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Chapter 1

Introduction

Most of the oil in the world is produced by injecting water in some wells and recovering oil
in other wells. However, severe fall of injectivity occurs from the practice in offshore fields of
injecting sea water containing organic and mineral inclusions. The injection of a poor quality
water in a well curtails its injectivity because the particles suspended in the fluid are trapped
while passing through the porous rock. Thus, in this work we study the deep filtration during
injection of water containing solid particles, which is essential to predict the loss of injectivity
in wells.

Mathematical models for filtration processes contain functions describing properties of
the fluid or the porous medium where the flow occurs. Recovery methods for determining
these functions indirectly from laboratory measurements of quantities such as the pressure
or flow rate of the fluids in flow experiments have been developed by several authors. Such
methods lead to mathematical inverse problems in parameter estimation theory, which are
very ill-conditioned linear and nonlinear optimization problems. Regularization methods are
useful to solve these problems because they provide approximate solutions in a stable way.

Many laboratory studies were carried out to understand the filtration process, ([35], [11],
[1] and [60]). Our work is based on the model for deep bed filtration, developed in [10] based
on [60], which consists of equations expressing the particle mass conservation, the particle
retention kinetics and Darcy’s law ([10], [60] and [80]). This quasilinear system of equations
has two empirical coefficients, the permeability reduction function k(σ), which expresses the
formation damage in the porous rock and the filtration function λ(σ), which represents the
kinetics of particle retention. The direct problem consists in solving this system of equations
in time.

In one dimensional flow laboratory experiments it is possible to measure accurately the
following quantities, in increasing order of difficulty:

(i) the pressure drop time series ∆p(T );

(ii) the pressure time series pl(T ) at some points X = Xl, l = 1, . . . n, along the rock;

(iii) the effluent concentration time series ce(T );

(iv) the average particle deposition σ(X, T ) between points Xl−1 and Xl, l = 2, . . . n at
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the end time of the experiment;

(v) the particle deposition σ(X, T ) at many points (Xl, Tj), l = 1, . . . n, j = 1, . . . , m.

Naturally, such experimental measurements are used in the inverse problem of determining
the permeability reduction k(σ) and the filtration function λ(σ).

The recovery of the permeability reduction and filtration functions leads to several dif-
ferent types of ill-posed inverse problems, which are the object of our work. The solution
techniques used here lead to large matrices upon discretization which have huge condition
numbers and must be treated with care.

Methods for the determination of a constant filtration function λ(σ) = λ0 from the effluent
concentration history ce(T ) were presented in [93] and [112]. A recovery method for the
general case under the assumption that the injected concentration of particles is constant
was presented in [10] and [12], based on a functional equation. The first derivation of this
functional equation, based on the invariance of c/σ along the characteristics lines was found in
[10] and [12]. However, stabilization conditions of the inverse method as well as experimental
validation of the model were not considered. In this work, we obtain stabilization conditions
for the recovery method and we relax the assumption made in [10] of constant injected particle
concentration. Moreover, we present another recovery method to obtain the filtration function
λ(σ) based on an optimization method.

The invariance of c/σ along the characteristics lines was found first by Herzig et al. ([60]),
based on a simplified model of the filtration process. However, the same relationship was
derived for a more general model by Bedrikovetsky et al. ([10]) under analogous assumptions.
Because its relevance for the recovery method and the validation of the model, we reproduce
an analogous derivation in this work.

Methods for the determination of the permeability reduction function k(σ) from the pres-
sure drop history ∆p(T ) were presented in [93], [112] and [11] for constant coefficient and
one parameter family of solutions. In this work, we obtain a more general method using the
Tikhonov regularization method. Moreover, we present the regularization by parametrization
method which is analogous to developed in [2] for two parameters function.

In [10] two problems were solved: the direct problem of calculating the deposition σ(X, T )
and concentration of particles c(X, T ) for a given filtration function λ(σ), as well as the inverse
problem of determining the filtration function λ(σ) from the effluent concentration history
ce(T ), by assuming that the injected concentration of particles is constant.

We solve the following inverse problems in this work. First, the porous rock damage
function k(σ) is recovered from the pressure drop history ∆p(T ) in one dimensional deep
bed filtration flow. This problem was formulated by Bedrikovetsky et al. in [11] and [13].
In this case, we assume that the filtration function λ(σ) has been calculated first, either
by the method presented in Chapter 5, based on optimization, or by the method developed
in Chapter 3, based on a functional equation. Second, the filtration function λ(σ) and the
permeability reduction function k(σ) are recovered from the effluent concentration ce(T ) and
the pressure histories pl(T ) at different points in the core. Third, a recovery method for
obtaining the filtration function λ(σ) from the particle deposition σ(Xl, Tj) is proposed.

We start by establishing the well-posedness of the direct time evolution problem. Then the
inverse problems are stated as operator equations. Hence the analysis consists in guaranteeing
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the existence, uniqueness and stability of the solution of these equations. Thus, we are led to
the study of regularity of linear and nonlinear ill-posed problems. Several assumptions about
the solution based on specific information on the physical processes must be made in order
to ensure the well-posedness of the operator equation solutions in Tikhonov’s sense. Finally,
a practical numerical recovery procedure is described for each inverse problem.

Our work is organized as follows. In Chapter 2 we present the physical model, the well-
posedness of the direct problem, the asymptotic analysis of its solution and discuss certain
illustrative analytical solutions.

In Chapter 3, we present the recovery method for the filtration function λ(σ) from the
injected and effluent concentration history by means of a functional equation. We study the
existence, uniqueness and stability of the solution of this inverse method, issues that are
fundamental for developing a numerical procedure to determine the filtration function λ(σ)
based on the functional equation.

In Chapter 4, we study the inverse problem of determining the permeability reduction
function k(σ) from a given pressure drop history ∆p(T ), assuming that the filtration func-
tion λ(σ) has already been found. We derive an integral equation of Volterra type for the
rock formation damage function k(σ) and we discuss conditions for well-posedness of the op-
erator equation. An analogous integral equation was derived in [8]. We describe a numerical
implementation to calculate the permeability reduction function k(σ) within an appropriate
subset of feasible solutions.

The classical Tikhonov or Tikhonov-Phillips regularization is used to reduce the ill-posed
Volterra equation of first kind to a well posed problem ([105], [32] and [94]). Optimization and
LU factorization methods are useful in finding the solution of the linear system of equations
obtained by discretizing the continuous equation. Finally, the convergence of the regularized
solution is obtained assuming that the feasible solution is uniformly bounded with respect to
a Sobolev norm of higher order; this is the smoothness property. To do so, we use a sufficient
condition for the iterates of the integral operator equation to converge to an approximate
solution with almost minimal norm.

The convergence result is obtained using Hilbert scales, which provide useful bounds
to measure the errors of Tikhonov regularization. Moreover, they are a perfect tool for
characterizing both the degree of ill-posedness and the smoothness of the solution ([59], [91],
[102], [78], [79] [89]).

In Chapter 5, an optimization method for calculating both the porous rock damage k(σ)
and the filtration function λ(σ) from the effluent concentration and the pressure drop histories
is presented. Moreover, an optimization method for obtaining the filtration function from the
effluent particle concentration history is also described. The well-posedness of each inverse
problem is studied as well.

In both cases, the recovery procedure consists in minimizing a nonlinear functional using
the projection gradient method with box constraints developed and implemented by Martinez
et al. ([82], [69], [36], [37] and [38]). The functional is obtained from the least square formula-
tion taking into account the difference between the experimental data and the corresponding
quantities predicted by the model, see e.g. [104]. The evaluation of this functional requires
the implementation of an accurate and stable numerical method for the direct problem. The
box constraints are determined from properties of the solution such as positivity and mono-
tonicity. We establish the well-posedness of the recovery methods for the filtration function
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λ(σ) from the effluent concentration history as well as the well-posedness of the recovery of
the permeability reduction function k(σ) from the pressure drop history. Finally, a method
to recover both functions at the same time is developed.

In Chapter 5, we study certain nonlinear ill-posed operator equations. There exists no
general theory for nonlinear ill-posed problem, as opposed to the linear situation (see Chap-
ter 4). However, for the nonlinear the operators studied here, there exist some results of
convergence and stability, because these operators have the nice properties of compactness
and weak closedness on appropriate domains.

In Chapter 6, methods for recovering the filtration function λ(σ) from the particle de-
position distribution history σ(X, T ) are proposed. There are several recovery procedures:
the first one uses the direct formulation of the deep bed filtration model equations. The
differentiation in time of particle deposition causes the main numerical difficulty in this case.
In the second procedure the filtration function λ(σ) is calculated as the solution of a Volterra
integral equation of the first kind through characteristic lines. We will see that the method
presented in Chapter 4 is useful for this equation as well. In the third procedure the filtration
function λ(σ) is obtained by means a functional equational, which is similar to the one used in
Chapter 3. In the fourth procedure, an optimization method recovers the filtration function
λ(σ), with the methodology described in Chapter 5.

In all inverse problems, before recovering the empirical function parameters, we need to
know conditions under which these parameters are identifiable, whether the observation data
are sufficient for determining the inverse solution and how sensitive the inverse solution is to
observation errors. In this way we determine the best experimental design for identifying the
filtration and permeability reduction functions. These issues are treated in Chapter 7.

Finally, in Chapter 8, a comparison of the deep bed filtration model with laboratory
measurements is done, using the methods developed here and the experimental data from [1].
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Chapter 2

Physical Model. Flow of water with
particles in porous media

In this chapter we present the physical model for the flow of water with suspended par-
ticles suffering retention in porous media. This model was developed in [10] based on [60].
Representative analytical solutions are obtained together with the analysis of their behavior
in space and time. Moreover, an introduction to the sensitivity analysis of the solution with
respect to parameters is presented.

2.1 Preliminaries

When water containing suspended particles flows in a porous medium, gradually the
suspended particles are retained, reducing the permeability of the medium. This phenomenon,
called deep bed filtration, is modelled as follows: assuming that water is incompressible and
that the density of the solid particles in dispersed and entrapped states are both equal to the
water’s density, the conservation of mass is equivalent to the conservation of total volume,
∂U/∂x = 0, i.e. the flow U depends only on t, and its value is determined by boundary data,
either pressure drop along the core or injection rate. Neglecting diffusive effects, the mass
conservation equation for the particles can be written as

∂

∂t
(φc’ + σ’) + U

∂c’

∂x
= 0. (2.1)

Here the concentrations of dispersed and deposited particles are c’(x, t) and σ’(x, t). The
quantity c’ has values between 0 and 1, while the quantity σ’ has values between 0 and φ.
Here φ is a dimensionless quantity between 0 and 1, called the rock porosity : it is the fraction
of the rock volume available to the fluid.

The model requires a law for particle deposition rate

∂σ’

∂t
= λ’(σ’)Uc’. (2.2)

The right hand side of Eq. (2.2) means that the retention probability is proportional to
flow velocity and to the available concentration of suspended particles. This probabilistic
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proportionality law remains valid if σ’� φ holds. Eq. (2.2) expresses the kinetics of particle
retention. The dependence of the retention rate on σ’ is expressed by λ’(σ’), which is called
the filtration function. A sketch of the porous rock is presented in Fig. 2.1.

Figure 2.1: Porous rock. ci: injected particle concentration, ce: effluent particle concentra-
tion, pl: pressure, l = 1, . . . , 6.

It should be noted that the filtration function encompasses different parameters, such as
the average particle size to average pore size ratio, among others. A serious limitation of
the filtration theory is that it posits that these other parameters can either be neglected or
assumed to be dependent only on the particle deposition σ. Several authors (e.g. [74] and
[84]) have shown that, in some cases, it is necessary to differentiate between distinct types of
deposition (e.g., injected particles depositing on matrix rock vs. injected particles depositing
on previously deposited injected particles).

We assume that permeability reduction is due to particle retention, and that it is a
decreasing function of retained concentration. So, Darcy’s law relating the flow U and the
pressure p becomes

U = −k0 k’(σ’)

µ

∂p’

∂x
. (2.3)

Here k0 is the absolute rock permeability and k’(σ’) is the permeability reduction due to the
retained particles σ’; when expressed as a function of σ’ it is called the formation damage
function. It is normalized so that k’(0) = 1, i.e. it is one for clean porous rock. In general,
the water viscosity µ is a constant for small particle concentrations. For homogeneous rock
k0 is constant. Otherwise, it depends on x.

2.1.1 Boundary and initial conditions

We assume that the injected solid particle concentration c’i(t) is known, i.e.,

x = 0 : c’(0, t) = c’i(t) > 0. (2.4)
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Then along the line x = 0 we obtain from Eq. (2.2)

dσ’

dt
= λ(σ’)Uc’i(t) σ’(0) = 0. (2.5)

Integrating Eq. (2.5) provides σ’(0, t), which is always positive and increasing. We assume
that at time zero the rock was initially clean, i.e.,

σ’(x, 0) = 0 and c’(x, 0) = 0. (2.6)

2.1.2 Pressure drop integral equation

We take a partition of the interval [0, L] as 0 = x1 < . . . < xl < xl+1 < . . . ≤ L, and we
take into account the spatial heterogeneity of the rock medium in the absence of particles.
To do so, we take the absolute permeability depending on x. More precisely, we assume that
it is constant in each core segment, i.e., k0(x) = kl0 for xl ≤ x ≤ xl+1 and l = 1, . . . , mp.

For one-dimensional linear flow in a rock core with length L, we replace k0 by k0(x) in Eq.
(2.3), and multiply it by 1/k’(σ’(x, t))U ; integrating the resulting equation from xl a xl+1, we
obtain the following relationship between deposited particle distribution and pressure drop
histories

−
∫ xl+1

xl

dx

k’(σ’(x, t))
=

kl0
µU

∆p’l(t) , (2.7)

where ∆p’l = p’(xl+1, t)− p’(xl, t) is the pressure drop in each interval xl ≤ x ≤ xl+1.

2.1.3 Dimensionless equations

Let us assume for simplicity that U is constant in time; then we can introduce dimension-
less length, dimensionless time, scaled concentration c, scaled retention σ, scaled filtration
function λ, scaled damage function and dimensionless pressure:

X =
1

L
x , T =

U

φL
t , c = c’ , σ =

1

φ
σ’ , λ(σ) = Lλ’(σ’) , k(σ) = k’(σ’), p =

k0

µUL
p’,

for 0 ≤ σ ≤ 1 and 0 ≤ X ≤ 1. (2.8)

This scaling is compatible with the time normalization which is usual in petroleum engineer-
ing, where dimensionless time is measured in porous volumes injected (P.V.I.). Using the
change of variables (2.8) in (2.1), (2.2) and (2.7) we obtain a coupled system of equations in
one spatial dimension.

∂

∂T
(c+ σ) +

∂c

∂X
= 0, (2.9)

∂σ

∂T
= λ(σ)c, (2.10)

−
∫ Xl+1

Xl

dX

k(σ)
= ∆pl, with l = 1, . . . , mp. (2.11)

The system (2.9)-(2.11) describes the evolution of the pressure drops ∆pl, the concentration
of dispersed particle distribution c and the concentration of retained particle distribution

13



σ. Notice that this system depends on the filtration function and on the formation damage
function; these quantities must be given to determine the solution of the direct problem,
i.e., to obtain the evolution in time of σ, c and ∆pl for all X, T from the given initial and
boundary values.

2.2 Solution for flow of water with suspended particles

In this section, we present the solutions of the system (2.9)-(2.10) obtained in [10] by the
method of characteristics. These formulae are used to obtain a fast numerical method. Also,
we will use it in the study of several inverse problems.

Since the inverse problem is reduced to estimating certain parameters, the analytical solu-
tion is very useful in the calibration of the recovery algorithm. Moreover, scaling, monotonoc-
ity and boundedness of the analytical solution with respect to the parameters are studied
here.

Notice that (2.11) can be solved after (2.9) and (2.10) are solved. Thus, the direct and
inverse problem for (2.9) and (2.10) can be solved without considering the pressure drops ∆pl.
The same paper [10] contains a numerical procedure to obtain the filtration function based
on effluent particle concentration measurements c(1, T ) in coreflood tests. Once the filtration
function in the model is known we predict the deposition distribution in one–dimensional
flow.

Solution for the deposition distribution

The system of two equations (2.9)-(2.10), with the dimensionless form of (2.4) and (2.6), is
a boundary-value initial-value problem which determines two unknowns c(X, T ) and σ(X, T ).
The initial conditions (2.6) for this system reflect particle absence in the reservoir before
injection

T = 0 : c(X, 0) = 0, σ(X, 0) = 0. (2.12)

Using the method of characteristics and an appropriate separation of variables it is possible
to reduce the system (2.9)-(2.10) to a single ordinary differential equation for σ. We assume
that the filtration function λ(σ) either is C1 with λ(σ) > 0 for 0 ≤ σ ≤ 1 or it is C1 except
for certain σ1 in (0, 1) with λ(σ) > 0 for σ ∈ [0, σ1) and λ(σ) = 0 for σ ∈ [σ1, 1]. We can
define the first integral Ψ of 1/λ , i.e., we can define Ψ on [0, σ1) so that Ψ(0) = 0 as follows

Ψ(σ) =

∫ σ

0

dη

λ(η)
. (2.13)

Now, differentiating (2.13) and using (2.10) we obtain

∂Ψ(σ)

∂T
= c, for σ in [0, σ1). (2.14)

Let us consider a solution of (2.9)-(2.10), (2.12) and (2.21); we can expect that it is C1

except at X = T , because there is a mismatch between the initial and boundary data for c
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at (0, 0). We will focus our attention on the trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≥ X ≥ 0},
see Fig. 2.2, and make the assumption

σ(X, T ) = 0 for T = X, on the lower side of the trapezoid. (2.15)

So, the derivative of (2.14)
∂c

∂T
=
∂2Ψ(σ)

∂T 2
, (2.16)

is well defined for X 6= T . Substituting expression (2.14) for c(X, T ) and (2.16) in (2.9) and
interchanging the order of differentiation in X and T we have

∂2Ψ(σ)

∂T 2
+
∂2Ψ(σ)

∂T∂X
= − ∂σ

∂T
or − ∂

∂T

(

dΨ(σ)

dX

)

= − ∂σ
∂T

, (2.17)

which is well-defined because Ψ is a C2 function for X 6= T . In (2.17b) d
dX

is the differentiation
along characteristic lines X − T = constant, i.e. d

dX
= ∂

∂X
+ ∂

∂T
, see Fig. 2.2.

X 

T

1 

1 

(X,T) 

(X,T) 

Figure 2.2: Characteristic lines; triangle(lower) and trapezoid(upper).

Now, we consider (2.17) in the infinite trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≥ X ≥ 0}.
Integrating (2.17b) in T from the front T = X to a fixed (X, T ) we obtain

dΨ(σ)

dX
− dΨ(σ)

dX

∣

∣

∣

∣

∣

T=X

= σ − σ|T=X , (2.18)

Using in (2.18) that σ|T=X = 0 and dΨ(σ)
dX

∣

∣

∣

∣

T=X

= 0 we obtain

∂Ψ(σ)

∂T
+
∂Ψ(σ)

∂X
= −σ. (2.19)

or
1

σ

∂Ψ(σ)

∂T
+

1

σ

∂Ψ(σ)

∂X
= −1. (2.20)
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Remark 2.1 From Eq.(2.19) it follows that, as long as σ is positive, Ψ(σ) is strictly mono-
tone decreasing along characteristics with slope 1. Since Ψ is strictly monotone, σ is also
strictly decreasing along these characteristics.

We assume that the injected solid particle concentration is a given by

X = 0 : c(0, T ) = ci(T ) > 0. (2.21)

Also, it is assumed that the experimental injected concentration ci(t) is a C1 function for
T > 0. Then along the line X = 0 we obtain from (2.10)

dσ(0, T )

dT
= λ(σ(0, T ))ci(T ) , σ(0, 0) = 0. (2.22)

Equation (2.22) provides σ(0, T ), which is always positive and increasing. Other important
relationships obtained in [10] use the auxiliary primitive

χ(σ) =

∫ σ dη

ηλ(η)
· (2.23)

The integral χ(σ) is well defined as follows

χ(σ) =

∫ σ

0

dη

η

(

1

λ(η)
− 1

λ0

)

+
1

λ0

∫ σ

1

dη

η
, (2.24)

where λ0 = λ(0); notice that the first integrand remains bounded near 0, so that the first
integral tends to zero as σ → 0. Integrating (2.20) from 0 to σ and using the definition of
χ(σ) in Eq. (2.24), we obtain that along the characteristic lines X = T + const the following
equation holds

d

dT
χ(σ) = −1, (2.25)

For T > X, integrating Eq. (2.25) in T from T −X to T , we obtain

χ(σ(X, T )) = χ(σ(0, T −X))−X. (2.26)

Inverting the left hand side of Eq. (2.26), σ is found for any (X, T ) in terms of σ(0, T ), i.e.

σ(X, T ) = χ−1(χ(σ(0, T −X))−X), (2.27)

where χ−1 denotes the inverse of χ. The method for evaluating σ(X, T ) using (2.27) requires
the availability of χ−1 and χ.

The function χ−1 can be calculated numerically; however it can be calculated analytically
in certain cases. For example, taking a linear filtration function, e.g., λ(σ) = λ0 − aσ for
σ ∈ [0, λ0/a) and λ(σ) = 0 for σ ∈ [λ0/a, 1], we have the following results. Integrating (2.22),
we obtain the solution

σ(0, T ) =
λ0

a
(1− e−a

R T

0 ci(τ)dτ ). (2.28)
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On the other hand, from Eq. (2.24) we obtain for 0 ≤ σ ≤ min(1, λ0/a)

χ(σ) =
1

λ0
log

(

σ

1− aσ/λ0

)

; (2.29)

and the inverse function χ−1 is

σ(χ) = (e−λ0χ + a/λ0)
−1. (2.30)

Now, notice that substituting Eq. (2.24) into Eq. (2.25) we obtain in general

∫ σ(0,T−X)

σ(X,T )

dη

ηλ(η)
= X. (2.31)

In this way the filtration function satisfies the integral equation (2.31) along the characteristic
lines T − X = constant. This equation will be used to obtain λ(σ) from retained particle
concentration σ(X, T ). In the next section we show examples of analytical solutions of the
system (2.9) and (2.10) using the method developed in this section.

2.3 Semianalytical solution for flow suspensions

In this Section we introduce a semianalytical method of solution to be used when λ
depends on position. This method will be used in the parameter estimation method described
in Sections 5.4.1 and 5.5.

From (2.13) and (2.19) we obtain

∂σ

∂T
+
∂σ

∂X
= −λ(σ)σ. (2.32)

For T ≤ X, σ(X, T ) = 0. For T > X, we integrate Eq. (2.32) in T on a characteristic line
from (X − τ, T − τ) to (X, T ) obtaining the following ordinary differential equation

dσ

dX
= −λ(σ)σ. (2.33)

with initial data σ(X − τ, T − τ) given at X − τ . Thus we obtain σ at X.
This integral was calculated analytically in the previous section; here we propose to inte-

grate it numerically, obtaining σ(X, T ).
Numerical Method Let us assume that we found the solution at time n and that we have
σ stored at (Xj, T n), j = 1, 2, 3, · · · . To compute the solution at time n+1, we first compute
σ(0, T n+1) from σ(0, T n) using an ODE solver on Eq. (2.22).

For other points (Xj+1, T n+1) with j < n, we solve the ODE (2.33) with known initial
data (Xj, T n), and obtain σ(Xj+1, T n+1). Finally, if j ≥ n, σ(Xj+1, T n+1) = 0. On the other
hand, c(Xj, T n) = 0 for j ≥ n, and the values of c(X j, T n) for j < n are obtained using
(2.37).

In the inverse problem solution for obtaining the filtration function, we need to solve Eqs.
(2.22) and (2.32) several times as part of an optimization procedure. Thus, it is necessary to
solve Eqs. (2.22) and (2.32) with high speed and accuracy.
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Remark 2.2 Substituting c from (2.10) in (2.9), we obtain

∂c

∂T
+

∂c

∂X
= −λ(σ)c, (2.34)

or
dc

dX
= −λ(σ)c. (2.35)

Thus, from (2.33) and (2.35) we see that σ and c satisfies a system of ordinary differential
equations along characteristic lines. Since c(0, t) = ci(t) is usually known and σ(0, t) follows
from (2.22), the system (2.35)-(2.33) can be solved along characteristic lines.

To increase the calculation speed, we can solve the system using the following strategy,
which uses Remark 2.2. At the beginning, we choose a small time separation between char-
acteristic lines where the solution is calculated, but for long times, we choose larger time
separations. To obtain the value of the solution between two characteristic lines, we can use
an interpolation method in time (for fixed X); this procedure is cheaper than solving the
partial differential equation with a fine grid.

Solution for the concentration distribution

From Eqs. (2.33) and (2.35), we obtain along characteristics

dσ

dc
=
σ

c
. (2.36)

Integrating Eq. (2.36) along characteristics of slope 1, we obtain

σ(X, T )

c(X, T )
=
σ(0, T −X)

c(0, T −X)
. (2.37)

Now we present how to obtain the concentration c(X, T ) from the deposition particle con-
centration. Since for T < X, σ(X, T ) = 0, from (2.10) it follows that c(X, T ) = 0. In order
to obtain c(X, T ) for T > X we use Eq. (2.37), which furnishes an expression for c(X, T )
once σ(X, T ), σ(0, T −X) and c(0, T −X) are known.

Remark 2.3 Equation (2.37) means that c/σ is constant along characteristic lines with slope
1.

Remark 2.4 In the case when the effluent particle concentration c(1, T ) = ce(t) is known,
the solution of the ODE’s (2.33), (2.35) and (2.22) can be obtained by solving the ODE’s
(2.33) and (2.35) with

dσ(1, T )

dT
= λ(σ(1, T ))ce(T ) , σ(1, 0) = 0. (2.38)
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2.4 Asymptotic behavior of the deep bed filtration model

For solving the inverse problem we need other results in order to increase the calculation
speed. We shall see that the computational efficiency of the algorithm for the direct problem
can be increased by taking into account that the model has two time scales. In this section
we assume for simplicity that the injected concentration is constant, i.e., ci(T ) = cio.

Let us denote ĉ = c/cio. Now we calculate how ∂ĉ/∂T depends on the filtration function
for T > X.

From Eq. (2.37) we obtain

∂ĉ(X, T )

∂T
=

(

∂σ(X, T )

∂T
σ(0, T −X)− σ(X, T )

∂σ(0, T −X)

∂T

)

/σ(0, T −X)2 (2.39)

Because (see Eq. (2.10))

∂σ(X, T )

∂T
= λ(σ(X, T ))c(X, T ), so

∂σ(0, T −X)

∂T
= λ(σ(0, T −X))cio (2.40)

we can rewrite (2.39) as

∂ĉ(X, T )

∂T
=

(

λ(σ(X, T ))c(X, T )σ(0, T −X)− λ(σ(0, T −X))cioσ(X, T )

)

/σ(0, T −X)2.

(2.41)
Using again Eq. (2.37) we obtain

∂ĉ(X, T )

∂T
=

(

λ(σ(X, T ))c(X, T )− λ(σ(0, T −X))c(X, T )

)

/σ(0, T −X) (2.42)

or
∂ĉ(X, T )

∂T
= cioĉ(X, T )

λ(σ(X, T ))− λ(σ(0, T −X))

σ(0, T −X)
(2.43)

Notice that if λ(σ(X, T ))− λ(σ(0, T −X)) << σ(0, T −X)) then ∂ĉ(X,T )
∂T

is very small. This
can happen in several situations, for example if λ(σ(X, T )) is monotone decreasing to zero.

Remark 2.5 In particular if the filtration function is constant then ∂ĉ(X,T )
∂T

= 0 and ∂c(X,T )
∂T

=
0 for T > 1, i.e. c does not depend on T , if the injected concentration is constant.

Remark 2.6 Assuming that the particle deposition is decreasing in X we have σ(X, T ) <

σ(0, T −X) for T > X. Then from (2.43) we obtain ∂c(X,T )
∂T

> 0 if the filtration function is

decreasing, and ∂c(X,T )
∂T

< 0 if the filtration function is increasing.

More generally the following lemma is valid.

Lemma 2.7 If
λ(σ(X, T ))− λ(σ(0, T −X))

σ(0, T −X)
< ε, (2.44)

then
∂ĉ(X, T )

∂T
< cioε. (2.45)
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Proof: From (2.43) we obtain
∂ĉ(X, T )

∂T
< cioĉε. (2.46)

Equation (2.37) can be rewritten as

ĉ =
σ(X, T )

σ(0, T −X)
. (2.47)

Now, using Remark 2.1 and (2.47) we obtain that ĉ < 1. Thus we obtain that (2.45) holds
�.

Remark 2.8 Since in practical situations cio is of order 10−6, we obtain that if cio << ε,
e.g. ε = 1 then ∂ĉ(X,T )

∂T
is not greater than 10−6 and as a consequence ∂c(X,T )

∂T
is of order 10−12.

In the case treated in Remarks 2.5 and 2.8 the term ∂c(X,T )
∂T

can be neglected. So, the
system of equation (2.9) and (2.10) can be rewritten as in [60], i.e.,

∂σ

∂T
+

∂c

∂X
= 0, (2.48)

∂σ

∂T
= λ(σ)c. (2.49)

We now prove that the system of equations (2.48) and (2.49) has two time scales and one
space scale. Numerical methods for simulating deep bed filtration should to take into account
the two time scales.

Scales in linear deep bed filtration problems

By inspecting Eq. (2.9), we see that characteristic speed associated to the suspended
concentration is 1. In unscaled variables, this is U/φ, see Eq. (2.1). This sets a dimensionless
time scale T = 1.

In actual solutions of the problem, one observes that there is an initial period until T = 1
when the injected particle concentration profile gets established. During this time period,
the deposited concentration changes from zero to a value of the same magnitude as the
injected suspended concentration, which is very small. These facts are clearly seen in the
exact solution (2.60), (2.59).

However, after this initial period, the suspended concentration profile changes very little
(in fact, it does not change at all in the case of the exact solution (2.60)), while the deposited
concentration values change very slowly as compared to a typical value of deposition, which
is φ or perhaps 0.1φ.

Reflecting this observation, Herzig and Leclerc [60] propose another set of equations,
which should hold later in the evolution of the system (2.48)-(2.49). Notice that there is
an imbalance in these equations: c is 105 times smaller than σ. To fix this imbalance, we
can divide both equations by a typical value ci0 of the injected suspended concentration, and
define

ĉ =
c

ci0
, τ = ci0T, (2.50)
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and the equations (2.48)-(2.49) become

∂ĉ

∂X
= −∂σ

∂τ
, (2.51)

∂σ

∂τ
= λ(σ)ĉ. (2.52)

We see that another time scale appears, the time scale for deposited concentration change,
from the equation (2.52). It corresponds to τ ∼= 1, or

T ∼= 1

ci0λ
. (2.53)

This new time scale appears very clearly in the exact solution (2.60).
Summarizing, there is one spatial scale in this problem and two time scales. The first

time scale is fast, and it controls the evolution until about one pore volume is injected. The
second one is slow, and it controls the evolution at later times.

Remark 2.9 Numerical methods for simulating deep bed filtration should take into account
this change of time scale.

2.5 Analytical examples

In this Section we present a summary of the solution of the direct problem in coreflood
tests given by Eqs. (2.9), (2.10). It was obtained in [10] by means of the method of charac-
teristics for constant and linear filtration functions with a given input particle concentration.
Moreover, we present the sensitivity analysis of the formulas with respect to certain parame-
ters. These formulas are used to validate the procedure proposed in this work for calculating
the permeability reduction k(σ). In this example we assume that the inlet concentration of
particles c(0, T ) = cio is constant.

2.5.1 Constant filtration

For constant filtration function λ(σ) = λ0 and knowing the initial condition c(X, 0) =
σ(X, 0) = 0 and the boundary condition c(0, T ) = ci(T ) = ci0, the particle deposition and
concentration the particles are given by

σ(X, T ) = ci0λ0(T −X)e−λ0X for T > X and σ(X, T ) = 0 for T < X. (2.54)

and
c(X, T ) = ci0 e

−λ0X , T ≥ X and c(X, T ) = 0 for T < X. (2.55)

To summarize, we observe that after T > 1 the suspended concentration does not depend on
time and that it is exponentially decreasing in X; the decay rate is λ0. Moreover, the retained
concentration increases linearly with time, which is unphysical for very large time.
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2.5.2 Linear filtration with decreasing slope

For linear filtration function in the vanishing case (with a ≥ λ0) (see [13]), i.e.,

λ(σ) = λ0 − aσ, for 0 ≤ σ < λ0/a (2.56)

and
λ(σ) = 0 for λ0/a ≤ σ ≤ 1, (2.57)

or λ(σ) = max{λ0 − aσ, 0}, we obtain

σ(X, T ) = 0 for T < X, (2.58)

and using Eqs. (2.27), (2.28), (2.29) and (2.30) we obtain for T > X

σ(X, T ) =
λ0

a

[

1 +
e−ci0aT e(λ0+ci0a)X

1− e−ci0a(T−X)

]−1

, (2.59)

So, from Eq. (2.37) the concentration of dispersed particles is

c(X, T ) =
ci0aσ(X, T )

λ0(1− e−ci0a(T−X))
for T > X, and c(X, T ) = 0 for X > T. (2.60)

Setting X = 1 in Eq. (2.37), we obtain a relationship involving c and σ at the inlet and
outlet

σ(1, T )

σ(0, T − 1)
=
c(1, T )

ci0
. (2.61)

Using Eq. (2.60) with X = 1, we obtain for T > 1

c(1, T ) =
ci0

(1 + e−ci0a(T−1)(eλ0 − 1))
. (2.62)

We can interpret the formulas above as follows. There is a jump in the concentration across
the front T = X. We can see from Eq. (2.28) that the retained concentration along the
inlet boundary X = 0 increases to a limiting value λ0/a, which is more realistic than in
the constant filtration function case (2.54) and (2.55). Moreover, from Eq. (2.59) it can be
verified that for T > X the retained concentration decreases in space X and increases in time
T . The suspended concentration has the same behavior as the retained concentration with
respect to space and time (see Figs. 2.3, 2.4 for examples).

The effluent concentration c(1, T ) given in (2.62) is very useful to calibrate the model,
because its history can be measured in laboratory experiments, so we study this function in
more detail in this section. We determine the sensitivity of c(1, T ) with respect to the pa-
rameters λ0 and a. This study is used in the inverse problem for determining the appropriate
parameter range for each data set.

For large time T in Eq. (2.62), i.e., T >> 1, we obtain

c(1, T ) ≈ ci0
1

1 + (eλ0 − 1)e−cioaT
. (2.63)
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Figure 2.3: Histories in T at X∗ = 0, 0.2, 0.4, 0.6, 0.8, 1 and λ(σ) = max {1− 171σ, 0}.

In particular, for time T and parameter a such that cioaT is small, Eq. (2.63) can be
approximated using Taylor’s formula by

c(1, T ) = ci0e
−λ0 + ci0

eλ0 − 1

e2λ0
ci0aT +O(ci0aT )2. (2.64)

Thus it follows from Eq. (2.64) that for small values of ci0aT the values of c(1, T ) ≈ ci0e
−λ0

suffer no significant change for small variations of the parameter a. Thus c(1, T ) is insensitive
to the parameter a in the above case, i.e., c(1, T ) exhibits low sensitivity relative to the time
T as well as to a if ci0a is very small and the time T is large. Moreover, since c(1, T ) < cio
(see Chapter 2), if we make the approximation that the filtration function is constant, i.e.,
λ(σ) = λ0 and assuming that c(1, T ) and cio have the same order of magnitude (more precisely,
1 < cio

c(1,T )
< 10), then the parameter λ0 is smaller than 2. This fact is important to determine

ranges of interest in certain optimization procedures.
In parameter recovery it will be necessary to know the behavior of c(1, T ) with respect to

time T relative to certain parameters. For this study, we need

∂c(1, T )

∂T
=
cio(cioa)e

cioa(1−T )(eλ0 − 1)

(e−cioa(T−1)(eλ0 − 1) + 1)2
. (2.65)

Remark 2.10 Notice that ∂c(1,T )
∂T

> 0 in (2.65) for λ0 > 0. This fact is an a priori informa-
tion that must be taken into account for recovering the filtration function from the effluent
concentration.

