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Abstract

This thesis focuses on finite element and domain decomposition applications
to three mathematical models related to fluid flow in porous media. The models
have application in a variety of fields including areas such as petroleum engi-
neering, environmental sciences, hydrology and biology, among others. The first
model considered is the Darcy-Stokes coupling. We study the well posedness of the
continuous model. We introduce a discretization, obtain the well posedness of the
discrete model and derive a priori error estimates. We also design and analyze two
domain decomposition preconditioners. The second model is the pressure equa-
tion with discontinuous coefficients. Here we design and analyze several domain
decomposition preconditioners for the resulting linear system of a Discontinuous
Galerkin type discretization. The third subject is the study of the stochastic pres-
sure equation (without replacing the ordinary product by the Wick product). We
use the white noise measure constructed from a Hilbert space and an operator to
define and characterize adequate spaces for its solution. The approximation con-
sists of a truncated Chaos expansion. We verify the well posedness of the discrete
model and provide a priori error estimates. In all cases numerical experiments
verify the theoretical results.

Keywords: finite element, porous media flow, multiphysics, multidomain, inf-sup
condition, error estimates, mortar, non-matching grids, Stokes-Darcy coupling,
domain decomposition preconditioners, discontinuous coefficients, interior penalty
discretization, Discontinuous Galerkin, white noise analysis, Wiener Chaos expan-
sion, stochastic simulation, ordinary product stochastic pressure equation
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Resumo

Esta tese concentra-se em aplicações da análise de elementos finitos e de-
composição de domı́nios a três modelos relacionados com o fluxo de fluidos em
meios porosos. Estes modelos tem aplicações em varias áreas como engenharia
de petróleo, ciências ambientais, hidrologia e biologia, entre outras. O primeiro
modelo considerado é o acoplamento Darcy-Stokes. Estudamos a boa colocação
do modelo cont́ınuo. Introduzimos uma discretização, obtemos a boa colocação
do modelo discreto e estimativas de erro a priori. Também desenvolvemos e anal-
isamos precondicionadores de decomposição de domı́nios. O segundo modelo é a
equação da pressão com coeficientes descont́ınuos. Desenvolvemos e analisamos
vários preconditionadores de decomposição de domı́nio para o sistema linear que
resulta de uma discretização do tipo Galerkin Descont́ınuo. O terceiro tópico
é o estudo da equação da pressão estocástica (com produto ordinário ao invés
do produto Wick). Usamos a medida de ruido branco constrúıda de um espaço
de Hilbert e um operador para definir e caracterizar espaços adequados para sua
solução. A aproximação consiste de uma expansão em Caos truncada. Verificamos
a boa colocação do modelo discreto e apresentamos estimativas de erro a priori.
Nos três casos, experimentos numéricos confirmam os resultados teóricos.

Palavras-chaves: elementos finitos, fluxo em meio poroso, multi-f́ısica, multi-
domı́nio, condição inf-sup, estimativas de erro, mortar, malhas não alinhadas,
acoplamento Stokes-Darcy, precondicionadores de decomposição de domı́nio, co-
eficientes descont́ınuos, Galerkin descont́ınuo, análise de rúıdo branco, expansão
em caos de Wiener, simulação estocástica, equação da pressão estocástica com
produto ordinário.
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Chapter 1

Introduction

Modeling fluid flow in porous media appears in a wide range of applications in-
cluding areas such as petroleum engineering, environmental sciences, biology, hy-
drology and geology, among others. In this chapter we present some general ideas
concerning the modeling of fluid flow in porous media and we introduce the topics
studied in this thesis.

1.1 A snapshot of modeling of fluid flow in porous media

Modeling of fluid flow in porous media involves several important theoretical and
numerical questions. The development of new mathematical and computational
framework is fundamental for dealing efficiently with several important difficul-
ties inherent to the porous medium modeling such as heterogeneities and lack of
measurements. Any modeling project involving porous media flow, like in the
numerical simulation of (multiphase) reservoir problems, has to deal with these
difficulties. The numerical methods used to overcome these challenges should be
efficient and take advantages of the increasing understanding of the mathematical
models and of the growing computational capacity of modern computers .

The Darcy’s law is one of the main tools in the (continuous) modeling of porous
media flow. For a single fluid in the porous domain D ⊂ Rd, this law can be written
as

u = −K
µ
∇p+ F , (1.1)

where u : D → Rd is the seepage velocity of the fluid, the function p : D → R is
the fluid pressure, the scalar µ is the fluid viscosity and the function F : D → Rd

represents an external force. The parameter K is the absolute permeability tensor
that summarizes the capacity of the medium of letting the fluid flow. In general,
K is a symmetric positive definite matrix and, as should be expected, is a very
complicated object that offers several challenges and difficulties to overcome in its
numerical treatment.

In the numerical modeling of fluid flows in porous media we have to solve
equation (1.1). For instance, when dealing with the mathematical modeling of
transport of pollutants or oil recovery processes, we have to face a system of,
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Introduction

possibly stochastic, partial differential equations which models the two-phase flow
in a porous medium. The system is composed of two equations, a transport
equation for the saturation (the relative volume of one of the two fluids) coupled
with an equation for the velocity field, which is given by the Darcy’s law and the
incompressibility condition of the flow. With no sources or sinks, and neglecting
the effects of gravity and capillarity, these equations are of the form (Ewing [1983],
Bedrikovetsky [1993]):

u = λ(s)K∇p
∇ · u = 0

∂s

∂t
+∇ · (F (s)u) = 0.

(1.2)

Here, u is the total seepage velocity, s is the water saturation, K is the permeability
and p is the pressure. The constitutive functions λ(s) and F (s) represent the
total mobility and the fractional flow of the water, respectively. The numerical
approximation of (1.2) needs to deal with an equation of the form

−∇. (κ∇p) = f in D, (1.3)

where κ = λ(s)K. Instead of equation (1.3), its mixed formulation can appear,
i.e., an equation of the form{

κ−1u+∇p = 0, in D
∇ · u = f, on D.

