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1. Introduction

Regular Cantor sets on the line play a fundamental role in dynamical systems and
notably also in some problems in number theory. They are defined as the maximal
invariant for a one-dimensional expanding map of class C1+ and have some kind
of self-similarity property: small parts of them are diffeomorphic to big parts with
uniformly bounded distortion (see precise definition in Section 2). In both settings,
dynamics and number theory, a key question is whether the arithmetic difference
of two such sets contains an interval when the sum of their Hausdorff dimensions
is bigger than one. Some background on regular Cantor sets which are relevant to
our work can be found in [10] and [11].

From the dynamics side, the transverse geometry of the stable foliation of a
horseshoe for a diffeomorphism of a surface is described by a regular Cantor set.
In 1983, J. Palis and F. Takens ([9], [8]) proved a theorem about homoclinic bi-
furcations associated to a basic set that assures full density of hyperbolicity in the
parameter family provided that the Hausdorff dimension of the basic set is smaller
than one. A central fact used in the proof is that: If K1 and K2 are regular Cantor
sets on the real line such that the sum of their Hausdorff dimensions is smaller than
one, then K1−K2 = {x− y|x ∈ K1, y ∈ K2} (the arithmetic difference between K1

and K2) is a set of zero Lebesgue measure (indeed of Hausdorff dimension smaller
than 1). In the same year, looking for some kind of converse of this result Palis
conjectured (see [7]) that: for generic pairs of regular Cantor sets (K1,K2) of the
real line either:
(i) K1 −K2 has zero measure, or else;
(ii) K1 −K2 contains an interval.
The statement (ii) should correspond in homoclinic bifurcations to open sets of
tangencies. A slightly stronger statement is that, if K1 and K2 are generic regu-
lar Cantor sets and the sum of their Hausdorff dimensions is bigger than 1, then
K1 −K2 contains intervals.

From the number theory side, the set of the real numbers whose coefficients of
the continued fraction (of positive index) belong to some finite fixed set of possible
values is a regular Cantor set defined by the Gauss’s map. In 1947, M. Hall ([1])

proved that C(4)+C(4) = [
√

2−1, 4(
√

2−1)] where C(4) is the set of real numbers
whose continued fraction coefficients are at most 4.

In 1993, the concept of stable intersection of two regular Cantor sets was in-
troduced (see [4]): two regular Cantor sets K1 and K2 have stable intersection if

K̃1∩ K̃2 6= ∅ for any (K̃1, K̃2) perturbations of (K1,K2) in C1+-topology of regular
Cantor sets (see for a definition of the topology). C.G Moreira and J.C. Yoccoz
solved a strong version of Palis’s conjecture (see [5])

Theorem 1.1 (Moreira-Yoccoz, 2001). There exist an open and dense set

U ⊂ {(K1,K2),K1,K2 C
∞-regular Cantor sets |HD(K1) +HD(K2) > 1}

such that (K1,K2) ∈ U ⇒ Is(K1,K2) is dense in K1 −K2 and

HD((K1 −K2)/Is(K1,K2)) < 1

where Is(K1,K2) := {t ∈ R|(K1,K2 + t) has stable intersection}.

The same authors ([6]) proved the following fact concerning generic homoclinic
bifurcations associated to two dimensional horseshoes with Hausdorff dimension
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bigger than one: they yield open sets of stable tangencies in the parameter line
with positive density at the initial bifurcation value. Moreover, the unions of this
set with the hyperbolicity set in the parameter line generically have full density at
the initial bifurcation value.

We are interested in the following more general question in the setting of geo-
metric measure theory:

Question. Let π : Rn → Rk be a surjective linear map. Under which conditions
on K1, . . . ,Kn regular Cantor sets, the set π(K1× . . .×Kn) contains a non-empty
open set of Rk?

The Moreira-Yoccoz’s theorem gives a complete answer for (n, k) = (2, 1).
Firstly, some natural conditions related to HD(K1), . . . ,HD(Kn) are needed,

indeed: let e1, . . . , en be the canonical basis of Rn. Then for all I ⊂ {1, . . . , n}

HD(π(K1 × . . .×Kn)) ≤
∑
i∈I

HD(Ki) + dim
(

span {π(ei), i ∈ Ic}
)
.

We say that t ∈ Rk is a stable projection value for K1, . . . ,Kn if t ∈ π(K̃1 ×
. . . × K̃n) for any (K̃1, . . . , K̃n) perturbation of (K1, . . . ,Kn) in C1+-topology of
regular Cantor sets (see Section 2 for a definition of the topology). Ps(K1, . . . ,Kn)
denotes the set of such stable projection values t.

In the present work we will provide an answer to the Question, by proving the
following:

Theorem 1.2. There is an open and dense subset U of the set{
(K1, . . . ,Kn),K1, . . . ,Kn, are C∞-regular Cantor sets with∑
i∈I

HD(Ki) + dim
(

span {π(ei), i ∈ Ic}
)
> k, for all I ⊂ {1, . . . , n} , I 6= ∅

}
,

such that, if (K1, . . . ,Kn) ∈ U , then Ps(K1, . . . ,Kn) is dense in π(K1 × . . .×Kn)
and

HD(π(K1 × . . .×Kn)\Ps(K1, . . . ,Kn)) < k.

For π : R2 → R given by π(x, y) = x−y, our result becomes the Moreira-Yoccoz’s
theorem.

For π : Rn → Rn−1 given by π(x1, . . . , xn) = (x1 − x2, . . . , x1 − xn), our result
talks about simultaneous stable intersection of n regular Cantor sets with sum of
Hausdorff dimension bigger than n− 1.

For π : R4 → R2 given by π(x1, x2, x3, x4) = (x1 − x2, x3 − x4), our result talks
about simultaneous stable intersection of two independent pairs of regular Cantor
sets.

The main reference to our work is [5]. Some new ideas were needed in the proof,
for instance, a new Marstrand type theorem (see Section 8).

2. Preliminaries

2.1. Regular Cantor sets. Let A be a finite alphabet, B a subset of A2, and Σ
the bilateral subshift of finite type of AZ with allowed transitions B.

We will always assume that Σ is topologically mixing, and that every letter in
A occurs in Σ.
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Definition 2.1. An expansive map of type Σ is a map g with the following prop-
erties:

(i) The domain of g is a disjoint union
⋃
B I(a, b), where, for each (a, b), I(a, b)

is a compact subinterval of I(a) := [0, 1]× a;
(ii) For each (a, b) ∈ B, the restriction of g to I(a, b) is a smooth diffeomorphism

onto I(b) satisfying |Dg(t)| > 1 for all t.
The regular Cantor set associated to g is the maximal invariant set

K =
⋂
n≥0

g−n
(⋃
B
I(a, b)

)
.

Let Σ+ be the forward unilateral subshift associated to Σ. There exist a unique
homeomorphism h : Σ+ → K such that

h(a) ∈ I(a0), for a = (a0, a1, . . .) ∈ Σ+,

h ◦ σ = g ◦ h.

For each (a, b) ∈ B, let

fa,b := [g|I(a,b)]−1;

this is a contracting diffeomorphism from I(b) onto I(a, b). If a = (a0, . . . , an) is a
word of Σ, we put

fa := fa0,a1
◦ . . . ◦ fan−1,an ;

this is a contracting diffeomorphism from I(an) onto a subinterval of I(a0) that we
denote by I(a).

Remark 2.2. If (a0, a1, . . .) ∈ Σ+, then the size of I(a0, . . . , an) decrease exponen-
tially, and the conjugation h is given by h(a) = ∩∞n=1I(a0, . . . , an).

We put

K(a) := K ∩ I(a) = fa(K).

Let r be a real number > 1, or r = +∞. The space of Cr expansive maps of type
Σ, endowed with the Cr topology, will be denoted by ΩrΣ. The union ΩΣ =

⋃
r>1 ΩrΣ

is endowed with the inductive limit topology.
We have the following well-known result (see [10]):

Proposition 2.3 (Bounded Distortion Property). Let r ∈ (1,+∞), g ∈ ΩrΣ. Then,
there exist a constant c > 0 such that: for any word a = (a0, . . . , an) in Σ and any
x, x′ ∈ I(an), we have

| log |f ′a(x)| − log |f ′a(x′)|| ≤ C|x− x′|r−1.

The same C is also valid in a neighborhood of g in ΩrΣ.

Given two sequences a = (. . . , a−1, a0) and b = (b0, b1, . . .) of Σ (finite or infinite),
we say that b is compatible with a if a0 = b0, and then denote by a ∨ b the new
word obtained by concatenation of a and b

(. . . , a−1, a0 = b0, b1, . . .).

In the finite case we has the identity fa∨b = fa ◦ fb, and also the relation

(2.1) |I(a ∨ b)| � |I(a)||I(b)|.
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2.2. Limit geometries. Let Σ− = {(θn)n≤0, (θi, θi+1) ∈ B for i < 0}. We equip

Σ− with the following ultrametric distance: for θ 6= θ̃ ∈ Σ−, set

d(θ, θ̃) =

{
1 if θ0 6= θ̃0,

|I(θ ∧ θ̃)| otherwise;

where θ ∧ θ̃ = (θ−n, . . . , θ0) if θ̃−j = θ−j for 0 ≤ j ≤ n and θ̃−n−1 6= θ−n−1.

Now, let θ ∈ Σ−; for n > 0, let θ(n) = (θ−n, . . . , θ0), and let B(θ(n)) be the affine

map from I(θ(n)) onto I(θ0) such that the diffeomorphism k
θ
n = B(θ(n)) ◦ fθ(n) is

orientation-preserving.
We have the following result (see [11] and [5]):

Proposition 2.4. Let r ∈ (1,+∞), g ∈ ΩrΣ.

1. For any θ ∈ Σ−, there is a diffeomorphism kθ ∈ Diffr+(I(θ0)) such that the

k
θ
n converge to kθ in Diffr

′

+ , for any r′ < r, uniformly in θ. The convergence

is also uniform in a neighborhood of g in ΩrΣ. It follows that (θ, g) 7→ k
θ
g is

continuous.
2. If r is an integer, or r = +∞, then k

θ
n converge to kθ in Diffr+. More

precisely, for every 0 ≤ j ≤ r − 1, there is a constant Cj (independent on
θ and on a neighborhood of g in ΩrΣ) such that∣∣Dj logD[kθn ◦ (kθ)−1](x)

∣∣ ≤ Cj |I(θ(n))|.

It follows that θ → kθ is Lipschitz in the following sense: for θ0 = θ̃0, we
have

|Dj logD[kθ̃ ◦ (kθ)−1](x)| ≤ Cjd(θ, θ̃).

The limit geometric of K associate to θ is the Cantor set

Kθ = kθ(K(θ0)).

For θ ∈ Σ− and a a word in Σ starting with a0 = θ0, we denote:

Iθ(a) = kθ(I(a)),

Kθ(a) = kθ(K(a)).

The kθ, θ ∈ Σ− are related in the following useful way:

(2.2) kθ ◦ fa = F θ(a) ◦ kθ∨a,

for every a compatible with θ, where F θ(a) is the affine map from I(an) onto
Iθ(a) with the same orientation as fa. Therefore, the homothety part of F θ(a)

is ε(a)|Iθ(a)| where ε(a) = +1 (resp. -1) if fa is orientation-preserving (resp. -

reversing), and the translation part is kθ(fa(0)) (understanding the 0 from I(an)).

By the Proposition 2.4.2, for any θ, θ̃ ∈ Σ− and a a word in Σ with a0 = θ0 = θ̃0,
we have ∣∣∣|I θ̃(a)||Iθ(a)|−1 − 1

∣∣∣ ≤ Cd(θ, θ̃),

|kθ̃(x)− kθ(x)| ≤ Cd(θ, θ̃).
(2.3)

The constant C is independent of θ, θ̃, a, and some neighborhood of g in ΩrΣ.
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2.3. Renormalization operators. Let r ∈ (1,+∞]. For a ∈ A, denote by Pr(a)

the space of Cr-embeddings of I(a) into R, endowed with the Cr topology. Pr(a)
denote the subset of Pr(a) of embeddings h with h(0) = 0, h(1) = 1. For each
h ∈ Pr(a), there exits a unique affine map over R such that, after left composition,

h become to Pr(a); this composition we denote by [h]. We also consider P(a) =⋃
r>1 Pr(a) and P(a) =

⋃
r>1 P

r
(a) endowed with the inductive limit topologies.

Let a = (a0, . . . , an) a word of Σ, and g ∈ ΩrΣ. We define the renormalization
operator

T ga : Pr(an)→ Pr(a0)

h 7→ h ◦ fa.

Obviously, (h, g) 7→ T ga (h) is a continuous map from P(an)× ΩΣ to P(a0).

We can reinterpret the Proposition 2.4.1 as follows: For θ ∈ Σ− and any bounded
sequence hn ∈ Pr(θ−n), the sequence [T g

θ(n)(hn)] converges (in the Cr
′

topology,

r′ < r) to a limit in Pr(θ0). The limit is independent of the hn and the convergence
is uniform in θ and bounded subsets of the Pr(a).

On the limit set of the renormalization operators, we can also view the renor-
malization dynamics as follows. Let A = {(θ,A)}, where θ ∈ Σ− and A is now an
affine embedding of I(θ0) into R. We have a canonical map

A → Pr =
⋃
A
Pr(a)

(θ,A) 7→ A ◦ kθ (∈ Pr(θ0)).

By the equation (2.2) we can lift the action of the renormalization operators to
A as

Ta(θ,A) = (θ ∨ a,A ◦ F θ(a))

The map ((θ,A), g) 7→ T ga (θ,A) is also continuous.

2.4. The nonlinearity condition. In [5], Moreira and Yoccoz introduced the
following notion:

Definition 2.5. We say that K is nonlinear, if there exist θ0, θ1 ∈ Σ−, with

θ0
0 = θ1

0, and x0 ∈ Kθ0

(θ0
0) such that

|D logD[kθ
1

◦ (kθ
0

)−1](x0)| 6= 0.

Notice that there are neighborhoods V, V̂ of θ0, θ1 in Σ−, respectively, and a
neighborhood J of x0, such that

|D logD[kθ̂ ◦ (kθ)−1](x)| ≥ γ > 0,

for all x ∈ J, θ ∈ V, θ̂ ∈ V̂ .
Fix a conveniently large constant c0. The size of a word a in Σ is the length

|I(a)|; we say that a has approximate size ρ if

c−1
0 ρ ≤ |I(a)| ≤ c0ρ

and denote by Σ(ρ) the set of those words. It cardinality is of order ρ−d, where
d = HD(K).

In [6] was proven that the nonlinear condition implies the following:
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Property 2.6. There exist η > 0, ρ1 ∈ (0, 1) such that: for all 0 < ρ < ρ1, 1 ≤ ξ ≤
ρ−1, Φ ∈ R and θ ∈ V, θ̂ ∈ V̂ , we have

#

{
b ∈ Σ(ρ),

∣∣∣∣∣sin
(

1

2
ξ log

|I θ̂(b)|
|Iθ(b)|

+ Φ

)∣∣∣∣∣ ≥ η
}
≥ ηρ−d.

2.5. The family of random perturbations. Fix an integer r ≥ 2. We construct
a family of random perturbations of g, depending on the scale parameter ρ; the
perturbations will become close to g in Cr topology when ρ is small. The scale ρ
will be assumed to be small.

We first pick a subset Σ0 of Σ(ρ1/r) such that

K =
⋃
a∈Σ0

K(a)

is a partition of K into disjoint cylinders.
We then define Σ1 as the subset of Σ0 formed of the words a ∈ Σ0 such that no

words in Σ(ρ1/3r) appears twice in a.

Let τ > 1 be a constant sufficiently close to 1 to have the following: let Î(a), for
a ∈ Σ0, be the interval with the same center as I(a) and τ2 times the size of I(a);

then the Î(a), a ∈ Σ0, are pairwise disjoint.
We then choose, once and for all, a smooth even function χ : R→ R satisfying

χ(x) = 1 for |x| ≤ τ
χ(x) = 0 for |x| ≥ τ2.

For a ∈ Σ1, we define the vector field Xa, with support ⊂ Î(a) by

Xa(x) = σρ1+1/2rχ(Ba(x))
∂

∂x

where σ is a conveniently large constant, and Ba is an affine map sending I(a) onto
[−1,+1]; there are two such maps, but as χ is even, they give the same Xa.

The probability space underlying the family of random perturbations is Ω =

[−1,+1]Σ
1

, equipped with the normalized Lebesgue measure.
For ω = (ω(a))a∈Σ1 ∈ Ω, we define Φω to be the time-one of the vector field

Xω = −
∑
a ω(a)Xa, and gω = g ◦ Φω.

Remark 2.7. By construction, the vector fields Xa, a ∈ Σ1, have disjoint supports.

The size of the intervals I(a), a ∈ Σ1, have order ρ1/r, therefore the affine map Ba
entering the definition of Xa has derivative of the order of ρ−1/r. It follows that,
when ρ is small, Xa is small in the Cr topology. Then, the Φω for any ω ∈ Ω, are
close to the identity in the Cr topology.

In particular, the estimates in Proposition 2.4 for the kθ are valid for gω uniformly
in ω, if we consider no more than r derivatives.

Remark 2.8. The finite set
⋃
a∈A {inf K(a), supK(a)} of the extreme points of the

Cantor set K are invariant under g. Let x0 be a point in this set; if a0 is the
element of Σ0 such that x0 ∈ K(a0), then a0 is the initial part of an eventually
periodic word in Σ+. Therefore a0 ∈ Σ0−Σ1 if ρ is small enough. It follows that gω

coincides with g in I(a0) (for any ω ∈ Ω), in particular gω is expansive of type Σ,
and that inf K(a), supK(a) are still the extremes points of the perturbed Cantor
set Kω(a).
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Remark 2.9. For a ∈ Σ0, let Ĩ(a) be the ρ-neighborhood of I(a).
Let a ∈ Σ0, a−1 ∈ A such that (a−1, a0) ∈ B; let a′ be the inicial part of a−1a

that belongs to Σ0. We have fa−1a0(I(a)) ⊂ I(a′); because the fa,b are contractions,

there exists α > 0 such that the αρ-neighborhood of fa−1a0(Ĩ(a)) is contained in

Ĩ(a′).
On the other hand, for the perturbed inverse branch f

ω
a−1a0 , ω ∈ Ω, we have, for

any x ∈ Ĩ(a)

fωa−1a0
(x) =

{
fa−1a0

(x) if a′ ∈ Σ0 − Σ1

fa−1a0
(x) + σρ1+1/2rω(a′) if a′ ∈ Σ1

(because Xa′ is constant on Ĩ(a′)). This allows us to conclude that f
ω
a−1a0(Ĩ(a)) ⊂

Ĩ(a′) (if ρ is small enough), and therefore that the perturbed Cantor set Kω will

be contained in
⋃

Σ0 Ĩ(a).