Now we present another case, where the filtration function is linear with an increasing slope.
We will see that this case can be used as a model for the situation when the effluent concen-
tration decreases in time.
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Figure 2.4: Profiles in X at T ∗ = 0, 133, 266, 399, 532, 662 and λ(σ) = max {1− 171σ, 0}.

2.5.3 Linear filtration with increasing slope

For increasing linear filtration function λ, with b > 0
{

λ(σ) = λ0 + bσ > 0 for 0 ≤ σ ≤ 1

λ(σ) = 0 for σ = 1.
(2.66)

From Eq. (2.22), at X = 0,
dσ

dT
= ci0λ0 for σ = 0 in both vanishing and nonvanishing cases,

so we obtain from Eq. (2.8) the same formula for both cases
{

σ(0, T ) = λ0

b

(

eci0bT − 1
)

for T ≤ (ci0b)
−1 log(1 + b/λ0) ,

σ(0, T ) = φ for T ≥ (ci0b)
−1 log(1 + b/λ0) .

(2.67)

From Eq. (2.24), we obtain for 0 ≤ σ < φ

χ(σ) =
1

λ0

log

(

σ

1 + bσ/λ0

)

. (2.68)

The inverse function χ−1 is
σ(χ) = (e−λ0χ − b/λ0)

−1. (2.69)

From Eqs. (2.26), (2.67) and (2.68),

χ(σ(X, T )) =
1

λ0
log

[

λ0

b

(

eci0b(T−X) − 1

eci0b(T−X)

)

e−λ0X

]

. (2.70)

Now, σ = 0 for T < X. Using Eqs. (2.69) and (2.70), we obtain for T > X

σ(X, T ) =
λ0

b

[

− 1 +
eci0bT e(λ0−ci0b)X

eci0b(T−X) − 1

]−1

. (2.71)
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From Eqs. (2.37) and (2.67), the concentration is

c(X, T ) =
ci0σ(X, T )

(λ0/b)(eci0b(T−X) − 1)
for T > X and c(X, T ) = 0 for T < X. (2.72)

The effluent concentration is

c(1, T ) =
ci0σ(1, T )

(λ0/b)(eci0b(T−1) − 1)
for T > 1 and c(1, T ) = 0 for T < 1, (2.73)

so that
∂c(1, T )

∂T
= −cio(ciob)e

ciob(T−1)(eλ0 − 1)

(eciob(T−1)(eλ0 − 1) + 1)2
. (2.74)

Remark 2.11 Notice that ∂c(1,T )
∂T

< 0 in (2.74) for λ0 > 0. So, filtration with increasing
slope can be used to match the experimental effluent concentration that decreases in time T .

2.5.4 Behavior of concentration and deposition in time and space

Now we show graphically the behavior of retained and dispersed particle concentration
using the formulas in Section 2.5. We discuss the rate of increase or decrease in each case as
well.

In the numerical examples presented in this section the values of deposited and dis-
persed particle concentration are obtained by solving Eqs. (2.37) and (2.32) with λ(σ) =
max {1− 171σ, 0}.

The histories in time of σ(X∗, T ) and c(X∗, T ) at the points X∗ = 0, 0.2, 0.4, 0.6, 0.8, 1 are
shown in Figure 2.3. Notice that the values of c(X, T ) are 100 times smaller than σ(X, T ).
Both profiles for c(X, T ) and σ(X, T ) increase in time, but the increase rate of c(X, T ) is
much smaller.

On the other hand, the profiles in space of σ(X, T ∗) and c(X, T ∗) at the points T ∗ =
0, 133, 266, 399, 532, 662 are shown in Figure 2.4. Notice that both deposited and dispersed
particle concentrations decrease in space at similar rates. The distance between the profiles
of dispersed concentration of particles is smaller than that for the deposited particles; this
indicates that the change in time of c(X, T ) is smaller than that of σ(X, T ).

We will see in Chapter 8 that the behavior of c(X, T ) and σ(X, T ) agrees with experimental
data. However, it is not possible to reproduce with accuracy the spatial rate of decrease for
σ(X, T ).

2.6 Non-constant inlet concentration

In this section we present analytical formulas for inlet concentration that varies in time.
This analysis can be useful when external cake is formed at the inlet wall of the rock where
the filtration process occurs. We assume that the inlet concentration c(0, T ) is given by

c(0, T ) = ci(T ) = cioe
−ηT , (2.75)
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where cio is the inlet concentration at T = 0 and η is positive parameter. Here the filtration
function is assumed to be linear, i.e., λ(σ) = max{λ0 − aσ, 0}. Now, using the method
described in Section 2.2 and setting

Ci(T ) =

∫ T

0

ci(τ)dτ, (2.76)

we obtain

σ(0, T ) =
λ0

a
(1− e−aCi(T )), (2.77)

Moreover,
σ(X, T ) = 0 for T < X, (2.78)

and for T ≥ X

σ(X, T ) =
λ0

a

[

1 +
e−aCi(T−X)

1− e−aCi(T−X)
eλ0X

]−1

. (2.79)

Using Eq. (2.75), Eq. (2.79) can be rewritten as

σ(X, T ) =
λ0

a

[

1 +
e−acioη

−1(1−e−η(T−X))

1− e−acioη−1(1−e−η(T−X))
eλ0X

]−1

. (2.80)

Notice that for constant inlet concentration, i.e. for ci(T ) = cio for all T ∈ [0, A], Eq. (2.79)
reduces to Eq. (2.59).

In Fig. 2.5, a plot of the integral

h(T ) =

∫ 1

0

σ(X, T )dX, (2.81)

is shown. This is related to the pressure history.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

T

h
(T

)

Figure 2.5: Graph of h(T ) in (2.81) with η = 10−3, cio = 1 and λ(σ) = max {1− 171σ, 0}.
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Effluent concentration

From Eqs. (2.37), (2.77) and (2.80) we obtain the effluent concentration as

c(1, T ) =
cioe

−ηT

1 + (eλ0 − 1)e−acioη−1(1−e−η(T−1))
. (2.82)

Notice that
c̃(1, T ) = lim

a→0
c(1, T ) = cioe

−(λ0+ηT ), (2.83)

thus
∂c̃

∂T
(1, T ) = −ηcioe−(λ0+ηT ). (2.84)

If the filtration function is constant, i.e. λ(σ) = λ0, then the effluent concentration is a
monotone decreasing function. We obtain

∂c(1, T )

∂T
= cioe

−ηT (cioae
η − η)(1 + (eλ0 − 1)e−acioη

−1(1−e−η(T−1)))− cioaeη
(1 + (eλ0 − 1)e−acioη−1(1−e−η(T−1)))2

. (2.85)

It possible to prove that ∂c(1,T )
∂T

has a unique zero at T = Tmax. So, the behavior of the
function c(1, T ) with respect to time T for T ≥ 0 is the following: c(1, T ) increases from
T = 0 to T = Tmax, where

Tmax = 1− 1

η
log

(

1 +
η

acio
log

(

η

(cioaeη − η)(eλ0 − 1)

))

(2.86)

and decreases for T > Tmax. It is easy to prove that

lim
T→∞

c(1, T ) = 0. (2.87)

2.7 Bounds of the solution

In this section some useful bounds for the solution are derived. To do so, we restrict the
filtration function λ(σ) > 0 to be a positive function of σ, i.e.,

0 < λmin ≤ λ(σ) ≤ λmax. (2.88)

From Eqs. (2.9), (2.10),
∂c

∂T
+

∂c

∂X
= −λ(σ)c. (2.89)

Along characteristics with slope 1, this equation becomes the ODE

dc

dX
= −λ(σ)c. (2.90)

Using (2.88) and (2.90), the following inequality holds:

dc

dX
≤ −λminc. (2.91)
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Applying Gronwall’s inequality to (2.91), we obtain

c(X, T ) ≤ c(0, T −X)e−λminX (2.92)

and
c(X, T ) ≤ c(1, 1 + T −X)e−λmin(1−X). (2.93)

In particular, setting X = 1 in (2.92) we obtain

ce(T ) < ci(T − 1). (2.94)

Similarly using (2.33), it is possible to obtain for σ the following bound

σ(X, T ) ≤ σ(0, T −X)e−λminX (2.95)

Denoting by B1 = max
T>X
{c(0, T−X)} and B2 = max

T>X
{σ(0, T−X)} we obtain from (2.92)-(2.95)

c(X, T ) ≤ B1 and σ(X, T ) ≤ B2. (2.96)

2.8 Global solution for the direct problem

The system of equations (2.9)-(2.10) involves the filtration function λ(σ). Solving this
system of equation for all times for the given function λ(σ) is called the direct problem.
Numerical and analytical solutions of this system are described in Section 2.3.

Well-posedness of the direct problem

Here the well-posedness of the system (2.9)-(2.10) is studied. This system can be rewritten
as

∂

∂T

(

c
σ

)

+

(

1 0
0 0

)

∂

∂X

(

c
σ

)

=

(

−λ(σ) 0
λ(σ) 0

)(

c
σ

)

, (2.97)

which is a quasi-linear hyperbolic system of equations. This system has two characteristic
directions, which are (dX, dT )T = (1, 1)T (with speed 1) and (dX, dT )T = (0, 1)T (with speed
0), see Fig 2.2. We start the analysis by assuming that the filtration function is C1 and
λ(σ) > 0 for [0, 1].

Theorem 2.12 There exist a unique, well-posed weak solution of (2.9)-(2.10), (2.12) and
(2.21) in the infinite rectangle for C1 boundary data ci(T ), T > 0. This solution vanishes in
the triangle in Fig. 2.2; it is C1 in the trapezoid, where it is given by the unique solution of
the ODE’s (2.33),(2.35) and (2.22).

Proof: We consider the system (2.97) in the triangle {(X, T ) : 0 ≤ T ≤ X ≤ 1}. It follows
from the method of characteristics described in Section 5, Chapter 2, [40] and Section 2,
Chapter 5, [26], and the initial data in (2.6) that the only solution in the triangle vanishes
identically.
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Let us consider bounded weak solutions of (2.1), (2.2) defined near the line X = T (see
Fig 2.2), in the sense of [40]. Integrating (2.2) along the segments with fixed X: 0 < X ≤ 1
from T − ε to T + ε, we see that

lim
ε→0
{σ(X, T + ε)− σ(X, T − ε)} = 0.

Thus (2.15) holds. Performing the same integration on (2.1) yields no new information, i.e.
c(X, T ) on T = X, the upper side of the trapezoid may be non-zero; in other words, there
may be a shock at T = X.

Now, let us focus on the infinite trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≥ X ≥ 0}. Consider
the unique C1 solution σ(X, T ), c(X, T ) of (2.22) and (2.33)-(2.35) in the trapezoid. Notice
that (2.18), (2.17), (2.16) and (2.14) hold, therefore (2.1)-(2.2) hold and this is a C1 solution
of system (2.1)-(2.6) in the trapezoid.

In summary, the system (2.1)-(2.6) has a unique solution on the infinite rectangle. This
solution has a jump along the front X = T , and it is the unique global weak solution of
(2.1)-(2.2) under proper initial and boundary conditions and the assumption of continuous
filtration function λ(σ). �

Remark 2.13 Since along the front trajectory X = T the deposited concentration is zero,
(2.15) holds, we obtain the following ordinary differential equation for c(X,X) along this line
in the trapezoid:

dc(X,X)

dX
= −λ(0)c(X,X). (2.98)

Integrating (2.98) and using (2.21) at T = 0, we obtain

c(X,X) = ci(0) e−λ(0)X . (2.99)

Then, from (2.99) and since ci(0) > 0, we obtain that c(X,X) is positive for X > 0; so there
is indeed a shock along the characteristic X = T .

Remark 2.14 If we take the experimental data function ci(t) to be C2 instead of C1, then
the solution σ, c of the system (2.1)-(2.6) is C2 in the trapezoid. In particular, the predicted
effluent concentration c(1, T ) is a C2 function.

Remark 2.15 The triangle {(X, T ) : 0 ≤ T < X ≤ 1} is the range of influence of the line
{(X, 0) : 0 ≤ X ≤ 1} where c and σ vanish. According to Theorem 2.12, the only solution
in the triangle vanishes identically. Because of the continuity of σ along lines X = constant,
we actually have that σ = 0 on {(X, T ) : 0 ≤ T < X ≤ 1}.

Piecewise C1 filtration function

Now, we study the case when the filtration function is C1 except at σ = σ1, where
0 < σ1 ≤ 1. Moreover, λ(σ) > 0 for [0, σ1) and λ(σ) = 0 for [σ1, 1], the well-posedness of the
direct problem can be proved as follows.

We solve (2.22). Since λ(σ) ≥ 0, with σ(0, 0) = 0 we obtain that σ(0, T ) is monotone
non-decreasing. Moreover, recalling that λ(0) > 0 and ci(0) > 0, we have dσ

dT
(0, 0) > 0 for

small T .
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It follows that σ(0, T ) > 0 for T > 0 and σ(0, T ) is monotone increasing. Now, we have
two cases: either (i) σ(0, T ) < σ1 for T > 0 or (ii) σ(0, T1) = σ1, with σ(0, T ) < σ1 for T < T1.

In the case (i), the well-posedness of the system (2.9)-(2.10), (2.12) and (2.21) is guaran-
teed by Theorem 2.12.

In the case (ii), Theorem 2.12 guarantees the same results for T < T1. Let us consider
the point (0, T ) with T < T1; from (2.33) we obtain that σ decreases along the characteristic
lines, so σ < σ1 along the characteristic lines and λ(σ) > 0.

Applying Gronwall’s inequality to (2.33) and (2.35), we obtain that c, σ are positive along
the characteristic lines, thus λ(σ) > 0 for T < T1 +X.

For T ≥ T1, λ(σ(0, T )) = 0 as σ(0, T ) is monotone increasing on (0, T ). From (2.22) we
obtain σ = σ1. It follows that the unique solution of (2.33)-(2.35) with initial data σ = σ1 and
c(0, T ) = ci(T ) is c(X, T ) = ci(T −X) and σ(X, T ) = σ1. Using the continuous dependence
theorem of ODE, we obtain that the solution is continuous near the charateristic starting in
T = T1 +X. Thus, we have proved:

Lemma 2.16 The solution of the system (2.22), (2.33)-(2.35) is given by (2.33) and (2.35)
in the trapezoidal domain 0 ≤ X ≤ 1, 0 < T ≤ X + τ , here τ can be infinite. If it is finite, σ
is constant and equal to σ1 in the trapezoid 0 < X + τ ≤ T and c(X, T ) = ci(X − T ). Also,
c is continuous in trapezoid 0 ≤ X ≤ 1, T > X and σ is continuous in the infinite rectangle
{0 ≤ X ≤ 1, 0 ≤ T ≤ ∞}.

Lemma 2.17 The solution obtained as above is a weak solution of (2.9)-(2.10), (2.12) and
(2.21) in the infinite rectangle {0 ≤ X ≤ 1, 0 ≤ T ≤ ∞} for C1 boundary data ci(T ), T > 0.

Proof: Let us denote by Ω the open subset, which is the support of C1
0 (Ω) test functions ϕ,

ψ in the infinite rectangle {0 ≤ X ≤ 1, 0 ≤ T ≤ ∞}. We need to prove that the following
integrals vanish

∫

Ω

{(ϕT + ϕX)c+ ϕTσ}dXdT and

∫

Ω

{(ψTσ + λ(σ)cψ}dXdT, (2.100)

for all ϕ ∈ C1
0 (Ω) and ψ ∈ C1

0(Ω).
To do so, we divide the rectangle in three parts. the first part is the triangle {(X, T ) :

0 ≤ T ≤ X ≤ 1}. The second part is the trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≤ X + T1}.
The third part is the infinite trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≥ X + T1}. On {(X, T ) :
0 ≤ T ≤ X ≤ 1} ∩ Ω, (2.100a) and (2.100b) vanish because σ = c = 0 in this region. Now,
on {(X, T ) : 0 ≤ X ≤ 1, T ≤ X + T1} ∩ Ω, using the Green’s Theorem and that functions
c, σ are strong solution of (2.22), (2.33)-(2.35), we obtain that (2.100a) vanishes. Using an
analogous argument on {(X, T ) : 0 ≤ X ≤ 1, T ≥ X + T1} ∩ Ω, (2.100a) vanishes in this
region.

On the other hand, the integral (2.100b) on {(X, T ) : 0 ≤ X ≤ 1, T ≤ X + T1} ∩ Ω is
equal to the integral (2.100b) on {(X, T ) : 0 ≤ X ≤ 1, T ≥ X+T1}∩Ω with opposite signal,
so (2.100b) vanishes in Ω. �

The uniqueness is a consequence of the following

Lemma 2.18 The solution σ, c of the system (2.1)-(2.6) is unique on the infinite rectangle
{0 ≤ X ≤ 1, 0 ≤ T ≤ ∞}.
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Proof: The integral equation method described in Section 5, Chapter 2, [63] and Section
2, Chapter 5, [26], can not be used directly on the system (2.9)-(2.10). This method was
applied on a quarter of a plane, where the axes were not characteristic. In our case, they are
characteristic, yet data on axes are compatible, so this is not an obstacle to the usage of that
method. To do so, we take the change of variables ξ = X − aT , with a > 1 and η = T . In
these variables the system of equations (2.9)-(2.10) can be rewritten as

∂c

∂η
+ (1− a)∂σ

∂ξ
= −λ(σ)c, (2.101)

and
∂σ

∂η
= λ(σ)c. (2.102)

In these coordinate system it is possible to apply the method of [63]. �
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Chapter 3

Functional equation for the filtration
function

In this chapter a method for obtaining the filtration function is studied. The inverse
problem consists in determining λ(σ) from the effluent particle concentration history at the
core outlet c(1, T ), and the inlet particle concentration history c(0, T ) that traverses the
cake. The recovery method reduces to solve a functional equation, which was derived first
by Bedrikovetsky et al. ([10]) under the assumption of constant injected concentration. An
inverse problem associated with a similar system was studied in [20].

The quantity c(1, T ) is measured in laboratory experiments. The method developed here
has c(0, T ) constant as a particular case. Because of cake formation, c(0, T ) is smaller than
the particle concentration of the injected fluid.

In Section 3.1 we present the method for recovering the filtration function. In Section 3.2
we discuss stability issues that are important for its numerical implementation.

3.1 Recovery method

Here we describe a recovery method based on [10] and [71]. We make the following:

Assumption 3.1 The filtration function is a nonincreasing function of σ, such that either
i) λ(σ) > 0 for [0, 1] or
ii) λ(σ) > 0 for [0, σ1) and λ(σ) = 0 for [σ1, 1], where 0 < σ1 ≤ 1.

Case (ii), λ(σ) = 0 after certain point σ1 (see e.g. Section 2.5 and Fig. 3.1) is considered
because this has practical uses. More precisely, this means that no deposition occurs after
certain particle volume σ1 < 1 has been deposited. To model it, we assume the following: let
us consider the maximum point σ1, where λ(σ1) > 0, obtained with the method described
in this section. Then if σ1 is smaller than one, we define the filtration function as zero for
σ > σ1. This approximation must be accurate, if the final time in experiment measurement
is large enough to consider all the deposition process (see e.g. sensitivity analysis in Chapter
7).
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Figure 3.1: Example of filtration function

Remark 3.2 From (2.99) at X = 1 we obtain

c(1, 1) = c(0, 0) e−λ(0), (3.1)

which will be use in Section 3.1.2 to obtain the starting value in the recovery procedure.

3.1.1 Derivation of the functional equation

It is useful to introduce the variable z = T − 1. Let us introduce the notation

ci(z) ≡ c(0, z) > 0, ce(z) ≡ c(1, z + 1) > 0 for z ≥ 0. (3.2)

We assume here that the experimental data ci, ce are C2 functions for 0 ≤ z <∞. Moreover,
we define the function

τ = Ci(z) ≡
∫ z

0

ci(s)ds, with 0. ≤ z <∞; (3.3)

From (3.2) it follows that Ci in (3.3) is monotone increasing and Ci(0) = 0. Thus, from
the implicit function theorem the inverse function C−1

i (τ) exists in (3.3) and is monotone
increasing.

Let us denote by
z = C−1

i (τ), (3.4)

the inverse of Ci or equivalently

dz

dτ
=

1

ci(z)
, with z(0) = 0. (3.5)

Using (3.2), we define the function Ce(z) as

Ce(z) ≡
∫ z

0

ce(s)ds, for 0 ≤ z <∞. (3.6)
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Let us consider the function Ψ(σ) on [0, 1] or [0, σ1) defined in Eq. (2.13). From Assumption
3.1 and because Ψ′(σ) = (λ(σ))−1 > 0, there exists a function g

σ = g(ψ), inverse of the function ψ = Ψ(σ), (3.7)

such that g(0) = 0. A relationship between the deposited and suspended particle concen-
trations at injection and exit points can be obtained by integrating Eq. (2.14) and using
σ(0, 0) = σ(1, 1) = 0 (see Remark 2.15), i.e.,

Ψ(σ(0, z)) = Ci(z), Ψ(σ(1, z)) = Ce(z). (3.8)

Now, from (3.8) and (3.7) we obtain

σ(0, z) = g(Ci(z)) σ(1, z) = g(Ce(z)) for z ≥ 0. (3.9)

Substituting the expressions in Eq. (3.9) into Eq. (2.37), we obtain the following functional
equation for the function σ = g(ψ):

g(Ce(z)) =
ce(z)

ci(z)
g(Ci(z)) for z ≥ 0. (3.10)

Remark 3.3 Notice that C
′

e(z) = ce(z) and C
′

i(z) = ci(z) so that Eq. (3.10) may be rewritten
as:

g(Ce(z)) =
C

′

e(z)

C
′

i(z)
g(Ci(z)) for z ≥ 0. (3.11)

Finally, denoting

D(τ) ≡ Ce(C
−1
i (τ)) and θ(τ) ≡ ce(C

−1
i (τ))

ci(C
−1
i (τ))

, (3.12)

Eq. (3.10) can be rewritten as

g(D(τ)) = θ(τ)g(τ) for τ ≥ 0. (3.13)

Remark 3.4 Notice that from (2.94) and the definitions in (3.12) we have 0 < θ(τ) < 1 for
τ ≥ 0. Moreover, D

′

(0) = θ(0). Moreover, it is possible to verify that D
′′

(0) 6= 2θ′(0).

The functional equation in (3.13) was studied in [71] and [72]. For constant injected
concentration, ci(z) = cio (3.13) reduces to Julia’s equation ([72]):

g(D(τ)) = D
′

(τ)g(τ) for τ ≥ 0. (3.14)

The recovery method presented in [10] is based on the functional equation (3.14); a formula
for the solution of (3.14) is obtained by means of an iterative procedure. In the next section
an analogous formula for the solution g(τ) of (3.13) is obtained for non-constant injected
concentration ci(T ).

We will see that Eq. (3.10) is insufficient to solve the inverse problem; the additional
value λ(0) is needed to determine the initial value for the derivative of g, allowing to find the
function λ(σ). From (2.13) we obtain

λ(σ) =
1

Ψ′(σ)
, (3.15)
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and from the definition of g in (3.7) we obtain

λ(σ) = g
′

(σ). (3.16)

In particular g
′

(0) = λ(0). The initial datum λ(0) is obtained from (3.1) and (3.2), i.e.

λ(0) = − log(ce(0)/ci(0)), (3.17)

which is well defined because ci and ce are positive.
Once we find the function σ = g(Ψ) by using equation (3.11) with initial data (3.17) by

solving (3.13), it is possible to find the filtration function λ(σ) from Eq. (3.16). In the next
section, we find the solution of the functional equation (3.13).

3.1.2 Solution of the functional equation

In this section the functional equation (3.13) is solved. We assume that the data ci(T ),
ce(T ) is C2, which provides sufficient smoothness for the existence of a unique C2 solution.
Sufficient conditions for the existence and uniqueness of the solution are given in [72].

Since 0 < θ(τ) < 1 in Eq. (3.13) and ce(τ) < 1 for τ > 0, we obtain that D(τ) < τ for
τ > 0 (see Fig. 3.2). Thus, we solve the equation when D(τ) < τ for [0, b].

The following Lemma is valid ([71]).

Lemma 3.5 Let D : [0, b]→ [0,∞) be a continuous monotone increasing function, such that
D(0) = 0. Assume that D(τ) < τ in (0, b). Let τ0 be a point in (0, b). Consider the sequence
in [0, b] given by τn+1 = D(τn), n = 1, 2, . . .

Then this sequence is monotone decreasing and it converges to 0.

Proof: Let τn+1 = D(τn) < sn. Since τn+1 > 0, {τn} is monotone decreasing and positive,
so it converges to s̄. From the continuity of D, τn+1 = D(τn) implies that τ̄ = D(τ̄), so τ̄ = 0
�.

Let us define the set

G0 = {C2[0, b] such that g(0) = 0}. (3.18)

Theorem 3.6 Let D : [0, b] → [0,∞) be a C2 monotone increasing function, such that
D(0) = 0 and D(τ) < τ in (0, b]. Let θ : [0, b] → (0,∞) is a C2 function, satisfying
0 < θ(τ) < 1 and θ(0)(D

′

(0))2 < 1. Furthermore consider the functional equation (3.13) on
G0, i.e.

g
(

D(τ)
)

= θ(τ)g(τ) for τ in (0, b), (3.19)

Then the functional equation (3.19) has a family of C2 solutions in G0, which differ by
multiplicative constants. Moreover, the solution is uniquely defined by g ′(0).

Proof: The existence of a unique C2 solution of the functional equation (3.19) is guar-
anteed by Theorem 3.4.3 in [72]. Now, an iterative formula for the solution of (3.19) is
presented in Theorem 5.8 in [71], which depends on an arbitrary function. Using the assump-
tion g′(0) 6= 0 we find this function in next section.
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Figure 3.2: Graph of D(τ) in Lemma 3.5.

Solution of the functional equation in an interval

The functional equation (3.11) with datum (3.17) may be stated as follows: given a
sufficiently smooth real-valued functions D(τ) and θ(τ) for τ in [0, b) from Section 3.1.1 for
τ ≥ 0, with

D(0) = 0, 0 < D′(τ) < 1, 0 < D(τ) < τ for 0 ≤ τ ≤ b, (3.20)

and
0 < θ(τ) < 1, θ

′

(τ) 6= 0, D
′

(0) = θ(0) and D
′′

(0) 6= 2θ
′

(0), (3.21)

where 1 ≤ b ≤ Ci(A). Now, from the given value g′0 6= 0, we find a nonnegative function g(τ)
with prescribed

g′(0) = g′0 and g(0) = 0, (3.22)

such that
g(D(τ)) = θ(τ)g(τ), 0 ≤ τ ≤ b. (3.23)

Let us assume that given D and θ as above, we are able to find g. We will first show that
such a g is unique, by presenting an algorithm or formula for g.

Lemma 3.7 The solution of the inverse problem (3.20)-(3.23) for the filtration function is
unique if it exists.

Proof: To compute g(τ0) for any τ0 > 0, we define the two infinite sequences

τ1 = D(τ0) q1 = θ(τ0)
τ2 = D(τ1) q2 = θ(τ1)q1

...
...

τn = D(τn−1) qn = θ(τn−1)qn−1
...

...
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or

τn = Dn(τ0) qn =

n−1
∏

k=0

θ(τk). (3.24)

We claim that limn→∞ τn = 0 monotonically. The monotonicity follows from (3.20c):

τn = D(τn−1) < τn−1, so τn < τn−1. (3.25)

Now, let us assume that τn → τ̄ > 0 when n→∞. But, τn = D(τn−1); since D is continuous,
τ̄ = D(τ̄); Eq. (3.20a) implies that τ̄ = 0 and the claim is established.

Notice that τ1 = D(τ0) is continuous in τ0, and so is τn = Dn(τ0). Similarly, since D′ is
continuous, qn is a continuous function of τ0. We also claim the following

Lemma 3.8 limn→∞ qn(τ0) = 0 uniformly for τ0 ∈ [0, c).

Proof: Let c be an arbitrary positive number. Since 0 < θ(τ) < 1, there exist a δ and a
constant ϑ, 0 < ϑ < 1, such that 0 < θ(τ) < ϑ for τ ∈ [0, δ). Furthermore, since τn(τ0) is
continuous and limn→∞ τn = 0 monotonically, there exists an index N such that τn(τ0) ∈ [0, δ)
for n ≥ N . Hence

τn(τ0) ∈ [0, δ) for τ0 ∈ [0, c) and n ≥ N. (3.26)

We set

Θ = sup
[0,c)

{

N−1
∏

k=0

θ(Dk(τ))

}

. (3.27)

Then from Eqs. (3.26) and (3.27) we have for τ0 ∈ [0, c) and n > N

qn(τ0) =
n−1
∏

k=0

θ(Dk(τ0)) ≤ Θ
N−1
∏

k=N

θ(D(k)(τ0)) < Θϑn−N , (3.28)

which shows limn→∞ qn = 0 uniformly for τ0 ∈ [0, c). �

From the functional equation (3.23), it follows that

g(τk) = g(D(τk−1)) = θ(τk−1)g(τk−1) or g(τk) =
qk
qk−1

g(τk−1), (3.29)

so by repeated use of any of the two formulas above for k = n, n− 1, · · · , 1 we obtain

g(τn) = g(τ0)

n−1
∏

k=0

θ(zk) or g(τn) = qng(τ0). (3.30)

On the other hand, using Eq. (3.30), the definition of derivative, and g(0) = 0 from (3.22),

g′(0) = lim
n→∞

g(τn)− g(0)

τn − 0
= lim

n→∞

g(τn)

τn
· (3.31)

Substituting (3.30) in (3.31), we see that

g′(0) = lim
n→∞

g(τ0)

∏n−1
k=0 θ(τk)

τn
. (3.32)
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Thus, we obtain the solution for the functional equation (3.23) for any τ0 > 0.

g(τ0) = g′0 lim
n→∞

τn
∏n−1

k=0 θ(τk)
or g(τ0) = g′0 lim

n→∞

τn
qn
· (3.33)

The proof of the uniqueness theorem is complete once we show that the limit in (3.33) exists.
This is proved in next theorem �.

Theorem 3.9 (Existence): Let D(τ), τ ∈ [0, b] be a real nonnegative function with D ′ con-
tinuous, possessing the derivative D′′ near 0, with D′′ continuous at 0, and satisfying

0 < D′(τ) < d < 1, 0 ≤ D(τ) < τ for 0 ≤ τ ≤ b; D(0) = 0, and D′′(0) 6= 0, (3.34)

where d is a constant. Let be θ a differentiable function such that

0 < θ(τ) < 1, θ
′

(τ) 6= 0, for 0 ≤ τ ≤ b, D
′

(0) = θ(0) and D
′′

(0) 6= 2θ
′

(0). (3.35)

Then
(i) the functional equation g(D(τ)) = θ(τ)g(τ), 0 ≤ τ ≤ b with g(0) = 0, g ′(0) = g′0 6= 0

prescribed has a continuous solution, and
(ii) if D′′ is continuous except at a set of τ ’s which does not accumulate, i.e., D ′′ is

piecewise continuous, then g′ is piecewise continuous. Also, if D′′ and θ
′

are continuous, then
g′ is continuous.

Proof: Let us define

Rn =
τn

∏n−1
k=0 θ(τk)

, ρn =
D(τn)

θ(τn)τn
· (3.36)

Then

Rn =
D(τn−1)τn−1

θ(τn−1)τn−1

∏n−2
k=0 θ(τk)

=
D(τn−1)

θ(τn−1)τn−1
Rn−1 = ρn−1Rn−1, (3.37)

and

g(τ0) = g′0

∞
∏

n=0

D(τn)

θ(τn)τn
(3.38)

is the same as

g(τ0) = g′0

∞
∏

n=0

ρn, (3.39)

if this product exists. A necessary and sufficient condition for the existence of this infinite
product is obtained by taking its logarithm; if the series of the logarithms converges, then
the infinite product exists:

∞
∑

n=0

log ρn =

∞
∑

n=0

log
D(τn)

θ(τn)τn
(3.40)

is the series that will be shown to converge.
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Since lim τn = 0, for θ is continuous and therefore uniformly continuous near 0, and
because D

′

(0) = θ(0) 6= 0 from Conditions (3.34) and (3.35):

ρn =
D(τn)

θ(τn)τn
=

∫ 1

0
D

′

(τnξ)dξ

θ(τn)
(3.41)

then

lim ρn =

∫ 1

0
D′(0)dξ

θ(0)
= 1. (3.42)

We know that lim τn = 0 monotonically, thus by further increasing N , there exists an N large
enough so that for all n > N we can use Taylor’s formula in an interval (0, τn) where D′′

exists. Since D(0) = 0, we obtain

D(τn) = τnD
′(0) +

τ 2
n

2
D′′(ξn) where 0 < ξn < τn, (3.43)

and θ(τn) = θ(0) + τnθ
′

(ηn) where 0 < ηn < τn. (3.44)

Notice that to divide by θ(τn), we need θ(0) 6= 0, so, from Eqs. (3.43), (3.44) and
D

′

(0) = θ(0):

ρn =
D(τn)

θ(τn)τn
=

(

D′(0) + (τn/2)D′′(ξn)
)

τn
(

D′(0) + τnθ
′(ηn)

)

τn
=

1 + (τn/2)
(

D′′(ξn)/D
′(0)
)

1 + τn
(

θ′(ηn)/D
′(0)
) .

By further increasing N , using the continuity of θ
′

at zero and θ
′ 6= 0, we can ensure that

|τnθ′

(ηn)|D′(0) < 1, so that

ρn = 1− τn
D′′(ξn)/2− θ′

(ηn)

D′(0)
+O(τ 2

n).

Using that log(1 + x) = x +O(x2),

log ρn = log
D(τn)

θ(τn)τn
∼= −τn

(

D′′(ξn)/2− θ′

(ηn)
)

D′(0)
· (3.45)

Thus

log ρn
log ρn−1

=
log
(

D(τn)/θ(τn)τn
)

log
(

D(τn−1)/θ(τn−1)τn−1

)

∼=
−τn

(

D′′(ξn)/2− θ′

(ηn)
)

/D′(0)

−τn−1

(

D′′(ξn−1)/2− θ′(ηn−1)
)

/D′(0)
. (3.46)

In (3.46) we use the fact that D′′(0) 6= 0, D′′(0) 6= 2θ
′

(0) and that C ′′ and θ
′

are continuous
at zero to say that

lim
log ρn

log ρn−1

= lim
τn
τn−1

= lim
D(τn−1)− 0

τn−1 − 0
= D′(0) < 1, (3.47)

from Eq. (3.20) and by the ratio criterion, this series is convergent.
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Let d be a positive number between D
′

(0) and 1. From (3.47), it follows that by further
increasing N , for all n ≥ N , we have | log ρn| ≤ dn; thus, the series (3.40) is absolutely
uniformly convergent, as for all n ≥ N it is bounded by a geometric series and all terms are
uniformly bounded for n ≤ N − 1. Thus the series converges to a continuous function, and
the lemma is proven. Now if τn is a point where C ′′ is continuous, and D′ is continuous at
τn, D

−1(τn), D
−2(τn), · · · ,τ0:

d

dτ0
log ρn =

(

d

dτn
log ρn(τn)

)

dτn
dτ0

, (3.48)

where
dτn
dτ0

=

n
∏

k=0

D′(τn−k) (3.49)

is continuous at τ0 and d
dτn

log ρn(τn) is continuous at τn from Eq. (3.1.2). We still have to show
that the series with general term (3.48) is absolutely uniformly convergent near τ0. But this is
easy because limn→∞ τn = 0 follows that limn→∞ θ′(τn) = θ

′

(0) and limn→∞D′′(τn) = D
′′

(0).
In fact, from (3.45), as n→∞, if D′′ is continuous at 0 and D′′(0) 6= 0:

lim
d

dτn
log ρn(τn) =

D′′(0)/2− θ′

(0)

D′(0)
. (3.50)

Notice that τn−k < τ0 and the function D is monotone increasing, thus from (3.49) we obtain

dτn
dτ0

< (D′(τ0))
n. (3.51)

Since D′(τ) < d < 1 for τ ≥ 0, the series of the absolute values of the derivatives is uniformly
bounded by a convergent geometric series. Thus the derivative is a continuous function,
represented by the series of the derivatives.

