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idioma comum a todas as pessoas a quem são dirigidos esses agradecimentos.
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Timóteo, Dimas, Evilson, Etereldes, Fabiano, Fábio, Fernando, Marcelo, Perfil-

ino, Rener, Ricardo, Thiago Drummond e Thiago Fassarella sempre estiveram

presentes ao longo desses anos, seja dividindo apartamento ou em momentos de

trabalho e lazer. Acredito que formamos uma grande famı́lia e com certeza levarei

isso para o resto da vida.

Queria igualmente agradecer meus amigos Carlos Matheus, Damián, Didier,

Juan Carlos por todas as conversas sobre Matemática, Matlab, LATEX e diversos
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Abstract

The purpose of this work is to investigate several questions about the initial
value problem (IVP) associated to some Boussinesq-type equations.
In Chapter 1, we study the long-time behavior of solutions (without small-
ness assumption) of the initial-value problem for a generalized Boussinesq
equation. Here we do the reciprocal problem of the scattering theory, we
construct a solution ~u with a given scattering state B(t)~h, where B(·) is

the unitary group associated to the linear system and ~h is given in suitable
spaces.
Next, we study the local well-posedness of the initial-value problem for the
nonlinear generalized Boussinesq equation with data in Hs(Rn) ×Hs(Rn),
s ≥ 0. Under some assumption on the nonlinearity f , local existence results
are proved for Hs(Rn)-solutions using an auxiliary space of Lebesgue type.
Furthermore, under certain hypotheses on s, n and the growth rate of f
these auxiliary conditions can be eliminated. All these results are proved in
Chapter 2.
In the sequel, we study the local well-posedness of the (IVP) for the
nonlinear “good” Boussinesq equation with data in Sobolev spaces Hs(R)×
Hs−1(R) for negative indices s. Local well-posedness for s > −1/4 and ill-
posedness (in the sense that the flow-map data solution cannot be C2 at
the origin) for s < −2 are proved in Chapters 3 and 4, respectively.
The last chapter is devoted to study the (IVP) for the nonlinear Schrödinger-
Boussinesq system. Local existence results are proved for initial data in
Sobolev spaces of negative indices. Global results are also obtained with
data in L2(R)× L2(R)×H−1(R).

Keywords
Boussinesq equation. Scattering. Large data. Local well-posedness.

Ill-posedness. Schrödinger-Boussinesq system. Global well-posedness.
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“Anyone who has never made a mistake has
never tried anything new.”

Albert Einstein, 1879-1955.





Introduction

In this work, we consider the Boussinesq Equation (NLB)

{
utt −∆u + ∆2u + ∆f(u) = 0, x ∈ Rn, t > 0,

u(x, 0) = φ, ut(x, 0) = ψ
(0.1)

where f is a nonlinear function and φ and ψ are real valued functions.

Equations of this type in one dimension, but with the opposite sign in the

bilaplacian, were originally derived by Boussinesq [8] in his study of nonlinear,

dispersive wave propagation. We should remark that it was the first equation

proposed in the literature to describe this kind of physical phenomena. The

equation (0.1) was also used by Zakharov [44] as a model of nonlinear string.

Finally, Falk et al [16] derived an equivalent equation in their study of shape-

memory alloys.

In one dimension, equation (0.1) can also be rewritten in the following

equivalent system form
{

ut = vx

vt = (u− uxx − f(u))x , x ∈ R, t > 0.
(0.2)

Since the generalization to higher dimensions of this system is not straight-

forward, we, in fact, will work with the system (SNLB)
{

ut = ∆v

vt = u−∆u− f(u), x ∈ Rn, t > 0.
(0.3)

Concerning the local well-posedness question in one dimension, several

results has been obtained for the equation (0.1). Hereafter, we refer to the

expression “local well-posedness” in the sense of Kato, that is, the solution

uniquely exists in a certain time interval (unique existence), the solution has

the same regularity as the initial data in a certain time interval (persistence),

and the solution varies continuously depending upon the initial data (continuous

dependence). Global well-posedness requires that the same properties hold for all
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time t > 0.

Using Kato’s abstract theory for quasilinear evolution equation, Bona and

Sachs [5] showed local well-posedness for the system (0.2), where f ∈ C∞ and

initial data φ ∈ Hs+2(R), ψ ∈ Hs+1(R) with s > 1
2

. Tsutsumi and Matahashi [39]

established similar result when f(u) = |u|p−1u, p > 1 and φ ∈ H1(R), ψ = χxx

with χ ∈ H1(R). These results were improved by Linares [29]. Working directly

with the equation (0.1) he proved local well-posedness when f(u) = |u|p−1u, p > 1,

φ ∈ H1(R), ψ = hx with h ∈ L2(R) and f(u) = |u|p−1u, 1 < p < 5, φ ∈ L2(R),

ψ = hx with h ∈ H−1(R). Moreover, assuming smallness in the initial data, it

was proved that these solutions can be extended globally in H1(R). The main

tool used in [29] was the Strichartz estimates satisfied by solutions of the linear

problem.

Another problem studied in the context of the Boussinesq equation is

scattering of small amplitude solutions. Roughly speaking, the problem is as

follows: given a initial data with small norm in a suitable space, the outcoming

solution u(t) is global in time and there exists initial data V± such that

lim
t→±∞

‖u(t)− u±(t)‖X = 0

where u±(t) is the solution of the linear problem associated to the Boussinesq

equation (that is, f ≡ 0 in (0.1)) with initial data V± and X is an appropriate

functional space.

This question was investigated by several authors, see, for instance, Linares

and Scialom [32], Liu [33] for results in one dimension and Cho and Ozawa [11] for

arbitrary dimension. We should remark that in all the situations above we need

some regularity on the initial data to obtain the scattering.

In the present work, we are interested with the reciprocal problem, that is,

to construct solutions to (0.1) with a given asymptotic behavior. In other words,

given a profile V in a suitable space let uV (t) be the solution of the linear problem

with initial data V . Then there exists a solution u(t) of (0.1), defined for large

enough times, such that

lim
t→∞

‖u(t)− uV (t)‖W = 0 (0.4)

in some functional space W . We refer to this problem as the construction of a

wave operator.

In Chapter 1, we construct a wave operator for initial data V in appropriate

functional spaces. Our scheme of proof used is based in the one implemented by
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Côte [15] in the context of the generalized Korteweg-de Vries equation. The main

interesting point in these results is that the smallness assumption can be removed

in this context and we are able to construct a wave operator for any possible large

profile V in certain functional spaces.

In Chapter 2, we will consider first the local well-posedness problem. Using

the integral equation (0.22) below, we prove that (0.1) is locally well-posed for

initial data φ ∈ Hs(R), ψ = ηxx with η ∈ Hs(R) and s ≥ 0. To do this, we

observe that the integral formulation (0.22) is very similar to the Schrödinger

equation’s structure. Therefore applying well known results for this last equation

we construct auxiliary spaces such that the integral equation (0.22) is stable and

contractive in these spaces. By Banach’s fixed point theorem we obtain a unique

fixed point to the integral equation in these auxiliary spaces. A natural question

arise in this context. Is it possible to remove these auxiliary spaces? In other

words, is it possible to prove that the uniqueness holds, in fact, in the whole space

C([0, T ]; Hs(Rn))? If the answer for these two questions is yes, then we say that

(0.1) is unconditionally well-posed in Hs(Rn).

This question was introduced by Kato [24] in the context of Schrödinger

equation and further developed by Furioli and Terraneo [18]. Based in these

results, we establish unconditional well-posedness for the generalized Boussinesq

equation (0.1), under certain hypotheses on s, n and the growth rate of f .

Another problem considered here is the local well-posedness for the Boussi-

nesq equation (0.1) in one dimension and f(u) = u2. This equation is called

“good” Boussinesq equation. For future reference we rewrite this equation below

{
utt − uxx + uxxxx + (u2)xx = 0, x ∈ R, t > 0,

u(0) = φ; ut(x, 0) = ψx.
(0.5)

We should notice that all the local well-posedness results found in [5], [39]

and [29] also hold for (0.5). A natural question arises in this context: is it possible

to prove local well-posedness for less regularity data then L2?

In this work, we answer partially this question, showing both local well-

posedness and ill-posedness for the “good” Boussinesq equation (0.5) with initial

data in Sobolev spaces with negative indices of s.

The local well-posedness for dispersive equations with quadratic nonlinear-

ities has been extensively studied in Sobolev spaces with negative indices. The

proof of these results is based in the Fourier restriction norm approach introduced

by Bourgain [6] in his study of the nonlinear Schrödinger equation (NLS)
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iut + uxx + u|u|p−2 = 0, with p ≥ 3 (0.6)

and the Korteweg-de Vries equation (KdV)

ut + uxxx + uxu = 0. (0.7)

This method was further developed by Kenig, Ponce and Vega in [26] for the

KdV equation (0.7) and [27] for the quadratics nonlinear Schrödinger equations

iut + uxx + u2 = 0 (0.8)

iut + uxx + uū = 0 (0.9)

iut + uxx + ū2 = 0, (0.10)

where ū denotes the complex conjugate of u, in one spatial dimension and in

spatially continuous and periodic case. Using this method, in Chapter 3, we

improve the result in [29], proving local well-posedness for the nonlinear “good”

Boussinesq equation (0.5) for initial data in Sobolev spaces Hs(R)×Hs−1(R) with

s > −1/4.

The next chapter is devoted to the ill-posedness result, which states that

the flow-map data solution can not be of class C2 for s < −2. This problem was

studied by Bourgain [7] (see also Tzvetkov [40]) in the context of the KdV equation

(0.7). The same question was studied by Molinet, Saut and Tzvetkov [35]- [36],

for the Benjamin-Ono equation

ut +Huxx + uux = 0 (0.11)

and for the Kadomtsev-Petviashvili 1 (KP1) equation

(ut + uux + uxxx)x − uyy = 0, (0.12)

respectively.

In the last chapter, we consider the initial value problem (IV P ) for the

Schrödinger-Boussinesq (SB) system





iut + uxx = vu,

vtt − vxx + vxxxx = (|u|2)xx,

u(x, 0) = u0(x); v(x, 0) = v0(x); vt(x, 0) = (v1)x(x),

(0.13)
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where x ∈ R and t > 0.

Here u and v are respectively a complex valued and a real valued function

defined in space-time R2. The SB-system is considered as a model of interactions

between short and intermediate long waves, which is derived in describing the

dynamics of Langmuir soliton formation and interaction in a plasma [34] and

diatomic lattice system [42]. The short wave term u(x, t) : R×R→ C is described

by a Schrödinger type equation with a potential v(x, t) : R × R → R satisfying

some sort of Boussinesq equation and representing the intermediate long wave.

The nonlinear Schrödinger (NLS) equation models a wide range of physical

phenomena including self-focusing of optical beams in nonlinear media, propaga-

tion of Langmuir waves in plasmas, etc. For a introduction on this topic, we refer

the reader to [31].

Our principal aim here is to study the well-posedness of the Cauchy problem

for the SB-system (0.13). Concerning the local well-posedness question, some

results are obtained for the SB-system (0.13). Linares and Navas [30] proved

that (0.13) is locally well-posedness for initial data u0 ∈ L2(R), v0 ∈ L2(R),

v1 = hx with h ∈ H−1(R) and u0 ∈ H1(R), v0 ∈ H1(R), v1 = hx with

h ∈ L2(R). Moreover, by using some conservations laws, in the latter case the

solutions can extended globally. Yongqian [43] established local well-posedness

when u0 ∈ Hs(R), v0 ∈ Hs(R), v1 = hxx with h ∈ Hs(R) for s ≥ 0 and assuming

s ≥ 1 these solutions are global.

Here we considerably improve the previous ones [30]- [43]. Local and global

well-posedness for the SB-system is obtained for initial data (u0, v0, v1) ∈ Hs(R)×
Hs(R) × Hs−1(R) with s > −1/4 and (u0, v0, v1) ∈ L2(R) × L2(R) × H−1(R),

respectively. The scheme of proof used to obtain these results is in the same spirit

as the one implemented by Ginibre, Y. Tsutsumi and Velo [21] and Colliander,

Holmer, Tzirakis [14] to establish their results for the Zakharov system





iut + uxx = vu,

σvtt − vxx = (|u|2)xx,

u(0, x) = u0(x); v(x, 0) = v0(x); vt(x, 0) = v1,

(0.14)

where x ∈ R and t > 0.





Preliminaries

Notations

In the sequel, c denotes a positive constant which may differ at each

appearance.

For any positive numbers a and b, the notation a . b means that there exists

a positive constant θ such that a ≤ θb. We also denote a ∼ b when, a . b and

b . a.

In the following, we denote by a+ a number slightly larger the a.

Finally we define 〈〈〈〈〈〈a〉〉〉〉〉〉 ≡ (1 + |a|2)1/2 and 〈a〉 ≡ 1 + |a|. Note that 〈〈〈〈〈〈a〉〉〉〉〉〉 ∼ 〈a〉.
Despite of this fact, we decide to use this two notations in this work. This is

justified by the fact that 〈〈〈〈〈〈 · 〉〉〉〉〉〉 (resp. 〈·〉) is more convenient to prove our results in

Chapter 1 (resp. Chapters 3-5).

Functional Spaces

We start with the well-known (generalized) Sobolev spaces.

Definition 0.0.1 Let s ∈ R, 1 ≤ p ≤ ∞. The homogeneous (generalized) Sobolev

space and the inhomogeneous (generalized) Sobolev space are defined respectively

as the completion of S(Rn) with respect to the norms

‖f‖Ḣs
p(Rn) = ‖Dsf‖Lp(Rn),

‖f‖Hs
p(Rn) = ‖Jsf‖Lp(Rn),

where Ds = F−1|ξ|sF and Js = F−1〈〈〈〈〈〈ξ〉〉〉〉〉〉sF .
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Remark 0.0.1 We recall that if N ≥ 1 is an integer and if 1 < p < ∞ then there

exists c > 0, such that for all g ∈ HN
p (Rn)

1

c
‖g‖HN

p (Rn) ≤
n∑

j=1

∥∥∥∥
∂N

∂xN
j

g

∥∥∥∥
Lp(Rn)

+ ‖g‖Lp(Rn) ≤ c‖g‖HN
p (Rn).

See [4] Theorem 6.2.3.

For convenience, we denote Hs
2 by Hs.

Now we recall the definition of homogeneous Besov spaces. Let η ∈ C∞
c (Rn)

such that supp η ⊆ {ξ : 2−1 ≤ ξ ≤ 2}, η(ξ) > 0 for 2−1 < ξ < 2 and∑
j∈Z η(2−jξ) = 1 for ξ 6= 0. Define a frequency projection operator Pj for j ∈ Z

by

Pjφ = F−1

[
η

(
ξ

2j

)
φ̂

]
, for j ∈ Z − {0},

P0 = 1−
∑
j≥1

Pj.

Remark 0.0.2 For convenience we choose η such that Pj = P̃jPj where P̃j ≡
Pj−1 + Pj + Pj+1.

We have the following definition

Definition 0.0.2 Let s ∈ R, 1 ≤ p, q ≤ ∞. The homogeneous Besov space and

the inhomogeneous Besov space are defined respectively as follows:

Ḃs
p,q(Rn) =





f ∈ S′(Rn)/P : ‖f‖Ḃs
p,q

=


∑

j∈Z
2js‖Pjf‖q

Lp




1
q

< ∞





,

Bs
p,q(Rn) =





f ∈ S′(Rn) : ‖f‖Bs
p,q

= ‖P0f‖Lp +


∑

j≥1

2js‖Pjf‖q
Lp




1
q

< ∞





,

where P is the space of polynomials in n variables.

It is well-known that Ḃs
2,2(Rn) = Ḣs

2(Rn). For further details concerning the

Besov and (generalized) Sobolev spaces we refer the reader to [4].

Finally, we define the mixed “space-time” spaces
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Definition 0.0.3 Let X be a functional space , 1 ≤ r ≤ +∞ and T > 0, the

Lr
0,T X and Lr

T X spaces are defined, respectively, by

Lr
0,T X =

{
f : X × [0, T ] → R or C : ‖f‖Lr

0,T X ≡
(∫ T

0

‖f(·, t)‖r
X

) 1
r

< ∞
}

.

Lr
T X =

{
f : X × [T, +∞] → R or C : ‖f‖Lr

T X ≡
(∫ ∞

T

‖f(·, t)‖r
X

) 1
r

< ∞
}

.

Linear equation

First, we consider the linear Boussinesq equation

{
utt − uxx + uxxxx = 0, x ∈ R, t > 0,

u(x, 0) = φ, ut(x, 0) = ψx.
(0.15)

It is well known that the solution of (0.15) is given by

u(t) = Vc(t)φ + Vs(t)ψx (0.16)

where

Vc(t)φ =

(
eit
√

ξ2+ξ4
+ e−it

√
ξ2+ξ4

2
φ̂(ξ)

)∨

Vs(t)ψx =

(
eit
√

ξ2+ξ4 − e−it
√

ξ2+ξ4

2i
√

ξ2 + ξ4
ψ̂x(ξ)

)∨

.

By Duhamel’s Principle the solution of (0.5) is equivalent to

u(t) = Vc(t)φ + Vs(t)ψx +

∫ t

0

Vs(t− t′)(u2)xx(t
′)dt′. (0.17)

Another way to write an integral equation associated to (0.1) is as follows.

First, we consider the following modified equation

utt + ∆2u + ∆(g(u)) = 0. (0.18)

For the linear equation

utt + ∆2u = 0,
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the solution for initial data u(0) = φ and ut(0) = ∆η, is given by

u(t) = Bc(t)φ + Bs(t)∆η

where

U(t)u0 =
(
e−it|ξ|2û0

)∨
, (0.19)

Bc(t) =
1

2
(U(t) + U(−t)) (0.20)

and

Bs(t)∆ =
i

2
(U(t)− U(−t)) . (0.21)

Remark 0.0.3 Note that (0.19) is the unitary group associated to the linear

Schrödinger equation (see, for example, [31] Chapter 4).

By Duhamel’s Principle the solution of (0.18) is given by

u(t) = Bc(t)φ + Bs(t)∆η + BI(g) (0.22)

where BI(g) ≡ ∫ t

0
Bs(t− t′)∆g(u)(t′)dt′.

We also have this kind of representation when we write the Boussinesq

equation as a system. In this case, the linear system is represented by
{

ut = ∆v

vt = u−∆u, x ∈ Rn, t > 0
(0.23)

and its solution, for initial data ~u0 = (u0,1, u0,2), is given by

B(t)~u0 =

∫ +∞

−∞
eixξ

(
cos(t|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉) − |ξ|

〈〈〈〈〈〈ξ〉〉〉〉〉〉 sin(t|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉)
〈〈〈〈〈〈ξ〉〉〉〉〉〉
|ξ| sin(t|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉) cos(t|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉)

)
~̂u0(ξ)dξ (0.24)

where ~̂u0 = (û0,1, û0,2).

Therefore, using the Duhamel principle, the solutions of (0.3), with initial

data ~u0, can be written as

~u(t) = B(t)~u0 +

∫ t

0

B(t− t′)~f(~u(t′))dt′

where ~f(~u) = (0, f(u)).
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For the Schrödinger-Boussinesq system (0.13), again by Duhamel’s principle,

the solution is equivalent to the following system of equations

u(t) =U(t)u0 − i

∫ t

0

U(t− t′)(vu)(t′)dt′,

v(t) =Vc(t)v0 + Vs(t)(v1)x +

∫ t

0

Vs(t− t′)(|u|2)xx(t
′)dt′

(0.25)

where U(t) is given by (0.19).





Chapter 1
Large data asymptotic behavior

1.1 Introduction

In this chapter, we consider the Boussinesq Equation (0.3), where for a given

α > 1 the function f satisfies the following assumptions

– f ∈ C [α](R) (denoting [α] the integer part of α);

– |f (l)(v)| . |v|α−l for all integers l varying in the whole range 0 ≤ l ≤ α.

As it was mentioned in the introduction, we are interested in constructing

solutions to (0.3) with a given asymptotic behavior. In other words, we want to

construct a wave operator for a given profile V in suitable spaces (see equation

(0.4)).

This problem was studied for other dispersive models. In the case of

Schrödinger related equation we refer the reader to Ginibre and Velo [22] for

a detailed review. For the generalized Korteweg-de Vries equation it was studied

by Côte [15]. The central idea introduced in this last work is that any scheme of

proof which allows to prove global well-posedness and linear scattering for small

data can be applied successfully to construct solutions with a give linear profile,

small or large. In other words, the smallness assumption can be removed in this

context and we are able to construct a wave operator for any possible large profile

V in certain functional space, where the small data linear scattering holds.

Another feature that the dispersive equation must have in order to apply

the arguments of Côte [15] is that the solution associated to the linear equation

can be expressed in terms of the action of a unitary group over the initial data.

For this reason we use the system formulation (0.3) instead of (0.1).

The plan of this chapter is as follows: in Section 2, we introduce some

notation and state our main results. We derive some linear estimates useful in

the proof of the main results in Section 3. Section 4 will be devoted to prove

Theorems 1.2.1-1.2.4.
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1.2 Notations and main results

To give precise statements of the main results we need to introduce some

notation. Based in the Sobolev spaces we have the following definition.

Definition 1.2.1 Let s ∈ R, 1 ≤ p ≤ ∞. The inhomogeneous initial data spaces

Y s
p and Y 1,1

p are defined by Y s
p = Hs

p ×D−1Hs−1
p and Y 1,1

p = H1
p ×D−1H−1

p . The

norm of these spaces are given respectively by

‖~h‖2
Y s

p
= ‖h1‖2

Hs
p
+ ‖Dh2‖2

Hs−1
p

,

‖~h‖2
Y 1,1

p
= ‖h1‖2

H1
p

+ ‖Dh2‖2
H−1

p
,

where D = F−1|ξ|F .

For convenience, we denote Y s
2 by Y s, therefore

‖~h‖2
Y s = ‖h1‖2

Hs + ‖Dh2‖2
Hs−1 .

Remark 1.2.1 In view of (0.24) it is easy to see that, for all s ∈ R

‖B(t)~h‖Y s = ‖~h‖Y s . (1.1)

Other spaces which will be useful for our purposes are given in the next

definition.

Definition 1.2.2 Let s ∈ R, 1 ≤ p ≤ ∞. The spaces L̃p and H̃s
p+1 are defined by

Lp × Lp and Hs
p+1 ×Hs

p+1, respectively, with the following norms:

‖~h‖2
L̃p = ‖h1‖2

Lp + ‖h2‖2
Lp ,

‖~h‖2
H̃s

p+1
= ‖Jsh1‖2

Lp+1 + ‖Jsh2‖2
Lp+1 .

Based in the Besov spaces we introduce some spaces that will be useful to

treat the (SNLB) in arbitrary spatial dimension.

Definition 1.2.3 Let s ∈ R, 1 ≤ p, q ≤ ∞. The nonhomogeneous initial data

space D−l
1 Ḃs

p,q is defined respectively as the completion of S(Rn) with respect to

the norm

‖f‖D−l
1 Ḃs

p,q
=

(∑

j∈Z
(D1(2

j)l(2j)s‖Pjf‖Lp)q

) 1
q

(1.2)

where D1 = F−1
[
|ξ|
〈〈〈〈〈〈ξ〉〉〉〉〉〉

]n−2
2 F .
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Remark 1.2.2 Since D1 ∈ L∞, we have

Ḃs
p,q ⊆ D

−(1− 2
r
)

1 Ḃs
p,q.

Definition 1.2.4 Let s, l ∈ R, 1 ≤ p, q ≤ ∞. The initial data spaces Ḃl,s
p,q and

B̃l,s
p,q are defined by

Ḃl,s
p,q =

(
Ḃs+nl

p,q ∩D−l
1 Ḃs

p,q

)
×D−1

2

(
Ḃs+nl

p,q ∩D−l
1 Ḃs

p,q

)
,

B̃l,s
p,q =

(
Lp ∩D−l

1 Ḃs
p,q

)
×D−1

2

(
Lp ∩D−l

1 Ḃs
p,q

)
.

Furthermore, the norm of these spaces are given respectively by

‖~h‖Ḃl,s
p,q

= ‖h1‖Ḃs+nl
p,q

+ ‖h1‖D−l
1 Ḃs

p,q
+ ‖D2h2‖Ḃs+nl

p,q
+ ‖D2h2‖D−l

1 Ḃs
p,q

(1.3)

and

‖~h‖B̃l,s
p,q

= ‖h1‖Lp + ‖h1‖D−l
1 Ḃs

p,q
+ ‖D2h2‖Lp + ‖D2h2‖D−l

1 Ḃs
p,q

.

where D2 = F−1
[
|ξ|
〈〈〈〈〈〈ξ〉〉〉〉〉〉

]
F .

Now we are in position to give a precise statement of the main results of this

chapter. The first two theorems are concerned with the one dimensional case.

Theorem 1.2.1 Let α = 4/γ, p = 2
1−γ

and γ ∈ (0, 4/5). For any ~h =

(h1, h2) ∈
(
D

γ
4 H1+ γ

4 (R)×D−1+ γ
4 H

γ
4 (R)

) ∩ Y 1 there exist T0 = T0(~h) ∈ R and

~u ∈ L∞([T0, +∞), Y 1) solution of (0.3) such that

lim
t→∞

‖~u(t)−B(t)~h‖Y 1 = 0. (1.4)

Moreover, ~u is unique in Lα
T0

Y 1,1
p ∩ L∞T0

Y 1.

Theorem 1.2.2 Let α > α0 ≡ 2 +
√

7, β = 1 − 2

α + 1
and q such that

1/q + 1/(α + 1) = 1. For any ~h = (h1, h2) ∈ Y 1
q ∩ Y 1 there exist T0 = T0(~h) ∈ R

and ~u ∈ L∞([T0, +∞), Y 1
α+1 ∩ Y 1) solution of (0.3) such that

lim
t→∞

‖~u(t)−B(t)~h‖Y 1 = 0.
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Moreover, ~u is the unique solution in L∞T0
Y 1 such that

sup
t≥T0

‖(1 + t)
β
3 ~u(t)‖Y 1

α+1
< ∞.

Remark 1.2.3 To apply Kato’s abstract theory for quasilinear evolution equation

Bona and Sachs [5] wrote the one dimensional Boussinesq equation in the equiv-

alent system form (0.2). To prove Theorems 1.2.1-1.2.2, we will work with the

system (0.3) instead of (0.2), since the generalization to higher dimensions of the

latter one is not straightforward. However, it is possible to prove (with the same

α) that the existence and convergence statements in the above theorems are valid

in H1 × L2.

Remark 1.2.4 Theorem 1.2.1 generalizes Theorem 1.2.2 in the sense that it holds

for more values of α in the nonlinearity.

The next two theorems treat the construction of the wave operator for

(SNLB) in arbitrary dimension.

Theorem 1.2.3 Let 2 < r < ∞, 1
r

+ 1
r′ = 1, s > n

r′ , θ = n
2
(1 − 2

r
) and α ≥ s,

α > 2
r′ + max(1, 1

θ
). For any ~h ∈ Ḃ

1− 2
r
, n

r

r′,1 ∩ Y s there exist T0 = T0(~h) ∈ R and

~u ∈ L∞([T0, +∞), Y s) solution of (0.3) such that

lim
t→∞

‖~u(t)−B(t)~h‖Y s = 0.

Moreover, ~u is the unique solution in L∞T0
Y s such that

sup
t≥T0

‖(1 + t)θ~u(t)‖L̃∞ < ∞.

For the next theorem define γ(n) = 1 + 8/(n − 2 +
√

n2 + 12n + 4) and

β(n) = ∞ if n = 1, 2 and β(n) = n+2
n−2

if n ≥ 3.

Theorem 1.2.4 Let s > 0, s ≤ α and θ = n
2
(1 − 2

α+1
). If γ(n) < α < β(n)

then for any ~h ∈ B̃
1− 2

α+1
,s

α+1
α

,2
∩ H̃s

α+1 there exist T0 = T0(~h) ∈ R and ~u ∈
L∞([T0, +∞), H̃s

α+1) solution of (0.3) such that

lim
t→∞

‖~u(t)−B(t)~h‖H̃s
α+1

= 0.
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Moreover, ~u is the unique solution such that

sup
t≥T0

‖(1 + t)θ~u(t)‖H̃s
α+1

< ∞.

We remark that the appropriate functional spaces where we can construct

a wave operator come from the scheme to obtain linear scattering for small data.

Moreover, if one can prove that the linear estimates, in Section 3, hold for a large

class of functions, then we can construct an associated wave operator following

the same arguments given in the proofs of the Theorems 1.2.1-1.2.4.

We recall that the linear scattering for small data obtained in Linares

and Scialom [32], Liu [33] and Cho and Ozawa [11] are based in different (but

equivalent) ways to write the integral equation associated to the Boussinesq

equation. In the paper [33], Liu worked with the system (0.2), while in [32]

and [11] the authors worked directly with the equation (0.1) in one and arbitrary

dimension, respectively.

To standardize our results we will work only with the system (0.3) which is

associated to the unitary group B(·) in Y s. The existence of such unitary group

is essential for our construction of the wave operator (see the proof of Proposition

1.4.1). Therefore, to prove the relevant linear estimates in our context (see Section

3), we need to modify the hypothesis on the initial data given by [32], [33] and [11].

For instance, to obtain the small data linear scattering in [32] and [33], the

authors assume that the initial data belongs to D
γ
4 H1+ γ

4 (R) × D1+ γ
4 H

γ
4 (R) and

(H1(R)× L2(R))∩(
H1

α+1(R)× Lα+1(R)
)
, respectively. Note that these functional

spaces are different from the ones in Theorems 1.2.1-1.2.2. In fact, for the data

h1, they are the same, but for h2 we do not have any inclusion relation between

them. Similarly, the comparison of the Theorems 1.2.3-1.2.4 with the results found

in [11] can also be considered, but to do that we will need to introduce much more

notation, therefore we decide to omit it.