We have the following result (see [5]):

Lemma 2.10. Let θ ∈ Σ−, ω ∈ Ω and a a word with a0 = θ0.

1. If |I(a)| > c′−1
0 ρ, then∣∣|Iθ,ω(a)||Iθ(a)|−1 − 1

∣∣ ≤ Cσρ1− 1
2r ;

2.

|kθ,ω(x)− kθ(x)| ≤ Cσρ1− 1
2r .

It follows that:

|kθ,ω(fωa (x))− kθ(fa(x))| ≤ Cσρ1− 1
2r .

The constant C is independent of θ, ω, a, ρ, and the size σ of the perturbation.

We finish with a decomposition of the space Ω, that we use later. For a ∈
Σ(ρ1/2r), let Σ−(a) be the open and closed subset of Σ− formed by the θ ending
with a. Choose a subset Σ2− of Σ(ρ1/2r) such that

Σ− =
⋃
Σ2−

Σ−(a)

is a partition of Σ−.
For a ∈ Σ2−, define Σ1(a) as the set of words in Σ1 starting with a. For

θ ∈ Σ−(a), we also define Σ1(θ) = Σ1(a).
Letting θ ∈ Σ, we write

Ω = [−1,+1]Σ
1(θ) × [−1,+1]Σ

1−Σ1(θ),

ω = (ω′, ω′′)

and for each such an ω,we set

ω∗ = (0, ω′′).

This depends on θ, but, nearby, θ̂ (with d(θ, θ̂) < c−1
0 ρ1/2r) will belong to the same

Σ2−(a) and give the same projection ω∗ of ω.
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3. Stable projection of cartesian product of regular Cantor sets:
Recurrent compact criterion and statement of the main result

In this section, assume we are given n sets of data (A1,B1,Σ1, g1), . . ., (An,Bn,Σn, gn)
defining regular Cantor sets K1, . . . ,Kn, and the surjective linear map π : Rn → Rk.

We define as in Section 2 the spaces Pi =
⋃

Ai Pi(a
i), i = 1, . . . , n.

A n-uple (h1, . . . , hn), (h1 ∈ P1(a1), . . . , hn ∈ Pn(an)) is called a smooth config-
uration for K1(a1), . . . ,Kn(an).

Definition 3.1. We say that t is a projection value for the smooth configura-
tion (h1, . . . , hn) ∈ P1(a1) × . . . × Pn(an) or projection value for (h1, . . . , hn) and
(g1, . . . , gn) if

t ∈ π(h1(K1(a1))× . . .× hn(Kn(an)));

and stable projection value if t is a projection value for all (h̃1, . . . , h̃n) perturbation
of (h1, . . . , hn) in P1(a1)× . . .×Pn(an) and (g̃1, . . . , g̃n) perturbation of (g1, . . . , gn)
in ΩΣ1 × . . .× ΩΣn .

Obviously, if t is a stable projection value for (h1, . . . , hn) and (g1, . . . , gn), then

t̃ is a stable projection value for (h̃1, . . . , h̃n) and (g̃1, . . . , g̃n), for all t̃ perturba-

tion of t, (h̃1, . . . , h̃n) perturbation of (h1, . . . , hn) and (g̃1, . . . , g̃n) perturbation of
(g1, . . . , gn).

Actually, rather than working in the product space P1×. . .×Pn, it is better to go
the quotientQ by the left action by composition of the group {G : Rn → Rn, G(x) = λx+ v, λ ∈ R∗, v ∈ kerπ},
endowed with the quotient topology.

The renormalization operators

T 1
a1 . . . Tnan(h1, . . . , hn) := (T 1

a1(h1), . . . , Tnan(hn))

are invariant under of the about action group; hence they are defined on the quotient
space Q.

Notice we have the following topological equivalence:

Q ∼= P1 × . . .× Pn × (R∗)n−1 × Rk

[(h1, . . . , hn)]→(
[h1], . . . , [hn],

h1(1)− h1(0)

hn(1)− hn(0)
, . . . ,

hn−1(1)− hn−1(0)

hn(1)− hn(0)
,
π(h1(0), . . . , hn(0))

hn(1)− hn(0)

)
.

(3.1)

The following remark underline the fundamental role played by the renormaliza-
tion operators.

Remark 3.2. 0 is a projection value for the smooth configuration (h0
1, . . . , h

0
n) if

and only if there exists a sequence (hm1 , . . . , h
m
n )m≥0, with (hm+1

1 , . . . , hm+1
n ) =

T 1
a1 . . . Tnan(hm1 , . . . , h

m
n ) for some renormalization operator (depending on m) with

at least one word ai being nontrivial (i.e. of two or more letters), such that
[(hm1 , . . . , h

m
n )] is relatively compact in Q.

As Section 2, we can introduce the spaces A1, . . . ,An of the affine embedding.
We denote by C the quotient of A1 × . . . × An by the left action by composition
of the group {G : Rn → Rn, G(x) = λx+ v, λ ∈ R∗, v ∈ kerπ}. Elements in C are
called affine relative configurations.
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We have canonical maps

A1 × . . .×An → P1 × . . .× Pn
C → Q

which allow us to define renormalization operators on the spaces A1 × . . .×An or
C.

When one is looking for stable projection values, the following notion is crucial.

Definition 3.3. A nonempty compact set L in C is recurrent if for every u ∈
L (suppose represented by [(θ1, A1), . . . , (θn, An)]), we can find words a1, . . . , an

compatibles with θ1, . . . , θn, respectively, with at least one ai nontrivial, such that
T 1
a1 . . . Tnanu ∈ intL.

Let L be a recurrent compact set. The actions C × ΩΣ1 × . . . × ΩΣn → C via
renormalization operators are continuous, then there are finitely many compact sets
L1, . . . ,LN , and words a1

j , . . . , a
n
j , 1 ≤ j ≤ N (with, for every j, at least one word

is nontrivial) such that

(i)
⋃

1≤j≤N Lj is a neighborhood of L;

(ii) T g1

a1
j
. . . T gnanj

is defined on Lj and sends Lj into intL.

From this, we deduce immediately that any recurrent compact set for g1, . . . , gn is
still recurrent for g̃1, . . . , g̃n in a neighborhood of (g1, . . . , gn) in ΩΣ1

× . . .× ΩΣn .

Remark 3.4. The image of L under the canonical map C → Q is a compact set R
recurrent in the following sentence:

there exist a neighborhood V of the Id in the affine maps space Aff(R), such
that, for all [(h1, . . . , hn)] ∈ R there exist a compatible words (a1, . . . , an) ∈{

(a1, . . . , anj ), 1 ≤ j ≤ N
}

, such that [T 1
a1 . . . Tnan(A1 ◦ h1, . . . , An ◦ hn)] ∈ R for

all A1, . . . , An ∈ V .
Via the equivalence 3.1: there exist δ > 0, such that, for all (k1, . . . , kn, s, t) ∈ R

there exist a compatible words (a1, . . . , an) ∈
{

(a1, . . . , anj ), 1 ≤ j ≤ N
}

, such that

if (k′1, . . . , k
′
n, s
′, t′) = T 1

a1 . . . Tnan(k1, . . . , kn, s, t), then (k′1, . . . , k
′
n, s̃
′, t̃′) ∈ R for

any s̃′, t̃′ with |s̃′ − s′| ≤ δ, |t̃′ − t′| ≤ δ.

Proposition 3.5. If [(θ1, A1), . . . , (θn, An)] is contained in a recurrent compact

set, then 0 is a stable projection value for (A1 ◦ kθ
1

g1 , . . . , An ◦ k
θn

gn ).

Proof. Suppose [(θ1, A1), . . . , (θn, An)] is contained in a recurrent compact set L for

(g1, . . . , gn). Let (h̃1, . . . , h̃n) perturbation of (A1◦kθ
1

g1 , . . . , An◦k
θn

gn ) in P1×. . .×Pn
and (g̃1, . . . , g̃n) perturbation of (g1, . . . , gn).

Then L is still recurrent for (g̃1, . . . , g̃n); and (A1 ◦ kθ
1

g̃1
, . . . , An ◦ kθ

n

g̃n
) is close to

(A1◦kθ
1

g1 , . . . , An◦k
θn

gn ) in P1×. . .×Pn (see Proposition 2.4.1), therefore (h̃1, . . . , h̃n)

is a perturbation for (A1 ◦ kθ
1

g̃1
, . . . , An ◦ kθ

n

g̃n
). Hence in the initial assumption, we

may assume (g̃1, . . . , g̃n) = (g1, . . . , gn).

Let [(θ1, A1), . . . , (θn, An)] ∈ intL. Set (k0
1, . . . , k

0
n, s

0, t0) := [(A1 ◦ kθ
1

g1 , . . . , An ◦
k
θn

gn )] and (k̃0
1, . . . , k̃

0
n, s̃

0, t̃0) := [(h̃1, . . . , h̃n)], then (k0
1, . . . , k

0
n, s̃

0, t̃0) ∈ R. If

we have (km1 , . . . , k
m
n , s̃

m, t̃m) ∈ R and (k̃m1 , . . . , k̃
m
n , s̃

m, t̃m) ∈ Q, with kmi closer

to k̃mi , then, by the Remark 3.4, after some renormalization operator we have
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(km+1
1 , . . . , km+1

n , sm+1, tm+1) ∈ R and (k̃m+1
1 , . . . , k̃m+1

n , s̃m+1, t̃m+1) ∈ Q, in fact

(km+1
1 , . . . , km+1

n , s̃m+1, t̃m+1) ∈ R, with km+1
i more closer to k̃m+1

i .
By the Remark 3.2, 0 is a stable projection value for the smooth configuration

(h̃1, . . . , h̃n). �

We consider the subset V ⊂ ΩΣ1
× . . . × ΩΣn of (g1, . . . , gn) such that, for all(

(θ1, A1), . . . , (θn, An)
)
∈ A1 × . . . × An, there exist t ∈ Rk such that t is a stable

projection value for the configuration (A1 ◦ kθ
1

, . . . , An ◦ kθ
n

).

Theorem 3.6. 1. V is a open subset of{
(g1, . . . , gn),

∑
i∈I

HD(Ki) + dim
(

span {π(ei), i ∈ Ic}
)
≥ k, for all I ⊂ {1, . . . , n}

}
.

Also, given (g1, . . . , gn) ∈ V, there exist d∗ < k such that for any smooth configura-
tion (h1, . . . , hn) ∈ P1 × . . .× Pn, the set

Ps =
{
t ∈ Rk, t is a stable projection value for (h1, . . . , hn)

}
is (open and) dense in

P =
{
t ∈ Rk, t is a projection value for (h1, . . . , hn)

}
moreover, HD(P − Ps) ≤ d∗. The same d∗ is also valid for g̃1, . . . , g̃n in a neigh-
borhood of g1, . . . , gn in ΩΣ1

× . . .× ΩΣn .
2. Suppose g1, . . . , gn have a nonempty recurrent compact set of affine rela-

tive configurations, which meets all possible relative orientations; and have periodic
points x1, . . . , xn (of period l1, . . . , ln respectively), such that log |Dgl11 (x1)|, . . .,
log |Dglnn (xn)| are rationally independent. Then (g1, . . . , gn) ∈ V.

Proof. Let g1, . . . , gn ∈ ΩΣ1
× . . .× ΩΣn , and R > 1 be larger than the supreme of

the derivatives of the expansive maps g1, . . . , gn. Then (g1, . . . , gn) ∈ V if and only if
for every (θ1, . . . , θn) ∈ Σ−1 × . . .×Σ−n , λ1, . . . , λn−1 ∈ JR = [−R,−R−1]∪ [R−1, R],
there exist t ∈ Rk such that t is a stable projection value for the configuration

(λ1k
θ1

, . . . , λn−1k
θn−1

, kθ
n

). We denote by K the following compact subset of P1×
. . .× Pn:{

(λ1k
θ1

, . . . , λn−1k
θn−1

, kθ
n

), (θ1, . . . , θn) ∈ Σ−1 × . . .× Σ−n , (λ1, . . . , λn−1) ∈ Jn−1
R

}
.

If (g1, . . . , gn) ∈ V, notice that the following is true: there exist δ > 0, a neighbor-
hood Z of K in P1×. . .×Pn and a neighborhoodW of (g1, . . . , gn) in ΩΣ1

×. . .×ΩΣn

such that for each (h1, . . . , hn) ∈ Z and (g̃1, . . . , g̃n) ∈ W, there exist a δ-ball of
stable projections values for (h1, . . . , hn) and (g̃1, . . . , g̃n). In particular, V is open.

The final assertion of the part 1. in the theorem is now a easy consequence of
the last statement. Suppose t is a projection value for (h1, . . . , hn). Let ε be small;
we consider words a1, . . . , an in Σ1, . . . ,Σn respectively, such that I(a1), . . . , I(an)
have size of order ε, and such that t is a projection value for (h1 ◦fa1 , . . . , hn ◦fan).
Then |t− π(h1 ◦ fa1(0), . . . , hn ◦ fan(0))| ≤ cε; and(

h1 ◦ fa1 − h1 ◦ fa1(0)

hn ◦ fan(1)− hn ◦ fan(0)
, . . . ,

hn ◦ fan − hn ◦ fan(0)

hn ◦ fan(1)− hn ◦ fan(0)

)
∈ Z,

that mean, (h1, . . . , hn) is stable t̃-projecting for all t̃ in some c′εδ-ball contains in
a c′′ε-ball of π(h1 ◦ fa1(0), . . . , hn ◦ fan(0)). In other words, for all t ∈ P and ε
small, the set Ps ∩ Bε(t) contains a cδε-ball (for some c > 0 fixed). But this last
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property at the same time guarantees that Ps is dense in P , and that HD(P −Ps)
is at most d∗ < k, where !d∗ depends only on cδ.

2. Let ai the word in Σi of length li + 1 such that fai(xi) = xi. Set ai =

(. . . , ai, ai, ai). Deriving the relation ka
i ◦ fai = F a

i

(ai) ◦ kai , we have DF a
i

(ai) =
f ′ai(xi).

Let N be the set of (θ1, . . . , θn, λ1, . . . , λn−1) ∈ Σ−1 × . . . × Σ−n × (R∗)n−1 such

that (λ1k
θ1

, . . . , λn−1k
θn−1

, kθ
n

) has a stable projection value.
From the existence of such compact recurrence set, N is a nonempty open subset

of Σ−1 × . . .×Σ−n × (R∗)n−1. Using renormalization operator going to that open set,

we deduce that for any given (θ1, . . . , θn) ∈ Σ−1 × . . .×Σ−n , there are λj1, . . . , λ
j
n−1,

j = 1, . . . , 2n−1, of all possible n− 1-sings, such that (θ1, . . . , θn, λj1, . . . , λ
j
n−1) ∈ N

for j = 1, . . . , 2n−1. The hypotheses on the periodic points implies that (a1, . . . , an, λ1, . . . , λn−1) ∈
N for all (λ1, . . . , λn−1) ∈ (R∗)n−1. Using again the renormalization operators, we
get that N = Σ−1 × . . .× Σ−n × (R∗)n−1. �

Our main result is now the following.

Theorem 3.7. Let g1, . . . , gn be C∞ expansive maps as above. Assume that the
associated Cantor sets satisfy∑

i∈I
HD(Ki) + dim

(
span {π(ei), i ∈ Ic}

)
≥ k, for all I ⊂ {1, . . . , n} .

Then we can find, arbitrarily close to g1, . . . , gn (in the C∞-topology), perturbations
g̃1, . . . , g̃n having a nonempty recurrent compact set of affine relative configurations,
which meets all possible relative orientations.

4. Outline of the proof of the main theorem

The first step in the proof is perturbe if necessary to make sure that at least
n− 1 of the n regular Cantor sets are nonlinear, say K1, . . . ,Kn−1 (see Definition
2.5, for precise definition of nonlinearity); and that∑

i∈I
HD(Ki) + dim

(
span {π(ei), i ∈ Ic}

)
> k, for all I ⊂ {1, . . . , n} , I 6= ∅.

Notice that dim(span {π(e1), . . . , π(en−1)}) = k, hence there exist I ⊂ {1, . . . , n− 1}
with #I = k, such that dim(span {π(ei), i ∈ I}) = k; say I = {1, . . . , k}.

The equivalence 3.1 gives us a canonical identification C ∼= Σ−1 , . . . ,Σ
−
n×(R∗)n−1×

Rk. In this coordinates, applying the equation (2.2), the renormalization operators
over C are:

T 1
a1 . . . Tnan(θ1, . . . , θn, s1, . . . , sn−1, t) =(
θ1 ∨ a1, . . . , θn ∨ an, ε(a1, an)

|Iθ1

(a1)|
|Iθn(an)|

s1, . . . , ε(a
n−1, an)

|Iθn−1

(an−1)|
|Iθn(an)|

sn−1, t
′

)
where ε(ai, an) = ε(ai)ε(an) and

t′ =
t+ π

(
s1k

θ1

(fa1(0)), . . . , sn−1k
θn−1

(fan−1(0)), kθ
n

(fan(0))
)

ε(an)|Iθn(an)|
.
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We want to perturb g1, . . . , gn (actually it will be sufficient to perturb g1, . . . , gk)
in the C∞-topology in order to create a nonempty recurrent compact set of affine
relative configurations.

But a neighborhood in the C∞ topology is a neighborhood in some Cr topology
for finite r. We now fix such an integer r ≥ 2.

The required perturbation for g1, . . . , gk will be picked by a probabilistic ar-
gument out of the family of random perturbation g

ω1
1 , . . . , g

ωk
k construed in sub-

section 2.5 (with the same constants τ near to 1, σ conveniently large). Recall

ωi ∈ Ωi = [−1,+1]Σ
1
i where Σ1

i ⊂ Σi(ρ
1/r), i = 1, . . . , k.