Now that we know that the series is convergent, one verifies that the functional equation
is satisfied. Once this is done, the proof of the existence theorem is complete �.

Remark 3.10 For the Julia’s equation the formula (3.39) reduces to

g(τ0) = g′(0)
∞
∏

n=0

D(τn)

D′(τn)τn
. (3.52)

This formula was obtained in [10].

Remark 3.11 Once the solution g of the functional equation (3.13) is obtained, we can solve
the direct problem (2.1)-(2.6) using the filtration function λ(σ) determined by (3.16) and find
c(1, T ). It is possible to verify, by using the method described in Section 3.1 and Theorem
3.6, that the correspondent effluent concentration function c(1, T ) coincides with the input
data ce(T ) used in the recovery procedure in (3.2b).

Corollary 3.12 Let F the set of functions such that for all (D, θ) ∈ F the hypothesis of the
Theorem 3.9 are valid. Let us assume that there exists a constant d1 such that for all (D, θ) ∈
F we have ((D′′(τ)− 2θ(τ))/θ(0)) < d1 for all τ ∈ [0, b]. Then solutions g of the functional
equation in (3.11) corresponding to (D, θ) ∈ F are uniformly bounded by d1e

((1 − d)−1).
Moreover, the corresponding derivative functions g ′ are uniformly bounded by d1e

(d1/(1−d)).
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3.2 Stabilization of the inverse problem for the filtra-

tion function

The time evolution of the hyperbolic system (2.9)-(2.10) was studied in Chapter 2, where
the well-posedness of the direct problem was established. The inverse problem of determining
the filtration function from the effluent concentration history was studied in Section 3.1,
where we proved that problem has a unique solution. The stability of this inverse problem
for non-constant inlet concentration history is studied in this section.

We state the inverse problem in the framework of operator theory. Operators are defined
on an appropriate subset of Hilbert spaces where the continuous dependence of the recovered
filtration function with respect to the injected and effluent concentrations is guaranteed.

We have to solve integral and differential operators that lead to ill-posed problems in
several cases. Hence, we obtain sufficient conditions for our inverse problem to be well-posed
in Tikhonov’s sense. This study is the basis for the construction of a method for calculating
numerically the approximate solution.

3.2.1 Statement of the problem

The following nonlinear nonhomogeneous hyperbolic system of equations (see Eq. (2.9)
and (2.10)) simulates the filtration process in porous rock under injection of water with
particles

∂

∂T
(c+ σ) +

∂c

∂X
= 0, (3.53)

∂σ

∂T
= λ(σ)c, (3.54)

with the initial condition in (2.21) and the boundary condition in (2.12). The boundary con-
ditions consist of a given injected concentration ci(T ) and a measured effluent concentration
ce(T ) in (3.2). The physical domain for this problem is X ∈ [0, 1], T ∈ [0, A] with A > 0.
Here c denotes the concentration of particles suspended in the flow and σ the concentration
of retained particles in the pores.

The method for recovering the filtration function λ(σ) from measurements of the injected
and effluent concentration of particles, namely ci(z) and ce(z) consists on the following steps:
(i) we define the functions C−1

i (τ) in Eqs. (3.4) and (3.5) and Ce(z) in Eq. (3.6). (ii) we
obtain the solution of the nonlinear functional equation (3.13). (iii) Finally, since Ψ(σ) is the
inverse function of g in (3.13) then the filtration function λ(σ) is obtained by Eq. (3.15).

Summarizing the method for obtaining the filtration function in Section 3.1 consists of
the following sequence of calculations

{ci, ce} → {Ci, Ce} → g → Ψ→ λ. (3.55)

where “→” represents a procedure to obtain output functions from the previous data. To ob-
tain stable numerical methods to calculate the approximate solution of the filtration function,
we must study the direct and inverse problem associated to Eqs. (3.6), (2.13) and (3.13). Let
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us introduce the following operators

A1 : D(A1) ⊂ H1[0, A]→ L2[0, A], A1(ce)(z) = Ce(z) =

∫ z

0

ce(s)ds, (3.56)

A2 : D(A2) ⊂ C[0, A]→ C[0, A], A2(Ce)(z) = g(z), (3.57)

where g satisfies Eq. (3.13). Let us define the operator A3 by

A3 : D(A3) ⊂ C[0, A]→ C[0, 1], A3(g) = g−1, (3.58)

where g−1 denotes the inverse function of g. We define the operator A4 by

A4 : D(A4) ⊂ L2[0, 1]→ H1[0, 1], A4(Ψ)(σ) = ν(σ), (3.59)

where the inverse Ψ = g−1 of the function g satisfies

Ψ(σ) =

∫ σ

0

ν(η)dη. (3.60)

Let us define λ(σ) = 1/ν(σ).

Remark 3.13 From the corollary 3.12 and the method to obtain the filtration function λ(σ)
in (3.55), it follows that for certain classes of functions ci(T ) and ce(T ) described in corollary
3.12 the corresponding function λ(σ) is uniformly bounded.

We prove that the operators A1 and A4 are ill-posed. So, to obtain a conditionally well-
posed problem we use the Tikhonov regularization, i.e., we obtain appropriate subsets where
we guarantee the existence, uniqueness and stability of the operator equations, therefore ob-
taining a stable solution. To do so, we study each operator separately, finding an appropriate
space to define each operator so that it has a continuous inverse. Finally, we prove that the
problem of determining the filtration coefficient λ(σ) from the effluent concentration ce(T )
and the injected concentration ci(T ) is a well-posed problem in Tikhonov’s sense.

3.2.2 Well-posedness of A1 and A4

In this section we present sufficient conditions for the well-posedness of the operators A1

and A4. Since they are related with derivative operators, we summarize several results on
the stabilization of the process of differentiation in Appendix E.

Well-posedness

We can see that A1 is an integral operator and its inverse operator is a derivative operator,
while A4 is the derivative operator and its inverse is an integral operator.

Let us fixed the function f0 ∈ C1[0, A] and let us define the subset

S(f0) = {f ∈ C1[0, A] such as ||f − f0||∞ ≤ r and ||f ′ − f ′

0||∞ ≤ q||f − f0||∞}, (3.61)

for some constants r > 0 and q > 0. It is easy to verify the following lemma.
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Lemma 3.14 Let f0 ∈ C1[0, A] then the subset S(f0) is compact in C[0, A] with the uniform
norm.

Proof: The proof is a consequence of the Arzelà -Ascoli Theorem. Notice that the family of
functions in S(f0) is uniformly bounded. Moreover,

|f(x)− f(y)| ≤ w1|x− y|, (3.62)

holds for all x, y ∈ [0, A] and for all f ∈ S, where w1 = qr+ ||f ′

0||∞ does not depend on f, x, y
�.

Let us define the subset

M1 = {ce ∈ C1[0, A] : ||ce||∞ ≤ r1 and ||c′e||∞ ≤ q1||ce||∞} (3.63)

for some constant r1 > 0 and q1 > 0. From Lemma 3.14,M1 is a compact subset in C[0, A].
The well-posedness of the operator A1 is a consequence of the following theorem.

Theorem 3.15 The operator A1 : D(A1) ⊂ H1[0, A] → L2[0, A] on the subset M1 is well-
posed in Tikhonov’s sense.

Proof: From Theorem A.6, we obtain that A1 is a compact operator; and from Lemma
E.3 and the Lemma of Tikhonov (see Lemma A.10), we see that the inverse map of A1 is
continuous on the subset A1(M1) �.

Now, we study the operator A4. Notice that the inverse operator A−1
4 , if it is exists, is

defined as an integral operator by:

A−1
4 : D(A−1

4 ) ⊂ H1[0, 1]→ L2[0, 1], A−1
4 (ν)(σ) =

∫ σ

0

ν(s)ds. (3.64)

It is known that the operator A−1
4 in (3.64) is compact and has continuous inverse on any

bounded set of H1[0, 1], see Lemma E.3.
Let us denote

M2 = {ν ∈ C1[0, 1] : ||ν||∞ ≤ r2 and ||ν ′||∞ ≤ q2||ν||∞}, (3.65)

with r2 > 0 and q2 > 0. The well-posedness of A4 is guaranteed by the following theorem.

Theorem 3.16 The map A4 : A−1
4 (M2) ⊂ L2[0, 1] → H1[0, 1] on the subset A−1

4 (M2) is
continuous.

Proof: From theorem A.6, we obtain that A−1
4 is a compact operator and from Lemma 3.14

and the Lemma of Tikhonov A.10 we see that A4 restricted to A−1
4 (M2) is continuous �.

3.2.3 Well-posedness of A2

In [72] the stability of equation (3.11) was studied. Similar proof is presented here in
the framework of the operator theory. The study of the well-posedness of A2 is based on
Eq. (3.11). Let us consider the Banach space G0 defined in (3.18) with the uniform norm.
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Moreover, we choose for Eq. (3.11) the functions D and θ defined on [0, b] satisfying the
conditions (3.34) and (3.35).

Taking s = D−1(τ), notice that Eq. (3.11) can be rewritten as

g(s) = θ(D−1(s))g(D−1(s)). (3.66)

Moreover, let us introduce the operator G on the complete space G0 in (3.18) as

G : G0 → G0, G(g)(s) := θ(D−1(s))g(D−1(s)). (3.67)

It is possible to verify that G is continuous and G(G0) ⊂ G0.
Now, clearly Eq. (3.11) (or equivalently (3.66)) has a solution in G0 if the operator G has

a fixed point in G0. This result follows from the following:

Lemma 3.17 The operator G in (3.67) is contractive in G0.

Proof: Let g1 and g2 in G0. It is possible to verify that

||G(g1)−G(g2)||∞ ≤ max
[0,b]
{θ(s)}||g1 − g2||∞. (3.68)

Since θ is continuous on [0, b] and 0 < θ(τ) < 1 for all τ ∈ [0, b] then there exists a constant
d < 1 such that max

[0,b]
{θ(s)} < d < 1 �.

From the Lemma 3.17 above and the Banach Fixed-Point Theorem there exists a unique
fixed point of the operator G in (3.67) on G0. Notice that the result above is the same as
in Lemma 3.7 and Theorem 3.9. However, with the latter result obtained using the Banach
Fixed-Point Theorem, we also gain a stability condition for (3.13). The constructive proof in
Lemma 3.7 is useful because it provides a procedure to determine the solution numerically.

Stability

Now we prove that Eq. (3.11) is locally well-posed. Let define the closed subset

N1 = {(D, θ) ∈ C2([0, b])× C2([0, b]) satisfying (3.34) and (3.35)}. (3.69)

Let us consider the sequences {Dn, θn} ⊂ N1, such that {Dn, θn} → {D̂, θ̂} in N1. Let G be
the operator in (3.67) defined by D̂ and θ̂, and let ĝ be the unique fixed point of G on G0.
Now, we define the family of operators in G0 as follows

Gn : N1 →N1, Gn(g)(s) := θn(D
−1
n (s))g(D−1

n (s)). (3.70)

It is possible to verify that Gn, n = 1, 2, . . . in (3.70) are continuous, Gn(G0) ⊂ G0 and
||Gn|| < 1. Thus repeating the argument of Lemma (3.17), each operator Gn has a unique
fixed point gn on G0. Moreover the following result is valid.

Lemma 3.18 The limit Gn → G holds in G0.

Proof: It follows from

Gng −Gg = (θn − θ̂)g(Dn) + θ̂(g(Dn)− g(D̂))�. (3.71)

Finally, the following lemma is true.
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Lemma 3.19 It is valid that lim gn = ĝ.

Proof: It is possible to verify that

||gn − ĝ||∞ ≤ ||(I −Gn)
−1|| ||Gn −G|| ||ĝ||∞. (3.72)

Since ||Gn|| < 1, from the uniform boundedness principle, we obtain that ||Gn|| < sup{||Gn||} =
q < 1. From Theorem 3, pag. 154 in [64] it follows that (I −Gn)

−1 exists and ||(I −Gn)
−1||

is uniformly bounded by 1/(1− q); since ||Gn −G|| → 0, it follows that ||gn − ĝ||∞ → 0 �.

Stability estimates

Let us define the subsets

M3 = {ce ∈ C2[0, A] : ||ce||∞ ≤ r3 and ||c′e||∞ ≤ q3||ce||∞}, (3.73)

M4 = {ci ∈ C2[0, A] : ||ci||∞ ≤ r4 and ||c′i||∞ ≤ q4||ci||∞} (3.74)

for certain constants r3 > 0, q3 > 0, r4 > 0 and q4 > 0. Moreover, we assume that for all
ce ∈ M3 and ci ∈ M4, ce(z), ci(z) > 0 for all z ∈ [0, A] and c

′

e(z), c
′

i(z) 6= 0 for z ∈ [0, A].
Let ce and ci in M3 and M4 respectively. Let us define Ce and Ci as in (3.56) and (3.3)
respectively. Then the well-posedness of A2 is a consequence of the following lemma.

Lemma 3.20 Let Ce1 and Ce2 in A1(M3) and Ci1, Ci2 in A1(M4) such that Ce1 − Ce2 ∈
A1(M3) and Ci1 − Ci2 ∈ A1(M4). Let us assume that the functions

D1(z) ≡ Ce1(C
−1
i1 (z)), D2 ≡ Ce2(C

−1
i2 (z)) (3.75)

and

θ1(z) ≡
C

′

e1(C
−1
i1 (z))

C
′

i1(C
−1
i1 (z))

, θ2(z) ≡
C

′

e2(C
−1
i2 (z))

C
′

i2(C
−1
i2 (z))

(3.76)

satisfy conditions (3.34) and (3.35). Let us denote by g1, g2 solutions of Eq. (3.13) corre-
sponding to (D1, θ1) and (D2, θ2) respectively, i.e.,

g1(Ce1(z)) =
C

′

e1(z)

C
′

i1(z)
g1(Ci1(z)) for z ≥ 0, (3.77)

g2(Ce2(z)) =
C

′

e2(z)

C
′

i2(z)
g2(Ci2(z)) for z ≥ 0, (3.78)

and g1(0) = g2(0) = 0 and g
′

1(0), g
′

2(0) 6= 0 for all z ∈ [0, A]. Then there exist constants v1

and v2 that not depend of g1, g2, Ce1, Ce2, Ci1, and Ci2, such that

sup
z∈[0,A]

|g1(z)− g2(z)| ≤ v1 sup
z∈[0,A]

|C ′

e1(z)− C
′

e2(z)| (3.79)

and
sup
z∈[0,A]

|g1(z)− g2(z)| ≤ v2 sup
z∈[0,A]

|C ′

i1(z)− C
′

i2(z)|. (3.80)
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Proof: We prove here (3.79), the proof for (3.80) is similar. Let z = C−1
i1 (τ) and z = C−1

i2 (τ)
be defined in Eq. (3.4). We obtain

|g1(z)− g2(z)| = |g1(C
−1
i1 (τ))− g2(C

−1
i2 (τ))|. (3.81)

Using (3.77)-(3.11) we obtain

|g1(z)− g2(z)| =
∣

∣

∣

∣

g1(Ce1(C
−1
i1 (τ))C

′

i1(C
−1
i1 (τ))

C
′

e1(C
−1
i1 (τ))

− g2(Ce2(C
−1
i2 (τ))C

′

i2(C
−1
i2 (τ))

C
′

e2(C
−1
i2 (τ))

∣

∣

∣

∣

. (3.82)

Taking
N1 = sup{ max

[0,Ci1(A)]
g1(Ce1(C

−1
i1 (τ)), max

[0,Ci2(A)]
g2(Ce2(C

−1
i2 (τ))}, (3.83)

and
N2 = sup{ max

[0,Ci1(A)]
C

′

i1(C
−1
i1 (τ)), max

[0,Ci2(A)]
C

′

i2(C
−1
i2 (τ))}, (3.84)

we obtain

|g1(z)− g2(z)| ≤ N1N2

∣

∣

∣

∣

1

C
′

e1(C
−1
i1 (τ))

− 1

C
′

e2(C
−1
i2 (τ))

∣

∣

∣

∣

. (3.85)

So, defining N3 = max
[0,Ce1(A)]

{

1

C
′

e1(C
−1
e1 (τ))

}

× max
[0,Ce2(A)]

{

1

C
′

2(C
−1
e2 (τ))

}

and t1 = N1N2N3, we

obtain
sup
z∈[0,A]

|g1(z)− g2(z)| ≤ t1 sup
z∈[0,A]

|C ′

e1(z)− C
′

e2(z)|. (3.86)

Finally, we must prove that there exists a constant v1 independent of Ce1, Ce2, Ci1, Ci2, g1

and g2 such that t1 ≤ v1. Since the subsets M3 and M4 consist of uniformly bounded
functions and C

′

(z) 6= 0 for all z ∈ [0, A], there exist constants n2 and n3 independent of Ci1,
Ci2, Ce1 and Ce2 such that

N2 ≤ n2 and N3 < n3. (3.87)

Now, from Corollary 3.12 (see Section 3.1) we obtain that the solutions g1 and g2 of Eqs.
(3.77)-(3.78) respectively are continuous and uniformly bounded, i.e., there exist constants
m1 > 0 and m2 > 0 that do not depend on Ce1, Ce2, Ci1, Ci2, g1 and g2 such that the following
inequalities hold

0 ≤ g1(z) ≤ m1, for z ∈ [0, A], (3.88)

0 ≤ g2(z) ≤ m2, for z ∈ [0, A], (3.89)

for all solutions g1 and g2 of Eqs. (3.77)-(3.78) respectively. Let n3 = max{m1, m2}. Finally,
setting v1 = n1n2n3 we obtain the inequality (3.79) �.

In Section 3.1 we proved that the solution of the functional equation (3.13) exists and is
unique. Thus from Lemma 3.20 we conclude that the operator A2 is well-posed on M3 and
M4 defined in Eqs. (3.73) and (3.74).
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3.2.4 Well-posedness of A3

The well-posedness of A3 is proved in the following Lemma.

Lemma 3.21 The operator A3 and A−1
3 are bounded.

Proof: The well-posedness is a consequence of the Closed Graph theorem and the fact that
if gn → g then (gn)

−1 → (g)−1
�.

From Lemma 3.21 we obtain that it is possible to obtain the inverse in a stable way.

Remark 3.22 Notice that the stability condition of Ce(z) in the operator A1 is valid for
C−1
i (τ) in (3.4). Moreover, changes in ci(T ) imply changes in the function D(τ) and θ(τ) in

(3.12), therefore the stability with respect ci(T ) follows from the well-posedness of the operators
A1 and A2.

3.2.5 Well-posedness of the inverse problem

Now, we prove that the filtration function can be obtained in a stable way from the effluent
concentration using the procedure described in Section 3.1. To do so, we restrict the possible
input data to a certain function class. This restriction of the feasible solution is sufficient to
include many practical situations.
Let us denote by

M1 = {ce ∈ C2[0, A] : ||ce||∞ ≤ r and ||c′e||∞ ≤ q||ce||∞}, (3.90)

for some positive constant r and q. The above mentioned result is stated in the following
theorem.

Theorem 3.23 Let ci(z) and ce(z) be the inlet and effluent concentrations respectively. As-
sume that ci, ce belong to the class of the functions S with the properties
i) S ⊂M1,
ii) there exist a positive number d between 0 and 1 such that 0 < ce(z) < d < 1 for z ∈ [0, A]
and for all ce ∈ S.
Let ce1 and ce2 satisfy conditions (i),(ii) as well as ce1−ce2 ∈ M1. Let us denote by λ1 and λ2

the filtration function obtained from ce1 and ce2 using the method described in Section 3.2.1.
Then the following inequality holds

||λ1(σ)− λ2(σ)||H1[0,1] ≤ r2 sup
z∈[0,A]

|ce1(z)− ce2(z)|. (3.91)

Proof: Let us define Φ1 and Φ2 as follows

Φ1(σ) =

∫ σ

0

dη

λ1(η)
and Φ2(σ) =

∫ σ

0

dη

λ2(η)
. (3.92)

From Remark 3.13 and Theorem 3.16 there exists a constant v1 such that
∣

∣

∣

∣

∣

∣

∣

∣

1

λ1(σ)
− 1

λ2(σ)

∣

∣

∣

∣

∣

∣

∣

∣

H1[0,1]

≤ v1||Φ1 − Φ2||2. (3.93)
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Since λ1 and λ2 are continuous positive functions then Φ1 and Φ1 are continuous and positive
as well. Therefore we have

||Φ1 − Φ2||2 < ||Φ1 − Φ2||∞. (3.94)

Let us define

Ce1(z) =

∫ z

0

ce1(τ)dτ and Ce2(z) =

∫ z

0

ce2(τ)dτ, (3.95)

and let g1 and g2 be the solutions of Eq. (3.13) corresponding to Ce1 and Ce2. Now, using
Lemma 3.21 there exists a constant v2 such that

||Φ1 − Φ2||∞ ≤ v2||g1 − g2||∞, (3.96)

where g1 and g2 are the inverses of Φ1 and Φ2 respectively. From Lemma (3.20) there exists
a constant v3 such that

||g1 − g2||∞ ≤ v3||C
′

e1 − C
′

e2||∞. (3.97)

Finally, from Eq. (3.93)-(3.97) we obtain

||λ1(σ)− λ2(σ)||H1[0,1] ≤
(

sup
σ∈[0,1]

(λ1(σ)λ2(σ)) + sup
σ∈[0,1]

(λ
′

1(σ)λ
′

2(σ))

)

v1v2v3||ce1 − ce2||∞.

(3.98)
From Remark 3.13 and Theorem 3.16 the functions λ and λ

′

are uniformly bounded, thus
there exist constants v4 and v5 that do not depend on λ1 and λ2 such that

sup
σ∈[0,1]

(λ1(σ)λ2(σ)) < v4, (3.99)

sup
σ∈[0,1]

(λ
′

1(σ)λ
′

2(σ)) < v5. (3.100)

Taking r2 = v1v2v3v4v5, we obtain (3.91) �.
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Chapter 4

The inverse problem for the porous
rock damage function

In this chapter we study the inverse problem of determining the damage function from
a given pressure history, assuming that the filtration function has already been found. The
available boundary and initial conditions are also used of course.

The recovery method consists in solving an integral equation of Volterra type for the
damage function k(σ). We discuss conditions for well-posedness of the operator equation,
using the methodology described in [105], [81], [29], [70], [94] and [109] for solving integral
equations of the first kind.

The classical method of Tikhonov is used to reduce an ill-posed Volterra equation of the
first kind into a well posed problem. Numerical implementation requires that it belongs
to an appropriate subset of feasible solutions. We need to find the solution of the linear
system of equations obtained by discretizing the continuous equation. Optimization and LU
factorization methods are useful in finding the solution of the resulting system.

Also, regularization parameters need to be determined as an important part of the regu-
larization methods ([34], [47], [86], [105]). To do so, the discrepancy principle and the L-curve
method are used.

4.1 The integral equation

Let us subdivide the physical domain D = [0, 1] × [0, A] into two parts D = D+ ∪ D0,
where

D+ = {(X, T ) ∈ D such that X > T}, (4.1)

D0 = {(X, T ) ∈ D such that X ≤ T}. (4.2)

The behavior of σ(X, T ) in each of these two subsets is assumed to be different, i.e., σ(X, T )
is continuously differentiable in each subset, σ(X, T ) = 0 in D0 and σ(X, T ) > 0 in D+.

Eq. (2.11) with mp = 1 can be rewritten as

∫ 1

0

f(σ(X, T ))dX = g(T ), for all T ∈ [0, A], (4.3)

49



where f(σ) is an unknown continuous function and g(T ) is a given non-negative continuous
function. Actually, we know the values of σ(X, Tj) and ∆p(Tj) only for each Tj with j =
1, . . . , m and Tj ∈ [0, A]. We take T1 < T2 . . . < Tm−1 < Tm. Substituting these Tj, with
j = 1, . . . , m in Eq. (2.11), we obtain the system of integral equations

∫ 1

0

1

k(σ(X, Tj))
dX = ∆p(Tj), j = 1, . . . , m. (4.4)

Taking into account the notation used in Eqs. (4.3) and (4.4), we have

g(Tj) = ∆p(Tj), f(σ(X, Tj)) =
1

k(σ(X, Tj))
, j = 1, . . . , m. (4.5)

Thus, we begin the study by describing the method for finding the general solution in the
continuous case. Then we show how to solve the problem for given discrete data in numerical
calculations.

The physics dictates that 0 ≤ σ < 1 (see Chapter 2). Let us define

M = max
D

σ(X, T ). (4.6)

Assumption 4.1 In this work, we focus on the case where the function σ(X, T ) satisfies
σ(X, T ) = 0 on D0 and the following inequalities hold

−ε1 <
∂σ(X, T )

∂X
< −ε2 < 0 (4.7)

uniformly on the characteristic lines X − T = constant associated to (2.9)-(2.10).

Assumptions 4.1 arises naturally in the physical model (see Remark 2.1). Notice that,

as a consequence, the derivative ∂σ(X,T )
∂X

is uniformly bounded on D+. We know from the
physics that the solution f of (4.3) must be a positive, non-decreasing continuous function.
This information is very useful for finding a class of functions where Eq. (4.3) is well-posed.
Thus, in order to find a function f : [0,M ] → [0,∞) that satisfies equation (4.3) using the
information above, we analyze the inverse problem associated to the integral operator

Kσ : L2[0,M ] → L2[0, A], (4.8)

defined as

(Kσf)(T ) =

∫ 1

0

f(σ(X, T ))dX, for 0 ≤ T ≤ A. (4.9)

Thus, the problem can be formulated as the linear operator equation

Kσf = g, (4.10)

where Kσ is a continuous linear operator from the Hilbert space L2[0,M ] to L2[0, A]. We
want to obtain a procedure to approximate the inverse operator K−1

σ . For this purpose, the
issues of existence, uniqueness and stability of Eq. (4.10) must be studied.
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Typical examples satisfying Assumptions 4.1 are given by the analytical solution of the
system in Eqs. (2.9), (2.10) shown in Eqs. (2.58), (2.59). The recovery strategy requires
additional information about the solution such as smoothness, as well as the value of the
solution at the boundaries, i.e. f(0) and f(M). Because k(0) = 1, we see that f(0) = 1. On
the other hand, the value f(M) must either be obtained from laboratory measurement or be
evaluated numerically.

Using the fact that the function σ(X, T ) is continuously differentiable on {0 ≤ X ≤ 1}, for
each T fixed, Assumption 4.1 and the implicit function theorem, it follows that it is possible
to obtain the inverse function X = σ−1(y, T ) = s(y, T ) of y = σ(X, T ) restricted to D+.

Now, we reformulate the problem in Eq. (4.3) as a Fredholm integral equation of the first
kind. Since σ(X, T ) = 0 on D0, Eq. (4.3) can be rewritten as

∫ T

0

f(σ(X, T ))dX +

∫ 1

T

f(0)dX = g(T ), for all T ≤ 1, (4.11)

and
∫ 1

0

f(σ(X, T ))dX = g(T ), for all T > 1. (4.12)

Because ∂σ(X,T )
∂X

6= 0 on D+, we can change variables y = σ(X, T ) in the first integral on the
left hand side of Eqs. (4.11) and (4.12). These equations can be rewritten as

∫ σ(0,T )

σ(T,T )

[

− ∂σ
∂X

(s(y, T ), T )

]−1

f(y)dy = g(T ) + (T − 1)f(0), for all T ≤ 1, (4.13)

and
∫ σ(0,T )

σ(1,T )

[

− ∂σ
∂X

(s(y, T ), T )

]−1

f(y)dy = g(T ), for all T > 1. (4.14)

Using that f(0) = 1 we define the function

h(T ) =

{

g(T ) + (T − 1) if T ≤ 1;
g(T ) if T > 1,

and write the kernel Kσ(y, T ) as

Kσ(y, T ) =







0 if σ(0, T ) < y ≤M ;
[

− ∂σ
∂X

(s(y, T ), T )
]−1

if σ(min{1, T}, T ) < y ≤ σ(0, T );
0 if 0 ≤ y ≤ σ(min{1, T}, T ).

(4.15)

Then Eqs. (4.13) and (4.14) can be rewritten compactly as

(Kσf)(T ) =

∫ M

0

Kσ(y, T )f(y)dy = h(T ), with T ∈ [0, A]. (4.16)

A similar integral equation was obtained in [8]. Notice that the function Kσ is bounded due
to Assumption 4.1 (see Eq. (4.7)). So the kernel Kσ(y, T ) belongs to L2([0,M ] × [0, A]),
thus Kσ is a Hilbert-Schmidt operator, and therefore Kσ defines a compact operator from
L2[0,M ] to L2[0, A].
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Remark 4.2 In the triangle {(X, T ) : T ≤ X ≤ 1}, there exists no experimental informa-
tion on the deposited particle concentration σ(X, T ). So, in the discretization of the integral
operator Kσ the values of σ(X, T ) for T < 1 can be neglected. Thus, the kernel Kσ(y, T )
takes the form

Kσ(y, T ) =







0 if σ(0, T ) < y ≤M ;
[

− ∂σ
∂X

(s(y, T ), T )
]−1

if σ(1, T ) < y ≤ σ(0, T );
0 if 0 ≤ y ≤ σ(1, T ).

(4.17)

This simplification is useful for the numerical solution of the integral equation. However, in
the theory development, we take T ∈ [0, A].

It is easy to verify that the adjoint operator K∗
σ of Kσ is given by

(K∗
σg)(y) =

∫ A

0

Kσ(y, T )g(T )dT, (4.18)

where K∗
σ is defined from L2[0, A] to L2[0,M ].

4.2 Conditions for existence, uniqueness and stability

In this section we show that the inverse problem given by Eq. (4.16) is not well-posed.
By means of regularization methods, we transform this problem into a well-posed problem
and we present an algorithm to obtain its solution.

4.2.1 Ill-posedness of the inverse problem

It is known that the inverse of a compact operator with an infinite dimensional domain
is not continuous. Thus, the inverse problem given by the integral equation (4.16) is not
well-posed.

To find the solution, or at least an approximation of the solution, we need to find an
appropriate subset contained in a class of feasible solutions that includes additional informa-
tion such as smoothness and positivity to ensure uniqueness. We choose our set of feasible
solution as

F = {f ∈ L2[0,M ]; f is non-decreasing and 0 ≤ f(x) ≤ B a.e. in [0,M ]}, (4.19)

where B is a constant that does not depend on x and f ; here a.e. means “almost everywhere”.
To obtain a solution of Eq. (4.16) in F we should keep in mind several issues. One is that

the solution may not exist if the function g on the right hand side behaves too roughly. For
example, since the kernel Kσ and the set of feasible solutions F are non-negative functions,
g is necessarily a non-negative function. More precisely, we need that the function g belongs
to Kσ(F).

Thus, to find a solution or a quasi-solution of the ill-posed problem in (4.18) we have to
define existence, uniqueness and stability aspects that are meaningful in this case. These
aspects are intimately connected not only to the operator Kσ: X → Y , but also to the
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domain space X and the image space Y . That is, well-posedness is a property of the triplet
(Kσ, X, Y ).

To solve approximately the inverse problem associated to Eq. (4.16) (i.e., to obtain an
approximate solution), we prove that our problem is well-posed in Tikhonov’s sense (see
Definition A.11).

Existence and uniqueness

We denote by (·, ·) the inner product in L2[0,M ], i.e.

(f, g) =

∫ M

0

f(x)g(x)dx. (4.20)

Let us denote by

N(Kσ)
⊥ = {f ∈ L2[0,M ] such that (f, g) = 0 for all g ∈ N(Kσ)}, (4.21)

where
N(Kσ) = {g ∈ L2[0,M ] such that Kσg = 0}. (4.22)

The existence and uniqueness are guaranteed by the following

Theorem 4.3 Let us take X = N(Kσ)
⊥ and Y = Kσ(X). Then Eq. (4.16) has a solution

and it is unique.

Proof: Clearly for existence we must have Y = Kσ(X), because with this choice the mapping
Kσ : X → Y is surjective. The uniqueness condition is equivalent to injectivity of Kσ. This
is not a serious restriction since we can take the domain X as the orthogonal complement of
the null space N(Kσ) of the operator Kσ �.

Stability

Stability is a consequence of the Lemma of Tikhonov (see Lemma A.10).

Remark 4.4 Frequently, restrictions of the form φ1(x) ≤ f(x) ≤ φ2(x) (where φ1(x) and
φ2(x) are given functions) are imposed to define the set of feasible solutions F that we are
seeking. For example, in our case the feasible solutions must be the set of non-negative
functions uniformly bounded by some constant B, so φ1(x) ≡ 0 and φ2(x) = B. According to
Helly’s choice theorem (see [61], page 45), this subset F of feasible solutions is compact (see
[43]).

Keeping in mind Remark 4.4, the following theorem holds.

Theorem 4.5 The inverse problem in (4.16) is well-posed on F in Tikhonov’s sense.

Proof: The existence and uniqueness are guaranteed by Theorem 4.3. On the other hand,
notice that the subset of feasible solutions F in Eq. (4.19) is contained in the domain X
because if f ∈ F and Kσf = 0 then f ≡ 0. Since F is a compact subset (see Remark 4.4)
the Lemma of Tikhonov guarantees that the mapping Kσ : F → Y is continuous and has
continuous inverse �.
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4.2.2 Regularization method

Following the Tikhonov regularization method, we transform the integral equation of the
first kind (4.16) into a well-posed Volterra-type integral equation.

The idea in the Tikhonov regularization is to define the best fit as possible solution, i.e.,
to find f ∈ F that minimizes the deviation ||Kσf − g|| in the L2[0,M ] norm. We recall that
the subset F is infinite dimensional and the operator Kσ is compact, so this minimization
problem is ill-posed. Thus, we need to penalize the deviation in the sense of optimization
theory, that is, we must obtain a solution by minimizing Tikhonov’s functional

Φα(f) = ||Kσf − h||2 + α||f ||2, (4.23)

with f ∈ L2[0,M ] and α > 0. Here the term ||f ||2 is used as a penalization for the square
error ||Kσf−h||2. This is a way for regularizing the ill-posed problem in (4.16). The existence
of the optimal f is guaranteed by the following theorem.

Theorem 4.6 Let K : X → Y be a linear bounded operator between Hilbert spaces and
α > 0. Then the Tikhonov functional Φα has a unique minimum fα ∈ X. This minimum fα
is the unique solution of the normal equation

αfα +K∗Kfα = K∗h. (4.24)

Theorem 4.6 remains valid on the subset F (see [105], page 165), and the solution of the
optimization problem over the subset F is given by

αfα +K∗
σKσfα = K∗

σh. (4.25)

The solution of Eq. (4.25) can be rewritten as fα = Rαg, with the regularization operator
defined as

Rα : Y → X, Rα = (αI +K∗
σKσ)

−1K∗
σ. (4.26)

Eq. (4.25) is a well-posed Volterra-type integral equation. Moreover, fα → f as α → 0, in
the norm of the Hilbert space X.

We will see that the term ||f ||2 for penalizing the Tikhonov functional in (4.23) is not
sufficient for regularizing the inverse problem in (4.16). In Section 4.2.4, we introduce another
penalization function that solves this difficulty.

Now we present some useful methods for estimating the regularization parameter α.

4.2.3 Choice of regularization parameter value

To solve the optimization problem in the regularization method, it is necessary to estimate
the regularization parameter α in Eq. (4.23). There are many strategies in order to guarantee
optimal convergence of the regularized solution starting from data polluted by errors ([66],
[70], [95], [86] and [105]). In this work we combine the discrepancy principle and the L-curve
methods for choosing the regularization parameter value. In this way we show how to obtain
the approximate solution when the tolerance of the possible solution is specified.

