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LIMIT WEIERSTRASS POINTS ON NODAL CURVES

PARHAM SALEHYAN

Abstract. In the 1980’s D. Eisenbud and J. Harris posed the following question:
“What are the limits of Weierstrass points in families of curves degenerating to
stable curves not of compact type?” In the present article, we show how to apply
the results obtained by E. Esteves in 1996 to compute limits of canonical systems
and Weierstrass points. We also deal with higher Weierstrass points. We restrict
ourselves to the case where the limit curve has components intersecting at points in
general position and the degeneration occurs along a general direction. When we
deal with the usual Weierstrass points, of order one, we also suppose that all of the
components of the limit curve intersect each other.
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Introduction

Limits of ramification points and linear systems were studied by Eisenbud and
Harris in the 1980’s, when they developed the theory of limit linear series for curves
of compact type; see [EH86]. Many important applications of their theory were found;
a survey is given in [EH86].

Basically speaking, in [EH86] Eisenbud and Harris developed a theory to identify
limits of linear systems and ramification points as smooth curves degenerate to curves
of compact type, whereas in [EH87] they applied their theory to the study of limits
of Weierstrass points.

The results in [E96] allow us to identify limits of linear systems and ramification
points as smooth curves degenerate to reducible nodal curves of any type. In the
present article, we show how to apply the results in [E96] to the study of limits
of canonical systems and Weierstrass points. We also deal with higher Weierstrass
points.

Computing limits of canonical systems can be difficult without further hypotheses.
In the present work we compute them when the components of the limit curve intersect
in general position and the degeneration occurs along a general direction. When we
deal with Weierstrass points of order one, we also suppose that all of the components
of the limit curve intersect each other. We describe our results below.

Let C be a projective, connected and nodal curve of arithmetic genus g > 0 defined
over an algebraically closed field k of characteristic zero, and C1, . . . , Ct its irreducible
components.

For each i = 1, . . . , t, let gi be the arithmetic genus of Ci. To avoid known or
special cases, we will always assume that t > 1 and gi > 0 for each i = 1, . . . , t.

Let S be the spectrum of a discrete valuation ring A whose residue field is k. Let
s (resp. η) denote the special (resp. generic) point of S. A smoothing of C is a
flat, projective morphism f : X → S such that X (η) is smooth and C ∼= X (s). The
smoothing is called regular if X is regular. The smoothing will also be denoted by
X/S.

Let X /S be a regular smoothing of C. Let β be a positive integer and K the
relative canonical sheaf on X over S. Let Kβ := K⊗β denote the relative β-canonical
sheaf. Let (Vη, Lη) be the β-canonical system on X (η), that is, Vη is the total system
of sections of Lη := Kβ(η). Let κβ := dim Vη, so κ1 = g and κβ = (2β − 1)(g − 1) if
β > 1. Let L be an extension of Lη to X . Let V L ⊆ H0(C,L(s)) be subvectorspace
of sections that extend to sections of L. Then dim V L = κβ as well. We say that
(V L,L(s)) is a limit β-canonical system. By Proposition 1.1, for each i = 1, . . . , t,
there is a unique extension Li of Lη meeting the following two conditions:

(1) The natural map ρi : V Li
→ H0(Ci,Li(s)|Ci

) is injective.
(2) The natural map ρi,j : V Li

→ H0(Cj,Li(s)|Cj
) is not zero for all j 6= i.

We say that (V Li
,Li(s)) is the limit β-canonical system associated to Ci.
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Let W be the relative Cartier divisor on X over S whose generic fibre W(η) is the
Weierstrass divisor of (Vη, Lη). We call W := W(s) the limit Weierstrass divisor.

For each i = 1, . . . , t, let Wi be the Weierstrass divisor of (V Li
,Li(s)|Ci

), viewed as
a Weil divisor on C. Then, by Theorem 1.3,

W =
t∑

i=1

Wi + D

as Weil divisors on C, where D is a certain divisor supported in the set of points of
intersection between distinct components of C.

Thus, in order to compute the limit Weierstrass divisor it is enough to compute
the limit β-canonical systems associated to the components of C.

Our principal result is a characterization, under certain conditions, of the limit
β-canonical system associated to C1. Obviously, for other components of C the char-
acterization is analogous. Our characterization is contained in the Theorem below.

Let Kβ denote the β-canonical sheaf of C. For each nonempty subset I of {1, . . . , t},
let CI :=

⋃
i∈I Ci, and denote by Kβ

I the β-canonical sheaf of CI . For each t-uple
n := (n1, . . . , nt) of integers, I will be called n-balanced if ni is constant for i ∈ I.

For each distinct i, j ∈ {1, . . . , t}, let ∆i,j := Ci ∩ Cj and δi,j := #∆i,j.
Our Lemma 3.1 claims that there is a unique t-uple n of integers satisfying certain

inequalities, depending only on β, the δi,j and the genera of the components C1, . . . , Ct

of C. The proof of the lemma yields an algorithm for finding this n.

Theorem. Assume that the components of C intersect at points in general position.
For β = 1, assume ∆i,j 6= ∅ for all i and j; otherwise assume gi ≥ 2 for each i.
Let n = (n1, . . . , nt) be the unique t-uple of integers given by Lemma 3.1. Then the
complete system of sections of the general invertible sheaf L on C satisfying

(1) L|CI
∼= Kβ

I

( ∑
i∈I
j /∈I

(β + nj − ni)∆i,j

)
for each n-balanced I ⊆ {1, . . . , t}

is a limit β-canonical system associated to C1. Conversely, the limit β-canonical
system associated to C1 of a smoothing of C along the general direction is the complete
system of sections of an invertible sheaf L on C satisfying (1).

Now we explain briefly how we prove the Theorem.
Let X/S be a regular smoothing of C. For the t-uple n = (n1, . . . , nt) satisfying

Lemma 3.1, put
Ln := Kβ ⊗OX (n1C1 + · · ·+ ntCt),

and let (V n, Ln) := (V Ln ,Ln(s)) be the corresponding limit β-canonical system. The
sheaf Ln satisfies conditions (1) in place of L.

In order to characterize all possible sheaves Ln, we study the deformations of C
in Section 4. Our Proposition 4.3 shows that all invertible sheaves L on C satisfying
(30) are isomorphic to Ln for some regular smoothing X /S of C.
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For each nonempty I ⊆ {1, . . . , t}, let Ln
I := Ln|CI

. For each i = 1, . . . , t, let
Ii := {1, . . . , t} \ {i} and ∆i :=

∑
j 6=i ∆i,j. The limit system (V n, Ln) is the limit

β-canonical system associated to C1 if the following two conditions hold:

(1) h0(CI1 , L
n
I1

(−∆1)) = 0,
(2) h0(CIi

, Ln
Ii
(−∆i)) < κβ for each i = 2, . . . , t.

