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Abstract

In this work we propose two classes of methods for solving equilibrium problems.
The first one consists of two inexact proximal-like algorithms for solving equilibrium
problems in reflexive Banach spaces, generalizing two methods, called Inexact Proximal
Point+Bregman Projection Method and Inexact Proximal Point-extragradient Method,
proposed by Iusem and Gárciga for finding zeroes of maximal monotone operators in
reflexive Banach spaces, to the context of equilibrium problems.

We state our two proximal point algorithms formally and their convergence proper-
ties, proving that the sequence generated by each one of them converges to a solution
of the equilibrium problem under reasonable assumptions. In order to achieve this
goal, we introduce a suitable regularization for equilibrium problem, and then we use
this regularization in our two methods, named Inexact Proximal Point+Bregman Pro-
jection Method (Algorithm IPPBP) and Inexact Proximal Point-Extragradient Method
(Algorithm IPPE).

These two methods are hybrid methods, which invoke the proximal point method at
the beginning of each iteration for obtaining an auxiliary point. In the case of Algorithm
IPPBP, this auxiliary point is used for constructing a hyperplane separating the current
iterate from the solution set of the problem. The next iterate of Algorithm IPPBP is
then obtained by projecting the current iterate onto the separating hyperplane. In the
case of Algorithm IPPE, we use again the proximal point method in order to get an
auxiliary point, from which an extragradient step is performed.

The second class of methods considered here consists of augmented Lagrangian
methods for solving finite dimensional equilibrium problems whose feasible sets are
defined by convex inequalities, extending the proximal augmented Lagrangian method
for constrained optimization.

We propose two Lagrangian functions, and consequently two augmented Lagrangian
functions for equilibrium problems. Using these functions we develop two augmented
Lagrangian methods, called Inexact Augmented Lagrangian-Extragradient Method (Al-
gorithm IALE) and a variant of Algorithm IALE, called Linearized Inexact Augmented
Lagrangian-Extragradient Method (Algorithm LIALE). At each iteration of these meth-
ods, primal variables are updated by solving an unconstrained equilibrium problem,
and then dual variables are updated through a closed formula. We provide a full con-
vergence analysis, allowing for inexact solution of the subproblem of Algorithm IALE,
applying the convergence theorem for Algorithm IPPE.

Along the same line, we propose two additional augmented Lagrangian methods for
solving equilibrium problems, to be called Inexact Augmented Lagrangian Projection
Method (Algorithm IALP) and Linearized Inexact Augmented Lagrangian Projection
Method (Algorithm LIALP), whose convergence properties are proved using the con-
vergence results for Algorithm IPPBP.

We also show that each equilibrium problem can be reformulated as a variational
inequality problem. This approach reduces the augmented Lagrangian methods to im-
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plementable methods which substitute each subproblem of the augmented Lagrangian
methods by a system of algebraic equations which admits a unique solution.

Keywords: Augmented Lagrangian method, Bregman distance, Convex minimiza-
tion problem, Equilibrium problem, Inexact solution, Point-to-set operator, Proximal
point method, Variational inequality problem.
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Introduction

The equilibrium problem, in the sense that is used in this thesis, was defined formally
for the first time in the work of Blum and Oettli in 1994. In [8] these authors studied
the issue of existence of solutions of this problem and its relation with other well known
problems in optimization. They showed that equilibrium problems encompass, among
their particular cases, complementarity problems, fixed point problems, minimization
problems, Nash equilibrium problems in noncooperative game, saddle point problems,
and variational inequality problems (see [8]). Later on, it was shown that the equilib-
rium problem includes as a particular case vector minimization problems (see [50]) and
also generalized Nash games (see [49]).

The equilibrium problem has been extensively studied in recent years, with em-
phasis on existence results (see, e.g., [6], [7], [10], [21], [27], [31], and [49]). In terms
of computational methods for equilibrium problems which is the main purpose of this
manuscript, several references can be found in the literature. Among those of interest,
we mention the algorithms introduced in [20], [32], [35], [36], [37], [42], [43], [44], [45],
[47], and [48] which are proximal-like methods, as well as the ones proposed in [30]
which are projection-like methods. Methods based on a gap function approach can be
found in [40]. Furthermore, Newton-like methods for solving the same problem has
been introduced in [2] and penalty-like methods in [46].

The first type of methods, developed in Chapter 2, consists of proximal point algo-
rithms, whose origins can be traced back to [39] and [41]. The proximal point method
attained its basic formulation in the work of Rockafellar [59], where it is presented as
an iterative algorithm for finding zeroes of a maximal monotone point-to-set operator
in a Hilbert space. At each iteration, it requests finding a zero of a regularized maximal
monotone point-to-set operator, which is the sum of the given operator and a shifted
multiple of the identity operator. Proximal point methods for the same problem but in
Banach spaces, can be traced back to [34], and were furtherly developed in [12], [13],
[22] and [26]. In this set-up, one works with maximal monotone point-to-set operators
which map the Banach space to the power set of its topological dual space. In this
situation, the regularized operator at each iteration, instead of the shifted multiple of
the identity, invokes the derivative of an auxiliary function satisfying certain condi-
tions (see [26]), which reduces to the square of the norm in Hilbert spaces. Regarding
proximal point method for equilibrium problems, an exact version of this method for
nonmonotone and monotone equilibrium problems in a Hilbert space has been recently
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proposed in [32] and [42] respectively, besides the inexact versions in finite dimen-
sional spaces which are available in [35], [36] and [37]. Other proximal-like methods
for equilibrium problems can be found in [20], [43], [44], [45], [47] and [48] in Hilbert
spaces.

Since finding exact solution of a regularized equilibrium problem at each iteration
can be quite difficult our even impossible, in practice, the use of approximate solutions
is essential for devising implementable algorithms. This issue was already dealt with
in [37] for equilibrium problems, where it was assumed that the j-th subproblem was
solved with an error bounded by a certain εj > 0, and the convergence results were
preserved assuming that

∑∞
j=1 εj < ∞. This summability condition is undesirable

because it cannot be ensured in practice and also requires increasing accuracy along
the iterative process. In the current work, we will build upon the results of [26] and
[32], obtaining exact and inexact proximal point methods for equilibrium problems in
Banach spaces with better error bounds than the one which requests the summability
condition above.

The second type of methods, developed in Chapter 3, consists of augmented La-
grangian methods, or more generally multiplier methods, for equilibrium problems.
The augmented Lagrangian method for equality constrained optimization problems
(nonconvex, in general) was introduced in [23] and [54]. Its extension to inequality
constrained problems started with [17] and was continued in [5], [38], [56], [57], and
[58]. This kind of methods has been recognized as efficient strategies for solving con-
strained optimization problems whose feasible sets given by convex inequalities (see,
e.g., [4]). In principle, augmented Lagrangian methods are implementable methods,
while proximal point methods are not. Nevertheless, the convergence theorems of latter
methods can be applied for proving convergence theorems for the former methods, as
it has been already done in [58] for minimization problems. We will follow this path in
the equilibrium problem setting. In fact, we will introduce proper exact and inexact
proximal augmented Lagrangian methods for equilibrium problems in finite dimen-
sional spaces, whose convergence theorems invoke the convergence results established
in Chapter 2 for proximal point methods. To our knowledge, the closest approach to
the Lagrangian method proposed here can be found in [1], where the feasible set is
assumed to be similar to ours, i.e. of the form K = {x ∈ Rn : hi(x) ≤ 0 (1 ≤ i ≤ m)},
where all the hi’s are convex functions. In this reference, primal-dual methods are pro-
posed. However, no Lagrangian function as in (3.2), or augmented Lagrangian function
as in (3.4) appear in this reference, so that from an algorithmical point of view our
approach is completely unrelated to the one in [1].

The outline of this thesis is the following. Chapter 1 is devoted to some preliminary
materials used in the next chapters as well as a short review on proximal point and
augmented Lagrangian methods for several problems. In Chapter 2 we associate to each
given equilibrium problem a sequence of regularized equilibrium problems which is the
starting point for proposing proximal point methods for equilibrium problems. In other
words, given an equilibrium problem, we show that such a sequence of regularization
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problems exists and the sequence composed of the unique solutions of the regularized
problems solved at each iteration converges to some solution of the original problem
when certain conditions are met. We then formally state our two inexact proximal point
algorithms, i.e., Algorithm IPPBP and Algorithm IPPE, and provide a full convergence
analysis for both of them. Using a reformulation technique for equilibrium problems, we
finish this chapter by proving that the solution set of an equilibrium problem coincides
with the set of zeroes of a certain point-to-set operator, which allows us to refine our
convergence results. Chapter 3 begins with the introduction of Algorithm IALE for
solving equilibrium problem. Next, we establish the convergence properties of the
algorithm through the construction of an appropriate proximal point method for a
related equilibrium problem. We also develop linearized version of Algorithm IALE,
called Algorithm LIALE, for the case in which the underlying equilibrium problem is
smooth. Besides these two augmented Lagrangian methods, we construct two other
variants of augmented Lagrangian methods for solving equilibrium problems, called
Algorithm IALP and Algorithm LIALP, which are closely connected to Algorithm
IPPBP.

We emphasize that all previously established results have been concentrated in
Chapter 1, and that the results appearing in Chapters 2 and 3, taken from our papers
[28] and [29], are, to our knowledge, substantially different from those which can be
found in the previous literature on the subject.
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Basic Notation and Terminology

Algorithm IPPBP: the Inexact Proximal Point+Bregman Projection Method,

Algorithm IPPE: the Inexact Proximal Point-Extragradient Method,

Algorithm IALE: the Inexact Augmented Lagrangian-Extragradient Method,

Algorithm LIALE: the Linearized Inexact Augmented Lagrangian-Extragradient Method,

Algorithm IALP: the Inexact Augmented Lagrangian Projection Method,

Algorithm LIALP: the Linearized Inexact Augmented Lagrangian Projection Method,

EP(f,K): the equilibrium problem whose objective function is f and whose feasible
set is K,

SE(f,K): the solution set of EP(f,K),

Sd(f,K): the solution set of the dual problem of EP(f,K),

VIP(T,C): the variational inequality problem whose objective operator is T and whose
feasible set is C,

SV (T,C): the solution set of VIP(T,C),

CQ: the constraint qualification,

X: the real vector space,

X∗: the dual space of X,

X∗∗: the bidual space of X,

‖·‖: the norm of space X,

‖·‖∗: the norm of space X∗,

‖·‖∗∗: the norm of space X∗∗,

〈·, ·〉: the duality coupling in X∗ ×X,
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H: the Hilbert space,

B: the Banach space,

B∗: the topological dual of B,

Rn: the n-dimensional Euclidean space,

Rm
+ = {(x1, . . . , xm) ∈ Rm | xi ≥ 0 (1 ≤ i ≤ m)}: the nonnegative orthant in Rm,

R++: the set of positive real numbers,

H = {y ∈ B : 〈v, y − ỹ〉 = 0}: the hyperplane in B associated to v ∈ B∗ and ỹ ∈ B,

H− = {y ∈ B : 〈v, y − ỹ〉 ≤ 0}: the negative part of B associated to the hyperplane
H,

H+ = {y ∈ B : 〈v, y− ỹ〉 ≥ 0}: the positive part of B associated to the hyperplane H,

dom(h): the domain of a function h,

int(dom(h)): the interior of the domain of a function h,

dom(T ): the domain of an operator T ,

IC : the indicator function of a set C,

∂g: the subdifferential of a convex function g,

NC(x): the normal cone of a set C at a point x,

P(C): the power set of a set C,

F : the family of functions which are strictly convex, lower semicontinuous, and Gâteaux
differentiable in the interior of their domains,

Dg(x, y): the Bregman distance between x and y with respect to a function g,

νg(x, ·): the modulus of total convexity of a function g at a point x,

A(C): the affine hull of a set C,

5



ri(C): the relative interior of a set C,

cl(C): the closure of a set C,

∂C: the boundary of a set C,

ker(w): the kernel of a linear function w,

B(x, δ): the open ball with radius δ centered at x.
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Chapter 1

Background Materials

In this chapter we collect some mathematical facts including definitions and theorems
used in sequel. We also review proximal point methods for finding zeroes of opera-
tors, and augmented Lagrangian methods for solving constrained convex minimization
problem, which are the motivations for our contributions in this thesis.

1.1 Elements of Topology

We begin our discussion with a few words about topology on a real vector space, say
X. All the following materials can be found in any functional analysis book, like [3],
[9], and [55].

Definition 1.1.1. Let h : X → R ∪ {−∞,+∞} be a function on a real topological
vector space (X,Γ).

i) h is proper if dom(h) 6= ∅.

ii) h is lower semicontinuous if for each x ∈ dom(h) and {xj}∞j=0 ⊂ dom(h) con-
verging to x, it holds that lim infj→∞ h(xj) ≥ h(x).

iii) h is upper semicontinuous if for each x ∈ dom(h) and {xj}∞j=0 ⊂ dom(h) con-
verging to x, it holds that lim supj→∞ h(xj) ≤ h(x).

Definition 1.1.2. Consider a real topological vector space (X,Γ). The topological
dual space with respect to topology Γ on X, denoted by X∗, is the space of all linear
functionals defined on X which are continuous with respect to Γ.

Definition 1.1.3. Consider a real topological vector space (X,Γ). The Γ-weak topology
on X is defined as the coarsest topology (the topology with the fewest open sets) on X
for which each element in X∗ is continuous. In other words, X∗ induces a topology on
X which is contained in Γ and preserves the continuity of each element in X∗.
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Definition 1.1.4. The function ‖·‖ : X → R is called a norm on X if the following
assumptions are met.

i) ‖x‖ ≥ 0, ∀x ∈ X, and that ‖x‖ = 0 if x = 0.

ii) ‖λx‖ = |λ| ‖x‖ , ∀λ ∈ R,∀x ∈ X.

iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ , ∀x, y ∈ X.

Definition 1.1.5. A normed vector space, denoted by a pair (X, ‖·‖), is a vector space
X with a norm ‖·‖ defined on X.

Definition 1.1.6. Consider a normed vector space (X, ‖·‖). The topology induced on
X by the norm is called the strong topology, and the topology induced on X by the dual
space X∗ is called the weak topology.

Definition 1.1.7. Consider the normed vector space (X, ‖·‖). A sequence {xj}∞j=0 ⊂ X
is a Cauchy sequence if

∀ε > 0 ∃k such that
∥∥xi − xl∥∥ < ε, ∀i, l ≥ k.

Definition 1.1.8. A real Banach space is a real vector space with a norm such that
every Cauchy sequence converges in the strong topology.

Definition 1.1.9. The function 〈·, ·〉 : X∗ × X → R defined as 〈φ, x〉 = φ(x) for all
x ∈ X and all φ ∈ X∗ is called duality coupling.

Definition 1.1.10. Take x ∈ X and define the functional φx : X∗ → R as φx(x
∗) =

〈x∗, x〉. The coarsest topology on X∗ for which φx is continuous for every x ∈ X is
called the weak∗ topology.

In principle, the weak∗ topology is contained in the weak topology induced by the
bidual space X∗∗ := (X∗)∗, and this weak topology is contained in the strong topology
induced by the norm defined as ‖φ‖∗ := sup‖x‖≤1〈φ, x〉, ∀φ ∈ X∗. Note that φx is
continuous on X∗ (i.e. continuous on the strong topology) since |φx(x∗)| ≤ ‖x∗‖∗ ‖x‖
for every x∗ ∈ X∗, and that φx is an element of the dual space of X∗ (i.e. φx ∈ X∗∗).

Consider the mapping J : X → X∗∗ defined as J(x) := φx for every x ∈ X. That
is, J maps x to the functional on X∗ given by evaluation at x. As a consequence of
the Hahn-Banach theorem, such a J is norm-preserving (i.e., ‖J(x)‖∗∗ = ‖x‖, in which
‖·‖∗∗ is the norm of X∗∗), and hence injective, called the natural embedding of X into
X∗∗.

Definition 1.1.11. A Banach space B is called reflexive if the natural embedding
J : B → B∗∗ defined as J(x) := φx is surjective.

Proposition 1.1.12. Assume that B is a Banach space. The following statements are
equivalent.
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i) B is reflexive.

ii) B∗ is reflexive.

iii) The closed unit ball in B is compact in the topology induced by B∗.

iv) Every closed bounded subset in B is weakly (sequentially) compact.

Proof. See pages 44 and 45 of [9].

Definition 1.1.13. Given a real vector space X, a subset C of X is called convex if

∀x, y ∈ C, ∀t ∈ [0, 1] : tx+ (1− t)y ∈ C.

Reflexive Banach spaces enjoy the following properties, which we will use frequently
in Chapter 2.

Proposition 1.1.14. Assume that B is a reflexive Banach space.

i) If C is a closed convex bounded subset of B, then C is weakly compact in the
topology induced by B∗.

ii) Every bounded sequence in B has a weakly convergent subsequence in the topology
induced by B∗.

iii) If C is a convex subset of B, then C is weakly closed (in the topology induced by
B∗) if and only if it is strongly closed.

iv) If h : B → R ∪ {+∞} is a lower semicontinuous function, then h has at least
one minimizer over each nonempty closed convex bounded subset of B.

Proof. See pages 38, 46 and 50 of [9].

Now we present the concept of the relative interior of a set.

Definition 1.1.15. Given C ⊂ X, the affine hull of C, denoted by A(C), is the set of
all affine combinations of elements of C, i.e.,

A(C) =

{
k∑
i=1

αix
i

∣∣∣∣∣xi ∈ C, αi ∈ R,
k∑
i=1

αi = 1, k = 1, 2, . . .

}
.

Definition 1.1.16. Given C ⊂ X, the relative interior of C, denoted by ri(C), is
defined as its interior within the affine hull of C. In other words,

ri(C) = {x ∈ C : ∃δ > 0, B(x, δ) ∩ A(C) ⊂ C}.
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It is remarkable that in infinite dimensional spaces the relative interior of a set
can be an empty set. In Chapter 2, through the convergence analysis of our algo-
rithms in Banach spaces, we will assume that the relative interior of the feasible sets
of equilibrium problems are nonempty.

Next we recall a Lemma from functional analysis which will be useful in Section
2.4.

Lemma 1.1.17. Assume that Λ1, . . . ,Λn and Λ are linear functionals on a vector space
X. Let

Ω = {x : Λ1 = · · · = Λn = 0}.

The following three properties are equivalent.

i) There are scalars α1, . . . , αn such that

Λ = α1Λ1 + · · ·+ αnΛn.

ii) There exists γ <∞ such that

|Λx| ≤ γ max
1≤i≤n

|Λix| ∀x ∈ X.

iii) Λx = 0 for every x ∈ Ω.

Proof. See Lemma 3.9 of [60].

1.2 Gâteaux and Fréchet Derivatives

The material in this section has been taken from [18] and [65].

Definition 1.2.1. Consider h : B1 → B2, where B1 and B2 are two real Banach spaces
with norms ‖·‖1 and ‖·‖2, respectively.

i) We say that h has directional derivative at x in direction d ∈ B1, denoted by
h′(x, d), if

lim
t→0+

h(x+ td)− h(x)

t
= h′(x, d).
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ii) We say that h is Gâteaux differentiable at x, denoted by h′(x), if there exists a
linear and continuous operator (i.e., an element in L(B1, B2)) such that

lim
t→0

h(x+ td)− h(x)

t
= 〈h′(x), d〉,

for all d ∈ B1.

iii) We say that h is Fréchet differentiable at x if the above limit exists uniformly on
the unit sphere, i.e.,

lim
t→0

sup
‖d‖1=1

∥∥∥∥h(x+ td)− h(x)

t
− 〈h′(x), d〉

∥∥∥∥
2

= 0.

The relation between Gâteaux and Fréchet derivative is stated in the next propo-
sition.

Proposition 1.2.2. Consider h : B1 → B2, where B1 and B2 are two real Banach
spaces.

i) If h is Fréchet differentiable at x, then it is Gâteaux differentiable at x.

ii) If h is Gâteaux differentiable on some neighborhood of x and its Gâteaux deriva-
tive is continuous at x, then h is Fréchet differentiable at x.

iii) If h is Fréchet differentiable at x, then h is continuous at x.

Proof. See Proposition 4.8 of [65].

Definition 1.2.3. Assume that h(x) = ‖x‖, where ‖·‖ denotes the norm in the real
Banach space B.

i) B is called smooth if h is Gâteaux differentiable on B \ {0}.

ii) B is called locally uniformly smooth if h is Fréchet differentiable on B \ {0}.

iii) B is called uniformly smooth if h is uniformly Fréchet differentiable on the unit
sphere, i.e., h is Fréchet differentiable and

lim
t→0

sup
‖x‖=‖y‖=1

∥∥∥∥h(x+ ty)− h(x)

t
− 〈h′(x), y〉

∥∥∥∥ = 0.

Definition 1.2.4. Assume that B is a real Banach space.
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i) B is called strictly convex if for all x, y ∈ B with ‖x‖ = ‖y‖ = 1 and x 6= y, it
holds that ‖λx+ (1− λ)y‖ < 1 for all λ ∈ (0, 1).

ii) B is called locally uniformly convex if for each x in the unit sphere and each
ε > 0, there exists δ(x) > 0, so that ‖y‖ = 1 and ‖x− y‖ ≥ ε implies ‖x+ y‖ ≤
2[1− δ(x)].

iii) B is called uniformly convex if for all ε > 0, there exists δ > 0, so that ‖x‖ =
‖y‖ = 1 and ‖x− y‖ ≥ ε implies ‖x+ y‖ ≤ 2(1− δ).

Hilbert spaces, Lp(Ω), and Sobolev spaces Wm,p(Ω) are well known examples of
uniformly convex spaces.

Proposition 1.2.5. Let B be a real reflexive Banach space. Then the following two
statements are true.

i) B is strictly convex (respectively smooth) if and only if B∗ is smooth (respectively
strictly convex).

ii) B is uniformly convex (respectively uniformly smooth) if and only if B∗ is uni-
formly smooth (respectively uniformly convex).

Proof. See pages 43, 52, and 53 of [18].

1.3 Point-to-Set Operators

Here we state some properties of point-to-set or set-valued operators.

Definition 1.3.1. Let B be a Banach space and B∗ its topological dual space.

i) A point-to-set operator is a map T : B → P(B∗).

ii) The set dom(T ) = {x ∈ B : T (x) 6= ∅} is called the domain of T .

iii) The graph of T is the set G(T ) = {(v, x) ∈ B∗ ×B : v ∈ T (x)}.

iv) x ∈ B is called a zero of T if 0 ∈ T (x).

v) The graph of T is demiclosed, if for all sequences {xj}∞j=0 ⊂ B, weakly convergent
(strongly convergent) to x ∈ B and for all sequences {vj}∞j=0 ⊂ B∗ strongly
convergent (weakly∗ convergent) to v ∈ B∗, with (xj, vj) ∈ G(T ) for all j, it holds
that v ∈ T (x).

vi) T is monotone if 〈w − w′, x − x′〉 ≥ 0 for all x, x′ ∈ B and all w ∈ T (x),
w′ ∈ T (x′).
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vii) T is maximal monotone if it is monotone and its graph is not properly contained
in the graph of any other monotone operator.

viii) T is pseudomonotone if the following property holds: if 〈v, x − y〉 ≥ 0 for some
x, y ∈ dom(T ) and some v ∈ T (y) then 〈u, x− y〉 ≥ 0 for all u ∈ T (x).

