primal sub-
problems in the previous work was an assumption. Here, we use regularization
to ensure solvability, and thus dispense with such assumptions. Finally, we
allow approximations for the dual subproblem VI mapping, as in the Dantzig-
Wolfe algorithm of Chapter 3, while previous work requires the use of exact
information. Apart from general importance of using approximations in many
real-world applications, this is of special significance here because it allows us to
express the corresponding primal subproblem as a simple minimization problem
(instead of a VI) if an appropriate type of approximation is chosen.

4.1 The dual problem

As in Section 2.2 for linear programming, the construction of Benders method
for VI is via applying the Dantzig-Wolfe technique to an appropriately defined
dual. In fact, since (4.1) has a especial structure, it is possible to define the
dual problem by rearranging the KKT conditions. This dual problem fits well
on the Dantzig-Wolfe decomposition scheme. It is worth to mention that so far
there were proposed a number of approaches for binding a dual problem to a
given VI considering various degree of abstractness (e. g. [56, 1, 40, 2]) that
however do not fit very well to our the decomposition scheme. We thus start
with associating to (4.1) the following dual problem:

VI(FD, SD), (4.2)

where FD : Rn × Rm × Rp ⇒ Rn × Rm × Rp is given by

FD(w, ζ, µ) = F−1(w)×G−1(ζ)× {d} (4.3)

and

SD =

(w, ζ, µ) ∈ Rn × Rm × Rp :

w +A>µ = 0

ζ +B>µ = 0

µ ≥ 0

 .

Again, if A has block-decomposable structure, the constraint w+A>µ = 0 also
has this property, which means that the set SD would be easier to deal with if the
constraint ζ+B>µ = 0 were to be removed. We then immediately recognize that
(4.2) is amenable to the Dantzig-Wolfe decomposition developed in Chapter 3.
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The following proposition shows that (4.1) and (4.2) are equivalent in a certain
sense.

Proposition 4.1.1. For the data defined above, the following holds.

1. If (x̄, ȳ) together with w̄ ∈ F (x̄) and ζ̄ ∈ G(ȳ) solve the primal problem
(4.1) with multiplier µ̄ then (w̄, ζ̄, µ̄) together with x̄ ∈ F−1(w̄) and ȳ ∈
G−1(ζ̄) solve the dual problem (4.2) with multipliers (−x̄,−ȳ,−Ax̄−Bȳ+
d).

2. If (w̄, ζ̄, µ̄) together with x̄ ∈ F−1(w̄) and ȳ ∈ G−1(ζ̄) solve the dual
problem (4.2) with multipliers (−ᾱ,−β̄,−γ̄), then

(a) ᾱ = x̄, β̄ = ȳ and γ̄ = Ax̄+Bȳ − d,

(b) (x̄, ȳ) together with w̄ ∈ F (x̄) and ζ̄ ∈ G(ȳ) solve the primal problem
(4.1) with multiplier µ̄.

Proof. Since the constraints defining SP are linear, we have that the Karush-
Kuhn-Tucker (KKT) conditions hold:

w̄ +A>µ̄ = 0, (4.4a)

ζ̄ +B>µ̄ = 0, (4.4b)

0 ≤ µ̄ ⊥ Ax̄+Bȳ − d ≤ 0. (4.4c)

This shows that (w̄, ζ̄, µ̄) ∈ SD.
On the other hand, the following inclusion is immediate:

0 ∈

F−1(w̄)
G−1(ζ̄)

d

+

I0
A

 (−x̄) +

 0
I
B

 (−ȳ) +

 0
0
−I

 (d−Ax̄−Bȳ). (4.5)

The latter, together with (4.4c), proves the first item.
The proof of the second item is similar.

Next, we describe the iteration subproblems that the Dantzig-Wolfe algo-
rithm would have been solving if applied to the dual problem, and their primal
counterparts that give the Benders’ approach.

4.2 The iteration subproblem

At iteration k, given (wkM , ζ
k
M , µ

k
M ) ∈ SD with xkM ∈ F−1(wkM ) and ykM ∈

G−1(ζkM ) and a Lagrange multiplier estimate (−ykM − θkM ) associated to the
constraint ζ +B>µ = 0. The Lagrange multiplier estimate is expressed as sum
of two terms by technical reasons concerning its relationship with the decision
variables of (4.25), and so the way we write that problem.

The Dantzig-Wolfe subproblem at the kth iteration consists in solving

VI(F̂ kD, SDS ), (4.6)
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where the feasible set SDS is defined by

SDS =

{
(w, ζ, µ) ∈ Rn × Rm × Rp :

w +A>µ = 0

µ ≥ 0

}
, (4.7)

and the VI mapping F̂ kD is defined using some approximations F−1
k and G−1

k of
F−1 and G−1, and some positive (semi)definite matrices Pk, Qk and Rk, by

F̂ kD(w, ζ, µ) =

F−1
k (w)
G−1
k (ζ)
d

+

 0
I
B

 (−ykM − θkM ) +

Qk(w − wkM )
Rk(ζ − ζkM )
Pk(µ− µkM )

 . (4.8)

The approximating functions F k and Gk are chosen according to the re-
quirements of the Dantzig-Wolfe scheme in Section 3.1.1. In particular,

xkM ∈ F−1
k (wkM ) ⊂ F−1(wkM ),

and
ykM ∈ G−1

k (ζkM ) ⊂ G−1(ζkM ).

Next, note the following two important structural features. In the feasible
set (4.7) the variable ζ is unconstrained, and in the VI mapping (4.8) the entry
corresponding to this variable is independent of the other variables. It then
follows that the subproblem (4.6) equivalently splits into the following two:

1. Find ζ ∈ Rm such that

0 ∈ G−1
k (ζ)− ykM − θkM +Rk(ζ − ζkM ). (4.9)

2. Solve
VI(F̂ kD2, SDS2

), (4.10)

where

F̂ kD2(w, µ) =

[
F−1
k (w) +Qk(w − wkM )

d−B(ykM + θkM ) + Pk(µ− µkM )

]
, (4.11)

and

SDS2
=

{
(w, µ) ∈ Rn × Rp :

w +A>µ = 0

µ ≥ 0

}
. (4.12)

The two problems above have the disadvantage in that they are defined in
terms of the inverse functions that in practice could be difficult to deal with.
In fact, in most applications those inverses would not be known explicitly. For
this reason, we solve (4.9) and (4.10) via their dual problems. The following
propositions show those dual relations.
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Proposition 4.2.1. If yk+1
S together with ζk+1

S ∈ Gk(yk+1
S ) solve the problem

0 ∈ y − ykM − θkM +Rk(Gk(y)− ζkM ) (4.13)

then ζk+1
S solves (4.9) with yk+1

S ∈ G−1
k (ζk+1

S ).
Also, the existence of solutions of (4.9) implies existence of solutions of

(4.13). In particular, solutions exist if Gk is maximal monotone and Rk is
positive definite.

Proof. The first assertion is obtained by direct inspection. The existence of
solutions is by [65, Theorem 5].

Proposition 4.2.2. Let (xk+1
S , uk+1

S ) be any solution of

V I(F̂ kP , SP (ykM , θ
k
M )), (4.14)

where

F̂ kP (x, µ) =

(
Fk(x)

(AQkA
> + Pk)µ

)
, (4.15)

and

SP (ykM , θ
k
M ) = {(x, µ) : Ax+B(ykM+θkM ) ≤ d+(AQkA

>+Pk)(µ−µkM )}. (4.16)

Let wk+1
S ∈ Fk(xk+1

S ) and multiplier µk+1
S be the quantities associated to (xk+1

S , uk+1
S )

as a solution of (4.14) (i.e., the quantities that together with (xk+1
S , uk+1

S ) verify
KKT conditions for (4.14)).

Then the following holds.

1. (AQkA
> + Pk)(µk+1

S − uk+1
S ) = 0.

2. (xk+1
S , µk+1

S ) solves VI(F̂ kP , SP (ykM , θ
k
M )) with wk+1

S ∈ F k(xk+1
S ) and mul-

tiplier µk+1
S .

3. (wk+1
S , µk+1

S ) solves (4.10) with xk+1
S ∈ F−1

k (wk+1
S ) and multipliers (−xk+1

S −
Qk(wk+1

S −wkM ), d+ (AQkA
>+Pk)(µk+1

S −µkM )−Axk+1
S −B(ykM + θkM )).

Also, the existence of solutions of (4.10) implies the existence of solutions of
(4.14). In particular, solutions exist if Fk is maximal monotone with {−A>µ :
µ ≥ 0} ∩ int (Fk(Rn)) 6= ∅ and Pk, Qk are positive definite.

Proof. Writing KKT conditions corresponding to (4.14), which hold by the lin-
earity of constraints in this problem, we have that

0 = wk+1
S +A>µk+1

S , (4.17a)

0 = (AQkA
> + Pk)uk+1

S − (AQkA
> + Pk)>µk+1

S , (4.17b)

0 ≤ µk+1
S ⊥ Axk+1

S +B(ykM + θkM )− d− (AQkA
> + Pk)(uk+1

S − µkM ) ≤ 0.
(4.17c)

Then (4.17b) implies the first item of the proposition, which together with the
system above shows also the second item. The third item is obtained in a way
similar to Proposition 4.1.1; we omit the details.

The existence assertion follows by applying [65, Theorem 5] to (4.10).
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Clearly, this general approach can be used in particular with the exact in-
formation, i.e., Gk = G and Fk = F . However, using suitable approximations,
the primal subproblems could be much easier to solve. For example:

1. If we use the constant approximation (Gconst
k )−1(ζ) = ykM , the solution

ζk+1
S of (4.9) is given explicitly by ζkM +R−1

k θkM .

Also, if we use (F const
k )−1(w) = xkM , (4.10) is equivalent to

VI(d−AxkM −B(ykM + θkM ) + (AQkA
> + Pk)(µ− µkM ),Rp+), (4.18)

which is in fact a strongly convex (if Pk and Qk are symmetric positive
definite) quadratic programing problem with simple bounds, with a wealth
of powerful software to apply. In this case, wk+1

S = −A>µk+1
S .

2. If we take Fk(x) = wkM + HFk(x − xkM ) for some HFk nonsingular, then
F−1
k (w) = xkM +H−1

Fk
(w − wkM ) and (4.10) is equivalent to

VI(d−AxkM−B(ykM+θkM )+(A(H−1
Fk

+Qk)A>+Pk)(µ−µkM ),Rp+), (4.19)

again a simple quadratic program as the one just above, if the matrices
are chosen accordingly. Also, wk+1

S = −A>µk+1
S .

It is worth to note that we can always choose the matrices Qk, Pk and HFk

in a convenient way. For example, as diagonal matrices or having a convenient
block-decomposable structure. This is especially important when the matrix
A has also block-decomposable structure, which we would like to exploit. In
this case the matrices AQkA

> + Pk and A(Qk +H−1
Fk

)A> + Pk also would have
decomposable structures. This implies, for example, that the set (4.16) also
splits according to the given pattern, which makes solving (4.14) much easier.
Of course, in (4.15) the mapping Fk(x) may not be decomposable for some
choices (the entry corresponding to µ is clearly decomposable). However, even
in that case we can still use special methods in order to take advantage of the
structure of the feasible set (e.g., the parallel variable distribution coupled with
sequential quadratic programming [71], if we are in the optimization setting).
And in any case, with the specific choices of Fk that lead to the problems 4.18
and 4.19, the latter are always decomposable if A is (and the parameter matrices
are made to follow the pattern).

4.3 The iteration master problem

In the last section, we showed how to solve, using primal information, the sub-
problem required by the Dantzig-Wolfe algorithm applied to the dual problem
(4.2) of (4.1). Now, we deal with the next step of Dantzig-Wolfe algorithm, the
Master problem. At iteration k ≥ 0, given Xk+1 = {(wiS , ζiS , µiS)}k+1

i=0 , the kth
master problem consists in solving VI(FD, SDM ), where

SDM = {(w, ζ, µ) ∈ convXk+1 : 0 = ζ +B>µ}. (4.20)
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Under the technical assumptions stated in the beginning of this chapter, FD is
maximal monotone, and since SDM is compact, the master problem (4.20) is
solvable [65, Theorem 5].

Let us remind that the points (wiS , ζ
i
S , µ

i
S), for i ≥ 1, are computed by

solving the subproblems described in Section 4.2 above, whereas (w0
S , ζ

0
S , µ

0
S) is

a feasible point of (4.2) chosen at the beginning of the algorithm (as prescribed
by the Dantzig-Wolfe framework in Chapter 3).

Using the matrices

Wk+1 = [w0
S |w1

S | · · · |wk+1
S ],

Zk+1 = [ζ0
S |ζ1

S | · · · |ζk+1
S ],

Mk+1 = [µ0
S |µ1

S | · · · |µk+1
S ],

problem (4.20) can be reformulated as

VI(FD4 , SD4), (4.21)

where
FD4(w, ζ, α) = F−1(w)×G−1(ζ)× {M>

k+1d},

and SD4 is the set of points (w, ζ, α) ∈ Rn×Rm×Rk+1 that satisfy the following
constraints:

w −Wk+1α = 0, (4.22a)

ζ +B>Mk+1α = 0, (4.22b)

ζ − Zk+1α = 0, (4.22c)

1− 1>α = 0, (4.22d)

α ≥ 0, (4.22e)

where 1 is the vector of ones of the appropriate dimension.
It is worth to note that since all points (wiS , ζ

i
S , µ

i
S) are feasible for (4.6), we

have that Wk+1 = −AMk+1.
For same reasons as above (i.e., the involvement of the inverse functions), we

shall avoid solving directly (4.21) and solve instead its dual problem, described
next.

Proposition 4.3.1. Defining

FP (x, y, β, θ) = F (x)×G(y)× {−1} × {0}, (4.23)

and

SPk+1
= {(x, y, β, θ) : M>

k+1[Ax+By− d] ≤ −1β − [Z>k+1 +M>
k+1B]θ}, (4.24)

we have that if (xk+1
M , yk+1

M , βk+1
M , θk+1

M ) solves

VI(FP , SPk+1
), (4.25)
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with some wk+1
M ∈ F (xk+1

M ), ζk+1
M ∈ G(yk+1

M ) and some Lagrange multiplier

αk+1
M , then (wk+1

M , ζk+1
M , αk+1

M ) solves VI(FD4 , SD4) with xk+1
M ∈ F−1(wk+1

M ),

yk+1
M ∈ G−1(ζk+1

M ) and Lagrange multipliers −xk+1
M , −yk+1

M − θk+1
M , θk+1

M , βk+1
M

and M>
k+1[d−Axk+1

M −Byk+1
M ]− [Z>k+1 +M>

k+1B]θk+1
M − 1βk+1

M .
Also, VI(FP , SPk+1

) has solutions if, and only if, so does VI(FD4 , SD4).

Proof. The proof is analogous to that of Proposition 4.1.1.