(1.4)

Approximating the solution of (1.3) or (1.4) requires the computation of the solu-
tion of a large, sparse, ill conditioned and (maybe) indefinite linear system. The
solution of this kind of linear system requires large CPU time and a lot of memory
resources. In general, solving (1.3) or (1.4) is the computational bottleneck of the
overall numerical computation. The situation is similar in other examples such
as three phase flow models and other problems; see Ewing [1983], Bedrikovetsky
[1993].

1.2 Summary of the thesis

We study three important subjects related with the numerical approximation of
the solutions of equations (1.3) and (1.4).

• Fluid flow across the well/reservoir interface: It is in the surroundings
of the well/reservoir interface where occurs the most interesting dynamics.
We cannot expect that the Darcy’s law by itself can offer a good modeling
choice because the governing equations of the flow are very different on each
side of the interface. Then, it is desirable to have a reliable theoretical and
numerical model that mimics this complex coupling situation as accurate as
possible.

• Heterogeneity of the permeability field: In reservoir modeling appli-
cations, the permeability of the rock can vary in order of magnitude. The
variation in the permeability leads to difficulties in the approximation of some
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quantities such as pressure and seepage velocity since it is expected that these
quantities behave according to the fluctuations of the permeability. Numeri-
cal methods designed for homogeneous permeability do not work properly in
the presence of heterogeneities. Then it is desirable to use adequate numer-
ical schemes designed for heterogeneous permeability fields. These schemes
should be reliable and efficient in the computation of the quantities of interest
(seepage velocity, pressure, etc).

• Uncertainty of the permeability field: The heterogeneities of the porous
medium occur at different scales, from the porous to the reservoir scale. This
multiplicity of scales makes impossible the accurate knowledge of the proper-
ties of the rock. These properties determine the flow and/or transport of fluids
in the porous medium. This uncertainty is incorporated to the model by let-
ting some coefficients of the governing equations to be random or stochastic.
Then, it is desirable to have numerical schemes that capture the behavior
of the solution that depends on this uncertainty. We want this numerical
methods to be reliable and efficient.

This thesis is the compilation of five (published or submitted for publication)
works addressing mathematical and numerical analysis issues of the three main
topics just described.

• Fluid flow across the well/reservoir interface: We consider this topic
from the well-posedness of the linear stationary model to the construction
and analysis of finite element discretizations and domain decomposition pre-
conditioners.

• Heterogeneity of the permeability field: We focus on the efficient com-
putation of the numerical solution of the pressure equation with discontinuous
coefficients. We consider a Discontinuous Galerkin discretization for properly
handling of the discontinuous coefficients and concentrate our effort in the
construction of domain decomposition preconditioners.

• Uncertainty of the permeability field: We consider the stochastic pres-
sure equation. We study the existence of solutions of this stochastic partial
differential equation and propose a finite element approximation.

In all the cases numerical experiments confirm the theoretical results.

1.3 Structure of the thesis

The thesis is divided in two parts. Part I contains introduction, summary of the
results, general conclusions and possible future research for each one of the three
topics. Part II is divided in five chapters where each one, of these chapters contains
a published or submitted for publication work (with minor notational modifica-
tions).

In Chapter 2 we summarize Chapters 5 and 6 on the coupling between fluid
flow and porous media flow.
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In Chapter 3 we present some preliminaries on Discontinuous Galerkin dis-
cretization of elliptic problems with discontinuous coefficients, and we summarize
Chapters 7 and 8 on domain decomposition preconditioners for this discretization.

In Chapter 4 we present some preliminaries on white noise theory and sum-
marize Chapter 9 on finite element analysis for the (ordinary product) stochastic
pressure equations.

1.4 List of papers and contribution

• Chapter 5: Galvis and Sarkis [2007b].

• Chapter 6: Galvis and Sarkis [2007a].

• Chapter 7: Dryja, Galvis and Sarkis [2007a].

• Chapter 8: Dryja, Galvis and Sarkis [2007b].

• Chapter 9: Galvis and Sarkis [2008a].

In the papers Galvis and Sarkis [2007a,b, 2008a], I develop both the theoreti-
cal and computational experiments in collaboration with Professor Marcus Sarkis.
The work Galvis and Sarkis [2007b] is based on the preliminary work Galvis [2004]
while Galvis and Sarkis [2007a] extends and improves the preliminary work Galvis
and Sarkis [2006].

In the paper Dryja, Galvis and Sarkis [2007b], the theoretical and computa-
tional tools have been achieved in collaboration with Professors Maksymilian Dryja
and Marcus Sarkis. The papers Dryja, Galvis and Sarkis [2007a,b] are based on
the preliminary work Dryja and Sarkis [2006]. My main contribution to Dryja,
Galvis and Sarkis [2007a] consists of developing the numerical experiments.
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Chapter 2

Darcy-Stokes Coupling

In this chapter we introduce the basic ideas on the coupling of free fluid flow with
porous media flow. We present some preliminaries on Darcy-Stokes coupling and
describe the results of Chapters 5 and 6.

2.1 The continuous model

An incompressible fluid in a region Df ⊂ Rn can flow both ways across an interface
Γ into a saturated porous medium domain Dp ⊂ Rn. The model consists of Stokes’
equations in the fluid region and Darcy’s law for the filtration velocity in the porous
medium region; see Figure 2.1. Define the interface Γ := Df ∩Dp and the domain
D = int(Df ∪Dp). The equations are:

Stokes’ equations

 −∇ · T (uf , pf ) = f f in Df

∇ · uf = gf in Df

uf = hf on Γf := ∂Df \ Γ
(2.1)

and

Darcy’s equations

 up = −κ
ν
∇pp in Dp

∇ · up = gp in Dp

up · ηp = hp on Γp := ∂Dp \ Γ.
(2.2)

Here T (v, p) := −pI + 2νDv, where ν is the fluid viscosity, Dv := 1
2
(∇v +∇vT )

is the linearized strain tensor and κ denotes the rock permeability. For simplicity
on the analysis, we assume that κ is a real positive constant.