Subdifferential operators are prototypical examples of maximal monotone opera-
tors (see Proposition 1.4.7). It is also remarkable that graphs of maximal monotone
operators are demiclosed, as stated in the next proposition.

Proposition 1.3.2. Assume that B is a reflexive Banach space. If T : B → P(B∗) is
maximal monotone, then its graph is demiclosed.

Proof. See page 105 of [52], for instance.

1.4 Convex Analysis

We will analyze our proposed algorithms using some tools of convex analysis which we
present next. We follow [11], [14], [18] and [24] in this section.

Definition 1.4.1. Let g : B → R ∪ {+∞}.

i) g is called convex if g(αx+ (1−α)y) ≤ αg(x) + (1−α)g(y) for all α ∈ (0, 1) and
all x, y ∈ B.

ii) g is called concave if −g is convex.

iii) g is called strictly convex if g(αx+(1−α)y) < αg(x)+(1−α)g(y) for all α ∈ (0, 1)
and all x, y ∈ B with x 6= y.

iv) The set ∂g(x) = {v ∈ B∗ : g(x) + 〈v, y − x〉 ≤ g(y), ∀y ∈ B} is called the
subdifferential of g at x.

Proposition 1.4.2. Assume that B is a reflexive Banach space. Let g : B → R ∪
{+∞} be a convex function whose domain has nonempty interior. Then the following
statements hold.

i) For any x ∈ dom(g), the subdifferential ∂g(x) is convex and weak∗ closed.

ii) If g is continuous on int(dom(g)), then for each x ∈ int(dom(g)), the set ∂g(x)
is nonempty and weak∗ compact.

iii) If g is lower semicontinuous, then it is locally Lipschitz on int(dom(g)).
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Proof. See pages 6 and 8 of [14].

Proposition 1.4.3. Assume that g : Rn → R ∪ {+∞} is a convex function whose
domain has nonempty interior. Then g is locally Lipschitz on int(dom(g)), and conse-
quently ∂g(x) is a nonempty subset of Rn for each x ∈ int(dom(g)).

Proof. See Proposition 1.4.2 and page 174 of [24].

We will need the following property of the subdifferential of convex functions.

Proposition 1.4.4. Let gi : B → R ∪ {+∞} (i = 1, 2) be two proper, convex, and
lower semicontinuous functions. Assume that there exists x ∈ dom(g1) ∩ dom(g2) at
which one of the functions is continuous. For each y ∈ dom(g1) ∩ dom(g2), it holds
that

∂(g1 + g2)(y) = ∂g1(y) + ∂g2(y).

Proof. See Theorem 3.5.7 of [11].

Definition 1.4.5. Let C ⊂ B. The indicator function of C at x is defined as

IC(x) =

{
0 if x ∈ C
∞ otherwise.

Definition 1.4.6. Let C ⊂ B. The normal cone of set C is the operator NC : B →
P(B∗) defined at x as

NC(x) =

{
{z ∈ B∗| 〈z, y − x〉 ≤ 0, ∀y ∈ C} if x ∈ C
∅ otherwise.

(1.1)

It is known that ∂IC(x) = NC(x) for each x ∈ B.

Proposition 1.4.7. Assume that g : B → R∪{+∞} is a proper lower semicontinuous
convex function. In this case, the subdifferential operator, ∂g : B → P(B∗), is a
maximal monotone operator.

Proof. See page 168 of [18], for instance.

Definition 1.4.8. Let g : B → R ∪ {+∞} be a convex and Gâteaux differentiable
function on int(dom(g)) 6= ∅.
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i) The Bregman distance with respect to g is the function Dg : dom(g)×int(dom(g))→
R+ defined as Dg(x, y) = g(x)− g(y)− 〈g′(y), x− y〉.

ii) The modulus of total convexity of g is the function νg : int(dom(g))× [0,+∞)→
R+ defined as νg(x, t) = inf{Dg(y, x) : y ∈ B, ‖y − x‖ = t}.

iii) g is said to be a totally convex function if νg(x, t) > 0 for all t > 0 and all
x ∈ int(dom(g)).

iv) g is said to be a uniformly totally convex function on E ⊂ int(dom(g)) if for all
t > 0 and all bounded subsets C ⊂ E, it holds that infx∈C νg(x, t) > 0.

Example 1.4.9. Assume that B is a uniformly smooth and uniformly convex Banach
space. It has been shown in [15] that h(x) = ‖x‖r is uniformly totally convex for each
r > 1.

It is obvious that positivity of Dg(x, y) for all x, y ∈ B (x 6= y) is equivalent to
strict convexity of g.

The following properties of Bregman distance are used in the convergence analysis
of our methods.

Proposition 1.4.10. Assume that g : B → R∪{+∞} is convex, lower semicontinuous
and that int(dom(g)) 6= ∅. The following statements are true.

i) The function g is Gâteaux differentiable on int(dom(g)) if and only if the operator
∂g(·) : int(dom(g)) → B∗ is a point-to-point operator, i.e., single valued. In the
affirmative case, ∂g(x) = {g′(x)} for each x ∈ int(dom(g)), and

a) Dg is well defined and Dg(·, x) is convex,

b) for any x, z ∈ int(dom(g)) and y ∈ dom(g),

Dg(y, x)−Dg(y, z)−Dg(z, x) = 〈g′(x)− g′(z), z − y〉,

c) if g is strictly convex, then Dg(y, x) > 0 for all y ∈ dom(g) with x 6= y.

ii) If g is Fréchet differentiable, then g′ : int(dom(g)) → B∗ is norm-to-norm con-
tinuous and Dg is continuous on int(dom(g))× int(dom(g)).

Proof. The first statement in (i) was proved in 1.1.10 of [14], (i)(a) in 1.1.3 of [14],

(i)(b) in 1.3.9 of [14], and (i)(c) in 1.1.9 of [14]. (ii) follows from the corollary in page
20 of [53]

Proposition 1.4.11. Assume that g : B → R∪{+∞} is convex, lower semicontinuous
and that int(dom(g)) 6= ∅. Additionally assume that x ∈ int(dom(g)), s ≥ 0 , and that
t ≥ 0. In this situation, νg(x, st) ≥ sνg(x, t).
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Proof. See page 18 of [14].

Definition 1.4.12. Assume that T : B → P(B∗) is a point-to-set operator and the
function g : B → R is Fréchet differentiable and totally convex. T is θ-undermonotone
if there exists θ ≥ 0 such that 〈u−v, x−y〉 ≤ θ〈g′(x)−g′(y), x−y〉 for all x, y ∈ dom(T )
and for all u ∈ T (x), v ∈ T (y).

1.5 Regularization Functions

Our convergence analysis demands an auxiliary function g : B → R ∪ {+∞}, which
is strictly convex, lower semicontinuous, and Gâteaux differentiable in the interior of
its domain. We will denote the family of such functions by F . We denote as g′ the
Gâteaux derivative of g.

We will present next some additional conditions on g, called regularization condi-
tions, needed in convergence analysis (see Theorem 2.3.5 and Theorem 2.3.8) and for
regularizing a given problem (see Proposition 1.8.1 and Proposition 2.1.1). We will call
such a g a regularization function.

H1: The level sets of Dg(x, ·) are bounded for all x ∈ dom(g).

H2: infx∈C νg(x, t) > 0 for all bounded set C ⊂ int(dom(g)) and all t > 0.

H3: g′ is uniformly continuous on bounded subsets of int(dom(g)).

H4: g′ is onto, i.e., for all y ∈ B∗, there exists x ∈ int(dom(g)) such that g′(x) = y.

H5: lim‖x‖→+∞[g(x) − ρ ‖x− z‖] = +∞ for all fixed z ∈ C and ρ ≥ 0 in which
C ⊂ dom(g).

H6: Take C ⊂ int(dom(g)), if {yj}∞j=0 and {zj}∞j=0 are sequences in C which converge
weakly to y and z, respectively, and if y 6= z, then

lim inf
j→∞

∣∣〈g′(yj)− g′(zj), y − z〉∣∣ > 0.

These properties, with the exception of H5, were identified in [26]. We make a few
remarks on them. H2 is known to hold when g is lower semicontinuous and uniformly
convex on bounded sets (see [16]). H5, introduced here for the first time in connection
with Bregman functions and distances, is a form of coercivity. It has been proved in
page 75 of [14] that sequential weak-to-weak∗ continuity of g′ ensures H6.

It is important to check that functions satisfying these properties are available in a
wide class of Banach spaces. The prototypical example is g(x) = 1

2
‖x‖2, in which case

g′ is the duality operator, and the identity operator in the case of Hilbert space. It is
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convenient to deal with a general g rather than just the square of the norm because
in Banach spaces this function lacks the privileged status it enjoys in Hilbert spaces.
In the spaces Lp and `p, for instance, the function g(x) = (1/p) ‖x‖p leads to simpler
calculations than the square of the norm. It has been shown in [26] that the function
g(x) = r ‖x‖s, works satisfactorily in any reflexive, uniformly smooth and uniformly
convex Banach space, for any r > 0, s > 1, as established in the following proposition.

Proposition 1.5.1.

i) If B is a uniformly smooth and uniformly convex Banach space, then g(x) =
r ‖x‖s satisfies H1–H5 for all r > 0 and all s > 1.

ii) If B is a Hilbert space, then g(x) = 1
2
‖x‖2 satisfies H6. The same holds for

g(x) = 1
p
‖x‖p when B = `p (1 < p <∞).

Proof. The result of item (i) for properties H1 through H4, as well as item (ii), were

proved in Proposition 2 of [26]. For H5, note that for the function of interest we have

g(x)−ρ ‖x− z‖ = r ‖x‖s−ρ ‖x− z‖ ≥ r ‖x‖s−ρ ‖x‖−ρ ‖z‖ = ‖x‖ [r ‖x‖s−1−ρ]−ρ ‖z‖ ,
(1.2)

and the rightmost expression of (1.2) goes to ∞ as ‖x‖ → ∞ because s− 1 > 0.

We remark that the only problematic property is H6, in the sense that the only ex-
ample we have of a nonhilbertian Banach space for which we know functions satisfying
it is `p with 1 < p < ∞. As we will see in Section 2.3 and Section 2.4, most of our
convergence results demand only H1–H5.

We will utilize the following facts in our convergence analysis.

Proposition 1.5.2. Assume that g satisfies H2. Let {xj}∞j=0 ⊂ int(dom(g)) and
{yj}∞j=0 ⊂ dom(g) be two sequences such that at least one of them is bounded. If
limj→∞Dg(y

j, xj) = 0, then limj→∞ ‖xj − yj‖ = 0.

Proof. See Proposition 5 in [26].

Proposition 1.5.3. If g satisfies H3, then both g and g′ are bounded on bounded
subsets of B.

Proof. See Proposition 4 in [26].
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1.6 Bregman Projection

Here, we present some properties of the Bregman projection on Banach spaces which is
a generalization of the orthogonal projection in Hilbert spaces. A full discussion about
this issue can be found in [14]

Definition 1.6.1. Assume that B is a reflexive Banach space. Let g ∈ F be a totally
convex function on int(dom(g)) satisfying H1, defined in Section 1.5. The Bregman
projection of x ∈ int(dom(g)) onto C ⊂ dom(g), denoted by Πg

C(x), is defined as unique
point in C satisfying

Πg
C(x) = argmin

y∈C
Dg(y, x). (1.3)

We mention that the uniqueness of the Bregman projection is a consequence of
strictly convexity of g, which ensures that Dg(·, x) is strictly convex on dom(g), con-
taining C. Note that total convexity of g implies strict convexity of g. The next
proposition characterizes the Bregman projection.

Proposition 1.6.2. Assume that B is a reflexive Banach space. Let g ∈ F be a totally
convex function on int(dom(g)) satisfying H1. Take C ⊂ dom(g). In this situation,
the following two statements holds.

i) The operator Πg
C : int(dom(g))→ C is well defined.

ii) Assume that C ⊂ int(dom(g)) and x ∈ int(dom(g)). We have that x̄ = Πg
C(x) if

and only if g′(x)− g′(x̄) ∈ NC(x̄), or equivalently, x̄ ∈ C and

〈g′(x)− g′(x̄), z − x̄〉 ≤ 0 ∀z ∈ C.

Proof. See page 70 of [14].

The following result, dealing with the Bregman projection onto hyperplanes, is a
consequence of Proposition 1.6.2 and the definition of Bregman distance. For this
purpose, we define H = {y ∈ B : 〈v, y − ỹ〉 = 0}, H+ = {y ∈ B : 〈v, y − ỹ〉 ≥ 0}, and
H− = {y ∈ B : 〈v, y − ỹ〉 ≤ 0}, for each fix ỹ ∈ B and each fix v ∈ B∗.
Lemma 1.6.3. Take g ∈ F totally convex. Assume that g satisfies H1 and dom(g) =
B. Then for all v ∈ B∗ \ {0}, ỹ ∈ B, x ∈ H+ and x̄ ∈ H−, it holds that Dg(x̄, x) ≥
Dg(x̄, z) +Dg(z, x) where z is the unique minimizer of Dg(·, x) on H.

Proof. See Lemma 1 of [26].

It is worthwhile mentioning that Dg(x, y) = 1
2
‖x− y‖2 if g(x) = 1

2
‖x‖2 and B is

a Hilbert space. As a result of this fact, on Hilbert spaces, the Bregman projection
coincides with the orthogonal projection on closed convex subsets.
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1.7 Optimality Condition for Convex Minimization

Problems

The first order optimality condition for convex minimization problem defined below,
is an important tool in the study of equilibrium problem, both in reformulating equi-
librium problems in terms of variational inequality problems (see Section 2.4), and for
proving convergence of augmented Lagrangian methods (see Section 3.2). All the con-
cepts introduced in this section can be found in [24] for the case of finite dimensional
spaces, and in [33] for the case of infinite dimensional spaces.

Definition 1.7.1. Let h0 : B → R ∪ {+∞} be a convex function. The convex mini-
mization problem consists of finding an x̄ ∈ C such that it solves

min h0(x)
s.t. x ∈ C, (1.4)

where C ⊂ B is a convex subset of B. Such an x̄ is called a solution or a global
minimizer of this problem.

Theorem 1.7.2. x̄ ∈ C is a solution of the problem (1.4) if and only if

〈ū, x− x̄〉 ≥ 0 ∀x ∈ C,

for some ū ∈ ∂h0(x̄), or, equivalently, x̄ ∈ C satisfies

0 ∈ ∂h0(x̄) +NC(x̄).

Proof. See Theorem 3.27 of [33].

Assume that h0 : Rn → R and that C ⊂ Rn is represented by finitely many convex
inequalities

C = {x ∈ Rn : hi(x) ≤ 0 (1 ≤ i ≤ m)}, (1.5)

where hi : Rn → R is convex (1 ≤ i ≤ m). In this case, there are several conditions on
the constraint functions hi (1 ≤ i ≤ m) under which NC(x̄) becomes a polyhedral cone.
These conditions on the constraints are known as constraint qualifications (CQs), which
guarantee existence of Lagrangian multipliers, reduce Theorem 1.7.2 to a computable
result.

One of the CQs used in this thesis is Slater’s condition, defined as follows.

Definition 1.7.3. We say that the set C defined in (1.5) satisfies Slater’s CQ if there
exists w ∈ Rn such that hi(w) ≤ 0 for i ∈ I, and hi(w) < 0 for i /∈ I, where I is the
(possibly empty) set of indices i such that the function hi is affine.
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Using Definition 1.7.3, we can reformulate Theorem 1.7.2 as the classical Karush-
Kuhn-Tucker Theorem, which deals with the nonsmooth case.

Theorem 1.7.4. Assume that x̄ ∈ C is a solution of the convex minimization problem
(1.4), with C defined as in (1.5). If C satisfies Slater’s CQ, then there exists a vector
λ̄ ∈ Rm

+ such that

0 ∈ ∂h0(x̄) +
∑m

i=1 λ̄i∂hi(x̄),
h(x̄) ≤ 0 (1 ≤ i ≤ m),
λ̄ihi(x̄) = 0 (1 ≤ i ≤ m).

(1.6)

Conversely, if there exists a point (x̄, λ̄) ∈ C × Rm
+ satisfying statement (1.6), then x̄

solves the convex minimization problem (1.4).

Proof. See Theorem 2.2.5 in Chapter VII of [24].

1.8 Proximal Point Methods for Finding Zeroes of

Operators

This section is devoted to proximal point method for solving the problem of finding
zeroes of point-to-set operators T : B → P(B∗), defined as

find x ∈ B such that 0 ∈ T (x). (1.7)

Let T : H → P(H) be a point-to-set operator, where H is a Hilbert space. Rock-
afellar proposed the following iterative algorithm for finding zeroes of T in [59]. The
algorithm generates a sequence {xj}∞j=0 ⊂ H, starting from some x0 ∈ H, where xj+1

is the unique zero of the operator T j, defined as

T j(x) = T (x) + γj(x− xj), (1.8)

with {γj}∞j=0 being a bounded sequence of positive real numbers, called regularization
sequence. It has been proved in [59] that for a maximal monotone T , the sequence
{xj}∞j=0 is weakly convergent to a zero of T when T has zeroes, and is unbounded
otherwise. Such weak convergence is global, i.e. the result just announced holds in fact
for any x0 ∈ H.

Now consider the case of proximal point methods for problem (1.7) in Banach
spaces. In this setup, the formula for T j given by (1.8) does not work any more,
because T (x) is a subset of B∗, while γj(x− xj) belongs to B. Thus, instead of (1.8),
one works with

T j(x) = T (x) + γj[g
′(x)− g′(xj)], (1.9)
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where g ∈ F .
The following proposition shows that (1.9) is a regularization for the problem (1.7)

in the sense that T j attains a unique zero.

Proposition 1.8.1. Let g ∈ F such that dom(T ) ⊂ int(dom(g)). If g satisfies H4,
then for each λ > 0 and each z ∈ int(dom(g)) there exists a unique solution of the
problem λg′(z) ∈ T (x) + λg′(x).

Proof. See Corollary 3.1 of [12].

Since the computation of each iterate requires solution of a regularized problem,
it is important to establish convergence results assuming inexact solutions of the sub-
problems. This issue was already dealt with in [59], where it was assumed that the j-th
subproblem was solved with an error bounded by a certain εj > 0, and the convergence
results were preserved assuming that

∑∞
j=1 εj < ∞. More precisely, in this inexact

proximal point method in a Hilbert space H, having a current iterate xj ∈ H, instead
of finding a zero of operator (1.8), which is considered as the next iterate in the case
of the exact proximal point method, one finds xj+1 ∈ H and vj+1 ∈ T (xj+1) such that
vj+1 + γj(x

j+1 − xj)− ej = 0, where ej is the error at iteration j, satisfying

∥∥ej∥∥ ≤ εj,
∞∑
j=1

εj <∞.

This summability condition is undesirable. One drawback of this error criterion is
that quite often there is no constructive way to enforce it. Another drawback of
assumption

∑∞
j=1 εj < ∞ is that it requires increasing accuracy along the iterative

process. From the algorithmic standpoint, one would prefer to have computable error
tolerance condition which is related to the progress of the algorithm at every given
step when applied to the given problem. A better error criterion, introduced in [62],
allows for constant relative errors and can be described, in its Hilbert space version, as
follows. Instead of solving (1.8), which gives

γj(x
j − xj+1) ∈ T (xj+1),

one finds first an approximate zero of Tj, say x̂j, which can be taken as any point in
the space satisfying

ej + γj(x
j − x̂j) ∈ T (x̂j), (1.10)

where the error term ej satisfies∥∥ej∥∥ ≤ σγjmax
{∥∥xj − x̂j + γ−1

j ej
∥∥ , ∥∥xj − x̂j∥∥} , (1.11)
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for some σ ∈ [0, 1) (this σ can be seen as a constant relative error tolerance). Then
the next iterate is obtained as the orthogonal projection of xj onto the hyperplane
Hj = {x ∈ H : 〈vj, x− x̂j〉 = 0} with vj = γj(x

j − x̂j) + ej, more precisely

xj+1 = xj − 〈v
j, xj − x̂j〉
‖vj‖2

vj.

This inexact procedure, as well as a related one introduced in [63], were extended to
Banach spaces in [26] for the same problem. Next we explain these two algorithms, to
be called Inexact Proximal Point+Bregman Projection Method and Inexact Proximal
Point-Extragradient Method in [26], which play very important roles in construction of
our proximal point algorithms for equilibrium problems. Before doing this, we explain
why σ in (1.11) is called constant relative error tolerance. For estimating the relative
error in (1.11), we look at the ratios between ej and ej +γj(x

j− x̂j), ej and γj(x
j− x̂j),

i.e., the following two quantities, which can be seen as measures of the relative error:

‖ej‖
‖γj(xj − x̂j) + ej‖

,
‖ej‖

γj ‖xj − x̂j‖
.

In this sense, (1.11) is equivalent to saying that the bound for the relative error in
solving the subproblem (1.10) can be fixed at σ, and need not tend to zero.

We describe next the algorithms presented in [26].

Algorithm I: Inexact Proximal Point+Bregman Projection Method for (1.7)

1. Choose an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1]. Initialize the algorithm with x0 ∈ B.

2. Given xj, find x̃j ∈ B such that

γj[g
′(xj)− g′(x̃j)]− ej ∈ T (x̃j),

where ej is any vector in B∗ which satisfies

∥∥ej∥∥∗ ≤ σγj

{
Dg(x̃

j, xj) if ‖xj − x̃j‖ < 1

νg(x
j, 1) if ‖xj − x̃j‖ ≥ 1,

with Dg, νg as in Definition 1.4.8(i)–(ii).

3. Let

vj = γj[g
′(xj)− g′(x̃j)]− ej.

If vj = 0 or x̃j = xj, then stop. Otherwise, take Hj = {x ∈ B : 〈vj, x − x̃j〉 = 0} and
define

xj+1 = argmin
x∈Hj

Dg(x, x
j).
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Algorithm II: Inexact Proximal Point-Extragradient Method for (1.7)

1. Choose an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1). Initialize the algorithm with x0 ∈ B.

2. Given xj, find x̃j ∈ B such that

λj[g
′(xj)− g′(x̃j)] + ej ∈ T (x̃j),

where ej is any vector in B∗ which satisfies

Dg(x̃
j, (g′)−1[g′(x̃j)− γ−1

j ej]) ≤ σDg(x̃
j, xj).

3. If x̃j = xj, then stop. Otherwise,

xj+1 = (g′)−1[g′(x̃j)− γ−1
j ej].

The convergence results for Algorithm I and Algorithm II are given in the next two
theorems and were proved in [26].

Theorem 1.8.2. Assume that T : B → P(B∗) is a maximal monotone operator. Take
g ∈ F with dom(g) = B, satisfying H1–H4, {γj}∞j=0 ⊂ (0, γ̄], and σ ∈ [0, 1]. Let
{xj}∞j=0 be the sequence generated by Algorithm I. If problem (1.7) has solutions, then

i) {xj}∞j=0 has weak accumulation points and all of them are solutions of problem
(1.7).

ii) If g satisfies H6, then the whole sequence {xj}∞j=0 is weakly convergent to a solu-
tion of problem (1.7).

