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1. INTRODUCTION

Regular Cantor sets on the line play a fundamental role in dynamical systems and
notably also in some problems in number theory. They are defined as the maximal
invariant for a one-dimensional expanding map of class C'T and have some kind
of self-similarity property: small parts of them are diffeomorphic to big parts with
uniformly bounded distortion (see precise definition in Section 2). In both settings,
dynamics and number theory, a key question is whether the arithmetic difference
of two such sets contains an interval when the sum of their Hausdorff dimensions
is bigger than one. Some background on regular Cantor sets which are relevant to
our work can be found in [10] and [11].

From the dynamics side, the transverse geometry of the stable foliation of a
horseshoe for a diffeomorphism of a surface is described by a regular Cantor set.
In 1983, J. Palis and F. Takens ([9], [8]) proved a theorem about homoclinic bi-
furcations associated to a basic set that assures full density of hyperbolicity in the
parameter family provided that the Hausdorff dimension of the basic set is smaller
than one. A central fact used in the proof is that: If K; and Ky are regular Cantor
sets on the real line such that the sum of their Hausdorff dimensions is smaller than
one, then Ky — Ko = {z — y|z € K3,y € Ks} (the arithmetic difference between K
and K>) is a set of zero Lebesgue measure (indeed of Hausdorff dimension smaller
than 1). In the same year, looking for some kind of converse of this result Palis
conjectured (see [7]) that: for generic pairs of regular Cantor sets (K7, K3) of the
real line either:

(i) K1 — K> has zero measure, or else;

(ii) K3 — K5 contains an interval.

The statement (ii) should correspond in homoclinic bifurcations to open sets of
tangencies. A slightly stronger statement is that, if K7 and K» are generic regu-
lar Cantor sets and the sum of their Hausdorff dimensions is bigger than 1, then
K1 — K> contains intervals.

From the number theory side, the set of the real numbers whose coefficients of
the continued fraction (of positive index) belong to some finite fixed set of possible
values is a regular Cantor set defined by the Gauss’s map. In 1947, M. Hall ([1])
proved that C(4)+C(4) = [V2—1,4(/2—1)] where C(4) is the set of real numbers
whose continued fraction coefficients are at most 4.

In 1993, the concept of stable intersection of two regular Cantor sets was in-
troduced (see [4]): two regular Cantor sets Ky and Ky have stable intersection if
IN(l ﬁf(g # () for any (IN(l, I~(2) perturbations of (K1, K3) in C'*-topology of regular
Cantor sets (see for a definition of the topology). C.G Moreira and J.C. Yoccoz
solved a strong version of Palis’s conjecture (see [5])

Theorem 1.1 (Moreira-Yoccoz, 2001). There exist an open and dense set
U C {(K1, Kq), K1, Ko C*-regular Cantor sets |HD(K1)+ HD(K2) > 1}
such that (K1, Ks) € U = I(K1, K») is dense in K1 — Ko and
HD((K;| — K»)/I(K:1, K»)) < 1
where I,(K1, K3) := {t € R|(K1, K2 +t) has stable intersection}.

The same authors ([6]) proved the following fact concerning generic homoclinic
bifurcations associated to two dimensional horseshoes with Hausdorfl dimension



bigger than one: they yield open sets of stable tangencies in the parameter line
with positive density at the initial bifurcation value. Moreover, the unions of this
set with the hyperbolicity set in the parameter line generically have full density at
the initial bifurcation value.

We are interested in the following more general question in the setting of geo-
metric measure theory:

Question. Let 7 : R® — R* be a surjective linear map. Under which conditions
on Ki,..., K, reqular Cantor sets, the set (K x ... x K,) contains a non-empty
open set of R ?

The Moreira-Yoccoz’s theorem gives a complete answer for (n,k) = (2,1).
Firstly, some natural conditions related to HD(K3),..., HD(K,) are needed,
indeed: let ey,...,e, be the canonical basis of R™. Then for all I C {1,...,n}

HD(n(K1 x ... x K,)) <Y HD(K;) + dim (span (n(e;),i € Ic}>.
il

We say that ¢ € R” is a stable projection value for Ki,..., K, if t € 7r(I~(1 X

. X I?n) for any (I~(1, .. ,I?n) perturbation of (K1,...,K,) in C'T-topology of
regular Cantor sets (see Section 2 for a definition of the topology). Ps(K7,..., K,)
denotes the set of such stable projection values ¢.

In the present work we will provide an answer to the Question, by proving the
following:

Theorem 1.2. There is an open and dense subset U of the set

{(Kl, ooy Kp), Ky, .., Ky, are C°-regular Cantor sets with

ZHD(Ki) + dim (span{ﬂ'(ei),i € IC}> >k, forall I C {1,...,n},I# @},
i€l
such that, if (K1,...,K,) €U, then Ps(K1,...,K,) is dense in w(Ky x ... x K,,)
and
HD(r(K1 % ... x Ko)\Ps(K1,. .., Kp)) < k.

For 7 : R? — R given by 7(z,y) = x—v, our result becomes the Moreira-Yoccoz’s
theorem.

For 7 : R® — R"~! given by n(z1,...,7,) = (¥1 — T2,...,71 — Ty,), our result
talks about simultaneous stable intersection of n regular Cantor sets with sum of
Hausdorff dimension bigger than n — 1.

For 7 : R* — R? given by (21, 72,23, 24) = (21 — 9,3 — 24), our result talks
about simultaneous stable intersection of two independent pairs of regular Cantor
sets.

The main reference to our work is [5]. Some new ideas were needed in the proof,
for instance, a new Marstrand type theorem (see Section 8).

2. PRELIMINARIES

2.1. Regular Cantor sets. Let A be a finite alphabet, B a subset of A%, and ¥
the bilateral subshift of finite type of AZ with allowed transitions B.

We will always assume that ¥ is topologically mixing, and that every letter in
A occurs in X.
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Definition 2.1. An expansive map of type ¥ is a map g with the following prop-
erties:
(i) The domain of g is a disjoint union J, I(a,b), where, for each (a,b), I(a,b)
is a compact subinterval of I(a) := [0,1] x a;
(ii) For each (a,b) € B, the restriction of g to I(a,b) is a smooth diffeomorphism
onto I(b) satisfying |Dg(t)| > 1 for all ¢.
The regular Cantor set associated to g is the maximal invariant set

K= g—"(UI(a,b)).

n>0

Let X1 be the forward unilateral subshift associated to 3. There exist a unique
homeomorphism h : ¥* — K such that
h(a) € I(ap), for a = (ag,ay,...) € &7,
hoo=goh.

For each (a,b) € B, let
fap = [9|I(a,b)]715
this is a contracting diffeomorphism from I(b) onto I(a,b). If a = (ag,...,a,) is a
word of X, we put
Ja = fag,a1 © - © fap_1,an3

this is a contracting diffeomorphism from I(a,,) onto a subinterval of I(ag) that we
denote by I(a).

Remark 2.2. 1f (ag,a1,...) € X1, then the size of I(ao,...,a,) decrease exponen-
tially, and the conjugation h is given by h(a) = NS, 1(ag,...,an).

We put
K(a) := KNl(a) = fa(K).

Let r be a real number > 1, or r = +00. The space of C" expansive maps of type
¥, endowed with the C" topology, will be denoted by 2%,. The union Qy = J,.; %
is endowed with the inductive limit topology.

We have the following well-known result (see [10]):

r>1

Proposition 2.3 (Bounded Distortion Property). Letr € (1,+00), g € QY. Then,
there exist a constant ¢ > 0 such that: for any word a = (ag,...,a,) in ¥ and any
z,x' € I(ay), we have

|log | fa ()] —log | fa(a")]| < Clz — /"%
The same C' is also valid in a neighborhood of g in Q.

Given two sequences a = (...,a_1,a9) and b = (bg, by, . ..) of ¥ (finite or infinite),
we say that b is compatible with g if ag = by, and then denote by a V b the new
word obtained by concatenation of ¢ and b

(. oA _1,00 = bo,bl, .. )
In the finite case we has the identity fovi, = fa © fp, and also the relation

(2.1) [(aVb)| = [I(@)[[()]-
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2.2. Limit geometries. Let ¥~ = {(6,,)n<0, (0i,0;41) € B for i < 0}. We equip
3~ with the following ultrametric distance: for § # 0 € %7, set
~ {1 if 0 % 0,

dg,0) = ~
©.9) [I(8 AB)| otherwise;

where O A0 = (0_,,,...,00)if6_;=60_;for 0<j<nand@_, 1 #0_, ;.

Now, let @ € £ for n > 0, let §) = (0_n,...,06p), and let B(Q(”)) be the affine
map from 1(0™) onto I(fy) such that the diffeomorphism kS = 0™ o fom is
orientation-preserving.

We have the following result (see [11] and [5]):

Proposition 2.4. Letr € (1,+00), g € QF.
1. For any 0 € ¥, there is a diffeomorphism k% € Diff", (I(8y)) such that the
k2 converge to k% in Diffi, for any v’ < r, uniformly in 8. The convergence

is also uniform in a neighborhood of g in Q%,. It follows that (6,g) — kg 18
continuous.

2. If r is an integer, or r = 400, then k% converge to k% in Diff’, . More
precisely, for every 0 < j < r —1, there is a constant C; (independent on
0 and on a neighborhood of g in Q%) such that

| D7 log DIRG o (K)~")(2)| < C5|1(6™)].

It follows that 8 — k% is Lipschitz in the following sense: for 6y = 50, we
have

D7 log DKL o (k2)~1)(2)| < C;d(8,0).
The limit geometric of K associate to @ is the Cantor set
K% = k%K (6y)).
For 6§ € ¥~ and @ a word in ¥ starting with ag = 6y, we denote:
I%(a) = k*(I(a)),
K%(a) = kK%K (a)).
The k2,0 € ¥~ are related in the following useful way:
(2.2) ko f, = F%(a) o K2V,

for every a compatible with §, where F%(a) is the affine map from I(a,) onto
I%(a) with the same orientation as f,. Therefore, the homothety part of F%(a)
is £(a)|I%(a)| where g(a) = +1 (resp. -1) if f, is orientation-preserving (resp. -
reversing), and the translation part is k2(f,(0)) (understanding the 0 from I(a,,)).

By the Proposition 2.4.2, for any Q@ € ¥~ and g a word in X with ag = 0y = 50,
we have

112(a)||T%a)| " — 1| < Cd(8,0),
(2.3) N N
K2 (z) — k% (z)| < Cd(9, ).

The constant C' is independent of 6, é, a, and some neighborhood of g in Qf,.
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2.3. Renormalization operators. Let r € (1,+00]. For a € A, denote by P"(a)
the space of C"-embeddings of I(a) into R, endowed with the C" topology. P (a)
denote the subset of P"(a) of embeddings h with h(0) = 0,h(1) = 1. For each
h € P"(a), there exits a unique affine map over R such that, after left composition,
h become to P’ (a); this composition we denote by [h]. We also consider P(a) =
U,~1P"(a) and P(a) = U,~, P (a) endowed with the inductive limit topologies.

Let a = (aog,...,a,) a word of ¥, and g € Q%. We define the renormalization
operator

TY : P"(an) — P"(ao)
h— ho f,.

Obviously, (h, g) — T2(h) is a continuous map from P(a,) x Qs to P(ap).

We can reinterpret the Proposition 2.4.1 as follows: For § € ¥~ and any bounded
sequence h, € P"(0_,), the sequence [T}, (h,)] converges (in the C" topology,
r’ < r) to alimit in P"(fy). The limit is independent of the h,, and the convergence
is uniform in # and bounded subsets of the P"(a).

On the limit set of the renormalization operators, we can also view the renor-
malization dynamics as follows. Let A = {(6, A)}, where § € ¥~ and A is now an
affine embedding of I(fy) into R. We have a canonical map

A=P" =P (a)

(0,A) = Aok (e P"(6))).

By the equation (2.2) we can lift the action of the renormalization operators to
A as
To(0.4) = (0Va, Ao F¥a))

The map ((0, A),g) = TJ(0, A) is also continuous.

2.4. The nonlinearity condition. In [5], Moreira and Yoccoz introduced the
following notion:

Definition 2.5. We say that K is nonlinear, if there exist °,0' € £, with
09 = 63, and zy € K2 (83) such that

[Dlog D[E o (K2) ™) (x0)| # 0.

Notice that there are neighborhoods V,XA/ of 8°,6" in B, respectively, and a
neighborhood J of z¢, such that

|Dlog D[ o (k%) ()| = 7 > 0,

forall x € J, 0 € V,@E V.
Fix a conveniently large constant cy. The size of a word a in ¥ is the length
|I(a)|; we say that a has approximate size p if
co'p < |(a)] < cop
and denote by X(p) the set of those words. It cardinality is of order p—¢
d=HD(K).
In [6] was proven that the nonlinear condition implies the following:

, where
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Property 2.6. There exist n > 0, p; € (0,1) such that: for all 0 < p < p1, 1 <& <
p L, PcRand §€V,0cV, we have

Lo, 120
in | =¢£1 — d
sin <2§ og I72(b)] +
2.5. The family of random perturbations. Fix an integer » > 2. We construct
a family of random perturbations of g, depending on the scale parameter p; the
perturbations will become close to g in C" topology when p is small. The scale p

will be assumed to be small.
We first pick a subset X0 of ¥(p!'/") such that

K= K(a)

aexo

# {b € X(p),

> n} >np~ .

is a partition of K into disjoint cylinders.