1.3 Linear estimates

In this section we derive some linear estimates for the one parameter group

B(·) introduced in (0.24). First, we treat the one dimensional case. Define the

following operator

V (t)g(x) =

∫ ∞

−∞
ei(t|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉+xξ) |ξ|ĝ(ξ)

〈〈〈〈〈〈ξ〉〉〉〉〉〉 dξ
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Lemma 1.3.1 If γ ∈ [0, 1], p = 2
1−γ

and p′ = 2
1+γ

then

‖V (t)g‖Lp ≤ ct−γ/2‖g‖Lp′ .

Proof See [32] Lemma 2.6.

¥

Lemma 1.3.2 Let ~h = (h1, h2) ∈ D
γ
4 H1+ γ

4 (R)×D−1+ γ
4 H

γ
4 (R) then

lim
T→∞

‖(B(t)~h)1‖Lα
T H1

p
= 0.

Proof It is sufficient to prove that

‖(B(t)~h)1‖Lα([0,∞):H1
p) < ∞.

Using the definition of B(·) we have

(B(t)~h)1 =

∫ ∞

−∞
eixξ(

eit|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉 + e−it|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉

2
)ĥ1(ξ)dξ −

−
∫ ∞

−∞
eixξ(

eit|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉 − e−it|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉

2i
)
|ξ|ĥ2(ξ)

〈〈〈〈〈〈ξ〉〉〉〉〉〉 dξ.

Then, by the proof of Proposition 2.8 in [32] it follows that

‖(B(t)~h)1‖Lα([0,∞):H1
p) ≤ ‖D− γ

4 h1‖H1+γ/4 + ‖D1− γ
4 h2‖Hγ/4 .

¥
The next two results are the analogous of Lemmas 2.2 and 2.3 in [33] for the

linear system associated to (0.3).

Lemma 1.3.3 For t 6= 0 we have

sup
x∈R

|
∫ +∞

−∞
eit(|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉+xξ)| ≤ c

(
|t|− 1

2 + |t|− 1
3

)
.

Proof Since the proof is similar to that in [33], we will omit it.

¥

Lemma 1.3.4 Let k ∈ R and β = 1− 2

α + 1
, then

‖B(t)~h‖Y k
α+1

≤ c(|t|− 1
2 + |t|− 1

3 )β‖~h‖Y k
q
,
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where
1

q
+

1

α + 1
= 1.

Proof By definition of B(·) we have for all k ∈ R

‖B(t)~h‖Y k∞ = ‖K1(t, ·) ∗ (Jkh1)(x)−K2(t, ·) ∗ (Jk−1Dh2)(x)‖L∞ +

+‖K2(t, ·) ∗ (Jkh1)(x) + K1(t, ·) ∗ (Jk−1Dh2)(x)‖L∞ ,

where

K1(t, x) =

∫

Rn

eixξ

(
eit|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉 + e−it|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉

2

)
dξ,

K2(t, x) =

∫

Rn

eixξ

(
eit|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉 − e−it|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉

2i

)
dξ.

Thus, by Young’s inequality and Lemma 1.3.3, we obtain

‖B(t)~h‖Y k∞ ≤ c
(
|t|− 1

2 + |t|− 1
3

)
‖~h‖Y k

1
.

Interpolating this inequality with (1.1) we obtain the desired inequality.

¥

Lemma 1.3.5 Let α > 2 +
√

7 and β = 1− 2

α + 1
and

I(T ) = sup
t≥T

(1 + t)
β
3

∫∞
t

[(|t− t′|− 1
2 + |t− t′|− 1

3 )(1 + t′)−
α
3 ]βdt′],

H(T ) = sup
t≥T

[(|t|− 1
2 + |t|− 1

3 )(1 + t)
1
3 ]β,

K(T ) =
∫∞

T
(1 + t′)−

αβ
3 dt′.

Then

(i) I(T ) −→ 0 when T −→∞,

(ii) There exists M > 0 such that sup
T≥1

H(T ) ≤ M ,

(iii) K(T ) −→ 0 when T −→∞.

Proof Since this is only a calculation we omit the proof.

¥
In the remainder of this section we will consider the n-dimensional Boussi-

nesq equation. To obtain linear estimates in this case we will use Besov spaces.
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Lemma 1.3.6 For all j ∈ Z we have

sup
x∈Rn

∣∣∣∣∣
∫

Rn

ei(x·ξ+t|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉)η(
ξ

2j
)dξ

∣∣∣∣∣ ≤ c|t|−n
2 D1(2

j).

Proof See [11] Lemma 3.

¥
The next two lemmas are inspired on Lemmas 4-5 of [11]. The difference here

is that we are working with system (0.3) while Cho and Ozawa directly worked

with equation (0.1). Therefore, we have to state and prove the relevant estimates

in this context.

Lemma 1.3.7 Let 2 ≤ r ≤ ∞, s > n
r′ and θ = n(1

2
− 1

r
). Then, for ~g0 ≡ (0, g),

we have

(i) ‖(B(t)~h)1‖L∞ ≤ c(1 + |t|)−θ‖~h‖
Ḃ

1− 2
r , n

r
r′,1

,

(ii) ‖B(t)~g0‖L̃∞ ≤ c(1 + |t|)−θ‖g‖Bs
r′,2

.

Proof

(i) Using that Pj = P̃jPj, the definition of D2, Hölder’s inequality (1/r+1/r′ =
1) and Hausdorff-Young’s inequality we have for all t ∈ R (in particular, for

|t| ≤ 1)

‖Pj((B(t)~h)1)‖L∞x ≤ c

∫

Rn

(
|(P̃jh1)̂(ξ)|+ |(P̃jD2h2)̂(ξ)|

)
|η

(
ξ

2j

)
|dξ

≤ c(2j)n/r′
(
‖P̃jh1‖Lr′ + ‖P̃jD2h2‖Lr′

)
.

(1.5)

Then since
n

r
+ n

(
1− 2

r

)
=

n

r′
, we obtain

‖(B(t)~h)1‖L∞ ≤ c

(
‖h1‖

Ḃ
n
r′
r′,1

+ ‖D2h2‖
Ḃ

n
r′
r′,1

)
. (1.6)

On the other hand, by Fubini’s theorem we have for |t| > 1

‖Pj((B(t)~h)1)‖L∞x ≤ c‖P̃jh1 ∗K3(t, ·)‖L∞x + c‖P̃jD2h2 ∗K4(t, ·)‖L∞x (1.7)

where

K3(t, x) =

∫

Rn

eixξ

(
eit|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉 + e−it|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉

2

)
η

(
ξ

2j

)
dξ,
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K4(t, x) =

∫

Rn

eixξ

(
eit|ξ|〈〈〈〈〈〈ξ〉〉〉〉〉〉 − e−it〈〈〈〈〈〈ξ〉〉〉〉〉〉

2

)
η

(
ξ

2j

)
dξ.

Then using Lemma 1.3.6 and Young’s inequality we obtain

‖Pj((B(t)~h)1)‖L∞x ≤ c|t|−n
2 D1(2

j)(‖P̃jh1‖L1 + ‖P̃jD2h2‖L1). (1.8)

Interpolating (1.5) (with r′ = 2) and (1.8), we have for 1 ≤ r′ ≤ 2

‖Pj((B(t)~h)1)‖L∞x ≤c|t|−n( 1
2
− 1

r
)D1(2

j)1− 2
r (2j)

n
r

(
‖P̃jh1‖Lr′

+‖P̃jD2h2‖Lr′
)

.
(1.9)

Since D1(2
j−1) ∼ D1(2

j) ∼ D1(2
j+1) and using definition (1.2), we obtain

‖(B(t)~h)1‖L∞x ≤ c|t|−n( 1
2
− 1

r
)

(
‖h1‖

D
−(1− 2

r )

1 Ḃ
n
r

r′,1
+ ‖D2h2‖

D
−(1− 2

r )

1 Ḃ
n
r

r′,1

)
.(1.10)

Then (1.6), (1.10) and (1.3) yield

‖(B(t)~h)1‖L∞x ≤ c (1 + |t|)−n( 1
2
− 1

r
) ‖~h‖

Ḃ
1− 2

r , n
r

r′,1
.

(ii) By estimates (1.5), (1.9) and the fact that D1 ∈ L∞, we have for l = 1, 2

‖Pj(B(t)~g0)l‖L∞ ≤ c(2j)
n
r′

(
‖P̃jg‖Lr′ + ‖P̃jD2g‖Lr′

)

and

‖Pj(B(t)~g0)l‖L∞ ≤ c|t|−n( 1
2
− 1

r
)(2j)

n
r

(
‖P̃jg‖Lr′ + ‖P̃jD2g‖Lr′

)
.

Therefore, summing with respect to j after squaring, we obtain

‖B(t)~g0‖L̃∞ ≤ c

(
‖g‖

Ḃ
n
r′
r′,2

+ ‖D2g‖
Ḃ

n
r′
r′,2

)

‖B(t)~g0‖L̃∞ ≤ c|t|−n( 1
2
− 1

r
)

(
‖g‖

Ḃ
n
r

r′,2
+ ‖D2g‖

Ḃ
n
r

r′,2

)

Since D2 is a multiplier in L1 (see [4] page 149) we known that it is a

multiplier in Lp with 1 ≤ p ≤ ∞. Therefore, using that D2 commute with
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Pj and Bs
r′,2 ⊆ Ḃs

r′,2 (see [4] Theorem 6.3.2) we have for s > n
r′

‖B(t)~g0‖L̃∞ ≤ c(1 + |t|)−n( 1
2
− 1

r
)‖g‖Bs

r′,2

¥

Lemma 1.3.8 Let 2 ≤ r < ∞, s > 0 and θ = n(
1

2
− 1

r
), then

(i) ‖(B(t)~g0)i‖Ḃ0
r,2
≤ c|t|−θ‖g‖Ḃ0

r′,2
, for i = 1, 2,

(ii) ‖(B(t)~g0)i‖Bs
r,2
≤ c|t|−θ‖g‖Bs

r′,2
, for i = 1, 2,

(iii) ‖(B(t)~h)1‖Bs
r,2
≤ c|t|−θ‖~h‖

B̃
1− 2

r ,s

r′,2
.

Proof

(i) Let B(t)~g0 ≡ (B1(t)g, B2(t)g). Applying the arguments already used in the

proof of (1.7), Lemma 1.3.6 and Young’s inequality, we obtain

‖PjB1(t)g‖L∞ ≤ c|t|−n
2 D1(2

j)‖P̃jD2g‖L1 (1.11)

and

‖PjB2(t)g‖L∞ ≤ c|t|−n
2 D1(2

j)‖P̃jg‖L1 . (1.12)

Since D1 ∈ L∞, D2 commute with P̃j and is a multiplier in L1, we obtain

for i = 1, 2
‖PjBi(t)g‖L∞ ≤ c|t|−n

2 ‖P̃jg‖L1 . (1.13)

On the other hand, by Parseval we have for i = 1, 2

‖PjBi(t)g‖L2 ≤ c‖P̃jg‖L2 . (1.14)

and
‖PjB1(t)g‖L2 ≤ c‖P̃jD2g‖L2 . (1.15)

Interpolating (1.13) and (1.14), and using the fact that 2j−1 ∼ 2j ∼ 2j+1,

we have for all s ∈ R and q ∈ [1,∞]

‖Bi(t)g‖Ḃs
r,q
≤ c|t|−n( 1

2
− 1

r )‖g‖Ḃs
r′,q

. (1.16)

Taking q = 2 and s = 0 in (1.16) we obtain (i).
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(ii) By using Ḃ0
r,2 ↪→ Lr, for r ∈ [2,∞), Lr′ ↪→ Ḃ0

r′,2, for r ∈ (1, 2] (see [37] page

12) and (1.16), we have

‖Bi(t)g‖Lr ≤ c|t|−n( 1
2
− 1

r )‖g‖Lr′ . (1.17)

Therefore by Bs
r,2 = Lr∩Ḃs

r,2, (1.16) and (1.17), we conclude that for i = 1, 2

‖Bi(t)g‖Bs
r,2
≤ c|t|−n( 1

2
− 1

r )‖g‖Bs
r′,2

.

(iii) With the notation of the previous items, we have

‖(B(t)~h)1‖Bs
r,2
≤ ‖B2(t)h1‖Bs

r,2
+ ‖B1(t)h2‖Bs

r,2
. (1.18)

Interpolating (1.12) with (1.14) and (1.11) with (1.15), we obtain

‖B2(t)h1‖Ḃs
r,q

≤ c|t|−n( 1
2
− 1

r )‖h1‖
D
−(1− 2

r )
1 Ḃs

r′,q

, (1.19)

‖B1(t)h2‖Ḃs
r,q

≤ c|t|−n( 1
2
− 1

r )‖D2h2‖
D
−(1− 2

r )
1 Ḃs

r′,q

.

Now combining the argument used in the proof of (1.17) with (1.19) and

the fact that D1 ∈ L∞, we have

‖B2(t)h1‖Lr ≤ |t|−n( 1
2
− 1

r )‖h1‖Lr′ . (1.20)

Since Bs
r,2 = Lr ∩ Ḃs

r,2 and (1.20) we conclude that

‖B2(t)h1‖Bs
r,2
≤ c|t|−n( 1

2
− 1

r )

(
‖h1‖Lr′ + ‖h1‖

D
−(1− 2

r )
1 Ḃs

r′,2

)
. (1.21)

By an analogous argument

‖B1(t)h2‖Bs
r,2
≤ c|t|−n( 1

2
− 1

r )

(
‖D2h2‖Lr′ + ‖D2h2‖

D
−(1− 2

r )
1 Ḃs

r′,2

)
. (1.22)

The inequalities (1.21) and (1.22) together with (1.18) prove (iii).

¥
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Lemma 1.3.9 For all s ∈ R we have

‖(B(t)~h)1‖L∞Hs ≤ ‖~h‖Y s .

Proof By definition of the space Y s and since B(·) is a unitary group we

have

‖(B(t)~h)1‖Hs ≤ ‖B(t)~h‖Y s = ‖~h‖Y s .

¥

Lemma 1.3.10 Let 2 < r < ∞, θ = n
2
(1− 2

r
), r′ ≥ 1 such that

1

r
+

1

r′
= 1 and

J(T ) = sup
t≥T

(1 + t)θ

∫ ∞

t

(1 + |t− t′|)−θ(1 + t′)−θ(α− 2
r′ )dt′, (1.23)

L(T ) = sup
t≥T

∫ ∞

t

(1 + t′)−θ(α−1)dt′. (1.24)

If α > 2
r′ + max(1, 1

θ
) then

(i) J(T ) −→ 0 when T →∞.

(ii) L(T ) −→ 0 when T →∞.

Proof Since this is an elementary calculus fact, we omit the proof.

¥

Lemma 1.3.11 Let θ = n
2
(1− 2

α+1
) and

M(T ) = sup
t≥T

(1 + t)θ

∫ ∞

t

|t− t′|−θ(1 + t′)−θαdt′. (1.25)

If s ≤ α and γ(n) < α < β(n) (See Theorem 1.2.4) then M(T ) −→ 0 when

T →∞.

Proof Again since this is an elementary calculus fact, we omit the proof.

¥
Before finishing this section, we will enunciate a result proved in [24] by

Kato (see also [12] and [20]), concerning estimates for fractional derivatives.

Lemma 1.3.12 Let 0 ≤ s ≤ α, then

(i) ‖Dsf(u)‖Lr ≤ c‖u‖α−1
L(α−1)r1

‖Dsu‖Lr2 ,

where
1

r
=

1

r1

+
1

r2

, r1 ∈ (1,∞], r2 ∈ (1,∞) .
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(ii) ‖Ds(uv)‖Lr ≤ c (‖Dsu‖Lr1‖v‖Lq2 + ‖u‖Lq1‖Dsv‖Lr2 ),

where
1

r
=

1

r1

+
1

q2

=
1

q1

+
1

r2

, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

1.4 Proofs of Theorems 1.2.1-1.2.4

Following the ideas introduced by Côte [15], our task is to find a fixed point

of the operator

Φ : ~w(t) −→ −
∫ ∞

t

B(t− t′)~f(~w(t′) + B(t′)~h)dt′.

In the next proposition we verify that in fact this fixed point generates a

solution of (0.3).

Proposition 1.4.1 Let ~w be a fixed point of the operator Φ and define

~u(t) ≡ B(t)~h + ~w(t). (1.26)

Then ~u is a solution of (0.3) in the time interval [T0,∞).

Proof We need to verify that

~u(t) = B(t− T0)~u(T0) +

∫ t

T0

B(t− t′)~f(~u(t′))dt′.

But ~w(t) = − ∫∞
t

B(t− t′)~f(~w(t′) + B(t′)~h)dt′, then using (1.26)

B(T0 − t)~w =−
∫ ∞

t

B(T0 − t′)~f(~w(t′) + B(t′)~h)dt′

=~w(T0) +

∫ t

T0

B(T0 − t′)~f(~w(t′) + B(t′)~h)dt′

=~w(T0) +

∫ t

T0

B(T0 − t′)~f(~u(t′))dt′.

(1.27)

Now, applying B(t− T0) in the both sides of (1.27) we obtain

~w(t) = B(t− T0)~w(T0) +

∫ t

T0

B(t− t′)~f(~u(t′))dt′
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then adding the term B(t)~h we have

B(t)~h + ~w(t) = B(t)~h + B(t− T0)~w(T0) +

∫ t

T0

B(t− t′)~f(~u(t′))dt′

= B(t− T0)[B(T0)~h + ~w(T0)] +

∫ t

T0

B(t− t′)~f(~u(t′))dt′.

Using again (1.26) we finish the proof.

¥
Proof of Theorem 1.2.1 To prove that Φ has a fixed point let us first

introduce the following closed subset of a complete metric space

BT (0, a) =

{
~w ∈ L∞([T, +∞); Y 1) ∩ Lα([T, +∞); Y 1,1

p ) :

ΛT (~w) ≡ ‖~w‖L∞T Y 1 + ‖~w‖Lα
T Y 1,1

p
≤ a

}

Lemma 1.4.1 There exist positive numbers T, a so that Φ maps BT (0, a) into

BT (0, a) and becomes a contraction map in the ΛT (·)-metric.

Proof To simplify the notation we set ~v(t) ≡ ~w(t) + B(t)~h. Using

that B(·) is an unitary group, the definition of ~f , Parseval, Hölder’s inequality

(1/2 = γ/2 + (γ − 1)/2) and the fact that H1
p ⊆ L2(α−1)/γ

‖Φ(~w)(t)‖Y 1 ≤ c

∫ ∞

t

‖(f(v1))x(t
′)‖L2dt′ ≤ c

∫ ∞

t

‖|v1|α−1v1,x(t
′)‖L2dt′

≤ c

∫ ∞

t

‖v1(t
′)‖α−1

L2(α−1)/γ‖v1,x(t
′)‖Lpdt′ ≤ c

∫ ∞

t

‖v1(t
′)‖α

H1
p
dt′.

On the other hand, by Lemma 1.3.1, Hölder’s inequality (1/p′ ≡ (1+γ)/2 =

γ/2 + 1/2) and the fact that H1
p ⊆ L2(α−1)/γ we have

‖Φ(~w)(t)‖Y 1,1
p
≤ c

∫ ∞

t

|t− t′|−γ/2(‖f(v1)‖Lp′ + ‖∂xf(v1)‖Lp′ )dt′

≤ c sup
t′≥t

‖v1‖H1

∫ ∞

t

|t− t′|−γ/2‖v1‖α−1
H1

p
dt′.

(1.28)

Applying the Hardy-Littlewood-Sobolev Theorem (see [38]) we obtain for

all t ≥ T

‖Φ(~w)(t)‖Lα
T Y 1,1

p
≤ c sup

t′≥T
‖v1‖H1‖v1‖α−1

Lα
T H1

p
.

Since ~v1(t) = (~w(t) + B(t)~h)1 by Lemma 1.3.9 and the fact that aα−1b ≤



43 1.4. Proofs of Theorems 1.2.1-1.2.4

aα + bα for a, b, α ≥ 0 we obtain

ΛT (Φ(~w)) ≤ c‖v1‖α−1
Lα

T H1
p
(‖v1‖Lα

T H1
p

+ ‖v1‖L∞T H1)

≤ c[‖(B(t)~h)1‖α−1
Lα

T H1
p
(‖~h‖Y 1 + ‖(B(t)~h)1‖Lα

T H1
p
)

+ Λα−1
T (~w)‖~h‖Y 1 + Λα

T (~w)].

(1.29)

But by Lemma 1.3.2 the term ‖(B(t)~h)1‖α−1
Lα

T H1
p
(‖~h‖Y 1 +‖(B(t)~h)1‖Lα

T H1
p
) can

be chosen small enough (for T large), so it is possible to choose a small enough

such that Φ maps BT (0, a) into BT (0, a).

Now we have to prove that Φ is a contraction (for suitable choice of a and

T ). Set ~v(t) ≡ ~w(t) + B(t)~h and ~r(t) ≡ ~z(t) + B(t)~h, then for all t ≥ T

Φ(~w)(t)− Φ(~z)(t) = −
∫ ∞

t

B(t− t′)(~f(~v(t′))− ~f(~r(t′)))dt′.

Using that B(·) is an unitary group, the definition of ~f , Plancherel and

adding the terms ±|r1|α−1v1,x we have

‖Φ(~w)(t)− Φ(~z)(t)‖Y1 ≤
∫ ∞

t

‖~f(~v(t′))− ~f(~r(t′))‖Y1dt′

≤ c

∫ ∞

t

‖∂x(f(v1)− f(r1))(t
′)‖L2dt′

≤ c(

∫ ∞

t

‖((|v1|α−2 + |r1|α−2)(v1 − r1)v1,x)(t
′)‖L2dt′ +

+

∫ ∞

t

‖(r1|r1|α−2(v1,x − r1,x))(t
′)‖L2dt′)

≡ c(I1
1 + I2

1 ).

Moreover, using Hölder (1/2 = γ/2+ (1− γ)/2), H1
p ⊆ L2(α−1)/γ and Hölder

(1 = (α− 1)/α + 1/α) we have for all t ≥ T

I2
1 ≤ c

∫ ∞

t

‖r1(t
′)‖α−1

L2(α−1)/γ‖(v1,x − r1,x)(t
′)‖Lpdt′

≤ c

∫ ∞

t

‖r1(t
′)‖α−1

H1
p
‖(v1 − r1)(t

′)‖H1
p
dt′

≤ c(‖r1‖α−1
Lα

T H1
p
‖v1 − r1‖Lα

T H1
p
).

For the other term, using Hölder (1/2 = 1/p + 1/q + (α − 2)/q where q =
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2p(α−1)
p−2

), H1
p ⊆ Lq and Hölder (1 = (α−1)/α+1/α and 1 = (α−2)/α+1/α+1/α)

we obtain for all t ≥ T

I1
1 ≤ c

∫ ∞

t

(‖v1(t
′)‖α−2

Lq + ‖r1(t
′)‖α−2

Lq )‖(v1 − r1)(t
′)‖Lq‖v1,x(t

′)‖Lpdt′

≤ c

∫ ∞

t

(‖v1(t
′)‖α−1

H1
p

+ ‖r1(t
′)‖α−2

H1
p
‖v1(t

′)‖H1
p
)‖(v1 − r1)(t

′)‖H1
p
dt′

≤ c(‖v1‖α−1
Lα

T H1
p

+ ‖r1‖α−2
Lα

T H1
p
‖v1‖Lα

T H1
p
)‖v1 − r1‖Lα

T H1
p
.

Then for all t ≥ T

‖Φ(~w)− Φ(~z)‖L∞T Y1 ≤ c(‖v1‖α−1
Lα

T H1
p

+ ‖r1‖α−1
Lα

T H1
p
)‖v1 − r1‖Lα

T H1
p

+ ‖r1‖α−2
Lα

T H1
p
‖v1‖Lα

T H1
p
‖v1 − r1‖Lα

T H1
p
.

(1.30)

On the other hand, by the same argument used in (1.28) we obtain

‖Φ(~w)− Φ(~z)‖Y p
1,1

≤ c

∫ ∞

t

|t− t′|−γ/2(‖f(v1)− f(r1)‖Lp′dt′ +

+c

∫ ∞

t

|t− t′|−γ/2(‖∂x(f(v1)− f(r1))‖Lp′dt′

≡ c(I1
2 + I2

2 ).

Using the Mean Value Theorem, Hölder’s inequality (1/p′ ≡ (1 + γ)/2 =

1/2 + γ/2) and H1
p ⊆ L2(α−1)/γ we can easily obtain

I1
2 ≤ c‖v1 − r1‖L∞T H1

∫ ∞

t

|t− t′|−γ/2(‖v1‖α−1
H1

p
+ ‖r1‖α−1

H1
p

)dt′.

Applying the Hardy-Littlewood-Sobolev theorem we have

‖I1
2‖Lα

T
≤ c‖v1 − r1‖L∞T H1(‖v1‖α−1

Lα
T H1

p
+ ‖r1‖α−1

Lα
T H1

p
).

To estimate I2
2 we first add ±|r1|α−1v1,x to obtain

I2
2 ≤ c

∫ ∞

t

|t− t′|−γ/2‖((|v1|α−2 + |r1|α−2)(v1 − r1)v1,x)(t
′)‖L2/(1+γ)dt′ +

+c

∫ ∞

t

|t− t′|−γ/2‖(|r1|α−1(v1,x − r1,x))(t
′)‖L2/(1+γ)dt′).

Using Hölder’s inequality (1/p′ = γ(α − 2)/2(α − 1) + γ/2(α − 1) + 1/2),

H1
p ⊆ L2(α−1)/γ for the first term and Hölder’s inequality (1/p′ = γ/2 + 1/2),



45 1.4. Proofs of Theorems 1.2.1-1.2.4

H1
p ⊆ L2(α−1)/γ for the second term we obtain

I2
2 ≤ c

∫ ∞

t

|t− t′|−γ/2(‖r1‖α−2
H1

p
+ ‖v1‖α−2

H1
p

)‖v1 − r1‖H1
p
‖v1,x‖L2dt′ +

+c

∫ ∞

t

|t− t′|−γ/2‖r1‖α−1
H1

p
‖v1 − r1‖H1dt′.

The Hardy-Littlewood-Sobolev theorem and Hölder’s inequality in the time

variable ((α− 1)/α = 1/α + (α− 2)/α) yield

‖I2
2‖Lα

T
≤ c(‖v1‖α−2

Lα
T H1

p
+ ‖r1‖α−2

Lα
T H1

p
)‖v1‖L∞T H1‖v1 − r1‖Lα

T H1
p

+c‖r1‖α−1
Lα

T H1
p
‖v1 − r1‖L∞T H1 .

Thus,

‖Φ(~w)− Φ(~z)‖Lα
T Y p

1,1
≤ c(‖v1‖α−2

Lα
T H1

p
+ ‖r1‖α−2

Lα
T H1

p
)‖v1‖L∞T H1‖v1 − r1‖Lα

T H1
p

+ c(‖v1‖α−1
Lα

T H1
p

+ ‖r1‖α−1
Lα

T H1
p
)‖v1 − r1‖L∞T H1 .

(1.31)

In view of (1.30) and (1.31) we conclude that

ΛT (Φ(~w)− Φ(~z)) ≤

≤ c(‖v1‖α−1
Lα

T H1
p

+ ‖r1‖α−1
Lα

T H1
p

+ ‖r1‖α−2
Lα

T H1
p
‖v1‖Lα

T H1
p
)ΛT (~w − ~z) +

+c(‖v1‖α−2
Lα

T H1
p

+ ‖r1‖α−2
Lα

T H1
p
)‖v1‖L∞T H1ΛT (~w − ~z) +

+c(‖v1‖α−1
Lα

T H1
p

+ ‖r1‖α−1
Lα

T H1
p
)ΛT (~w − ~z)

≡ A1 + A2 + A3.

Using the fact that aα−1b ≤ aα + bα for a, b, α ≥ 0 we can reduce A1 into A3

so we need to treat only the last two terms. By the definition of ~v, ~r and Lemma

1.3.9

A2 ≤ c(‖(B(t)~h)1‖α−2
Lα

T H1
p

+ aα−2)(a + ‖~h‖Y 1)ΛT (~w − ~z),

A3 ≤ c(‖(B(t)~h)1‖α−1
Lα

T H1
p

+ aα−1)ΛT (~w − ~z).

Since by Lemma 1.3.2 we can choose T such that the term ‖(B(t)~h)1‖Lα
T Lp

1

is small enough. It is straightforward to choose a such that Φ is a contraction.

Then Φ has a unique fixed point, which we denote by ~w.
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¥
To finish the proof of Theorem 1.2.1 we need to prove (1.4). In view of

Proposition 1.4.1, ~u defined in (1.26) is a solution of (0.3) in the time interval

[T0,∞). Now by (1.29) we have for all T ≥ T0

ΛT (~w) = ΛT (Φ(~w)) ≤ c[‖(B(t)~h)1‖α−1
Lα

T H1
p
(‖~h‖Y 1 + ‖(B(t)~h)1‖Lα

T H1
p
) +

+ Λα−1
T (~w)‖~h‖Y 1 + Λα

T (~w)].

Since α > 2 and ΛT (·) ≤ ΛT0(·), we can choose a sufficient small such that

for ~w ∈ BT0(0, a) we have

c(ΛT (~w)α−1‖~h‖Y 1 + ΛT (~w)α) ≤ 1

2
ΛT (~w).

Therefore, by Lemma 1.3.2, when T →∞ we obtain

‖~w(T )‖Y 1 ≤ ‖~w‖L∞T Y 1

≤ c‖(B(t)~h)1‖α−1
Lα

T H1
p
(‖~h‖Y 1 + ‖(B(t)~h)1‖Lα

T H1
p
) −→ 0.

(1.32)

¥

Remark 1.4.1 In fact, we prove that

‖~w‖L∞T Y 1 + ‖~w‖Lα
T Y 1,1

p
−→ 0, when T →∞.

Proof of Theorem 1.2.2 Set β = 1 − 2

α + 1
and define the following

closed subset of a complete metric space

XT (0, a) =





~w ∈ L∞([T, +∞); Y 1
α+1 ∩ Y 1) :

ΓT (~w) ≡ sup
t≥T
{(1 + t)β/3‖~w‖Y 1

α+1
+ ‖~w‖Y 1} ≤ a



 .