4.4 Convergence analysis

We now state formally the algorithm and then analyze its convergence proper-
ties. The Benders decomposition for VI (4.1) follows the following pattern.

Algorithm 4.4.1. (Benders Decomposition)

1. Choose µ0
S ≥ 0 and ζ0

S ∈ Rm. Set w0
S = −A>µ0

S , µ0
M = µ0

S , ζ0
M = ζ0

S and
w0
M = w0

S . Choose x0
M ∈ F (w0

M ), y0
M ∈ G(ζ0

M ) and θ0
M ∈ Rm. Set k = 0.

2. The Subproblem: Choose approximations F k : Rn⇒Rn and Gk :
Rm⇒Rm of F (·) and G(·), and positive (semi)definite matrices Qk ∈
Rn×n, Rk ∈ Rm×m and Pk ∈ Rp×p. Find the primal-dual points (xk+1

S , yk+1
S )

and (wk+1
S , ζk+1

S , µk+1
S ) by solving the problems (4.9) or (4.13), and (4.14)

or (4.18) or (4.19), according to the approximation functions chosen.

3. The Master Problem: Find (xk+1
M , yk+1

M , θk+1
M ) and (wk+1

M , ζk+1
M , µk+1

M )

by solving (4.25), with a Lagrange multiplier µk+1
M associated to the con-

straint in (4.24).

4. Set k := k + 1 and go to Step 2.

We proceed to analyze convergence properties of Algorithm 4.4.1. We start
with the associated convergence gap quantity.

The gap of convergence ∆k, defined by (3.16) for the Dantzig-Wolfe method,
in the present setting has the form

∆k =
〈

(xkM ,−θkM , d−BykM −BθkM ), (wk+1
S , ζk+1

S , µk+1
S )− (wkM , ζ

k
M , µ

k
M )
〉

= 〈xkM , wk+1
S − wkM 〉+ 〈−θkM , ζk+1

S − ζkM 〉+ 〈d−BykM −BθkM , µk+1
S − µkM 〉,

(4.26)

where we have used the fact that

(xkM , y
k
M , d) + (0,−ykM − θkM ,−BykM −BθkM ) ∈ F̂ kD(wkM , ζ

k
M , µ

k
M ),

which follows from (4.8).

Proposition 4.4.2. If for each k the function F̂ kD is chosen ck-strongly mono-
tone, then

ck‖(wk+1
S , ζk+1

S , µk+1
S )− (wkM , ζ

k
M , µ

k
M )‖2 + ∆k ≤ 0. (4.27)

In particular, ∆k ≤ 0 for every k.
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Proof. Since (wk+1
S , ζk+1

S , µk+1
S ) ∈ SDS and (wkM , ζ

k
M , µ

k
M ) ∈ SD, we have that

∆k = 〈AxkM , µkM − µk+1
S 〉+ 〈−θkM , ζk+1

S − ζkM 〉+ 〈d−BykM −BθkM , µk+1
S − µkM 〉

= 〈AxkM +BykM − d, µkM − µk+1
S 〉+ 〈−θkM , ζk+1

S − ζkM 〉 − 〈BθkM , µk+1
S − µkM 〉

= 〈AxkM +BykM − d, µkM − µk+1
S 〉 − 〈θkM , ζk+1

S +B>µk+1
S 〉.

Using now ck-strong monotonicity of F̂ kD, since

(xkM ,−θkM , d−BykM −BθkM ) ∈ F̂ kD(wkM , ζ
k
M , µ

k
M )

and since (wk+1
S , ζk+1

S , µk+1
S ) solves VI(F̂ kD, SDS ) with some

zk+1
S ∈ F̂ kD(wk+1

S , ζk+1
S , µk+1

S ),

we have that

ck‖(wk+1
S , ζk+1

S , µk+1
S )− (wkM , ζ

k
M , µ

k
M )‖2 ≤

〈zk+1
S − (xkM ,−θkM , d−BykM −BθkM ), (wk+1

S , ζk+1
S , µk+1

S )− (wkM , ζ
k
M , µ

k
M )〉.
(4.28)

We then further obtain

ck‖(wk+1
S , ζk+1

S , µk+1
S )− (wkM , ζ

k
M , µ

k
M )‖2

≤ 〈zk+1
S , (wk+1

S , ζk+1
S , µk+1

S )− (wkM , ζ
k
M , µ

k
M )〉 −∆k.

Using the latter relation and (wkM , ζ
k
M , µ

k
M ) ∈ SDS , (4.27) follows.

We are now in position to state convergence properties of Benders decom-
position of VIs with the given structure. The theorem below assumes that F
and G are outer semicontinuous, which is the only property used in the proof, if
the existence of solutions/iterations is a given. Outer semicontinuity is in fact
automatic from the initial assumptions stated in the beginning of this chapter,
which also guarantee the existence of solutions of all the problems along the
iterations. We also assume the equicontinuity of the approximating families
{F−1

k } and {G−1
k }. Again, there is a number of ways to ensure the latter. Con-

stant approximations is one option. If first-order (Newtonian) approximations
are used for single-valued smooth data, choosing bounded {H−1

Fk
} does the job.

Finally, if the exact information F and G is employed (no approximations) in
the single-valued case, the continuity of those functions is sufficient. Note also
that most of the proof is similar to the proof of Theorem 3.2.4. We repeat the
arguments because the dual problem does not satisfy all hypotheses required
in the analysis of the Dantzig–Wolfe algorithm made in Chapter 3; specifically,
those related to the domain of the dual problem operator.

Theorem 4.4.3. Suppose that F and G are outer semicontinuous (which holds,
in particular, if they are maximal monotone). For the iterative sequences gen-
erated by Algorithm 4.4.1, the following holds.
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1. If the sequences {µk+1
S }, {yk+1

S }, {ykM} and {θkM} are bounded and if the
family of matrices {Rk} is uniformly positive definite, then the sequences
{(wk+1

S , ζk+1
S , µk+1

S )} and {(wkM , ζkM , µkM )} are bounded.

2. If the sequences {xkM}, {µ
k+1
S }, {yk+1

S }, {ykM} and {θkM} are bounded, the
family of matrices {Rk} is uniformly positive definite, and the approxima-
tions {F̂ kD} are chosen monotone, then

lim
k→∞

∆k = 0.

In particular, if the elements of {F̂ kD} are chosen uniformly strongly mono-
tone, then

lim
k→∞

‖(wk+1
S , ζk+1

S , µk+1
S )− (wkM , ζ

k
M , µ

k
M )‖ = 0. (4.29)

3. Suppose that the sequences {Pk},{Qk},{Rk}, {(wk+1
S , ζk+1

S , µk+1
S )} and

{(xk+1
S , yk+1

S )} are bounded and that (4.29) holds. Then, if the approx-
imations {F−1

k } and {G−1
k } are equicontinuous on compact sets, every

cluster point of {(xk+1
S , yk+1

S )} is a solution of VI (4.1).

Proof. 1. Let {µk+1
S } be bounded. Since µkM ∈ conv({µjS}), it follows that

the sequence {µkM} is bounded. Furthermore, as wk+1
S = −A>µk+1

S , wkM =

−A>µkM and ζkM = −B>µkM , it follows that the sequences {wk+1
S } and

{(wkM , ζkM , µkM )} are bounded. Now boundedness of {ζk+1
S } follows from

yk+1
S − ykM − θkM +Rk(ζk+1

S − ζkM ) = 0

and the uniform positive definite property of the family {Rk}.

2. By the first item, we have that the sequences {(wk+1
S , ζk+1

S , µk+1
S )} and

{(wkM , ζkM , µkM )} are bounded.

Using (4.27) with ck = 0 (i.e., monotonicity instead of strong monotonic-
ity), we have that ∆k ≤ 0. Hence,

∆̄ = lim inf
k→∞

∆k ≤ lim sup
k→∞

∆k ≤ 0.

We take a subsequence {∆kj} such that limj→∞∆kj = ∆̄. Without
loss of generality, we can assume convergence of the corresponding sub-

sequences: {(wkjM , ζ
kj
M , µ

kj
M )} → (w̄, ζ̄, µ̄), {(xkjM , y

kj
M , θ

kj
M )} → (x̄, ȳ, θ̄) and

{(wkj+1
S , ζ

kj+1
S , µ

kj+1
S )} → (ŵ, ζ̂, µ̂). Then from (4.26), we have that

lim
j→∞

∆kj = ∆̄ =
〈

(x̄,−θ̄, d−B(ȳ + θ̄)), (ŵ, ζ̂, µ̂)− (w̄, ζ̄, µ̄)
〉
.

As in the second item of Proposition 3.2.1, we consider the problem that
results after relaxing the constraint ζ + B>µ = 0 using the multiplier
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(−ykjM−θ
kj
M ) in VI(FD, SDM ) (4.20). Fix any index j. Then for every i > j

we have that (w
kj+1
S , ζ

kj+1
S , µ

kj+1
S ) is a feasible point and (wkiM , ζ

ki
M , µ

ki
M ) is

a solution in (4.20). Therefore,〈
(xkiM ,−θ

ki
M , d−B(ykiM +θkiM )), (w

kj+1
S , ζ

kj+1
S , µ

kj+1
S )−(wkiM , ζ

ki
M , µ

ki
M )
〉
≥ 0,

and after passing on to limit as i→∞, we get〈
(x̄,−θ̄, d−B(ȳ + θ̄)), (w

kj+1
S , ζ

kj+1
S , µ

kj+1
S )− (w̄, ζ̄, µ̄)

〉
≥ 0.

Passing onto the limit again, now as j →∞, we obtain that

∆̄ =
〈

(x̄,−θ̄, d−B(ȳ + θ̄)), (ŵ, ζ̂, µ̂)− (w̄, ζ̄, µ̄)
〉
≥ 0,

which shows that limk→∞∆k = 0. Finally, (4.27) implies the last assertion
of this item.

3. Suppose that (x̄, ȳ) is an accumulation point of {(xk+1
S , yk+1

S )} and that

the subsequence {(xkj+1
S , y

kj+1
S )} converges to it as j →∞. Since

y
kj+1
S − ykjM − θ

kj
M +Rkj (ζ

kj+1
S − ζkjM ) = 0,

using the stated hypotheses we conclude that

lim
j→∞

(y
kj
M + θ

kj
M ) = ȳ.

On the other hand, taking into account (4.29) and passing onto further
subsequences if necessary, we can assume that

lim
j→∞

w
kj+1
S = lim

j→∞
w
kj
M = w̄,

lim
j→∞

ζ
kj+1
S = lim

j→∞
ζ
kj
M = ζ̄,

lim
j→∞

µ
kj+1
S = lim

j→∞
µ
kj
M = µ̄.

Since the families of approximations {F−1
k } and {G−1

k } are equicontinuous
on compact sets, there exists, for each t, some kjt such that for every k it
holds that

dH

(
F−1
k (w

kjt+1
S ), F−1

k (w
kjt
M )
)
<

1

t
.

In particular, there exists x̂
kjt
M ∈ F−1

k (w
kjt
M ) ⊂ F−1(w

kjt
M ) such that

|xkjt+1
S − x̂kjtM | <

1

t
.

Hence,

lim
t→∞

x̂
kjt
M = x̄.
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Then, since F is outer semicontinuous, we conclude that x̄ ∈ F−1(w̄). In
a similar way we can conclude that ȳ ∈ G−1(ζ̄). Also, note that since

(w
kj+1
S , µ

kj+1
S ) ∈ SDS , we have that (w̄, ζ̄) ∈ SDS , and since (w

kj
M , µ

kj
M ) ∈

SDM , also (w̄, ζ̄) ∈ SDM . Thus (w̄, ζ̄, µ̄) ∈ SD.

Finally, since (w
kj+1
S , µ

kj+1
S ) solves (4.10) with x

kj+1
S ∈ F−1

kj
(w

kj+1
S ), we

have that for every (w, µ) ∈ SDS2
the following inequality holds:

〈xkj+1
S +Qkj (w

kj+1
S − wkjM ), w − wkj+1

S 〉

+ 〈d−B(y
kj
M − θ

kj
M ) + Pkj (µ

kj+1
S − µkjM ), µ− µkj+1

S 〉 ≥ 0. (4.30)

Thus, passing onto the limit as j →∞, we obtain that

〈x̄, w − w̄〉+ 〈d−Bȳ, µ− µ̄〉 ≥ 0,

that is,
〈x̄, w − w̄〉+ 〈d, µ− µ̄〉+ 〈ȳ,−ζ̄ −B>µ〉 ≥ 0.

So, for each (w, ζ, µ) ∈ SD we have that

〈x̄, w − w̄〉+ 〈d, µ− µ̄〉+ 〈ȳ, ζ − ζ̄〉 ≥ 0.

Since also x̄ ∈ F−1(w̄) and ȳ ∈ G−1(ζ̄), we conclude that (w̄, ζ̄, µ̄) is
a solution of VI(FD, SD). The latter implies, by Proposition 4.1.1, that
(x̄, ȳ) is a solution of (4.1).

This chapter finishes the decomposition part of this work for VIs. In sum-
mary, whereas the Dantzig-Wolfe decomposition algorithm deals with coupling
constraints (a setting that fits naturally VI problems arising from GNEPs), the
Benders decomposition algorithm is intended for VIs where we recognize the
existence of “coupling variables”. This kind of problems arises naturally when
we model a process in which the decision variable is divided in two parts. One
part is intended for investment decisions (say, z), and the other for operational
decisions (say, q). The later may have a decomposable structure that is coupled
by the investment variable (say a constraint of the form Zz + Qq ≥ b, with Q
decomposable by blocks).

We can use the Benders approach to reduce the solution of this type of VI,
solving instead a number of subproblems with variables in lower dimensions.
This is especially useful when modeling stochastic markets where the “wait-and-
see” variables are large but have a decomposable structure. In the following two
chapters we study the problem of finding deterministic and stochastic equilibria
by means of GNEP models whose associated VI problems fit the use of the two
decomposition algorithms described in Chapters 3 and 4.
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Chapter 5

Finding Equilibria in
Energy Markets

In spite of an undeniable worldwide trend of liberalization, industries dealing
with energy networks (and to a lesser extent with water supply) continue to
be subject to regulation in price, entry, and service quality of the network.
Regarding electricity and natural gas transmission and distribution, the specific
mechanism chosen for regulation impacts significantly competition and affects
the network prices, investment and reliability.

In general, good performance of the regulatory framework results in lower op-
eration and transmission costs, better service quality, and investment to expand
the network and face future changes in demand and supply. Regulation plays
an important role too in the presence of environmental concerns, for example
encouraging carbon trading to reduce CO2 emissions.

It is therefore important to fully understand the interaction of competing
agents in a market of energy that is subject to various regulatory interven-
tions. Due to the presence of relatively few companies generating power in a
given region, electricity markets are naturally set in an oligopolistic competition
framework. A similar situation arises in the natural gas industry.