We then define X! as the subset of ¥° formed of the words a € X0 such that no
words in X(p'/3") appears twice in a.

Let 7 > 1 be a constant sufficiently close to 1 to have the following: let I (a), for
a € X9 be the interval with the same center as I(a) and 72 times the size of I(a);
then the I(a), a € £°, are pairwise disjoint.

We then choose, once and for all, a smooth even function x : R — R satisfying

x(x)=1for |z| < T
x(x) = 0 for |z| > 72,

For a € 3!, we define the vector field X,, with support C f(g) by

Xul(r) = 0p 2 X(By(0) -
where o is a conveniently large constant, and B, is an affine map sending I(a) onto
[—1,+1]; there are two such maps, but as x is even, they give the same X,.

The probability space underlying the family of random perturbations is 2 =
-1, —H]El7 equipped with the normalized Lebesgue measure.

For w = (w(a))eext € 2, we define @, to be the time-one of the vector field
Xy =—> ,w(a)X,, and g2 = go d,,.

Remark 2.7. By construction, the vector fields X,, a € X!, have disjoint supports.
The size of the intervals I(a), a € 3!, have order p!/", therefore the affine map B,
entering the definition of X, has derivative of the order of p~ V7. Tt follows that,
when p is small, X, is small in the C" topology. Then, the ®,, for any w € , are
close to the identity in the C" topology.

In particular, the estimates in Proposition 2.4 for the k% are valid for ¢« uniformly
in w, if we consider no more than r derivatives.

Remark 2.8. The finite set |J, ., {inf K(a),sup K(a)} of the extreme points of the
Cantor set K are invariant under g. Let zo be a point in this set; if aq is the
element of %0 such that g € K(q,), then g, is the initial part of an eventually
periodic word in ¥T. Therefore a, € X0 — %! if p is small enough. It follows that g«
coincides with g in I(a,) (for any w € ), in particular g% is expansive of type ¥,
and that inf K (a),sup K (a) are still the extremes points of the perturbed Cantor
set Ky (a).
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Remark 2.9. For a € X9, let I(a) be the p-neighborhood of I(a).
Let a € ¥° a_; € A such that (a_1,a9) € B; let @’ be the inicial part of a_ja
that belongs to °. We have f,_,4,(I(a)) C I(d'); because the £, are contractions,

there exists o > 0 such that the ap-neighborhood of fu_,a,(I(a)) is contained in
I(d).
On the other hand, for the perturbed inverse branch fa~ ,4,,w € Q, we have, for

any z € I(a)
fa,a (-T) ifglezo_zl
w _ 1a0
a_1ag9 (l‘) {fa_la,o (I’) + gp1+1/2rCU(Ql) lf Ql S 21

(because X, is constant on I(a’)). This allows us to conclude that fz~ ,q, (I(a) C

I(a') (if p is small enough), and therefore that the perturbed Cantor set K, will

be contained in Uy I(a).
We have the following result (see [5]):

Lemma 2.10. Let§ € X7, w € Q and a a word with ag = 0.
L. If|I(a)| > ¢5 tp, then

112<(@)||1%a)| ™" = 1| < Cop'~27;
K& (2) — k2 (z)| < Cop'~ 2.
It follows that:

i
k&<(f(@)) — K (fa())| < Cop'~2r.
The constant C' is independent of 0,w, a, p, and the size o of the perturbation.

We finish with a decomposition of the space €2, that we use later. For a €
Y(p'/?7), let ¥~ (a) be the open and closed subset of ¥~ formed by the @ ending
with a. Choose a subset $2~ of X(p'/?") such that

> =T (0
n2-
is a partition of ¥~
For a € ¥27, define ¥!(a) as the set of words in X! starting with a. For
0 € ¥ (a), we also define ¥ (0) = X!(a).
Letting 0 € X, we write
Q=[-1,+1 @ x [-1,41)% '@,
w=(w,w")
and for each such an w, we set

w* = (0,w").

This depends on 6, but, nearby, § (with d(6,§) < ¢y tp'/?") will belong to the same
%27 (a) and give the same projection w* of w.



3. STABLE PROJECTION OF CARTESIAN PRODUCT OF REGULAR CANTOR SETS:
RECURRENT COMPACT CRITERION AND STATEMENT OF THE MAIN RESULT

In this section, assume we are given n sets of data (A1, B1,%1,¢1), - -+, (An, B, X0, gn)
defining regular Cantor sets K1, . .., K,,, and the surjective linear map 7 : R® — R¥.

We define as in Section 2 the spaces P; = J, Pi(a’), i =1,...,n.

A n-uple (hy,...,hy,), (hy € Pi(al),..., h, € Pu(a™)) is called a smooth config-
uration for Ki(a'),..., K,(a").

Definition 3.1. We say that t is a projection value for the smooth configura-
tion (hy,...,hy) € Pi(al) x ... x Py(a™) or projection value for (hy,...,h,) and
(g1, gn) if

t € w(hi(Ki(a')) x ... X hp(Kp(a™)));

and stable projection value if t is a projection value for all (ﬁl, . ,ﬁn) perturbation
of (h1,...,hy) in Pi(at) x...xPy(a™) and (g1, ..., gn) perturbation of (g1,...,gn)
in 921 X ... X an.

Obviously, if ¢ is a stable projection value for (hi,...,hy,) and (g1, ..., gn), then
t is a stable projection value for (El, .. ,7Ln) and (§1,...,3n), for all t perturba-
tion of t, (El, . ,En) perturbation of (h1,...,h,) and (g1,...,g,) perturbation of
(glv s 7971)
Actually, rather than working in the product space P; X...Xx P, it is better to go
the quotient Q by the left action by composition of the group {G : R® — R", G(z) = Az + v,\ € R*,v € ker7},
endowed with the quotient topology.
The renormalization operators

T Ty, ..o hy) == (T (), -, Tyn (h))

are invariant under of the about action group; hence they are defined on the quotient
space Q.
Notice we have the following topological equivalence:

(3.1)
Q2P x...x Ppx (R xR
[(I’Ll, - ,hn)] —
([hl] B h1(1) — hy1(0) hp—1(1) = hp—1(0) w(h1(0),..., hn(O))>

The following remark underline the fundamental role played by the renormaliza-
tion operators.

Remark 3.2. 0 is a projection value for the smooth configuration (hY,...,h%) if
and only if there exists a sequence (R}, ..., h")m>0, with (R ... RMHY) =
Ty ... Typ (R, ... ) for some renormalization operator (depending on m) with

at least one word @' being nontrivial (i.e. of two or more letters), such that
[(ATY, ..., hI™)] is relatively compact in Q.

As Section 2, we can introduce the spaces A, ..., A, of the affine embedding.
We denote by C the quotient of A; x ... x A, by the left action by composition
of the group {G :R" - R",G(z) = Az + v, A € R*,v € kerr}. Elements in C are
called affine relative configurations.
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We have canonical maps

A1 x ... x A, = P1 x...xP,
C—0Q

which allow us to define renormalization operators on the spaces A; x ... x A, or
C.

When one is looking for stable projection values, the following notion is crucial.

Definition 3.3. A nonempty compact set £ in C is recurrent if for every u €
L (suppose represented by [(Ql,Al), .., (8", A)]), we can find words al,...,a"
compatibles with @', ...,0", respectively, with at least one a’ nontrivial, such that
T;I TR € int L.

an

Let £ be a recurrent compact set. The actions C x Qx, x ... x Qy, — C via
renormalization operators are continuous then there are finitely many compact sets
Ly,..., Ly, and words gjl, e 1 < j < N (with, for every j, at least one word
is nontrivial) such that

(i) Ui<j<n £; is a neighborhood of £;
(ii) T‘;Jl_l .. T;" is defined on £; and sends £; into intL.

) ] )

From this, we deduce immediately that any recurrent compact set for g1,..., g, is
still recurrent for ¢, ..., gy in a neighborhood of (g1,...,¢,) in Qx, X ... X Oy .

Remark 3.4. The image of £ under the canonical map C — Q is a compact set R
recurrent in the following sentence:

there exist a neighborhood V' of the Id in the affine maps space Aff(R), such
that, for all [(h1,...,h,)] € R there exist a compatible words (al,...,a") €
{(a',...,a}),1 <j < N}, such that [T}, ... Tp%(Ay 0 hy,..., Ay 0 hy)] € R for
all Ay,..., A, €V. N N

Via the equivalence 3.1: there exist § > 0 such that for all (k1,...,kn,8,t) €ER
there exist a compatible words (a',...,a") € {(a!,...,a}),1 < j < N} such that
if (Ky,..., ks t) = Tall...Tgn(kl,...,kn,s,t), then (kl,...,k;,g’ﬁ) € R for

any §,t with \s — | <o, |t -t <.
Proposition 3.5. If [(Ql,Al), o, (0", A)] is contained in a recurrent compact
set, then 0 is a stable projection value for (Ay o kgl ey Ap o kg:).

Proof. Suppose [(Ql, Aq), ..., (0", A,)] is contained in a recurrent compact set £ for

(g1,---,9n)- Let (El, . ,Tzn) perturbation of (Alokgi,. .. ,Anokg:) inPyx...xP,
and (g1, ..., gn) perturbation of (g1,...,gn).

1 n
Then L is still recurrent for (g1,...,9,); and (A; o k%l s, Ap o0 k%ﬂ) is close to
1 n ~ ~
(4, okg1 ey Anokgn) in Py X...x P, (see Proposition 2.4.1), therefore (hq,..., hy)
1 n
is a perturbation for (A; o k‘%l s, Ap o k%ﬂ ). Hence in the initial assumption, we

may assume (g1,..-,9n) = (g1, -+, 9n)- 1
Let [(0", A),..., (0", An)] € intL. Set (KY,..., k9, s0,°) = [(Ay o kgy,..., An o

»'no

k) and (K,...,k9,5°,8) = [(h1,...,h,)], then (K9,....k0,30,%) € R. If

y Ry S s vy

we have (K7,... k™ 3" ") € R and (K7",..., k™, 5™, 7™) € Q, with k™ closer

" Vn 7 »n ’
to k", then, by the Remark 3.4, after some renormalization operator we have
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(kHt kL gmAl gmAly e Roand (B, kMl gmtl fmtly ¢ Q) in fact
(Kt ket el gty € R with k7! more closer to k7T

By the Remark 3.2, 0 is a stable projection value for the smooth configuration
(hi,..., hp). O

We consider the subset V C Qx, X ... x Qg of (g1,...,gn) such that, for all
((Ql,Al), R (Q",An)) € Ay X ... x A,, there exist ¢t € R¥ such that ¢ is a stable

projection value for the configuration (A; o k:Ql, o Ay o k2.

Theorem 3.6. 1. V is a open subset of

{(gl, <oy gn), Y HD(K;) + dim (span{ﬂ(ei),i € IC}) >k, forall T C {1,... ,n}} :
i€l

Also, given (g1,...,9n) €V, there exist d* < k such that for any smooth configura-

tion (h1,...,hy) € P1 X ... X Py, the set

P, = {t € R”,t is a stable projection value for (hy,..., hn)}
is (open and) dense in
P= {t € R¥,t is a projection value for (hy, .. .,hn)}

moreover, HD(P — P;) < d*. The same d* is also valid for gi,...,G, in a neigh-
borhood of g1,...,gn in Qs X ... x Qx, .

2. Suppose g1,...,9n, have a nonempty recurrent compact set of affine rela-
tive configurations, which meets all possible relative orientations; and have periodic
points T1,...,T, (of period ly,..., L, respectively), such that log |Dgl11 (z1)], ---,
log |Dgln (2,,)| are rationally independent. Then (g1, ...,gn) € V.

Proof. Let g1,...,0n € Qs, X ... x Qy, , and R > 1 be larger than the supreme of
the derivatives of the expansive maps ¢1,...,gn. Then (¢1,...,9,) € V if and only if
for every (8',...,0") € X7 x...x %> A1,..., A1 € Jgp = [-R,—R'JU[R™, R],
there exist ¢+ € R such that ¢ is a stable projection value for the configuration
(M le, cee )\n_lkgn_l, k2"). We denote by K the following compact subset of Py x
o X Pp:

{(Alkﬁl,...,An_lkﬁ””,kﬁ”),(gl,...,Qn) EXT %o X2 (A Anet) € Jg—l}.

If (g1,...,9n) € V, notice that the following is true: there exist § > 0, a neighbor-
hood Z of K in Py X...x P, and a neighborhood W of (g1, ..., gn) in Qx, X... X0,
such that for each (hi1,...,h,) € Z and (g1,...,9n) € W, there exist a d-ball of
stable projections values for (hq,...,hy,) and (g1,...,gn). In particular, V is open.
The final assertion of the part 1. in the theorem is now a easy consequence of
the last statement. Suppose ¢ is a projection value for (hq,...,h,). Let € be small;
we consider words a',...,a" in ¥1,...,%, respectively, such that I(al),...,I(a")
have size of order ¢, and such that ¢ is a projection value for (hyo fu1,...,hypo fan).
Then |t — 7(hi o fa1(0), ..., hp o fan(0))] < ce; and
hyo fgl —hyo fgl (O) h,, o fgn — hy 0 fgn (O) z
(hnOfan(l)—hnOfan(O)""’hnOfan(l)—hnOfan(0)>e |
that mean, (hi,...,h,) is stable {-projecting for all £ in some ¢/ed-ball contains in

a c’e-ball of m(hy o f41(0),...,hy 0o far(0)). In other words, for all t € P and e
small, the set Ps N B.(t) contains a cde-ball (for some ¢ > 0 fixed). But this last




12

property at the same time guarantees that P is dense in P, and that HD(P — Py)
is at most d* < k, where !d* depends only on ¢d.