We first will prove an analog of Lemma 1.4.1.

Lemma 1.4.2 There exist positive numbers T, a so that Φ maps XT (0, a) into

XT (0, a) and becomes a contraction map in the ΓT (·)-metric.

Proof Set ~v(t) ≡ ~w(t)+B(t)~h, then by Lemma 1.3.4 and applying Hölder’s
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inequality (1/q ≡ α/(α + 1) = (α− 1)/(α + 1) + 1/(α + 1)), we obtain

‖Φ(~w)(t)‖Y 1
α+1

≤ c

∫ ∞

t

(|t− t′|−1/2 + |t− t′|−1/3)β‖v1‖α−1
Lα+1‖∂xv1‖Lα+1dt′

≤ c

∫ ∞

t

(|t− t′|−1/2 + |t− t′|−1/3)β‖~v(t′)‖α
Y 1

α+1
dt′.

Therefore, for all t ≥ T

sup
t≥T

(1 + t)β/3‖Φ(~w)(t)‖Y 1
α+1

≤ cI(T ) sup
t≥T

(1 + t)αβ/3‖~v(t)‖α
Y 1

α+1

where

I(T ) = sup
t≥T

(1 + t)β/3

∫ ∞

t

[(|t− t′|−1/2 + |t− t′|−1/3)(1 + t′)−α/3]βdt′].

Then by the definition of ~v and Lemma 1.3.4 we obtain

sup
t≥T

(1 + t)β/3‖Φ(~w)(t)‖Y 1
α+1

≤ cI(T )(Γα
T (~w) + (H(T )‖~h‖Y 1

q
)α) (1.33)

where 1/q + 1/(1 + α) = 1 and

H(T ) = sup
t≥T

[(|t|−1/2 + |t|−1/3)(1 + t)1/3]β. (1.34)

On the other hand, using that B(·) is a unitary group, Parseval and Hölder’s

inequality (1/2 = (α− 1)/2(α + 1) + 1/(α + 1)) we have

‖Φ(~w)(t)‖Y 1 ≤ c

∫ ∞

t

‖v1(t
′)‖α−1

L2(α+1)‖∂xv1(t
′)‖Lα+1dt′.

Set θ ≡ 1/2(α + 1), by the Gagliardo-Nirenberg inequality we have

‖u‖L2(α+1) ≤ ‖ux‖θ
Lα+1‖u‖1−θ

Lα+1 . (1.35)

Therefore we obtain

‖Φ(~w)(t)‖Y 1 ≤ c
(
K(T )(Γα

T (~w) + (H(T )‖~h‖Y 1
q
)α)

)
(1.36)

where
K(T ) =

∫ ∞

T

(1 + t′)−αβ/3dt′. (1.37)
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By (1.33) and (1.36) we obtain

ΓT (Φ(~w)) ≤ c
(
I(T )(Γα

T (~w) + (H(T )‖~h‖Y 1
q
)α)

+K(T )(Γα
T (~w) + (H(T )‖~h‖Y 1

q
)α)

)
.

Hence Lemma 1.3.5 implies that we can choose a and T such that Φ maps

XT (0, a) into XT (0, a).

We need to prove that Φ is a contraction. Set ~v, ~r like in the proof of Theorem

1.2.1.

‖Φ(~w)(t)− Φ(~z)(t)‖Y 1
α+1

≤

c
∫∞

t
(|t− t′|− 1

2 + |t− t′|− 1
3 )β‖(|v1|α−1 − |r1|α−1)∂xv1‖Lqdt′

+c
∫∞

t
(|t− t′|− 1

2 + |t− t′|− 1
3 )β‖|r1|α−1(∂xv1 − ∂xr1)‖Lqdt′.

By the Mean Value Theorem and the Hölder inequality (1/q ≡ α/(α + 1) =

(α− 2)/(α + 1) + 1/(α + 1) + 1/(α + 1)) for the first term and Hölder’s inequality

(1/q ≡ α/(α + 1) = (α − 1)/(α + 1) + 1/(α + 1)) for the second, together with

Lemma 1.3.4 we obtain

sup
t≥T

(1 + t)β/3‖Φ(~w)(t)− Φ(~z)(t)‖Y 1
α+1

≤

≤ cI(T )(Γα−1
T (~w) + Γα−1

T (~w) + 2(H(T )‖~h‖Y 1
q
)α−1)ΓT (~w − ~z).

On the other hand, by Remark 0.0.1

‖Φ(~w)(t)− Φ(~z)(t)‖Y 1 ≤ c

∫ ∞

t

‖(|v1|α−1 − |r1|α−1)∂xv1‖L2dt′

+c

∫ ∞

t

‖|r1|α−1(∂xv1 + ∂xr1)‖L2dt′

≡ (I) + (II).

For (I) we use the Mean Value Theorem and Hölder’s inequality (1/2 =
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(α− 1)/2(α + 1) + 1/(α + 1)) to obtain

(I) ≤ c

∫ ∞

t

‖v1‖α−2

L
2(α+1)(α−2)

α−1

‖v1 − r1‖L∞‖∂xv1‖Lα+1dt′

+c

∫ ∞

t

‖r1‖α−2

L
2(α+1)(α−2)

α−1

‖v1 − r1‖L∞‖∂xv1‖Lα+1dt′.

Let q > α + 1 and set θ ≡ 1/(α + 1) − 1/q, by the Gagliardo-Nirenberg

inequality we have
‖u‖Lq ≤ ‖ux‖θ

Lα+1‖u‖1−θ
Lα+1 . (1.38)

Remark 1.4.2 The inequality (1.38) is still true for q = ∞.

Since α > 3 we have 2(α+1)(α−2)
α−1

> α + 1 so applying (1.38) it follows that

(I) ≤ c

∫ ∞

t

(‖~v‖α−1
Y 1

α+1
+ ‖~r‖α−1

Y 1
α+1

)‖~v − ~r‖Y 1
α+1

dt′.

For (II) we use Hölder’s inequality (1/2 = (α − 1)/2(α + 1) + 1/(α + 1))

and (1.35) to obtain

(II) ≤ c

∫ ∞

t

‖~r‖α−1
Y 1

α+1
‖~v − ~r‖Y 1

α+1
dt′.

Using the last two estimates together with the definitions (1.34) and (1.37)

it follows that

sup
t≥T

‖Φ(~w)(t)− Φ(~z)(t)‖Y 1 ≤ cK(T )
(
Γα−1

T (~w) + Γα−1
T (~z)+

+2(H(T )‖~h‖Y 1
q
)α−1

)
ΓT (~w − ~z).

Thus by Lemma 1.3.5, we can choose a and T such that Φ is a contraction.

Moreover, using a similar argument as the one used in (1.32) we can prove that

‖~w(T )‖Y 1 → 0, when T →∞.

¥

Remark 1.4.3 Notice that, we have prove

sup
t≥T

(1 + t)β/3‖~w‖Y 1
α+1

+ ‖~w‖L∞T Y 1 → 0, when T →∞.
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Proof of Theorem 1.2.3 To prove that Φ has a fixed point we introduce

the following metric space

Σs,θ
a,T =





~w ∈ L∞([T, +∞); L̃∞ ∩ Y s) :

ΓT (~w) ≡ sup
t≥T

(1 + t)θ‖~w(t)‖L̃∞ + sup
t≥T
‖~w(t)‖Y s ≤ a



 ,

d(~u,~v) = sup
t≥T

‖~u− ~v‖Y 0 .

Lemma 1.4.3 (Σs,θ
a,T , d) is a complete metric space.

Proof This result follows using the same arguments as in [11] page 14.

¥
Thus we need to prove the following result.

Lemma 1.4.4 There exist T and a so that Φ maps Σs,θ
a,T into Σs,θ

a,T and becomes

a contraction map in the metric d.

Proof Set ~v(t) ≡ ~w(t) + B(t)~h, then using Lemma 1.3.7 (ii), Hs
r′ ↪→ Bs

r′,2

for r′ ∈ (1, 2] (see [4] Theorem 6.4.4), Hs
r′ = Lr′ ∩ Ḣs

r′ for s > 0 (see [4] Theorem

6.3.2), Hölder’s inequality (1/r′ = (r − 2)/2r + 1/2) and Lemma 1.3.12 (i) with

r1 = 2r/(r − 2), r2 = 2, we obtain

‖Φ(~w(t))‖L̃∞ ≤ c

∫ ∞

t

(1 + |t− t′|)−θ (‖f(v1(t
′))‖Lr′ + ‖Dsf(v1(t

′))‖Lr′ ) dt′

≤ c

∫ ∞

t

(1 + |t− t′|)−θ
(‖|v1|α−1‖L2r/(r−2)‖v1‖L2+

+ ‖|v1|α−1‖L2r/(r−2)‖v1‖Hs

)
dt′

≤ c

∫ ∞

t

(1 + |t− t′|)−θ‖v1‖α− 2
r′

L∞ ‖v1‖
2
r′−1

L2 dt′.

Therefore, by Lemma 1.3.7 (i), Lemma 1.3.9 and the fact that aαbβ ≤
aα+β + bα+β for a, b, α, β ≥ 0, we obtain

sup
t≥T

(1 + t)θ‖Φ(~w(t))‖L∞ ≤ c

(
Γα

T (~w) + ‖~h‖α

Ḃ
1− 2

r , n
r

r′,1
+ ‖~h‖α

Y s

)
J(T )

where J(T ) was defined in (1.23).

On the other hand, using that B(·) is an unitary group, the definition of Y s
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and Lemma 1.3.12 with r1 = ∞, r2 = 2, we have

‖Φ(~w(t))‖Y s ≤ c

∫ ∞

t

(‖v1(t
′)‖α−1

L∞ ‖v1(t
′)‖L2 + ‖v1(t

′)‖α−1
L∞ ‖Dsv1(t

′)‖L2

)
dt′

≤ c

∫ ∞

t

(‖v1(t
′)‖α−1

L∞ ‖v1(t
′)‖Hs

)
dt′.

Therefore by the definitions of v1, Σs,θ
a,T and (1.24), we have

sup
t≥T

‖Φ(~w(t))‖Y s ≤ c

(
Γα

T (~w) + ‖~h‖α

Ḃ
1− 2

r , n
r

r′,1

+ ‖~h‖α
Y s

)
L(T ).

So, since α > 2, by Lemma 1.3.10 it is clear that we can choose a and T

such that Φ maps Σs,θ
a,T into Σs,θ

a,T .

Now we prove that Φ is a contraction in the metric d. Indeed, for ~v ≡
~w + B(·)~h and ~r ≡ ~z + B(·)~h, we have by the Mean Value Theorem, (1.24) and

Lemma 1.3.7 (i)

d(Φ(~w), Φ(~z)) ≤ c

∫ ∞

T

(‖v1‖α−1
L∞ + ‖r1‖α−1

L∞
) ‖(v1 − r1)(t

′)‖L2dt′

≤ cd(~w − ~z)L(T )

(
Γα−1

T (~w) + Γα−1
T (~z) + ‖~h‖α−1

Ḃ
1− 2

r , n
r

r′,1

)
.

By Lemma 1.3.10, T and a can be chosen such that Φ is a contraction in the

d metric. So Φ has a unique fixed point, which we denote by ~w. Moreover, using

a similar argument as the one in (1.32) we can prove that ‖~w(T )‖Y s → 0, when

T →∞.

¥

Remark 1.4.4 We actually proved that

sup
t≥T

(1 + t)θ‖~w‖L̃∞ + ‖~w‖L∞T Y s → 0, when T →∞.

Proof of Theorem 1.2.4 In this case we define the following metric space

Ξs,α+1
a,T =





~w ∈ L∞([T, +∞); H̃s
α+1) :

∆T (~w) ≡ sup
t≥T

(1 + t)θ‖~w‖H̃s
α+1

≤ a



 ,

d(~u,~v) = sup
t≥T

(1 + t)θ‖~u− ~v‖L̃α+1 .
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Lemma 1.4.5 (Ξs,α+1
a,T , d) is a complete metric space.

Proof See [11] page 14.

¥
Now we will prove an analog of Lemma 1.4.4, that is

Lemma 1.4.6 There exist T, a > 0 such that Φ maps Ξs,α+1
a,T into Ξs,α+1

a,T and

becomes a contraction map in the ∆T (·)-metric.

Proof Set ~v(t) ≡ ~w(t) + B(t)~h, then using Bs
α+1,2 ↪→ Hs

α+1 (see Theorem

6.4.4 of [4]), Lemma 1.3.8 (i),Hs
α+1

α

↪→ Bs
α+1

α
,2

(see Theorem 6.4.4 of [4]), Hs
α+1

α

=

L
α+1

α ∩ Ḣs
α+1

α

(see Theorem 6.2.3 of [4]) and Lemma 1.3.12 (i) with r = α+1
α

, r1 =
α+1
α−1

, r2 = α + 1, it follows that

‖Φ(~w)‖|H̃s
α+1

≤ c

∫ ∞

t

|t− t′|−θ‖f(v1)(t
′)‖Bs

α+1
α ,2

dt′

≤ c

∫ ∞

t

|t− t′|−θ (‖v1(t
′)‖α

Lα+1+

+‖v1(t
′)‖α−1

Lα+1‖Dsv1(t
′)‖Lα+1

)
dt′

≤ c

∫ ∞

t

|t− t′|−θ‖v1(t
′)‖α

Hs
α+1

dt′.

Finally, the definition of ∆T , Bs
α+1,2 ↪→ Hs

α+1 (see Theorem 6.4.4 of [4]),

Lemma 1.3.8 (iii), the fact that t−θα ≤ c(1 + t)−θα for all t ≥ 1 and definition

(1.25) we have

∆T (Φ(~w)) = sup
t≥T

(1 + t)θ‖Φ(~w)‖H̃s
α+1

≤ cM(T )


∆α

T (~w) + ‖~h‖α

B̃
1− 2

α+1 ,s

α+1
α ,2


 .

Thus, since α > 1, by Lemma 1.3.11 it is clear that we can choose a and T

such that Φ(Ξs,α+1
a,T ) ⊆ Ξs,α+1

a,T .

Set ~v and ~r as in the proof of Theorem 1.2.3. Using Ḃ0
α+1,2 ↪→ Lα+1 (See [37])

and Lemma 1.3.8 (i), we have

‖Φ(~w(t))− Φ(~z(t))‖L̃α+1 ≤ c

∫ ∞

t

‖B(t− t′)(~f(~v1)− ~f(~r1))(t
′)‖L̃α+1dt′

≤ c

∫ ∞

t

|t− t′|−θ‖f(v1)− f(r1)(t
′)‖Ḃ0

α+1
α ,2

dt′
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We know that L
α+1

α ↪→ Ḃ0
α+1

α
,2

(See [37]). Therefore, applying the Mean

Value Theorem and Hölder’s inequality ( α
α+1

= α−1
α+1

+ 1
α+1

), we obtain

‖Φ(~w(t))− Φ(~z(t))‖L̃α+1 ≤ c

∫ ∞

t

|t− t′|−θ‖f(v1)− f(r1)(t
′)‖

L
α+1

α
dt′

≤ c

∫ ∞

t

|t− t′|−θ‖ (|v1|α−1 + |r1|α−1
) |v1 − r1|‖

L
α+1

α
dt′

≤ c

∫ ∞

t

|t− t′|−θ‖v1‖α−1
Lα+1‖v1 − r1‖Lα+1dt′ +

+c

∫ ∞

t

|t− t′|−θ‖r1‖α−1
Lα+1‖v1 − r1‖Lα+1dt′

≤ c sup
t≥T

(
(1 + t)θ‖v1‖Lα+1 + (1 + t)θ‖r1‖Lα+1

)α−1

d(~w, ~z)

∫ ∞

t

|t− t′|−θ(1 + t′)−αθ.

Finally, since Hs
α+1 ⊆ Lα+1, Bs

α+1,2 ⊆ Hs
α+1 (see Theorems 6.3.2 and 6.4.4

of [4]), Lemma 1.3.8 (iii) yields

d(Φ(~w)− Φ(~z)) = sup
t≥T

(1 + t)θ‖Φ(~w(t))− Φ(~z(t))‖L̃α+1

≤ c d(~w, ~z)M(T )
(
‖(1 + t)θw1‖α−1

L∞T Hs
α+1

+

‖(1 + t)θz1‖α−1
L∞T Hs

α+1
+ 2‖(1 + t)θ(B(t)~h)1‖α−1

L∞T Hs
α+1

)

≤ c d(~w, ~z)M(T )
(
∆α−1

T (~w) + ∆α−1
T (~z)+

+2‖(1 + t)θ(B(t)~h)1‖α−1
L∞T Bs

α+1,2

)

≤ c d(~w, ~z)M(T )
(
∆α−1

T (~w) + ∆α−1
T (~z)+

+2 sup
t≥T

(
t−θ(1 + t)θ

) ‖~h‖
B̃

1− 2
α+1 ,s

α+1
α ,2

)
.

Since t−θ(1 + t)θ ≤ c for all t ≥ 1 and M(T ) → 0 when T →∞ (see Lemma

1.3.11) it is clear that a and T can be chosen such that Φ is a contraction in

d-metric.

Moreover, by similar estimates as the one used in (1.32) we can show that

sup
t≥T

(1 + t)θ‖~w‖H̃s
α+1

→ 0, when T →∞.

¥





Chapter 2
Local solutions and unconditional well-
posedness

2.1 Introduction

In this chapter we consider the generalized Boussinesq equation (0.1), where

the nonlinearity f satisfies the following assumptions

(f1) f ∈ C [s](C,C), where s ≥ 0 and [s] denotes the smallest positive integer

≥ s;

(f2) |f (l)(v)| . |v|k−l for all integers l varying in the whole range 0 ≤ l ≤ [s] ≤ k

with k > 1;

(f3) If s ≤ n

2
then 1 < k ≤ 1 +

4

n− 2s
.

Here we will consider first the local well-posedness problem. By Duhamel’s

principle, one can study the problem by rewriting the differential equation (0.1)

in the integral form (0.22). Then we analyze the equation by a fixed point

technique. That is, we find T > 0 and define a suitable complete subspace of

C([0, T ]; Hs(Rn)), for instance Ξs, such that the integral equation is stable and

contractive in this space. By Banach’s fixed point theorem, there exists a unique

solution in Ξs.

However, to define the subset Ξs we will need some auxiliary conditions,

which is based on the available Strichartz estimates for the linear Schrödinger

equation

i∂tu + ∆u = 0

(see, for example, [31] chapter 4).

Definition 2.1.1 We call (q, r) an admissible pair if they satisfy the condition:

2

q
= n

(
1

2
− 1

r

)
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where





2 ≤ r ≤ ∞ , if n = 1,

2 ≤ r < ∞ , if n = 2,

2 ≤ r ≤ 2n

n− 2
, if n ≥ 3.

Remark 2.1.1 We included in the above definition the recent improvement, due

to M. Keel and T. Tao [25], to the limiting case for Strichartz’s inequalities.

Now, we can define the following (auxiliary) space

Ys = (1−∆)−
s
2

(⋂
{LqLr : is an admissible pair}

)

=
⋂
{LqHs

r : (q, r) is an admissible pair} .

With these notations and definitions, we have the following answer to the

local existence problem

Theorem 2.1.1 Assume (f1) − (f3) and s ≥ 0. Then for any φ ∈ Hs(Rn) and

ψ = ∆η with η ∈ Hs(Rn), there are T > 0 and a unique solution u to (0.1) with

the following properties

(i) u ∈ C([0, T ]; Hs(Rn));

(ii) u ∈ Ys.

The next two results are related with the life span and blow-up of the

solutions given by Theorem 2.1.1.

Theorem 2.1.2 Let [0, T ∗) be the maximal interval of existence for u in Theorem

2.1.1. Then T ∗ depends on φ, η in the following way

(i) Let s >
n

2
and σ > 0 such that

n

2
< σ ≤ s. Then T ∗ can be estimate in

terms of ‖φ‖Hσ and ‖η‖Hσ only. Moreover,

T ∗ →∞ when max {‖φ‖Hσ , ‖η‖Hσ} → 0. (2.1)

(ii) Let s ≤ n

2
and σ ≥ 0 such that

σ ∈
[
0,

n

2

) ⋂ [
n

2
− 2

k − 1
, s

]
; (2.2)
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(iia) If σ >
n

2
− 2

k − 1
, Then T ∗ can be estimate in terms of ‖Dσφ‖L2 and

‖Dση‖L2 only. Moreover,

T ∗ →∞ when max {‖Dσφ‖L2 , ‖Dση‖L2} → 0.

(iib) If σ =
n

2
− 2

k − 1
, the time T ∗ can be estimated in terms of Dσφ,Dση ∈

L2, but not necessarily of their norms.

Theorem 2.1.3 In Theorem 2.1.2, suppose that T ∗ < ∞. Then

(a) In case (i), max{‖u(t)‖Hσ , ‖∆−1ut(t)‖Hσ} blows up at t = T ∗ for all σ such

that
n

2
< σ ≤ s;

(b) In case (iia), max{‖Dσu(t)‖L2 , ‖Dσ∆−1ut(t)‖L2} blows up at t = T ∗ for all

σ 6= n

2
− 2

k − 1
and satisfying (2.2).

Note that part (ii) of Theorem 2.1.1 is essential; without such a condition,

uniqueness might not hold. In this case, following [24], we say that (0.1) is

conditionally well-posed in Hs(Rn), with the auxiliary space Ys.

A natural question arise in this context: Is it possible to remove the auxiliary

condition? In other words, is it possible to prove that uniqueness of the solution

for (0.1) holds in the whole space C([0, T ]; Hs(Rn))? If the answer for these two

questions is yes, then we say that (0.1) is unconditionally well-posed in Hs(Rn).

The next two theorems are concerned with this latter notion.

Theorem 2.1.4 Assume (f1) − (f3) and let s ≥ 0. Uniqueness for (0.1) holds

in C([0, T ]; Hs) in each of the following cases

(i) s ≥ n

2
;

(ii) n = 1, 0 ≤ s <
1

2
and k ≤ 2

1− 2s
;

(iii) n = 2, 0 ≤ s < 1 and k <
s + 1

1− s
;

(iv) n ≥ 3, 0 ≤ s <
n

2
, k ≤ min

{
1 +

4

n− 2s
, 1 +

2s + 2

n− 2s

}
.

The fundamental tool to prove Theorem 2.1.4 are the classic Strichartz

estimates satisfied by the solution of the Schrödinger equation. We remark that

parts (i), (ii), and (iii) of the above theorem are identical, respectively, to (i),
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(iii), and (ii) for n = 2 of [24], Corollary 2.3. However, for n ≥ 3, we include the

high extreme point for the value of k, in the range of validity of the theorem. This

is possible due to the improvement in the Strichartz estimates proved by Keel and

Tao [25].

For the particular case where f(u) = |u|k−1u, with k > 1 we can also improve

Theorem 2.1.4 for a large range of values k. This is done in the following theorem.

Theorem 2.1.5 Let n ≥ 3, 0 < s < 1 and f(u) = |u|k−1u, with k > 1

satisfying (f3). Uniqueness for (0.1) holds in C([0, T ]; Hs) if k verifies the

following conditions

(1) k > 2;

(2) k > 1 +
2s

n− 2s
, k < 1 + min

{
n + 2s

n− 2s
,
4s + 2

n− 2s

}
;

(3) k < 1 +
4

n− 2s
;

(4) k ≤ 1 +
n + 2− 2s

n− 2s
.

Remark 2.1.2 Note that the restriction k ≤ n + 2s

n− 2s
seems natural. In fact, this

assumption implies |u|k−1u ∈ L1
loc(Rn), which ensures that the equation

{
utt −∆u + ∆2u + ∆

(|u|k−1u
)

= 0, x ∈ Rn, t > 0,

u(x, 0) = φ, ut(x, 0) = ∆η

makes sense within the framework of the distribution.

Theorem 2.1.5 is inspired on the unconditional well-posed result proved by

Furioli and Terraneo [18] for the case of nonlinear Schrödinger equation. As in [18],

the proof of this theorem relies in the use of Besov space of negative indices.

The plan of this chapter is as follows: in Section 2, we prove some linear

estimates and other preliminary results. The local existence theory is established in

Section 3. Finally, the unconditional well-posedness problem is treated in Section

4.

2.2 Preliminary results

In the sequel, we will use the integral formulation (0.22). To treat this

integral equation, we need to obtain estimates for the operators Bc(·) and Bs(·)∆
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defined in (0.20) and (0.21), respectively. Let us recall the well-known Strichartz

inequalities for solutions of Schrödinger Equation.

Lemma 2.2.1 If t 6= 0,
1

p
+

1

p′
= 1 and p′ ∈ [1, 2] then we have that

‖U(t)h‖Lp ≤ c|t|−n
2

(
1
p′−

1
p

)
‖h‖Lp′ .

Proof See, for instance, [31] Chapter 4.

¥

Lemma 2.2.2 Let (q, r) be an admissible pair and 0 < T ≤ ∞, then

sup
[−T,T ]

∥∥∥∥
∫ t

0

U(t′)g(·, t′)dt′
∥∥∥∥

L2

≤ c‖g‖
Lq′

0,T Lr′ .

Proof Again we refer the reader to [31] Chapter 4.

¥
As a consequence of Lemmas 2.2.1-2.2.2 we can prove Strichartz-type

inequalities for the operators Bc(·) and Bs(·)∆. More precisely,

Lemma 2.2.3 Let (q, r) and (γ, ρ) be admissible pairs and 0 < T ≤ ∞. Then

(i) ‖Bc(·)h‖Lq
0,T Lr + ‖Bs(·)∆h‖Lq

0,T Lr ≤ c‖h‖L2;

(ii)
∥∥∥
∫ t

0
Bs(t− t′)∆g(·, t′)dt′

∥∥∥
Lq

0,T Lr
≤ c‖g‖

Lγ′
0,T Lρ′ ,

where (γ′, ρ′) denotes the dual of (γ, ρ).

Proof We will prove only the second inequality (item (i) follows from (ii)

and a duality argument). Let (q, r) be an admissible pair. In view of Lemma 2.2.1,

we have

∥∥∥∥
∫ t

0

Bs(t− t′)∆g(·, t′)dt′
∥∥∥∥

Lr

≤
∥∥∥∥

i

2

∫ t

0

(U(t− t′)− U(t− t′)) g(·, t′)dt′
∥∥∥∥

Lr

≤ c

∫ t

0

‖U(t− t′)g(·, t′)‖Lr + ‖U(t− t′)g(·, t′)‖Lrdt′

≤ c

∫ ∞

−∞

1

|t− t′|α‖g(·, t′)‖Lr′dt′

where α =
n

2

(
1

r′
− 1

r

)
.
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Thus applying the Hardy-Littlewood-Sobolev theorem we obtain
∥∥∥∥
∫ t

0

Bs(t− t′)∆g(·, t′)dt′
∥∥∥∥

Lq
0,T Lr

≤ c‖g‖
Lq′

0,T Lr′ , (2.3)

where (q′, r′) denotes the dual of (q, r).

Combining Lemma 2.2.2 with the definition of Bs(·)∆ we obtain the follow-

ing inequality

sup
[0,T ]

∥∥∥∥
∫ t

0

Bs(t− t′)∆g(·, t′)dt′
∥∥∥∥

L2

≤ c‖g‖
Lq′

0,T Lr′ . (2.4)

Now, let (γ, ρ) be another admissible pair. Without loss of generality we can

assume ρ ∈ [2, r). Therefore, interpolating (2.3) and (2.4), we have

∥∥∥∥
∫ t

0

Bs(t− t′)∆g(·, t′)dt′
∥∥∥∥

Lγ
0,T Lρ

≤ c‖g‖
Lq′

0,T Lr′ .

To finish the proof, an argument of duality allows us to write

∥∥∥∥
∫ t

0

Bs(t− t′)∆g(·, t′)dt′
∥∥∥∥

Lq
0,T Lr

≤ c‖g‖
Lγ′

0,T Lρ′ .

¥
For the question of unconditional well-posedness, we will need Strichartz-

type inequalities in Besov spaces, that is;

Lemma 2.2.4 Let (q, r) and (γ, ρ) be admissible pairs. Then

(i) ‖Bc(·)h‖Lq
0,T Ḃs

r,2
+ ‖Bs(·)∆h‖Lq

0,T Ḃs
r,2
≤ c‖h‖Ḣs;

(ii)
∥∥∥
∫ t

0
Bs(t− t′)∆g(·, t′)dt′

∥∥∥
Lq

0,T Ḃs
r,2

≤ c‖g‖
Lγ′

0,T Ḃs
ρ′,2

.

Proof Since the above estimates are valid for the Schrödinger group

(see [10] Theorem 2.2), using (0.20) and (0.21) the lemma follows.

¥

Remark 2.2.1 These Strichartz inequalities are still valid if we replace Ḃs
q,2 by

the homogeneous Sobolev spaces Ḣs
q . (see [10] page 814).

Another important result are the estimates for the fractional derivatives.

Lemma 2.2.5 Assume (f1)-(f2) and for 0 ≤ s ≤ k, define Ds = F−1|ξ|sF , then
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(i) ‖Dsf(u)‖Lr ≤ c‖u‖k−1
L(k−1)r1

‖Dsu‖Lr2

where
1

r
=

1

r1

+
1

r2

, r1 ∈ (1,∞], r2 ∈ (1,∞);

(ii) ‖Ds(uv)‖Lr ≤ c (‖Dsu‖Lr1‖v‖Lq2 + ‖u‖Lq1‖Dsv‖Lr2 )

where
1

r
=

1

r1

+
1

q2

=
1

q1

+
1

r2

, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

Proof See [24] Lemmas A1-A4.

¥

Lemma 2.2.6 Let k > 1, s ≥ 0, p ∈ [1,∞), s < min

{
n

p
, k

}
and

1

p
− s

n
≤ 1

k
.

Let α =
n

s + k

(
n

p
− s

) . Then there exists c > 0 such that for all g ∈ Ḣs
p(Rn), we

have

(i) ‖|g|k−1g‖Ḣs
α
≤ c‖g‖k

Ḣs
p
;

(ii) ‖|g|k‖Ḣs
α
≤ c‖g‖k

Ḣs
p
.