In a centralized environment the paradigm of cost minimization defines en-
ergy prices based on marginal costs or shadow prices obtained by optimization.
In a liberalized setting, by contrast, prices are computed through equilibrium
models aimed at ensuring profit maximization for all the agents. These type of
models can be formulated in different manners, for example by means of mixed
complementarity problems, bi-level programming, mathematical programs with
equilibrium constraints. There are many references, among which we mention
[37], [22], [61], [39],[84], [24], [13], [85], without the claim of being exhaustive.

In this chapter we follow the exposition in [50] to explore the relations
between mixed complementarity, variational inequality, and game-theoretical
formulations of energy markets both in deterministic and stochastic settings.
Our analysis shows that the profit-maximization complementarity formulation
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is equivalent to a game with agents minimizing costs if the setting is deter-
ministic or risk neutral. By contrast, when the agents in the market exhibit
risk aversion, a natural phenomenon in this type of markets, the equivalence
no longer holds. More precisely, the risk-averse game becomes equivalent to a
complementarity model where agents maximize the expected remuneration and
hedge risk only in the cost.

In the development that follows we consider a stylized energy market that
is general enough to cover the generation capacity expansion model [23] as well
as the European natural gas market model in [32].

5.1 A simple network of agents

Our market is composed by producers, traders, and one end-consumption sec-
tor. Producers generate some kind of good (electricity, natural gas) that is sold
to traders. Traders take the producers output and sell it to consumers after
transporting and possibly modifying the product. The model can easily incor-
porate pipeline and storage operators, marketers, and other outsourcing agents
like in [32]. For simplicity, and without loss of generality, in our presentation
we analyze a network with only producers and traders that captures the main
properties of the market model. Differently from [32], where it is considered
only operational decision variables (e. g. production), we consider a setup suit-
able for [23], where it is allowed investment variables (e. g. production capacity
expansion along time), in which decision variables are separated in two stages.
For producers, for instance, some investment to increase capacity has to be de-
cided at stage 0, in order to decide how much to generate at stage 1. Another
example is, in the presence of uncertainty, when the second stage variables are
a recourse to correct first stage decisions, taken before knowing the realization
of uncertainty; [17].

In what follows, at equilibrium, all variables are denoted with a bar, for
instance π̄ stands for an equilibrium price.

5.1.1 Producers

There areNP producers, each one with decision variable (ziP , q
i
P ). As mentioned,

the variable ziP could refer to decisions concerning capacity or technological in-
vestments with a smooth concave cost IiP (ziP ). The variable qiP is related to
operational activities involving a (smooth concave) cost ciP (qiP ). All the pro-
ducer decision variables are taken in some set Xi

P which represents technological
and resource constraints. After transformation of the raw materials, expressed
by a matrix SiP of suitable dimensions, the producer has the quantity SiP q

i
P for

sale. In our model, we suppose that producers are of the price taker type: they
assume that there exists a market price that they can not influence directly. So,
for a given price πP (exogenous to the players) each producer tries to maximize
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its profit by solving the following problem:{
max

〈
SiP q

i
P , πP

〉
− ciP (qiP )− IiP (ziP )

s.t. (ziP , q
i
P ) ∈ Xi

P .
(5.1)

5.1.2 Traders

There are NT traders, the j-th trader has decision variable (zjT , q
j
T ). Given

a transformation matrix BjT of suitable size, the trader buys BjT q
j
T from the

producers at price πP . After modifying and/or transporting the product via a
matrix SjT of suitable dimensions, the quantity SjT q

j
T is sold to consumers at

price πT . The trader may have some additional (smooth concave) operational
expenses cjT (qjT ) along the process and maximizes its revenue by solving the
following problem:{

max
〈
SjT q

j
T , πT

〉
−
〈
BjT q

j
T , πP

〉
− cjT (qjT )− IjT (zjT )

s.t. (zjT , q
j
T ) ∈ Xj

T .
(5.2)

We will see below that, as in [32], traders have a special role in the market, and
can exert market power by withholding supply from end costumers.

5.1.3 Market clearing and consumers modeling

When the market is at equilibrium, there is no excess of generation and the
producers supply meets the traders demand:

NP∑
i=1

SiP q̄
i
P −

NT∑
j=1

BjT q̄
j
T = 0 (mult. π̄P ). (5.3)

The rightmost notation means that the producers are remunerated at a price
that clears the market: π̄P is the multiplier corresponding to (5.3) at an equi-
librium.

An environmentally responsible regulator can also impose a CO2 clearing
condition, similar to (5.3), but involving different emission factors, depending
on the technology employed to generate energy. The essential feature of such
constraints is that they couple the actions of different agents, and in this sense
(5.3) suffices for our development.

The representation of the end-consumption sector can be done in different
ways, depending on the manner price-taking producers operate in an imperfectly
competitive market. Market imperfections can originate in regulatory measures
such as price caps, and/or in traders exerting market power. We now review
some alternatives that fit our general modeling.

Consumers via inverse-demand function

When a price-sensitive demand curve is available (as in the example 3.3.1), the
consumers needs are represented implicitly by their inverse-demand function.
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We model it by an affine function P ·+d0, depending on given intercept d0 and
matrix P . The dimension of d0 is the same as of the traders selling price (πT
in (5.2)); the matrix P is of order |πT | × |SjT q

j
T |. At equilibrium the constraint

NT∑
j=1

PSjT q̄
j
T + d0 − π̄T = 0 (5.4)

must be satisfied.
The inverse-demand function is useful to model the influence that the traders

may exert on the market, a typical phenomenon in oligopolies. Instead of selling
all the goods at price πT (exogenous, hence not controllable), the trader sells a

portion δj at price
∑NT
k=1 PS

k
T q

k
T + d0 (that depends on the amount of product

the trader offers to the market). The factor δj ∈ [0, 1] determines the strength of
the influence the trader can have on the market. Accordingly, now the trader’s
problem (5.2) is

max

〈
SjT q

j
T , δ

j(

NT∑
k=1

PSkT q
k
T + d0) + (1− δj)πT

〉
−
〈
BjT q

j
T , πP

〉
− cjT (qjT )− IjT (zjT )

s.t. (zjT , q
j
T ) ∈ Xj

T .

(5.2)δj

For future use, note that the initial problem (5.2) amounts to setting δj = 0
for all the traders. Like for (5.2), both prices πP and πT are exogenous for the
traders.

Consumers via explicit demand constraint

Sometimes there is instead a load duration curve segmented into blocks defining
a vector D, which represents the consumers demand. Accordingly, letting q0

denote a nonnegative variable, at the equilibrium the constraint

NT∑
j=1

SjT q̄
j
T + q̄0 −D = 0 (mult. π̄T ) (5.5)

should be satisfied. To prevent traders from exerting market power, and follow-
ing [23], the deficit variable is related in a dual manner to a price cap imposed
by the regulating agency:

π̄T ≤ PC (mult. q̄0)

for PC a maximum allowed price. Note that, in view of their definitions, the
variables q0 and πT have the same dimension.

In what follows, we refer to the model (5.1),(5.2)δj ,(5.3),(5.4) as implicit
model; while (5.1),(5.2),(5.3),(5.5), and the price-cap condition define the ex-
plicit model.
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5.2 Equilibrium: mixed complementarity formu-
lation

For both consumers models, the equilibrium problem consists in computing
prices π̄ and decision variables (z̄, q̄) such that:

• for the i-th producer, problem (5.1) written with price πP := π̄P is solved
by (z̄iP , q̄

i
P ); and

• for the j-th trader, problem (5.2)δj written with prices (πP , πT ) := (π̄P , π̄T )
is solved by (z̄iT , q̄

i
T ), keeping in mind that if the explicit model is used

δj = 0 for all the traders.

• The market is cleared and (5.3) holds.

• Regarding the price at which the traders sell the final product,

– if the implicit model is used, the relation (5.4) holds;

– if the explicit model is used, both (5.5) and the price cap conditions
(cf. (5.8) below) hold.

For the sake of clarity we derive first the mixed complementarity problem
(MCP) when the consumers model is explicit, i.e., the trader’s problem is (5.2)
and both (5.5) and the price cap condition hold.

5.2.1 Explicit demand constraint

We start by writing down the KKT conditions for the profit maximization prob-
lems of the producers and traders. Let in (5.1) and (5.2) the feasible sets Xi

P

and Xj
T be polyhedra of the form

ZiP z
i
P +QiP q

i
P ≥ biP and ZjT z

j
T +QjT q

j
T ≥ b

j
T ,

respectively, and let µiP and µjT denote the corresponding multipliers. The
KKT conditions for the producers problems (5.1), dropping the superindices i
to alleviate notation, are

0 = I ′P (zP )− Z>PµP
0 = c′P (qP )−Q>PµP − S>PπP
0 ≤ ZP zP +QP qP − bP ⊥ µP ≥ 0 .

(5.6)

Similarly for the traders, dropping the superindices j, we write

0 = I ′T (zT )− Z>T µT
0 = c′T (qT )−Q>TµT +B>TπP − S>T πT
0 ≤ ZT zT +QT qT − bT ⊥ µT ≥ 0 .

(5.7)

It remains to complete the system with (5.3), (5.5), and the price cap inequality,
which we now write as follows:

0 ≤ PC − πT ⊥ q0 ≥ 0 . (5.8)
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We use the primal and dual variables defined by

p :=
(

(ziP )NPi=1, (q
i
P )NPi=1 , (z

j
T )NTj=1, (q

j
T )NTi=1 , q

0
)

and d :=
(

(µiP )NPi=1 , (µ
j
T )NTj=1 , πP , πT

)
over the sets

P := R
∑NP
i=1(|ziP |+|q

i
P |)+

∑NT
j=1(|zjT |+|q

j
T |) × R|q

0|
≥0 (5.9)

and D := R
∑NP
i=1 |µ

i
P |+

∑NT
j=1 |µ

j
T |

≥0 × R|πP |+|πT | (5.10)

where |q0| = |πT |, by construction.
To write the associated generalized equation (GE) in a compact form, we

introduce the following notation for a sequence of matrices Mk , k = 1, . . . ,K:

diag(Mk) :=

 M1

. . .

MK

 , col(Mk) :=

 M1

...
MK

 ,

row(Mk) :=
[
M1 . . . MK

]
.

The transpose of the last matrix is column-like matrix aligning the transposed
matrices and, hence,

[row(Mk)]> = col(Mk>) .

We use the new notation in the matrix below, with row and column dimensions
given by the cardinality of D and P, respectively:

B :=


diag(ZiP ) diag(QiP ) 0 0 0

0 0 diag(ZjT ) diag(QjT ) 0

0 row(SiP ) 0 −row(BjT ) 0

0 0 0 row(SjT ) I

 , (5.11)

where I is an identity matrix of order |πT | = |q0|.
The GE that results from putting together the relations in (5.6), (5.7), (5.3),

(5.5), and (5.8) is

0 ∈
[

0 −B>
B 0

](
p
d

)
+



(Ii ′P (ziP ))NPi=1

(ci ′P (qiP ))NPi=1

(Ij ′T (zjT ))NTj=1

(cj ′T (qjT ))NTj=1

PC

−(biP )NPi=1

−(bjT )NTj=1

0
−D


+NP×D(p, d) ,
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where in the last term we use the normal cone to the primal and dual feasible
sets. This GE can be rewritten in a more compact form, by introducing an
operator acting on primal variables only and a dual vector, as follows:

F (p) :=


(Ii ′P (ziP ))NPi=1

(ci ′P (qiP ))NPi=1

(Ij ′T (zjT ))NTj=1

(cj ′T (qjT ))NTj=1

PC

 and b :=


(biP )NPi=1

(bjT )NTj=1

0
D

 , (5.12)

yielding the GE

0 ∈
[

0 −B>
B 0

](
p
d

)
+

(
F (p)
−b

)
+NP×D(p, d) . (5.13)

5.2.2 Inverse-demand function

Since in this case the traders conditions are more involved when there is market
power, we shall not drop the superindices j as this could lead to confusion, and
write the optimality system for the traders as follows:

0 = Ij ′T (zjT )− ZjT >µ
j
T

0 = cj ′T (qjT )−QjT >µ
j
T +BjT

>πP − (1− δj)SjT >πT

−δjSjT >(

NT∑
k=1

PSkT q
k
T + d0)− δjSjT

>P>SjT q
j
T

0 ≤ ZjT z
j
T +QjT q

j
T − b

j
T ⊥ µ

j
T ≥ 0 .

(5.14)

As before, the KKT conditions (5.6) and (5.14), together with the market clear-
ing condition (5.3) and the implicit representation of consumers via (5.4), give a
GE on both primal and dual variables. There are a few differences with (5.13),
though:

• There is no deficit variable q0, so the primal variables and set are now

p̃ :=
(

(ziP )NPi=1, (q
i
P )NPi=1 , (z

j
T )NTj=1, (q

j
T )NTj=1

)
and P̃ := R

∑NP
i=1(|ziP |+|q

i
P |)+

∑NT
j=1(|zjT |+|q

j
T |) .

Accordingly, instead of the matrix B from (5.11), we consider the subma-
trix B̃ obtained by eliminating from B the last row and column. Dual
variables are still the same, so the GE will use B̃ and an additional row,
to represent the relations in (5.4).

• The market power terms in the third line in (5.14) enter the primal oper-
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ator, which becomes

F̃ (p̃) :=


Ii ′P (ziP )
ci ′P (qiP )

Ij ′T (zjT )

cj ′T (qjT )

−


0
0
0

δjSjT
>(

NT∑
k=1

PSkT q
k
T + d0) + δjSjT

>P>SjT q
j
T .


To alleviate the writing we omitted the superindices ranges: i = 1, . . . , NP
and j = 1, . . . , NT , which are clear from the context; see (5.12).

• Replacing (5.5) by (5.4) modifies the dual vector as follows

b̃ :=


biP
bjT
0
−d0


where, once again, i and j run in their respective ranges, as in (5.12).

Finally, the GE with the implicit model is

0 ∈


0 −B̃>


0
0
0

−col((1− δj)SjT >)


B̃ 0[

0 0 row(PSjT ) 0
]

0 − I


(

p̃
d

)

+

(
F̃ (p̃)

−b̃

)
+NP̃×D(p, d) .

(5.15)
When compared to (5.13), the GE above does not involve a skewed symmetric
linear part. In particular, the last line in the matrix relates primal and dual
elements.

We shall see in Section 5.3 that GEs of the form (5.13) can be reduced to
variational inequalities in smaller dimensions, which can in turn be interpreted
in terms of a Nash game with shared constraints. GE (5.15), on the other hand,
cannot be reformulated the same way directly. We next rewrite (5.15) in an
equivalent form that does have the desired properties.

5.2.3 Inverse-demand function and an extra variable

Taking inspiration from the explicit model, we introduce a new primal variable
p0, gathering the portion of supply that the traders cannot influence by exerting
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market power. Thus, we require that the relation

NT∑
j=1

(1− δj)SjT q̄
j
T − p̄

0 = 0 (5.16)

be satisfied when the market is at an equilibrium point. In view of its definition,
this new variable has the same dimension as the deficit variable q0 from (5.5)
in the explicit model (and, hence, |p0| = |πT |).

