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Resumo

Sejam G um grupo de Lie conexo não-abeliano e M uma G-variedade compacta e simples-
mente-conexa de dimensão 5. Mostramos que M tem que ser difeomorfa à esfera, a somas
conexas de cópias de S3 × S2, ao fibrado não-trivial de S3 sobre S2, ou a somas conexas
arbitrárias de cópias da variedade de Wu, SU(3)/ SO(3), e cópias da variedade de Brieskorn
do tipo (2, 3, 3, 3). Esta descrição é baseada na classificação que fazemos de todas estas ações
para G = SU(2) ou SO(3).

Como consequência destes resultados puramente topológicos, provamos que as variedades
M que admitem métricas invariantes pela ação de G com curvatura (seccional) não-negativa
são precisamente a esfera, o produto S3× S2, o fibrado não-trivial de S3 sobre S2 e a variedade
de Wu. Descrevemos completamente as ações de G nestas variedades.

A partir desta classificação equivariante fazemos uma classificação parcial das G-variedades
de dimensão 5 compactas e simplesmente-conexas com curvatura positiva.
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1 Introduction
Known examples of manifolds which admit metrics of positive (sectional) curvature are rare
when compared with nonnegatively curved examples. In fact, besides rank one symmetric
spaces, compact manifolds with positive curvature are known to exist only in dimensions
below 25, while to generate new nonnegatively curved manifolds from known ones it is enough,
for example, to take products, quotients or biquotients (see [34] for a survey). It is also
known that cohomogeneity one manifolds with codimension two singular orbits admit invariant
metric of nonnegative curvature, which gives rise to nonnegatively curved metrics on exotic
7-spheres (c.f., [16]).

By the Soul Theorem non-compact nonnegatively curved manifolds are diffeomorphic to
a vector bundle over a compact manifold with nonnegative curvature. In positive curvature
Bonnet-Myers implies that the fundamental group is finite and in nonnegative curvature a finite
cover is diffeomorphic to the product of a torus with a compact simply-connected manifold
with nonnegative curvature (see [5]). We will hence only consider compact simply-connected
manifolds.

In dimensions 2 and 3 the classification is purely topological since such simply-connected
compact manifolds are diffeomorphic to a sphere. The first follows from the topological classifi-
cation of compact surfaces and the latter from Perelman’s work on Poincaré’s Conjecture [27].

More recently, positively and nonnegatively curved manifolds were studied under the addi-
tional assumption of having a “large” isometry group (see e.g. the surveys [12] and [32]). The
beginning of this subject was the result by Hsiang and Kleiner [18] that a simply-connected
4-dimensional Riemannian manifold with positive curvature and S1-symmetry must be either
S4 or CP2. As a consequence, any metric with positive curvature on S2×S2 must have discrete
isometry group, providing a partial answer to the Hopf Conjecture. The isometric circle-actions
on 4-dimensional simply-connected compact manifolds with nonnegative (and positive) curva-
ture were classified in [11], [18] and [15]. Kleiner [21] also classified isometric SU(2)-actions
with discrete kernel on simply-connected 4-manifolds with nonnegative curvature.

In 2002, Rong [28] showed that a positively curved compact simply-connected 5-dimensional
manifold with a 2-torus acting by isometries has to be diffeomorphic to a 5-sphere, although the
actions are not yet classified. In 2009 Galaz-Garcia and Searle [10], only assuming nonnegative
curvature, showed that a 5-manifold which admits an action of a 2-torus is diffeomorphic to
either S5, S3 × S2, the nontrivial S3-bundle over S2 denoted by S3×̃S2, or the Wu-manifold
W = SU(3)/ SO(3). The description of the actions is not yet solved.

The classification of isometric circle actions on positively curved 5-manifolds is a very
difficult problem and at the moment seems out of reach. Thus, the question that arises is which
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5-manifolds admit a metric of nonnegative (or positive) curvature with symmetry containing
a connected non-abelian group G. We will be able to classify such manifolds with nonnegative
curvature and obtain a partial classification in positive curvature. For this purpose we first
classify all five-dimensional compact simply-connected manifolds which admit an action of a
connected non-abelian Lie group without any geometric assumptions. They are either S5,
S3× S2, S3 ×̃S2, connected sums of S3× S2, or connected sums kW # lB of copies of the Wu-
manifold W and the Brieskorn variety B of type (2, 3, 3, 3). Since any non-abelian connected
Lie group contains SO(3) or SU(2) as a subgroup, it is natural to classify in addition the actions
by these groups up to equivariant diffeomorphisms.

To describe the actions we introduce the following key construction.

Main example. Let m ≤ n and l be nonnegative integers and consider the S1-action on
SU(2)× S3 = S3 × S3 given by

x · (p, (z, w)) = (pxl, (xmz, xnw)),

where we regard SU(2) as the group of unit quaternions, p ∈ SU(2), x ∈ S1 = {eiθ ∈ SU(2)}
and (z, w) ∈ S3 ⊂ C2. This action is free whenever gcd(l,m) = gcd(l, n) = 1. Notice that
l = 1 if either m or both are zero. As we will see, the quotient N l

m,n := (SU(2) × S3)/S1 is
diffeomorphic to S3×S2 if m+n is even and diffeomorphic to S3 ×̃S2 otherwise. Consider N l

m,n

as an SU(2)-manifold by defining

g · [(p, (z, w))] = [(gp, (z, w))],

for g ∈ SU(2). This action has isotropy groups isomorphic to Zm, Zn and Zgcd(m,n) if m and n
are both positive, Zn and SO(2) if n > m = 0 and only one isotropy type (SO(2)) if m = n = 0.
If gcd(m,n) is even, the action has ineffective kernel Z2 and hence is an effective action by
SO(3). Notice that the actions on N 1

1,1 and N 1
2,2 are free, the actions on N 1

1,1, N 1
0,2 and N 1

0,0

are linear, and that, to complete all the linear actions on S3×S2 we should include the SO(3)-
action induced by the embedding of SO(3) ⊂ SO(4) in the first factor. Finally observe that
by O’Neill’s formula the standard product metric on S3 × S3 induces a G-invariant metric of
nonnegative curvature on N l

m,n.
Throughout this work unless otherwise stated, G will denote SO(3) or SU(2) and M a

simply-connected compact G-manifold of dimension 5. Our first result is a complete classifi-
cation of all such nonnegatively curved G-manifolds.

Theorem A. Let M be a G-manifold which admits an invariant metric with nonnegative
curvature. Then M is equivariantly diffeomorphic to either S5, S3× S2, or W = SU(3)/ SO(3)
with the natural linear G-actions, or N l

m,n.
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Notice that the natural metrics on these manifolds are G-invariant with nonnegative cur-
vature. For positive curvature we have the following partial classification.

Theorem B. If the G-manifold M admits an invariant metric with positive curvature,
then it is either equivariantly diffeomorphic to S5 with a linear action, or possibly W with the
linear SU(2)-action, or N l

m,n with trivial principal isotropy group, i.e., gcd(m,n) = 1 or 2.

In the context of Theorem B it is natural to conjecture that only the linear actions on S5

admit invariant metrics of positive curvature.
Theorems A and B will be a consequence of a general equivariant classification of SO(3)

and SU(2)-actions in dimension five. We begin with the case without singular orbits.

Theorem C. The G-manifolds without singular orbits are equivalent to either N 1
0,0 or N l

m,n

for some choice of positive integersm, n and l. The SO(3)-manifolds correspond to N l
m,n withm

and n even.

We will see that these actions are pairwise non-equivalent for different choices of the param-
eter l when gcd(m,n) ≥ 3 by showing that the fundamental group of the fixed point set of the
principal isotropy group is isomorphic to Zl. For gcd(m,n) = 1 or 2, the SU(2), respectively
SO(3)-actions N l

m,n and N l′
m,n are equivalent precisely when l = l′ modulo mn/ gcd(m,n).

Theorem C easily implies the following.

Corollary 1. A G-action without singular orbits on M extends to U(2)×S1 if G = SU(2)
and to SO(3)× T 2 if G = SO(3). In particular, M admits an effective T 3-action.

Finally, for actions with singular orbits we have

Theorem D. If the G-manifold M has singular orbits, M is equivariantly diffeomorphic to
either a linear action on S5 or:

(a) The SO(3)-action on either N 1
0,2m = S3 × S2, connected sums of k copies of the Wu-

manifold and l copies of the Brieskorn variety of type (2, 3, 3, 3), or connected sums of
copies of S3 × S2 with the linear action by SO(3) ⊂ SO(4) on the first factor;

(b) The SU(2)-action on either N 1
0,2m+1 = S3×̃S2, or the Wu-manifold with the left action

by SU(2) ⊂ SU(3).

The case of G = SO(3) was studied in [19], although the author missed the equivariant
connected sums of S3×S2 with the above SO(3)-action, and did not describe some of the actions
explicitly. For partial results about differentiable classifications, see [24], [25], [23] and [26].
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In Section 2 we discuss preliminaries and describe the basic examples. In Section 3 we
introduce the SU(2)-manifolds N l

m,n, prove Corollary 1 assuming Theorem C and prove some
results needed for the proof of Theorem C. Sections 4 and 5 are devoted to the proofs of
Theorems C and D. In Section 6 we prove Theorems A and B.

2 Preliminaries
In this section we fix our notation, define some of the objects we will work with and state the
main basic results we need. An advanced reader can start in Section 2 and come back to this
section whenever necessary (see [4]).

An action, α : G � M , of the Lie group G on the smooth manifold M is a morphism
α : G → Diff(M) whose image (αg)(p) we represent by g · p or gp, for g ∈ G and p ∈ M . A
manifold endowed with a G-action is called a G-manifold. We say that two G-manifolds M
and N are equivalent if there is an equivariant diffeomorphism f : M → N between them,
that is f(gp) = gf(p) for all p ∈ M and g ∈ G. In this work, we usually consider actions up
to equivalence, thus when we refer to the “number of actions” it means the “the number of
actions up to equivariant diffeomorphisms”, etc. The action is said to be effective if the kernel
of α is trivial. An ineffective G-action is equivalent to the induced action of the Lie group
G/ ker(α) that is effective.

Given a point p of M , the isotropy group of p is the subgroup Gp of G given by

Gp = {g ∈ G : gp = p}.

The actions that have all the isotropy groups conjugated to some fixed subgroup have special
properties some of which are discussed in Section 2.1. For example, for those actions the space
of orbits has a natural manifold structure. In the particular case when the isotropy group of
any point is trivial the action is called free.

Given a point p of M , the orbit of p is the set

G(p) = {gp ∈M : g ∈ G}.

It is well known that G(p) is an embedded submanifold of M diffeomorphic to G/Gp. The
isotropy groups of points at the same orbit are conjugated, more precisely, Ggp = gGpg

−1.
Given a subgroup K of G we denote by (K) the set of subgroups of G which are conjugated

to K, i.e.
(K) = {gKg−1 : g ∈ G}.

When a subgroup K ′ of G belongs to (K) we say that K ′ is of type (K). This notion clearly
defines an equivalence relation on the set of subgroups of G. If H is a subgroup of gKg−1
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for some g ∈ G, we write (H) ≤ (K) and say that H has type smaller than K. For isotropy
subgroups of a group action we have the Principal Orbit Theorem ([4], p.179) which claims:

(a) There exists a unique minimal isotropy type (H), the elements of which are called principal
isotropy groups;

(b) The set M(H) of points with isotropy group in (H) is open, dense in M .

If H is a principal isotropy group then, dimH ≤ dimK for any isotropy subgroup K of the
action. If K is an isotropy subgroup with dimH < dimK then we call K a singular isotropy
group. The remaining possibility is when an isotropy group K with the same dimension as H
has “strictly bigger isotropy type” than H. This happens when H is a proper open component
(not necessarily connected) of K. In this case the group K is called an exceptional isotropy
group.

We say that the orbit type of G(p) is bigger than G(q), and write (G(q)) ≤ (G(p)), when the
isotropy types satisfy (Gp) ≤ (Gq). The orbit G(p) is called principal, singular or exceptional
according to the associated isotropy group Gp.