We impose the following conditions:

1. Interface matching conditions across Γ:

(a) Conservation of mass across Γ: uf · ηf + up · ηp = 0 on Γ where ηi is
the unit outward normal to Di, i = f, p.

(b) Balance of normal forces across Γ: pf − 2νηfTD(uf )ηf = pp on Γ.

(c) Beavers-Joseph-Saffman condition: This condition gives an expression
for the component of the Cauchy stress tensor in the tangential direction
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Figure 2.1: Darcy-Stokes coupling configuration. In the porous subdomain Dp we use Darcy’s
equations and in the fluid subodmainDf we use Stokes’ equations. We impose interface matching
conditions on the interface Γ, normal seepage velocity on Γp and fluid velocity on Γf .

of the interface Γ; see Beavers and Joseph [1967], Jäger and Mikelić [2000]
and references therein. It is expressed by:

uf · τ l = −
√
κ

αf
2ηfTD(uf )τ l l = 1, n− 1; on Γ,

where τ l, ` = 1, n− 1, are the unit tangential vectors on Γ. The param-
eter αf must be experimentally determined and depends on the porous
geometry close to Γ among other things.

2. Compatibility condition: The divergence and boundary data satisfy,

〈gf , 1〉Df + 〈gp, 1〉Dp − 〈hf · ηf , 1〉Γf − 〈hp, 1〉Γp = 0.

In Chapter 5 we consider this model, i.e., equations (2.1) and (2.2) together
with conditions 1.(a),(b),(c) and 2. above. In Section 5.4 we derive a weak for-
mulation for the model presented above and verify the inf-sup (also called LBB)
condition. The complete inf-sup analysis presented in Section 5.4.2 implies exis-
tence, uniqueness and continuous dependence on the data of the weak solution of
this coupled system of equations; see Girault and Raviart [1986] and Brezzi and
Fortin [1991]. The inf-sup analysis of the continuous model uses tools developed
in Section 5.2 and in Layton et al. [2002].
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2.2 The discrete model

In Section 5.5.1 we choose particular finite element spaces for each subdomain and
couple them using discrete Lagrange multipliers. We allow the two subdomain
discretizations to be nonmatching across the interface. Nonmatching meshes are
important for applications due to the different nature of the equations in each
subdomain, therefore, it is desirable to allow the possibility of handling different
triangulations and independent subdomain mesh refinements.

Figure 2.2: Nonmatching triangulations for Darcy-Stokes coupling.

On the fluid side we use P2\P1 triangular Taylor-Hood finite elements. For
the porous region we use the lowest order Raviart-Thomas finite elements. The
Taylor-Hood and Raviart-Thomas finite elements are coupled using a discrete La-
grange multiplier. We use piecewise constant functions on the interface as discrete
Lagrange multipliers. In Figure 2.3 we show the degree of freedom configuration
of the discrete coupling.

Figure 2.3: On the left picture: degrees of freedom for Raviart-Thomas velocity (left subdomain
•) and Taylor-Hood velocity (right subdomain ~• ). On the right picture: degrees of freedom for
for Raviart-Thomas pressure (left subdomain •) and Taylor-Hood pressure (right subdomain •).
P0 elements on the interface for Lagrange multipliers ( ).

In Section 5.5.2 we develop the corresponding (inf-sup) analysis of the cho-
sen finite element approximation. This analysis implies the well-posedness of the
discrete model.
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2.2.1 A priori error estimates

Section 5.6 is devoted to a priori error estimates. Let ‖ · ‖a denote the sum of
properly scaled H1(Df ) and L2(Dp) norms and h := max{hf , hp} be the maximum
of the mesh sizes in each subdomain. In Proposition 5.27 we derive an a priori
error estimate of the form

‖u− uh‖a ≤ Ch

(√
ν|uf |H2(Df )2 +

√
ν

κ
|up|H1(Dp)2

)
+ Chp

1√
ν
|pf |H1(Df ). (2.3)

Here, the velocity u = (uf ,up) is the exact solution of the continuous saddle point

problem and uh = (ufh,u
p
h) is its finite element approximation. The estimate (2.3)

is obtained in such a way that the constant C is independent of the parameters ν,
κ and the mesh ratio hf/hp. The estimate (2.3) and the inf-sup stability imply a
priori error estimates for the pressure and the Lagrange multipliers; see Proposition
5.29. An improvement of the error estimates (2.3) is derived for the case where,
on the interface, the mesh of the fluid side is a refinement of the porous side mesh.
The improvement is in the sense that, in the presence of this refinement condition,
the third term in the right hand side above does not appear. Section 5.7 includes
numerical experiments to confirm the theory.

2.3 Preconditioning for Darcy-Stokes coupling

With the discretization chosen in Section 2.2 we obtain a sparse symmetric indef-
inite saddle point linear system Au = f where the matrix A is of the form

A =

 Kf 0 M fT

0 Kp −MpT

M f Mp 0

 =


Af BfT 0 0 CfT

Bf 0 0 0 0
0 0 Ap BpT −CpT

0 0 Bp 0 0
Cf 0 −Cp 0 0

 . (2.4)

Here, matrix Af corresponds to ν times the discrete version of the linearized stress
tensor on Df . The matrix Ap corresponds to ν/κ times a discrete L2-norm on Dp.
Matrix −Bi is the discrete divergence in Di, i = f, p, and matrices Cf and Cp

correspond to the matrix form of the discrete conservation of mass on the inter-
face Γ. In the block matrix (2.4), matrix Kf corresponds to the matrix form of
the Stokes’ equation, Kp corresponds to the Darcy’s equation and the remaining
nonzero blocks impose the discrete conservation of mass on the interface.