4.1. The Multidimensional Scale Recurrence Lemma. We may consider the
renormalization operators acting on the space S = Σ−1 × . . .×Σ−n × (R∗)n−1 of the
relative scales, as

T 1
a1 . . . Tnan(θ1, . . . , θn, s1, . . . , sn−1) =

=

(
θ1 ∨ a1, . . . , θn ∨ an, ε(a1, an)

|Iθ1

(a1)|
|Iθn(an)|

s1, . . . , ε(a
n−1, an)

|Iθn−1

(an−1)|
|Iθn(an)|

sn−1

)
.

The first main ingredient in the proof of the main theorem is a recurrence result
for the action of these renormalization operators on the space S of relative scales;
we now present this result, which we call the Multidimensional Scale Recurrence
Lemma. Its proof is deferred to Section 7.

We will always restrict our attention to a compact subset

SR = Σ−1 × . . .× Σ−n × ([−R,−R−1] ∪ [R−1, R])n−1

of S, with R conveniently large.
Consider conveniently large constants c0 � c̃0. According to subsection 2.4,

Σi(ρ) is the set of words ai in Σi such that

c−1
0 ρ ≤

∣∣I(ai)
∣∣ ≤ c0ρ.

Note its cardinality are of order ρ−di , where di = HD(Ki). We also denote by

Σ̃i(ρ) the set of word ãi in Σi such that c̃−1
0 ρ ≤

∣∣I(ai)
∣∣ ≤ c0ρ. We say that ãi is

an extension of ai, if ãi ends with ai. Then, denoting JR = [−R,−R−1]∪ [R−1, R]
and d = d1 + . . .+ dn, we have:
Multidimensional Scale Recurrence Lemma
Let K1, . . . ,Kn−1 be nonlinear regular Cantor sets. For c0 and R conveniently
large, there exist c̃0, c1, c2, c3 > 0, ρ0 ∈ (0, 1) such that, for all 0 < ρ < ρ0, and for
all collection of sets (E(a1, . . . , an))(a1,...,an)∈Σ1(ρ)×...×Σn(ρ) satisfying

E(a1, . . . , an) ⊂ Jn−1
R ,

Leb(Jn−1
R − E(a1, . . . , an)) < c1,

there is another collection (E∗(a1, . . . , an))(a1,...,an)∈Σ1(ρ)×...×Σn(ρ) of compact sub-

sets of Jn−1
R satisfying

(i) E∗(a1, . . . , an) is contained in a c2ρ-neighborhood of E(a1, . . . , an);
(ii) for more than half of the (a1, . . . , an), the Lebesgue measure of E∗(a1, . . . , an)

is greater than 1− 1/2n−1 the volume of Jn−1
R ;

(iii) for each (a1, . . . , an) ∈ Σ1(ρ) × . . . × Σn(ρ), and each s ∈ E∗(a1, . . . , an),
there are at least c3ρ

−d n-uples (b1, . . . , bn) ∈ Σ1(ρ)× . . .×Σn(ρ), each one
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with extension (̃b
1
, . . . , b̃

n
) ∈ Σ̃1(ρ) × . . . × Σ̃n(ρ) (with b̃

1
, . . . , b̃

n
starting

respectively with the last letter of a1, . . . , an) such that, for each θ1 ∈
Σ1, . . . , θ

n ∈ Σn ending respectively with a1, . . . , an and

T 1

b̃
1 . . . Tn

b̃
n(θ1, . . . , θn, s) = (θ1 ∨ b̃

1
, . . . , θn ∨ b̃

n
, s′)

the ρ-neighborhood of s′ is contained in E∗(b1, . . . , bn).

Let S∗(a1, . . . , an) be the set of (θ1, . . . , θn, s1, . . . , sn−1) ∈ SR such that θi ends
with ai, i = 1, . . . , n and s ∈ E∗(a1, . . . , an); set S∗ =

⋃
a1,...,an S∗(a1, . . . , an).

Property (iii) says that there is a positive proportion of compatibles (̃b
1
, . . . , b̃

n
) ∈

Σ̃1(ρ)× . . .× Σ̃n(ρ) such that the image by T 1

b̃
1 . . . Tn

b̃
n is “well inside” S∗.

4.2. Construction of the candidates for recurrent compact set. We con-
struct the set L = Lω1,...,ωk

of relative configurations for with we want to prove
recurrence for at least one (ω1, . . . , ωk) ∈ Ω1 × . . .× Ωk.

As indicated, this set will depend on ω1, . . . , ωk, but only as far as the coordinate
t is concerned. The image of Lω1,...,ωk

under the projection map: C → S will be a

subset L̃ of S independent of ω1, . . . , ωk.

Let Σ̂i(ρ
3) be the subset of Σi(ρ

3) formed by words a such that:

(i) no word b ∈ Σi(ρ
1/3r) appears twice in a;

(ii) if c ∈ Σi(ρ
1/6r) appears at the end of a, then it does not appear elsewhere

in a.

We next define Σ̂−i as the subset of Σ−i formed by θi which ends with a word in

Σ̂i(ρ
3). This is an open and closed subset in Σ−i .

To define L̃, we will apply the Multidimensional Scale Recurrence Lemma (with
ρ1/2 instead of ρ). A family of subsets E(a1, . . . , an) of Jn−1

R , for (a1, . . . , an) ∈
Σ1(ρ1/2) × . . . × Σn(ρ1/2) will be carefully constructed in Section 5, in relation to
the Marstrand-Kaufman’s type theorem (see Theorem 8.2), and it will satisfy the
hypothesis

Leb(Jn−1
R − E(a1, . . . , an)) < c1, for all (a1, . . . , an).

Then, the Multidimensional Scale Recurrence Lemma gives us another family E∗(a1, . . . , an) ⊂
Jn−1
R , for (a1, . . . , an) ∈ Σ1(ρ1/2)× . . .×Σn(ρ1/2), with the properties (i), (ii), (iii)

indicated in the statement of the lemma.
The set L̃ is defined to be the subset of SR formed by the (θ1, . . . , θn, s) such

that θi ∈ Σ̂−i , i = 1, . . . , k, and there exist (a1, . . . , an) ∈ Σ1(ρ1/2)× . . .×Σn(ρ1/2)

with s ∈ E∗(a1, . . . , an) and θ1, . . . , θn ending with a1, . . . , an respectively.

L̃ is a compact set, and by the property (ii) of Lemma, it is also nonempty and
meets all possible signs for the scales!.

We remark that, if (θ1, . . . , θn, s) ∈ L̃ and (θ̃
1
, . . . , θ̃

n
) ∈ Σ−1 × . . . × Σ−n with

d(θ1, θ̃
1
) < c−1

0 ρ3, . . . , d(θk, θ̃
k
) < c−1

0 ρ3 and d(θk+1, θ̃
k+1

) < c−1
0 ρ1/2, . . . , d(θn, θ̃

n
) <

c−1
0 ρ1/2, then (θ̃

1
, . . . , θ̃

n
, s) ∈ L̃.

Now, for every (θ1, . . . , θn, s) ∈ L̃ and every (ω1, . . . , ωk) ∈ Ω1 × . . . × Ωk we
define in Section 5 a nonempty compact subset L0

ω1,...,ωk
(θ1, . . . , θn, s) of Rk. In
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fact, the set L0
ω1,...,ωk

(θ1, . . . , θn, s) will only depend (as far as ω1, . . . , ωk are con-

cerned) on the projections ω∗1, . . . , ω
∗
k of ω1, . . . , ωk associated to θ1, . . . , θn−1 (see

the definitions in the Subsection 2.5).
Finally, notice that for every (ω1, . . . , ωk) ∈ Ω1 × . . .× Ωk, the set

L0
ω1,...,ωk

=
{

(θ1, . . . , θn, s, t), (θ1, . . . , θn, s) ∈ L̃, t ∈ L0
ω1,...,ωk

(θ1, . . . , θn, s)
}

is a nonempty compact subset of C. Then we define the candidate as follows:

Lω1,...,ωk
=
{

(θ1, . . . , θn, s, t) ∈ L̃ × Rk,∃(θ̃
1
, . . . , θ̃

n
, s̃, t̃) ∈ L0

ω1,...,ωk

with d(θ1, θ̃
1
) ≤ ρ5/2, . . . , d(θn, θ̃

n
) ≤ ρ5/2, |s− s̃| ≤ ρ, |t− t̃| ≤ ρ

}
.

4.3. The Probabilistic argument: Proof of the main theorem. Consider the

neighborhood L1
ω1,...,ωk

of L0
ω1,...,ωk

in L̃ × Rk:

L1
ω1,...,ωk

=
{

(θ1, . . . , θn, s, t) ∈ L̃ × Rk,∃(θ1
0, . . . , θ

n
0 , s0, t0) ∈ L0

ω1,...,ωk

with d(θ1, θ1
0) < 2ρ5/2, . . . , d(θn, θn0 ) < 2ρ5/2, |s− s0| < 2ρ, |t− t0| < 2ρ

}
.

Fix u = (θ1, . . . , θn, s, t) ∈ L̃ × Rk. We define two subsets Ω
0
(u),Ω

1
(u) of

Ω := Ω1 × . . .× Ωk. First,

Ω
1
(u) =

{
(ω1, . . . , ωk) ∈ Ω, u ∈ L1

ω1,...,ωk

}
.

Second, Ω
0
(u) is the set of (ω1, . . . , ωk) ∈ Ω such that there exist (b1, . . . , bn) ∈

Σ′1(ρ) × . . . × Σ′n(ρ) with b10 = θ1
0, . . . , b

n
0 = θn0 and the image T 1

b1
. . . Tnbn(u) =

(θ′1, . . . , θ′n, s′, t′) satisfies:

(i) for any s̃′ with |s̃′ − s′| < 1
2ρ

1/2, we have (θ′1, . . . , θ′n, s̃′) ∈ L̃;

(ii) t′ ∈ L0
ω1,...,ωk

(θ′1, . . . , θ′n, s′).

(The renormlization operators T 1
b1
. . . Tnbn depend on ω1, . . . , ωk; the dependence is

not indicated in the notation to keep the text readable.)
The following crucial estimative will be proved in Section 6.

Proposition 4.1. Assume that σ is chosen conveniently large. Then there exists

c4 > 0 and l > 0, such that, for any u ∈ L̃ × Rk,

P(Ω
1
(u)− Ω

0
(u)) ≤ exp(−c4ρ−l).

With this estimate, the end of the proof of the main theorem is not difficult.
Assume that ρ is small enough.

The sets L0
ω1,...,ωk

(θ1, . . . , θn, s) will always satisfy

t ∈ L0
ω1,...,ωk

(θ1, . . . , θn, s)⇒ |t| ≤ 2cR

We choose finite subsets ∆0
1, . . . ,∆

0
n,∆

2 of Σ̂−1 , . . . , Σ̂
−
k ,Σ

−
k+1, . . . ,Σ

−
n , [−(2cR +

2ρ), (2cR + 2ρ)]k respectively such that:

- ∆0
i is ρ5/2 dense in Σ̂−i ,#∆0

i ≤ c5ρ−
5
2di , i = 1, . . . , k;

- ∆0
i is ρ5/2 dense in Σ−i ,#∆0

i ≤ c5ρ−
5
2di , i = k + 1, . . . , n;

- ∆2 is ρ5/2 dense in [−(2cR + 2ρ), (2cR + 2ρ)]k,#∆2 ≤ c5ρ−
5
2k.
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Then, for each (θ1, . . . , θn) ∈ ∆0
1× . . .×∆0

n, we choose a finite subset ∆1(θ1, . . . , θn)

of the fiber of L̃ over (θ1, . . . , θn), which is ρ5/2 dense in this fiber, and has cardi-

nality ≤ c5ρ−
5
2 (n−1). Let then

∆ =
{
u = (θ1, . . . , θn, s, t), θ1 ∈ ∆0

1, θ
n ∈ ∆0

n, t ∈ ∆2, s ∈ ∆1(θ1, . . . , θn)
}
.

One has

#∆ ≤ cn+2
5 ρ−

5
2 (d+k+n−1) ≤ cn+2

5 ρ−
5
2 (k+2n−1).

Now, if ρ is small enough,

cn+2
5 ρ−

5
2 (k+2n−1) exp

(
−c4ρ−l

)
< 1,

and therefore we can find (ω0
1, . . . , ω

0
k) ∈ Ω1× . . .×Ωn−1 such that, for any u ∈ ∆,

either (ω0
1, . . . , ω

0
k) /∈ Ω

1
(u) or (ω0

1, . . . , ω
0
k) ∈ Ω

0
(u) (or both).

Fix (ω0
1, . . . , ω

0
k) as above.

Claim. The nonempty compact set L = Lω0
1,...,ω

0
k

of affine relative configurations,

is recurrent for g
ω0

1
1 , . . . , g

ω0
k

k , gk+1, . . . , gn.

Let u = (θ1, . . . , θn, s, t) ∈ L.
We can find θ1

0 ∈ ∆0
1, . . . , θ

n
0 ∈ ∆0

n, t0 ∈ ∆2 with d(θ1, θ1
0) < ρ5/2, . . . , d(θn, θn0 ) <

ρ5/2, |t − t0| < ρ5/2. Then, by construction of L̃, (θ1
0, . . . , θ

n
0 , s) ∈ L̃; hence we can

find s0 ∈ ∆1(θ1
0, . . . , θ

n
0 ) with |s − s0| < ρ5/2. Let u0 = (θ1

0, . . . , θ
n
0 , s0, t0) ∈ ∆.

Notice that u0 ∈ L1
ω0

1,...,ω
0
k
; in other words, (ω0

1, . . . , ω
0
k) ∈ Ω

1
(u0).

Then, by the choice of (ω0
1, . . . , ω

0
k), we have (ω0

1, . . . , ω
0
k) ∈ Ω

0
(u0). This means

that there exist (b1, . . . , bn) ∈ Σ′1(ρ)× . . .×Σ′n(ρ) compatible with (θ1, . . . , θn) such
that, if

u′0 := T
ω0

1

b1
. . . T

ω0
k

bk
T k+1
bk+1 . . . T

n
bn(u0) = (θ′

1
0, . . . , θ

′n
0 , s
′
0, t
′
0),

we have

(θ′
1
0, . . . , θ

′n
0 , s̃
′
0) ∈ L̃ for |s̃′0 − s′0| <

1

2
ρ1/2

and t′0 ∈ L0
ω0

1,...,ω
0
k
(θ′

1
0, . . . , θ

′n
0 , s
′
0) (i.e. u′0 ∈ L0

ω0
1,...,ω

0
k
).

Let

u′ := T
ω0

1

b1
. . . T

ω0
k

bk
T k+1
bk+1 . . . T

n
bn(u) = (θ′1, . . . , θ′n, s′, t′).

We want to prove that u′ ∈ intL, but

intL =
{

(θ1, . . . , θn, s, t) ∈ intL̃ × Rk,∃(θ̃
1
, . . . , θ̃

n
, s̃, t̃) ∈ L0

ω0
1,...,ω

0
k

with d(θ1, θ̃
1
) < ρ5/2, . . . , d(θn, θ̃

n
) < ρ5/2, |s− s̃| < ρ, |t− t̃| < ρ

}
.

The desired result follows from the following lemma:

Lemma 4.2. The following estimates hold:

d(θ′
1
, θ′

1
0) ≤ c6ρ7/2, . . . , d(θ′

n
, θ′

n
0 ) ≤ c6ρ7/2, |s′ − s′0| ≤ c6ρ5/2, |t′ − t′0| ≤ c6ρ3/2.

Proof. By the equation (2.1) we have d(θ′
i
, θ′

i
0) � d(θi, θi0)|I(bi)|, i = 1, . . . , n, and

by the relation (2.3) we have

|s′ − s′0| ≤ (cc′0)2|s− s0|+ |s′0|cmax
i
d(θi, θi0),
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and

|t′ − t′0| ≤ cc′0ρ−1
(
|t− t0|+ |s− s0|+ (|s0|+ 1) max

i
d(θi, θi0)

)
+ c|t′0|d(θn, θn0 ).

�

5. Application of Marstrand-Kaufman’s type theorem

5.1. Construction of the sets E. Given a point (θ1, . . . , θn, s) ∈ S, and points
x1 ∈ K1(θ1

0), . . ., xn ∈ Kn(θn0 ), we define

πθ1,...,θn,s(x1, . . . , xn) = −π(s1k
θ1

(x1), . . . , sn−1k
θn−1

(xn−1), kθ
n

(xn)).

We equip each set Ki(θ
i
0) with the di-dimensional Hausdorff measure µdi , i =

1, . . . , n. It is well-know that there exist constants c8 > c7 > 0 such that, for
θ1

0 ∈ A1, . . . , θ
n
0 ∈ An:

c7 < µd1
× . . .× µdn(K1(θ1

0)× . . .×Kn(θn0 )) < c8.

For (θ1, . . . , θn, s) ∈ S, we denote by µ(θ1, . . . , θn, s) the image under πθ1,...,θn,s of

µd1
×. . .×µdn onK1(θ1

0)×. . .×Kn(θn0 ). The Marstrand-Kaufman’s type theorem tell
us that, for fixed (θ1, . . . , θn), the measure µ(θ1, . . . , θn, s) is absolutely continuous
with respect to k-dimensional Lebesgue measure for Lebesgue-almost-every s, with
L2-density χθ1,...,θn,s satisfying∫

Jn−1
R

∥∥χθ1,...,θn,s

∥∥2

L2 ds ≤ c9(R),

where c9(R) is independent on θ1, . . . , θn.

Remark 5.1. When one controls
∥∥χθ1,...,θn,s

∥∥
L2 , this gives, by the Cauchy-Schwarz

inequality, a lower bound for the Lebesgue measure of πθ1,...,θn,s(X), where X is a

subset of K1(θ1
0)× . . .×Kn(θn0 ) with positive µd1 × . . .× µdn-measure; indeed:

µd1
×. . .×µdn(X) ≤

∫
πθ1,...,θn,s(X)

χθ1,...,θn,s(t)dt ≤
∣∣πθ1,...,θn,s(X)

∣∣1/2 ∥∥χθ1,...,θn,s

∥∥
L2

and therefore ∣∣πθ1,...,θn,s(X)
∣∣ ≥ (µd1

× . . .× µdn(X))2
∥∥χθ1,...,θn,s

∥∥−2

L2

From now on we suppose k < n − 1. In the end of the section we indicate how
to modify the arguments in the case k = n− 1.