As previously observed, it is well known that the orbit space admits a manifold structure
if the action has only one isotropy (orbit) type. In general, the quotient M/G of the manifold
by the action with the induced topology is a topological manifold with boundary. If M is
simply-connected and G is connected, then M/G is also simply-connected since the projection
M → M/G has the path lifting property (see [4] p. 91). The dimension of the orbit space
M/G is called the cohomogeneity of the action. Clearly dim (M/G) = dimM−dimG+dimH,
where H is a principal isotropy group.

From the differentiable point of view, the orbit space M/G has the structure of a stratified
space. For this work it is enough to know that when the action has isotropy types of the same
dimension the orbit space has the structure of an orbifold. Roughly speaking an orbifold is
a topological space locally modeled on Rn modulo a finite group action. If M is a manifold
and Γ is a group acting on M with only finite isotropy groups, then M/Γ has the structure
of an orbifold ([31], p. 302). When M is simply-connected, then M is a covering space in the
sense of orbifolds and Γ is called the orbifold fundamental group of M/Γ. It is important to
observe that the underlying space of the orbifold M/Γ, the space from the topological point
of view, may even be simply-connected. For precise results and definitions about orbifolds we
refer to Chapter 13 of [31].

A representation of a Lie group G is a morphism G → Gl(n,R). It determines a linear
action of G on Rn. A representation is called irreducible if the unique linear subspaces of
Rn which are invariant by the action are {0} and the whole Rn. It is useful to note that
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any representation of a compact Lie group G can be seen as an orthogonal representation,
G → O(n), on Rn with a suitable inner product. In the same way one shows that given a
smooth action of a compact Lie group G on a manifold M there is a Riemannian metric g on
M for which the action is by isometries. In this case, G is seen as a subgroup of the isometry
group Iso(M, g) of the metric g.

Let S be an embedded submanifold through p ∈ M . Suppose that S is invariant under
the action of Gp, i.e., Gp(S) = S. Let G ×Gp S be the quotient of G × S by the action
h · (g, s) = (gh−1, h(s)). Then S is called a slice through p, if the map

G×Gp S →M, [(g, s)] 7→ gs,

is a G-equivariant diffeomorphism onto an open neighborhood of G(p). The Slice Theorem
claims that there is a slice through each point p of M . The action of the isotropy group Gp

on the slice S is called isotropy action. This action is commonly identified with the action of
derivatives at p of the diffeomorphisms in Gp. This is a linear action of Gp on the tangent
space of S at the point p and it is called the isotropy representation of Gp. In general, this
representation can be seen as a morphism Gp → O(l), where l is the codimension of the orbit
G(p) in M .

An exceptional orbit G(p) is called special exceptional if the isotropy action of Gp on S, the
slice through p, has a codimension one fixed point set in S. Geometrically it means that the
action Gp � S is a reflection in the fixed hypersurface SGp ⊂ S.

It is well known that a compact connected non-abelian Lie group G contains either SO(3)
or SU(2), to see this, take a subgroup corresponding to the subalgebra generated by a root
space and a root vector in the root system of the Lie algebra of G. Thus, in order to classify
5-dimensional manifolds with an action of a non-abelian connected Lie group G it is enough
to classify the actions of SO(3) and SU(2).

For the next results we refer to Chapter IV Sections 4 and 8 of [4]. Let M be a compact,
connected and simply-connected G-manifold where G is compact and connected.

Proposition 2. The orbits of maximal dimension are orientable.

Proposition 3. There are no special exceptional orbits.

Proposition 4. If the action has cohomogeneity 2, then the space of orbits, M/G, is a
2-dimensional topological manifold with (or without) boundary. The boundary, if not empty,
consists of the singular orbits and in this case there are no exceptional orbits.

Proposition 5. If the action has cohomogeneity 3, then M/G is a simply-connected
(smooth) 3-manifold possibly with boundary.
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It is known that a compact simply-connected 3-manifold is diffeomorphic to S3, (see [27]).
The following completes the possible orbit spaces for a cohomogeneity 3 action.

Proposition 6. A simply-connected compact 3-dimensional manifold with boundary is dif-
feomorphic to a 3-sphere with k open 3-disks removed.

Proof. Let X be a simply-connected compact 3-manifold with boundary. We claim that the
boundary of X is a disjoint union of 2-spheres. In fact, Poincaré duality to the pair (X, ∂X)
guarantees that H2(X, ∂X) ' H1(X), so from the exactness of the relative homology sequence,

· · · → H2(X, ∂X)→ H1(∂X)→ H1(X)→ · · ·

we conclude that H1(∂X) = 0. So each connected component of ∂X is homeomorphic to S2

by the classification of compact surfaces.
The manifold obtained from X by covering each connected component with a 3-disk is

simply-connected compact without boundary, so it is a 3-sphere and the proposition is proved.

Theorem 7 (Barden-Smale [2] and [29]). If M and N are simply-connected, compact,
5-dimensional manifolds with isomorphic second homology groups with integer coefficients and
the same second Stiefel-Whitney classes, then M and N are diffeomorphic.

Theorem 8 ([4] p. 93). Let G be a compact Lie group and X a topological manifold. If N
is a G-manifold with orbit space X × I whose orbit types are constant along {x} × I for all
x ∈ X, then there is a G-manifold M satisfying:

(i) The quotient M/G ' X and each element in M/G corresponds to the same orbit type as
in N/G;

(ii) The G-manifold M × I, with G acting trivially on I, is equivalent to N ;

(iii) If f : N → M × I is a G-equivalence and πN : N → X × I and πM : M → X are the
orbit maps, then the diagram

N

πN

##FF
FF

FF
FF

F
f // M × I

πM×IdI
yyssssssssss

X × I

commutes.

Moreover, M can be taken to be π−1
N (X × {0}) and f |π−1

N (X×{0}) : M → M × I as the
inclusion p 7→ (p, 0).
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2.1 Generalities about actions with one orbit type

The following results are well known from the theory of group actions; we refer to Bredon [4]
Chapter II Section 2 for the first and Section 5 for the second proposition.

Proposition 9. Let G be a Lie group acting on M with only one isotropy type (H). The
group ΓH := N(H)/H acts freely on the fixed point set MH = {p ∈M ; hp = p for all h ∈ H}
and the orbit space MH/N(H) is diffeomorphic to M/G. In particular, ΓH →MH →M/G is
a principal bundle.

Proposition 10. If G acts on M with unique isotropy type (H), then the manifold M is
the total space of the bundle associated to the principal bundle in Proposition 9. More precisely,
the map

Φ : MH ×ΓH
(G/H)→M

defined by Φ[(p, gH)] = gp is a G-equivariant diffeomorphism.

Proposition 11. There are as many equivalence classes of G-manifolds with unique
isotropy type (H) and orbit space M/G ' Sn as elements in πn−1(ΓH).

Proof. It is known (c.f. A. Borel [3]) that given a closed subgroup H ⊂ G, there is a bijective
correspondence between the set of isomorphism classes of principal bundles ΓH → P → B,
where ΓH = N(H)/H, and the set of equivalence classes of G-manifolds M with unique
orbit type (G/H). This correspondence, described in Proposition 10, associates the principal
bundle ΓH → P → B to the G-manifoldM := P ×N (G/H) with G acting only on G/H by left
multiplication on the cosets. It is known (see [30], Corollary 18.6) that the set of isomorphism
classes of F -bundles over Sn are in bijection with πn−1(F ) whenever F is arcwise connected.
Now, the proposition follows from the fact that for a Lie group K, the principal K-bundle is
determined by the Ko-fiber bundle over the same basis, where Ko is the identity component
of K. Therefore, the bijection holds for K-principal bundles over Sn even if the Lie group K
is not connected.

Hereafter in this work unless explicit stated G will denote SU(2) or SO(3). If M is simply-
connected of dimension 5 with one orbit type, then the orbit spaceM/G is a 2 or 3 dimensional
compact simply-connected manifold without boundary. Hence, M/G is diffeomorphic to either
S2 or S3, as a consequence of the classification of the compact surfaces and Perelman’s proof
of Poincaré’s Conjecture [27] . In this case we can count the number of G-manifolds using
Proposition 11: it coincides with the order of the first or the second homotopy group of ΓH if
M/G = S2 or S3 respectively.
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2.2 SO(3) and SU(2) group structure and examples

The Lie group SO(3) is the group of rotational symmetries of R3. Every nontrivial A ∈ SO(3)
fixes a unique direction on R3, called its axis of rotation. Choosing a special orthonormal basis
on R3 the map A can be expressed as A = diag(R(θ), 1), where R(θ) is the rotation of angle θ
on the plane orthogonal to the axis of rotation.

Every nontrivial subgroup of SO(3) is isomorphic to either the cyclic group Zk, the dihedral
group Dm, the tetrahedral group T, the octahedral group O, the icosahedral group I, the
circle SO(2) or the normalizer of SO(2) in SO(3), which is O(2) (see [33] Section 7.1).

The special unitary group SU(2) is the Lie group of linear operators of C2 that preserve
the hermitian inner product and have determinant one. Alternatively, SU(2) can be seen as
S3 ⊂ C2 or the unit quaternions, S3 ⊂ H. For α and β ∈ C with |α|2 + |β|2 = 1 we have the
following correspondence between the three expressions of an element in SU(2) α −β

β α

 ∈ C2×2 ∼ (α, β) ∈ C2 ∼ α + βj ∈ H.

The quaternion notation will be generally used for the group SU(2), while the S3 ⊂ C2 notation
when considering SU(2) just as a manifold. The circle θ 7→ eiθ ∈ H will be considered as a
canonical choice of a subgroup of SU(2) isomorphic to S1.

Identifying R3 with the subspace {ReH = 0} ⊂ H, consider the linear action φ : SU(2) � R3

given by q ·v = q v q−1. It is easy to check that ker(φ) = Z2, that the action is by isometries and
preserves orientation. Thus, it gives rise to a map φ : SU(2) → SO(3) which is the universal
2-fold cover. The subgroups of SU(2) are isomorphic to Z2k+1 or the pre-images by φ of the
subgroups of SO(3) (see [1] §2). A more geometric description of the subgroups of SU(2) is
given by considering it as the unit quaternions. Any closed nontrivial subgroup of SU(2) is
then isomorphic to one of the following:

(i) The cyclic group Zk = 〈e2πi/k ∈ H〉 of order k;

(ii) The dicyclic group, Dicn = 〈eiπ/n, j ∈ H〉 of order 4n;

(iii) The binary tetrahedral group, T∗ = 〈12 (1 + i+ j + k) , 1
2 (1 + i+ j − k) ∈ H〉 of order 24;

(iv) The binary octahedral group, O∗ = 〈12 (1 + i+ j + k) ,
√

2
2 (1 + i) ∈ H〉 of order 48;

(v) The binary icosahedral group, I∗ = 〈12 (1 + i+ j + k) , 1
2 (ϕ+ ϕ−1i+ j) ∈ H〉 where ϕ is

the golden ratio ϕ = 1
2

(
1 +
√

5
)
, which has 120 elements;

(vi) The circle SO(2) = {eiθ ∈ H};
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(vii) The pin group, Pin(2) = 〈SO(2) , j ∈ H〉 = NSU(2)(SO(2)).

We introduce here some of the G-actions with G = SO(3) or SU(2) that will appear in our
classification.

Example 1. The SO(3)-action on S5 with isotropy types (Z2 × Z2), (O(2)) and SO(3).
It has exactly two fixed points, and corresponds to the linear action on R6 which arises from
the unique irreducible representation of SO(3) in SO(5) by adding a fixed direction to R5.
Identifying R6 with the set of 3× 3 symmetric matrices

R6 ' {X ∈ R3×3 ; XT = X},

this SO(3)-action is given by A ·X = AXA−1. Moreover, defining the inner product on R6 by
〈A,B〉 = trAB, the action is by isometries. The corresponding SO(3)-linear action on S5 is
this action on the unit vectors of R6. The Spectral Theorem guarantees that in each orbit there
is a diagonal matrix, thus each orbit is uniquely determined by the eigenvalues {λ1, λ2, λ3} of
the operator associated to the matrix. To avoid ambiguity we write them in decreasing order
λ1 ≥ λ2 ≥ λ3. Thus, the orbit space is

S5/ SO(3) = {(λ1, λ2, λ3) ∈ R3 : λ1 ≥ λ2 ≥ λ3 and Σλ2
i = 1},

which is homeomorphic to a closed 2-disk with two fixed points, ±(
√

3/3) Id in the bound-
ary. The matrices with exactly two equal eigenvalues have isotropy either S(O(2) O(1)) or
S(O(1) O(2)) corresponding to the boundary faces of the quotient and the matrices with three
distinct eigenvalues have isotropy group Z2 × Z2, corresponding to the interior points of the
disk. From the metric point of view the angle between the boundary faces of the quotient
is π/3 and has vertices in the fixed points.