When dealing with discrete Stokes or Darcy problems, it is mandatory the use
of preconditioners since these large sparse matrices are indefinite and ill condi-
tioned. Note that in the linear system associated to (2.4) there are three saddle
point (or three restrictions imposed) at once. Therefore, we can expect also the
necessity of a preconditioner for the Darcy-Stokes system. It is worth mentioning
that the condition of the matrix (2.4) depends heavily on the permeability pa-
rameter κ. The smaller the value of κ the worse is the condition number and this
relation is linear. We recall that κ represents the permeability of the rock and, in
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practice, its typical value is very small.

There are several possible choices for solving and preconditioning Stokes and
Darcy problems. Recall that both of them, as well as the coupled system, are
particular cases of saddle point problems. In the literature there are many choices
for computing the solution and constructing preconditioners of saddle point prob-
lems; see Toselli and Widlund [2005] and references therein. The matrix (2.4) does
not have a classical saddle point structure but a saddle point structure with two
different restrictions. The design and analysis of preconditioners for (2.4) is more
complex than in the classical saddle point problem.

In Chapter 6 we design and analyze two domain decomposition preconditioners
based on Schur complement formulations associated with matrix (2.4). For both
preconditioners, we derive condition number estimates of order C1(1 + 1

κ
); see

Theorems 6.1 and 6.3. The parameter κ represents de permeability of the porous
medium. In case where the fluid discretization is finer than the porous side dis-
cretization, we derive a better condition number estimate of order C2( κ+1

κ+(hp)2 );

see Theorem 6.6. Here hp is the mesh size of the porous side triangulation. The
constants C1 and C2 are independent of the permeability κ, the fluid viscosity ν,
and the mesh ratio across the interface. For references on Domain decomposition
based iterative methods and preconditioners for elliptic, Stokes, Darcy and many
others (systems of) partial differential equations are considered extensively; see
Toselli and Widlund [2005], Mathew [2008], Quarteroni and Valli [1999], Smith
et al. [1996] and references there in. Numerical experiments confirm the sharpness
of the theoretical estimates for the condition of the preconditioned operators; see
Section 6.7.

2.4 Final comments

We make some comments on possible extensions of the analysis presented in Chap-
ters 5 and 6.

• The Darcy-Stokes coupling provides a linear stationary model for the simu-
lation of a free fluid that can filtrate through a porous media. It is possible
to consider more complicated models such us Darcy-Navier Stokes coupling.
We recall that the Stokes system is a basic part of any approximation of the
Navier-Stokes system. More complicated models for the porous media flow
can also be studied: the Brinkman equations (Darcy’s terms plus a viscous
term that accounts for flow through medium where the grains of the me-
dia are porous themselves) and Forchheimer equations (nonlinear version of
Darcy’s equations for high velocities).

• The matching conditions on the interface and the conservation of mass com-
patibility conditions play a major role in the theoretical and numerical anal-
ysis of any heterogeneous domain decomposition model. In particular when
more general models are considered, an appropriate condition on the interface
must be derived. In general, this is a very difficult and fundamental part of
the modeling process.
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• For the discrete part, we note that the finite element analysis considered here
can be extended to a wide range choices of finite elements.

• The preconditioners designed and analyzed in Chapter 6 can be extended
to the three dimensional case and to other discretizations, e.g., the P2/P0
coupled with Raviart-Thomas; see Discacciati et al. [2002], Layton et al.
[2002] and Rivière and Yotov [2005].

• The domain decomposition preconditioner of Chapter 6 are based in the
two subdomain decomposition of D = Df ∪ Dp. A possible future research
is the design, analysis and implementation of (more sophisticated) domain
decomposition methods based on a general decomposition of the domain D.
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Chapter 3

Discontinuous Galerkin
Discretization of Elliptic
Problems

Discontinuous Galerkin (DG) methods are becoming more and more popular for
the numerical approximation of partial differential equations since they are well
suited for dealing with complex geometries, discontinuous coefficients and local or
patch refinements. In this chapter we describe the relevant ideas of Chapters 7
and 8.

3.1 The continuous model

Let {Di}Ni=1 be a polygonal partition of D ⊂ R2. Assume that the subdomain Di

is of diameter O(Hi). We consider the equation{
−∇ · (ρ∇u) = f, in D

u = 0, on ∂D,
(3.1)

where ρ(x) = ρi, x ∈ Di, i = 1, . . . , N , i.e., ρ is piecewise constant in {Di}Ni=1.

3.2 DG discretization

In this section we describe the discrete model and present its main futures and
advantages. We also use a numerical example for motivating the necessity of
preconditioning. For the general theory of DG discretizations we refer to Arnold
[1982], Arnold et al. [2002, 2000] and also to Dutra do Carmo and Vinicius [2000],
Dutra do Carmo et al. [2000a,b] and references therein.

3.2.1 Discrete problem

Let Ti be a triangulation of Di, i = 1, . . . , N . The resulting triangulation on D is
in general nonmatching across ∂Di. Let Xi(Di) be the regular finite element space
of piecewise linear continuous functions in Di. Denote by Xh(D) the global space
associated to all nodal values in the disjoint union of the subdomains {Di}Ni=1; see
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Figure 3.1.

Figure 3.1: On the left picture we display a shape regular triangulation in each subdomain. On
the right picture we show finite element meshes in each subdomain.

The discrete problems obtained from Discontinuous Galerkin methods involve
the solution of large sparse linear systems where the degrees of freedom are as-
sociated to all the nodal values of Xh(D); see Sections 7.2 and 8.2. These dis-
cretizations allow jumps of the solution across the interfaces ∂Di, i = 1, . . . , N. To
control the jumps we penalize the L2(∂Di) jump of the solution. In Dryja [2003]
it is established that the linear system resulting from the DG discretization (of
Chapters 7 and 8) is positive definite when the penalty parameter is large enough
(order one). Dryja also obtains a priori error estimates. The condition number of

the resulting large sparse linear system is O
(
ρmax

ρmin

1
h2

)
where h = maxi hi and hi is

the discretization parameter of Di, i = 1, . . . , N .