For i = 1, . . . , k, let Pi : Rn−1 → Rn be given by

Pi(x1, . . . , xn−1) = (x1, . . . , xi−1, 0, xi, . . . , xn−1).

We define πi = π ◦ Pi, πiθ1,...,θn,s
= πθ1,...,θn,s ◦ Pi and denote by µi(θ

1, . . . , θn, s)

the image under πi
θ1,...,θn,s

of µd1 × . . .× µdi−1 × µdi+1 × . . .× µdn .

Let mi := m(πi, d1, . . . , di−1, di+1, dn). We note that mi+di ≥ m(π, d1, . . . , dn) >
k. We define mi as follow: if mi > k, then mi = k; if mi ≤ k, then mi < mi
such that mi + di > k. The Marstrand-Kaufman’s type theorem tell us that: if
mi = k, the measure µi(θ

1, . . . , θn, s) is absolutely continuous with respect to k-
dimensional Lebesgue measure for Lebesgue-almost-every (s1, . . . , si−1, si, . . . , sn),
with L2-density χi

θ1,...,θn,s
satisfying∫
Jn−1
R

∥∥∥χiθ1,...,θn,s

∥∥∥2

L2
ds ≤ c9(R);
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otherwise, if mi < k, then∫
Jn−1
R

Imi(µi(θ
1, . . . , θn, s))ds ≤ c9(R).

Fix (θ1, . . . , θn) ∈ Σ−1 × . . .×Σ−n . Let (a1, . . . , an) ∈ Σ1(ρ1/2r)× . . .×Σn(ρ1/2r)
with a1

0 = θ1
0, . . . , a

n
0 = θn0 . Then

c−1
10 ≤ |Iθ

i

(ai)||Iθ
n

(an)|−1 ≤ c10, i = 1, . . . , n− 1,

therefore we have ∫
Jn−1
R

∥∥∥χT 1
a1 ...T

n
an

(θ1,...,θn,s)

∥∥∥2

L2
ds ≤ c′9(R),

with c′9(R) independent of θ1, . . . , θn, a1, . . . , an. On the other hand, one has

#Σi(ρ
1/2r) ≤ c11ρ

−di/2r, i = 1, . . . , n.

We conclude that∫
Jn−1
R

∑
a1,...,an

∥∥∥χT 1
a1 ...T

n
an

(θ1,...,θn,s)

∥∥∥2

L2
ds ≤ cn11c

′
9(R)ρ−

d
2r .

We define, with c12 conveniently large to be determined later:

E0(θ1, . . . , θn) =
{
s ∈ Jn−1

R ,
∥∥χθ1,...,θn,s

∥∥2

L2 ≤ c12

and
∑

a1,...,an

∥∥∥χT 1
a1 ...T

n
an

(θ1,...,θn,s)

∥∥∥2

L2
≤ c12ρ

− d
2r

}
,

Ei(θ
1, . . . , θn) =

{
s ∈ Jn−1

R ,
∥∥∥χiθ1,...,θn,s

∥∥∥2

L2
≤ c12

}
if mi = k, otherwise, if

mi < k Ei(θ
1, . . . , θn) =

{
s ∈ Jn−1

R , Imi(µi(θ
1, . . . , θn, s)) ≤ c12

}
.

We now define E(θ1, . . . , θn) = E0(θ1, . . . , θn)∩E1(θ1, . . . , θn)∩. . .∩Ek(θ1, . . . , θn).
One has, for any (θ1, . . . , θn) ∈ Σ−1 × . . .× Σ−n :

m(Jn−1
R − E(θ1, . . . , θn)) ≤ c−1

12 ((k + 1)c9(R) + cn11c
′
9(R)) < c1,

if c12 > c−1
1 ((k + 1)c9(R) + cn11c

′
9(R)).

Then, for (c1, . . . , cn) ∈ Σ1(ρ1/2)× . . .×Σn(ρ1/2), we define E(c1, . . . , cn) as the
set of s ∈ Jn−1

R such that there exist θ1, . . . , θn ending respectively with c1, . . . , cn

such that s ∈ E(θ1, . . . , θn).

5.2. Construction of the sets L0. For some c′0 > c̃20, we denote by Σ′i(ρ) the set

of words ai in Σi such that c′0
−1
ρ ≤

∣∣I(ai)
∣∣ ≤ c′0ρ. We will say that two words

bi0, b
i
1 ∈ Σ′i(ρ) are independent if there is no word bi ∈ Σi(ρ

1/2r) such that both bi0
and bi1 start with bi.

Let 0 < l < (mi + di − k)/4r for all i = 1, . . . , k and define N = [ρ−l].

Let (θ1, . . . , θn, s) ∈ L̃, and (ω1, . . . , ωk) ∈ Ω1×. . .×Ωk. We define L0
ω1,...,ωk

(θ1, . . . , θn, s)

to be the set of t ∈ Rk for which there exist n-uples (b1j , . . . , b
n
j ), 1 ≤ j ≤ N , in

Σ′1(ρ)× . . .× Σ′n(ρ), compatibles with θ1, . . . , θn such that, if we set

T
ω∗1
b1j
. . . T

ω∗k
bkj
T k+1

bk+1
j

. . . Tnbnj (θ1, . . . , θn, s, t) = (θ1
j , . . . , θ

n
j , sj , tj),

the following hold:
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(i) for i = 1, . . . , k, the words bi1, . . . , b
i
N are pairwise independent;

(ii) for 1 ≤ j ≤ N , and |s̃− sj | ≤ 2
3ρ

1/2, (θ1
j , . . . , θ

n
j , s̃) ∈ L̃;

(iii) for 1 ≤ j ≤ N , |tj | ≤ 2cR,

where cR = sup
{
|π(x)|, x ∈ [−R,R]n−1 × [−1, 1]

}
.

We will use also a slightly smaller set L−1
ω1,...,ωk

(θ1, . . . , θn, s); it is define in the

same way as L0
ω1,...,ωk

(θ1, . . . , θn, s), but with (ii), (iii) replaced by:

(ii)′ for 1 ≤ j ≤ N , and |s̃− sj | ≤ 3
4ρ

1/2, (θ1
j , . . . , θ

n
j , s̃) ∈ L̃;

(iii)′ for 1 ≤ j ≤ N , |tj | ≤ cR.

We will prove the following estimative.

Proposition 5.2. There exist c14 > 0 such that, for any (θ1, . . . , θn, s) ∈ L̃ and
any (ω1, . . . , ωk) ∈ Ω1× . . .×Ωk the Lebesgue measure of L−1

ω1,...,ωk
(θ1, . . . , θn, s) is

> c14.

5.3. Proof of the Proposition 5.2. Let(θ1, . . . , θn, s) ∈ L̃ be given. By construc-

tion of L̃, there exist (θ̃
1
, . . . , θ̃

n
, s̃) with d(θ1, θ̃

1
) ≤ c0ρ

1/2, . . . , d(θn, θ̃
n
) ≤ c0ρ

1/2,
|s− s̃| ≤ c2ρ1/2 such that

s̃ ∈ E(θ̃
1
, . . . , θ̃

n
).

For i = 1, . . . , n choose a subfamily Σ2
i of Σi(ρ

1/2r) of words starting with θi0
such that

Ki(θ
i
0) =

⋃
Σ2
i

Ki(a
i)

is a partition of Ki(θ
i
0).

For each (a1, . . . , an) ∈ Σ2
1 × . . .× Σ2

n,

c−1
15 ρ

d
2r ≤ µd1 × . . .× µdn(K1(a1)× . . .×Kn(an)) ≤ c15ρ

d
2r .

Let J(a1, . . . , an) := πθ1,...,θn,s(I(a1) × . . . × I(an)) for general (a1, . . . , an) ∈
Σ1 × . . . × Σn. If we consider the random perturbations g

ω∗1
1 , . . . , g

ω∗k
k and denote

ω∗ := (ω∗1, . . . , ω
∗
k), by 2.10, the vertices of each Jω

∗
(a1, . . . , an) are moved by a

distance of order at most σρ1− 1
2r . If we replace θ1, . . . , θn, s by θ̃

1
, . . . , θ̃

n
, s̃ the

vertices of J̃(a1, . . . , an) only move by a distance of order at most ρ1/2. We note
that

πθ1,...,θn,s(I(a1∨b1)×. . .×I(an∨bn)) = |Iθ
n

(an)|−1πT 1
a1 ...T

n
an

(θ1,...,θn,s)(I(a1)×. . .×I(an)).

For each (a1, . . . , an) ∈ Σ2
1 × . . .×Σ2

n, there is a point x(a1, . . . , an) in Rk and a
constant c15 > 0 such that all previously considered J(a1, . . . , an) are contained in
the closed ball B(a1, . . . , an) with center x(a1, . . . , an) and radius c15ρ

1/2r.
For i = 1, . . . , k, let J i(a1, . . . , an) := πθ1,...,θn,s◦Pi(I(a1)×. . .×I(an)). Similarly,

there is a point x(a1, . . . , an) in Rk such that all the J i(a1, . . . , an), also considering

the random perturbations g
ω∗1
1 , . . . , g

ω∗k
k and the (θ̃

1
, . . . , θ̃

n
, s̃), are contained in the

closed ball Bi(a1, . . . , an) with center xi(a1, . . . , an) and radius c15ρ
1/2r.

Say (a1, . . . , an) is good if:

(1) |x(ã1, . . . , ãn)− x(a1, . . . , an)| ≤ 2c15ρ
1/2r for no more than c−1

13 ρ
−(d−k)/2r

(ã1, . . . , ãn).
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(2) for each i = 1, . . . , k, |xi(ã1, . . . , ãn) − xi(a1, . . . , an)| ≤ 3c15ρ
1/2r for no

more than c−1
13 ρ
−(d−mi−di)/2r (ã1, . . . , ãn), all with the same ãi.

Lemma 5.3. The number of bad (a1, . . . , an) is less than

Ckc
(1+k)
15 c13c12ρ

−d/2r

Proof. Let (a1, . . . , an) with the Property1: there are at least c−1
13 ρ
−(d−k)/2r (ã1, . . . , ãn)

such that |x(ã1, . . . , ãn)− x(a1, . . . , an)| ≤ 2c15ρ
1/2r.

Then B̂(a1, . . . , an), the ball with the same center as B(a1, . . . , an) but with

three times the radius, contains all the J̃(ã1, . . . , ãn). This mean that∫
B̂(a1,...,an)

χ
θ̃
1
,...,θ̃

n
,s̃
≥ c−1

15 c
−1
13 ρ

k/2r = c
−(1+k)
15 c−1

13 Ck|B̂(a1, . . . , an)|.

LetB the union over all (a1, . . . , an) satisfying the Property1 of the balls B̂(a1, . . . , an).
By the Vitali covering lemma we obtain∫

B

χ
θ̃
1
,...,θ̃

n
,s̃
≥ c−(1+k)

15 c−1
13 C

′
k|B|.

But then, by Cauchy-Schwarz,

c
−(1+k)
15 c−1

13 C
′
k|B|

∫
B

χ
θ̃
1
,...,θ̃

n
,s̃
≤
(∫

B

χ
θ̃
1
,...,θ̃

n
s̃

)2

≤ |B|
∫
B

χ2

θ̃
1
,...,θ̃

n
,s̃

and thus
∫
B
χ
θ̃
1
,...,θ̃

n
,s̃
≤ Ckc1+k

15 c13c12.

As B contains J̃(a1, . . . , an) for all (a1, . . . , an) with the Property1, then the

number of such (a1, . . . , an) is at most Ckc
2+k
15 c13c12ρ

−d/2r.

Let (a1, . . . , an) with the Property2: there are at least c−1
13 ρ
−(d−m′1−d1)/2r (ã1, . . . , ãn),

all with the same ã1 such that |x1(ã1, . . . , ãn)− x1(a1, . . . , an)| ≤ 3c15ρ
1/2r.

If m′1 = k, the previous case gives a estimative over the possible (a2, . . . , an). We

give the same estimative when m′1 < k. The ball B̂1(a1, . . . , an) with the same cen-

ter as B1(a1, . . . , an) but with four times the radius, contains all the J̃1(ã1, . . . , ãn).
This mean that

µ1(θ̃
1
, . . . , θ̃

n
, s̃)(B̂1(a1, . . . , an)) ≥ c−1

15 c
−1
13 ρ

m′1/2r.

Let B1 the union over all (a2, . . . , an) of the (a1, . . . , an) satisfying the Property2 of

the balls B̂1(a1, . . . , an). The Vitali covering lemma say that we have a subcolection

B̂1
1 , . . . , B̂

1
l of the B̂1(a1, . . . , an) of disjoint balls such that B1 ⊂ B̃1∪. . .∪B̃l, where

B̃j is the ball with the same center as B̂1
j but with three times the radius. Then

c12 ≥ Im′1(µ1(θ̃
1
, . . . , θ̃

n
, s̃)) ≥

l∑
j=1

∫
B̂1
j×B̃j

dµ1(θ̃
1
, . . . , θ̃

n
, s̃)dµ1(θ̃

1
, . . . , θ̃

n
, s̃)

|x− y|m′1

≥
l∑

j=1

µ1(θ̃
1
, . . . , θ̃

n
, s̃)(B̂1

j )

(24c15ρ1/2r)m
′
1

µ1(θ̃
1
, . . . , θ̃

n
, s̃)(B̃j)

and thus µ1(θ̃
1
, . . . , θ̃

n
, s̃)(B1) ≤ 24m

′
1c

(1+m′1)
15 c13c12. �

Now, we construct the n-uples (b1, . . . , bn) amongst which the n-uples (b1j , . . . , b
n
j )

of definition of L0
ω1,...,ωk

(θ1, . . . , θn, s) must be looked for. We make the following

easy observation:
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Lemma 5.4. Let θi ∈ Σ̂−i . The number of words ci ∈ Σ̃i(ρ
1/2) compatible with θi

such that θi ∨ ci /∈ Σ̂−i is o(ρ−1/2di) as ρ→ 0, uniformly in θi.

It follows from conclusion (iii) of the Multidimensional Scale Recurrence Lemma
and the last observation that we can find at least 1

2c3ρ
−d/2 n-uples (c1j , . . . , c

n
j ) ∈

Σ̃1(ρ1/2)× . . .× Σ̃n(ρ1/2) such that

T 1
c1j
. . . Tncnj (θ1, . . . , θn, s) = (θ1

j , . . . , θ
n
j , sj) ∈ L̃.

We can for each j find at least 1
2c3ρ

−d/2 n-uples (d1
jl, . . . , d

n
jl) ∈ Σ̃1(ρ1/2) × . . . ×

Σ̃n(ρ1/2) such that writing T 1
d1
jl
. . . Tndnjl

(θ1, . . . , θnj , sj) = (θ1
jl, . . . , θ

n
jl, sjl), we have

(θ1
jl, . . . , θ

n
jl, s
′) ∈ L̃ if |s′ − sjl| ≤ ρ1/2.

Concatenation of the c1j , . . . , c
n
j and d1

jl, . . . , d
n
jl give a family of words b1jl, . . . , b

n
jl in

Σ′1(ρ)× . . .× Σ′n(ρ) with at least 1
4c

2
3ρ
−d elements.

Lemma 5.5. If c13 has been chosen sufficiently small, there are at least 1
6c3c

−2
15 ρ
− d

2r

n-uples (a1, . . . , an) ∈ Σ2
1 × . . .× Σ2

n which are good and which satisfy∥∥∥∥χT 1
a1 ...T

n
an

(θ̃
1
,...,θ̃

n
,s̃)

∥∥∥∥2

L2

≤ c−1
13

and such that at least 1
6c3c

−1
15 ρ
−d( 1

2−
1
2r ) n-uples (c1j , . . . , c

n
j ) start with (a1, . . . , an).

The proof is exactly as [5]. Let us call excellent those n-uples (a1, . . . , an) given
by the last lemma.

For each (c1, . . . , cn) ∈ Σ̃1(ρ1/2) × . . . × Σ̃n(ρ1/2), there are points x(c1, . . . , cn)
and x̃(c1, . . . , cn) in Rk with distance at most c15ρ

1/2 such that Jω
∗
(c1, . . . , cn)

is contained in the closed ball B(c1, . . . , cn) with center x(c1, . . . , cn) and radius

c15ρ
1/2r for all ω∗; and J̃(c1, . . . , cn) is contained in the closed ball B̃(c1, . . . , cn)

with center x̃(c1, . . . , cn) and radius c15ρ
1/2r. Then B̃′(c1, . . . , cn), the ball with the

same center as B̃(c1, . . . , cn) but with two times the radius, contains B(c1, . . . , cn).

Let (a1, . . . , an) be an excellent n-uple. Let J̃1(a1, . . . , an) be the union over the

n-uples (c1j , . . . , c
n
j ) start with (a1, . . . , an) of the J̃(c1j , . . . , c

n
j ). Cause (a1, . . . , an)

is excellent, it follows from Remark 5.1 that

|J̃1(a1, . . . , an)| ≥ c16c13ρ
k/2r.

Let J
ω∗

1 (a1, . . . , an) be the union over the n-uples (c1j , . . . , c
n
j ) start with (a1, . . . , an)

of the Jω
∗
(c1j , . . . , c

n
j ). We note that |Jω∗(c1j , . . . , cnj )| ≥ c−1

15 ρ
k
2 for all ω∗. Apply-

ing the Vitali covering lemma to the collection of balls B̃′(c1j , . . . , c
n
j ) for those

(c1j , . . . , c
n
j ), we get

|Jω
∗

1 (a1, . . . , an)| ≥ Ckc−(1+k)
15 |J̃1(a1, . . . , an)| ≥ c17c13ρ

k/2r.

Similarly, for each (c1j , . . . , c
n
j ) (starting with (a1, . . . , an)), let J

ω∗

1 (c1j , . . . , c
n
j ) be

the union of the Jω
∗
(b1jl, . . . , b

n
jl) for b1jl, . . . , b

n
jl starting with (c1j , . . . , c

n
j ). There are

at least 1
2c3ρ

−d/2 such (b1jl, . . . , b
n
jl), and T 1

c1j
. . . Tncnj (θ1, . . . , θn, s) = (θ1

j , . . . , θ
n
j , sj) ∈

L̃.
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Therefore, again using Remark 5.1, we conclude that

|Jω
∗

1 (c1j , . . . , c
n
j )| ≥ c18|Jω

∗
(c1j , . . . , c

n
j )|.