Proof. See Theorem 2 of [26]

Theorem 1.8.3. Assume that T : B → P(B∗) is a maximal monotone operator. Take
g ∈ F with dom(T ) ⊂ int(dom(g)), satisfying H1–H4, {γj}∞j=0 ⊂ (0, γ̄], and σ ∈ [0, 1).
If problem (1.7) has solutions, then

i) the sequence {xj}∞j=0 generated by Algorithm II has weak accumulation points, all
of which are solutions of problem (1.7).

ii) If g satisfies H6, then the whole sequence {xj}∞j=0 is weakly convergent to a solu-
tion of problem (1.7).

Proof. See Theorem 3 of [26]
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1.9 Equilibrium Problems

In this section we formally define the equilibrium problem.

Definition 1.9.1. Let B be a real Hausdorff topological vector space, and K ⊂ B a
nonempty closed and convex set. Given f : K ×K → R such that

P1: f(x, x) = 0 for all x ∈ K,

P2: f(x, ·) : K → R is convex and lower semicontinuous for all x ∈ K,

P3: f(·, y) : K → R is upper semicontinuous for all y ∈ K,

the equilibrium problem, denoted by EP(f,K), consists of finding x∗ ∈ K such that
f(x∗, y) ≥ 0 for all y ∈ K.

Such an x∗ satisfying the assumptions of Definition 1.9.1 is called a solution of
EP(f,K). The set of solutions of EP(f,K) will be denoted by SE(f,K).

Through this thesis we will assume that B is a reflexive Banach space.

The study of the equilibrium problem demands some additional properties on
EP(f,K). We present them next.

P4: There exists θ ≥ 0, and a totally convex and Fréchet differentiable function
g : B → R such that f(x, y) + f(y, x) ≤ θ〈g′(x)− g′(y), x− y〉 for all x, y ∈ K.

P4•: f(x, y) + f(y, x) ≤ 0 for all x, y ∈ K.

P4∗: Whenever f(x, y) ≥ 0 with x, y ∈ K, it holds that f(y, x) ≤ 0.

P4’: For all x1, . . . , xm ∈ K which are pairwise different, and all λ1, . . . , λm which are
strictly positive and such that

∑m
i=1 λi = 1, it holds that

min
1≤i≤m

f

(
xi,

m∑
j=1

λjx
j

)
< 0.

P4” : For all x1, . . . , xm ∈ K and all λ1, . . . , λm ≥ 0 such that
∑m

i=1 λi = 1, it holds
that

m∑
i=1

λif

(
xi,

m∑
k=1

λkx
k

)
≤ 0.

P5 : For any sequence {xj}∞j=0 ⊆ K satisfying limj→∞ ‖xj‖ = +∞, there exists
u ∈ K and j0 ∈ N such that f(xj, u) ≤ 0 for all j ≥ j0.

Definition 1.9.2. Consider EP(f,K). The function f is called θ-undermonotone
(monotone, pseudomonotone, respectively) if it satisfies P4 (P4•, P4∗, respectively).
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In Section 1.10 we justify why the three properties P4, P4• and P4∗, given in
Definition 1.9.2, are called θ-undermonotoncity, monotoncity, and pseudomonotonicity,
respectively.

We comment now on some relations among P4, P4∗, P4’, and P4”. For this purpose
we consider the following illustrative example and the following proposition, taken from
[32], which will be relevant in this work.

Example 1.9.3. Let K = [1/2, 1] ⊂ R and define f : K ×K → R as

f(x, y) = x(x− y). (1.12)

Proposition 1.9.4. Under P1–P3,

i) P4• implies any one among P4, P4∗, and P4”,

ii) P4∗, P4’ and P4” are mutually independent,

iii) none of the converse implications in (i) holds,

iv) P4’ does not imply P4•.

Proof.

i) Elementary.

ii) See Section 2 of [27].

iii) Using Example 1.9.3, we first show that it satisfies P4, P4∗, and it does not
satisfies P4•. Note that f(x, y) + f(y, x) = (x − y)2 so that f is not monotone,
but it is immediate that it is 1-undermonotone. The fact that it satisfies P1–
P3 is also immediate. For P4∗, note that f(x, y) ≥ 0 with x, y ∈ K implies,
since x ≥ 1/2, that x − y ≥ 0, in which case, using now that y ≥ 1/2, one has
f(y, x) = y(y− x) ≤ 0, and so f is pseudomonotone. In order to verify that P4”
does not imply P4• we consider EP(f,K) where K = Rn and f : K × K → R
defined as

f(x, y) = −α ‖x‖2 + β ‖y‖2 + (α− β)〈x, y〉,
with β > α > 0. We can easily observe that

q∑
`=1

t`f

(
x`,

q∑
k=1

tkx
k

)
= α

∥∥∥∥∥
q∑

k=1

tkx
k

∥∥∥∥∥
2

−
q∑

k=1

tk
∥∥xk∥∥2

 ≤ 0.

Also f(x, y) + f(y, x) = (β − α) ‖x− y‖2. So f satisfies P4” and it is θ-
undermonotone with θ = β − α, but it is not monotone, since β − α > 0.

25



iv) It is an easy consequence of Example 1.9.3.

Now we make a few remarks on above properties. Under P1, concavity of f(·, y)
for all y is sufficient for P4” to hold. We will prove that θ-undermonotonicity ensures
regularity of our proposed proximal point method (See Proposition 2.1.1). In general,
assumptions P4∗, P4’, P4”, and P5 are introduced to guarantee existence of solutions
for EP(f,K). In fact, property P5 has been identified in [27] as being necessary and
sufficient for the existence of solutions of EP(f,K) under any monotonicity properties
of f among P4∗, P4’ and P4”. Indeed, we have the following result.

Theorem 1.9.5. Assume that f satisfies P1–P3. Assume also that any one among
P4’, P4” and P4∗ holds. Then EP(f,K) has solutions if and only if P5 holds.

Proof. See Theorem 4.3 of [27].

One can easily verify that the convex minimization problem (1.4) can be reformu-
lated in terms of equilibrium problem EP(f,K) by defining f(x, y) = h0(y) − h0(x)
and K = C. More precisely, an x solves problem (1.4) if and only if x solves EP(f,K).

1.10 Variational Inequality Problems

We have already mentioned that the equilibrium problem includes as particular cases
convex minimization problems, fixed point problems, complementarity problems, Nash
equilibrium problems, variational inequality problems and vector minimization prob-
lems (see, e.g., [8], [30] and [49]). Nevertheless, the prototypical example of an equi-
librium problem is the variational inequality problem. Since it plays an important role
in the rest of this work (see Section 2.4), we describe it now in some detail. For this
purpose we present the formal definition of a variational inequality problem which can
be found in [11], for instance.

Definition 1.10.1. Let B be a reflexive Banach space and B∗ its topological dual space.
Assume that C ⊂ B is a nonempty closed and convex set. Given a point-to-set operator
T : C → P(B∗), the variational inequality problem denoted by VIP(T,C) consists of
finding x∗ ∈ C such that for at least some v∗ ∈ T (x∗) it holds that

〈v∗, x− x∗〉 ≥ 0 ∀x ∈ C.

Such an x∗ satisfying the assumptions of Definition 1.10.1 is called a solution of
VIP(T,C). The set of solutions of VIP(T,C) will be denoted by SV (T,C).
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Remark 1.10.2. We point out that x∗ ∈ SV (T,C) if and only if 0 ∈ T (x∗) +NC(x∗),
where NC is the normal cone of set C defined in (1.1). In other words, solving
VIP(T,C) is equivalent to the problem of finding zeroes of point-to-set operator T+NC.

Now we investigate the reformulation of VIP(T,C) in terms of an equilibrium prob-
lem. First assume that T in VIP(T,C) is a point-to-point and continuous operator.
We consider EP(f, C) with f(x, y) = 〈T (x), y − x〉. Then f satisfies P1–P3, and
EP(f, C) is equivalent to the variational inequality problem VIP(T,C) in the sense
that SV (T,C) = SE(f, C). Now we assume that T in VIP(T,C) is a point-to-set op-
erator such that T (x) is compact in weak∗ topology for each x ∈ C. In this situation,
we define

f(x, y) = sup
u∈T (x)

〈u, y − x〉. (1.13)

The fact that this f is well defined, it satisfies P1–P3 and that SE(f, C) = SV (T,C)
have been verified in Proposition 1.15 of [64].

It is easy to check that monotonicity of f defined in (1.13) (see Definition 1.9.2) is
equivalent to monotonicity of T (see Definition 1.3.1(vi)). In addition, one can easily
verify that if T is pseudomonotone (see Definition 1.3.1(viii)) and single-valued then
f , as defined in 1.13, is pseudomonotone (see Definition 1.3.1(iv)), and the converse
statement holds also when T is point-to-set. For this reason, a function f satisfying
P4• (respectively P4∗) will be said to be monotone (respectively pseudomonotone).
Along the same line, a function f satisfying P4 will be called θ-undermonotone.

1.11 Proximal Point Methods for Equilibrium Prob-

lems in Hilbert Spaces

Several approaches have already been considered for extending the proximal point
method to the realm of equilibrium problems. In most cases, at each iteration some
regularized problem is solved instead of EP(f,K). For instance we can mention the
one proposed in [48] (see also [47]) for finite dimensional spaces, where the regularized
problem can be rewritten as

f̄(x, y) = f(x̄, y) + γ〈x− x̄, y − x〉.

Another proximal point method proposed in [20] for finite dimensional spaces, which
its regularized problem consists of minimizing f̄(x̄, y) over y ∈ K with

f̄(x, y) = f(x, y) + γDg(y, x).

The basic idea of our proximal point methods, proposed in Chapter 2 for solving the
equilibrium problem in Banach space, comes from the one presented in [32] for Hilbert
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space, where the regularized equilibrium problem is EP(f̃ , K) with f̃ : K × K → R
defined as

f̃(x, y) = f(x, y) + γ〈x− x̄, y − x〉, (1.14)

where γ is a positive real number. At iteration j, given xj ∈ K, one solves the problem
EP(f̄j, K), where the regularized function f̄j is defined as

f̄j(x, y) = f(x, y) + γj〈x− xj, y − x〉, (1.15)

for some γi > 0. It is established in [32] that f̄j satisfies the required properties, and
that EP(f̄j, K) has a unique solution, which is the next iterate xj+1. The convergence
properties of sequence {xj}∞j=0 generated by the method are given in the next theorem.
Before this theorem we need the following two definitions taken from [32] and [36],
respectively.

Definition 1.11.1. {zj}∞j=0 ⊂ K is an asymptotically solving sequence for EP(f,K)
if lim infj→∞ f(zj, y) ≥ 0 for all y ∈ K.

Definition 1.11.2. Consider EP(f,K). The dual problem of EP(f,K) consists of
finding y∗ ∈ K such that f(x, y∗) ≤ 0 for all x ∈ K. The solution set of this dual
problem will be denoted as Sd(f,K).

The next proposition guarantees that EP(f̄j, K), with f̄j defined in (1.15), is a
regularization of EP(f,K).

Proposition 1.11.3. Take f satisfying P1–P4. Assume that γ > θ. Then EP(f̃ , K)
has a unique solution, with f̃ defined in (1.14).

Proof. See Proposition 3 of [32].

Theorem 1.11.4. Consider EP(f,K), where f satisfies P1–P3. Assume also that
{γj}∞j=0 ⊂ (θ, γ̄] where γ̄ is a positive real number. Given xj ∈ K, define xj+1 as
solution of EP(f̄j, K) with f̄j as in (1.15). In this situation, the following statements
hold.

i) If f satisfies P4 then the sequence {xj}∞j=0 is well defined.

ii) If Sd(f,K) 6= ∅ then the sequence {xj}∞j=0 is bounded and

lim
j→∞

∥∥xj+1 − xj
∥∥ = 0.

iii) Under the assumptions of items (i) and (ii) the sequence {xj}∞j=0 is an asymp-
totically solving sequence for EP(f,K).
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iv) If additionally f(·, y) is weakly upper semicontinuous for all y ∈ K, then all weak
cluster points of {xj}∞j=0 solve EP(f,K).

v) If additionally SE(f,K) = Sd(f,K) then the sequence {xj}∞j=0 is weakly conver-
gent to some solution x̂ of EP(f,K).

Proof. See Theorem 1 of [32].

We mention that [36], [43], [44], and [45] consider the regularized bifunction f̃ given
by (1.14) and develop basically the same iterative procedure as (1.15).

We will see in Chapter 2 that when we move to Banach spaces, instead of f̄j as
defined in (1.15), we will solve at iteration j the equilibrium problem EP(fj, K), with
fj given by

fj(x, y) = f(x, y) + γj〈g′(x)− g′(xj), y − x〉,
where g : B → R is an auxiliary function satisfying appropriate assumptions (see H1–
H6). When B is a Hilbert space and g(x) = 1

2
‖x‖2, we get fj = f̄j. In order to generate

an inexact algorithm, we will consider perturbations of fj. Indeed, in our algorithm fj
will be replaced by a perturbed f ej ,

f ej (x, y) = fj(x, y)− 〈ej, y − x〉 = f(x, y) + γj〈g′(x)− g′(xj), y − x〉 − 〈ej, y − x〉,

where ej ∈ B∗, the error vector at the j-th iteration, will be subject to bounds similar
to (1.11), to be presented in Section 2.2.

1.12 Augmented Lagrangian Methods for Convex

Minimization Problems

We describe the augmented Lagrangian methods for convex minimization problems,
which is the departure point for the study of augmented Lagrangian methods for the
equilibrium problem.

Consider the minimization problem

minh0(x)
s.t. hi(x) ≤ 0 (1 ≤ i ≤ m),

(1.16)

where hi : Rn → R is convex (0 ≤ i ≤ m).
The Lagrangian for (1.16) is the function L : Rn × Rm → R given by

L(x, λ) = h0(x) +
m∑
i=1

λihi(x), (1.17)
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and the dual problem associated to (1.16) is the convex minimization problem given
by

min−ψ(y)
s.t. y ∈ Rm

+ ,
(1.18)

where ψ : Rm → R ∪ {−∞} is defined as

ψ(λ) = inf
x∈Rn

L(x, λ). (1.19)

The augmented Lagrangian associated to the problem given by (1.16) is the function
L̄ : Rn × Rm × R++ → R defined as

L̄(x, λ, γ) = h0(x) + γ
m∑
i=1

[(
max

{
0, λi +

hi(x)

2γ

})2

− λ2
i

]
,

where R++ is the set of positive real numbers. The augmented Lagrangian method
requires an exogenous sequence of regularization parameters {γj}∞j=0 ⊂ R++. The
method starts with some (x0, λ0) ∈ Rn × Rm

+ , and given (xj, λj) ∈ Rn × Rm
+ , the

algorithm first determines xj+1 ∈ Rn as any unconstrained minimizer of L̄(x, λj, γj)
and then it updates λj as

λj+1
i = max

{
0, λji +

hi(x
j+1)

2γj

}
(1 ≤ i ≤ m).

Assuming that both the primal problem (1.16) and the dual problem (1.18) have so-
lutions, and that the sequence {xj}∞j=0 is well defined, in the sense that all the uncon-
strained minimization subproblems are solvable, it has been proved that the sequence
{λj}∞j=0 converges to a solution of the dual problem (1.18) and that the cluster points
of the sequence {xj}∞j=0 (if any) solve the primal problem (1.16) (see, e.g., [25] or [58]).

Another augmented Lagrangian method for the same problem, with better con-
vergence properties, is the proximal augmented Lagrangian method (see [58]; this
method is called “doubly augmented Lagrangian” in [25]). In this case, L̄ is replaced
by ¯̄L : Rn × Rm × R++ × Rn → R, defined as

¯̄L(x, λ, γ, z) = L̄(x, λ, γ) + γ ‖x− z‖2

= h0(x) + γ
∑m

i=1

[(
max

{
0, λi + hi(x)

2γ

})2

− λ2
i

]
+ γ ‖x− z‖2 .

The method uses an exogenous sequence {γj}∞j=0 ⊂ R++ as before, and it starts with
(x0, λ0) ∈ Rn × Rm

+ . Given (xj, λj) ∈ Rn × Rm
+ , the next primal iterate xj+1 is the

unique unconstrained minimizer of ¯̄L(x, λj, γj, x
j) and the next dual iterate is

λj+1
i = max

{
0, λji +

hi(x
j+1)

2γj

}
(1 ≤ i ≤ m).
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In this case, the primal unconstrained subproblem always has a unique solution, due to
the presence of the quadratic term ‖x− z‖2 in ¯̄L, and assuming that both the primal
and the dual problem are solvable, the sequences {xj}∞j=0, {λj}∞j=0 converge to a primal
and a dual solution respectively (see, e.g., [25] or [58]).

The connection between the augmented Lagrangian methods for convex optimiza-
tion and the proximal point method for finding zeroes of operators, introduced in
Section 1.8, can be described as follows. Let {xj}∞j=0, {λj}∞j=0 be the sequences gener-
ated by the augmented Lagrangian method. Consider the maximal monotone operator
T : Rm → P(Rm) defined as T = ∂(−ψ), with ψ as in (1.19). The sequence {zj}∞j=0

generated by the proximal point for finding zeroes of T coincides with {λj}∞j=0, as-
suming that λ0 = z0, and that the same sequence {γj}∞j=0 is used for both methods
(see, e.g.,[25] or [58]). Hence, the convergence of {λj}∞j=0 to some solution of the dual
problem (1.18) follows from the convergence of the sequence {zj}∞j=0, generated by the
proximal point method, to a zero of T . Thus, we observe that the main tool used
in [58] for establishing the above mentioned convergence results is the proximal point
algorithm.

The convergence analysis of the proximal augmented Lagrangian method proceeds
in a similar way. In this case, the proximal point method is used for finding zeroes of
T̂ : Rn × Rm → P(Rn × Rm) defined as

T̂ (z) = (∂xL(z),−∂λL(z)) +NRm
+

(z),

with z = (x, λ) ∈ Rn ×Rm, where L is as in (1.17) and NRm
+

is the normal cone of the
nonnegative orthant of Rm defined as Rm

+ = {(x1, . . . , xm) ∈ Rm | xi ≥ 0 (1 ≤ i ≤ m)}.
In this situation, the sequence {zj}∞j=0 generated by the proximal point method coin-
cides with the sequence {(xj, λj)}∞j=0 generated by the proximal augmented Lagrangian
method, assuming again that z0 = (x0, λ0), and that the same regularization sequence
{γj}∞j=0 is used in both algorithms (see, e.g., [25] or [58]).

We mention that the convergence analysis of the augmented Lagrangian methods for
equilibrium problems, to be discussed in Chapter 3, invokes the convergence theorems
of proximal point methods for equilibrium problems to be presented in Chapter 2.
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Chapter 2

Inexact Proximal Point Methods
for Equilibrium Problems in
Banach Spaces

This chapter is devoted to an exact and two inexact proximal point methods for equi-
librium problems. The results of this chapter can be found in [29].

We start this chapter by showing that a regularization for equilibrium problems
exists when proper conditions are met. We present Algorithm IPPBP standing for
Inexact Proximal Point+Bregman Projection Method, and Algorithm IPPE standing for
Inexact Proximal Point-Extragradient Method, for solving EP(f,K), and we establish
their convergence properties. Finally, we introduce a reformulation of EP(f,K) in
terms of a certain variational inequality problem, or, equivalently, a problem of finding
zeroes of point-to-set operators, which enables us to get rid of some assumptions in our
convergence analysis.

In the sequel we will frequently use the properties H1–H6, introduced in Section
1.5, as well as the properties P1–P5 and variants of P4, introduced in Section 1.9,
which we list here for easier reference.

H1: The level sets of Dg(x, ·) are bounded for all x ∈ dom(g).

H2: infx∈C νg(x, t) > 0 for all bounded set C ⊂ int(dom(g)) and all t > 0.

H3: g′ is uniformly continuous on bounded subsets of int(dom(g)).

H4: g′ is onto, i.e., for all y ∈ B∗, there exists x ∈ B such that g′(x) = y.

H5: lim‖x‖→∞[g(x)− ρ ‖x− z‖] = +∞ for all fixed z ∈ K and ρ ≥ 0.

H6: If {yj}∞j=0 and {zj}∞j=0 are sequences in K which converge weakly to y and z,
respectively and y 6= z, then
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lim inf
j→∞

∣∣〈g′(yj)− g′(zj), y − z〉∣∣ > 0.

P1: f(x, x) = 0 for all x ∈ K.

P2: f(x, ·) : K → R is convex and lower semicontinuous for all x ∈ K.

P3: f(·, y) : K → R is upper semicontinuous for all y ∈ K.

P4: There exists θ ≥ 0 such that f(x, y) + f(y, x) ≤ θ〈g′(x) − g′(y), x − y〉 for all
x, y ∈ K, where g : B → R is a Fréchet differentiable function satisfying some
regularity properties among H1–H6.

P4•: f(x, y) + f(y, x) ≤ 0 for all x, y ∈ K.

P4∗: Whenever f(x, y) ≥ 0 with x, y ∈ K, it holds that f(y, x) ≤ 0.

P4’: For all x1, . . . , xm ∈ K which are pairwise different, and all λ1, . . . , λm which are
strictly positive and such that

∑m
i=1 λi = 1, it holds that

min
1≤i≤m

f

(
xi,

m∑
j=1

λjx
j

)
< 0. (2.1)

P4” : For all x1, . . . , xm ∈ K and all λ1, . . . , λm ≥ 0 such that
∑m

i=1 λi = 1, it holds
that

m∑
i=1

λif

(
xi,

m∑
k=1

λkx
k

)
≤ 0. (2.2)

P5 : For any sequence {xj}∞j=0 ⊆ K satisfying limj→∞ ‖xj‖ = +∞, there exists
u ∈ K and j0 ∈ N such that f(xj, u) ≤ 0 for all j ≥ j0.

In this chapter, unless otherwise stated, we assume that B is a reflexive Banach
space, that K is a closed convex subset of B with nonempty relative interior, and that
g belongs to F , as defined in Section 1.5, with dom(g) = B.

2.1 Regularization of Equilibrium Problems

In this section we associate to a given equilibrium problem EP(f,K), another equi-
librium problem which under some reasonable assumptions can be considered as a
regularization of EP(f,K) in the sense that this new equilibrium problem attains a
unique solution. For constructing such a regularization for EP(f,K), we take x̄ ∈
B, e ∈ B∗, λ ∈ R++, and we define EP(f̃ , K) with
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f̃(x, y) = f(x, y) + γ〈g′(x)− g′(x̄), y − x〉 − 〈e, y − x〉, (2.3)

where g : B → R is a totally convex and Fréchet differentiable function. If EP(f̃ , K)
is the regularized equilibrium problem associated to EP(f,K), we say that γ is a regu-
larization parameter and f̃ is a regularized bifunction for EP(f,K). We also say that
EP(f̃ , K) is an exact regularized equilibrium problem for EP(f,K) if e = 0, and other-
wise we say that it is an inexact regularized equilibrium problem for EP(f,K). In this
situation, f̃ is called an exact regularized bifunction (respectively inexact regularized
bifunction) whenever e = 0 (respectively e 6= 0).

The following proposition guarantees that, under adequate monotonicity assump-
tions, the function f̃ introduced in (2.3) is a regularization of f .