The difficulty of the discrepancy principle method is that we need to know a priori in-
formation about the deficiency of the possible solution. Another useful tool is the L-curve
method, which does not require a priori tolerance specification.
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So, the strategy is the following. First, we obtain an approximate initial solution, fixing a
prescribed analytical expression for the solution and estimating the deficiency of the possible
solution. Here we choose a regularization parameter using the L-curve method. Second, we
calculate a solution by Tikhonov regularization using the discrepancy principle for estimating
the regularization parameter with previously specified tolerance.

Remark 4.7 The choice of the prescribed analytical expression for the solution is equivalent
to the projection method for regularization. So, the problem of obtaining the approximate
solution is transformed by regularization into a parameter estimation problem.

The discrepancy principle

This section is devoted to a posteriori choices of the regularization parameter α. We will
show how to determine an optimal value of the parameter by the discrepancy principle, which
is based on the Tikhonov regularization method.

We consider again the linear compact operatorKσ in Eq. (4.16), which is injective between
the Hilbert space X and Y . Notice that by construction Kσ has a dense range. We have
seen that the family of operators Rα in Eq. (4.26) defines regularization operators that
approximate the unbounded inverse of Kσ on Kσ(X).

The following theorem will be needed when discussing the discrepancy principle.

Theorem 4.8 Let K : X → Y a compact linear operator with the injectivity property. Let
h ∈ Y, α > 0, and fα be the unique solution of the equation

αfα +K∗Kfα = K∗h. (4.27)

Then fα depends continuously on h and α. The mapping α → ||fα|| is monotone nonin-
creasing and limα→∞ fα = 0. The mapping α → ||Kfα − h|| is monotone nondecreasing and
limα→0Kfα = h. If K∗h 6= 0, then strict monotonicity holds in both cases.

Notice that the operatorKσ defined in (4.16) satisfies the hypotheses of the above theorem.
We wish to approximate the solution of Eq. (4.16) for a given right hand side hδ with a known
error level from the unknown exact function h, i.e., satisfying

||hδ − h|| ≤ δ. (4.28)

Now, using a perturbed right hand side, we want to construct a reasonable approximation
fα(δ) to the exact solution of Eq. (4.16). Finding the regularization parameter from a priori
δ leads us to the discrepancy principle as follows.

We compute the value α(δ) > 0 such that the corresponding Tikhonov solution fα(δ) of
Eq.(4.18), i.e., the minimum of the Tikhonov functional in Eq. (4.23), satisfies the equation

||Kσfα(δ) − hδ|| = δ. (4.29)

Notice that this choice of α by the discrepancy principle guarantees that, on one side, the
error between the regularization solution and the known value hδ is equal to δ and, on the
other side, that α is not too small.
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Equation (4.29) is uniquely solvable provided that the inequalities ||hδ − h|| ≤ δ < ||hδ||
hold, because by Theorem 4.8, the following inequalities hold

lim
α→∞

||Kσfα − hδ|| = ||hδ|| > δ, (4.30)

lim
α→0
||Kσfα − hδ|| = 0 < δ. (4.31)

Furthermore, the mapping α→ ||Kσfα − hδ|| is continuous and strictly increasing.
Thus the determination of α(δ) is equivalent to the problem of finding the zero of the

monotone function from R
+ to R

+:

Φ(α) = ||Kσfα − hδ||2 − δ2, (for fixed δ). (4.32)

So, it possible to carry out the computation by Newton’s method as follows.
We recall that in [70] it is shown that the derivative of the mapping α→ fα(δ) is given by

the solution of the equation

(αI +K∗
σKσ)

d

dα
fα = −fα. (4.33)

This equation can be rewritten as

||h−Kσfα||2 = (h−Kσfα, h)− (K∗
σ[h−Kσfα], fα) = ||h||2 − (fα, K

∗
σh)− α||fα||2, (4.34)

hence we get
Φ(α) = ||h||2 − (fα, K

∗
σh)− α||fα||2 − δ2, (4.35)

and
d

dα
Φ(α) = −(

dfα
dα

,K∗
σh)− ||fα||2 − 2αRe(

dfα
dα

, fα), (4.36)

where the derivative dfα

dα
is given by Eq. (4.33). Thus, we set the actual regularization

parameter α as the limit of the iterative procedure

αk+1 = αk −
(

d

dα
Φ(αk)

)−1

Φ(αk). (4.37)

From the previous facts it is possible to prove that the parameter α satisfies:

α(||fα(δ)|| − δ) ≤ ||Kσ||2δ. (4.38)

Thus we may use the following starting value α for Newton’s iteration in (4.37)

α0 =
||Kσ||2δ
||fα(δ)|| − δ

, (4.39)

and we find a zero of the function Φ(α) in (4.32).
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The L-curve method

The L-curve method is broadly discussed in [53] and [54]. Moreover, useful tools in the
Matlab package are available, see [55]. Here we mention some fundamental ideas in the
L-curve method.

The method consists on obtaining a so-called L-curve and estimating a regularization
parameter as the point of maximum curvature. Such a curve is a log-log plot of the norm of
the regularized solution versus the norm of the corresponding residual norm. It is a convenient
graphical tool for displaying the trade-off between the size of a regularized solution and its
fit to a given data, as the regularization parameter varies.

The L-curve gives insight into the regularizing properties of the underlying regularization
method, and it is an aid in choosing an appropriate regularization parameter for the given
data. Now, we summarize the main properties of the L-curve.

The L-curve is parametrized by the regularization parameter, i.e.,

{log(||Axα − b||), log(||L(xα − x0)||); α ∈ R
+}, (4.40)

where the matrices A and L represent a discretized version of Tikhonov’s functional. Here
x0 is a given reference value.

In many application, such a curve takes a concave form. The procedure is to estimate
the optimal value of the regularization parameter so that it corresponds to the point of the
curve where its curvature maximizes. To do so, we use a simple one-dimensional optimization
procedure without constrains.

4.2.4 Solution in Sobolev spaces

In previous sections we introduced integral equations of the first kind, which are defined
by the linear compact operator Kσ: X → Y , with X ⊂ L2[0,M ] and Y ⊂ L2[0, A]. These
subspaces are chosen to select an adequate metric to measure the error on the right hand side
of Eq. (4.16) and to obtain an approximate solution in the subset of feasible solutions.

However, more flexibility in the choice of the solutions space X is necessary, because
additional regularity properties of the exact solution are known a priori. Moreover, the
penalty term in the functional (4.23) guarantees only a bounded solution, while we know
that feasible solutions are differentiable.

Because of these facts, Tikhonov suggested incorporating the derivative into the penalty
term in (4.23), where the derivative d

dx
f = f

′

is taken in the weak sense, as we explain now.

Definition 4.9 A function φ ∈ L2[0,M ] is said to have a weak derivative φ
′ ∈ L2[0,M ] if

∫ M

0

φψ
′

dx = −
∫ M

0

φ
′

ψdx, (4.41)

for all ψ ∈ C1[0,M ], with ψ(0) = ψ(M) = 0.

By introducing positive differentiable functions q0, . . . , qp in the minimization, we replace the
functional Φα(f) in Eq. (4.23) by the functional

Φα(f) = ||Kσf − h||2 + α(||q1/2
o f ||2 + ||q1/2

1

d

dx
f ||2), (4.42)
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or in more general form as

Φα(f) = ||Kσf − h||2 + α

∫ M

0

p
∑

r=0

qr(x)

(

drf

dxr
(x)

)2

dx. (4.43)

Based on the previous discussion, we show how to find the solution in the Sobolev space
H1[0,M ] with inner product

(φ, ψ) =

∫ M

0

(φ(x)ψ(x) + φ
′

(x)ψ
′

(x))dx. (4.44)

Now, the integral equation of first kind in (4.16) is interpreted as an integral operator with
smooth kernel mapping H1[0,M ] on L2[0, A]. All the theory on regularization, including
convergence and regularity, remains applicable in this setting. This application is summarized
in the following theorem.

Theorem 4.10 Consider a linear compact operator Kσ : X ⊂ H1[0,M ] → Kσ(X). Then
the unique solution fα that minimizes the functional in Eq. (4.42) belongs to C2[0,M ] and
satisfies the integro-differential equation

α(fα − f
′′

α) +K∗
σKσfα = K∗

σh, (4.45)

and the boundary condition
f

′

α(0) = f
′

α(M) = 0, (4.46)

with qo = q1 ≡ 1.

Finally, the problem of finding a regularized solution fα of Eq. (4.42) reduces to finding a
solution of the integro-differential equation Eq. (4.45) satisfying the condition

fα(0) = f1 and fα(M) = f2, (4.47)

where f1 and f2 are known values.

Remark 4.11 We can obtain the values of fα(0) and fα(M) either from laboratory experi-
ments or by some numerical method. Since no particle deposition σ occurs at time zero and
therefore no formation damage exists in the porous rock, we assume that fα(0) = 1. In prac-
tice the values of fα(M) can be estimated by the method of regularization by parametrization
presented in Section 4.4.

Notice that it is possible to obtain a similar theorem in a more general case i.e., on Hp[0,M ].
In such a case Eq. (4.45) becomes the following

α

p
∑

j=0

(−1)j
dj

dxj

[

qj
djfα
dxj

]

+K∗
σKσfα = K∗

σh, (4.48)

with adequate boundary conditions. This general case must be used to obtain more smooth-
ness in the solution if additional conditions are needed to stabilize the regularized solution.
To choose the higher order derivative terms in Eq. (4.43), we need to determine the “degree
of ill-posedness” of the operator Kσ, see [92] and [102] for examples.
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4.3 Collocation method for the integral equation

In this section we describe a numerical algorithm for obtaining the approximate solution of
the integro-differential equation (4.45) in the space H1[0,M ]. Similar procedures are needed
for obtaining solutions in most Sobolev spaces.

In the following paragraphs we develop a procedure to calculate an approximation of the
function f : [0,M ]→ [0,∞) in Eq. (4.25). To do so, we discretize the integral by means of a
quadrature formula, with an appropriate non-uniform partition of interval [0,M ]. Thus, the
continuous linear problem is transformed into solving a linear system of equations.

4.3.1 Formulation

Eq. (4.25) can be rewritten as

αfα(t) +

∫ A

0

Kσ(t, y)

[
∫ M

0

Kσ(s, y)fα(s)ds

]

dy =

∫ A

0

Kσ(t, y)h(y)dy, (4.49)

or

αfα(t) +

∫ A

0

∫ M

0

Kσ(t, y)Kσ(s, y)fα(s)dsdy =

∫ A

0

Kσ(t, y)h(y)dy. (4.50)

Introducing the notation

K̄(t, s) =

∫ A

0

Kσ(t, y)Kσ(s, y)dy, H(t) =

∫ A

0

Kσ(t, y)h(y)dy, (4.51)

we can rewrite Eq. (4.50) as

αfα(t) +

∫ M

0

K̄(t, s)fα(s)ds = H(t), (4.52)

where t, s ∈ [0,M ] and y ∈ [0, A].

4.3.2 Numerical algorithm

This section is devoted to describing the numerical algorithm for solving Eqs. (4.45)
and (4.52). We emphasize implementation issues in computer programming. Methods and
examples can be found in [105], [29], [109] [107], [98], [4] and [92].

Here the problem of obtaining an approximate solution of the integral equation (4.52) is
reduced to solving a linear system of equations, which can be obtained by the collocation
method. To do so, we discretize the operator Kσ in (4.16) and the adjoint K∗

σ in (4.18).
Finally, a discretization of K∗

σKσ is obtained and used for solving (4.25).

Discretization of the operator Kσ

We take a partition of the interval [0, A] as

y1 = 0, y2 = δ, . . . , y2r+1 = 2rδ, with δ = A/2r, (4.53)
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where r is some positive integer. Taking the kernel Kσ in (4.15) and using an appropriate
quadrature formula we obtain

∫ M

0

Kσ(s, yl)fα(s)ds ≈
ms
∑

j=1

ωjKσ(sj, yl)fα(sj), (4.54)

with l = 1, . . . , 2r + 1; here ωj, with j = 1, . . . , ms are weights to be determined.
Now we show how to calculate the weight vector W = (ωj) and the values S = (sj) with

j = 1, . . . , ms. Since the kernel Kσ(y, T ) is non-zero in the range of σ(1, T ) to σ(0, T ) for
T ≥ 1 and from σ(T, T ) to σ(0, T ) for T < 1 it is necessary to use a non-uniform partition of
the interval [0,M ] as follows (see Fig. 4.1).

Figure 4.1: Graph of the kernel kσ(y, T )

Remark 4.12 Notice that kernel Kσ(s, T ) has discontinuities on the curves s = σ(0, T ) and
s = σ(1, T ), see Section 4.1. Thus, with a non-uniform partition in Eq.(4.58) we guarantee
that the integral partition takes into account all possible discontinuities. If a uniform partition
were used, its accuracy would be reduced to first order at the discontinuity curves; this would
force us to use an extremely fine grid.

Now, we build a non-uniform partition of the interval [0,M ], based on the discontinuity
points of the kernel. Let us denote the vector

z = [σ(1, y1), σ(0, y1), σ(1, y2), σ(0, y2), . . . , σ(1, y2r+1), σ(0, y2r+1)], (4.55)
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whose components σ(1, yj), σ(0, yj), with j = 1, . . . , 2r + 1 corresponds to the points where
the kernel Kσ(s, T ) in (4.15) has discontinuities in s.

Now, by sorting in increasing order the components of the vector z we get a new vector

z̄ = [a1, . . . , a4r+2], (4.56)

such that a1 ≤ a2 ≤ . . . < a4r+2 = M holds. Now, let us define by io the index of the last
component aio of the vector z̄ such as aio = 0. So, we obtain the vector

p̄ = [aio, aio+1, . . . , a4r+2], (4.57)

which we assume to have ns components. Finally, the components of the vector p̄ determine
a non-uniform partition of [0,M ]. Using this partition, the integral in Eq. (4.54) can be
rewritten for q = 1, . . . , 2r + 1 as

∫ M

0

Kσ(s, yq)fα(s)ds =

∫ aio+1

aio

Kσ(s, yq)fα(s)ds+

∫ aio+2

aio+1

Kσ(s, yq)fα(s)ds+ . . .

+

∫ a4r+2

a4r+1

Kσ(s, yq)fα(s)ds. (4.58)

Now, each integral on the right hand side of (4.58) can be approximated separately. To
do so, fix ml, taking βl = (al+1 − al)/2ml, and

s1 ≡ al, s2 = al + βl, . . . , s2ml+1 = al + 2mlβl ≡ al+1. (4.59)

So, an arbitrary integral can be approximated using Simpson’s integration formula by

∫ al+1

al

Kσ(s, yq)fα(s)ds ≈
2ml+1
∑

j=1

Bl
jKσ(sj, yq)fα(sj), (4.60)

with q = 1, . . . , 2r + 1 and l = io, io + 1, . . . , 4r + 1. The quadrature integration weights B l
j

are given in [70] and [106]:

Bl
1 = Bl

2ml+1 = βl/3, B
l
2 = Bl

4 = . . . = Bl
2ml

= 4βl/3, Bl
3 = Bl

5 = . . . = Bl
2ml−1 = 2βl/3.

Now (4.58) can be approximated using (4.60) as follows:

∫ M

0

Kσ(s, yq)fα(s)ds ≈
2mio+1
∑

j=1

Bio
j Kσ(sj, yq)fα(sj) + . . .+

2ml+1
∑

j=1

Bl
jKσ(sj, yq)fα(sj) + . . .

+

2m4r+1+1
∑

j=1

B4r+1
j Kσ(sj, yq)fα(sj). (4.61)

The next step in writing Eq. (4.61) similarly to Eq. (4.54) is grouping the repeated nodes sj
in (4.61); the new weights are obtained by adding B l

2ml+1 and Bl+1
1 .
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More exactly the weights W = (ωj) with j = 1, . . . , ms are calculated as follows. First we
introduce the vector W by taking all the weights in (4.61) as:

W = [Bio
1 , B

io
2 , . . . , B

io
2mio+1, . . . , B

l
1, B

l
2, . . . , B

l
2ml+1, . . . ,

B4r+1
1 , B4r+1

2 , . . . , B4r+1
2m4r+1+1], (4.62)

with 2
∑4r+1

q=io mq + (ns − 1) components. Second, we drop the component B l
1 of the vector

W for all subindexes l = io, io + 1, . . . , 4r + 1 and we set B l
2ml+1 = Bl

2ml+1 + Bl+1
1 , for each

l = io, io + 1, . . . , 4r, namely,

W = [Bio
2 , . . . , B

io
2m1+1 +Bio+1

1 , . . . , Bl
2, . . . , B

l
2ml+1 +Bl+1

1 , . . . ,

B4r
2m4r+1 +B4r+1

1 , B4r+1
2 , . . . , B4r+1

2m4r+1+1], (4.63)

with ms = 2
∑4r+1

q=io mq − 1 components.
We derive the values sj with j = 1, . . . , ms on the right hand side of Eq. (4.54), which are

the values that correspond to the products ωjKσ(sj, yq)f(sj) as follows: first we introduce
the vector of nodes in (4.61) as:

S = [aio, aio + β1, . . . , aio + 2m1β1, . . . , al, al + βl, . . . , al + 2mlβl, . . . ,

a4r+1, a4r+1 + β4r+1, . . . , a4r+1 + 2m4r+1β4r+1], (4.64)

with 2
∑4r+1

q=io mq + (ns − 1) components. Second, we drop the component al of the vector S
for all subindexes l = io, io+ 1, . . . , 4r + 1. We obtain the vector S = (sj):

S = [aio + β1, . . . , aio + 2m1β1, . . . , al + hl, . . . , al + 2mlβl, . . . ,

a4r+1 + β4r+1, . . . , a4r+1 + 2m4r+1β4r+1] (4.65)

with ms components. Let us define the matrix C = (aqj)

aqj = ωjKσ(sj, yq), (4.66)

where q = 1, . . . , 2r + 1 and j = 1, . . . , ms. The weights ωj are defined in (4.63) and the
nodes sj are defined in (4.65).

Finally, the integral in Eq. (4.54) is discretized as

∫ M

0

Kσ(s, yq)fα(s)ds ≈
ms
∑

j=1

aqjfα(sj), (4.67)

where s1, . . . , sms
are components of the vector S in Eq. (4.65) and q = 1, . . . , 2r + 1.

Discretizing the adjoint operator K∗
σ with the operator Kσ

We need to compute K∗
σKσ. To do so, the product of the operators K∗

σKσ is approximated
as the product of two matrices by using an appropriate integration formula.
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The second term on the left hand side of Eq. (4.49) can be approximated as follows

∫ A

0

Kσ(tk, y)

[∫ M

0

Kσ(s, y)fα(s)ds

]

dy ≈
∫ A

0

Kσ(tk, y)
ms
∑

q=1

ωqKσ(sq, y)fα(sq)dy, (4.68)

hence, using again Simpson’s integration formula we obtain

∫ A

0

Kσ(tk, y)
ms
∑

q=1

ωqKσ(sq, y)fα(sq)dy ≈
2r+1
∑

j=1

AjKσ(tk, yj)
ms
∑

q=1

ωqKσ(sq, yj)fα(sq), (4.69)

where s, t are given in Eq. (4.65) and y1 = 0, y2 = δ, . . . , y2r+1 = 2rδ. The quadrature
integration weights are given by

A1 = A2r+1 = δ/3, A2 = A4 = . . . = A2r = 4δ/3, A3 = A5 = . . . = A2r−1 = 2δ/3. (4.70)

Setting bkj = AjKσ(tk, yj) and cjq = wqKσ(sq, yj), we see that Eq. (4.68) can be rewritten as

∫ A

0

Kσ(tk, y)

[
∫ M

0

Kσ(s, y)fα(s)ds

]

dy ≈
ms
∑

q=1

(

2r+1
∑

j=1

bkjcjq

)

fα(sq), (4.71)

or in a simplified form
∫ A

0

Kσ(t, y)

[∫ M

0

Kσ(s, y)fα(s)ds

]

dy ≈ BCfα, (4.72)

where the matrix B = (bkj) has ms rows and 2r + 1 columns and C = (cjq) has 2r + 1 rows
and ms columns.

Notice that the matrix C is the discretization of the operator Kσ in Eq. (4.16) and the
matrix B is the discretization of the adjoint operator K∗

σ in Eq. (4.18). So, since the inverse
problem (4.18) is ill-posed, we know that these matrices are ill-conditioned. Thus, to solve a
discretization of the integral equation (4.52), Tikhonov regularization for matrices is needed,
see Section A.4.2.

Discretized version of the integral equation

Now using the discretization of the operator and of its adjoint we derive the linear system
that is the discretized version of the integral equation (4.52).

The right hand side on Eq. (4.52) is given by

H(tk) =

∫ A

0

Kσ(tk, y)h(y)dy ≈
2r+1
∑

j=1

AjKσ(tk, yj)h(yj), (4.73)

where t = (tk), with k = 1, . . . , ms are given in Eq. (4.65), with A1, . . . , A2r+1 in Eq. (4.70)
and y1 = 0, . . . , y2r+1 = 2rδ are given in (4.53).

Notice that Eq. (4.73) can be rewritten as

∫ A

0

Kσ(t, y)h(y)dy ≈ Bh, (4.74)

63



where h = [h(y1), . . . , h(y2r+1)]. Denoting by Ims
the identity square matrix of order ms, we

obtain a discretized version of Eq. (4.52) as

(αIms
+BC)fα = Bh. (4.75)

Setting E = αIms
+BC, y = Bh and denoting

fα = fα(S) = [fα(aio + β1), . . . , fα(aio + 2m1β1), . . . , fα(al + βl), . . . , fα(al + 2mlβl), . . . ,

fα(a4r+1 + β4r+1), . . . , fα(a4r+1 + 2m4r+1β4r+1)], (4.76)

we obtain a linear system
Efα = y. (4.77)

Fixing the value of the parameter α and solving system (4.77), we obtain the discrete ap-
proximation of the regularized solution of Eq. (4.49).

Numerical algorithm for the Discrepancy principle

In this Section we describe the computer implementation of the discrepancy principle for
estimating the regularization parameter. It is based on the discretization of Eq. (4.52). Thus,
we take into account that solving Eq. (4.16) is equivalent to solving the linear system

Cfα = h, (4.78)

where the matrix C is calculated in Eq. (4.66) and the vector h is given. Using the Tikhonov
regularization method, we arrive to a regularized linear system in Eq. (4.77). Notice that the
complete regularized solution can be obtained when we have estimates for the regularization
parameter α.

When we know the error δ between the “true” value of the vector h and the measured
value hδ, it is possible to use the discrepancy principle. Now, we describe the implementation
procedure of the discrepancy principle (see Section 4.2.3) as follows. We find a regularization
parameter as the zero of the function Φ(α) in Eq. (4.32). The procedure begins by fixing a
value δ such that

||Cf δα − hδ|| ≤ δ < ||hδ||, (4.79)

where f δα is as in Eq. (4.76) an approximation of the solution and hδ = (h(aio+1), . . . , h(a4r+2))
are given values. The regularization parameter α is determined by discrepancy principle, i.e.,
α is the zero of the function (see Section 4.2.3):

Φ(α) = ||Cfα − h||2 − δ2. (4.80)

To find the zero of Eq. (4.80), we use Newton’s method. So, we start by fixing ε and selecting
an appropriate starting initial value for the parameter α for the iterative procedure as

α0 =
||C||δ

||Cf δα − δ||
. (4.81)

We continue and determine the quantities fαk
as the solution of the linear system

Efαk
= Bh. (4.82)
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Then,
dfαk

dα
is calculated as the solution of

E
dfαk

dα
(αk) = fα, (4.83)

and
dΦ

dα
(αk) = −(

dfαk

dα
(αk), Bh)− (fαk

, fαk
)− 2αk(

dfαk

dα
(αk), fαk

), (4.84)

where (·, ·) denotes the inner product of two vectors.
Finally, we obtain a new value αk+1 using Eq. (4.37). We continue the iterative procedure

until the acceptable tolerance ε is reached, i.e., |αk+1 − αk| < ε holds.
In the numerical example presented in Section 4.5 to test the discrepancy principles we

take f δα as the exact value of the solution, h = Cf δα and hδ as a data function polluted by
error.

Solution of the integro-differential equation

This section is devoted to the discretization of the integro-differential equation (4.45). As
in the discretization of Eq. (4.24), we take a nonuniform partition of the interval [0,M ].

We indicate such a partition by its mesh points sk with k = 1, . . . , ms as in Eq. (4.65).
Setting the points s0 = 0 and sms+1 = sms

+ dms+1, where dms+1 = sms
− sms−1, we obtain

for k = 0, . . . , ms:
dk = sk+1 − sk, where dk 6= dk+1. (4.85)

So, in this case Eq. (4.45) is approximated by a system of linear equations for the unknowns
fk, k = 1, . . . , ms, of the form (see [105], pag 78):

− αq1(sk)

dkdk−1
fk+1 −

αq1(sk−1)

d2
k−1

fk−1 +

(

αq1(sk)

dkdk−1
+
αq1(sk−1)

d2
k−1

+ αq0(sk)

)

fk+

ms
∑

l=1

(

2r+1
∑

j=1

bkjajl

)

fl = yk, where yk =
2r+1
∑

j=1

bkjhj, (4.86)

with k = 1, . . . , ms. The values of f(0) and f(M) are given, see Remark 4.11. So in system
(4.86) we set

f0 = f(0) and fms+1 = f(M). (4.87)

Let us use the notation f̄ = (f(s1), . . . , f(sms
)). Now we rewrite the system (4.86) as

(αV +BC)f̄ = ȳ, (4.88)

where C and B represent the discretization of the operator Kσ and of its adjoint K∗
σ respec-

tively; the matrix V = (Vij) is given by the formulae:

V12 = −q1(s2)

d2d1

, (4.89)

Vqq =
q1(sq)

dqdq−1
+
q1(sq−1)

d2
q−1

+ q0(sq), with q = 1, . . . , ms, (4.90)
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Vq,q−1 = −q1(sq−1)

d2
q−1

, Vq,q+1 = − q1(sq)
dqdq−1

, with q = 2, . . . , ms − 1, (4.91)

Vms,ms−1 = −q1(sms
)

dms

; (4.92)

the other elements of this matrix are zero. We obtain the values of the vector ȳ = (ȳ1, . . . , ȳms
)T

as follows:

ȳ1 = y1 +
αq1(s0)

d2
0

f0, ȳk = yk, for k = 2, . . . , ms − 1,

ȳms
= yms

+
αq1(sms

)

dms
dms−1

fms+1. (4.93)

Inversion operation

As we have seen in the previous section, we need to calculate the inverse X = σ−1(y, T )
of the function y = σ(X, T ) = s(y, T ). This problem is equivalent to finding a zero of the
function G(X) = σ(X, T )− y in the interval [0, 1] for given values of y and T . In Section 4.1
we proved the existence of a unique zero of such a function on D+.

In practice, σ(X, T ) is given at discrete points (Xi, Tj), with i = 1, . . . , n and j = 1, . . . , m.
Since σ(X, T ) is well behaved in D+, we can use two-dimensional interpolation to obtain the
value of this function at any point (X, T ) ∈ D+.

Now we seek a zero X∗ using Newton’s method, i.e, we obtain a solution of the iterative
procedure:

Xk+1 = Xk −
(

∂σ(X, T )

∂X

∣

∣

∣

∣

∣

X=Xk

)−1

σ(Xk, T ), with k = 0, 1, . . . (4.94)

with (X0, T ) given in D+.

4.4 Regularization by parametrization

In the previous section we described a general procedure for finding the solution of Eq.
(E.1). Continuity was one of the assumptions about the unknown function f(σ); however,
we do not know the analytical structure of the solution. This situation led to an ill-posed
problem that was solved using the Tikhonov regularization method.

In this section we prescribe an analytical expression for the function f(σ) in Eq. (4.3) that
depends only on a few parameters, or equivalently we project the function f(σ) on a finite
dimensional subspace Vn. Even in this finite dimension formulation, we still have an ill-posed
problem, but the procedure to obtain an approximate solution reduces to estimating a finite
number of parameter values. Here we do not need a priori information on the deficiency of
the solution δ.

We assume that the solution of Eq. (4.3) is given by the polynomial expression:

f(σ) = 1 + θ1σ + θ2σ
2 + ... + θnσ

n, (4.95)

66



where θ1, θ2, ..., θn are parameters to be determined. The formula above is equivalent to taking
the formation damage function in Eq. (2.11) as

k(σ) = (1 + θ1σ + θ2σ
2 + ...+ θnσ

n)−1. (4.96)

Let us denote the moments of σ by

Sk(T ) =

∫ 1

0

(σ(X, T ))kdX. (4.97)

Then Eq. (4.3) can be rewritten as

1 + θ1S1(T ) + θ2S2(T ) + ...+ θnSn(T ) = g(T ) for all T ∈ [0, A]. (4.98)

Since the values of S1(T ), . . . , Sn(T ) and g(T ) for T equal to T1, T2, . . . , Tm ∈ [0, A] are
known, the problem of finding the solution of Eq. (4.3) reduces to estimating the parameters
θ1, θ2, ..., θn by finding the “best” solution of the linear system of equations

Cx̄ = ȳ, (4.99)

where the matrix C with m rows and n columns is given by

Cqj = Sj(Tq), (4.100)

with q = 1, . . . , m and j = 1, . . . , n; we are using the notation ȳ = (ȳ1, . . . , ȳn) where

ȳq = g(Tq)− 1, with q = 1, . . . , n and x̄ = (θ1, . . . , θn). (4.101)

Now, the solution x̄ of the linear system (4.99), which is a discrete ill-posed problem, can be
found using the Tikhonov regularization method (see Section A.4.2 and Eq. (A.35)), i.e.,

x̄α = argmin{||Cx̄− ȳ||+ α2||L(x̄− x̄0)||}, (4.102)

where the matrix L represents a discretization of the derivative operator, α is the regulari-
zation parameter and x̄0 is a prescribed reference value. In this case, the L-curve method is
used to estimate a value of the regularization parameter. Notice that the discretized operator
can be chosen appropriately to obtain a smooth approximation of the solution.

Estimation of the initial guess

It is known that the family of regularized solution converges to the solution if the selected
initial guess is close enough to the solution. So, an estimate of this value is essential. To find
it, there exist many strategies. Here we mention some possibilities:

1. The initial value f0 may be obtained as the best physical estimate based on semi-
empirical considerations.

2. Additional information on the solution must be used such as boundedness, smoothness
and monotonicity as well as values of the solution at the boundary of the physical
domain

3. Reduction of the problem to simple cases where it is possible to obtain an appropriate
initialization.
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4.5 Applications of the algorithm

In this section we show the numerical results of the regularization methods presented
in Sections 4.3.2 and 4.4. The regularization procedures are tested with synthetic data,
which is obtained by fixing the parameters in the analytical solution described in Section 2.2.
Moreover, random perturbations are added to simulate the observational data. We discuss
the method of regularization by parametrization and the collocation method applied to the
integral equation in (4.3).

4.5.1 Synthetic data

To illustrate the validity of the algorithm proposed in Sections 4.3.2 and 4.4, we study
an example of solving the inverse problem (E.1) in a situation where the exact solution is
known.

Let us take σ(X, T ) given by Eqs. (2.58), (2.59), fixing the parameters: cio = 2, λ0 = 1,
a = 2 and Tmax = A = 2. Assume the permeability is given by (4.96) with n = 3, i.e.,

k(σ) = (1 + θ1σ + θ2σ
2 + θ3σ

3)−1. (4.103)

Thus, we seek the solution of Eq. (4.3), or equivalently, the values of the parameters θ1, θ2
and θ3 are estimated from the data obtained by adding noise to the exact values.

In the following we describe the method used to create the synthetic data. First, the
values of the parameters θ1, θ2 and θ3 are chosen. Second, we calculate the right hand side of
(4.3). Third, we simulate the experimental data by adding random error to the right hand
side of (4.3) ([103]). Thus, we obtain:

gδ(Tj) =

∫ 1

0

(k(σ(X, Tj)))
−1dX ± δν, for Tj ∈ [0, A] with j = 1, . . . , m, (4.104)

where ν represents the standard Gaussian random variable with zero mean and unit standard
deviation. In this study, we use the relative error τ to define the standard deviation, i.e.,
δ = τg(Tj).

In the example studied in next section we take the permeability reduction as

k(σ) = (1 + 30σ + 20σ2 + 10σ3)−1. (4.105)

Two numerical experiments to recover k(σ) are presented taking the relative error τ of the
simulated data as 0.01 and 0.05. Both cases are solved with two grid size discretizations, which
generate matrices with order N = 210 and N = 420. In these experiments, the influence of
the relative error and of the grid size are studied. Moreover, the effects of penalizers with
various derivative orders on the regularized solution are considered.

4.5.2 Numerical results and discussion

The method developed in Sections 4.3.2 and 4.4 involves the calculation of the regulari-
zation parameter α. For an appropriate choice of this parameter each method is relatively
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Figure 4.2: Right hand side of (4.104) with different relative error. Dashed line with circles:
perturbed solution. Solid line: exact solution

stable with respect to data perturbations, so that both are reasonable computational me-
thods. However, the sensitivity of the several solution methods to the perturbations are quite
different. We examine several numerical examples illustrating this behavior. The Picard
condition can be used to choose the “best” solution in the collocation method ([109] and
[53]).

In the first numerical experiment we take small relative error τ = 0.01 (see Fig. 4.2a). We
start by examining the numerical solution obtained by minimizing the penalized functional
without derivatives, i.e, by using as the penalizing functional the norm of the function. In
Fig. 4.3 the solution of (4.23) obtained by the collocation method (see Section 4.3) is shown.
Indeed, the solution using regularization by parametrization without the regularization term
is shown, i.e., we minimize (4.102) with α = 0 (see Section 4.4).

Notice that when the norm of the function is used as penalization (see Eq. (4.23)), then the
regularized solution has large oscillations around the exact solution. This behavior suggests
using the derivative to smooth the regularized solution, i.e., to use Eq. (4.42) to recover the
solution more accurately.

On the other hand (see Fig. 4.3a), the numerical solution obtained with the method of
regularization by parametrization apparently gives an accurate solution. However, when no
regularization is used, the sensitivity of the solution with respect to the experimental error
increases. For example, in Fig. 4.3b we show the regularization by parametrization solution
with α = 0, τ = 0.05; notice that the regularized solution changes with respect to the exact
solution when τ increases, because the norm of the difference between the regularized solution
and the “true” solution is proportional to τ (see Section A.4.1).

Now, we present the result when a regularization term with first order derivative is added.
The discussion clarifies the influence of the order of the derivative and of the grid size on the
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Figure 4.3: Solid line: exact solution. Solid line with circles: regularized solution by colloca-
tion method. Squares: solution with regularization by parametrization.

accuracy of the solution.
In Figs 4.4 the solution obtained by the method of regularization by parametrization is

shown. The regularization parameter α is estimated by the L-curve method and by the dis-
crepancy principle. Moreover, the solution obtained by solving the integral equation through
the collocation method is shown, with α estimated by the discrepancy principle. Here the
relative error in (4.104) is chosen as τ = 0.01. Notice that the three solutions are reasonable
approximations of the exact solution. Moreover, more accurate solutions are obtained by
refining the grid in the collocation method.

In the numerical experiments with the method of regularization by parametrization, the
matrices L1 and L2 in Eq. (4.106) are used in the regularizing term (see Eq. (4.102)), where

L1 =









1 −1
1 −1
· · · · · ·

1 −1









, L2 =









1 −2 1
1 −2 1
· · · · · · · · ·

1 −2 1









. (4.106)

These matrices represent discretized versions of the derivative operator of first and second
order respectively. So, we use them to stabilize the least square solution. The choice of
order of the derivative matrix L in (4.102) depends on the degree of the ill-posed problem
(see 4.2.4). More exactly, to obtain singular values with higher decrease rate higher order
derivative operators are required ([53]). In the example treated here, the regularized solutions
obtained from the matrices L1 and L2 are close to the exact solution. More accurate and
stable solution are obtained using L2.

