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1. Introduction

The theory of equilibrium states of smooth dynamical systems was initiated
by the pioneer works of Sinai, Ruelle, Bowen [Sin72, BR75, Bow75, Rue76]. For
uniformly hyperbolic diffeomorphisms and flows they proved that equilibrium states
exist and are unique for every Hölder continuous potential, restricted to every basic
piece of the non-wandering set. The basic strategy to prove this remarkable fact
was to (semi)conjugate the dynamics to a subshift of finite type, via a Markov
partition.

Several important difficulties arise when trying to extend this theory beyond the
uniformly hyperbolic setting and, despite significant progress by several authors, a
global picture is still very far from complete. For one thing, existence of generating
Markov partitions is known only in a few cases and, often, such partitions can
not be finite. Moreover, equilibrium states may actually fail to exist if the system
exhibits critical points or singularities (see Buzzi [Buz01]).

A natural starting point is to try and develop the theory first for smooth sys-
tems which are hyperbolic in the sense of Pesin theory: Lyapunov exponents are
non-zero “almost everywhere”. This approach was advocated in Alves, Bonatti,
Viana [ABV00] where the authors assume non-uniform hyperbolicity at Lebesgue
almost every point and deduce existence and finiteness of physical (Sinai-Ruelle-
Bowen) measures. In this setting, physical measures are absolutely continuous with
respect to Lebesgue measure, along expanding directions. However, it was not im-
mediately clear how this kind of hypothesis may be useful in general, since one
expects most equilibrium states to be singular with respect to Lebesgue measure.

Nevertheless, in a series of recent works, Oliveira, Viana [OV07] managed to
push this idea ahead and prove existence and prove existence and uniqueness of
equilibrium states for a fairly large class of smooth transformations on compact
manifolds, inspired by [ABV00]. Roughly speaking, they assume the transforma-
tion is expands on most of the phase space, possibly with some mild contracting
behavior on the complement. Moreover, they assume the potential is Hölder con-
tinuous and its oscillation sup φ − inf φ is not too big. However, their approach is
limited by a number of additional conditions that do not seem natural, including
the existence of a Markov partition. In a similar context, Arbieto, Matheus [AM]
prove the equilibrium states exhibit exponential decay of correlations for all Hölder
continuous observables. More recently, Pinheiro [Pin07] constructed general in-
ducing schemes for a large class of non-invertible transformations that contain the
setting of [ABV00] and every measure satisfying very weak expanding conditions.

Other important contributions outside of the uniformly hyperbolic setting in-
clude works by Leplaideur, Rios [LR06] on horsehoes with tangencies at the bound-
ary of hyperbolic systems, Bruin, Keller, Todd [BK98, BT06, BT07], Pesin, Senti
[PS05, PS06, PSZ07], Denker, Przytycki, Urbanski [DU91a, DU91b, DPU96] on
one-dimensional maps, inducing schemes and rational functions on the Riemann
sphere, Buzzi, Maume, Paccaut, Sarig, Schmitt [Buz99, BPS01, BMD02, BS03,
Sar99, Sar03] and Yuri [Yur99, Yur03] on piecewise expanding maps in higher di-
mensions, countable Markov shifts and maps with indifferent periodic points, just
to refer to some of the most recent advances.

In this work we build a unified and rather complete theory of existence and finite-
ness of equilibrium states for the class of non-uniformly expanding transformations
originally proposed in [ABV00, Appendix], that strictly contains the setting of
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[OV07] and includes, for instance, transformations derived from expanding ones
via deformation by isotopy.

One important point is that we completely remove the need for a Markov par-
tition (generating or not). In fact, one of the technical novelties with respect to
previous recent works in this area is that we prove, in an abstract way inspired
by Ledrappier [Led84], that every equilibrium state must be absolutely continuous
with respect to a certain conformal measure. When the map is topologically mix-
ing, the equilibrium state is unique, and a non-lacunary Gibbs measure. We also
prove stability of the equilibrium states under random noise (stochastic stability)
and continuity under variations of the dynamics (statistical stability).

Our strategy to prove these results combines notions from the qualitative theory
of non-uniformly hyperbolic dynamical systems (e.g. Pesin’s local unstable leaves)
with the quantitative notion of hyperbolic times introduced in [Alv00, ABV00] and
goes as follows. First we construct an expanding conformal measure ν as a special
eigenmeasure of the dual of the Ruelle-Perron-Frobenius operator. Then we show
that every accumulation point µ of the Cèsaro sum of the push-forwards fn

∗ ν is an
invariant probability measure that is absolutely continuous with respect to ν with
density bounded away from infinity, and that there are finitely many distinct such
ergodic measures. In addition, we prove that these absolutely continuous invariant
measures are equilibrium states, and that any equilibrium state is necessarily an
expanding measure. Finally, we establish an abstract version of Ledrappier’s the-
orem [Led84] and characterize equilibrium states as invariant measures absolutely
continuous with respect to ν.

This paper is organized as follows. The precise statement of our results is given
in Section 2. We included in Section 3 preparatory material that will be necessary
for the proofs. Following the approach described above, we construct an expanding
conformal measure and prove that there are finitely many invariant and ergodic
measures absolutely continuous with respect it through Sections 4 and 5. In Sec-
tion 6 we prove Theorems A and B. In Section 7 we prove the stochastic and
statistical stability results stated in Theorems C and D. Some examples are pre-
sented in Section 8. Finally, in Section 9 we discuss our assumptions, interesting
problems and some perspectives.

2. Statement of the results

2.1. Hypotheses. We consider M to be a connected, compact Riemannian mani-
fold of dimension m without boundary and d be the distance induced by the Rie-
mann metric. For all our results we assume that f and φ satisfy conditions (H1),
(H2), and (P) stated in what follows.

Let f : M → M denote a C1+α local diffeomorphism, for some α ∈ (0, 1), and
assume that there exist constants σ > 1 and L > 0, and an open region A ⊂ M
such that

(H1) ‖Df(x)−1‖ ≤ L for every x ∈ A and ‖Df(x)−1‖ ≤ σ−1 for all x ∈ M\A,
and L is close to 1: the precise conditions are given in (3.2) and (3.3) below.

(H2) There exists k0 ≥ 1 and a covering P = {P1, . . . , Pk0} of M by domains of
injectivity for f such that A can be covered by q < deg(f) elements of P.

The first condition means that we allow expanding and contracting behavior to
coexist in M : f is uniformly expanding outside A and not too contracting inside
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A. The second one requires that every point has at least one preimage in the
expanding region.

In addition we assume that φ : M → R is Hölder continuous and that its variation
is not too big. More precisely, assume that:

(P) supφ < inf φ + log deg(f)− log q.

Notice this is an open condition on the potential, relative to the uniform norm, and
it is satisfied by constant functions. It can be weakened somewhat. For one thing,
all we need for our estimates is the supremum of φ over the union of the elements
of P that intersect A. With some extra effort (replacing the q elements of P that
intersect A by the same number of smaller domains), one may even consider the
supremum over A. However, we do not use nor prove this fact here.

Let us comment on this hypothesis. A related condition, Ptop(f, φ) > supφ,
was introduced by Denker, Urbański [DU91a] in the context of rational maps on
the sphere. Another related condition, P (f, φ, ∂Z) < P (f, φ), is used by Buzzi,
Paccaut, Schmitt [BPS01], in the context of piecewise expanding multidimensional
maps, to control the map’s behavior at the boundary ∂Z of the domains of smooth-
ness: without such a control, equilibrium states may fail to exist [Buz01]. Condition
(P) seems to play a similar role in our setting.

2.2. Existence of equilibrium states. We say that f is topologically mixing if,
for each open set U there is a positive integer N so that fN (U) = M . Let B denote
the Borel σ-algebra of M . An f -invariant probability measure η is exact if the
σ-algebra B∞ = ∩n≥0f

−nB is η-trivial, meaning that it contains only zero and full
η-measure sets. Given a continuous map f : M → M and a potential φ : M → R,
the variational principle for the pressure asserts that

Ptop(f, φ) = sup
{

hµ(f) +
∫

φ dµ : µ is f -invariant
}

where Ptop(f, φ) denotes the topological pressure of f with respect to φ and hµ(f)
denotes the metric entropy. An equilibrium state for f with respect to φ is an
invariant measure that attains the supremum in the right hand side above.

Theorem A. Let f : M → M be a local diffeomorphism and φ : M → R a Hölder
continuous potential satisfying (H1), (H2), and (P). Then, there is a finite number
of ergodic equilibrium states µ1, µ2, . . . , µk for f with respect to φ such that any
equilibrium state µ is a convex linear combination of µ1, µ2, . . . , µk. In addition, if
the map f is topologically mixing then the equilibrium state is unique and exact.

Our strategy for the construction of equilibrium states is, first to construct a
certain conformal measure ν which is expanding and a non-lacunary Gibbs mea-
sure. Then we construct the equilibrium states, which are absolutely continuous
with respect to this reference measure ν. Both steps explore a weak hyperbolicity
property of the system. In what follows we give precise definitions of the notions
involved.

A probability measure ν, not necessarily invariant, is conformal if there exists
some function ψ : M → R such that

ν(f(A)) =
∫

A

e−ψdν

for every measurable set A such that f | A is injective.
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Let Snφ =
∑n−1

j=0 φ ◦ f j denote the nth Birkhoff sum of a function φ. The
dynamical ball of center x ∈ M , radius δ > 0, and length n ≥ 1 is defined by

B(x, n, δ) = {y ∈ M : d(f j(y), f j(x)) ≤ δ, ∀ 0 ≤ j ≤ n}.
An integer sequence (nk)k≥1 is non-lacunary if it is increasing and nk+1/nk → 1
when k →∞.

Definition 2.1. A probability measure ν is a non-lacunary Gibbs measure if there
exist uniform constants K > 0, P ∈ R and δ > 0 so that, for ν-almost every x ∈ M
there exists some non-lacunary sequence (nk)k≥1 such that

K−1 ≤ ν(B(x, nk, δ))
exp(−P nk + Snk

φ(y))
≤ K

for every y ∈ B(x, nk, δ) and every k ≥ 1.

The weak hyperbolicity property of f is expressed through the notion of hyper-
bolic times, which was introduced in [Alv00, ABV00]. We say that n is a c-hyperbolic
time for x ∈ M if

n−1∏

j=n−k

‖Df(f j(x))−1‖ < e−ck for every 1 ≤ k ≤ n. (2.1)

Often we just call them hyperbolic times, since the constant c will be fixed, as in
(3.2). We denote by H the set of points x ∈ M with infinitely many hyperbolic
times and by Hj the set of points having j ≥ 1 as hyperbolic time. A probability
measure ν, not necessarily invariant, is expanding if ν(H) = 1.

The basin of attraction of an f -invariant probability measure µ is the set B(µ)
of points x ∈ M such that

1
n

n−1∑

j=0

δfj(x) converges weakly to µ when n →∞.

Theorem B. Let f : M → M be a local diffeomorphism and φ : M → R be a
Hölder continuous potential satisfying (H1), (H2), and (P). Let µ1, µ2, . . . , µk be
the ergodic equilibrium states of f for φ. Then every µi is absolutely continuous
with respect to some conformal, expanding, non-lacunary Gibbs measure ν. The
union of all basins of attraction B(µi) contains ν-almost every point x ∈ M . If, in
addition, f is topologically mixing then the unique absolutely continuous invariant
measure µ is a non-lacunary Gibbs measure.

As a byproduct of the previous results we can obtain the existence of equilibrium
states for continuous potentials satisfying (P). Without some extra condition no
finitude of equilibrium states is expected to hold.

Corollary 1. Let f : M → M be a local diffeomorphism satisfying (H1) and
(H2). If φ : M → R is a continuous potential satisfying (P) then there exists an
equilibrium state for f with respect to φ.

2.3. Stability of equilibrium states. Let F be a family of local diffeomorphisms
and W be some family of continuous potentials φ. A pair (f, φ) ∈ F × W is
statistically stable (relative to F ×W) if, for any sequences fn ∈ F converging to f
in the C1+α-topology and φn ∈ W converging to φ in the uniform topology, and for
any choice of an equilibrium state µn of fn for φn, every weak∗ accumulation point
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of the sequence (µn)n≥1 is an equilibrium state of f for φ. In particular, when the
equilibrium state is unique, statistical stability means that it depends continuously
on the data (f, φ).

Theorem C. Suppose every (f, φ) ∈ F × W satisfies (H1), (H2), and (P), with
uniform constants (including the Hölder constants of φ). Assume that the topologi-
cal pressure Ptop(f, φ) varies continuously in the parameters (f, φ) ∈ F ×W. Then
every pair (f, φ) ∈ F ×W is statistically stable relative to F ×W.

The assumption on continuous variation of the topological pressure might hold
in great generality in this setting. See the comment at the end of Subsection 7.1
for a discussion.

Now let F be a family of local diffeomorphisms satisfying (H1) and (H2) with
uniform constants. A random perturbation of f ∈ F is a family θε, 0 < ε ≤ 1
of probability measures in F such that there exists a family Vε(f), 0 < ε ≤ 1 of
neighborhoods of f , depending monotonically on ε and satisfying

supp θε ⊂ Vε(f) and
⋂

0<ε≤1

Vε(f) = {f}.

Consider the skew product map

F : FN ×M → F ×M
(f, x) 7→ (σ(f), f1(x))

where f = (f1, f2, . . .) and σ : FN → FN is the shift to the left. For each ε > 0, a
measure µε on M is stationary (respectively, ergodic) for the random perturbation
if the measure θNε × µε on FN ×M is invariant (respectively, ergodic) for F .

We assume the random-perturbation to be non-degenerate, meaning that, for
every ε > 0, the push-forward of the measure θε under any map

F 3 g 7→ g(x)

is absolutely continuous with respect to some probability measure ν, with density
uniformly (on x) bounded from above, and its support contains a ball around f(x)
with radius uniformly (on x) bounded from below. The first condition implies that
any stationary measure is absolutely continuous with respect to ν. In Theorem 7.3
we shall use also the second condition to conclude that, assuming ν is expanding and
conformal, for any ε > 0 there exists a finite number of ergodic stationary measures
µε

1, µε
2, . . ., µε

l . We say that f is stochastically stable under random perturbation
if every accumulation point, as ε → 0, of stationary measures (µε)ε>0 absolutely
continuous with respect to ν is a convex combination of the ergodic equilibrium
states µ1, µ2, . . ., µk of f for φ.

A Jacobian of f with respect to a probability measure η is a measurable function
Jηf such that

η(f(A)) =
∫

A

Jηf dη (2.2)

for every measurable set A (in some full measure subset) such that f | A is injective.
A Jacobian may fail to exist, in general, and it is essentially unique when it exists.
If f is at most countable-to-one and the measure η is invariant, then Jacobians do
exist (see [Par69]).

Theorem D. Let (θε)ε be a non-degenerate random perturbation of f ∈ F and
ν be the reference measure in Theorem B. Assume ν admits a Jacobian for every
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g ∈ F , and the Jacobian varies continuously with g in the uniform norm. Then f
is stochastically stable under the random perturbation (θε)ε.

The conditions on the Jacobian are automatically satisfied in some interesting
cases, for instance when ν is the Riemannian volume or f is an expanding map. This
is usually associated to the potential φ = − log |det(Df)|. Example 8.1 describes
a situation where this potential satisfies the condition (P).

3. Preliminary results

Here, we give a few preparatory results needed for the proof of the main results.
The content of this section may be omitted in a first reading and the reader may
choose to return here only when necessary.

3.1. Combinatorics of orbits. Since the regionA is contained in q elements of the
partition P we can assume without any loss of generality that A is contained in the
first q elements of P. Given γ ∈ (0, 1) and n ≥ 1, let us consider the set I(γ, n) of all
itineraries (i0, . . . , in−1) ∈ {1, . . . , k0}n such that #{0 ≤ j ≤ n− 1 : ij ≤ q} > γn.
Then let

cγ = lim sup
n→∞

1
n

log #I(γ, n). (3.1)

Lemma 3.1. Given ε > 0 there exists γ0 ∈ (0, 1) such that cγ < log q + ε for every
γ ∈ (γ0, 1).

Proof. It is clear that

#I(γ, n) ≤
n∑

k=[γn]

(
n
k

)
pn−kqk ≤

n∑

k=[γn]

(
n
k

)
p(1−γ)nqn,

where p = k0 − q denotes the number of elements in P that do not intersect A.
Assume that γ > 1/2. A standard computation using Stirling’s formula implies
that

n∑

k=[γn]

(
n
k

)
≤ n

2

(
n

[γn]

)
≤ C1e

2t(1−γ)n

for some uniform constants C1 > 0 and t > 0. Hence cγ < log q + ε provided that
γ is sufficiently close to 1, which proves the lemma. ¤

We are in a position to state our precise condition on the constant L in assump-
tion (H1) and the constant c in the definition of hyperbolic time. By (P), we may
find ε0 > 0 small such that sup φ− inf φ + ε0 < log deg(f)− log q. By Lemma 3.1,
we may find γ < 1 such that cγ < log q + ε0/4. Assume L is close enough to 1 and
c is close enough to zero so that

σ−(1−γ)Lγ < e−2c < 1 (3.2)

and

sup φ− inf φ < log deg(f)− log q − ε0 −m log L (3.3)
10



3.2. Hyperbolic times. The next lemma, whose proof is based on a lemma due
to Pliss (see e.g. [Mañ87]), asserts that, for points satisfying a certain condition of
asymptotic expansion, there are infinitely many hyperbolic times: even more, the
set of hyperbolic times has positive density at infinity.