The KKT conditions (5.6) and (5.14), together with (5.3), (5.4), and (5.16)
now employ the primal variables and set

p̂ :=
(

(ziP )NPi=1, (q
i
P )NPi=1 , (z

j
T )NTj=1, (q

j
T )NTi=1 , p

0
)

and P̂ := R
∑NP
i=1(|ziP |+|q

i
P |)+

∑NT
j=1(|zjT |+|q

j
T |)+|p

0| , (5.17)

noting that the dual variables remain the same from the explicit model, given
in (5.10).

The primal sets in the implicit and explicit models, from (5.17) and (5.9)
respectively, only differ in the last component (q0 and p0, respectively). Specifi-
cally, while in the explicit model the deficit is nonnegative (as a multiplier of the
price cap (5.8)), in the implicit model the new primal variable is unconstrained.
So the normal cone to q0 will be the null vector and we can require satisfaction
of the inverse-demand relation (5.4) in the corresponding new component of the
GE. This eliminates the primal-dual coupling in the last line of the linear term
in (5.15). Similarly, recalling that the πT -component of the dual feasible set is
the whole space, satisfaction of (5.16) will be ensured by the last component of
the GE.

Define the matrix B̂ with size given by the cardinality of P̂ and D by

B̂ :=

(
B̃ 0[

0 0 0 row((1− δj)SjT )
]
−Î

)
, (5.18)

where the identity matrix Î has order |πT | = |p0|. The resulting GE is

0 ∈
[

0 −B̂>
B̂ 0

](
p̂
d

)
+

(
F̂ (p̂)

−b̂

)
+NP̂×D(p, d) , (5.19)

68



for the primal operator and dual vector given below:

F̂ (p̂) :=



Ii ′P (ziP )
ci ′P (qiP )

Ij ′T (zjT )

cj ′T (qjT )− δjSjT >(

NT∑
k=1

PSkT q
k
T + d0)− δjSjT

>P>SjT q
j
T

−
NT∑
k=1

PSkT q
k
T − d0


and

b̂ :=


biP
bjT
0
0

 .

(5.20)
In both vectors superindices are to be understood as i = 1, . . . , NP and j =
1, . . . , NT , like in (5.12).

5.3 Equivalent formulations for the mixed com-
plementarity problem

Both GEs (5.13) and (5.19) are defined using very simple normal cones, and
have a very specific primal-dual structure. The size of both GEs is the same:
the respective primal and dual sets only differ is that the last primal component,
which is nonnegative in the explicit model (q0), and unconstrained in the implicit
one (p0); see Table 5.1.

Table 5.1: Primal and dual dimensions of the complementarity formulations
Gen. Equation Primal Set and Dimension Dual Set and Dimension

(5.13) P from (5.9) D from (5.10)

(explicit)

NP∑
i=1

(|ziP |+ |q
i
P |) +

NT∑
j=1

(|zjT |+ |q
j
T |) + |q0|

NP∑
i=1

|µiP |+
NT∑
j=1

|µjT |+|πP |+|πT |

(5.19) P̂ from (5.17) D from (5.10)
(implicit+1var.) same as explicit model (|p0| = |q0|) same as explicit model

To establish the relation of the MCP models with a game-theoretical for-
mulation, we state a result from [62]; see also [34]. Our GEs are a particular
case of the setting covered by the reduction method in [62], as the linear part is
skew-symmetric and the primal sets P are cones in both models. Here, the rela-
tion with a game could actually be also shown directly, by comparing the KKT
conditions of the MCP model with those for a game (stated in Section 2.4). We
prefer to state the more general result, because it includes a nice characteri-
zation of dual variables as solutions to a certain linear programming problem,
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defined a posteriori, once the primal solution is available. As dual variables
have economical meaning as prices, this is an interesting feature; we comment
more on this after the theorem and in Remark 5.3.4.

Theorem 5.3.1. The following statements are equivalent:

Primal-Dual GE: the primal-dual pair (p̄, d̄) satisfies (5.13).

Primal GE + Dual LP: the primal variable p̄ solves the generalized
equation

0 ∈ F (p) +NP0(p) (5.21)

where P0 := P ∩ S and

S :=
{
p : b−Bp ∈ R

∑NP
i=1 |µ

i
P |+

∑NT
j=1 |µ

j
T |

≤0 × {0 ∈ R|πP |+|πT |}
}
.

As for the dual variable, d̄ solves the linear programming problem min 〈Bp̄− b, d〉
s.t. B>d− F (p̄) ∈ NP(p̄)

d ∈ D .
(5.22)

Proof. The statement is just a rewriting of Propositions 1 and 2 in [62] in
our notation. Specifically, the respective correspondence for primal elements
is (p, d(p), P ) = (p,−F (p),P), for the dual ones (y, Y ) = (d,D), and for the
matrix and vector (A, f) = −(B>, b). Our coupling set S corresponds to the
set Z in Proposition 2, using the fact that in our setting the polar cone therein,
Y 0 = D0, has a very simple expression.

Existence of solutions to the generalized equation (5.21) can be guaranteed
under mild assumptions, such as continuity of F and convexity and compactness
of P0, [27, Corollary 2.2.5]. These conditions are natural in our context: com-
ponents of F consist of derivatives of smooth convex functions and the feasible
set P0 represents limited resources. Furthermore, the existence of solutions of
(5.21) implies the existence of solutions of the (bounded) linear program (5.22),
whose optimal value is zero.

The interest of Theorem 5.3.1 is twofold. First, the GE (5.21) is in primal
variables only, stated over a set that (for both of our models) is a simple polyhe-
dron. It is therefore a VI with linear constraints. We shall see that in some cases
the multipliers corresponding to the constraints provide the equilibrium prices.
Once a primal solution is at hand, the dual component of the MCP solution can
be found by solving an easy linear program. This feature is attractive to identify
(undesirable) situations in which equilibrium prices are not unique, even if the
primal part of the equilibrium points is unique (the linear program solution will
not be unique in this case; see Remark 5.3.4 below). A second advantage of the
equivalent formulation is that, in addition to providing a mechanism for ensur-
ing existence of solutions of the game, the equivalent formulation reveals the
particular structure of the set P0, amenable to decomposition. More precisely,
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without the coupling constraints (some components in b−Bp), the feasible set
is decomposable (like P from (5.9), (5.17)). This is often the case in generalized
Nash games, that can then be exploited by decomposition methods, like the
Dantzig-Wolfe and Benders’ algorithms developed in Sections 3 and 4.

We now explore the relations between MCP and game formulations for the
markets in Section 5.1

5.3.1 Game for the explicit model

Instead of viewing the agents as maximizing revenue, like in the complementarity
model, we consider a GNEP as in Section 2.4, where the players minimize costs.
The coupling constraints in the game are (5.3) and (5.5). In addition to the
traders and producers, there is an additional player, indexed by number “0”, in
charge of the price caps. Specifically, given a primal point

p = ((z̃iP )NPi=1, (q̃
i
P )NPi=1 , (z̃

j
T )NTj=1, (q̃

j
T )NTi=1 , q̃

0),

the purpose of the game is to solve the following minimization problems:

Producers



min IiP (ziP ) + ciP (qiP )
s.t. (ziP , q

i
P ) ∈ Xi

P

SiP q
i
P +

NP∑
k = 1
k 6= i

SkP q̃
k
P −

NT∑
j=1

BjT q̃
j
T = 0.

(5.23)

Traders



min IjT (zjT ) + cjT (qjT )

s.t. (zjT , q
j
T ) ∈ Xj

T .

−BjT q̃
j
T +

NP∑
i=1

SiP q̃
i
P −

NT∑
k = 1
k 6= j

BkT q̃
k
T = 0

SjT q
j
T +

NT∑
k = 1
k 6= i

SkT q̃
k
T + q̃0 −D = 0

(5.24)

Consumers’
representative


min

〈
PC, q0 −D

〉
s.t. q0 ≥ 0 .

NT∑
j=1

SjT q̃
j
T + q0 −D = 0

(5.25)

In the GNEP (5.23)-(5.25), the market between producers and traders is cleared,
and demand is satisfied up to certain deficit, q0. The deficit is minimized by the
action of the additional player, who tries to reduce the impact of imposing a price
cap. In Corollary 5.3.2 below it is shown that (the negative of) the multiplier
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of the coupling constraint (5.5) is precisely the traders’ remuneration in (5.2).
We shall also see that in the game formulation, the price cap is maintained in
an indirect manner, via (5.25).

As already explained, in the game the solution of each individual problem
depends on the decisions of the other agents in the market. For example, (5.24)
is an optimization problem on the j-th trader variables (say, pj), that depends
on actions of other traders (say, on p−j). A primal point

p̄ = ((žiP )NPi=1, (q̌
i
P )NPi=1 , (ž

j
T )NTj=1, (q̌

j
T )NTi=1 , q̌

0)

is a Nash equilibrium for the game (5.23)–(5.25) when each player’s optimal
decision (say, p̄j) is obtained by solving the individual problem (say, (5.24))
after fixing the other players’ decisions to the corresponding entries on p̄ (say
p̄−j). As this notion is so general that it includes points contradicting the
natural intuition of what an equilibrium must be, it is further specialized as
follows.

Note that the value function for the producers, defined as

viP (x) :=


min IiP (ziP ) + ciP (qiP )
s.t. (ziP , q

i
P ) ∈ Xi

P

SiP q
i
P +

NP∑
k = 1
k 6= i

SkP q̃
k
P −

NT∑
j=1

BjT q̃
j
T = x ,

is convex. Furthermore, because in (5.23) all constraints are linear and the
objective function is differentiable, there exists a Lagrange multiplier π̌iP associ-
ated to the equality constraint. This multiplier represents represents a marginal
cost, since it satisfies the inclusion −π̌iP ∈ ∂viP (0), [36, Theorem VII.3.3.2]. The
issue with a generic Nash equilibrium like p̄ is that it may have multipliers as-
sociated to coupling constraints of the players’ problems that are different for
the different players. In economical terms, this means that the equilibrium is
“unfair”, because it benefits some players more than others. To avoid this unde-
sirable feature, we shall solve a VI derived from the game and find a variational
equilibrium of the GNEP (5.23)–(5.25), ensuring that the multipliers associated
with the coupling constraints are the same.

By Theorem 5.3.1, the GE (5.13) is equivalent to solving the GE (5.21),
written with the data from Subsection 5.1.3. Putting together (5.11), (5.9) and
(5.12) yields for (5.21) the following:

0 ∈


(Ii ′P (ziP ))NPi=1

(ci ′P (qiP ))NPi=1

(Ij ′T (zjT ))NTj=1

(cj ′T (qjT ))NTj=1

PC

+NP0(p),

where

P0 :=

NP∏
i=1

Xi
P ×

NT∏
j=1

Xj
T × R|q

0|
≥0 ∩ S,
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S := {(ziP , qiP , z
j
T , q

j
P , q

0) : (5.3) and (5.5) hold}.

The equivalence between the MCP formulation and the generalized Nash
game follows from applying Theorem 5.3.1.

Corollary 5.3.2 (Game formulation for the explicit model). The MCP in Sub-
section 5.1.3 and the game (5.23)-(5.25) are equivalent, in the following sense.
Suppose the game has a variational equilibrium

p̄ :=
(

(žiP )NPi=1, (q̌
i
P )NPi=1 , (ž

j
T )NTj=1, (q̌

j
T )NTi=1 , q̌

0
)
,

with (µ̌iP )NPi=1 , (µ̌
j
T )NTj=1 being the corresponding multipliers for the constraints in

(5.23) and (5.24), and let π̌P and π̌T be the multipliers associated to the coupling
constraints (5.3) and (5.5).

Then the primal-dual pair (p̄, d̄) with d̄ := (µ̌P , µ̌T ,−π̌P ,−π̌T ) solves the
MCP given by (5.1)-(5.3), (5.5), and (5.8).

Proof. By Theorem 5.3.1, for the result to hold d̄ needs to solve the linear
program therein. For the objects in (5.13), and for the normal cone to the
primal set P from (5.9), this linear program is

min
µP , µT ≥ 0
any πP , πT

NP∑
i=1

〈
ZiP ž

i
P +QiP q̌

i
P − biP , µiP

〉
+

NT∑
j=1

〈
ZjT ž

j
T +QjT q̌

j
T − b

j
T , µ

j
T

〉
s.t. ZiP

>µiP = Ii ′
P

(žiP ) , ZjT
>µjT = Ij ′

T
(žjT )

QiP
>µiP + SiP

>πP = ci ′P (q̌iP )

QjT
>µjT −B

j
T
>πP + SjT

>πT = cj ′T (q̌jT )
πT ≤ PC and πkT = PCk whenever q̌0k > 0 .

(5.26)
The optimality conditions for problems (5.23) and (5.24) amount to µ̌P , µ̌T ,−π̌P
and −π̌T satisfy the first four equalities in the feasible set of (5.26). Note
also that, by complementarity, the (nonnegative) objective function attains
its minimum value at µ̌P , µ̌T . The last line in (5.26), written with −π̌T , is
q̌0 ⊥ PC + π̌T ≥ 0; since these relations result from the optimality condition of
(5.25), the desired result follows.
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5.3.2 Game for the implicit model

We now apply Theorem 5.3.1 to the GE (5.19). Writing (5.21) with the data
from Subsection 5.1.3, that is, using (5.18), (5.17) and (5.20), we have:

0 ∈



Ii ′P (ziP )
ci ′P (qiP )

Ij ′T (zjT )

cj ′T (qjT )− δjSjT >(

NT∑
k=1

PSkT q
k
T + d0)− δjSjT

>P>SjT q
j
T

−
NT∑
k=1

PSkT q
k
T − d0


+NP0(p)

where P0 :=
∏NP
i=1X

i
P ×

∏NT
j=1X

j
T × R|p0| ∩ S

and S := {(ziP , qiP , z
j
T , q

j
P , p

0) : (5.3) and (5.16) hold}.

The MCP formulation of (5.1), (5.2)δj , (5.3) and (5.4) is now equivalent to the
following generalized Nash game.
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Producers same as (5.23)

Traders



min
zT ,qT

IjT (zjT ) + cjT (qjT )

−δj
〈
NT∑
k=1

PSkT q
k
T + d0, S

j
T q

j
T

〉
s.t. (zjT , q

j
T ) ∈ Xj

T .
NP∑
i=1

SiP q
i
P −

NT∑
k=1

BkT q
k
T = 0

NT∑
k=1

(1− δk)SkT q
k
T − p0 = 0

(5.27)

Consumers’
representative


max
p0

〈
NT∑
k=1

PSkT q
k
T + d0, p

0

〉

s.t.