The second case consists on recovering the same solution with larger relative error, i.e.,
with τ = 0.05 (see Fig. 4.5). In this case, the regularized solution changes significantly
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Figure 4.4: Regularized solution with τ = 0.01. Solid line: exact solution. Squares: regular-
ized solution from collocation method with discrepancy principle (αdpc). Triangles: solution
from regularization by parametrization method with L-curve (αl). Circles: solution from
regularization by parametrization with discrepancy principle (αdp).

relative to the exact solution when the value of τ is increased. In Fig. 4.2b the right hand
side g(T ) of the equation (4.104) and this function polluted with noise are shown.

We can see in Figs. 4.4 and 4.5 that the approximate solution is sensitive to the relative
error τ . Moreover, it is possible to see that in both methods more accuracy is obtained by
refining the grid discretization.

4.5.3 Condition number

Several numerical reasons can be given to explain why the solution with higher order
derivative in the regularization term produces more stable solutions. Our study is based on
the condition number of the discretized matrices. In Table 4.1, the condition numbers of the
discretized matrices for different grid sizes and relative errors are shown. From columns 1
and 2, we see that the condition number decreases considerably when a penalizing term is
added.

In Table 4.1, e1, e2 and e3 represent the relative error of the regularized solution relative
to the exact solution for the collocation method and the regularization by parametrization
method. Moreover, the regularization parameter is calculated through both the discrepancy
principle and the L-curve method. Here cond1 and cond1r are the condition numbers of the
discretized matrices with and without the regularization term, respectively. The regulari-
zation parameter αdpc corresponds to the collocation method with the discrepancy principle
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Figure 4.5: Regularized solution with τ = 0.05. Solid line: exact solution. Squares: regular-
ized solution from collocation method with discrepancy principle (αdpc). Triangles: solution
from regularization by parametrization method with L-curve (αl). Circles: solution from
regularization by parametrization with discrepancy principle (αdp).

and αl to the regularization by parametrization through the L-curve method.
We see that the matrix condition number depends weakly on the relative error τ and on

the grid size of the discretization N , but strongly on the regularization term. Notice that by
refining the size of the discretization (see Table 4.1, columns 7-10) by a factor of two, the
matrix condition number increases approximately by 10. This is so because the discretization
with very fine grid size is a better approximation to the continuous inverse problem, which
is ill-posed.

The regularization parameters (Table 4.1, columns 11 and 12) are different in each method.
These examples suggest that, beyond a certain discretization size, the regularized solution
shows no significant improvement. Moreover, the regularization parameter shows little sen-
sitivity to the grid size N and is more sensitive to changes in the relative error τ .

4.5.4 The Picard condition

In Section 4.2, the existence and uniqueness of the solution of the integral equation in (4.3)
is proved. However, the numerical algorithms presented here provide more than one solution,
depending on the method used to solve the problem. Several tools have been developed to
solve the loss of uniqueness in the numerical methods ([44] and [109]). One way is to add
constraints in the optimization of the Tikhonov functional by taking advantage of properties
of the solution that lead to uniqueness. Such tools will be successfully used for the nonlinear

72



Table 4.1: Condition number of the discretized matrices.

N τ e1 e2 e3 cond1 cond1r cond2 cond2r αdpc αl
1 210 0.01 0.17 0.01 0.01 1× 1021 8× 107 7× 105 3× 103 1× 10−4 1× 10−8

2 420 0.01 0.18 0.01 0.01 9× 1021 3× 108 7× 105 4× 103 1× 10−4 3× 10−8

3 210 0.05 0.5 0.05 0.06 1× 1021 8× 107 7× 105 3× 103 2× 10−4 2× 10−8

4 420 0.05 0.68 0.05 0.06 9× 1021 4× 108 7× 105 4× 103 2× 10−4 3× 10−8

studies in Chapter 5.
In the linear case the unique solution can be found with simpler techniques that use

the singular value decomposition (SVD). The solution can be estimated as presented in this
work by adding a condition for choosing a reasonable solution. In [109], uniqueness of the
solution is guaranteed by restricting the class of the solutions allowed or specifying a particular
expansion in the SVD for the solution. More exactly, they choose the solution that satisfies
the discrete Picard condition (see Section A.4.3).

This procedure is related to the sensitivity analysis, in the sense that it is hoped that the
choice of the best method for estimating the regularization parameter α leads to the most
likely solution from the statistical point of the view. For example, in [110] it is proved that
the L-curve method is not statistically appropriate. However, the discrepancy principle has
a statistical justification.
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a) Unperturbed right-hand side with N = 210.
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Figure 4.6: Picard condition in collocation method for τ = 0.01. Vertical logarithmic scale.

So, in practical situations, it is advisable to use the discrepancy principle, but to use the
L-curve method instead, when the value of the solution deficiency δ in (4.28) is not known.
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Figure 4.7: Picard condition in collocation method, τ = 0.01. Vertical logarithmic scale.

The first step in the regularization is to verify the discrete Picard condition. This enables
us to evaluate the discretization of the continuous problem and to choose the best solution
is certain cases. It is known that this condition is sensitive to several factors (see Section
A.4.3). To show this sensitivity, we study two examples, considering the cases N = 210, 420
and τ = 0.01 for the collocation method, taking unperturbed and perturbed right-hand sides.
In Fig. 4.6 the Picard condition for the system (4.78) is shown and in Fig. 4.7 the case of
the system (4.77).

In Fig. 4.6a, we can see that none of the Fourier coefficients |uTi b| for the unperturbed
problem are smaller than the singular value σi. However, when the order of the matrix C in
(4.78) increases (see Fig. 4.6b), certain Fourier coefficients satisfy this condition. Notice, that
in both cases the Fourier coefficient curves can be approximated accurately by a linear trend.
Hence, one possible regularization strategy is to increase the matrix order, which implies
in providing more information on the right hand side of the system (4.78), or to change
the discretization. However, in spite of the fact that the Picard condition is not satisfied,
we obtain an accurate regularized solution, therefore we evaluate another case where the
regularization is taken into account (see Fig. 4.5).

Now we study the Picard condition in the case that the regularization has been applied,
i.e. to the system (4.77). In Fig. 4.7, we can see that most of the Fourier coefficients |uTi b|
for the unperturbed problem are smaller than the singular value σi (see Fig. 4.7a), although
many singular values and Fourier coefficients would be affected by rounding errors. On the
other hand, for the perturbed problem (see Fig. 4.7b), we see that with fine discretization,
many more Fourier coefficients |uTi b| are smaller than the singular value σi, comparing to
the unperturbed case. We also see that in both cases the Fourier coefficient curves can be
approximated accurately by linear trend with small slope decreasing to zero faster than the
singular values. This indicates that the perturbed and unperturbed right hand sides satisfy
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the discrete Picard condition in the system (4.77), i.e., in average the Fourier coefficients are
smaller than the singular values.

Thus, these facts suggest that an alternative regularization method for this problem is
to damp the components for which the perturbation dominates, and leave the remaining
components intact. Indeed, in the collocation method we need to choose the regularization
parameter with large discretization grid size and then use the SVD expansion to filter the
small singular values.

Another source of errors is the Singular Value Decomposition (SVD) itself, which we do
not study in detail here, so the influence on the regularization parameter is a topic for further
work.

In next section we prove that the behavior of the regularized solution in the above numer-
ical examples occurs in general, i.e., the regularized solution converges to the “true” solution
penalized with first order derivative.

4.6 Convergence results

In this section we prove stability results for the general linear equation (4.16). The
numerical examples in the previous section suggest that it is possible to stabilize the integral
equation of the first kind using only first derivative penalizing functionals (see Section 4.3).
We will see that this is an intrinsic property of the operator kernel.

First we present preliminary concepts and lemmas to be used in the sequel.

4.6.1 Preliminaries

The Tikhonov regularization for solving the integral equation of the first kind in (4.16) is
used (see section 4.3). Basically, the method reduces to minimizing the functional

Φα(f) = ||Kf − g||2 + α||Lf ||, (4.107)

where L represents an unbounded, self-adjoint linear operator. For example in the numerical
experiment in previous section we took

Lf =
df

dx
. (4.108)

With this choice we obtain good numerical results (see Section 4.5 for details). In this section
we prove that taking one derivative in the penalizing functional ||Lf || we guarantee that the
regularized solution fα of Eq. (4.107) converges in L2-sense to the “true” solution K†g (see
Section A.3.1 for the definition of K†).

Now, we present the main concepts and definitions for explaining the convergence result.
We assume that we have a Fredholm integral equation of the first kind on [0, 1]

∫ 1

0

k(x, t)f(x) = g(t), (4.109)

where k ∈ L2([0, 1]2) and f ∈ L2[0, 1].
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Remark 4.13 Equation (4.16) can be reduced to an equation of the form (4.109) by a trivial
change of variables.

We regularize Eq. (4.109) by using the Hilbert scale (see section A.2) (Xs)s∈<, which is
induced by the operator L : D(L) ⊂ L2[0, 1] −→ L2[0, 1] defined by

Lf =
∞
∑

n=1

n(f, vn)vn, (4.110)

where vn(s) =
√

2 sin(nπs) and (·, ·) is the inner product in L2[0, 1]. We take

D(L) = {f ∈ H1[0, 1] : f(0) = f(1) = 0}. (4.111)

Notice that Eq. (4.110) is the spectral representation of the operator L in (4.108) with D(L)
defined in (4.111). Moreover, the operator L defined in this way is injective.

It is possible to show ([92]) that for s > 0 we have a Hilbert scale defined as:

Xs = D(Ls) =

{

f ∈ Hs[0, 1] : f 2e(0) = f 2e(1) = 0, e = 0, 1, . . . ,

[

s

2
− 1

4

]}

, (4.112)

and the inner product in Xs is given by

(f, g)k = (Lkf, Lkg) = π−2k

(

dkf

dxk
,
dkg

dxk

)

. (4.113)

4.6.2 Auxiliary lemmas

Lemma 4.14 There exist b ≥ 0 and d > 0 such that

||Lf || ≥ d||f ||b. (4.114)

Proof: By definition we have ||f ||s = ||Lsf ||, so Eq. (4.114) holds taking d = 1 and b = 1 �.
Moreover, the following lemma is valid.

Lemma 4.15 Let K : L2[0, 1]→ L2[0, 1] be a linear operator defined that

Kf :=

∫ 1

0

k(x, ·)f(x)dx. (4.115)

Let s1(t) and s2(t) be monotone increasing continuous functions such as

0 ≤ s1(t) ≤ s2(t) < 1 on [0, 1]. (4.116)

Let S(x, t) be a positive continuous function positive on s1(t) ≤ x ≤ s2(t) with t ∈ [0, 1].

Assume that the kernel is given by k(x, t) =







0 s2(t) ≤ x ≤ 1
S(x, t) s1(t) < x < s2(t)

0 0 ≤ x ≤ s1(t).
Then there exists a constant v > 0 such that

||Kf || ≥ v||f ||−1, (4.117)

where

||f ||2−1 =
∞
∑

j=1

|(f, ej)|2
j2

. (4.118)
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Proof: Let ej(t) =
√

2sin(πjt), with j = 0, 1, . . . , be an orthonormal basis of D(L) in (4.111).
We have for f ∈ D(L)

f =

∞
∑

j=1

(f, ej)ej. (4.119)

The following Parseval equality holds

||Kf ||2 =

∞
∑

j=1

∞
∑

q=1

(f, eq)(f, ej)(Keq, Kej), (4.120)

and the Parseval inequality holds

||Kf ||2 ≥
∞
∑

j=1

|(f, ej)|2||Kej||2. (4.121)

Set n1 = max
[0,A]
{s2(t)},

γ1 = min
(x,t)∈[0,n1]×[0,1]

S(x, t) > 0, γ2 = max
(x,t)∈[0,n1]×[0,1]

S(x, t) > 0 (4.122)

and
Dj(t) = cos(js1(t)π)− cos(js2(t)π), (4.123)

we obtain √
2γ1

jπ
Dj(t) ≤ Kej(t) ≤

√
2γ2

jπ
Dj(t). (4.124)

If Dj(t) > 0

Kej(t)
2 ≥ 2γ2

1

j2π2
Dj(t)

2. (4.125)

or if Dj(t) < 0

Kej(t)
2 ≥ 2γ2

2

j2π2
Dj(t)

2. (4.126)

As Dj(t) changes sign at a finite number of points we conclude from Eqs. (4.125) and (4.126)
that

∫ 1

0

Kej(t)
2dt ≥ 2γ2

1

j2π2

∫ 1

0

Dj(t)
2dt. (4.127)

As
∫ 1

0
Dj(t)

2dt > D > 0 holds uniformly for some D, we obtain

||Kej||2 ≥
2γ2

1

j2π2
D. (4.128)

Thus

||Kf ||2 ≥ 2Dγ2
1

π2

∞
∑

j=1

|(f, ej)|2
j2

. (4.129)

�
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4.6.3 Convergence of the regularized solution

Now, we can prove that the regularized solution of Eq. (4.16) in Section 4.1 converges to
the least square solution K†g penalized with a first derivative term. We show that this is a
particular case of the family of operators treated in Lemma 4.15. Let us choose α = α(δ, y)
by the discrepancy principle, i.e., satisfying Eq. (A.25). Then the following theorem is valid

Theorem 4.16 Let K : X → Y be a compact linear operator, satisfying the assumptions in
lemma 4.15. Let x̂ be the generalized solution belonging to the set Mρ = {x ∈ D(L) : ||Lx|| <
ρ}. Then the regularized solution x̃α satisfies

||x̂− x̃α|| ≤ 2ρ1/2(δ/v)1/2, (4.130)

where v =
√

2Dγ1/π.

Proof: It follows from the application of Theorem A.22 and Lemmas 4.14 and 4.15 �.

Remark 4.17 Notice that if δ → 0 when α→ 0 then x̃α → x̂.

Now it is easy to see that the operator defined in Eq. (4.16) is a particular case of the class
defined in lemma 4.15. It is enough to use the change of variables t = T/A and x = y/M in
the integral equation (4.16) and to choose:

s1(t) = σ(1, t)/M, s2(t) = σ(0, t)/M (4.131)

and

S(x, t) =

(

∂σ

∂x
(s(x, t), t)

)−1

. (4.132)

With these new variables, the operator Kσ in (4.16) satisfies the assumptions of Lemma
4.15. Therefore the convergence result obtained here is valid for the operator Kσ.
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Chapter 5

Recovery of the permeability
reduction and filtration functions from
concentration and pressure histories

In this chapter we formulate the inverse problem of determining the permeability reduc-
tion and filtration functions from the laboratory experimental measurements. The pressure
drop and effluent concentration histories are measured. Basically, the recovery method con-
sists in optimizing functionals which relate changes in the unknown functions to changes in
measured outputs from the filtration experiments. The existence, uniqueness and stability
issues for nonlinear ill-posed problems are treated. The practical importance of recovering
the permeability reduction and filtration functions is that these functions are used for the
simulation of injectivity in wells.

5.1 Preliminaries

A broad class of ill-posed inverse problems involves the recovery of distributed coefficients
in systems of differential equations, see for example [30] and [46]. The first part of the direct
problem is an equation

A(θ)u = q, (5.1)

where A refers to a differential operator defined on an appropriate domain Ω and equipped
with suitable boundary and/or initial conditions. Here θ represents a parametrization of
unknown functions to be determined from the measurement b of the solution of (5.1).

Remark 5.1 In our study A represents the evolutionary operator given by the system of
equations (2.9)-(2.10), with u = (c, σ) and q = 0. The boundary and initial conditions are
given in equations (2.12), (2.21) and (2.22).

Let the operator Q indicate the projection onto the locations in Ω to which the data are
associated. Thus, the data are viewed as a nonlinear function of the model:

b = Q(A(θ))−1q + ε, (5.2)
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where ε is the measurement noise. To calculate (A(θ))−1 in (5.2), we need to be able to
solve the forward problem (5.1) by a stable numerical method. Moreover an appropriate
parametrization θ must be chosen.

In the nonlinear case, in general, there is no unique parametrization θ that generates the
measured data. Moreover, even in the absence of noise, the recovered θ does not depend
continuously on such data ([5], [31]). Therefore, a regularization procedure must be used to
recover a smooth solution of the regularized problem that is at least locally unique.

Here we discuss the identification problem of the unknown parameters θ from certain
observations b in distributed systems, for θ belonging to certain admissible subset Qad. Now,
the problem of recovering θ ∈ Qad in (5.2) can written as an unconstrained, linear or nonlinear
least squares problem, i.e.,

min
θ∈Qad

||Q(A(θ))−1q − b||2 + α||W (θ − θ0)||2, (5.3)

where W typically is a weighting matrix involving discretized derivatives, i.e., a stabilizing
functional which does not depend on θ, while θ0 is a reference model and α is the regularization
parameter. For instance, in the linear case we used the matrices in (4.106).

The optimization problem (5.3) obtained in this way is typically very large and incurs in
several numerical difficulties. So, additional information about the solution is needed. This
information is included in the subset Qad and in the point θ0.

Several minimization methods for obtaining approximate solutions of (5.3) generate se-
quences of iterates where for a given current iterate θ, an update of the form θ ← θ + βδθ
is subsequently carried out, and the process is repeated to convergence. The correction δθ
is obtained either by linearizing the expression under the norm in (5.3) and solving a linear
least squares problem

(JTJ + αW TW )δθ = JT (g −A(θ))− αW TW (θ − θ0), (5.4)

where J = J(θ) = ∂A(θ)
∂θ

is the sensitivity matrix, or by solving some quadratic function
obtained by approximating the Hessian of the objective function ([23] and [24]). Thus the
role of the matrix W in (5.3) is to provide a stable way of calculating the advance δθ, which
is very useful when the matrix J has high condition number.

The parameter θ is calculated by taking into account certain restrictions for determining
the increment δθ in a stable way. In general, the physical solution has bounds that are used
for defining the subset Qad with an appropriate structure for guaranteeing the convergence
of the optimization procedure to the “true” solution.

A number of questions arise when attempting to carry out this approach in practice,
including the scaling of W and the calculation of the regularization parameter α. We examine
these issues in the context of inverse problems appearing in the filtration process of injection
of water with particles.

5.2 Least square solution

The system (2.9)-(2.10) involves the filtration function λ(σ). On the other hand, Darcy’s
law (2.11) depends on the permeability reduction function k(σ). The inverse treatment of

80



these equations is simplified by assuming that λ(σ) and k(σ) depend on a finite number of
parameters ([10]).

One approach to recover these functions referred previously is to choose a least squares
solution, which formulates the inverse problem as an optimization problem. The param-
eters leading to a solution of the evolutionary differential equation that best matches the
experimental measurements are sought.

However, is not evident that the solution of the optimization problem solves the original
inverse problem. So, uncertainty analysis is necessary to predict the most probable set of
optimum parameters. In the sensitivity analysis, the lack of explicit solutions of the so-called
direct problem for different parametrizations of λ(σ) is an obstacle.

For the validation of the method several numerical experiments are used. Other applica-
tions can be found in [28], [22], [31], [5] and [18].

5.3 Parametrization

Several types of parametrization are analyzed in order to find which one produces the
best fit between experimental data and the output predicted by the model.

The choice of parameters and their ranges depend on the physical properties of the filtra-
tion process. Thus, for permeability reduction we take k(σ) with n parameters

k(σ) = (1 + θ1σ + θ2σ
2 + θ3σ

3 + . . .+ θnσ
n)−1. (5.5)

For the filtration function the following parametrizations are considered, using θj with j > n:
a) λ(σ) = max{θn+1 + θ2σ + θ3σ

2 + . . .+ θNσ
N−n−1, 0}, with N > n

b) λ(σ) = θn+1e
( − θn+2σ),

c) λ(σ) = θn+1 − θn+2e
( − θn+3σ).

In (a) the parameters θj, j = n + 1, . . . , N are assumed to have variable sign. In cases
(b) and (c) the parameters have positive sign. We also impose some additional conditions
such as monotonicity (decreasing or increasing), and positivity of the unknown function k(σ)
and λ(σ). Another unknown function that arises in the problem due to the heterogeneity
of the clean rock is the absolute permeability spatial distribution, which can be determined
separately from Darcy’s law. We assume here that the parameters θ have values in a compact
set given by the box:

Ω = θj ≤ θj ≤ θj, for j = 1, . . . , N. (5.6)

Remark 5.2 Denoting the function f(σ) = 1/k(σ), we define a one to one map of f(σ)
and λ(σ) into the set of parameters θ ∈ Ω, such that for all parametrizations θ of f(σ) and
λ(σ) the convergence in parameter space R

N implies the uniform convergence of the functions
f(σ), λ(σ) in the H1 norm.

Remark 5.3 Since the solution σ and c of the system (2.9) and (2.10) obey ordinary differ-
ential equations along characteristic lines (see Remark 2.2), the continuity of the solution is
a consequence of the theorem on ODE solution continuity with respect to parameter changes
(see [62], pag. 91). So the maps

θ → σ(X, T ; θ), θ → c(X, T ; θ) (5.7)
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are continuous.

Remark 5.4 Synthetic data are used in order to calibrate the model and to test the algorithm.
These data are obtained for certain parameters by solving the direct problem given by the
system of equations (2.9), (2.10) and (2.11). So, the pressure drop history at different points
in the core as well as the effluent concentration history are obtained, and random errors are
added to these histories for simulating the observational data.

5.4 Filtration function from effluent concentration

In this section we describe the method for recovering the filtration function from the
effluent concentration history. The well posedness is discussed, as well as some numerical
examples of the recovery method.

5.4.1 Well-posedness of the inverse problem

The operator theory framework is used to study the well-posedness of the inverse problem
of determining the filtration function from the effluent concentration. The stability and
convergence result obtained here are based on [16], [33], [67] and [25]. We choose

D(Gc) = {λ ∈ H2[0, 1], such that λ > γ1}, (5.8)

with γ1 constant. Let us define the nonlinear operator

Gc : D(Gc) ⊂ H2[0, 1]→ L2[0, A], Gc(λ) = c(1, · ;λ), (5.9)

where λ represents the filtration function and c(1, · ;λ) is the effluent concentration obtained
from the solution of the system (2.9)-(2.10), with boundary and initial condition given in
(2.12) and (2.21). From the well-posedness of the direct problem, we have that for each λ
there exists a unique function c(1, · ;λ); so the operator in (5.9) is well-defined. Notice that
the domain D(Gc) is closed and convex, therefore it is weakly closed.

Let us denote by

M = {λ ∈ H2[0, 1] such that γ2 < λ < γ3}, (5.10)

where γ3 is constant. From now on, we take in M the uniform norm, which is possible
because H2[0, 1] is compactly embedded in C1[0, 1]

Thus the following theorem is valid:

Theorem 5.5 Let λ be represents the filtration function and c(1, · ;λ) is the solution of the
system (2.9)-(2.10), with boundary and initial condition given in (2.12) and (2.21). Let κ ≥ 0
and the domain

D(Gc) = {λ ∈ H2+κ[0, 1] such that λ > γ2}. (5.11)

The following assertions are valid.

i) The (nonlinear) operator

Gc : D(Gc) ⊂ H2+κ[0, 1]→ L2[0, A], Gc(λ) = c(1, · ;λ), (5.12)
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is continuous and injective.

ii) Let D(Gc) be as in (5.8). Then the operator in (5.9) is weakly closed and compact.

iii) The map Gc :M→ Gc(M) is continuous and has continuous inverse.

Proof: (i) Let λn → λ in H2+κ[0, 1] with κ ≥ 0. Since H2+κ[0, 1] is compactly imbedded in
C1[0, 1] then λn → λ uniformly in C1[0, 1]. From Remark 5.3 follows that Gc(λn) → Gc(λ)
in L2[0, A]. The injectivity is a consequence of the uniqueness of the solution of the system
of equations (2.9) and (2.10).

(ii) Let {λn} be a sequence in D(Gc) converging weakly in H2[0, 1] towards λ. Since D(Gc) is
weakly closed λ ∈ D(Gc) and since H2[0, 1] is compactly embedded in C1[0, 1], then λn → λ
in C1[0, 1]. By (i) Gc(λn) → Gc(λ) in L2[0, A]. Thus, we proved that Gc is compact and
hence weakly closed.

(iii) Notice that Gc is continuous in M by (i) and M is a compact subset of C[0, 1] (see
Lemma E.1), then (iii) is a consequence of the Lemma of Tikhonov �.

Remark 5.6 From (ii) in Theorem 5.5 and Theorem A.18, the inverse problem of determin-
ing the filtration function λ in Gc(λ) = b, with given b = cdatae (·) is an ill-posed problem.

5.4.2 Implementation

Here we assume that the filtration function λ(σ) is well-behaved, i.e., continuously dif-
ferentiable. Moreover, from Remark 5.2 there exists a correspondonce between the filtration
function λ and its parametrization θ. So, from now on we denote c(1, T ;λ) by c(1, T ; θ).

An algorithm that allows the recovery of the filtration function λ(σ) from the effluent
concentration cdatae (T ) is presented in Chapter 3. This method has some instabilities, which
are treated in Section 3.2. However, optimization is a more robust recovery method. It
consists on finding the filtration function that minimizes the cost function

F c(θ) =

∫ A

0

(c(1, T ; θ)− cdatae (T ))2dT, (5.13)

where θ is a certain parametrization of λ; cdatae (T ) represents the available information and
c(1, T ; θ) is a solution of the system (2.9)-(2.10). Therefore, the value of F c(θ) is obtained
after the system (2.9) and (2.10) has been solved for the fixed value θ. The optimization
algorithms used for minimizing the nonlinear function F c(θ) are discussed in Appendix D.

Remark 5.7 Let an appropriate parametrization of λ be denoted by θ ∈ Ω ; the operator in
(5.9) can be rewritten as

Gc : Ω ⊂ R
N → L2[0, A], Gc(θ) = c(1, · ; θ). (5.14)

Now, the problem of recovering the filtration function is equivalent to solving the nonlinear
operator equation

Gc(θ) = b, (5.15)

where b = cdatae (T ) is given.
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Using Remarks 5.2 and 5.3, Theorem 5.5 can be rewritten in terms of the filtration function
parametrization in the following lemmas.

Lemma 5.8 Let c(1, · ; θ) be the effluent concentration obtained by solving (2.9) and (2.10)
for a filtration function λ(σ). Then the map Gc : θ → c(1, · ; θ) is continuous and injective.

Lemma 5.9 The nonlinear operator in (5.14), restricted to the compact set Ω in (5.6) is
continuous and one to one.

Lemma 5.10 The inverse map of the function in (5.14), restricted to the compact Ω set in
(5.6), is continuous.

Notice that the functional in (5.13) can be rewritten as

F c(θ) = ||Gc(θ)− b||22, (5.16)

where b denotes the effluent concentration history. The existence and uniqueness of the
solution of the inverse problem in (5.13) follows from the next theorem

Theorem 5.11 There exist a unique solution of the optimization problem

min
θ∈Ω

F c(θ). (5.17)

Proof: Since the function F c is continuous and injective on the compact set Ω, using theorem
of Weierstrass ([73]) we obtain that F c has an unique minimum on Ω �.

In the nonlinear case, the Lemma of Tikhonov provides a way to stabilize certain ill-
posed inverse problems, however it leads neither to a quantitative stability estimate nor to
a procedure for obtaining the solution. Thus, we tested three optimization procedures for
solving nonlinear inverse problems.

Numerical results and discussion

The Quasi-Newton method with line search (see Appendix D) is the first algorithm im-
plemented for finding the minimum of the cost function (5.13) in this work. This method
has been extensively used for solving ill-posed problems ([5], [49] and [87]). Figures 5.1 and
5.2 show the plots of predicted and prescribed effluent concentration. The prescribed effluent
concentration is obtained from synthetic data with perturbation error of 5%.

In Fig. 5.1a we show the recovered two-parameter linear filtration function λ(σ) =
max{θ1 + θ2σ, 0} at each iteration of the algorithm. In Fig. 5.1b the dashed line represents
the effluent concentration predicted by the model and the solid line with circles represents
the synthetic data.

The Quasi-Newton method in this case converges in five iterations. However, the recovered
filtration function is not accurate. The filtration function obtained is unphysical because only
increasing effluent concentrations should arise from decreasing filtration functions, according
to Remarks 2.10-2.11. So, this example shows that parameter restrictions are needed to
recover correctly the unknown filtration functions with this method, i.e., appropriate bounds
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Figure 5.1: Iterate solutions recovering filtration function λ(σ) = max{1 − 171σ, 0}. In (b)
Solid line with circles: data perturbed with 5% noise. Dashed lines: iterates.

on θ1 and θ2 must be added in the optimization procedure to guarantee that the solution lies
in the set of feasible solutions.

An optimization technique that performs the minimization of a nonlinear function with
box constraints is needed. The projected gradient method with box constraints is used, see
[69], [82], [36] and [19] for details of the method. This method has been successfully employed
in many practical inverse problems, see e.g. [18].

The program “EASY” implements the above mentioned technique for optimizing the
functional (5.13) with box constraints on the parameter θ. In the calibration of the “EASY”
program, several numerical experiments were carried out for finding the optimum set of
parameters. Moreover, scales for the independent variables were taken into account, as well
as properties of the solution such as positivity and monotonicity, accuracy of the solution
and compatibility of initial parameter guess.

The large-scale interior reflective Newton method was also used for recovering the filtration
function. This algorithm is available in Matlab’s optimization toolbox.

The recovered filtration functions are shown in Fig. 5.2a . The recovered filtration
functions are λ(σ) = max{1.05 − 235σ, 0} for Matlab algorithm and λ(σ) = max{0.99 −
179σ, 0} for the “EASY” algorithm, with relative errors of 3.6% and 0.2% respectively. As
opposed to the numerical result using the Quasi-Newton method, these procedures recover
accurately the prescribed filtration function. The relative error of the estimated parameter
θ2 is 37% using the Matlab algorithm and 5.2% using the EASY algorithm; the estimated
error in the parameter θ1 is 2% with Matlab and 5% with “EASY”. Both methods predict
the true sign of the filtration function slope; this recovery was possible, in part, because we
set the box constraint for the parameter slope θ2 as [−1000, 0].
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Figure 5.2: Approximate solution with filtration function λ(σ) = max{1− 171σ}.

Notice that the filtration function slope value θ2 differs from the exact value much more
than the parameter θ1. This disagreement is due to the low sensitivity of the effluent con-
centration with respect to the slope parameter (see Section 2.5). The choice of the “best”
approximation requires sensitivity analysis, which is discussed in Chapter 7.

In Fig. 5.2b, the unperturbed effluent concentration and perturbed effluent data with 5%
error is shown. Moreover, the predicted effluent concentration using the Matlab and “EASY”
algorithms are shown. Notice that both procedures predict well the effluent concentration
history.

5.5 Permeability reduction and filtration functions from

pressure distribution history

Here the recovery method to obtain the permeability reduction and filtration functions
from pressure distribution history is discussed. The well-posedness of the inverse problem is
studied. Moreover, the implementation of the recovery method based on the parametrization
of the functions is described. The inverse problem is write in terms of a nonlinear operator.
This operator relating the permeability reduction and filtration functions with the pressure
drop histories is based on (2.11).

5.5.1 Well-posedness of the inverse problem

In this section we study the well-posedness of the inverse problem. We prove that the
inverse problem is ill-posed and a regularization of the problem is found. Assuming that k(σ)
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is strictly positive, we can define the function

f(σ) = 1/k(σ). (5.18)

We find a feasible set for the solution (f(σ), λ(σ)), where the inverse problem has a unique
solution and such that small perturbations of experimental pressure history produce small
parameter variations. We choose

D(Gp) = {(f, λ) ∈ H1[0, 1]×H2[0, 1], such that f > f̄1, λ > λ̄1}, (5.19)

where f̄1 and λ̄1 are positive constants. Let us define on D(Gp) the nonlinear operator

Gp
l (f, λ) =

∫ Xl+1

Xl

f(σ(X, · ;λ))dX, with l = 1, . . . , mp. (5.20)

Furthermore, we define

Gp : D(Gp) ⊂ H1[0, 1]×H2[0, 1]→ (L2[0, A])mp, (5.21)

Gp(f, λ) =
(

Gp
1(f, λ), . . . , Gp

mp
(f, λ)

)

, (5.22)

where f is defined in (5.18), λ is the filtration function and σ(X, · ;λ) is the solution of the
system (2.9)-(2.10). From the well-posedness of the direct problem we have that for each
λ there exist a unique piecewise C1 solution σ(X, · ;λ), moreover since I is an integrable
function the operator in (5.22) is well-defined. Notice that the domain D(Gp) is closed and
convex, therefore it is weakly closed.

Let us restrict the class of feasible solutions so that the nonlinear functional Gp(f, λ) is
continuous and injective. Then, Tikhonov’s Lemma can be used to prove the stability of the
ill-posed problem. More precisely, let us denote the subsets

F1 = {f ∈ C1[0, 1] such that 0 ≤ f ≤ r1 and 0 < f
′ ≤ r2}, (5.23)

F2 = {λ ∈ H2[0, 1] such that r3 ≤ λ ≤ r4}, (5.24)

where r1, r2, r3 and r4 are constants.
Let us define F = F1 ×F2. From Lemma E.1, F1 and F2 are compact subsets of C[0, 1];

thus by Theorem 6 of [64], the subset F is compact in C[0, 1] × C[0, 1]. From now on, we
take in M the uniform norm, which is possible because H1[0, 1] and H2[0, 1] are compactly
embedded in C[0, 1]. The following theorem holds.

Theorem 5.12 The following assertions are valid.

i) Let λ represent the filtration function and σ(X, T ;λ) be the solution of the system (2.9)-
(2.10), with initial and boundary conditions given in (2.21) and (2.6). Let κ ≥ 0 and the
domain

D(Gp) = {(f, λ) ∈ H1+κ[0, 1]×H2+κ[0, 1] such that f > f̄2, λ > λ̄2}. (5.25)
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Then the (nonlinear) operator

Gp : D(Gp) ⊂ H1+κ[0, 1]×H2+κ[0, 1]→ (L2[0, A])mp (5.26)

with Gp defined in (5.22) is continuous and injective on F .

ii) Let D(Gp) as in (5.19). Then the operator Gp in (5.22) is weakly closed and compact.

iii) The map Gp : F → Gp(F) is continuous and has continuous inverse.

Proof: (i) From Remark 5.3 the map λ → σ(X, T ;λ) is continuous. Now, let {fn, λn} be a
sequence such that (fn, λn)→ (f, λ) in H1+κ[0, 1]×H2+κ[0, 1], with κ ≥ 0. Since H1+κ[0, 1]
and H2+κ[0, 1] are compactly embedded in C[0, 1] then fn → f and λn → λ uniformly. It
follows that fn(σ(X, T ;λn))→ f(σ(X, T ;λ)) uniformly and, by Theorem 5, page. 314 in [73],
the sequence

gn(T ) = Gp
l (f, λn)(T ) =

∫ Xl+1

Xl

fn(σ(X, T ;λn))dX with l = 1, . . . , mp, (5.27)

consists of continuous functions and gn → g uniformly in C[0, A]. As a consequence

∫ Xl+1

Xl

fn(σ(X, · ;λn))dX →
∫ Xl+1

Xl

f(σ(X, · ;λ))dX with l = 1, . . . , mp, (5.28)

uniformly as n→∞ in the L2[0, A] sense. Finally, the operator in (5.22) is continuous.
Now, we show that the map Gp is injective on F . Taking (f, λ) ∈ F such that Gp(f, λ) = 0

then
∫ Xl+1

Xl

f(σ(X, T ;λn))dX = 0 for all l = 1, . . . , mp and T ∈ [0, A]. (5.29)

From (5.23) and (5.29) we obtain that

f(σ(X, T ;λn)) = 0 almost everywhere in [0, 1]× [0, A]. (5.30)

Since σ ∈ [0, 1], f = 0 almost everywhere in [0, 1]; moreover, as f is an increasing function,
then σ(X, T, λ) = 0 almost everywhere, and from (2.9) and (2.10) we conclude that λ = 0.