Lemma 3.2 ([ABV00] Corollary 3.2). Let x ∈ M and n ≥ 1 be such that

1
n

n∑

j=1

log ‖Df(f j(x))−1‖ ≤ −2c < 0.

Then, there is θ > 0, depending only on f and c, and a sequence of hyperbolic times
1 ≤ n1(x) < n2(x) < · · · < nl(x) ≤ n for x, with l ≥ θn .

Corollary 3.3. Let η be a probability measure relative to which

lim sup
n→∞

1
n

n∑

j=1

log ‖Df(f j(x))−1‖ ≤ −2c < 0

holds almost everywhere. If A is a positive measure set then

lim inf
n→∞

1
n

n−1∑

j=0

η(A ∩Hj)
η(A)

≥ θ

2
.

Proof. By Lemma 3.2, for η-almost every point x ∈ M there is N(x) ∈ N so that
n−1

∑n−1
j=0 χHj (x) ≥ θ for every n ≥ N(x). Fix an integer N ≥ 1 and choose

Ã ⊂ A so that η(Ã) ≥ η(A)/2 and N(x) ≥ N for every x ∈ Ã. If we integrate the
expression above with respect to η on A we obtain that

1
n

n−1∑

j=0

η(Hj ∩A) ≥ θη(Ã) ≥ θ

2
η(A)

for every integer n larger than N , completing the proof of the lemma. ¤

Lemma 3.4 ([ABV00] Lemma 2.7). There exists δ = δ(c, f) > 0 such that, when-
ever n is a hyperbolic time for a point x, the dynamical ball Vn(x) = B(x, n, δ) is
mapped diffeomorphically by fn onto the ball B(fn(x), δ), with

d(fn−j(y), fn−j(z)) ≤ e−
c
2 jd(fn(y), fn(z))

for every 1 ≤ j ≤ n and every y, z ∈ Vn(x).

If n is a hyperbolic time for a point x ∈ M , the neighborhood Vn(x) given by the
lemma above is called hyperbolic pre-ball. As a consequence of the previous lemma
we obtain the following property of bounded distortion on pre-balls.

Corollary 3.5. Assume Jηf = eψ for some Hölder continuous function ψ. There
exist a constant K0 > 0 so that, if n is a hyperbolic time for x then

K−1
0 ≤ Jηfn(y)

Jηfn(z)
≤ K0

for every y, z ∈ Vn(x).
11



Proof. Let n a hyperbolic time for a point x in M and (C, α) be the Hölder constants
of ψ. Then

|Snψ(y)− Snψ(z)| ≤
n−1∑

j=0

|ψ(f j(y))− ψ(f j(z))| ≤ C

n−1∑

j=0

d(f j(y), f j(z))α

for any given y, z ∈ Vn(x). Using Lemma 3.4 we deduce that

|Snψ(y)− Snψ(z)| ≤ C

+∞∑

j=0

e−cα/2jd(fn(x), fn(y))α ≤ Cδα
+∞∑

j=0

e−cαj/2.

Choosing K0 as the exponential of this last term and noting Jηfn is the exponential
of Snψ, the result follows immediately. ¤

3.3. Non-lacunary sequences. The set H of points with infinitely many hyper-
bolic times plays a central role in our strategy. We are going to see that for such a
point the sequence of hyperbolic times has some special properties. The first one
is described in the following remark:

Remark 3.6. If n is a hyperbolic time for x then, clearly, n − s is a hyperbolic
time for fs(x), for any 1 ≤ s < n. The following converse is a simple consequence
of (2.1): if k < n is a hyperbolic time for x and there exists 1 ≤ s ≤ k such that
n − s is a hyperbolic time for fs(x) then n is a hyperbolic time for x. Thus, if
nj(x), j ≥ 1 denotes the sequence of values of n for which x belongs to Hn then,
for every j and l

nj(x) + nl(fnj(x)(x)) = nj+l(x)

We will refer to this property as concatenation of hyperbolic times. Moreover, if
n is a hyperbolic time for x and k is a hyperbolic time for fn(x), the intersection
Vn(x) ∩ f−k(Vk(fk(x))) coincides with the hyperbolic pre-ball Vn+k(x).

The next lemma, that is borrowed from [OV07], provides an abstract criterium
for non-lacunarity at almost every point of certain sequences of functions.

Lemma 3.7. Let T : M → N and Ti : M → N , i ∈ N be measurable functions and
η be a probability measure such that

T (fTi(x)(x)) ≥ Ti+1(x)− Ti(x)

at η-almost every x ∈ M . Assume η is invariant under f and T is integrable for η.
Then (Ti(x))i is non-lacunary for η-almost every x.

Proof. Fix x ∈ M . By definition, (Ti(x))i is non-lacunary if and only if for every
positive rational number β there exists i0 ≥ 1 such that Ti+1(x) − Ti(x) ≤ βTi(x)
for every i ≥ i0:

{
x : {Ti(x)} is lacunary

}
=

⋃

β∈Q+

{x : Ti+1(x)− Ti(x) ≥ βTi(x) i.o.}

(i.o. stands for ‘infinitely often’). By hypothesis, this set is contained in
⋃

β∈Q+

{x : T (fTi(x)(x)) ≥ βTi(x) i.o.} ⊂
⋃

β∈Q+

{x : T (fn(x)) ≥ βn i.o.}

12



and so it suffices to show that the last set has zero measure for any β ∈ Q+. This
follows directly from Borel-Cantelli, together with the observation that, since η is
f -invariant,

∑
n

η({x : T (fn(x)) ≥ βn}) =
∑

n

η({x : T (x) ≥ βn})

and this is bounded above by
∑

j jη({T = j}) =
∫

T dη < ∞. ¤

The application we have in mind is when Ti = ni is the sequence of hyperbolic
times, with T = n1. In this case the assumption of the lemma follows from the
concatenation property in Remark 3.6. In this way we obtain

Corollary 3.8. If η is an invariant expanding measure and n1(·) is η-integrable
then the sequence nj(·) is non-lacunary at η-almost every point.

3.4. Relative pressure. We recall the notion of topological pressure on non neces-
sarily compact invariant sets, and quote some useful properties. In fact, we present
two alternative characterizations of the relative pressure, both from a dimensional
point of view. See Chapter 4 §11 and Appendix II of [Pes97] for proofs and more
details.

Let M be a compact metric space, f : M → M be a continuous transformation,
φ : M → R be a continuous function, and Λ be an f -invariant set.

Relative pressure using partitions: Given any finite open covering U of Λ, denote
by In the space of all n-strings i = {(U0, . . . , Un−1) : Ui ∈ U} and put n(i) = n.
For a given string i set

U = U(i) = {x ∈ M : f j(x) ∈ Uij , for j = 0 . . . n(i)}
to be the cylinder associated to i and n(U) = n to be its depth. Furthermore, for
every integer N ≥ 1, let SNU be the space of all cylinders of depth at least N .
Given α ∈ R define

mα(f, φ, Λ,U , N) = inf
G

{ ∑

U∈G
e−αn(U)+Sn(U)φ(U)

}
,

where the infimum is taken over all families G ⊂ SNU that cover Λ and we write
Snφ(U) = supx∈U Snφ(x). Let

mα(f, φ, Λ,U) = lim
N→∞

mα(f, φ, Λ,U , N)

(the sequence is monotone increasing) and

PΛ(f, φ,U) = inf {α : mα(f, φ, Λ,U) = 0}.
Definition 3.9. The pressure of (f, φ) relative to Λ is

PΛ(f, φ) = lim
diam(U)→0

PΛ(f, φ,U).

Theorem 11.1 in [Pes97] states that the limit does exist, that is, given any se-
quence of coverings Uk of L with diameter going to zero, PL(f, φ,Uk) converges and
the limit does not depend on the choice of the sequence.

Relative pressure using dynamical balls:
13



Fix ε > 0. Set In = M × {n} and I = M × N. For every α ∈ R and N ≥ 1,
define

mα(f, φ, Λ, ε, N) = inf
G

{ ∑

(x,n)∈G
e−αn+Snφ(B(x,n,ε))

}
, (3.4)

where the infimum is taken over all finite or countable families G ⊂ ∪n≥NIn such
that the collection of sets {B(x, n, ε) : (x, n) ∈ G} cover Λ. Then let

mα(f, φ, Λ, ε) = lim
N→∞

mα(f, φ, Λ,U , N)

(once more, the sequence is monotone increasing) and

PΛ(f, φ, ε) = inf {α : mα(f, φ, Λ, ε) = 0}.
According to Remark 1 in [Pes97, Page 74] there is a limit when ε → 0 and it
coincides with the relative pressure:

PΛ(f, φ) = lim
ε→0

PΛ(f, φ, ε).

Remark 3.10. Since φ is uniformly continuous, the definition of the relative pressure
is not affected if one replaces, in (3.4), the supremum Snφ(B(x, n, ε)) by the value
Snφ(x) at the center point.

The following properties on relative pressure, will be very useful later. See
Theorem 11.2 and Theorem A2.1 in [Pes97], and also [Wal82, Theorem 9.10].

Proposition 3.11. Let M be a compact metric space, f : M → M be a continuous
transformation, φ : M → R be a continuous function, and Λ be an f -invariant set.
Then

(1) PΛ(f, φ) ≥ sup
{
hµ(f) +

∫
φdµ

}
where the supremum is over all invariant

measures µ such that µ(Λ) = 1. If Λ is compact, the equality holds.
(2) Ptop(f, φ) = sup{PΛ(f, φ), PM\Λ(f, φ)}.

The proof of the next proposition, which is probably well-known but that we
could not find in the literature, was obtained jointly with Marcelo Viana.

Proposition 3.12. Let M be a compact metric space, f : M → M be a continuous
transformation, φ : M → R be a continuous function, and Λ be an f -invariant set.
Then PΛ(f `, S`φ) = `PΛ(f, φ) for every ` ≥ 1.

Proof. Fix ` ≥ 1. By uniform continuity of f , given any ρ > 0 there exists ε > 0
such that d(x, y) < ε implies d(f j(x), f j(y)) < ρ for all 0 ≤ j < `. It follows that

Bf (x, `n, ε) ⊂ Bf`(x, n, ε) ⊂ Bf (x, `n, ρ), (3.5)

where Bg(x, n, ε) denotes the dynamical ball for a map g. This is the crucial
observation for the proof.

First, we prove the ≥ inequality. Given N ≥ 1 and any family G` ⊂ ∪n≥NIn

such that the balls Bf`(x, j, ε) with (x, j) ∈ G` cover Λ, denote

G = {(x, j`) : (x, j) ∈ G`}.
The second inclusion in (3.5) ensures that the balls Bf (x, k, ρ) with (x, k) ∈ G cover
Λ. Clearly,

∑

(x,j)∈G`

e−α`j+
∑j−1

i=0 S`φ(fi`(x)) =
∑

(x,k)∈G
e−αk+

∑k−1
i=0 φ(fi(x)).

14



Since G` is arbitrary, and recalling Remark 3.10, this proves that

mα`(f `, S`φ, Λ, ε,N) ≥ mα(f, φ, Λ, ρ,N`).

Therefore, mα`(f `, S`φ, Λ, ε) ≥ mα(f, φ, Λ, ρ). Then PΛ(f `, S`φ, ε) ≥ `PΛ(f, φ, ρ).
Since ε → 0 when ρ → 0, it follows that PΛ(f `, S`φ) ≥ `PΛ(f, φ).

For the ≤ inequality, we observe that the definition of the relative pressure is not
affected if one restricts the infimum in (3.4) to families G of pairs (x, k) such that k
is always a multiple of `. More precisely, let m`

α(f, φ, Λ, ε, N) be the infimum over
this subclass of families, and let m`

α(f, φ, Λ, ε) be its limit as N →∞.

Lemma 3.13. We have m`
α(f, φ, Λ, ε) ≤ mα−ρ(f, φ, Λ, ε) for every ρ > 0.

Proof. We only have to show that, given any ρ > 0,

m`
α(f, φ, Λ, ε, N) ≤ mα−ρ(f, φ, Λ, ε, N) (3.6)

for every large N . Let ρ be fixed and N be large enough so that Nρ > `(α+sup |φ|).
Given any G ⊂ ∪n≥NIn such that the balls Bf (x, k, ε) with (x, k) ∈ G cover Λ,
define G′ to be the family of all (x, k′), k′ = `[k/`] such that (x, k) ∈ G. Notice that

−αk′ + Sk′φ(x) ≤ −αk + α` + Skφ(x) + ` sup |φ| ≤ (−α + ρ)k + Skφ(x)

given that k ≥ N . The claim follows immediately. ¤

Let G′ be any family of pairs (x, k) with k ≥ N` and such that every k is a
multiple of `. Define G` to be the family of pairs (x, j) such that (x, j`) ∈ G′. The
first inclusion in (3.5) ensures that if the balls Bf (x, k, ε) with (x, k) ∈ G′ cover Λ
then so do the balls Bf`(x, j, ε) with (x, j) ∈ G`. Clearly,

∑

(x,k)∈G′
e−αk+

∑k−1
i=0 φ(fi(x)) =

∑

(x,j)∈G`

e−α`j+
∑j−1

i=0 S`φ(fi`(x)).

Since G` is arbitrary, and recalling Remark 3.10, this proves that

m`
α(f, φ, Λ, ε, N`) ≥ mα`(f `, S`φ, Λ, ε, N).

Taking the limit when N →∞ and using Lemma 3.13,

mα−ρ(f, φ, Λ, ε) ≥ m`
α(f, φ, Λ, ε) ≥ mα`(f `, S`φ, Λ, ε).

It follows that `
(
PΛ(f, φ, ε) + ρ

) ≥ PΛ(f `, S`φ, ε). Since ρ is arbitrary, we conclude
that `PΛ(f, φ, ε) ≥ PΛ(f `, S`φ, ε) and so PΛ(f `, S`φ) ≥ `PΛ(f, φ). ¤

The next lemma will be used later to reduce some estimates for the relative
pressure to the case when φ ≡ 0. Denote hΛ(f) = PΛ(f, 0) for any invariant set Λ.

Lemma 3.14. PΛ(f, φ) ≤ hΛ(f) + sup φ.

Proof. Let U be any open covering of M and N ≥ 1. By definition,

mα(f, φ, Λ,U , N) = inf
G

{ ∑

U∈G
e−αn(U)+Sn(U)φ(U)

}
,

where the infimum is taken over all families G ⊂ SNU that cover Λ. Therefore,

mα(f, φ, Λ,U , N) ≤ inf
G

{ ∑

U∈G
e(−α+sup φ)n(U)

}
= mα−sup φ (f, 0, Λ,U , N).

Since N and U are arbitrary, this gives that PΛ(f, φ) ≤ hΛ(f)+sup φ, as we wanted
to prove. ¤
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3.5. Natural extension and Pesin’s theory. Here we present the natural ex-
tension associated to a non-invertible transformation and recall some results on the
existence of (local) stable and unstable manifolds in the context of non-uniform
hyperbolicity.

Let (M,B, η) be a probability space and let f denote a measurable non-invertible
transformation. Consider the space

M̂ =
{

(. . . , x2, x1, x0) ∈ MN : f(xi+1) = xi, ∀i ≥ 0
}

,

endowed with the metric d̂(x, y) =
∑

i≥0 2−id(xi, yi), x, y ∈ M̂ and with the sigma-
algebra B̂ that we now describe. Let πi : M̂ → M denote the projection in the ith
coordinate. Note also that f−i(B) ⊂ B for every i ≥ 0, because f i is a measurable
transformation. Let B̂0 be the smallest sigma-algebra that contain the elements
π−1

i (f−i(B)). The measure η̂ defined on the algebra
⋃∞

i=0 π−1
i (f−iB) by

η̂(Ei) = η(πi(Ei)) for every Ei ∈ π−1
i (f−i(B)),

admits an extension to the sigma-algebra B̂0. Let B̂ denote the completion of B̂0

with respect to η̂. The natural extension of f is the transformation

f̂ : M̂ → M̂, f̂(. . . , x2, x1, x0) = (. . . , x2, x1, x0, f(x0)),

on the probability space (M̂, B̂, η̂). The measure η̂ is the unique f̂ -invariant prob-
ability measure such that π∗η̂ = η. Furthermore, η̂ is ergodic if and only if η is
ergodic, and its entropy hη̂(f̂) coincides with hη(f). We refer the reader to [Rok64]
for more details and proofs. For simplicity reasons, when no confusion is possible
we denote by π the projection in the zeroth coordinate and by x0 the point π(x̂).