NT∑
j=1

(1− δj)SjT q
j
T − p

0 = 0

(5.28)

The game (5.23),(5.27)-(5.28) can be interpreted as follows. The additional
player tries to maximize the revenue of all the traders, perceiving their remuner-
ation in terms of the inverse-demand function. The traders see their influence
on the market as a way of reducing costs, or of increasing their income (the
negative δj term in the objective function from (5.27)). Transactions between
producers and traders are cleared, as before. Regarding the traders remuner-
ation πT (that is, the multiplier of constraint (5.16)), we now show that the
additional player controls it in a manner ensuring satisfaction of (5.4).

Corollary 5.3.3 (Game formulation for the implicit model). The MCPs in
Subsections 5.1.3 and 5.2.3 and the game (5.23),(5.27)-(5.28) are equivalent in
the following sense. Suppose the game has a variational equilibrium

p̄ :=
(

(žiP )NPi=1, (q̌
i
P )NPi=1 , (ž

j
T )NTj=1, (q̌

j
T )NTi=1 , p̌

0
)
,

with (µ̌iP )NPi=1 , (µ̌
j
T )NTj=1 being the corresponding multipliers for the constraints in

(5.23) and (5.27), and let π̌P and π̌T be the multipliers associated to the coupling
constraints (5.3) and (5.16).

Then the primal-dual pair (p̄, d̄) with d̄ := (µ̌P , µ̌T ,−π̌P ,−π̌T ) solves the
MCP (5.19), which is equivalent to (5.15).

Proof. Like for Corollary 5.3.2, we only need to show that d̄ solves the linear
program in Theorem 5.3.1. In this case, the normal cone to the primal set P̂
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from (5.17) is just the null vector and, hence, the linear program is

min
µP , µT ≥ 0
any πP , πT

NP∑
i=1

〈
ZiP ž

i
P +QiP q̌

i
P − biP , µiP

〉
+

NT∑
j=1

〈
ZjT ž

j
T +QjT q̌

j
T − b

j
T , µ

j
T

〉
s.t. ZiP

>µiP = Ii ′
P

(žiP ) , ZjT
>µjT = Ij ′

T
(žjT )

QiP
>µiP + SiP

>πP = ci ′P (q̌iP )

QjT
>µjT −B

j
T
>πP + (1− δj)SjT >πT = cj ′T (q̌jT )

−δjSjT >(

NT∑
k=1

PSkT q̌
k
T + d0)− δjSjT

>P>SjT q̌
j
T

πT =

NT∑
k=1

PSkT q̌
k
T + d0 .

(5.29)
It is easy to see that all the relations in KKT conditions of this problem
are verified by d̄, except for the last equality, corresponding to (5.4). For
the latter, observe that since π̌T is the multiplier of the coupling constraint
(5.16), and the variable p0 is unconstrained in the problem of the extra player
(5.28), the p0-component of the optimality conditions for the game gives that

0 = −
∑NT
k=1 PS

k
T q̌

k
T − d0 − π̌T , and the result follows.

Remark 5.3.4 (Uniqueness of prices). With the explicit model, equilibrium
prices will be unique if the linear program (5.26) has the unique solution. Like-
wise for the implicit model, which depends on the linear program (5.29). This
problem can be further simplified, by eliminating the variable πT , as follows:

min
µP , µT ≥ 0

any πP

NP∑
i=1

〈
ZiP ž

i
P +QiP q̌

i
P − biP , µiP

〉
+

NT∑
j=1

〈
ZjT ž

j
T +QjT q̌

j
T − b

j
T , µ

j
T

〉
s.t. ZiP

>µiP = Ii ′
P

(žiP ) , ZjT
>µjT = Ij ′

T
(žjT )

QiP
>µiP + SiP

>πP = ci ′P (q̌iP )

QjT
>µjT −B

j
T
>πP + SjT

>
(NT∑
k=1

PSkT q̌
k
T + d0

)
= cj ′T (q̌jT )− δjSjT>P>S

j
T q̌

j
T .

5.4 The European gas network

Consider a market with a third kind of player, called outsourcer, in charge of
modifying or transporting the product before the traders supply it to the end
consumers.

In the network, producers only deal with traders. Therefore, they solve the
problems (5.1), which are nothing but problems (2.21) in the current setting.

Traders now deal also with the outsourcer players, who charge a unitary
price πO for their activity. The exchange between the trader and the oursourcer
player involves transformation of the product, represented by matrices SjT→O,
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Trader
BjT q

j
TSjT q

j
T

BjT←Oq
j
T SjT→Oq

j
T

Outsourcer

SkOq
k
O BkOq

k
O

Producer
SiP q

i
PConsumer

Figure 5.1: Market flow.

BjT←O, SkO, BkO as schematically represented in Figure 5.1, with the product
flow. The jth trader problem (5.2) is modified accordingly:{

max
〈
SjT q

j
T , πT

〉
−
〈
BjT q

j
T , πP

〉
−
〈
SjT→Oq

j
T , πO

〉
− cjT (qjT )− IjT (zjT )

s.t. (zjT , q
j
T ) ∈ Xj

T .

As for the outsourcing players, denoting once more the investment-operational
decision variables of the kth agent by (zkO, q

k
O) and similarly for the costs and

feasible set, the corresponding maximization problem is{
max

〈
BkOq

k
O, πO

〉
− ckO(qkO)− IkO(zkO)

s.t. (zkO, q
k
O) ∈ Xk

O .
(5.30)

Here, the Outsourcer charges the Trader for processing BkOq
k
O.

To clear the market, in addition to (5.3) and (5.4), the exchange between
traders and outsourcing players should be balanced and, hence,

NT∑
j=1

SjT→O q̄
j
T −

NO∑
k=1

BkO q̄
k
O = 0 . (5.31)

The additional balance
∑NO
k=1 S

k
O q̄

k
O−

∑NT
j=1B

j
T←O q̄

j
T = 0, is omitted, because it

is often automatic from (5.31).
We are once again in the considered framework (which is a particularization

of Subsection 2.4 to affine shared constraints).
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5.4.1 Numerical assessment

We consider the full European gas network described in [21]. Its structure is
outlined in Figure 5.2. For a network covering 54 countries and 36 markets,
the market has 7 types of players representing producers, traders, and 5 dif-
ferent outsourcing activities. Specifically, there are 28 producers, 22 traders,
10 liquefiers, 15 regasifiers, 22 storage operators, 74 pipeline operators, and 36
marketers.

Figure 5.2: European Gas Network (as described in [21])

To illustrate the analysis that can be derived from the models presented
above, we coded them in Matlab (R2012a), using PATH [18, 28] to solve the
variational problems. The runs were done on a PC operating under Ubuntu
12.04-64 bit with a processor Intel Atom 1.80GHz × 4 and 2GB of memory.

The data in [21] yields for the game a problem with 4620 variables and 488
constraints. We solved the equilibrium problem of the implicit model, with and
without market power. In the first instance, the trader’s problem (5.2)δj has
δj ≡ 0. In the second, δj = 0.75 for Russia, Norway, the Netherlands, and
Algeria; and δj = 0.25 for the Caspian Sea, Denmark, and the UK.

To ensure that the implementation is error-free, we first ran both formula-
tions, that is the game (5.23),(5.27),(5.28) and the MCP (5.15), and checked
whether the corresponding output was alike. Table 5.2 summarizes the results.
The ∞-norms of the differences of the primal solutions obtained with both ap-
proaches were very small in all the cases. We observed larger differences in the
dual components, in percentages ranging up to 6% (for the competitive case,
without market power). However, this is still an insignificant difference in this
context, which allows us to conclude that the output of both formulations is
indeed “the same” and the implementations are correct. An interesting infor-
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Table 5.2: Output for the implicit model

Formulation Market
Power?

PATH
Residual

CPU
(seconds)

Game no 2E-08 36.7
MCP no 7E-08 47.3
Game yes 7E-11 77.1
MCP yes 2.5E-11 201.5

mation in Table 5.2 is the CPU times. In general PATH was very fast, but
solving time increased significantly for the MCP formulation when there is mar-
ket power. At this point, one could ask why this increase is of importance, given
that the solution times were still within some minutes. The answer is that this
increase, still significant in percentage terms, would blow up once stochasticity
is introduced to the model. According to PATH final convergence report, when
there is market power, the solver needed much more inner iterations to converge.
We observed that when decreasing the solver precision from 10−8 to 10−6, both
formulations were again solved in about 70 seconds.

Figure 5.3: Comparison of the primal output

Figure 5.4: Comparison of the dual output
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The primal and dual output with and without market power is plotted in
Figures 5.3 and 5.4, respectively. The impact of market power is especially
noticeable in the dual variables, corresponding to prices: in Figure 5.4 the
red circles (competitive prices) are systematically lower than the blue crosses
(market power).

5.5 Equilibrium for stochastic models

Realistic models for the energy industry often include uncertainty : for instance
in (5.5), the actual electrical load may deviate from the predicted one due to
random variations of temperature, switch off/on of local consumers, or day-
light. Similarly in (5.1), for the generation costs ciP (·) or the available resources
defining the feasible sets Xi

P . To reflect such variations, a stochastic model of
uncertainty must be built and the risk-averse decision process must be put in a
suitable setting.

5.5.1 Hedging risk: The setting

Consider the probability space defined by a measure P on a sample space Ω
equipped with a sigma-algebra F . Decision variables are now random functions
in the space Lp(Ω,F ,P) for p ∈ [1,+∞), with dual Lq(Ω,F ,P) for q ∈ (1,+∞]
such that 1/p+ 1/q = 1. We sometimes use the shorter notation Lp and Lq for
these spaces, which are paired by the duality product, see [69], [17],

〈x∗, x〉P =

∫
ω

〈x∗(ω), x(ω)〉 dP(ω) .

In the presence of uncertainty, a natural reaction of agents in the market is to
hedge against undesirable events. For the ith producer, in particular, aversion
to volatility is expressed by a coherent risk measure ρi(·), assumed to be a
proper function, as in [17, Chapter 6]. One possibility in the space L1(Ω,F ,P)
is to take the Average Value-at-Risk of level 1 − εi, a recent renaming of the
Conditional Value-at-Risk [66]. Namely, given a confidence level 0 < 1− ε < 1,
if the random outcome X ∈ Lp represents a loss (lower values are preferred),
the measure is given by the expression

AV@R ε(X) := min
u

{
u+

1

1− ε
E[X(ω)− u]+

}
,

where [·]+ := max{0, ·} is the positive-part function and E(·) denotes the
expected-value function taken with respect to dP.

It can also be useful to consider the more general risk measures of the form

ρi(X) := (1− κi)E(X) + κiAV@R εi(X) (5.32)

for the given risk-aversion parameter κi ∈ [0, 1] and confidence level 1 − εi ∈
[0, 1). When the random outcome represents a reward the definition changes to
%i(X) := ρi(−X).
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It is shown in [17, Theorem 6.4] that any proper coherent risk measure is in
fact the support function of the domain of its conjugate; see also [67], [60]. In
particular, for (5.32) we have the dual representation

ρi(X) = sup
x∗∈X∗

〈x∗, X〉P , where (5.33)

X∗ :=

{
x∗ ∈ L∞(Ω,F ,P) :

1− κi ≤ x∗(ω) ≤ 1− κi + κi/εi a.e. ω ∈ Ω
E(x∗) = 1

}
,

see [17, Theorem 6.4, and (6.69) in Ex. 6.16].

In what follows, the random vectors q belong to the space Lp(ω,F ,P;Rm),
that is q(ω) ∈ Rm for all ω ∈ Ω. We start by stating a technical result that will
be used to define the concept of stochastic variational equilibria and interpret
game formulations in a stochastic complementarity framework.

Proposition 5.5.1. Let ρ be a risk measure in the family (5.33), I : Rn → R
a smooth convex function, f : Rn+m × Ω → R a random finite-valued lower
semicontinuous function, convex for almost every ω ∈ Ω. For nonempty closed
convex sets X(ω) ⊂ Rn+m, a matrix S and a random vector D0(ω) of suitable
dimensions, consider the problem

min I(z) + ρ(f(z, q(ω), ω))
s.t. z ∈ Rn , q ∈ L1(Ω,F ,P),

(z, q(ω)) ∈ X(ω) a.e. ω ∈ Ω,
Sq(ω) = D0(ω) a.e. ω ∈ Ω .

(5.34)

Suppose (5.34) satisfies some appropriate constraint qualification condition.
A necessary and sufficient condition for (z̄, q̄) to solve (5.34) is the following:

∃ x̄∗ ∈ X∗ and π̄ ∈ L∞(Ω,F ,P) such that

x̄∗ maximizes

∫
Ω

x∗(ω)f(z̄, q̄(ω), ω)dP(ω) for x∗ ∈ X∗ ,

and

0 = I ′(z̄) +

∫
Ω

(
∇zf(z̄, q̄(ω), ω) + νz(ω)

)
x̄∗(ω)dP(ω)

0 = ∇qf(z̄, q̄(ω), ω)− S>π̄(ω) + νq(ω)
a.e. ω ∈ Ω ,

where we use the notation (νz(ω), νq(ω)) ∈ NX(ω)(z̄, q̄(ω)) for the normal ele-
ments.

Proof. By Propositions 6.5 and 6.7 in [17], the considered risk measure is con-
tinuous, sub-differentiable, and finite-valued. By [17, Theorem 6.6], the set X∗

is convex, bounded and weakly∗ closed and, in view of (5.33), the second term
in the objective function of (5.34) is finite-valued. Furthermore, this term is
also convex, because risk measures are monotone and the composition with an
increasing convex function preserves convexity; [36, Proposition IV.2.1.8].

By Proposition 6.37 in [17], (5.34) has the equivalent expression

min
z∈Rn

(
I(z) + ρ(F (z, ω)

)
(5.35)
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for the second-stage value function

F (z, ω) :=

 min f(z, q, ω)
s.t. q ∈ Rm,

(z, q) ∈ X(ω) and Sq = D0(ω) a.e. ω ∈ Ω .
(5.36)

Our assumptions ensure that this value function is a random lower semicontin-
uous function, convex in z almost everywhere. By Proposition 6.32 in [17], a
necessary and sufficient condition for (z̄, q̄) to solve (5.35) is that there exists
x̄∗ ∈ X∗ such that x̄∗ ∈ ∂ρ(F̄ ) for F̄ = F (z̄, ·) and

0 ∈ E∗(∂fω(z̄)) + I ′(z̄) , (5.37)

where E∗(X) := 〈x̄∗, X〉P denotes the expectation taken with respect to x̄∗dP.
The inclusion (5.37) means that there exists an integrable random vector η(ω) ∈
∂fω(z̄) such that

0 = E∗(η) + I ′(z̄) ,

where we defined fω(·) := F (·, ω). To interpret these relations in our setting, we
first note that by the identity (6.43) in [17], the subgradient relation amounts
to requiring that x̄∗ maximizes 〈x∗, F (z̄)〉P over X∗. As for (5.37), the marginal
function fω(z) = F (z, ω) has a subdifferential depending on the minimand in
(5.36). More precisely, recalling that iS denotes the indicator function of a set
S, and setting

g(z, q, ω) := f(z, q, ω) + iX(ω)(z, q) + i{q:Sq=D0(ω)}(q),

yields, by [36, Corollary VI.4.5.3], that

∂fω(z̄) = {s : (s, 0) ∈ ∂z,qg(z̄, qz̄,ω, ω)} for any minimizer qz̄,ω in (5.36).