Proposition 2.1.1. Consider EP(f,K) satisfying P1–P4. Assume that K has nonempty
relative interior. Fix (x̄, e) ∈ B × B∗ and γ > θ, where θ is the undermonotonicity
constant in P4. Assume that g : B → R satisfies H1–H2 and H5. If f̃ : K ×K → R
is defined as (2.3), then EP(f̃ , K) has a unique solution.

Proof. We first prove existence of solutions. In view of Theorem 1.9.5, it suffices to

show that f̃ satisfies P1–P3, P4∗ and P5. It follows from (2.3) that f̃ inherits P1–P3
from f . Now we claim that f̃ satisfies P4∗. Note that

f̃(x, y) + f̃(y, x) = f(x, y) + f(y, x)− γ〈g′(x)− g′(y), x− y〉
≤ (θ − γ)〈g′(x)− g′(y), x− y〉 ≤ 0,

(2.4)

using the definition of f̃ in the equality and the fact that f satisfies P4 in the first
inequality. The second inequality follows from the facts that g is strictly convex, as a
consequence of H2, and γ > θ. It follows from (2.4) that P4∗ holds for f̃ . In order to
apply Theorem 1.9.5, it suffices to establish that f̃ satisfies P5. So, we take a sequence
{xj}∞j=0 ⊂ K such that limj→∞ ‖xj‖ = +∞. We claim that P5 holds with u equal to
the Bregman projection of x̄ onto K, as defined in (1.3). Note that

f̃(xj, u) = f(xj, u)− γ〈g′(xj)− g′(x̄), xj − u〉 − 〈e, u− xj〉
= f(xj, u)− γ〈g′(u)− g′(x̄), xj − u〉 − γ〈g′(xj)− g′(u), xj − u〉 − 〈e, u− xj〉
≤ −f(u, xj)− γ〈g′(u)− g′(x̄), xj − u〉+ (θ − γ)〈g′(xj)− g′(u), xj − u〉
+ ‖e‖∗

∥∥u− xj∥∥
≤ −f(u, xj) + (θ − γ)〈g′(xj)− g′(u), xj − u〉+ ‖e‖∗

∥∥u− xj∥∥ ,
(2.5)

using P4 and Cauchy-Schwartz inequality in the first inequality and Proposition 1.6.2(ii)
in the second one, taking into account that γ > θ and xj ∈ K. We introduce now some
notation for the marginals of f . For x ∈ K, define Fx : K → R as
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Fx(y) = f(x, y). (2.6)

Take x̂ ∈ ri(K) (see Definition 1.1.16), which is nonempty by our assumption. Since
Fu is convex by P2, its subdifferential at x̂, denoted as ∂Fu(x̂), is nonempty (see
Proposition 1.4.2(ii)–(iii)). Take v̂ ∈ ∂Fu(x̂). By the definition of subdifferential, we
have

〈v̂, xj − x̂〉 ≤ Fu(x
j)− Fu(x̂) = f(u, xj)− f(u, x̂). (2.7)

In view of (2.7),

−f(u, xj) ≤ 〈v̂, x̂− xj〉 − f(u, x̂)

≤ ‖v̂‖∗
∥∥x̂− xj∥∥− f(u, x̂)

≤ ‖v̂‖∗
∥∥u− xj∥∥+ ‖v̂‖∗ ‖x̂− u‖ − f(u, x̂),

(2.8)

using Cauchy-Schwartz inequality and the triangle inequality in the second and third
inequalities, respectively.

We now find an upper bound for the second term in the last expression of (2.5).

〈g′(xj)− g′(u), xj − u〉 = Dg(x
j, u) +Dg(u, x

j) ≥ Dg(x
j, u) =

g(xj)− g(u)− 〈g′(u), xj − u〉 ≥ g(xj)− g(u)− ‖g′(u)‖∗
∥∥xj − u∥∥ , (2.9)

using the definition of Bregman distance in the first equality, nonnegativity of Dg,
which follows from H2, in the first inequality, and Cauchy-Schwartz inequality in the
second inequality.

Now we utilize the inequalities obtained in (2.8) and (2.9) to get an upper bound
for the rightmost expression in (2.5).

f̃(xj, u) ≤ (θ − γ)

[
g(xj)− ‖v̂‖∗ + ‖e‖∗ + (γ − θ) ‖g′(u)‖∗

γ − θ
∥∥xj − u∥∥]

+(γ − θ)g(u) + ‖v̂‖∗ ‖x̂− u‖ − f(u, x̂). (2.10)

Let z = u and ρ = (γ−θ)−1(‖v̂‖∗+‖e‖∗)+‖g′(u)‖∗. Since θ−γ < 0, limj→∞ ‖xj‖ = +∞
and g satisfies H5, it follows from (2.10) that limj→∞ f̃(xj, u) = −∞. Therefore,
f̃(xj, u) ≤ 0 for large enough j. We have shown that f̃ satisfies P5. Hence, f̃ satisfies
all the assumptions of Theorem 1.9.5, which implies that EP(f̃ , K) has solutions.

Now we establish uniqueness of the solution. Assume that x̃ and x̃′ solve EP(f̃ , K).
Using the definition of f̃ , we have that

0 ≤ f̃(x̃, x̃′) = f(x̃, x̃′) + γ〈g′(x̃)− g′(x̄), x̃′ − x̃〉 − 〈e, x̃′ − x̃〉. (2.11)

0 ≤ f̃(x̃′, x̃) = f(x̃′, x̃) + γ〈g′(x̃′)− g′(x̄), x̃− x̃′〉 − 〈e, x̃− x̃′〉. (2.12)

35



Adding (2.11) and (2.12), and using P4, we get

0 ≤ f(x̃, x̃′) + f(x̃′, x̃)− γ〈g′(x̃)− g′(x̃′), x̃− x̃′〉 ≤ (θ − γ)〈g′(x̃)− g′(x̃′), x̃− x̃′〉 ≤ 0.

Since θ− γ < 0, we obtain 〈g′(x̃)− g′(x̃′), x̃− x̃′〉 = 0, implying that x̃ = x̃′, because g
is strictly convex as a consequence of H2.

2.2 Inexact Versions of the Proximal Point Meth-

ods for EP(f,K)

We start by presenting an exact proximal point method for equilibrium problem in
Banach spaces. Consider EP(f,K), where K ⊂ B is closed and convex and f :
K × K → R satisfies P1–P4 and any one among P4’, P4” and P4∗. The algorithm
requires two exogenous data: an auxiliary function g : B → R satisfying the regularity
properties H1–H6 and a sequence of regularization parameters {γj}∞j=0 ⊂ (θ, γ̄], where
θ is the constant of undermonotonicity appeared in P4 and γ̄ > θ. In fact, assumptions
H1, H2, and H5 are essential to provide a regularization for equilibrium problems (See
Proposition 2.1.1). Assumptions H1–H5 are used to show that all cluster points of the
sequence generated by our methods solve the equilibrium problem, and assumption H6
implies the uniqueness of such cluster points (See Theorem 2.3.5 and Theorem 2.3.8)

The algorithm generates a sequence {xj}∞j=0 ⊂ K as follows: x0 is an arbitrary
point in K, and, given xj, xj+1 is the solution of EP(fj, K) with

fj(x, y) = f(x, y) + γj〈g′(x)− g′(xj), y − x〉.
Existence and uniqueness of xj+1 are consequences of Proposition 2.1.1, with γ = γj,
x̄ = xj and e = 0. When B is a Hilbert space and g(x) = 1

2
‖x‖2 this method reduces to

the one analyzed in [32]. The convergence properties of the method can be summarized
as follow.

Proposition 2.2.1. Consider EP(f,K) such that K has nonempty relative interior.
Assume that f satisfies P1–P4 and additionally any one among P4’, P4” and P4∗.
Suppose that g : B → R satisfies H1–H5 defined in the beginning of this chapter and
an exogenous sequence {γj}∞j=0 ⊂ (θ, γ̄], where θ is the undermonotonicity constant in
P4. Let {xj}∞j=0 be the sequence generated by the above exact proximal point method.
In this situation, the following statements hold.

i) If EP(f,K) has solutions, then the sequence {xj}∞j=0 is bounded and asymptoti-
cally solves the problem EP(f,K). In other words, lim infj→∞ f(xj, y) ≥ 0 for all
y ∈ K.

ii) If additionally f(·, y) is weakly upper semicontinuous for all y ∈ K, then all weak
cluster points of {xj}∞j=0 are solutions of EP(f,K).
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iii) If additionally either g satisfies H6 or EP(f,K) has a unique solution, then
{xj}∞j=0 is weakly convergent to a solution of EP(f,K).

We will not prove this proposition, because the exact method is indeed a particular
case of the two inexact methods which we present next, together with their convergence
analysis.

Both inexact algorithms fit in the following scheme: given xj, an auxiliary point x̃j

is computed as the exact solution of a perturbed problem EP(f ej , K), where

f ej (x, y) = fj(x, y)− 〈ej, y − x〉,

and ej ∈ B∗ is an arbitrary error vector whose norm is “small”, i.e. bounded by an
appropriate function of the data available at iteration j, namely γj, x

j and x̃j. The
error vector ej is then used for building a hyperplane Hj which separates xj from set
SE(f,K). Then xj+1 is obtained by either projecting xj onto Hj with respect to the
Bregman distance Dg (in the case of Algorithm IPPBP), or by taking a step from xj in
the direction of Hj with respect to the metric induced by Dg (in the case of Algorithm
IPPE). We mention parenthetically that seeing inexact solutions of a given problem as
exact solutions of a perturbed problem is a frequent tool in Numerical Analysis, like
in the error analysis of methods for solving systems of linear equations (see, e.g., [51]).

The function g and the sequence {γj}∞j=0 appearing in the following two algorithms
satisfy the same assumptions as those used in the exact algorithm given above. Ad-
ditionally, we will need a relative error bound σ ∈ [0, 1] for Algorithm IPPBP. In the
case of Algorithm IPPE, we assume that σ ∈ [0, 1).

Algorithm IPPBP: Inexact Proximal Point+Bregman Projection Method
for EP(f,K)

1. Take an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1]. Initialize the algorithm with x0 ∈ B.

2. Given xj ∈ int(dom(g)) = B, find a pair (x̃j, ej) ∈ B × B∗ such that x̃j solves
EP(f̃ ej , K) with

f ej (x, y) = f(x, y) + γj〈g′(x)− g′(xj), y − x〉 − 〈ej, y − x〉, (2.13)

i.e.

f ej (x̃j, y) ≥ 0 ∀y ∈ K, (2.14)

and ej satisfies

∥∥ej∥∥∗ ≤ σγj

{
Dg(x̃

j, xj) if ‖xj − x̃j‖ < 1

νg(x
j, 1) if ‖xj − x̃j‖ ≥ 1,

(2.15)

with Dg, νg as in Definition 1.4.8(i) and Definition 1.4.8(ii), respectively.
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3. Let

vj = γj[g
′(xj)− g′(x̃j)] + ej. (2.16)

If vj = 0 or x̃j = xj, then stop. Otherwise, take Hj = {x ∈ B : 〈vj, x − x̃j〉 = 0} and
define

xj+1 = argmin
x∈Hj

Dg(x, x
j). (2.17)

Algorithm IPPE: Inexact Proximal Point-Extragradient Method for EP(f,K)

1. Take an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1). Initialize the algorithm with x0 ∈ B.

2. Given xj, find a pair (x̃j, ej) ∈ B ×B∗ such that x̃j solves EP(f ej , K) with

f ej (x, y) = f(x, y) + γj〈g′(x)− g′(xj), y − x〉 − 〈ej, y − x〉, (2.18)

i.e.

f ej (x̃j, y) ≥ 0 ∀y ∈ K, (2.19)

and ej satisfies

Dg(x̃
j, (g′)−1[g′(x̃j)− γ−1

j ej]) ≤ σDg(x̃
j, xj). (2.20)

3. If x̃j = xj, then stop. Otherwise,

xj+1 = (g′)−1[g′(x̃j)− γ−1
j ej]. (2.21)

It is worthwhile to observe that the inexact subproblems of both Algorithm IPPBP
(i.e., (2.14)–(2.15)) and Algorithm IPPE (i.e., (2.19)–(2.20)) are solvable. Indeed, given
any ej ∈ B∗, Proposition 2.1.1 ensures the existence of a unique solution for EP(f ej , K),
say x̃j. If we take, in particular, ej = 0, then the left hand sides of both (2.15) and
(2.20) vanish, and so the inequalities in (2.15) and (2.20) are satisfied. We also note
that for ej = 0 both (2.17) and (2.21) give xj+1 = x̃j, so that with this choice of ej both
algorithms reduce to the exact algorithm introduced at the beginning of this section.

2.3 Convergence Analysis

First we settle the issue of finite termination of these algorithms.

Proposition 2.3.1. Suppose that Algorithm IPPBP (respectively Algorithm IPPE)
stops after j steps. Then x̃j generated by Algorithm IPPBP (respectively Algorithm
IPPE) is a solution of EP(f,K).
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Proof. Algorithm IPPBP stops at j-th iteration in two cases: if vj = 0, in which

case, by (2.13) and (2.16), x̃j ∈ SE(f,K), or if x̃j = xj, in which case, by (2.15),
ej = 0, which in turn implies, by (2.16), vj = 0 and we are back to the first case.
Consequently, x̃j is a solution of EP(f,K). Finite termination in Algorithm IPPE
occurs only if x̃j = xj, in which case Dg(x̃

j, xj) = 0, and therefore, by (2.20), ej = 0,
which in turn implies, by (2.18)–(2.19), f(x̃j, y) ≥ 0 for all y ∈ K, so that x̃j ∈
SE(f,K).

As we have already mentioned in Section 1.8, the convergence analysis of the prox-
imal point method for finding zeroes of maximal monotone operators requires mono-
tonicity of the operator, or some variant thereof. For equilibrium problems, we will
work under assumptions weaker than monotonicity (i.e., P4•). We will assume θ-
undermonotonicity (property P4) and additionally any one among the three variants
of pseudomonotonicity introduced in Section 1.9, namely P4∗, P4’ and P4”. The fact
that our convergence analysis works under any of these three assumptions is a conse-
quence of the following result.

Proposition 2.3.2. Assume that any one among P4’, P4” and P4∗ holds. If P2 is
satisfied, then f(y, x∗) ≤ 0 for all y ∈ K and all x∗ ∈ SE(f,K).

Proof. First consider the case P4’. Fixing y ∈ K, we have that f(x∗, λx∗+(1−λ)y) ≥
0 for all 0 ≤ λ ≤ 1, since x∗ ∈ SE(f,K). Now take x1 = y, x2 = x∗ and m = 2 in (2.1),
obtaining f(y, λy + (1 − λ)x∗) < 0. Using lower semicontinuity of f(y, ·) which holds
by property P2 when λ→ 0+, we obtain the desired result. When P4” holds, we take
y ∈ K and then put x1 = y, x2 = x∗, and m = 2 in (2.2), getting

λf(y, λy + (1− λ)x∗) + (1− λ)f(x∗, λy + (1− λ)x∗) ≤ 0. (2.22)

Since the second term in the left hand side of (2.22) is nonnegative because x∗ ∈
SE(f,K), we conclude that f(y, λy + (1 − λ)x∗) ≤ 0 for all λ ∈ (0, 1). We use again
P2 with λ→ 0+ for obtaining the result. The proof for the case P4∗ follows from the
fact that f(x∗, y) ≥ 0 for all y ∈ K and all x∗ ∈ SE(f,K).

From now on we treat separately Algorithm I and Algorithm II in the next two
subsections.

2.3.1 Convergence Analysis of Algorithm IPPBP

We start with a result similar to Lemma 2 in [26].
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Lemma 2.3.3. Let {xj}∞j=0, {x̃j}∞j=0, {γj}∞j=0, and σ be as in Algorithm IPPBP and
assume that g satisfies H2. For all j, it holds that∥∥ej∥∥∗ ∥∥xj − x̃j∥∥ ≤ σγjDg(x̃

j, xj) ≤ γjDg(x
j, x̃j). (2.23)

Proof. We consider two cases. First, if ‖xj − x̃j‖ < 1 then we have that∥∥ej∥∥∗ ∥∥xj − x̃j∥∥ ≤ ∥∥ej∥∥∗ ,
so that the leftmost inequality in (2.23) follows trivially from (2.15). For the second
case, namely ‖xj − x̃j‖ ≥ 1, we will use the fact that νg(x, st) ≥ sνg(x, t) for all
s ≥ 1, t ≥ 0, x ∈ B (see Proposition 1.4.11). Then,

σγjDg(x̃
j, xj) ≥ σγjνg(x

j,
∥∥xj − x̃j∥∥) ≥ σγj

∥∥xj − x̃j∥∥ νg(xj, 1) ≥
∥∥xj − x̃j∥∥∥∥ej∥∥∗ ,

using Definition 1.4.8(ii) in the first inequality, the above stated property of νg in the
second one and (2.15) in the third. Thus, the first inequality of (2.23) is proved, and
the second one holds because σ ∈ [0, 1].

We continue by establishing some basic properties of the sequences {xj}∞j=0, {x̃j}∞j=0

and {vj}∞j=0 generated by Algorithm IPPBP.

Proposition 2.3.4. Consider EP(f,K) such that K has nonempty relative interior.
Assume that f satisfies P1–P4 and also any one among P4’, P4” and P4∗. Take
g : B → R satisfying H1–H5, σ ∈ [0, 1], and an exogenous sequence {γj}∞j=0 ⊂ (θ, γ̄],
where θ is the undermonotonicity constant in P4. Let {xj}∞j=0 be the sequence generated
by Algorithm IPPBP. If EP(f,K) has solutions, then the following statements are true.

i) The sequence {Dg(x
∗, xj)}∞j=0 is nonincreasing and convergent for all x∗ ∈ SE(f,K).

ii) {xj}∞j=0 is bounded.

iii) {xj+1 − xj}∞j=0 converges strongly to 0.

iv) {γ−1
j ej}∞j=0 is bounded.

v) {xj − x̃j}∞j=0 converges strongly to 0.

vi) {vj}∞j=0 converges strongly to 0.

Proof. Take x∗ ∈ SE(f,K). Let H−j = {x ∈ B : 〈vj, x − x̃j〉 ≤ 0}. Since

x̃j ∈ SE(f ej , K) with f ej given by (2.13), we have f ej (x̃j, y) ≥ 0 or equivalently f(x̃j, y) ≥
〈vj, y − x̃j〉 for all y ∈ K, with vj as in (2.16). In particular, f(x̃j, x∗) ≥ 〈vj, x∗ − x̃j〉.
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Using Proposition 2.3.2, we have that 0 ≥ 〈vj, x∗− x̃j〉, so that x∗ ∈ H−j . By definition
of vj and Dg we have that

〈vj, xj − x̃j〉 = γj〈g′(xj)− g′(x̃j), xj − x̃j〉+ 〈ej, xj − x̃j〉
= γj[Dg(x̃

j, xj) +Dg(x
j, x̃j)] + 〈ej, xj − x̃j〉

≥ γjDg(x̃
j, xj) +

[
γjDg(x

j, x̃j)−
∥∥ej∥∥∗ ∥∥xj − x̃j∥∥] ,

(2.24)

where the last inequality follows from the definition of the norm in B∗. Applying now
Lemma 2.3.3, we get from (2.24) 〈vj, xj − x̃j〉 ≥ γjDg(x̃

j, xj) ≥ 0, so that xj ∈ H+
j ,

and in view of (2.17), we are able to apply Lemma 1.6.3 with ỹ = x̃j ∈ B, x = xj,
v = vj, and z = xj+1, obtaining

Dg(x
∗, xj) ≥ Dg(x

∗, xj+1) +Dg(x
j+1, xj) ≥ Dg(x

∗, xj+1). (2.25)

The result of (i) follows from (2.25), taking into account the nonnegativity of Dg. We
also obtain from (2.25) that {xj}∞j=0 ⊆ {y ∈ B : Dg(x

∗, y) ≤ Dg(x
∗, x0)}, and hence

the sequence is bounded because of H1, establishing (ii).
We prove now (iii). Taking limits in (2.25) as j →∞ and using (i), we get

lim
j→∞

Dg(x
j+1, xj) = 0. (2.26)

Since g satisfies H2, we conclude from Proposition 1.5.2 that (iii) holds.
To prove (iv), we consider the set E ⊂ B defined as

E = {y ∈ B :
∥∥xj − y∥∥ ≤ 1 for some j}.

In view of (ii), E is bounded. By Definition 1.4.8(i) and Proposition 1.5.3, Dg is
bounded on E × E, say by ζ > 0. From (2.15), taking into account that σ ∈ [0, 1], we
get

∥∥γ−1
j ej

∥∥
∗ ≤

{
Dg(x̃

j, xj) if ‖xj − x̃j‖ < 1

νg(x
j, 1) if ‖xj − x̃j‖ ≥ 1.

(2.27)

If ‖xj − x̃j‖ ≤ 1 then both xj and x̃j belong to E and we get from (2.27) that∥∥γ−1
j ej

∥∥
∗ ≤ ζ; otherwise, we take any y ∈ B such that ‖y − xj‖ = 1, so that y ∈ E,

and get from Definition 1.4.8(ii) that νg(x
j, 1) ≤ Dg(y, x

j) ≤ ζ, so that, in view of
(2.27),

∥∥γ−1
j ej

∥∥
∗ ≤ ζ also in this case. We conclude that {γ−1

j ej}∞j=0 is bounded.

We proceed to prove (v). Note that 0 ≤
∣∣〈γ−1

j ej, xj+1 − xj〉
∣∣ ≤ ∥∥γ−1

j ej
∥∥
∗ ‖x

j+1 − xj‖.
Since {γ−1

j ej}∞j=0 is bounded by (iv) and {xj+1−xj}∞j=0 converges strongly to 0 by (iii),
we get

lim
j→∞
〈γ−1
j ej, xj+1 − xj〉 = 0. (2.28)

Observe that
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Dg(x
j+1, xj)−Dg(x

j+1, x̃j)−Dg(x̃
j, xj) = 〈g′(xj)− g′(x̃j), x̃j − xj+1〉 =

γ−1
j 〈vj, x̃j − xj+1〉 − 〈γ−1

j ej, x̃j − xj+1〉 = 〈γ−1
j ej, xj+1 − x̃j〉, (2.29)

where the first equality follows from Proposition 1.4.10(b), the second one from (2.16)
and the last one from the fact that xj+1 ∈ Hj = {x ∈ B : 〈vj, x − x̃j〉 = 0}. Thus,
using (2.29),

Dg(x
j+1, xj)−Dg(x

j+1, x̃j) = 〈γ−1
j ej, xj+1 − xj〉+Dg(x̃

j, xj) + 〈γ−1
j ej, xj − x̃j〉

≥ 〈γ−1
j ej, xj+1−xj〉+ 1

γj

[
γjDg(x̃

j, xj)−
∥∥ej∥∥∗ ∥∥xj − x̃j∥∥] ≥ 〈γ−1

j ej, xj+1−xj〉, (2.30)

where the last inequality follows from the leftmost inequality in (2.23), since σ ∈ [0, 1].
Taking limits as j →∞ in the leftmost and rightmost expressions of (2.30), we obtain,
using (2.26) and (2.28),

lim
j→∞

Dg(x
j+1, x̃j) = 0, (2.31)

and therefore, we conclude, using H2 and Proposition 1.5.2, that {xj+1 − x̃j}∞j=0 con-
verges strongly to 0, so that in view of (iii), {xj − x̃j}∞j=0 converges strongly to 0,
establishing (v).