If the transformation f is C1-differentiable then the dynamical cocycle Df on
the tangent bundle TM induces a cocycle Â : E → E over f̂ defined on the fiber
bundle E such that Ex̂ = Tx0M for every x̂ ∈ M̂ . In fact, the action of the cocycle
in each fiber Ex̂ is given by the map Â(x̂) : Ex̂ → Ef̂(x̂), where

Â(x̂)v = Df(π(x̂)) v

for every x̂ ∈ M̂ and every v ∈ Ex̂. Given n ≥ 1 and x̂ ∈ M̂ , set Ân(x̂) :=
Â(f̂n−1(x̂)) ◦ · · · ◦ Â(x̂) and Â−n(x̂) := [Ân(f̂−n(x̂))]−1. Oseledets’ Theorem (see
e.g. [Ose68] and [KS86, Appendix 2]) asserts the following:

Proposition 3.15. Assume log ‖Â‖, log ‖Â−1‖ ∈ L1(η̂). There exists a full η̂-
measure set R̂ such that, for any x̂ ∈ R̂ there is an invariant decomposition

Tx0M = E1
x̂ ⊕ · · · ⊕ E

k(x̂)
x̂ ,

and real numbers λ1(x̂) ≥ · · · ≥ λk(x̂)(x̂) (Lyapunov exponents) satisfying

λi(x̂) = lim
n→±∞

1
n

log ‖Ân(x̂)v‖, for every v ∈ Ei
x̂ \ {0}

and

lim
n→±∞

1
n

log ^(Ei
f̂n(x̂)

, Ej

f̂n(x̂)
) = 0

for every i 6= j. Moreover, s(x̂), λi(x̂) and Ei(x̂) are invariant and vary measurably
with x̂.
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In the presence of positive Lyapunov exponents, Pesin’s theory guarantees the
existence of local unstable manifolds passing through almost every point and vary-
ing measurably. Given x̂ ∈ R̂, consider the subbundles Eu

x̂ =
⊕

λi(x̂)>0 Ei
x̂ and

Ecs
x̂ =

⊕
λi(x̂)≤0 Ei

x̂. Set also λu(x̂) = inf{λi(x̂) : λi(x̂) > 0} and consider the set
B̂λ = {x̂ ∈ R̂ : λu(x̂) > λ}.
Proposition 3.16. Given 0 < α′ < α, ε > 0 and 2ε < λ1 < λ − ε there are
measurable functions δε and γε from B̂λ to R+ and, for every x̂ ∈ B̂λ, there exists
a Lipschitz transformation ψx̂ from the ball Bu(x̂, δε(x̂)), of radius δε(x̂) in Eu

x̂ , to
Ecs

x̂ such that

(1) ψx̂ varies measurably with x̂, Wu
loc(x̂) = expx0

(graph ψx̂) is a C1+α′ embed-
ded manifold of dimension dim Eu

x̂ in M tangent to Eu
x̂ at x0, and

Lipα′(expx0
ψx̂) ≤ γε(x̂);

(2) For every y0 ∈ Wu
loc(x̂) there is a unique ŷ ∈ M̂ such that π(ŷ) = y0 and

d(x−n, y−n) ≤ γε(x̂) e−λ1n

for every n ≥ 0;
(3) If ẑ ∈ M̂ and for every n ≥ 0 it holds

d(x0, z0) ≤ δε(x̂)/γε(f̂−1(x̂)) and d(x−n, z−n) ≤ e−λ1nδε(x̂)

then z0 ∈ Wu
loc(x̂);

(4) There is a sequence of embedded disks (W−n(x̂))n≥0 of dimension dim Eu
x̂

in M satisfying W0(x̂) = Wu
loc(x̂), f(W−n(x̂)) ⊃ W−n+1(x̂) and such that

Wu(x̂) =
⋃

n≥0

fn(W−n(x̂)));

is an immersed manifold and coincides with the set of points y0 ∈ M for
which there exists ŷ ∈ M̂ for which y0 = π(ŷ) such that

lim sup
n→∞

1
n

log d(x−n, y−n) < 0;

(5) If du denotes the restriction of the Riemannian metric to the disks W−n(x̂)
then du(y0, z0) ≤ γ2

ε (x̂) d(y0, z0) for every y0, z0 ∈ Wu
loc(x̂);

(6) If Ŵu
loc(x̂) is the set of points ŷ ∈ M̂ given by (2) above then it holds that

du(y−n, z−n) ≤ γε(x̂) e−λ1n

for every ŷ, ẑ ∈ Wu
loc(x̂) and every n ≥ 0; and

(7) γε(f̂n(x̂)) ≤ γε(x̂)eε|n| and δε(f̂n(x̂)) ≤ δε(x̂)eε|n| for every n ∈ Z.

In view of the this proposition, the global unstable manifold of x̂ in M̂ is defined
as the set

Ŵu
loc(x̂) =

{
ŷ ∈ M̂ : limn→∞

1
n

log du(y−n, x−n) ≤ −λu(x̂)
}

.

The proof of this result in the endomorphism case follows the original one due
to Pesin for invertible transformations. We refer the reader to [FHY83, KS86,
LQ95, QZ02] for detailed presentations and proofs. A presentation of the unstable
manifold theorem for non-uniformly hyperbolic endomorphisms can be found in
[Zhu98].
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We shall omit the dependence of Wu
loc(x̂) on λ1 and ε for notational simplicity.

Since local unstable leaves vary measurably with the point then there are compact
sets of arbitrary large measure, referred as hyperbolic blocks, restricted to which
the local unstable leaves passing through those points vary continuously. More
precisely,

Corollary 3.17. There are countably many compact sets (Λ̂i)i∈N whose union is
a η̂-full measure set and such that the following holds: for every i ≥ 1 there are
positive numbers εi ¿ 1, λi, ri, , γi and Ri such that for every x̂ ∈ Λ̂i there exists
an embedded submanifold Wu

loc(x̂) in M of dimension dim Eu(x̂), tangent to Eu(x̂)
at x̂ and

(1) If y0 ∈ Wu
loc(x̂) then there is a unique ŷ ∈ M̂ such that for every n ≥ 1

d(x−n, y−n) ≤ rie
−εin and d(x−n, y−n) ≤ γie

−λin;

(2) For every 0 < r ≤ ri the set Wu
loc(ŷ) ∩B(x0, r) is connected and the map

B(x̂, εir) ∩ Λ̂i 3 ŷ 7→ Wu
loc(ŷ) ∩B(x0, r)

is continuous (in the Hausdorff topology);
(3) If ŷ and ẑ belong to Λ̂i then either Wu

loc(ŷ)∩B(x0, r) and Wu
loc(ẑ)∩B(x0, r)

coincide or are disjoint; if these sets are disjoint and, in addition, ŷ ∈
Ŵu(ẑ) then du(y0, z0) > 2ri;

(4) If ŷ ∈ Λ̂i ∩B(x̂, εir) then Wu
loc(ŷ) contains the ball of du-radius Ri around

Wu
loc(ŷ) ∩B(x0, r).

B

c

a

PSfrag replacements
B(x0, r)

x0

Wu
loc(ŷ) ∩B(x0, r)

Figure 1. Continuous dependence of local unstable leaves in M .

4. Conformal measures

The Ruelle-Perron-Fröbenius transfer operator Lφ : C(M) → C(M) associated
to f : M → M and φ : M → R is the linear operator defined on the space C(M) of
continuous functions g : M → R by

Lφg(x) =
∑

f(y)=x

eφ(y)g(y).

Notice that Lφg is indeed continuous if g is continuous, because f is a local homeo-
morphism. It is also easy to see that Lφ is a bounded operator,relative to the norm
of uniform convergence in C(M):

‖Lφ‖ ≤ deg(f)esup |φ|.
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The dual operator L∗φ acts on the Borel measures of M by Consider the dual
operator L∗φ : M(M) → M(M) acting on the space M(M) of Borel measures in
M by ∫

g d(L∗φη) =
∫

(Lφg) dη

for every g ∈ C(M). Let λ0 = r(Lφ) be the spectral radius of Lφ. In this section
we prove the following:

Theorem 4.1. There exists k ≥ 1, r(Lφ) = λ0 ≥ λ1 ≥ · · · ≥ λk ≥ deg(f)einf φ

real numbers and expanding conformal probability measures ν0, ν1, . . . , νk such that

L∗φνi = λiνi, ∀ 0 ≤ i ≤ k, and
k⋃

i=0

supp(νi) = H.

Moreover, each νi is a non-lacunary Gibbs measure and has a Jacobian with respect
to f given by Jνif = λie

−φ. If f is topologically mixing then ν0 is an expanding
conformal measure such that supp ν0 = H = M .

4.1. Eigenmeasures of the transfer operator.

Lemma 4.2. Suppose ν is a Borel probability such that L∗φν = λν for some λ > 0.
Then the Jacobian of ν with respect to f exists and is given by Jνf = λe−φ.

Proof. We will sketch the proof of this standard lemma for completeness. Let A be
any measurable set such that f | A is injective. Take a sequence (gn)n of continuous
functions on M such that gn → χA at ν-almost every point and sup |gn| ≤ 2 for all
n. Then,

Lφ(e−φgn)(x) =
∑

f(y)=x

eφ(y) e−φ(y)gn(y) =
∑

f(y)=x

gn(y).

The last expression converges to χf(A)(x) at ν-almost every point, because f | A is
injective. Hence, by the dominated convergence theorem,∫

λe−φgn dν =
∫

e−φgn d(L∗φν) =
∫
Lφ(e−φgn) dν → ν(f(A)).

Since the left hand side also converges to
∫

A
λe−φdν, we conclude that

ν(f(A)) =
∫

A

λe−φdν,

which proves the lemma. ¤

Lemma 4.3. The spectral radius λ0 of the operator Lφ is at least deg(f) einf φ and
it is an eigenvalue for the dual operator L∗φ.

Proof. Observe that, for every positive integer n and every x ∈ M ,

Ln
φ1(x) =

∑

fn(y)=x

eSnφ(y) ≥ deg(f)n en inf φ.

So, the spectral radius is at least deg(f) einf φ, as claimed in the first part of the
lemma. The second part follows from general results in functional analysis. Let
C+ be the open convex cone of positive continuous functions on M and consider
the linear subspace

N = {Lφg − λ0g : g ∈ C(M)}.
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Notice that these sets are disjoint. Indeed, assuming otherwise then there exists
some continuous function g ∈ C(M) such that Lφg − λ0g is a strictly positive
continuous function. By compactness and continuity, there is ε > 0 such that
Lφg ≥ (λ0 + ε)g. Since Lφ is a positive operator, it is clear that

Ln
φg ≥ (λ0 + ε)ng for every n ≥ 1.

This shows that the spectral radius of Lφ is at least λ0 + ε, contradicting the
definition of λ0. This contradiction proves that C+ ∩N = ∅, as we claimed. Then,
by Masur’s theorem (see [Dei85, Proposition 7.2]), there exists some continuous
linear functional ν0 : C(M) → R such that

∫
g dν0 > 0 for every g ∈ C+ and

∫
g dν0 = 0 for every g ∈ N.

The first property means that ν0 is a measure and so, up to normalization, we may
suppose it is a probability. The second property means that

∫
g d(L∗φν0) =

∫
Lφg dν0 = λ0

∫
g dν0 for every g ∈ C(M),

that is, L∗φν = λ0ν0. Thus, λ0 is indeed an eigenvalue for the dual operator L∗φ. ¤

Throughout, let λ denote a fixed eigenvalue of L∗φ larger than deg(f)einf φ,
let ν be any eigenmeasure of L∗φ associated to λ and set P = log λ. The
only property of λ that we shall use is that λ > elog q+sup φ+ε0 . From Lemma 4.2
we get that

Jνf(x) = λ0e
−φ(x) > elog q+ε0 > q for all x ∈ M . (4.1)

This property will allow us to prove that ν-almost every point spends at most a
fraction γ of time inside the domain A where f may fail to be expanding. As we
will see later, in Lemma 6.5, log λ = Ptop(f, φ). This determines completely the
spectral radius of Lφ as the unique eigenvalue of L∗φ larger than the lower bound
above. Consequently all the eigenvalues λi given by Theorem 4.1 are equal and
coincide with λ0 = r(Lφ) and 1

k

∑k
j=0 νi is an expanding conformal measure whose

support coincides with the closure of the set H. The later is the conformal measure
referred at Theorem B.

4.2. Expanding structure. Here we prove that any eigenmeasure ν as above is
expanding and has integrable first hyperbolic time. Given n ≥ 1, let B(n) denote
the set of points x ∈ M whose frequency of visits to A up to time n is at least γ,
that is,

B(n) =
{

x ∈ M :
1
n

#{0 ≤ j ≤ n− 1 : f j(x) ∈ A} ≥ γ
}

.

Proposition 4.4. The measure ν(B(n)) decreases exponentially fast as n goes to
infinity. Consequently, ν-almost every point belongs to B(n) for at most finitely
many values of n.

Proof. The strategy is to cover B(n) by elements of the covering P(n) =
∨n−1

j=0 f−jP
which, for convenience, will be referred to as cylinders. Then, the estimate relies
on an upper bound for the measure of each cylinder, together with an upper bound
on the number of cylinders corresponding to large frequency of visits to A.
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Since fn is injective on every P ∈ P(n) then we may use (4.1) to conclude that

1 ≥ ν(fn(P )) =
∫

P

Jνfn dν =
∫

P

n−1∏

j=0

(Jνf ◦ f j)dν ≥ e(log q+ε0)nν(P ).

This proves that ν(P ) ≤ e−(log q+ε0)n for every P ∈ Pn. Since B(n) is contained in
the union of cylinders P ∈ Pn associated to itineraries in I(γ, n), we deduce from
our choice of γ after Lemma 3.1 that

ν(B(n)) ≤ # I(γ, n)e−(log q+ε0)n ≤ e−ε0n/2,

for every large n. This proves the first statement in the lemma. The second one is
a direct consequence, using the Borel-Cantelli lemma. ¤

Corollary 4.5. The measure ν is expanding and satisfies
∫

n1 dν < ∞.

Proof. By Proposition 4.4, almost every point x is outside B(n) for all but finitely
many values of n. Then, in view of our choice (3.2),

n−1∑

j=0

log ‖Df(f j(x))−1‖ ≤ γ log L + (1− γ) log σ−1 ≤ −2c

if n is large enough. In view of Lemma 3.2, this proves that ν-almost every point
has infinitely many hyperbolic times (positive density at infinity). In other words,
ν is expanding. Moreover, using Proposition 4.4 once more,

∫
n1dν =

∞∑
n=0

ν({x : n1(x) > n}) ≤ 1 +
∞∑

n=1

ν(B(n)) < ∞,

as we claimed. ¤

4.3. Gibbs property. Now we prove that ν satisfies a Gibbs property at hyper-
bolic times. Later we shall see that hyperbolic times form a non-lacunary sequence,
almost everywhere, and then it will follow that ν is a non-lacunary Gibbs measure.

Lemma 4.6. The support of ν is an f-invariant set contained in the closure of H.
For any ρ > 0 there exists ξ > 0 such that ν(B(x, ρ)) ≥ ξ for every x ∈ supp(ν).

Proof. Since ν is expanding, it is clear supp(ν) ⊂ H. Let x ∈ M . Since f is a local
homeomorphism, the relation V = f(W ) is a one-to-one correspondence between
small neighborhoods W of x and small neighborhood V of f(x). Moreover,

ν(V ) =
∫

W

Jνf dν.

is positive if and only if ν(W ) > 0, because the Jacobian is bounded away from
zero and infinity. This proves that the support is invariant by f . The second claim
in the lemma is standard. Assume, by contradiction, that there exists ρ > 0 and a
sequence (xn)n≥1 in supp(ν) such that ν(B(xn, ρ)) → 0 as n →∞. Since supp(ν)
is compact set, the sequence must accumulate at some point z ∈ supp(ν). Then

ν(B(z, ρ)) ≤ lim inf
n→∞

ν(B(xn, ρ)) = 0,

which contradicts z ∈ supp(ν). This completes the proof of the lemma. ¤
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Lemma 4.7. There exists K > 0 such that, if n is a hyperbolic time for x ∈ supp(ν)
then

K−1 ≤ ν(B(x, n, δ))
e−Pn+Snφ(y)

≤ K,

for every y ∈ B(x, n, δ).