Example 2. The SO(3)-action on S5 with isotropy types {1} and (SO(2)).
Consider S5 ⊂ R3 × R3 and let the action be A · (x, y) = (Ax,Ay). The points (x, y) ∈ S5

with x and y linearly independent have trivial isotropy group. Any other point has isotropy
group SO(2). The quotient is a 2-disk.

Example 3. The SO(3)-action on S5 with isotropy types (SO(2)) and SO(3).
This corresponds to the natural inclusion of SO(3) in SO(6), given by diag(A, 1, 1, 1) ∈ SO(6)
for A ∈ SO(3). It is easy to verify that the quotient is a 3-disk with the boundary corresponding
to the fixed points.

Example 4. The SU(2)-action on S5 with isotropy types {1} and SU(2).
This is the action determined by the unique SU(2) linear action on C3 given by the embedding
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B ∈ SU(2) 7→ diag(B, 1) ∈ SU(3). The quotient is the 2-disk with the boundary corresponding
to the circle of fixed points {(0, 0, z) ∈ C3 : |z| = 1}. We will see that this is the unique SU(2)-
action with fixed points.

Example 5. The SO(3)-linear on S3 × S2 with isotropy types (SO(2)) and SO(3).
The action is defined by the embedding SO(3) ⊂ SO(4)× SO(3) in the first coordinate. If N
and S ∈ S3 are the north and south pole, the 2-spheres {N} × S2 and {S} × S2 are fixed and
any other point have isotropy SO(2). The orbit space is diffeomorphic to S2 × [−1, 1].

Example 6. The SU(2)-action on the Wu-manifold W := SU(3)/ SO(3), with isotropy types
{1} and (SO(2)).
The Wu-manifold is the quotient of SU(3) by right multiplication of SO(3) ⊂ SU(3). Given
B ∈ SU(2) and [C] ∈ W , the action is B · [C] = [(diag(B, 1)C)]. Thus, if B ∈ diag(SU(2), 1)
is in the isotropy group of the point [C] ∈ W , there exists an A ∈ SO(3) such that BC = CA.
This means that the isotropy groups of SU(2) � W are isomorphic to the isotropy groups
of the SO(3)-action on SU(2) \ SU(3) ' S5 by right multiplication on the cosets. This is a
linear SO(3)-action on S5, and hence corresponds to the representation of SO(3) in SO(6) in
Example 2. This implies that the isotropy types of the SU(2) �W are {1} and (SO(2)), while
the quotient is the 2-disk.

Example 7. The SO(3)-action on W with isotropy types (Z2 × Z2), (O(2)) and SO(3).
The group SO(3) acts on W as A · [B] = [AB]. The isotropy types are (Z2 × Z2), (O(2))
and SO(3) corresponding respectively to the orbits that have diagonal matrices with three,
two or one distinct eigenvalues, up to signs.

This action has exactly three fixed points, they are [Id], [diag(e(πi)/3, e(πi)/3,−e(πi)/3)] and
[diag(e(2πi)/3, e(2πi)/3,−e(2πi)/3)]. The isotropy type (O(2)) occurs in three different ways each
one as a boundary face of the quotient and has the form of either S(O(2) O(1)) = diag(A, detA),
S(O(1) O(2)) = diag(detA,A) or B · S(O(2) O(1)) · B−1, where A ∈ O(2) and B is the 3 by 3
matrix with column vectors respectively e3, e1 and e2. The quotient is a topological two disk.
If the action is by isometries, then the quotient is a flat triangle. Each edge corresponds to
some embedding of the isotropy subgroup O(2) ⊂ SO(3). It was proved in [19] that this is the
unique SO(3)-action on the Wu-manifold up to conjugacy.
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Example 8. The SO(3)-action on the Brieskorn variety, B of type (2, 3, 3, 3) with isotropy
types (Z2 × Z2), (O(2)) and four fixed points.
The Brieskorn variety of type (2, 3, 3, 3) can be defined as

B =
{

(zo, z1, z2, z3) ∈ C4 ; z2
o + z3

1 + z3
2 + z3

3 = 0 and |zo|2 + |z1|2 + |z2|2 + |z3|2 = 1
}
.

In [19] this action is constructed by a process of gluing four open sets and the manifold is
identified computing topological invariants. Each of these four open sets corresponds to an
isolated fixed point. As far as we know an explicit description of this action is not known.

Given two n-dimensional G-manifolds with fixed points, choose Riemannian metrics invari-
ant under the G-actions and consider a small ball of radius r around a fixed point in each
manifold. If the isotropy actions of G on the slices of those fixed points are the same, then the
actions on the boundaries of the balls are equivalent and we can to make a connected sum of
the two G-manifolds gluing along those spheres to obtain a new smooth G-manifold.

The next SO(3)-manifold is missing in the classification in [19].

Example 9. The SO(3)-action on the connected sum of k copies of S3 × S2 with isotropy
group SO(2) and k + 1 two-spheres consisting of set of fixed points.
We start with the SO(3)-action in S×S2 from Example 5. At a fixed point the isotropy rep-
resentation is given by SO(3)-action on R3 × R2 that is standard in the first coordinate and
trivial on the second. We can now take the connected sum of 2 copies of S3 × S2 at the fixed
points. This provides a connected sum of two fixed 2-spheres, so if we do this for k copies of
S3 × S2, we obtain k + 1 fixed 2-spheres. The orbit space of the action is diffeomorphic to a
3-sphere with k + 1 three-disks removed.

Notice that the manifolds are not diffeomorphic. In fact, for n-dimensional manifolds M
and N , it is well known that Hr(M#N) ' Hr(M)⊕Hr(N) for 0 < r < n. So, denoting S3×S2

by M we have that
H2(M# · · ·#M ; Z) ' Zk.

Example 10. The SO(3)-actions on kW# lB.
The isotropy representation around an isolated fixed point of an SO(3)-manifold of dimension 5
must be the unique irreducible one (see Example 1). The SO(3)-action on S4 where the
connected sum takes place has quotient an interval, so there are exactly two ways to connect
the manifolds. In [19], it is shown that depending on the way that W and B are connected we
get distinct SO(3)-manifolds.

We will see that these are precisely the simply-connected 5-dimensional SO(3)-manifolds
with isolated fixed points.
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3 The main example
The following construction is crucial since it generates all 5-dimensional G-manifolds without
singular orbits and most actions with singular orbits for G = SO(3) or SU(2).

Let G be a Lie group, µ : H → G a morphism of a Lie group H in G and N an H-manifold.
Consider the action of H on G×N defined by

Θ(h, (g, x)) = (gµ(h−1), hx). (1)

If for each point x ∈ N the intersection of Ker(µ) with the isotropy group Hx is trivial, then
the action Θ is free. So the quotient, G×HN , is a G-manifold where we define the G-action by

k · [(g, x)] = [(kg, x)].

The isotropy group at the point [(g, x)] is isomorphic to the subgroup µ(Hx) ' Hx of G.
When the rank of the group G is one and H = S1, instead of considering a morphism µ as

above, we can fix a monomorphism of S1 in G and take an integer power of it. This is what is
done in the next example.

Example 11 (Main example). Let m, n and l be nonnegative integer numbers and, to avoid
ambiguity, we assume that m ≤ n and set l = 1 whenever m = 0. Consider the S1-action on
SU(2)× S3 given by

x ∗ (p, (z, w)) = (pxl, (xmz, xnw)), (2)

where p ∈ SU(2) and (z, w) ∈ S3 ⊂ C2. We regard the SU(2) factor as the group of unit
quaternions. We fix S1 ⊂ C ⊂ H for the monomorphism from the circle to SU(2) ⊂ H.

As explained in the general construction, the quotient

N l
m,n = SU(2)×S1 S3

is a manifold whenever gcd(l,m) = gcd(l, n) = 1. We see from the sequence of homotopies of
the principal bundle

S1 → SU(2)× S3 → N l
m,n

that the manifold N l
m,n is simply-connected.
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Proposition 12. The manifolds N l
m,n are diffeomorphic to S3 × S2 if m + n is even, oth-

erwise they are diffeomorphic to the unique nontrivial S3-bundle over S2, denoted by S3 ×̃S2.

Proof. The exact homotopy sequence of the principal bundle S1 → S3×S3 →M shows that the
second homotopy group is π2(M) ' Z. Since M is simply-connected the Hurewicz morphism
h∗ : π2(M)→ H2(M) is an isomorphism. Thus H2(M) ' Z.

The second Stiefel-Whitney class for these quotients is computed in detail in [8] p. 77.
It is shown that w2 = 0 if m + n is even and w2 = 1 otherwise. So, the result follows from
Barden-Smale classification, c.f. Theorem 7.

Now we define the SU(2)-action on N l
m,n by

g · [(p, (z, w))] = [(gp, (z, w))].

We will also denote this SU(2)-manifold by N l
m,n. This action has the same isotropy structure

as the S1-action on the second factor S3. If the integers l, m and n are nonzero, the isotropy
group of the point [(p, (z, w))] is respectively Zm, Zn or Zgcd(m,n) according w = 0, z = 0 or
both z and w are non-zero. In particular, m and n are invariants of the SU(2)-manifold N l

m,n.
For convenience we set gcd(0, 0) = 1.

In general, for SU(2)-actions, if the principal isotropy group contains Z2 as a subgroup,
the action is ineffective since Z2 is normal in SU(2). Therefore, N l

2m,2n becomes an effec-
tive SO(3)-manifold with isotropy groups Zm, Zn and Zgcd(m,n). Observe that the underlying
manifolds are all diffeomorphic to S3 × S2 and l has to be odd to be coprime with 2m and 2n.

Remark 1. The S1-action (2) is a restriction of the SU(2)×T 3-action on SU(2)×S3 given by

(g, (r, s, t)) · (p, (z, w)) = (gpr, (sz, tw))

where r, s, t ∈ S1. In our example ∆S1 = {(1, (xl, xm, xn))} ⊂ SU(2)× T 3 is the S1 group that
acts on SU(2)×S3. Hence, the quotientN l

m,n admits an action by SU(2)×(T 3/∆S1) with kernel
generated by (−1, [(−1, 1, 1)]). Notice that if m and n are even then (1, (−1, 1, 1)) ∈ ∆S1, so
the kernel is Z2 ⊂ SU(2) and SO(3) × T 2 acts effectively on N l

m,n. Otherwise, the ineffective
kernel is the diagonal Z2 in SU(2)× S1 ⊂ SU(2)× T 2, thus U(2)× S1 acts effectively on N l

m,n.
In any case, there is an effective action of a 3-torus on N l

m,n.
This proves Corollary 1, assuming Theorem C.

As we pointed out, if lmn 6= 0, the isotropy types of N l
m,n are (Zm), (Zn) and (Zgcd(m,n)).

Hence, if m = n, the action has only one isotropy type (Zn). In particular, we get free actions
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on S3×S2 whenm and n are both equal to either 1 or 2. The SU(2)-manifoldsN l
1,1 are all equiv-

alent since there is only one isomorphism class of SU(2)-principal bundles over S2 (c.f. Corol-
lary 18.6 in [30]). The same result shows that there are two non-equivalent SO(3)-principal
bundles over S2, but just one of them is simply-connected, N 1

2,2, with the free SO(3)-action.
Notice that the free SU(2)-manifold N 0

1,1 corresponds to the left multiplication on the first
factor of SU(2)× S2.

Ifm = n = 0 then l = 1 and the S1-action on the first factor reduces to the Hopf action with
quotient diffeomorphic to S2 ' SU(2)/ SO(2). Thus the SU(2)-action is the natural product
on the cosets and has unique isotropy type equal to (SO(2)). On the other hand, if m = 0 < n,
then l = 1 again and the isotropy types are (Zn) and (SO(2)).