Now we prove (vi). By (v), there exists j0 ∈ N such that, ‖xj − x̃j‖ < 1, for all
j ≥ j0, and consequently for j ≥ j0 our error criterium (2.15) implies that∥∥ej∥∥∗ ≤ σγjDg(x̃

j, xj). (2.32)

Next, we take limit as j goes to∞ in the leftmost and rightmost expressions of (2.29).
The rightmost one converges to 0 by (iii)–(v), the first term in the leftmost expression
converges to 0 by (2.26) and the second term converges to 0 by (2.31). It follows that
limj→∞Dg(x̃

j, xj) = 0, and then, since γj ≤ γ̄, we get from (2.32) that ej is strongly
convergent to 0. From (v) and H3, we get that {g′(xj) − g′(x̃j)}∞j=0 also converges
strongly to 0. It follows then from (2.16) that vj is strongly convergent to 0 as well.

Now we proceed to state and prove our convergence result for Algorithm IPPBP.

Theorem 2.3.5. Consider EP(f,K) such that K has nonempty relative interior. As-
sume that f satisfies P1–P4 and additionally any one among P4’, P4” and P4∗. Take
g : B → R satisfying H1–H5, σ ∈ [0, 1], and an exogenous sequence {γj}∞j=0 ⊂ (θ, γ̄],
where θ is the undermonotonicity constant in P4. Let {xj}∞j=0 be the sequence generated
by Algorithm IPPBP. If EP(f,K) has solutions, then the following statements hold.

i) {x̃j}∞j=0 is an asymptotically solving sequence for EP(f,K).
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ii) If f(·, y) is weakly upper semicontinuous for all y ∈ K, then all cluster points of
{xj}∞j=0 solve EP(f,K).

iii) If in addition either g satisfies H6 or EP(f,K) has a unique solution, then the
whole sequence {xj}∞j=0 is weakly convergent to some solution x∗ of EP(f,K).

Proof. i) Fix y ∈ K. Since x̃j solves EP(f ej , K), by the definition of f ej and Cauchy-

Schwartz inequality, we have that

0 ≤ f ej (x̃j, y) = f(x̃j, y) + 〈γj[g′(x̃j)− g′(xj)]− ej, y − x̃j〉
= f(x̃j, y) + 〈−vj, y − x̃j〉 ≤ f(x̃j, y) +

∥∥vj∥∥∗ ∥∥y − x̃j∥∥ . (2.33)

By Proposition 2.3.4(ii) and Proposition 2.3.4(v), we know that the sequence {x̃j}∞j=0

and therefore, the sequence {y − x̃j}∞j=0, are bounded for each fixed y. Consequently,
taking limits in (2.33) as j →∞ and using Proposition 2.3.4(vi) we get

0 ≤ lim inf
j→∞

f(x̃j, y), (2.34)

for all y ∈ K.
ii) By Proposition 2.3.4(ii) and Proposition 2.3.4(v), {xj}∞j=0 has weak cluster

points, all of which are also weak cluster points of {x̃j}∞j=0. These weak cluster points
belong to K, which, being closed and convex, is weakly closed as stated in Proposition
1.1.14(iii). Let x̃ be a weak cluster points of {x̃j}∞j=0, say the weak limit of the sub-
sequence {x̃`j}∞`=0 of {x̃j}∞j=0. Since f(·, y) is weakly upper semicontinuous, we obtain
from (2.34) that 0 ≤ lim sup`→∞ f(x̃`j , y) ≤ f(x̃, y) for all y ∈ K. As a result, x̃
belongs to SE(f,K).

iii) If EP(f,K) has a unique solution, then the result follows from (ii). Otherwise,
assume that x̂ is another weak cluster point of {xj}∞j=0, say the weak limit of the
subsequence {xij}∞i=0 of {xj}∞j=0. By (ii), both x̃ and x̂ solve EP(f,K). By Proposition
2.3.4(i), both Dg(x̂, x

j) and Dg(x̃, x
j) converge, say to η ≥ 0 and µ ≥ 0, respectively.

Using the definition of Dg, we have that

〈g′(x`j )− g′(xij ), x̂− x̃〉 = Dg(x̂, x
ij )−Dg(x̂, x

`j ) +Dg(x̃, x
`j )−Dg(x̃, x

ij ).

Therefore

∣∣〈g′(x`j )− g′(xij ), x̂− x̃〉∣∣ ≤ ∣∣Dg(x̂, x
ij )−Dg(x̂, x

`j )
∣∣+
∣∣Dg(x̃, x

`j )−Dg(x̃, x
ij )
∣∣ .

(2.35)
Taking limits in (2.35) as j →∞, we get

lim inf
j→∞

∣∣〈g′(x`j )− g′(xij ), x̂− x̃〉∣∣ ≤ |η − η|+ |µ− µ| = 0,

which contradicts H6. As a result, x̃ = x̂.
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2.3.2 Convergence Analysis of Algorithm IPPE

The next proposition establishes the basic property of the generated sequence, in terms
of the Bregman distance from its iterates to any point of the solution set.

Proposition 2.3.6. Consider EP(f,K) where f satisfies P1–P4 and any one among
P4’, P4” and P4∗. Take g : B → R satisfying H1–H5. Let {xj}∞j=0, {x̃j}∞j=0, {γj}∞j=0

and σ be as in Algorithm IPPE. Then

Dg(x
∗, xj+1) ≤ Dg(x

∗, xj)− γ−1
j 〈vj, x̃j − x∗〉 − (1− σ)Dg(x̃

j, xj) ≤ Dg(x
∗, xj), (2.36)

for any x∗ ∈ S(f,K).

Proof. As in the case of Algorithm IPPBP, we define the auxiliary vector vj as

vj = γj[g
′(xj)− g′(x̃j)] + ej, (2.37)

so that (2.21) can be rewritten as

0 = γ−1
j vj + g′(xj+1)− g′(xj). (2.38)

Replacing (2.21) in (2.20), we obtain

Dg(x̃
j, xj+1) ≤ σDg(x̃

j, xj). (2.39)

Note that

Dg(x
∗, xj+1) = Dg(x

∗, xj) + 〈g′(xj)− g′(xj+1), x∗ − x̃j〉+Dg(x̃
j, xj+1)−Dg(x̃

j, xj)

= Dg(x
∗, xj) + 〈γ−1

j vj, x∗ − x̃j〉+Dg(x̃
j, xj+1)−Dg(x̃

j, xj)

≤ Dg(x
∗, xj)− γ−1

j 〈vj, x̃j − x∗〉 − (1− σ)Dg(x̃
j, xj),

(2.40)
using the definition of Dg in the first equality, (2.38) in the second equality and (2.39)
in the inequality. We have proved the leftmost inequality in (2.36).

Since Dg is nonnegative and σ ∈ [0, 1), we obtain from (2.40)

Dg(x
∗, xj+1) ≤ Dg(x

∗, xj)− γ−1
j 〈vj, x̃j − x∗〉. (2.41)

On the other hand, x̃j ∈ SE(f ej , K). Consequently

f(x̃j, y) + γ−1
j 〈−vj, y − x̃j〉 ≥ 0, (2.42)

for all y ∈ K. In particular, (2.42) holds for y = x∗, so that f(x̃j, x∗) ≥ γ−1
j 〈vj, x∗− x̃j〉

which is equivalent to f(x̃j, x∗) ≥ −γ−1
j 〈vj, x̃j − x∗〉. In view of Proposition 2.3.2, any
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one among P4’, P4” and P4∗ implies that f(x̃j, x∗) ≤ 0. Henceforth, we have that
−γ−1

j 〈vj, x̃j − x∗〉 ≤ 0. Replacing this inequality in (2.41), we obtain the rightmost
inequality in (2.36).

The remaining convergence properties of the sequences {xj}∞j=0, {x̃j}∞j=0, {vj}∞j=0 are
established in the following proposition.

Proposition 2.3.7. Consider EP(f,K) such that K has nonempty relative interior.
Assume that f satisfies P1–P4 and also any one among P4’, P4” and P4∗. Take
g : B → R satisfying H1–H5, σ ∈ [0, 1), and an exogenous sequence {γj}∞j=0 ⊂ (θ, γ̄],
where θ is the undermonotonicity constant in P4. Let {xj}∞j=0 be the sequence generated
by Algorithm IPPE. If EP(f,K) has solutions, then the following statements are true.

i) {Dg(x
∗, xj)}∞j=0 is nonincreasing and convergent for all x∗ ∈ SE(f,K).

ii) {xj}∞j=0 is bounded.

iii)
∑∞

j=0 γ
−1
j 〈vj, x̃j − x∗〉 <∞ where vj given by (2.37).

iv)
∑∞

j=0Dg(x̃
j, xj) <∞.

v)
∑∞

j=0Dg(x̃
j, xj+1) <∞ .

vi) {x̃j − xj}∞j=0 converges strongly to 0, and consequently {x̃j}∞j=0 is bounded.

vii) {xj+1 − xj}∞j=0 converges strongly to 0.

viii) {vj}∞j=0 converges strongly to 0.

Proof. Take x∗ ∈ SE(f,K). By Proposition 2.3.6, {Dg(x
∗, xj)}∞j=0 is a nonnega-

tive and nonincreasing sequence, henceforth convergent, and {xj}∞j=0 is contained in
a level set of Dg(x

∗, ·), which is bounded by H1, establishing (i)–(ii). Invoking again
Proposition 2.3.6,

0 ≤ γ−1
j 〈vj, x̃j − x∗〉+ (1− σ)Dg(x̃

j, xj) ≤ Dg(x
∗, xj)−Dg(x

∗, xj+1),

from which (iii) and (iv) follow easily. Item (v) follows from (iv) and (2.39). For (vi)
and (vii), observe that limj→∞Dg(x̃

j, xj) = limj→∞Dg(x̃
j, xj+1) = 0 as a consequence

of (iv), (v). Since {xj}∞j=0 is bounded by (i), we can apply Proposition 1.5.2 to obtain
the strong convergence of {x̃j − xj}∞j=0 and {x̃j − xj+1}∞j=0 to 0, which entails the
strong convergence of {xj − xj+1}∞j=0 to 0. Finally, (viii) is obtained from (vii) and
(2.38) taking limits with j →∞, using the facts that H3 holds and {γj}∞j=0 ⊂ (θ, γ̄].

The following theorem completes the convergence analysis of Algorithm IPPE.
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Theorem 2.3.8. Consider EP(f,K) such that K has nonempty relative interior. As-
sume that f satisfies P1–P4 and also any one among P4’, P4” and P4∗. Take g : B → R
satisfying H1–H5, σ ∈ [0, 1), and an exogenous sequence {γj}∞j=0 ⊂ (θ, γ̄], where θ is the
undermonotonicity constant in P4. Let {xj}∞j=0 be the sequence generated by Algorithm
IPPE. If EP(f,K) has solutions, then the following statements hold.

i) {x̃j}∞j=0 is an asymptotically solving sequence for EP(f,K).

ii) If f(·, y) is weakly upper semicontinuous for all y ∈ K, then all cluster points of
{xj}∞j=0 solve EP(f,K).

iii) If in addition either g satisfies H6 or EP(f,K) has a unique solution, then the
whole sequence {xj}∞j=0 is weakly convergent to some solution x∗ of EP(f,K).

Proof. The proof is similar to the one of Theorem 2.3.5, using now Proposition 2.3.7

instead of Proposition 2.3.4.

We comment that when B is a strictly convex and smooth Banach space and we
take g(x) = ‖x‖p, then we have an explicit formula for (g′)−1, in term of φ′, where φ is
defined as φ(x) = 1

q
‖x‖q∗ with 1

p
+ 1

q
= 1. Indeed, (g′)−1 = p1−qφ′.

Now we look at the two additional conditions imposed in items (ii) and (iii) of
Theorem 2.3.5 and Theorem 2.3.8. Not much can be done about assumption H6 on
g, required for uniqueness of the weak limit points of {xj}∞j=0: it is rather demanding
(as mentioned before, functions satisfying it are known only in very special Banach
spaces), but it seems to be inherent to proximal point methods in Banach spaces,
even in the exact version of the method for finding zeroes of monotone operators (e.g.,
in [12]). The situation is different in connection with weak upper semicontinuity of
f(·, y), required for establishing that the weak limit points of {xj}∞j=0 are solutions of
the equilibrium problem. It is also quite demanding, but we mention that it holds at
least in two significant cases: when B is finite dimensional (where it follows from P3,
since in this case weak and strong continuity coincide) and when f(·, y) is concave for
all y ∈ K. Moreover, it is possible to replace it by a much weaker hypothesis, through
a reformulation of the equilibrium problem, to be developed in the following section,
but only for the case of a monotone f , i.e. satisfying P4• instead of P4.

2.4 A Reformulation of the Equilibrium Problem

We will establish here that SE(f,K) coincides with the set of zeroes of a certain point-
to-set operator (see also Remark 1.10.2). We will prove that when f is monotone the
graph of this operator enjoys the demiclosedness property, in the sense of Definition
1.3.1(v), which enables us to get rid of the weak upper semicontinuity of f(·, y) in the
convergence analysis of our algorithms.
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Throughout this section we also assume that ∂Fx(y) 6= ∅ for all x, y ∈ K, where the
function Fx is given by (2.6) for every x ∈ K. This is the case, for instance, if f(x, ·)
can be extended, preserving its convexity and its continuity, to some open subset W of
B, containing K, for all x ∈ K as described in Proposition 1.4.2(ii)–(iii). We associate
to EP(f,K) the operator T f : B → P(B∗) defined as

T f (x) = ∂Fx(x) +NK(x), (2.43)

where Fx is as in (2.6), i.e. Fx(y) = f(x, y), and ∂Fx(y) denotes its subdifferential at
the point y.

Proposition 2.4.1. The set of zeroes of T f is equal to SE(f,K).

Proof. By definition, we have that

x∗ ∈ SE(f,K)⇔ Fx∗(x
∗) = f(x∗, x∗) = 0 ≤ f(x∗, y) = Fx∗(y) ∀y ∈ K.

So, we have that x∗ ∈ SE(f,K) if and only if x∗ minimizes the function Fx∗ over
K. Since Fx∗ and K are convex, taking into account Theorem 1.7.2, the necessary
and sufficient condition for x∗ to be a minimizer of Fx∗ over K is the existence of
v∗ ∈ ∂Fx∗(x

∗) such that 〈v∗, y − x∗〉 ≥ 0 for all y ∈ K. In view of (1.1), that is
precisely equivalent to saying that 0 ∈ ∂Fx∗(x∗) + NK(x∗) = T f (x∗) which completes
the demonstration.

Corollary 2.4.2. Consider the sequence {x̃j}∞j=0 generated by either Algorithm IPPBP

or Algorithm IPPE. Then x̃j is the zero of T f
e
j , as defined in (2.43), with f ej as in (2.13),

i.e.

ej + γj[g
′(xj)− g′(x̃j)] ∈ ∂Fx̃j (x̃j) +NK(x̃j). (2.44)

Proof. Since x̃j is the solution of EP(f ej , K), by Proposition 2.4.1, it is a zero of

T f
e
j . The rule of subdifferential calculus, expressed in Proposition 1.4.4, applied to the

convex function

ϕ(y) = f ej (x, y) = f(x, y) + γj〈g′(x)− g′(xj), y − x〉 − 〈ej, y − x〉
lead to (2.44), after taking x = x̃j and evaluating both NK and the subdifferential of
ϕ at the same point, namely x̃j.

Corollary 2.4.2 allows us to rewrite the iterative step of our algorithms. For the
case of Algorithm IPPBP, Step 2 is equivalent to finding a pair (x̃j, ej) ∈ B ×B∗ such
that
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ej + γj[g
′(xj)− g′(x̃j)] ∈ ∂Fx̃j (x̃j) +NK(x̃j), (2.45)

∥∥ej∥∥∗ ≤ σγj

{
Dg(x̃

j, xj) if ‖xj − x̃j‖ < 1

νg(x
j, 1) if ‖xj − x̃j‖ ≥ 1.

(2.46)

Now we must explore the connection between the monotonicity properties of func-
tion f and operator T f . Consider θ = 0, g : B → R satisfying H1–H5 and define
U f : B → P(B∗) as

U f (x) =

{
∂Fx(x) if x ∈ K
∅ otherwise.

(2.47)

It is essential to note that U f is not the subdifferential of a convex function; rather,
at each point x it is the subdifferential of a certain convex function, namely Fx, but
this function changes with the argument of the operator. Thus, the monotonicity of U
is not guaranteed “a priori”, but we have the following elementary result.

Proposition 2.4.3. If f satisfies P1–P2 and P4•, then U f is monotone.

Proof. In view of (2.47), we only need to worry with points x, y ∈ K. Take

x, y ∈ K, u ∈ U f (x) and v ∈ U f (y). Using, P1, P2 and the definition of ∂Fx, we obtain

〈u, y − x〉 ≤ Fx(y)− Fx(x) = f(x, y)− f(x, x) = f(x, y), (2.48)

〈v, x− y〉 ≤ Fy(x)− Fy(y) = f(y, x)− f(y, y) = f(y, x). (2.49)

Adding (2.48) and (2.49) we get

−〈u− v, x− y〉 = 〈u, y − x〉+ 〈v, x− y〉 ≤ f(x, y) + f(y, x) ≤ 0, (2.50)

using P4• in the last inequality. We conclude from (2.50) that 0 ≤ 〈u − v, x − y〉,
establishing monotonicity of U f .

In order to establish the desired demiclosedness property, we need maximal mono-
tonicity of U f . This is less elementary, and we will invoke again the existence result in
Proposition 2.1.1.

The following result has been established in Theorem 4.5.7 of [11] for the case of
g(x) = 1

2
‖x‖2, λ = 1. See also Remark 10.8 in [61].

Proposition 2.4.4. If T : B → P(B∗) is monotone, g : B → R satisfies H2 and the
operator T + λg′ is onto for some λ > 0, then T is maximal monotone.
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Proof. Take a monotone operator T̄ such that T ⊂ T̄ , and a pair (v, z) such that

v ∈ T̄ (z). We must show that v ∈ T (z). Define b = v + λg′(z). Since T + λg′ is onto,
there exists x ∈ B such that

b = v + λg′(z) ∈ T (x) + λg′(x) ⊆ T̄ (x) + λg′(x). (2.51)

On the other hand, since v ∈ T̄ (z), we have that

b = v + λg′(z) ∈ T̄ (z) + λg′(z). (2.52)

Since g′ is strictly monotone by H2, the same holds for T̄ +λg′, and it follows therefore
from (2.51) and (2.52) that x = z. Thus, making x = z in the first inclusion of (2.51),
we get v+ λg′(z) ∈ T (z) + λg′(z), which implies that v ∈ T (z). It follows that T̄ ⊂ T ,
and hence T is maximal.

Now we use Proposition 2.1.1 and Proposition 2.4.4 to establish maximal mono-
tonicity of T f .

Proposition 2.4.5. If f satisfies P1–P3, P4• and g satisfies H1–H2, H4–H5, then T f ,
as defined in (2.43), is maximal monotone.

Proof. Consider T f = U f + NK as in (2.43). We want to use Proposition 2.4.4, for

which we need to show that T f is monotone and that T f + λg′ is onto for some λ > 0.
Note that U f is monotone by Proposition 2.4.3. Since NK is certainly monotone, it
follows that T f is monotone as well. Now we address the surjectivity issue. Take
any λ > 0 and b ∈ B∗. We want to prove the existence of some x ∈ K such that
b ∈ (T f + λg′)(x). Consider f̃ as in (2.3) with e = 0, x̄ ∈ B and γ = λ satisfying
g′(x̄) = λ−1b, i.e.

f̃(x, y) = f(x, y) + λ〈g′(x)− λ−1b, y − x〉. (2.53)

Note that such an x̄ exists by H4, and that EP(f̃ , K) has a unique solution by Proposi-
tion 2.1.1, say x̂. Since f̃(x̂, y) ≥ 0 for all y ∈ K and f̃(x̂, x̂) = 0, x̂ solves the following
convex minimization problem:

min f̃(x̂, y) s.t. y ∈ K.

Thus, x̂ satisfies the first order optimality condition for this problem (see Theorem
1.7.2), which is, in view of (2.53) and the differentiability of g,

0 ∈ ∂Fx̂(x̂) + λ[g′(x̂)− λ−1b] +NK(x̂),

or equivalently
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b ∈ ∂Fx̂(x̂) + λg′(x̂) +NK(x̂) = T f (x̂) + λg′(x̂).

We have established surjectivity of T f + λg′. We now apply Proposition 2.4.4 to
conclude that T f is maximal monotone.

Now we can get rid of the weak upper semicontinuity assumption in Theorem 2.3.5
and Theorem 2.3.8, using the demiclosedness property of maximal monotone operators
announced in Proposition 1.3.2.

Theorem 2.4.6. Assume that

i) f satisfies P1–P3, and P4•,

ii) g : B → R satisfies H1–H5,

iii) {γj}∞j=0 is contained in (0, γ̄] for some γ̄ > 0,

iv) σ ∈ [0, 1),

v) f(x, ·) can be extended, for all x ∈ K, to an open set W ⊃ K, while preserving
its convexity,

vi) K has nonempty relative interior,

vii) EP(f,K) has solutions,

then, for all x0 ∈ K, the sequence {xj}∞j=0 generated by either Algorithm IPPBP or
Algorithm IPPE is bounded and all its weak cluster points are solutions of EP(f,K).
If moreover g satisfies H6 or EP(f,K) has a unique solution, then {xj}∞j=0 is weakly
convergent to a solution of EP(f,K).

Proof. We are within the assumptions of Proposition 2.3.4 and Proposition 2.3.7

with θ = 0. Clearly, P4• is the same as P4 with θ = 0, and, as discussed in Proposition
1.9.4(i), P4• implies P4∗, for instance. Consider first Algorithm IPPBP. The sequence
{xj}∞j=0 is bounded by Proposition 2.3.4(ii). Let x̄ be a cluster point of {xj}∞j=0. Let
{x`j}∞`=0 be a subsequence of {xj}∞j=0 weakly convergent to x̄. By Proposition 2.3.4(v),
the subsequence {x̃`j}∞`=0 is also weakly convergent to x̄. In view of Corollary 2.4.2,
(2.16) and (2.43), we have v`j ∈ T f (x̃`j ). By Proposition 2.3.4(vi), {v`j}∞`=0 is strongly
convergent to 0. Since T f is maximal monotone by Proposition 2.4.5, its graph is
demiclosed by Proposition 1.3.2. It follows from Definition 1.3.1(v) that 0 ∈ T f (x̄),
and therefore x̄ ∈ SE(f,K), in view of Proposition 2.4.1. Uniqueness of the weak
cluster point of {xj}∞j=0 when g satisfies H6 follows exactly as in the proof of Theorem
2.3.5(iii). The case of Algorithm IPPE is dealt with in a similar way, invoking now
Proposition 2.3.7 instead of Proposition 2.3.4.
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We remark that the difference between Theorem 2.3.5 and Theorem 2.3.8 on one
side, and Theorem 2.4.6, besides the fact that the proof of the latter requires the
reformulation of the equilibrium problem as a variational inequality one, lies in the
technical assumption on the extension of f(x, ·) to an open set containing K, which
replaces weak upper semicontinuity of f(·, y), as the tool for establishing optimality of
the weak cluster points of the generated sequence.