Proof. Since fn | B(x, n, δ) is injective, we get from the previous lemma that

ξ(δ) ≤ ν(B(fn(x), δ)) =
∫

B(x,n,δ)

Jνfn dν ≤ 1

for every x ∈ supp(ν). Then, the bounded distortion property in Corollary 3.5
applied to the Hölder continuous function Jνf = λe−φ gives that

K−1
0 ξ(δ) ≤ ν(B(x, n, δ))λne−Snφ(y) ≤ K0

for every y ∈ B(x, n, δ). Recalling that P = log λ, this gives the claim with K =
K0 ξ(δ)−1. ¤
Remark 4.8. The same proof gives a somewhat stronger result: for ν-almost every
x and any 0 < ε ≤ δ, there exists K(ε) > 0 such that

K−1(ε) ≤ ν(B(x, n, ε))
e−Pn+Snφ(x)

≤ K(ε).

if n is a hyperbolic time for x. It suffices to take K(ε) = K0ξ(ε)−1.

We proceed with the proof of Theorem 4.1. We have proven that any eigenmea-
sure ν for Lφ associated to an eigenvalue λ ≥ deg(f)einf φ is necessarily expanding,
satisfies the Gibbs property at hyperbolic times and has a Jacobian Jνf = λe−φ.
Furthermore, Lemma 4.3 guarantees that the spectral radius λ0 is an eigenvalue of
the operator Lφ. Let ν0 denote any such eigenmeasure. If f is topologically mixing
then supp ν0 = H = M . Indeed, given an open set U there exists N ≥ 1 such that
fN (U) = M . Since Jν0f is bounded from zero and infinity then clearly ν0(U) > 0,
which proves our claim. Hence, to prove Theorem 4.1 we are left to show that there
are finitely many eigenmeasures of L∗φ associated to eigenvalues greater or equal to
deg(f)einf φ whose union of their supports coincide with H. Given an f -invariant
compact set Λ we denote by LΛ : C(Λ) → C(Λ) the restriction of the operator Lφ

to the space of continuous functions C(Λ).

Lemma 4.9. There are finitely many λ0 ≥ λ1 ≥ · · · ≥ λk ≥ deg(f)einf φ and
probability measures ν0, ν1, . . . , νk such that L∗φνi = λiνi, for every 0 ≤ i ≤ k, and
that the union of their supports coincides with the closure of the set H.

Proof. We obtain the desired finite sequence of conformal measures using the ideas
involved in the proof of Lemma 4.3 recursively. Indeed, Lemma 4.3, Corollary 4.5
and Lemma 4.7 assert that there exists an expanding conformal measure ν0 such
that L∗φν0 = λ0ν0 and satisfies the Gibbs property at hyperbolic times. Clearly
supp(ν0) is an invariant set contained in H.

If supp(ν0) = H then we are done. Otherwise we proceed as follows. As we
shall see in Lemma 5.3, the interior of the support of any expanding conformal
measure ν is non-empty and contains almost every point in a ball of radius δ
(depending only on f and c). Consider the non-empty compact invariant set K1 =
M \ interior(supp(ν0)) and set λ1 = r(LK1) ≤ λ0. It is easy to check that λ1 ≥
deg(f)einf φ. Then we may argue as in the proof of Lemma 4.3: the cone of strictly
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positive functions in K1 is disjoint from the subspace {Lφg − λg : g ∈ C(K1)}
and so there exists a probability measure ν1 such that L∗φν1 = λ1ν1 whose support
supp(ν1) is contained in K1. Since λ1 ≥ deg(f)einf φ then ν1 is also expanding and
its support must also contain a ball of radius δ in its interior.

Since M is compact this procedure will finish after a finite number of times.
Hence there are finitely many compact sets K0, . . . ,Kk and expanding measures
ν0, . . . , νk such that supp(νi) ⊂ Ki and H =

⋃
i supp(νi). This completes the proof

of the lemma. ¤

For any conformal measure νi as above, we prove in Proposition 5.1) that there
are finitely many invariant ergodic measures that are absolutely continuous with
respect to νi, that their densities are bounded from above and that their basins
cover νi-almost every point. Hence, the non-lacunarity of the sequence of hyperbolic
times will be a consequence of Lemma 3.7. So, up to the proof of Proposition 5.1,
this shows that each νi is a non-lacunary Gibbs measure and completes the proof
of Theorem 4.1.

5. Absolutely continuous invariant measures

In this section we analyze carefully the Cesaro averages

νn =
1
n

n−1∑

j=0

f j
∗ν,

and prove that every weak∗ accumulation point is absolutely continuous with re-
spect to ν. It is well known, and easy to check, that the accumulation points
are invariant probabilities. In the topologically mixing setting we also prove that
there is a unique absolutely continuous invariant measure and that it satisfies the
non-lacunar Gibbs property. The precise statement is

Proposition 5.1. There are finitely many invariant, ergodic probability measures
µ1, µ2, . . . , µk that are absolutely continuous with respect to ν and such any abso-
lutely continuous invariant measure is a convex linear combination of µ1, µ2, . . . , µk.
In addition, the measures µi are expanding and the densities dµi/dν are bounded
away from infinity. Moreover, the union of the basins B(µi) cover ν-almost every
point in M . If f is topologically mixing then there is a unique absolutely continuous
invariant measure and it is a non-lacunary Gibbs measure.

5.1. Existence and finitude. First we prove that every accumulation point of
(νn)n≥1 is absolutely continuous invariant measure with bounded density. For every
n ∈ N it holds that

Hc
n ⊂

{
n1(·) > n

} ⋃[ n−1⋃

k=0

Hk ∩ f−k({n1(·) > n− k})
]
.

In particular, we can use the inclusion above to write

νn ≤ µn +
1
n

n−1∑

j=0

ηj ,
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where

µn =
1
n

n−1∑

j=0

f j
∗ (ν | Hj) and ηj =

∞∑

l=0

f l
∗
(
f j
∗ (ν | Hj)|{n1 > l}).

Lemma 5.2. There exists C2 > 0 such that for every positive integer n the measures
fn
∗ (ν | Hn), µn and νn are absolutely continuous with respect to ν with densities

bounded from above by C2. Moreover, the same holds for every weak∗ accumulation
point µ of (νn)n≥1.

Proof. Let A be any measurable set of small diameter, say diam(A) < δ/2, and
such that ν(A) > 0. First we claim that there is C2 > 0 such that

fn
∗ (ν | Hn)(A) ≤ C2 ν(A), ∀n ≥ 1.

Observe that either fn
∗ (ν|Hn)(A) = 0, or A is contained in a ball B = B(fn(x), δ)

of radius δ for some x ∈ Hn. In the first case we are done. In the later situation
we compute

fn
∗ (ν | Hn)(A) = ν(f−n(A) ∩Hn) =

∑

i

ν(f−n
i (A ∩B)),

where the sum is over all hyperbolic inverse branches f−n
i : B → Vi for fn. Recall

that the ν-measure of any positive measure ball of radius δ is at least ξ(δ) > 0 by
Lemma 4.6. Thus, by bounded distortion

fn
∗ (ν | Hn)(A) ≤ K0

∑

i

ν(A)
ν(B)

ν(Vi) ≤ K0 ξ(δ)−1 ν(A),

which proves our claim with C2 = K0 ξ(δ)−1. It follows from the arbitrariness of
A that both fn

∗ (ν | Hn) and µn are absolutely continuous with respect to ν with
density bounded from above by C2.

Similar estimates on the density of ηn hold using that {n1 > n} ⊂ B(n), there
are at most ecγn cylinders in B(n), and that Jνfn > e(log q+ε0)n on each of one of
them. Indeed,

((f l
∗ν)|{n1 > l})(A) ≤

∑

P∈P(l)

P∩B(l)6=∅

ν(f−l(A) ∩ P ) ≤ #B(l) e−(log q+ε0)lν(A)

for every l ≥ 1 and every measurable set A. Using that dfn
∗ (ν | Hn)/dν ≤ K0 ξ(δ)−1

and summing up the previous terms one concludes that

ηj(A) ≤ K0 ξ(δ)−1
∞∑

l=0

e−
ε0
4 l ν(A), ∀j ≥ 1.

This shows that (up to replace C2 by a larger constant) the measures νn are also
absolutely continuous with respect to ν and that dνn/dν is bounded from above
by C2. The second assertion in the lemma is an immediate consequence by weak∗

convergence. ¤

The following lemma, whose proof explores the generating property of hyperbolic
pre-balls, plays a key role in proving finitude of equilibrium states.

Lemma 5.3. If G is an f -invariant set such that ν(G) > 0 then there is a disk ∆
of radius δ/4 so that ν(∆\G) = 0.
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Proof. In the case that ν coincides with the Lebesgue measure this corresponds to
[ABV00, Lemma 5.6]. Since the argument will be used later on we give a brief
sketch of the proof.

Let ε > 0 be small. Take a compact K and an open set O such that K ⊂
G ∩H ⊂ O and ν(O \K) < εν(K). Set n0 ∈ N such that B(x, n, δ) ⊂ O for any
x ∈ K ∩Hn. If n(x) denotes the first hyperbolic time of x larger than n0 then

K ⊂
⋃

x∈K

B(x, n(x), δ/4) ⊂ O.

Set V (x) = B(x, n(x), δ) and W (x) = B(x, n(x), δ/4). Since K is compact it is
covered by finite open sets (W (x))x∈X for some family X = {x1, . . . , xk}. Now we
proceed recursively and define

n1 = inf{n(x) : x ∈ X} and X1 = {x ∈ X : n(x) = n1}
and, assuming that ni and Xi are well defined for 1 ≤ i ≤ m− 1, set

nm = inf{n(x) : x ∈ X \ (X1 ∪ · · · ∪Xm−1)} and Xm = {x ∈ X : n(x) = nm}
up to some finite positive integer s. Let X̃1 ⊂ X1 be a maximal family of points
with pairwise disjoint W (·) elements. Moreover, given X̃i ⊂ Xi for 1 ≤ i ≤ m−1 let
X̃m ⊂ Xm maximal such that every W (x), x ∈ X̃m, does not intersect any element
W (y) for some y ∈ X̃1∪ . . . X̃m. If X̃ = ∪{X̃i : 1 ≤ i ≤ s} then the dynamical balls
W (x), x ∈ X̃, are pairwise disjoint (by construction). It is also easy to see that for
every y ∈ X there exists x ∈ X̃ such that W (y) ⊂ V (x). Hence

ν
( ⋃

x∈X̃

W (x) \K
)
≤ ν(O \K) < εν(K)

and, by the bounded distortion property,

ν
( ⋃

x∈X̃

W (x)
)
≥ τν

( ⋃

x∈X̃

V (x)
)

for some τ > 0. We conclude immediately that there exists x ∈ X̃ such that
ν(W (x) \G)

ν(W (x))
≤ ν(W (x) \K)

ν(W (x))
< τ−1ε.

Using the bounded distortion of fn restricted to the dynamical ball W (x) once
more it follows that

ν(B \ fn(G)) < τ−1K0ε,

where B is a ball of radius δ/4 around fn(x). Since ε was arbitrary and G is
invariant then there exists a sequence ∆n of balls of radius δ/4 such that ν(∆n \
G) → 0 as n → ∞. By compactness, the sequence (∆n)n accumulate on a ball ∆
that satisfies the requirements of the lemma. ¤

We are now in a position to show that there are finitely many distinct ergodic
measures µ1, µ2, . . . , µk absolutely continuous with respect to ν. Indeed, let µ
be any invariant measure that is absolutely continuous. Then, either µ is er-
godic or there are disjoint invariant sets I1 and I2 of positive ν-measure such that
µ(·) = a1µ(· ∩ I1)/µ(I1) + a2µ(· ∩ I2)/µ(I2), where ai = µ(Ii). In the later case
it is also clear that each of the measures involved in the sum is absolutely contin-
uous with respect to ν. Repeating the process one obtains that µ can be written
as linear convex combination of ergodic absolutely continuous invariant measures
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µ1, µ2, . . . , µk. Indeed, since M is compact the previous lemma implies that this
process will stop after a finite number of steps (depending only on δ) with each µi

ergodic. It is also clear from the construction that each µi is expanding and that
their basins cover almost every point.

5.2. Invariant non-lacunary Gibbs measure. Through the rest of this section
assume that f is topologically mixing. Here we prove that there is a unique invariant
measure µ absolutely continuous with respect to ν and that it is a non-lacunary
Gibbs measure. This will complete the proof of Proposition 5.1. We begin with a
couple of auxiliary lemmas. Let θ > 0 and δ > 0 be given by Lemmas 3.2 and 3.4.

Lemma 5.4. fn(Hn) = M for every n ≥ 1.

Proof. Fix any x ∈ M . By (H2) there exists a preimage y ∈ M of the point x by
f that y does not belong to A. In consequence, ‖Df(y)−1‖ ≤ σ−1 < e−c which
proves that y ∈ H1 and x ∈ f(H1). The full statement of the lemma is obtained by
repeating this argument recursively. Indeed, for any given x ∈ M and n ≥ 1 there
are y1, y2, . . . , yn ∈ M such that f(y1) = x, f(yj+1) = yj and yj /∈ A for every
1 ≤ j ≤ n. Hence,

n−1∏

j=n−i

‖Df(f j(yn))−1‖ ≤ σ−i ≤ e−ci for every 1 ≤ i ≤ n,

which proves that yn ∈ Hn and x ∈ fn(Hn) and finishes the proof of the lemma. ¤

Lemma 5.5. There exists a constant τ0 > 0, and for any n there is a finite subset
Ĥn of Hn such that the dynamical balls B(x, n, δ/4), x ∈ Ĥn, are pairwise disjoint
and their union Wn satisfies ν(Wn) ≥ τ0ν(Hn).

Proof. This lemma is a direct consequence of Lemma 3.4 in [ABV00]. Indeed, if
ω = fn

∗ (ν | ∪{B(n, x, δ/4) : x ∈ Hn}), Ω = fn(Hn) = M and r = δ in that lemma
then there exists a finite set I ⊂ fn(Hn) such that the pairwise disjoint union ∆n

of balls of radius δ/4 around points in I satisfies

ω
(
∆n ∩ fn(Hn)

) ≥ τ0 ω(fn(Hn)).

Set Ĥn = Hn∩f−n(I). Since the restriction of fn to any dynamical ball B(x, n, δ/4),
x ∈ Ĥn is a bijection it is easy to see that these dynamical balls are pairwise dis-
joint. Furthermore, their union Wn satisfies ν

(
Wn

) ≥ τ0 ν(Hn). This completes
the proof of the lemma. ¤

In the remaining of the section, let µ be an arbitrary accumulation point of the
sequence (νn)n and (nk)k be a subsequence of the integers such that

µ = lim
k→∞

νnk
.

In the next lemmas we prove that the density dµ/dν is bounded away from zero in
some small disk and use this to deduce the uniqueness of the equilibrium state and
the non-lacunar Gibbs property.

Lemma 5.6. There exists C1 > 0 and a small disk D(x) around a point x in M
such that the density dµ/dν in the disk D(x) is bounded from below by C1.
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Proof. Given a small ε > 0 we construct a disk D(x) of radius smaller than ε where
the assertion above holds. Let Wj and Ĥj be given by the previous lemma and let
Wj,ε ⊂ Wj denote the preimages by f j of the disks ∆j,ε of radius δ/4 − ε around
points in f j(Ĥj). Lemma 3.5 implies that

ν(Wj,ε)
ν(Wj)

≥ K−1
0

ν(∆j,ε)
ν(∆j)

,

where the right hand side is larger than some uniform positive constant τ1 that
depends only on the radius of the disks ∆j,ε (recall Lemma 4.6). Observe also that
Corollary 3.3 with A = M implies that

1
n

n−1∑

j=0

ν(Hj) ≥ θ/2

for every large n. This shows that there is a positive constant τ2 such that the
measures νε

n satisfy νε
n(M) ≥ τ2 for every large n, where

νε
n =

1
n

n−1∑

j=0

f j
∗ (ν|Wj,ε).

Thus, there exists a subsequence of (νε
nk

)k that converge to some measure νε
∞ and

supp(νε
∞) ⊂

⋂

n≥1

( ⋃

j≥n

∆j,ε

)
.

Choose x ∈ supp(νε
∞) and a disk D(x) of radius smaller than ε around x such

that νε
∞(∂D(x)) = 0. By construction, D(x) is contained in every disk of ∆j such

that the corresponding disk of ∆j,ε intersects D(x). Let ∆̃j denote the pairwise
disjoint union of disks in ∆j that contain D(x) and W̃j be defined accordingly as
the preimages of ∆̃j . It is clear that νn ≥ ν0

n, where

ν0
n =

1
n

n−1∑

j=0

f j
∗ (ν|W̃j).