Remark 2. We do not obtain new G-manifolds by taking negative integer parameters. In
fact, if we regard the S1-action on the first factor of SU(2) × S3 considering SU(2) ⊂ C2

rather than the unit quaternions, for x ∈ S1 and (u, v) ∈ SU(2) we obtain the action
x · (u, v) = (uxl, vxl). Therefore, the SU(2)-manifolds N l

m,n and N−lm,n are equivalent by switch-
ing (u, v) to (v, u). In the same way we can consider the SU(2)-equivariant diffeomorphism
f : N l

m,n → N l
−m,n which takes [(p, (z, w))] to [(p, (z, w))]. The equivalence for n negative is

analogous.

Hereafter in this chapter N l
m,n will be denoted by N l

n1,n2 and its elements are now rep-
resented by [(p, (z1, z2))]. Let n1 and n2 be positive integers. We will describe the isotropy
representations in the neighborhoods of the exceptional orbits of N l

n1,n2 and later we compute
the clutching function of the decomposition in this representation. This is important since the
isotropy representations and the homotopy class of the clutching function arise as invariants
to be used in the proof of Theorem C. In the remainder we will use in addition to l, n1 and n2

the following integers:

d = gcd(n1, n2), nj = dqj and ujl + vjnj = 1 for some integers uj and vj.

First consider S3 = B1 ∪ B2 where Bj = {(z1, z2) ∈ S3 : |zj| ≥ 1/
√

2} for j = 1 or 2, and
the identification of the boundaries is the trivial one (the identity map). Note that

N l
n1,n2 = SU(2)×S1 B1

⋃
Id

SU(2)×S1 B2.

Now we describe an equivalence between SU(2) ×S1 Bj and a certain quotient of SU(2) ×D2

by Znj
. Assume j = 2, the other case being analogous. For [(p, (z1, z2))] ∈ SU(2) ×S1 B2 we

have z2 6= 0 therefore we can write [(p, (z1, z2))] = [( p, ( z1, |z2| z2/|z2| ))]. Take x = ζη2 ∈ S1

with ηn2
2 = 1 and ζn2 = z2/|z2| where arg(ζ) < 2π/n2 in order to obtain xn2 = z2/|z2|.
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Define p̂ = pζ l for each p ∈ SU(2) and ẑ1 = ζn1z1. Then

[( p, ( z1, z2 ))] = [( pxl, (xn1z1, x
n2z2 ))] = [( p̂ηl2, ( ηn1

2 ẑ1 ,
√

1− |ẑ1|2 ))],

where η2 ∈ Zn2 ⊂ S1 ⊂ C.
So, for some equivariant diffeomorphism ϕ : SU(2)×Zn1

S1 → SU(2)×Zn2
S1 we have

N l
n1,n2 = SU(2)×Zn1

D2 ⋃
ϕ

SU(2)×Zn2
D2, (3)

with the actions Znj
� SU(2) × D2 given by ηj · (p, z) = (pηlj, ηni

j z), 1 ≤ i 6= j ≤ 2. Now,
ξj = ηlj is a generator of Znj

, and if we write nj = dqj, where d = gcd(n1, n2), this last action
becomes ξj ·(p, z) = (pξj, ξdqiuj

j z), for some integer vj with ujl+vjnj = 1. This is the expression
provided by the Slice Theorem in a neighborhood of the isolated orbit of type (SU(2)/Znj

) and
the number aj := qiuj modulo qj determines the action of the isotropy group Znj

in the slice,
i.e. the slice representation. As a consequence we have the following result:

Proposition 13. If N l
n1,n2 and N l′

n1,n2 are equivalent, then l ≡ ±l′ mod q1q2.

Since gcd(aj, qj) = 1, there are integers bj and rj such that ajbj + qjrj = 1 and 0 ≤ bj < qj.
Recall that uj is the inverse of l in Zqj

, so from aj = qiuj we obtain l ≡ bjqi mod qj. Hence
there is an integer k such that

l = b1q2 + b2q1 + kq1q2. (4)

The number l determines the isotropy action in the neighborhood of the exceptional orbits
SU(2)/Znj

, for j = 1 or 2, since it determines bj. Therefore, it describes each SU(2) ×Znj
D2

in the expression (3).

Proposition 14. The map l(b1, b2, k) = b1q2 + b2q1 + kq1q2 is a bijection between the sets
P = {(b1, b2, k) ∈ Z3 : 0 ≤ bj < qj, (bj, qj) = 1, j = 1, 2} and Q = {l ∈ Z : (l, qj) = 1,j=1, 2}.

Proof. For any l ∈ Q given, there is a unique solution (xo, yo) for the diofantine equation
xq1 + yq2 = l satisfying 0 ≤ xo < q2. Call xo = b2 and note that b2 is coprime with q2 since l
is. On the other hand, there are integers k and b1 both uniquely determined by the properties
yo = kq2 + b1 and 0 ≤ b1 < q2. Thus we have l = b1q2 + q1(b2 + kq2) that clearly implies that
b1 and q1 are coprime since l ∈ Q. This establishes the bijection between P and Q.

For d = gcd(n1, n2) ≥ 3, the next result guarantees that the parameter l ≥ 0 itself is an
invariant of the action, or equivalently, the SU(2)-manifolds N l

n1,n2 and N l′
n1,n2 are equivalent

if and only if l = ±l′.
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Proposition 15. If the principal isotropy group H of N l
n1,n2 is isomorphic to Zd for d ≥ 3,

the fixed point set (N l
n1,n2)H is a disjoint union of two copies of lens spaces S3/Zl.

Proof. Let H ' Zd be the subgroup of SU(2) generated by e2πi/d and notice that N(H) =
N(S1), where H ⊂ S1 and N(K) is the normalizer of the subgroup K ⊂ G in G. This
easily implies that an element [(p, (z1, z2))] belongs to MH if, and only if, p ∈ N(H). Thus
(N l

n1,n2)H = N(H)×S1 S3. Therefore

(N l
n1,n2)H = (S1 ×S1 S3)

⋃
(S1 ×S1 S3),

since N(Zd) ' Pin(2).
Notice that every [(y, (z1, z2))] ∈ S1 ×S1 S3 has a representative with y = 1. In fact,

[(y, (z1, z2))] = [(1, (ξn1ζn1z1, ξ
n2ζn2z2))] where ζ l = y with arg(ζ) < 2π/l and ξl = 1. Now

define ẑ1 = ζn1z1 and ẑ2 = ζn2z2, as a new parametrization for the 3-sphere. Thus S1 ×S1 S3 is
diffeomorphic to the quotient of S3 by the Zl-action

ξ · (z1, z2) = (ξn1z1, ξ
n2z2).

Hence S1 ×S1 S3 is a Lens space S3/Zl.

Clearly Proposition 15 only has an assumption on the principal isotropy group, so the fixed
point set MH when M is either N 1

0,0 or N 1
0,n is the disjoint union of two copies of a 3-sphere.

Notice that the principal isotropy group Zd ⊂ Znj
acts trivially on the slice D2, so

SU(2) ×Znj
D2 is equivalent to SU(2)/Zd ×Zqj

D2 and the equivalence is just given by
[(p, z)] ∼ [(pZd, z)]. Therefore the clutching function ϕ is an equivariant map defined from
SU(2)/Zd ×Zq1

S1 to SU(2)/Zd ×Zq2
S1. So, it is sufficient to compute ϕ along the path

t 7→ [(Zd, µ(t)n2)] where
µ(t) = e2πit/dq1q2 ∈ C ⊂ H.

Whenever necessary to make arguments more clear, we will denote by J. , .K the classes in
SU(2)/Zd ×Zq2

D2. We claim that

ϕ([(Zd, µ(t)n2)]) = J(µ(t)lZd, µ(t)n1)K. (5)

In fact, we identified [(Zd, µ(t)n2)] ∈ SU(2)/Zd ×Zq1
D2 with [(1, (1/

√
2, µ(t)n2/

√
2)] that lies

in the boundary of SU(2) ×S1 S3
1. Let x(t) = µ(t)η2 ∈ S1 and use the equivalence by S1 to

get [(1, (1/
√

2, µ(t)n2/
√

2)] = [(µ(t)lηl2, (µ(t)n1
ηn1

2 /
√

2, 1/
√

2))]. If we see this last element in
SU(2)×S1 S3

2, then we use the previous identification yields J(µ(t)lZd, µ(t)n1)K ∈ SU(2)/Zd×Zq2

D2 and the claim follows.
The discussion above can be summarized as follows.
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Proposition 16. The SU(2)-manifold N l
n1,n2 with n1n2 6= 0, when written as a union of

the slice representations at the two exceptional orbits has the form

N l
n1,n2 = SU(2)×Zn1

D2 ⋃
ϕ

SU(2)×Zn2
D2,

where the actions Znj
� SU(2) ×D2 are given by ηj · (p, z) = (pηlj, ηni

j z), 1 ≤ i 6= j ≤ 2, and
the clutching function ϕ : SU(2)/Zd ×Zq1

S1 → SU(2)/Zd ×Zq2
S1 is

ϕ([(Zd, µ(t)n2)]) = J(µ(t)lZd, µ(t)n1)K.

It will be seen in Section 4 that the number k in (4) represents the homotopy class of the
clutching function ϕ when d ≥ 2.

Remark 3. In order to construct SO(3)-manifolds one could take G = SO(3), define the
monomorphism S1 → SO(3) by

eiθ
µ7→ diag(R(θ), 1)

and consider the S1-action on SO(3)× S3 by

Θ(l,n1,n2)(x, (A, (z1, z2))) = (Aµ(x)l, (xn1z1, x
n2z2)),

just as in (1). We write Aµ(x)l = Axl for short and denote by Ml
n1,n2 the orbit space

(SO(3)× S3)/Θ(l,n1,n2). This manifolds are turned into SO(3)-manifolds by the left multiplica-
tion in the first coordinate as before. We claim that the SO(3)-manifoldMl

n1,n2 is equivalent
to the SO(3)-action on N l

2n1,2n2 . To see this, first observe that it is a consequence of the ex-
act sequence of homotopies for the bundle associated to the circle action that Ml

n1,n2 is not
simply-connected when the parameter l is even. Now, the universal 2-fold covering homomor-
phism φ : SU(2)→ SO(3) (see Section 2.2) takes the Hopf circle {eiθ} ⊂ S3 ⊂ H to the circle
{diag(R(2θ), 1)} ⊂ SO(3). So we write φ(x) = x2, for x ∈ S1. Call Θ(l,n1,n2), the S1-action on
SU(2)× S3 defined in (2). Thus

(φ× Id) ◦Θ(l,2n1,2n2) = Θ(2l,2n1,2n2) ◦ (φ× Id),

and the map φ× Id induces the equivalence

[(p, (z1, z2))] 7→ [(φ(p), (z1, z2))]

between the SO(3)-actions on N l
2n1,2n2 andMl

n1,n2 .
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4 Actions without singular orbits and proof of
Theorem C

This section is devoted to prove Theorem C and is organized as follows. We first verify that
the quotient is homeomorphic to a two or three-dimensional sphere. Then we show that,
if the action has only one isotropy type, the circle and cyclic groups are the only possible
isotropy subgroups of the action and classify the actions with exactly one isotropy type equal
to (SO(2)). After that, we prove that the action has at most two exceptional orbits and
that the pair (H,K) of principal and exceptional isotropy groups must be (Zd,Zn), (D2,T) or
(Dic2,T∗). Then, we use the Slice Theorem to construct M as a union of two neighborhoods
of the exceptional orbits and compute the fundamental group of the union to conclude that
only cyclic isotropies can occur for simply-connected G-manifolds. The actions constructed in
this way depend on three integer parameters: one comes from the clutching function, while the
other two correspond to the isotropy representations around the exceptional orbits. We finish
the proof by establishing a one-to-one correspondence between the distinct general actions
constructed and the SU(2)-manifolds N l

n1,n2 for n1n2 6= 0.
Hereafter, in this chapter G denotes SO(3) or SU(2). Let us understand the quotient space.

Lemma 17. Let G � M5 be an action without singular orbits. Then either it has only one
isotropy type (SO(2)) and M/G ' S3 or the isotropy groups are finite and M/G ' S2.