Proof See [18] Lemma 2.3 and the references therein.

¥
Before finishing this section, we present some numerical facts that will be

important in the local existence result proof.

Lemma 2.2.7 Let k > 1, there is q ≥ 2 and (γ, ρ) an admissible pair, such that

1

ρ′
=

1

2
+

k − 1

q
.

Proof In the case n ≥ 3, we have to satisfy the following system





1

ρ
=

1

2
− (k − 1)

q

2 ≤ ρ <
2n

n− 2
,

thus it is enough to choose q > max{n(k − 1), 2}.
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In the case n = 1, 2 it is sufficient to satisfy the following system





1

ρ
=

1

2
− (k − 1)

q
2 ≤ ρ < ∞.

It is clearly satisfied for every q ≥ max{2(k − 1), 2}.
¥

Now by (f3) we have
n

2
− 2

k − 1
≤ s ≤ n

2
, then it is always possible to

choose σ ≥ 0 satisfying (2.2).

Lemma 2.2.8 Assume (f3). Then, for all σ satisfying (2.2) there exist (p1, p2)

and (q1, q2) such that

(i) (p1, p2) is an admissible pair;

(ii) There exists an admissible pair (q1, β2) such that:

1

q2

=
1

β2

− σ

n
;

(iii) p1 < q1;

(iv) If
1

ri

≡ 1

pi

+
k − 1

qi

, i = 1, 2, then there exists s1 ≥ 1 such that (s1, r2) is the

dual of an admissible pair and

1

r1

<
1

s1

, if σ ∈
[
0,

n

2

) ⋂ (
n

2
− 2

k − 1
, s

]
;

1

r1

=
1

s1

, if σ = s =
n

2
− 2

k − 1
≥ 0.

Proof To obtain the points p1, p2, q1, q2, β2, r1, r2 and s1 we need to solve

the system of equations corresponding to conditions (i)−(iv). We consider several

cases separately.

(a) n ≥ 2; σ ∈
[
0,

n

2

) ⋂ (
n

2
− 2

k− 1
, s

]

Set

q1 = ∞,
1

q2

=
1

2
− σ

n
;

1

p1

=
k − 1

4
n

(
1

2
− σ

n

)
,

1

p2

=
1

2
− k − 1

2

(
1

2
− σ

n

)
.
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Then, for β2 = 2, it is easy to verify properties (i) − (iii). On the other

hand, according to (vi), (r1, r2) are given by

1

r1

=
k − 1

4
n

(
1

2
− σ

n

)
,

1

p2

=
1

2
+

k − 1

2

(
1

2
− σ

n

)
.

Setting
1

s1

= 1−k − 1

4
n

(
1

2
− σ

n

)
, we have that (s1, r2) is the dual of (p1, p2)

and
1

r1

<
1

s1

, if and only if σ >
n

2
− 2

k − 1
.

(b) n ≥ 3; σ = s =
n

2
− 2

k− 1
≥ 0

In this case we can easily verify properties (i)− (iv) for the points

q1 = ∞, q2 =
n(k − 1)

2
;

p1 = 2,
1

p2

=
1

2
− 1

n
;

β2 = 2;

r1 = 2,
1

r2

=
1

2
+

1

n
.

Note that (r1, r2) is the dual of (p1, p2).

(c) n = 2; σ = s = 1− 2

k− 1
≥ 0

For n = 2 the pair (2,∞) is not admissible. So in this case we choose

q1 = q2 = 2(k − 1);

p1 = 3, p2 = 6;

r1 =
6

5
, r2 =

3

2
.

Now it is easy to verify properties (i)−(iv) hold for
1

β2

=
1

2
− 1

2(k + 1)
. Note

that k ≥ 3, thus (iii) holds. Moreover, (r1, r2) is the dual of the admissible

pair (6, 3).

(d) n = 1; σ ∈
[
0,

1

2

) ⋂ (
1

2
− 2

k− 1
, s

]

In this case we consider two possibilities.

If k > 3 set
1

q1

=
1

4

(
1

2
− σ

)
,

1

q2

=
1

2

(
1

2
− σ

)
.

If k ≤ 3 then there exists m ∈ N−{1, 2} such that 1 +
8

2m−1
≥ k > 1 +

8

2m
.

Then, set
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1

q1

=
1

2m

(
1

2
− σ

)
,

1

q2

=

(
1− 1

2m−1

)(
1

2
− σ

)
.

For (p1, p2) set, in both cases

1

p1

=
k − 1

8

(
1

2
− σ

)
,

1

p2

=
1

2
− k − 1

4

(
1

2
− σ

)
.

A simple calculation shows that (i)− (iv) hold for

1

β2

=





1

2

(
1

2
− σ

)
+ σ , k > 3,

(
1− 1

2m−1

)(
1

2
− σ

)
+ σ , otherwise

and

1

s1

=





1− k − 1

8

(
1

2
− σ

)
, k > 3,

1− (k − 1)

(
1

2
− σ

)(
3

8
− 1

2m

)
, otherwise.

(e) n = 1; σ = s =
1

2
− 2

k− 1
≥ 0

Set

q1 =
4

3
(k − 1), q2 = 2(k − 1);

p1 = 5, p2 = 10.

Therefore

β2 =
1

2
− 3

2(k − 1)
, r1 =

20

19
and r2 =

5

3
.

We have that (r1, r2) is the dual of the admissible pair (20,
5

2
). Moreover,

(iii) is verified since k ≥ 5.

¥

2.3 Local well-posedness

Proof of Theorem 2.1.1

Case (i) s >
n

2

Choose σ ∈
( n

2
, s

]
and define

Xs = {u ∈ L∞0,T Hs : ‖u‖L∞0,T Hσ ≤ N and ‖Dsu‖L∞0,T L2 ≤ K}.



65 2.3. Local well-posedness

By the Sobolev embedding we have for all q ≥ 2 and γ =
n

2
− n

q
(note that

γ <
n

2
< σ)

‖u(t)‖Lq ≤ c‖Dγu(t)‖L2 ≤ c‖u(t)‖Hσ .

Then, we obtain

‖u‖L∞0,T Lq ≤ cN.

We need to show that N, K and T can be chosen so that the integral operator

Φ(u)(t) = Bc(t)φ + Bs(t)∆η +

∫ t

0

Bs(t− t′)∆(f(u)− u)(t′)dt′ (2.5)

maps Xs into Xs and becomes a contraction map in the L∞0,T L2-metric.

Remark 2.3.1 Note that Xs with the L∞0,T L2-metric is a complete metric space.

Since Dσ commute with Bc, Bs and BI (see (0.22)), we have

‖Φ(u)‖L∞0,T Hσ ≤ c‖Φ(u)‖L∞0,T L2 + c‖DσΦ(u)‖L∞0,T L2

≤ c
(
‖φ‖Hσ + ‖η‖Hσ + ‖BI(f(u)− u)‖L∞0,T L2+

+ ‖BI(D
σ(f(u)− u))‖L∞0,T L2

)

≤ c
(
‖φ‖Hσ + ‖η‖Hσ + ‖BI(u)‖L∞0,T L2 + ‖BI(D

σu)‖L∞0,T L2

+ ‖BI(f(u))‖L∞0,T L2 + ‖BI(D
σf(u))‖L∞0,T L2

)
.

So using Lemma 2.2.3 (i), we have for all (γ, ρ) admissible pair

‖Φ(u)‖L∞0,T Hσ ≤ c
(
‖φ‖Hσ + ‖η‖Hσ + ‖u‖L1

0,T L2 + ‖Dσu‖L1
0,T L2

+ ‖f(u)‖
Lγ′

0,T Lρ′ + ‖Dσf(u)‖
Lγ′

0,T Lρ′

)

≤ c
(
‖φ‖Hσ + ‖η‖Hσ + T‖u‖L∞0,T Hσ

)
+

+cT 1/γ′
(
‖f(u)‖L∞0,T Lρ′ + ‖Dσf(u)‖L∞0,T Lρ′

)
.

Let q, γ and ρ be given by Lemma 2.2.7. Then, using (f2), Hölder’s inequality
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(
1

ρ′
=

1

2
+

k − 1

q
) and Lemma 2.2.5 we obtain

‖Φ(u)‖L∞0,T Hσ ≤ c
(
‖φ‖Hσ + ‖η‖Hσ + T‖u‖L∞0,T Hσ

)
+

+ cT 1/γ′
(
‖u‖L∞0,T L2‖u‖k−1

L∞0,T Lq + ‖Dσu‖L∞0,T L2‖u‖k−1
L∞0,T Lq

)

≤ c
(
‖φ‖Hσ + ‖η‖Hσ + T‖u‖L∞0,T Hσ

)
+

+ cT 1/γ′
(
‖u‖L∞0,T Hσ‖u‖k−1

L∞0,T Lq

)

≤ c (‖φ‖Hσ + ‖η‖Hσ) + cN
(
T + T 1/γ′Nk−1

)
.

(2.6)

By an analogous argument, we obtain

‖DsΦ(u)‖L∞0,T L2 ≤ c (‖Dsφ‖L2 + ‖Dsη‖L2) + cK
(
T + T 1/γ′Nk−1

)
.

Since γ 6= 1, it is clear that we can choose N,K and T such that Φ maps

Xs into Xs.

Now we have to prove that Φ is a contraction in the L∞0,T L2-metric. Indeed,

using Lemma 2.2.5 (i) and Hölder’s inequality we have

‖Φ(u)− Φ(v)‖L∞0,T L2 ≤ ‖BI(f(u)− f(v))‖L∞0,T L2 + ‖BI(u− v)‖L∞0,T L2

≤ c
(
‖f(u)− f(v)‖

Lγ′
0,T Lρ′ + ‖u− v‖L1

0,T L2

)

≤ c

(
T 1/γ′

∥∥∥∥
∫ 1

0

f ′(λu + (1− λ)v)(u− v)dλ

∥∥∥∥
L∞0,T Lρ′

+

+T‖u− v‖L∞0,T L2

)

≤ c

(
T 1/γ′

∫ 1

0

‖f ′(λu + (1− λ)v)‖
L∞0,T L

q
k−1

dλ

)

·‖u− v‖L∞0,T L2 + cT‖u− v‖L∞0,T L2

≤ c
(
T 1/γ′

(
‖u‖k−1

L∞0,T Lq + ‖v‖k−1
L∞0,T Lq

)
+ T

)
‖u− v‖L∞0,T L2

≤ c
(
T 1/γ′Nk−1 + T

)
‖u− v‖L∞0,T L2 .

Then Φ is a contraction in L∞0,T L2-metric for suitable N and T and by stan-

dard arguments there is T > 0 and a unique solution u ∈ C([0, T ]; Hs(Rn)) ∩ Ys

to (0.1) with u(0) = φ and ut(0) = ∆η.

Remark 2.3.2 If Φ(u) = u ∈ Xs, then by the proof of (2.6), we have
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‖u‖Lq
0,T Hs

r
≤ c (‖φ‖Hs + ‖η‖Hs) + c

(
T (N + K) + T 1/γ′Nk−1(N + K)

)
(2.7)

for all (q, r) admissible pair. Therefore u ∈ Ys.

Case (ii) s ≤ n

2
, σ ∈

[
0,

n

2

)
∩

(
n

2
− 2

k− 1
, s

]

Consider (p1, p2) and (q1, q2) given by Lemma 2.2.8 and define the following

complete metric space

Y s =





u ∈ (1−∆)−
s
2

(
L∞0,T L2 ∩ Lp1

0,T Lp2
)

:

‖u‖L∞0,T L2 , ‖u‖L
p1
0,T Lp2 ≤ L;

‖Dsu‖L∞0,T L2 , ‖Dsu‖L
p1
0,T Lp2 ≤ K;

‖Dσu‖L∞0,T L2 , ‖Dσu‖L
p1
0,T Lp2 ≤ N





d(u, v) = ‖u‖L∞0,T L2 + ‖u‖L
p1
0,T Lp2 .

By Sobolev embedding, we have

‖u‖L
q1
0,T Lq2 ≤ c‖Dσu‖L

q1
0,T Lβ2 ; where

1

β2

=
1

q2

+
σ

n
.

Recall that (q1, β2) is an admissible pair. Therefore, in view of Lemma 2.2.8

(iii), we can interpolate between L∞0,T L2 and Lp1

0,T Lp2 and find 0 < α < 1 such

that
‖u‖L

q1
0,T Lq2 ≤ c‖Dσu‖1−α

L∞0,T L2‖Dσu‖α
L

p1
0,T Lp2

≤ cN. (2.8)

Moreover, by Lemma 2.2.8 (iv) together with Lemma 2.2.3 (i) there exists

θ > 0 such that

‖Φ(u)‖La
0,T Lb ≤ ‖Bc(t)φ‖La

0,T Lb + ‖Bs(t)∆η‖La
0,T Lb + ‖BI(f(u)− u)‖La

0,T Lb

≤ c
(
‖φ‖L2 + ‖η‖L2 + ‖BI(f(u))‖La

0,T Lb + ‖BI(u)‖La
0,T Lb

)

≤ c
(
‖φ‖L2 + ‖η‖L2 + T θ‖f(u)‖L

r1
0,T Lr2 + ‖u‖L1

0,T L2

)

where (a, b) ∈ {(∞, 2), (p1, p2)}.

Now using (f2), the definition of (r1, r2) in Lemma 2.2.8 and Hölder’s

inequality, we obtain

‖Φ(u)‖La
0,T Lb ≤ c

(
‖φ‖L2 + ‖η‖L2 + T θ‖u‖L

p1
0,T Lp2‖u‖k−1

L
q1
0,T Lq2

+ T‖u‖L∞0,T L2

)

≤ c
(‖φ‖L2 + ‖η‖L2 + T θNk−1L + TL

)
.

(2.9)
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Following the same arguments, using the estimates for fractional derivatives

(remember that p2 6= ∞) and the fact that Ds and Dσ commute with BI , Bc and

Bs∆, we have

‖DsΦ(u)‖La
0,T Lb ≤ c

(‖Dsφ‖L2 + ‖Dsη‖L2 + T θNk−1K + TK
)
, (2.10)

‖DσΦ(u)‖La
0,T Lb ≤ c

(‖Dσφ‖L2 + ‖Dση‖L2 + T θNk−1N + TN
)
. (2.11)

On the other hand, from an argument analogous to the one used in case (i),

we have for (a, b) ∈ {(∞, 2), (p1, p2)}

‖Φ(u)− Φ(v)‖La
0,T Lb ≤ ‖BI(f(u)− f(v))‖La

0,T Lb + ‖BI(u− v)‖La
0,T Lb

≤ c
(
T θ‖f(u)− f(v)‖L

r1
0,T Lr2 + ‖u− v‖L1

0,T L2

)

≤ c

(
T θ

∥∥∥∥
∫ 1

0

f ′(λu + (1− λ)v)(u− v)dλ

∥∥∥∥
L

r1
0,T Lr2

+

+T‖u− v‖L∞0,T L2

)

≤ cT θ
(
‖u‖k−1

L
q1
0,T Lq2

+ ‖v‖k−1
L

q1
0,T Lq2

)
‖u− v‖L

p1
0,T Lp2 +

+cT‖u− v‖L∞0,T L2

≤ c
(
T θNk−1 + T

)
d(u, v).

The proof follows by choosing suitable L, N,K and T .

Case (iii) s ≤ n

2
, σ =

n

2
− 2

k− 1

Let τ < 1 and (p1, p2), (p1, p2) be given by Lemma 2.2.8. Define the following

complete metric space

Y s
τ =





u ∈ (1−∆)−
s
2

(
L∞0,T L2 ∩ Lp1

0,T Lp2
)

:

‖u‖L∞0,T L2 , ‖u‖L
p1
0,T Lp2 ≤ L;

‖Dsu‖L∞0,T L2 , ‖Dsu‖L
p1
0,T Lp2 ≤ K;

‖Dσu‖L∞0,T L2 ≤ N ; ‖Dσu‖L
p1
0,T Lp2 ≤ τN < N





d(u, v) = ‖u‖L∞0,T L2 + ‖u‖L
p1
0,T Lp2 .

Then we can show, following the same arguments of (2.8), that there exists
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0 < α < 1, such that

‖u‖L
q1
0,T Lq2 ≤ c‖Dσu‖1−α

L∞0,T L2‖Dσu‖α
L

p1
0,T Lp2

≤ cταN.

As in the inequalities (2.9) and (2.10), we have for (a, b) ∈ {(∞, 2), (p1, p2)}

‖Φ(u)‖La
0,T Lb ≤ c

(‖φ‖L2 + ‖η‖L2 + (ταN)k−1L + TL
)
, (2.12)

and

‖DsΦ(u)‖La
0,T Lb ≤ c

(‖Dsφ‖L2 + ‖Dsη‖L2 + (ταN)k−1K + TK
)
. (2.13)

The inequality (2.11) should be replaced by the following two estimates

‖DσΦ(u)‖L∞0,T L2 ≤ c
(‖Dσφ‖L2 + ‖Dση‖L2 + τ 1+α(k−1)Nk + TN

)
(2.14)

and

‖DσΦ(u)‖L
p1
0,T Lp2 ≤c

(
‖Bc(·)Dσφ‖L

p1
0,T Lp2 + ‖Bs∆(·)Dση‖L

p1
0,T Lp2

)

+ c
(
τ 1+α(k−1)Nk + TN

)
.

(2.15)

Taking T small the terms ‖Bc(·)Dσφ‖L
p1
0,T Lp2 and ‖Bs∆(·)Dση‖L

p1
0,T Lp2 can

be made small enough (note that p1 6= ∞ ). So it is clear that the operator Φ

maps Y s
τ into Y s

τ (choosing suitable L,N, K, T, τ). Since the reminder of the proof

follows from a similar argument as the one previously used it will be omitted.

Finally, we remark that once we established that Φ is a contraction appro-

priate spaces the proof of continuous dependence is straightforward.

¥
Proof of Theorem 2.1.2

(i) By (2.6) we have to choose N, T such that

c0 (max{‖φ‖Hσ , ‖η‖Hσ}) + c0N
(
T + T 1/γ′Nk−1

)
≤ N. (2.16)

Setting N = 2c0 (max{‖φ‖Hσ , ‖η‖Hσ}) this inequality becomes

T + T 1/γ′ (2c0 max{‖φ‖Hσ , ‖η‖Hσ})k−1 ≤ 1/2c0.
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This inequality is clearly satisfied for

T =
1

4c0

min
{

1, 2 (max{‖φ‖Hσ , ‖η‖Hσ})γ′(1−k)
}

.

Now setting c = 1/4c0 and θ = 1/γ′ we have

T ∗ ≥ c
(
min

{
1, 2 (max {‖φ‖Hσ , ‖η‖Hσ}) 1−k

θ

})
.

Note that (2.1) does not follow direct from the inequality above. To prove

(2.1) we will use an iterative argument. Set T = T̄ = 1/2c0. Thus, inequality

(2.16) becomes

c0 (max{‖φ‖Hσ , ‖η‖Hσ}) + c1N
k−1 ≤ N/2 (2.17)

for some c1 > 0.

It is clear that (2.17) has a solution N if max{‖φ‖Hσ , ‖η‖Hσ} is sufficiently

small. In fact, we have more than that. An application of the implicit

function theorem tell us that there are δ̄ > 0 and λ > 1 such that if

max{‖φ‖Hσ , ‖η‖Hσ} ≤ δ ≤ δ̄ then N ≤ λδ, where N is the solution of

(2.17).

It follows that if max{‖φ‖Hσ , ‖η‖Hσ} ≤ λ−nδ̄ then we can find N1 ≤ λ−n+1δ̄

such that the solution exists in the interval [0, T̄ ]. Moreover by construction

‖u(T̄ )‖Hσ ≤ N1 ≤ λ−n+1δ̄.

We want to repeat this argument. Therefore, we first need to control the

growth of ‖∆−1ut(t)‖Hσ . Since u(t) is given by (0.22) we have that

∆−1ut(t) = Bs(t)∆φ−Bc(t)η −
∫ t

0

Bc(t− t′)(f(u)− u)(t′)dt′.

Thus, applying the same argument as the one used in (2.6), we obtain

‖∆−1ut(T̄ )‖Hσ ≤ ‖∆−1ut(T̄ )‖L∞̄
T

Hσ

≤ c0 (max{‖φ‖Hσ , ‖η‖Hσ}) + N/2 + c1N
k−1.
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Since N1 is the solution of (2.17) we also have

‖∆−1ut(T̄ )‖Hσ ≤ N1 ≤ λ−n+1δ̄.

Now, solving equation (0.1) with initial data u(T̄ ) and ∆−1ut(T̄ ), we can find

N2 ≤ λ−n+2δ̄ such that the solution exists in the interval [T̄ , 2T̄ ]. Moreover,

max
{‖u(2T̄ )‖Hσ , ‖∆−1ut(2T̄ )‖Hσ

} ≤ λ−n+2δ̄.

Repeating this process, we can find Ni, i = 1, . . . , n, such that the solution

exists on the intervals [0, T̄ ], . . . , [(n− 1)T̄ , nT̄ ], so that T ∗ ≥ T̄ . Thus T ∗ is

arbitrarily large if max{‖φ‖Hσ , ‖η‖Hσ} is sufficiently small.

(iia) The proof is essentially the same as (i) using inequality (2.11) instead of (2.6)

(that is, just replace max{‖φ‖Hσ , ‖η‖Hσ} by max{‖Dσφ‖L2 , ‖Dση‖L2}).
(iib) In this case, in view of (2.14) and (2.15), we have to choose N, T, τ such

that

c
(
max{‖Dσφ‖L2 , ‖Dση‖L2}+ τ 1+α(k−1)Nk + TN

) ≤ N

and

c
(
max{B1, B2}+ τ 1+α(k−1)Nk + TN

) ≤ τN.

where B1 ≡ ‖Bc(·)Dσφ‖L
p1
0,T Lp2 and B2 ≡ ‖Bs∆(·)Dση‖L

p1
0,T Lp2 .

But the sizes of B1 and B2 depend on T and Dσφ, Dση (but not necessarily

on their norms). That is why T ∗ cannot be estimated only in terms of

‖Dσφ‖L2 and ‖Dση‖L2 .

¥
Proof of Theorem 2.1.3 We use an argument first used by [41] (see

also [10] page 826).

(a) Let T ∗ be given by Theorem 2.1.2 and t < T ∗. If we consider u(t) and

∆−1ut(t) as the initial data, the solution cannot be extended to a time

≥ T ∗. Setting D(t) = max{‖u(t)‖Hσ , ‖∆−1ut(t)‖Hσ}, it follows from (2.6)

and the fixed point argument that if for some N > 0,

cD(t) + cN
(
(T − t) + (T − t)1/γ′Nk−1

)
≤ N



Chapter 2. Local solutions and unconditional well-posedness 72

then T < T ∗.

Thus for all N > 0, we have

cD(t) + cN
(
(T ∗ − t) + (T ∗ − t)1/γ′Nk−1

)
≥ N.

Now, choosing N = 2cD(t) and letting t → T ∗ we have the blow up result.

(b) Since the argument is similar to part (a) it will be omitted.

¥

2.4 Unconditional well-posedness

The aim of this section is to prove Theorems 2.1.4 and 2.1.5, but before

doing that we need to establish some preliminary lemmas.

Lemma 2.4.1 Let (p1, p2) and (q1, q2) such that

(i) (p1, p2) is an admissible pair;

(ii) There exists δ ∈ [0, 1] such that

1

p1

≥ 1− δ

q1

and
1

p2

=
1− δ

q2

+
δ

2
;

(iii) If
1

ri

≡ 1

pi

+
k − 1

qi

, i = 1, 2, then there exists s1 ≥ 1 such that (s1, r2) is the

dual of an admissible pair and s1 ≤ r1.

Then uniqueness holds in X ≡ L∞0,T L2 ∩ Lq1

0,T Lq2.

Proof The proof follows the same ideas of Lemma 3.1 in [24].

Using Hölder’s inequality and interpolation we have, in view of (ii), that

X ⊂ Lp1

0,T Lp2 .

Returning to the uniqueness question, suppose there are two fixed points

u, v ∈ X of the integral equation (2.5). Then w ≡ u− v may be written as

w = BI(f(u)− f(v))−BI(u− v).

But for (a, b) ∈ {(∞, 2), (p1, p2)}, we have by Lemma 2.2.3 (ii) that

‖BI(u− v)‖La
T Lb ≤ c‖u− v‖L1

T L2 (2.18)

≤ cT‖u− v‖L∞T L2 . (2.19)
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It remains to estimate the term BI(f(u)− f(v)). Suppose first that s1 < r1.

In this case, using (iii), Lemma 2.2.3 (ii), the Mean Value Theorem and Hölder’s

inequality, we obtain for θ ≡ 1
s1
− 1

r1
> 0

‖BI(f(u)− f(v))‖La
T Lb ≤ c‖f(u)− f(v)‖L

s1
T Lr2

≤ cT θ‖f(u)− f(v)‖L
r1
T Lr2

≤ cT θ‖ (|u|k−1 + |v|k−1
)
(u− v)‖L

r1
T Lr2

≤ cT θ
(
‖u‖k−1

L
q1
T Lq2

+ ‖u‖k−1
L

q1
T Lq2

)
‖u− v‖L

p1
T Lp2 .

When s1 = r1 we have θ = 0 in the above inequality. To overcome this

difficulty we use an argument introduced by Cazenave (see [9] Proposition 4.2.5.).

Define

fN = 1{|u|+|v|>N}(f(u)− f(v)),

fN = 1{|u|+|v|≤N}(f(u)− f(v)).

Therefore by Lemma 2.2.3 (ii) we have for (a, b) ∈ {(∞, 2), (p1, p2)} that

‖BIfN‖La
T Lb ≤ cNk−1‖u− v‖L1

T L2

≤ cNk−1T‖u− v‖L∞T L2 .

On the other hand, using (iii), Lemma 2.2.3 (ii), the Mean Value Theorem

and Hölder’s inequality, we obtain

‖BIf
N‖La

T Lb ≤ c
(∥∥1{|u|+|v|>N}(|u|+ |v|)

∥∥
L

q1
T Lq2

)k−1

‖u− v‖L
p1
T Lp2 .

Since |u|+ |v| ∈ Lq1

T Lq2 , it follows by dominated convergence that

∥∥1{|u|+|v|>N}(|u|+ |v|)
∥∥

L
q1
T Lq2

→ 0, when N →∞.

By choosing N large enough, we can find c̄ > 0 such that

‖u− v‖L
p1
T Lp2 + ‖u− v‖L∞T L2 ≤ c̄TNk−1‖u− v‖L∞T L2 .
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Set d(w) = ‖w‖L
p1
T Lp2 + ‖w‖L∞T L2 . Therefore, in both cases we can find a

function H(T ) such that H(T ) → 0 when T → 0 and

d(w) ≤ H(T )d(w).

Taking T0 > 0 small enough such that H(T0) < 1, we conclude that d(w)

must be zero in [0, T0]. Now, since the argument does not depend on the initial

data, we can reapply this process a finite number of times to extend the uniqueness

result in the whole existence interval [0, T ].

¥

Lemma 2.4.2 We have three cases:

(i) If n = 1 uniqueness holds in L∞0,T (L2 ∩ Lq) for all

q ≥ max{k, 2};

(ii) If n = 2 uniqueness holds in L∞0,T (L2 ∩ Lq) for all

1

q
<

1

k
and

1

q
≤ min

{
1

2
,

1

k − 1

}
;

(iii) If n ≥ 3 uniqueness holds in L∞0,T (L2 ∩ Lq) for all

1

q
≤ min

{(
1

2
+

1

n

)
1

k
,

1

2
,

2

n(k − 1)

}
.

Proof Affirmations (i) and (ii) follow from Corollary 2.2 (see also Theorem

2.1) in [24]. On the other hand, the proof of (iii) is a little bit different from Kato’s

proof since we have one more admissible pair, namely

(
2,

2n

n− 2

)
. So we will give

a detailed proof of this. We consider several cases separately

(a) 1 < k ≤ 1 +
2

n
Set (p1, p2) = (q1, q2) = (∞, 2). It is easy to see that there exists s1 ≥ 1

satisfying (i)− (iii) of Lemma 2.4.1 (with δ = 0). Then uniqueness holds in

L∞0,T L2 and therefore in L∞0,T L2∩Lq1

0,T Lq2 for all (q1, q2). Note that if k = 1+
2

n
,

we have that (r1, r2) must be given by r1 = ∞ and
1

r2

=
1

2
+

1

n
. Therefore,

(2, r2) is the dual of the admissible pair

(
2,

2n

n− 2

)
.
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(b) 1 +
2

n
< k < 1 +

4

n− 2

Let bk ≡
(

1

2
+

1

n

)
1

k
. By the restriction on k we have

1

2
− 1

n
< bk <

1

2
.

Therefore there exists an admissible pair (αk, βk) such that βk =
1

bk

. Let

(∞, q) such that
1

q
≤ bk. By interpolation we obtain

L∞0,T L2 ∩ L∞0,T Lq ⊆ L∞0,T L2 ∩ L∞0,T Lβk .

If uniqueness holds on L∞0,T L2∩L∞0,T Lβk , then it holds, a fortiori, in L∞0,T L2∩
L∞0,T Lq. Therefore, we just need to verify that (p1, p2) = (αk, βk), (q1, q2) =

(∞, βk) satisfy the hypotheses of Lemma 2.4.1. Indeed, in this case (i)− (ii)

can be easily verified (for δ = 0). On the other hand, (r1, r2) must be given

by
1

r1

=
1

αk

and
1

r2

=
k

βk

.

Thus, (s1, r1), with s1 = 2 is the dual of the admissible pair

(
2,

2n

n− 2

)
.

Moreover

s1 < r1 ⇐⇒ 1

2
>

n

2

(
1

2
− 1

βk

)
⇐⇒ k < 1 +

4

n− 2
.