Figure 3.2: On the left: Degrees of freedom associated to Γ, the disjoint union of ∂Di, i =
1, 2, . . . , N, ( ). In this case the square subdomain D is the union of 3 × 3 square subdomains
Di, i = 1, 2, . . . , 9. On the right: Local degrees of freedom associated to Di. They are classified
in interior (•) and boundary ( ) degrees of freedom.

The paper Dryja and Sarkis [2006] shows how to derive a Schur system, that
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is, how to obtain a reduced system involving only boundary degrees of freedom for
each subdomain Di. We note that this is not a standard Schur complement reduc-
tion as in classical substructuring methods; see Chapter 4 in Toselli and Widlund
[2005]. The reduced formulation involves only degrees of freedom associated to Γ,
that is, the disjoint union of all boundary inherited discretizations; see Figure 3.2.

The Schur complement system is also symmetric and positive definite when
the penalty parameter is large enough. Then, we can solve the original linear
system with the CG algorithm where each iteration involves only interface degrees
of freedom plus local solvers. The condition of the resulting Schur complement

linear system is O
(
ρmax

ρmin

1
Hh

)
where H = maxiHi with Hi being the diameter of Di,

i = 1, 2, . . . , N . We mention also that this Schur complement is a subassembling of
local Schur complements. The i-th Schur complement involves only the boundary
degrees of freedom of subdomain Di; see Figure 3.2. The problem is suitable for
parallelization.

3.2.2 Example

Consider the following example. Let D = [−1, 1]× [−1, 1] ⊂ R2, and consider the
exact solution given by

u(x1, x2) =


u1(x1)u2(x2), (x1, x2) ∈ D1 := [−1, 0]× [−1, 0]
u1(k1x1)u2(x2), (x1, x2) ∈ D2 := [−1, 0]× [0, 1]
u1(x1)u2(k2x2), (x1, x2) ∈ D3 := [0, 1]× [−1, 0]
u1(k1x1)u2(k2x2), (x1, x2) ∈ D4 := [0, 1]× [0, 1],

(3.2)

which is solution of (3.1) with ρ = k1k21D1 + k21D2 + k11D3 + 1D4 .

Figure 3.3: Computed (left) and exact solution (3.2) (right) for k1 = 2, k2 = 5, u1(x1) =
sin(π∗(x+1)

k1+1 ) and u2(x2) = 4(x+ 1)(k2 − x)/(k2 + 1)2.

We start with mesh sizes h1 = h4 = 1
3

and h2 = h3 = 1
2

where hi is the mesh
size of Di, i = 1, 2, 3, 4. In Figure 3.3 we show the computed and exact solution
for the second level of refinement. In Table 3.1 we show the L2(D), H1(D)-broken
and L2(Γ) approximation errors and the for different levels of refinements. We
also show the condition number estimates for the Schur complement problem. We
see a decay factor of 4 in the L2-error, factor of 2 in the H1(D)-broken norm error
and factor of 3 for the interface error. We also observe a linear growth of the
logarithm of the condition number and the number of iterations until convergence
(i.e., until the initial residual is reduced by 10−6).
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h ↓ ‖u− uh‖L2(D)

∑4
i=1 |u− uh|H1(Di)

∑
i,j ‖u− uh‖L2(Γij) Cond Iter

×21 0.0334560 0.478163 0.1842924 67.68 40
×22 0.0096112 0.241894 0.0667458 135.51 55
×23 0.0025424 0.120784 0.0236767 271.04 79
×24 0.0006518 0.060236 0.0083684 541.60 113
×25 0.0001649 0.030065 0.0029569 1082.29 161
×25 4.1469e-05 0.015017 0.0010450 2163.36 229

Table 3.1: Error of the DG approximation of the exact solution (3.2) with δ = 4 (columns 1-3).
Condition number and iteration count of the CG algorithm (columns 4 and 5).

Figure 3.4: Logarithm of the L2(D), H1-broken, and L2(Γ) errors (left). Logarithm of the
iteration and condition number (right).

3.2.3 Main issues of DG discretization

The main advantages of the DG discretization for elliptic problem with discontin-
uous coefficients are:

• proper handling of complicated geometries

• proper handling of discontinuities along the interface of a decomposition of
the domain

• patch refinements

• Schur complement problem

These features make the DG discretization an excellent choice for computing ap-
proximations of the solution of the elliptic problem with discontinuous coefficients.

The Schur complement problem involves only degrees of freedom associated
with the interfaces between subdomain and can be solved using the CG algorithm
where in each iteration we have to solve one local Dirichlet problems per subdo-
main. The condition number is of order O(ρmax

ρmin

1
Hh

) and therefore the number of

CG iteration grows like O(h−
1
2 ); see also the fourth and fifth columns in Table 3.1

and Figure 3.4. This convergence depends also on the number of subdomains, the
local meshes and the jump of the coefficient. Then, preconditioning is mandatory
for an efficient computation of the solution of the Schur complement problem.
We want the performance of the preconditioners to be independent of the num-
ber of subdomains and the local triangulations sizes, as well as the jump of the
coefficients. The objective in Chapters 7 and 8 is the design and analysis of pre-
conditioners with performance independent of the jumps of the coefficients and
the local mesh sizes.
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3.3 Domain decomposition preconditioners

In Dryja and Sarkis [2006], the authors design and analyze a Neumann-Neumann
type method for solving the Schur complement problem associated to the DG
discretization of an elliptic problem with discontinuous coefficient. For a com-
plete analysis of these preconditioners and their hybrid versions, we refer also the
document in preparation Dryja, Galvis and Sarkis [2008b] which includes also nu-
merical experiments.
Dryja et al. [2008].

In Chapter 7 we design and analyze a Balancing Domain Decomposition (BDD)
method for solving the resulting Schur complement problem. For BDD methods
we refer to Mandel [1993] and Toselli and Widlund [2005].