Proof. By Propositions 4 and 5, the orbit space is homeomorphic to a compact, simply-
connected 2 or 3-dimensional manifold, possibly with boundary. We claim that if the action has
exceptional orbits the quotient is two dimensional without boundary. In fact, if the principal
orbits have codimension 3, the principal and exceptional isotropy groups have to be H = SO(2)
and K = O(2) (or K = Pin(2) if G = SU(2)). Then the orbits are S2 and RP2. But since
the orbits of maximal dimension are orientable by Proposition 2, we obtain that there is no
cohomogeneity 3 action with exceptional orbits. On the other hand, in the cohomogeneity two
case the boundary of the orbit space is the set of singular orbits, by Proposition 4. But there
are no singular orbits since, by Proposition 4, they cannot co-exist with exceptional orbits in
cohomogeneity two G-manifolds if G is connected. So the quotient does not have boundary,
M/G ' S2 topologically and the claim follows. If the action has only one isotropy type, it
was observed in Section 2.1 that the quotient is a base space of a fiber bundle, thus it is a
simply-connected topological two or three manifold without boundary. In any case M/G is a
topological sphere.
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4.1 Actions with only one (noncyclic) isotropy type

In this section we show that a simply-connected G-manifold with only one orbit type has
isotropy either Zm or SO(2) and classify the actions with isotropy SO(2). The classification of
the actions with only one isotropy type (Zm) will be done later together with the classification
of G-manifolds with exceptional orbits.

By Proposition 11 the number of G-manifolds with only one orbit type equal to (G/H) and
quotient an n-sphere is the order of the (n− 1)-th homotopy group of N(H)/H, where N(H)
is the normalizer of H on G. These homotopy groups are presented in Table 1 (see [19] for
SO(3) and [1] for SU(2)).

G = SO(3)
H {1} Z2 Zm D2 Dm T I O SO(2) O(2)
N(H) SO(3) O(2) O(2) O D2m O I O O(2) O(2)
N(H)/H SO(3) SO(2) O(2) D3 Z2 Z2 {1} {1} Z2 {1}
πn−1(N(H)/H) Z2 Z Z {1} {1} {1} {1} {1} {1} {1}

G = SU(2)
H {1} Z2 Zm Dic2 Dicm T∗ I∗ O∗ SO(2) Pin(2)
N(H) SU(2) SU(2) Pin(2) O∗ Dic2m O∗ I∗ O∗ Pin(2) Pin(2)
N(H)/H SU(2) SO(3) Pin(2) D3 Z2 Z2 {1} {1} Z2 {1}
πn−1(N(H)/H) {1} Z2 Z {1} {1} {1} {1} {1} {1} {1}

Table 1: Here m ≥ 3 and n is the cohomogeneity of the action, i.e. n = 2 + dimH

The following are the simplest examples.

Example 12. Let H ⊂ G be a Lie subgroup and X be a manifold. Define a G-action on
(G/H)×X by g · (kH, x) = (gkH, x). This action has unique isotropy type (H) and its orbit
space is X.

Looking at Table 1 we see that there are two distinct free G-manifolds for G = SO(3)
but only one if G = SU(2). One of the two free SO(3)-manifolds is SO(3) × S2 which is not
simply-connected, the other is N 1

2,2, hence simply-connected. The free SU(2)-action is N 0
1,1,

which is the left multiplication on the first coordinate of SU(2)× S2.
The SO(3)-action with unique isotropy type (SO(2)) is N 1

0,0. It is the linear SO(3)-action on
the first factor of S2×S3. Notice that SU(2) is a rank one Lie group whose center is Z2, thus all
the circle subgroups of SU(2) contain Z2 and the action is ineffective, hence the SU(2)-action
with unique isotropy (SO(2)) also corresponds to N 1

0,0. Finally, all the G-manifolds with unique
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isotropy H equal to Dm with m ≥ 2, T, I, O or O(2), if G = SO(3) and for H isomorphic to
Dicm with m ≥ 2, T∗, I∗, O∗ or Pin(2) if G = SU(2) are described by Example 12. But none of
them is simply-connected since in all these cases the fundamental group of G/H is nontrivial.

For each m ≥ 3 there are infinitely many examples of G-manifolds with unique isotropy
Zm, either for G = SO(3) or SU(2). The same holds for m = 2 and G = SO(3), but for
G = SU(2) there are exactly two such actions, they coincide with the free SO(3)-manifolds
since the SU(2)-actions with principal isotropy Z2 are ineffective. We will see in the next
section that N l

m,m are precisely the examples with isotropy Zm.

4.2 Actions with exceptional orbits or unique cyclic isotropy type

In this section we conclude the proof of Theorem C. We will classify the G-manifolds with
exceptional orbits and actions with only one isotropy type (Zm). The latter can be seen
as a particular case of the former when the isotropy groups are Zm, Zn and Zgcd(m,n) for
m = n. The condition of simply-connectedness imposes strong restrictions on the isotropies
(c.f., Proposition 18) and limits the number of exceptional orbits to two (c.f., Lemma 20). In
this situation we can construct M as a union of the neighborhoods of the exceptional orbits
using the Slice Theorem.

Proposition 18. If the G-manifold M has exceptional orbits, then the pair of principal
and exceptional isotropy types, (H,K), is either (Zd,Zm), (D2,T) or (Dic2,T∗). Moreover,
exceptional orbits are isolated and H coincides with the kernel of the slice representation of K.

In order to prove Proposition 18 the following will be essential.

Lemma 19. For G = SO(3) or SU(2), let K ⊂ G be a finite subgroup with a normal subgroup
N / K such that K/N ' Zn for some n ≥ 3. Then the pair (N,K) is one of the following:
(Zd,Zm), (D2,T) or (Dic2,T∗).

Proof. The exceptional isotropy K is a finite subgroup of G, thus if G = SO(3) it is isomorphic
to one of the following Zm, Dk, T, O and I (see, Section 2.2). The icosahedral group I is
isomorphic to A5, so it is simple. The octahedral group O is isomorphic to S4, so it has two
normal subgroups: A4 that is an index two subgroup and the Klein group D2 = Z2 × Z2,
with quotient S4/D2 ' S3. The tetrahedral group T is isomorphic to A4, its unique nontrivial
normal subgroup is the Klein group D2, which has index 3. So the quotient T /D2 is Z3. The
quotients of the dihedral groups are dihedral groups (including D1 = Z2). So, (N,K) is either
(Zd,Zm) or (D2,T) for G = SO(3).

The finite subgroups of SU(2) are Zm, Dick, T∗, O∗ and I∗. The unique nontrivial normal
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subgroup of I∗ is Z2 and the quotient is the icosahedral group. The binary octahedral group O∗

has three nontrivial normal subgroups, they are: the Quaternion group Dic2, with quotient
O∗ /Dic2 ' D3, the binary tetrahedral group with index two and Z2, that has quotient O∗ /Z2

isomorphic to the octahedral group. The binary tetrahedral group has two nontrivial normal
subgroups, they are Dic2, with index three (so, T∗ /Dic2 ' Z3) and Z2 with quotient T. The
normal subgroups of the binary dihedral groups Dick have quotient either dihedral groups or
binary dihedral groups (for the normal subgroups of the binary dihedral groups we refer to
Coxeter [7] p.75). So, if G = SU(2), the pair (N,K) is either (Zd,Zm) or (Dic2,T∗) and this
concludes the proof of the lemma.

Proof of Proposition 18. As observed in Lemma 17 the isotropy groups are finite. Let K ⊂ G

be an exceptional isotropy group and consider the slice representation ρ : K → O(2) of K with
N = ker(ρ). The quotient R2/(K/N) is homeomorphic to R2 since it is a parametrization of a
neighborhood of the orbit space, which is homeomorphic to S2. Therefore K/N ' Zn ⊂ SO(2)
with n ≥ 3. The possibilities for N and K are determined by Lemma 19.

We claim that H = N . This is clear if K is cyclic. If it is not cyclic then N is an index
three subgroup of K and since N ⊂ H  K, we get H = N . The slice action of K on R2,
represented by ρ, only fixes the origin, thus the exceptional orbits of the G-action on M are
isolated.

The action of the tetrahedral group and the binary tetrahedral group on the linear slice R2

have kernel D2 and Dic4 respectively, since in our cases the principal isotropy groups are
normal subgroups of K. So, the effective actions to be considered on R2 in theses cases are by
Z3 ' T /D2 = T∗ /Dic2.

Lemma 20. There are at most two exceptional orbits.

Proof. The exceptional orbits in the quotient M/G ' S2 (topologically) represent orbifold
singularities, in fact, a neighborhood of an exceptional orbit is parametrized by R2/Zm with
m ≥ 3. It is known that a 2-dimensional orbifold with underlying space S2 with more than
two singularities has nontrivial orbifold fundamental group (c.f. Thurston [31], p. 304). On
the other hand, in our situation, there is an onto map from π1(M) to the orbifold fundamental
group of the quotient M/G (c.f. Molino [22], p. 273 and 274). Therefore, there are at most
two exceptional orbits since M is simply-connected.
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In order to construct a simply-connected 5-dimensional G-manifold without singular orbits
with orbit space homeomorphic to S2 and at most two exceptional orbits, we use the Slice
Theorem to understand the neighborhoods of the exceptional orbits and the G-action in each
one. Then we glue the two neighborhoods with an equivariant diffeomorphism along their
boundaries.

From now on in this section, unless explicitly mentioned, G = SU(2). A neighborhood of
an exceptional orbit G/K is given by A = G ×K D2, where D2 ⊂ C is the 2-disk and the
linear slice action of K on D2 has kernel equal to the principal isotropy group H ⊂ K of the
G-action. The action of G on A is given by g · [(p, z)] = [(gp, z)]. The isotropy action in the
slice only fixes the origin in D2, since the exceptional orbits are isolated. The manifoldM with
at most two exceptional orbits can be written as

M = A1
⋃
ϕ

A2 , Aj = G×Kj
D2, (6)

where ϕ : G ×K1 S1 → G ×K2 S1 is a G-equivariant diffeomorphism. Since H is only acting
on the first factor of the product G×D2, we can write G×Kj

D2 = (G/H)×Kj/H D
2. Recall

that in all our cases Kj/H is a cyclic group Zqj
. Since ϕ is G-equivariant, it is a bundle map

between the fiber bundles

G/H → (G/H)×Kj/H S
1 → S1/Zqj

, (7)

for j = 1, 2. Also here, ϕ is completely determined by the image of the path t 7→ [(H, e2πit/q1)]
in ∂A1 for 0 ≤ t ≤ 1. Notice that if we take t ∈ [0, 1] fixed, the map ϕ becomes a G-equivariant
diffeomorphism of G/H on itself, so it is identified with an element κ(t) of N(H)/H, where
we can assume that κ(0) = H. Therefore,

ϕ[(H, e2πit/q1)] = J(κ(t), e2πit/q2)K. (8)

Before applying this construction to the cyclic and noncyclic isotropy types we com-
pute the fundamental groups of Aj and A1 ∩ A2 ' ∂(A1). Each component Aj deforma-
tion retracts to G/Kj, so the fundamental group of Aj is isomorphic to Kj. Observe that
Zqj
→ G/H × S1 → G/H ×Zqj

S1 is a principal bundle. So, considering the sequence of homo-
topies of this bundle and of the bundle in (7) we obtain that H and qjZ are normal subgroups
of the fundamental group of A1 ∩ A2 and that π1(A1 ∩ A2) ' H o Z.

We claim that the elements of H and Z in π1(A1 ∩A2) commute if gcd(q1, q2) = 1. In fact,
in this case the whole subgroup Z is normal in the fundamental group. Let α and β be elements
in π1(A1 ∩A2) such that α is a generator of the component Z and β is an element of H. Since
both subgroups are normal there is an integer k and an element γ ∈ H such that βαβ−1 = αk
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and α−1βα = γ. Then αkβ = βα = αγ, and thus αk−1 = γβ−1 ∈ H, so k = 1 and the claim
follows. Therefore, π1(A1 ∩ A2) ' H × Z, if H = Zd.

If the groups Kj have the same type as the principal isotropy type (H), then the action
has only one isotropy type. This case is considered in Section 4.1 where it is shown that the
possible simply-connected G-manifolds with unique finite isotropy type are those with cyclic
isotropy. So, to complete the classification we are also constructing the G-manifolds with
unique isotropy type Zm and not just those with exceptional orbits. In other words, we allow
K1 = H = K2 in the cyclic case.

We first show that the isotropy groups are cyclic.