Moreover, since d f j
∗ (ν | W̃j)/dν is Hölder continuous, the bounded distortion

at Lemma 3.5 implies that it is bounded from below by its L1 norm up to the
multiplicative constant K−1

0 . So,

dν0
n

dν
(y) =

1
n

n−1∑

j=0

d f j
∗ (ν | W̃j)

dν
(y) =

1
n

n−1∑

j=0

[ ∑

fj(z)=y

z∈W̃j

λ−jeSjφ(z)
]
≥ K−1

0

1
n

n−1∑

j=0

ν(W̃j)

for every y ∈ D(x). Furthermore, by construction the set Wj,ε ∩ f−j(D(x)) is
contained in W̃j . This guarantees that

dν0
n

dν
(y) ≥ K−1

0

1
n

n−1∑

j=0

ν(W̃j) ≥ K−1
0 νε

n(D(x)) ≥ K−1
0

νε
∞(D(x))

2

for every large n ≥ 1 in the subsequence of (nk)k chosen above. By weak∗ conver-
gence it holds that dµ/dν ≥ C1 in the disk D(x). ¤
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We finish this section by proving the uniqueness of the equilibrium state, which
completes the proof of Proposition 5.1.

Lemma 5.7. If f is topologically mixing there is a unique invariant measure µ
absolutely continuous with respect to ν. Moreover, the density dµ/dν is bounded
away from zero and infinity and the sequences of hyperbolic times {nj(x)} are non-
lacunary µ-almost everywhere. Furthermore, µ is a non-lacunary Gibbs measure.

Proof. We have proven that any accumulation point µ of (νn)n is absolutely con-
tinuous with respect to ν and that the density h = dµ/dν is bounded from above
by C2 and is bounded from below by C1 on some disk D(x). Since f is topolog-
ically mixing there is N ≥ 1 be such that fN (D(x)) = M , that is, any point has
some preimage by fN in D(x). It is not difficult to check that h ∈ L1(ν) satisfies
Lφh = λh. Then

h(y) = λ−N
∑

fN (z)=y

eSN φ(z)h(z) ≥ C1λ
−NeN inf φ

for almost every y ∈ M , which allows to deduce that the measures µ and ν are
equivalent.

We claim that µ is ergodic. Indeed, if G is any f -invariant set such that µ(G) > 0
then it follows from Lemma 5.3 that there is a disk ∆ of radius δ/4 such that
ν(∆\G) = 0. Furthermore, using that Jνf is bounded from above and from below,
the invariance of G and that there is Ñ ≥ 1 such that f Ñ (∆) = M it follows that
ν(M \ G) = 0, or equivalently, that µ(G) = 1, proving our claim. So, if µ1 ¿ ν
is any f -invariant probability measure then µ1 ¿ µ. By invariance of dµ1/dµ
and ergodicity of µ it follows that dµ1/dµ is almost everywhere constant and that
µ1 = µ. This proves the uniqueness of the absolutely continuous invariant measure.
Lemma 5.2 also implies that

C3ν(B(x, n, δ)) ≤ µ(B(x, n, δ)) ≤ C2ν(B(x, n, δ))

for ν-almost every x and every n ≥ 1, where C3 = C1λ
−NeN inf φ. In particular µ

is expanding and, if n is a hyperbolic time for x and y ∈ B(x, n, δ) then

K−1C3 ≤ µ(B(x, n, δ))
e−Pn+Snφ(y)

≤ KC2.

Corollary 4.5 implies that the first hyperbolic time map n1 is µi-integrable. Hence,
the sequence of hyperbolic times is almost everywhere non-lacunary (see Corol-
lary 3.8) and both µ and ν are non-lacunary Gibbs measures. This completes the
proof of the lemma. ¤

6. Proof of Theorems A and B

In this section we manage to estimate the topological entropy of f for the
potential φ using the characterizations of relative pressure given in Section 3.4:
PHc(f, φ) < log λ and PH(f, φ) ≤ log λ. Then, using that the measure theoretical
pressure Pµ(f, φ) = hµ(f)+

∫
φdµ of every absolutely continuous invariant measure

given by Proposition 5.1 is at least log λ, we deduce that Ptop(f, φ) = log λ and
that equilibrium states do exist. Finally, the variational property of equilibrium
states yields that they coincide with the absolutely continuous invariant measures.
This will complete the proofs of Theorems A and B.
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6.1. Existence of equilibrium states. We give two estimates on the relative
pressure and deduce the existence of equilibrium states for f with respect to φ.
The following result was obtained jointly with Marcelo Viana and Krerley Oliveira.

Proposition 6.1. PHc(f, φ) < log λ.

Since we deal with a potential φ whose oscillation is not very large, the main
point in the proof of Proposition 6.1 is to control the relative pressure hHc(f).
The key idea is that hHc(f) can be bounded above using the maximal distortion
and growth rate of the inverse branches that cover Hc. We will begin with some
preparatory lemmas.

Lemma 6.2. Let M be a compact manifold of dimension m. There exists C > 0
and a sequence of finite open coverings (Qk)k≥1 of M such that diam(Qk) → 0 as
k →∞, and every set E ⊂ M satisfying diam(E) ≤ D diamQk intersects at most
CDm elements of Qk.

Proof. First we construct a special family of triangulations in M . Choose a finite
triangulation T0 in M . Then, for any T ∈ T0 there is a diffeomorphism φT from
a neighborhood of T ⊂ M on Rm such that T is mapped diffeomorphically onto
the standard unitary m-dimensional simplex T0 ⊂ Rm. Given k ≥ 1, denote by
Tk the triangulation in T0 ⊂ Rm by regular m-simplices of size 2−k and let Tk

be the triangulation of M obtained by the pulling back the elements in Tk by the
diffeomorphisms φT . Clearly, there exists C ′ > 0 (depending only on the finite set
of diffeomorphisms) such that diam(Tk) ≤ C ′2−k for every k ≥ 1.

Fix a sequence of positive numbers (εk)k≥1 such that 0 < εk ¿ 2−k for every
k ≥ 1. Let Qk be the family of open neighborhoods of size εk around elements of
Tk in Rm and Qk be the finite open cover obtained by diffeomorphic preimages of
elements in Qk by the diffeomorphisms φT .
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���

���
���
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���
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Figure 2. Family of Coverings in Rm.

We claim that the family of finite open coverings (Qk)k satisfies the requirements
of the lemma. Indeed, it is immediate that diam(Qk) ≤ C ′ diam(Qk) → 0 as
k → ∞. On the other hand, given k ≥ 1 and a diffeomorphism φT , if E ⊂ M
is such that diam(E) < D diam(Qk) then the diameter of its image φT (E) ⊂
Rm is at most C ′D (1 + εk/2−k) 2−k. Thus φT (E) can clearly intersect at most
[C ′D (1 + εk/2−k)]m elements of Tk. In addition, since εk ¿ 2−k then every point
in T0 is covered by at most C ′′ elements of Qk for some uniform constant C ′′ > 0
(depending only on the dimension m). This shows that E can intersect at most
CDm elements of Qk with C = [2C ′]m C ′′#T0, and completes the proof of the
lemma. ¤

The next result is the most technical lemma in the article and provides the key
estimate to prove Proposition 6.1.
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Lemma 6.3. Given any ` ≥ 1 the following property holds:

hHc(f `) ≤ (log q + m log L + ε0/2) ` + log C.

Proof. Fix ` ≥ 1 and let (Qk)k be the family of finite open coverings given by the
previous lemma. Since diam(Qk) → 0 as k →∞ then

PHc(f, φ) = lim
k→∞

PHc(f, φ,Qk),

by Definition 3.9. Recall P is the finite covering given by (H2) and B(n, γ) is the
set of points whose frequency of visits to A up to time n is at least γ. The starting
point is the next observation:
Claim 1: For every 0 < ε < γ there exists j0 ≥ 1 such that for every j ≥ j0 the
following holds:

B(n, γ) ⊂ B(`j, γ − ε) for every j ` ≤ n < (j + 1)`.

Proof of Claim 1: Given ε > 0, let j0 be a positive integer larger than (1 − γ)/ε.
Given an arbitrary large n we can write n = `j + r, where 0 ≤ r < ` and j ≥ j0.
Moreover, if x belongs to B(n, γ) then # {0 ≤ i ≤ n − 1 : f i(x) ∈ A} ≥ γ n and
consequently

1
`j

# {0 ≤ i ≤ `j − 1 : f i(x) ∈ A} ≥ γ +
γr − r

`j
.

Our choice of j0 implies that the right hand side above is bounded from below by
γ − ε. This shows that x belongs to B(`j, γ − ε) and proves the claim. ¤

We proceed with the proof of the lemma. Observe that the set Hc is covered by
⋃

n≥N

⋃

P∈P(n)

{
P ∈ P(n) : P ∩B(n, γ) 6= ∅

}

for every N ≥ 1. Let ε > 0 be small such that #I(n, γ − ε) ≤ exp(log q + ε0/2)n
for every large n. Such an ε do exist because cγ varies monotonically on γ (see the
proof of Lemma 3.1). Then, the previous claim allow us to cover Hc using only
cylinders whose depth is a multiple of `: for any N ≥ 1

Hc ⊂
⋃

j≥N
`

⋃

P∈P(`j)

{
P ∈ P(`j) : P ∩B(`j, γ − ε) 6= ∅

}
. (6.1)

Thus, from this moment on we will only consider iterates n = j `. Denote by R(n)

the collection of cylinders in P(n) that intersect B(n, γ − ε). Our aim is now to
cover any element in R(n) by cylinders relatively to the transformation f `. Given
k ≥ 1, denote by Sf`,jQk the set of j-cylinders of f ` by elements in Qk, that is

Sf`,jQk =
{

Q0 ∩ f−`(Q1) ∩ · · · ∩ f−`(j−1)(Qj−1) : Qi ∈ Qk, i = 0, . . . , j − 1
}

.

Furthermore, let Gn,k be the set of cylinders in Sf`,jQk that intersect any element
of R(n).
Claim 2: Let k ≥ 1 be large and fixed.Then

#Gj`,k ≤ #Qk × [CL`m]j × e(log q+ε0/2)j`

for every large j.
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Proof of Claim 2: Recall n = j` and fix Pn ∈ R(n). Since f is a local diffeo-
morphism then the inverse branch f−n : fn(Pn) → Pn extends to the union
of all Q ∈ Qk so that Q ∩ fn(Pn) 6= ∅, provided that k is large. Notice that
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Figure 3. Covering elements of R(n).

diam(f−`(Q)) ≤ L` diam(Q) for every Q ∈ Qk because log ‖Df(x)−1‖ ≤ L for
every x ∈ M . By Lemma 6.2, f−`(Q) intersects at most CL`m elements of the
covering Qk. This proves that there are at most #Qk × [CL`m]j cylinders in
Sf`,jQk that intersect Pn. The claim is a direct consequence of our choice of ε

since #R(n) ≤ e(log q+ε0/2)n for large n. ¤

Finally we complete the proof of the lemma. Indeed, it is immediate from (6.1)
that

mα(f `, 0, Hc,Qk, N) ≤
∑

j≥N/`

∑

U∈G`j,k

e−αn(U) =
∑

j≥N/`

e−αj #G`j,k

for every large k. Moreover, Claim 2 implies that the sum in the right hand side
above converges to zero as N → ∞ (independently of k) whenever α > (log q +
ε0/2+m log L) `+log C. This shows that hHc(f `) ≤ (log q+m log L+ε0/2) `+log C
and completes the proof of the lemma. ¤

Proof of Proposition 6.1. Recall that hHc(f `) = ` hHc(f), by Proposition 3.12.
Then, as a consequence of the previous lemma we obtain

hHc(f) ≤ log q + m log L + ε0/2 +
log C

`

for every ` ≥ 1. Finally, it follows from (3.3) and Lemma 3.14 that

PHc(f, φ) ≤ log q + m log L + sup φ + ε0 < log deg f + inf φ ≤ log λ.

¤

In the present lemma we give an upper bound on the relative pressure of φ
relative to the set H. More precisely,

Lemma 6.4. PH(f, φ) ≤ log λ.

Proof. Recall the characterization of relative pressure using dynamical balls in Sub-
section 3.4. Pick α > log λ. For any given N ≥ 1, H is contained in the union of
the sets Hn over n ≥ N . Thus, given 0 < ε ≤ δ

H ⊂
⋃

n≥N

⋃

x∈Hn

B(x, n, ε).
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Now we claim that there exists D > 0 (depending only on m = dim(M)) so that
for every n ≥ N there is a family Gn ⊂ Hn in such a way that every point in Hn is
covered by at most D dynamical balls B(x, n, ε) with x ∈ Gn. In fact, Besicovitch’s
covering lemma asserts that there is a constant D > 0 (depending on m) and an at
most countable family Gn ⊂ Hn such that every point of fn(Hn) is contained in at
most D elements of the family {B(fn(x), ε) : x ∈ Gn}. Using that each dynamical
ball B(x, n, ε), x ∈ Hn, is mapped diffeomorphically onto B(fn(x), ε), it follows
that every point in Hn is contained in at most D dynamical balls B(x, n, ε) with
x ∈ Gn, proving our claim. Given any positive integer N ≥ 1, it follows by bounded
distortion and the Gibbs property of ν at hyperbolic times that

mα(f, φ, H, ε, N) ≤ K(ε)
∑

n≥N

e−(α−P )n
{ ∑

x∈Gn

ν(B(x, n, ε))
}

.

Consequently mα(f, φ, H, ε, N) ≤ K(ε) D
1−e−(α−P ) e−(α−P )N , which tends to zero as

N → ∞ independently of ε. This shows that PH(f, φ) ≤ log λ and completes the
proof of the lemma. ¤

We know that every ergodic component of an absolutely continuous invariant
measure is also absolutely continuous. Now we prove that the absolutely continuous
invariant measures are indeed an equilibrium states.

Lemma 6.5. If µ is an ergodic measure absolutely continuous with respect to ν
then Pµ(f, φ) ≥ log λ. Moreover, µ is an equilibrium state for f with respect to φ
and the following equalities hold

Ptop(f, φ) = PH(f, φ) = log λ.

Proof. The previous estimates and Proposition 3.11 guarantee that

Ptop(f, φ) = sup{PH(f, φ), PHc(f, φ)} ≤ log λ.

Using that dµ/dν ≤ C2, that ν satisfies the Gibbs property at hyperbolic times and
µ-almost every point x admits a sequence {nk(x)} of hyperbolic times then

µ(B(x, nk, ε)) ≤ C2 K(ε) e−Pnk+Snk
φ(y)

for every 0 < ε ≤ δ, every k ≥ 1 and every y ∈ B(x, nk, ε). Thus, Brin-Katok’s
local entropy formula for ergodic measures and Birkhoff’s ergodic theorem (see e.g.
[Mañ87]) immediately imply that

hµ(f) = lim
ε→0

lim sup
n→∞

− 1
n

log µ(B(x, n, ε)) ≥ P −
∫

φ dµ,

where the first equality holds µ-almost everywhere. In particular

log λ ≥ Ptop(f, φ) ≥ PH(f, φ) ≥ sup
µ(H)=1

{
hµ(f) +

∫
φ dµ

}
≥ log λ,

which proves that µ is an equilibrium state and that the three quantities in the
statement of the lemma do coincide. This completes the proof of the lemma. ¤
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6.2. Finitude of ergodic equilibrium states. In this subsection we will com-
plete the proof of Theorems A and B. First we combine that every equilibrium state
is an expanding measure with some ideas involved in the proof of the variational
properties of SRB measures in [Led84] to deduce that every equilibrium state is
absolutely continuous with respect to some conformal measure supported in the
closure of the set H, and to obtain finitude of ergodic equilibrium states. Finally,
we show that under the topologically mixing assumption there is a unique equilib-
rium state, and that it is exact and a non-lacunary Gibbs measure. We begin with
the following abstract result:

Theorem 6.6. Let f : M → M be a C1+α local diffeomorphism, φ : M → R be a
Hölder continuous potential and ν be a conformal measure such that Jνf = λe−φ,
where λ = exp(Ptop(f, φ)). Assume that η is an equilibrium state for f with respect
to φ gives full weight to supp(ν) and such that all the Lyapunov exponents are
positive. Then η is absolutely continuous with respect to ν.

Let us stress out that this theorem holds in a more general setting. Since this
fact will not be used here, we will postpone the discussion to Remark 6.15 near the
end of the section. The finitude of equilibrium states is a direct consequence of the
previous result. Indeed,

Corollary 6.7. Let f be a C1+α local diffeomorphism and let φ be a Hölder contin-
uous potential satisfying (H1), (H2) and (P). There exists an expanding conformal
probability measure ν such that every equilibrium state for f with respect to φ is
absolutely continuous with respect to ν with density bounded from above. If, in ad-
dition, f is topologically mixing then there is unique equilibrium state and it is a
non-lacunary Gibbs measure.