2. Let @' the word in ¥; of length [; + 1 such that fai(x) = x;. Set a =
(...,a',a’,a’). Deriving the relation k% o fai = FZ'(a') o kT, we have DFZ (a') =

éi (xl)

Let N be the set of (8',...,0™ \1,..., An_1) € ] X ... x U x (R*)*~! such
that (A k2 ..., An_1k2" " k") has a stable projection value.

From the existence of such compact recurrence set, N is a nonempty open subset
of X7 x...x ¥, x (R*)"~1. Using renormalization operator going to that open set,
we deduce that for any given (Ql, 0" e X X ... x X, there are A{, N

n—1»

j=1,...,2" 1 of all possible n — 1-sings, such that (9*,... ,Q",A{, .. .,)\Zl_l) eN

forj =1,...,2"~1. The hypotheses on the periodic points implies that (@',...,a", Ay, ...

N for all (A1,..., 1) € (R*)"~!. Using again the renormalization operators, we
get that N = X7 x ... x X x (R*)"~ 1, O

Our main result is now the following.

Theorem 3.7. Let g1,...,9, be C™ expansive maps as above. Assume that the
associated Cantor sets satisfy

Z HD(K;) + dim (span {m(e;),i € IC}> >k, forall I C {1,...,n}.
il
Then we can find, arbitrarily close to gi,...,gn (in the C*°-topology), perturbations

J1, - - - » gn_having a nonempty recurrent compact set of affine relative configurations,
which meets all possible relative orientations.

4. OUTLINE OF THE PROOF OF THE MAIN THEOREM

The first step in the proof is perturbe if necessary to make sure that at least
n — 1 of the n regular Cantor sets are nonlinear, say K1,...,K,_1 (see Definition
2.5, for precise definition of nonlinearity); and that

ZHD(Ki) + dim (span{ﬂ'(ei),i € IC}> >k, forall I C{1,...,n},I#0.
iel
Notice that dim(span {7 (e1),...,7(en—1)}) = k, hence there exist I C {1,...,n — 1}
with #1I = k, such that dim(span {r(e;),i € I}) =k;say I = {1,...,k}.
The equivalence 3.1 gives us a canonical identification C 2 X7, ..., 5 x (R*)" 1 x
R*. In this coordinates, applying the equation (2.2), the renormalization operators
over C are:

Ty Tpu(0',...,0" 51, .. Sp_1,t) =

1% (ah))|
127 (am)]

o
—~
IS}

S1y..-

0'val',....0"Vva" e(d',a") -
< 112" (a™)]

Ignq ne1
n_l,gn)l (Q )lsnfl,t/

where £(a?, a") = e(a')e(a™) and

t (512 (£21(0)); vy Sue1 k2 (fan—1(0)), k2" (fan (0))) '

b= @) (a")]

7)\n71) S
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We want to perturb gy, ..., g, (actually it will be sufficient to perturb g1, ..., gx)
in the C*°-topology in order to create a nonempty recurrent compact set of affine
relative configurations.

But a neighborhood in the C'*° topology is a neighborhood in some C" topology
for finite r. We now fix such an integer r > 2.

The required perturbation for gi,...,gx will be picked by a probabilistic ar-
gument out of the family of random perturbation glﬂl,..., gf"' construed in sub-
section 2.5 (with the same constants 7 near to 1, ¢ conveniently large). Recall
w; € QO = [—1,+1]% where ! € $;(pY/7), i=1,... k.

4.1. The Multidimensional Scale Recurrence Lemma. We may consider the
renormalization operators acting on the space S = X7 x ... x % x (R*)"~! of the
relative scales, as

1 1 n
Tgl...Tgn(Q 7...,0 ,817...,Sn_1):

0 (1 0"t n—1
[ 1 n 1 1% (a')] -1 ]
= (9 Va,...,0"va" e(a 7Qn)7|lgn(gn)|81,...75(9" ’Qn)iuﬁn(g"ﬂ Sn—1 | -

The first main ingredient in the proof of the main theorem is a recurrence result
for the action of these renormalization operators on the space S of relative scales;
we now present this result, which we call the Multidimensional Scale Recurrence
Lemma. Its proof is deferred to Section 7.

We will always restrict our attention to a compact subset

SR=%] x...x ¥ x([-R,—R"YU[R™ Y R)"!

of §, with R conveniently large.
Consider conveniently large constants ¢y < ¢p. According to subsection 2.4,
Yi(p) is the set of words a" in X; such that

oo < |[1(d)] < cop.
Note its cardinality are of order p~%, where d; = HD(K;). We also denote by
iz(p) the set of word @ in ¥; such that 561,0 < ‘I(gi)’ < cop. We say that @ is
an extension of a, if @ ends with a’. Then, denoting Jgr = [-R, —R™'|U[R™', R]
andd=d; +...+d,, we have:
MULTIDIMENSIONAL SCALE RECURRENCE LEMMA

Let Ki,...,K,_1 be nonlinear regular Cantor sets. For ¢y and R conveniently
large, there exist ¢, c1,ca2,c3 > 0, pg € (0,1) such that, for all 0 < p < pg, and for
all collection of sets (E(a',...,a"))(ar,....an)es (p)x...x 5 (p) Satisfying

E(gl, co,a") C Jgfl,
Leb(Jp~' — E(d',...,a")) < 1,

there is another collection (E*(al, ... 10"))(al,....a") €S, (p)x... xS (p) Of cOmpact sub-
sets of Jp~! satisfying

(i) E*(a',...,a") is contained in a cyp-neighborhood of E(al, ..., a");

(ii) for more than half of the (a', ..., a"), the Lebesgue measure of E*(a!,...,a")

is greater than 1 — 1/2"~! the volume of Jp ™ ;
(iii) for each (a!,...,a") € ¥1(p) X ... x ¥, (p), and each s € E*(al,...,a"),

there are at least c3p~% n-uples (b',...,0") € £1(p) X ... x X (p), each one
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~1 ~n =~ ~ ~1 ~n
with extension (b ,...,0 ) € L1(p) X ... x Zy(p) (with b ,...,b starting
respectively with the last letter of a',...,a") such that, for each =
Y1,...,8" € ¥, ending respectively with a,...,a™ and

1 n (pl n _(pl 71 n.\, 7"
Tho T, 0 5) = (@' VD .. 0" VD)

the p-neighborhood of s’ is contained in E*(b,...,0").

Let S*(gl, ...,a") be the set of (Ql, coy 8™ 81, ..., 8n—1) € Sg such that #° ends
with @', i = 1,...,n and s € E*(al,...,a"); set §* = Uatooan S*(at,...,a").

~1
Property (iii) says that there is a positive proportion of compatibles (b , ... ,En) S
21(p) X ... x X, (p) such that the image by Tgl1 ... T is “well inside” S*.

4.2. Construction of the candidates for recurrent compact set. We con-
struct the set £ = ,Cgl,__ﬂﬂk of relative configurations for with we want to prove
recurrence for at least one (wy,...,w;) € Q1 X ... X Q.

As indicated, this set will depend on wy, . ..,w;, but only as far as the coordinate
t is concerned. The image of L, . o, under the projection map: C — S will be a
subset £ of S independent of Wiy W

Let $;(p%) be the subset of ;(p?) formed by words a such that:

(i) no word b € ¥;(p'/?") appears twice in a;
(ii) if c € Ei(pl/&") appears at the end of a, then it does not appear elsewhere
in a.
We next define f]l_ as the subset of X, formed by #° which ends with a word in
53 (p®). This is an open and closed subset in X7 .

To define E, we will apply the Multidimensional Scale Recurrence Lemma (with
p'/? instead of p). A family of subsets E(a',...,a") of Jp !, for (a',...,a") €
Y1(p'/?) x ... x X, (p*/?) will be carefully constructed in Section 5, in relation to
the Marstrand-Kaufman’s type theorem (see Theorem 8.2), and it will satisfy the
hypothesis

Leb(Jp~' — E(da',...,a")) < ¢y, for all (a*,...,a"™).

1

Then, the Multidimensional Scale Recurrence Lemma gives us another family E*(a*, . ..

Jpt for (al, ..., a") € 21(p'/?) x ... x 5, (p'/?), with the properties (i), (i), (iii)
indicated in the statement of the lemma.

The set £ is defined to be the subset of Sp formed by the (8,...,0", ) such
that 6" € 5\];, i=1,...,k, and there exist (a!,...,a") € Z1(p*/?) x ... x T, (p*/?)
with s € E*(a!,...,a™) and @', ...,0" ending with a',...,a" respectively.

Lisa compact set, and by the property (ii) of Lemma, it is also nonempty and
meets all possible signs for the scales!.

We remark that, if (8',...,0",s) € £ and (@ ,...,0") € £; x ... x £ with

~ . ~k ~k ~n
d(6',8) < c'p?,...,d(0",8") < cg ot and d(0",8") < gt pV/2, . d(8",0]) <

~1 ~n ~
cglpl/g, then (8 ,...,0 ,s) € L.
Now, for every (8',...,0",s) € £ and every (Wyy-e oy wg) € Q1 X .o X Qp we

define in Section 5 a nonempty compact subset Lglw&k (0,...,0", s) of R¥. In
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fact, the set L (0*,...,0", s) will only depend (as far as w,...,w, are con-
cerned) on the projections wj, ... ,w} of wy,...,w, associated to 0", ..., 0"t (see
the definitions in the Subsection 2.5).

Finally, notice that for every (wy,...,w;) € Q1 X ... x , the set

Lgl’“‘7£k = {(Qla s aQna S,t), (Qla s aQn7 S) € E’t € Lil,.“,gk (le R 7Qna 3)}
is a nonempty compact subset of C. Then we define the candidate as follows:

Lo, w :{(Ql,...,Qn7s,t) e LxRF3@,....0",57) e L0

Wy Wqseeny W
with d(8',8') < p7/2,...,d(6",0") < p7/°,|s — 3] < p, [t — 1] < p}.

4.3. The Probabilistic argument: Proof of the main theorem. Consider the
neighborhood £, , of £, in L xRE:

Wi W

£how :{(Ql, 85, 8) € L X RE 305, 00, s0,t0) € L3,

with d(0",65) < 20°/%,...,d(0",6) < 20°/%,|s — so| < 2p, |t — to| < 2p}-

Fix u = (8',...,0" s,t) € L x RF. We define two subsets ﬁo(u),Q (u) of
Q=0 x...x Q. First,

(u) = {(gl, oo w) EQuE ﬁilw’&k}.

Second, ﬁo(u) is the set of (wy,...,w,) € € such that there exist (b',...,b") €

ﬁl

i(p) x ... x T (p) with by = 65,...,05 = 6f and the image T ... Tjh(u) =
(07,...,0™ s t') satisfies:

(i) for any 3 with |§' — | < $p'/2, we have (',...,0™,7) € L;

(i) ¢ e Ly . (0" ....0"5).
(The renormlization operators Tbl1 ... Tyn depend on wy, ..., w;; the dependence is

not indicated in the notation to keep the text readable.)
The following crucial estimative will be proved in Section 6.

Proposition 4.1. Assume that o is chosen conveniently large. Then there exists
cs >0 and 1 > 0, such that, for any v € L x RF,
—1 —0 _
P(Q (u) = (u) < exp(—cap™).
With this estimate, the end of the proof of the main theorem is not difficult.
Assume that p is small enough.
The sets L&l 0',...,0", s) will always satisfy

PRETRICoNN (*

0 1 n
teL&l ____ ﬂIC(Q,...7Q,5)2>|t|§2cR
We choose finite subsets A, ... A% AZ of f]l_,...,f],;,E,;+l,...,E;, [—(2cr +

2p), (2cr + 2p)]* respectively such that:
- AV is p°/2 dense in i;,#A? < C5p_%d"',i =1,...,k;

3

- AVis p%/? dense in N #AY < C5p_%d'i,i =k+1,...,n
- A2 s p5/2 dense in [—(2cg + 2p), (2¢k + 2p)|F, #A2 < ¢5p~2F.
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Then, for each (NQI, .0 € Adx. .. x A% we choose a finite subset A'(6',...,0™)
of the fiber of £ over (8*,...,0"), which is p°/2 dense in this fiber, and has cardi-
nality < csp~— 2. Let then

A={u=(0"...,0"5,1),0" € AV 0" € AVt e A% s A(0',...,0™)}.

One has
#A < Cg+2p7%(d+k+n71) < Cg+2pfg(k+2n71)

Now, if p is small enough,

C?+2 -3 (k+2n-1) exp (704/)71) <1,

and therefore we can find (w9,...,wl) € Q1 x ... x Q,_1 such that, for any u € A,

either (w?,...,w?) ¢ Q' (u) or (9, ... ,wl) e Q°(u) (or both).
Fix (wf,...,w?) as above.

Claim. The nonempty compact set £ = ngl)w&% of affine relative configurations,
is recurrent for glgtl), . ,gf(’i,gk_ﬂ, ey Gn-

Let u=(8',...,0", s,t) € L.