(The argument is the same as that above: we first consider (θ̃
1

j , . . . , θ̃
n

j , s̃j) with

d(θ1
j , θ̃

1

j ), . . . , d(θnj , θ̃
n

j ), |sj − s̃j | of order ρ1/2, such that
∥∥∥χ

θ̃
1

j ,...,θ̃
n

j ,s̃j

∥∥∥2

L2
≤ c12)

Finally, let J
ω∗

2 (a1, . . . , an) be the union over those (c1j , . . . , c
n
j ) starting with

(a1, . . . , an) of the sets J
ω∗

1 (c1j , . . . , c
n
j ). Note that J

ω∗

1 (c1j , . . . , c
n
j ) is subset of

Jω
∗
(c1j , . . . , c

n
j ). Applying the Vitali covering lemma to the collection of balls

B(c1j , . . . , c
n
j ) for those (c1j , . . . , c

n
j ), we get

|Jω
∗

2 (a1, . . . , an)| ≥ c19c13ρ
k/2r.

Let φω
∗

be the sum, over excellent n-uples (a1, . . . , an), of the characteristic func-

tions of J
ω∗

2 (a1, . . . , an).

The number of excellent n-uples (a1, . . . , an) is ≥ 1
6c3c

−2
15 ρ
− d

2r , and therefore∫
φω
∗
≥ c19c3c15−2c13ρ

− d−k2r .

On the other hand, because excellent pairs are good, one has

φω
∗
≤ c−1

13 ρ
−(d−k)/2r.

We conclude that

m(φω
∗
≥ c213ρ

−(d−k)/2r) ≥ c20c
2
13 := c14

if c13 > 0 is small enough (recall that the support of φω
∗

is contained in [−cR, cR]k)

Remark 5.6. If k = n−1 then, from m = m(π, d1, . . . , dn) ≥ k we get dim(span {π(ei), i ∈ I}) =
k for all I ⊂ {1, . . . , n} with #I = k and so m = d1 + . . .+ dn.

This case is simpler. For instance E(θ1, . . . , θn) := E0(θ1, . . . , θn), N =
[
c213ρ

− d−k2r

]
and the definition of good n-uple just need the part (1). All arguments are the same
adapted to these changes.

6. Proof of the Proposition 4.1

We first recall the setting where u = (θ1, . . . , θn, s, t) ∈ L̃ × Rk.

The set Ω
1
(u) is the set of parameters (ω1, . . . , ωk) ∈ Ω1 × . . . × Ωk =: Ω, such

that there exists ũ = (θ̃
1
, . . . , θ̃

n
, s̃, t̃) ∈ L̃ × Rk with

d(θ1, θ̃
1
) < 2ρ5/2, . . . , d(θn, θ̃

n
) < 2ρ5/2, |s− s̃| < 2ρ, |t− t̃| < 2ρ,

and

t̃ ∈ L0
ω1,...,ωk

(θ̃
1
, . . . , θ̃

n
, s̃).

The set Ω
0
(u) is the set os parameters (ω1, . . . , ωk) ∈ Ω for which there exist

(b1, . . . , bn) ∈ Σ′1(ρ)× . . .× Σ′n(ρ) (with b10 = θ1
0, . . . , b

n
0 = θn0 ) such that the image

u′ = T
ω1

b1j
. . . T

ωk
bkj
T k+1

bk+1
j

. . . Tnbnj (u) = (θ′1, . . . , θ′n, s′, t′)

satisfies:

(θ′1, . . . , θ′n, s̃′) ∈ L̃ for |s̃′ − s′| < 1

2
ρ1/2
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t′ ∈ L0
ω1,...,ωk

(θ′1, . . . , θ′n, s′).

We have to prove that, provided σ is large enough,

P(Ω
1
(u)− Ω

0
(u)) ≤ exp(−c4ρ−l)

where P is normalized Lebesgue measure on Ω.
Recall the decomposition of Subsection 2.5, associated to θi, i = 1, . . . , k:

Ωi = [−1,+1]Σ
1
i (θ

i) × [−1,+1]Σ
1
i−Σ1

i (θ
i),

= Ω′i × Ω′′i

ωi = (ω′i, ω
′′
i ),

which only depends on θi through an endword in Σi(ρ
1/2r). We have set ω∗i =

(0, ω′′i ) in Subsection 2.5, and L0
ω1,...,ωk

(θ1, . . . , θn, s) actually only depend on ω∗1, . . . , ω
∗
k

(or ω′′1 , . . . , ω
′′
k), not on ω′1, . . . , ω

′
k.

Therefore, the property (ω1, . . . , ωk) ∈ Ω
1
(u) depends only on ω′′1 , . . . , ω

′′
k (one

has Σ1
i (θ

i) = Σ1
i (θ̃

i
) as d(θi, θ̃i) < 2ρ5/2).

We will fix (ω′′1 , . . . , ω
′′
k) ∈ Ω′′1× . . .×Ω′′k = Ω

′′
. Then either (ω∗1, . . . , ω

∗
k) /∈ Ω

1
(u),

and then (Ω′1×{ω′′1})× . . .× (Ω′k×{ω′′k})∩Ω1(u) is empty, or (ω∗1, . . . , ω
∗
k) ∈ Ω

1
(u).

In this last case, we will prove that

PΩ
′(Ω
′ − Ω

′0
(u)) ≤ exp(−c4ρ−l),

where

Ω
′

= Ω′1 × . . .× Ω′k,

Ω
′0

(u) =
{

(ω′1, . . . , ω
′
k) ∈ Ω

′
, (ω′1, ω

′′
1 , . . . , ω

′
k, ω

′′
k) ∈ Ω

0
(u)
}
,

and PΩ
′ is Lebesgue measure normalized on Ω

′
. The desired result will then follow

by Fubini’s theorem.

From now on, (ω′′1 , . . . , ω
′′
k) ∈ Ω

′′
is fixed, with (ω∗1, . . . , ω

∗
k) ∈ Ω

1
(u). This means

that there exist ũ = (θ̃
1
, . . . , θ̃

n
, s̃, t̃) ∈ L̃ × Rk with

d(θ1, θ̃
1
) < 2ρ5/2, . . . , d(θn, θ̃

n
) < 2ρ5/2, |s− s̃| < 2ρ, |t− t̃| < 2ρ,

and

t̃ ∈ L0
ω∗1 ,...,ω

∗
k
(θ̃

1
, . . . , θ̃

n
, s̃).

By definition of L0
ω∗1 ,...,ω

∗
k
, there exits n-uples (b1j , . . . , b

n
j ), 1 ≤ j ≤ N , in Σ′1(ρ) ×

. . .× Σ′n(ρ), compatibles with θ1, . . . , θn, with N =
[
ρ−l
]
, such that, with

ũj := T
ω∗1
b1j
. . . T

ω∗k
bkj
T k+1

bk+1
j

. . . Tnbnj (θ̃
1
, . . . , θ̃

n
, s̃, t̃) = (θ̃

1

j , . . . , θ̃
n

j , s̃j , t̃j),

we have:

(i) for i = 1, . . . , k, the words bi1, . . . , b
i
N are pairwise independent;

(ii) for 1 ≤ j ≤ N , and |̃s̃j − s̃j | ≤ 2
3ρ

1/2, (θ̃
1

j , . . . , θ̃
n

j ,
˜̃sj) ∈ L̃;

(iii) for 1 ≤ j ≤ N , |t̃j | ≤ 2cR.
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For 1 ≤ j ≤ N , consider

uj := T
ω∗1
b1j
. . . T

ω∗k
bkj
T k+1

bk+1
j

. . . Tnbnj (θ1, . . . , θn, s, t) = (θ1
j , . . . , θ

n
j , sj , tj),

and more generally, for (ω′1, . . . , ω
′
k) ∈ Ω

′
, (ω1, . . . , ωk) = (ω′1, ω

′′
1 , . . . , ω

′
k, ω

′′
k):

uj(ω
′
1, . . . , ω

′
k) :=T

ω1

b1j
. . . T

ωk
bkj
T k+1

bk+1
j

. . . Tnbnj (θ1, . . . , θn, s, t)

=(θ1
j , . . . , θ

n
j , sj(ω

′
1, . . . , ω

′
k), tj(ω

′
1, . . . , ω

′
k)).

Lemma. For 1 ≤ j ≤ N , and all (ω′1, . . . , ω
′
k) ∈ Ω

′
, (θ1

j , . . . , θ
n
j , ŝj) ∈ L̃ if |ŝj −

sj(ω
′
1, . . . , ω

′
k)| < 1

2ρ
1/2.

Proof. By the equation (2.1) we have d(θ1
j , θ̃

1

j ) < cρ7/2, . . . , d(θnj , θ̃
n

j ) < cρ7/2, for

1 ≤ j ≤ N , then L̃ has the same fiber over (θ1
j , . . . , θ

n
j ) and over (θ̃

1

j , . . . , θ̃
n

j ). By
the relation (2.3) we have

|s̃j − sj | ≤ c|s̃− s|+ cρ5/2 ≤ 3cρ ≤ 1

12
ρ1/2,

if ρ is small enough. Also, by Lemma 2.10.1:

|sj(ω′1, . . . , ω′k)− sj | ≤ cσρ1−1/2r ≤ 1

12
ρ1/2.

The result follows by property (ii) above. �

Let (ω′1, . . . , ω
′
k) ∈ Ω

′
, in view of the lemma above, if there exists 1 ≤ j ≤ N

with

tj(ω
′
1, . . . , ω

′
k) ∈ L0

ω1,...,ωk
(θ1
j , . . . , θ

n
j , sj(ω

′
1, . . . , ω

′
k))

then (ω′1, . . . , ω
′
k) ∈ Ω

′0
.

For i = 1, . . . , k; let ai ∈ Σ2−
i be the endword of θi in Σ2−

i (⊂ Σi(ρ
1/2r)). Now,

for 1 ≤ j ≤ N , let aij be the beginning of ai ∨ bij in Σ1
i (θ

i) (we recall that θij ∈ Σ̂−i ).

Because bi1, . . . , b
i
N are pairwise independent, the elements ai1, . . . , a

i
N of Σ1

i (θ
i) are

distinct.
Let Γi =

{
ai1, . . . , a

i
N

}
; we will denote by ωji (1 ≤ j ≤ N) the coordinate of ω′i

corresponding to aij . Consider the decomposition

Ω′i = [−1,+1]Γi × [−1,+1]Σ
1
i (θ

i)−Γi ,

= Ω̂′i × Ω̃′i

ω′i = (ω̂′i, ω̃
′
i) = ((ω1

i , . . . , ω
N
i ), ω̃′i).

We will prove that for any (ω̃′1, . . . , ω̃
′
k) ∈ Ω̃′1 × . . .× Ω̃′i = Ω̃

′

P
Ω̂
′(Ω̂
′
− Ω̂

′0
) ≤ exp(−c4ρ−l),

where

Ω̂
′

= Ω̂′1 × . . .× Ω̂′i,

Ω̂
′0

=

{
(ω̂′1, . . . , ω̂

′
k) ∈ Ω̂

′
,∃j, tj(ω′1, . . . , ω′k) ∈ L0

ω1,...,ωk
(θ1
j , . . . , θ

n
j , sj(ω

′
1, . . . , ω

′
k))

}
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and P
Ω̂
′ is Lebesgue measure normalized on Ω̂

′
. By Fubini’s theorem, this will

imply our statement.

For ω̃′i ∈ Ω̃′i, set ω̂i = ((0, ω̃i), ω
′′
i ). For 1 ≤ j ≤ N , define

Lj := L−1
ω̂1,...,ω̂k

(θ1
j , . . . , θ

n
j , sj(ω̂1, . . . , ω̂k)).

Choose θ
i ∈ Σ−i with d(θ

i
, θi) < ρ5/2, such that the endword ai ∈ Σ2−

i of θi (and

θ
i
) does not appear elsewhere in θ

i
. Consider

T
ω1

b1j
. . . T

ωk
bkj
T k+1

bk+1
j

. . . Tnbnj (θ
1
, . . . , θ

k
, θk+1, . . . , θn, s, t)

=(θ
1

j , . . . , θ
k

j , θ
k+1
j , . . . , θnj , sj(ω

′
1, . . . , ω

′
k), tj(ω

′
1, . . . , ω

′
k)).

Lemma 6.1. tj(ω
′
1, . . . , ω

′
k) depends only (for fixed ω′′1 , . . . , ω

′′
k) on ωj1, . . . , ω

j
k.

Moreover, there exist c′11 > 0 such that

m
{

(ωj1, . . . , ω
j
k) ∈ [−1,+1]k, tj(ω

j
1, . . . , ω

j
k) ∈ Lj

}
≥ c′11.

Lemma 6.2. If tj(ω
j
1, . . . , ω

j
k) ∈ Lj, then

tj(ω
′
1, . . . , ω

′
k) ∈ L0

ω1,...,ωk
(θ1
j , . . . , θ

n
j , sj(ω

′
1, . . . , ω

′
k)).

The two lemmas imply Proposition 4.1, since P
Ω̂
′(Ω̂
′
− Ω̂

′0
) ≤

(
1− c′11

2k

)N
, and

we recall that N =
[
ρ−l
]
.

Proof of the Lemma 6.1. In [5] it is proved that the endpoints of Iθ
i
,ωi(bij) satisfied

kθ
i
,ωi(f

ωi
bij

(0)) = Bi ◦ kθ
i
,ω̂i(f

ω∗i
ai∨bij

(0) + σωji ρ
1+1/2r),

kθ
i
,ωi(f

ωi
bij

(1)) = Bi ◦ kθ
i
,ω̂i(f

ω∗i
ai∨bij

(1) + σωji ρ
1+1/2r),

where Bi is the affine map (with the appropriate orientation) sending I(a) onto

I(θi0) and θ
i

is such that θ
i
∨ ai = θ

i
. Neither Bi nor kθ

i
,ω̂i depends on ω′i. Note

that c−1σρ <
∣∣∣∂ωji kθi,ωi(fωibij (0))

∣∣∣ < cσρ.

Then tj as a function of ω′1, . . . , ω
′
k, only depends on ωj1, . . . , ω

j
k. On the other

hand, we have |Lj | > c11 by the Proposition 5.2, and Lj ⊂ [−2cR, 2cR]k. So to end
the proof of the lemma, we have just to control tj(0) (independently of ω′′1 , . . . , ω

′′
k).

Let

T
ω∗1
b1j
. . . T

ω∗k
bkj
T k+1

bk+1
j

. . . Tnbnj (θ
1
, . . . , θ

k
, θk+1, . . . , θn, s, t) = (θ

1

j , . . . , θ
k

j , θ
k+1
j , . . . , θnj , s

∗
j , t
∗
j )

We have just seen that in fact tj(0) = t∗j . On the other hand,

T
ω∗1
b1j
. . . T

ω∗k
bkj
T k+1

bk+1
j

. . . Tnbnj (θ̃
1
, . . . , θ̃

n
, s̃, t̃) = (θ̃

1

j , . . . , θ̃
n

j , s̃j , t̃j),

with d(θ1, θ̃
1
) < 3ρ5/2, . . . , d(θk, θ̃

k
) < 3ρ5/2, d(θk+1, θ̃

k+1
) < 2ρ5/2, . . . , d(θn, θ̃

n
) <

2ρ5/2, |s− s̃| < 2ρ, |t− t̃| < 2ρ and |t̃j | ≤ 2cR.

Then |t∗j − t̃j | ≤ c′, which implies |tj(0)| ≤ 2cR + c′. �
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Proof of the Lemma 6.2. By definitions of L−1
ω̂1,...,ω̂k

(θ1
j , . . . , θ

n
j , sj(ω̂1, . . . , ω̂k)) and

L0
ω1,...,ωk

(θ1
j , . . . , θ

n
j , sj(ω

′
1, . . . , ω

′
k)), is sufficient to show that for all (c1, . . . , cn) ∈

Σ′1(ρ)× . . .× Σ′n(ρ), if

T
ω̂1(j)

c1 . . . T
ω̂k(j)

ck
T k+1
ck+1 . . . T

n
cn(θ1

j , . . . , θ
n
j , sj(ω̂1, . . . , ω̂k), tj(ω

j
1, . . . , ω

j
k)) = (θ′1, . . . , θ′n, ŝ′, t̂′)

and

T
ω1(j)

c1 . . . T
ωk(j)

ck
T k+1
ck+1 . . . T

n
cn(θ1

j , . . . , θ
n
j , sj(ω

′
1, . . . , ω

′
k), tj(ω

′
1, . . . , ω

′
k)) = (θ′1, . . . , θ′n, s′, t′)

(where ω̂i(j) (resp. ωi(j)) is obtained from ω̂i (resp. ωi) by setting the coordinates

in Σ1
i (θ

i
j) equal to 0), then

|s′ − ŝ′| ≤ 1

12
ρ1/2,

|t′ − t̂′| ≤ cR.
The first inequality is easy: by Lemma 2.10.1, we have

|sj(ω′1, . . . , ω′k)− sj(ω̂1, . . . , ω̂k)| ≤ cσρ1−1/2r

and applying a second time the same estimate from this lemma (to compare T
ω̂1(j)

c1 . . . T
ω̂k(j)

ck

and T
ω1(j)

c1 . . . T
ωk(j)

ck
) will give

|s′ − ŝ′| ≤ cσρ1−1/2r

which is ≤ 1
12ρ

1/2 for small enough ρ.

To prove the second inequality, we first compare tj(ω
j
1, . . . , ω

j
k) and tj(ω

′
1, . . . , ω

′
k).

As d(θi, θ
i
) < ρ5/2, by (2.3) we have

|tj(ωj1, . . . , ω
j
k)− tj(ω′1, . . . , ω′k)| ≤ cρ3/2.

We next prove the
Claim. |sj(ω̂1, . . . , ω̂k)− sj(ω′1, . . . , ω′k)| ≤ cσρ1+1/2r.

Proof. As d(θi, θ
i
) < ρ5/2, by (2.3) we have

|sj(ω̂1, . . . , ω̂k)− sj(ω̂1, . . . , ω̂k)| ≤ cρ5/2,

|sjω′1, . . . , ω′k)− sj(ω′1, . . . , ω′k)| ≤ cρ5/2.