Proof. Let ν be the expanding conformal measure given by Theorem 4.1 and η
be an ergodic equilibrium state for f with respect to φ. We claim that η is an
expanding measure. Indeed, assume by contradiction that one can decompose η as
a linear convex combination of two measures η = tη1 + (1 − t)η2 with η2(Hc) = 1
for some 0 ≤ t < 1. But Lemma 6.5, the first part of Proposition 3.11 and the
convexity of the pressure yield

Pη(f, φ) = tPη1(f, φ)+(1−t)Pη2(f, φ) ≤ t Ptop(f, φ)+(1−t) PHc(f, φ) < Ptop(f, φ),

which contradicts that η is an equilibrium state and proves our claim. Moreover,
η(supp(ν)) = 1 because the support of ν coincides with the closure of H. Finally,
using that

lim sup
n→∞

1
n

n−1∑

j=0

log ‖Df(f j(x))−1‖ ≤ −2c < 0

at η-almost every point (Corollary 6.7) and ‖Dfn(x)v‖ ≥ ∏n−1
j=0 ‖Df(f j(x))−1‖−1

for every vector v such that ‖v‖ = 1, every x ∈ M and n ≥ 1, it follows that

lim inf
n→∞

1
n

log ‖Dfn(x)v‖ ≥ 2c > 0

for η-almost every x ∈ M and every v ∈ TxM . This shows that η has only posi-
tive Lyapunov exponents and that all the assumptions of Theorem 6.6 are verified.
Therefore, this result is a direct consequence of the previous theorem and Proposi-
tion 5.1. ¤
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In the sequel we prove Theorem 6.6. Since f is a non-invertible transformation
we use the natural extension, introduced in Subsection 3.5, to deal with unstable
manifolds.

Proof of Theorem 6.6. It is easy to check, using the variational principle, that al-
most every ergodic component of an equilibrium state is an equilibrium state. Thus,
by ergodic decomposition it is enough to prove the result for ergodic measures.

Let η be an ergodic equilibrium state and (f̂ , η̂) be the natural extension of η

introduced in Subsection 3.5. Recall that η̂ is an f̂ -invariant probability measure
in M̂ such that π∗η̂ = η and that the Lyapunov exponents of the induced cocycle
Â with respect to the measure η̂ coincide with the Lyapunov exponents of f with
respect to η (see Proposition 3.15). Hence, η̂ has only positive Lyapunov exponents.

We proceed with the construction of a special partition Q̂ of M̂ that is closely
related with Ledrappier’s geometric construction in Proposition 3.1 of [Led84] and
provides a key ingredient for the proof of Theorem 6.6. The main differences from
the original result due to Ledrappier are that the natural extension M̂ is not in
general a manifold and that there is no well defined unstable foliation in M . The
arguments involved in the construction of a partition satisfying the properties above
follow well known ideas that can be traced back to [Led84, LS86]. See also [QZ02]
for a construction in a related context. First we set some notations. Given a
partition Q̂ denote by Q̂(x̂) the element of Q̂ that contains x̂ ∈ M̂ . We say that Q̂

is an increasing partition if (f̂−1Q̂)(x̂) ⊂ Q̂(x̂) for η̂-almost every x̂. In this case,
we write f̂−1Q̂ Â Q̂.

Proposition 6.8. There exists an invariant and full η̂-measure set Ŝ ⊂ M̂ , and a
measurable partition Q̂ of Ŝ such that:

(1) f̂−1Q̂ Â Q̂,
(2)

∨+∞
j=0 f̂−jQ̂ is the partition into points,

(3) The sigma-algebras Mn generated by the partitions f̂−nQ̂, n ≥ 1, generate
the σ-algebra in Ŝ, and

(4) For almost every x̂ the element Q̂(x̂) ⊂ Ŵu(x̂) contains a neighborhood of
x̂ in Ŵu(x̂) and the projection π(Q̂(x̂)) contains a neighborhood of x0 in
M .

Proof. Since η̂ is an hyperbolic measure, Pesin’s theory applied to the natural
extension f̂ guarantees the existence of local unstable manifolds at almost every
point. Take i ≥ 1 such that η̂(Λ̂i) > 0 and let ri, εi, γi and Ri be given by
Corollary 3.17. Fix also 0 < r ≤ ri and x̂ ∈ supp(η̂ |Λ̂i

). Recall that ŷ 7→
Wu

loc(ŷ) ∩B(x0, r) is a continuous function on B(x̂, εir) ∩ Λ̂i. Consider the sets

V̂ (ŷ, r) = {ẑ ∈ Ŵu
loc(ŷ) : z0 ∈ B(x0, r)},

defined for any ŷ ∈ B(x̂, εir) ∩ Λ̂i. Define also

Ŝ(x̂, r) =
⋃
{V̂ (ŷ, r) : ŷ ∈ B(x̂, εir) ∩ Λ̂i}
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and the partition Q̂0(r) of M̂ whose elements are the connected components V̂ (ŷ, r)
of unstable manifolds just constructed and their complement M̂ \ Ŝ(x̂, r). Further-
more, consider the set Ŝr and the partition Q̂(r) given by

Ŝr =
+∞⋃
n=0

f̂n(Ŝ(x̂, r)) and Q̂(r) =
+∞∨
n=0

f̂n(Q̂0(r)).

Then, the partition Q̂ coincides with the partition Q̂(r) and the set Ŝ is given by⋂
j≥0 f̂−j(Ŝr) for a particular choice of the parameter r. In what follows, for nota-

tional convenience and when no confusion is possible we shall omit the dependence
of the partition Q̂ on r.

It is clear from the construction that every partition Q̂(r) is increasing, that is
the content of (1). In addition, since η̂ is ergodic and η̂(Ŝ(x̂, r)) > 0 then the set of
points that return infinitely often to Ŝ(x̂, r), which we called Ŝr, is a full measure set
by Poincaré’s Recurrence Theorem. In other words, if a point ŷ belongs to Ŝr there
are positive integers (nj)j such that f̂nj (ŷ) ∈ V̂ (f̂nj (ŷ), r). Hence, the backward
distance contraction along unstable leaves guarantees that the du-diameter of the
partition

∨n
n=0 f̂−jQ̂ tend to zero as n →∞, proving (2). By construction, there is

a full measure set such that any two distinct points ŷ and ẑ lie in different elements
of f̂−nQ̂ for some n ∈ N. Indeed, if f̂−nQ̂(ŷ) = f̂−nQ̂(ẑ) for every n ≥ 0 then f̂n(ŷ)
and f̂n(ẑ) lie infinitely often in the same local unstable manifold. But (2) implies
that ŷ and ẑ should coincide, which is a contradiction and proves our claim. In
particular, the decreasing family of σ-algebras Mn, n ≥ 1, generate the σ-algebra
in Ŝr, which proves (3).

We proceed to show that the partition Q̂(r) satisfies (4) for Lebesgue almost
every parameter r. Given 0 < r ≤ ri and ŷ ∈ Ŝr define

βr(ŷ) = inf
n≥0

{
Ri,

r

γi
,

1
2γi

eλind(y−n, ∂B(x0, r))
}

,

that it clearly non-negative. It is enough to obtain the following:
(a) If z0 ∈ Wu

loc(ŷ) and du(y0, z0) < βr(ŷ) then there exists ẑ ∈ Q̂(ŷ) such that
π(ẑ) = z0;

(b) There exists a full Lebesgue measure set of parameters 0 < r ≤ ri such that
the function βr(·) is strictly positive almost everywhere and η̂(∂Q̂(r)) = 0.

Take ŷ ∈ Ŝr and assume that z0 ∈ Wu
loc(ŷ) is such that du(y0, z0) < βr(ŷ). If

ŷ ∈ Ŝ(x̂, r) then there exists ŵ ∈ B(x̂, εir) such that ŷ ∈ Ŵu
loc(ŵ). Furthermore,

since du(y0, z0) < βr(ŷ) < Ri then there exists ẑ ∈ Ŵu
loc(ŵ) such that π(ẑ) = z0.

Hence
du(y−n, z−n) ≤ γie

−nλidu(y0, z0), ∀n ∈ N,

which implies that du(y−n, z−n) ≤ r and du(y−n, z−n) ≤ 1/2 d(y−n, ∂B(x0, r)) for
every n ∈ N. Together with Corollary 3.17, this shows that y−n and z−n belong
to the same element of the partition Q̂0 for every n ≥ 1 and, assuming (b) for
the moment, that π(Q(ŷ)) contains a neighborhood of y0 in Wu

loc(ŷ). On the other
hand, if ŷ ∈ Ŝr \ Ŝ(x̂, r) then there exists k ≥ 1 such that f̂−k(ŷ) ∈ Ŝ(x̂, r) and
consequently the projection of the set

Q̂(ŷ) = f̂k(Q̂(f̂−k(ŷ))

contains an open neighborhood of y0 in Wu
loc(ŷ). This completes the proof of (a).
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The proof of (b) is slightly more involving. We begin with the following remark
from measure theory: if r0 > 0, ϑ is a Borel measure in [0, r0] and 0 < a < 1 then
Lebesgue almost every r ∈ [0, r0] satisfies

∞∑

k=0

ϑ
(
[r − ak, r + ak]

)
< ∞. (6.2)

Indeed, the set

Ba,k =
{

r ∈ [0, r0] : ϑ
(
[r − ak, r + ak]

)
>

ϑ
(
[0, r0]

)

k2

}

can be covered by a family Ik of balls of radius ak centered at points of Ba,k in
such a way that any point is contained in at most two intervals of Ik. Since

#Ik

ϑ
(
[0, r0]

)

k2
≤

∑

I∈Ik

ϑ(I) ≤ 2 ϑ([0, r0])

then #Ik ≤ 2k2 and it is clear that Leb(Ba,k) ≤ 2ak#Ik is summable. Borel-
Cantelli’s lemma implies that Lebesgue almost every r ∈ [0, r0] belongs to finitely
many sets Ba,k, which proves the summability condition in (6.2).

Back to the proof of (b), let ϑ be the measure of the interval [0, ri] defined by
ϑ(E) = η̂

(
ŷ ∈ M̂ : d(x0, y0) ∈ E

)
. The previous assertion guarantees that for

Lebesgue almost every r ∈ [0, ri] it holds
∞∑

k=0

η̂
(
ŷ ∈ M̂ : |d(x0, y0)− r| < e−λik

)
< ∞. (6.3)

On the other hand, there exists D > 0 such that |d(z0, x0) − r| < Dτ whenever
d(z0, ∂B(x0, r)) < τ and 0 < τ < r ≤ ri. Therefore

∞∑

k=0

η̂
(
ŷ ∈ M̂ : |d(y−n, ∂B(x0, r))| < D−1e−λik

) ≤

≤
∞∑

k=0

η̂
(
ŷ ∈ M̂ : |d(x0, y−n)− r| < e−λik

)
,

which is finite because of the invariance of η̂ and the former condition (6.3). Using
Borel-Cantelli’s lemma once more it follows that η̂-almost every ŷ satisfies

|d(y−n, ∂B(x0, r))| < D−1e−λik

for at most finitely many positive integers k, proving that βr(ŷ) > 0. Furthermore,
since η(∪n≥0f

n(∂B(x0, r))) = 0 for all but a countable set of parameters 0 < r ≤ ri

then Q̂(ŷ) contains a neighborhood of ŷ in Ŵu
loc(ŷ) for η̂-almost every ŷ ∈ M̂ . This

shows that (b) holds and, in consequence, for Lebesgue almost every r ∈ [0, ri] the
partition Q̂(r) satisfies the requirements of the proposition. ¤

Let (η̂x)x be the disintegration of the measure η̂ on the measurable partition Q̂,
given by Rokhlin’s theorem. Recall that for η̂-almost every x̂ the map π |Ŵ u

loc(x̂):

Ŵu
loc(x̂) → Wu

loc(x̂) is a bijection. For any such x̂ let ν̂x be the measure on Ŵu
loc(x̂)
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obtained as the pull-back of ν |W u
loc(x̂) by the bijection π |Ŵ u

loc(x̂). Let ν̂ denote the

measure defined on M̂ by the disintegration (ν̂x̂)x̂, that is to say that

ν̂(Ê) =
∫

ν̂x̂(Ê) dη̂(x̂)

for every measurable set Ê in M̂ . As a byproduct of the previous result we obtain

Corollary 6.9. 0 < ν̂x̂(Q̂(x̂)) < ∞, for η̂-almost every x̂.

Proof. For every x̂ in a full η̂-measure set one has that

ν̂x̂(Q̂(x̂)) = ν
(
π(Q̂(x̂)) ∩Wu

loc(x̂)
)
.

Since η̂ is an expanding measure then Ŵu
loc(x̂) is a neighborhood x̂ and Wu

loc(x̂) ∩
π(Q̂(x̂)) contains a neighborhood of x0 in M . In addition, since η(supp ν) = 1, for
every x̂ in a full η̂-measure set it holds that x0 ∈ supp(ν). Then it is clear that
0 < ν̂x̂(Q̂(x̂)) < ∞, η̂-almost everywhere, which proves the corollary. ¤

The next preparatory lemma shows that ν̂ has a Jacobian with respect to f̂ and
establishes Rokhlin’s formula for the natural extension.

Lemma 6.10. The measure ν̂ has a Jacobian Jν̂ f̂ = Jνf ◦ π with respect to f̂ . In
addition,

hη̂(f̂) =
∫

log Jν̂ f̂ dη̂.

Furthermore, for η̂-almost every x̂ and every ŷ ∈ Q̂(x̂) the product

∆(x̂, ŷ) =
∞∏

j=1

Jν̂ f̂(f̂−j(x̂))

Jν̂ f̂(f̂−j(ŷ))

is positive and finite.

Proof. Since the sigma-algebra B̂ is the completion of the sigma-algebra generated
by the cylinders π−1

i (f−iB), i ≥ 1, then the first claim in the lemma is a consequence
from the fact that

ν̂f̂(x̂)(f̂(Ê)) =
∫

Ê∩(f̂−1Q̂)(x̂)

Jνf ◦ π dν̂x̂ (6.4)

for almost every x̂ and every small cylinder Ê = π−1(E). Indeed, if Ê is a small
cylinder then it is clear that

ν̂(f̂(Ê)) =
∫

ν̂f̂(x̂)(f̂(Ê)) dη̂(x̂) =
∫ ∫

Ê∩(f̂−1Q̂)(x̂)

Jνf ◦ π dν̂x̂ dη̂(x̂). (6.5)

Let ν̃x̂ denote the restriction of the measure ν̂x̂ to the set (f̂−1Q̂)(x̂) ⊂ Q̂(x̂). Then
ν̂ has a disintegration ν̂ =

∫
ν̃x̂ dη̂ with respect to the measurable partition f̂−1Q̂.

Together with (6.5) this gives

ν̂(f̂(Ê)) =
∫ ∫

Ê

Jνf ◦ π dν̃x̂ dη̂(x̂) =
∫

Ê

Jνf ◦ π dν̂,

which proves that ν̂ has a Jacobian and Jν̂ f̂ = Jνf ◦ π. Hence, to prove the first
assertion in the lemma we are reduced to prove (6.4) above. If f | E is injective
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and Ê = π−1(E) then

ν̂f̂(x̂)(f̂(Ê)) = ν̂f̂(x̂)

(
f̂ [Ê ∩ (f̂−1Q̂)(x̂)]

)
= ν

(
f(E ∩ π((f̂−1Q̂)(x̂))

)

=
∫

E∩π((f̂−1Q̂)(x̂)

Jνf dν =
∫

Ê∩(f̂−1Q̂)(x̂)

Jνf ◦ π dν̂x̂,

which proves (6.4). On the other hand, hη(f) =
∫

Jνf dη because η is an equilib-
rium state, Ptop(f, φ) = log λ and Jνf = λe−φ. So, using π∗η̂ = η we obtain

hη̂(f̂) = hη(f) =
∫

log Jνf dη =
∫

log(Jνf ◦ π) dη̂ =
∫

log Jν̂ f̂ dη̂,

which proves the second assertion in the lemma. Finally, the Hölder continuity of
the Jacobian Jν̂ f̂ = Jνf ◦ π, the fact that Q̂ is subordinated to unstable leaves and
the backward distance contraction for points in the same unstable leaf yield that
the product

∆(x̂, ŷ) =
∞∏

j=1

Jν̂ f̂(f̂−j(x̂))

Jν̂ f̂(f̂−j(ŷ))

is convergent for almost every x̂ and every ŷ ∈ Q̂(x̂). The proof of the lemma is
now complete. ¤

The last main ingredient to the proof of Theorem 6.6 is the following generating
property of the partition Q̂.

Proposition 6.11. hη̂(f̂) = Hη̂(f̂−1Q̂ | Q̂).

The proof of this result involves two preliminary lemmas. Let i ≥ 1 and Λ̂i

be given as in the proof of Proposition 6.8 and ri given by Corollary 3.17. The
following lemma gives a dynamical characterization of the local unstable manifolds.

Lemma 6.12. Given ε > 0 there is a measurable function D̂ε : B̂λ → R+ satisfying
log D̂ε ∈ L1(η̂) and such that, if d(x−n, y−n) ≤ D̂ε(f̂−n(x̂)) ∀n ≥ 0 then ŷ ∈
Ŵu

loc(x̂) and d(x0, y0) < 2ri.