We can find 85 € A?,...,00 € A% to € A with d(8",6}) < p°/?,...,d(0",8) <
P2 |t — to| < p?/2. Then, by construction of £, (6}, ...,0%,s) € L; hence we can
find so € AN}, ...,05) with |s — so| < p/2. Let ug = (85,...,05,s0,t0) € A.

. . =1
Notice that ug € £L?7...,£g; in other words, (w?,...,w?) € Q (ug).
. -0 .
Then, by the choice of (w9, ...,w?), we have (w9, ...,w?) € Q (up). This means

that there exist (b',...,b") € ¥/ (p) x ... x ¥ (p) compatible with (8", ...,8") such
that, if

= T LTI T (ug) = (00,00 s, ),
we have
(O3, 85, 5) € £ for [ — sl < 512
and #y € L% 0 @s,....00,sh) (e ul € Lo o)
Let
W= TE L TETEL T ) = (0,07, 8.

We want to prove that v/ € intL, but

~n ~

0 ,5,1) € Lo 0

intL :{(Ql, 0" st € intC x R, 3@1, .0 00,0
with d(8,8') < p°/2,...,d(8",8") < p°/,|s — 3] < p,|t — 1] < o}
The desired result follows from the following lemma:
Lemma 4.2. The following estimates hold:
d(©".8'6) < cop™?, ... d(0".00) < cop™/?, |s' — sl < cop”, |t — 1o < cop®?.

Proof. By the equation (2.1) we have d(Q/i,Q/f)) = d(@",05)|1(b")],i=1,...,n, and
by the relation (2.3) we have

|5 = 56| < (ec)|s — so| + |splemaxd(¢’, 6),
7
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and
|t — to| < ccop™ (|t — tol + [s — sol + (|so| + 1) mgxd(ﬁi,ﬁé)) + cltold(8", 0p)-
|

5. APPLICATION OF MARSTRAND-KAUFMAN’S TYPE THEOREM

5.1. Construction of the sets E. Given a point (Ql, ...,8",s) € S, and points
x1 € K1(6}), ..., 1, € K, (0F), we define
1 n—1 n
ot gn s(T1,. .., Tn) = —m(s1k2 (21), .. sn 1k (zn_1), k2 (z0)).
We equip each set K;(6}) with the d;-dimensional Hausdorff measure pg,, i =
1,...,n. It is well-know that there exist constants cg > c¢; > 0 such that, for
0 € Aq,...,00 € Ay:

cr < phay, X - X pia, (K1(05) % ... x K,(02)) < cs.

For (8',...,0",5) € S, we denote by u(6",...,0", s) the image under Tg1, g s Of
Py X+ - X pig, on K1(0§)x...x K, (0%). The Marstrand-Kaufman’s type theorem tell
us that, for fixed (', ...,0™), the measure u(8,...,0", s) is absolutely continuous
with respect to k-dimensional Lebesgue measure for Lebesgue-almost-every s, with
L2-density Xot ... on,s satisfying

[ alleds < ),

R
where cg(R) is independent on o, .... 0"

Remark 5.1. When one controls ||XQ17___7QW,7SHL2, this gives, by the Cauchy-Schwarz
inequality, a lower bound for the Lebesgue measure of mp1  4n ((X), where X is a
subset of K1(05) x ... x K, (0%) with positive pg, X ... x pg, -measure; indeed:

ey XX pg, (X) < / Xot,...on,s()dt < |7TQ17___7QH75(X)|1/2 ||XQ1,...,QTL,SHL2
ﬂ-ﬁl,...,gn,g(x)

and therefore

From now on we suppose k < n — 1. In the end of the section we indicate how
to modify the arguments in the case k =n — 1.
Fori=1,...,k, let P;: R*~! — R" be given by

Pi(l'l, e ,.’In_l) = (1’1, e ,SC¢_1,07IL’¢7 e ,ZL’n_l).

We define m; = 7o Py, m), = Tg1._gn.s o P; and denote by ;(0",...,0",s)

N
the image under mj: g Of gy X ..o X pra; o X plag X o X i,

Let m; := m(m;il, . 7 s di_1, di+1, dn) We note that m; +d; > m(7r, dl, ceey dn) >
k. We define m; as follow: if m; > k, then m; = k; if m* < k, then m; < m;
such that m; + d; > k. The Marstrand-Kaufman’s type theorem tell us that: if
m; = k, the measure p;(0",...,0", s) is absolutely continuous with respect to k-
dimensional Lebesgue measure for Lebesgue-almost-every (s1,...,8i-1,Si,- -+, Sn),
with L2-density Xél,.. . satisfying

/n—l
‘]R

n
AN

‘ 2
L ds < ¢o(R);

Xg1

n
IRRPUAY
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otherwise, if m; < k, then
/ I, (1s(8%,...,0",5))ds < co(R).
Jpt

Fix (0',...,0") € X7 x...x 2. Let (a',...,a") € S1(p"/?") x ... x T (p'/?")
with a = 04,...,a} = 03. Then

61_01 S |Iﬁl(gl)||lﬁn(gn)|—1 S 6107i = 17 cee, = 1)
therefore we have
2
/
/J;;l XT3 T (00™9) || ds < ¢y(R),

with ¢j(R) independent of §',...,0",a',...,a". On the other hand, one has
45, (pM?) < epp~ Wi =1, .
‘We conclude that

/n_1 E HXle...T;n(gl,...,gn,s)
TR a1, an a

We define, with c;2 conveniently large to be determined later:

EO(Qla ce 7Qn) :{S € J}%_17

2
s < chey(Ryp .

X61,....0™,s HiQ < ci12

2

_d
and E HXTil...T(%(Ql,...,g",s) < c12p 2"}7
al,....a” a

L2

2

)
Xot,...0m,s

1 ny __ n—1
Ez(Q 7"'7Q ) - {5 € JR i 12
mi < k B;(0",...,0") = {s €T L (a0, ..., 07, 5)) < 012}.

< 012} if m; = k, otherwise, if

We now define E(8',...,0") = Eo(8",...,0™NEL(0",...,0™")N...NEx(",...,0™).

One has, for any (8',...,0") € X7 x ... x ¥
m(Jg = E',....0M) < eiy ((k +1eg(R) + cfych(R)) < e,
if 10 > ¢ (k4 1)co(R) + ¢y ch(R)).
Then, for (c!,...,c") € 21(p"/?) x ... x B, (p'/?), we define E(c',...,c") as the

, C
set of s € Jp~! such that there exist 0',...,0™ ending respectively with ¢!, ..., ¢"
such that s € E(9",...,0™).

5.2. Construction of the sets L°. For some ¢} > ¢3, we denote by ¥/ (p) the set
of words ¢’ in ¥; such that c{flp < |I(gi)} < ¢pp. We will say that two words
bl bt € Xi(p) are independent if there is no word b* € ¥i(p'/?") such that both b
and b] start with b’

Let 0 <1< (m;+d; —k)/4r for alli =1,...,k and define N = [p~!].

Let (0',...,0",s) € £, and (wy, ..., wy) € Qi x...xQ,. Wedefine LY, (0, ..
to be the set of t € R* for which there exist n-uples (bjl-, < 08), 1< j <N, in
Si(p) x ... x X! (p), compatibles with 9, ...,0" such that, if we set

w] Wi k41 n (pl n _(pl n
Tbl_l...Tb,?’“Tle...Tb?(Q A ,s,t)_(Qj,...,Qj,sj,tj),
=J ) -

the following hold:

’Qn’ 5)
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(i) for i =1,...,k, the words b',...,b% are pairwise independent;
(11) for 1 Sj: < N, and |5 —s;| < %pl/Q, (Q]l,..., 07,3) € L:
(iii) for 1 < j < N, |tj] < 2¢g,
where cg = sup {|7(z)|,z € [-R, R]"~! x [-1,1]}.
We will use also a slightly smaller set L;ll (Ql, ...,0",8); it is define in the
same way as Ly, (0*,...,0", s), but with (ii), (iii) replaced by:
(i)’ for 1 < j < N, and |5 — s;| < 3p1/2, (le,. L 07,8) € L;
(iii)" for 1 < j < N, [t;] < crg.

We will prove the following estimative.

sWp

Proposition 5.2. There ezist c14 > 0 such that, for any (Ql, o, 0"8) € L and
any (wy,...,wg) € Q1 X ... x Qy the Lebesque measure of Léll,...,gk @*,...,0", ) is
> C14.

5.3. Proof of the Proposition 5.2. Let(8',...,0",s) € L be given. By construc-

tion of £, there exist (9 0" ,3) with d(@", 9 ) < cop'/?,.. ., d(Q”,En) < copt/?,
|s — 3] < 02p1/2 such that

_ ~1
se E,

For i = 1,...,n choose a subfamily ¥? of

such that
= U K;(a")
x3

0.
¥ (p'/?7) of words starting with 6}

is a partition of K;(6Y).
For each (a!,...,a") € ¥ x ... x X2,
— d n d
C15 PP < ptay X X pa, (Ka(ah) X o x K (@) < esp?
Let J(a',...,a") := mg1__gn ((I(a') x ... x I(a™)) for general (a',...,a") €

Y1 X ... X X,. If we consider the random perturbations glEl ey gf"‘ and denote

@ = (w],...,w)), by 2.10, the vertices of each J¥ (a',...,a") are moved by a

~1 ~
distance of order at most apl_Tlr. If we replace 6',...,60",s by 8 ,...,Qn,g the
vertices of J(a',...,a") only move by a distance of order at most p'/2. We note
that

T, o (1@ VB . X I(@VB) = (12 (@)~ s,z o) (T (@) %X ().

For each (a',...,a") € ¥2 x ... x ¥2, there is a point z(a',...,a") in R* and a
constant ci5 > 0 such that all previously considered J (gl, ...,a™) are contained in
the closed ball B(a!,...,a") with center z(a',...,a") and radius c;5p'/?".

Fori=1,...,k1let Ji(a',...,a") :==7mp o oPi(I(a 1) ..xI(a™)). Similarly,
there is a point z(a!, .. ) in R¥ such that all the Ji(al,...,a"), also considering
the random perturbatlonb g1 s Gy “ and the (9 , 9 ,8), are contained in the
closed ball Bi(a',...,a") with center z(al,... ,g") and radius cj5p'/%".

Say (al,...,a") is good if:

(1) |z@,...,a") —z(a',...,a")| < 2¢c15p"/?" for no more than cpy p=(@=*)/2r

@,....a".
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(2) for each i = 1,...,k, \xi@l,...,@”) —zi(al,...,a")| < 3015_p1/2T for no
more than ¢y p~(d=mi=di)/2r (@1, ...,a"), all with the same @".
Lemma 5.3. The number of bad (a',...,a") is less than
Ckcgg+k)C13612P7d/2T
Proof. Let (a',...,a"™) with the Propertyl: there are at least ¢y, —(d=k)/2r (: e,
such that p;(@l, ... ,@") —z(at,...,a")| < 2c15p"/?".
Then B(al,...,a"), the ball with the same center as B(a',...,a") but with
three times the radius, contains all the J (@1, ...,a"). This mean that
_ — — k) — 35
/A Xg .55 2 cis e PP = 015(lJr )01310k|B(Q17 —na”)l.
B(at,...,an) — 777

Let B the union over all (a', ..., a") satisfying the Property1 of the balls §(g1, cona).
By the Vitali covering lemma we obtain

1+k) _
/BXEI’“ "3 >C15( * ) 1Ck\B|

But then, by Cauchy-Schwarz,

2
1+k —
) 1Ck:|B‘/ X~1 ~n’§S (AXgl "‘én§> S |B|/BX§1)7E777§

and thus fB X5 g5 < C’kc15 Frerscrs.

As B contains J(a!,...,a") for all (al,...,a") with the Propertyl, then the
number of such (a',...,a") is at most C’kcﬁkclgclgp*d/”.

Let (al,...,a™) with the Property2: there are at least 61_31,0_
all with the same @' such that |z'(@',...,a") — z'(a,...,a")| < 3c15p™/?".

If m/ = k, the previous case gives a estimative over the possible (a?,...,a"). We
give the same estimative when m) < k. The ball §1(gl, ...,a") with the same cen-

ter as B!(a,...,a™) but with four times the radius, contains all the J*(a*,...,a").
This mean that

~1 " N ,
:ul(Q yee e ,Qn,g)(Bl(gl, . ,Qn)) > 0;510;31pm1/2T_

(d=m/—d1)/2r (E17 o ~n)7

Let B! the union over all (a?,...,a") of the (a!,...,a") satisfying the Property2 of
the balls B Yat @ ) The Vltah covering lemma say that we have a subcolection
Bl ... B1 of the Bl( a™) of disjoint balls such that B' € ByU...UB;, where
Bj is the ball with the same center as le- but with three times the radius. Then
1 ~1 ~n ~1 ~n
TSNS ST o ot TP
BlxB; [z —y[™

j=1

N 9 I ~1 ~n ~
_Zul 2 N)(B ),ul(Q a""Q 7’5\/)(Bj)

4Clr 1/2r)1n1

and thus pl@ , 9 ,3)(BY) < 24mlc(1+ )013012 O
Now, we construct the n-uples (b',...,b") amongst which the n-uples (b}7 R b;‘)
of definition of Lglw&k (0*,...,0", s) must be looked for. We make the following

easy observation:
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Lemma 5.4. Let §' € f)l_ The number of words ¢ € ;(p/2) compatible with 6°
such that 0V ¢ ¢ 57 is o(p~/?%) as p — 0, uniformly in 6"

It follows from conclusion (iii) of the Multidimensional Scale Recurrence Lemma

and the last observation that we can find at least 703p —d/2 pn_uples (c j,...,g?) IS
S1(p2) x ... x 5, (p'/?) such that
T;;_ ...T;;(Ql,...,gn,s) =(0;.....0},s;) € L.