(ii) Let {fn, λn} be a sequence in D(Gp) converging weakly in H1[0, 1] × H1[0, 1] to (f, λ).
Since D(Gp) is weakly closed (f, λ) ∈ D(Gp) and since H1[0, 1] and H2[0, 1] are compactly
embedded in C1[0, 1], then (fn, λn) → (f, λ) in C1[0, 1]. By (i) Gp(fn, λn) → Gp(f, λ) in
(L2[0, A])mp. Thus, we have proved that Gp is compact and also weakly closed.

(iii) It follows from (i) and the Lemma of Tikhonov �.

Remark 5.13 Let h be a given function. From (ii) in Theorem 5.12 and Theorem A.18,
the inverse problem of determining the permeability reduction and filtration functions in
Gp(f, λ) = h is an ill-posed problem.
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5.5.2 Implementation

The equation (2.11) relates the pressure distribution history to the permeability reduction
k(σ). If we take into account that σ is obtained by solving both equations (2.9)-(2.10), then
Eq. (2.11) depends on the filtration function as well.

We need to recover the permeability reduction and filtration functions. We do so for the
parametrization

k(σ) = (1 + θ1σ + θ2σ
2)−1 (5.31)

and
λ(σ) = max{θ3 + θ4σ, 0}. (5.32)

The relationships between the permeability reduction function, filtration function and pres-
sure distribution history can be written in terms of a nonlinear functional. To do so, let us use
the notation of ∆pl(T ; θ) with l = 1, . . . , m, defined from (2.7). We recover θ by minimizing
the nonlinear functional

F p(θ) =
m
∑

l=1

∫ A

0

(

∆pl(T ; θ)−∆pldata(T )
)2
dT, (5.33)

where ∆pldata(T ) = p(Xl+1, T )− p(Xl, T ) is given. Here θ = (θ1, θ2, θ3, θ4) is defined in (5.31)
and (5.32). Notice that the value of F p(θ) is calculated by solving the system (2.9)-(2.10)
first.

Remark 5.14 Denoting Gp(θ) = (Gp
1(θ), . . . , G

p
n−1(θ)), we see that F p in Eq. (5.33) can be

rewritten as

F p(θ) =

m
∑

i=1

||Gp
i (θ)− hi||22, (5.34)

where hi(T ) denotes the pressure drop history from the experiment.

Taking into account Remarks 5.2 and 5.14, it is possible to guarantee the existence of a
minimizer for the functional in (5.33).

Remark 5.15 Analogously to Theorem 5.11 we can prove that there exists a solution of the
optimization problem

min
θ∈Ω

F p(θ). (5.35)

Moreover, we can add restrictions to guarantee the existence of a unique solution. Let us
denote by fθ the parametrization corresponding to the parameter θ, which we assume to be
one to one. Now, from (i) in Theorem 5.12, the functionals Gl

p, with l = 1, . . . , m on the
subset

Ω̄ = {θ ∈ Ω such that fθ ∈ F1}, (5.36)

are injective. So, by restricting the minimization of F p to Ω̄ we guarantee the uniqueness of
the solution.
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Numerical results and discussion

In this section we present several numerical examples where the functional equation in
(5.33) is minimized. The Matlab package and the “EASY” program are used. A set of syn-
thetic pressure drops for five consecutive rock segments and synthetic effluent concentration
data are created by using a perturbation error of 1% and 5%. The “exact” permeability
reduction and filtration functions are prescribed as

k(σ) = (1 + 300σ + 100σ2)−1, λ(σ) = max{1− 171σ, 0}. (5.37)

The permeability reduction function recovered for noisy data is shown in Fig. (5.3a). On
the other hand, the experimental pressure drops ∆pi for five segments in the core and the
predicted pressure drops are shown in Fig. (5.3b).
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Figure 5.3: Recovered functions with 5% perturbation error.

The pressure drops ∆pi(T, θ) are recovered with relative errors of 1.8%, 2.5%, 1.9%, 2.5%
and 2.4% in the five core segments respectively. The relative errors for the recovered per-
meability reduction function are 0.8% with “EASY” and 0.78% with Matlab. The recovered
filtration functions are λ(σ) = 0.95+0.0σ with Matlab and λ(σ) = 0.89−172σ with “EASY”,
with 2.7% and 11.5% relative errors respectively. The effluent concentrations are recovered
with relative errors of 14% with “EASY” and 28% with Matlab.

Notice that the permeability reduction function is recovered accurately with both Matlab
and “EASY”, and the corresponding pressure drop histories are predicted well. However,
the recovered filtration function is not accurate with Matlab, and the predicted effluent
concentration history is less accurate than the pressure drop histories, with both optimization
methods.

To study the sensitivity of the model parameters to the noise in the experimental data,
we repeat the above experiment with 1% perturbation error. We see that these functions are
recovered more accurately.
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The pressure drops ∆pi(T, θ) are recovered with 1.2%, 1.1%, 1.0%, 0.8% and 1.0% of
relative error, in the five core segments respectively. The relative errors for the recovered
permeability reduction function are 1.7% with “EASY” and 0.9% with Matlab. The filtration
functions recovered are λ(σ) = 0.92+0.0σ with Matlab and λ(σ) = 0.67−58σ with “EASY”,
with 4.6% and 31% relative error respectively. The effluent concentrations are recovered with
7% with “EASY” and 25% with Matlab.

Since the perturbation error is smaller, the permeability function is recovered with smaller
relative error than in the 5% perturbation error case. Moreover, behavior similar to that in
the previous case is obtained, i.e., the permeability reduction function is recovered accurately
with both procedures, while the filtration function is not. This fact indicates that to recover
the filtration function accurately, other factors must be considered in the functional to be
minimized, e.g., to take into account the effluent concentration. To solve these difficulties we
propose a recovery method where both permeability reduction and filtration functions are
recovered accurately (see Section 5.6).

Although ‘EASY” and Matlab optimization procedures have comparable recovery skill for
the permeability reduction function, we observe the first one finds the optimum faster than
the second subroutine, therefore the “EASY” program enables us to test more initial guesses
and to study the sensitivity of the model parameters with greater efficiency. The selection
of the “true” solution from several local minimum solutions is done using the sensitivity
analysis, which examines all the possible local minima and finds the most probable solution.
Sensitivity analysis is presented in Chapter 7.

5.6 The recovery method

In Sections 5.4 the inverse problem of recovering the filtration function from the effluent
concentration history was studied. On the other hand, in Section 5.5 the recovery of the
permeability reduction function from pressure drop histories was presented. None of these
methods recovers well both functions, so we present a more complete method that determines
accurately the permeability reduction and filtration functions from the pressure drop and
effluent concentration histories at the same time. To do so, we use the results obtained in
Sections 5.4 and 5.5.

Remark 5.16 Since the nonlinear operators Gc and Gp satisfy the hipothesis of Theorem
A.18, the recovery of the permeability reduction and filtration functions are nonlinear locally
ill-posed problems. Hence, the Regularization of Tikhonov is used to find stable solutions. The
regularized solution is determined as the minimizer over D(Gp)×D(Gc) of the functional

(f, λ)→ F c(θ) + F p(θ) + αc||λ− λ∗||2H1[0,1] + αp||f − f ∗||2H1[0,1]. (5.38)

Since Gp and Gc are weakly closed, stability and convergence follow from Theorem A.20 and
A.21.

Neglecting the interaction between the parameters, i.e., by assuming that they are uncorre-
lated, we obtain

||f − f ∗||2H1[0,1] ≈ l1(θ1 − θ∗1)2 + l2(θ2 − θ∗2)2 (5.39)

91



and
||λ− λ∗||2H1[0,1] ≈ l3(θ3 − θ∗3)2 + l4(θ4 − θ∗4)2, (5.40)

where li, i = 1, . . . , 4 are certain constants. Thus, from Eqs. (5.39)-(5.40), we see that
the penalization functional can be written in terms of the parameters θ. Using this fact,
we propose a method that consists in recovering the permeability reduction and filtration
functions by minimizing the cost function

Hαp,αc
(θ) = wcF

c(θ) + wpF
p(θ) + αp(θ

2
1 + θ2

2) + αc(θ
2
3 + θ2

4), (5.41)

where F c and F p are defined in Eqs. (5.13), (5.33) respectively. Here wp and wc are certain
positive weights which add to 1, and αc and αp represent regularization parameters. The
ranges of the parameters θk are given in (5.6).

To test the recovery method, a set of synthetic data is generated. We add to the synthetic
data a perturbation error of 1% and 5%. We call the first data “clean data” and the second
“noisy data”. We study three recovery cases based on Eq. (5.41), with different wi and αi:
Case I: wp ≈ 1 and wc ≈ 0, Case II: wp ≈ 0 and wc ≈ 1 and Case III: wp ≈ wc. Case I means
that we have given more importance to the pressure drop histories, which was studied in
Section 5.5. On the other hand, in Case II we give more weight to the effluent concentration
history, which was treated in Section 5.4.

We see that in Case I the recovered permeability reduction function k(σ) is obtained
accurately, but the recovered filtration function λ(σ) is not. In Case II we recover λ(σ)
appropriately, but we do not obtain k(σ) accurately. These results show that for appropriate
recovery, it is important to use both experimental data histories, pressure drops and effluent
concentration histories.

Now, we present numerical experiments with clean and noisy data for Case III, i.e., where
both experimental data are used, with similar importance level. Figure 5.4 shows the re-
covered permeability reduction and the filtration function, without penalizing (αc = 0 and
αp = 0). The corresponding synthetic pressure drops ∆pl(t) for the five segments in the core
and the predicted pressure drops are shown in Fig. 5.5. (Fig 5.6 is added to clarify Fig.
5.5b). Moreover, Fig. 5.7 contains the effluent concentration predicted in the same numerical
experiment.

The recovered permeability reductions have relative errors of 0.6% and 0.7% for clean and
noisy data respectively. The predicted pressure drops ∆pl(t, θ) have relative errors of 1.1%,
1.2%, 1.0%, 1.1% and 1.1% for clean data and 1.7%, 2.6%, 1.9%, 2.6% and 2.4% for noisy
data. Notice that the predicted and exact histories are very close despite the perturbation
error. The recovered filtration functions are λ(σ) = max{0.99− 170σ, 0} for clean data and
λ(σ) = max{0.99−179σ, 0} for noisy data, with relative errors of 0.03% and 0.2% respectively.
The recovered filtration function from the clean data is indistinguishable from the prescribed
function, see Fig. 5.4b. The predicted effluent concentrations have relative errors of 1.1% and
3.7% for clean and noisy data respectively. So, we see that for both clean and noisy data the
permeability reduction and filtration function are recovered accurately, with smaller relative
errors for clean data, as expected in this experiment.

Using the “EASY” program, we found that the recovered solution is sensitive to the
initial guess, to the box bounds in Eq. (5.6) and to the noise added to the synthetic data (see
examples in Chapter 7). Taking into account this sensitivity and the physical properties of the
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Figure 5.4: Recovered functions for clean and noisy synthetic data.

permeability reduction and filtration functions we choose the box constraints appropriately,
e.g. the parameters θ1 and θ2 are taken positive, the slope θ4 in [−1000, 0] and θ3 in [0, 2],
see Eqs. (5.31)-(5.32).

Moreover, in order to remedy the ill-posedness of the problem we utilize non-zero penali-
zation parameters αp and αc in Eq. (5.41). To estimate good values for these parameters, we
made experiments with large values and then we reduced them until an adequate stabilization
was obtained. In our case, αp = αc = 10−9 were adequate. This is a practical solution,
however a careful determination of αp and αc can be done based on the noise statistics.

Our tests show that a more stable solution is obtained in the presence of the penalization
term, i.e. pressure drop changes do not produce significative changes in the recovered func-
tions obtained with penalization. Moreover, the relative error in the recovered permeability
reduction function was 0.4% for the clean data and 0.3% for the noisy data. The recovered
filtration functions have relative errors of 0.03% and 0.1% for the clean and noisy data re-
spectively. Notice that the penalization term yields no significant accuracy improvement;
however, because among equally inaccurate approximate solutions we prefer the stable ones,
a penalizing term such as that in Eq. (5.41) is used. These observations require the sensitivity
analysis, which we include in Chapter 7.

From the numerical examples based on synthetic data, we conclude that the recovery
method described here is appropriate for finding the permeability reduction and filtration
functions from experimental data.

93



0 100 200 300 400 500 600 700
0.17

0.18

0.19

0.2

0.21

0.22

0.23

Time (PVI)

∆
 p

l (
T

) 
(d

im
e
n
s
io

n
le

s
s
)

exact 
perturbed data 
predicted data 

a) Clean data

0 100 200 300 400 500 600 700
0.17

0.18

0.19

0.2

0.21

0.22

0.23

Time (PVI)

∆
 p

l (
T

) 
(d

im
e
n
s
io

n
le

s
s
)

b) Noisy data

Figure 5.5: Pressure drop histories from synthetic data.
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a) Perturbed data in core segment 4
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Figure 5.6: Pressure drop histories for noisy data. Vertical scale as in Fig. 5.5a.
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Figure 5.7: Synthetic predicted and perturbed effluent concentration.
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Chapter 6

Filtration function from particle
deposition

In this chapter we discuss the inverse problem of determining the filtration function from
the particle deposition given at a grid in space time. Some aspects about methods for solving
this inverse problem are analyzed. However, we do not develop all the details.

In sophisticated engineering experiments, the particle deposition can be estimated at a
finite number of points and times (Xl, Tj), l = 1, . . . , n, j = 1, . . . , m. The deposition σ(X, T )
at any (X, T ) can be obtained by interpolation. In theory we assume that σ(X, T ) is given
at all points and times of the physical domain.

6.1 Recovery methods

We assume that the filtration function is a well-behaved function. Now, we summarize
some methods that allow to recover the filtration function from the particle deposition distri-
bution history. The general features of such methods are discussed and a procedure for the
numerical implementation is shown as well.

6.1.1 Method I. Direct formulation

From Eq. (2.10), the filtration function can be recovered from the particle deposition
σ(X, T ) as follows:

λ(σ(X, T )) =
1

c(X, T )

∂σ

∂T
(X, T ). (6.1)

Now, from (2.37) we obtain

1

c(X, T )
=

1

ci(T )

σ(0, T −X)

σ(X, T )
, for T > X. (6.2)

Introducing (6.2) into (6.1) we obtain

λ(σ(X, T )) =
1

ci(T )

σ(0, T −X)

σ(X, T )

∂σ

∂T
(X, T ), for T > X. (6.3)
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So, theoretically, Eq. (6.3) defines a method for calculating the filtration function λ(σ) for
σ > 0. However, this method does not provide the value λ(0). A possibility to obtain λ(0)
requires an approximation, i.e., assuming that near zero the filtration function is almost
constant then from (2.54) and data at several times T1, . . . , Tm the value of λ(0) can be
estimated by the formula

λ(0) = σ(0, 1)/ci(1). (6.4)

The main numerical difficulty of this recovery method is the calculation of the derivative
∂σ
∂T

(X, T ) in (6.2), which cannot be done reliably.

6.1.2 Method II. Integral equation

Now, an integral equation relating particle deposition and filtration function is obtained
from (2.9) and (2.10). To do so, we rewrite Eq. (2.31) as a Volterra integral equation of the
first kind. We set M = max

T>X
σ(0, T −X), m = min

T>X
σ(X, T ),

and

K(η, T,X) =







0 if σ(0, T −X) < η ≤M ;
1/η if σ(X, T ) < η ≤ σ(0, T −X);

0 if m ≤ η ≤ σ(X, T ).

Equation (2.31) can be rewritten as

∫ M

m

K(η,X, T )dη

λ(η)
= X. (6.5)

Now, assuming that λ(η) > 0, we define

f(η) := 1/λ(η) and g(X) := X, (6.6)

we obtain from (6.5) that
∫ M

m

K(η,X, T )f(η)dη = g(X). (6.7)

Notice that Eq. (6.7) is valid on each characteristic line T − X = const (see Section 2.2).
Thus, taking a parameter T = const+X, the kernel K(η,X, T ) = K(η,X, const+X) depends
only on X and η. This means that along each characteristic line we have a Volterra integral
equation of the first kind.

Remark 6.1 To avoid the singularity of the kernel K(η,X, T ) at η = 0 we restrict (X, T ) ∈
[0, 1] × [T1, A] where T1 and A are positive constants. In this way, we do not consider the
region T ≤ X, where σ = 0. More precisely, the integration is valid along the region spanned
by characteristic lines X − T = τ , with τ > 0.

Finally, by solving the integral equation (6.7) we obtain the filtration function from the
particle deposition. Notice that the kernel K in Eq. (6.7) is similar to the kernel in Eq.
(4.15). So the results of the existence, uniqueness and stability obtained for (4.16) can be
generalized to this case.
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6.1.3 Method III. Functional equation

From Eq. (2.14) we obtain for z ≥ 0

∂Ψ(σ(0, z))

∂T
= c(0, z), for σ in [0, σ1) (6.8)

and
∂Ψ(σ(1, z))

∂T
= c(1, z), for σ in [0, σ1). (6.9)

Using Eq. (2.37) we obtain

σ(1, z)

σ(0, z − 1)
=

c(1, z)

c(0, z − 1)
for z ≥ 1· (6.10)

Now, denoting by

g(σ) =
∂Ψ(σ)

∂T
, (6.11)

De(z) = σ(1, z) and Di(z) = σ(0, z − 1), (6.12)

we obtain from Eqs. (6.8)-(6.11) the functional equation for g

g(De(z)) =
De(z)

Di(z)
g(Di(z)) for z ≥ 1. (6.13)

Notice that Eq. (6.13) is similar to Eq. (3.11), therefore a procedure analogous to that
Chapter 3 can be developed to solve Eq. (6.13). We can see that (6.13) utilizes only the
particle deposition data at two locations.

Eq. (6.13) is insufficient to solve the inverse problem; the additional values λ(0) and
λ′(0) are needed to determine the initial value for the derivative of g, which is essential to
determine the solution of Eq. (6.13).

Once we have determined g from (6.13) the filtration function can be calculated from

λ(σ) =
1

g(σ)

∂σ

∂T
. (6.14)

6.1.4 Method IV. Optimization method

In this section we present an alternative method for calculating the filtration function from
the particle deposition. The procedure consists in optimizing a functional on an appropriate
compact subset Ω. Thus, we start by parametrizing the filtration function, for instance as
λ(σ) = θ1 + θ2σ and then we estimate the parameter values θ̄ as

θ̄ = min
θ∈Ω

n
∑

i=1

m
∑

j=1

(σ(Xi, Tj; θ)− σdata(Xi, Tj))
2. (6.15)

Here σ(Xi, Tj, θ) is calculated solving the system of equations (2.9)-(2.10), and σdata(Xi, Tj)
represents the experimental data. To obtain stable solution, a penalization term is added to
the right hand side of (6.15).
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This method differs from the others because it is more robust and allows modifications
in the forward problem (2.9) and (2.10) without substantial modifications in the recovery
procedure. Using the methodology developed in Section 5.4.1 we can prove that the inverse
problem presented in this subsection is well-posed in the sense of Tikhonov.
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Chapter 7

Sensitivity analysis

Sensitivity analysis permits to identify the “best” models when the number of parameters
to be identified is relatively large and there does not exist a unique solution of the inverse
problem. The Gauss-Newton method may become unstable due to correlation effects between
the parameters. It is known that for the identification of complex constitutive law parame-
ters, the inverse problem becomes ill-conditioned. Stability analysis is necessary in order to
understand the reasons for the instability and to propose a stabilization method.

Once the optimal set of parameters is obtained, it may be interesting to study the stability
of the inverse analysis. The computation of the sensitivity matrix allows studying the stability
of the proposed inverse method ([103]).

One can see that stability analysis method is based on first order approximations and
that the inequality holds only for small perturbations. So, this method is able to indicate
whether a parameter can be identified accurately or not.

Some parameters may be determined with large uncertainty due to lack of sensitivity
of the measurements. This means that the experiment is not adequate to determine these
parameters. Uncertainty may also be caused by large correlation effect between some pa-
rameters. If some parameters are highly correlated, the function which we minimize shows a
valley close to the optimum, rather than a single minimum.

Set F (θ) = Q(A(θ))−1q and α = 0 in Eq. (5.3). The parameter identification problem
without penalization reduces to

min
θ∈Qad

||F (θ)− b||2, (7.1)

or in a more general way to

min
θ∈Qad

(F (θ)− b)TD(F (θ)− b), (7.2)

where D is certain weighting matrix. By definition we set

||F (θ)− b||2D = (F (θ)− b)TD(F (θ)− b), (7.3)

so Eq. (7.2) can be rewritten as
min
θ∈Qad

||F (θ)− b||2D. (7.4)
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7.1 Sensitivity coefficients

Sensitivity analysis in (7.1) is carried out to obtain information about the parameter
identification. To do so, the sensitivity coefficient with respect to a parameter as a function of
time and observation location is used. The sensitivity coefficient is defined by (e.g, [103],[104]):

Fθi
(T,X; θ) =

∂F (T,X; θ)

∂θi
, (7.5)

where T is the time, X is the coordinate of the observation location, θi is the i-th parameter in
the n-dimensional parameter vector θ and F is a function that depends on the state variables
T and X.

Because the values of the parameters θ may vary over several orders of magnitude for
a given observation location X, a dimensionless sensitivity coefficient was used to compare
various model parameters:

Sθi
(T ) =

∂(lnF )

∂(ln θi)
, (7.6)

or

Sθi
(T ) =

F (T,X, θ1, . . . , θi + ∆θi, . . . , θn)− F (T,X, θ1, . . . , θi, . . . , θn)/F (T,X, θ)

∆θi/θi
, (7.7)

where ∆θi is a small perturbation of parameter θi near its basic value.
Now using Taylor’s formula the dimensionless sensitivity coefficient can be rewritten as

Sθi
(T ) =

θi
F (T,X, θ)

∂F (T,X, θ)

∂θi
. (7.8)

Following the same methodology as in [103], the dimensionless sensitivity coefficient is plotted
as a function of the observation time for each possible set of model parameters θ at a given
position X to form a sensitivity curve. From this curve we infer the possible effect of proposed
recovery designs on parameter identification quality.

7.2 Interrelationship between parameters

A useful tool for studying the correlation between the parameters θi, with i = 1, . . . , n is
the correlation coefficient matrix corr(θ) = (a∗ij). This matrix is defined from the covariance
matrix cov(θ) = (aij) ≈ e2(JTJ)−1, where e is the observation error variance, and J =
∂F (θ)/∂θ and JT are the sensitivity matrix and its transpose, respectively.

a∗ij = aij/
√
aiiajj. (7.9)

The correlation matrix can be used to obtain the optimum number of parameters in the
model. To do so, we choose the number of parameters that guarantees small correlation
coefficients.
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7.3 Sensitivity of the optimal solution

Now we obtain relationships between small variations in the experimental parameters and
in the optimal set of parameters (for details see [39], [7]).

The optimal set of parameter is defined by the following relation:

∂F (θ)T

∂θ
D(F (θ)− b) = 0. (7.10)

If the experimental data b is replaced by a perturbed experimental data b+δb, one can denote
the perturbed optimal set of parameters by θ + δθ and the following relationship holds:

∂F (θ)T

∂θ
D

(

F (θ) +
∂F (θ)

∂θ
δθ − b− δb

)

≈ 0. (7.11)

Finally, one can prove that
|δθk| ≤

√

Gkk||δb||D, (7.12)

where

G =

(

∂F (θ)T

∂θ
D
∂F (θ)

∂θ

)−1

. (7.13)

This analysis is based on first order approximation so that the inequality (7.12) holds only
for small perturbations.

7.4 Sensitivity analysis for effluent concentration

In this section the sensitivity analysis is studied when we have an analytical solution for
the effluent concentration. The analysis of the sensitivity coefficient is used to study the
effect of small variations of the effluent concentration c(1, T ) on the recovered parameters.
Moreover, it is possible to determine when the parameter can be identified well using the
model.

We start by generating synthetic data with 5% perturbation error in c(1, T ; θ). Then, the
recovered function λ(σ) = max{θ3 + θ4σ, 0} is obtained by minimizing the cost function in
(5.13). We continue and fix a feasible parameter set given by 0 ≤ θ4 ≤ 2 and −300 ≤ θ4 ≤ 0;
and we set the physical domain for (X, T ) as [0, 1] × [0, A]. Then we try to recover the
prescribed value (1,−171), starting from different initial guesses of the parameters (θ3, θ4),
namely, (0.01,−30), (0.5,−100), (0.09,−17) and (1.5,−200).

Minimizing runs are carried until a relative error smaller than 1% is reached. Then, we
check if the model parameters attain the prescribed value. Different initial guesses lead to
similar end values, which are close to the true parameter values with relative errors smaller
than 0.01% for θ3 and 0.4% for θ4. The results show that within the limited number of trials
conducted, the performance function has a unique minimum within the selected range of
parameter space.

The dimensionless sensitivity coefficients for linear filtration function for T > X are given
by

Sθ3 =
−θ3ecioθ4(T−X)eθ3X

1 + ecioθ4(T−X)(eθ3X − 1)
, Sθ4 =

cioθ4(T −X)ecioθ4(T−X)(eθ3X − 1)

1 + ecioθ4(T−X)(eθ3X − 1)
. (7.14)
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From (7.14) we obtain

Sθ3/Sθ4 = − θ3e
θ3X

cioθ4(eθ3X − 1)(T −X)
. (7.15)

Thus from (7.15), we can see that in general, Sθ3 is different from Sθ4, therefore θ3 and θ4 are
not equally sensitive. However, notice that Sθ4 is linearly increasing in time for 0 < θ3X < 1,
while Sθ4 tends to −θ3e

θ3X when time increases. Therefore, for identifying accurately the
values in the two-parameter model, the experiment has to be carried out for large enough
times. Let us denote

q =
θ3

e−θ4cioT + eθ3
. (7.16)

From Eq. (7.14) and the above mentioned restriction on the parameters θ3, θ4, X and T , we
obtain the following inequality

|Sθ3| ≥ q. (7.17)

From (7.16) and (7.17) it follows that ∆θ3/θ3 < q−1∆c(1, T )/c(1, T ). Notice that if cioθ4T
is small, then the sensitivity of the parameter θ3 depends essentially on time and θ3. Since
cio ≈ 10−6, then for times T smaller than 104 PVI and for θ4 ≈ 102, cioθ4T is small. This
shows there exist a certain region where the correlation between θ3 and θ4 is small, therefore
these two parameters are a good choice in some cases.

7.5 Sensitivity analysis for the pressure drops

An analysis similar to that of previous section is carried out to recover the filtration
function and the permeability reduction from the pressure drop histories.

We recover the functions k(σ) = (1+θ1σ+θ2σ
2)−1 and λ(σ) = θ3 +θ4σ from five pressure

drop histories ∆p1
data(T ), ∆p2

data(T ), ∆p3
data(T ), ∆p4

data(T ) and ∆p5
data(T ) by minimizing the

cost function in (5.33). We start by generating synthetic data with 5% perturbation error in
the pressure drop histories. The feasible parameter set given by 0 ≤ θ1 ≤ 1000, 0 ≤ θ2 ≤
1000, 0 ≤ θ3 ≤ 2 and −300 ≤ θ4 ≤ 0 is explored. Then we try to recover the prescri-
bed value (300, 100, 1,−171), starting from different initial guesses of the parameter vector
(θ1, θ2, θ3, θ4), i.e., (10, 15, 0.9,−40), (5, 33, 0.45, 0), (115, 333, 0.1,−10) and (1, 1, 1.5,−200).

The synthetic pressure drop histories are recovered with relative errors smaller than 2.6%.
The recovered parameter are (284, 247, 1.12,−276), (333, 347, 0.9,−237), (385, 231, 0.6,−39)
and (356, 987, 0.8,−206) for each of the above mentioned cases respectively. Notice that
different initial guesses lead to different parameter values. The parameters θ1 and θ3 are
predicted more accurately than θ2 and θ4.

Then, from previous results we see that the pressure drop histories are predicted accu-
rately, but the parameters θ are not. However, the recovered permeability reduction function
is obtained accurately, with relative error smaller than 2% for all cases. We see that there
exist several parameters which give good approximation of the solution. Thus, we have the
situation of parameter non-uniqueness.

In order to choose appropriate physical bounds for the parameters, several laboratory
experiments should be carried out. For example, in the set of experimental data studied in
Chapter 8, we see that two parameters in the permeability reduction function were needed to
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predict well the pressure drop histories. One possible way of obtained unique parameters is
described in Remark 5.15, i.e., additional nonlinear constraints must be used in the optimiza-
tion of the functional in (5.33). Another way to obtain parameter uniqueness is to choose an
appropriate penalization of the functional; this method was presented in Section 5.6.

Other useful information can be extracted from the analysis of the sensitivity matrix. The
correlation between the parameters cannot be obtained accurately by means of (7.9) because
the matrix JTJ has large condition number. This shows the high degree of ill-posedness of
this nonlinear inverse problem.

The above mentioned numerical examples do not encourage us to use fewer parameters
in the model. So, other indicators must be used. More precisely, the sensitivity coefficients
of θ1, θ2, θ3 and θ4 and their behavior for large time T are used.

We set Φ1(T ) = 1− ecioθ4T and Φ2(T ) = 1− Φ1 and

I1 = − 1

θ4
log

(

eθ3(xl−xl+1)
eθ3xl+1 − 1 + e−cioθ4T

eθ3xl − 1 + e−cioθ4T

)

, (7.18)

I2 =

∫ xl+1

xl

dX

(1 + Φ2(T )(eθ3X − 1))2
· (7.19)

The pressure drops in (xl, xl+1) are given for T >> X by

H l(T ; θ) = ∆pl(T, θ1, θ2, θ3, θ4) = 1 + θ1I1 + θ2
θ2
3(1− Φ2(T ))2

θ2
4

I2, (7.20)

From (7.20) we obtain

∂H l(T ; θ)

∂θ1
= I1,

∂H l(T ; θ)

∂θ2
=
θ2
3(1− Φ2(T ))2

θ2
4

I2, (7.21)

∂H l(T ; θ)

∂θ3
= θ1

∂I1
∂θ3

+ 2θ2
θ3(1− Φ2(T ))2

θ2
4

I2 + θ2
θ2
3(1− Φ2(T ))2

θ2
4

∂I2
∂θ3

, (7.22)

∂H l(T ; θ)

∂θ4
= θ1

∂I1
∂θ4

+ 2θ2θ
2
3

∂

∂θ4

(

(1− Φ2(T ))2

θ2
4

I2

)

. (7.23)

Finally, from (7.8) and (7.21)-(7.23), the sensitivity coefficients are

Sθi
=

θi
H l(T ; θ)

∂H l(T ; θ)

∂θi
, i = 1, 2, 3, 4. (7.24)

We see that Sθ1 , Sθ2 , Sθ3 and Sθ4 depend strongly and nonlinearly on θ1, θ2, θ3 and θ4.
Now, we suggest a region where the parameters θ1 and θ2 have small correlation. To do

so, we study first the behavior of the sensitivity coefficients when T is large. Notice that

V1 = lim
T→∞

I1 = − 1

θ4
log
(

eθ3(xl−xl+1)
)

, (7.25)

V2 = lim
T→∞

I2 =

∫ xl+1

xl

dX

(1 + (eθ3X − 1))2
, (7.26)
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V3 = lim
T→∞

H l(T ; θ) = 1 + θ1V1. (7.27)

Using (7.24)-(7.27) we obtain

lim
T→∞

Sθ1 =
θ1V1

1 + θ1V1
(7.28)

and
lim
T→∞

Sθ2 = 0. (7.29)

Using (7.28)-(7.29) and (7.21), we obtain that for θ3/θ4 small or constant, Sθ1 and Sθ2 depend
only of θ1 and θ2 respectively. In this case the parameters θ1 and θ2 have a region where their
correlation is small. Thus, the parameters θ1 and θ2 can be identified well for large times.
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Chapter 8

Validation of the model from
experimental measurements

In this chapter we use the experimental data of Al Abduwani et al. (2003) ([1]) to investi-
gate the validity of the model described by the equations (2.9)-(2.10) and Darcy’s law. This
model was established first by Herzig et al. (1970) ([60]) and has been used for almost forty
years for modeling deep bed filtration. In the validation, the tools developed in this work
are used, i.e., the direct problem, the inverse problem methods and the sensitivity analysis
for finding the best empirical functions parameters. The experimental dataset is described in
appendix C.

The output data measured in laboratory experiments are presented. Moreover, the match
between model and experimental data is described. We can see that the recovered parameters
model using the pressure drop histories do not predict accurately the particle deposited at
end time in any of the five experiments analized. On the other hand, when pressure drop
histories are predicted accurately, the effluent concentration is not. We explain the reason
for these facts at the end of this chapter.

8.1 Experimental methodology

In order to simulate produced water re-injection and to investigate the relationship be-
tween filtration and particle deposition, six static filtration experiments were conducted in
the laboratory on Bentheim sandstone, using hematite particles to construct the synthetic
water to be injected. In these experiments, different hematite concentrations and injection
flow rates were used. The salinity of the water was kept constant by using doubly distilled
water; the acidity was controlled and kept constant at a pH value of 5.0 ± 0.1. A mono-
disperse selection of hematite particles was not possible, and instead a very narrow band
of size dispersion was allowed (1.0 to 5.0 µm), with the majority of the particles having a
size of 2.0 µm. Thus, the ratio of average pore throat diameter to average hematite particle
diameter was 7.5.

Moreover, in these experiments the effluent concentration history of particles was mea-
sured. This characterization of the effluent sample was either done on-line with a laser
diffraction unit or at a later stage using chemical analysis - Atomic Adsortion Spectroscopy
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(AAS). The pressure drop histories were measured at seven points. The new addition des-
cribed in [1] is the introduction of post-mortem diagnosis, i.e. the final particle deposition is
measured by utilizing both chemical and visual analysis. This establishes a reliable deposi-
tion profile along the core - a major advancement, providing redundant data for the inverse
problems, which is especially useful for testing the validity of the available heuristic model in
the literature.

One of these data sets was rejected because of experimental error. Analysis of the other
five experiments led to analogous results, and therefore we describe only one experiment here.

Pressure history was measured within 10% error. The post-mortem deposition profile has
a very low error margin: ± 2.5%. The essential part of the data follows in Table C.1 (see
Appendix C), where the properties of the core, the flow and the injected particle concentration
are presented.

Because the rock core is not perfectly homogeneous in practice, the absolute permeability
spatial distribution k0(x) must be determined from Darcy’s law. To do so, at the beginning
of the experiment, clean water is injected and the pressure drop is measured between several
points xl of the core. We estimate the absolute permeability kl0 in each of the five segments of
the core as follows: from Darcy’s law (or Eq. (2.3) with k(0) = 1) we have kl0 = qµLA/∆pl,
where q is the average flow rate, A is the area of the transversal section, µ is the dynamic
viscosity, L is the core length, and ∆pl is the pressure drop at time zero; the length of each
segment is shown in Table C.3 (see Appendix C); this information determines all kl0(x) for
each experiment.

Data are further preprocessed because the flow U(t) is not exactly constant. This com-
plication is resolved by a time dependent scaling so that the nondimensional time unit is the
number of porous volumes injected (P.V.I.).

8.2 Results and discussion

Here the validity of the model based on the experimental data in Section 8.1 is studied.
To do so, we use the recovery method described previously and we show that there are cases
when either the pressure drop or the effluent concentration histories are predicted accurately,
but not at the same time. Moreover, the new data, namely the deposition distribution, are
predicted with gross inaccuracy. The reason of this fact will be explained.