Now we compare sj(ω̂1, . . . , ω̂k), sj(ω
′
1, . . . , ω

′
k). The endpoints of Iθ

i
,ωi(bij) are

kθ
i
,ωi(f

ωi
bij

(0)) = Bi ◦ kθ
i
,ω̂i(f

ω∗i
ai∨bij

(0) + σωji ρ
1+1/2r),

kθ
i
,ωi(f

ωi
bij

(1)) = Bi ◦ kθ
i
,ω̂i(f

ω∗i
ai∨bij

(1) + σωji ρ
1+1/2r).

As kθ
i
,ω̂i are C2−bounded, we obtain

∣∣∣|Iθi,ω̂i(bij)||Iθi,ωi(bij)|−1 − 1
∣∣∣ ≤ Cσρ1+1/2r

(a reinforcement of Lemma 2.10.1) then

|sj(ω̂1, . . . , ω̂k)− sj(ω′1, . . . , ω′k)| ≤ cσρ1+1/2r,

proving the claim. �

Finally, let

T
ω̂1(j)

c1 . . . T
ω̂k(j)

ck
T k+1
ck+1 . . . T

n
cn(θ1

j , . . . , θ
n
j , sj(ω

′
1, . . . , ω

′
k), tj(ω

′
1, . . . , ω

′
k)) = (θ′1, . . . , θ′n, s̃′, t̃′).
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Lemma 6.3. |t′ − t̃′| ≤ cσρ1/2r.

The lemma is proved bellow. Using it, we finish the proof of Lemma 6.2. Because
|tj(ωj1, . . . , ω

j
k) − tj(ω

′
1, . . . , ω

′
k)| ≤ cρ3/2 and |sj(ω̂1, . . . , ω̂k) − sj(ω

′
1, . . . , ω

′
k)| ≤

cσρ1+1/2r, we have

|t̃′ − t̂′| ≤ cσρ1/2r,

and therefore

|t′ − t̂′| ≤ cσρ1/2r ≤ 1 +R,

for ρ small enough, as was required. �

Proof of the Lemma 6.3. Notice that

|t′ − t̃′| ≤ cρ−1 max
1≤i≤k

|kθ
i
j ,ωi(j)(f

ωi(j)
ci (0))− kθ

i
j ,ω̂i(j)(f

ω̂i(j)
ci (0))|.

We replace θij by θ
i

j ; as now d(θij , θ
i

j) < cρ7/2, we have

|kθ
i
j ,ωi(j)(f

ωi(j)
ci (0))− kθ

i

j ,ωi(j)(f
ωi(j)
ci (0))| ≤ cρ7/2,

and

|kθ
i
j ,ω̂i(j)(f

ω̂i(j)
ci (0))− kθ

i

j ,ω̂i(j)(f
ω̂i(j)
ci (0))| ≤ cρ7/2.

Finally, in [5] it is proved that kθ
i

j ,ωi(j)(f
ωi(j)
ci (0)) do not depend on ωli, l 6= j, and

that the dependence on ωji satisfies∣∣∣∣∣∂kθ
i

j ,ωi(j)(f
ωi(j)
ci (0))

∂ωji

∣∣∣∣∣ ≤ cσρ1+1/2r.

Therefore |kθ
i

j ,ωi(j)(f
ωi(j)
ci (0)) − kθ

i

j ,ω̂i(j)(f
ω̂i(j)
ci (0))| ≤ cσρ1+1/2r which guarantees

the estimate of the lemma. �

7. Proof of the Multidimensional Scale Recurrence Lemma

7.1. A General setting. We consider a finite alphabet A and a finite set Z with
a maps

α : Z → A ω : Z → A

λ 7→ α(λ) λ 7→ ω(λ).

Define

N j
i = # {λ ∈ Z,α(λ) = i, ω(λ) = j} ,
Ni = # {λ ∈ Z,α(λ) = i} ,

pji = N−1
i N j

i .

The stochastic matrix (pji ) has a left eigenvector (pi)i∈A satisfying∑
i

pipji = pj ,
∑
i

pi = 1, pi ≥ 0.

Remark 7.1. If 0 < c ≤ pji ≤ c′, then c ≤ pi ≤ c′.
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Now, if we set

pλ
′

λ =

{
0 if ω(λ) 6= α(λ′)

N−1
α(λ′) if ω(λ) = α(λ′),

pλ = N−1
α(λ)p

α(λ),

then (pλ
′

λ ) is again a stochastic matrix with left eigenvector (pλ). Indeed we have
(with λ′ ∈ A,α(λ′) = j)∑

λ

pλpλ
′

λ =
∑
i

∑
{λ,α(λ)=i,ω(λ)=j}

N−1
i piN−1

j

=
∑
i

pjip
iN−1

j = pjN−1
j = pλ

′
.

For z = (zλ)λ∈Z ∈ CZ , define

‖z‖2 =
∑
λ

pλ |zλ|2 .

Remark 7.2. If z = (zλ)λ∈Z , w = (wλ)λ∈Z are satisfying

|wλ| ≤
∑
λ′

pλ
′

λ |zλ′ | ,

then, using Cauchy-Schwarz inequality

|wλ|2 ≤
∑
λ′

pλ
′

λ

∑
λ′

pλ
′

λ |zλ′ |
2

=
∑
λ′

pλ
′

λ |zλ′ |
2

;

and therefore

‖w‖2 =
∑
λ

pλ |wλ|2 ≤
∑
λ

∑
λ′

pλpλ
′

λ |zλ′ |
2

=
∑
λ′

pλ
′
|zλ′ |2 = ‖z‖2 .

Suppose we have a family (aλ
′

λ ) of vectors of Rn. By Remark 7.2, for ξ ∈ Rn,
the linear operator w = Uξ(z) defined by

wλ =
∑
λ′

pλ
′

λ e
iξ·aλ

′
λ zλ′ ,

acting on (CZ , ‖.‖) with norm ≤ 1.

Assumption 7.3. There is 0 < κ0 < 1 such that the operator Uξ has norm ‖Uξ‖ ≤
κ0, for any ξ ∈ Rn with 1 ≤ |ξ|∞ ≤ ρ−1.

Proposition 7.4. Under Assumption 7.3, there exist 0 < κ1 < 1, ε > 0, 0 < τ <
1, depending only on κ0 such that, for all family (Eλ)λ∈Z of bounded measurable
subsets of Rn, with measure |Eλ| ≤ ε, we have∑

pλ |E∗λ| ≤ κ1

∑
pλ |Eλ|

where E∗λ =
{
x,#

{
λ′, α(λ′) = ω(λ), Bρ(x) ⊂ Eλ′ − aλ

′

λ

}
> τNω(λ)

}
.
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Proof. For λ ∈ Z, let:

Xλ =χEλ ,

Yλ(x) =
1

Nω(λ)

∑
α(λ′)=ω(λ)

Xλ′(x+ aλ
′

λ ),

Zλ(x) =
1

2nρn

∫
(−ρ,ρ)n

Yλ(x+ y)dy.

Note that E∗λ ⊂ {x, Zλ(x) > τ}
Claim. Existe 0 < κ2 < 1 depending only on κ0 such that∑

λ

pλ |Zλ|2L2 ≤ κ2

∑
λ

pλ |Xλ|2L2 = κ2

∑
λ

pλ |Eλ| .

Proof of the Claim. By Plancherel theorem, it’s equivalent to∑
λ

pλ|Ẑλ|2L2 ≤ κ2

∑
λ

pλ|X̂λ|2L2 ,

considering the normalize Fourier transform as

X̂λ(ξ) =

∫
Rn
e−iξ·xXλ(x)dx.

Note that

Ŷλ(ξ) =
1

Nω(λ)

∑
α(λ′)=ω(λ)

eia
λ′
λ ·ξX̂λ′(ξ)

=
∑
λ′

pλ
′

λ e
iaλ
′
λ ·ξX̂λ′(ξ),

and

Ẑλ(ξ) =
sin ρξ1
ρξ1

. . .
sin ρξn
ρξn

Ŷλ(ξ).

We estimated
∑
pλ|Ẑλ(ξ)|2 in various ways, depending on ξ:

a) If |ξ|∞ ≤ 1, we use

|Ẑλ(ξ)| ≤ |Ŷλ(ξ)| ≤
∑
λ′

pλ
′

λ |X̂λ′(ξ)| ≤
∑
λ′

pλ
′

λ |Eλ′ |

to get, by Remark 7.2 and |Eλ| = |Xλ|2L2 = (2π)−n|X̂λ|2L2∑
λ

pλ|Ẑλ(ξ)|2 ≤
∑
λ

pλ |Eλ|2 ≤ ε(2π)−n
∑
λ

pλ|X̂λ|2L2 ;

b) If 1 ≤ |ξ|∞ ≤ ρ−1, we use the Assumption 7.3 in

|Ẑλ(ξ)| ≤ |Ŷλ(ξ)| =
(
Uξ(X̂)

)
λ

to get ∑
λ

pλ|Ẑλ(ξ)|2 ≤ κ2
0

∑
λ

pλ|X̂λ(ξ)|2;
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c) If |ξ|∞ ≥ ρ−1, we have |Ẑλ(ξ)| ≤ κ3|Ŷλ(ξ)|, where

κ3 = max
t≥1

∣∣∣∣ sin tt
∣∣∣∣ ;

hence, by ‖Uξ‖ ≤ 1∑
λ

pλ|Ẑλ(ξ)|2 ≤ κ2
3

∑
λ

pλ|X̂λ(ξ)|2.

Putting these estimates together gives∫ ∑
λ

pλ|Ẑλ(ξ)|2 dξ ≤ επ−n
∑
λ

pλ|X̂λ|2L2 + [max(κ0, κ3)]2
∫ ∑

λ

pλ|X̂λ(ξ)|2 dξ,

or ∑
λ

pλ|Ẑλ|2L2 ≤ κ2

∑
λ

pλ|X̂λ|2L2 ,

with κ2 = [max(κ0, κ3)]2 + π−nε. If ε is small enough, κ2 < 1, wish concludes the
proof of the claim. �

To finish the proof of proposition, note∑
λ

pλ |E∗λ| ≤
1

τ2

∑
λ

pλ|Zλ|2L2 ≤
κ2

τ2

∑
λ

pλ |Eλ| ,

and put κ1 = τ = κ
1
3
2 . �

Remark 7.5. The main point of the proposition is that τ, ε, κ1 depend neither on
the ρ nor on the Eλ nor on the aλ

′

λ or the combinatorics.

We denote by Vδ(E) the δ-neighborhood of a subset E ⊂ (Rn, |.|∞) (i.e. the set
of points at distance < δ from E)

Corollary 7.6. Under Assumption 7.3, there exist 0 < κ4 < 1, ε0 > 0, 0 < τ < 1,
depending only on κ0, and there exist ∆ > 0, depending only on ∆1, κ0 such that,
for all family (Eλ)λ∈Z of bounded measurable subsets of Rn, with |V∆ρ(Eλ)| ≤ ε0,
we have ∑

λ

pλ|V∆ρ(Ẽλ)| ≤ κ4

∑
λ

pλ |V∆ρ(Eλ)|

where Ẽλ =
{
x,#

{
λ′, α(λ′) = ω(λ), B∆1ρ(x) ∩ (Eλ′ − aλ

′

λ ) 6= ∅
}
> τNω(λ)

}
.

Proof. We first observe that, for any bounded subset E,∣∣V(∆+∆1+1)ρ(E)
∣∣ ≤ (1 +

∆1 + 1

∆

)n
|V∆ρ(E)|

On the other hand, if we consider the new family Eλ := V(∆+∆1+1)ρ(Eλ), then

V∆ρ(Ẽλ) ⊂ E∗λ.

We thus take ∆ large enough to have

κ4 :=

(
1 +

∆1 + 1

∆

)n
κ1 < 1, ε0 :=

(
1 +

∆1 + 1

∆

)−n
ε,

and apply the Proposition 7.4 to the family Eλ. �
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Corollary 7.7. Under Assumption 7.3, and assuming N j
i �c #Z, there exist

0 < κ4 < 1,∆ > 0 as above, and ε1 > 0, 0 < τ1 < 1, depending only on
κ0, c,#A, such that, for all family (Eλ)λ∈Z of bounded measurable subsets of Rn,
with

∑
λ p

λ |V∆ρ(Eλ)| ≤ ε1, we have∑
λ

pλ|V∆ρ(Êλ)| ≤ κ4

∑
λ

pλ |V∆ρ(Eλ)|

where Êλ =
{
x,#

{
λ′, α(λ′) = ω(λ), B∆1ρ(x) ∩ (Eλ′ − aλ

′

λ ) 6= ∅
}
> τ1Nω(λ)

}
.

Proof. Note that Ni �c′ #Z, pλ �c′′ #Z−1 for c′ = c#A, c′′ = c(c′)2. Let ε0, τ
from Corollary 7.6 and take ε1 small enough to have τ1 := τ + c′c′′ε1/ε0 < 1.

Suppose
∑
λ p

λ |V∆ρ(Eλ)| ≤ ε1. Defining Λ := {λ, |V∆ρ(Eλ)| > ε0} we have

#Λ ≤ c′′ ε1

ε0
#Z.

Now consider the new family E′λ := Eλ if λ ∈ Λ, and E′λ = ∅ otherwise, then

Êλ ⊂ Ẽ′λ.

The result follow applying Corollary 7.6 to the family (E′λ)λ. �

7.2. Setting of the Multidimensional Scale Recurrence Lemma. Recall that
Σi(ρ) is the set of words ai in Σi such that

c−1
0 ρ ≤

∣∣I(ai)
∣∣ ≤ c0ρ

and that

JR = [−R,−R−1] ∪ [R−1, R].

We define

I0 =
{

(ε(a1, an), . . . , ε(an−1, an)), (a1, . . . , an) ∈ Σ1(ρ)× . . .× Σn(ρ)
}
.

If c0 is large enough, I0 is a subgroup of the multiplicative group I = {−1,+1}n−1
,

with multiplication u ∗ v = (u1v1, . . . , un−1vn−1) for u = (u1, . . . , un−1), v =
(v1, . . . , vn−1) ∈ Rn−1.

In relation to the abstract setting, we set

A = A1 × . . .× An × I0

Z = Σ1(ρ)× . . .× Σn(ρ)× I0.

The maps α : Z → A, ω : Z → A are defined as follows: for (a1, . . . , an) ∈
Σ1(ρ)× . . .× Σn(ρ), u = (u1, . . . , un−1) ∈ I0,

α(a1, . . . , an, u) = (a1
0, . . . , a

n
0 , u1ε(a

1, an), . . . , un−1ε(a
n−1, an))

ω(a1, . . . , an, u) = (a1
l1 , . . . , a

n
ln , u),

where a1
0, . . . , a

n
0 are the first letters of a1, . . . , an, and a1

l1
, . . . , anln are the last

letters.
It follows from the hypothesis that Σ1, . . . ,Σn are topologically mixing, that if

c0 has been chosen large enough, for all i, j ∈ A,

c−1ρ−d ≤ N j
i ≤ cρ

−d,

where d = d1 + . . .+ dn. Hence, pλ and pλ
′

λ have order ρd.
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Finally, we define the family of translations (aλ
′

λ )α(λ′)=ω(λ). To do this, we

choose, for each ai ∈ Σi(ρ) an element θi ∈ Σi
− ending with ai. Then, if λ =

(a1, . . . , an, u) λ′ = (b1, . . . , bn, v) satisfy α(λ′) = ω(λ), we set

aλ
′

λ =
(

log |Iθ
1

(b1)| − log |Iθ
n

(bn)|, . . . , log |Iθ
n−1

(bn−1)| − log |Iθ
n

(bn)|
)
.

Lemma 7.8. The hypothesis of the Multidimensional Scale Recurrence Lemma
implies that the Assumption 7.3 holds, namely there exist 0 < κ0 < 1 such that for
1 ≤ |ξ|∞ ≤ ρ−1 the operator w = Uξ(z) defined by

wλ =
∑
λ′

pλ
′

λ e
iξ·aλ

′
λ zλ′

has norm ≤ κ0.

Proof. Let η0 � 1. Suppose there are 1 ≤ |ξ|∞ ≤ ρ−1 and z ∈ CZ such that, with
w = Uξ(z):

1 = ‖z‖2 =
∑

pλ|zλ|2,

1− η0 ≤ ‖w‖2 =
∑

pλ|wλ|2.

As [5],[6], we conclude that there are η1 = η1(η0) � 1, η5 � 1 and Z̃ ⊂ Z with

#(Z − Z̃) ≤ η1ρ
−d such that: for all λ, λ̂ ∈ Z̃ with ω(λ) = ω(λ̂), there exist Φ ∈ R

such that ∣∣∣∣sin(1

2
ξ · (aλ

′

λ − aλ
′

λ̂
) + Φ

)∣∣∣∣ < η5

for all λ′ with α(λ′) = ω(λ) but at most η5ρ
−d elements.

We pick i ∈ {1, . . . , n− 1} such that |ξi| = |ξ|∞. To derive a contradiction with

the Property 2.6 for Ki, we choose λ = (a1, . . . , an, u), λ̂ = (â1, . . . , ân, u) in Z̃

with âj = aj if j 6= i, such that the choosing θi ending with ai is in Vi and the

choosing θ̂
i

ending with âi is in V̂i. In particular ω(λ) = ω(λ̂). Finally, note that
for λ′ = (b1, . . . , bn, v) we have∣∣∣∣sin(1

2
ξ · (aλ

′

λ − aλ
′

λ̂
) + Φ

)∣∣∣∣ =

∣∣∣∣∣sin
(

1

2
ξi log

I θ̂
i

(bi)

Iθ
i
(bi)

+ Φ

)∣∣∣∣∣ .
�

We set Z̃ = Σ̃1(ρ)× . . .× Σ̃n(ρ)×I0, and for λ̃′ ∈ Z̃ we extended the definitions

of α(λ̃′) and (aλ̃
′

λ )α(λ̃′)=ω(λ) naturally. We call λ̃ = (ã1, . . . , ãn, ũ) ∈ Z̃ an extension

of λ = (a1, . . . , an, u) ∈ Z if ãi ends with ai, for i = 1, . . . , n, and ũ = u.
Now we will use the notations from Corollary 7.7. Denote r = logR. Given a

family (E(λ))λ of subset of [−r, r]n−1, we define
̂̂
E(λ) as the set of x ∈ [−r, r]n−1

such that

#
{
λ′ with extension λ̃′, α(λ̃′) = ω(λ), B∆1ρ(x+ aλ̃

′

λ ) ⊂ [−r, r]n−1 − E(λ′)
}

is less than (1− τ1)Nω(λ). (
̂̂
E(λ) are a version -with boundary- of the Ê(λ).)