\~7Ve can for each j find at least 3c3p~%2 n-uples (d;l, cdf) € S1(pM?) x ... x
¥, (p'/?) such that writing le;l T 0',...,07,5;) = (0], -, 0%, s5), we have
(05,058 € Lif|s" — s < p*/?

Concatenation of the Qj, ..., and d]l, .., d}; give a family of words b;l, b in

Yi(p) x ... x X! (p) with at least 1c3p~7 elements.

Lemma 5.5. If c13 has been chosen sufficiently small, there are at least %c;;cfszp_%

n-uples (a',...,a") € 2 x ... x X2 which are good and which satisfy
2
-1
‘XT(}l...T;aL(El,...,'é"ﬁ) Lo
and such that at least Lesers p~4G=37) n-uples (¢j,---,C}) start with (a',...,a").

The proof is exactly as [5]. Let us call excellent those n-uples (a®,

by the last lemma. B _
For each (c',...,c") € ¥1(p'/?) x ... x X,(p'/?), there are points z(c!,...,c")

a") given

and Z(c',...,¢") in R¥ with distance at most c;5p"/? such that J< (c',...,¢c")
is contained in the closed ball B(c!,...,c") with center z(c!,...,c") and radius
cisp'/?" for all T*; and J(c',...,c") is contained in the closed ball B(c!,...,c")
with center Z(c', ..., ¢") and radius c¢i5p"/?". Then B'(c,...,c"), the ball with the
same center as B(c!,...,c") but with two times the radius, contains B(c!,...,c").

Let (a',...,a") be an excellent n-uple. Let Ji(a',...,a"™) be the union over the
n-uples (cj,. .., ¢}) start with (a',...,a") of the J(cj,...,c}). Cause (a',...,a")
is excellent, it follows from Remark 5.1 that

[Ji(a',....a")| > croersp®/?".
Let JQ*( ',...,a"™) be the union over the n-uples (cj, . .., cj ) start with (al,...,a")
of the J=~ ( -+, Cj). We note that |Je" ( e Cl) > 615p2 for all w*. Apply—
ing the Vltah covering lemma to the collectlon of balls B’ (7]-7 ..., c?) for those
(¢f,...,c}), we get
JE (@, a)| = Cre VT a)| = earerspt/

Similarly, for each ( iy, C}) (starting with (a', ..., a")), let J (gjl, ..,c}) be

the union of the J< (b} by, .-, bjp) for bﬂ, 0 startlng Wlth (¢ c?) There are

atleast503;)*‘1/2such(bjl,...,bﬂ),andTglj..-ngr(ﬁlwowen ) (9» ., 07,s5) €

L.
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Therefore, again using Remark 5.1, we conclude that

| ( )| > sl J® (e ,...,g?)|.
~1
(The argument is the same as that above: we first consider (€, ... Eﬂ ;) with
~1 ~n 2

d(0},8,),...,d(07,8}),|s; — 3, of order p/2, such that er o Y

Finally, let Jg (a',...,a") be the union over those (cjl7 o 7;9) starting with
(a',...,a") of the sets J1 (],...7g}1). Note that J (¢ ¢j,...,¢}) is subset of
Je (c ,---,C7). Applying the Vitali covering lemma to the collection of balls
B(cj, ..., c}) for those (¢],...,c}), we get

|J5 (Q PR 7Qn)| > 619613pk/2T

Let ¢ be the sum, over excellent n-uples (a',...,a"), of the characteristic func-
tions of J3 (at,...,a").

1

The number of excellent n-uples (a',...,a") is > %03cf52p_%, and therefore

d—k

/QSQ* 2 €19€3C15-2C13p %7 .
On the other hand, because excellent pairs are good, one has
¢ < cplpm @R/
We conclude that
m(¢% > ciap™ TR > epely == e
if ¢13 > 0 is small enough (recall that the support of ¢¥ is contained in [—cg, cg]¥)

Remark 5.6. If k = n—1 then, from m = m(m, dy,...,d,) > k we get dim(span {m(e;),i € I}) =
Eforall I C {1,...,n} with #] =k andsom=dy + ...+ d,.
This case is simpler. For instance E(0*,...,0") := Eo(*,...,8™), N = {cfgp’%}

and the definition of good n-uple just need the part (1). All arguments are the same
adapted to these changes.

6. PROOF OF THE PROPOSITION 4.1
We first recall the setting where u = (8',...,6", s,t) € L x R¥.
The set 00 (u) is the set of parameters (wy,...,w;) € Q1 X ... x Q. =: Q, such
~1 ~n ~ ~
that there exists u = (0 ,...,0 ,3,t) € L x R* with
d(0',0') < 20°2,...,d(8",8") < 20”2, |s — 3] < 2p, |t — 1] < 29,

and .
~ ~ ~n
tELg ...g(Qﬂ"'?Q?’é/)'

The set ﬁo(u) the set os parameters (wy,...,w,) € Q for which there exist
(b', ..., b") € X (p) X ... x X! (p) (with by = 63,...,b3 = 6) such that the image
o :Tg;l T ka’zﬁ T (u) = 0*,....0m s t)

satisfies: .
@",...,0"5)eLfor |5 —5|< 5p1/2
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el @ . ..0ms).

W

We have to prove that, provided ¢ is large enough,

(u) — Q" (w) < exp(—cap™)

where PP is normalized Lebesgue measure on (). ‘
Recall the decomposition of Subsection 2.5, associated to 8*,i =1,...,k:

P

Q; = [=1, +1]ZHE) x [—1, +1]%-SHE),
= Q’. Q’.’

w; = (wi,wy),

which only depends on #° through an endword in ¥;(p*/?"). We have set w! =

(0, w!) in Subsection 2.5, and Lgpw&k (0',...,0", s) actually only depend on w?, . .. W
(or wy,...,wy), not on wi,...,w.

Therefore, the property (wl, coWwy) € ﬁl(u) depends only on w/,...,w} (one
has X1(0°) = B1@) as d(0',0") < 2p5/2)

We will fix (w/,...,w!) € QW x...xQ =Q". Then either (w}, ..., w!) & Q' (u),

and then (9] x {w/}) x ... x () x {w{})NQ (u) is empty, or (wF,...,w;) € Q (u).
In this last case, we will prove that

P (0 =0 (w)) < exp(—cap™),
where
O =0 x...xQ,
—10 ’
Q (u)z{(gl,.. )EQ (wWh,wf,... wk,wk)EQ (u )}

and P5 is Lebesgue measure normalized on Q. The desired result will then follow
by Fubini’s theorem.

. , =1 .
From now on, (wf,...,w}) € Q" is fixed, with (wi,...,w}) € " (u). This means

1 o~ o~
that there exist 4 = (0 ,...,0 ,3,t) € £ x R¥ with

d(gl 5 ) < 2p5/2 . 7d(gn»én) < 2P5/2, |s - §| < 2P, |tL 7t~| < 2P,

and
~1 ~n
t € Lgl, ,wZ(Q 7"'7Q ag)'
By definition of L, < .. there exits n-uples (b oo 0), 1< j < N, in ¥ (p) x
X X! (p), compatlbles with 6%, ...,0", with N = [ ], such that, with

. * ~1 ~n o~ ~1 ~n __ o~
Uj ::Tél.. kaTfktiTgL(Q ,...,Q ,S,t):(Qj,...,Qj,Sj,tj),

we have:
(i) for i =1,...,k, the words b',...,b% are pairwise independent;
~ ~1 ~n ~ ~
(ii) for 1< j <N, and [3; — 55| < 2pY/2, (0;,...,0,,5,) € L;

(iii) for 1 < j < N, [£;] < 2cp.
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For 1 < j < N, consider

] Wy k1 n (pl n _(pl n
uj =Tt Ty, kak“ ..Tb;(Q yoes 008,) = (05, ..., 05,85, t5),
b] ot

bk
and more generally, for (w},...,w}) € Q, (Wi, ywy) = (Whwf, ... W, wi):
uj(wh, - wh) =T, ...kaTbkkﬂ ...T;;L(Ql, co, 0" st
=J
:(Q;,...,Hj,sj(wl,...,ggg),tj(g'l,...,g;v)).

Lemma. For 1 < j < N, and dall (&},...,w}) € O, 0;,...,0},5;) € Lif|s; —
sj(wh, ... wh)| < $p/2

Proof. By the equation (2.1) we have d(6} g, ) < cp™/? . d0) 5n) < ¢p™/?, for

LirZj YirZj
~ ~1 ~n
1 < j < N, then £ has the same fiber over (9 ;.--,07) and over (0;,...,0;). By
the relation (2.3) we have
~ ~ 1
[5) = 5jl < els — 5| +ep*? < Bep < 'V,
if p is small enough. Also, by Lemma 2.10.1:
1
[sj(h - wh) = s3] < cop! T < S pl 2,
The result follows by property (ii) above. O
Let (w),...,w}) € O, in view of the lemma above, if there exists 1 < j < N
with
ti(wh,. .., wy) € LSJI’ ’wk(Gl 078w W)
then (wf,... 7g;€) c0”.

Fori=1,....k; let a’ € %2~ be the endword of @' in X7 (C %;(p'/?")). Now,
for1 <j< N let a} be the beginning of a’ \/bl in ¥1(6") (We recall that 9’ € E ).

Because b}, ..., b’ are pairwise independent, the elements al, ..., al of Ell (6") are
distinct.

Let I'; = {ai,.. aN} we will denote by w! (1 < j < N) the coordinate of w/
corresponding to aj. Consider the deCOHlpOblthIl

Q= [-1,+1)7 x [-1, +1]=@)-T

~
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>~
and Pﬁl is Lebesgue measure normalized on ). By Fubini’s theorem, this will
imply our statement.

For &, € Q, set @; = ((0,&;),w”). For 1 < j < N, define
Lj:=L3" (0,...,0%,5;(@y,...,0))

Wyyeens Wy NI 1 =g
C‘hoose Ei € X, with d@i,Qi) < p?/27 such that the endword o' € 2?7 of 6 (and
El) does not appear elsewhere in 9. Consider

TS T“’kT:,;}...T@@l,...,ék,g’”l,...,Q",s,t)

b
1 bl _ _
z(Qj,...,HJ,HJJr s 0755wy W), G (W wh)-
Lemma 6.1. 1;(w),...,w,) depends only (for fized o, ... ,w}) on wi, ... wl.

Moreover, there exist ¢; > 0 such that
m {(w{, cnwl) € L 1R (W, wl) € Lj} > .

Lemma 6.2. Iffj(w{,...,wi) € Lj, then
(O, 07 55 ).

tj(g/la“w@;c)ELO y 95,8

Wy, Wy

=/ =0 , N
The two lemmas imply Proposition 4.1, since Pﬁ/(Q -0 )< (1 — 61—1) , and
we recall that N = [p’l].

Proof of the Lemma 6.1. In [5] it is proved that the endpoints of 12 (Q;) satisfied

ke Wy ( bz (0)) B Ok‘g ,UJ ( 0) +o.wjp1+l/2r)

o
K (2 (1) = By T 212, (1) + owlpHH1/%7),

where B; is the affine map (with the appropriate orlentatlon) sending I(a) onto
1(0) and 0 is such that 9 Val = 0 Neither B; nor ke 2 depends on w}. Note
that ¢ top < |9 k:9 i(fe b “(0)| < cop.

Then t; as a functlon of wi,...,w), only depends on w{, . ,wi. On the other
hand, we have |L;| > ¢11 by the Proposition 5.2, and L; C [~2cg, 2cg]*. So to end
the proof of the lemma, we have just to control ¢;(0) (independently of w/, ..., w}).
Let

w} k+1 n (7t 2k pk+1 n _ k+1 nogx g
Tbl_l..T"Tle...T;L(Q,...,Q,Q oo, 0" s t) = (9,...,@,9] ,...7HJ,J,j)

We have just seen that in fact #;(0) = ¢;. On the other hand,
* ~1 ~n __ ~ ~1 ~n __ ~
T; T kT;t}...TgL(Q o050 =(0,,...,0;,5;,1;),

~1 ~k ~k+1 ~n

with d(81,8') < 3p°/2,...,d(6",8") < 3p7/2, d(6*1,8" ') < 20%/2,. .., d(6™, 0
20°/2, |s — 3] < 2p, |t —t| < 2p and |t;| < 2cg.