Using the methodology described in Section 5.6, we recover the permeability reduction
function

k(σ) = (1 + θ1σ + θ2σ
2)−1, (8.1)

and the filtration function
λ(σ) = max{θ3 + θ4σ, 0}, (8.2)

by minimizing the functional in Eq. (5.41). Two studies are carried out, in the first one
taking wp ≈ 1 and wc ≈ 0 and in the second one taking wp ≈ wc. We show that in both
cases, the model does not predict accurately the experimental data.
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8.2.1 First study

Here, we recover the permeability reduction and filtration functions, minimizing the func-
tional in Eq. (5.41), with wp ≈ 1 and wc ≈ 0 (Case I).

The results are presented in Table 8.1, where e1, e2, e3, e4 and e5 are the relative errors
between the predicted pressure drops and the experimental data in each segment.

Table 8.1: Recovered permeability reduction function k(σ) = (1+θ1σ+θ2σ
2)−1 and filtration

function function λ(σ) = θ3 + θ4σ.

θ1 θ2 θ3 θ4 e1(%) e2(%) e3 (%) e4(%) e5(%)
Exp. 1 230 0.0 9.68 -0.84 0.83 1.2 1.7 1.5 1
Exp. 2 200 327 6.52 -0.0 0.9 1.9 1.7 2.2 1.7
Exp. 3 166 583 9.12 -2.17 10 1.2 2.6 2 2
Exp. 4 561 1526 15 -2.1 1.9 5.9 3.5 4 4.5
Exp. 5 130 139 2 0.0 1.9 1.0 0.8 1.0 1.4

Figures (8.1a), (8.2a), (8.3a), (8.4a) and (8.5a) present the plots of the experimental data
and the absolute values of the predicted pressure drops for five experiments. In this figure,
the highest experimental pressure drop corresponds to the first segment, and it has increasing
trend. In the segments 2-4 the pressure drop histories have smaller values that are almost
constant. The smallest value is measured in the last segment.

A remark on the experimental pressure drop histories shown in Fig. (8.1a): we see that
the pressure drops in core segments 3 through 5 are essentially independent of time. This
means that there is basically no deposition in these core segments. Therefore, there is no
useful information contained in these three pressure drop histories. This fact suggests that
the core segments where pressure is measured should be shorter.

On the other hand, in Figures (8.1b), (8.2b), (8.3b), (8.4b) and (8.5b) the recovered and
experimental particles deposited at the end time of the experiment are shown. We can see
that the predicted deposited particle distribution does not match accurately the experimental
data in any of the five experiments, mainly at the beginning of the core.

Summarizing, in this example the predicted pressure drop is accurate, while the predicted
final deposition distribution is not. In this case the predicted effluent concentration has gross
inaccuracy, so we do not plot it.

8.2.2 Second study

Here, we recover the permeability reduction function and the filtration function, minimi-
zing the functional in Eq. (5.41), with wp ≈ wc (Case III). The results for the experiment 1
is shown; the behavior in the experiments 2, 3, 4 and 5 is similar. The results are presented
in Table 8.2, where e1, e2, e3, e4 and e5 are the relative errors between the predicted and
experimental pressure drops in each segment. The value ec is the relative error of the effluent
concentration approximation.
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Figure 8.1: Experiment 1.

Table 8.2: Recovered permeability reduction k(σ) = (1+θ1σ+θ2σ
2)−1 and filtration function

λ(σ) = max{θ3 + θ4σ, 0} (recovery Case III), as well as relative errors in predicted pressure
drops in the segments and in predicted effluent concentration.

θ1 θ2 θ3 θ4 e1(%) e2(%) e3(%) e4 (%) e5 (%) ec (%)
Exp. 1 361 101 0.73 -148 15 2.8 4.0 5.0 4.7 4.8

In Experiment 1, we observe that the pressure drops are predicted accurately (relative
error smaller than 5.0%) in segments 2 through 5, while it is higher (15%) in segment 1.
Moreover, we see that the particle deposition predicted by the model does not match the
experimental data. The highest deposition rate is measured in the first segment, where the
water with particles is injected, while it is smaller in the other segments (see Fig. 8.1b). The
main difference is observed in the first segment of the core, where the deposition is higher.
Hence the main difference cannot be explained as resulting from noise. In Fig. 8.6, the
smooth curve interpolating the experimental effluent concentration data is found in [1]. The
significance of the discrepancy at early times between the predicted and interpolated curves
in Fig. 8.6 is unclear.

In this case, the predicted effluent concentration is accurate, but the predicted distribution
deposition is not.

8.2.3 Results

Other studies with different weights were carried out without improvements in the results.
Thus from the previous facts, there exists a certain incompatibility in the model that prevents
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Figure 8.2: Experiment 2.

determining a filtration regime that reproduces accurately both the pressure drop and effluent
concentration histories. The final deposition distribution is never reproduced accurately.
Seeking other causes for these differences, we used polynomials of higher order in the filtration
function for all the recoveries, with no noticeable improvement. This indicates that increasing
the number of parameter, only increases the correlation between them, see sensitivity analysis
in Chapter 7.

Summarizing, the predicted deposition particle distribution at the end time is never accu-
rate, while the predicted effluent concentration and pressure drop histories can be accurate by
using appropriate weights. This disagreement would indicate that the pressure and effluent
concentration experimental data set cannot be used for recovering the permeability reduction
and filtration functions with this model, but this disagreement is not conclusive because one
could pose the following questions: are there weights wp and wc allowing appropriate recovery
of both the deposition particle distribution and effluent concentration history? Could appro-
priate recovery be attained using parametrizations different from those in Eqs. (8.1)-(8.2)?
We were unsuccessful in our attempts to find better weights and parametrizations. However,
this failure is not due to any limitations in the procedures for solving the inverse problem, as
we explain now.

Remark 8.1 A relationship between inlet and outlet concentration can be obtained as follows:
Eq. (2.37) suggests the definition of the parameter R(T ) as

R(T ) ≡ σ(1, T )

c(1, T )

c(0, T − 1)

σ(0, T − 1)
, (8.3)

relating suspended and deposited concentration at the endpoints. Equation (8.3) shows that
for the model described by Eq. (2.1)-(2.2), R(T ) ≡ 1 for T > 1 PVI.
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Figure 8.3: Experiment 3.

For the experimental data measured in [1] R(A) can be evaluated at the end time A. In
fact, c(0, A) and c(1, A) are the injected and effluent suspended concentration, and σ(0, A−
1) and σ(1, A) are obtained from the post-mortem deposition measurements; σ(0, A − 1) is
approximated by σ(0, A). The error due to the delay of 1 PVI should be of the order of 0.2%
or less for end time exceeding 500 PVI.

The ratio defined by Eq. (8.3) should be R(T ) ≡ 1. However, this condition is not
satisfied in any experiments at the end time, where we have sufficient experimental data to
evaluate R, i.e., R = 0.18, 0.30, 0.15, 0.22, 0.21 for experiments 1, 2, 3, 4 and 5 respectively.
The particle deposition and the effluent concentration at the inlet and outlet of the core have
experimental behavior that cannot be reproduced by the model.

The disagreement between the experiment and the model can perhaps be explained by
the formation of external cake, as suggested by Peter Currie of TUDelft. In more detail, this
means that the increase in the deposition of particles at the core wall produces a compact cake
layer that blocks the rock. As a result, the particles cannot enter freely the porous medium,
and the effective inlet particle concentration c(0, T ), which was assumed to be constant in
the model, changes as well.

Notice that (see Fig.8.7b) the particle deposition at the inlet is higher than at the outlet,
while the inlet and effluent concentrations maintain the same order of magnitude. Thus, the
change in the inlet concentration, in principle, can balance the difference between the particle
deposition at the inlet σ(0, A) and at the outlet σ(L,A) of the core, guaranteeing that Eq.
(8.3) holds. The influence of the external cake layer is currently being studied. To do so,
Al Abduwani et al. are measuring the particle deposition σ(X, T ) at some points (Xl, Tj),
l = 1, . . . n, j = 1, . . . , m using X-ray tomography.
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Figure 8.4: Experiment 4.
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Figure 8.5: Experiment 5.
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Figure 8.7: Predicted data in Experiment 1, with wp ≈ wc.
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Chapter 9

Conclusion

In this work several inverse problems in the general deep bed filtration model were solved.
We assume non-constant injected particle concentration. In this case, the inverse problem of
recovering the filtration function from the effluent particle concentration reduces to solving
a functional equation. This functional equation has a unique differentiable solution, which
is determined by a stable iterative procedure. Taking continuous differentiable experimental
data functions we obtain a well-posed inverse problem.

Under the assumption that the filtration function has already been determined, a method
for recovering the permeability reduction function was studied. This recovery method reduces
to solving a linear integral equation, which has stable solutions.

Using Tikhonov’s regularization method, we obtained reliable methods for recovering the
permeability damage function k(σ) and the filtration function λ(σ) from synthetic data for
the classical filtration theory. The synthetic data represent the pressure drop history and the
effluent concentration history. An appropriate subsets of the feasible solution for proving the
well-posedness in Tikhonov’s sense of several inverse problem was described. Convergence
and stability of the regularized solution was proved. The optimization method is used to
implement the recovery procedures.

However, when using any of these methods in the recovery of k(σ) and λ(σ) based on
the experimental data from [1], [3] we found some incompatibility that prevents us from
reproducing accurately all the data set. Thus, under usual assumption of constant particles
concentration entering the body of the porous rock, we conclude that the classical model of
Hertzig et al. ([60]) is not adequate to describe this experimental data set, so either other
factors must be take into account in the model or more reliable experimental data must be
obtained or both. Perhaps it would be important to take into account effective diffusion in
the evolution equations ([9]), or more sophisticated reaction models are needed.

Refining the model is one of the continuations of our work. In this sense, the influence
of the external layer cake blocking the entry of injected particles is currently being studied.
Some introductory material for injected particle concentration that decreases in time was
presented in the last section of Chapter 2, where the asymptotic behavior of the solution was
described.

This work showed that the most important quantity to be measured in deep bed filtration
is the deposition particle distribution history, which was described in Chapter 6. Experimental
methods for measuring the particle deposition σ(X, T ) at many points (Xl, Tj), l = 1, . . . , n,
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j = 1, . . . , m by means of X-rays are currently being developed at the Technical University
of Delft. We hope that the methods sketched in Chapter 6 will be useful in the analysis of
these data.
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Appendix A

Basic results

A.1 Functional analysis

In this section we review some well known results in Functional Analysis that are needed
later.

Let X, Y be Banach spaces, let D be a dense vector subspace of X, and let T : D → Y
be a linear operator. The product X × Y with the norm

||(x, y)|| = max(||x||, ||y||), (A.1)

is a Banach space. The set

G(T ) = {(x, Tx); such that x ∈ D} ⊂ X × Y (A.2)

is defined to be the graph of T . The graph G(T ) is a vector subspace in X × Y .
With the definition above we can state the Closed Graph theorem ([113]) as follows.

Theorem A.1 Let T : D(T ) ⊂ X → Y be a linear operator defined on the Banach space X,
then the graph G(T ) is closed if and only if T is a continuous operator.

Definition A.2 The linear operator T : D(T ) ⊂ X → Y on Banach spaces X and Y is
called compact if the image of every bounded set M is relatively compact, i.e., the closure of
T (M) is a compact set.

Let us denote by C[a, b] the Banach space of real continuous functions on interval [a, b]
with norm

||f ||∞ = sup
x∈[a,b]

|f(x)|. (A.3)

We are interested in obtaining compact subsets in C[a, b]. To do so, the following theorem of
Arzelà-Ascoli ( [76], pag. 140) is useful.

Theorem A.3 A closed subset M ⊂ C[a, b] is compact if M is uniformly bounded and
equicontinuous.

Because integral operators are very useful in our work, we summarize some important theo-
rems about such operators ([66], pag. 225, and pag. 230).
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Theorem A.4 (a) Let k ∈ L2 ([c, d]× [a, b]) be a real valued function on [c, d] × [a, b]; let
x ∈ L2[a, b]. Then the integral operator Tx given by

Tx(t) =

∫ b

a

k(t, s)x(s)ds, t ∈ [c, d], s ∈ [a, b], (A.4)

is well-defined, linear, and bounded from L2[a, b] into L2[c, d]; furthermore,

||T || ≤
(
∫ d

c

∫ b

a

|k(t, s)|2dsdt
)1/2

. (A.5)

(b) Let k be a continuous real valued function on [c, d] × [a, b]. Then T is also well-defined,
linear, and bounded from C[a, b] into C[c, d]; furthermore

||T ||∞ = max
t∈[c,d]

∫ b

a

|k(t, s)|ds. (A.6)

Another property of the integral operator (A.4) is its compactness:

Theorem A.5 Let k ∈ L2 ([c, d]× [a, b]). The integral operator (A.4) from L2[a, b] into
L2[c, d] is compact.

Moreover the following theorem is valid ([64], pag. 245).

Theorem A.6 Let k ∈ C ([c, d]× [a, b]). The integral operator (A.4) from C[a, b] into C[c, d]
is compact.

A.2 Hilbert scales

In this section we introduce the concept of Hilbert scales, which will be used to prove
results on the convergence of regularized solution of ill-posed integral equations. Moreover,
they will be used to characterize the degree of ill-posedness of linear equations. Classical
examples of Hilbert scales can be obtained from the singular value decomposition of compact
self-adjoint operators. More details and results can be found in [6].

Definition A.7 A family (Hs)s∈R of separable Hilbert spaces (with inner products (·, ·)s) is
called a Hilbert scale if the following properties hold:
i) Hs ⊂ H0 ⊂ Ht are dense and continuous embeddings for any s ≥ 0 ≥ t.

ii) H∗
s = H−s; |(u, v)0| ≤ (u, u)

1/2
s (v, v)

1/2
−s for all u ∈ Hs, v ∈ H−s; s ∈ R,

iii) (u, u)r ≤ (u, u)
2(1−ψ)
s (u, u)2ψ

t for all u ∈ Hs; s ≥ r ≥ t, s 6= t, ψ := (s− r)(s− t)−1.

Here we mention two important examples of Hilbert scales. The first example is the following.
Let H be a separable Hilbert space with inner product (·, ·)H and orthonormal basis (ej)j∈N

and let (αj)j∈N be a sequence of real numbers between 0 and 1 with

0 < αj+1 ≤ αj ≤ 1, j ∈ N, lim
j→∞

αj = 0. (A.7)
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Let N be the set of elements in H represented by finite linear combinations of the elements
(ej)j∈N. Then for each s ∈ R we define on N an inner product (·, ·)s as

(x, y)s :=

∞
∑

j=1

α−2s
j (x, ej)H(y, ej)H . (A.8)

Due to the definition of N the series above is actually a finite sum. The closure Hs of N in
the norm || · ||s = (·, ·)1/2

s is a Hilbert space.
It is possible to prove that the above family of Hilbert spaces constitutes a Hilbert scale

([6], pag 73). Now, let T be a compact injective operator from a Hilbert space H0 into another
Hilbert space. Let (σj, ej, fj) be the singular value decomposition of T . Then from the pair
(σj, ej) the Hilbert scale can be built as above.

The second example is the following. Let T : D(T ) → H be a densely defined, strictly
positive definite and self-adjoint operator on H. The Hilbert scale (Hs)s∈R is the family
of Hilbert spaces {Hs}s∈R, where Hs is the closure of ∩∞

k=1D(T k) with respect to the norm
x→ ||x||s = ||T sx||; here T s(the s-power of T ) is defined using the spectral representation of
T ([68]).

A.3 Inverse problem

Consider a mathematical model for a physical process given by a system of related quan-
tities such as input variables, function parameters and output variables. In several situations
the description of such a system is given in terms of a set of equations (ordinary and/or
partial differential equations, integral equations), containing certain function that must be
determined.

Thus, the analysis of the given physical process via the mathematical model has three
distinct stages: direct problem, reconstruction problem and identification problem.

In general, an inverse problem can be stated in the framework of operator equations. As
a model we consider the following equation:

Gu = y, (A.9)

where G : U →W is a map between the Banach spaces U and W .

Definition A.8 The problem of solving Eq. (A.9) is well-posed (in the sense of Hadamard)
if the inverse map G−1 : W → U exists and is continuous. Otherwise the problem is called
ill-posed.

According to the definition above we distinguish between three types of ill-posedness. If
w is not in the range of the map G, then (A.9) has no solution (nonsolvability). If G is
not one-to-one, G−1 does not exist and Eq. (A.9) may have several solutions if y ∈ G(U)
(ambiguity). Finally, if G−1 exists but is not continuous on W , a solution of (A.9) cannot
depend continuously on the right hand side y (instability).

If the problem in (A.9) is ill-posed one could try to restore well-posedness taking the
spaces U and W with appropriate topologies determined by practical needs. In the case of
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restoration of continuity (stability) the use of a priori information on the solution is needed.
We will see that compact sets are very useful as classes of admissible solutions.

Now, we summarize without proof some results related with stability restoration.

Theorem A.9 Let X and Y be Hilbert spaces and assume that K ∈ B(X, Y ) is injective.
Then the following conditions are equivalent:
a) R(K) is closed;
b) K−1 : R(K)→ X is continuous.

The theorem above shows that the problem of solving the operator equation Kx = y is
ill-posed if, and only if, R(K) is not closed. This suggests that stability properties of ill-
posed problems can be obtained by a restriction of the operator such that the range becomes
closed. The strategy above is particularly useful for compact operators; it is subsumed in the
following Lemma of Tikhonov ([105]):

Lemma A.10 Let K : X → Y be a continuous one-to-one operator and let the compact
subsetM be contained in X; then the inverse map of the restriction of K toM is continuous.

For practical purposes, mere continuous dependence of the solution on the data is not
sufficient since the continuity may be arbitrarily weak. A measure of the continuity of
K−1 : R(K)→ X is given by the modulus of continuity

ωM(ρ) := sup{||u− v||X : ||K(u− v)||Y ≤ ρ; u, v ∈ M}, ρ > 0. (A.10)

One distinguishes two types of continuity:

ωM(ρ) = O(ρα), α ∈ (0, 1] (A.11)

and
ωM(ρ) = O(|log(ρ)|−α), α > 0. (A.12)

Several issues about estimating ωM(ρ) are discussed in [6]. In order to estimate the modulus of
continuity ωM(ρ) we have to specify the restriction setM. In practical situations, conditions
are given by the physical restrictions of the problem, such as monotonicity, positivity and
bounds on the feasible solutions. Such conditions are as important as the operator equations
for the recovery of the solution.

In mathematical framework, we need to find an appropriate Hilbert or Banach space and
M is usually taken as a compact subset of this space. In this way, convergence results are
obtained. In addition, stable numerical algorithms with solutions in this subset are built and
used.

The choice of M can be done in the following way. Let V , X and Z be Hilbert spaces
and let B be a continuous linear operator. Assume that the following conditions hold:
i) V is a dense subspace of X and the imbedding of V into X is continuous
ii) B is surjective.
We setM :=Me = {v ∈ V : ||Bv||Z ≤ e}, where e > 0.

This method to specify a restriction set M is called restoration of continuity by a pri-
ori bounds. In our case, the bounds e in Me represent upper and lower bounds on the
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permeability reduction function or on the filtration function. Moreover, B represents some
differentiation operator.

So, it is convenient to modify slightly the definition of ωM(ρ) as follows:

ω(ρ, e) = sup{||υ||X : ||Kυ||Y ≤ ρ, ||Bυ||Z ≤ e, υ ∈ V }, where ρ > 0, e > 0. (A.13)

For the time being, we present another basic result in inverse theory that will be useful
for obtaining a conditionally well-posed problem. To do so, it is necessary to introduce the
following concept of well-posedness in Tikhonov’s sense. Let us define the linear equation

Ku = y, (A.14)

where K is a continuous operator.

Definition A.11 Let K : M ⊂ X → Y be the continuous linear operator defined in
Eq. (A.14), andM a compact subset of X. The problem in Eq. (A.14) is said to be well-posed
in Tikhonov’s sense if the following conditions are fulfilled:
(i) it is known a priori that a solution of Eq. (A.14) exists and belongs to M;
(ii) the solution of Eq. (A.14) is unique in M;
(iii) the solution f depends continuously on the RHS y, and y belongs to the interior of
Kσ(M), i.e., a sufficiently small perturbation of y does not lead to a solution outside the set
M.

Once the existence and uniqueness issues are solved, the stability condition must be studied.
To do so, we must restrict the operator K to some compact subset M where the condition
(iii) in Definition (A.11) holds. Then, stability is guaranteed by the Lemma of Tikhonov.
However, in practical situations it is not obvious how to find such a compact set. Thus, a
priori information on the solution is required.

As it is not always true that y in (A.14) belongs to R(K), we need to extend the concept
of solution of Eq. (A.14). In this sense, the least squares solution can be an useful alternative
for approximating a wide variety of physical models.

A.3.1 Generalized inverse

In this part we introduce a somewhat more general notion of the inverse of a bounded
linear operator K from a Hilbert space X into a Hilbert space Y . Details and proofs can be
found in [45].

First, we take as solution of Eq. (A.14) a vector u ∈ X such that

||Ku− y|| = inf
x∈X
||Kx− y||. (A.15)

Such a vector u is called a least squares solution of Eq. (A.14). The following theorem
provides equivalent characterizations of solutions obtained through the least square method.

Theorem A.12 Assume that K : X → Y is a bounded linear operator between the Hilbert
spaces X and Y . The following conditions are equivalent:
i) ||Ku− y|| = inf

x∈X
||Kx− y||
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ii) K∗Ku = K∗y
iii) Ku = Py,
where P is the orthogonal projection operator of Y onto R(K).

From (iii) we see that Eq. (A.14) has a least square solution if and only if Py ∈ R(K),
that is, if and only if y is a member of the dense subspace R(K) + R(K)⊥ of Y . Assuming
this to be the case, each of the conditions shows that the set of least squares solutions is a
closed convex set. So, this set of least square solutions has a unique element of smallest norm
which is denoted by K†y.

The operator K† defined on the dense subspace D(K†) = R(K) + R(K)⊥ is called the
Moore-Penrose generalized inverse of K. It is not difficult to show that K † is a closed linear
operator with N(K†) = R(K)⊥ and R(K†) = N(K)⊥. Moreover, notice that K†y is the
unique least squares solution of (A.15) lying in the subspace N(K)⊥.

With this more general concept of solution, the existence and uniqueness questions are
solved for the triple (K,N(K)⊥,D(K†)). However, the stability problem requires more pro-
perties for the operator K, as shown in the following theorem:

Theorem A.13 K† is bounded if and only if R(K) is closed.

In this work we study compact operators, and for such operators R(K) is not closed,
in general. Indeed, if K is compact and R(K) is closed then K† is bounded and hence
KK† is compact. Thus, as KK† is the identity operator on R(K), it follows that it is finite
dimensional. Hence we have:

Corollary A.14 If K : X → Y is a compact linear operator, then K† is bounded if and only
if R(K) is finite dimensional.

So, it is possible to shows that the triple (K,N(K)⊥, D(K†)) is well-posed only in the
relatively trivial case when K has finite rank.

The above result has an immediate consequence for the problem of finding a solution of
Fredholm integral equations of the first kind. In general, R(K) is not finite dimensional, so
we must devise means of imposing stability when solving some kind of operator equation. To
do so, we introduce Tikhonov regularization in Section A.4, which stabilizes several ill-posed
problems.

A.3.2 Singular value decomposition

The singular value decomposition (SVD) is a useful tool in the study of Fredholm equations
of the first kind. A brief introduction to this concept in terms of spectral theory is given in
Appendix B ([100], [65] [77] and [108]). It constitutes the basis for explaining regularization
theory in continuous and discrete frameworks.

Now, we give an explicit representation of the Moore-Penrose generalized inverse of a
compact operator.

Let X and Y be Hilbert spaces and let K : X → Y be a compact linear operator with
singular value decomposition {un, vn;µn} and y ∈ D(K†)
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K†y =

∞
∑

n=1

µn(Py, un)vn =

∞
∑

n=1

µn(y, un)vn, (A.16)

where P is the orthogonal projection operation of Y onto R(K).

Picard Condition

The Picard condition has great utility in validating the discretization of continuous pro-
blems and in guaranteeing the existence of solutions of integral equations of the first kind.

This condition arises from the Picard Theorem.

Theorem A.15 Let K : X → Y be a compact linear operator with (SVD) {υn, υn, µn}. The
equation Kx = y has a solution if and only if y ∈ N(K∗)⊥ and the following inequality holds

∞
∑

n=1

µ2
n|(y, υn)|2 <∞. (A.17)

The condition y ∈ R(K) may viewed as an abstract smoothness or regularity condition in the
sense that y inherits part of the smoothness of the kernel (with respect to the first variable).
The Picard Theorem reinterprets this regularity by requiring that the components |(y, υn)|
decay quickly relative to the growth of the singular values.

A.4 Tikhonov regularization

In the solution of ill-posed operator equations, Tikhonov regularization with a suitable
regularizing operator has played a seminal role ([105], [30], [66] and [70]). There exist two
main reasons. On one hand, it has had a considerable success in generating stable approxi-
mations to the solutions of practical inverse problems ([53], [5]). On the other hand, it has
useful equivalent mathematical representations, such as the Euler-Lagrange equations and the
minimum-norm least square interpretation, which permit a rigorous study of its mathematical
and numerical properties.

In this section we summarize the main concepts and results of Tikhonov regularization
used for solving several inverse problems that arise throughout this work.

We always let K : X → Y denote a bounded linear or nonlinear operator between Hilbert
spaces X and Y with range R(K), not necessarily closed in Y . As the canonical ill-posed
problem to which Tikhonov regularization will be applied, we consider the operator equation

Kx = y, y ∈ Y. (A.18)

Furthermore, we denote by L a densely defined closed linear operator with domain D(L) ⊂
X and range R(L) ⊂ Z, where Z is a Hilbert space too. Now, Tikhonov regularization,
with regularizing operator L applied to (A.18), is defined variationally as the problem of
minimizing,for α > 0, the Tikhonov functional Gα defined by

Gα(x) = ||Kx− ỹ||2 + α||Lx||2, x ∈ D(L). (A.19)
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The Euler-Lagrange or regularized equation formulation of Tikhonov regularization is

(K∗K + αL∗L)xα = K∗y, (A.20)

where xα denotes the regularized solution of (A.18), for a fixed value of regularization para-
meter α and regularizing operator L.

Any minimizer of Gα solves also the Euler-Lagrange equation, and it is an element of
D(L∗L); conversely, any solution of the Euler-Lagrange equation minimizes Gα.

For L = I, Eq. (A.20) is uniquely solvable, and, if y ∈ D(K†) is the domain of the
Moore-Penrose inverse K†, then xα → x̂ as α → 0, where x̂ := K†y is the minimum–norm
least squares solution of (A.18).

However, from a practical point of view, it is more appropriate to seek the least squares
solution x0 which minimizes the seminorm ‖Lx‖ for L 6= I ([109]); i.e., one looks for x0 such
that

x0 ∈ Sy := {x ∈ D(L) : ‖Kx− y‖ ≤ ‖Ku− y‖; ∀u ∈ D(L)}
and

‖Lx0‖ ≤ ‖Lx‖, for all x ∈ Sy.
In applications, K is often a compact integral operator with a nondegenerate kernel, and L
is a differential operator ([79]).

Choices for the regularizing operator L, different from I, were suggested in the earliest
papers discussing regularization ([94]). Practical computations show that this approach leads
to smaller errors in some cases ([107]). For special choices of L, theoretical improvements
in convergence were established in [91]. A parameter choice strategy for such situations was
proposed in [92].

If the data y is only given approximately by yδ, with ‖y − yδ‖ ≤ δ, δ > 0, then one must
solve

(K∗K + αL∗L)xδα = K∗yδ (A.21)

instead of (A.20). Here, the choice of the regularization parameter α (depending on δ and
possibly yδ) is important, because in general, the family {xδα}α>0 does not need to be bounded.
As an example, consider K such that R(K) is not closed and L = I. In this case, the family
{(K∗K + αI)−1K∗}α>0 is not uniformly bounded. It can then be seen from the Uniform
Boundedness Principle that, for each δ > 0, there exists yδ ∈ Y with ‖y − yδ‖ ≤ δ such that
{xδα}α>0 is not bounded in X.

Practical considerations suggest that it is desirable to choose the regularization parameter
α during the computation of xδα, using a so-called a posteriori method rather than an a priori
method based on δ only ([29]). Another choice consists in using a modified form of a method
suggested by Schock ([99]) for the case L = I, where α is computed to satisfy

‖Kxδα − yδ‖ =
δp

αq
, p > 0, q > 0. (A.22)

Convergence for this method has been further investigated in [90], [41] and [42]. Below, this
analysis is extended to a more general class of L.

In this work, the error in a Tikhonov regularization approximation is compared with
ω(ρ, δ) in (A.13).
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A method for obtaining approximations xδ := R(δ, yδ) to x0 corresponding to a recon-
struction algorithm R, is said to be an optimal–order regularization method with respect to
an operator B, if one has

‖x0 − xδ‖ = O(ω(ρ, δ)) (A.23)

for all x0 ∈ D(B), with ‖Bx0‖ ≤ ρ.
The quantity ω(ρ, δ) will be determined for some operators that arise in this work in order

to demonstrate the validity of our numerical results.

A.4.1 Solvability of the regularized equation

In order to guarantee the unique solvability of the regularized equations (A.19) and (A.21),
we assume that the following (completion condition) (see [86], pag. 3) holds for some γ > 0

‖Kx‖2 + ‖Lx‖2 ≥ γ‖x‖2, x ∈ D(L). (A.24)

Thus, for a given K the operator L must be chosen so that condition (A.24) holds. It is
known that if K and L satisfy condition (A.24), then the map in (A.19) attains its minimum
at a unique element xα(y) in D(L), see, e.g., [78], [79] and [89]. It is also known that if
y ∈ R(A) +R(A)

⊥

, A = K|D(L), then
1. the set Sy := {x ∈ D(L) : ||Kx− y|| ≤ ||Ku− y|| ∀u ∈ D(L)} is non-empty,
2. there exist a unique x̂(y) ∈ Sy such that ||Lx̂(y)|| ≤ ||Lx|| for all x ∈ Sy,
3. xα(y)→ x̂(y) as α→ 0.

So, we would like xα(ỹ) to converge to some x̃ as α→ 0, where x̃ is close to x̂(y) whenever
δ is close to 0. Thus a strategy has to be adopted for choosing the regularization parameter
α = α(δ, y) such that (A.24) holds. For this purpose we consider the simple procedure
suggested in [86], namely, to choose α = α(δ, y) such that

||Kx̃α − ỹ|| = δ, (A.25)

where x̃α = xα(ỹ). It is known that if

||(I − PL)y|| > 0 and ||(I − PL)ỹ|| > δ, (A.26)

where PL : Y → Y is the orthogonal projection onto the closure of the set

{Kx : x ∈ D(L) with Lx = 0}, (A.27)

then there exists a unique α depending on δ and ỹ satisfying (A.25). Notice that if L is
injective, then PL = 0, and in that case (A.26) can be replaced by the assumption ||y|| > 2δ.

In our work, Tikhonov regularization is used together with appropriate parameter choice
strategies. This enables us to obtain realistic convergence estimates, i.e., this method yields
an optimal-order algorithm with respect to the stabilizing set

Mρ = {x ∈ D(L) : ||Lx|| ≤ ρ}. (A.28)

In this section, we revisit some results on optimal-order methods. We will use Theorem 2.2
in [88] for obtaining convergence results. This theorem is sufficient for studying the compact
operator appearing in Section 4.1.
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The choice of the regularizing operator imposes restrictions on the convergence rate. It
is shown in [45] and [101] that, for L = I, the best possible convergence rate is ‖xδα − x0‖ =
O(δ2/3), and that this happens if x0 ∈ R(K∗K) and α = cδ2/3 for some constant c > 0. If
x0 ∈ R((K∗K)ν) with ν > 1, the same rate holds, while, for ν < 1, it is smaller.

For compact, nondegenerate K, Tikhonov regularization with L = I and x0 ∈ R(K∗K)
is optimal with respect to B = (K∗K)†, since

ω(ρ, δ) = O(δ2/3).

However, when x0 ∈ R((K∗K)ν), B = [(K∗K)†]ν , and ν ≥ 1, one obtains

ω(ρ, δ) = O(δ2ν/(2ν+1)),

while, for other B, one can achieve even higher rates ([58]). In such situations, Tikhonov
regularization with L = I does not have optimal convergence rates. Nevertheless, optimality
can be achieved through an appropriate choice of the regularizing operators.

An example of Tikhonov regularization having optimal convergence rates was given in [91].
That work considered the case where Z = X and L = T k, k > 0, where T : D(T )→ X is a
densely defined strictly positive definite and self-adjoint operator. Furthermore, it assumed
that there exist positive real numbers γ1 and γ2 such that

γ1‖x‖−a ≤ ‖Kx‖ ≤ γ2‖x‖−a, x ∈ X, (A.29)

for some positive real a. Here, ‖x‖r := ‖T rx‖, x ∈ D(T r), for real r. Taking Hr to be
the Hilbert space obtained through the completion of

⋂∞
i=1D(T i) with respect to the norm

x 7→ ‖x‖r, the following result was proved in [91]

Theorem A.16 I f x0 ∈ Hs with ‖x0‖s ≤ ρ, s ≤ 2k + a and α = c
(

δ
ρ

)
2(a+k)

a+s

, then

‖x0 − xδα‖ = O(δ
s

a+s ).

The above estimate is optimal with respect to the choice M = T s, as it is known, for this
case, that ω(ρ, δ) = O(δ

s
a+s ). Notice that, in the above result, an a priori parameter choice

was used. In [92] an a posteriori method which leads to the above result of [91] was suggested.
A similar result using an a posteriori choice can be found in [58]. Thus, for x ∈ R((K∗K)ν)

(e.g., T = [(K∗K)
1
2 ]†), s = 2ν and a = 1, the order is O(δ2ν/(2ν+1)) if k ≥ ν − 0.5. This

is achieved by imposing minimal smoothness on the regularizing operator L. However, by
choosing a smoother operator, the convergence rate governed by the smoothness of the data
is maintained. This idea was further pursued in [58] and has led to a method which gives
optimal convergence rates for all ν > 0.

A.4.2 Discrete ill-posed problem and its regularization

In general, the ill-posed problem given by Eq. (A.18) is defined on an infinite dimensional
domain D(K). Regularization methods are alternative tools for solving such a problem. A
natural regularization method is the discretization of the problem through a projection of the
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domain D(K) on several finite dimensional subspaces Vn and choose the regularized solution
by fixing some appropriate n.

An example of discretization can be seen in the classical Fredholm integral equation of
first kind with square integral kernel.

∫ b

a

K(s, t)f(t)dt = g(s), c ≤ s ≤ d, (A.30)

where the right-hand side g and the kernel K are given, and where f is the unknown solution.
Now applying a collocation method such as a Galerkin-type method, we arrive to a linear
system of equations

Ax = b, A ∈ R
m×n, with m ≥ n, (A.31)

where the elements aqj and bq of the matrix A and the right-hand side b are given by

aqj =

∫ b

a

∫ d

c

K(s, t)φq(s)ψj(t)dsdt, bq =

∫ d

c

φq(s)g(s)ds. (A.32)

The solution of (A.31) can be computed by a linear least squares problem

min
x
||Ax− b||2. (A.33)

This discretization has properties very similar to those of the original continuous ill-posed
problem, i.e., the matrix is ill-conditioned. This implies that small perturbations in b produce
high oscillations in the solution. This is because Eq. (A.30) with square integrable kernels
are extremely sensitive to high-frequency perturbations ([45] and [56]). So, it is natural to
associate the term discrete ill-posed problem to (A.32).

More precisely, we say that a linear system of type (A.31) is a discrete ill-posed problem
if the following criteria are satisfied:
1. the singular values of A decay to zero,
2. the ratio between the largest and the smallest nonzero singular values is large.
The second statement implies that the matrix A is ill-conditioned, i.e., that the solution is
potentially very sensitive to perturbations. In this case the standard methods in numerical
linear algebra for solving (A.31), such as LU , Cholesky, or QR factorization, ([48]), cannot be
used in a straightforward manner to compute its solution. Instead, a regularization method
must be applied in order to find a meaningful solution.