Lemma 21. The 5-dimensional compact simply-connected G-manifolds with exceptional or-
bits only have cyclic isotropy groups.

Proof. It was shown in Proposition 18 that we only need to consider actions with isotropies
H = D2 and K = T if G = SO(3) and isotropies H = Dic2 and K = T∗ if G =
SU(2). We assume that G = SU(2) since SO(3)/D2 = SU(2)/Dic2. In any case we have
M = G/H ×Z3 D

2 ∪ϕ G/H ×Z3 D
2 where Z3 is the quotient K/H. Note that there are exactly

two non-equivalent Z3-actions on G/H × D2, namely ξ · (pH, z) = (pξH, ξcjz) for cj = 1 or
2 and ξ = e2πi/3. Recall that Aj = G/H ×(Kj/N) D

2. Moreover, the clutching function ϕ is
trivial since the normalizer N(H)/H is discrete (see Table 1).

It is known that T∗ ' Dic2oZ3 where the Z3 is generated by w = −1/2(1 + i+ j + k) and
the Z3-action on Dic2 is the automorphism that cyclically rotates i, j and k (see [7] p. 76).
The isomorphism between Dic2oZ3 and T∗ takes (x,w) to xw ∈ T∗. So, the action of T∗ on
SU(2)×D2, which has quotient G/H ×Z3 D

2 is defined by (x,w) · (p, z) = (pw−1x−1, wcjz).
Also, the action of Dic2oZ on SU(2) × R, which has quotient G/H ×Z3 S1 is given by

(x, a) · (g, s) = (gw−ax−1, s+2πcja/3). Since ϕ is trivial, the induced maps ij∗ : Dic2oZ→ T∗

take (x, a) to (x,wacj ) and it is clear that π1(M) ' (T∗ ∗T∗)/T∗ is nontrivial when the quotient
is provided by the amalgamation property i1(x, a) = i2(x, a) for all (x, a) ∈ Dic2oZ and any
choice of c1 and c2.

By Lemmas 20 and 21, we only need to consider SU(2)-actions with isotropy types
(Zn1), (Zn2) and (Zd) where d | gcd(n1, n2). To avoid ambiguity assume n1 ≤ n2. The
SO(3)-manifolds will be just the SU(2)-actions with ineffective kernel Z2.

Consider Zn1 and Zn2 as subgroups of the same circle parametrized by t 7→ e2πit ∈ SU(2),
using quaternion notation. Let nj = dqj and ξj = e2πi/dqj be a generator of Znj

.
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Lemma 22. The Znj
-actions on SU(2)×D2 are given by

ξj · (p, z) = (pξj, ξdaj

j z),

for some aj with gcd(aj, qj) = 1 and 0 ≤ aj < qj for j = 1, 2.

Proof. The action in the first coordinate is just right multiplication by the inverse since the
action in the product is provided by the Slice Theorem. So it depends on the choice of the
SO(2) inside SU(2) that contains Znj

. Since in SU(2) any two circles are conjugated, we choose
the circle t 7→ e2πit. The lemma follows from the fact that on the second coordinate the action
is the slice representation, so it is a linear Znj

-action on D2 with kernel Zd.

Remark 4. The isotropy representation in a point with isotropy Znj
is determined by the

number aj. It is well known that two representations of ρ and ρ′ : Zm → O(2) are equivalent
if and only if ρ′ = ρ. Notice that they rotate the 2-plane in opposite directions, so Aj is
unchanged if we consider qj − aj instead of aj in the isotropy representation. However, the
orientation of the slice in Aj is reversed.

A simply-connected SU(2)-manifold M with exceptional orbits, or with only one cyclic
isotropy type, is determined by the isotropy types, the parameters a1 and a2, and the clutch-
ing function ϕ. The elements aj ∈ Zqj

have multiplicative inverse, say bj, so we write
M = M(b1, b2, ϕ).

For d ≥ 3 if we consider an orientation on the manifold and on G, it naturally defines an
orientation on G/Zd and on the slices through the exceptional orbits. Therefore, by Remark 4,
the G-manifolds M(b1, b2, ϕ) and M(q1 − b1, b2, ϕ) cannot be equivalent, although they have
equivalent slice representations.

The proof of the next result is inspired by Theorem 5.1 of [4].

Proposition 23. The SU(2)-manifoldsM(b1, b2, ϕo) andM(b1, b2, ϕ1) are equivalent if and
only if the clutching functions ϕo and ϕ1 are homotopic.

Proof. Call Mo = M(b1, b2, ϕo) and M1 = M(b1, b2, ϕ1). Let H be a homotopy between ϕo

and ϕ1. Define F : ∂A1 × I → ∂A2 × I by F (p, t) = (H(p, t), t) and the G-manifold

N = A1 × I
⋃
F

A2 × I,

with trivial action on the intervals. This makes N a cylinder with Mo on the bottom and M1

on the top. Observe that N/G is homeomorphic to S2 × I and that if π is the projection of N
in S2 × I, then π−1(S2 × {0}) = Mo, thus Theorem 8 asserts that N is equivalent to Mo × I
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(the product of G-manifolds with trivial G-action on the interval) and, therefore, Mo and M1

are equivalent.
Conversely, let f : Mo → M1 be a G-equivariant diffeomorphism. Assume that the man-

ifolds are both written as above using the Slice Theorem and that f restricted to A1 is the
identity map. Considering ξj(t) = e2πit/nj , the clutching functions are

ϕi[(Zd, ξ1(t)d)] = J(κi(t), ξ2(t)d)K,

for i = 0 or 1, as in (8). So, f |SU(2)×Zn2
S1 is an SU(2)-equivariant diffeomorphism of SU(2)×Zn2

S1 given by
J(Zd, ξ2(t)d)K 7→ J(κo(t)−1κ1(t), ξ2(t)d)K, (9)

that extends equivariantly to SU(2) ×Zn2
D2. Since the slice representation is a parametriza-

tion of the orbit space this extension must take the slice J(Zd, sξ2(t)d)K to J(hs(t), sξ2(t)d)K,
where s ∈ [0, 1], h1(t) = κo(t)−1κ1(t) and observe that ho(t) does not depend on t since
J(ho(t), 0)K = f(J(Zd, 0)K). So, the path κ−1

o κ1 on N(Zd)/Zd is homotopically trivial, and there-
fore the clutching functions ϕo and ϕ1 are homotopic.

For d = 1 the clutching function ϕ has only one homotopy class, since N(H) = SU(2) is
simply-connected, so it can be represented by M(b1, b2). We have seen in Remark 4 that the
SU(2)-manifolds M(b1, b2) and M(b′1, b′2) are equivalent if and only if b′j = bj or b′j = nj − bj
for both j = 1 and 2 simultaneously. The manifold M(b1, b2) is equivalent to N l

n1,n2 when
l = b1n2 + b2n1 since the isotropy representations coincide as one can see from Proposition 16.
Thus Theorem C is proved if gcd(n1, n2) = 1.

For d ≥ 2, let us analyze the clutching function ϕ in more detail. The path κ defined in (8)
must satisfy κ(1) = ξb1

1 ξ
b2
2 κ(0), since ϕ is SU(2)-equivariant. This follows from

J(ξb1
1 κ(0), 1)K = ϕ[(ξb1

1 Zd, 1)] = ϕ[(Zd, ξd1)] = J(κ(1), ξ2
d)K = J(ξ2

b2
κ(1), 1)K. (10)

Recall our notation ξj(t) = e2πit/nj . By Proposition 23 we can assume that the path κ is given
by κ(t) = ξ1(t)b1ξ2(t)b2+kq2Zd with k ∈ Z. Therefore

ϕ[(ξ1(t)b1Zd , ξ1(t)d)] = J(ξ2(t)b2e2πik/dZd , ξ2(t)d)K,

Thus the homotopy class of ϕ is precisely represented by k.
Notice that for µ(t) = e2πit/dq1q2 ∈ SU(2) and l = b1q2 + b2q1 + kq1q2 the clutching function

has the form
ϕ[(Zd , µ(t)n2)] = J(µ(t)lZd , µ(t)n1)K, (11)

which is the same expression as in Proposition 16 by changing l by −l. The sign does not
matter for our purposes since N l

n1,n2 = N−ln1,n2 as observed in Remark 2.

37



The map ϕ has two homotopy classes if d = 2 and depends on the number k ∈ Z if d ≥ 3.
ThusM can be represented byM(b1, b2, ε) orM(b1, b2, k) respectively, for ε ∈ {0, 1} and k ∈ Z.

Proposition 24. The fundamental group of the manifold M(b1, b2, k) is a cyclic group of
order gcd(n1, n2, l).

Proof. To compute the fundamental group of M , we describe the action of π1(SU(2)×Zn1
S1)

on the universal covering SU(2)×R, such that the quotient is A1 ∩A2 = SU(2)×Zn1
S1. Take

curves α and β in A1 ∩ A2 that are generators of the fundamental group. For each j = 1, 2,
we include A1 ∩ A2 in the component Aj by the inclusion ij and use the π1(Aj)-action on the
universal covering SU(2) ×D2 of Aj to regard the loops α and β as elements of π1(Aj). Van
Kampen’s Theorem asserts that the fundamental group ofM is the free product π1(A1)∗π1(A2)
with relations i1∗[α] = i2∗[α] and i1∗[β] = i2∗[β], where the maps ij∗ : π1(A1 ∩ A2)→ π1(Aj),
for j = 1, 2 are induced by ij on the fundamental groups.

The action of the fundamental group π1(A1 ∩ A2) ' Zd × Z on SU(2) × R with quotient
SU(2)×Zn1

S1 is given by

(u, k) · (p, s) = (pξ−(uq1+kb1)
1 , s+ 2πk/q1),

where Zd = {0, 1, · · · , d− 1} and a1b1 + u1q1 = 1. Observe that the space of orbits
(SU(2)× R)/(Zd × Z) is exactly the quotient (SU(2)× S1)/Znj

. Indeed, since gcd(b1, q1) = 1,
for any 0 ≤ l < n1 there are integers u and k with 0 ≤ u < d such that l = uq1 + kb1. So, the
Zn1-action can be written as

ξl1 · (p, eis) = (pξ−(uq1+kb1)
1 , exp(s+ 2πua1 + 2πka1b1/q1)) = (pξ−(uq1+kb1)

1 , exp(s+ 2πk/q1)),

that clearly defines the same quotient as (SU(2)× R)/(Zd × Z).
It is convenient to define the loops in SU(2)/Zd ×Zq1

S1 that generate its fundamental
group, Zd × Z. The loop α : [0, 1] → A1 ∩ A2 defined by α(t) = [(ξ1(t)−q1Zd, 1)] corresponds
to (1, 0) in Zd × Z. In fact, let α̃(t) = (ξ1(t)−q1 , 0) be a lifting of α by (1, 0) ∈ SU(2)× R. So,
α̃(1) = (ξ−q1

1 , 0) = (1, 0)Zd×Z · (1, 0) = (1, 0)Zd×Z · α̃(0).
On the other hand, the loop β : [0, 1] → A1 ∩ A2 defined by β(t) = [(ξ1(t)−b1Zd, ξ1(t)d)]

corresponds to (0, 1) ∈ Zd × Z. In fact, consider β̃(t) = (ξ1(t)−b1 , 2πt/q1), a lifting of β to
SU(2) × R by β̃(0) = (1, 0). Then β̃(1) = (ξ−b1

1 , 2π/q1) = (0, 1)Zd×Z · β̃(0). So, β corresponds
to (0, 1) ∈ Zd × Z.

If ej is a generator of Znj
in the free product Zn1∗Zn2 , the induced loop (i1◦α)(t) corresponds

to eq1
1 . The loop (i1 ◦ β) in A1 corresponds to eb1

1 ∈ Zn1 . In fact, the lifting of i1 ◦ β by the
point (1, 1) of SU(2)×D2 is the curve t 7→ (ξ1(t)−b1 , ξ1(t)d). Then,

ξb1
1 · ˜(i1 ◦ β)(0) = ξb1

1 · (1, 1) = (ξ1
b1
, ξd1) = ˜(i1 ◦ β)(1).
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That is, i1∗ : Zd × Z→ Zn1 takes (αu, βn) to euq1+nb1
1 .