The first condition states the injectivity of the natural map

H0(C, Ln) → H0(C1, L
n|C1),

whereas the second condition states that for each i = 2, . . . , t the map

H0(C,Ln) → H0(Ci, L
n|Ci

)

has kernel of dimension less than κβ, and hence not containing V n.
The first two statements of Proposition 6.2 claim that Conditions 1 and 2 are met,

under certain hypotheses. Indeed, to compute the dimension of H0(CIi
, Ln

Ii
(−∆i))

for each i = 1, . . . , t we need to assume that the smoothing occurs along the general
direction or, equivalently according to Proposition 4.3, that Ln is the general invertible
sheaf on C satisfying conditions (1) in place of L. Then, also assuming that the
components of C intersect at points in general position, our Lemma 5.1 allows us to
compute h0(CIi

, Ln
Ii
(−∆i)) in terms of the dimensions of

H0(CJ , Ln
J(−∑

j∈J ∆i,j))

for the n-balanced subsets J ⊆ Ii. Since

Ln
J = Kβ

J (
∑
i∈J
j /∈J

(β + nj − ni)∆i,j),

and the points in ∆i,j for i ∈ J and j 6∈ J are in general position, these dimensions
can be computed. These computations are mostly done in the proof of Lemma 6.1.
Finally, after computing h0(CIi

, Ln
Ii
(−∆i)) in terms of n, the δi,j and the gi, the

inequalities of Lemma 3.1 are used to show that Conditions 1 and 2 are met.
The final step is to show that V n = H0(C,Ln). Our Proposition 6.2 also establishes

this, by computing h0(C, Ln) with the same method described above, and showing
that h0(C, Ln) ≤ κβ.
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1. Limit linear systems and ramification points

Let C be a projective, connected and nodal curve defined over an algebraically
closed field k of characteristic zero, and C1, . . . , Ct its irreducible components. Let S
be the spectrum of a discrete valuation ring A whose residue field is k. Let s (resp.
η) denote the special (resp. generic) point of S. A smoothing of C is a flat, projective
morphism f : X → S such that X (η) is smooth and C ∼= X (s). If X is regular, the
smoothing is called regular.

Fix a regular smoothing of f : X → S of C. Fix an invertible sheaf Lη on X (η)
and a nonzero vector space Vη of sections of Lη of dimension r+1. Since X is regular,
there is an invertible sheaf L on X such that L(η) ∼= Lη. We call such L an extension
of Lη to X . Since X is regular, C1, . . . , Ct are Cartier divisors on X , and any Cartier
divisor on X supported in C is a linear combination of C1, . . . , Ct. It follows that the
sheaves L ⊗OX (n1C1 + · · ·+ ntCt) are all the extensions of Lη to X .

If L is an extension of Lη, put

VL := Vη ∩H0(X ,L),

where the above intersection is taken inside H0(X (η), Lη). Since A is a discrete
valuation ring, VL is a free A-module of rank r + 1, and VL ⊗ k(η) = Vη. In addition,
the induced homomorphism,

V L = VL ⊗ k → H0(X ,L)⊗ k → H0(C,L(s)),

is injective. To summarize, given an extension L of Lη to X , the linear system (Vη, Lη)
extends to a “linear system” (VL,L) on X , whose restriction (V L,L(s)) to C is also
a linear system, all of the same rank.

If Vη = H0(X (η), Lη) then VL = H0(X ,L). But V L = H0(C,L(s)) only if the base-
change map H0(X ,L)⊗ k → H0(C,L(s)) is surjective, and hence an isomorphism.

We say that (V L,L(s)) is a limit linear system. (If (Vη, Lη) is the β-canonical
system, we say that (V L,L(s)) is a limit β-canonical system.)

Proposition 1.1. [Es96, Theorem 1] For each irreducible component Ci ⊆ C, there
is a unique extension Li of Lη to X with the following properties:

(1) the canonically induced homomorphism,

V Li
→ H0(Ci, Li(s)|Ci

),

is injective;
(2) for each irreducible component Cj ⊆ C with j 6= i, the canonically induced

homomorphism,
V Li

→ H0(Cj, Li(s)|Cj
),

is not identically zero.

We say that Li is the extension of Lη associated to Ci (and to Vη). We say that
(Vi, Li) := (V Li

,Li(s)) is the limit linear system associated to Ci. (If (Vη, Lη) is the
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β-canonical system, we say that (Vi, Li) is the limit β-canonical system associated to
Ci.)

Proposition 1.2. [Es96, Proposition 4] Fix i, j with i 6= j. Let li,m, for m ∈
{1, . . . , t} \ {i}, be the unique integers such that

Li
∼= Lj(

∑

m6=i

li,mCm).

Then 0 ≤ li,m ≤ li,j for each m.

The integers li,m depend only on the specializations Li(s) and Lj(s).
Let R denote the relative Cartier divisor on X over S whose generic fibre R(η) is

the ramification divisor of (Vη, Lη). We call R := R(s) the limit ramification divisor.
(If (Vη, Lη) is the β-canonical system of X (η), limit β-Weierstrass divisor, and denote
W := R and W := R.)

Let ∆i,j denote the reduced Weil divisor on C whose support is Ci ∩ Cj, for i 6= j.

Theorem 1.3. [Es96, Theorem 7] For each i = 1, . . . , t, let Ri be the ramification
divisor of (Vi, Li|Ci

), viewed as a Weil divisor on C. Then

R =
t∑

i=1

Ri +
∑
i<j

(r − li,j)(r + 1)∆i,j

as Weil divisors on C.



LIMIT WEIERSTRASS POINTS ON NODAL CURVES 7

2. Limit β-canonical systems: notation

Fix a curve C as in Section 1. Call C1, . . . , Ct its irreducible components. For each
pair (i, j) of distinct integers in {1, . . . , t}, let ∆i,j be the reduced Weil divisor with
support Ci ∩ Cj. Assume that t > 1. Let δi,j := #∆i,j for all i and j. Let

δ :=
∑
i<j

δi,j.

For each i = 1, . . . , t, let ∆i :=
∑

j 6=i ∆i,j and δi := #∆i.

Let β be a positive integer. For each nonempty subset I ⊆ {1, . . . , t} let

CI :=
⋃
i∈I

Ci,

let Kβ
I be the β-canonical sheaf of CI , and gI the arithmetic genus. For simplicity,

when appearing as an index, the subset {i} will be replaced by i. We say that
I is connected if CI is connected. Let g denote the arithmetic genus and Kβ the
β-canonical sheaf of C. Since C is assumed connected, δ ≥ t− 1 and

g = g1 + · · ·+ gt + δ − t + 1.

Assume gi > 0 for each i = 1, . . . , t. For each pair I, J ⊂ {1, . . . , t} of disjoint
nonempty subsets, let

∆I,J :=
∑

i∈I; j∈J

∆i,j

and δI,J := #∆I,J . For each nonempty, proper subset I ⊂ {1, . . . , t}, let ∆I := ∆I,Ic ,
where Ic := {1, . . . , t} \ I and δI := #∆I .

Let n = (n1, . . . , nt) be a t-uple of integers. A nonempty I ⊆ {1, . . . , t} will be
called n-balanced if ni is constant for i ∈ I; if so, let nI := ni for any i ∈ I. The
integer nI is called the n-weight of I. Any nonempty subset I ⊆ {1, . . . , t} is uniquely
decomposed into maximal connected n-balanced subsets. We call these subsets the
n-components of I.

Let X/S be a regular smoothing of C, as in Section 1. Let Kβ := K⊗β, the relative
β-canonical sheaf on X over S. Let (Vη, Lη) be the β-canonical system on X (η), that
is,

Lη = Kβ(η) and Vη = H0(X (η),Kβ(η)).