(c) k ≥ 1 +
4

n− 2
In this case 2

n(k − 1)
≤ 1

2
− 1

n
<

1

2
. (2.20)

Let (∞, q) such that
1

q
≤ 2

n(k − 1)
. By the same argument as the one used

in item (b) it is sufficient to prove that uniqueness holds in L∞T L2 ∩ L∞T Lq̃,

where
1

q̃
=

2

n(k − 1)
. Therefore, we need to verify that (p1, p2) = (2,

2n

n− 2
),

(q1, q2) = (∞, q̃) satisfy the hypotheses of Lemma 2.4.1. It is clear that (i)

holds. On the other hand, in view of (2.20) we can find δ ∈ [0, 1] such that

(ii) holds. Now, we turn to property (iii). The pair (r1, r2) must be given

by r1 = 2 and
1

r2

=
1

2
+

1

n
. Then, (s1, r2), with s1 = 2 is the dual of the

admissible pair

(
2,

2n

n− 2

)
.

¥
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Now we can prove our next main result.

Proof of Theorem 2.1.4 This is an immediate consequence of the last

lemma. Using Sobolev Embedding and decreasing T if necessary we have

C([0, T ]; Hs) ⊂ L∞0,T (L2 ∩ Lq̄)

where

q̄ =





2n/(n− 2s) if s < n/2;

any q̄ < ∞ if s = n/2;

∞ if s > n/2.

So we have only to verify that uniqueness holds in L∞0,T (L2∩Lq̄), but Lemma

2.4.2 tell us when it happens.

¥
Now, we turn to the proof of Theorem 2.1.5. First of all, define H(u, v) by

H(u, v) ≡
∫ 1

0

|λu + (1− λ)v|k−1dλ. (2.21)

We will need the following lemmas.

Lemma 2.4.3 Let n ≥ 3, 0 < s < 1, k > 2 and k ≤ 1+
2n− 2s

n− 2s
. Let h ∈ Ḣs

τ (Rn)

with τ =
n

s + (k − 1)
(n

2
− s

) . If k also verifies the following conditions:

(i) k > 1 +
2s

n− 2s
;

(ii) k < 1 + min

{
4s + 2

n− 2s
,

4

n− 2s
,
n + 2s

n− 2s

}
;

(iii) k ≤ 1 +
n + 2− 2s

n− 2s
.

Then there exist σ, p verifying σ − n

p
= s− n

2
and

(1) s− 1 ≤ σ ≤ s;

(2) −s < σ < 0;

(3) s− (k − 1)
(n

2
− s

)
≤ σ ≤ min

{
s + 1,

n

2

}
− (k − 1)

(n

2
− s

)
.
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Such that if g ∈ Ḃσ
p,2(Rn), then gh ∈ Ḃσ

r′,2(Rn) with

‖gh‖Ḃσ
r′,2
≤ c‖g‖Ḃσ

p,2
‖h‖Ḣs

τ

where
1

r′
=

1

p
+

(k − 1)
(n

2
− s

)

n
and

2n

n + 2
≤ r′ ≤ 2.

Proof See [18] Lemma 3.8.

¥

Lemma 2.4.4 Let n ≥ 3, k > 2, 0 ≤ s <
n

2
and s < k − 1. Suppose also that

(k − 1)

(
1

2
− s

n

)
≤ 1 and define τ =

n

s + (k − 1)(
n

2
− s)

. If u, v ∈ L∞0,T Ḣs, then

H(u, v) ∈ L∞0,T Ḣs
τ . Moreover, τ ≥ 1 if and only if k ≤ 1 +

2n− 2s

n− 2s
.

Proof By definition of H(u, v), we have

‖H(u, v)‖Ḣs
τ

=

∫ 1

0

‖|λu + (1− λ)v)|k−1‖Ḣs
τ
≤ c

(
‖|u|k−1‖Ḣs

τ
+ ‖|v|k−1‖Ḣs

τ

)

and using Lemma 2.2.6 (ii) we have the desire estimate.

¥
Furthermore, we have the following embedding

Lemma 2.4.5 Ḣs ↪→ Ḃσ
p,2 for all σ ≤ s and σ − n

p
= s − n

2
. Moreover, there

exists γ ≥ 1 such that (γ, p) is an admissible pair if and only if s− 1 ≤ σ ≤ s.

Proof See [37] for the first part. The second part is an easy consequence

of admissible pair’s definition.

¥
Now we have all tools to prove our last main result of this chapter.

Proof of Theorem 2.1.5 First, we recall that Ḃσ
2,2 = Ḣσ, Hs ⊆ Ḣσ

for all σ, s ∈ R and σ ≤ s. Then, using Lemma 2.4.5, we conclude that

(u−v) ∈ L∞0,T Ḃσ
p,2∩L∞0,T Ḃσ

2,2, where σ and p satisfy conditions (1)− (3) of Lemma

2.4.3. Moreover, in view of Lemma 2.4.5 and condition (1) of Lemma 2.4.3, there

exists γ ≥ 1 such that (γ, p) is an admissible pair.
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Thus, by Lemma 2.2.4 (i), we have for (a, b) ∈ {(∞, 2), (γ, p)}

‖u− v‖La
0,T Ḃσ

b,2
≤ ‖BI(f(u)− f(v))‖La

0,T Ḃσ
b,2

+ ‖BI(u− v)‖La
0,T Ḃσ

b,2

≤ c‖f(u)− f(v)‖
Lq′

0,T Ḃσ
r′,2

+ c‖u− v‖L1
0,T Ḃσ

2,2

≤ c‖(u− v)H(u, v)‖
Lq′

0,T Ḃσ
r′,2

+ cT‖u− v‖L∞0,T Ḃσ
2,2

where
1

r′
=

1

p
+

(k − 1)
(n

2
− s

)

n
and

2n

n + 2
≤ r′ ≤ 2. Recall that this last

condition implies that (q′, r′) is the dual of an admissible pair.

Then by Lemma 2.4.3, we obtain:

‖u− v‖La
0,T Ḃσ

b,2
≤ c‖‖u− v‖Ḃσ

p,2
‖H(u, v)‖Ḣs

τ
‖

Lq′
0,T

+ cT‖u− v‖L∞0,T Ḃσ
2,2

.

But
1

q′
− 1

γ
= 1− (k − 1)

2

(n

2
− s

)
≡ θ > 0 since k < 1 +

4

n− 2s
. Thus

‖u− v‖La
0,T Ḃσ

b,2
≤ cT θ‖u− v‖Lγ

0,T Ḃσ
p,2
‖H(u, v)‖L∞0,T Ḣs

τ
+ cT‖u− v‖L∞0,T Ḃσ

2,2
.

Set ω(u, v) ≡ ‖u− v‖L∞0,T Ḃσ
2,2

+ ‖u− v‖Lγ
0,T Ḃσ

p,2
, therefore we conclude that

ω(u, v) ≤ c
(
T θ‖H(u, v)‖L∞0,T Ḣs

τ
+ T

)
ω(u, v).

Hence, for T0 > 0 small enough, u(t) = v(t) on [0, T0] and to recover the

whole interval we apply the same argument as the one used in the proof of Lemma

2.4.1.

¥



Chapter 3
Local solutions in Sobolev spaces with
negative indices

3.1 Introduction

In this chapter we consider initial value problem (IVP) for the “good”

Boussinesq equation (0.5).

Our principal aim here is to study the local well-posedness for low regularity

data. Natural spaces to measure this regularity are the classical Sobolev spaces

Hs(R), s ∈ R. The best result available in the literature was given by Linares [29],

who proved local well-posedness for initial data φ ∈ H1(R), ψ = hx with

h ∈ L2(R). In this work, we improve the result in [29], proving local well-posedness

with s > −1/4 for the “good” Boussinesq equation.

To obtain this result we use the Fourier restriction norm method introduced

by Bourgain [6] to study the nonlinear Schrödinger equation (0.6) and the KdV

equation (0.7). This method was further developed by Kenig, Ponce and Vega

in [26] for the KdV equation and [27] for the quadratics nonlinear Schrödinger

equation (0.8)-(0.10) in one spatial dimension and in spatially continuous and

periodic case.

The original Bourgain method makes extensive use of the Strichartz inequal-

ities in order to derive the bilinear estimates corresponding to the nonlinearity. On

the other hand, Kenig, Ponce and Vega simplified Bourgain’s proof and improved

the bilinear estimates using only elementary techniques, such as Cauchy-Schwartz

inequality and simple calculus inequalities.

Both arguments also use some arithmetic facts involving the symbol of the

linearized equation. For example, the algebraic relation for quadratic nonlinear

Schrödinger equation (0.8) is given by

2|ξ1(ξ − ξ1)| ≤ |τ − ξ2|+ |(τ − τ1)− (ξ − ξ1)
2|+ |τ1 − ξ2

1 |. (3.1)

Then splitting the domain of integration in the sets where each term on
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the right side of (3.1) is the biggest one, Kenig, Ponce and Vega made some

cancellation in the symbol in order to use his calculus inequalities (see Lemma

3.3.1) and a clever change of variables to established their crucial estimates.

Here, we shall use this kind of argument, but unfortunately in the Boussinesq

case we do not have good cancellations on the symbol. To overcome this difficulty

we observe that the dispersion in the Boussinesq case is given by the symbol√
ξ2 + ξ4 and this is in some sense related with the Schrödinger symbol (see

Lemma 3.3.2 below). Therefore, we can modify the symbols and work only with

the algebraic relations for the Schrödinger equation already used in Kenig, Ponce

and Vega [27] in order to derive our relevant bilinear estimates. We should remark

that in the present case we have to estimate all the possible cases for the relation

τ ± ξ2 and not only the cases treated in Kenig, Ponce and Vega [27].

To describe our results we define next the Xs,b spaces related to our problem.

These spaces, with b = 1
2
, were first defined by Fang and Grillakis [17] for the

Boussinesq-type equations in the periodic case. Using these spaces and following

Bourgain’s argument introduced in [6] they proved local well-posedness for (0.5)

with the spatial variable in the unit circle (denoted by T) assuming u(0) ∈ Hs(T),

ut(0) ∈ H−2+s(T), with 0 ≤ s ≤ 1 and |f(u)| ≤ c|u|p, with 1 < p < 3−2s
1−2s

if

0 ≤ s < 1
2

and 1 < p < ∞ if 1
2
≤ s ≤ 1. Moreover, if u(0) ∈ H1(T), ut(0) ∈ H−1(T)

and f(u) = λ|u|q−1u − |u|p−1u, with 1 < q < p and λ ∈ R then the solution is

global.

Next we give the precise definition of the Xs,b spaces for the Boussinesq-type

equation in the continuous case.

Definition 3.1.1 For s, b ∈ R, Xs,b denotes the completion of the Schwartz class

S(R2) with respect to the norm

‖F‖Xs,b
= ‖〈|τ | − γ(ξ)〉b〈ξ〉sF̃‖L2

τ,ξ

where γ(ξ) ≡
√

ξ2 + ξ4, 〈a〉 ≡ 1 + |a| and ∼ denotes the time-space Fourier

transform.

We will also need the localized Xs,b spaces defined as follows

Definition 3.1.2 For s, b ∈ R and T ≥ 0, XT
s,b denotes the space endowed with

the norm

‖u‖XT
s,b

= inf
w∈Xs,b

{‖w‖Xs,b
: w(t) = u(t) on [0, T ]

}
.
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Now we state the main results of this chapter.

Theorem 3.1.1 Let s > −1/4 and u, v ∈ Xs,−a. Then, there exists c > 0 such

that ∥∥∥∥∥
( |ξ|2ũv(ξ, τ)

2iγ(ξ)

)∼−1
∥∥∥∥∥

Xs,−a

≤ c ‖u‖Xs,b
‖v‖Xs,b

, (3.2)

where ∼−1 denotes the inverse time-space Fourier transform, holds in the following

cases

(i) s ≥ 0, b > 1/2 and 1/4 < a < 1/2,

(ii) −1/4 < s < 0, b > 1/2 and 1/4 < a < 1/2 such that |s| < a/2.

Moreover, the constant c > 0 that appears in (3.2) depends only on a, b, s.

Theorem 3.1.2 For any s ≤ −1/4 and any a, b ∈ R, with a < 1/2 the estimate

(3.2) fails.

Theorem 3.1.3 Let s > −1/4, then for all φ ∈ Hs(R) and ψ ∈ Hs−1(R), there

exist T = T (‖φ‖Hs , ‖ψ‖Hs−1) and a unique solution u of the IVP (0.5) such that

u ∈ C([0, T ] : Hs(R)) ∩XT
s,b.

Moreover, given T ′ ∈ (0, T ) there exists R = R(T ′) > 0 such that giving the

set W ≡ {(φ̃, ψ̃) ∈ Hs(R) × Hs−1(R) : ‖φ̃ − φ‖2
Hs(R) + ‖ψ̃ − ψ‖2

Hs−1(R) < R} the

map solution

S : W −→ C([0, T ′] : Hs(R)) ∩XT
s,b, (φ̃, ψ̃) 7−→ u(t)

is Lipschitz.

In addition, if (φ, ψ) ∈ Hs′(R)×Hs′−1(R) with s′ > s, then the above results

hold with s′ instead of s in the same interval [0, T ] with

T = T (‖φ‖Hs , ‖ψ‖Hs−1).

The plan of this chapter is as follows: in Section 2, we prove some estimates

for the integral equation in the Xs,b space introduced above. Bilinear estimates

and the relevants counterexamples are proved in Section 3 and 4, respectively.

Finally, the local well-posedness question is treated in Section 5.
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3.2 Preliminary results

By Duhamel’s Principle the solution of (0.5) is equivalent to the integral

equation (0.17). Let θ be a cutoff function satisfying θ ∈ C∞
0 (R), 0 ≤ θ ≤ 1, θ ≡ 1

in [−1, 1], supp(θ) ⊆ [−2, 2] and for 0 < T < 1 define θT (t) = θ(t/T ). In fact, to

work in the Xs,b spaces we consider another version of (0.17), that is

u(t) = θ(t) (Vc(t)φ + Vs(t)ψx) + θT (t)

∫ t

0

Vs(t− t′)(u2)xx(t
′)dt′. (3.3)

Note that the integral equation (3.3) is defined for all (x, t) ∈ R2. Moreover

if u is a solution of (3.3) than ũ = u|[0,T ] will be a solution of (0.17) in [0, T ].

In the next lemma, we estimate the linear part of the integral equation (3.3).

Lemma 3.2.1 Let u(t) the solution of the linear equation

{
utt − uxx + uxxxx = 0,

u(0, x) = φ(x); ut(0, x) = ψx(x)

with φ ∈ Hs and ψ ∈ Hs−1. Then there exists c > 0 depending only on θ, s, b such

that
‖θu‖Xs,b

≤ c (‖φ‖Hs + ‖ψ‖Hs−1) . (3.4)

Proof. Taking time-space Fourier transform in θ(t)u(x, t) and setting

γ(ξ) =
√

ξ2 + ξ4, we have

(θ(t)u(x, t))∼(ξ, τ) =
θ̂(τ − γ(ξ))

2

(
φ̂(ξ) +

ξψ̂(ξ)

γ(ξ)

)

+
θ̂(τ + γ(ξ))

2

(
φ̂(ξ)− ξψ̂(ξ)

γ(ξ)

)
.

Thus, setting h1(ξ) = φ̂(ξ) + ξψ̂(ξ)
γ(ξ)

and h2(ξ) = φ̂(ξ)− ξψ̂(ξ)
γ(ξ)

, we have

‖θu‖2
Xs,b

≤

≤ ∫ +∞
−∞ 〈ξ〉2s|h1(ξ)|2

(∫ +∞
−∞ 〈|τ | − γ(ξ)〉2b

∣∣∣ θ̂(τ−γ(ξ))+θ̂(τ+γ(ξ))
2

∣∣∣
2

dτ

)
dξ

+
∫ +∞
−∞ 〈ξ〉2s|h2(ξ)|2

(∫ +∞
−∞ 〈|τ | − γ(ξ)〉2b

∣∣∣ θ̂(τ−γ(ξ))+θ̂(τ+γ(ξ))
2

∣∣∣
2

dτ

)
dξ.
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Since ||τ | − γ(ξ)| ≤ min {|τ − γ(ξ)|, |τ + γ(ξ)|} and θ̂ is rapidly decreas-

ing, we can bound the terms inside the parentheses, and the claim follows.

¥
Next we estimate the integral part of (3.3).

Lemma 3.2.2 Let −1
2

< b′ ≤ 0 ≤ b ≤ b′ + 1 and 0 < T ≤ 1 then

(i)
∥∥∥θT (t)

∫ t

0
g(t′)dt′

∥∥∥
Hb

t

≤ T 1−(b−b′)‖g‖Hb′
t
;

(ii)
∥∥∥θT (t)

∫ t

0
Vs(t− t′)f(u)(t′)dt′

∥∥∥
Xs,b

≤ T 1−(b−b′)

∥∥∥∥∥∥

(
f̃(u)(ξ, τ)

2iγ(ξ)

)∼−1
∥∥∥∥∥∥

Xs,b′

.

Proof.

(i) See [19] inequality (3.11).

(ii) A simple calculation shows that

(
θT (t)

∫ t

0

Vs(t− t′)f(u)(t′)dt′
)∧(x)

(ξ, t) =

= eitγ(ξ)

(
θT (t)

∫ t

0

h1(ξ, t
′)dt′

)
− e−itγ(ξ)

(
θT (t)

∫ t

0

h2(ξ, t
′)dt′

)

≡ eitγ(ξ)w
∧(x)

1 (ξ, t)− e−itγ(ξ)w
∧(x)

2 (ξ, t),

where h1(ξ, t
′) =

e−it′γ(ξ)f∧(x)(ξ, t′)
2iγ(ξ)

and h2(ξ, t
′) =

eit′γ(ξ)f∧(x)(ξ, t′)
2iγ(ξ)

.

Therefore

(
θT (t)

∫ t

0

Vs(t− t′)f(u)(t′)dt′
)∼

(ξ, τ) =

w̃1(ξ, τ − γ(ξ))− w̃2(ξ, τ + γ(ξ)).

Now using the definition of Xs,b we have

∥∥∥∥θT (t)

∫ t

0

Vs(t− t′)f(u)(t′)dt′
∥∥∥∥

2

Xs,b

≤
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≤ c

∫ +∞

−∞

∫ +∞

−∞
〈|τ + γ(ξ)| − γ(ξ)〉2b〈ξ〉2s|w̃1(ξ, τ)|2dτdξ

+c

∫ +∞

−∞

∫ +∞

−∞
〈|τ − γ(ξ)| − γ(ξ)〉2b〈ξ〉2s|w̃2(ξ, τ)|2dτdξ

≡ M.

Since γ(ξ) ≥ 0 for all ξ ∈ R, we have

max{||τ + γ(ξ)| − γ(ξ)|, ||τ − γ(ξ)| − γ(ξ)|} ≤ |τ |.

Thus applying item (i) we obtain

M ≤ c

2∑
j=1

∫ +∞

−∞
〈ξ〉2s‖w∧(x)

j ‖2
Hb

t

≤ cT 1−(b−b′)
2∑

j=1

∫ +∞

−∞
〈ξ〉2s‖hj‖2

Hb′
t

= cT 1−(b−b′)




∫ ∫

R2

〈τ − γ(ξ)〉2b′〈ξ〉2s

∣∣∣∣∣
f̃(u)(ξ, τ)

2iγ(ξ)

∣∣∣∣∣

2

dτdξ

+

∫ ∫

R2

〈τ + γ(ξ)〉2b′〈ξ〉2s

∣∣∣∣∣
f̃(u)(ξ, τ)

2iγ(ξ)

∣∣∣∣∣

2

dτdξ


 .

Since ||τ | − γ(ξ)| ≤ min {|τ − γ(ξ)|, |τ + γ(ξ)|} and b′ ≤ 0 we obtain the

desired inequality.

¥
The next lemma says that, for b > 1/2, Xs,b is embedding in C(R : Hs).

Lemma 3.2.3 Let b > 1
2
. There exists c > 0, depending only on b, such that

‖u‖C(R:Hs) ≤ c‖u‖Xs,b
.

Proof. First we prove that Xs,b ⊆ L∞(R : Hs). Let u = u1 + u2, where

ũ1 ≡ ũχ{τ≤0}, ũ2 ≡ ũχ{τ>0} and χA denotes the characteristic function of the set
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A. Then for all t ∈ R

‖u1(t)‖Hs =
∥∥∥
(
eitγ(ξ)(u1)

∧(x)
)∨(x)

(x, t)
∥∥∥

Hs

=

∥∥∥∥
∫ +∞

−∞

((
eitγ(ξ)(u1)

∧(x)
)∨(x)

)∧(t)

(x, τ)eitτdτ

∥∥∥∥
Hs

≤
∫ +∞

−∞

∥∥∥∥
((

eitγ(ξ)(u1)
∧(x)

)∨(x)
)∧(t)

(x, τ)

∥∥∥∥
Hs

dτ.

Using the Cauchy-Schwarz inequality we obtain

‖u1(t)‖Hs ≤
(∫ +∞

−∞ 〈τ〉−2b
)1/2 (∫ +∞

−∞
∫ 0

−∞〈τ + γ(ξ)〉2b〈ξ〉2s|ũ(ξ, τ)|2dτdξ
)1/2

.

On the other hand, similar arguments imply that

‖u2(t)‖Hs ≤
(∫ +∞

−∞ 〈τ〉−2b
)1/2 (∫ +∞

−∞
∫ +∞
0

〈τ − γ(ξ)〉2b〈ξ〉2s|ũ(ξ, τ)|2dτdξ
)1/2

.

Now, by the fact that b > 1/2, |τ + γ(ξ)| = ||τ | − γ(ξ)| for τ ≤ 0 and

|τ − γ(ξ)| = ||τ | − γ(ξ)| for τ ≥ 0 we have

‖u‖L∞(R:Hs) ≤ c‖u‖Xs,b
.

It remains to show continuity. Let t, t′ ∈ R then

‖u1(t)− u1(t
′)‖Hs =

∥∥∥∥
∫ +∞

−∞

((
eitγ(ξ)(u1)

∧(x)
)∨(x)

)∧(t)

(x, τ)(eitτ − eit′τ )dτ

∥∥∥∥
Hs

. (3.5)

Letting t′ → t, two applications of the Dominated Convergence Theorem

give that the right hand side of (3.5) goes to zero. Therefore, u1 ∈ C(R :

Hs). Of course, the same argument applies to u2, which concludes the proof.

¥

3.3 Bilinear estimates

Before proceed to the proof of Theorem 3.1.1, we state some elementary

calculus inequalities that will be useful later.



Chapter 3. Local solutions in Sobolev spaces with negative indices 86

Lemma 3.3.1 For p, q > 0 and r = min{p, q, p + q − 1} with p + q > 1, there

exists c > 0 such that
∫ +∞

−∞

dx

〈x− α〉p〈x− β〉q ≤
c

〈α− β〉r . (3.6)

Moreover, for a0, a1, a2 ∈ R and q > 1/2
∫ +∞

−∞

dx

〈a0 + a1x + a2x2〉q ≤ c. (3.7)

Proof. See Lemma 4.2 in [21] and Lemma 2.5 in [3].

¥

Lemma 3.3.2 There exists c > 0 such that

1

c
≤ sup

x∈R,y≥0

1 + |x− y|
1 + |x−

√
y2 + y| ≤ c. (3.8)

Proof. Since y ≤
√

y2 + y ≤ y + 1/2 for all y ≥ 0 a simple computation

shows the desired inequalities.

¥

Remark 3.3.1 In view of the previous lemma we have an equivalent way to

compute the Xs,b-norm, that is

‖u‖Xs,b
∼ ‖〈|τ | − ξ2〉b〈ξ〉sũ(ξ, τ)‖L2

ξ,τ
.

This equivalence will be important in the proof of Theorem 3.1.1. As we commented

in the introduction the Boussinesq symbol
√

ξ2 + ξ4 does not have good cancela-

tions to make use of Lemma 3.3.1. Therefore, we modify the symbols as above and

work only with the algebraic relations for the Schrödinger equation already used

in Kenig, Ponce and Vega [27] in order to derive the bilinear estimates.

Now we are in position to prove the bilinear estimate (3.2).

Proof of Theorem 3.1.1. Let u, v ∈ Xs,b and define

f(ξ, τ) ≡ 〈|τ | − ξ2〉b〈ξ〉sũ(ξ, τ),

g(ξ, τ) ≡ 〈|τ | − ξ2〉b〈ξ〉sṽ(ξ, τ).

Using Remark 3.3.1 and a duality argument the desired inequality is equiv-

alent to
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|W (f, g, φ)| ≤ c‖f‖L2
ξ,τ
‖g‖L2

ξ,τ
‖φ‖L2

ξ,τ
(3.9)

where

W (f, g, φ) =

∫

R4

〈ξ〉s
〈ξ1〉s〈ξ − ξ1〉s

× g(ξ1, τ1)f(ξ − ξ1, τ − τ1)φ̄(ξ, τ)

〈|τ | − ξ2〉a〈|τ1| − ξ2
1〉b〈|τ − τ1| − (ξ − ξ1)2〉b dξdτdξ1dτ1.

Therefore to perform the desired estimate we need to analyze all the possible

cases for the sign of τ , τ1 and τ − τ1. To do this we split R4 into the regions

Γ1 = {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 < 0, τ − τ1 < 0},
Γ2 = {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 ≥ 0, τ − τ1 < 0, τ ≥ 0},
Γ3 = {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 ≥ 0, τ − τ1 < 0, τ < 0},
Γ4 = {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 < 0, τ − τ1 ≥ 0, τ ≥ 0},
Γ5 = {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 < 0, τ − τ1 ≥ 0, τ < 0},
Γ6 = {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 ≥ 0, τ − τ1 ≥ 0}.

Thus, it is sufficient to prove inequality (3.9) with Z(f, g, φ) instead of

W (f, g, φ), where

Z(f, g, φ) =

∫

R4

〈ξ〉s
〈ξ1〉s〈ξ2〉s

g(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a〈σ1〉b〈σ2〉b dξdτdξ1dτ1

with ξ2 = ξ − ξ1, τ2 = τ − τ1 and σ, σ1, σ2 belonging to one of the following cases

(I) σ = τ + ξ2, σ1 = τ1 + ξ2
1 , σ2 = τ2 + ξ2

2 ,

(II) σ = τ − ξ2, σ1 = τ1 − ξ2
1 , σ2 = τ2 + ξ2

2 ,

(III) σ = τ + ξ2, σ1 = τ1 − ξ2
1 , σ2 = τ2 + ξ2

2 ,

(IV ) σ = τ − ξ2, σ1 = τ1 + ξ2
1 , σ2 = τ2 − ξ2

2 ,

(V ) σ = τ + ξ2, σ1 = τ1 + ξ2
1 , σ2 = τ2 − ξ2

2 ,

(V I) σ = τ − ξ2, σ1 = τ1 − ξ2
1 , σ2 = τ2 − ξ2

2 .

Remark 3.3.2 Note that the cases σ = τ + ξ2, σ1 = τ1 − ξ2
1 , σ2 = τ2 − ξ2

2 and

σ = τ − ξ2, σ1 = τ1 + ξ2
1 , σ2 = τ2 + ξ2

2 cannot occur, since τ1 < 0, τ − τ1 < 0

implies τ < 0 and τ1 ≥ 0, τ − τ1 ≥ 0 implies τ ≥ 0
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Applying the change of variables (ξ, τ, ξ1, τ1) 7→ −(ξ, τ, ξ1, τ1) and observing that

the L2-norm is preserved under the reflection operation, the cases (IV ), (V ), (V I)

can be easily reduced, respectively, to (III), (II), (I). Moreover, making the

change of variables τ2 = τ − τ1, ξ2 = ξ − ξ1 and then (ξ, τ, ξ2, τ2) 7→ −(ξ, τ, ξ2, τ2)

the case (II) can be reduced (III). Therefore we need only establish cases (I)

and (III). We should remark that these are exactly two of the three bilinear

estimates that appear in [27], but since it is important to have the inequality

(3.9) with a < 1/2 < b such that a + b < 1 to make the contraction arguments

work (see the proof of Theorem 3.1.3) we reprove these inequalities here.

We first treat the inequality (3.9) with Z(f, g, φ) in the case (I). We will

make use of the following algebraic relation

−(τ + ξ2) + (τ1 + ξ2
1) + ((τ − τ1) + (ξ − ξ1)

2) = 2ξ1(ξ1 − ξ). (3.10)

By simmetry we can restrict ourselves to the set

A = {(ξ, τ, ξ1, τ1) ∈ R4 : |(τ − τ1) + (ξ − ξ1)
2| ≤ |τ1 + ξ2

1 |}.

We divide A into three pieces

A1 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≤ 10},
A2 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≥ 10 and |2ξ1 − ξ| ≥ |ξ1|/2},
A3 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≥ 10 and |ξ1 − ξ| ≥ |ξ1|/2}.

We have A = A1 ∪ A2 ∪ A3. Indeed

|ξ1| > |2ξ1 − ξ|+ |ξ1 − ξ| ≥ |(2ξ1 − ξ)− (ξ1 − ξ)| = |ξ1|.

Next we split A3 into two parts

A3,1 = {(ξ, τ, ξ1, τ1) ∈ A3 : |τ1 + ξ2
1 | ≤ |τ + ξ2|},

A3,2 = {(ξ, τ, ξ1, τ1) ∈ A3 : |τ + ξ2| ≤ |τ1 + ξ2
1 |}.

We can now define the sets Ri, i = 1, 2, as follows

R1 = A1 ∪ A2 ∪ A3,1 and R2 = A3,2.
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In what follows χR denotes the characteristic function of the set R. Using

the Cauchy-Schwarz and Hölder inequalities it is easy to see that

|Z|2 ≤ ‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥
〈ξ〉2s

〈σ〉2a

∫∫
χR1dξ1dτ1

〈ξ1〉2s〈ξ2〉2s〈σ1〉2b〈σ2〉2b

∥∥∥∥
L∞ξ,τ

+‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥

1

〈ξ1〉2s〈σ1〉2b

∫∫
χR2〈ξ〉2sdξdτ

〈ξ2〉2s〈σ〉2a〈σ2〉2b

∥∥∥∥
L∞ξ1,τ1

.