Proof. Since η̂(Λ̂i) > 0 and η̂ is assumed to be ergodic then some iterate of almost
every point will eventually belong to Λ̂i by Poincaré’s recurrence theorem. So,
the first hitting time R(x̂) is well defined almost everywhere in Λ̂i and

∫
Λ̂i

R dη̂ =
1/η̂(Λ̂i), by Kac’s lemma. This proves that the logarithm of the function D̂ε : M̂ →
R given by

D̂ε(x̂) =

{
min

{
2ri , δi , δi/γi

}
e−(λ+ε)R(x̂) , if x̂ ∈ Λ̂i

min
{
2ri , δi , δi/γi

}
, otherwise

is η̂-integrable. On the other hand, if x̂ ∈ Λ̂i then R(f̂−n(x̂)) = n. Any ŷ ∈ M̂

such that d(x−n, y−n) ≤ D̂ε(f̂−n(x̂)) for every n ≥ 0 clearly satisfies d(x0, y0) < 2ri

and, by Proposition 3.16(2), belongs to Wu
loc(x̂). This concludes the proof of the

lemma. ¤

This result allow us to construct an auxiliary measurable partition of finite en-
tropy that will be useful to compute the metric entropy hη̂(f̂).
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Lemma 6.13. There exists a measurable partition P̂ of Ŝ such that Hη̂(P̂) < ∞,
diam(P̂(x̂)) ≤ D̂ε(x̂) at η̂-almost every x̂, and that the partition

P̂(∞) =
+∞∨
n=0

f̂nP̂

is finer than Q̂.

Proof. Let D̂ε be the measurable function given by the previous lemma. By Lemma
2 in [Mañ81], there exists a measurable and countable partition P̂0 such that
Hη̂(P̂0) < ∞ and diam P̂(x̂) ≤ D̂ε(x̂) for a.e. x̂ ∈ M̂ . Let P̂ be the finite en-
tropy partition obtained as the refinement of P̂0 and {M̂ \ Ŝ(x̂, r), Ŝ(x̂, r)}. Notice
that there is a full measure set where any two points x̂ and ŷ belong to the same
element of f̂nP̂ for every n ≥ 0 if and only

d(x−n, y−n) ≤ D̂ε(f̂−nx̂) for every n ≥ 0.

In particular, Lemma 6.12 above implies that each element of P̂ is a piece of some
local unstable manifold. Hence, since P̂ was chosen to refine {M̂ \ Ŝ(x̂, r), Ŝ(x̂, r)}
then it is easy to see that

⋂

n≥0

f̂nP̂(f̂−n(x̂)) ⊂ Q̂(x̂).

for almost every x̂. So, the partition P̂ just constructed satisfies the conclusions of
the lemma. ¤

Proof of Proposition 6.11. Let ε > 0 be arbitrary small. Up to a refinement of the
partition P̂ we may assume without loss of generality that hη̂(f̂ , P̂) ≥ hη̂(f̂) − ε.
Since the partition P̂(∞) is finer than Q̂ then

hη̂(f̂ , P̂) = hη̂(f̂ , P̂(∞)) = hη̂(f̂ , P̂(∞) ∨ Q̂) = hη̂(f̂ , f̂nP̂(∞) ∨ Q̂)

for every n ≥ 1. Using that hη̂(f̂ , ξ̂) = Hη̂(f̂−1ξ̂, ξ̂) for every increasing partition
ξ̂, the right hand side term in the previous equalities coincides with the relative
entropy Hη̂(f̂nP̂(∞) ∨ Q̂ | f̂n+1P̂(∞) ∨ f̂Q̂) and, consequently,

hη̂(f̂ , P̂) = Hη̂(Q̂ | f̂Q̂ ∨ f̂nP̂(∞)) + Hη̂(P̂(∞) | f̂−nQ̂ ∨ f̂ P̂(∞)).

The second term in the right hand side above is bounded by Hη̂(P̂), which is finite.
Then Proposition 6.8(3) implies that it tends to zero as n →∞. On the other hand,
the diameter of almost every element in f̂−n+1Q̂ tend to zero as n → ∞, proving
that there exists a sequence of sets (D̂n)n≥1 in M̂ satisfying limn η̂(D̂n) = 1 and
such that f̂Q(x̂) ⊂ f̂nP̂(∞)(x̂) for every x̂ ∈ D̂n. Then

Hη̂(Q̂ | f̂Q̂ ∨ f̂nP̂(∞)) =
∫
− log η̂(f̂Q̂∨f̂nP̂(∞))(x̂)(Q̂(x̂)) dη̂(x̂) ≥

≥
∫

D̂n(x̂)

− log η̂(f̂Q̂)(x̂)(Q̂(x̂)) dη̂(x̂),

where the measures η̂f̂Q̂∨f̂nP̂(∞) and η̂f̂Q̂ denote respectively the conditional mea-
sures of η with respect to the partitions f̂Q̂ ∨ f̂nP̂(∞) and f̂Q̂. This proves that
limn Hη̂(Q̂ | f̂Q̂ ∨ f̂nP̂(∞)) ≥ Hη̂(Q̂ | f̂Q̂). Since the other inequality is always
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true we deduce that hη̂(f̂ , P̂) = Hη̂(Q̂ | f̂Q̂). Since ε > 0 was chosen arbitrary this
proves that hη̂(f̂) = Hη̂(Q̂ | f̂Q), as claimed. ¤

It follows from Lemma 6.10 and Proposition 6.11 that

Hη̂(f̂−1Q̂ | Q̂) =
∫

log Jν̂ f̂ dη̂. (6.6)

With this in mind we obtain the following

Lemma 6.14. η̂ admits a disintegration (η̂x̂)x̂ along the measurable partition Q̂
such that

η̂x̂(B) =
1

Z(x̂)

∫

Q̂(x̂)∩B

∆(x̂, ŷ) dν̂x̂(ŷ), where Z(x̂) =
∫

Q̂(x̂)

∆(x̂, ŷ) dν̂x̂(ŷ)

(6.7)
for every measurable set B and η̂-almost every x̂. In consequence η̂x̂ is absolutely
continuous with respect to ν̂x̂ for almost every x̂.

Proof. Recall that ∆(x̂, ŷ) is well defined for almost every x̂ and every ŷ ∈ Q̂(x̂)
according to Lemma 6.10. In particular Corollary 6.9 implies that 0 < Z(x̂) < ∞
almost everywhere. Let ρx̂ denote the measure in the right hand side of the first
equality in (6.7). Since f̂−1Q̂ Â Q̂ a simple computation involving a change of
coordinates gives that

ρx̂((f̂−1Q̂)(x̂)) =
1

Z(x̂)

∫

(f̂−1Q̂)(x̂)

∆(x̂, ŷ) dν̂x̂(ŷ) =
Z(f̂(x̂))

Z(x̂) Jν̂ f̂(x̂)
.

We claim that

−
∫

log ρx̂((f̂−1Q̂)(x̂)) dη̂ =
∫

log Jν̂ f̂ dη̂.

Since ρx̂ is a probability measure then − log ρx̂((f̂−1Q̂)(x̂)) is a positive function
and clearly the negative part of this function belongs to L1(η̂). Using that Jνf is
bounded away from zero and infinity the same is obviously true also for log Z(f̂(x̂))

Z(x̂) .
So, Birkhoff’s ergodic theorem yields that the limit

ω(x̂) := lim
n→∞

1
n

log Z(f̂n(x̂)) = lim
n→∞

1
n

log
Z(f̂n(x̂))

Z(x̂)
= lim

n→∞
1
n

n−1∑

j=0

log
Z ◦ f̂(f̂ j(x̂))

Z(f̂ j(x̂))

do exist (although possibly infinite) and that
∫

ω(x̂)dη̂(x̂) =
∫

log
Z(f̂(x̂))

Z(x̂)
dη̂(x̂).

Since Z is almost everywhere positive and finite, the sequence 1/n log Z(f̂n(x̂))
converge to zero in probability and, consequently, it is almost everywhere convergent
to zero along some subsequence (nj)j . This shows that ω(x̂) = 0 for η̂-almost every
x̂ and proves our claim. On the other hand using relation (6.6) and the equality

Hη̂(f̂−1Q̂ | Q̂) = −
∫

log η̂x̂(f̂−1Q̂(x̂)) dη̂(x̂)

we obtain ∫
log

(dρ̂

dη̂

∣∣∣
f̂−1Q̂

)
dη̂ = 0.
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Since the logarithm is a strictly concave function then

0 =
∫

log
(dρ̂x̂

dη̂x̂

∣∣∣
f̂−1Q̂

)
dη̂ ≤ log

(∫
dρ̂x̂

dη̂x̂

∣∣∣
f̂−1Q̂

dη̂
)

= 0,

and the equality holds if and only if the Radon-Nykodym derivative dρ̂x̂

dη̂x̂
restricted

to the sigma-algebra generated by f̂−1Q̂ is almost everywhere constant and equal to
one. Replacing f̂ by any power f̂n in the previous computations it is not difficult to
check that η̂x̂ and ρ̂x̂ coincide in the increasing family of sigma-algebras generated
by the partitions f̂−n(Q̂), n ≥ 1. Proposition 6.8(3) readily implies that η̂x̂ = ρx̂

at η̂-almost every x̂, which completes the proof of the lemma. ¤

We know from the previous lemma that η̂x̂ ¿ ν̂x̂ almost everywhere. Then,
using that Wu

loc(x̂) is a neighborhood of x0 in M and the bijection

π |Ŵ u
loc(x̂): Ŵu

loc(x̂) → Wu
loc(x̂)

it follows that π∗η̂x̂ ¿ ν for η̂-almost every x̂. Since (η̂x̂) is a disintegration of η̂ and
π∗η̂ = η it is immediate that η ¿ ν. This completes proof of the Theorem 6.6. ¤

Remark 6.15. We point out that Theorem 6.6 holds for general endomorphisms that
admit critical or singular behavior. Let us comment on the necessary modifications
in the proof. Assume that f is a general endomorphism, φ is an Hölder continuous
potential and ν is an expanding conformal measure such that Jνf = λe−φ, where
λ = expPtop(f, φ). This is the case e.g when φ = − log |det Df | and ν is the
Lebesgue measure. Assume also that η is an equilibrium state for f with respect
to φ such that log |det Df | ∈ L1(η) and η(supp ν) = 1. The integrability condition
allows us to obtain Pesin’s local unstable leaves through almost every point (see e.g.
[QZ02] for a precise statement). Then, the construction of an increasing partition
as in Proposition 6.8 and the proof of the absolute continuity of η with respect
to ν remains unaltered. In the case that φ = − log | detDf | this corresponds to
the proof of the necessity condition in Pesin’s formula for the entropy, which is the
converse of the result in [QZ02].

Through the remaining of the section assume that f is topologically mixing.
Since equilibrium states coincide with the invariant measures that are absolutely
continuous with respect to ν then there is only one equilibrium state µ for f with
respect to φ. Thus, Theorem B is a direct consequence of Proposition 5.1 and the
previous statement. To finish the proof of Theorem A it remains only to show
exactness of the equilibrium state:

Lemma 6.16. µ is exact.

Proof. Let E ∈ B∞ be such that µ(E) > 0 and let ε > 0 be arbitrary. There are
measurable sets En ∈ B such that E = f−n(En). On the other hand, since µ is
regular there exists a compact set K and an open set O such that K ⊂ E ∩H ⊂ O
and µ(O \K) < εµ(K), where H denotes as before the set of points with infinitely
many hyperbolic times and ε > 0 is small. The same argument used in the proof
of Lemma 5.3 shows that there exists τ > 0 n ≥ 1 and x ∈ Hn such that

µ(B(x, n, δ/4) \ E)
µ(B(x, n, δ/4))

< τ−1ε.
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Since n is a hyperbolic time then fn |B(x,n,δ) is a diffeomorphism that satisfies the
bounded distortion property. Hence

µ(B(fn(x), δ/4) \ fn(E))
µ(B(fn(x), δ/4))

< K0τ
−1ε.

The topologically mixing assumption guarantees the existence of a uniform N ≥ 1
(depending only on δ) such that every ball of radius δ/4 is mapped onto M by fN .
Furthermore, since µ ¿ ν with density h = dµ

dν bounded away from zero and infinity
then Jµf = Jνf (h ◦ f)/h satisfies C−1 ≤ Jµf ≤ C for some constant C > 1. In
particular, since dN is an upper bound for the number of inverse branches of fN , C
bounds the maximal distortion of the Jacobian at each iterate and µ is f -invariant
we obtain that

µ(M \ E) = µ(M \ En+N ) < K0d
NCNτ−1ε.

The arbitrariness of ε > 0 shows that µ(E) = 1. This proves that µ is exact. ¤

We finish this section with the following:

Proof of Corollary 1. Let φ be any continuous potential satisfying (P). The exis-
tence of equilibrium states for f with respect to φ follows from upper semi-continuity
of the metric entropy. Consider a sequence {φn} of Hölder continuous potentials
satisfying (P) such that ‖φn−φ‖0 → 0 as n →∞. Let µ be an accumulation point
of the sequence {µn}, where µn is an equilibrium state for f with respect to φn

given by Theorem B. Note that the constants c and δ given by Lemma 3.4 are
uniform for every µn. So, given a partition R of diameter smaller than δ such that
µ(∂R) = 0, it is generating with respect to µn and satisfies that

µn 7→ hµn(f,R)

is upper semi-continuous. It follows from the continuity of φ 7→ Ptop(f, φ) and
φ 7→ ∫

φ dµ that

hµ(f,R) ≥ lim sup
n→∞

hµn(f) = lim sup
n→∞

[
Ptop(f, φn)−

∫
φn dµn

]

= Ptop(f, φ)−
∫

φ dµ ≥ hµ(f).

This proves that µ is an equilibrium state for f with respect to φ and completes
the proof of the corollary. ¤

7. Stability of equilibrium states

7.1. Statistical stability. Here we prove upper semi-continuity of the metric en-
tropy and use the continuity assumption on the topological pressure to prove that
the equilibrium states vary continuously with respect to the data f and φ.

Proof of Theorem C. Let W be the set of Hölder continuous potentials and F the
set of C1+α-local diffeomorphisms introduced in Subsection 2.3. The strategy is
to construct a generating partition for all maps in F . A similar argument was
considered in [Ara07]. Fix (f, φ) ∈ F × W and arbitrary sequences F 3 fn → f
in the C1+α-topology and W 3 φn → φ in the uniform topology, let µn be an
equilibrium state for fn with respect to φn and η be an f -invariant measure obtained
as an accumulation point of the sequence (µn)n.
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We begin with the following observation. Since the constants c and δ given by
Lemma 3.4 are uniform in F , any partitionR of diameter smaller than δ/2 satisfying
η(∂R) = 0 generates the Borel sigma-algebra for every g ∈ F . Then, Kolmogorov-
Sinai theorem implies that hµn(fn) = hµn(fn,R) and hη(f) = hη(f,R), that is,

hµn
(fn) = inf

k≥1

1
k

Hµn
(R(k)

n ) and hη(f) = inf
k≥1

1
k

Hη(R(k)),

where Hη(R) =
∑

R∈R−η(R) log η(R) and we considered the dynamically defined
partitions

R(k)
n =

k−1∨

j=0

f−j
n (R) and R(k) =

k−1∨

j=0

f−j(R).

Since η gives zero measure to the boundary of R then Hµn(R(k)
n ) converge to

Hη(R(k)) as n → ∞ by weak∗ convergence. Furthermore, for every ε > 0 there is
N ≥ 1 such that

hµn
(fn) ≤ 1

N
Hµn

(R(N)
n ) ≤ 1

N
Hη(R(N)) + ε ≤ hη(f) + 2ε.

Recalling the continuity assumption of the topological pressure Ptop(f, φ) on the
data (f, φ), that µn is an equilibrium state for fnwith respect to φn, and that∫

φndµn →
∫

φdη as n →∞, it follows that

hη(f) +
∫

φdη ≥ Ptop(f, φ).

This shows that η is an equilibrium state for f with respect to φ. Since every
equilibrium state belongs to the convex hull of ergodic equilibrium states and these
coincide with finitely many ergodic measures absolutely continuous with respect to
ν (recall Theorem B), this completes the proof of Theorem C. ¤

We finish this subsection with some comments on the assumption involving the
continuity of the topological pressure. The map φ 7→ P (f, φ) varies continuously,
provided that f is a continuous transformation (see for instance [Wal82, Theorem
9.5]). On the other hand, in this setting the topological pressure Ptop(f, φ) coincides
with log λf,φ, where λf,φ is the spectral radius of the transfer operator Lf,φ, for
every f ∈ F and every φ ∈ W. Moreover, the operators Lf,φ vary continuously
with the data (f, φ). So, the continuous variation of the topological pressure should
be a consequence of the most likely spectral gap for the transfer operator Lf,φ in the
space of Hölder continuous observables. Such a spectral gap property was obtained
in [AM06] in a related context.