For any t-uple of integers n := (n1, . . . , nt), put

Ln := Kβ ⊗OX (n1C1 + · · ·+ ntCt),

and let (V n, Ln) := (V Ln ,Ln(s)) denote the limit linear system associated to the
β-canonical system on X (η) and the extension Ln of Kβ(η). (If n and n′ are t-uples
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differing by a multiple of (1, . . . , 1), then Ln ∼= Ln′ .) For each nonempty subset
I ⊆ {1, . . . , t}, let Ln

I := Ln|CI
. If I is n-balanced, then

Ln
I
∼= Kβ

I

( ∑
i∈I
j 6∈I

(β + nj − ni)∆i,j

)
.

We will now focus on the component C1. Let

εn
i := ei +

∑
j 6=i(nj − ni)δi,j for each i = 1, . . . , t,

where e1 := (2β − 1)(g1 − g) + βδ1, and ei := (2β − 1)(gi − 1) + βδi for each i > 1.
Note that

h0(Ci, L
n
i )− h1(Ci, L

n
i ) =

{
(2β − 1)(g − 1) + εn

1 , if i = 1;
εn
i , for each i > 1.

More generally, for each nonempty subset I ⊆ {1, . . . , t}, let

εn
I :=

∑
i∈I

εn
i −

∑
i,j∈I
j 6=i

δi,j.

If I is n-balanced, we get

h0(CI , L
n
I )− h1(CI , L

n
I ) =

{
(2β − 1)(g − 1) + εn

I , if 1 ∈ I;
εn
I , if 1 6∈ I.

Observe that
∑t

i=1 εn
i = δ, and if I is the disjoint union of I1, . . . , Ip then

(2) εn
I =

p∑
i=1

εn
Ii
−

∑
1≤i<j≤p

δIi,Ij
.

For each t-uple n = (n1, . . . , nt) and each nonempty, proper subset I of {1, . . . , t}
let mn

I := max{ni | i ∈ I}. Set γn
I := 0 if mn

Ic ≥ mn
I and γn

I := 1 otherwise. Define

γβ,n
I :=





γn
I , if β = 1,

1, if β > 1 and 1 ∈ I,
0, if β > 1 and 1 6∈ I.

For each subset I ⊆ {1, . . . , t}, let hI := (hI
1, . . . , h

I
t ) be the t-uple defined by

hI
i := 1 if i ∈ I and hI

i := 0 otherwise.
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3. A numerical lemma

Recall the notation in Section 2.

Lemma 3.1. Let β be a positive integer. For β = 1, assume δi,j 6= 0 for all i and j.
Then there is a unique t-uple n = (n1, . . . , nt) such that n1 = 0 and for each proper,
nonempty subset I ⊂ {1, . . . , t},

γβ,n+hIc

Ic ≤ εn
I ≤ δI,Ic − γβ,n+hI

I ,

where Ic := {1, . . . , t} \ I.

Proof. Let’s first make a simple observation regarding the statement of the lemma:
Since εn

I + εn
Ic = δI,Ic , the inequality

εn
I ≤ δI,Ic − γβ,n+hI

I

is equivalent to

εn
Ic ≥ γβ,n+hI

I .

Thus, we need only prove the lemma for all nonempty subsets I ⊆ {2, . . . , t}.
We divide the proof in several parts:
Part 1: We claim there is a t-uple n such that εn

i >> 0 for all i = 2, . . . , t. To
prove our claim, define inductively a partition {2, . . . , t} = I1∪· · ·∪Iq as follows: Let
I1 := {i ∈ {2, . . . , t} | δ1,i > 0}; assuming that Ir is defined, let Ir+1 ⊆ {2, . . . , t} be
the subset consisting of those i ∈ I \ (I1 ∪ · · · ∪ Ir) such that δi,j > 0 for some j ∈ Ir.
Since C is connected, if I1 ∪ · · · ∪ Ir 6= {2, . . . , t}, then Ir+1 is nonempty. So, after
finitely many steps, say q steps, we obtain a partition of {2, . . . , t}.

For each integer s, and each r = 1, . . . , q, let nr,s = (0, nr,s
2 , . . . , nr,s

t ) be the t-uple
of integers defined by letting nr,s

i := s if i ∈ Ir ∪ · · · ∪ Iq, and nr,s
i := 0 otherwise. For

each q-uple s := (s1, . . . , sq) of integers, let

ns :=

q∑
r=1

nr,sr .

Then, for each r = 1, . . . , q and each i ∈ Ir,

εns

i = ei − sr(
∑

j∈Ir−1

δi,j) + sr+1(
∑

j∈Ir+1

δi,j),

where I0 := {1}, Iq+1 := ∅ and sq+1 := 0. Note that, by construction,
∑

j∈Ir−1
δi,j > 0

for all i ∈ Ir, for r = 1, . . . , q. In particular, we can make εns

i >> 0 for all i ∈ Iq, by

letting sq << 0. Assuming that sr+1, . . . , sq were chosen such that εns

i >> 0 for all

i ∈ Ir+1∪ · · · ∪ Iq, we let sr << 0 to make εns

i >> 0 for all i ∈ Ir. By induction, there

are integers si << 0 for i = 1, . . . , q such that εns

i >> 0 for each i = 2, . . . , t. The
proof of our first claim is complete.
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Part 2: For each integer s ≥ 0, let ns = (0, ns
2, . . . , n

s
t) be a t-uple of integers.

Assume that ns
i ≤ ns+1

i for each i = 2, . . . , t and all s ≥ 0. In addition, assume that

lim
s→∞

ns
i = ∞

for some i ∈ {2, . . . , t}. We claim that there is j ∈ {2, . . . , t} such that

(3) lim inf
s→∞

εns

j = −∞.

In fact, up to reordering {2, . . . , t}, there is an integer u with 1 ≤ u < t such that
ns

i →∞ if and only if i > u. Since

t∑
i=2

εns

i =
t∑

i=2

ei −
t∑

i=2

δ1,in
s
i ,

there is j ∈ {2, . . . , t} such that (3) holds, unless δ1,i = 0 for each i > u. Suppose
δ1,i = 0 for each i > u. Then u > 1 because C is connected. For each i = 2, . . . , u,

either εns

i → ∞ or δi,u+1 = · · · = δi,t = 0. However, since C is connected, we cannot

have δi,j = 0 for each i = 1, . . . , u and each j = u + 1, . . . , t. Thus εns

i →∞ for some
i ∈ {2, . . . , u}. However, since

t∑
i=2

εns

i ≤
t∑

i=2

ei −
t∑

i=2

δ1,in
0
i

for each s ≥ 0, then (3) holds for some j 6= i. The proof of our claim is complete.
Part 3: It follows from Part 1 that there is a t-uple n = (n1, . . . , nt) such that

n1 = 0 and

(4) εn
R ≥ γβ,n+hRc

Rc for each nonempty R ⊆ {2, . . . , t}.
Assume that there is a nonempty subset I ⊆ {2, . . . , t} such that

(5) εn
I ≥ δI,Ic − γβ,n+hI

I + 1.

Suppose I is minimal with the above property. Let n′ := n + hI . We claim that (4)
holds for n′ in place of n.

Indeed, let R ⊆ {2, . . . , t} be a nonempty subset. We will show that

(6) εn′
R ≥ γβ,n′+hRc

Rc .

We divide the proof according to three cases:
Case 1: Suppose first that R ⊆ I. Suppose for the moment that R 6= I, and let

S := I \R. Since I is minimal for property (5),

(7) εn
S ≤ δS,Sc − γβ,n+hS

S .