In Chapter 8 we design and analyze Balancing Domain Decomposition with
Constraints (BDDC) methods for solving the Schur complement problem. For the
general theory of BDDC methods for conforming elements, we refer to Dohrmann
[2003], Mandel et al. [2005] and Li and Widlund [2006].

Under the interface condition introduced in Section 7.4.1 and Assumption 8.4,
and using the abstract Schwarz theory, we derive condition number estimates for
the BDD and BDDC preconditioner introduced above; see Sections 7.4 and 8.7,
respectively. The condition number estimate is of the form C(1 + maxi log Hi

hi
)2

in all the cases. The constant C is independent of hi, Hi and the jumps of the
coefficients. The methods are well suited for parallel computations and can be
straightforwardly extended to three dimensional problems. Results of numerical
tests confirm the theoretical results and the necessity of the imposed assumptions.

3.4 Final comments

We make some comments on possible extensions of the results presented in Chap-
ters 7 and 8.

Figure 3.5: Geometrically nonconforming partition of D with a shape regular triangulation in
each subdomain.
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• In Chapters 7 and 8 we consider a geometrically conforming partition of
the domain D. The objective of the work in preparation Dryja, Galvis and
Sarkis [2008a] is the extension of the preconditioners designed and analyzed
in Chapters 7 and 8, as well as the additive preconditioner of Dryja and Sarkis
[2006], to the case of geometrically nonconforming partitions of the domain
D; see Figure 3.5. Dryja et al. [2008a]

• A possible future research is the extension of these methods for the case of
discontinuous coefficients varying inside each subdomain.

Bibliography

Arnold, D. N. (1982). An interior penalty finite element method with discontinuous
elements. SIAM J. Numer. Anal., 19(4):742–760.

Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, D. (2000). Discontinu-
ous Galerkin methods for elliptic problems. In Discontinuous Galerkin methods
(Newport, RI, 1999), volume 11 of Lect. Notes Comput. Sci. Eng., pages 89–101.
Springer, Berlin.

Arnold, D. N., Brezzi, F., Cockburn, B., and Martin, D. (2002). Unified analysis
of discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal.,
39(5):1749–1779.

Dohrmann, C. R. (2003). A preconditioner for substructuring based on constrained
energy minimization. SIAM J. Sci. Comput., 25(1):246–258 (electronic).

Dryja, M. (2003). On discontinuous Galerkin methods for elliptic problems with
discontinuous coefficients. Comput. Methods Appl. Math., 3(1):76–85.

Dryja, M., Galvis, J., and Sarkis, M. (2008a). A Neumann-Neumann method for
dg discretization of elliptic problems on geometrically non-conforming substruc-
tures. In preparation.

Dryja, M., Galvis, J., and Sarkis, M. (2008b). Neumann-Neumann methods for
DG discretization of elliptic problems. In preparation.

Dryja, M. and Sarkis, M. (2006). A Neumann-Neumann method
for DG discretization of elliptic problems. Technical Re-
port Serie A 456, Intituto de Mathemática Pura e Aplicada.
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Chapter 4

Elliptic Partial Differential
Equations with Random
Coefficients

Partial differential equations with random coefficients are a great source of very
interesting theoretical and numerical questions. Models involving partial differen-
tial equations with incorporated uncertainties appear in a large variety of fields
such as fluid dynamics, petroleum engineering, economics, environmental sciences
and many others. In this chapter we describe the main ideas of Chapter 9. The
Section 4.3 provides some preliminaries from white noise theory.

4.1 The continuous and discrete model

In Chapter 9 we deal with the ordinary product random (or stochastic) pressure
equation with log-normal coefficient,

µ(ω)-almost sure

{
−∇x · (κ(x,w)∇xu(x,w)) = f(x, ω), for all x ∈ D

u(x, ω) = 0, for all x ∈ ∂D,
(4.1)

where µ is a probability measure in a suitable probability space. The coefficient
κ is the exponential of Gaussian process in D. The corresponding Wick product
equations, where the main term in (4.1) is replaced by κ(x,w) � ∇xu(x,w) with
� denoting the Wick product, is easier to analyze; see Holden et al. [1996] and
Benth and Theting [2002].

We use the white noise theory to construct and characterize adequate spaces for
the solution of the ordinary product stochastic pressure equation (4.1). Motivated
from Roman and Sarkis [2006] and Benth and Gjerde [1998] we consider the white
noise probability space associated with the Hilbert space H and the operator A;
see Section 4.3 and references therein for examples of H and A. The probability is
defined in the sigma-field of Borel subsets of S ′, the dual of the nuclear countable
Hilbert space S. Here, the space S is the countably Hilbert space constructed from
H and A. The probability measure µ is given by the Bochner-Minlos theorem and
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it is characterized by

Eµe
i〈·,ξ〉 :=

∫
S′
ei〈ω,ξ〉dµ(ω) = e−

1
2
‖ξ‖2H , for all ξ ∈ S. (4.2)

In Section 9.3, we pose the problem (4.1) in the weak sense in the U1
s spaces,

s ∈ R. Here U1
s is the tensor product

U1
s = H1(D)⊗ (L2)s where we denote (L2)s := L2(S ′, es‖ω‖2−θdµ(ω)),

with the tensor product norm. The norm ‖ · ‖2
−θ is defined in Section 4.3.2. Recall

that H1(D) is the standard Sobolev space of order one. We provide conditions on
the right-hand side f for the existence and uniqueness of solutions in the space
U1
s . When writing the weak form of the equation we choose different spaces for

the solution and test functions. We prove the corresponding inf-sup condition; see
Theorem 9.6.

In Section 9.4 we prove that every u ∈ U1
s can be expressed as a series in term

of the special stochastic polynomials Hσ(s)2,α(ω) with coefficients in H1(D),

u(x, ω) =
∑
α∈J

uα,s(x)Hσ(s)2,α(ω) with uα,s ∈ H1(D) for all α ∈ J . (4.3)

Here J is the set of all infinite dimensional compact support multi-indices; see
Remark 4.7.