Noting that 〈ξ〉2s ≤ 〈ξ1〉2|s|〈ξ2〉2s, for s ≥ 0, and 〈ξ2〉−2s ≤ 〈ξ1〉2|s|〈ξ〉−2s, for

s < 0 we have 〈ξ〉2s

〈ξ1〉2s〈ξ2〉2s
≤ 〈ξ1〉γ(s) (3.11)

where

γ(s) =

{
0, if s > 0

4|s|, if s ≤ 0
.

Therefore in view of Lemma 3.3.1-(3.6) it suffices to get bounds for

J1(ξ, τ) ≡ 1

〈σ〉2a

∫ 〈ξ1〉γ(s)dξ1

〈τ + ξ2 + 2ξ2
1 − 2ξξ1〉2b

on R1,

J2(ξ1, τ1) ≡ 〈ξ1〉γ(s)

〈σ1〉2b

∫
dξ

〈τ1 − ξ2
1 + 2ξξ1〉2a

on R2.

In region A1 we have 〈ξ1〉γ(s) . 1. Therefore for a > 0 and b > 1/2 we obtain

J1(ξ, τ) .
∫

|ξ1|≤10

dξ1 . 1.

In region A2, by the change of variables η = τ + ξ2 + 2ξ2
1 − 2ξξ1 and the

condition |2ξ1 − ξ| ≥ |ξ1|/2 we have

J1(ξ, τ) . 1

〈σ〉2a

∫ 〈ξ1〉γ(s)

|2ξ1 − ξ|〈η〉2b
dη

. 1

〈σ〉2a

∫ 〈ξ1〉γ(s)−1

〈η〉2b
dη . 1

for a > 0, b > 1/2 and s > −1/4 which implies γ(s) ≤ 1.
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Now, by definition of region A3,1 and the algebraic relation (3.10) we have

〈ξ1〉2 . |ξ1|2 . |ξ1(ξ1 − ξ)| . 〈σ〉.

Therefore by Lemma 3.3.1-(3.7)

J1(ξ, τ) .
∫ 〈ξ1〉γ(s)−4a

〈τ + ξ2 + 2ξ2
1 − 2ξξ1〉2b

dξ1

.
∫

1

〈τ + ξ2 + 2ξ2
1 − 2ξξ1〉2b

dξ1 . 1

for a > 1/4, b > 1/2 and s > −1/4 which implies γ(s) < 4a.

Next we estimate J2(ξ1, τ1). Making the change of variables, η = τ−ξ2
1+2ξξ1,

using the restriction in the region A3,2, we have

|η| . |(τ − τ1) + (ξ − ξ1)
2|+ |τ + ξ2| . 〈σ1〉.

Moreover, in A3,2

|ξ1|2 . |ξ1(ξ1 − ξ)| . 〈σ1〉.

Therefore, since |ξ1| ≥ 10 we have

J2(ξ1, τ1) . |ξ1|γ(s)

〈σ1〉2b

∫

|η|.〈σ1〉

dη

|ξ1|〈η〉2a

. |ξ1|γ(s)−1

〈σ1〉2b+2a−1
. 1

for 0 < a < 1/2, b > 1/2 and s > −1/4.

Now we turn to the proof of case (III). In the following estimates we will

make use of the algebraic relation

−(τ + ξ2) + (τ1 − ξ2
1) + ((τ − τ1) + (ξ − ξ1)

2) = −2ξ1ξ. (3.12)

First we split R4 into four sets

B1 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≤ 10},
B2 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10 and |ξ| ≤ 1},
B3 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10, |ξ| ≥ 1 and |ξ| ≥ |ξ1|/2},
B4 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10, |ξ| ≥ 1 and |ξ| ≤ |ξ1|/2}.
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Next we separate B4 into three parts

B4,1 = {(ξ, τ, ξ1, τ1) ∈ B4 : |τ1 − ξ2
1 |, |(τ − τ1) + (ξ − ξ1)2| ≤ |τ + ξ2|},

B4,2 = {(ξ, τ, ξ1, τ1) ∈ B4 : |τ + ξ2|, |(τ − τ1) + (ξ − ξ1)2| ≤ |τ1 − ξ2
1 |},

B4,3 = {(ξ, τ, ξ1, τ1) ∈ B4 : |τ1 − ξ2
1 |, |τ + ξ2| ≤ |(τ − τ1) + (ξ − ξ1)2|}.

We can now define the sets Ri, i = 1, 2, 3, as follows

S1 = B1 ∪B3 ∪B4,1, S2 = B2 ∪B4,2 and S3 = B4,3.

Using the Cauchy-Schwarz and Hölder inequalities and duality it is easy to

see that

|Z|2 ≤ ‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥
〈ξ〉2s

〈σ〉2a

∫∫
χS1dξ1dτ1

〈ξ1〉2s〈ξ2〉2s〈σ1〉2b〈σ2〉2b

∥∥∥∥
L∞ξ,τ

+‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥

1

〈ξ1〉2s〈σ1〉2b

∫∫
χS2〈ξ〉2sdξdτ

〈ξ2〉2s〈σ〉2a〈σ2〉2b

∥∥∥∥
L∞ξ1,τ1

+‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥

1

〈ξ2〉2s〈σ2〉2b

∫∫
χS̃3

〈ξ1 + ξ2〉2sdξ1dτ1

〈ξ1〉2s〈σ1〉2a〈σ〉2b

∥∥∥∥
L∞ξ2,τ2

.

where σ, σ1, σ2 were given in the condition (III) and

S̃3 ⊆
{

(ξ2, τ2, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10, |ξ1 + ξ2| ≥ 1, |ξ1 + ξ2| ≤ |ξ1|/2 and

|τ1 − ξ2
1 |, |(τ1 + τ2) + (ξ1 + ξ2)

2| ≤ |τ2 + ξ2
2 |

}
.

Therefore from Lemma 3.3.1-(3.6) and (3.11) it suffices to get bounds for

K1(ξ, τ) ≡ 1

〈σ〉2a

∫ 〈ξ1〉γ(s)dξ1

〈τ + ξ2 − 2ξξ1〉2b
on S1,

K2(ξ1, τ1) ≡ 〈ξ1〉γ(s)

〈σ1〉2b

∫
dξ

〈τ1 − ξ2
1 + 2ξξ1〉2a

on S2,

K3(ξ1, τ1) ≡ 1

〈σ2〉2b

∫ 〈ξ1〉γ(s)dξ1

〈τ2 + ξ2
2 + 2ξ2

1 + 2ξ1ξ2〉2a
on S̃3.
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In region B1 we have 〈ξ1〉γ(s) . 1. Therefore for a > 0 and b > 1/2 we obtain

K1(ξ, τ) .
∫

|ξ1|≤10

dξ1 . 1.

In region B3, the change of variables η = τ + ξ2 − 2ξξ1 and the condition

|ξ| ≥ |ξ1|/2 give

K1(ξ, τ) . 1

〈σ〉2a

∫ 〈ξ1〉γ(s)

|ξ|〈η〉2b
dη

. 〈ξ1〉γ(s)−1

〈σ〉2a

∫
1

〈η〉2b
dη . 1

for a > 0, b > 1/2 and s > −1/4 which implies γ(s) ≤ 1.

Now, by definition of region B4,1 and the algebraic relation (3.12) we have

〈ξ1〉 . |ξ1| . |ξ1ξ| . 〈σ〉.

Therefore the change of variables η = τ +ξ2−2ξξ1 and the condition |ξ| ≥ 1

yield

K1(ξ, τ) . 1

〈σ〉2a

∫ 〈ξ1〉γ(s)

|ξ|〈η〉2b
dη

. 〈ξ1〉γ(s)−2a

|ξ|
∫

1

〈η〉2b
dη . 1

for s > −1/4, b > 1/2 and a ∈ R such that 2|s| < a < 1/2, if s < 0 or 0 < a < 1/2,

if s ≥ 0.

Next we estimate K2(ξ1, τ1). Making the change of variables, η = τ1 − ξ2
1 +

2ξξ1, using the restriction in the region B2, we have

|η| . |τ1 − ξ2
1 |+ |ξξ1| . |σ1|+ |ξ1|.

Therefore,

K2(ξ1, τ1) . |ξ1|γ(s)

〈σ1〉2b

∫

|η|.〈σ1〉+|ξ1|

dη

|ξ1|〈η〉2a

. |ξ1|γ(s)−2a

〈σ1〉2b
+

|ξ1|γ(s)−1

〈σ1〉2b+2a−1
. 1
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for s > −1/4, b > 1/2 and 0 < a < 1/2 such that γ(s) ≤ min{1, 2a} = 2a.

In the region B4,2, by the algebraic relation (3.12) we have

〈ξ1〉 . |ξ1| . |ξ1ξ| . 〈τ1 − ξ2
1〉.

Moreover, the change of variables η = τ1 − ξ2
1 + 2ξξ1, the restriction in the

region B4,2 and (3.12) give

|η| . 〈σ1〉.

Therefore,

K2(ξ1, τ1) . 〈ξ1〉γ(s)

〈σ1〉2b

∫

|η|.〈σ1〉

dη

|ξ1|〈η〉2a

. |ξ1|γ(s)−1

〈σ1〉2b+2a−1
. 1

for s > −1/4, b > 1/2 and 0 < a < 1/2 such that γ(s) ≤ 1.

Finally, we estimate K3(ξ1, τ1). In the region B4,3 we have by the algebraic

relation (3.12) that

〈ξ1〉 . |ξ1| . |ξ1(ξ1 + ξ2)| . 〈σ2〉.

Therefore Lemma 3.3.1-(3.7) implies that

K3(ξ1, τ1) . 〈ξ1〉γ(s)−2b

∫
1

〈τ2 + ξ2
2 + 2ξ2

1 + 2ξ1ξ2〉2a
dξ1

. 1

for a > 1/4, b > 1/2 and s > −1/4 which implies γ(s) ≤ 2b.

¥
We finish this section with a result that will be useful in the proof of Theorem

3.1.3.

Corollary 3.3.1 Let s > −1/4 and a, b ∈ R given in Theorem 3.1.1. For s′ > s

we have∥∥∥∥∥
( |ξ|2ũv(ξ, τ)

2iγ(ξ)

)∼−1
∥∥∥∥∥

Xs′,−a

≤ c ‖u‖Xs′,b
‖v‖Xs,b

+ c ‖u‖Xs,b
‖v‖Xs′,b

. (3.13)

Proof. The result is a direct consequence of Theorem 3.1.1 and the

inequality

〈ξ〉s′ ≤ 〈ξ〉s〈ξ1〉s′−s + 〈ξ〉s〈ξ − ξ1〉s′−s.
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¥

3.4 Counterexample to the bilinear estimates

(3.2)

Proof of Theorem 3.1.2. Let AN denote the set

AN =





(ξ, τ) ∈ R2 : (ξ, τ) = (N, N2) + α~η + β~γ

0 ≤ α ≤ N, 0 ≤ β ≤ N−1,

~η =
(1, 2N)√
1 + 4N2

, ~γ =
(2N,−1)√
1 + 4N2





and define fN(ξ, τ) = χAN
, gN(ξ, τ) = χ−AN

where

−AN =
{
(ξ, τ) ∈ R2 : −(ξ, τ) ∈ AN

}
.

It is easy to see that

‖fN‖L2
ξ,τ

= ‖gN‖L2
ξ,τ

= 1. (3.14)

Now, let uN , vN ∈ Xs,b such that fN(ξ, τ) ≡ 〈|τ | − ξ2〉b〈ξ〉sũN(ξ, τ) and

gN(ξ, τ) ≡ 〈|τ | − ξ2〉b〈ξ〉sṽN(ξ, τ).

Therefore, from Lemma 3.3.2-(3.8) and the fact that

||τ | − ξ2| ≤ min{|τ − ξ2|, |τ + ξ2|}

we obtain

∥∥∥∥∥
( |ξ|2ũNvN (ξ, τ)

2iγ(ξ)

)∼−1∥∥∥∥∥
Xs,−a

≡

≡
∥∥∥∥

|ξ|2〈ξ〉s
γ(ξ)〈|τ | − ξ2〉a

∫∫
fN (ξ1, τ1)〈ξ1〉−sgN (ξ − ξ1, τ − τ1)〈ξ − ξ1〉−sdτ1dξ1

〈|τ − τ1| − γ(ξ − ξ1)〉b〈|τ1| − γ(ξ1)〉b
∥∥∥∥

L2
τ,ξ

&
∥∥∥∥

|ξ|2〈ξ〉s
γ(ξ)〈τ − ξ2〉a

∫∫
fN (ξ1, τ1)〈ξ1〉−sgN (ξ − ξ1, τ − τ1)〈ξ − ξ1〉−sdτ1dξ1

〈τ − τ1 + (ξ − ξ1)2〉b〈τ1 − ξ2
1〉b

∥∥∥∥
L2

τ,ξ

≡ BN .

From the definition of AN we have
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(i) If (ξ1, τ1) ∈ supp fN and (ξ − ξ1, τ − τ1) ∈ supp gN then there exists c > 0

such that

|τ1 − ξ2
1 | ≤ c and |τ − τ1 + (ξ − ξ1)

2| ≤ c.

(ii) f ∗ g(ξ, τ) ≥ χRN
(ξ, τ),

where RN is the rectangle of dimensions cN × (cN)−1 with a vertice in the

origin and longest side pointing in the (1, 2N) direction.

(iii) There exists a positive constant c > 0 such that

N ≤ ξ1 ≤ N + c, N ≤ ξ1 − ξ ≤ N + c

and, therefore |ξ| ∼ c.

Moreover, combining the following algebraic relation

(τ − τ1 + (ξ − ξ1)
2) + (τ1 − ξ2

1)− (τ − ξ2) = 2ξ(ξ1 − ξ)

with (i) and (iii) we obtain
|τ − ξ2| . N. (3.15)

Therefore (3.14), (i), (ii), (iii) and (3.15) imply that

1 & BN & N−2s

Na

∥∥∥∥
|ξ|2
γ(ξ)

χRN

∥∥∥∥
L2

ξ,τ

& N−2s

Na

(∫∫

{|ξ|≥1/2}
χ2

RN
(ξ, τ)

)1/2

& N−2s−a.

Letting N → ∞, this inequality is possible only when −2s − a ≤ 0 which

yields the result since a < 1/2.

¥

3.5 Local well-posedness

Proof of Theorem 3.1.3.

1. Existence.

For (φ, ψ) ∈ Hs(R) × Hs−1(R), with s > −1/4, and T ≤ 1 we define the

integral equation
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ΓT (u)(t) = θ(t) (Vc(t)φ + Vs(t)ψx) + θT (t)

∫ t

0

Vs(t− t′)(u2)xx(t
′)dt′. (3.16)

Our goal is to use the Picard fixed point theorem to find a solution

ΓT (u) = u.

Let s > −1/4 and a, b ∈ R such that Theorem 3.1.1 holds, that is,

1/4 < a < 1/2 < b and 1− (a + b) ≡ δ > 0.

Therefore using (3.4), Lemma 3.2.2-(ii) with b′ = −a and (3.2) we obtain

‖ΓT (u)‖Xs,b
≤ c (‖φ‖Hs + ‖ψ‖Hs−1+

+T δ

∥∥∥∥∥∥

(
|ξ|2ũ2(ξ, τ)

2iγ(ξ)

)∼−1
∥∥∥∥∥∥

Xs,−a




≤ c
(
‖φ‖Hs + ‖ψ‖Hs−1 + T δ ‖u‖2

Xs,b

)
,

‖ΓT (u)− ΓT (v)‖Xs,b
≤ cT δ ‖u + v‖Xs,b

‖u− v‖Xs,b
.

(3.17)

We define

Xs,b(d) =
{
u ∈ Xs,b : ‖u‖Xs,b

≤ d
}

where d = 2c (‖φ‖Hs + ‖ψ‖Hs−1).

Then choosing

0 < T < min

{
1

(4cd)1/δ
, 1

}

we have that ΓT : Xs,b(d) → Xs,b(d) is a contraction and therefore there

exists a unique solution u ∈ Xs,b(d) of (3.16).

Moreover, by Lemma 3.2.3, we have that ũ = u|[0,T ] ∈ C([0, T ] : Hs) ∩XT
s,b

is a solution of (0.17) in [0, T ].

2. If s′ > s, the result holds in the time interval [0, T ] with

T = T (‖φ‖Hs , ‖ψ‖Hs−1).
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Let s > −1/4 and a, b ∈ R given in Theorem 3.1.1. For s′ > s we consider

the closed ball in the Banach space

W =
{

u ∈ Xs′,b : ‖u‖s′ = ‖u‖Xs,b
+ β‖u‖Xs′,b < +∞

}

where β =
‖φ‖Hs + ‖ψ‖Hs−1

‖φ‖Hs′ + ‖ψ‖Hs′−1

.

In view of estimate (3.17) we obtain

‖ΓT (u)‖Xs,b
≤ c

(
‖φ‖Hs + ‖ψ‖Hs−1 + T δ ‖u‖2

Xs,b

)
.

Now by Corollary 3.3.1 we have

‖ΓT (u)‖Xs′,b ≤ c
(
‖φ‖Hs′ + ‖ψ‖Hs′−1 + T δ ‖u‖Xs′,b

‖u‖Xs,b

)

≤ c

β

(‖φ‖Hs + ‖ψ‖Hs−1 + T δ ‖u‖2
s′
)
.

Therefore

‖ΓT (u)‖s′ ≤ 2c
(‖φ‖Hs + ‖ψ‖Hs−1 + T δ ‖u‖2

s′
)
.

The same argument gives

‖ΓT (u)− ΓT (v)‖s′ ≤ 2cT δ ‖u + v‖s′ ‖u− v‖s′ .

Then we define in W the closed ball centered at the origin with radius

d′ = 4c (‖φ‖Hs + ‖ψ‖Hs−1) and choose

0 < T < min

{
1

(8cd′)1/δ
, 1

}
.

Thus we have that FT is a contraction and therefore there exists a solution

with T = T (‖φ‖Hs , ‖ψ‖Hs−1).

3. Uniqueness. By the fixed point argument used in item 1 we have uniqueness

of the solution of the truncated integral equation (3.16) in the set Xs,b(d).

We use an argument due to Bekiranov, Ogawa and Ponce [3] to obtain the

uniqueness of the integral equation (0.17) in the whole space XT
s,b.
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Let T > 0, u ∈ Xs,b be the solution of the truncated integral equation (3.16)

obtained above and ṽ ∈ XT
s,b be a solution of the integral equation (0.17)

with the same initial data. Fix an extension v ∈ Xs,b, therefore, for some

T ∗ < T < 1 to be fixed later, we have

v(t) = θ(t) (Vc(t)φ + Vs(t)ψx) + θT (t)

∫ t

0

Vs(t− t′)(v2)xx(t
′)dt′

for all t ∈ [0, T ∗].

Fix M ≥ 0 such that

max
{‖u‖Xs,b

, ‖v‖Xs,b

} ≤ M. (3.18)

Taking the difference u−v, by definition of XT ∗
s,b , we have that for any ε > 0,

there exists w ∈ Xs,b such that for all t ∈ [0, T ∗]

w(t) = u(t)− v(t)

and
‖w‖Xs,b

≤ ‖u− v‖XT∗
s,b

+ ε. (3.19)

Define

w̃(t) = θT ∗(t)

∫ t

0

Vs(t− t′)(w(t′)u(t′) + w(t′)v(t′))xx(t
′)dt′.

We have that, w̃(t) = u(t)−v(t), for all t ∈ [0, T ∗]. Therefore, from Definition

3.1.2, Lemma 3.2.2-(ii), (3.2) and (3.18) it follows that

‖u− v‖XT∗
s,b
≤ ‖w̃‖Xs,b

≤ 2cMT ∗δ ‖w‖Xs,b
.

(3.20)

Choosing T ∗ > 0 such that 2cMT ∗δ ≤ 1/2, by (3.19) and (3.20), we have

‖u− v‖XT∗
s,b
≤ ε.

Therefore u = v on [0, T ∗]. Now, since the argument does not depend on the

initial data, we can reapply this process a finite number of times to extend

the uniqueness result in the whole existence interval [0, T ].
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4. Map data-solution is locally Lipschitz. Combining an identical argument to

the one used in the existence proof with Lemma 3.2.3, one can easily show

that the map data-solution is locally Lipschitz.

¥





Chapter 4
Ill-posedness for the “good” Boussinesq
equation

4.1 Introduction

Since scaling argument cannot be applied to the Boussinesq-type equations

to obtain a critically notion it is not clear what is the lower index s where one has

local well-posedness for the “good” Boussinesq equation (0.5) with initial data

(φ, ψ) ∈ Hs(R) × Hs−1(R). In this chapter we answer, partially, this question.

In fact, our main result is a negative one; it concerns in particular a kind of

ill-posedness. We prove that the flow map for the Cauchy problem (0.5) is not

smooth (C2) at the origin for initial data in Hs(R) × Hs−1(R), with s < −2.

Therefore any iterative method applied to the integral formulation of “good”

Boussinesq equation (0.5) always fails in this functional setting. In other words,

if one can apply the contraction mapping principle to solve the integral equation

corresponding to (0.5) thus, by the implicit function Theorem, the flow-map data

solution is smooth, which is a contradiction (cf. Theorem 4.1.2).

Tzvetkov [40] (see also Bourgain [7]) established a similar result for the KdV

equation (0.7). The same question was studied by Molinet, Saut and Tzvetkov [35]-

[36], for the Benjamin-Ono equation (0.11) and Kadomtsev-Petviashvili 1 (0.12)

Before stating the main results let us define the flow-map data solution as

S : Hs(R)×Hs−1(R) → C([0, T ] : Hs(R))

(φ, ψ) 7→ u(t)
(4.1)

where u(t) is given in (0.17).

These are the main results

Theorem 4.1.1 Let s < −2 and any T > 0. Then there does not exist any space

XT such that

‖u‖C([0,T ]:Hs(R)) ≤ c ‖u‖XT
, (4.2)
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for all u ∈ XT

‖Vc(t)φ + Vs(t)ψx‖XT
≤ c

(
‖φ‖Hs(R) + ‖ψ‖Hs−1(R)

)
, (4.3)

for all φ ∈ Hs(R), ψ ∈ Hs−1(R) and
∥∥∥∥
∫ t

0

Vs(t− t′)(uv)xx(t
′)dt′

∥∥∥∥
XT

≤ c ‖u‖XT
‖v‖XT

, (4.4)

for all u, v ∈ XT .

Remark 4.1.1 We recall that in Chapter 3 we construct a space XT such that

the inequalities (4.2), (4.3) and (4.4) hold for s > −1/4. These are the main tools

to prove the local well-posedness result stated in Theorem 3.1.3.

Theorem 4.1.2 Let s < −2. If there exists some T > 0 such that (0.5) is locally

well-posed, then the flow-map data solution S defined in (4.1) is not C2 at zero.

In all the ill-posedness results of Tzvetkov [40], Molinet, Saut and Tzvetkov

[35]- [36] it is, in fact, proved that for a fixed t > 0 the flow map St : φ 7→ u(t) is

not C2 differentiable at zero. This, of course, implies that the flow map S is not

smooth (C2) at the origin.

Unfortunately, in our case we cannot fix t > 0 since we don’t have good

cancellations on the symbol
√

ξ2 + ξ4. To overcome this difficulty, we allow the

variable t to move. Therefore, choosing suitable characteristics functions and

sending t to zero we can establish Theorems 4.1.1-4.1.2. We should remark that

this kind of argument also appears in the ill-posed result of Bejenaru, Tao [2].

4.2 Proof of Theorems 4.1.1-4.1.2

Proof of Theorem 4.1.1 Suppose that there exists a space XT satisfying

the conditions of the theorem for s < −2 and T > 0. Let φ, ρ ∈ Hs(R) and define

u(t) = Vc(t)φ, v(t) = Vc(t)ρ. In view of (4.2), (4.3), (4.4) it is easy to see that the

following inequality must hold

sup
1≤t≤T

∥∥∥∥
∫ t

0

Vs(t− t′)(Vc(t
′)φVc(t

′)ρ)xx(t
′)dt′

∥∥∥∥
Hs(R)

≤ c ‖φ‖Hs(R) ‖ρ‖Hs(R) . (4.5)

We will see that (4.5) fails for an appropriate choice of φ, ρ, which would

lead to a contradiction.

Define

φ̂(ξ) = N−sχ[−N,−N+1] and ρ̂(ξ) = N−sχ[N+1,N+2],
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where χA(·) denotes the characteristic function of the set A.

We have

‖φ‖Hs(R) , ‖ρ‖Hs(R) ∼ 1.

Recall that γ(ξ) ≡
√

ξ2 + ξ4. By the definitions of Vc, Vs and Fubini’s

Theorem, we have

(∫ t

0

Vs(t− t′)(Vc(t
′)φVc(t

′)ρ)xx(t
′)dt′

)∧(x)

(ξ) =

=

∫ +∞

−∞
− |ξ|2

8γ(ξ)
φ̂(ξ − ξ1)ρ̂(ξ1)K(t, ξ, ξ1)dξ1

=

∫

Aξ

− |ξ|2
8γ(ξ)

N−2sK(t, ξ, ξ1)dξ1

where

Aξ =
{

ξ1 : ξ1 ∈ supp(ρ̂) and ξ − ξ1 ∈ supp(φ̂)
}

and

K(t, ξ, ξ1) ≡
∫ t

0

sin((t− t′)γ(ξ)) cos(t′γ(ξ − ξ1)) cos(t′γ(ξ1))dt′.

Note that for all ξ1 ∈ supp(ρ̂) and ξ − ξ1 ∈ supp(φ̂) we have

γ(ξ − ξ1), γ(ξ1) ∼ N2 and 1 ≤ ξ ≤ 3.

On the other hand, since s < −2, we can choose ε > 0 such that

−2s− 4− 2ε > 0. (4.6)

Let t =
1

N2+ε
, then for N sufficiently large we have

cos(t′γ(ξ − ξ1)), cos(t′γ(ξ1)) ≥ 1/2

and

sin((t− t′)γ(ξ)) ≥ c(t− t′)γ(ξ),

for all 0 ≤ t′ ≤ t, 1 ≤ ξ ≤ 3 and ξ1 ∈ supp(ρ̂).



Chapter 4. Ill-posedness for the “good” Boussinesq equation 104

Therefore

K(t, ξ, ξ1) &
∫ t

0

(t− t′)γ(ξ)dt′ & γ(ξ)
1

2N4+2ε
.

For 3/2 ≤ ξ ≤ 5/2 we have that mes(Aξ) & 1. Thus, from (4.5) we obtain

1 & sup
1≤t≤T

∥∥∥∥
∫ t

0

Vs(t− t′)(Vc(t
′)φVc(t

′)ρ)xx(t
′)dt′

∥∥∥∥
Hs(R)

& sup
1≤t≤T




∫ 5/2

3/2

(
1 + |ξ|2)s

∣∣∣∣∣
∫

Aξ

|ξ|2
8γ(ξ)

N−2sK(t, ξ, ξ1)dξ1

∣∣∣∣∣

2

dξ




1/2

& N−2s−4−2ε, for all N À 1

which is in contradiction with (4.6).

¥
Proof of Theorem 4.1.2 Let s < −2 and suppose that there exists T > 0

such that the flow-map S defined in (4.1) is C2. When (φ, ψ) ∈ Hs(R)×Hs−1(R),

we denote by u(φ,ψ) ≡ S(φ, ψ) the solution of the IVP (0.5), that is

u(φ,ψ)(t) = Vc(t)φ + Vs(t)ψx +

∫ t

0

Vs(t− t′)(u2
(φ,ψ))xx(t

′)dt′.

The Fréchet derivative of S at (ω, ζ) in the direction (φ, φ̄) is given by

d(φ,φ̄)S(ω, ζ) =Vc(t)φ + Vs(t)φ̄x+

+ 2

∫ t

0

Vs(t− t′)(u(φ,ψ)(t
′)d(φ,φ̄)S(ω, ζ)(t′))xxdt′.

(4.7)

Using the well-posedness assumption we know that the only solution for

initial data (0, 0) is u(0,0) ≡ S(0, 0) = 0. Therefore, (4.7) yields

d(φ,φ̄)S(0, 0) = Vc(t)φ + Vs(t)φ̄x.

Computing the second Fréchet derivative at the origin in the direction

((φ, φ̄), (ρ, ρ̄)), we obtain

d2
(φ,φ̄),(ρ,ρ̄)S(0, 0) =



105 4.2. Proof of Theorems 4.1.1-4.1.2

= 2

∫ t

0

Vs(t− t′)
[
(Vc(t

′)φ + Vs(t
′)φ̄x)(Vc(t

′)ρ + Vs(t
′)ρ̄x)

]
xx

dt′.

Taking φ̄, ρ̄ = 0, the assumption of C2 regularity of S yields

sup
1≤t≤T

∥∥∥∥
∫ t

0

Vs(t− t′)(Vc(t
′)φVc(t

′)ρ)xx(t
′)dt′

∥∥∥∥
Hs(R)

≤ c ‖φ‖Hs(R) ‖ρ‖Hs(R)

which has been shown to fail in the proof of Theorem 4.1.1.

¥





Chapter 5
Local and global solutions for the nonlin-
ear Schrödinger-Boussinesq system

5.1 Introduction

In this chapter we consider the initial value problem (IVP) associated to the

Schrödinger-Boussinesq system (hereafter referred to as the SB-system), that is





iut + uxx = vu,

vtt − vxx + vxxxx = (|u|)xx,

u(x, 0) = u0(x); v(x, 0) = v0(x); vt(x, 0) = (v1)x(x),

(5.1)

where x ∈ R and t > 0.

Here u and v are respectively a complex valued and a real valued function

defined in space-time R2. The SB-system is considered as a model of interactions

between short and intermediate long waves, which is derived in describing the

dynamics of Langmuir soliton formation and interaction in a plasma [34] and

diatomic lattice system [42]. The short wave term u(x, t) : R×R→ C is described

by a Schrödinger type equation with a potential v(x, t) : R × R → R satisfying

some sort of Boussinesq equation and representing the intermediate long wave.