Since I is a disjoint union of R and S, from (2) we get

εn
I = εn

R + εn
S − δR,S,
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and thus, from (5) and (7),

(8) εn
R ≥ δR,Ic + γβ,n+hS

S − γβ,n+hI

I + 1.

Note now that

(9) γβ,n+hI

I ≤ γβ,n+hI

R + γβ,n+hS

S .

In fact, if β > 1, since 1 6∈ I, all terms in (9) are zero. So suppose β = 1. Since all

the terms in (9) are either 0 or 1, we may also suppose that γn+hI

R = 0 and γn+hS

S = 0,

and try to prove that γn+hI

I = 0. In equivalent terms, suppose

mn
R + 1 ≤ max(mn

S + 1,mn
Ic) and mn

S + 1 ≤ max(mn
R,mn

Ic).

Coupling the two inequalities, we get mn
R + 1 ≤ max(mn

R,mn
Ic). This is only possible

if mn
R + 1 ≤ mn

Ic . Then mn
S + 1 ≤ mn

Ic as well, and thus

mn
I + 1 = max(mn

R,mn
S) + 1 ≤ mn

Ic .

The latter inequality means γn+hI

I = 0.
Using (9) in (8), we get

(10) εn
R ≥ δR,Ic − γβ,n+hI

R + 1.

Note that the above inequality holds for I instead of R, as we recover inequality (5).
Finally, drop the hypothesis that R 6= I. Then, by (10),

εn′
R = εn

R − δR,Ic ≥ 1− γβ,n+hI

R .

To get (6), we need only show that

γβ,n+hI

R + γβ,n′+hRc

Rc ≤ 1.

Now, the inequality holds unless both terms on the left are 1. However, if β > 1 then

γβ,n+hI

R = 0 because 1 6∈ R. And if β = 1, either γn′+hRc

Rc = 0 because mn′
Rc + 1 ≤ mn′

R ,

or mn′
R ≤ mn′

Rc , and hence γn+hI

R = 0.
Case 2: Suppose now that R ⊆ Ic. Then, by (4),

εn′
R = εn

R + δR,I ≥ γβ,n+hRc

Rc + δR,I .

Now,

γβ,n+hRc

Rc + δR,I ≥ 1,

because δR,I ≥ 1 for β = 1, by hypothesis, and γβ,n+hRc

Rc = 1 for β > 1, since 1 ∈ Rc.

Thus εn′
R ≥ 1 ≥ γβ,n′+hRc

Rc .
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Case 3: Let R1 := R ∩ I and R2 := R ∩ Ic. Suppose R1 and R2 are nonempty.
Then, using (10) with R1 in place of R, and (4) with R2 in place of R, we get

εn′
R =εn′

R1
+ εn′

R2
− δR1,R2

=εn
R1
− δR1,Ic + εn

R2
+ δR2,I − δR1,R2

≥δR1,Ic − γβ,n+hI

R1
+ 1− δR1,Ic + γβ,n+hRc

2

Rc
2

+ δR2,I − δR1,R2

=δR2,I\R1 + 1 + γβ,n+hRc
2

Rc
2

− γβ,n+hI

R1
.

To get (6), we need only show that

γβ,n′
R1

+ γβ,n′+hRc

Rc ≤ γβ,n+hRc
2

Rc
2

+ 1.

If β > 1 then γβ,n′
R1

= 0 because 1 6∈ R1, and hence the inequality holds. So suppose

β = 1. We may also suppose γβ,n′
R1

= 1 and γβ,n′+hRc

Rc = 1, and try to prove that

γβ,n+hRc
2

Rc
2

= 1. In equivalent terms, suppose mn′
R1

> mn′
Rc

1
and mn′

Rc + 1 > mn′
R . Using

the first inequality, we get mn
I\R1

< mn
R1

, and hence

mn
I\R1

+ 1 ≤ mn
I .

And using the second inequality,

mn
R2

= mn′
R2
≤ mn′

R ≤ mn′
Rc = max(mn

Ic\R2
,mn

I\R1
+ 1).

Combining the last two displayed inequalities, we get

mn
R2
≤ max(mn

Ic\R2
, mn

I ) = mn
Rc

2
,

which is equivalent to γβ,n+hRc
2

Rc
2

= 1.

Part 4: In Part 3, we started with a t-uple n = (n1, . . . , nt) satisfying n1 = 0 and
inequalities (4), and produced another t-uple n′ = (n′1, . . . , n

′
t) satisfying n′1 = 0 and

the same inequalities, (6), as n. We may thus apply Part 3 again, with n′ instead of
n, and so on, as long as (5) holds for some nonempty subset I ⊆ {2, . . . , t}. However,
n′i ≥ ni for each i, with strict inequality for some i. Hence, according to Part 2, this
process must come to an end. When it does, we obtain a t-uple n satisfying all the
inequalities stated in the lemma.

Part 5: Finally, suppose there are two t-uples n and n′ with n1 = n′1 = 0 and
satisfying the inequalities in the statement of the lemma. Let x := n′ − n. Set
x := max(xi). Assume that x 6= 0. Then, by exchanging n and n′ if necessary, we
may assume that x > 0. Let I ⊆ {2, . . . , t} be the maximal x-balanced subset of
weight x. Then, using the stated left-hand inequalities for n′,

εn
I = εn′

I +
∑
i∈I
j∈Ic

δI,{j}(x− xj) ≥ γβ,n′+hIc

Ic + δI,Ic +
∑
i∈I
j∈Ic

δI,{j}(x− 1− xj).
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We claim that εn
I > δI,Ic − γβ,n+hI

I , thus reaching a contradiction with the stated
right-hand inequalities for n. Indeed, we need only show that

γβ,n′+hIc

Ic + γβ,n+hI

I +
∑
i∈I
j∈Ic

δI,{j}(x− 1− xj) > 0.

However, if the last inequality does not hold, then γβ,n+hI

I = γβ,n′+hIc

Ic = 0 and

δI,{j}(x− 1− xj) = 0 for each j ∈ Ic. Since 1 ∈ Ic, the equality γβ,n′+hIc

Ic = 0 implies
β = 1. Then, by hypothesis, δI,{j} > 0 for each j ∈ Ic. So xj = x− 1 for each j ∈ Ic.

Since 1 ∈ Ic and x1 = 0, we have x = hI . So γn
Ic = γn′+hIc

Ic , and hence γn
Ic = 0. This

is equivalent to
mn

Ic ≤ mn
I .

On the other hand, γβ,n+hI

I = 0 is equivalent to

mn
I + 1 ≤ mn

Ic .

We have a contradiction. ¤
Example. We will show that the condition “δi,j 6= 0 for all i and j” is necessary

for the uniqueness of n, when β = 1, in Lemma 3.1.
Let C be a curve with three components, namely C1, C2 and C3, such that g1 > 0,

g2 = g3 = g0 > 1, δ1,2 = δ1,3 = 1 and δ2,3 = 0. So δ1 = 2 and δ2 = δ3 = 1. We verify
that n = (0, n2, n3) = (0, g0, g0 − 1) and n = (0, n2, n3) = (0, g0 − 1, g0) satisfy the
inequalities in Lemma 3.1.