Fixed κ5 such that κ4 < κ5 < 1.
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Lemma 7.9. There exist c0, r, c̃0 conveniently large, such that, for any sufficiently
small ρ, and

∑
λ p

λ |V∆ρ(E(λ))| ≤ ε1, we have∑
λ

pλ|V∆ρ(
̂̂
E(λ))| ≤ κ5

∑
λ

pλ |V∆ρ(E(λ))| .

Proof. Notice that |aλ′λ | ≤ 2 log cc0,∀λ, λ′ ∈ Z with α(λ′) = ω(λ), where c > 0 is

such that c−1 ≤ |Dkθi | ≤ c for all θi ∈ Σ−i , i = 1, . . . , n. Then we will havê̂
E(λ) ∩ [−r + 2 log cc0 + ∆1ρ, r − 2 log cc0 −∆1ρ]n−1 ⊂ Ê(λ).

We will assume ∆1ρ ≤ 1
2 log cc0,∆ρ ≤ 1

2 log cc0. We put R = 10L log cc0 for

some L large to be determined. We can find a cube D in [−r, r]n−1 of side 9 log cc0,
such that ∑

λ

pλ |V∆ρ(E(λ) ∩D)| ≤ 1

Ln−1

∑
λ

pλ |V∆ρ(E(λ))| .

The set [−r, r]n−1− [−r+ 5
2 log cc0, r− 5

2 log cc0, ]
n−1 is union of (4L)n−1− (4L−

2)n−1 cubes of side 5
2 log cc0. Let B any of this cubes (with center xB) and let

λ = (a1, . . . , an, u) ∈ Z, then there are positive periodic words c1 ∈ Σ1, . . . , c
n ∈ Σn,

starting with a1, . . . , an, respectively, such that, for t = (log |I(c1)|−log |I(cn)|, . . . , log |I(cn−1)|−
log |I(cn)|), xB+t belongs to the cube D1 of the same centers as D and side log cc0.

Now, if λ′ = (b1, . . . , bn, v) ∈ Z with α(λ′) = ω(λ), then λ̂′ = (c1∨b1, . . . , cn∨bn, v)

is a extension of λ′ with α(λ̂′) = ω(λ); and for any y ∈ B, applying (2.1), we have

|y + aλ̂
′

λ − (xB + t)| ≤ |y − xB |+ |aλ
′

λ |+ |aλ̂
′

λ − aλ
′

λ − t|

≤ 5

4
log cc0 + 2 log cc0 + c′

≤ 7

2
log cc0,

therefore B∆1ρ(y + aλ̂
′

λ ) ∈ D. This mean that
̂̂
E(λ) ∩B is contained in{

x,#
{
λ′, α(λ′) = ω(λ), x ∈ V∆1ρ(E(λ′) ∩D)− aλ̂

′

λ

}
> τ1Nω(λ)

}
,

hence V∆ρ(
̂̂
E(λ) ∩B) ⊂

{∑
λ′∈Nω(λ)

χ
V(∆+∆1)ρ(E(λ′)∩D)−aλ̂′λ

> τ1Nω(λ)

}
, to get

|V∆ρ(
̂̂
E(λ) ∩B)| ≤ 1

τ1Nω(λ)

∑
λ′∈Nω(λ)

|V(∆+∆1)ρ(E(λ′) ∩D)− aλ̂
′

λ |

≤ 1

τ1

(
1 +

∆1

∆

)n−1∑
λ′

pλ
′

λ |V∆ρ(E(λ′) ∩D)|,

therefore
∑
λ |V∆ρ(

̂̂
E(λ) ∩B)| ≤ 2(τ1L

n−1)−1
∑
λ p

λ |V∆ρ(E(λ))|, for ∆� ∆1.

Finally, take L large enough to have κ4 + 2 [(4L)n−1−(4L−2)n−1]
τ1Ln−1 < κ5. �

7.3. The proof. We are given a family E(a1, . . . , an) of subset of Jn−1
R , for (a1, . . . , an) ∈

Σ1(ρ)× . . .× Σn(ρ). Fixed w ∈ I. Define, for each λ = (a1, . . . , an, u) ∈ Z

F (λ) = Fw(λ) =
{

(x1, . . . , xn−1), u ∗ w ∗ (ex1 , . . . , exn−1) ∈ E(a1, . . . , an)
}
,
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which is a subset of [−r, r]n−1. To say that all Jn−1
R − E(a1, . . . , an) have small

measure amounts is to say all [−r, r]− F (λ), λ ∈ Z, have small measure:∣∣[−r, r]n−1 − F (λ)
∣∣ ≤ c1.

For λ ∈ Z, we set

E0(λ) = [−r, r]n−1 − V∆ρ(F (λ)).

Starting from E0, we define for k ≥ 0 sets Ek(λ) in the following way; if Ek(λ)

has already been defined, we then set Ek+1(λ) = E0(λ) ∪ ̂̂Ek(λ).
It is clear, by induction, that for each λ ∈ Z, (Ek(λ))k≥0 is a sequence of

increasing open subsets of [−r, r]n−1. On the other hand, by Lemma 7.9, we have∑
pλ |V∆ρ(Ek+1(λ))| ≤ κ5

∑
pλ |V∆ρ(Ek(λ))|+ max

λ
|V∆ρ(E0(λ))| ,

and therefore∑
pλ |V∆ρ(Ek(λ))| ≤ 1

1− κ5
max
λ
|V∆ρ(E0(λ))| ,∀k ≥ 0;

whenever maxλ |V∆ρ(E0(λ))| be sufficiently small. However, V∆ρ(E0(λ)) is con-
tained in [−r−∆ρ, r+ ∆ρ]−F (λ) and therefore its measure is less than 2n−1(n−
1)∆ρ(r + ∆ρ)n−2 + c1.

Defining E∞(λ) =
⋃
k≥0Ek(λ), we set

F ∗(λ) = F ∗w(λ) = [−r, r]n−1 − E∞(λ).

By construction of F ∗(λ), if x ∈ F ∗(λ), then

#
{
λ′ with extension λ̃′, α(λ̃′) = ω(λ), B∆1ρ(x+ aλ̃

′

λ ) ⊂ F ∗(λ′)
}
≥ (1− τ1)Nω(λ).

Now we come back to Jn−1
R , setting, for (a1, . . . , an) ∈ Σ1(ρ)× . . .× Σn(ρ),

E∗(a1, . . . , an) =
⊔

[w]∈I/I0

⊔
u∈I0

{
u ∗ w ∗ (ex1 , . . . , exn−1), (x1, . . . , xn−1) ∈ F ∗w(a1, . . . , an, u)

}
.

Firstly, E∗(a1, . . . , an) are compact subsets of Jn−1
R . We put c1 := c1r

−(n−1).
The part (i) of the Lemma follows from

F ∗(λ) ⊂ [−r, r]n−1 − E0 ⊂ V∆ρ(F (λ)),

taking for instant c2 := 2∆R, assuming ρ sufficiently small.
For (a1, . . . , an) ∈ Σ1(ρ)× . . .× Σn(ρ), we have

|Jn−1
R − E∗(a1, . . . , an)| ≤ rn−1

∑
[w]∈I/I0

∑
u∈I0

|[−r, r]n−1 − F ∗w(a1, . . . , an, u)|.

As pλ have orders ρd, then∑
(a1,...,an)

|Jn−1
R −E∗(a1, . . . , an)| ≤ rn−1 #(I/I0)

1− κ5
(2n−1(n−1)∆ρ(r+∆ρ)n−2+c1)ρ−d,

and the part (ii) follows for ρ and c1 sufficiently small.
By the relation (2.3), there exits C > 0 such that if λ = (a1, . . . , an, u) ∈ Z,

λ̃′ = (̃b
1
, . . . , b̃

n
, v) ∈ Z̃ satisfy α(λ̃′) = ω(λ) and any θ1 ∈ Σ−1 , . . . , θ

n ∈ Σ−n ending
with a1, . . . , an respectively, then∣∣∣(log |Iθ

1

(̃b
1
)| − log |Iθ

n

(̃b
n
)|, . . . , log |Iθ

n−1

(̃b
n−1

)| − log |Iθ
n

(̃b
n
)|
)
− aλ̃

′

λ

∣∣∣ ≤ Cρ.



35

The property (iii) follows with c3 small enough to have c3ρ
−d < (1− τ1)Nω(λ), and

with ∆1 > R+ C.

8. The Marstrand-Kaufman’s type theorem

Let µ be a finite Borel measure on Rk. The s-energy of µ is

Is(µ) =

∫ ∫
dµ(x)dµ(y)

|x− y|s
,

and the Fourier transform of µ is denoted by µ̂ and defined as

µ̂(ξ) =

∫
Rm

e−iξ·xdµ(x).

Is well known that if µ is compactly supported and µ̂ ∈ L2(Rk), then µ is absolutely
continuous with respect to k-dimensional Lebesgue measure, with L2-density χ

satisfying ‖χ‖L2 = (2π)−
k
2 ‖µ̂‖L2 .

Energy and Fourier transform are related as follow (see [3], Lemma 12.12)

Is(µ) = (2π)−kc(s, k)

∫
|ξ|s−k |µ̂(ξ)|2 dξ,

for 0 < s < k and µ with compact support.

Definition 8.1. For π : Rn → Rk a surjective linear map and d1, . . . , dn nonnega-
tive real numbers, we define m = m(π, d1, . . . , dn) as

m = min

{∑
i∈I

di + dim
(

span {π(ei), i ∈ Ic}
)
, I ⊂ {1, . . . , n} , I 6= ∅

}
,

with the convention dim ∅ = 0, where e1, . . . en is the canonical basis of Rn.

For every x = (x1, . . . , xn) ∈ Rn, t = (t1, . . . , tn) ∈ Rn, define Dt(x) =
(t1x1, . . . , tnxn).

Theorem 8.2. Let π and d1, . . . , dn be as in definition 8.1 with m = m(π, d1, . . . , dn) 6=
0, 1, . . . , k − 1. Then, there exist d′1 ≤ d1, . . . , d

′
n ≤ dn such that for every finite

Borel measures µ1, . . . , µn on R, denoting µs = (π ◦ D(s,1))∗(µ1 × . . . × µn) for

s ∈ Rn−1, we have∫
Rn−1

∫
Rk
|ξ|m−k |µ̂s(ξ)|2 e−|s|

2

dξds ≤ CmId′1(µ1) . . . Id′n(µn),

where Cm > 0 is some constant depending only on π, n, k and m.

Proof. We denote νt = (π ◦Dt)∗(µ1 × . . .× µn). In [2] we proof that∫
Rn

∫
Rk
|ξ|m−k |ν̂t(ξ)|2 e−

1
2 |t|

2

dξdt ≤ CmId′1(µ1) . . . Id′n(µn).

Finally, notice that∫
Rn

∫
Rk
|ξ|m−k |ν̂t(ξ)|2 e−

1
2 |t|

2

dξdt =

∫
R

∫
Rn−1

∫
Rk
|ξ|m−k |µ̂s(ξ)|2 e−

1
2 r

2|s|2e−
1
2 r

2

|r|n−1−mdξdsdr,

hence
∫
Rn−1

∫
Rk |ξ|

m−k |µ̂s(ξ)|2 e−|s|
2

dξds ≤ (1+
√

2)e
1
2 r

2 |r|m+1−nCmId′1(µ1) . . . Id′n(µn)

for some r ∈ [1,
√

2]. �
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A GENERALIZATION OF MARSTRAND’S THEOREM FOR

PROJECTIONS OF CARTESIAN PRODUCTS

JORGE ERICK LÓPEZ AND CARLOS GUSTAVO MOREIRA

Abstract. We prove the following variant of Marstrand’s theorem about pro-
jections of cartesian products of sets:

Let K1, . . . , Kn Borel subsets of Rm1 , . . . ,Rmn respectively, and π : Rm1 ×
. . .× Rmn → Rk be a surjective linear map. We set

m := min







∑

i∈I

dimH (Ki) + dimπ(
⊕

i∈Ic

R
mi ), I ⊂ {1, . . . , n}, I 6= ∅







.

Consider the space Λm = {(t, O), t ∈ R, O ∈ SO(m)} with the natural measure
and set Λ = Λm1×. . .×Λmn . For every λ = (t1, O1, . . . , tn, On) ∈ Λ and every
x = (x1, . . . , xn) ∈ Rm1×. . .×Rmn we define πλ(x) = π(t1O1x

1, . . . , tnOnx
n).

Then we have

Theorem. (i) If m > k, then πλ(K1 × . . .×Kn) has positive k-dimensional

Lebesgue measure for almost every λ ∈ Λ.
(ii) If m ≤ k and dimH (K1 × . . . × Kn) = dimH (K1) + . . . + dimH (Kn),

then dimH(πλ(K1 × . . .×Kn)) = m for almost every λ ∈ Λ.

1. Introduction

The behavior of dimensions of projections of subsets of euclidean spaces has been
studied for decades.

Let us denote by dimH(X) the Hausdorff dimension of the set X . For n and
k integers with 0 < k < n, G(n, k) denotes the Grassmann manifold of all k-
dimensional subspaces of Rn, with the natural measure. For V ∈ G(n, k), PV :
Rn → V is the orthogonal projection onto V . The following is a fundamental result
on dimensions of projections:

Theorem (Marstrand-Kaufman-Mattila). Let E ⊂ Rn a Borel set. Then:
(i) If dimH(E) > k, then PV (E) has positive k-dimensional Lebesgue measure

for almost every V ∈ Gr(n, k).
(ii) If dimH(E) ≤ k, then dimH(PV (E)) = dimH(E) for almost every V ∈

Gr(n, k).

This theoremwas first proven by Marstrand [3] in 1954 for planar sets. Marstrand’s
proof used geometric methods. Later, Kaufman [2] gave an alternative proof of the
same result using potential-theoretic methods. Finally, Mattila [4] generalized it to
higher dimensions; his proof combined the methods of Marstrand and Kaufman.

There are other variants of the Marstrand-Mattila’s theorem. They were unified
in a more general result due to Peres and Schlag [7]. They studied general smooth
families of projections, using some methods from harmonic analysis. The crucial
characteristic that is common to all families of projections considered in Peres-
Schlag’s result is a transversality property (see [7], Definition 7.2).

1
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2 JORGE ERICK LÓPEZ AND CARLOS GUSTAVO MOREIRA

We are interested in a Marstrand’s projection result that actually is outside of
the Peres-Schlag’s scheme (the families of projections considered here, in general,
are not transversal). This result was motivated by the problem of understanding
the behavior of projections of cartesian products of sets product of sets, by a fixed
projection map.

Let K1, . . . ,Kn Borel subsets of Rm1 , . . . ,Rmn respectively, and π : Rm1 × . . .×
Rmn → Rk be a linear map. Then
(1.1)

dimH(π(K1×. . .×Kn)) ≤ min

{∑

i∈I

dimH(Ki) + dimπ(
⊕

i∈Ic

R
mi), I ⊂ {1, . . . , n}

}
,

with the conventions
∑

i∈∅ dimH(Ki) = 0, dim ∅ = 0.
Consider the space Λm = {(t, O), t ∈ R, O ∈ SO(m)} with the natural measure

and set Λ = Λm1 × . . . × Λmn
. For every x = (x1, . . . , xn) ∈ Rm1 × . . . × Rmn

and every λ = (t1, O1, . . . , tn, On) ∈ Λ we define πλ(x) = π(t1O1x
1, . . . , tnOnx

n).
Suppose that π is surjective and set

m := min

{∑

i∈I

dimH(Ki) + dimπ(
⊕

i∈Ic

R
mi), I ⊂ {1, . . . , n} , I 6= ∅

}
.

Then we have

Theorem 1.1. (i) If m > k, then πλ(K1 × . . . × Kn) has positive k-dimensional
Lebesgue measure for almost every λ ∈ Λ.

(ii) If m ≤ k and dimH(K1 × . . . × Kn) = dimH(K1) + . . . + dimH(Kn), then
dimH(πλ(K1 × . . .×Kn)) = m for almost every λ ∈ Λ.

In a work in progress, we plan use the Theorem 2.3 to generalize the result
of Moreira and Yoccoz [6] about stable intersections of two regular Cantor sets for
projections of cartesian products of several regular Cantor sets. Our goal is to prove
the following result: for any given surjective linear map π : Rn → Rk, typically for
regular Cantor sets on the real line K1, . . . ,Kn with m > k, the set π(K1× . . .×Kn)
persistently contains non-empty open sets of Rk. Such a result would in particular
imply an analogous result for simultaneous stable intersections of several regular
Cantor sets on the real line.

In another work in progress, in collaboration with Pablo Shmerkin, we plan to
use the results of this paper combined with the techniques in [1] in order to obtain
exact formulas for the Hausdorff dimensions of projections of cartesian products of
(real or complex) regular Cantor sets under explicit irrationality conditions.

Acknowledgement: We are grateful to P. Shmerkin for the useful discussions
about the subject of this work.

2. Statement the main results

Let µ be a finite Borel measure on Rm. The s-energy of µ is

Is(µ) =

∫ ∫
dµ(x)dµ(y)

|x− y|s
.
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We know (see [5], Theorem 8.9(3)) that for a Borel set K ⊂ Rm

(2.1) dimH(K) = sup{s ∈ R, there is a compactly supported measure µ on K

which 0 < µ(Rm) < ∞ and Is(µ) < ∞}.

The Fourier transform of µ is denoted by µ̂ and defined as

µ̂(ξ) =

∫

Rm

e−iξ·xdµ(x).

It is well-know that if µ̂ ∈ L2(Rm), then µ is absolutely continuous with L2-density.
Energy and Fourier transform are related as follow (see [5], Lemma 12.12)

Is(µ) = (2π)−mc(s,m)

∫
|ξ|s−m |µ̂(ξ)|2 dξ,

for 0 < s < m and µ with compact support.
We summarize the above observations as the following result:

Let F ⊂ Rk a Borel set supporting a probability measure ν with
∫
|ξ|s−k |ν̂(ξ)|2 dξ <

∞. If s ≥ k, then F has positive k-dimensional Lebesgue measure. Otherwise, if
0 < s < k, then dimH(F ) ≥ s.