A generalization (to the Us space) of the approximation proposed in Benth and
Theting [2002] and Roman and Sarkis [2006] is considered. This approximation
was introduced originally in the space H1(D) ⊗ (L2)0. Our approximation is a
truncated expansion (4.3) with the coefficients restricted to Xh(D), a (spatial)
finite element approximation of H1(D). The approximation of the solution of the
weak version of (4.1) is of the form

uN,K,h(x, ω) =
∑

α∈JN,K

uhα,s(x)Hσ(s)2,α(ω) with uα,s ∈ Xh(D) for all α ∈ J N,K ,

(4.4)
where the set J N,K includes only multi-indices α = (α1, α2, · · ·) with total degree
α1 +α2 + · · · ≤ N and such that α` = 0 for all ` > K, and each coefficient uhα,s is a
usual (spatial) finite element function; see Section 9.4. Note that after computing
the coefficients of the approximation uN,K,h in (4.4), we can simulate realizations
by simply simulating the stochastic polynomials Hσ(s)2,α. These polynomials are
product of Hermite polynomials of standard normal random variables and they
are easy to simulate; see Remark 4.7.

Our discrete formulation seeks an approximation of solution in the form (4.4)
that satisfies the weak form of (4.1) posed in a finite dimensional space. In the
discrete formulation we also use different spaces for the solution and test functions.
We prove the inf-sup stability of this approximation (Lemma 9.21) and provide a
priori error estimates (Theorem 9.24) for a wide class of norms that depends on
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the choice of a sequence of weights; see Section 4.3.

The chosen approximation leads to the solution of a positive definite symmetric
linear system with the complexity of a coupled system of

(
N+K
K

)
elliptic equations

in D ⊂ Rd. Here K and N are the number of variables and the maximum degree
of the stochastic polynomials expansion, respectively; see Section 9.6.

We generalize and improve the results of Cao [2006] and Benth and Gjerde
[1998] on approximation of a (generalized) process by its truncated Chaos expan-
sion; see Corollary 9.15, Example 9.14 and Remark 9.16.

The general set up in Chapter 9 allows us several choices of the Hilbert space
H and the operator A. This implies different modeling choices and different a
priori error estimates. Three possible convenient choices of H and A are discussed
in Section 9.7. In Section 9.8 we choose a particular case and present numerical
experiments in order to confirm the theory.

4.2 Finals comments

We make some comments on possible future work concerning Chapter 9.

• The objective in Galvis and Sarkis [2008] is the stochastic regularity results for
the ordinary product stochastic pressure equation using the weighted norms
introduced in Chapter 9 to deduce the a priori error estimates.

• Other immediate research matter is the domain decomposition analysis of
the resulting linear system. We recall that the resulting matrix has a block
structure where each block is the discretization of an elliptic operator. This
matrix is not block-sparse as in the case of Chapter 3.

• A possible future research is to study the extension of our results to more
general coefficients rather than log-normal. It is even possible to consider
other measures instead of the Gaussian measure, e.g., the Poisson measure.

• Other very interesting research concern is the approximation of the corre-
sponding parabolic problem. Additional temporal noise can be added to the
model.
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4.3 Appendix A: Preliminaries from white noise analysis

We present a very short compendium of results from the Withe Noise theory
and infinite dimensional analysis. We refer to Kuo [1996, 2002], Hida [1980], Hida
et al. [1993], Holden et al. [1996], Obata [1994], Da Prato [2006], Shigekawa [2004],
Berezanskĭı [1986], Bogachev [1998] and references there in.

4.3.1 The Bochner-Minlos theorem

The Bochner-Minlos theorem is an important tool for the introduction of probabil-
ity measures in infinite dimensional spaces. We refer to Hida [1980], Holden et al.
[1996], Hida et al. [1993] and also to Kuo [1996], Shigekawa [2004] and Berezanskĭı
[1986] for similar results. For the special case of measures we refer to Da Prato
[2006], Bogachev [1998] and references therein. The presentation of this section
follows Da Prato and Zabczyk [1992], Hida [1980] and Hida et al. [1993].

Let X, Y be (separable) Hilbert spaces. T ∈ L(X, Y ) is said to be nuclear
operator (denoted by T ∈ L1(X, Y ) ) if there exit two sequences {bk} ⊂ Y and
{ak} ⊂ X such that

Tx =
∞∑
1

(x, ak)Xbk and
∞∑
1

‖ak‖X‖bk‖Y <∞.

We write T =
∑∞

1 bk ⊕ ak and define

‖T‖L1 = inf
T=
∑∞

1 bk⊕ak

∞∑
1

‖ak‖X‖bk‖Y .

A vector space S is said to be a countably Hilbert space if it is topologized
by a countably many compatible Hilbert norms ‖ · ‖n, with respect to which S
is complete. The Hilbert norms {‖ · ‖n} being compatible means that if we have
limk ‖hk‖m = 0 and ‖hk‖ is Cauchy in ‖ · ‖n, then limk ‖hk‖n = 0.

Let Sn be the completion of H with respect to the norm ‖ · ‖n. Then by defini-
tion, S = ∩nSn with the projective limit topology. Suppose {‖ · ‖n} are arranged
in the increasing order, then we have the inclusions H ⊃ S1 ⊃ . . . ⊃ Sn ⊃ . . . .

Take ‖ · ‖0 = ‖ · ‖H as base norm to construct the dual spaces S ′n, n = 1, . . ..
We have H = S0 = S ′0 ⊂ S ′1 ⊂ . . . ⊂ S ′n ⊂ . . . .

Let S be a countably Hilbert. If for any m there exists n > m such that the
injection mapping Inm : Sn → Sm is nuclear, then S is called a countably Hilbert
nuclear space or simply a nuclear space.

Remark 4.1 Sometimes in the definition of countably nuclear space, instead of
nuclear inclusion, it is required the existence of a Hilbert-Schmidt inclusion map.