If n = (0, g0, g0 − 1) then εn
1 = εn

3 = 1 and εn
2 = 0. If I = {1, 2} then εn

I = 0,

γ
1,(0,g0,g0)
{3} = 0, γ

1,(1,g0+1,g0−1)
{1,2} = 1 and δI,Ic = 1. If I = {2, 3} then εn

I = 1,

γ
1,(1,g0,g0−1)
{1} = 0, γ

1,(0,g0+1,g0)
{2,3} = 1 and δI,Ic = 2. If I = {1, 3} then εn

I = 1,

γ
1,(0,g0+1,g0−1)
{2} = 1, γ

1,(1,g0,g0)
{1,3} = 0 and δI,Ic = 1. In either of the three cases, the

inequalities of the lemma are satisfied.
By the symmetry of the numerical invariants of C, also for n = (0, g0 − 1, g0) the

inequalities of the lemma are satisfied.
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4. Deformation theory

Let C be a curve, as in Section 1. Call C1, . . . , Ct the irreducible components of C.
Let Div(C) denote the group of Cartier divisors and Pic(C) the Picard group of C.
For each c ∈ (k∗)t and D ∈ Div(C), denote by c ·D the result of the action of c on D.

Proposition 4.1. [EM02, Proposition 6.3] Let D1, . . . , Dt be Cartier divisors on
C1, . . . , Ct.

(1) There exists a Cartier divisor E on C such that E|Ci
≡ Di for each i =

1, . . . , t.
(2) For each Cartier divisor E on C such that E|Ci

≡ Di for each i = 1, . . . , t,
there is a Cartier divisor D on C such that D ≡ E and D|Ci

= Di for each
i = 1, . . . , t.

(3) If D and D′ are Cartier divisors on C such that D|Ci
= Di = D′|Ci

for each
i = 1, . . . , t, then D ≡ D′ if and only if there is c ∈ (k∗)t such that D = c ·D′.

Let ∆ be the set of points of intersection between distinct components of C and
δ := #∆. For each p ∈ ∆, let ip, jp ∈ {1, . . . , t} be the unique integers such that
ip < jp and p ∈ Cip ∩ Cjp . We say that p is a reducible node of every subcurve of C
containing Cip ∪Cjp . For each t-uple of integers n := (n1, . . . , nt), put np := njp −nip .
Let up and vp be the local parameters of Cip and Cjp at p.

Let k∗∆ :=
∏

p∈∆ k∗. For each a ∈ k∗∆, define a map Ea : Zt → Div(C) as follows:

For each n ∈ Zt, the image Ea(n) is the Cartier divisor on C, trivial off ∆, and defined
at each p ∈ ∆ by the local equation ap

npup
np + vp

−np . Then Ea is a homomorphism
of groups. We call Ea a pre-enriched structure on C.

It is easy to prove that the set of pre-enriched structures on C does not depend on
the choice of the local parameters; see [EM02, 6.5].

A map L : Zt → Pic(C) is called an enriched structure on C if there is a pre-
enriched structure E : Zt → Div(C) such that L(n) ∼= OC(E(n)) for each n ∈ Zt.

Theorem 4.2. [EM02, Theorem 6.6] Let C be a nodal curve and C1, . . . , Ct its irre-
ducible components. Then, for each regular smoothing X/S of C there is an enriched
structure L on C such that

(11) L(n) ∼= OX (n1C1 + · · ·+ ntCt)|C for each n ∈ Zt.

Conversely, for each enriched structure L on C there is a regular smoothing X/S of
C satisfying (11).

Recall the notation in Section 2.

Proposition 4.3. Let N be an invertible sheaf on C and τ = (τ1, . . . , τt) a t-uple of
integers. Let P be the partition of {1, . . . , t} in maximal τ -balanced subsets. Then
there is a regular smoothing X /S of C such that

(12) N ∼= OX (τ1C1 + · · ·+ τtCt)|C
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if and only if

(13) N |CI
∼= OCI

( ∑
i∈I
j 6∈I

(τj − τi)∆i,j

)
for each I ∈ P .

Proof. If either (12) or (13) holds, then

(14) N |Ci
∼= OCi

( ∑

j 6=i

(τj − τi)∆i,j

)
.

By Statement 2 of Proposition 4.1, there is a Cartier divisor D on C such that
N ∼= OC(D) and

(15) D|Ci
=

∑

j 6=i

(τj − τi)∆i,j for each i = 1, . . . , t.

As each enriched structure arises from a pre-enriched structure, there is an enriched
structure L : Zt → Pic(C) such that N ∼= L(τ) if and only if there is a pre-enriched
structure E : Zt → Div(C) such that

(16) N ∼= OC(E(τ)).

Now, for any pre-enriched structure E : Zt → Div(C), Condition (15) holds with E(τ)
in place of D. So, by Statement 3 of Proposition 4.1, given a pre-enriched structure
E : Zt → Div(C), Condition (16) holds if and only if there is a c ∈ (k∗)t such that

(17) E(τ) = c ·D.

For each subset I of {1, . . . , n}, denote by k∗I ⊆ (k∗)t the subgroup of t-uples
c = (c1, . . . , ct) such that cj = 1 for all j 6∈ I. We will view k∗I acting on Div(CI) in
the natural way. Again by Statement 3 of Proposition 4.1, Condition (13) is equivalent
to the existence of a cI ∈ k∗I for each I ∈ P such that

(18)
∑
i∈I
j 6∈I

(τj − τi)∆i,j = cI ·D|CI
.

More concretely, since (15) holds, there is a unique α ∈ k∗∆ such that αpu
τp
p + v

−τp
p

is a local equation of D at p for each p ∈ ∆. Then, there are a c ∈ (k∗)t and a
pre-enriched structure E : Zt → Div(C) such that (17) holds if and only if there are
a ∈ k∗∆ and a c ∈ (k∗)t such that

(19) a
τp
p = (cip/cjp)αp for each p ∈ ∆.

In addition, for each I ∈ P and cI ∈ k∗I , Condition (18) holds if and only if

(20) (cI,ip/cI,jp)αp = 1 for each reducible node p of CI .

Now, if (19) holds for certain a ∈ k∗∆ and c ∈ (k∗)t, then

(21) (cip/cjp)αp = 1 for each reducible node p of CI , for each I ∈ P .



16 PARHAM SALEHYAN

Conversely, suppose (21) holds for a certain c ∈ (k∗)t. Then (19) holds for the same
c and a certain a ∈ k∗∆. Indeed, choose ap = 1 if p is a reducible node of CI for I ∈ P .

Otherwise, τ p 6= 0, and we can freely choose ap ∈ k∗ such that a
τp
p = (cip/cjp)αp.

Finally, suppose there is c ∈ (k∗)t such that (21) holds. Write c =
∏

I∈P cI for
cI ∈ k∗I . Then (20) holds. Conversely, if there are cI ∈ k∗I for all I ∈ P such that (20)
holds for each I ∈ P , then (21) holds for c :=

∏
I∈P cI .

So we have just seen that (13) is equivalent to the existence of an enriched structure
L on C such that N ∼= L(τ). Now, apply Theorem 4.2. ¤
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5. General invertible sheaves

Lemma 5.1. Let X be a projective, reduced curve defined over an algebraically closed

field k. Let D ⊂ X be a collection of nodes and π : X̃ → X the partial normalization

of X along D. Let L̃ be an invertible sheaf on X̃ and L the general invertible sheaf on

X such that π∗L ∼= L̃. If, for each p ∈ D, there is s ∈ H0(X,L) such that s(p) 6= 0,
then

h0(X, L) = h0(X̃, L̃)−#D.

Proof. We claim first that the natural bilinear map,

j : H0(X, L)× T → H1(X,L),

is zero, where

T := ker(H1(X,OX) → H1(X̃,OX̃)).