Since ∂i{q:Sq=D0(ω)}(q) = lin(S>), there exist random vectors (νz(ω), νq(ω)) ∈
NX(ω)(z̄, q̄(ω)) with νz(ω) integrable such that

(η(ω), 0) = (∇zf(z̄, q̄(ω), ω),∇qf(z̄, q̄(ω), ω)) + (0,−S>π̄(ω)) + (νz(ω), νq(ω))

from where we obtain the stated condition, and the result follows.

The following corollary is straightforward.

Corollary 5.5.2. Any solution to (5.34) in Proposition 5.5.1 solves the relaxed
problem  min I(z) + ρ(f(z, q(ω), ω))− 〈Sq(ω), π̄(ω)〉P

s.t. z ∈ Rn , q ∈ L1(Ω,F ,P) ,
(z, q(ω)) ∈ X(ω) a.e. ω ∈ Ω .

(5.38)

We shall use Corollary 5.5.2 in Definition 5.5.3 below to introduce the con-
cept of stochastic variational equilibrium.
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5.5.2 Risk-averse games

For convenience, we now make three simplifying assumptions:

• The stochastic counterparts of the producers’ and traders’ problems are
set in a two-stage framework. For example, in (5.23) the “investment”
variables ziP are of the “here-and-now” type, to be decided before the
uncertainty realizes. By contrast the “generation” variables qiP are of
type “wait-and-see”: they are decided at a second stage, once ω becomes
known, so qiP depends on ω.

• The concept of stochastic equilibrium and its connections with a game
formulation is examined for a market without traders. Since there are only
producers, in (5.23) and throughout all subindices P are dropped. Also,
the market clearing relation (5.3) disappears, only a stochastic variant of
(5.4) is in order.

• Finally, to ease the writing and without loss of generality, uncertainty
comes from the generation costs ci and the demand in (5.4) (the feasible
sets Xi are assumed deterministic).

In this context, given a price cap PC ∈ L∞(Ω,F ,P;Rm), the complementarity
formulation of stochastic equilibrium with risk aversion in [23] is

Find (z̄i ∈ Rnzi , q̄i ∈ L1, q̄
0 ∈ L1, π̄ ∈ L∞) such that

Risk-averse
producers

{
min Ii(zi) + ρi

(
ci(qi(ω), ω)−

〈
π(ω), Siqi(ω)

〉)
s.t. Zizi +Qiqi(ω) ≥ bi a.e. ω ∈ Ω

(5.39)

Coupling
constraints

N∑
i=1

Siqi(ω) + q0(ω) = D(ω) a.e. ω ∈ Ω (mult.π(ω))

Price cap 0 ≤ q0(ω) ⊥ PC(ω)− π(ω) ≥ 0 a.e. ω ∈ Ω. (5.40)

When compared to (5.1), the producers’ problem is now set as a minimization,
because the risk averse measure controls losses and not incomes. The objective
function in (5.39) is in fact equivalent to the one considered in [23], taking into
account that the investment functions Ii and the first-stage variables zi are
deterministic, recalling that risk measures are equivariant to translations.

In order to compare the risk-averse MCP above with a game formulation,
we consider the following stochastic game, depending on given N +1 risk-averse
functions ρ0 , ρ1 , . . . , ρN of the form (5.32)-(5.33):

Risk-averse
producers

{
min Ii(zi) + ρi

(
ci(qi(ω), ω)

)
s.t. Zizi +Qiqi(ω) ≥ bi a.e. ω ∈ Ω

(5.41)
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Risk-averse player
representing consumers

{
min ρ0

(〈
PC(ω), q0(ω)−D(ω)

〉)
s.t. q0(ω) ≥ 0 a.e. ω ∈ Ω

(5.42)

Coupling
constraints

N∑
i=1

Siqi(ω) + q0(ω) = D(ω) a.e. ω ∈ Ω. (5.43)

For such a stochastic game, we now define the concept of variational equi-
librium. Recall that when dealing with GNEP in the deterministic setting, we
were not interested in arbitrary Nash equilibria, but rather in the game Varia-
tional Equilibria, defined as solutions to VIs derived from the game. In a general
stochastic context like the one under consideration, instead of deriving an ex-
plicit VI and motivated by Corollary 5.5.2, we characterize the VE through the
Lagrange multipliers of the coupling constraint of the game.

Definition 5.5.3 (Stochastic VE). For a stochastic GNEP like (5.41)-(5.43),

the point
(

(z̄i)Ni=1, (q̄
i)Ni=1 , q̄

0
)

is a variational equilibrium if there exists a La-

grange multiplier π̄ ∈ L∞ associated to the coupling constraint, the same for

all the players, such that
(

(z̄i)Ni=1, (q̄
i)Ni=1 , q̄

0
)

still solves the agents’ problems

after relaxing the coupling constraints (as in Corollary 5.5.2).

We now are in a position to find the equivalent MCP counterpart of our
risk-averse game.

Theorem 5.5.4 (MCP formulation for the risk-averse game). Suppose the risk-

averse GNEP (5.41)-(5.43) has a variational equilibrium p̄ :=
(

(z̄i)Ni=1, (q̄
i)Ni=1 , q̄

0
)

,

with (µ̄i)Ni=1 and π̄ being the L∞-multipliers for the constraints in (5.41) and
the coupling constraints (5.43), respectively.

Then the primal-dual pair (p̄, d̄) with d̄ := (µ̄, π̄) solves the risk-averse MCP
derived from

Risk-averse
producers

{
min Ii(zi) + ρi

(
ci(qi(ω), ω)

)
−
〈
Si>π, qi

〉
P

s.t. Zizi +Qiqi(ω) ≥ bi a.e. ω ∈ Ω
(5.44)

Coupling constraints as in (5.43)

Risk-averse Price cap 0 ≤ q0(ω) ⊥ x∗0(ω)PC(ω)− π(ω) ≥ 0 a.e. ω ∈ Ω

for x∗0 solving
min

N∑
i=1

∫
Ω

〈
x∗0(ω)PC(ω), Siq̄i)

〉
dP(ω)

s.t. E(x∗0) = 1

1− κ0 ≤ x∗0(ω) ≤ 1− κ0 +
κ0

ε0
a.e. ω ∈ Ω.

(5.45)

Proof. To derive a complementarity formulation, we write the ith risk-averse
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problem of the producers in the form
min Ii(zi) + ρi

(
ci(qi(ω), ω)

)
s.t. (zi, qi(ω)) ∈ Xi a.e. ω ∈ Ω

Siqi(ω) = D0(ω) := D(ω)−
∑
i 6=j S

jqj(ω)− q0(ω) .

Proposition 5.5.1 applies with f(z, q, ω) = ci(qi, ω) and, hence (dropping the
subindices i), there exists x̄∗ ∈ X∗ maximizing 〈x∗, c(q̄(ω), ω)〉P over X∗ and
π̄ ∈ L∞ such that{

0 = I ′(z̄) + E∗(νz)
0 = c′(q̄(ω), ω)− S>π̄(ω) + νq(ω) a.e. ω ∈ Ω.

These are the optimality conditions for (5.44). In the case of comsumers’ rep-
resentative (5.42), by Definition 5.5.3, q̄0 solves the relaxed problem{

min ρ0
(〈
PC(ω), q0(ω)−D(ω)

〉)
−
〈〈
q0(ω), π̄(ω)

〉〉
P

s.t. q0(ω)) ≥ 0 .
(5.46)

Consider the affine operator A : L1 → L1 defined by

[A(q0)](ω) :=
〈
PC(ω), q0(ω)−D(ω)

〉
.

Since PC ∈ L∞ and D ∈ L1, we have that A is continuous and, hence, the
optimality condition for (5.46) is

0 ∈ ∂
(
ρ0 ◦A+ i≥0

)
(q̄0)− π̄ = ∂(ρ0 ◦A)(q̄0) +N≥0(q̄0)− π̄

By the definition of the normal cone above, there exist g ∈ ∂(ρ0 ◦ A)(q̄0) and
ν ∈ L∞ such that

0 ≤ q̄0(ω) ⊥ −ν̄(ω) ≥ 0 a.e. ω ∈ Ω

and
0 = g(ω) + ν̄(ω)− π̄(ω) a.e. ω ∈ Ω .

To get an explicit expression for g above, we need to compute the subdifferential
∂(ρ0 ◦ A)(q̄0), recalling that the mapping A is affine and continuous, and the
risk measure is increasing and finite-valued. Therefore, by [86, Thm.2.83],

g ∈ ∂(ρ0 ◦A)(q̄0) ⇐⇒ g(ω) = PC(ω)s(ω) for s ∈ ∂ρ0
(
A(q̄0)

)
.

The definitions of the subdifferential and of the conjugate function give the
equivalence s ∈ ∂ρ0(A(q̄0)) ⇐⇒ A(q̄0) ∈ ∂ρ0∗(s). By the dual representation
(5.33), the conjugate of ρ0 is the indicator function of the (convex and bounded)
dual set X∗, that is ρ0 = i∗X∗ . Then, ρ0∗ = i∗∗X∗ = iX∗ . Since the subdifferential
of the indicator function of a closed convex set is the normal cone of the set,
by the definition of the normal cone, the subgradient g ∈ ∂(ρ0 ◦ A)(q̄0) has
components g(ω) = PC(ω)s(ω) for s ∈ X∗ satisfying

〈
A(q̄0), x∗ − s

〉
P ≤ 0 for

all x∗ ∈ X∗. So s maximizes
〈
A(q̄0), x∗

〉
P over X∗, and in view of (5.43),

s = x̄∗0 from (5.45). The risk-averse price cap condition follows from plugging
g(ω) = PC(ω)x̄∗0(ω) in the optimality condition.
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Theorem 5.5.4 shows that, like in the deterministic framework, the stochastic
game is equivalent to a complementarity model with risk aversion. The MCP
model is not of the form (5.39), where agents hedge individually their profit.
Instead, a variational equilibrium for the game (5.41)-(5.43) gives a stochastic
equilibrium for a market that is cleared because (5.43) is satisfied, and where the
risk-averse producers are remunerated a price that is controlled by a risk-averse
price cap.

In the game, aversion to risk is peculiar in the sense that producers hedge
volatility by controlling only variations in the generation costs. Compare the
game problem (5.44), where the remuneration is taken in mean without hedging
risk, with the MCP (5.39)-(5.40) where each producer tries to control the risk in
their individual revenue. In the game the control of volatile prices is “delegated”
to some higher instance. This is the same instance that caps the remunerations,
only that now the cap is chosen adaptively, in a manner that is optimal for the
market, in the sense of (5.45). By contrast, in the risk-averse MCP, the instance
limiting prices only takes into account stochasticity but does not perceive the
fact of capping prices as a risky action on the market.

We show below that the three models turn equivalent when all the agents in
the market are risk-neutral.

Corollary 5.5.5 (Equivalence for risk-neutral agents). Suppose that for all the
agents ρi = E, the expected-value function. Then finding a variational equilib-
rium for the GNEP (5.41),(5.42)-(5.43) is equivalent to solving the MCP (5.39)-
(5.40) which is in turn equivalent to the MCP (5.44)-(5.45).

Proof. Straightforward from Theorem 5.5.4, noting that the expected-value
function is recovered by setting κi = 0 in (5.32), with a singleton dual set
X∗ = {x∗ ≡ 1} in (5.33). In particular, a risk-neutral representative of the
consumers can only take x̄∗0 ≡ 1, which yields the stochastic price cap from
(5.40). The equivalence with the last MCP results from the linearity of the
expected-value function.

Some final comments and observations are now in order:

• Instead of handling uncertainty in two stages, a multistage setting can also
be of interest. In a multi-stage modeling, for an optimization time hori-
zon with T steps and a discrete-time stochastic process ω in a probability
space (Ω, {Ft},P), information becomes progressively more uncertain as t
increases from 1 to T : Ft is the sigma-algebra Ft := σ(ωj , j ≤ t) and Ω is
a sample space equipped with the filtration F1 ⊂ F2 ⊂ . . . ⊂ FT . The se-
quence of decisions also forms a stochastic process that is non-anticipative
(or adapted to the filtration of sigma-algebras): at time t decisions are
taken on the basis of knowledge available up to time t. When compared
to a two-stage modeling, the multistage setting is more accurate regard-
ing uncertainty representation. This, keeping in mind that multistage risk
aversion is a delicate subject, for which time-consistent models should be
set. Last but not least, and as discussed in [73, Section 5], risk-averse
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variants of sampling approaches like [59] and [74] lack of implementable
stopping criteria. Multistage risk-averse models present numerous chal-
lenges already in an optimization framework, we refer to [70] for more
details.

• Like it has been done in the deterministic case in Section 5.4.1, it would
be interesting to analyze and compare the performances of the risk-averse
game versus the risk-averse MCP on a numerical example. However, due
to the positive-part function in (5.32), risk measures are not differentiable
and for both models the generalized equation has a mapping F with multi-
valued components. In this context, a direct application of a solver like
PATH is no longer possible (and there is currently no other established
software that can do the job). In [23], the MCP (5.39)-(5.40) is “solved”
ignoring nondifferentiability issues and treating the mapping as if it were
single-valued. This heuristic seems to produce sound results for the con-
sidered example, but cannot be regarded as a reliable solution method, of
course. In order to handle nonsmoothness, some special technique should
be used, for example the approximation procedure in [52]. This is the
subject of the next, final, chapter.
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Chapter 6

An Approximation Scheme
for a Class of Stochastic
Generalized Nash
Equilibrium Problems

We shall mostly follow the approach of [52]. Like in Subsection 5.5.2, we
consider a risk-averse stochastic counterpart of the GNEP described in Sub-
section 2.4, only that now, for numerical purposes, the probability space is
finite. Specifically, we assume we are given an (approximate) discrete multivari-
ate probability distribution of the game uncertainty (the demand D in (5.5),
the costs ci(·) in (5.23), etc), with support given by finitely many realizations,
say K. To each realization ωk = (Dk, c

i(·;ωk), . . .) corresponds a probabil-
ity pk > 0 for k = 1, . . . ,K. With this approximation, instead of functions
qi(ω) ∈ Lp(Ω,F ,P;<mi), the ith producer second-stage variables qi are vecto-
rial strategies concatenating the decisions qik := qi(ωk) ∈ <mi for each scenario:
qi = (qi1, q

i
2, . . . , q

i
K). As for the constraints, we keep as before determinis-

tic technological and resource sets Xi. By contrast, rather than having affine
coupling constraints like in the previous chapter, we now return to the GNEP
setting described in Subsection 2.4, and consider the shared constraints:

N∑
i=1

[hik(zi) + gik(qik)] ≤ 0 for k = 1, . . . ,K , (6.1)

where the functions hik(·) := h(·, ωk) and gik(·) := gi(·, ωk) are convex for each
realization ωk. For fixed q̄, the shorthand notation of the random cost will be
used throughout:

ciω(qi, q̄−i) :=
(
ci(qi1, q̄

−i
1 ;ω1), . . . , ci(qiK , q̄

−i
K ;ωK)

)
∈ RK .
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6.1 Motivation

The work [33] proposes a modeling structure for risk-neutral stochastic VIs in
which the expectation is estimated by simulation. In the setting of finding a
variational equilibrium for the game, each player’s problem is similar to (2.19),
taking into account uncertainty:

Risk-neutral
problem


minzi,qi Ii(zi, z−i) + E

(
ciω(qi, q−i)

)
s.t. for k = 1, . . . ,K (zi, qik) ∈ Xi and

N∑
j=1

[hjk(zj) + gjk(qjk)] ≤ 0.