At this point we mention that, under the reformulation, Algorithm IPPBP and
Algorithm IPPE coincide with Algorithm I and Algorithm II described in Section 1.8,
(i.e., Algorithm I and Algorithm II proposed in [26]) designed for finding zeroes of max-
imal monotone operators in Banach spaces. Thus, we could have omitted the proof of
Theorem 2.4.6, which has been included just for making Chapter 2 more self-contained.
On the other hand, the results in [26] demand monotonicity of the operator, akin to
monotonicity of f in the case of equilibrium problem, while in Section 2.3 we worked
under the weaker assumptions of pseudomonotonicity and θ-undermonotonicity (see
Example 1.9.3). An inexact proximal point method for finding zeroes of nonmonotone
operators in Banach spaces has appeared in [22], but in this reference the operator
is assumed to be θ-hypomonotone. In the context of equilibrium problem, this is the
same as stating that [(T f )−1 + θ(g′)−1]−1 is monotone (see Lemma 1 of [22]), while our
θ-undermonotonicity assumption entails that T f + θg′ is monotone. Also, the relations
between θ and the regularization parameters γj in [22] and in this thesis are different.
A thorough discussion on the connection between our exact proximal point method and
the use of proximal point methods for finding zeroes of operators applied to solving
equilibrium problems via the reformulation can be found in [32].

The reformulation is also useful for visualizing the way in which our error criteria
work. In practice, one assumes that one has some algorithm for solving the subproblem
EP(fj, K), which generates a sequence, say {xj,k}∞k=0. At each iteration, one should
check whether xj,k satisfies the error criteria in order to be accepted as an approximate
solution of EP(fj, K). In view of (2.45), (2.46), for the case of Algorithm IPPBP one
should verify whether there exists some ej such that the pair (xj,k, ej) ∈ B×B∗ satisfies

ej + γj[g
′(xj)− g′(xj,k)] ∈ ∂Fxj,k(xj,k) +NK(xj,k),

∥∥ej∥∥∗ ≤ σγj

{
Dg(x

j,k, xj) if
∥∥xj − xj,k∥∥ < 1

νg(x
j, 1) if

∥∥xj − xj,k∥∥ ≥ 1.

If so, we take x̃j = xj,k and continue with the computation of xj+1; otherwise we take
another step of the inner loop and repeat the check with xj,k+1.

In order to support the given notion of approximate solution, it is important to
verify that, at least in some “nice” cases, any feasible point close enough to the exact
solution of the subproblem EP(fj, K) will satisfy our criterion for an approximate
solution, i.e. will solve EP(f ej , K) for some appropriate ej. In such a case, if we use in
the inner loop an algorithm known to converge to the exact solution of the subproblem,
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after a finite number of steps of the auxiliary algorithm we will end up with a vector
satisfying our criteria for being an approximate solution.

We show next that this situation occurs in the smooth case, by which we mean that
the function Fx(y) := f(x, y) is Fréchet differentiable and that the boundary ∂K of K
is smooth, in the following sense:

Definition 2.4.7. Assume that K is a closed convex set with nonempty relative inte-
rior. We say that the boundary of K, denoted by ∂K and defined as ∂K = K \ int(K),
is smooth if there exists a Fréchet differentiable convex function h : B → R such that
K = {x ∈ B : h(x) ≤ 0} and h′(x) 6= 0 for all x ∈ ∂K.

Proposition 2.4.8. If the boundary of K is smooth then NK(x) = {th′(x) : t ≥ 0} for
all x ∈ ∂K.

Proof. Without loss of generality we can assume that int(K) 6= ∅ (otherwise, we

consider the relative interior of the set K). Take x ∈ ∂K, so that h(x) = 0. The fact
that the halfline through h′(x) is contained in NK(x) follows easily from the definition
of NK(x) given by (1.1), the definition of subdifferential, and Proposition 1.4.10(i). In
other words, from Definition 1.4.1(iv) and the fact that h(x) = 0, we have that

〈h′(x), y − x〉 ≤ h(y)− h(x) = h(y) ≤ 0 ∀ y ∈ K, (2.54)

where the rightmost inequality is a consequence of the definition of K. For the reverse
inclusion, we first verify that −h′(x) /∈ NK(x). By contradiction, we assume that
−h′(x) ∈ NK(x), which implies

〈−h′(x), z − x〉 ≤ 0 ∀ z ∈ K. (2.55)

Using (2.54) and (2.55), we get

〈h′(x), y − z〉 ≤ 0 ∀ y, z ∈ K,

which is equivalent to saying that

〈h′(x), y − z〉 = 0 ∀ y, z ∈ K,

but this is a contradiction with hypothesis h′(x) 6= 0. Now we assume that there exists
Λ ∈ NK(x) such that Λ and h′(x) are linearly independent. In this situation, we claim
that there exists z ∈ B such that

〈h′(x), z〉 < 0, (2.56)

〈Λ, z〉 > 0. (2.57)
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To prove the above assertion, we define subsets A<1 , A>1 , A<2 and A>2 of Banach space
B as

A<1 = {y ∈ B : 〈h′(x), y〉 < 0}, A<2 = {y ∈ B : 〈Λ, y〉 < 0},

A>1 = {y ∈ B : 〈h′(x), y〉 > 0}, A>2 = {y ∈ B : 〈Λ, y〉 > 0},

and we show that A<1 ∩ A>2 6= ∅, or, equivalently A>1 ∩ A<2 6= ∅. By contradiction, we
assume that A<1 ∩A>2 = ∅, or, equivalently A>1 ∩A<2 = ∅. It follows from the structure of
A<1 , A>1 , A<2 and A>2 that A<1 ⊂ cl(A<2 ) = A<2 ∪ker(Λ) and A>1 ⊂ cl(A>2 ) = A>2 ∪ker(Λ),
because B = A>2 ∪ cl(A<2 ) = A<2 ∪ cl(A>2 ). Hence,

cl(A<1 ) = A<1 ∪ ker(h′(x)) ⊂ A<2 ∪ ker(Λ) = cl(A<2 ),

cl(A>1 ) = A>1 ∪ ker(h′(x)) ⊂ A>2 ∪ ker(Λ) = cl(A>2 ),

which implies

cl(A<1 ) ∩ cl(A>1 ) = ker(h′(x)) ⊂ ker(Λ) = cl(A<2 ) ∩ cl(A>2 ).

As a result of this fact, ker(h′(x)) ⊂ ker(Λ). In the same line, one can show that
ker(Λ) ⊂ ker(h′(x)), consequently, ker(h′(x)) = ker(Λ), contradicting the linear inde-
pendence of Λ and h′(x) announced in Lemma 1.1.17 (take n = 1 and Λ1 = h′(x)
in Lemma 1.1.17). Thus there exists some z ∈ B satisfying (2.56) and (2.57). Let
y = x+ tz with respect to such a z, and then consider the statement

h(y) = h(x+ tz) = h(x) + t〈h′(x), z〉+ o(t) = t〈h′(x), z〉+ o(t),

which follows from differentiability of h and the fact that h(x) = 0. Consequently, we
conclude from (2.56) that y ∈ K for small enough t > 0, so that, in view of (1.1),
0 ≥ 〈Λ, y − x〉 = t〈Λ, z〉, which contradicts (2.57).

Theorem 2.4.9. Under the hypotheses of Theorem 2.3.5 and Theorem 2.3.8, assume
additionally that K has smooth boundary, Fx : K → R defined as

Fx(y) = f(x, y),

is Fréchet differentiable for each x ∈ K and that (g′)−1 is continuous (for Algorithm
IPPE). Let {xj}∞j=0 be the sequence generated either by Algorithm IPPBP or Algorithm
IPPE. Assume that xj is not a solution of EP(f,K) and let x̂j be the unique solution
of EP(fj, K) with fj defined as

fj(x, y) = f(x, y) + γj〈g′(x)− g′(xj), y − x〉.

Then there exists δj > 0 such that
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i) if x̂j belongs to int(K), then any x ∈ B(x̂j, δj)∩K solves the subproblem (2.14)–
(2.15) in the case of Algorithm IPPBP and (2.19)–(2.20) in the case of Algorithm
IPPE,

ii) if x̂j belongs to ∂K, then any x ∈ B(x̂j, δj) ∩ ∂K solves the subproblem (2.14)–
(2.15) in the case of Algorithm IPPBP and (2.19)–(2.20) in the case of Algorithm
IPPE.

Proof. Note that if we take ej = 0, then EP(f ej , K) reduces to the exact regularized

equilibrium problem EP(fj, K). If {xj}∞j=0 is a sequence generated by either Algorithm
IPPBP or Algorithm IPPE, define Λj : B → B∗ as

Λj(x) = −F ′x(x)− γj[g′(x)− g′(xj)], (2.58)

where F ′x denotes the Fréchet derivative of Fx.
i) We first consider the case of Algorithm IPPBP. Note that x̂j is the unique solution
of EP(fj, K) by Proposition 2.1.1. Define Φj : B → R as

Φj(x) = σγj min{Dg(x, x
j), vg(x

j, 1)}.

Since xj 6= x̂j, because otherwise xj solves EP(f,K), we have that Dg(x̂
j, xj) > 0 and,

by H2,

Φj(x̂
j) > 0. (2.59)

Assume that x̂j ∈ int(K). In this circumstance, there exists δj > 0 such that
B(x̂j, δj) ⊂ K and NK(x) = {0} for all x ∈ B(x̂j, δj). Since x̂j is the exact solu-
tion of the j-th subproblem, it satisfies (2.44) with ej = 0, NK(x̂j) = 0, which implies,
in view of (2.58), that

Λ(x̂j) = 0. (2.60)

Define Ψj : K → R as

Ψj(x) = ‖Λj(x)‖∗ − Φj(x).

By (2.59)–(2.60),

Ψj(x̂
j) = −Φj(x̂

j) < 0.

Continuity of F ′x and g′ ensure continuity of both Λj and Φj, and therefore of Ψj as
well. By (2.60) and continuity of Ψj we can choose the above δj small enough such
that Ψj(x) ≤ 0 for all x ∈ B(x̂j, δj) ∩ K or equivalently ‖Λj(x)‖∗ ≤ Φj(x) for all
x ∈ B(x̂j, δj) ∩K. In such a case, any pair (x, e) with x ∈ B(x̂j, δj) ∩K, e = Λj(x),
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will satisfy (2.45)–(2.46), with (x, e) substituting for (x̃j, ej). Thus any such x can be
taken as the x̃j required by Algorithm IPPBP.

For the case of Algorithm IPPE, we replace Ψj by Ψ̄j : K → R defined as

Ψ̄j(x) = Dg(x, (g
′)−1[g′(xj)− γ−1

j F ′x(x)])− σDg(x, x
j),

and proceed with the same argument.
ii) We start with Algorithm IPPBP. Assume that x̂j ∈ ∂K. Since x̂j is the exact
solution of the j-th subproblem, it satisfies (2.44) with ej = 0, so that, in view of
(2.58), Λ(x̂j) ∈ NK(x̂j). Since ∂K is smooth, we get from Proposition 2.4.8 that
NK(x̂j) = {th′(x̂j) : t ≥ 0}, so that there exists t∗ ≥ 0 such that Λj(x̂

j) = t∗h′(x̂j).
Since h′(x̂j) 6= 0 by Definition 2.4.7, we get t∗ = ‖Λj(x̂

j)‖∗ / ‖h
′(x̂j)‖∗ and therefore

‖Λj(x̂
j)‖∗

‖h′(x̂j)‖∗
h′(x̂j)− Λj(x̂

j) = 0. (2.61)

Define Ψ̂j : K → R as

Ψ̂j(x) =

∥∥∥∥‖Λj(x)‖∗
‖h′(x)‖∗

h′(x)− Λj(x)

∥∥∥∥
∗
− Φj(x).

Ψ̂j is continuous by our smoothness assumption, and Ψ̂j(x̂
j) = −Φj(x̂

j) < 0 by (2.61).

Therefore, we can choose δj > 0 such that Ψ̂j(x) ≤ 0 for all x ∈ B(x̂j, δj) ∩ ∂K or
equivalently ∥∥∥∥‖Λj(x)‖∗

‖h′(x)‖∗
h′(x)− Λj(x)

∥∥∥∥
∗
≤ Φj(x), (2.62)

for all x ∈ B(x̂j, δj) ∩ ∂K. Let now ξ(x) = ‖Λj(x)‖∗ / ‖h
′(x)‖∗ and consider now a

pair (x, e) with x ∈ B(x̂j, δj) ∩ ∂K and e = ξ(x)h′(x) − Λj(x). It follows from (2.62)
and Proposition 2.4.8 that this pair satisfies (2.15) and (2.44) (with x instead of x̃j).
We also note that according to Proposition 2.4.1 an x satisfies (2.14) if and only if it
satisfies (2.44), henceforth we establish the result.

For the case of Algorithm IPPE, we define, instead of Ψ̂j, the function Ψ̃j : K → R
as

Ψ̃j(x) = Dg

(
x, (g′)−1

[
g′(x) + γ−1

j Λj(x)− γ−1
j

‖Λj(x)‖∗
‖h′(x)‖∗

h′(x)

])
− σDg(x, x

j),

and then argue as above.

The following example illustrates the fact that if ∂K is not smooth then the result
of Theorem 2.4.9 fails to hold. We consider only Algorithm IPPBP (a similar example
can be constructed for Algorithm IPPE).
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Example 2.4.10. Consider K = [1
2
, 1]× [1

2
, 1] ⊆ R2. Take x = (x1, x2) ∈ K and y =

(y1, y2) ∈ K. Define f : K×K → R as f(x, y) = 〈x, x−y〉 = x1(x1−y1)+x2(x2−y2).

Note that f satisfies P1–P4 with g(x) = 1
2
‖x‖2. In fact, one can easily show

that f is 1-undermonotone. It is clear that ∂K is not smooth. We also have that
SE(f,K) = {(1, 1)}. Put x0 = (1

2
, 1

2
), γ0 = 10

9
> 1 = θ and σ = 2

5
. Then we have

f0(x, y) = 〈10
9
x0− 1

9
x, x− y〉 and SE(f0, K) = {(1, 1)}. Take e0 = (e01, e

0
2) ∈ R2, so that

f e0 (x, y) = 〈10
9
x0 − 1

9
x + e0, x− y〉. We claim that the unique solution of EP(f e0 , K) is

(1, 1), independently of the error vector ej, thus falsifying the result of Theorem 2.4.9.
Indeed, we need to verify that (4

9
, 4

9
) + e0 ∈ NK ((1, 1)) for all e0 ∈ R2 such that

∥∥e0∥∥ ≤ 4

9
Dg

(
(1, 1), (

1

2
,
1

2
)

)
=

1

9
,

using the reformulation technique, i.e., two statements (2.45) and (2.46). Since

NK ((1, 1)) = R2
+,

as can be easily checked, the condition above becomes (4
9
, 4

9
) + e0 ≥ 0, which certainly

holds whenever ‖e0‖ ≤ 1
9
.

56



Chapter 3

Inexact Augmented Lagrangian
Methods for Equilibrium Problems

This chapter is devoted to exact and inexact augmented Lagrangian methods for equi-
librium problem. The material can be found in [28].

We introduce Algorithm IALE, standing for Inexact Augmented Lagrangian-Ext-
ragradient Method, for solving EP(f,K). We establish the convergence properties of
Algorithm IALE through the construction of an appropriate proximal point method for
a certain equilibrium problem. We also construct and analyze a variant of Algorithm
IALE, called Algorithm LIAL, standing for Linearized Inexact Augmented Lagrangian-
Extragradient Method. We finish this chapter with some remarks.

For the sake of easier reference, the same as Chapter 2, we list here properties
P1–P5 and the variants of P4, introduced in Section 1.9, which we will frequently use
throughout this chapter. Before recalling these properties, we remark that we are going
to work on Rn from now on. In other words, we take B = Rn. In this setting, the
most convenient auxiliary function g to be used in Algorithm IPPBP and Algorithm
IPPE, as presented in Chapter 2, is g(x) = 1

2
‖x‖2, which satisfies properties H1–H6

introduced in Section 1.5 and provides simpler computations, because g′(x) = x. So,
we will restrict ourselves to this auxiliary function.

We point out that, since at each iteration of augmented Lagrangian methods one
solves an unconstrained problem, it is reasonable to assume that the objective function
f can be extended to the whole space. Thus, we assume that f can be extended to
Rn × Rn, while preserving the following properties.

P1: f(x, x) = 0 for all x ∈ Rn.

P2: f(x, ·) : Rn → R is convex and lower semicontinuous for all x ∈ Rn.

P3: f(·, y) : Rn → R is upper semicontinuous for all y ∈ Rn.

P4: There exists θ ≥ 0 such that
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f(x, y) + f(y, x) ≤ θ ‖x− y‖2 ∀x, y ∈ Rn.

P4” : For all x1, . . . , xm ∈ Rn and all λ1, . . . , λm ≥ 0 such that
∑m

i=1 λi = 1, it holds
that

m∑
i=1

λif

(
xi,

m∑
k=1

λkx
k

)
≤ 0.

We will not consider properties P4’ and P4∗ in this chapter because Proposition
3.2.2 below is no longer true if P4’ or P4∗ substitutes for P4”. We also remind that both
P4 and P4” are weaker than monotonicity of f (see Example 1.9.3). We will assume
that the closed convex set K in EP(f,K) is defined by a finite set of convex inequality
constraints. This is the most convenient formulation for developing computationally
implementable augmented Lagrangian methods. More precisely, K is defined as

K = {x ∈ Rn : hi(x) ≤ 0 (1 ≤ i ≤ m)}, (3.1)

where hi : Rn → R is convex (1 ≤ i ≤ m). We will also assume that this set
of constraints satisfies any standard constraint qualification, for instance the Slater’s
condition given in Definition 1.7.3.

3.1 Algorithm IALE for Equilibrium Problems

We propose our Lagrangian bifunction for EP(f,K), L : (Rn×Rm)× (Rn×Rm)→ R
as

L((x, λ), (y, µ)) = f(x, y) +
m∑
i=1

λihi(y)−
m∑
i=1

µihi(x). (3.2)

It is worthwhile to mention that when we consider the convex minimization problem
(1.4) with feasible set C = K (which is as a particular case of EP(f,K) with f(x, y) =
h0(y)− h0(x)), (3.2) reduces to

L((x, λ), (y, µ)) = h0(y)− h0(x) +
m∑
i=1

λihi(y)−
m∑
i=1

µihi(x) = L(y, λ)− L(x, µ),

where L is the usual Lagrangian for convex minimization problem defined in (1.17).
We introduce now our proximal augmented Lagrangian bifunction for EP(f,K).

For this purpose, we first define the real valued function si : Rn×Rn×Rm×R++ → R
(1 ≤ i ≤ m) as
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si(x, y, λ, γ) =
γ

2

[(
max

{
0, λi +

hi(y)

γ

})2

−
(

max

{
0, λi +

hi(x)

γ

})2
]
, (3.3)

and then we propose L̃ : Rn × Rn × Rm × Rn × R++ → R as the proximal augmented
Lagrangian bifunction for EP(f,K), defined as,

L̃(x, y, λ, z, γ) = f(x, y) + γ〈x− z, y − x〉+ γ
m∑
i=1

si(x, y, λ, γ). (3.4)

Now we present an exact augmented Lagrangian method for EP(f,K). Take an
exogenous bounded sequence {γj}∞j=0 ⊂ R++. The algorithm is initialized with a pair
(x0, λ0) ∈ Rn × Rm

+ .
At iteration j, xj+1 is computed as the unique solution of the unconstrained regu-

larized equilibrium problem EP(L̃j,Rn) with L̃j given by

L̃j(x, y) = L̃(x, y, λj, xj, γj) = f(x, y) + γj〈x− xj, y − x〉+
m∑
i=1

si(x, y, λ
j, γj). (3.5)

Then, the dual variables are updated as

λj+1
i = max

{
0, λji +

hi(x
j+1)

γj

}
(1 ≤ i ≤ m). (3.6)

We introduce now our inexact augmented Lagrangian method for solving EP(f,K).

Algorithm IALE: Inexact Augmented Lagrangian-Extragradient Method
for EP(f,K)

1. Take an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1). Initialize the algorithm with (x0, λ0) ∈ Rn × Rm

+ .

2. Given (xj, λj) ∈ Rn × Rm
+ , find a pair (x̃j, ej) ∈ Rn × Rn such that x̃j solves

EP(L̃ej ,Rn), where L̃ej is defined as

L̃ej(x, y) = f(x, y) + γj〈x− xj, y − x〉+
m∑
i=1

si(x, y, λ
j, γj)− 〈ej, y − x〉, (3.7)

with si as given by (3.3), and ej satisfies∥∥ej∥∥ ≤ σγj
∥∥x̃j − xj∥∥ . (3.8)

3. Define λj+1 as
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λj+1
i = max

{
0, λji +

hi(x̃
j)

γj

}
(1 ≤ i ≤ m). (3.9)

4. If (xj, λj) = (x̃j, λj+1), then stop. Otherwise,

xj+1 = x̃j − 1

γj
ej. (3.10)

We mention that the exact augmented Lagrangian method defined by (3.5)–(3.6),
can be realized as a particular instance of Algorithm IALE by taking ej = 0 for
j = 0, 1, . . . . Thus, the convergence analysis for the inexact methods, to be presented
next, holds also for the exact method.

3.2 Convergence Analysis of Algorithm IALE

We will use Algorithm IPPE, introduced in Section 2.2 for solving EP(f,K), as an
auxiliary tool in the convergence analysis of Algorithm IALE. So, we start this section
by reformulating Algorithm IPPE in finite dimensional spaces, with g(x) = 1

2
‖x‖2 as

regularization function.

Algorithm A: Inexact Proximal Point-Extragradient Method for EP(f,K)
in Rn

1. Consider an exogenuous bounded sequence of regularization parameters {γj}∞j=0 ⊂
R++ and a relative error tolerance σ ∈ [0, 1). Initialize the algorithm with x0 ∈ Rn.

2. Given xj, find a pair (x̂j, ej) ∈ Rn × Rn such that x̂j solves EP(f ej , K) with

f ej (x, y) = f(x, y) + γj〈x− xj, y − x〉 − 〈ej, y − x〉, (3.11)

and ∥∥ej∥∥ ≤ σγj
∥∥x̂j − xj∥∥ . (3.12)

3. If x̂j = xj, then stop. Otherwise,

xj+1 = x̂j − γ−1
j ej. (3.13)

The convergence result for Algorithm A, proved in Theorem 2.3.8, reduces to the
following one.
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Theorem 3.2.1. Consider EP(f,K) satisfying P1–P4 and P4”. Take an exogenous
sequence {γj}∞j=0 ⊂ (θ, γ̄] for some γ̄ > θ, where θ is the undermonotonicity constant
in P4, and a relative error tolerance σ ∈ [0, 1). Let {xj}∞j=0 be the sequence generated
by Algorithm A. If EP(f,K) has solutions, then {xj}∞j=0 converges to some solution x∗

of EP(f,K).

Proof. The validity of this theorem certainly follows from Theorem 2.3.8, because the

technical hypotheses H1–H6 required for auxiliary function g(x) = 1
2
‖x‖2 and weakly

upper semicontinuity of function f(·, y) hold automatically in the finite dimensional
case, which is the one of interest here.