In fact (cf. [?]), let Φ : Pic(X) → Pic(X̃) denote the pullback map and put S :=

Φ−1(L̃). Then L ∈ S. We can identify T as the tangent space to S at L, which is also
the set M := Mor((B, 0), (S, L)) of pointed maps, where B := Spec(k[t]/(t2)) and 0
is the unique point of B.

Let U be the universal invertible sheaf on X × S. Let v ∈ M . So we have the
natural exact sequence

0 → L → v∗U → L → 0,

where v∗U is the pullback of U to X × B under v : B → S. The restriction of j to
H0(X,L)×{v} can be identified with the connecting map ∂v : H0(X,L) → H1(X,L)
in the associated long exact sequence in cohomology. Now, there is an open dense
subset S0 ⊆ S such that h0(X, N) is constant for N ∈ S0. Since S0 is reduced, for
each N ∈ S0, and each affine open neighborhood A of N in S0, the restriction map
H0(X × A,U|X×A) → H0(X,N) is surjective. Now, since L is general, L ∈ S0. The
map v : B → S factors through an affine open neighborhood of L in S0. So the
restriction map

H0(X ×B, v∗U) → H0(X, L)

is surjective, and hence the connecting homomorphism ∂v is zero. Since we have
chosen v arbitrary, j is zero.

By Serre duality, the vanishing of j implies that the natural bilinear map,

H0(X,L)× Hom(L, ω) → H0(X, ω),

factors through H0(X, π∗ω̃), where ω is the dualizing sheaf on X, and ω̃ that on X̃.
Let φ ∈ Hom(L, ω). Then φ(s) is a section of π∗ω̃ for each s ∈ H0(X, L). Equiv-

alently, φ(s)(p) = 0 for each p ∈ D, since D is a collection of nodes of X, and X̃ is
the partial normalization of X along D. Now, by hypothesis, for each p ∈ D there is
s ∈ H0(X,L) such that s(p) 6= 0. Then φ(p) = 0 for each p ∈ D or, equivalently, φ
factors through π∗ω̃. Since φ was arbitrary,

Hom(L, ω) = Hom(L, π∗ω̃) = Hom(π∗L, ω̃).
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By Serre duality,

H1(X, L) = H1(X, π∗π∗L) = H1(X̃, π∗L).

Taking cohomology on the natural exact sequence,

0 → L → π∗π∗L →
⊕
p∈D

k(p) → 0,

we get

h0(X, L) = h0(X, π∗π∗L)−#D = h0(X̃, L̃)−#D,

as we wished to show. ¤
Example. The generality of L is a necessary condition for Lemma 5.1. Indeed, if X

is an irreducible curve with a node p, and X̃ is the partial normalization of X at p,

then h0(X,OX) = h0(X̃,OX̃) = 1.
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6. Limit β-canonical systems: conclusion

Recall the notation in Sections 1, 2 and 3. From now on n will stand for the
unique t-uple mentioned in the statement of Lemma 3.1. Wherever we assume that
the components of C intersect at points in general position, it is to be understood
that, for each effective divisor D =

∑
i<j Di,j, with 0 ≤ Di,j ≤ ∆i,j for all i and j,

and each connected n-balanced subset I ⊆ {1, . . . , t},
h0

(
CI , K

β
I

( ∑

i∈I; j 6∈I

((β + nj − ni)∆i,j −Di,j)
))

is the minimum possible, given the components C1, . . . , Ct and the numerical invari-
ants δi,j.

More precisely, for each distinct i, j ∈ {1, . . . , t} let Ξi
j be an ordered subset of δi,j

simple points of Ci. Choose the Ξi
j in such a way that Ξi

j ∩ Ξi
` = ∅ for all distinct

i, j, ` ∈ {1, . . . , t}. Let C̃ be the nodal curve obtained as the union of C1, . . . , Ct with
the ordered identification of Ξi

j and Ξj
i for all distinct i and j. Call Ξi,j the reduced

Weil divisor of C̃ with support Ci∩Cj. For each nonempty I ⊆ {1, . . . , t}, let C̃I ⊆ C̃

be the union of the components Ci for i ∈ I, and let K̃β
I denote the β-canonical sheaf

of C̃I .
The only nondiscrete invariants of C̃ are C1, . . . , Ct and the points in Ξi

j for all i

and j. Let the Ξi
j vary. Had we replaced C by C̃, the t-uple n mentioned in the

statement of Lemma 3.1 would not change.
We say that the components of C intersect at points in general position if, for

each effective divisor D =
∑

i<j Di,j, with 0 ≤ Di,j ≤ ∆i,j for all i and j, and each

connected n-balanced subset I ⊆ {1, . . . , t},
h0

(
CI , K

β
I

( ∑
i∈I
j 6∈I

(β + nj − ni)∆i,j −Di,j

)) ≤ h0
(
C̃I , K̃

β
I

( ∑
i∈I
j 6∈I

(β + nj − ni)Ξi,j − Ei,j

))

for all possible choices of Ξi
j and of effective divisors Ei,j such that Ei,j ≤ Ξi,j and

deg Ei,j = deg Di,j for all i and j.

By semicontinuity, if the Ξi
j are chosen generically, also the components of C̃ inter-

sect at points in general position. So the condition is general.
Let I ⊆ {1, . . . , t} be a connected n-balanced subset. Since CI is connected,

h0(KI) = gI and h1(KI) = 1. In addition, h0(KI(E)) = gI + deg E − 1 for each
effective nonzero divisor E of CI supported in the nonsingular locus.

If β > 1 and gi ≥ 2 for each i = 1, . . . , t, then h0(Kβ
I ) = (2β − 1)(gI − 1) and

h1(Kβ
I ) = 0. Moreover, h0(Kβ

I (E)) = (2β − 1)(gI − 1) + deg E for each effective
divisor E of CI supported in the nonsingular locus.

Lemma 6.1. Assume that the components of C intersect at points in general position.
Let X /S be a smoothing of C along the general direction. For β = 1, assume δi,j 6= 0
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for all i and j; otherwise assume gi ≥ 2 for all i. For each i and j, let Di,j ≤ ∆i,j be
an effective divisor. Let n be the unique t-uple of integers mentioned in Lemma 3.1.
Let I ⊂ {1, . . . , t} be a proper nonempty subset, and put

L := Ln
I (−

∑
i∈I
j 6∈I

Di,j).

If, for each i ∈ I, the restriction map H0(CI , L) → H0(Ci, L|Ci
) is nonzero, then

{
h1(CI , L) = 0 for β > 1,

h1(CI , L) ≤ γn+hI

I for β = 1.

Proof. Note that the smoothing X/S of C is regular because it is taken along the
general direction. We will first treat the special case where I is n-balanced and
connected. In this case, we need only that the smoothing be regular.

In fact, we have

Ln
I
∼= Kβ

I

( ∑
i∈I
j 6∈I

(β + nj − ni)∆i,j

)
.

Let P and N be effective divisors of CI with disjoint supports such that

(22)
∑
i∈I
j 6∈I

(β + nj − ni)∆i,j −
∑
i∈I
j 6∈I

Di,j = P −N.

Then L ∼= Kβ
I (P −N).

Clearly,

h1(CI , K
β
I (P )) ≤ h1(CI , K

β
I ).