Our principal aim here is to study the well-posedness of the Cauchy problem

for the SB-system (5.1) in the classical Sobolev spaces Hs(R), s ∈ R.

Concerning the local well-posedness question, some results have been ob-

tained for the SB-system (5.1). Linares and Navas [30] proved that (5.1) is locally

well-posedness for initial data u0 ∈ L2(R), v0 ∈ L2(R), v1 = hx with h ∈ H−1(R)

and u0 ∈ H1(R), v0 ∈ H1(R), v1 = hx with h ∈ L2(R). Moreover, by using

some conservations laws, in the latter case the solutions can be extended globally.

Yongqian [43] established similar result when u0 ∈ Hs(R), v0 ∈ Hs(R), v1 = hxx

with h ∈ Hs(R) for s ≥ 0 and assuming s ≥ 1 these solutions are global.

Since scaling argument cannot be applied to the Boussinesq-type equations
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to obtain a criticaly notion it is not clear what is the lower Sobolev index s for

which one has local (or maybe global) well-posedness. To obtain some idea on

which spaces we should expect well-posedness, we recall some results concerning

the Schrödinger and Boussinesq equations.

For the single cubic nonlinear Schrödinger (NLS) equation with cubic term

iut +uxx + |u|2u = 0, Y. Tsutsumi [40] established local and global well-posedness

for data in L2(R). Moreover, by using the scaling and Galilean invariance with

the special soliton solutions, it was proved by Kenig, Ponce and Vega [28] that

the focusing cubic (NLS) equation is not locally-well posed below L2(R). This

ill-posed result is in the sense that the data-solution map is not uniformly

continuous. Recently, Christ, Colliander and Tao [13] have obtained similar results

for defocusing (NLS) equations. For the case of quadratics (NLS) Kenig, Ponce

and Vega [27] have proved local well-posedness for data in Hs(R) with s > −3/4

for (0.8)-(0.10) and s > −1/4 for (0.9). This result is sharp, in the sense that we

cannot lower these Sobolev indices using the techniques of [27].

Now we turn to the “good” Boussinesq equation (0.5). In Chapter 3, we

prove local well-posedness for initial data in Hs(R) × Hs−1(R) with s > −1/4.

Again, this last result is sharp in the same as above.

Taking into account the sharp local well-posedness results obtained for

the quadratic (NLS) and Boussinesq equations it is natural to ask whether

the SB-system is, at least, locally well-posed for initial data (u0, v0, v1) ∈
Hs(R) × Hs(R) × Hs−1(R) with s > −1/4. Here we answer affirmatively this

question. Indeed, we obtain local well-posedness for weak initial data (u0, v0, v1) ∈
Hk(R)×Hs(R)×Hs−1(R) for various values of k and s. The scheme of proof used

to obtain our results is in the same spirit as the one implemented by Ginibre, Y.

Tsutsumi and Velo [21] to establish their results for the Zakharov system (0.14).

In [1], it was shown that by a limiting procedure, as σ → 0, the solution

uσ to (0.14) converges in a certain sense to the unique solution for cubic (NLS).

Hence it is natural to expect that the system (0.14) is well-posed for u0 ∈ L2(R).

In fact, for the case σ = 1, in [21] it is shown that (0.14) is local well-posedness for

(u0, v0, v1) ∈ L2(R)×H−1/2(R)×H−3/2(R). Moreover, Holmer [23] shows that the

one-dimensional local theory of [21] is effectively sharp, in the sense that for (k, s)

outside the range given in [21], there exists ill-posedness results for the Zakharov

system (0.14). In particular, we cannot have local well-posedness for the initial

data in Sobolev spaces of negative index.

Note that the system (0.14) is quite similar to the SB-system. In fact, taking
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σ = 1 and adding vxxxx on the left hand side of the second equation of (0.14) we

obtain (5.1). In other words, the intermediate long wave in (0.14) is described by

a wave equation instead of a Boussinesq equation.

Despite such similarity, there are strong differences in the local theory.

According to Theorem 5.1.1 below, it is possible to prove that the system (5.1)

is locally well-posed for initial data (u0, v0, v1) ∈ Hs(R)×Hs(R)×Hs−1(R) with

s > −1/4, which is not the case for the system (0.14). Therefore, in the sense

of the local theory, we can say that the SB-system (5.1) is better behaved than

the Zakharov system (0.14). This is due basically to the fact that (0.13) has more

dispersion then (0.14).

To describe our results we define next the XS
s,b and XB

s,b spaces related to

the Schrödinger and Boussinesq equations, respectively. The spaces XB
s,b were

introduced in Chapter 3. Here we set the indices S,B to emphasize that the

spaces are related to the Schrödinger and Boussinesq equations, respectively.

Definition 5.1.1 For s, b ∈ R, XS
s,b denotes the completion of the Schwartz class

S(R2) with respect to the norm

‖F‖XS
s,b

= ‖〈τ + ξ2〉b〈ξ〉sF̃‖L2
τ,ξ

where ∼ denotes the space-time Fourier transform and 〈a〉 ≡ 1 + |a|.

Definition 5.1.2 For s, b ∈ R, XB
s,b denotes the completion of the Schwartz class

S(R2) with respect to the norm

‖F‖XB
s,b

= ‖〈|τ | − γ(ξ)〉b〈ξ〉sF̃‖L2
τ,ξ

where γ(ξ) ≡
√

ξ2 + ξ4.

We will also need the localized XS
s,b and XB

s,b spaces defined as follows

Definition 5.1.3 For s, b ∈ R and T ≥ 0, XS,T
s,b (resp. XB,T

s,b ) denotes the space

endowed with the norm

‖u‖XS,T
s,b

= inf
w∈XS

s,b

{
‖w‖XS

s,b
: w(t) = u(t) on [0, T ]

}
.

(resp. with XB
s,b instead of XS

s,b)

Now state the main results of this chapter.
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Theorem 5.1.1 Let 1/4 < a < 1/2 < b. Then, there exists c > 0, depending only

on a, b, k, s, such that

(i) ‖uv‖XS
k,−a

≤ c ‖u‖XS
k,b
‖v‖XB

s,b
.

holds for |k| − s ≤ a.

(ii) ‖u1ū2‖XB
s,−a

≤ c ‖u1‖XS
k,b
‖u2‖XS

k,b
.

holds for

– s− k ≤ a, if s > 0 and k > 0;

– s + 2|k| ≤ a, 2|k| > a, if s > 0 and k ≤ 0;

– s + 2|k| ≤ 1/2, 2|k| > a, if s ≤ 0 and k ≤ 0.

Theorem 5.1.2 Let k > −1/4. Then for any (u0, v0, v1) ∈ Hk(R) × Hs(R) ×
Hs−1(R) provided

(i) |k| − 1/2 < s < 1/2 + 2k for k ≤ 0,

(ii) k − 1/2 < s < 1/2 + k for k > 0,

there exist T = T (‖u0‖Hk , ‖v0‖Hs , ‖v1‖Hs−1), b > 1/2 and a unique solution u of

the IVP (5.1), satisfying

u ∈ C([0, T ] : Hk(R)) ∩XS,T
k,b and v ∈ C([0, T ] : Hs(R)) ∩XB,T

s,b .

Moreover, the map (u0, v0, v1) 7→ (u(t), v(t)) is locally Lipschitz from Hk(R) ×
Hs(R)×Hs−1(R) into C([0, T ] : Hk(R)×Hs(R)).

Next we obtain bilinear estimates for the case s = 0 and b, b1 < 1/2. These

estimates will be the main tool to establish global solutions.

Theorem 5.1.3 Let a, a1, b, b1 > 1/4, then there exists c > 0 depending only on

a, a1, b, b1 such that

(i) ‖uv‖XS
0,−a1

≤ c ‖u‖XS
0,b1

‖v‖XB
0,b

.

(ii) ‖u1ū2‖XB
0,−a

≤ c ‖u1‖XS
0,b1

‖u2‖XS
0,b1

.

These are the essential tools to prove the following global result.
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Theorem 5.1.4 The SB-system (5.1) is globally well-posed for (u0, v0, v1) ∈
L2(R)× L2(R)×H−1(R) and the solution (u, v) satisfies for all t > 0

‖v(t)‖L2 + ‖(−∆)−1/2vt(t)‖H−1 . e((ln 2)‖u0‖2
L2 t) max {‖v0, v1‖B, ‖u0‖L2}.

The argument used to prove this result follows the ideas introduced by

Colliander, Holmer, Tzirakis [14] to deal with the Zakharov system. The intuition

for this theorem comes from the fact that the nonlinearity for the second equation

of the SB-system (5.1) depends only on the first equation. Therefore, noting that

the bilinear estimates given in Theorem 5.1.2 hold for a, a1, b, b1 < 1/2, it is

possible to show that the time existence depends only on the ‖u0‖L2 . But since

this norm is conserved by the flow, we obtain a global solution.

The plan of this chapter is as follows: in Section 2, we prove some estimates

for the integral equation in the XS
s,b and XB

s,b space introduced above. Bilinear

estimates are proved in Section 3. Finally, the local and global well-posedness

results are treated in Sections 4 and 5, respectively.

5.2 Preliminary results

By Duhamel’s Principle the solution of the SB-system is equivalent to (0.25).

Let θ be a cutoff function satisfying θ ∈ C∞
0 (R), 0 ≤ θ ≤ 1, θ ≡ 1 in [−1, 1],

supp(θ) ⊆ [−2, 2] and for 0 < T < 1 define θT (t) = θ(t/T ). In fact, to work in the

XS
s,b and XB

s,b we consider another version of (0.25), that is

u(t) =θT (t)U(t)u0 − iθT (t)

∫ t

0

U(t− t′)(vu)(t′)dt′

v(t) =θT (t) (Vc(t)v0 + Vs(t)(v1)x) + θT (t)

∫ t

0

Vs(t− t′)(|u|2)xx(t
′)dt′.

(5.2)

Note that the integral equation (5.2) is defined for all (x, t) ∈ R2. Moreover

if (u, v) is a solution of (5.2) than (ũ, ṽ) = (u|[0,T ], v|[0,T ]) will be a solution of

(0.25) in [0, T ].

Before proceed to the group and integral estimates for (5.2) we introduce

the norm

‖v0, v1‖2
Bs ≡ ‖v0‖2

Hs + ‖v1‖2
Hs−1 .

For simplicity we denote B0 by B and, for functions of t, we use the

shorthand

‖v(t)‖2
Bs ≡ ‖v(t)‖2

Hs + ‖(−∆)−1/2vt(t)‖2
Hs−1 .
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The following lemmas are standard in this context. The difference here is on

the exponent of T that appears in the group estimates. This exponent together

with the growth control of the solution norm ‖v‖B will be important for the proof

of Theorem 5.1.4 in L2.

Lemma 5.2.1 (Group estimates) Let T ≤ 1.

(a) Linear Schrödinger equation

(i) ‖S(t)u0‖C(R:Hs) = ‖u0‖Hs .

(ii) If 0 ≤ b1 ≤ 1, then

‖θT (t)S(t)u0‖XS
s,b1

. T 1/2−b1‖u0‖Hs .

(b) Linear Boussinesq equation

(i) ‖Vc(t)v0 + Vs(t)(v1)x‖C(R:Hs) ≤ ‖v0‖Hs + ‖v1‖Hs−1 .

(ii) ‖Vc(t)v0 + Vs(t)(v1)x‖C(R:B) = ‖v0, v1‖B.

(iii) If 0 ≤ b ≤ 1, then

‖θT (t) (Vc(t)v0 + Vs(t)(v1)x) ‖XB
s,b

. T 1/2−b (‖v0‖Hs + ‖v1‖Hs−1) .

Remark 5.2.1 We should notice that the first inequality of item (a) and the

second one of item (b) do not have implicit constant multiplying the right hand

side. This will be important in the proof of the global result in L2 stated in Theorem

5.1.4, since we will make use of an iterated argument to control the growth of the

solution norm.

Proof.

(a) The first inequality comes from the fact that S(·) is a unitary group. The

second one with 0 ≤ b1 ≤ 1/2 can be found, for instance, in [14] Lemma

2.1(a). The case 1/2 < b1 ≤ 1 can be proved using the same arguments as the

one used in the previous case. Since in (b) we apply these same arguments

in the context of the Boussinesq equation, we omit the proof of (ii).

(b) By the definitions of Vc(·) and Vs(·) it is easy to see that for all t ∈ R

‖Vc(t)v0‖Hs ≤ ‖v0‖Hs and ‖Vs(t)(v1)x‖Hs ≤ ‖v1‖Hs−1 .
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Let f(x, t) be a solution of the linear Boussinesq equation

{
ftt − fxx + fxxxx = 0,

f(x, 0) = v0, ft(x, 0) = (v1)x.
(5.3)

Recall that Js = F−1(1 + |ξ|2)s/2F , for s ∈ R. Applying the operators

(−∆)−1 and J−1 to the equation (5.3), multiplying by J−1ft and finally

integrating with respect to x, we obtain (after an integration by parts) the

following
d

dt

{‖f‖2
L2 + ‖(−∆)−1/2ft‖2

H−1

}
= 0

which implies for all t ∈ R

‖Vc(t)v0 + Vs(t)(v1)x‖B = ‖v0, v1‖B.

Now we turn to the proof of the second inequality in (b). A simple compu-

tation shows that

(θT (t) (Vc(t)v0 + Vs(t)(v1)x))
∼(ξ, τ) =

θ̂T (τ − γ(ξ))

2

(
v̂0(ξ) +

iξv̂1(ξ)

γ(ξ)

)
+

θ̂T (τ + γ(ξ))

2

(
v̂0(ξ)− iξv̂1(ξ)

γ(ξ)

)
.

Thus, setting h1(ξ) = v̂0(ξ) + iξv̂1(ξ)
γ(ξ)

and h2(ξ) = v̂0(ξ)− iξv̂1(ξ)
γ(ξ)

, we have

‖θT (Vc(t)v0 + Vs(t)(v1)x)‖2
Xs,b

≤

≤ ∫ +∞
−∞ 〈ξ〉2s|h1(ξ)|2

(∫ +∞
−∞ 〈|τ | − γ(ξ)〉2b

∣∣∣ θ̂T (τ−γ(ξ))
2

∣∣∣
2

dτ

)
dξ

+
∫ +∞
−∞ 〈ξ〉2s|h2(ξ)|2

(∫ +∞
−∞ 〈|τ | − γ(ξ)〉2b

∣∣∣ θ̂T (τ+γ(ξ))
2

∣∣∣
2

dτ

)
dξ.

Since ||τ | − γ(ξ)| ≤ min {|τ − γ(ξ)|, |τ + γ(ξ)|} we have

‖θT (Vc(t)v0 + Vs(t)(v1)x)‖2
Xs,b

.
(‖h1‖2

Hs + ‖h2‖2
Hs

) ‖θT‖2
Hb

t

. (‖v0‖Hs + ‖v1‖Hs−1)2 ‖θT‖2
Hb

t
.
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To complete the proof we note that (since T ≤ 1)

‖θT‖Hb
t

. ‖θT‖L2 + ‖θT‖Ḣb
t

. T 1/2 ‖θ1‖L2 + T 1/2−b ‖θ1‖Ḣb
t

. T 1/2−b ‖θ1‖Hb
t
.

¥
Next we estimate the integral parts of (5.2).

Lemma 5.2.2 (Integral estimates) Let T ≤ 1.

(a) Nonhomogeneous linear Schrödinger equation

(i) If 0 ≤ a1 < 1/2 then

∥∥∥∥
∫ t

0

U(t− t′)z(t′)dt′
∥∥∥∥

C([0,T ]:Hs)

. T 1/2−a1‖z‖XS
s,−a1

.

(ii) If 0 ≤ a1 < 1/2, 0 ≤ b1 and a1 + b1 ≤ 1 then

∥∥∥∥θT (t)

∫ t

0

U(t− t′)z(t′)dt′
∥∥∥∥

XS
s,b1

. T 1−a1−b1‖z‖XS
s,−a1

.

(b) Nonhomogeneous linear Boussinesq equation

(i) If 0 ≤ a < 1/2 then

∥∥∥∥
∫ t

0

Vs(t− t′)zxx(t
′)dt′

∥∥∥∥
C([0,T ]:Bs)

. T 1/2−a‖z‖XB
s,−a

.

(ii) If 0 ≤ a < 1/2, 0 ≤ b and a + b ≤ 1 then

∥∥∥∥θT (t)

∫ t

0

Vs(t− t′)zxx(t
′)dt′

∥∥∥∥
XB

s,b

. T 1−a−b‖z‖XB
s,−a

.

Proof.

(a) Again we refer the reader to [14] Lemma 2.2(a). Since in (b) we apply these

same arguments in the context of the Boussinesq equation, we omit the

proof of this item.
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(b) We know that (see [14] inequality (2.13))

∥∥∥∥θT (t)

∫ t

0

f(t′)dt′
∥∥∥∥

L∞t

. T 1/2−a ‖f‖H−a
t

. (5.4)

First, we will prove that

(I)
∥∥∥θT (t)

∫ t

0
Vs(t− t′)zxx(t

′)dt′
∥∥∥

L∞t Hs
. T 1/2−a‖z‖XB

s,−a
.

(II)
∥∥∥θT (t)(−∆)−1/2∂t

∫ t

0
Vs(t− t′)zxx(t

′)dt′
∥∥∥

L∞t Hs
. T 1/2−a‖z‖XB

s,−a
.

To prove (I), we observe that supξ∈R
|ξ|2
γ(ξ)

< ∞. Therefore, using Minkowski

inequality and (5.4) we obtain

∥∥∥∥θT (t)

∫ t

0

Vs(t− t′)zxx(t
′)dt′

∥∥∥∥
L∞t Hs

.
∥∥∥∥∥
∥∥∥∥θT (t)

∫ t

0

eit′γ(ξ)(1 + |ξ|2)s/2z∧(x)(ξ, t′)dt′
∥∥∥∥

L2
ξ

∥∥∥∥∥
L∞t

+

∥∥∥∥∥
∥∥∥∥θT (t)

∫ t

0

e−it′γ(ξ)(1 + |ξ|2)s/2z∧(x)(ξ, t′)dt′
∥∥∥∥

L2
ξ

∥∥∥∥∥
L∞t

. T 1/2−a
(∥∥〈τ + γ(ξ)〉−a〈ξ〉sz̃(ξ, τ)

∥∥
L2

ξ,τ

+
∥∥〈τ − γ(ξ)〉−a〈ξ〉sz̃(ξ, τ)

∥∥
L2

ξ,τ

)
.

Since ||τ | − γ(ξ)| ≤ min {|τ − γ(ξ)|, |τ + γ(ξ)|} and a ≥ 0 we obtain in-

equality (I).

To prove (II) we note that

∥∥∥∥θT (t)(−∆)1/2∂t

∫ t

0
Vs(t− t′)zxx(t′)dt′

∥∥∥∥
L∞t Hs−1

=

∥∥∥∥∥
∥∥∥∥|ξ|−1(1 + |ξ|2)(s−1)/2θT (t)

∫ t

0

cos((t− t′)γ(ξ))
γ(ξ)

γ(ξ)|ξ|2z∧(x)(ξ, t′)dt′
∥∥∥∥

L2
ξ

∥∥∥∥∥
L∞t

.

Therefore the same arguments used to prove inequality (I) yield (II).
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Now, we need to prove the continuity statements. We will prove only

for inequality (I), since for (II) it can be obtained applying analogous

arguments.

By an ε/3 argument, it is sufficient to establish this statement for z belonging

to the dense class S(R2) ⊆ XB
s,−a. A simple calculation shows

∂t

∫ t

0

Vs(t− t′)zxx(t
′)dt′ =

∫ t

0

Vc(t− t′)zxx(t
′)dt′.

Moreover, with essentially the same proof given above, inequality (I) holds

for Vc(t− t′) and ‖zxx‖XB
s,−a

instead of Vs(t− t′) and ‖z‖XB
s,−a

, respectively.

Therefore, by the fundamental Theorem of calculus we have for t1, t2 ∈ [0, T ]

∥∥∥∥
∫ t1

0

Vs(t1 − t′)zxx(t
′)dt′ −

∫ t2

0

Vs(t2 − t′)zxx(t
′)dt′

∥∥∥∥
Hs

=

∥∥∥∥
∫ t2

t1

(∫ t

0

Vc(t− t′)zxx(t
′)dt′

)
dt

∥∥∥∥
Hs

. (t2 − t1)

∥∥∥∥θT (t)

∫ t

0

Vc(t− t′)zxx(t
′)dt′

∥∥∥∥
L∞t Hs

. (t2 − t1)‖zxx‖XB
s,−a

which proves the continuity.

It remains to prove the second assertion, but this can be done applying the

same arguments as the ones used in the proof of Lemma 3.2.2-(ii) together

with the fact that supξ∈R
|ξ|2
γ(ξ)

< ∞.

¥
We recall that, for b > 1/2, XS

s,b and XB
s,b are embedding in C(R : Hs). For

the spaces associated to the Schrödinger equation this result is well know in the

literature. For the XB
s,b spaces, this embedding was proved in Lemma 3.2.3.

We finish this section with the following standard Bourgain-Strichartz

estimates.

Lemma 5.2.3 Let X̄S
s,b denote the space with norm

‖F‖X̄S
s,b

= ‖〈τ − ξ2〉b〈ξ〉sF̃‖L2
τ,ξ

.

Therefore

‖u‖L3
x,t
≤ c min{‖u‖XS

0,1/4+
, ‖u‖X̄S

0,1/4+
},
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where a+ means that there exists ε > 0 such that a+ = a + ε.

Proof. This estimate is easily obtained by interpolating between

– (Strichartz) ‖u‖L6
x,t
≤ c min{‖u‖XS

0,1/2+
, ‖u‖X̄S

0,1/2+
}.

– (Definition) ‖u‖L2
x,t

= ‖u‖XS
0,0

= ‖u‖X̄S
0,0

.

¥

5.3 Bilinear estimates

Again, our main tools to obtain the desired estimates are Lemmas 3.3.1-3.3.2

stated in the previous chapter.

Proof of Theorem 5.1.1

(i) For u ∈ XS
k,b and v ∈ XB

s,b we define

f(ξ, τ) ≡ 〈τ + ξ2〉b〈ξ〉kũ(ξ, τ),

g(ξ, τ) ≡ 〈|τ | − γ(ξ)〉b〈ξ〉sṽ(ξ, τ).

By duality the desired inequality is equivalent to

|W (f, g, φ)| ≤ c‖f‖L2
ξ,τ
‖g‖L2

ξ,τ
‖φ‖L2

ξ,τ
(5.5)

where

W (f, g, φ) =

∫

R4

〈ξ〉k
〈ξ1〉s〈ξ2〉k

g(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a〈σ1〉b〈σ2〉b dξdτdξ1dτ1

and

ξ2 = ξ − ξ1, τ2 = τ − τ1, (5.6)

σ = τ + ξ2, σ1 = |τ1| − γ(ξ1), σ2 = τ2 + ξ2
2 .

In view of Lemma 3.3.2, we know that 〈|τ1| − γ(ξ1)〉 ∼ 〈|τ1| − ξ2
1〉. Therefore

splitting the domain of integration into the regions {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 <

0} and {(ξ, τ, ξ1, τ1) ∈ R4 : τ1 ≥ 0}, it is sufficient to prove inequality (5.5)

with W1(f, g, φ) and W2(f, g, φ) instead of W (f, g, φ), where

W1(f, g, φ) =

∫

R4

〈ξ〉k
〈ξ1〉s〈ξ2〉k

g(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a〈τ1 + ξ2
1〉b〈σ2〉b dξdτdξ1dτ1



Chapter 5. Local and global solutions for the nonlinear
Schrödinger-Boussinesq system 118

and

W2(f, g, φ) =

∫

R4

〈ξ〉k
〈ξ1〉s〈ξ2〉k

g(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a〈τ1 − ξ2
1〉b〈σ2〉b dξdτdξ1dτ1.

Let us first treat the inequality (5.5) with W1(f, g, φ). In this case we will

make use of the following algebraic relation

−(τ + ξ2) + (τ1 + ξ2
1) + ((τ − τ1) + (ξ − ξ1)

2) = 2ξ1(ξ1 − ξ). (5.7)

By simmetry we can restrict ourselves to the set

A = {(ξ, τ, ξ1, τ1) ∈ R4 : |(τ − τ1) + (ξ − ξ1)
2| ≤ |τ1 + ξ2

1 |}.

First we split A into three pieces

A1 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≤ 10},
A2 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≥ 10 and |2ξ1 − ξ| ≥ |ξ1|/2},
A3 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≥ 10 and |ξ1 − ξ| ≥ |ξ1|/2}.

We have A = A1 ∪ A2 ∪ A3. Indeed

|ξ1| > |2ξ1 − ξ|+ |ξ1 − ξ| ≥ |(2ξ1 − ξ)− (ξ1 − ξ)| = |ξ1|.

Next we divide A3 into two parts

A3,1 = {(ξ, τ, ξ1, τ1) ∈ A3 : |τ1 + ξ2
1 | ≤ |τ + ξ2|},

A3,2 = {(ξ, τ, ξ1, τ1) ∈ A3 : |τ + ξ2| ≤ |τ1 + ξ2
1 |}.

We can now define the sets Ri, i = 1, 2, as follows

R1 = A1 ∪ A2 ∪ A3,1 and R2 = A3,2.
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Using the Cauchy-Schwarz and Hölder inequalities it is easy to see that

|W1|2 ≤ ‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥
〈ξ〉2k

〈σ〉2a

∫∫
χR1dξ1dτ1

〈ξ1〉2s〈ξ2〉2k〈τ1 + ξ2
1〉2b〈σ2〉2b

∥∥∥∥
L∞ξ,τ

+‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥

1

〈ξ1〉2s〈τ1 + ξ2
1〉2b

∫∫
χR2〈ξ〉2kdξdτ

〈ξ2〉2k〈σ〉2a〈σ2〉2b

∥∥∥∥
L∞ξ1,τ1

.

Noting that 〈ξ〉2k ≤ 〈ξ1〉2|k|〈ξ2〉2k, for k ≥ 0, and 〈ξ2〉−2k ≤ 〈ξ1〉2|k|〈ξ〉−2k, for

k < 0 we have 〈ξ〉2k

〈ξ1〉2s〈ξ2〉2k
≤ 〈ξ1〉2|k|−2s. (5.8)

Therefore in view of Lemma 3.3.1 it suffices to get bounds for

J1(ξ, τ) ≡ 1

〈σ〉2a

∫ 〈ξ1〉2|k|−2sdξ1

〈τ + ξ2 + 2ξ2
1 − 2ξξ1〉2b

on R1,

J2(ξ1, τ1) ≡ 〈ξ1〉2|k|−2s

〈τ1 + ξ2
1〉2b

∫
dξ

〈τ1 − ξ2
1 + 2ξξ1〉2a

on R2.

In region A1 we have 〈ξ1〉2|k|−2s . 1 and since a > 0, b > 1/2 we obtain

J1(ξ, τ) .
∫

|ξ1|≤10

dξ1 . 1.

In region A2, by the change of variables η = τ + ξ2 + 2ξ2
1 − 2ξξ1 and the

condition |2ξ1 − ξ| ≥ |ξ1|/2 we have

J1(ξ, τ) . 1

〈σ〉2a

∫ 〈ξ1〉2|k|−2s

|2ξ1 − ξ|〈η〉2b
dη

. 1

〈σ〉2a

∫ 〈ξ1〉2|k|−2s−1

〈η〉2b
dη . 1

since a > 0, |k| − s ≤ 1/2 and b > 1/2.

Now, by definition of region A3,1 and the algebraic relation (5.7) we have

〈ξ1〉2 . |ξ1|2 . |ξ1(ξ1 − ξ)| . 〈σ〉.
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Therefore by Lemma 3.3.1

J1(ξ, τ) .
∫ 〈ξ1〉2|k|−2s−4a

〈τ + ξ2 + 2ξ2
1 − 2ξξ1〉2b

dξ1

.
∫

1

〈τ + ξ2 + 2ξ2
1 − 2ξξ1〉2b

dξ1 . 1

since a > 0, |k| − s ≤ 2a and b > 1/2.

Next we estimate J2(ξ1, τ1). Making the change of variables, η = τ−ξ2
1+2ξξ1,

using the restriction in the region A3,2, we have

|η| . |(τ − τ1) + (ξ − ξ1)
2|+ |τ + ξ2| . 〈τ1 + ξ2

1〉.

Moreover, in A3,2

|ξ1|2 . |ξ1(ξ1 − ξ)| . 〈τ1 + ξ2
1〉.

Therefore, since |ξ1| ≥ 10 we have

J2(ξ1, τ1) . |ξ1|2|k|−2s

〈τ1 + ξ2
1〉2b

∫

|η|.〈τ1+ξ2
1〉

dη

|ξ1|〈η〉2a

. |ξ1|2|k|−2s−1

〈τ1 + ξ2
1〉2b+2a−1

. 1

in view of a > 0, |k| − s ≤ 1/2 and b > 1/2.

Now we turn to the proof of inequality (5.5) with W2(f, g, φ). In the following

estimates we will make use of the algebraic relation

−(τ + ξ2) + (τ1 − ξ2
1) + ((τ − τ1) + (ξ − ξ1)

2) = −2ξ1ξ. (5.9)

First we split R4 into four sets

B1 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≤ 10},
B2 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10 and |ξ| ≤ 1},
B3 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10, |ξ| ≥ 1 and |ξ| ≥ |ξ1|/2},
B4 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10, |ξ| ≥ 1 and |ξ| ≤ |ξ1|/2}.
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Next we separate B4 into three parts

B4,1 = {(ξ, τ, ξ1, τ1) ∈ B4 : |τ1 − ξ2
1 |, |(τ − τ1) + (ξ − ξ1)2| ≤ |τ + ξ2|},

B4,2 = {(ξ, τ, ξ1, τ1) ∈ B4 : |τ + ξ2|, |(τ − τ1) + (ξ − ξ1)2| ≤ |τ1 − ξ2
1 |},

B4,3 = {(ξ, τ, ξ1, τ1) ∈ B4 : |τ1 − ξ2
1 |, |τ + ξ2| ≤ |(τ − τ1) + (ξ − ξ1)2|}.