Let π : Rm1 × . . . × Rmn → Rk be a linear map. For each I ⊂ {1, . . . , n},
let PI : Rm1 × . . . × Rmn → Rm1 × . . . × Rmn the orthogonal projection onto the
subspace

⊕
i∈I R

mi , where Rmi is as a canonical subspace of Rm1×. . .×Rmn . Then
π = π ◦ PI + π ◦ PIc so, for K1, . . . ,Kn Borel subsets of Rm1 , . . . ,Rmn respectively
we have

dimH(π(K1 × . . .×Kn))

≤ dimH

(
πPI(K1 × . . .×Kn)× πPIc(K1 × . . .×Kn)

)

≤ dimH

(
πPI(K1 × . . .×Kn)× π(

⊕

i∈Ic

R
mi)
)

≤
∑

i∈I

dimH(Ki) + dimπ(
⊕

i∈Ic

R
mi).

(In the last inequality, we assume that dimH(K1 × . . .×Kn) = dimH(K1) + . . .+
dimH(Kn)) This prove the inequality (1.1) and also motivates us to define:

Definition 2.1. For π : Rm1 × . . . × Rmn → Rk a surjective linear map and
d1, . . . , dn nonnegative real numbers, we define m = m(π, d1, . . . , dn) as

m = min

{∑

i∈I

di + dim π(
⊕

i∈Ic

R
mi), I ⊂ {1, . . . , n} , I 6= ∅

}
.

Remark 2.2. If in addition di ≤ mi (which holds for dimensions of subsets of Rmi),
then, for the open and total measure family of linear maps π with the following
transversality property:

dim π(
⊕

i∈I

R
mi) = min

(
k, dim(

⊕

i∈I

R
mi)
)
, for all I ⊂ {1, . . . , n} ,

the equivalence m(π, d1, . . . , dn) > k ⇔ d1+ . . .+dn > k holds. However, in general
we must check more than one of the 2n − 1 conditions appearing in the definition
of m.
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Consider the space Λm = {(t, O), t ∈ R, O ∈ SO(m)}, with the product measure
L1×Θm, where L1 denotes the one dimensional Lebesgue measure and Θm denotes
the left-right invariant Haar probability measure on SO(m). Notice that the set
C(m) = {tO, t ∈ R, O ∈ SO(m)} represents essentially the family of linear confor-

mal maps on Rm. C(2) =

{(
a −b
b a

)
, a, b ∈ R

}
, which can be viewed as the set

of multiplications by a complex number.
We set Λ = Λm1 × . . .×Λmn

. For every x = (x1, . . . , xn) ∈ Rm1 × . . .×Rmn , and
every λ = (t1, O1, . . . , tn, On) ∈ Λ we define πλ(x) = π(t1O1x

1, . . . , tnOnx
n). Also,

given any finite measure µ on Rm1 × . . .× Rmn , let νλ = (πλ)∗µ. We also define

Id1,...,dn
(µ) =

∫ ∫
dµ(x)dµ(y)

|x1 − y1|d1 . . . |xn − yn|dn
.

Our main result is now the following:

Theorem 2.3. Let π and d1, . . . , dn be as in definition 2.1 with m = m(π, d1, . . . , dn) 6=
0, 1, . . . , k − 1. Then, there exist d′1 ≤ d1, . . . , d

′
n ≤ dn such that for every Borel

measure µ on Rm1 × . . .× Rmn we have∫

Λ

∫

Rk

|ξ|m−k |ν̂λ(ξ)|
2
ρ(λ)dξdλ ≤ CmId′

1,...,d
′
n
(µ),

where ρ(λ) = |t1|m1−1 . . . |tn|mn−1e−
1
2 (|t1|

2+...+|tn|
2) and Cm > 0 is some constant

depending only on π, n, k,m1, . . . ,mn and m.

In the proof of Theorem 2.3 the key tool will be the following combinatorial
lemma.

Lemma 2.4 (Weights Lemma). Let s, d1, . . . , dn ≥ 0 and V1, . . . , Vn vector sub-
spaces of a same finite dimension vector space satisfying the following 2n conditions

∑

i∈I

di + dim
(∑

i∈Ic

Vi

)
≥ s, for every I ⊂ {1, . . . , n}

(with the conventions
∑

i∈∅ di = 0, dim ∅ = 0).

Fixed a generating set
{
vi1, . . . , v

i
mi

}
of Vi for each i ∈ {1, . . . , n}. Consider the

family J of all possible J = (j1, . . . , jn), ji ⊂
{
vi1, . . . , v

i
mi

}
such that j1 ∪ . . . ∪ jn

is a linearly independent system with dimension greater than or equal to s. Define

J =
{
(J, i) ∈ J× {1, . . . , n} , Ĵ(i) := (#j1, . . . ,#jn) + (s− (#j1 + . . .+#jn))ei ≥ 0

}
,

where e1, . . . , en is the canonical basis of Rn and ≥ means that the inequality is
coordinate to coordinate.

Then, there exist non-negative real numbers (α(J,i))(J,i)∈J
with sum equal to 1

such that ∑

(J,i)∈J

α(J,i)Ĵ(i) ≤ d.

Proof of Theorem 1.1. The theorem follows immediately from the Theorem 2.3
applied to µ = µ1 × . . . × µn for suitable measures µi compactly supported in
Ki coming from the equation (2.1). Noting that in the part (i), the condition
dimH(K1) > 0, . . . , dimH(Kn) > 0 follows from the hypotheses; and in the part
(ii), we may assume the same condition by reduction to some cartesian product if
necessary. �
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Remark 2.5. We can derive the part (ii) of the Theorem 1.1 from the part (i).
Assume dimH(Ki) > 0. Let k′ < m ≤ k′ +1 ≤ k and consider any k′ < s < m, and
set Λs = {λ ∈ Λ, dimH(πλ(K1 × . . .×Kn)) < s}. The idea is to add another factor
to the cartesian product: Let m0 := k − k′ and consider K0 a sufficiently regular
subset of Rm0 with dimH(K0) = k− s, and π̃ : Rm0 ×Rm1 × . . .×Rmn → Rk with

π̃ ◦ PIn =π, where In = {1, . . . , n} ,

dim π̃
( ⊕

i∈I∪{0}

R
mi)
)
=min

(
k,m0 + dimπ(

⊕

i∈I

R
mi)
)
, for all I ⊂ {1, . . . , n} .

In particular π̃ is surjective. Notice that
∑

i∈I

dimH(Ki) + dim π̃(
⊕

i∈Ic

R
mi) > k, for all I ⊂ {0, 1, . . . , n} , I 6= ∅,

and also that dimH(π̃(λ0,λ)(K1×. . .×Kn)) < k for all (λ0, λ) ∈ Λm0×Λs. Applying
the Theorem 1.1.(i) in this new setting, we conclude that Λs is a zero measure subset
of Λ.

Remark 2.6. Theorem 2.3, when combined with Proposition 7.5 of [7], also gives
us a result on exceptional sets:

In the setting of the Theorem 1.1, part (i), we have

dimH

( {
λ ∈ Λ, ti 6= 0 if mi > 1,Lk(πλ(K1 × . . .×Kn)) = 0

} )
≤ l + k −m,

where l = dimΛm1 × . . .× Λmn
= n+

∑n

i=1 mi(mi − 1)/2.

3. Proof of the main results

Proof of Theorem 2.3. Notice that

|ν̂λ(ξ)|
2
=

∫ ∫
eiξ·πλ(y−x)dµ(x)dµ(y),

=

∫ ∫
eiπ

T ξ·(t1O1(y
1−x1),...,tnOn(yn−xn))dµ(x)dµ(y),

and that, for all z ∈ Rm, η ∈ Rm,∫

R

∫

SO(m)

eiη·tOz|t|m−1e−
1
2 |t|

2

dΘmdt =

∫

R

∫

Sm−1

ei|z|η·tθ|t|m−1e−
1
2 |t|

2

dσm−1dt

= 2

∫

Rm

ei|z|η·xe−
1
2 |x|

2

dx

= 2π
m
2 e−

1
2 (|z||η|)

2

,

where σm−1 denotes the normalized Lebesgue measure on Sm−1. Therefore by
Fubini’s theorem∫

Λ

∫

Rk

|ξ|m−k |ν̂λ(ξ)|
2
ρ(λ)dξdλ

= lim
a→∞

∫

|ξ|≤a

∫

Λ

|ξ|m−k |ν̂λ(ξ)|
2
ρ(λ)dλdξ

= c lim
a→∞

∫ ∫ (∫

|ξ|≤a

|ξ|m−k
e−

1
2 |Dx,y(ξ)|

2

dξ

)
dµ(x)dµ(y)

= c

∫ ∫ (∫

Rk

|ξ|m−k
e−

1
2 |Dx,y(ξ)|

2

dξ

)
dµ(x)dµ(y),
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where Dx,y =
(
D1(

∣∣y1 − x1
∣∣), . . . , Dn(|yn − xn|)

)
◦ πT , and Di(t) : Rmi → Rmi is

the diagonal transformation, Di(t) = t.Id, for t ∈ R.
We fixed x, y assuming that yi − xi 6= 0 for all i = 1, . . . , n. We estimate∫

Rk |ξ|
m−k

e−
1
2 |Dx,y(ξ)|

2

dξ separately, when m ≥ k and m < k. In both case we

apply the Lemma 2.4 for Vi = π(Rmi), taking vij = π(eij), where eij, j = 1, . . . ,mi

is the canonical basis of Rmi as subspace of Rm1 × . . .× Rmn .
We use the notation zI = (zi11 , . . . , zinn ) if z = (z1, . . . , zn) ∈ Rn

+ and I =

(i1, . . . , in) ∈ Nn, for z = (
∣∣y1 − x1

∣∣ , . . . , |yn − xn|).

Suppose m ≥ k. Let i0 such that zi0 ≤ zi for all i = 1, . . . , n. Notice that
m(π, d − (m − k)ei0) ≥ k and in particular d − (m − k)ei0 ≥ 0. We apply the
Lemma 2.4 to d − (m − k)ei0 and s = k. For each J ∈ J, just looking for the

sums in 1
2 |Dx,y(ξ)|

2 related to J and using the change of variables formula to an

appropriated linear isomorphs of Rk, we have

∫

Rk

|ξ|m−k
e−

1
2 |Dx,y(ξ)|

2

dξ ≤ c′zk−m

i0
z−Ĵ

∫

Rk

|η|m−ke−
1
2 |η|

2

dη,

for some constant c′ > 0 depending only on π and m−k, where Ĵ := (#j1, . . . ,#jn).
Therefore
∫

Rk

|ξ|m−k
e−

1
2 |Dx,y(ξ)|

2

dξ ≤ c′′zk−m

i0

∏

J∈J

z−αJ Ĵ = c′′z−(
∑

J
αJ Ĵ+(m−k)ei0 ) = c′′z−d′

.

Suppose k′ − 1 < m < k′, where 1 ≤ k′ ≤ k. We apply the Lemma 2.4 to d and
s = m. Let (J, i) ∈ J with #j1 + . . .+#jn = k′. From m < k′ we have ji 6= ∅. In
the same way as in the previous case, notice that

∫

Rk

|ξ|m−k
e−

1
2 |Dx,y(ξ)|

2

dξ ≤ c̃z−Ĵ

∫

Rk′

∫

Rk−k′

(|η′1|/zi + |η′′|)
m−k

e−
1
2 |η

′|2dη′dη′′,

for some constant c̃ > 0 depending only on π and m− k. We affirm that

∫

Rk′

∫

Rk−k′

(|η′1|/zi + |η′′|)
m−k

e−
1
2 |η

′|2dη′dη′′ ≤ c̃′zk
′−m

i ,

for some constant c̃′ > 0 depending only on m, k, k′. If k′ = k the affirmation is
true, since m− k > −1. If k′ < k, applying polar coordinates in Rk−k′

we have

∫

Rk′

∫

Rk−k′

(|η′1|/zi + |η′′|)
m−k

e−
1
2 |η

′|2dη′dη′′ ≤C

∫

R+

∫

R+

(t/zi + r)m−k′−1e−
1
2 t

2

drdt

=C(k′ −m)−1

∫

R+

(t/zi)
m−k′

e−
1
2 t

2

dt.

Then
∫
Rk |ξ|

m−k e−
1
2 |Dx,y(ξ)|

2

dξ ≤ c̃′′z−Ĵ(i), and therefore

∫

Rk

|ξ|m−k e−
1
2 |Dx,y(ξ)|

2

dξ ≤ c̃′′
∏

(J,i)∈J

z−α(J,i)Ĵ(i) = c̃′′z−
∑

(J,i)∈J
α(J,i) Ĵ(i) = c̃′′z−d′

.

�



A MARSTRAND’S PROJECTION TYPE THEOREM 7

Proof of Lemma 2.4. Claim: The vertices of the polyhedron

P =
{
(d1, . . . , dn) ∈ R

n, d1 ≥ 0, . . . , dn ≥ 0

∑

i∈I

di + dim
(∑

i∈Ic

Vi

)
≥ s, for all I ⊂ {1, . . . , n}

}

have all the form Ĵ(i) for some (J, i) ∈ J.

P ⊂ R
n

+, therefore P is a pointed polyhedron (i.e. it does not contain any non
trivial affine subspace). We proceed by induction on n. For n = 1 it is trivial.
Let x = (x1, . . . , xn) any vertex of the polyhedron. Then, there are n independent
inequalities from the definition of P that become equality in x (see [8], page 104).

If xn = 0, notice that x′ = (x1, . . . , xn−1) is now a vertex of the polyhedron

P ′ =
{
(d1, . . . , dn−1) ∈ R

n−1, d1 ≥ 0, . . . , dn−1 ≥ 0
∑

i∈I

di + dim
(∑

i∈Ic

Vi

)
≥ s, for all I ⊂ {1, . . . , n− 1}

}

(i.e. x′ ∈ P ′ and x′ satisfies n−1 independent equalities). By induction hypothesis,
there exist some J ′ = (j′1, . . . , j

′
n−1) ∈ J′ and i′ ∈ {1, . . . , n− 1} such that x′ =

Ĵ ′(i′). Then, J = (j′1, . . . , j
′
n−1, ∅) ∈ J and i = i′ are such that x = Ĵ(i).

Suppose x1 6= 0, . . . , xn 6= 0. By simplicity, we denote
∑

i∈I Vi by VI . Consider

I =

{
I ⊂ {1, . . . , n} , I 6= ∅,

∑

i∈I

xi + dimVIc = s

}
.

By the assumption on x, there are I1, . . . , In ∈ I such that the associated 0, 1 row

vectors Ĩ1, . . . , Ĩn defining the equalities, are independent.
If I, J ∈ I, then

dimVIc + dimVJc = 2s−
∑

i∈I

xi −
∑

i∈J

xi

= 2s−
∑

i∈I∪J

xi −
∑

i∈I∩J

xi

≤ dimVIc∩Jc + dim VIc∪Jc

≤ dim(VIc ∩ VJc) + dim(VIc + VJc)

= dimVIc + dim VJc ,

therefore, I ∪ J ∈ I and I ∩ J ∈ I. Let I0 ∈ I a minimal element by inclusion.
Then, for any J ∈ I, we have

I0 ⊂ J or I0 ∩ J = ∅.

This means the invertible matrix of rows Ĩ1, . . . , Ĩn has #I0 identical columns, and
therefore #I0 = 1, say I0 = {n}, or, equivalently, xn = s− dim(V1 + . . .+ Vn−1).

Notice that now x̃ = (x1, . . . , xn−1) is a vertex of the polyhedron

P̃ =
{
(d1, . . . , dn−1) ∈ R

n−1, d1 ≥ 0, . . . , dn−1 ≥ 0

∑

i∈I

di + dim
(∑

i∈Ic

Vi

)
≥ dim(V1 + . . .+ Vn−1), for all I ⊂ {1, . . . , n− 1}

}
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By induction hypothesis, there exist some appropriate J̃ = (̃j1, . . . , j̃n−1) ∈ J̃ such
that x̃ = (#j̃1, . . . ,#j̃n−1). We can take jn ⊂

{
vn1 , . . . , v

n
mn

}
such that V1 + . . .+

Vn−1 + 〈jn〉 = V1 + . . .+ Vn and J = (̃j1, . . . , j̃n−1, jn) ∈ J. Notice that x = Ĵ(n).
This finishes the proof of the claim.

To finish the prove of the lemma, notice that for a pointed polyhedron P (see
[8], page 108), we have

P = conv.hull
{
x1, . . . , xr

}
+ cone

{
y1, . . . , yt

}

where xi are the vertices of P and yi are its extremal rays; and we have necessary
yi ≥ 0 since P ⊂ R

n

+. �

Remark 3.1. Notice that Ĵ(i) ∈ P for all (J, i) ∈ J, hence we conclude from Lemma
2.4 that

P = conv.hull{Ĵ(i), (J, i) ∈ J}+ cone {e1, . . . , en} .

References

1. M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures,
Annals of Math (To appear).

2. R. Kaufman, On hausdorff dimension of projections, Mathematika 15 (1968), 153–155.
3. J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimen-

sions, Proc. London Math. Soc. (3) 4 (1954), 257–302.
4. P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann.

Acad. Sci. Fenn. Math. 1 (1975), 227–244.
5. , Geometry of sets and measures in euclidean spaces : fractals and rectifiability, Cam-

bridge University Press, 1995.
6. C.G. Moreira and J.-C. Yoccoz, Stable intersection of regular cantor sets with large hausdorff

dimentions, Ann. of Math. (2001), no. 154, 45–96.
7. Y. Peres and W. Schalg, Smoothness of projections, bernoulli convolutions, and the dimensions

of exceptions, Duke Math. J. 102 (2000), no. 2, 193–251.
8. A. Schrijver, Theory of linear and integer programming, Chichester, 1986.

IMPA - Estrada D. Castorina, 110 - 22460-320 - Rio de Janeiro - RJ - Brasil

E-mail address: jelv@impa.br; gugu@impa.br


	1107.0424v1.pdf
	1. Introduction
	2. Statement the main results
	3. Proof of the main results
	References