(6.2)

Because all the involved functions are smooth and convex, and assuming that
(6.1) satisfies some constraint qualification condition, the variational equilibrium
is found by solving the

VI(F,

N∏
i=1

Xi ∩ S), (6.3)

where S is the set of points satisfying the shared constraints (6.1) and the
F -components of the operator are

F i(z, q) := ∇ziIi(z) +∇qiE
(
ciω(q)

)
for i = 1, . . . , N and with (z, q) = {(zj , qj)}j . Suppose we use a scalar product
preserving the structure of <ni+mi as a product space, so that〈

(zi, qi), (z̃i, q̃i)
〉

=
〈
zi, z̃i

〉
+
〈
qi, q̃i

〉
.

Then, in the writing of (2.14), and because the expectation and gradient oper-
ators commute, we look for a feasible point (z̄, q̄) such that〈{

∇zjIj(z̄)
}
j
, z − z̄

〉
+
〈
E
({
∇qjcj(q̄)

}
j

)
, q − q̄

〉
≥ 0 (6.4)

for all {(zj , qj)}j ∈
∏N
i=1X

i ∩ S.
The approximation in [33] is useful when the number of realizations K is

extremely large (the sampling space can even be infinite; we present here a
finite-dimensional version for simplicity). This is often the case in practice,
because only a large number of realizations captures all the ingredients in the
uncertainty. The idea is to define approximating (stochastic) VIs that have
solutions with probability one and that in the limit solve (6.3). An example
is to replace the probability space Ω by {ω1, . . . , ω`} at iteration ` and solve
the associated VI. The work [33] also provides bounds for the closeness of the
approximate solutions to solutions of the limit problem, in terms of quality of
approximation.

The development below follows a similar path for risk-averse (and no longer
risk-neutral) VIs. There is an important difference, though: in our problem
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the VI under consideration is special in the sense that it comes from writing an
equilibrium problem for a market with agents trying to optimize their activities.
As such, the aversion to risk is set on the optimization problems of the players,
and not on the VI operator. This is in contrast with some recent works on
stochastic variational inequalities, such as [11] and [10] that endow with risk
aversion the VI itself, and do not seem appropriate to the context of a special
VI associated to a game. More precisely, these works employ the so-called D-
gap function [27] associated to the stochastic VI to define a loss function that
is then minimized, after composition with a risk measure. Since in our setting
the stochastic VI has components

F i(z, q;ω) := ∇ziIi(z) +∇qi(ω)c
i(q(ω);ω) ,

the approach amounts to hedging risk on the derivative of the costs, instead
of on the costs themselves. In this context, such an approach appears hard to
interpret. As we do know the origin of our stochastic VI (this is not the case in
the considered works), we exploit this knowledge and consider solution methods
for a VI whose operator has components of the specific form

∇ziIi(z) + ∂qi(ω)ρ
i
(
ci(q(ω);ω)

)
,

which, however, are multi-valued.

6.2 A stochastic approximation scheme

Given proper coherent risk measures ρi : RK → R, of the form (5.32), we are
interested in finding a variational equilibrium for a game with risk-averse version
of (6.2) given by

Risk-averse
problem


minzi,qi Ii(zi, z−i) + ρi

(
ciω(qi, q−i)

)
s.t. for k = 1, . . . ,K (zi, qik) ∈ Xi and

N∑
j=1

[hjk(zj) + gjk(qjk)] ≤ 0.

(6.5)

In view of the analysis in Section 5.5, including the dual representation
(5.33), the second term in the objective function is convex but not differentiable.
So our GNEP with shared constraints yields a VI whose mapping is multi-valued
(and whose full image at a given point would generally be hard to compute).

To overcome this difficulty, we construct a sequence of approximating GNEPs
whose variational equilibria are easier to compute because they replace the risk
measures by smooth differentiable functions, suitably chosen.

In order to present our approximation scheme, we first assume that for each
player a sequence of approximating convex continuously differentiable functions
ρi` : RK → R is given. We also assume that the sequence converges continu-
ously to ρi (i.e., whenever a sequence {x`} converges to x, the sequence {ρi`(x`)}
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converges to ρi(x); see [68, Chapter 5]). We establish convergence of the ap-
proximating scheme in that case. We then show how to construct such approx-
imations for the risk measures in (5.32), involving the AV@R, and assess the
approximating procedure on a simple numerical example.

The approximation level will depend on an iteration index ` = 1, 2, . . .. At
each iteration, the game has shared constraints (6.1) with

`-th Risk-averse
problem


minzi,qi Ii(zi, z−i) + ρi`

(
ciω(qi, q−i)

)
s.t. for k = 1, . . . ,K (zi, qik) ∈ Xi and

N∑
j=1

[hjk(zj) + gjk(qjk)] ≤ 0.

(6.6)

Since now the functions ρi` are differentiable, the GNEP variational equilibria
(z`, q`) are solutions to

VI(F`,

N∏
i=1

Xi ∩ S) for S := {(z, q) satisfying (6.1)} , (6.7)

where the single-valued VI operator has components

F i` (z, q) :=
(
∇ziIi(z),∇qiρi`

(
ciω(qi, q−i)

))
.

The following approximation property is related to [33, Theorem 2], stated
for general random objective functions in a more general setting. In particular,
the theorem requires certain coherent orientation condition that is equivalent
to strong regularity. In our finite-dimensional setting, we assume that some
constraint qualification [77] holds for the whole set of constraints, while an
individual CQ is required for the coupling constraint.

Theorem 6.2.1. For each player i = 1, . . . , N , let {ρi` : RK → R} be a sequence
of convex continuously differentiable functions converging continuously to ρi as
`→∞. If the sequence of solutions {(z`, q`)} of (6.7) is bounded the following
hold:

1. If the coupling constraints (6.1) satisfy the Slater condition (i.e., there ex-
ists a feasible point (z◦, q◦) such that the inequalities in (6.1) hold strictly),
then the sequence of Lagrange multipliers {π`} is bounded.

2. If the sequence {π`} is bounded, then for every accumulation point (z̄, q̄, π̄)
of the sequence {(z`, q`, π`)}, its primal part is a variational equilibrium
for the GNEP corresponding to (6.5), and π̄ is a Lagrange multiplier as-
sociated to the coupling constraints (6.1).

Proof. Problem (6.7) has shared constraint (6.1). After relaxing this constraint
using an associated Lagrange multiplier πk,`, and taking into account the de-

composable structure of the set
∏N
i=1X

i, we have that the ith components of a

91



solution (z`, q`) also solve the ith relaxed variational inequality

VI
(
F i` (z

i, qi) +

K∑
k=1

[Gik(zi, qi)]>π`,k, X
i
)

(6.8)

for F i` (z
i, qi) := ∇ziIi(zi, z−i` ) +∇qiρi`

(
ciω(qi, q−i` )

)
and Gik(zi, qi) := ∇(zi,qi)[h

i
k(zi) + gik(qik)];

together with the complementarity conditions:

0 ≤ π`,k ⊥
N∑
i=1

[hik(zi`) + gik(qi`,k)] ≤ 0 for k = 1, 2, . . . ,K. (6.9)

We first show item (a). Using the Slater point (z◦, q◦) as a feasible point in
the relaxed VI (6.8) gives, for each i, the inequalities〈

F i` (z
i
`, q

i
`) +

K∑
k=1

[Gik(zi`, q
i
`)]
>π`,k, (z

i
◦ − zi`, qi◦ − qi`)

〉
≥ 0 .

Then, using also the convexity of Ii and of ρi`, we obtain that

N∑
i=1

[
[Ii(zi◦, z

−i
` ) + ρi`(c

i
ωk

(qi◦, q
−i
` ))]− [Ii(zi`) + ρi`(c

i
ωk

(qi`))]
]

≥
N∑
i=1

〈
F i(zi`, q

i
`), (z

i
◦ − zi`, qi◦ − qi`)

〉
≥ −

N∑
i=1

〈
K∑
k=1

[Gik(zi`, q
i
`)]
>π`,k, (z

i
◦ − zi`, qi◦ − qi`)

〉
. (6.10)

Using the convexity of hik and of gik, it follows that

[hik(zi◦) + gik(qi◦,k)]− [hik(zi`) + gik(qi`,k)] ≥ Gik(zi`, q
i
`)(z

i
◦ − zi`, qi◦ − qi`).

and, hence, as multipliers are nonnegative,〈
[hik(zi◦) + gik(qi◦,k)]− [hik(zi`) + gik(qi`,k)], π`,k

〉
≥ 〈[Gik(zi`, q

i
`)]
>π`,k, (z

i
◦ − zi`, qi◦ − qi`)〉.

Using the latter relation and (6.9), we have that〈
N∑
i=1

[hik(zi◦) + gik(qi◦,k)], π`,k

〉

≥
N∑
i=1

〈
[Gik(zi`, q

i
`)]
>π`,k, (z

i
◦ − zi`, qi◦ − qi`)

〉
.
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Combining now the inequality above with (6.10), we obtain that

N∑
i=1

[
[Ii(zi◦, z

−i
` ) + ρi`(c

i
ωk

(qi◦, q
−i
` ))]− [Ii(zi`) + ρi`(c

i
ωk

(qi`))]
]

≥ −
N∑
i=1

〈
K∑
k=1

[hik(zi◦) + gik(qi◦,k)], π`,k

〉
. (6.11)

Since the constraints in (6.1) satisfy the Slater condition, there exists ε > 0 such
that

N∑
i=1

[hik(zi◦) + gik(qi◦,k)] ≤ −ε, k = 1, . . . ,K.

Hence, using once more the nonnegativity of the multipliers π`,k, from (6.11)
we obtain that

N∑
i=1

[
[Ii(zi◦, z

−i
` ) + ρi`(c

i
ωk

(qi◦, q
−i
` ))]− [Ii(zi`) + ρi`(c

i
ωk

(qi`))]
]
≥ ε

K∑
k=1

‖π`,k‖1.

Finally, by the continuity of Ii and of ciωk , the boundedness of the sequence
{(z`, q`)} and the fact that {ρi`} converges continuously to ρ, the left-hand side
of the last inequality above is bounded, which implies the first assertion.

To show (b), notice that the convexity of the functions involved in (6.8)
implies that (zi`, q

i
`) solves the following problem:

minzi,qi Ii(zi, z−i` ) + ρi`(c
i
ωk

(qi, q−i` ))

+

K∑
k=1

[
hik(zi) + gik(qik) +

N∑
j = 1
j 6= i

[hik(zj` ) + gik(qj`,k)]
]>
π`,k

s.t. (zi, qi) ∈ Xi.

(6.12)

Now, suppose that the subsequence {(z`j , q`j , π`j )} of the sequence {(zn, qn, πn)}
converges to (z̄, q̄, π̄) as j → ∞. Then, from (6.9), the complementarity condi-
tion still holds:

0 ≤ π̄k ⊥
N∑
i=1

[hik(z̄i) + gik(q̄ik)] ≤ 0 for k = 1, 2, . . . ,K. (6.13)

Also, from (6.12), we have that for any (zi, qi) ∈ Xi it holds that

Ii(z`j ) + ρi`j (c
i
ωk

(q`j )) +

K∑
k=1

[hik(zi`j ) + gik(qi`j ,k)]>π`,kj

≤ Ii(zi, z−i`j ) + ρi`j (c
i
ωk

(qi, q−i`j )) +

K∑
k=1

[hik(zi) + gik(qik)]>π`j ,k.
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Then, passing onto the limit as j → ∞ in the latter relation and using the
fact that the subsequence {ρi`j} converges continuously to ρ, we conclude that

(z̄i, q̄i) solves the problem
minzi,qi Ii(zi, z̄−i) + ρ(ciωk(qi, q̄−i))

+

K∑
k=1

[
hik(zi) + gik(qik) +

N∑
j = 1
j 6= i

[hik(z̄j) + gik(q̄jk)]
]>
π̄k

s.t. (zi, qi) ∈ Xi.

(6.14)

This, together with the complementarity relation (6.13), establishes the second
assertion.

6.3 Approximating coherent risk measures

In this section we describe how to build suitable approximation functions for
the risk measures in (5.32), involving the AV@R. Without loss of generality, we
take the risk-aversion parameter κ = 0 in (5.32), so that

ρ(x) := AV@R ε(x) = min
u

{
u+

1

1− ε
E
(

[x(ωk)− u]+
)}

. (6.15)

To define continuously differentiable approximations for this function, we em-
ploy a sequence of scalar convex differentiable functions {σ`} that converges
uniformly to the positive-part function as `→∞. The resulting approximating
function ρi` is defined by

ρi`(x) := min
u

{
u+

1

1− ε
E
(
σ`(x(ωk)− u

)}
. (6.16)

We show below some useful properties of the approximating function.

Theorem 6.3.1. Given a scalar convex differentiable function σ`(·), suppose
there exists M > 0 such that∣∣∣[a]+ − σ`(a)

∣∣∣ ≤M for all a ∈ R.

Then the function ρi` given by (6.16) is well defined, convex, differentiable,
and satisfies ∣∣∣AV@R ε(x)− ρi`(x)

∣∣∣ ≤ M

1− ε
for all x ∈ RK .

Proof. Given u ∈ R and x ∈ RK , we have that

− M

1− ε
+ u+

1

1− ε
E
(

[x(ωk)− u]+
)

(6.17)

≤ u+
1

1− ε
E
(
σ`(x(ωk)− u)

)
≤ M

1− ε
+ u+

1

1− ε
E
(

[x(ωk)− u]+
)
.
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Furthermore, for the minimand u+ 1
1−εE

(
[x(ωk)− u]+

)
it holds that it is

≥

 u if u > maxk{|x(ωk)|},(
1− 1

1− ε

)
u+

1

1− ε
E
(
x(ωk)

)
if u < −maxk{|x(ωk)|}.

This shows that all the terms in (6.17) are coercive in the variable u, and thus
the functions in (6.15) and (6.16) are well defined (the minimization problems
therein have solutions).