The main difficulty in a discrete ill-posed problem (A.33) is that it is essentially underde-
termined due to a cluster of small singular values of A. Hence, it is necessary to incorporate
further information about the desired solution in order to stabilize the problem.

Details about the numerical implementation and theory can be found in [55] and [30].
Here, we summarize the fundamental issues in the regularization method for the discrete
ill-posed problems used in this work.

Although many additional types of information about the solution x in (A.33) are possible,
e.g., positivity and monotonocity, the predominant approach to regularization of discrete ill-
posed problems is to require smallness of the solution in the 2-norm, or in an appropriate
seminorm. An initial estimate x∗ of the solution may also be included in the side constraints.
Hence, the side constraint involves minimization of the quantity

Ω(x) = ||L(x− x∗)||2. (A.34)
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Here, the matrix L is typically either the identity matrix In or a p×n discrete approximation
of the (n−p)− th derivative operator, in which case L is a banded matrix with full row rank.

Thus, the idea of Tikhonov-Phillips regularization ([105] and [94]) is to define the regular-
ized solution xα as the minimizer of the following weighted combination of the residual norm
and the side constraint

xα = argmin{||Ax− b||22 + α2||L(x− x∗)||22}, (A.35)

where the regularization parameter α controls the weight given to the side constraint in the
minimization of the residual norm. It is known that α controls the sensitivity of the regu-
larized solution xα to perturbations in A and b, and the perturbations bound is proportional
to α−1. Thus, the regularization parameter α is an important quantity that controls the
properties of the regularization solution. In Section 4.2.3, we return to the numerical method
for actually choosing α.

A.4.3 Numerical implementation of Tikhonov regularization

In either linear or nonlinear cases, practical implementation of Tikhonov regularization
usually takes one of two approaches (see [75]), which we summarize below

• Solve the infinite-dimensional Tikhonov problem directly, via either an infinite dimen-
sional minimization procedure or a direct solution of the necessary conditions (operator
equation) associated with the minimization; afterwards, the solution is obtained by
computer with an appropriate discretization.

• Discretize the operator K and the data yδ first, then apply Tikhonov regularization
method directly to the discretized inverse problem.

An alternative that stays within the framework of the first approach is to avoid the
necessary conditions (normal equation) entirely, and instead find solutions by applying an
iterative optimization method directly to Tikhonov’s functional in Eq. (A.19).

The Discrete Picard Condition and filters factors

It is known that the integration of Eq. (A.30) with a square integrable kernel K has a
smoothing effect on f . Therefore, the opposite operation, namely, solving Eq. (A.30) for f ,
tends to amplify oscillations in the right-hand side g. Hence, if we require that the solution
f be a square integrable solution with finite L2-norm , then not all functions are allowable
right-hand sides g. Indeed, g must be sufficiently smooth to permit the inversion back to f .
The mathematical formulation of this smoothness criterion on g, once the kernel K is given,
is called the Picard condition.

Strictly speaking, for discrete ill-posed problems there is no Picard condition because
the norm of the solution is always bounded. Nevertheless, it makes sense to introduce a
discrete Picard condition as follows. In a real-world application, the right-hand side b is
always contaminated by various types or errors, such as measurement errors, approximation
errors, and rounding errors. Hence, b can be written as

b = b̄ + e (A.36)
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where e are the errors, and b̄ is the unperturbed right-hand side. Both b̄ and the corresponding
unperturbed solution x̄ represent the underlying unperturbed and unknown problem. Now,
if we want to be able to compute a regularized solution xreg from the given right-hand side b
that approximates the exact solution x̄, then it is shown in [56] that the corresponding exact
right-hand side b̄ must satisfy a criterion very similar to the Picard condition.

For the numerical implementation of Tikhonov regularization in (A.35), one uses the singu-
lar value decomposition (SVD) of A and the generalized singular value decomposition(GSVD)
of a pair (A,L). A summary of these concepts we put in Appendix B ([48], [55] and [108]).

Let the singular value decomposition (SVD) of A be denoted by (A,ui,vi, σi) and the ge-
neralized singular value decomposition (GSVD) of a pair (A,L) by (A,L,ui,vi,xi, σi, µi, γi).

Using the SVD, it is easy to show that the solution of system (A.33) is given by

xlsq =

n
∑

i=1

(uTi b/σi)vi. (A.37)

Thus, the least squares solution method (A.37) has the following difficulty: since the Fourier
coefficient corresponding to the smallest singular values σi does not decay as fast as the
singular values, but rather tends to level off, the solution xlsq is dominated by the terms in
the sum corresponding to the smallest σi. As a consequence, the solution xlsq has many sign
changes and thus appears to be completely random.

The first test to be applied in Tikhonov regularization is to verify if the discrete ill-posed
problem in (A.31) satisfies a discrete Picard condition (see Section A.3.2, Theorem A.15),
i.e., the amplitudes of the Fourier coefficients |uTi b| on the average decay to zero faster than
the generalized singular values γi. If the discrete Picard condition holds, we apply a damper
to filter out the contribution to the solution corresponding to the small generalized singular
values.

Finally, the regularized solution in (A.35) with x∗ = 0 can be written as follows

xreg =
n
∑

i=1

fi(u
T
i b/σi)vi if L = In, (A.38)

and

xreg =

p
∑

i=1

fi(u
T
i b/σi)xi +

n
∑

i=p+1

(uTi b)xi if L 6= In. (A.39)

Here, the numbers fi are filter factors for the particular regularization method. For Tikhonov
regularization, the filter factors are either fi = σ2

i /(σ
2
i +α2) for σi < α and fi = 1 for σi ≥ α,

in the case L = In, or fi = γ2
i /(γ

2
i + α2) for γi < α and fi = 1 for γi ≥ α in the case L 6= In.

We discuss in Appendix D a promising optimization method used in parameter estimation
theory for solving the nonlinear ill-posed problem.

A.4.4 Regularization for nonlinear operators

As opposed to linear ill-posed inverse problems, a reasonably unified theory for nonlinear
ill-posed inverse problems does not exist. However, for a certain special case of nonlinear
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operators of our interest, there exist some results of convergence and stability. A summary
is presented here. In general, we want to solve

K(x) = y, (A.40)

where K is a nonlinear operator. Under ill-posedness of the nonlinear problem, we will always
mean that the solution does not depend continuously on the data.

Basic results

A more general definition of compact operator is available ([114]).

Definition A.17 Let X and Y be Hilbert spaces, and let

K : X → Y, (A.41)

a nonlinear operator. K is called compact if and only if
i) K is continuous
ii) K maps bounded sets into relatively compact sets.

The operator K in (A.41) is called weakly closed if the graph G(K) is weakly closed in
the product space X × Y , i.e., for any sequence of {xn} ⊂ D(K), weak convergence of xn to
x in X and weak convergence of F (xn) to y in Y imply that x ∈ D(K) and K(x) = y. From
now on, “ ⇀ ” denotes weak convergence and “→ ” strong convergence in Hilbert spaces.

More generally than in the linear case, where the minimum-norm is chosen to obtain a least
squares solution, for the nonlinear problem (A.40), we define the concept of an x∗-minimum
norm solution x† ([33], pag. 241), i.e.

K(x†) = y, (A.42)

and
||x† − x∗|| = min

x
{||x− x∗|| | K(x) = y}. (A.43)

In the nonlinear x∗ = 0 plays no special role.
The following theorem is valid

Theorem A.18 Let K be a (nonlinear) compact and weakly closed operator, and D(K) be
weakly closed. Moreover, assume that K(x†) = y and that there exists an ε such that K(x) = ȳ
has a unique solution for all ȳ ∈ R(K) ∩ Bε(y). If there exists a sequence {xn} ⊂ D(K)
satisfying

xn ⇀ x but xn 9 x, (A.44)

then K−1 (defined on R(K) ∩ Bε(y) ) is not continuous in y.

Assumption A.19 Throughout this section all nonlinear operators considered are continu-
ous and weakly closed.
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Convergence analysis

As in the linear case, we replace problem (A.40) by the minimization problem

min
x∈D(K)

{||K(x)− yδ||+ α||x− x∗||}, (A.45)

where α > 0, yδ ∈ Y is an approximation of the exact right-hand side y of problem (A.40)
and x∗ ∈ X. From Assumption (A.19) on K, problem (A.40) admits a solution. Since K is
nonlinear, the solution will be non unique, in general. We denote the solution of (A.45) as
xδα. The following theorem shows the continuous dependence of the solutions on the data yδ.

Theorem A.20 Let α > 0 and let {yk} and {xk} be sequences where yk → yδ and xk is a
minimizer of (A.45) with yδ replaced by yk. Then there exist a convergent subsequence of
{xk} and the limit of every convergent subsequence is a minimizer of (A.45).

Another theorem we will use in the issue of convergence of the regularization solution is the
following

Theorem A.21 Let yδ ∈ Y with ||y − yδ|| ≤ δ and let α(δ) be such that α(δ) → 0 and
δ2/α(δ) → 0 as δ → 0. Let δk → 0, αk := α(δk) and {xδα} be a solution of (A.45). Then
every sequence {xδα} has a convergent subsequence. The limit of every convergent subsequence
is an x∗-minimum norm solution. If in addition, the x∗-minimun norm solution x† is unique,
then

lim
α→0
{xδα} = x†. (A.46)

Now, we survey briefly some aspects of a widely-studied and important class of nonlinear
ill-posed problems, appearing in parameter identification problems.

A.4.5 Parameter identification problem

A class of nonlinear inverse problems that is widely studied and very important in many
fields (physics, engineering, biology, ecology, etc.) is the parameter identification problem
([85], [104]). When building a mathematical model for a real-world problem, one often knows
in principle the governing equations, but not the precise values of physical parameters (which
are often dependent also on space, time, and/or the solution itself) contained in the equation.
These have to be computed (identified) from measurements of the solution of the equations
or of quantities derived from it (such as boundary values; identification from boundary mea-
surements).

Such problems are usually ill-posed and nonlinear, even if the governing equations are
linear. Examples will be studied in Sections 5.4 and 5.5.

Issues to be addressed are the uniqueness question for the parameter to be determined
(identifiability), the stability and regularization aspect, and to find an appropriate numerical
algorithm. Two approaches on which these are based are the equation error approach, where
the parameter is to be determined so the residual error in the equation is minimized ([14],
[5]), and the output least-squares approach, where the error criterion involves the solution of
the direct problem.
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We will use the second approach. In such a method it is well known that several parameters
can produce the same results. So, a posteriori analysis is necessary. These are the tasks related
to sensitivity and uncertainty analysis. We warn that as a result of the error introduced by
numerical computations and experimental measurements the values of the parameter are not
precise, but may vary within a range of uncertainty.

A.5 Convergence analysis

Once we develop a regularization method, the problem of convergence of the regularized
solution x̃α to the “true” solution x̂ (the least squares solution) arises.

More precisely, if we have the operator equation

Ku = y, (A.47)

then if K is a compact linear operation from a Hilbert space X into a Hilbert space Y , the
regularization consists of constructing some operator Rα : Y → X which is continuous and
approximates K† in the sense that

Rαy → K†y (A.48)

as α→ 0 for each y ∈ D(K†).
The convergence depends strongly on whether y is known exactly or not. From the

experimental point of view, y represents some quantities that are measured with some error
δ. We assume that we know the data yδ with error such as ‖ yδ − y‖ < δ. In our work we
concentrate in the theoretical and practical issues of Tikhonov regularization .

Let {Hs : s ∈ R} a Hilbert scales. The condition (iii) of Definition A.7, called interpolation
inequality, can be rewritten as

||u|| ≤ C||u||
a

r+a
r ||u||

a
r+a

−a , x ∈ Hr, (A.49)

for some constant C > 0, where || · ||s denotes the norm in Hs. This inequality can be used to
study the dependence of δ on some approximation uδ of the solution u of Eq. (A.47) ([59]).

Regularization methods attempt to make the residual ||Kuδ−y|| small as well as imposing
some stability condition. For the error eδ = ||uδ − u|| ∈ D(K), the residual is often bounded
as

||Keδ|| ≤ O(δt), for some t > 0. (A.50)

Stability for eδ ∈ Hr is imposed in terms of a Hilbert scale norm such as

||eδ||r ≤ O(δη), for some η > 0. (A.51)

If there exists an a > 0 independent of δ such that

||eδ||−a ≤ ||Keδ||, (A.52)

then the interpolation inequality (A.49) gives the required convergence rate

||eδ|| ≤ O
(

δ
tr+ηa

r+a

)

. (A.53)
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Estimates using Hilbert scales

Notice that the convergence results obtained in [91] (see Theorem A.16) assume as valid
the inequalities in (A.29) and the regularization parameter α is chosen a priori.

In [88] a more realistic estimate is obtained for the error ||x̂−x̃α|| relating the operators K
and L to a Hilbert scale (Xs)s∈R, with X0 = X. This estimate is obtained with assumptions
weaker than the ones derived in [91] because only part of the inequalities in (A.29) is assumed,
and the regularization parameter is chosen by the discrepancy principle of Morosov. Moreover,
the convergence of the regularization solution to some point close to minimum–norm least
squares solution is obtained. This result is more realistic from the numerical point of the
view, because actually the numerical method enables us to obtain an approximate solution.
We use this result to obtain convergence in the case of a compact operator defined by a
first kind Volterra integral equation (see Section 4.1). Here we summarize the results above.
Details can be found in [88] and [89].

The assumptions are the following:
(i) there exist a > 0 and c > 0 such that

||Kx|| ≥ c||x||−a, for all x ∈ X; (A.54)

(ii) there exist b ≥ 0 and d > 0 such that D(L) ⊆ Xb and

||Lx|| ≥ d||x||b for all x ∈ D(L). (A.55)

Taking Mρ as in Eq. (A.28) we have the following

Theorem A.22 If x̂ ∈Mρ for some ρ, then

||x̂− x̃α|| ≤ 2

(

ρ

d

)
a

a+b
(

δ

c

)
b

a+b

. (A.56)
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Appendix B

The Singular Value Decomposition
(SVD)

Assume that K:X → Y is a compact linear operator and let K∗ be its adjoint. Then
K∗K : X → Y is a compact self-adjoint linear operator and any eigenvalue ρ of K †K satisfies

ρ = (ρx, x) = (K†Kx, x) = ||Kx||2 ≥ 0, (B.1)

where x is the associated eigenvector with norm one. Therefore, the nonzero eigenvalues of
K†K can be ordered as

λ2
1 ≥ λ2

2 ≥ . . . . (B.2)

If we designate by v1, v2, . . . the associated sequence of orthonormal eigenvectors and set
µn = λ−1

n and un = µnKvn, then un is an orthonormal sequence in Y and

µnK
∗un = vn. (B.3)

In addition, from the spectral theorem we have that {un} is a complete orthonormal set for
R(K) = N(K∗)⊥ and {vn} is a complete orthonormal set of R(K∗) = N(K)⊥.

The sequence {un, vn, µn} is called the singular value decomposition of K.

B.1 SVD on matrices

A matrix factorization with great importance in numerical linear algebra is the singular
value decomposition:

Theorem B.1 (The singular value decomposition (SVD)). If A is a real m×n matrix, then
there exist orthogonal matrices U(m×m) and V (n× n) such that

UTAV = diag(σ1, . . . , σq), q = min (m,n), (B.4)

where σ1 ≥ σ2 ≥ . . . ,≥ σr > σr+1 = . . . = σq = 0 and r = rank(A).

The proof of the SVD can be found in [77].
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Using the theorem B.1 we see that the singular value decomposition of A is a decompo-
sition of the form

A = UΣV T =

n
∑

i=1

uiσiv
T
i , (B.5)

where U = (u1, . . . ,um) and V = (v1, . . . ,vn) are matrices with orthogonal columns, UTU =
Im, V TV = In, and where Σ = diag(σ1, . . . , σn) has non-negative diagonal elements in non-
increasing order

σ1 ≥ . . . ≥ σn ≥ 0. (B.6)

The number σi are called singular values of A, while the vectors ui and vi are the left and
right singular vectors of A, respectively. The condition number of A is equal to the ratio
σ1/σr.

B.2 Generalized Singular Value Decomposition (GSVD)

The following decomposition is a generalization of the SVD.

Theorem B.2 (The L-singular value decomposition (GSVD)). Consider A ∈ R
m×n, L ∈

R
p×n and m ≥ n ≥ p. There exist orthogonal matrices U(m × m) and V (p × p) and a

nonsingular matrix X(n× n) such that

UTAX = Σ = diag(σ1, . . . , σp), σi ≥ 0, (B.7)

V TLX = M = diag(µ1, . . . , µp), µi ≥ 0, (B.8)

where r = rank(L) and µ1 ≥ µ2 ≥ . . . ,≥ µr > µr+1 = . . . = µp = 0.

The proof of the GSVD can be found in [108]. On the other hand the generalized singular value
decomposition is an extension of the SVD of A in the sense that the generalized singular value
of (A,L) are the square roots of the generalized eigenvalues of the matrix pair (ATA,LTL).
Then the GSVD is a decomposition of A of the form

A = U

(

Σ 0
0 In−p

)

X−1, L = V (M, 0)X−1. (B.9)

Moreover, the diagonal entries of Σ and M are non-negative and ordered as follows

0 ≤ σ1 . . . ≤ σp ≤ 1, 1 ≥ µ1 ≥ . . . ≥ µp > 0, (B.10)

and they are normalized so that

σ2
i + µ2

i = 1, i = 1, . . . , p. (B.11)

Then the generalized singular values γi are defined as the ratios

γi = σi/µi, i = 1, . . . , p. (B.12)

We describe the Tikhonov regularization method in terms of SVD and GSVD in section A.4.3
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Appendix C

Experimental data

Here we summarize the experimental data used in Chapter 8. The characteristics of the
core and the flow, the injected particle concentration and the end time in units of porous
volume injected (PVI) are presented in table C.1. More details about the experiments are
found in [1].

Table C.1: Characteristics of the core and the flow.

cio (ppm) CoreLength (m) Corediam. (m2) Ave.f low(l/hr) FinalPV
Exp1 3.89 0.13 0.03 5.48 662.5
Exp2 3.93 0.13 0.03 5.4 1179.53
Exp3 7.7 0.13 0.03 5.45 1017.16
Exp4 15.3 0.13 0.03 4.95 401.62
Exp5 4.11 0.13 0.03 10.25 1032.82

A preprocessing was performed on the data because the flow U(t) is not exactly constant.
This complication is resolved by a time dependent scaling so that the nondimensional time
unit is the number of pore volume injected (P.V.I.)

Table C.2: Absolute permeability kl0 in square meters (m2).

segment.1 segment.2 segment.3 segment. 4 segment.5
Exp1 2.6e-12 3.0e-12 2.5e-12 3.1e-12 2.2e-12
Exp2 1.4e-12 1.5e-12 1.5e-12 1.5e-12 1.1e-12
Exp3 1.4e-12 1.3e-12 1.5e-12 1.8e-12 1.6e-12
Exp4 1.1e-12 1.5e-12 1.5e-12 1.4e-12 1.5e-12
Exp5 1.6e-12 1.6e-12 1.6e-12 1.7e-12 1.2e-12
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Table C.3: Length of each segment in meters and deposition at end time in parts per million
(ppm).

segment 1 segment 2 segment 3 segment 4 segment 5
length 0.025 0.025 0.0254 0.025 0.023
σ (ppm) 1000.5 333.6 187.4 129.7 103
σ (ppm) 1168.6 440 519.7 279.1 210.1
σ (ppm) 419.8 110.2 79.7 55.3 43.5
σ (ppm) 991.6 330 221 146.6 129.6
σ (ppm) 821 256 189.2 163.1 119.3
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Appendix D

Optimization

In this section we present a summary of some optimization techniques that are frequently
used for solving ill-posed inverse problems. In our work, we test three optimization methods
in order to identify the utility of each one.

D.1 Gauss-Newton-Levenberg-Marquardt method

Inverse problem are often solved by minimizing approximately the least squares functional

||uδ − F (a)||2, (D.1)

where F : D(F ) ⊂ X → Y is a nonlinear differentiable operator between the Hilbert spaces X
and Y , and uδ are the given data. In many applications, it follows from physical considerations
that uδ is a reasonably close approximation of some ideal u = F (a†) in the range on F , hence
the minimization of (D.1).

In the Gauss-Newton-Levenberg-Marquardt method, we have a current approximation
an for a†; the nonlinear mapping F (a) in (D.1) is replaced by its linearization around an
prior to the minimization process. If the inverse problem is ill-posed, however, neither the
original minimization problem (D.1) nor its linearized counterpart need to have a solution;
even worse, if a minimizer does exist, it can be arbitrarily far off from the true solution a†.
This is important for the inverse problems studied in this work, because we are interested in
the properties of a† that arise from certain physical restrictions on the solution.

To overcome these difficulties one can proceed along several lines, leading to different
motivations for essentially the same algorithm ([5], [111], [105] and [46]). In the Gauss-
Newton-Levenberg-Marquardt method, a trust region is chosen around an, i.e., a ball of
radius ηn, and the linearizing functional is minimized within this ball. This is easily seen to
be equivalent to minimizing

||uδ − F (an)− F
′

(an)y||2 + αn||y||2, (D.2)

where F
′

is the Frechet derivative of F . Here y = yn and αn is the corresponding Lagrange
multiplier. Then this procedure is repeated with an+1 = an+yn instead of an in some updated
trust region ηn+1 until convergence is reached. The difficulty in this approach is finding an
appropriate strategy for choosing {ηm}, which must rely on heuristic considerations.
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Notice that in (D.2) we have a regularization induced by adding the penalty term αn||h||2
to the linearized functional. This is equivalent to Tikhonov regularization ([46]) applied to
the linearized problem

F
′

(an)y = uδ − F (an). (D.3)

It is known that other penalization terms can be used for regularizing (D.3). Convergence
and stability conditions of the Gauss-Newton-Levenberg-Marquardt method and its variants
can be found in [50]. Applications of this method for solving ill-posed problems are extensive
([103], [31] and [21]).

The optimization of the Tikhonov functional in (A.19) may not always be an attractive
alternative for nonlinear inverse problems. One of the difficulties in the nonlinear case is
that the functional in Eq. (A.19) is no longer strictly convex (in contrast to the linear case),
leading to the possibility of multiple local minima.

A useful alternative for obtaining the solution of nonlinear inverse problems consists in
optimizing a continuous nonlinear function (A.19) restricted to some bounded convex subset.
To do so, we parametrize the functions and define the functional as the difference between
model and experimental data. Based on the available information about the feasible solution
subset we can impose certain bounds on the parameters.

This way of solving inverse problem can be regarded as a refined regularization, since the
restriction of the parameters is equivalent to a restriction of the feasible solution class in the
least square optimization problem. Since we cannot guarantee that the problem has a unique
solution, sensitivity analysis is a good choice for determining the most probable solution.

D.2 Spectral projected gradient method

The nonmonotone spectral gradient projection algorithms (SPG) summarized in this sec-
tion apply to problems of the form

minimize f(x) subject to x ∈ Ω, (D.4)

where Ω is a closed convex set in R
n. Each iteration of the SPG method consists basi-

cally of two stages: starting from the k-th iterate xk ∈ R
n, first a step is taken in the

direction −∇f(xk), and then the resulting point projected onto Ω, possibly with additional
one-dimensional searches in either one of the stages.

The algorithms SPG1 and SPG2 introduced in this section compute at least one projection
on the feasible set Ω per iteration. Therefore, these algorithms are especially interesting in
cases where this projection is easy to compute. An important situation in which the projection
is trivial is when Ω is an n-dimensional box, possibly with some infinite bounds. In fact, good
algorithms for box constrained minimization are the essential tool for the development of
efficient augmented Lagrangian methods for general nonlinear programming ([37] and [82]).

In this work we use the spectral projected gradient algorithm for the case in which Ω is
described by bounds on the variables. This algorithm is simple to code. To do so, it is useful
to compare with the software “EASY” ([83]), which is an implementation of SPG with an
augmented Lagrangian method.
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Nonmonotone gradient projection algorithms

Now we describe formally the SPG method. We assume that f is defined and that it has
continuous partial derivatives on an open set that contains Ω. In this section || · || denotes
the 2-norm of vectors and matrices.

Given z ∈ R
n we define P (z) as the orthogonal projection on Ω. We denote g(x) = ∇f(x).

The algorithms starts with x0 ∈ Ω and uses an integer M ≥ 1, a small parameter αmin > 0, a
large parameter αmax > αmin, a damping parameter γ ∈ (0, 1), and safeguarding parameters
0 < σ1 < σ2 < 1. Initially, α0 ∈ [αmin, αmax] is arbitrary. Given xk ∈ Ω and αk ∈ [αmin, αmax],
Algorithms 2.1 and 2.2 describe how to obtain xk+1 and αk+1 and when to terminate the pro-
cess.

Algorithm 2.1.
Step 1. Detect whether the current point is stationary.
If ||P (xk − g(xk))− xk|| = 0, stop, declaring that xk is stationary.
Step 2. Backtracking.
Step 2.1. Set λ← αk.
Step 2.2. Set x+ = P (xk − λg(xk)).
Step 2.3. If

f(x+) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + γ < x+ − xk, g(xk) >, (D.5)

here < ·, · > denotes the inner product. Then define λk = λ, xk+1 = x+, sk = xk+1 − xk,
yk = g(xk+1)− g(xk), and go to Step 3.
If (D.5) does not hold, define

λnew ∈ [σ1λ, σ2λ], (D.6)

set λ← λnew , and go to Step 2.2.
Step 3. Compute bk =< sk, yk >.
If bk ≤ 0, set αk+1 = αmax ; else, compute αk =< sk, sk >, and

αk+1 = min(αmax,max(αmin, ak/bk)). (D.7)

Another refined algorithm presented in [17] is called SPG2. This algorithm coincides with
SPG1 except at the backtracking step, as described below.

Algorithm 2.2.
Step 2. Backtracking
Step 2.1. Set dk = P (xk − αkg(xk))− xk. Set λ← 1.
Step 2.2. Set x+ = xk + λdk.
Step 2.3. If

f(x+) ≤ max
0≤j≤min (k,M−1)

f(xk−j) + γλ < dk, g(xk) >, (D.8)

then define λk = λ, xk+1 = x+ , sk = xk+1 − xk , yk = g(xk+1)− g(xk), and go to Step 3.
Step 3.
If (D.8) does not hold, define λnew as in (D.6), set λ← λnew , and go to Step 2.2.
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In both algorithms, the computation of λnew uses one-dimensional quadratic interpolation
and it is safeguarded taking λ ← λ/2 when the minimum of the one-dimensional quadratic
lies outside [0.1λ, 0.9λ]. Notice also that the line search conditions (D.5) and (D.8) guarantee
that the sequence xk remains in Ω0 = {x ∈ Ω : f(x) < f(x0)}.

D.3 Interior trust region method

The Matlab subroutine for nonlinear optimization is based on the interior trust region
approach and the interior reflective Newton method.

The interior trust region approach is presented in [23]. This method minimizes a nonlinear
function subject to simple bounds. In the quadratic programming subproblem, the interior
reflective Newton method is described in [24].

D.4 Implementation

As we have seen in previous sections, many procedures led us to solve optimization problem
of nonlinear functionals. In this section we show how to use one available package program
for such end the “EASY” program.

The problem consists in the minimization the smooth function F : Rn → R with box
constraints in the variables. The minimization is achieved by the augmented Lagrangian
algorithm with a Gauss-Newton Hessian approximation. The algorithm combines an uncon-
strained method, including a line-search which aims to add many constraints to the working
set in a single iteration, with spectral projected gradient techniques for dropping constraints
from the working set.

In the computer implementation we use the EASY! program. To use this code the follow-
ing steps are needed.

We must provide a file easy.dat with the following structure: the first line must contain
two integers, n and m; n must be the number de variables, m must be the number of nonlinear
constraints; in our case m = 0. The second line of the file easy.dat must contain the vector
of the lower bounds l, which in this case can be taken as a vector with arbitrary components.
The third line must contain the vector of upper bounds u, which in our case has arbitrary
positive components with high values. The fourth line must contain an initial estimate of the
solution. In the next lines we provide the effluent concentration c(1, T ), the pressure data in
five segments and the alternative matrix for penalizing the cost function F .

In the subroutine ”feasy” we must provide the procedure to calculate the value of the
function F (x). To do so we must take from the easy.dat file the values of the experimental
data and then the algorithm for solving the direct problem (2.9) and (2.10) is implemented.

To increase the efficiency of the method we must change the value of the parameters:
accuracy, acumenor, delta0, deltamin, mitqu and ftol in the code. In our case the number
of variables is small so the values accuracy and acumenor can be taken very small. On the
other hand, the values of the parameter delta0 and deltamin determine the scales of the
problem, i.e., the size of the trust region. In this case we tested various examples to choose
the most appropriate values.
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D.5 Regularization method and simple iterative proce-

dure

In this section we show a procedure that combines optimization techniques and Tikhonov’s
iterative procedure ([15]). This procedure allows to increase the rate of convergence and to
choose the possible penalization term in the regularization method to obtain an approximation
of the ill-posed problem.

D.5.1 Scaling method

Since the solution of the nonlinear problem reduces to its linearization, we study certain
issues on the algorithm implemented in the optimization method for solving the ill-posed
linear system of equation.

It may be difficult or impossible to solve the linear system by regularization methods
unless an appropriate preconditioning is used, since the matrix in an ill-posed problem may
be poorly conditioned or non-invertible. We will see that the iterative procedure converges
if the eigenvalues of the matrix M falls in some interval of convergence. To guarantee this
condition we choose the following preconditioning.

Let Fii =
∑n

j=1 lij, with i = 1, . . . , m and Fij = 0 for i 6= j and let Gjj =
∑m

i=1 lij, with

j = 1, . . . , n and Gij = 0 for i 6= j. Setting M
′

= F− 1
2MG− 1

2 , f
′

= G
1
2 f , and a

′

= F
1
2a, we

obtain the scaling problem
M

′

f
′

= a′, (D.9)

where the eingenvalues on the matrix M
′

falls in the interval [−1, 1].

D.5.2 Optimization method

We show that the solution of the damped least-squares minimization problem regularizes
the linear system in Eq. (D.9).

Let us perform the following minimization

min
f ′>f

′

0

‖M
′

f
′ − a′ ‖ (D.10)

which consists of minimizing with respect of f
′

the functional

Ψ(s
′

) = (a′ −M
′

f
′

)T (a′ −M
′

f
′

) + µ(f
′ − f ′

0)
T (f

′ − f ′

0), (D.11)

where µ is a Lagrange’s multiplier. The normal equation resulting after the process of mini-
mization is:

(M
′
TM

′

+ µI)(f
′ − f ′

0) = M
′
T(f

′ −M
′

f
′

0). (D.12)

The result of the optimization for the untransformed f is the same as in the previous case,
provided the following functional is used:

Ψ(s) = (a−Mf)TF−1(a−Mf) + µ(f − f0)
T (f − f0). (D.13)
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In either case the result is:

f = f0 + (MTF−1M + µG)−1MTF−1(a−Mf0). (D.14)

Then the first approximation of the solution in Eq. (D.9) is obtained by Eq. (D.14).

D.5.3 Iterative procedure

We continue by using an iterative procedure in order to obtain a more accurate solution.
The beginning of the procedure consists of setting the value of ε and initial value f0; then
the solution in step k + 1 is obtained by

fk+1 = f k + MTF−1(a−Mf0) + (MTF−1M + µG)(f k − f0) (D.15)

and we stop when ‖ f k+1 − f k ‖ / ‖ f k ‖≤ ε. Here the value of µ is changed until an
acceptable approximation is obtained. Denoting by f kj , aj, the j-th component of the vectors
fk and a, respectively, it is possible to obtain from Eq. (D.15)

fk+1
j =

[

1− (1− λ2
j − µGjj)

k+1

λ2
j + µ

]

(λjτj + µf 0
j ) + (1− λ2

j − µGjj)
k+1f 0

j , (D.16)

where the eigenvalues λj and τj are obtained from the spectral decomposition of the matrix
MMT, and Gii are the element of the diagonal of the matrix G. The convergence of the
iterative method is guaranteed if the following inequality

−2 < λ2
j + µGjj < 2 for all j = 1, . . . , n (D.17)

holds. This inequality is useful to choose a parameter value µ that provides convergence of
the iterative method.

150



Appendix E

Topics on differentiation

The mathematical analysis of filtration process requires the calculation of derivatives
measured experimentally function; hence, there is only a finite number of available function
values and these values contain errors. The effluent concentration history is an example. It is
known that the differentiation process is numerically unstable. Stabilization of this process
must be studied.

Now, we summarize topics related to the existence, uniqueness and stability of the dif-
ferentiation process ( [105], [27], [97], [52], [96] and [51]). In several works, it is shown that
the differentiation operation is equivalent to solving a particular Fredholm integral equation
of the first kind. This integral equation can be solved using the regularization tools, i.e.,
a family of well-posed optimization problems is obtained and the corresponding family of
solutions converges to the least square solution. Let us define the integral equation

K(u)(x) :=

∫ x

0

u(s)ds = f(x), K : D(K) ⊂ X → Y, f(0) = 0, (E.1)

where X is some Hilbert space, Y = L2[a, b] and f is given. We say that the derivative f
′

exists if Eq. (E.1) is solvable and the solution f
′ ∈ X.

In general this problem is ill-posed in the sense of Hadamard, but it is well-posed in the
Tikhonov’s sense. To obtain Tikhonov solution, it is necessary to restrict the operator to an
appropriate class of functions to guarantee existence, uniqueness and stability.

For example, in [27] is shown that taking X = H1[a, b], Y = L2 and S as some bounded
subset in H1[a, b] the differentiation operation is continuous in K(S). Existence and unique-
ness are also proved. The proof consists of a straightforward application of the following
lemmas:

Lemma E.1 Any bounded subset of H1[a, b] is sequentially compact in the Banach spaces
C[a, b], (i.e., continuous functions with the uniform norm).

Lemma E.2 The limit in C[a, b] of any sequence of functions that are uniformly bounded in
H1[a, b] is in H1[a, b].

Lemma E.3 For any bounded set S ⊂ H1[a, b], the operation of differentiation is continuous
in L2[a, b] on the set K(S).
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Now, let us assume that f ∈ H1[a, b] satisfies Eq. (E.1) and the approximation ȳi of the values
f(xi) are known at the points of a uniform grid ∆ = {a = x0, . . . , xn = b}. So, the problem
of numerical differentiation can be written as an optimization problem, i.e., the minimization
of the functional

Φα(f) =

n−1
∑

i=1

ωi(ȳi − f(xi))
2 + αΩ(f), (E.2)

among all smooth functions satisfying f(a) = ȳ0, f(b) = ȳn, where Ω(f) is called stabilizing
functional and the regularization parameter α is such that the minimizing element fα of (E.2)
satisfies

n−1
∑

i=1

ωi(ȳi − fα(xi))2 = δ2. (E.3)

The effects of setting different weights ωi and using various stabilizing functionals without
constraints on the boundary of the interval the problem in (E.2) has been investigated in
[97], where it is also shown that the solution of such optimization problem results in natural
cubic splines over the grid ∆.

The instability due to error propagation using a priori information on the solution of
equations such as (E.1) is described in [27]. Useful estimates of error in the differentiation were
obtained in [51], fixing the values of the interval boundary that lead to annoying boundary
artifacts for practical data sets. In [96], the author studied conditions to obtain a stable
approximation of the derivative. In [44], optimal order estimates for the differentiation for
certain class of continuous function were also obtained.

Several techniques have been developed for numerical differentiation such as difference
methods, interpolation methods and regularization methods. Since we want to study the
stability of a certain operator, we focus our attention to the latter method, i.e., we choose
stable approximation methods, which suitable for computer implementation.

We conclude that it is possible to find an appropriate subset where the differentiation is
well-posed. Moreover, smoothing splines is a method recommended in the literature to obtain
the derivative of the experimental data.
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