We can now define the sets Ri, i = 1, 2, 3, as follows

S1 = B1 ∪B3 ∪B4,1, S2 = B2 ∪B4,2 and S3 = B4,3.

Using the Cauchy-Schwarz and Hölder inequalities and duality it is easy to

see that

|W2|2 ≤ ‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥
〈ξ〉2k

〈σ〉2a

∫∫
χS1dξ1dτ1

〈ξ1〉2s〈ξ2〉2k〈τ1 − ξ2
1〉2b〈σ2〉2b

∥∥∥∥
L∞ξ,τ

+‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥

1

〈ξ1〉2s〈τ1 − ξ2
1〉2b

∫∫
χS2〈ξ〉2kdξdτ

〈ξ2〉2k〈σ〉2a〈σ2〉2b

∥∥∥∥
L∞ξ1,τ1

+‖f‖2
L2

ξ,τ
‖g‖2

L2
ξ,τ
‖φ‖2

L2
ξ,τ

×
∥∥∥∥∥

1

〈ξ2〉2k〈σ2〉2b

∫∫
χS̃3

〈ξ1 + ξ2〉2kdξ1dτ1

〈ξ1〉2s〈τ1 − ξ2
1〉2a〈σ〉2b

∥∥∥∥∥
L∞ξ2,τ2

.

where σ, σ2, ξ2, τ2 were given in (5.6) and

S̃3 ⊆
{

(ξ2, τ2, ξ1, τ1) ∈ R4 : |ξ1| ≥ 10, |ξ1 + ξ2| ≥ 1, |ξ1 + ξ2| ≤ |ξ1|/2
and |τ1 − ξ2

1 |, |(τ1 + τ2) + (ξ1 + ξ2)
2| ≤ |τ2 + ξ2

2 |

}
.

Noting that 〈ξ1 + ξ2〉2k ≤ 〈ξ1〉2|k|〈ξ2〉2k, for k ≥ 0, and 〈ξ2〉−2k ≤ 〈ξ1〉2|k|〈ξ1 +

ξ2〉−2k, for k < 0 we have

〈ξ1 + ξ2〉2k

〈ξ1〉2s〈ξ2〉2k
≤ 〈ξ1〉2|k|−2s.
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Therefore in view of Lemma 3.3.1 and (5.8) it suffices to get bounds for

K1(ξ, τ) ≡ 1

〈σ〉2a

∫ 〈ξ1〉2|k|−2sdξ1

〈τ + ξ2 − 2ξξ1〉2b
on S1,

K2(ξ1, τ1) ≡ 〈ξ1〉2|k|−2s

〈τ1 − ξ2
1〉2b

∫
dξ

〈τ1 − ξ2
1 + 2ξξ1〉2a

on S2,

K3(ξ1, τ1) ≡ 1

〈σ2〉2b

∫ 〈ξ1〉2|k|−2sdξ1

〈τ2 + ξ2
2 + 2ξ2

1 + 2ξ1ξ2〉2a
on S̃3.

In region B1 we have 〈ξ1〉2|k|−2s . 1 and since a > 0, b > 1/2 we obtain

K1(ξ, τ) .
∫

|ξ1|≤10

dξ1 . 1.

In region B3, the change of variables η = τ + ξ2 − 2ξξ1 and the condition

|ξ| ≥ |ξ1|/2 imply

K1(ξ, τ) . 1

〈σ〉2a

∫ 〈ξ1〉2|k|−2s

|ξ|〈η〉2b
dη

. 〈ξ1〉2|k|−2s−1

〈σ〉2a

∫
1

〈η〉2b
dη . 1

since a > 0, |k| − s ≤ 1/2 and b > 1/2.

Now, by definition of region B4,1 and the algebraic relation (5.9) we have

〈ξ1〉 . |ξ1| . |ξ1ξ| . 〈σ〉.

Therefore the change of variables η = τ +ξ2−2ξξ1 and the condition |ξ| ≥ 1

we have

K1(ξ, τ) . 1

〈σ〉2a

∫ 〈ξ1〉2|k|−2s

|ξ|〈η〉2b
dη

. 〈ξ1〉2|k|−2s−2a

|ξ|
∫

1

〈η〉2b
dη . 1

since a > 0, |k| − s ≤ a and b > 1/2.

Next we estimate K2(ξ1, τ1). Making the change of variables, η = τ1 − ξ2
1 +

2ξξ1 and using the restriction in the region B2, we have

|η| . |τ1 − ξ2
1 |+ |ξξ1| . |τ1 − ξ2

1 |+ |ξ1|.
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Therefore,

K2(ξ1, τ1) . |ξ1|2|k|−2s

〈τ1 − ξ2
1〉2b

∫

|η|.〈τ1−ξ2
1〉+|ξ1|

dη

|ξ1|〈η〉2a

. |ξ1|2|k|−2s−2a

〈τ1 − ξ2
1〉2b

+
|ξ1|2|k|−2s−1

〈τ1 − ξ2
1〉2b+2a−1

. 1

since a > 0, |k| − s ≤ min{1/2, a} and b > 1/2.

In the region B4,2, from the algebraic relation (5.9) we obtain

〈ξ1〉 . |ξ1| . |ξ1ξ| . 〈τ1 − ξ2
1〉.

Moreover, making the change of variables, η = τ1 − ξ2
1 + 2ξξ1, using the

restriction in the region B4,2 and (5.9), we obtain

|η| . 〈τ1 − ξ2
1〉.

Therefore,

K2(ξ1, τ1) . 〈ξ1〉2|k|−2s

〈τ1 − ξ2
1〉2b

∫

|η|.〈τ1−ξ2
1〉

dη

|ξ1|〈η〉2a

. |ξ1|2|k|−2s−1

〈τ1 − ξ2
1〉2b+2a−1

. 1

since a > 0, |k| − s ≤ 1/2 and b > 1/2.

Finally, we estimate K3(ξ1, τ1). In the region B4,3 we have by the algebraic

relation (5.9) that

〈ξ1〉 . |ξ1| . |ξ1(ξ1 + ξ2)| . 〈σ2〉.

Therefore in view of Lemma 3.3.1 we have

K3(ξ1, τ1) . 〈ξ1〉2|k|−2s−2b

∫
1

〈τ2 + ξ2
2 + 2ξ2

1 + 2ξ1ξ2〉2a
dξ1

. 1

since a > 1/4, |k| − s ≤ b and b > 1/2.
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(ii) For u1 ∈ XS
k,b and u2 ∈ XS

k,b we define

f(ξ, τ) ≡ 〈τ + ξ2〉b〈ξ〉kũ1(ξ, τ),

g(ξ, τ) ≡ 〈τ + ξ2〉b〈ξ〉kũ2(ξ, τ).

By duality the desired inequality is equivalent to

|Z(f, g, φ)| ≤ c‖f‖L2
ξ,τ
‖g‖L2

ξ,τ
‖φ‖L2

ξ,τ
(5.10)

where

Z(f, g, φ) =

∫

R4

〈ξ〉s
〈ξ1〉k〈ξ2〉k

h(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a〈σ1〉b〈σ2〉b dξdτdξ1dτ1

and

h(τ1, ξ1) = ḡ(−τ1,−ξ1), ξ2 = ξ − ξ1, τ2 = τ − τ1,

σ = |τ | − γ(ξ), σ1 = τ1 − ξ2
1 , σ2 = τ2 + ξ2

2 .

Therefore applying Lemma 3.3.2 and splitting the domain of integration

according to the sign of τ it is sufficient to prove inequality (5.10) with

Z1(f, g, φ) and Z2(f, g, φ) instead of Z(f, g, φ), where

Z1(f, g, φ) =

∫

R4

〈ξ〉s
〈ξ1〉k〈ξ2〉k

h(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈τ + ξ2〉a〈σ1〉b〈σ2〉b dξdτdξ1dτ1

and

Z2(f, g, φ) =

∫

R4

〈ξ〉s
〈ξ1〉k〈ξ2〉k

h(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈τ − ξ2〉a〈σ1〉b〈σ2〉b dξdτdξ1dτ1.

Remark 5.3.1 Note that Z1(f, g, φ) is not equal to W2(f, g, φ) since the

powers of the terms 〈ξ〉 and 〈ξ1〉 are different.

First we treat the inequality (5.10) with Z1(f, g, φ). In this case we will make

use of the following algebraic relation

−(τ + ξ2) + (τ1 − ξ2
1) + ((τ − τ1) + (ξ − ξ1)

2) = −2ξ1ξ. (5.11)
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We split R4 into five pieces

A1 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ| ≤ 10 and |ξ1| ≤ 100},
A2 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ| ≤ 10 and |ξ1| ≥ 100},
A3 = {(ξ, τ, ξ1, τ1) ∈ R4 : |ξ| ≥ 10 and [|ξ1| ≤ 1 or |ξ2| ≤ 1]},

A4 =

{
(ξ, τ, ξ1, τ1) ∈ R4 : |ξ| ≥ 10, |ξ1| ≥ 1, |ξ2| ≥ 1

and [|ξ1| ≥ 2|ξ2| or |ξ2| ≥ 2|ξ1|]

}
,

A5 =

{
(ξ, τ, ξ1, τ1) ∈ R4 : |ξ| ≥ 10, |ξ1| ≥ 1, |ξ2| ≥ 1

and |ξ1|/2 ≤ |ξ2| ≤ 2|ξ1|

}
.

Next we separate A5 into three parts

A5,1 = {(ξ, τ, ξ1, τ1) ∈ A5 : |τ1 − ξ2
1 |, |(τ − τ1) + (ξ − ξ1)2| ≤ |τ + ξ2|},

A5,2 = {(ξ, τ, ξ1, τ1) ∈ A5 : |τ + ξ2|, |(τ − τ1) + (ξ − ξ1)2| ≤ |τ1 − ξ2
1 |},

A5,3 = {(ξ, τ, ξ1, τ1) ∈ A5 : |τ1 − ξ2
1 |, |τ + ξ2| ≤ |(τ − τ1) + (ξ − ξ1)2|}.

Therefore by the same argument as the one used in the proof of (i) it suffices

to get bounds for

L1(ξ, τ) ≡ 1

〈τ + ξ2〉2a

∫ 〈ξ1〉−2k〈ξ2〉−2k〈ξ〉2sdξ1

〈τ + ξ2 − 2ξξ1〉2b
on V1,

L2(ξ1, τ1) ≡ 1

〈σ1〉2b

∫ 〈ξ1〉−2k〈ξ2〉−2k〈ξ〉2sdξ

〈τ1 − ξ2
1 + 2ξξ1〉2a

on V2,

L3(ξ1, τ1) ≡ 1

〈σ2〉2b

∫ 〈ξ1〉−2k〈ξ2〉−2k〈ξ〉2sdξ1

〈τ2 + ξ2
2 + 2ξ2

1 + 2ξ1ξ2〉2a
on Ṽ3.

where

V1 = A3 ∪ A4 ∪ A5,1, V2 = A1 ∪ A2 ∪ A5,2

and

Ṽ3 ⊆





(ξ2, τ2, ξ1, τ1) ∈ R4 : |ξ1 + ξ2| ≥ 10, |ξ1| ≥ 1,

|ξ2| ≥ 1, |ξ1|/2 ≤ |ξ2| ≤ 2|ξ1|
and |τ1 − ξ2

1 |, |(τ1 + τ2) + (ξ1 + ξ2)
2| ≤ |τ2 + ξ2

2 |





.

First we estimate L1(ξ, τ). In the regions A3 or A4 it is easy to see that
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max{|ξ1|, |ξ2|} ∼ |ξ|, therefore

〈ξ1〉−k〈ξ2〉−k〈ξ〉s . 〈ξ〉γ(k)

where

γ(k) =

{
s + 2|k|, if k ≤ 0

s− k, if k > 0.

Remark 5.3.2 Note that ξ = N + 1 and ξ1 = N belong to A3, for all

N ≥ 100. In all of this cases |ξ2| = 1. Therefore, we cannot expect, in

general, that both |ξ1| and |ξ2| are equivalent to |ξ|. Because of this fact we

define γ(k) = s− k, for k > 0.

Then, making the change of variables η = τ + ξ2 − 2ξξ1, we have

L1(ξ, τ) . 〈ξ〉2γ(k)

〈τ + ξ2〉2a

∫
dη

|ξ|〈η〉2b
. 1

since a > 0, b > 1/2, and γ(k) ≤ 1/2, that is, s − k ≤ 1/2, if k > 0 and

s + 2|k| ≤ 1/2, if k ≤ 0 .

In region A5 we have

〈ξ1〉−k〈ξ2〉−k〈ξ〉s . 〈ξ1〉γ(s,k) (5.12)

where

γ(s, k) =





0, if s ≤ 0, k > 0

2|k|, if s ≤ 0, k ≤ 0

s− 2k, if s > 0, k > 0

s + 2|k|, if s > 0, k ≤ 0.

Moreover, the restriction in the region A5,1, the condition |ξ| > 10 and the

algebraic relation (5.11) give us

〈ξ1〉 . |ξ1| . |ξ1ξ| . 〈τ + ξ2〉.
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Therefore

L1(ξ, τ) .
∫ 〈ξ1〉2γ(s,k)−2adη

|ξ|〈η〉2b

. 1

|ξ|
∫

dη

〈η〉2b
. 1

if a > 0, b > 1/2 and γ(s, k) ≤ a, that is, 2|k| ≤ a , if s ≤ 0, k ≤ 0 and

s− 2k ≤ a, if s > 0.

Next we estimate L2(ξ1, τ1). In region A1 we have 〈ξ1〉−2k〈ξ2〉−2k〈ξ〉2s . 1

and since a, b > 0, we obtain

L2(ξ1, τ2) .
∫

|ξ|≤10

dξ . 1.

In region A2, we have |ξ1| ∼ |ξ2|, therefore

〈ξ1〉−k〈ξ2〉−k〈ξ〉2s . 〈ξ1〉θ(k).

where

θ(k) =

{
0, if k > 0

2|k|, if k ≤ 0.

Making the change of variables, η = τ1 − ξ2
1 + 2ξξ1, using the restriction in

the region A2, we have

|η| . |τ1 − ξ2
1 |+ |ξξ1| . |τ1 − ξ2

1 |+ |ξ1|.

Therefore,

L2(ξ1, τ1) . 〈ξ1〉2θ(k)

〈τ1 − ξ2
1〉2b

∫

|η|.〈τ1−ξ2
1〉+|ξ1|

dη

|ξ1|〈η〉2a

. |ξ1|2θ(k)−2a

〈τ1 − ξ2
1〉2b

+
|ξ1|2θ(k)−1

〈τ1 − ξ2
1〉2b+2a−1

. 1

since a > 0, b > 1/2 and θ(k) ≤ min{1/2, a}, that is, |k| ≤ min{1/4, a/2},
if k ≤ 0.
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Now we turn to the region A5,2. From (5.11) and the condition |ξ| > 10 we

have

〈ξ1〉 . |ξ1| . |ξ1ξ| . 〈τ1 − ξ2
1〉

and

|η| . |τ1 − ξ2
1 |+ |ξξ1| . 〈τ1 − ξ2

1〉.

Therefore, making the change of variables, η = τ1 − ξ2
1 + 2ξξ1, and using

(5.12), we obtain

L2(ξ1, τ1) . 〈ξ1〉2γ(s,k)

〈τ1 − ξ2
1〉2b

∫

|η|.〈τ1−ξ2
1〉

dη

|ξ1|〈η〉2a

. 〈ξ1〉2γ(s,k)−1

〈τ1 − ξ2
1〉2b+2a−1

. 1

since a > 0, b > 1/2 and γ(s, k) ≤ 1/2.

Finally, we bound L3(ξ1, τ1). Again, we use (5.11), so in the region A5,3 we

have 〈ξ1〉 . 〈σ2〉.From Lemma 3.3.1 it follows that

L3(ξ1, τ1) . 〈ξ1〉2γ(s,k)−2b

∫
1

〈τ2 + ξ2
2 + 2ξ2

1 + 2ξ1ξ2〉2a
dξ1

. 1

since a > 1/4, b > 1/2 and γ(s, k) ≤ b.

Now we turn to the proof of inequality (5.10) with Z2(f, g, φ). First we

making the change of variables τ2 = τ − τ1, ξ2 = ξ − ξ1 to obtain

Z2(f, g, φ) =

∫

R4

〈ξ〉s
〈ξ − ξ2〉k〈ξ2〉k

× h(ξ − ξ2, τ − τ2)f(ξ2, τ2)φ̄(ξ, τ)

〈τ − ξ2〉a〈(τ − τ2)− (ξ − ξ2)2〉b〈τ2 + ξ2
2〉b

dξdτdξ2dτ2

then changing the variables (ξ, τ, ξ2, τ2) 7→ −(ξ, τ, ξ2, τ2) we can rewrite

Z2(f, g, φ) as

Z2(f, g, φ) =

∫

R4

〈ξ〉s
〈ξ − ξ2〉k〈ξ2〉k

× k(ξ − ξ2, τ − τ2)l(ξ2, τ2)ψ̄(ξ, τ)

〈τ + ξ2〉a〈τ − τ2 + (ξ − ξ2)2〉b〈τ2 − ξ2
2〉b

dξdτdξ2dτ2

where
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k(a, b) = h(−a,−b), l(a, b) = f(−a,−b) and ψ(a, b) = φ(−a,−b).

But this is exactly Z1(f, g, φ) with ξ1, h, f, φ replaced respectively by

ξ2, l, k, ψ. Since the L2-norm is preserved under the reflection operation the

result follows from the estimate for Z1(f, g, φ).

¥
Now we turn to the proof of the bilinear estimates with b < 1/2 and s = 0.

Proof of Theorem 5.1.3

(i) For u ∈ XS
0,b1

and v ∈ XB
0,b we define

f(ξ, τ) ≡ 〈τ + ξ2〉b1ũ(ξ, τ),

g(ξ, τ) ≡ 〈|τ | − γ(ξ)〉bṽ(ξ, τ).

By duality the desired inequality is equivalent to

|R(f, g, φ)| ≤ c‖f‖L2
ξ,τ
‖g‖L2

ξ,τ
‖φ‖L2

ξ,τ
(5.13)

where

R(f, g, φ) =

∫

R4

g(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a1〈σ1〉b〈σ2〉b1 dξdτdξ1dτ1

and
ξ2 = ξ − ξ1, τ2 = τ − τ1, (5.14)

σ = τ + ξ2, σ1 = |τ1| − γ(ξ1), σ2 = τ2 + ξ2
2 .

Without loss of generality we can suppose that f, g, φ are real valued and

non-negative. Therefore, by Lemma 3.3.2 we have

R(f, g, φ) ≤
∫

R4

g(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a1〈τ1 + ξ2
1〉b〈σ2〉b1 dξdτdξ1dτ1

+

∫

R4

g(ξ1, τ1)f(ξ2, τ2)φ̄(ξ, τ)

〈σ〉a1〈τ1 − ξ2
1〉b〈σ2〉b1 dξdτdξ1dτ1

≡ R+ + R−.
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Applying Plancherel’s identity and Holder’s inequality we obtain

R± =
∫

R2

(
g(ξ, τ)
〈τ ± ξ2〉b

)∼−1 (
f(ξ, τ)
〈τ + ξ2〉b1

)∼−1 (
φ̄(ξ, τ)

〈τ + ξ2〉a1

)∼−1

dξdτ

≤
∥∥∥∥∥
(

g(ξ, τ)
〈τ ± ξ2〉b

)∼−1
∥∥∥∥∥

L3
x,t

∥∥∥∥∥
(

f(ξ, τ)
〈τ + ξ2〉b1

)∼−1
∥∥∥∥∥

L3
x,t

∥∥∥∥∥
(

φ̄(ξ, τ)
〈τ + ξ2〉a1

)∼−1∥∥∥∥∥
L3

x,t

.

Now, the fact that a1, b, b1 > 1/4 together with Lemma 5.2.3 yields the

result.

(ii) For u1 ∈ XS
0,b1

and u2 ∈ XS
0,b1

we define

f(ξ, τ) ≡ 〈τ + ξ2〉b1ũ1(ξ, τ),

g(ξ, τ) ≡ 〈τ + ξ2〉b1ũ2(ξ, τ).

By duality the desired inequality is equivalent to

|S(f, g, φ)| ≤ c‖f‖L2
ξ,τ
‖g‖L2

ξ,τ
‖φ‖L2

ξ,τ
(5.15)

where

S(f, g, φ) =

∫

R4

ḡ(ξ2, τ2)f(ξ1, τ1)φ̄(ξ, τ)

〈σ〉a〈σ1〉b1〈σ2〉b1 dξdτdξ1dτ1

and

ξ2 = ξ1 − ξ, τ2 = τ1 − τ,

σ = |τ | − γ(ξ), σ1 = τ1 + ξ2
1 , σ2 = τ2 + ξ2

2 .

We note that the estimate above is the same as the stated in item (i),

replacing ξ, τ, b, a1 by ξ1, τ1, a, b1 and f, g, φ̄ by ḡ, φ̄, f , respectively. Therefore

we need the restriction a, b1 > 1/4.

¥

5.4 Local well-posedness

Proof of Theorem 5.1.2. The proof proceeds by a standard contraction

principle method applied to the integral equations associated to the IVP (5.1).

Given (u0, v0, v1) ∈ Hk(R) ×Hs(R) ×Hs−1(R) and T ≤ 1 we define the integral
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operators

ΓS
T (u, v)(t) =θT (t)U(t)u0 − iθT (t)

∫ t

0
U(t− t′)(vu)(t′)dt′

ΓB
T (u, v)(t) =θT (t) (Vc(t)v0 + Vs(t)(v1)x) + θT (t)

∫ t

0
Vs(t− t′)(|u|2)xx(t′)dt′.

(5.16)

Our goal is to use the Picard fixed point theorem to find a solution

ΓS
T (u, v) = u,

ΓB
T (u, v) = v.

Let k, s satisfy the conditions (i)−(ii) of Theorem 5.1.2. It is easy to see that

we can find ε > 0 small enough such that for b = 1/2+ε and a = 1/2−2ε, Theorem

5.1.1 holds. Therefore using Lemmas 5.2.1-5.2.2, Theorem 5.1.1 and T ≤ 1, we

have

‖ΓS
T (u, v)‖XS

k,b
≤ c ‖u0‖Hk + cT ε ‖uv‖XS

k,−a

≤ c ‖u0‖Hk + cT ε ‖u‖XS
k,b
‖v‖XB

s,b
,

‖ΓB
T (u, v)‖XB

s,b
≤ c ‖v0, v1‖Bs + cT ε ‖uū‖XB

s,−a

≤ c ‖v0, v1‖Bs + cT ε ‖u‖2
XS

k,b
.

Similarly,

‖ΓS
T (u, v)− ΓS

T (z, w)‖XS
k,b
≤ c T ε

(
‖u‖XS

k,b
‖v − w‖XB

s,b

+ ‖u− z‖XS
k,b
‖w‖XB

s,b

)
,

‖ΓB
T (u, v)− ΓB

T (z, w)‖XB
s,b
≤ c T ε

(
‖u‖XS

k,b
+ ‖z‖XS

k,b

)

× ‖u− z‖XS
k,b

.

We define

XS
k,b(dS) =

{
u ∈ XS

k,b : ‖u‖XS
k,b
≤ dS

}
,

XB
s,b(dB) =

{
v ∈ XB

s,b : ‖v‖XB
s,b
≤ dB

}
,

where dS = 2c‖u0‖Hk and dB = 2c‖v0, v1‖Bs .

Then choosing
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0 < T ε ≤ 1

4
min

{
1

cdB

,
dB

cd2
S

,
1

c(dS + dB)
,

1

2cdS

}
(5.17)

we have that (ΓS
T , ΓB

T ) : XS
k,b(dS)×XB

s,b(dB) → XS
k,b(dS)×XB

s,b(dB) is a contraction

mapping and we obtain a unique fixed point which solves the integral equation

(5.16) for any T that satisfies (5.17).

Remark 5.4.1 Note that the choice of suitable values of a, b is essential for our

argument. In fact, since 1− (a + b) = ε > 0, the factor T ε can be used directly to

obtain a contraction factor for T sufficient small.

Moreover, by Lemma 3.2.3, we have that ũ = u|[0,T ] ∈ C([0, T ] : Hs) ∩XS,T
k,b

and ṽ = v|[0,T ] ∈ C([0, T ] : Hs) ∩XB,T
s,b is a solution of (0.25) in [0, T ].

Using the same arguments as the ones in the Uniqueness part of Theorem

3.1.3 we one can, in fact, prove that the solution (u, v) of (0.25) obtained above

is unique in the whole space XS,T
k,b × XB,T

s,b . Finally, we remark that since we

established the existence of a solution by a contraction argument, the proof that

the map (u0, v0, v1) 7→ (u(t), v(t)) is locally Lipschitz follows easily.

¥

5.5 Global well-posedness

Proof of Theorem 5.1.4. For (u0, v0, v1) ∈ L2(R)× L2(R)×H−1(R) and

T ≤ 1 we consider the integral equations given by (5.16). Therefore, applying

Lemmas 5.2.1-5.2.2 and Theorem 5.1.3, we obtain

‖ΓS
T (u, v)‖XS

0,b1
≤ cT 1/2−b1‖u0‖L2 + cT 1−(a1+b1) ‖uv‖XS

0,−a1

≤ cT 1/2−b1‖u0‖L2 + cT 1−(a1+b1) ‖u‖XS
0,b1

‖v‖XB
0,b

,

‖ΓB
T (u, v)‖XB

0,b
≤ cT 1/2−b‖v0, v1‖B + cT 1−(a+b) ‖uū‖XB

0,−a

≤ cT 1/2−b‖v0, v1‖B + cT 1−(a+b) ‖u‖2
XS

0,b1

(5.18)

and also

‖ΓS
T (u, v)− ΓS

T (z, w)‖XS
0,b1

≤ cT 1−(a1+b1)
(
‖u‖XS

0,b1

‖v − w‖XB
0,b

+ ‖u− z‖XS
0,b1

‖w‖XB
0,b

)
,

‖ΓB
T (u, v)− ΓB

T (z, w)‖XB
0,b
≤ cT 1−(a+b)

(
‖u‖XS

0,b1

+ ‖z‖XS
0,b1

)

× ‖u− z‖XS
0,b1

.

(5.19)
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We define

XS
0,b1

(d1) =
{

u ∈ XS
0,b1

: ‖u‖XS
0,b1

≤ d1

}
,

XB
0,b(d) =

{
v ∈ XB

0,b : ‖v‖XB
0,b
≤ d

}
,

where d1 = 2cT 1/2−b1‖u0‖L2 and d = 2cT 1/2−b‖v0, v1‖B.

For (ΓS
T , ΓB

T ) to be a contraction in XS
0,b1

(d1)×XB
0,b(d) it needs to satisfy

d1/2 + cT 1−(a1+b1)d1d ≤ d1 ⇔ T 3/2−(a1+b1+b)‖v0, v1‖B . 1, (5.20)

d/2 + cT 1−(a+b)d2
1 ≤ d ⇔ T 3/2−(a+2b1)‖u0‖2

L2 . ‖v0, v1‖B, (5.21)

2cT 1−(a+b)d1 ≤ 1/2 ⇔ T 3/2−(a+b+b1)‖u0‖L2 . 1, (5.22)

2cT 1−(a1+b1)d1 ≤ 1/2 ⇔ T 3/2−(a1+2b1)‖u0‖L2 . 1. (5.23)

Therefore, we conclude that there exists a solution (u, v) ∈ XS
0,b1

× XB
0,b

satisfying

‖u‖XS
0,b1

≤ 2cT 1/2−b1‖u0‖L2 and ‖v‖XB
0,b
≤ 2cT 1/2−b‖v0, v1‖B. (5.24)

On the other hand, applying Lemmas 5.2.1-5.2.2 we have that, in fact,

(u, v) ∈ C([0, T ] : L2) × C([0, T ] : L2). Moreover, since the L2-norm of u is

conserved by the flow we have ‖u(T )‖L2 = ‖u0‖L2 .

Now, we need to control the growth of ‖v(t)‖B in each time step. If, for

all t > 0, ‖v(t)‖B . ‖u0‖2
L2 we can repeat the local well-posedness argument

and extend the solution globally in time. Thus, without loss of generality, we

suppose that after some number of iterations we reach a time t∗ > 0 where

‖v(t∗)‖B À ‖u0‖2
L2 .

Hence, since T ≤ 1, condition (5.21) is automatically satisfied and conditions

(5.20)-(5.23) imply that we can select a time increment of size

T ∼ ‖v(t∗)‖−1/(3/2−(a1+b1+b))
B . (5.25)
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Therefore, applying Lemmas 5.2.1(b)-5.2.2(b) to v = ΓB
T (u, v) we have

‖v(t∗ + T )‖B ≤ ‖v(t∗)‖B + cT 3/2−(a+2b1)‖u0‖2
L2 .

Thus, we can carry out m iterations on time intervals, each of length (5.25),

before the quantity ‖v(t)‖B doubles, where m is given by

mT 3/2−(a+2b1)‖u0‖2
L2 ∼ ‖v(t∗)‖B.

The total time of existence we obtain after these m iterations is

∆T = mT ∼ ‖v(t∗)‖B

T 1/2−(a+2b1)‖u0‖2
L2

∼ ‖v(t∗)‖B

‖v(t∗)‖−(1/2−(a+2b1))/(3/2−(a1+b1+b))
B ‖u0‖2

L2

.

Taking a, b, a1, b1 such that

a + 2b1 − 1/2

(3/2− (a1 + b1 + b))
= 1

(for instance, a = b = a1 = b1 = 1/3), we have that ∆T depends only on ‖u0‖L2 ,

which is conserved by the flow. Hence we can repeat this entire argument and

extend the solution (u, v) globally in time.

Moreover, since in each step of time ∆T the size of ‖v(t)‖B will at most

double it is easy to see that, for all T̃ > 0

‖v(T̃ )‖B . exp ((ln 2)‖u0‖2
L2T̃ ) max {‖v0, v1‖B, ‖u0‖L2}. (5.26)

¥
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