Furthermore, taking the infimum values for all the expressions in the chain
of inequalities (6.17), we obtain that

− M

1− ε
+AV@R ε(x) ≤ ρi`(x) ≤ M

1− ε
+AV@R ε(x),

which is one of the assertions.
Convexity of ρi` can be checked directly by definition. Indeed, for any t ∈

[0, 1] and any x, y, let ux and uy be such that

ρi`(x) = ux +
1

1− ε
E
(
σ`(x(ωk)− ux)

)
and

ρi`(y) = uy +
1

1− ε
E
(
σ`(y(ωk)− uy)

)
.

Then

ρi`(tx+ (1− t)y) ≤ (tux + (1− t)uy)

+
1

1− ε
E
(
σ` (tx(ωk) + (1− t)y(ωk))− (tux + (1− t)uy)

)
≤ t

[
ux +

1

1− ε
E
(
σ`(x(ωk)− ux)

)]
+(1− t)

[
uy +

1

1− ε
E
(
σ`(y(ωk)− uy)

)]
= tρi`(x) + (1− t)ρi`(y).

It remains to prove the differentiability of ρi`. Take any x̄ ∈ Rk and any
w ∈ ∂ρi`(x̄). Let u` be such that

ρi`(x̄) = u` +
1

1− ε
E
(
σ`(x̄(ωk)− u`)

)
.

The function

f`(x) = u` +
1

1− ε
E
(

[σ`(x(ωk)− u`)
)

is convex and differentiable.
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Note that for every y ∈ RK , it holds that

f`(y) ≥ ρi`(y) ≥ ρi`(x̄) + 〈w, y − x̄〉 = f`(x̄) + 〈w, y − x̄〉,

which shows that
w ∈ ∂f`(x̄) = {∇f`(x̄)}.

In particular, a subgradient w of ρi` at x̄ is uniquely defined (is given by
{∇f`(x̄)}). This means that ρi` is differentiable with ∂ρi`(x̄) = {∇ρi`(x̄)} and

∇ρi`(x̄) =
1

1− ε
∇xE

(
σ`(x̄(ωk)− u`)

)

With Theorem 6.3.1 at hand, we immediately obtain the desired approxi-
mation result.

Corollary 6.3.2. The functions defined in (6.16) provide a sequence of convex
differentiable functions converging continuously to the function AV@R ε.

Proof. The fact that {ρi`} converges uniformly to AV@R ε is immediate from
Theorem 6.3.1. Next, since the limit AV@R ε is itself a continuous function, the
fact that convergence is continuous is by [68, Chapter 5].

Remark 6.3.3 (Approximating functions as risk measures). It can be shown
that the approximating functions ρ` are risk measures themselves. Specifically,
they satisfy the axioms of convexity, monotonicity and translation equivariance
in [17, Chapter 6.3]. It would be of interest to study under which conditions
they are also coherent measures. By Theorem 6.4 in [17], this requires showing
positive homogeneity for ρ, or computing the conjugate function ρ∗ to determine
its domain. Since these calculations depend on the smoothing functions σ`, we
do not analyze further this topic, and leave it for future research.

Therefore, to build a sequence of approximating functions for AV@R ε it is
enough to find a sequence of functions {σ`} that converges uniformly to the
positive part-function [·]+. A general framework for building this kind of ap-
proximations is described in [8], together with a number of specific examples.
Here we give a brief summary.

We begin by considering a nonnegative piecewise continuous function d with
finite number of pieces such that∫ +∞

−∞
d(t)dt = 1 and

∫ +∞

−∞
|t|d(t)dt <∞.

Then, given β > 0 we define an approximating function σβ by

σβ(x) :=

∫ x

−∞

∫ y

−∞

1

β
d
( t
β

)
dt dy. (6.18)
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It can be easily seen that (6.18) is well defined. Moreover, since d is nonnegative,
we have that in fact (6.18) defines a convex function. Also, when d is strictly
positive, σβ is strictly convex.

We reproduce below, without a proof, part of [8, Proposition 2.2], which
shows in particular that (6.18) provides a sequence of uniformly convergent
functions to the positive-part function [·]+, as required for our applications.

Proposition 6.3.4. The function σβ defined in (6.18) satisfies the following
properties.

1. It is nondecreasing, convex, and continuously differentiable. Moreover, if d
is k-times continuously differentiable, then σβ is (k+2)-times continuously
differentiable.

2. For every x it holds that

−D2β ≤ σβ(x)− [x]+ ≤ D1β,

where

D1 =

∫ 0

−∞
|t|d(t)dt and D2 =

[∫ +∞

−∞
td(t)dt

]+

.

Table 6.1 contains some families of smoothing functions, as well as their
specific parameters D1, D2 and function d.

d(t) σβ(x) D1 D2

e−t

(1 + e−t)2
x+ β log(1 + e−

x
β ) log 2 0

2

(t2 + 4)
3
2

x+
√
x2 + 4β2

2
1 0

{
1 if 0 ≤ t ≤ 1
0 otherwise


0 if x < 0
x2

2β if 0 ≤ x ≤ β
x− β

2 if x > β

0 1
2

{
1 if − 1

2 ≤ t ≤
1
2

0 otherwise


0 if x < −β2
1

2β

(
x+ β

2

)2

if |x| ≤ β
2

x if x > β
2

1
8 0

Table 6.1: Examples of smoothing functions.
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6.4 Assessment on a simple problem

We consider a subset of the European gas network in Subsection 5.4, with
only 4 agents, all producers. We assume that the ith player has Li production
units, and so the decision variables can be written as zi = (zil1 , z

i
l2
, . . . , zilLi

) and

qik = (qik,l1 , q
i
k,l2

, . . . , qik,lLi
), for each uncertain realization ωk, for k = 1, . . . ,K.

Each production unit needs to take decisions over T periods of time. For exam-
ple, the tth entry of the “here-and-now” variable zil = (zil1, z

i
l2, . . . , z

i
lT ) ∈ RT

represents the unit capacity expansion at the end of that period, which requires
an investment cost of Γilz

i
lt(1+r)−

∑t
s=1 ys , where the constant Γil represents the

unitary expansion cost, yt represents the time that takes the period t and the
factor (1 + r)−

∑t
s=1 ys pull back the cost to its present value. In this way, the

“investment cost” Ii(zi, z−i) is given by

Ii(zi, z−i) =

T∑
t=1

Li∑
l=1

Γilz
i
lt(1 + r)−

∑t
s=1 ys ,

which in fact is independent of the other players’ decision variables. For each
uncertainty realization k, the “wait-and-see” variable qik,l refers to the quantity
of product delivered to a set of J markets where the unit l operates. So we write

qik,l = (qik,lj1 , q
i
k,lj2 , . . . , q

i
k,ljJ ),

where the tth entry of

qik,lj = (qik,lj1, q
i
k,lj2, . . . , q

i
k,ljT )

represents the quantity delivered to market j at period t. The random opera-
tional cost is given by

ciω(qik, q
−i
k ) =

T∑
t=1

Li∑
l=1

ft

Gil
 J∑
j=1

qik,ljt

− J∑
j=1

[P tk,j(q
i
k,jt, q

−i
k,jt)− c

i
ljt]q

i
k,ljt

 ,

where the function
Gil(x) = ailx− bil log(Bil − x)

represents the production cost of the unit l of player i. The constant ciljt repre-
sents the unitary cost for shipping each item from unit l to market j at period
t. The inverse-demand function is now nonlinear:

P tk,j(qk,jt) = p0k,jt

(
Djt +

∑N
i=1

∑Li
l=1 q

i
k,ljt

q0k,jt

) 1
ejt

.

Here ejt represents the price elasticity of demand in the market j at time t. The
random quantities p0k,jt and q0k,jt are the base price and demand, respectively.
They are expressed as

p0k,jt = p0jt

pt(ωk)

rt
and q0k,jt(ω) = q0jt

(
pt(ωk)

rt

)ηt
,

98



where random variable pt(ω) is uniformly distributed in some interval [πLt, πUt].
In our initial testing, we sample this vector to obtain a finite number of scenarios.

Finally, we describe feasible sets of each player, denoted by Xi. The points
(zi, qi) ∈ Xi have nonnegative entries and satisfy the following two constraints
for k = 1, . . . ,K, l = 1, 2, . . . , Li and t = 1, 2, . . . , T :

Ril −
t∑

s=1

ys

J∑
j=1

qik,ljs ≥ 0 and Ki
l +

t−1∑
s=1

zil −
J∑
j=1

ytq
i
k,ljt ≥ 0 .

In these relations, Ril is the initial amount of gas available for the player i at
production unit l (so the constraint means that along the time steps we cannot
sell more product than the initial available amount). The rightmost set of
constraints relates production to the effective installed capacity.

Numerical results

We coded the smoothing approximation procedure in Matlab (R2012a), using
PATH [18, 28] to solve the variational problems. The runs were performed on a
PC operating under Ubuntu 12.04-64 bit with a processor Intel Atom 1.80GHz
× 4 and 2GB of memory.

In this preliminary implementation we considered only 10 scenarios for un-
certainty in a subregion of the European gas network from Chapter 5. The
producers are:

1. Russia,

2. the Netherlands,

3. Norway,

4. Algeria.

These players act on the following markets:

1. Belgium-Luxembourg,

2. Germany,

3. France,

4. the Netherlands,

5. Italy,

6. UK.

For this game without traders or outsourcing players, we use the data given
in [33] with T = 1.
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To determine the influence of the smoothing parameter we took β = 10−j

for j = 1, 2, . . . , 5 for all the instances, using as smoothing function the third
one in Table 6.1, which was the one with better numerical behavior in our tests.
The instances were the risk neutral model (κ = 0 in (5.32)) and full risk-averse
variants with κ = 1 and ε ∈ {0.025, 0.05, 0.075, 0.1} for the four players.

For the (very simple) test-case considered here, the different smoothing pa-
rameters gave the same primal (“here-and-now” and “wait-and-see”) and dual
variables, except for one scenario in two instances, where the difference was
smaller than 5%, and only in the “wait-and-see” part. There was no expansion
(z̄ = 0) and for the price calculations we averaged over the different smoothing
parameters the “wait-and-see” components of a solution, q̄. Equilibrium prices
are obtained by evaluating the inverse-demand function at q̄.

Figure 6.1: Variation in Equilibrium Prices for different values of risk aversion:
1− ε ∈ {0.975, 0.95, 0.925, 0.9}

Figure 6.1 reports the equilibrium prices for the five markets with actual
production: there was no activity in Belgium-Luxembourg, whose optimal pri-
mal variables were always null. In the figure, the abscissa gives the name of
the market and the risk-neutral equilibrium price. The different bars show the
percentage difference in the equilibrium prices relative to the risk-neutral one.
We observe a natural phenomenon: as producers become more averse to risk,
the equilibrium prices increase. Since we employed the same parameters of risk
aversion for all the producers, the perception of risk is the same and so is its
impact in the different markets.
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Chapter 7

Conclusions and
Perspectives

This work was oriented into two main directions: decomposition strategies for
variational problems and equilibrium models for energy markets.

On the first issue, we presented two decomposition algorithms for solving VI
problems that make it possible to take advantage of special structures present
in their feasible sets. The first algorithm follows the Dantzig-Wolfe paradigm,
which was developed into a broad family of decomposition methods that can be
applied to maximal monotone operators (possibly set-valued) or single-valued
continuous operators (possibly nonmonotone). The approach allows for var-
ious kinds of approximations of the problem data and its derivatives in the
single-valued case, as well as inexact solution of subproblems. The resulting al-
gorithmic patterns are shown to be convergent under reasonable assumptions on
the variational problem. These characteristics represent a significant improve-
ment with respect to previous works, that required too strong assumptions and,
hence, restricted considerably the algorithm’s applicability. By contrast, the
decomposition scheme introduced in this work is highly versatile and makes
it possible to exploit structural properties of the problem even if the operator
therein is not separable and maybe not monotone, as is common when solving
GNEPs.

Our numerical results show that, even with an extremely simplified modeling
of an electrical power market, large instances become intractable with a direct
solution method, and can only be solved by decomposition. In terms of accuracy,
speed, and scalability, among all the considered variants and for our battery of
tests, the decomposition method using a combination of Newton and Jacobi
approximations appears to be the best one.

The second algorithm follows the Benders decomposition paradigm. It also
represents an improvement with respect to previous work; in fact naturally so,
since it is based on our more general Dantzig-Wolfe method. The possibility to
choose approximations in Dantzig-Wolfe algorithm leads to subproblems in the
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Benders method that are not only simpler VIs but also, in some cases, reduce
to simple linear or quadratic minimization problems. We have not yet made
numerical tests for the different variants of this decomposition technique. Nev-
ertheless, the good results obtained with the Dantzig-Wolfe algorithm provide
us with a good expectation for the related Benders approach. The numerical
assessment of this part is left for our future work.

The second part of this dissertation was devoted to modeling equilibria in
energy markets. The contribution in this part begins by considering models
based on GNEPs, that can be solved by means of VI reformulations, instead
of the widely used mixed complementarity models. We showed that these two
approaches are equivalent in the deterministic or risk neutral setting. One
advantage of modeling the market as a GNEP is to ensure, easily and under
mild assumptions, the existence of solutions. Moreover, the GNEP approach
also allowed us to extend the deterministic model to the stochastic one in a
meaningful way. Our numerical results on a real-life case, the European network
of natural gas, show the type of information the GNEP model provides in terms
of strategic behavior of the players.

We intend to study in more details topics related to stochastic variational
equilibria, to understand better the connections with MCP formulations in the
risk averse case. Moving from two stages to a multistage setting can also be
of interest. This item is left for future research. In particular, its numerical
validation will require to deepen further the study on approximation techniques
for risk averse GNEPs. This item is a final contribution of this work. We
put in place a smoothing technique which combined with simulation (defining
larger and larger sample sets) can be used to find variational equilibria when the
agents in the market hedge against risk. An interesting line of future research is
to determine under which conditions the smoothed function becomes a coherent
risk measure.

Finally, an important by-product of the GNEP formulation and its solution
via the associated VI, is that the procedure reveals decomposable structures that
can then be exploited within our decomposition approaches to reduce solution
times. This is especially important for stochastic games, where the problem size
is commonly large. The numerical tests in this case are still at a preliminary
stage, and the need of decomposition methods did not appear for the size of the
test-study. However, some interesting results were obtained from our model, for
a subregion of the European gas network. The use of decomposition algorithms
on larger stochastic models, possibly multistage, is another subject of future
research.
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[33] G. Gürkan, Y. Ozgë and S.M. Robinson. Sample path solution of stochastic
variational inequalities. Math. Programming 83(Ser. A):313–333, 1999.

[34] P.T. Harker and J.S. Pang. Finite-dimensional variational inequality and
nonlinear complementarity problems: a survey of theory, algorithms and
applications. Math. Programming 48(2,(Ser. B)):161–220, 1990.

[35] B. He, L.Z. Liao, D. Han and H. Yang. A new inexact alternating directions
method for monotone variational inequalities. Mathematical Programming,
92:103–118, 2002.

[36] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization
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