Then [t} — t;| < ¢/, which implies [£;(0)] < 2cg +¢'. O

) <
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Proof of the Lemma 6.2. By definitions of Léllék (Q}, ooy 0%, 55(@q, .-, @) and

LY .o, (0,...,07,s;(w},...,w})), is sufficient to show that for all (c',...,c") €

Zh(p) x ... x X (p), if

TV TSR TR0}, 00 5@ @) E (. w])) = (070 FL )
and

Tgl(j) .. .T;’“(j)Tgk;ﬂ .. .T;L(Q;, . ,Q?,sj(gl, ceowp), bW, wy)) = @, ..., ¢t

(where &;(j) (resp. w;(j)) is obtained from &, (vesp. w;) by setting the coordinates
in ¥} (65) equal to 0), then
1
I < —pl/2

|s" =51 < 5077

[t — 7| < cg.
The first inequality is easy: by Lemma 2.10.1, we have

|5j(glla s 7Q;c) - Sj(gla s ’Qk)l < Ca_pl—l/Qr

and applying a second time the same estimate from this lemma (to compare Tgl @ Tg%c(j)
and T 15 9)) will give

|SI _ :9\/| < Ca_pl—l/Qr

which is < 1172/01/2 for small enough p.

To prove the second inequality, we first compare ¢; (w{7 o ,wi) and t;(w),...,w}).
As d(0,8") < pP/2, by (2.3) we have
[#5(@, - ywh) =t wh)] < ep®2
We next prove the
Claim. |j(@y,...,@)) — s; (W), ..., wh)| < cop' /2,

Proof. As d(6',8') < p°/2, by (2.3) we have

|85 (@1, .-+, @g) — 55(@y, ..., Wy)| < Cp5/2a
‘Sjﬂllv s 7Q;c) - gj(gllv s 7Q;€)| < Cp5/2.
Now we compare 5;(@,...,w;),5;(w],...,w}). The endpoints of 7 (Q;) are

K (£2(0)) = Buo K (£, (0) + owl pt+1/%0)

NI
b5 yvgj

KD (fi (1) = By KD 24 (f2,,, (1) + 0wl p+1/27),

a*Vvb;

As k% @i are C2—bounded, we obtain |I§i@i (Q;',)H[Ei@ (b;ﬂ)‘fl — 1| < Captti/er
(a reinforcement of Lemma 2.10.1) then
|§j(glv cee 7@k) - g](glh e ’g;c” < Co—pl“'l/zr7
proving the claim. 0
Finally, let

T TS TR T 0], 07 s wh) (s wh)) = (00T,
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Lemma 6.3. |t — t~’| < cop'/?r.

The lemma is proved bellow. Using it, we finish the proof of Lemma 6.2. Because
(Wi, wp) = (@, wh)| < ep®? and [s(@g, -, @) = 8w, wh)] <
cop't1/27 we have

' = 7| < cop/?,
and therefore
4 —?\ < cop'/? <1+R,

for p small enough, as was required. (Il
Proof of the Lemma 6.53. Notice that

¥ =7 < ep™! max k%0 (120 0)) - k52D (20 0))].

We replace Q;- by E;, as now d(Q;,E;) < ¢p™/?, we have

(k25w ) (726D )y — k) (7240 (0))] < ¢p™/2,
and
68520 (210 (0)) — 15 3:0) (£2:0) (0] < ¢p7/2.
Finally, in [5] it is proved that k%0)(£2)(0)) do not depend on w!,1 # j, and
that the dependence on w] satisfies
Rl e ()
ow!

3

1+1/2r

< cop

Therefore |k§§ ’ﬂ'i(j)(fgj"(j)(O)) yy ’Q'i(j)(fg%"'(j)(O))| < cop™/?" which guarantees
the estimate of the lemma. O

7. PROOF OF THE MULTIDIMENSIONAL SCALE RECURRENCE LEMMA

7.1. A General setting. We consider a finite alphabet A and a finite set Z with
a maps

a:Z — A w:Z—A
A= a()) A= w(N).
Define
N} =#{\ € Z,a() =i,w()) =},
Ni=#{A€ Z,a(X) =i},
pl = N;7'N.
The stochastic matrix (p?) has a left eigenvector (p*);c 4 satisfying

Zpipfzpj, Zpi:L p'>0.

Remark 7.1. f0 < ¢ < p] < ¢, then ¢ < p' < ¢.
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Now, if we set

N {o if w(A) # a(N)

Dy = _ .
A Na(lx) if w(A)

p/\ = N;(&)pa()\) )

then (p;\\/) is again a stochastic matrix with left eigenvector (p*). Indeed we have
(with M € A, a(N) = j)

AN —1,ip7—1

AT 7 7
Epp E E N, "p*N;
A

i A a(N)=iw(A)=j}
For z = (2))xez € CZ, define
1217 =D p
A
Remark 7.2. If z = (2x)aez, w = (wx)rez are satisfying

lwal <> P |l
A/
then, using Cauchy-Schwarz inequality
2 ' ’ 2 ' 2
lwAl* <Y o3 D n P =D m e[
Y Y Y
and therefore
2 2 ' 2
loll* ="M fwal* <D 03 [z ]
A AN
’ 2 2
=Y oV v =lzI”
A/

Suppose we have a family (ai/) of vectors of R™. By Remark 7.2, for £ € R",
the linear operator w = Ug(z) defined by

e, X\
wx = E pi\\ ez§ A 2N
)\/

acting on (CZ, ||.||) with norm < 1.

Assumption 7.3. There is 0 < kg < 1 such that the operator U has norm ||Ug|| <
Ko, for any £ € R™ with 1 < [¢] < p~t.

Proposition 7.4. Under Assumption 7.3, there exist 0 < k1 < 1,6 > 0,0 < 7 <
1, depending only on ko such that, for all family (Ex)xez of bounded measurable
subsets of R™, with measure |Ey| < &, we have

STPME < m Y p B

where EY = {x,# {)\’,a()\/) =w(A),B,(xz) C Ex — aﬁl} > TNW()\)},



Proof. For A € Z, let:

X/\ =XE\>
1 ,
Yi(z) = Xz +a}),
T

a(A)=w(X)
1

= Y)\(SU + y)dy
2npn /('_p7p)n

Note that EY C {z, Zx(z) > 7}
Claim. Existe 0 < k3 < 1 depending only on kg such that

2 2
S pMZAT <k D> pMXlL = k2 > P M EA|.
A A A
Proof of the Claim. By Plancherel theorem, it’s equivalent to
> M2 <2 Y pMXA 7
A A
considering the normalize Fourier transform as

X\(6) = / ) e 8T X, (2)da.

Zx\(z)

Note that
~ 1 Y -~
V() = > XN
W) L vy—
a(N)=w(A)
1o\ =
=3 e X009,
A/
and

5 sinpf1  sinpé, &
Zx(&) = Y\ (§).
© pé1 Pen ©
We estimated Zp)‘|2>\(§)|2 in various ways, depending on &:
a) If [¢| <1, we use

1Z(€)] < [Ya(©)] < ZPA X2 () < Y By
AI

to get, by Remark 7.2 and |E,)| = |X>\\iz = (27r)_”|)?>\|%2
PN AN <Zp |El* < e(2m)” ZP X7z
A

b) If 1 < €] < p~1, we use the Assumption 7.3 in

1Z3(0)] < (O] = (Ue(X))

A

STPMZAO < w3 XA
A

A

to get

29
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¢) T [€l,, > p, we have |Zx(€)] < rs|Va(€)], where

sint

K3 = max "

t>1 ’

hence, by ||Ue|| <1
Y P2 <55 ) _PXNOP
A A
Putting these estimates together gives
/ ST ZA©O de < e S RafZe + [max(eo, o)) / SRR de,
A A A

or
E P23 < ko E PN X3,
X X

with ko = [max(kog, k3)]? + 7 "e. If € is small enough, k2 < 1, wish concludes the
proof of the claim. O

To finish the proof of proposition, note

1 K
§ A § A 2 § A
p |E3k\| < 72 p |Z)\|%2 < 72 p |E/\|7
A A A

1
and put K1 =7 =K. O

Remark 7.5. The main point of the proposition is that 7,e,k; depend neither on
the p nor on the E\ nor on the a} or the combinatorics.

We denote by V5(E) the d-neighborhood of a subset £ C (R™,|.|«) (i-e. the set
of points at distance < § from E)

Corollary 7.6. Under Assumption 7.3, there exist 0 < kg < 1,69 > 0,0 < 7 < 1,
depending only on ko, and there exist A > 0, depending only on Ay, kg such that,
for all family (Ex)xez of bounded measurable subsets of R", with |Va,(Ex)| < €o,
we have

S P Van(Ba)l < k1 39 [Vap (B
A A

where By = {x,# {)\',a()\’) =w(\), Ba,,(x) N (Ex — a}') # (Z)} > TNW()\)}.

Proof. We first observe that, for any bounded subset E,

Ay +1\"
) W)

Viara,+1,(B)| < (1 +

On the other hand, if we consider the new family F := Viata,+1)p(Ex), then
VAp(E)\) C Ei
We thus take A large enough to have

A +1\" A +1\ "
Ii4:=(1+ 1A+ ) K1 <1, 50::<1—|— 1+ ) g,

A
and apply the Proposition 7.4 to the family E. (]
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Corollary 7.7. Under Assumption 7.3, and assuming Nij =. #7Z, there exist
0 < kg < 1,A > 0 as above, and e1 > 0,0 < 71 < 1, depending only on
Ko, ¢, #A, such that, for all family (Ex)xez of bounded measurable subsets of R™,
with Y-\ p* [Vap(E))| < &1, we have

S P Van(Ba)l < k1 39 [Vap (B
A A

where By = {z,# {)\’,a()\’) = w(\), Ba,p(x) N (Ex —a})) # (Z)} > Tle()\)}.

Proof. Note that N; <o #7, p <o #2771 for ¢ = c#A, " = (/)% Let o, 7
from Corollary 7.6 and take €1 small enough to have 7 := 7 + ¢/¢’e1/eg < 1.
Suppose Y, p* |[Va,(Ey)| < e1. Defining A := {\, |Va,(E))| > o} we have

YA < ' DLuz.
€0

Now consider the new family Ff := E if A € A, and E} = () otherwise, then
./E\)\ C E{\
The result follow applying Corollary 7.6 to the family (E})x. O
7.2. Setting of the Multidimensional Scale Recurrence Lemma. Recall that
Yi(p) is the set of words a' in ¥; such that
oo < |I(a")| < cop
and that
Jr=[-R,—R'|U[R"',R].
We define
To = {(a(gl,gn), cone(@™ ™t a™), (ab .. a") e Ti(p) x ... x En(p)} .

If ¢ is large enough, Zj is a subgroup of the multiplicative group Z = {—1, —|—1}n71
with multiplication w * v = (ujv1,...,up—10p—1) for u = (u1,...,up—1), v
(’Ul, . 7vn—1) e R 1,
In relation to the abstract setting, we set
A=A x...x A, xTy

Z:El(p) X ... X En(p) XI().

The maps @ : Z — A, w : Z — A are defined as follows: for (al,...,a") €
S1(p) X ... x Zp(p), u=(u1,...,un-1) € Zo,
a(Qla s 7Qn7u) = (aéa .. _’ag’ulg(gl7gn)’ s 7un_1€(gn—17gn))
w(glv"'vgnvu) = (alllw"va?n?u)v
where a},...,al are the first letters of a!,...,a", and alll,...,afn are the last
letters.

It follows from the hypothesis that ¥1,...,3, are topologically mixing, that if
co has been chosen large enough, for all 4,7 € A,

¢l < N] <ep?,

where d = d; + ...+ d,,. Hence, p* and pﬁl have order p?.
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Finally, we define the family of translations (a)\ Ja(\)=w(r)- To do this, we

choose, for each a’ € ¥;(p) an element 9 e, ending with a’. Then, if A =
(a',...,a" u) N = (b*,...,b", v) satisfy a(N) = w(\), we set

! 1 "oan n=loan— "oan
@)’ = (log |12 (b")| — log [1"(4")] ..., log [12"" (b"~")| — log | 12" (1)) .

Lemma 7.8. The hypothesis of the Multidimensional Scale Recurrence Lemma
implies that the Assumption 7.3 holds, namely there exist 0 < kg < 1 such that for
1< (€], < p! the operator w = Ug(z) defined by

N oiga)
wx = E Dy e 2
A/

has norm < Kg.

Proof. Let ny < 1. Suppose there are 1 < [¢| < p~! and z € CZ such that, with

w = Ue(2):
L= z)* =Y paal,
2
1= < Jull® = 3 phun 2

As [5],[6], we conclude that there are ny = m1(10) < 1, 75 < 1 and Z C Z with

#(Z — Z) < g p~? such that: for all A, X € Z with w(X) = w(X), there exist ® € R
such that

1 / /
sin(2§-(a§ —a§)+®>‘<n5

for all A" with a()\) = w()\) but at most 75p~¢ elements.

We pick i € {1,...,n — 1} such that |§;| = \§|Oo To derive a contradiction with
the Property 2.6 for K;, we choose A = (a',. u), A = (7 ,a",u) in Z
with @’ = aj if j # 4, such that the choosing QZ endmg with a* is in V; and the

choosing § ending with @ is in V;. In particular w(A) = w(A). Finally, note that

for N = (b*,...,b",v) we have
7 ()
i 1 1ol
sm( &ilog I‘g’(b) >|

/1 .
s1n<2§-(a§ —a%)—k(b)‘:

(I

We set Z = 21( )X ... X in(p) x Ty, and for X' € Z we extended the definitions

of a(\') and (a3 >a(>\’ )—w(x) Daturally. We call A = @,...,a",u) € Z an extension
of \=(a',...,a" u) € Z if @' ends with o’, fori =1,...,n, and ¥ = u.