If β > 1 then h1(CI , K
β
I ) = 0, and thus also h1(CI , K

β
I (P )) = 0. Now, suppose for

the moment that β = 1. Then h1(CI , K
β
I ) = 1, and thus h1(CI , K

β
I (P )) ≤ 1 with

equality only if P = 0. However, from the expression (22), and the hypothesis that
∆i,j 6= 0 for all i and j, we see that P = 0 only if nj ≤ ni for all i ∈ I and j 6∈ I, and

hence only if γn+hI

I = 1. Thus
{

h1(CI , K
β
I (P )) = 0 for β > 1,

h1(CI , K
β
I (P )) ≤ γn+hI

I for β = 1.

It is thus enough to show that

(23) h1(CI , L) = h1(CI , K
β
I (P )).

By Riemann–Roch, (23) is equivalent to h0(CI , L) = h0(CI , K
β
I (P ))− deg N .

Write |N | = {p1, . . . , ps}, so N =
∑

` w`p` for w` > 0. For each ` = 1, . . . , s,
let i` ∈ I such that p` ∈ Ci` , and pick a general point q` ∈ Ci` (contained in the

nonsingular locus of CI). Let Ñ =
∑

` w`q` and L̃ := Kβ
I (P − Ñ).
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Since the irreducible components of C intersect at points in general position,

h0(CI , L) ≤ h0(CI , L̃). By semicontinuity, the reverse inequality holds. Thus

(24) h0(CI , L̃) = h0(CI , L).

For each i ∈ I, since I \ {i} is n-balanced, by the same reason,

h0(CI\{i}, L̃|CI\{i}(−∆I\{i},i)) = h0(CI\{i}, L|CI\{i}(−∆I\{i},i)).

By hypothesis, the restriction maps H0(CI , L) → H0(Ci, L|Ci
) are nonzero for each

i ∈ I. Equivalently,

h0(CI\{i}, L|CI\{i}(−∆I\{i},i)) < h0(CI , L).

Thus, also the restriction maps

(25) H0(CI , L̃) → H0(Ci, L̃|Ci
) are nonzero for each i ∈ I.

So, there is an open dense subset U ⊆ CI contained in the nonsingular locus of CI

such that, for q` ∈ U∩Ci` for ` = 1, . . . , s, both (24) and (25) hold for L̃ := Kβ
I (P−Ñ),

where Ñ =
∑

` w`q`. It is now enough to show that h0(CI , L̃) = h0(CI , K
β
I (P ))−deg Ñ

for one such Ñ .
Let b ≤ s be a positive integer. Suppose we have already chosen q` ∈ U ∩ Ci` for

all ` < b such that

h0(CI , K
β
I (P − E)) = h0(CI , K

β
I (P ))− deg E,

where E :=
∑

`<b w`q`. It is enough to show that there is qb ∈ U ∩ Cib such that

(26) h0(CI , K
β
I (P − E − wbqb)) = h0(CI , K

β
I (P − E))− wb.

Choose qb ∈ U ∩ Cib such that qb is not a ramification point of the linear system of

sections of Kβ
I (P − E)|Cib

spanned by H0(CI , K
β
I (P − E)). Now, if r` ∈ U ∩ Ci` for

` = b+1, . . . , s, and F :=
∑

`>b w`r`, then (25) holds for L̃ := Kβ
I (P −E−wbqb−F ).

In particular, the restriction map

H0(CI , K
β
I (P − E − wbqb)) → H0(Cib , K

β
I (P − E − wbqb)|Cib

)

is nonzero. Thus (26) holds.
For the general case, let I1, . . . , Ip be the n-components of I. For each distinct

i, j ∈ {1, . . . , p}, let Ei,j ≤ ∆Ii,Ij
be the effective divisor supported on the set of

nodes where all sections in H0(CI , L) vanish. Let ei,j := deg Ei,j for each i and j.
Let Ei :=

∑
j 6=i Ei,j and ei := deg Ei for each i = 1, . . . , p. Let E :=

∑
i<j Ei,j and

e := deg E. Note that 2e = e1 + · · ·+ ep.
Let ψ : X → CI be the partial normalization of CI along |E|. Let M := ψ∗L(−F )

where F is the reduced divisor of X with support ψ−1(|E|). Let X̃ be the disjoint

union of the CIi
for i = 1, . . . , p, and π : X̃ → X the natural map.
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Since the smoothing occurs along a general direction, Proposition 4.3 tells us that
L is the general invertible sheaf on CI such that

L|CIi

∼= Kβ
Ii

( ∑
j∈Ii
` 6∈Ii

(β + n` − nj)∆j,` −
∑
j∈Ii
` 6∈I

Dj,`

)

for each i = 1, . . . , p. Since the pullback ψ∗ : Pic(CI) → Pic(X) is surjective, it
follows that M is the general invertible sheaf on X such that

π∗M ∼=
p⊕

i=1

Kβ
Ii

( ∑
j∈Ii
` 6∈Ii

(β + n` − nj)∆j,` −
∑
j∈Ii
` 6∈I

Dj,` − Ei

)

By the projection formula,

H0(CI , L) = H0(X, M).

Thus, for each p ∈ X with ψ(p) ∈ ⋃
j 6=i |∆Ii,Ij

| \ |E|, there is a section of H0(X, M)
not vanishing at p. By Lemma 5.1,

(27) h0(CI , L) =

p∑
i=1

h0(CIi
, L|CIi

(−Ei))−
∑
i<j

δIi,Ij
+ e.

Suppose first that β > 1. Applying the statement of the lemma to L|CIi
(−Ei),

which falls in the special case proved first, we get

h1(CIi
, L|CIi

) = h1(CIi
, L|CIi

(−Ei)) = 0;

so, by Riemann–Roch,

h0(CIi
, L|CIi

(−Ei)) = h0(CIi
, L|CIi

)− ei

for each i = 1, . . . , p. Using (27), we get

h0(CI , L) =

p∑
i=1

h0(CIi
, L|CIi

)−
∑
i<j

δIi,Ij
− e.

However, it follows from the long exact sequence in cohomology associated to the
short exact sequence

0 → L →
p⊕

i=1

L|CIi
→

⊕
i<j

⊕
p∈∆Ii,Ij

k(p) → 0

that

h0(CI , L) ≥
p∑

i=1

h0(CIi
, L|CIi

)−
∑
i<j

δIi,Ij
,
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with equality if and only if

h1(CI , L) =

p∑
i=1

h1(CIi
, L|CIi

).

So equality holds, and hence h1(CI , L) = 0, as we wished to show.
Now, suppose β = 1. Again, apply the statement of the lemma to L|CIi

(−Ei), this
time to get

h1(CIi
, L|CIi

(−Ei)) ≤ γn+hIi

Ii
;

so, by Riemann–Roch,

h0(CIi
, L|CIi

(−Ei)) ≤ h0(CIi
, L|CIi

)− ei + γn+hIi

Ii

for each i = 1, . . . , p. From (27) we obtain

(28) h0(CI , L) ≤
p∑

i=1

h0(CIi
, L|CIi

)−
∑
i<j

δIi,Ij
− e +

p∑
i=1

γn+hIi

Ii
.

Observe now that

(29)

p∑
i=1

γn+hIi

Ii
= γn+hI

I .