We need to include the loops α and β in A2. To do this we simply use the composition, i2,
of the clutching function ϕ with the inclusion of SU(2)/Zd×Zq2

S1 in A2. The induced loop (i2◦
α)(t) = J(ξ2(t)−q2Zd, 1)K has lifting by (1, 1) ∈ SU(2)×D2, with end point (ξ−q2 , 1) = ξq2

2 ·(1, 1).
So, (i2◦α) corresponds to eq2

2 ∈ Zn2 . The loop (i2◦β)(t) = J(ξ2(t)(b2+kq2)Zd, ξ2(t)−d)K has lifting
t 7→ (ξ2(t)(b2+kq2), ξ2(t)−d) that starts at (1, 1) ∈ SU(2)×D2 and that ends at (ξ(b2+kq2)

2 , ξ−d2 ) =
ξ

(−b2−kq2)
2 · (1, 1), so the loop corresponds to e

−(b2+q2k)
2 ∈ Zn2 . Therefore the map i2∗ takes

(αu, βn) to e(u−kn)q2−nb2
2 . We conclude that the fundamental group ofM is generated by e1 and

e2 with the relations en1
1 = en2

2 = 1, eq1
1 = eq2

2 and eb1
1 = e−b2−kq2

2 . From these three identities
and using that gcd(bj, qj) = 1 we see that π1(M) ' Zgcd(n1,n2,b1q2+b2q1+kq1q2).

Remark 5. As a consequence of Proposition 24, d = gcd(n1, n2) when the SU(2)-manifold
is simply-connected. In fact, gcd(n1, n2, l) = 1 and gcd(bj, qj) = 1 imply that gcd(qj, l) = 1,
therefore gcd(q1, q2) = 1. So, the SU(2)-action depends on a triple of integer parameters that
belong to P = {(b1, b2, k) ∈ Z3 : 0 ≤ bj < qj , (bj, qj) = 1 , j = 1, 2}.

We will show now that the G-manifold M(b1, b2, k) is equivariantly diffeomorphic to N l
n1,n2

where l = b1q2 + b2q1 + kq1q2. It will also be proved (c.f., Proposition 15) that l is the order
of the fundamental group of the fixed point set of the principal isotropy group Zd, whenever
d ≥ 3. For the next result recall that we have defined gcd(0, 0) = 1.

Theorem 25. Let n1 ≤ n2 be positive integers with d = gcd(n1, n2) ≥ 2, set qj = nj/d

and take bj ∈ Z coprime with qj satisfying 0 ≤ bj < qj, for j = 1, 2. Let k be an integer
for d ≥ 3 or k ∈ Z2 for d = 2. Then, the SU(2)-manifold M(b1, b2, k) is equivariantly
diffeomorphic to N l

n1,n2, where l = b1q2 + b2q1 + kq1q2. Moreover, these SU(2)-manifolds are
pairwise nonequivalent except for M(b1, b2, k) = M(q1 − b1, q2 − b2,−k − 2).

Proof. It is clear that M(b1, b2, k) is determined by the isotropy representations around the
exceptional orbits and the homotopy class of the clutching function ϕ. So,M(b1, b2, k) = N l

n1,n2

with l = b1q2 + b2q1 + kq1q2 since by Proposition 16 they coincide in both representations
and also have the same clutching function, up to homotopy. Moreover, Proposition 14 and
Proposition 24 show that each l is reached exactly once by that formula.

For d = 2 we know that k ∈ {0, 1} since the homotopy class of the clutching function
is defined modulo 2. We use the identity M(b1, b2, k) = N l

n1,n2 and N−ln1,n2 = N l
n1,n2 (see,

Remark 2) to conclude that M(b1, b2, k) = M(q1 − b1, q2 − b2,−k − 2) = M(q1 − b1, q2 − b2, k)
for k = 0 or 1. Remark 4 shows that otherwise these SU(2)-manifolds are pairwise distinct.

For d ≥ 3 the G-manifolds M(b1, b2, k) are nonequivalent exactly when the numbers
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l = b1q2 + b2q1 + kq1q2 are different since by Proposition 15 the parameter l is an invariant
of the action. This, and Remark 4, imply that M(b1, b2, k) is equivalent to M(b′1, b′2, k′) if and
only if the parameters are exactly the same, or b′j = qj − bj and k′ = −k− 2. This corresponds
to replacing l by −l in N l

n1,n2 .

Observe that it is a consequence of the discussion in the proof of Theorem 25 that the
manifolds N l

n1,n2 and N l′
n1,n2 are equivalent if, and only if, l ≡ l′ mod 2q1q2 for d = 2. This

concludes the proof of Theorem C.

5 Actions with singular orbits and proof of Theorem D
In this section we classify the 5-dimensional compact simply-connected G-manifolds with sin-
gular orbits. In these cases the number of orbit types cannot exceed 3, c.f., Lemma 28, and
the quotient is homeomorphic to a 2-disk or it is a compact simply-connected 3-manifold with
(or without boundary), c.f., Propositions 4 and 5.

The classification of actions with two or three orbit types containing singular orbits, when
the quotient is a given manifold with boundary, is a classical problem studied by Bredon [4],
Hsiang and Hsiang [17] and Janich [20].

The classification of SO(3)-actions on simply-connected 5-manifolds with singular orbits
and cohomogeneity 2 was carried out in 1979 by Hudson [19]. In the Appendix of [19] the clas-
sification of cohomogeneity 3 actions was discussed but the SO(3)-manifolds in Example 9 were
overlooked. For the sake of completeness we include her classification of SO(3)-actions with sin-
gular orbits but without fixed points. We also prove again the classification of SO(3)-manifolds
without fixed points since it can be obtained in the same way as in SU(2) case. The classi-
fication presented here is simpler than Hudson’s since after counting how many actions exist
she constructed the actions by gluing pieces and later identifying the manifolds by computing
topological invariants. Here we just see how many distinct actions exist and check that all of
them have been described in Section 2.2 and Example 11.

In Section 5.1 we use a classical result to classify the actions with exactly two orbit types.
In Section 5.2 we make a few comments about Hudson’s classification of SO(3)-manifolds with
three orbit types.

The following two results are the main goal of this section. The geometry of the actions in
Theorems 26 and 27 were discussed in Section 2.2.

Theorem 26. Let M be a compact simply-connected 5-dimensional G-manifold without
fixed points. If M has singular orbits, then it is equivariantly diffeomorphic to either:
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(i) The SO(3)-linear action on S5 ⊂ R3 × R3 given by A · (x, y) = (Ax,Ay);

(ii) The SU(2)-manifold N 1
0,n for n > 0, which is an SO(3)-manifold if n is even;

(iii) The SU(2)-action on the Wu-manifold given by B · [C] = [diag(B, 1)C] for B ∈ SU(2)
and [C] ∈ SU(3)/ SO(3).

On the other hand, for G-manifolds with fixed points we have the following.

Theorem 27. Any compact simply-connected 5-dimensional G-manifold with fixed points
is equivalent to either:

(i) The SU(2)-linear action on S5 ⊂ C3 given by B · (u, v, w) = (B(u, v), w);

(ii) The SO(3)-linear action on S5, given by the suspension of the irreducible representation
of SO(3) on R5;

(iii) The SO(3)-action on connected sums of copies of S3 × S2 with linear action in the first
coordinate of each copy;

(iv) The SO(3)-action on connected sums of m copies of the Brieskorn variety of type
(2, 3, 3, 3) and n copies of the Wu-manifold.

Remark 6. Theorems 26 and 27 show (see Section 5.2) that there are no G-manifolds with
only one fixed point and that if there are respectively two or three fixed points, the manifold
is diffeomorphic to S5 or W . So, if the G-action has at most three fixed points, then it is
diffeomorphic to S5, is a quotient of either SU(3) or S3 × S2. Therefore, the metric induced in
the quotient is G-invariant and has nonnegative curvature.

The following lemma gives strong restrictions to the possible chains of isotropy subgroups.
It is inspired by Lemma 1A in [19].

Lemma 28. Let M be a 5-dimensional simply-connected G-manifold with singular orbits.
Then:

(a) If the action has exactly two orbit types, say (H) ≤ (K), then the pair of principal and
singular isotropy groups (H,K) is (Zm, SO(2)), (Dm,O(2)) or (SO(2), SO(3)) if G = SO(3)
and (Zm, SO(2)) or ({1}, SU(2)), if G = SU(2), for m ≥ 1;

(b) If the action has three orbit types then the isotropy types are Z2 × Z2 ⊂ O(2) ⊂ SO(3).
There is no SU(2)-action with three isotropy types;

41



(c) Neither SO(3) nor SU(2) acts on M with more than three orbit types.

Proof. For a singular point p ∈M , if K = Gp, it is known that the slice action K � Rk, of the
isotropy group K on the tangent space of a slice at p, is a linear action which has the same
isotropy structure as the action G �M in a neighborhood of p. So the chain of isotropy types
(H) ≤ · · · ≤ (K) is possible for a G-action onM only if there is a representation ρ : K → O(k)
such that the action ρ(K) � Rk has the same chain of isotropy types.

The dimension of the quotient is either 2 or 3. Suppose that the action has cohomogeneity 3
(dimM/G = 3). Then the principal isotropy group must be one-dimensional, actually it must
be H = SO(2) since by Proposition 2 the orbits of maximal dimension are orientable. Then,
the singular isotropy group must be G and the action has a fixed point p ∈ M . The unique
nontrivial linear action of SU(2) on TpM ' R5 has a fixed direction and trivial principal isotropy
group (c.f., Example 4), thus H = {1} and not SO(2). Therefore, if the G-manifold M has
cohomogeneity 3, the isotropies are SO(2) ⊂ SO(3). The natural inclusion SO(3) ⊂ SO(5)
induces an action of SO(3) on R5 with isotropy types (SO(2)) ≤ (SO(3)).

If the action has cohomogeneity 2, then the quotient is a 2-disk and there are no exceptional
orbits since we assume there is a singular orbit (see Proposition 4). Moreover, the principal
isotropy group is finite. Let p ∈M be a point in a singular orbit. If there are no fixed points,
then the isotropy group K = Gp is 1-dimensional, so dim G/K = 2 and the codimension of
the singular orbit is k = 3. Now we proceed with a case-by-case analysis of the representations
of the subgroups of G in O(3).

If K ' SO(2), then H = {1} or Zm since the representations of SO(2) in O(3) are

ρm : SO(2) −→ O(3)
R(θ) 7→ diag(1, R(mθ)),

where R(θ) is the rotation by θ.
If K ' O(2) (and thus G = SO(3)), then H ' Dm (recall that D1 ' Z2) since the repre-

sentations of O(2) in O(3) are equivalent to ρm : O(2)→ O(3), such that ρm|SO(2) = ρm and

ρm

 1 0
0 −1

 =


±1 0 0
0 1 0
0 0 −1

 .
Therefore the isotropy groups are Dm and O(2).

The unique representation of Pin(2) in O(3) is the trivial one, so it cannot be isotropy
group of a singular point of an SU(2)-manifold of dimension five.

If K = SO(3) and the action has cohomogeneity 2, then the isotropy representation at a
fixed point is the unique irreducible representation of SO(3) on R5 since this is the unique such
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representation of SO(3) with finite principal isotropy group. This is the action described on
Example 1 and the chain of isotropies is Z2 × Z2 ⊂ O(2) ⊂ SO(3).

If K = SU(2), then the representation in SO(5) is SU(2) ⊂ SO(4) ⊂ SO(5). It has one fixed
direction and the principal isotropy group is the trivial group. So we have ({1}, SU(2)).

The subgroups of G have dimensions either zero, one or three. If there are three isotropy
types and (G) is not one of them, two of them have the same dimension. Since there are no
exceptional orbits, there are two one-dimensional isotropy types, say (K) and (K ′). Let M(K)

andM(K′) be the set of points inM whose isotropy groups belong to (K) and (K ′), respectively.
Both sets M(K) and M(K′) are submanifolds of M and are projected to the boundary of the
disk in the quotient. So there is a point p ∈ M such that in any neighborhood of p there are
orbits of type (G/K) and (G/K ′), but there is no representation neither of O(2) nor Pin(2)
on O(3) with isotropy SO(2). This shows that if the action has more than two distinct orbit
types, then there is a fixed point. It also shows that there is no 5-dimensional G-action with
more than three orbit types and the lemma follows.