Now we will use the notations from Corollary 7.7. Denote r = log R. Given a

family (E()))x of subset of [—r,7]"~!, we define E()) as the set of & € [—r,r]"~1
such that

# {/\’ with extension X, a(X) = w(\), B, p(x + ai/) C [=r, )"t = E(/\/)}

~

is less than (1 — 71)Ny(n)- (E()) are a version -with boundary- of the E()).)
Fixed k5 such that k4 < k5 < 1.
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Lemma 7.9. There exist co,r, ¢y conveniently large, such that, for any sufficiently
small p, and 3, p* |Vap(E(N))| < &1, we have

S P Van B < 5 32 p* Va, (B
A A

Proof. Notice that |a§/\ < 2logeco, YA, N € Z with a(N) = w(N), where ¢ > 0 is
such that ¢=* < |DE2'| < cfor all ' € 7, i =1,...,n. Then we will have

~

E\) N [=r+2logcco + Arp,r — 2logccy — Agp]" ' € E(N).

We will assume Ajp < %logcco,Ap < %log ccg. We put R = 10Llogccy for
some L large to be determined. We can find a cube D in [—7,7]"~1 of side 91og cco,
such that

1
DoP M Vap(BO) N D) < o D0 Va(BO)I-
A A
The set [—r,r]" " — [—r+ 3 log cco, 7 — 2 log cco, |" 1 is union of (4L)"~* — (4L —
2)"~! cubes of side %log cco. Let B any of this cubes (with center zp) and let
A= (a',...,a" u) € Z, then there are positive periodic words ¢! € ¥1,...,c" € ¥,
starting with a', ..., a", respectively, such that, for t = (log |I(c!)|—log |I(c™)|,...,log [I(c"~1)|—

log |I(c™)|), x5+t belongs to the cube D of the same centers as D and side log ccy.
Now, if X' = (b',...,b",v) € Z with a(X) = w(\), then X = (' Vb, ..., " VD", v)
is a extension of A with a()\) = w(X); and for any y € B, applying (2.1), we have

ly+a} — (@p +)| <ly—zp|+a} |+ o} —a} —1]

5
< 1 log ccy + 2logcco + ¢

IN

3 log ccy,

therefore Ba,,(y + ai/) € D. This mean that E(\) N B is contained in

{x, 4 {A’, a(N) = w(A),z € Va, ,(E(X) N D) — ai/} > Tle(A)} ,

~
N

hence VAp(E()\) NB)C {EA’ENW(A) XV(A+A1)p(E()\/)ﬁD)_a§/ > Tle(,\)}, to get

Va(EQA) N B)| < —

/ N
" Noty Z Viasan,(E(N) N D) —ay
)\/ENW(A)

1 Al n—1 ,
S+ R) SmaEnn)

T1

IN

therefore 37, [Va,(E(A) N B)| < 2(7 L 1)1, p* [Va,(E(V))], for A > A,

ribr i T

Finally, take L large enough to have k4 + 2

7.3. The proof. We are given a family E(a?, ..., a") of subset of Ji !, for (a',...,a") €
$1(p) X ... x B, (p). Fixed w € Z. Define, for each A = (a',...,a" u) € Z

F(A) =F,(\) = {(z1,...,2p1),uxw= (e™, ..., e" 1) € B(d',...,a")},
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which is a subset of [—r,7]""1. To say that all Jp~' — E(a,...,a") have small
measure amounts is to say all [—r,r] — F(A), A € Z, have small measure:
H—r, vt — F()\)‘ <e.
For \ € Z, we set
Eo(N) = [=r,7]" 1 = Va,(F(V)-
Starting from Ej, we define for k > 0 sets Ej(\) in the following way; if F())

has already been defined, we then set Fjy1(\) = Eo(A\) U EL(N).
It is clear, by induction, that for each A € Z, (Ex(X\))k>0 is a sequence of
increasing open subsets of [—r,7]"~!. On the other hand, by Lemma 7.9, we have

D P Vap(Err V) < 55 ) 0 Vas(Er(N)] + max [Va,(Eo(A))],

and therefore
1
D2 Vap(BeW)| < 5 max[Vay (Eo (V)] ¥k > 0

whenever maxy [Va,(Eo(A))| be sufficiently small. However, Va,(Eo())) is con-
tained in [—r — Ap,r + Ap] — F()\) and therefore its measure is less than 2"~ *(n —
1)Ap(r + Ap)"~2 + 2.
Defining Eoo(A) = U5 Ek(N), we set
F*(\) = Fy(\) = [-r.r]" " = Ex(N).
By construction of F*(\), if x € F*()), then

# {)\’ with extension X', a(X') = w(A), Ba, p(z + a§,) C F*()\')} > (1= 71)Ny(n)-
Now we come back to Jp~ !, setting, for (a',...,a") € £1(p) x ... x T, (p),
E*(Qla"'agn): |_| |_| {U*w*(eml,.,,,ez7L71),(§C1,,,.7xn_l)GF;Z(Ql,,.,,Qn,’U,)}.
[w]€Z /Ty u€Zo

Firstly, E*(a',...,a") are compact subsets of Jgfl. We put ¢; := ¢~ (=1,
The part (i) of the Lemma follows from

F*(\) C [=r, 7"t — Eg € Va,(F(NV)),

taking for instant co := 2AR, assuming p sufficiently small.
For (al,...,a") € X1(p) x ... x B, (p), we have

TRt = Efd . ah) < Y S =t = Fadh e ).
[w]€Z/To u€Lo
As p* have orders p?, then

oo lpT=E @ e <

(al,...,.am)

#(Z/Zo)

(2" (n=1)Ap(r+Ap)"2+e1)p~ 7,
1-— R5

and the part (ii) follows for p and ¢, sufficiently small.

By the relation (2.3), there exits C > 0 such that if A\ = (a!,...,a", u) € Z,
N = @1,...:@%,1}) € Z satisfy a(X/) =w()\) and any 0! € X7,...,0" € ¥ ending
with a',...,a" respectively, then

~1 ~n ~n—1
b

1 n n—1 n ~n 3
[(10g 12/ @) — tog |12 @) log |12 " )| ~log 1" 5")]) — o} | < Cp.
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The property (iii) follows with c3 small enough to have c3p~¢

with Ay > R+ C.

< (1 — Tl)Nw()\), and

8. THE MARSTRAND-KAUFMAN’S TYPE THEOREM

Let p be a finite Borel measure on R*. The s-energy of u is

0= [

and the Fourier transform of p is denoted by i and defined as
i) = [ e duta),

Is well known that if y is compactly supported and 71 € L?(R¥), then p is absolutely
continuous with respect to k-dimensional Lebesgue measure, with L2-density y

e _k o~
satisfying X2 = (2)~% | 2.
Energy and Fourier transform are related as follow (see [3], Lemma 12.12)

L(w) = (2m) (s, k) /ms Flage) 2 de,

for 0 < s < k and p with compact support.

Definition 8.1. For 7 : R® — RF a surjective linear map and d, ..., d, nonnega-
tive real numbers, we define m = m(w,dy,...,d,) as

m= min{Zdi + dim (span{ﬂ(ei),i c [C}>7I c{l,...,n}, I # (/)} ,
iel
with the convention dim () = 0, where eq,...e, is the canonical basis of R™.

For every ¢ = (z1,...,z,) € R", t = (t1,...,t,) € R™, define Di(x) =
(tlxl,...,tn$n)~

Theorem 8.2. Letw and dy, ..., d, be as in definition 8.1 withm = m(w,dy,...,d,) #
0,1,...,k — 1. Then, there exist d} < dy,...,d), < d, such that for every finite
Borel measures fi1,...,pin on R, denoting ps = (70 D(s1y)«(p1 X ... X pip) for

s € R* 1, we have

/R . /R €™ P e deds < Oy (1) - Lar, (11n)

where Cy, > 0 is some constant depending only on w,n,k and m.

Proof. We denote vy = (70 D). (1 X ... X pp). In [2] we proof that
ko~ 12
/]R /]Rk €™ * |5(6) P e 21 dedt < Cunly (1) - - Tar (p0n)-
Finally, notice that

Lt iar e aga = [ [ et R et e et magasr
n R R’V‘L*l R

hence [, 1 fon €™ [(6) P eI deds < (1+v2)er ™ [r|™ 1" Cru gy (111) - . Lay (10n)
for some r € [1,/2]. O
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A GENERALIZATION OF MARSTRAND’S THEOREM FOR
PROJECTIONS OF CARTESIAN PRODUCTS

JORGE ERICK LOPEZ AND CARLOS GUSTAVO MOREIRA

ABSTRACT. We prove the following variant of Marstrand’s theorem about pro-
jections of cartesian products of sets:

Let K1,..., Ky Borel subsets of R™1, ... R™n respectively, and 7 : R™! x
... x Rmn — R¥ be a surjective linear map. We set

m := min {ZdimH(Ki) + dimw(@ R™i), I CA{1,...,n},I# @} .
iel i€le

Consider the space Ay, = {(t,0),t € R,O € SO(m)} with the natural measure
and set A = Ay X... X Ap,. For every A = (1,01, ...,tn,On) € A and every
z=(z',...,2") € RM x...xR™" we define 7y (z) = m(t101z", ..., tnOna™).
Then we have
Theorem. (i) If m > k, then mx(K1 X ... x Kyn) has positive k-dimensional
Lebesgue measure for almost every X\ € A.

(i) If m < k and dimg (K1 X ... X Kyp) = dimg (K1) + ... + dimg (Kn),
then dimpg (7 (K1 X ... X Kyn)) =m for almost every A € A.

1. INTRODUCTION

The behavior of dimensions of projections of subsets of euclidean spaces has been
studied for decades.

Let us denote by dimg(X) the Hausdorff dimension of the set X. For n and
k integers with 0 < k < n, G(n,k) denotes the Grassmann manifold of all k-
dimensional subspaces of R™, with the natural measure. For V € G(n,k), Py :
R™ — V is the orthogonal projection onto V. The following is a fundamental result
on dimensions of projections:

Theorem (Marstrand-Kaufman-Mattila). Let E C R™ a Borel set. Then:

(i) If dimy (E) > k, then Py (E) has positive k-dimensional Lebesgue measure
for almost every V € Gr(n, k).

(i) If dimgy(E) < k, then dimy(Py(FE)) = dimg(E) for almost every V €
Gr(n, k).

This theorem was first proven by Marstrand [3] in 1954 for planar sets. Marstrand’s
proof used geometric methods. Later, Kaufman [2] gave an alternative proof of the
same result using potential-theoretic methods. Finally, Mattila [4] generalized it to
higher dimensions; his proof combined the methods of Marstrand and Kaufman.

There are other variants of the Marstrand-Mattila’s theorem. They were unified
in a more general result due to Peres and Schlag [7]. They studied general smooth
families of projections, using some methods from harmonic analysis. The crucial
characteristic that is common to all families of projections considered in Peres-
Schlag’s result is a transversality property (see [7], Definition 7.2).

1
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We are interested in a Marstrand’s projection result that actually is outside of
the Peres-Schlag’s scheme (the families of projections considered here, in general,
are not transversal). This result was motivated by the problem of understanding
the behavior of projections of cartesian products of sets product of sets, by a fixed
projection map.

Let K3, ..., K, Borel subsets of R™! ... R™" respectively, and 7 : R™ x ... X
R™~ — R* be a linear map. Then

(1.1)
dimpy (7(K1x...xK,)) < min {ZdimH(Ki) —|—dimﬂ'(@ R™), I C{1,... ,n}} ,

i€l iele

with the conventions ), , dimy (K;) = 0,dim () = 0.
Consider the space A, = {(t,0),t € R,0 € SO(m)} with the natural measure
and set A = Ay, X ... x Ay, . Forevery x = (z%,...,2") € R™ x ... x R™=»

and every A\ = (t1,01,...,t,,0,) € A we define m\(z) = 7(t1012,...,t,0,2™).
Suppose that 7 is surjective and set

m:= min{ZdimH(Ki) +dimr(@R™), 1 {1,...,n}, T # (z)} .

iel iele
Then we have

Theorem 1.1. (i) If m > k, then mx(Ky x ... x K,,) has positive k-dimensional
Lebesgue measure for almost every A € A.

(i) If m < k and dimgy (K; X ... x Kp,) = dimg (K1) + ... + dimg (K,), then
dimg (m\ (K1 X ... x Kp)) =m for almost every A € A.

In a work in progress, we plan use the Theorem to generalize the result
of Moreira and Yoccoz [6] about stable intersections of two regular Cantor sets for
projections of cartesian products of several regular Cantor sets. Our goal is to prove
the following result: for any given surjective linear map 7 : R™ — R*_ typically for
regular Cantor sets on the real line K7, ..., K, with m > k, the set 7(K7 x...x K,,)
persistently contains non-empty open sets of R¥. Such a result would in particular
imply an analogous result for simultaneous stable intersections of several regular
Cantor sets on the real line.

In another work in progress, in collaboration with Pablo Shmerkin, we plan to
use the results of this paper combined with the techniques in [I] in order to obtain
exact formulas for the Hausdorff dimensions of projections of cartesian products of
(real or complex) regular Cantor sets under explicit irrationality conditions.

Acknowledgement: We are grateful to P. Shmerkin for the useful discussions
about the subject of this work.