We will apply Algorithm A for solving equilibrium problem EP(L,Rn ×Rm
+ ), with

L as in (3.2), for which we must check that this equilibrium problem satisfies P1–P4
and P4”.

Proposition 3.2.2. Assume that f satisfies P1–P4 on Rn × Rn, and that K is given
by (3.1). Then L, as defined in (3.2), satisfies P1–P4 on (Rn × Rm

+ ) × (Rn × Rm
+ ).

Additionally, if f satisfies P4” on Rn ×Rn, so does (3.2) on (Rn ×Rm
+ )× (Rn ×Rm

+ ).

Proof. It follows easily from (3.2) that EP(L,Rn×Rm
+ ) inherits P1–P3 from EP(f,K).

Furthermore, (3.2) implies that

L((x, λ), (y, µ)) + L((y, µ), (x, λ)) = f(x, y) + f(y, x) ≤ θ ‖x− y‖2 ,

using the fact that f satisfies P4 on Rn×Rn. We have shown that P4 holds for L with
the same undermonotonicity constant θ valid for f . We prove next that L satisfies P4”
on (Rn × Rm

+ ) × (Rn × Rm
+ ). Take x1, . . . , xq ∈ Rn, λ1, . . . , λq ∈ Rm

+ and t1, . . . , tq ≥ 0
such that

∑q
`=1 t` = 1. Then

L

(
(x`, λ`),

(
q∑

k=1

tkx
k,

q∑
k=1

tkλ
k

))
=

f

(
x`,

q∑
k=1

tkx
k

)
+

m∑
i=1

λ`ihi

(
q∑

k=1

tkx
k

)
−

m∑
i=1

q∑
k=1

tkλ
k
i hi(x

`) ≤ (3.14)

f

(
x`,

q∑
k=1

tkx
k

)
+

m∑
i=1

q∑
k=1

λ`itkhi(x
k)−

m∑
i=1

q∑
k=1

tkλ
k
i hi(x

`),

using the convexity of the hi’s in the inequality. Multiplying the leftmost and rightmost
expressions of (3.14) by t` and then summing with 1 ≤ ` ≤ q, we get
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q∑
`=1

t`L

(
(x`, λ`),

(
q∑

k=1

tkx
k,

q∑
k=1

tkλ
k

))
≤

q∑
`=1

t`f

(
x`,

q∑
k=1

tkx
k

)
+

q∑
`=1

m∑
i=1

q∑
k=1

t`tkλ
`
ihi(x

k)−
q∑
`=1

m∑
i=1

q∑
k=1

t`tkλ
k
i hi(x

`). (3.15)

The first term in the right hand site of (3.15) is nonpositive because f satisfies P4”
on the whole space Rn × Rn, and the sum of the remaining terms vanishes. Thus L
satisfies P4”.

Now we can apply Algorithm A for solving EP(L,Rn×Rm
+ ). In view of (3.11), the

regularized function at iteration j is given by

L̂ej((x, λ), (y, µ)) = L((x, λ), (y, µ)) +γj〈x−xj, y−x〉+γj〈λ−λj, µ−λ〉−〈ej, y−x〉 =

f(x, y)+
m∑
i=1

λihi(y)−
m∑
i=1

µihi(x)+γj〈x−xj, y−x〉+γj〈λ−λj, µ−λ〉−〈ej, y−x〉, (3.16)

so that at iteration j we must find a pair (x̂j, λ̂j), (ej, 0) ∈ Rn × Rm such that (x̂j, λ̂j)

solves the equilibrium problem EP(L̂ej ,Rn ×Rm
+ ) with L̂ej as defined in (3.16), and the

iterative formulae (3.12)–(3.13) take the form:∥∥(ej, 0)
∥∥ =

∥∥ej∥∥ ≤ σγj

∥∥∥(x̂j − xj, λ̂j − λj)
∥∥∥ ,

xj+1 = x̂j − γ−1
j ej, (3.17)

λj+1 = λ̂j. (3.18)

Note that we do not use an error vector associated with the λ and µ arguments of
L. This is related to the fact that in Step 3 of Algorithm IALE the λji ’s are updated
through the closed formula (3.9), so that we can assume that such an updating is
performed in an exact way.

We state next the convergence result for this particular instance of Algorithm A
(i.e., (3.17)–(3.18)), as well as the fact that (3.16) can be considered as a regularization
for EP(L,Rn × Rm

+ ).
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Corollary 3.2.3. Consider f satisfying P1–P4. Fix (x̄, λ̄) ∈ Rn×Rm, (e, 0) ∈ Rn×Rm

and that γ > θ, where θ is the undermonotonicity constant in P4. In this situation,
EP(L̂e,Rn × Rm

+ ) has a unique solution, with L̂e defined as

L̂e((x, λ), (y, µ)) = L((x, λ), (y, µ)) + γ〈x− x̄, y − x〉+ γ〈λ− λ̄, µ− λ〉 − 〈e, y − x〉 =

f(x, y) +
m∑
i=1

λihi(y)−
m∑
i=1

µihi(x) + γ〈x− x̄, y − x〉+ γ〈λ− λ̄, µ− λ〉 − 〈e, y − x〉.

Proof. The result follows from Proposition 2.1.1 and Proposition 3.2.2.

Corollary 3.2.4. Consider EP(f,K) with K given by (3.1) and f satisfying P1–
P4 and P4” on Rn × Rn. Take {γj}∞j=0 ⊂ (θ, γ̄] for some γ̄ > θ, where θ is the
undermonotonicity constant of f , and that σ ∈ [0, 1). Let {(xj, λj)}∞j=0 be the sequence
generated by Algorithm A applied to EP(L,Rn × Rm

+ ) (i.e., the sequence generated
by (3.17)–(3.18)). If the problem EP(L,Rn × Rm

+ ) has solutions, then {(xj, λj)}∞j=0

converges to some pair (x∗, λ∗) ∈ SE(L,Rn × Rm
+ ).

Proof. It follows from Theorem 3.2.1 and Proposition 3.2.2.

For the sake of simplicity, we recall statement (2.6) here, for x ∈ Rn, we consider
Fx : Rn → R defined as

Fx(y) = f(x, y). (3.19)

Fx is convex for all x by P2. We will use this function for establishing the relation
between SE(f,K) and SE(L,Rn × Rm

+ ). We start with an elementary result.

Proposition 3.2.5. Consider EP(f,K). The following two statements are equivalent.

i) x∗ ∈ SE(f,K).

ii) x∗ minimizes Fx∗ over K, with Fx∗ as in (3.19).

Proof. Assume that x∗ ∈ SE(f,K). By (3.19) and P1 we have that

Fx∗(y) = f(x∗, y) ≥ 0 = f(x∗, x∗) = Fx∗(x
∗)

for all y ∈ K, establishing (ii). Now assume that (ii) is satisfied. Using again P1 and
(3.19), we get

f(x∗, y) = Fx∗(y) ≥ Fx∗(x
∗) = f(x∗, x∗) = 0
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for all y ∈ K, which gives the desired result.

Now we introduce the concept of optimal pair for EP(f,K).

Definition 3.2.6. Assume that the set K is defined as (3.1). We say (x∗, λ∗) ∈
Rn × Rm is an optimal pair for EP(f,K) if

0 ∈ ∂Fx∗(x∗) +
m∑
i=1

λ∗i∂hi(x
∗), (3.20)

λ∗i ≥ 0 (1 ≤ i ≤ m), (3.21)

hi(x
∗) ≤ 0 (1 ≤ i ≤ m), (3.22)

λ∗ihi(x
∗) = 0 (1 ≤ i ≤ m). (3.23)

The sets ∂Fx∗(x
∗) and ∂hi(x

∗) denote the subdifferentials of the convex functions
Fx∗ and hi, respectively, at the point x∗. We mention that, since we are assuming that
both f and the hi’s are finite on the whole Rn, there is no difficulty with the nonsmooth
Lagrangian condition (3.20). In other words, Proposition 1.4.3 guarantees that both
sets ∂Fx∗(x

∗) and ∂hi(x
∗) are nonempty.

Note that (3.20)–(3.23) are the KKT conditions associated to the problem of min-
imizing Fx∗(x) subject to x ∈ K. However, a KKT pair for this problem is not in
general an optimal pair for EP(f,K); the point x∗ must be a minimizer of Fx over K
precisely for x = x∗. On the other hand, if x∗ does minimize Fx∗ on K, then any vector
λ∗ of KKT multipliers for this problem will make, together with x∗, an optimal pair
for EP(f,K).

The next two propositions and corollary establish the relations between solutions
of EP(f,K), solutions of EP(L,Rn×Rm

+ ) and optimal pairs for EP(f,K). We mention
that the next proposition does not require a constraint qualification for the feasible set
K, while Proposition 3.2.8 does.

Proposition 3.2.7. Consider EP(f,K) and assume that f satisfies P1–P3 on Rn×Rn.
Then the following two statements are equivalent.

i) (x∗, λ∗) is an optimal pair for EP(f,K).

ii) (x∗, λ∗) ∈ SE(L,Rn × Rm
+ ).

Proof.

(ii) ⇒ (i) Define F(x∗,λ∗)(x, λ) = L((x∗, λ∗), (x, λ)) and consider the problem
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minF(x∗,λ∗)(x, λ) (3.24)

s.t. (x, λ) ∈ Rn × Rm
+ . (3.25)

Since EP(L,Rn × Rm
+ ) satisfies P1–P3 by Proposition 3.2.2, we conclude from Propo-

sition 3.2.5 that the pair (x∗, λ∗) solves (3.24)–(3.25). Since the constraints of this
problem are affine, the Slater’s CQ of Definition 1.7.3 holds for this problem and,
invoking Theorem 1.7.4, there exists a vector of KKT multipliers η∗ ∈ Rm such that

0 ∈ ∂Fx∗(x∗) +
m∑
i=1

λ∗i∂hi(x
∗), (3.26)

hi(x
∗) + η∗i = 0 (1 ≤ i ≤ m), (3.27)

λ∗ ≥ 0, (3.28)

η∗ ≥ 0, (3.29)

λ∗i η
∗
i = 0 (1 ≤ i ≤ m). (3.30)

Note that (3.26) and (3.28) coincide with (3.20) and (3.21) respectively. Since ηi =
−hi(x∗) by (3.27), we get (3.22) and (3.23) from (3.29) and (3.30) respectively.

(i)⇒ (ii) Now we assume that the pair (x∗, λ∗) satisfies (3.20)–(3.23). Taking η∗i =
−hi(x∗), we get (3.26)–(3.30). Since problem (3.24)–(3.25) is convex, according to
Theorem 1.7.4, the KKT conditions are sufficient for optimality, so that the pair (x∗, λ∗)
solves this problem. In view of Proposition 3.2.5, this pair solves EP(L,Rn × Rm

+ ).

Proposition 3.2.8. Consider EP(f,K) and assume that f satisfies P1–P3 on Rn×Rn.
If x∗ minimizes Fx∗ over K, with Fx∗ as in (3.19), and the Slater’s CQ of Definition
1.7.3 holds for the functions hi which define the feasible set K, then there exists λ∗ ∈ Rm

+

such that (x∗, λ∗) is an optimal pair for EP(f,K). Conversely, if (x∗, λ∗) is an optimal
pair for EP(f,K) then x∗ minimizes Fx∗ over K, with Fx∗ as in (3.19).

Proof. For the first statement, since CQ holds, we invoke again Theorem 1.7.4 to

conclude that there exists a vector λ∗ ∈ Rm such that (3.20)–(3.23) hold. It follows
from Definition 3.2.6 that (x∗, λ∗) is an optimal pair for EP(f,K). Reciprocally, if
(x∗, λ∗) is an optimal pair for EP(f,K), then (3.20)–(3.23) hold, but these are the
KKT conditions for the problem of minimizing Fx∗(x) subject to x ∈ K, which are
sufficient by convexity of Fx∗ andK by Theorem 1.7.4, and hence x∗ solves this problem.
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Corollary 3.2.9. Consider EP(f,K) and assume that f satisfies P1–P3 on Rn ×Rn.
If (x∗, λ∗) ∈ SE(L,Rn × Rm

+ ), then x∗ ∈ SE(f,K). Conversely, if x∗ ∈ SE(f,K)
and the Slater’s CQ of Definition 1.7.3 holds, then there exists λ∗ ∈ Rm

+ such that
(x∗, λ∗) ∈ SE(L,Rn × Rm

+ ).

Proof. It follows from Proposition 3.2.5, Proposition 3.2.7 and Proposition 3.2.8.

Corollary 3.2.9 shows that solving EP(L,Rn×Rm
+ ) is enough for solving EP(f,K).

Next we prove the equivalence between Algorithm IALE and Algorithm A. In fact,
we will prove that the sequence generated by Algorithm IALE for solving the latter
problem coincides with the sequence generated by Algorithm A for solving the former,
using the technical result proved in Proposition 2.1.1.

Theorem 3.2.10. Assume that EP(f,K) satisfies P1–P4 on Rn×Rn. Fix a sequence
{γj}∞j=0 ⊂ R++ and a relative error tolerance σ ∈ [0, 1). Let {(xj, λj)}∞j=0 be the
sequence generated by Algorithm IALE applied to EP(f,K), with associated error vector
ej ∈ Rn, and {(x̄j, λ̄j)}∞j=0 the sequence generated by Algorithm A applied to EP(L,Rn×
Rm

+ ), with associated error vector (ej, 0) ∈ Rn ×Rm, using the same {γj}∞j=0 and σ. If
(x0, λ0) = (x̄0, λ̄0) then (xj, λj) = (x̄j, λ̄j) for all j.

Proof. We proceed by induction on j. The result holds for j = 0 by assumption.

Assume that (xj, λj) = (x̄j, λ̄j). In view of Step 2 of Algorithm A, we must solve

EP(L̂ej ,Rn×Rm
+ ), with L̂ej as in (3.16), which has a unique solution by Corollary 3.2.3.

Let (x̂j, λ̂j) be the solution of this problem. By Proposition 3.2.5, (x̂j, λ̂j) solves the
convex minimization problem defined as

min F̂(x̂j ,λ̂j)(x, λ)

s.t. (x, λ) ∈ Rn × Rm
+ ,

with F̂(x̂j ,λ̂j)(x, λ) = L̂ej((x̂j, λ̂j), (x, λ)). The constraints of this problem are affine, so
that the Slater’s CQ holds and therefore, taking into account Theorem 1.7.4, there
exists a KKT vector ηj ∈ Rm such that

γj[x̄
j − x̂j] + ej ∈ ∂Fx̂j (x̂j) +

m∑
i=1

λ̂ji∂hi(x̂
j), (3.31)

−hi(x̂j) + γj[λ̂
j
i − λ̄

j
i ] = ηji (1 ≤ i ≤ m), (3.32)

λ̂j ≥ 0, (3.33)
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ηj ≥ 0, (3.34)

λ̂jiη
j
i = 0 (1 ≤ i ≤ m). (3.35)

Using (3.32) to eliminate ηj, (3.31)–(3.35) can be rewritten, after some elementary
calculations, as

γj[x̄
j − x̂j] + ej ∈ ∂Fx̂j (x̂j) +

m∑
i=1

λ̂ji∂hi(x̂
j), (3.36)

λ̂ji = max

{
0, λ̄ji +

hi(x̂
j)

γj

}
(1 ≤ i ≤ m). (3.37)

Replacing (3.37) in (3.36) we get

γj[x̄
j − x̂j] + ej ∈ ∂Fx̂j (x̂j) +

m∑
i=1

max

{
0, λ̄ji +

hi(x̂
j)

γj

}
∂hi(x̂

j) (1 ≤ i ≤ m). (3.38)

Now we look at Step 2 of Algorithm IALE, which demands the solution x̃j of EP(L̃ej ,Rn).
Applying now Proposition 3.2.5 to this problem and taking into account Theorem 1.7.2,
we obtain that x̃k belongs to SE(L̃ej ,Rn) if and only if

γj[x
j − x̃j] + ej ∈ ∂Fx̃j (x̃j) +

m∑
i=1

max

{
0, λji +

hi(x̃
j)

γj

}
∂hi(x̃

j). (3.39)

Since xj = x̄j, λj = λ̄j by inductive hypothesis, we get from (3.38) that (3.39) holds

with x̂j substituting for x̃j, and hence x̂j also solves EP(L̃ej ,Rn). Since this problem
has a unique solution by Corollary 3.2.3, we conclude that

x̂j = x̃j. (3.40)

Taking now into account on the one hand (3.10) in Step 4 of Algorithm IALE, and on
the other hand (3.17) in Step 3 of Algorithm A we conclude, using again the inductive
hypothesis and (3.40), that xj+1 = x̄j+1. Now we look at the updating of the dual
variables. In view of (3.18) and (3.37), for Algorithm A we have

λ̄j+1
i = λ̂ji = max

{
0, λ̄ji +

hi(x̂
j)

γj

}
. (3.41)

Comparing now (3.41) with (3.9) and taking into account (3.40) and the fact that
λ̄j = λj by the inductive hypothesis, we conclude that λ̄j+1 = λj+1, completing the
inductive step and the proof.

Now we settle the issue of finite termination of Algorithm IALE.
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Proposition 3.2.11. Suppose that Algorithm IALE stops at iteration j. Then the
vector x̃j generated by the algorithm is a solution of EP(f,K).

Proof. If Algorithm IALE stops at the j-th iteration, then, in view of Step 4,

(xj, λj) = (x̃j, λj+1). Using (3.8) and the fact that xj = x̃j, we get ej = 0. For x ∈ Rn,
define the function F̆x : Rn → R as

F̆x(y) = f(x, y) + γj〈x− xj, y − x〉+
m∑
i=1

si(x, y, λ
j, γj) = L̃ej(x, y),

where the second equality holds because ej = 0. Since x̃j = xj, we get

F̆x̃j (y) = f(x̃j, y) +
m∑
i=1

si(x̃
j, y, λj, γj).

By Proposition 3.2.5, x̃j is an unconstrained minimizer of F̆x̃j . Thus, in view of (3.9)
and Theorem 1.7.2,

0 ∈ ∂F̆x̃j (x̃j) = ∂Fx̃j (x̃j)+
m∑
i=1

max

{
0, λji +

hi(x̃
j)

γj

}
∂hi(x̃

j) = ∂Fx̃j (x̃j)+
m∑
i=1

λji∂hi(x̃
j),

(3.42)
with Fx̃j as in (3.19), using (3.9) and the fact that λj = λj+1, which also gives

λj+1
i = λji = max

{
0, λji +

hi(x̃
j)

γj

}
(1 ≤ i ≤ m). (3.43)

It follows easily from (3.43) that

λji ≥ 0, λjihi(x̃
j) = 0, hi(x̃

j) ≤ 0 (1 ≤ i ≤ m). (3.44)

In view of (3.42) and (3.44), (x̃j, λj) is an optimal pair for EP(f,K) and we conclude
from Proposition 3.2.7 that (x̃j, λj) ∈ SE(L,Rn × Rm

+ ), which in turns implies, by
Corollary 3.2.9, x̃j ∈ SE(f,K).

Now we use Theorem 3.2.10 for completing the convergence analysis of Algorithm
IALE.

Theorem 3.2.12. Consider EP(f,K). Assume that

i) f satisfies P1–P4 and P4” on Rn × Rn,

ii) K is given by (3.1),

iii) the Slater’s CQ stated in Definition 1.7.3 holds for K,
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iv) {γj}∞j=0 ⊂ (θ, γ̄] for some γ̄ > θ, where θ is the undermonotonicity constant of f
in P4,

v) σ ∈ [0, 1),

vi) EP(f,K) has solutions.

Let {(xj, λj)}∞j=0 be the sequence generated by Algorithm IALE for solving EP(f,K).
In this situation, the sequence {(xj, λj)}∞j=0 converges to some optimal pair (x∗, λ∗) for
EP(f,K), and consequently x∗ ∈ SE(f,K).

Proof. By Theorem 3.2.10 the sequence {(xj, λj)}∞j=0 coincides with the sequence

generated by Algorithm IPPE applied to EP(L,Rn × Rm
+ ). Since EP(f,K) has so-

lutions and the Slater’s CQ holds, Corollary 3.2.9 implies that EP(L,Rn × Rm
+ ) has

solutions. By Corollary 3.2.4, the sequence {(xj, λj)}∞j=0 converges to a solution (x∗, λ∗)
of EP(L,Rn×Rm

+ ). By Proposition 3.2.7, (x∗, λ∗) is an optimal pair for EP(f,K). By
Corollary 3.2.9 again, x∗ belongs to SE(f,K).

We comment now on the real meaning of the error vector ej appearing in Algorithm
IALE and Algorithm A. These algorithms define the vector x̃j as the exact solution
of an equilibrium problem involving ej. Though this is convenient for the sake of
the presentation (and also frequent in the analysis of inexact algorithms), in actual
implementations one does not consider the vector ej “a priori”. Rather, some auxiliary
subroutine is used for solving the exact j-th subproblem (i.e. the subproblem with
ej = 0), generating approximate solutions x̃j,k (k = 1, 2, . . . ), which are offered as
“candidates” for the x̃j of the method, each of which giving rise to an associated error
vector ej, which may pass or fail the test of (3.8). To fix ideas, consider the smooth
case, i.e., assume that both f and the hi’s are differentiable. If xj,k is proposed by the
subroutine as a solution of the j-th subproblem, in view of (3.39) we have

ej = F ′x̃j,k(x̃j,k) +
m∑
i=1

max

{
0, λji +

hi(x̃
j,k)

γj

}
h′i(x̃

j,k) + γj[x̃
j,k − xj]. (3.45)

If x̃j,k were the exact solution of the j-th subproblem, then the right hand side of
(3.45) would vanish. If x̃j,k is just an approximation of this solution, then the right
hand side of (3.45) is nonzero, and we call it ej. Then we perform the test in Step
2 of the algorithm. If ej satisfies the inequality in (3.8), with xj,k substituting for
x̃j, then x̃j,k is accepted as x̃j and the algorithm proceeds to Step 3. Otherwise, the
proposed x̃j,k is not good enough, and an additional step of the auxiliary subroutine
is needed, after which the test will be repeated with xj,k+1. It is thus important to
give conditions under which any candidate vector x close enough to the exact solution
of the j-th subproblem will pass the test of (3.7)–(3.8), and thus will be accepted as
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x̃j. It happens to be the case that smoothness of the data functions is enough, as we
explain next.

Consider EP(f,K) and assume that f is continuously differentiable. We look at
Algorithm A as described in (3.11)–(3.13). Let x̆j be the exact solution of the j-th
subproblem, i.e. the solution of EP(f ej , K) with f ej as in (3.11) and ej = 0. We have
proved in Theorem 2.4.9 that if x̆j belongs to the interior of K then there exists δ > 0
such that any vector x ∈ B(x̆j, δ) will be accepted as x̃j by the algorithm, or, in other
words, for all x ∈ B(x̆j, δ) there exists e ∈ Rn such that (3.11) and (3.12) are satisfied
with x, e substituting for x̃j, ej respectively.