7.2. Stochastic stability. The results in this section are inspired by some analo-
gous in [AA03]. First we introduce some definitions and notations. Given f ∈ FN,
define fj = fj ◦ . . . f2 ◦ f1. Let (θε)0<ε≤1 be a family of probability measures in
F . Given a (not necessarily invariant) probability measure ν, we say that (f, ν) is
non-uniformly expanding along random orbits if there exists c > 0 such that

lim sup
n→∞

1
n

n∑

j=1

log ‖Df(fj(x))−1‖ ≤ −2c < 0

43



for (θNε × ν)-almost every (f, x) ∈ FN × M . If this is the case, Pliss’s lemma
guarantees the existence of infinitely many hyperbolic times for almost every point
where, in this setting, n ∈ N is a c-hyperbolic time for (f, x) ∈ FN ×M if

n−1∏

j=n−k

‖Df(fj(x))−1‖ < e−ck for every 0 ≤ k ≤ n− 1.

We refer the reader to [AA03, Proposition 2.3] for the proof. Given ε > 0, let
nε

1 : FN×M → N denote the first hyperbolic time map. Set also Hn(f) = {x ∈ M :
n is a c-hyperbolic time for (f, x)}. In the remaining of the section let f ∈ F and ν
be an expanding conformal measure such that supp ν = H. The next result shows
that f has random non-uniform expansion. More precisely,

Lemma 7.1. Let (θε)0<ε≤1 be a family of probability measures in F such that
supp θε is contained in a small neighborhood Vε(f) of f and

⋂
ε Vε(f) = {f}. If

F 3 g 7→ Jνg is a continuous function and ε is small enough then (f, ν) is non-
uniformly expanding along every random orbit of (f̂ , θε). Furthermore,

(θNε × ν)(
{
(f, x) ∈ FN ×M : nε

1(f, x) > k
}
)

decays exponentially fast and, consequently,
∫

nε
1 d (θNε × ν) < ∞.

Proof. Given g ∈ F , let Ag ⊂ M be the region described in (H1) and (H2). Denote
by Ã the enlarged set obtained as the union of the regions Ag taken over all g ∈
supp θε. If ε > 0 is small enough then we can assume that Ã is contained in the
same q elements of the covering P as the set Af .

Now we claim that, if γ is chosen as before and f ∈ FN the measure of the set

B(n, f) =
{

x ∈ M :
1
n

#{0 ≤ j ≤ n− 1 : fj(x) ∈ Ã} ≥ γ
}

decays exponentially fast. Indeed, the same proof of Lemma 3.1 yields that B(n, f) is
covered by at most e(log q+ε0/2)n elements of P(n)(f) =

∨n−1
j=0 f−j(P), for every large

n. On the other hand, since supp(θε) is compact the function supp θε 3 g 7→ Jνg is
uniformly continuous: for every ε > 0 there exists a(ε) > 0 (that tends to zero as
ε → 0) such that

e−a(ε) ≤ Jνf(x)
Jνg(x)

≤ ea(ε)

for every g ∈ supp(θε) and every x ∈ M . As in the proof of Proposition 4.4, this
implies that

1 ≥ ν(fn(P )) =
∫

P

n−1∏

j=0

Jνfj ◦ fj dν ≥ e−a(ε)n

∫

P

Jνfn dν > e(log q+ε0−a(ε))n ν(P )

and, consequently, ν(P ) ≤ e−(log q+ε0−a(ε))n for every P ∈ P(n)(f) and every large
n. Hence

ν(B(n, f)) ≤ #{P ∈ P(n)(f) : P ∩B(n, f) 6= ∅} × e−(log q+ε0−a(ε))n

which decays exponentially fast and proves the claim. Then, the set

B(n) =
{

(f, x) ∈ FN ×M :
1
n

#{0 ≤ j ≤ n− 1 : fj(x) ∈ Ã} ≥ γ
}

is such that (θε × ν)(B(n)) =
∫

ν (B(n, f)) dθNε (f) also decays exponentially fast.
Borel-Cantelli guarantee that the frequency of visits of the random orbit {fj(x)}
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to Ã is smaller than γ for θNε × ν-almost every (f, x). Moreover, since every g ∈ F
satisfy (H1) and (H2) with uniform constants this proves that f is non-uniformly
expanding along random orbits. Moreover, the first hyperbolic time map nε

1 is
integrable because∫

n1 d(θNε × ν) =
∑

n≥0

(θNε × ν)({n1 > n}) ≤
∑

n≥0

(θNε × ν)(B(n)) < ∞.

This completes the proof of the lemma. ¤

Remark 7.2. Before proceeding with the proof, let us discuss briefly the continuity
assumption on F 3 g → Jνg. First notice that in our setting this is automatically
satisfied when ν coincides with the Lebesgue measure since it reduces to the con-
tinuity of g 7→ log | detDg|. Given g ∈ F , let νg denote the expanding conformal
measure and set Pg = Ptop(f, φ). Observe that if k is a c-hyperbolic time for x
with respect to f then it is a c/2-hyperbolic time for x with respect to every g
sufficiently close to f . Consequently

K(c/2, δ)−2e−|Pf−Pg|k ≤ νg(B(x, k, δ))
νf (B(x, k, δ))

≤ K(c/2, δ)2e|Pf−Pg|k,

which proves that the conformal measures νf and νg are comparable at hyperbolic
times and that Jνg = d(g−1

∗ ν)/dν is a well defined object in the domain of each
inverse branch g−1. So, in general, the relation above indicates that the continuity
of the topological pressure should play a crucial role to obtain the continuity of the
Jacobian F 3 g → Jνg.

Given n ≥ 1 define fn
x : FN → M given by fn

x (g) := gn(x). Since f is non-
uniformly expanding and non-uniformly expanding along random orbits then there
are finitely many ergodic stationary measures absolutely continuous with respect
to ν. More precisely,

Theorem 7.3. Let (θε)ε be a non-degenerate random perturbation of f ∈ F .
Given ε > 0 there are finitely many ergodic stationary measures µε

1, µ
ε
2, . . . , µ

ε
l that

are absolutely continuous with respect to the conformal measure ν and

µε
i = lim

n→∞
1
n

n−1∑

j=0

∫
fj∗(ν|B(µε

i )) dθNε (f), (7.1)

for every 1 ≤ i ≤ l. In addition, l ≥ 1 can be taken constant for every sufficiently
small ε.

Proof. This proof follows closely the one of Theorem C in [AA03]. For that reason
we give a brief sketch of the proof and refer the reader to [AA03] for details. It
is easy to check that any accumulation point µε of the sequence of probability
measures

1
n

n−1∑

j=0

(f j
x)∗θNε (7.2)

on M is a stationary measure. Moreover, any stationary measure µε is absolutely
continuous with respect to ν because of the non-degeneracy of the random pertur-
bation and

µε(E) =
∫

µε(g−1(E)) dθε(g) =
∫

1E(g(x)) dθε(g) dµε(x) =
∫

((fx)∗θNε )(E) dµε
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for every measurable set E.
On the other hand, by the ergodic decomposition of the F -invariant probability

measure θNε ×µε there are ergodic stationary measures. We prove that there can be
at most finitely many of them. Indeed, a point x belongs to the basin of attraction
B(µε) of an ergodic stationary measure µε if and only if

1
n

n−1∑

j=0

ψ(fj(x)) →
∫

ψ dµε (7.3)

for every ψ ∈ C(M) and θNε -almost every f ∈ FN. In addition, if x ∈ B(µε) then
g(x) ∈ B(µε) for every g ∈ supp(θε). Furthermore, the non-degeneracy of the ran-
dom perturbation implies that B(µε) contains the ball of radius rε centered at f(x).
Then, the compactness of M implies that there are finitely many ergodic absolutely
continuous stationary measures µε

1, . . . , µ
ε
l , with 1 ≤ l ≤ l(ε). Since ν(B(µε

i )) > 0,
integrating (7.3) with respect to ν and using the dominated convergence theorem
one obtains

∫
ψ dµε

i = lim
n

1
n

n−1∑

j=0

∫

B(µε
i )

ψ ◦ fj dν = lim
n

1
n

n−1∑

j=0

∫
ψ d fj∗(ν|B(µε

i ))

for every ψ ∈ C(M) and θNε -almost every f ∈ F . This proves the first statement of
the theorem.

It remains to show that l = l(ε) can be chosen constant for every sufficiently
small ε. The support of each stationary measure µε

i is an invariant set with non-
empty interior (see [AA03]). Since f is non-uniformly expanding then supp(µε

i )
contains some hyperbolic pre-ball Vn(x) associated to f and, by invariance, a ball
of radius δ. This proves that l(ε) ≤ l0 for every small ε > 0. On the other direction,
since the set supp(µε

i ) has positive ν-measure and is forward invariant by f it must
be contained in the support of some ergodic stationary measure µε′

i for every ε′

smaller than ε. This proves the l can be taken constant for small ε and completes
sketch of the proof of the theorem. ¤

Now we are in a position to prove that the equilibrium states constructed in
Theorem A are stochastically stable.

Proof of Theorem D. Let (µε)ε>0 be a sequence of stationary measures absolutely
continuous with respect to ν and let η be any weak∗ accumulation point. Theo-
rem 7.3 implies that there is l ≥ 1 such that there are exactly l ergodic stationary
measures µε

1, . . . , µ
ε
l that are absolutely continuous with respect to ν, for every

sufficiently small ε. Furthermore,

µε
i = lim

n→∞
νε

n,i where νε
n,i =

1
n

n−1∑

j=0

∫
fj∗(ν | B(µε

i )) dθNε (f).

Proceed as in the beginning of Subsection 5.1 and write νε
n ≤ ξε

n + 1
n

∑n−1
j=0 ηε

j with

ξε
n,i =

1
n

n−1∑

j=0

∫

B(µε
i )

fj∗(ν | Hj(f)) dθNε (f)

and
ηε

n,j =
∑

k>0

∫

B(µε
i )

fk∗
(
[fj∗(ν | Hj(f))] | {nε

1(·, σj(f)) > k}
)

dθNε (f).
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The arguments from Section 5 and the uniform integrability of ε 7→ nε
1 ∈ L1(θNε ×ν)

yield that each measure νε
n,i is absolutely continuous with respect to ν with density

bounded from above by a constant depending only on ε. By weak∗ convergence it
follows that η is also absolutely continuous with respect to ν and, consequently, η
belongs to the convex hull of finitely many ergodic equilibrium states µ1, . . . , µk for
f with respect to φ. This completes the proof of the theorem. ¤

8. Some Examples

It is worthwhile including some remarks on the role of the hypotheses (H1),(H2)
and (P), specially in connection with the supports of the measures we construct,
the existence and finitude of equilibrium states.

Example 8.1. Let f0 : Td → Td be a linear expanding map. Fix some covering P
for f0 and some P1 ∈ P containing a fixed (or periodic) point p. Then deform f0 on
a small neighborhood of p inside P1 by a pitchfork bifurcation in such a way that
p becomes a saddle for the perturbed local diffeomorphism f . By construction, f
coincides with f0 in the complement of P1, where uniform expansion holds. Observe
that we may take the deformation in such a way that f is never too contracting
in P1, which guarantees that (H1) holds, and that f is still topologically mixing.
Condition (P) is clearly satisfied by φ ≡ 0. Hence, Theorems A and B imply that
there exists a unique measure of maximal entropy, it is supported in the whole
manifold Td and it is a non-lacunary Gibbs measure.

Now, we give an example where the union of the supports of the equilibrium
states does not coincide with the whole manifold.

Example 8.2. Let f0 be an expanding map in T2 and assume that f0 has a periodic
point p with two complex conjugate eigenvalues σ̃ei$, with σ̃ > 3 and k$ 6∈ 2πZ
for every 1 ≤ k ≤ 4. It is possible to perturb f0 through an Hopf bifurcation at p to
obtain a local diffeomorphism f , C5-close to f0 and such that p becomes a periodic
attractor for f (see e.g. [HV05] for details). Moreover, if the perturbation is small
then (H1) and (H2) hold for f . Thus, there are finitely many ergodic measures of
maximal entropy for f . Since these measures are expanding their support do not
intersect the basin of attraction the periodic attractor p.

An interesting question concerns the restrictions on f imposed by (P). For in-
stance, if φ = − log | detDf | satisfies (P) then there can be no periodic attractors.
In fact, if this is the case then the expanding conformal measure ν coincides with
the Lebesgue measure. Since ν is an expanding measure and positive on open
sets there can not exist periodic attractors. There are examples where the poten-
tial φ = − log |detDf | does satisfy (P). In fact, if f is as in Example 8.1 above,
condition (P) can be rewritten as

supx∈T2 | detDf(x)|
infx∈T2 | detDf(x)| < deg(f), (8.1)

which is clearly satisfied if the perturbation is small enough.
The next example shows that some control on the potential φ is needed to have

uniqueness of the equilibrium state: in absence of the hypothesis (P), uniqueness
may fail even if we assume (H1) and (H2). Recall the following well known example
of intermittency.
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Example 8.3. (Manneville-Pomeau map) If α ∈ (0, 1), let f : [0, 1] → [0, 1] be the
local diffeomorphism given by

fα(x) =
{

x(1 + 2αxα) if 0 ≤ x ≤ 1
2

2x− 1 if 1
2 < x ≤ 1.

Observe that conditions (H1) and (H2) are satisfied. It is well known that f has a fi-
nite invariant probability measure µ absolutely continuous with respect to Lebesgue.
It is not difficult to see using by Pesin formula and Ruelle inequality, that µ is an
equilibrium state for the potential φ = − log | detDf |. On the other hand, since
hδ0(f) = 0 and Df(0) = 1, the Dirac mass δ0 is also an equilibrium measure for
φ. Thus, uniqueness fails in this topologically mixing context. For the sake of
completeness, let us mention that in this example f is not a local diffeomorphism,
but one can modify it to a local diffeomorphisms in S1 = [0, 1]/ ∼ by

fα(x) =
{

x(1 + 2αxα) if 0 ≤ x ≤ 1
2

x− 2α(1− x)1+α if 1
2 < x ≤ 1,

where ∼ means that the extremal points in the interval are identified. Note that
the potential φ is not (Hölder) continuous.

The previous phenomenon concerning the lack of uniqueness of equilibrium states
can appear near the boundary of the class of maps and potentials satisfying (H1)
and (H2) and (P).

Example 8.4. Let fα be the map given by the previous example and let (φβ)β>0 be
the family of Hölder continuous potentials given by φβ = − log(det |Df |+ β). On
the one hand, observe that φβ converge to φ = − log(|det Df |) as β → 0. On the
other hand, similarly to (8.1), one can write condition (P) as

β + 2 + α

β + 1
< 2, or β > α.

For every α > 0, since fα is topologically mixing and satisfies (H1),(H2) and φ2α

satisfies (P) for every α > 0 there is a unique equilibrium state µα for fα with
respect to φ2α. Moreover, φ2α approaches φ, which seems to indicate that the
condition (P) on the potential should be close to optimal in order to get uniqueness
of equilibrium states.

9. Questions and perspectives

In this final section we will discuss several open questions, comment our assump-
tions and discuss possible future perspectives.
Weak Gibbs property: Recall that in the topologically mixing case the unique equi-
librium state is a non-lacunary Gibbs measure. This holds because this measure is
equivalent to the expanding conformal measure ν. A natural question is wether the
equilibrium states also enjoy this weak Gibbs property in general. To obtain this
it would be enough to show that the density of any absolutely continuous invariant
measure is bounded away from zero in its support.
Decay of correlations and Limit Theorems: Other question is to analyze the velocity
of mixing or, in other words, the rate of decay of correlations. It would also be
interesting to establish some other statistical properties and limit theorems as the
Central Limit Theorem (CLT) and the Local Limit Theorem (LLT) in a suitable
Banach subspace of the space of Hölder continuous potentials.
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Regularity of the transformation and potentials: It is well known that C1 generic
maps are not C1+α, failing to satisfy bounded distortion properties. In gen-
eral, there exists an expanding conformal measure νφ and a positive real number
λφ = r(Lφ) such that L∗φνφ = λφνφ for every continuous covering map f and po-
tential φ. We point out that the C1+α assumption was only used to obtain Pesin’s
local unstable leaves in the proof of the uniqueness of the equilibrium state. For
some applications this regularity is often necessary: e.g. in order to apply the re-
sults to the family of potentials φt = −t log |det Df |. Nevertheless, it would be
interesting to obtain a direct proof of the uniqueness in the context of C1 transfor-
mations. We note that in the presence of Markov partitions, which is the setting
of [OV07], Oliveira and Viana prove the uniqueness of equilibrium states using a
different method that does not require the Hölder regularity of the derivative of the
transformation.
Random transformations: A question inspired by [AMO04] and our stochastic sta-
bility result is to prove the existence and uniqueness of equilibrium states for
some open classes of non-uniformly expanding random maps including the ones
in [AMO04]. Indeed, it seams reasonable to construct an invariant measure which
is absolutely continuous with respect to νP in the same spirit of [AA03]. Moreover,
following [AMO04] it might be that such measure is an equilibrium state. An im-
portant step and possible difficulty in that direction lies in obtain a random version
of Brin-Katok’s local entropy formula.
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