2. STATEMENT THE MAIN RESULTS
Let u be a finite Borel measure on R™. The s-energy of u is

L) = / / dp(@)dp(y)

|z —yl®
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We know (see [B], Theorem 8.9(3)) that for a Borel set K C R™

(2.1) dimpy(K) = sup{s € R, there is a compactly supported measure pu on K
which 0 < p(R™) < 0o and I(u) < oo}
The Fourier transform of p is denoted by i and defined as

i) = [ e dula),

It is well-know that if i € L?(R™), then p is absolutely continuous with L2-density.
Energy and Fourier transform are related as follow (see [5], Lemma 12.12)

L(s) = (2m)"™e(s,m) / € A de,

for 0 < s < m and p with compact support.

We summarize the above observations as the following result:

Let F C R¥ a Borel set supporting a probability measure v with [ [€]*7* [9()[* d¢ <
oo. If s > k, then F has positive k-dimensional Lebesgue measure. Otherwise, if
0 < s <k, then dimg (F) > s.

Let 7 : R™ x ... x R™ — R* be a linear map. For each I C {1,...,n},
let Pr:R™ x ... xR™ — R™ x ...x R™ the orthogonal projection onto the
subspace P, ; R™, where R™: is as a canonical subspace of R™* x...xR"™». Then
m=mo Pr+mo Pre so, for Ky,..., K, Borel subsets of R™* ... R™" respectively
we have

dimpg (7(Kq1 X ... X Kp))
< dimy (WPI(Kl XX Kn) X TP (K X ... X Kn))

< dimy (WPI(Kl X ox Ky) x (@D Rmi))
iele
<) dimpy(K;) + dimm(EHR™).
el iele

(In the last inequality, we assume that dimg (K7 x ... x K,;) =dimgy (K1) +... +
dimg (K,,)) This prove the inequality (II]) and also motivates us to define:

Definition 2.1. For 7 : R™ x ... x R™» — RF a surjective linear map and
dy,...,d, nonnegative real numbers, we define m = m(m,dy,...,d,) as
m= min{Zdi —I—dimﬂ'(@[@mi),l c{l,...,n}, I # (Z)}.
il i€le

Remark 2.2. If in addition d; < m; (which holds for dimensions of subsets of R ),
then, for the open and total measure family of linear maps 7w with the following
transversality property:

dimw(@ R"™) = min (k, dim(@ R™)), forall I C {1,...,n},
iel iel
the equivalence m(w, dy,...,d,) > k< di+...+d, > k holds. However, in general

we must check more than one of the 2" — 1 conditions appearing in the definition
of m.
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Consider the space A, = {(t,0),t € R,O0 € SO(m)}, with the product measure
L' x O™ where L denotes the one dimensional Lebesgue measure and ©™ denotes
the left-right invariant Haar probability measure on SO(m). Notice that the set
C(m) = {tO,t € R,0 € SO(m)} represents essentially the family of linear confor-

mal maps on R™. C(2) = { ( Z _ab ) ,a,b € R}, which can be viewed as the set
of multiplications by a complex number.
We set A = A,y X ... X Ay, . Forevery z = (x!,...,2") € R™ x...x R™" and

every A = (t1,01,...,tn, 0p) € A we define 7y (z) = n(t;012%, ... ,t,0,2™). Also,
given any finite measure p on R™! x ... x R™» let vy = (m))«pu. We also define

iy o // z)dp(y)
o |zt — y|1 o =y

Our main result is now the following:

Theorem 2.3. Letw and dy, ..., d, be as in definition[Z withm = m(w,dy, ..., d,) #
0,1,...,k — 1. Then, there exist di < di,...,d,, < d, such that for every Borel
measure p on R™ x ... x R™" we have

1€ O o0 dsdr < Coli..., 1),

where p(A) = [t1|™ 1. |tn | tem 2P+ Htl®) gnd Cp > 0 is some constant
depending only on w,n,k,m1,...,my, and m.

In the proof of Theorem the key tool will be the following combinatorial
lemma.

Lemma 2.4 (Weights Lemma). Let s,dy,...,d, > 0 and Vi,...,V, vector sub-
spaces of a same finite dimension vector space satisfying the following 2™ conditions

Zdi—l—dim(ZVi) > s, forevery I C{1,...,n}
il icle
(with the conventions ), yd; =0, dim() =0).
Fized a generating set {vi,... v}, } of V; for each i € {1,...,n}. Consider the
family J of all possible J = (31,...,3n), Ji C {vi, .. .,vfm} such that J; U ...UJ,
is a linearly independent system with dimension greater than or equal to s. Define

T= {(J,z') CTx {1, .0}, ) = (F1, o #I0) 4+ (5 — (F01 4o+ F30))es 20},

where eq,...,e, 1s the canonical basis of R™ and > means that the inequality is
coordinate to coordinate.
Then, there exist non-negative real numbers (Oé(,])i))((]i)ej with sum equal to 1

such that R

(Ji)el
Proof of Theorem[Il. The theorem follows immediately from the Theorem 2.3
applied to 4 = p1 X ... X pu, for suitable measures p; compactly supported in

K; coming from the equation (2I). Noting that in the part (i), the condition
dimpgy (Kq) > 0,...,dimg(K,) > 0 follows from the hypotheses; and in the part
(ii), we may assume the same condition by reduction to some cartesian product if
necessary. (I
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Remark 2.5. We can derive the part (ii) of the Theorem [[I] from the part (i).
Assume dimg (K;) > 0. Let £’ <m <k’ +1 <k and consider any k¥’ < s < m, and
set A* = {\ € A, dimgy(mx(K71 x ... x K,,)) < s}. The idea is to add another factor
to the cartesian product: Let mg := k — k’ and consider K a sufficiently regular
subset of R™ with dimg (Ko) = k — s, and 7 : R™0 x R™ x ... x R™ — R* with

7o Prn =m, where I" ={1,...,n},

dim 7 ( @ R™)) =min (k, mo + dimw(@ R™)), for all I C {1,...,n}.
ie1u{0} i€l

In particular 7 is surjective. Notice that

> dimp (K;) + dim 7 (@D R™) > k, for all T € {0,1,...,n},1# 0,
iel iele
and also that dim g (7(x, ) (K1 X ... x Ky)) < k for all (A, A) € Ay X A%, Applying

the Theorem [Tl (i) in this new setting, we conclude that A® is a zero measure subset
of A.

Remark 2.6. Theorem [2.3] when combined with Proposition 7.5 of [7], also gives
us a result on exceptional sets:
In the setting of the Theorem [IT], part (i), we have

dimg ({N€ At #0 if my > 1,LF(ma (K1 x ... x K,,)) =0}) <1+ k—m,
where | = dimA,,, X ... X Ay, =n+ > mi(m; —1)/2.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem[Z.3. Notice that
P = [ [0 au@auty),

://em%(wl(yl_ml)""’t"o"(yn_mn))du(:v)du(y),

and that, for all z € R™, n € R™,

// ein-tOz|t|m71€7%\t|2d®mdt:// ei|z|77't‘9|t|m*167%‘t‘2d0m*1dt
R JSO(m) RJgm-1
= 2/ ellznze—3lel® go

m 1 2
_ = o —5(]z
_ 9% = dzlnD?,

where 0™~ ! denotes the normalized Lebesgue measure on S™~!. Therefore by
Fubini’s theorem

[ e mer? pvdean

A JRE

— lim RSO p(N)dAd
/W/Am TR(6) 2 p(\)dAde

= ¢ lim. / / ( /|g|< |§|“‘"“e%DI’v<5>'2d§> dp(z)dp(y)
e [ [ ([ 16t et oF ac ) dutorauto)
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where D, , = (D1(|y1 - 3:1}), DMyt — x"|)) on”, and Di(t) : R™: — R™ is
the diagonal transformation, D*(t) = t.Id, for t € R.

We fixed z,y assuming that y° — 2 # 0 for all i = 1,...,n. We estimate
S €™ e~ 31P=0 (1" g¢ separately, when m > k and m < k. In both case we
apply the Lemma 24 for V; = 7(R™¢), taking v = 7r(e ), where ej, ji=1,...,m;
is the canonical basis of R™ as subspace of le X ... X R™n,

We use the notation 2! = (zi',... 2%) if 2z = (zl,...,zn) € R} and I =

(i1,...,in) € N" for z = (Jy* —at|,....|y" —2"]).

Suppose m > k. Let ip such that z;, < z; for all ¢ = 1,...,n. Notice that
m(m,d — (m — k)e;,) > k and in particular d — (m — k)e;, > 0. We apply the
Lemma 24 to d — (m — k)e;, and s = k. For each J € J, just looking for the
sums in 3 |D,.,(€)]? related to J and using the change of variables formula to an
appropriated linear isomorphs of R*, we have

2 T 2
/ €™ F ez Pew O ge < ¢ pEmmy =T / | ke 21y,
RF RF

for some constant ¢/ > 0 depending only on 7w and m— k&, where J = (#31,. .., #In).
Therefore
/ |€|m k 7_\Dzy ‘d§<C”Zk mH 7a]]70//zf(ZJa,J+(m k)em)zc//zfd’.
Rk
Jel

Suppose k' —1 <m < k', where 1 < k" < k. We apply the Lemma 2.4 to d and
s=m. Let (J,i) € J with #31 + ...+ #J, = k. From m < k¥’ we have J; # (. In
the same way as in the previous case, notice that

/k ™R e3P OF ge < & —J/ / (112 + 1" D)™ " =517 Pyt an”,
R
for some constant ¢ > 0 depending only on 7 and m — k. We affirm that
/ v / (I 1/ + I )™ e 2 P < @2,
R

for some constant ¢ > 0 depending only on m, k, k’. If ¥’ = k the affirmation is
true, since m — k > —1. If ¥’ < k, applying polar coordinates in R¥*" we have

/ / (Il + )™ e an” SC/ / (fz -+ e
RE’ Ry JR,
0 —m) ™t [ (@ tan
Ry
Then [p. [€]™ Fe=31D:u (@1 g¢ < @ 2=7@ | and therefore

/ |€|mfke—%\Dz,y(E)\2d§§ H Z—a(uﬂ(z _ Zuneya(u)J() o=
RE (1,4)€T
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Proof of Lemma[Z7) Claim: The vertices of the polyhedron
pP= {(dl,...,dn) ER,dy >0,....d, >0

Zdi—l—dim(ZVi) > s, forallIC{l,...,n}}
il icle

have all the form J(i) for some (J,%) € J.

P C Ki, therefore P is a pointed polyhedron (i.e. it does not contain any non
trivial affine subspace). We proceed by induction on n. For n = 1 it is trivial.
Let @ = (x1,...,x,) any vertex of the polyhedron. Then, there are n independent
inequalities from the definition of P that become equality in = (see [§], page 104).

If x,, = 0, notice that 2’ = (x1,...,2,-1) is now a vertex of the polyhedron

P = {(dl,...,dn_l) ER"L,dy>0,....dp 1 >0

Zdi—l—dim(ZVi) > s, forall I C {1,...,n—1}}
icl iele
(i.e. 2’ € P’ and 2’ satisfies n— 1 independent equalities). By induction hypothesis,
there exist some J' = (39,...,3,_1) € J/ and ¢ € {1,...,n — 1} such that 2’ =
J'(i). Then, J = (3,,...,7, 1,0) € J and i = i’ are such that = = .J (7).

Suppose x1 #0, ..., 2z, # 0. By simplicity, we denote ), ; V; by V;. Consider

Iz{IC{1,...,n},I7é@,Z:Ei+dimV1czs}.

iel
By the assumption on x, there are I,..., I, € Z such that the associated 0,1 row
vectors Iy,..., I, defining the equalities, are independent.

If I,J € Z, then
dim Vie +dim Vje = 28—2@ —in

iel ieJ
=25 — E T; — E xT;
ieluJ ielnJ

S dim ‘/ICFTJC =+ dim ‘/Iquc
S dlm(‘/]c N VJC) + dlm(V]c + VJC)
= dim Vie 4+ dim Ve,

therefore, TUJ € Z and INJ € Z. Let Iy € Z a minimal element by inclusion.
Then, for any J € Z, we have

IycJorlynJ=40.

This means the invertible matrix of rows fl, e ,INn has #1Ij identical columns, and
therefore #1y = 1, say Ip = {n}, or, equivalently, ,, = s — dim(V; + ... + V,,_1).
Notice that now = (21,...,2,_1) is a vertex of the polyhedron

ﬁ: {(dl"'de*l)eRnilvdl 207'-';dn71 20

3 di+dim (3] Vi) = dim(Vi + ...+ Vi), forall I C {1,...,n—1}}
iel iele
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By induction hypothesis, there exist some appropriate J = (J1,.. ., Jn_1) € J such
that T = (#J1,...,#Jn—1). We can take J, C {vl',..., 0% } such that Vi + ...+

Vo143 =Vi+...+Vyand J = (J1,...,3n_1,In) € J. Notice that z = J(n).
This finishes the proof of the claim.

To finish the prove of the lemma, notice that for a pointed polyhedron P (see
[8], page 108), we have

pP= conv.hull{:tl, . ,xr} + cone {yl, .. .,yt}

where 2’ are the vertices of P and y* are its extremal rays; and we have necessary
y’ > 0 since P C R,. 0

~

Remark 3.1. Notice that J(i) € P for all (J,7) € J, hence we conclude from Lemma
24 that

~

P = conv.hull{.J(7),(J,i) € J} + cone{e1,...,en}.
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