5.1 Actions with singular orbits and exactly two orbit types

The class of G-manifolds with two orbit types and quotient a given manifold with boundary
follows from the general classification in [4] Chapter V. We will apply this classification to our
case, first assuming that the orbit space is a disk and then that it is a 3-disk with small disks
removed from inside (see Propositions 4, 5 and 6).

We will now briefly describe a one-to-one correspondence between the set of equivalence
classes of actions with singular orbits and two orbit types with quotient a disk, and the set of
orbits of an specific action, that in our case will have only finitely many orbits. This will allow
us to classify the G-actions on 5-manifolds with singular orbits, two orbit types and quotient
a 2 or 3-disk, for G = SO(3) or SU(2).

Let G be a compact Lie group and H ⊂ K closed subgroups of G. Let D(2) be the n-disk of
radius 2. Assume that D(2) is the orbit space of a G-action onM which assigns type (G/H) to
the open disk and type (G/K) to the boundary Sn−1(2) of the disk. Let p : M → D(2) be the
projection to the orbit space. There is a principal bundle N(H)/H = ΓH → P

ρ→ D(1), corre-
sponding to the disk D(1) of radius 1 since over D(1) the action has only principal orbits. So
p−1(D(1)) ' G/H ×ΓH

P , see Section 2.1. Let S = (N(H) ∩N(K))/H and π : G/H → G/K

be the standard projection. In our situation, it is known (see, Tube Theorem in [4], p. 242) that
there is a principal bundle S → Q→ Sn−1 such that p−1(I × Sn−1(2)) 'Mπ ×S Q, where Mπ

denotes the mapping cylinder for the map π, i.e., the space obtained from the disjoint union
(G/H × I) ∪G/K with the points (gH, 1) identified to gK for all g ∈ G.
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The mapping cylinder Mπ is a G-manifold with the action on cosets. In our cases, it is
a manifold with boundary G/H × {0} and thus, Mπ ×S Q has boundary G/H ×S Q. Let us
denote by P1 ⊂ P the pre-image of Sn−1(1) by the bundle ρ. Then, there is a G-equivariant
diffeomorphism

f : G/H ×S Q→ G/H ×ΓH
P1,

such that the G-manifold M is given by

M(f) = (Mπ ×S Q)
⋃
f

(G/H ×ΓH
P )

over D(2).
The equivalence class of M(f) as a G-manifold is the same as M(ϕ1f) where ϕ1 := ϕ |P1 ,

and ϕ ∈ AutG(ρ, ρ) is a self-equivalence of the principal bundle ΓH → P
ρ→ D(1). So, the

classes of G-manifolds are determined by the orbits of the action

AutG(ρ, ρ) � DiffG(G/H ×S Q,G/H ×ΓH
P1).

Using some identifications, homotopy invariance and the fact that the orbit space is contractible
the action becomes πo(ΓH) � πn−1(ΓH/S) where πj is the j-th homotopy group. We have
outlined the theorem below.

Theorem 29. (Bredon [4], p. 257 and p. 331) Given a Lie group G and a pair of closed
subgroups H ⊂ K of G, there is a one-to-one correspondence between the actions G � M ,
up to equivariant diffeomorphism, with exactly two isotropy types (H) and (K) such that the
quotient is an n-disk, and the orbits of an action

πo (ΓH) � πn−1 (N(H)/(N(H) ∩N(K))) . (12)

Remark 7. For our purposes an explicit expression for the πo(ΓH)-action in Theorem 29 is
not needed since the groups involved in (12) are quite simple as one can see in Table 2.

Due to Lemma 28 and Theorem 29 we obtain an upper bound l (see Table 2) for the number
of G-manifolds with exactly two orbit types, hence the classification of this kind of G-actions
is complete by showing that we have as many examples as possible. The remaining part of
the proof of Theorems 26 and 27 follows from [19] since only SO(3)-manifolds can have three
isotropy types.

The examples below represent the corresponding numeration in Table 2. Notice that there
are as many non-equivalent actions in the examples as the upper bound l in the table.

Examples.
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H K G πn−1 (N(H)/(N(H) ∩N(K)) πo(ΓH) l

(a) {1} SO(2) SO(3) π1(RP2) 1 2
(b) {1} SO(2) SU(2) π1(RP2) 1 2
(c) {1} SU(2) SU(2) {0} 1 1
(d) Z2 SO(2) SO(3) {0} 1 1
(e) Z2 SO(2) SU(2) π1(RP2) 1 2
(f) Zm SO(2) SO(3) {0} 1 1
(g) Zm SO(2) SU(2) {0} 1 1
(h) Z2 O(2) SO(3) π1(S1) Z2 Z
(i) Dm O(2) SO(3) {0} Z2 1
(j) SO(2) SO(3) SO(3) {0} 1 1

Table 2: l is an upper bound for the number of actions with 2 isotropy types H ⊂ K

(a) The SO(3)-actions with isotropy types {1} and SO(2). There are exactly two such actions,
the linear action on S5 of Example 2 and N 1

0,2, which is an SO(3)-action on S3 × S2.

(b) The SU(2)-actions with isotropy types {1} and SO(2). There are two such actions, one
is N 1

0,1 and the other is SU(2) � W = SU(3)/ SO(3) given by B · [C] = [diag(B, 1)C],
described in Example 6.

(c) The SU(2)-action on S5 with isotropy types {1} and SU(2). This is the linear action
described in Example 4.

(d), (e), (f) and (g) The G-action with isotropy types Zm and SO(2), where G = SO(3) or SU(2)
and m ≥ 2. Notice that an SU(2)-action with principal isotropy Z2 is ineffective since
Z2 ⊂ SU(2) is a normal subgroup. So the action is an SO(3)-action with trivial principal
isotropy. In our case, the two examples of SU(2)-actions with isotropies Z2 and S1 are the
two SO(3)-actions with isotropies {1} and S1. In the same way the SU(2)-actions with
principal isotropy Z2m are ineffective with kernel Z2, thus they are SO(3)-actions with
principal isotropy Zm. For all the other cases there is one example for each integer m,
N 1

0,2m and N 1
0,2m+1. The SO(3)-manifolds are S3 × S2, the SU(2)-manifolds are always the

nontrivial S3-bundle over S2 by Proposition 12.

(h) and (i) The SO(3)-actions with isotropy types Z2 and O(2) or Dm and O(2). Remark 3C
in [19] asserts that these examples are not simply-connected for any m.
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(j) The SO(3)-action on S5 with isotropy types SO(2) and SO(3). This is the linear action
described in Example 3.

We have seen (c.f., Propositions 5 and 6 and Example 5) that the orbit space may not to be
a disk. Now, we consider the other possible quotients for an action with singular orbits. The
following proposition is a trivial consequence of Theorem 6.1 in [4], when the singular isotropy
group is the whole group.

Proposition 30. There is precisely one SO(3)-action (up to equivalence) with isotropy
types (SO(2)) and SO(3) with quotient a 3-sphere with k three-disks removed, k > 0.

These actions are precisely those described in Example 9 and this concludes the classifica-
tion of actions with singular orbits and two orbit types.

5.2 Actions with three orbit types

By Lemma 28, there are no SU(2)-actions with three orbit types. The same lemma shows that
the SO(3)-actions with 3 orbit types have isotropy groups Z2 × Z2, O(2) and SO(3). So, all
these actions have fixed points. Hudson showed in [19] that these SO(3)-manifolds have at
least two fixed points and classified the actions. If there are exactly two fixed points, then the
action is equivalent to the linear SO(3)-action on the 5-sphere described in Example 1. If it has
three fixed points then it is equivalent to left multiplication on the cosets of the Wu-manifold
W = SU(3)/ SO(3) (see Example 7). Moreover, there are two 5-dimensional SO(3)-manifolds
with exactly four fixed points: the Brieskorn variety, B of type (2, 3, 3, 3), and the connected
sum of two Wu-manifolds with the above actions. All other examples of SO(3)-manifolds with
three orbit types have more than four fixed points. It is also a consequence of Lemma 28 that
the fixed point set of an SO(3)-manifold with 3 orbit types is finite. As observed at the end of
Section 2.2 and proved in [19] the SO(3)-manifolds with more than two isolated fixed points
are connected sums of copies of B and W .

6 Five-manifolds with nonnegative curvature
In this section we prove Theorems A and B. Theorem B is a consequence of Theorems C and D,
by using Frankel’s Lemma [9] and the classification of the G-manifolds M with fixed point set
with codimension one or two in M/G (c.f., [13] and [14]). In our context, the following lemma
provides a more elementary proof.
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Lemma 31. Let M be a simply-connected compact SO(3)-manifold of dimension 5. If M
admits an invariant metric of nonnegative (resp. positive) curvature, then the number of
isolated fixed points cannot exceed 3 (resp. 2).

Proof. If the action has isolated fixed points, then the quotient is a topological 2-disk since
the isotropy action in a neighborhood of an isolated fixed point is equivalent to the irreducible
SO(3)-representation in SO(5), and thus, the isotropy types are (Z2 × Z2), (O(2)) and SO(3).
The orbit strata of a group action is well known to be totally geodesic (see e.g. [12]). Hence
the boundary of M/ SO(3) consists of a geodesic polygon with n edges and n vertices. The
edges correspond to the singular isotropies O(2) and vertices are the fixed points. From the
isotropy representation it follows that the angles between the edges are all equal to π/3 (see
Example 1).

By O’Neill’s formula the (interior of the) quotient inherits a metric of nonnegative (resp.
positive) curvature if M has an invariant metric of nonnegative (resp. positive) curvature.
Thus, by the Gauss-Bonnet Theorem, the sum of inner angles of the n-polygon M/ SO(3) is
equal to, or bigger (resp. strictly bigger) than π(n − 2). So, n = 2 or 3 if the curvature is
nonnegative and n = 2 if the curvature is positive.

Proof of Theorem A. By Theorem D and Section 5.2 theG-manifolds with more than 3 isolated
fixed points are kW # lB with (k, l) 6= (1, 0) (since SO(3) � W has exactly 3 fixed points).
So, by Lemma 31 they do not admit invariant metrics with nonnegative curvature.

The connected sum M of k copies of S3×S2 (see Example 9) has quotient X diffeomorphic
to S3 with k + 1 three-disks removed. If M admits a metric of nonnegative curvature, then X
with the induced metric also has nonnegative curvature. As follows from the proof of the Soul
Theorem [6], a compact nonnegatively curved manifold X with non-empty convex boundary
contains a totally geodesic compact submanifold Σ without boundary and Σ is a deformation
retracts of X. In our case dim Σ 6= 0 since X is not a disk. Also, dim Σ 6= 1 since X is simply-
connected. Thus Σ is a simply-connected surface and a neighborhood of Σ is diffeomorphic to
S2 × (−1, 1). Using the flow of the gradient like vector field in the proof of the Soul Theorem
it follows that ∂X has two connected components. Therefore, k = 1 and only S3× S2 with the
linear SO(3)-action on the first factor admits an invariant metric of nonnegative curvature.

On the other hand, all the other actions in Theorems C and D, i.e., the linear actions on S5

and S3×S2, the SO(3) or SU(2) left multiplication on the cosets inW , and N l
m,n clearly admit

an invariant metric of nonnegative curvature.

Proof of Theorem B. We restrict ourselves to the actions in Theorem A. By Theorems C and D,
the G-manifolds diffeomorphic to S3×S2 are N l

m,n and the SO(3)-manifold in Example 5. This
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last one has quotient X diffeomorphic to a 3-sphere with two 3-disks removed, thus its soul
is homeomorphic to a 2-sphere and by the Soul Theorem X cannot be positively curved. So
neither S3× S2 admits an invariant metric of positive curvature. Also, the SO(3)-action on W
has three fixed points (see Example 7), and therefore does not admit an invariant metric of
positive curvature by Lemma 31.

We finally observe that N l
m,n with gcd(m,n) ≥ 3 does not admit a metric of positive

curvature. In fact, by Proposition 15 the fixed point set of the principal isotropy group Zgcd(m,n)

has two connected components of dimension three and by Frankel’s Lemma [9] in a positively
curved manifold Mn the sum of the dimensions of two totally geodesic submanifolds cannot
exceed n. It is also clear that the fixed point set of the SO(3)-manifold N 1

0,0 is the disjoint
union of two 3-spheres, thus also cannot admit metric of positive curvature.
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