Indeed, since each two components of CI do intersect, the n-weights of the Ii are
different. So, there is j ∈ {1, . . . , p} such that mn

Ij
> mn

Ii
for each i 6= j. Hence

γn+hIi

Ii
= 0 for each i 6= j. In addition, γn+hIj

Ij
= 0 if and only if mn

Ic ≥ mn
Ij

+ 1. Now,

mn
I = max(mn

I1
, . . . , mn

Ip
) = mn

Ij
,

and γn+hI

I = 0 if and only if mn
Ic ≥ mn

I + 1. So

γn+hI

I = γn+hIj

Ij
=

p∑
i=1

γn+hIi

Ii
,

as we wished to show.
Combining (29) with (28), we get

h0(CI , L) ≤
p∑

i=1

h0(CIi
, L|CIi

)−
∑
i<j

δIi,Ij
− e + γn+hI

I .

Since γn+hI

I ≤ 1, if e > 0 we get

h0(CI , L) ≤
p∑

i=1

h0(CIi
, L|CIi

)−
∑
i<j

δIi,Ij
.
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The same inequality can be obtained directly from (27) if e = 0. So, as in the case
β > 1, we get

h1(CI , L) =

p∑
i=1

h1(CIi
, L|CIi

).

But
p∑

i=1

h1(CIi
, L|CIi

) ≤
p∑

i=1

h1(CIi
, L|CIi

(−Ei)) ≤
p∑

i=1

γn+hIi

Ii
= γn+hI

I ,

finishing the proof. ¤
For each β define,

κβ :=

{
g, if β = 1,
(2β − 1)(g − 1), if β > 1.

Proposition 6.2. Assume that the components of C intersect at points in general
position. Let X/S be a smoothing of C along the general direction. For β = 1, assume
δi,j 6= 0 for all i and j; otherwise assume gi ≥ 2 for all i. Let n be the unique t-uple
of integers mentioned in Lemma 3.1. Then

(1) h0(C{2,...,t}, L
n
{2,...,t}(−∆1)) = 0.

(2) h0(CI , L
n
I (−∆i)) < κβ for each i = 2, . . . , t, where I := {1, . . . , t} \ {i}.

(3) h0(C, Ln) = κβ.

In particular, (H0(C, Ln), Ln) is the limit β-canonical system associated to C1.

Proof. We shall prove the first two statements simultaneously. Let T := {1, . . . , t}.
Fix l ∈ T and let T ′ := T \ {l}. Let I ⊆ T ′ be a minimal subset such that

H0(CI , L
n
I (−∆I,J)) = H0(CT ′ , L

n
T ′(−∆l)),

where J := T \ I. We need only show that h0(CI , L
n
I (−∆I,J)) = 0 if 1 6∈ I, and that

h0(CI , L
n
I (−∆I,J)) < κβ if 1 ∈ I.

If I = ∅, we are done. Suppose I is nonempty. By the minimality of I, the
restriction map

H0(CI , L
n
I (−∆I,J)) → H0(Ci, L

n
i (−∆i,J))

is nonzero for each i ∈ I. So, Lemma 6.1 yields{
h1(CI , L

n
I (−∆I,J)) = 0 for β > 1,

h1(CI , L
n
I (−∆I,J)) ≤ γn+hI

I for β = 1.

Let ρ := (2β− 1)(g− 1) if 1 ∈ I, and ρ := 0 otherwise. Using Riemann–Roch, we get

h0(CI , L
n
I (−∆I,J)) ≤ εn

I − δI,J + ρ + γn+hI

I

for β = 1, whereas

h0(CI , L
n
I (−∆I,J)) = εn

I − δI,J + ρ
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for β > 1. So, by Lemma 3.1,

h0(CI , L
n
I (−∆I,J)) ≤ ρ

for β = 1, while

h0(CI , L
n
I (−∆I,J)) ≤ ρ− γβ,n+hI

I .

for β > 1. Thus h0(CI , L
n
I (−∆I,J)) = 0 if 1 6∈ I, whereas h0(CI , L

n
I (−∆I,J)) < κβ if

1 ∈ I, as we wished to show.
The first two statements imply that (V n, Ln) is the limit β-canonical system associ-

ated to C1. Now, dim V n = κβ. So, for the third statement, it will be enough to show
that h0(C, Ln) ≤ κβ. By Riemann–Roch, it is enough to show that h1(C, Ln) ≤ 1 for
β = 1, and h1(C,Ln) = 0 for β > 1.

Taking cohomology on the natural exact sequence

0 → Ln
1 (−∆1) → Ln → Ln

{2,...,t} → 0,

we get
h1(C,Ln) ≤ h1(C1, L

n
1 (−∆1)) + h1(C{2,...,t}, L

n
{2,...,t}).

Now, since (V n, Ln) is the limit β-canonical system associated to C1, the restriction
maps

H0(C{2,...,t}, L
n
{2,...,t}) → H0(Ci, L

n
i )

are nonzero for all i ≥ 2. So, Lemma 6.1 yields

h1(C{2,...,t}, L
n
{2,...,t}) ≤ 1,

with equality only if β = 1.
Thus, we need only show that h1(C1, L

n
1 (−∆1)) = 0. Note that, since κβ > δ1

and κβ ≤ h0(C1, L
n
1 ), we have h0(C1, L

n
1 (−∆1)) 6= 0. So, Lemma 6.1 yields either

h1(C1, L
n
1 (−∆1)) = 0, for β > 1, or h1(C1, L

n
1 (−∆1)) ≤ γn+h1

1 , for β = 1.

The case β > 1 is finished. So, suppose β = 1. We need only show that γn+h1

1 = 0.

By contradiction, suppose γn+h1

1 = 1. Since n1 = 0, we have ni ≤ 0 for each i ≥ 2. So
εn
1 ≤ e1. In addition, since each two components of C do intersect, equality εn

1 = e1

holds only if n = 0. However, εn
1 ≥ 0 by Lemma 3.1. Since e1 = (g1− g)+ δ1, we have

that (g − g1) ≤ δ1, with equality only if n = 0 and εn
1 = 0.

Since each two components of C do intersect, (g− g1) ≤ δ1 yields t = 2 and g2 = 1.
In particular, equality (g−g1) = δ1 holds, and thus n = 0 and εn

1 = 0. However, since
n = 0, Lemma 3.1 yields εn

1 ≥ 1, a contradiction. ¤
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Now we prove our principal result.

Theorem. Assume that the components of C intersect at points in general position.
For β = 1, assume ∆i,j 6= ∅ for all i and j; otherwise assume gi ≥ 2 for each i.
Let n = (n1, . . . , nt) be the unique t-uple of integers given by Lemma 3.1. Then the
complete system of sections of the general invertible sheaf L on C satisfying

(30) L|CI
∼= Kβ

I

( ∑
i∈I
j /∈I

(β + nj − ni)∆i,j

)
for each n-balanced I ⊆ {1, . . . , t}

is a limit β-canonical system associated to C1. Conversely, the limit β-canonical
system associated to C1 of a smoothing of C along the general direction is the complete
system of sections of an invertible sheaf L on C satisfying (30).

Proof. We prove the first statement. Let L be the general invertible sheaf on C
satisfying (30). It follows from Proposition 4.3 that there is a regular smoothing X/S
of C such that

L ∼= Kβ(n1C1 + · · ·+ ntCt)|C ,

where Kβ is the relative β-canonical sheaf on X over S. Since L is general, the
smoothing X/S occurs along the general direction. Applying Proposition 6.2, we
conclude that (H0(C,L), L) is the limit β-canonical system associated to C1 and
X/S. The converse statement follows directly from Proposition 6.2.
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