Observe now that the j-th subproblem of Algorithm IALE, namely EP(L̃ej ,Rn),
is unconstrained, i.e. K = Rn, so that the condition x̆j ∈ int(K) is automatically

satisfied. Regarding the continuous differentiability of L̃ej , it follows from (3.3) and
(3.7) that if the hi’s are continuously differentiable, and the same holds for f , then

L̃ej is continuously differentiable (it is worthwhile to mention that L̃ej is never twice
continuously differentiable, due to the two maxima in the definition of si given by
(3.3)). Thus Theorem 2.4.9 can be rephrased for the case of Algorithm IALE as
follows.

Corollary 3.2.13. Consider EP(f,K). Assume that f satisfies P1–P4 and P4” on
Rn × Rn, f is continuously differentiable and hi is differentiable (1 ≤ i ≤ m). Let
{(xj, λj)}∞j=0 be the sequence generated by Algorithm IALE. Assume that xj is not a

solution of EP(f,K) and let x̆j be the unique solution of EP(L̃ej ,Rn), as defined in
(3.7), with ej = 0. Then there exists δj > 0 such that any x ∈ B(x̆j, δj) solves the
subproblem (3.7)–(3.8).

In view of Corollary 3.2.13, if the subproblems of Algorithm IALE are solved with
a procedure guaranteed to converge to the exact solution, in the smooth case a finite
number of iterations of this inner loop will suffice for generating a pair (x̃j, ej) satisfying
the error criterium of Algorithm IALE.

3.3 Linearized Augmented Lagrangian

An interesting feature of Algorithm IALE is that its convergence properties are not
altered if the Lagrangian function

L((x, λ), (y, µ)) = f(x, y) +
m∑
i=1

λihi(y)−
m∑
i=1

µihi(x),

which has been already defined in (3.2), is replaced by its first order approximation as a
function of the second argument. This linearization gives rise to a variant of Algorithm
IALE which might be more suitable for actual computation. In order to perform this
linearization we assume that both f and all the hi’s are continuously differentiable. We
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will again use extensively the notation Fx(y) = f(x, y), and in particular the gradient
of Fx, denoted as F ′x : Rn → Rn.

If we linearize the Lagrangian given by (3.2) as a function of y around y = x, we
obtain the function L̄ : (Rn × Rm)× (Rn × Rm)→ R defined as

L̄((x, λ), (y, µ)) = 〈F ′x(x), y − x〉+
m∑
i=1

λi〈h′i(x), y − x〉+
m∑
i=1

(λi − µi)hi(x). (3.46)

We will denote L̄ as the Linearized Lagrangian function for EP(f,K). Note that there
is no need to linearize in the second variable of the second argument, namely µ, because
L is already affine as a function of µ.

Performing the same linearization on the augmented Lagrangian function, given by
(3.7), i.e.,

L̃ej(x, y) = f(x, y) + γj〈x− xj, y − x〉+
m∑
i=1

si(x, y, λ
j, γj)− 〈ej, y − x〉,

where

si(x, y, λ, γ) =
γ

2

[(
max

{
0, λi +

hi(y)

γ

})2

−
(

max

{
0, λi +

hi(x)

γ

})2
]
,

which has been already defined in (3.3), we obtain a kind of Algorithm IALE, to
be called Linearized Inexact Augmented Lagrangian-Extragradient Method (it will be
named Algorithm LIALE from now on), which we describe next.

Algorithm LIALE: Linearized Inexact Augmented Lagrangian-Extragradient
Method for EP(f,K)

1. Take an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1). Initialize the algorithm with (x0, λ0) ∈ Rn × Rm

+ .

2. Given (xj, λj) ∈ Rn × Rm
+ , define s̄i : Rn × Rn × Rm

+ × R++ → R as

s̄i(x, y, λ, γ) = max

{
0, λi +

hi(x)

γ

}
〈h′i(x), y − x〉 (1 ≤ i ≤ m), (3.47)

and find a pair (x̃j, ej) ∈ Rn×Rn such that x̃j solves EP(L̄ej ,Rn), where L̄ej : Rn×Rn →
R is defined as

L̄ej(x, y) = 〈F ′x(x), y−x〉+γj〈x−xj, y−x〉+γj

m∑
i=1

s̄i(x, y, λ
j, γj)−〈ej, y−x〉, (3.48)
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with s̄i as in (3.47), and ej satisfies∥∥ej∥∥ ≤ σγj
∥∥x̃j − xj∥∥ .

3. Define λj+1 as

λj+1
i = max

{
0, λji +

hi(x̃
j)

γj

}
(1 ≤ i ≤ m).

4. If (xj, λj) = (x̃j, λj+1), then stop. Otherwise,

xj+1 = x̃j − 1

γj
ej.

Observe that the only difference between Algorithm IALE and Algorithm LIALE
appears in the bifunction defining the unconstrained equilibrium subproblems EP(L̃ej ,Rn)
and EP(L̄ej ,Rn). In fact, in iteration j of Algorithm LIALE one solves EP(L̄ej ,Rn) with

L̄ej as in (3.48), while in the j-th iteration of Algorithm IALE one solves EP(L̃ej ,Rn)

with L̃ej as in (3.7).
We show next that EP(L̄,Rn × Rm

+ ) satisfies P1–P4 and P4”, so that, in view of
Theorem 3.2.1, the sequence generated by Algorithm A applied to EP(L̄,Rn×Rm

+ ) will
converge to a solution of EP(L̄,Rn × Rm

+ ).

Proposition 3.3.1. Consider EP(f,K). Assume that f satisfies P1–P4 and P4” on
Rn × Rn, and that both f and all the hi’s are continuously differentiable on Rn × Rn.
Then, L̄ satisfies P1–P4 and P4” on (Rn×Rm

+ )×(Rn×Rm
+ ), with L̄ as given by (3.46).

Proof. The fact that EP(L̄,Rn × Rm
+ ) inherits P1–P3 from EP(f,K) is immediate.

To demonstrate that EP(L̄,Rn×Rm
+ ) satisfies P4 and P4”, we will invoke several times

the fact that for a differentiable convex function g : Rn → R, it holds that

g(x) + 〈g′(x), y − x〉 ≤ g(y) ∀x, y ∈ Rn,

which is a consequence of Definition 1.4.1(iv) and Theorem 1.4.10(i).
Now we start proving that P4 holds. Using (3.46), we get

L̄((x, λ), (y, µ)) + L̄((y, µ), (x, λ)) = 〈F ′x(x), y − x〉+ 〈F ′y(y), x− y〉

+
m∑
i=1

λi[hi(x) + 〈h′i(x), y − x〉 − hi(y)] +
m∑
i=1

µi[hi(y) + 〈h′i(y), x− y〉 − hi(x)]

≤ f(x, y)− f(x, x) + f(y, x)− f(y, y) = f(x, y) + f(y, x) ≤ θ ‖x− y‖2 ,
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using (3.46) in the first equality, the convexity of Fx and Fy resulting from P2, and
also of the hi’s, in the first inequality, property P1 in the second equality, and the fact
that f satisfies P4 in the second inequality. We have shown that L̄ satisfies P4 with
the same undermonotonicity constant as f , namely θ.

In order to show that L̄ satisfies P4” on (Rn×Rm
+ )×(Rn×Rm

+ ), take x1, . . . , xq ∈ Rn,
λ1, . . . , λq ∈ Rm

+ and t1, . . . , tq ≥ 0 such that
∑q

`=1 t` = 1. Then

L̄

(
(x`, λ`),

(
q∑

k=1

tkx
k,

q∑
k=1

tkλ
k

))
=

〈
F ′x`(x

`),

q∑
k=1

tkx
k − x`

〉

+
m∑
i=1

λ`i

[
hi(x

`) +

〈
h′i(x

`),

q∑
k=1

tkx
k − x`

〉]
−

m∑
i=1

q∑
k=1

tkλ
k
i hi(x

`)

≤ f

(
x`,

q∑
k=1

tkx
k

)
− f(x`, x`) +

m∑
i=1

λ`ihi

(
q∑

k=1

tkx
k

)
−

m∑
i=1

q∑
k=1

tkλ
k
i hi(x

`) ≤

f

(
x`,

q∑
k=1

tkx
k

)
+

m∑
i=1

q∑
k=1

tkλ
`
ihi(x

k)−
m∑
i=1

q∑
k=1

tkλ
k
i hi(x

`), (3.49)

using convexity of Fx` resulting from P2, and of the hi’s, in the first inequality, and
convexity of the hi’s and P1 in the second one. The fact that L̄ satisfies P4” can be
obtained from (3.49) using the same argument as in the proof of Proposition 3.2.2 after
(3.14).

It is easy to check that Proposition 3.2.7, Proposition 3.2.8 and Corollary 3.2.9
remain true with EP(L̄,Rn×Rm

+ ) substituting for EP(L,Rn×Rm
+ ). The only difference

is that due to the smoothness of Fx and the hi’s, the Lagrangian condition (3.20) takes
the form

0 = F ′x∗(x
∗) +

m∑
i=1

λ∗ih
′
i(x
∗).

It is a matter of routine to check that the proofs of Theorem 3.2.10, Proposition
3.2.11, Theorem 3.2.12 and Corollary 3.2.13 also remain valid for LIALE, resulting in
the following convergence theorem.

Theorem 3.3.2. Consider EP(f,K). Assume that

i) f satisfies P1–P4 and P4” on Rn × Rn,

ii) K is given by (3.1),

iii) the Slater’s CQ of Definition 1.7.3 holds for the feasible set K,
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iv) {γj}∞j=0 ⊂ (θ, γ̄] for some γ̄ > θ, where θ is the undermonotonicity constant of f
in P4,

v) σ ∈ [0, 1),

vi) EP(f,K) has solutions,

vii) f is continuously differentiable,

viii) hi is differentiable (1 ≤ i ≤ m).

Let {(xj, λj)}∞j=0 be the sequence generated by Algorithm LIALE applied to EP(f,K).
In this situation, the sequence {(xj, λj)}∞j=0 converges to an optimal pair (x∗, λ∗) for
EP(f,K), so that x∗ belongs to SE(f,K). Additionally, if xj is not a solution of
EP(f,K) and x̆j is the unique solution of EP(L̄ej ,Rn) with ej = 0, then there exists
δj > 0 such that any x ∈ B(x̆j, δj) solves the j-th subproblem of Algorithm LIALE.

3.4 Variants of Augmented Lagrangian Methods for

Equilibrium Problems with Projection approach

In this section, we develop another two augmented Lagrangian methods from Algo-
rithm IPPBP presented in Section 2.2, to be called Inexact Augmented Lagrangian
Projection Method (Algorithm IALP from now on) and Linearized Inexact Augmented
Lagrangian Projection Method (Algorithm LIALP from now on), for solving EP(f,K).
The convergence analysis of Algorithm IALP and Algorithm LIALP invokes the con-
vergence results for Algorithm IPPBP. In this case, instead of Step 4 of Algorithm
IALE (or Algorithm LIALE), the solution x̂j of the subproblem is used for construct-
ing a hyperplane Hj which separates xj from set SE(f,K), and the next iterate xj+1

is the so called Bregman projection of xj onto Hj. In our current finite dimensional
context, such a Bregman projection is just the orthogonal projection, because we use
g(x) = 1

2
‖x‖2 as the auxiliary function, as we explained in Section 1.6.

Next we propose Algorithm IALP and Algorithm LIALP for solving EP(f,K).

Algorithm IALP: Inexact Augmented Lagrangian+Projection Method for
EP(f,K)

1. Take an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1]. Initialize the algorithm with (x0, λ0) ∈ Rn × Rm

+ .

2. Given (xj, λj) ∈ Rn × Rm
+ , find a pair (x̃j, ej) ∈ Rn × Rn such that x̃j solves

EP(L̃ej ,Rn), where L̃ej is defined as

L̃ej(x, y) = f(x, y) + γj〈x− xj, y − x〉+
m∑
i=1

si(x, y, λ
j, γj)− 〈ej, y − x〉,
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with si as given by

si(x, y, λ, γ) =
γ

2

[(
max

{
0, λi +

hi(y)

γ

})2

−
(

max

{
0, λi +

hi(x)

γ

})2
]
,

and ej satisfies

∥∥ej∥∥ ≤ 1

2
σγj


∥∥∥(x̃j − xj, λ̃j − λj)

∥∥∥2

if
∥∥∥(x̃j − xj, λ̃j − λj)

∥∥∥ < 1

1 if
∥∥∥(x̃j − xj, λ̃j − λj)

∥∥∥ ≥ 1,

where

λ̃ji = max

{
0, λji +

hi(x̃
j)

γj

}
(1 ≤ i ≤ m).

3. Define vj as

vj = γj(x
j − x̃j, λj − λ̃j) + (ej, 0).

If vj = 0 or (xj, λj) = (x̃j, λ̃j), then stop. Otherwise, take

(xj+1, λj+1) = argmin
(x,λ)∈Hj

∥∥(x− xj, λ− λj)
∥∥2

= (xj, λj)− 〈v
j, (xj − x̃j, λj − λ̃j)〉

‖vj‖2
vj,

where

Hj = {(x, λ) ∈ Rn × Rm : 〈vj, (x− x̃j, λ− λ̃j)〉 = 0}.

Algorithm LIALP: Linearized Inexact Augmented Lagrangian+Projection
Method for EP(f,K)

1. Take an exogenous bounded sequence {γj}∞j=0 ⊂ R++ and a relative error tolerance
σ ∈ [0, 1]. Initialize the algorithm with (x0, λ0) ∈ Rn × Rm

+ .

2. Given (xj, λj) ∈ Rn × Rm
+ , define s̄i : Rn × Rn × Rm

+ × R++ → R as

s̄i(x, y, λ, γ) = max

{
0, λi +

hi(x)

γ

}
〈h′i(x), y − x〉 (1 ≤ i ≤ m),

and find a pair (x̃j, ej) ∈ Rn×Rn such that x̃j solves EP(L̄ej ,Rn), where L̄ej : Rn×Rn →
R is defined as
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L̄ej(x, y) = 〈F ′x(x), y − x〉+ γj〈x− xj, y − x〉+ γj

m∑
i=1

s̄i(x, y, λ
j, γj)− 〈ej, y − x〉,

and ej satisfies

∥∥ej∥∥ ≤ 1

2
σγj


∥∥∥(x̃j − xj, λ̃j − λj)

∥∥∥2

if
∥∥∥(x̃j − xj, λ̃j − λj)

∥∥∥ < 1

1 if
∥∥∥(x̃j − xj, λ̃j − λj)

∥∥∥ ≥ 1,

where

λ̃ji = max

{
0, λji +

hi(x̃
j)

γj

}
(1 ≤ i ≤ m).

3. Define vj as

vj = γj(x
j − x̃j, λj − λ̃j) + (ej, 0).

If vj = 0 or (xj, λj) = (x̃j, λ̃j), then stop. Otherwise, take

(xj+1, λj+1) = argmin
(x,λ)∈Hj

∥∥(x− xj, λ− λj)
∥∥2

= (xj, λj)− 〈v
j, (xj − x̃j, λj − λ̃j)〉

‖vj‖2
vj,

where

Hj = {(x, λ) ∈ Rn × Rm : 〈vj, (x− x̃j, λ− λ̃j)〉 = 0}.

In the finite dimensional setting, Algorithm IPPBP, introduced in Section 2.2, re-
duces to the following one, to be called Algorithm B, with auxiliary function g(x) =
1
2
‖x‖2, which is a tool for the analysis of Algorithm IALP and Algorithm LIALP.

Algorithm B: Inexact Proximal Point+Orthogonal Projection Method in
Rn for EP(f,K)

1. Consider an exogenuous bounded sequence of regularization parameters {γj}∞j=0 ⊂
R++ and a relative error tolerance σ ∈ [0, 1]. Initialize the algorithm with x0 ∈ K.

2. Given xj, find a pair (x̂j, ej) ∈ Rn × Rn such that x̂j solves EP(f ej , K) with

f ej (x, y) = f(x, y) + γj〈x− xj, y − x〉 − 〈ej, y − x〉,
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i.e.

f ej (x̃j, y) ≥ 0 ∀y ∈ K,

and ej satisfies

∥∥ej∥∥ ≤ 1

2
σγj

{
‖x̃j − xj‖2 if ‖xj − x̃j‖ < 1

1 if ‖xj − x̃j‖ ≥ 1.

3. Let

vj = γj(x
j − x̃j) + ej ∈ Rn.

If vj = 0 or x̃j = xj, then stop. Otherwise, take Hj = {x ∈ Rn : 〈vj, x− x̃j〉 = 0} and
define

xj+1 = argmin
x∈Hj

1

2

∥∥x− xj∥∥2
= xj − 〈v

j, xj − x̃j〉
‖vj‖2

vj.

Now consider Algorithm IALP. For analyzing Algorithm IALP, we apply Algorithm
B to the equilibrium problem EP(L,Rn × Rm

+ ) with L given by (3.2). In view of
Proposition 3.2.2, we know that this problem satisfies P1–P4 and P4”. Thus, we use

L̂ej((x, λ), (y, µ)) = L((x, λ), (y, µ)) +γj〈x−xj, y−x〉+γj〈λ−λj, µ−λ〉−〈ej, y−x〉 =

f(x, y) +
m∑
i=1

λihi(y)−
m∑
i=1

µihi(x) + γj〈x− xj, y − x〉+ γj〈λ− λj, µ− λ〉 − 〈ej, y − x〉,

as the regularized function at iteration j. Then we find a pair (x̂j, λ̂j), (ej, 0) ∈ Rn×Rm

such that (x̂j, λ̂j) solves the problem EP(L̂ej ,Rn × Rm
+ ) and

∥∥ej∥∥ =
∥∥(ej, 0)

∥∥ ≤ 1

2
σγj


∥∥∥(x̂j − xj, λ̂j − λj)

∥∥∥2

if
∥∥∥(x̂j − xj, λ̂j − λj)

∥∥∥ < 1

1 if
∥∥∥(x̂j − xj, λ̂j − λj)

∥∥∥ ≥ 1.

Then, in Step 3 of Algorithm B, one puts

v̂j = γj(x
j − x̂j, λj − λ̂j) + (ej, 0) ∈ Rn × Rm,

and checks if v̂j = 0 or (x̂j, λ̂j) = (xj, λj). If so, the algorithm stops. Otherwise, one

takes Ĥj = {x ∈ Rn × Rm : 〈v̂j, (x− x̂j, λ− λ̂j)〉 = 0} and defines the next iterate as

77



(xj+1, λj+1) = argmin
(x,λ)∈Ĥj

1

2

∥∥(x− xj, λ− λj)
∥∥2

= (xj, λj)− 〈v̂
j, (xj − x̂j, λj − λ̂j)〉

‖v̂j‖2
v̂j

which is the orthogonal projection of (xj, λj) onto the hyperplane Ĥj.

If we follow the argument used to prove the convergence properties of Algorithm
IALE in Section 3.2, we obtain the following convergence theorem. We omit the proof
for the sake of conciseness.

Theorem 3.4.1. Consider EP(f,K). Assume that

i) f satisfies P1–P4 and P4” on Rn × Rn,

ii) K is given by (3.1),

iii) the Slater’s CQ stated in Definition 1.7.3 holds for K,

iv) {γj}∞j=0 ⊂ (θ, γ̄] for some γ̄ > θ, where θ is the undermonotonicity constant of f
in P4,

v) σ ∈ [0, 1],

vi) EP(f,K) has solutions.

Let {(xj, λj)}∞j=0 be the sequence generated by Algorithm IALP for solving EP(f,K).
In this situation, the sequence {(xj, λj)}∞j=0 converges to some optimal pair (x∗, λ∗) for
EP(f,K), and consequently x∗ ∈ SE(f,K). Additionally, assume that

vii) f is continuously differentiable,

viii) hi is differentiable (1 ≤ i ≤ m).

In this case, if xj is not a solution of EP(f,K) and x̆j is the unique solution of

EP(L̃ej ,Rn) with ej = 0, then there exists δj > 0 such that any x ∈ B(x̆j, δj) solves the
j-th subproblem of Algorithm IALP.

Similar to Theorem 3.4.1, one can prove the following theorem for Algorithm LIALP.

Theorem 3.4.2. Consider EP(f,K). Assume that

i) f satisfies P1–P4 and P4” on Rn × Rn,

ii) K is given by (3.1),

iii) the Slater’s CQ stated in Definition 1.7.3 holds for K,
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iv) {γj}∞j=0 ⊂ (θ, γ̄] for some γ̄ > θ, where θ is the undermonotonicity constant of f
in P4,

v) σ ∈ [0, 1],

vi) EP(f,K) has solutions,

vii) f is continuously differentiable,

viii) hi is differentiable (1 ≤ i ≤ m).

Let {(xj, λj)}∞j=0 be the sequence generated by Algorithm LIALP applied to EP(f,K).
In this situation, the sequence {(xj, λj)}∞j=0 converges to an optimal pair (x∗, λ∗) for
EP(f,K), so that x∗ belongs to SE(f,K). Additionally, if xj is not a solution of
EP(f,K) and x̆j is the unique solution of EP(L̄ej ,Rn) with ej = 0, then there exists
δj > 0 such that any x ∈ B(x̆j, δj) solves the j-th subproblem of Algorithm LIALE.

We remind that we did not consider an error vector associated with the λ and µ
arguments of L in the case of Algorithm IALE and Algorithm LIALE, because the λji ’s
are updated via a closed formula in these two algorithms. For the same reason, we act
in the same way for both Algorithm IALP and Algorithm LIALP.

3.5 Final Remarks

In the case of the augmented Lagrangian methods for optimization, a constrained op-
timization problem is replaced by a sequence of unconstrained ones. This procedure
makes sense because a wide variety of fast solvers (e.g., quasi-Newton methods) are
available for unconstrained optimization. The methods introduced in this thesis (Algo-
rithm IALE, Algorithm LIALE, Algorithm IALP and Algorithm LIALP), in a similar
fashion, replace a constrained equilibrium problem by a sequence of unconstrained ones.
It is worthwhile to comment on the advantages of such a substitution in the equilibrium
context, namely on the available options for solving the unconstrained subproblems.
In order to avoid technicalities, we restrict our comments to the smooth case.

One interesting possibility is the projection method for solving EP(f,K) proposed
in [30]. At iteration j, the method requires approximate maximization of f(·, yj) on the
intersection of K with a ball centered at 0, followed by a projection onto a hyperplane,
whose computational cost is negligible. If this procedure is applied to the unconstrained
subproblems of the methods discussed here, the computationally heavy task reduces to
maximization of a continuous function on a ball, which is relatively easy, as compared
to the same maximization with the additional constraints hi(x) ≤ 0, which would be
the case if the same algorithm is applied to the original problem.

We remind also that our convergence analysis, allowing for inexact solution of the
subproblems, ensures that a finite number of steps of the projection method in [30] will
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be enough for satisfying our error criteria, as discussed in this chapter (see Corollary
3.2.13, Theorem 3.3.2, Theorem 3.4.1, and Theorem 3.4.2).

Another option consists of solving the system of equations resulting from (3.39) in
the case that functions f and hi’s are continuously differentiable, namely

0 = γj(x− xj) + F ′x(x) +
m∑
i=1

max

{
0, λji +

hi(x)

γj

}
h′i(x). (3.50)

We observe that the right hand side of (3.50) is continuous but not differentiable, due
to the presence of the maximum. However, there is a substantial choice of efficient
methods for nonsmooth equations which can be used in this case like the ones have
been appeared in [19].

The actual computational implementation of the methods introduced here is left
for future research. We expect to have some results in this direction within a short
period.
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