Remark 4.2 When we identify H ≡ H∗ the triple S ⊂ H ⊂ S∗ is called Gelfand
triple. If H is a space of functions, the space S is called the set of regular or test
functions and S ′ the set of generalized functions or distributions.
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Consider the triple S ⊂ H ⊂ S ′, where H is the base Hilbert space and S is
the nuclear space. The σ-field B(S ′) of S ′ is the weak? Borel σ-field; see Becnel
[2006] and Obata [1994].

Lemma 4.3 (Bochner-Minlos theorem) Let C : S → R be a characteristic
functional, that is, the functional C is:

1. continuous on S,

2. positive definite,

3. C(0) = 1.

Then, there exist a unique probability measure µ on (S ′,B(S ′)) such that

C(ξ) =

∫
S′
ei〈w,ξ〉dµ(ω), for all ξ ∈ S.

Moreover, if C is continuous with respect to ‖ · ‖p and if n(> p) is such that the
injection Inp : Sn 7→ Sp is of Hilbert-Schmidt type, then µC(S−n) = 1.

4.3.2 Construction of nuclear spaces from a Hilbert space and an op-
erator

We now present a construction of nuclear spaces based on a Hilbert space and an
operator; see Obata [1994] and Kuo [1996].

Let A : D(A) ⊂ H → H be a densely defined operator such that there exists
an orthonormal basis {ηj} for H satisfying:

1. Aηj = λjηj, j = 1, 2, . . . .

2. 1 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ . . ..

3.
∑∞

j=1 λ
−2θ
j <∞ for some θ > 0.

We have that

1. From Item 2. the operator A−1 is bounded with norm given by ‖A−1‖ =
λ−1

1 < 1.

2. From Item 3. we have that A−θ is a Hilbert-Schmidt operator (A−θ ∈ L2)
with Hilbert-Schmidt norm ‖A−θ‖2

L2
=
∑∞

j=1 λ
−2θ
j .

3. From Item 3. we have that A−2θ is nuclear (A−2θ ∈ L1) and and ‖A−2θ‖L1 =∑∞
j=1 λ

−2θ
j .

For p > 0 define Sp := {ξ ∈ H; ‖ξ‖p <∞} where

‖ξ‖2
p := ‖Apξ‖2

H =
∞∑
j=0

λ2p
j (ξ, ηj)

2
H .
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For p < 0 define Sp as the dual space of S−p. It is easy to see that ‖·‖−p = ‖A−p ·‖H
and that the duality pairing between Sp and S−p is an extension of the H inner
product. We also define

S = ∩p≥0Sp (with the projective limit topology)

and S ′ as the dual space of S. We say that S is the nuclear Spaces associated
with H and A and we have

S ⊂ . . . ⊂ Sp+1 ⊂ Sp ⊂ . . . ⊂ H ⊂ . . . ⊂ S−p ⊂ S−(p+1) ⊂ . . . ⊂ S ′.
This countable Hilbert space is the standard countable Hilbert space constructed
from (H,A). For a wider discussion on the topology (or topologies) that can be
defined on nuclear spaces we refer to Becnel [2006] and Obata [1994].

We have that p ≥ q implies Sp ⊂ Sq. The inclusion Sp+θ ⊂ Sp is Hilbert-
Schmidt.

Example 4.4 Consider the densely defined differential operator

A1 = − d2

dx2
+ x2 + 1. (4.5)

We have an L2(R) orthonormal system of eigenfunctions of A1 which are the

Hermite functions en(x) := 1√√
π(n−1)!

e−
1
2
x2
hn−1(

√
2x), n = 1, 2, . . . , where hn is

the n degree Hermite polynomial. We have A1en = (2n)en, n = 1, 2, . . . . Then we
can construct a nuclear space from H = L2(R) and the operator (4.5). It is easy
to see that the resulting nuclear space is S(R) the Schwartz space of C∞ rapidly
decreasing functions. This construction can be extended to Rd. Define

ηj := en(j) = e
n

(j)
1
⊗ . . .⊗ e

n
(j)
d
, j = 1, 2, . . . . (4.6)

We have A⊗d1 ηj = λjηj where λj :=
∏d

k=1(2n
(j)
k ), j = 1, 2, . . . . Note that n(1) =

(1, . . . , 1) ∈ Rd, λ1 = 2d and that 1 < λ1 ≤ λ2 ≤ . . . .

4.3.3 The space (L2) and the Chaos expansions in terms of Fourier-
Hermite polynomials

Denote (L2) := L2(S ′, µ). We need to consider multi-index of arbitrary length. To
simplify the notation, we regard multi-indices as elements of the space (NN

0 )c of all
sequences α = (α1, α2, . . .) with elements αj ∈ N0 = N ∪ {0} and with compact
support, i.e., with only finitely many αj 6= 0. We write J = (NN

0 )c. Given α ∈ J ,
define the order and length of α, denoted by d(α) and |α| respectively, by

d(α) := max {j : αj 6= 0} and |α| := α1 + α2 + . . .+ αd(α).

Take a complete orthonormal system {ηj} ⊂ H. For α ∈ J , the α-th Fourier-
Hermite polynomial base on {ηj} is the polynomial

Hα(ω) :=

d(α)∏
i=1

hαi(〈ω, ηi〉) for all ω ∈ S ′(Rd),

where {hk}∞k=1 is the family of Hermite polynomials.
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Lemma 4.5 (Holden et al. [1996], Theorem 2.2.3) The family of Fourier-Hermite
polynomials {Hα}α∈J constitutes an orthogonal basis for (L2). Moreover, ‖Hα‖2

(L2) =

α! for all α ∈ J .

Lemma 4.6 (Wiener-Itô chaos expansion theorem, Holden et al. [1996], Theorem
2.2.4) Every u ∈ (L2) has a unique representation

u(ω) =
∑
α∈J

uαHα(ω), (4.7)

where uα ∈ R for all α ∈ J . Moreover, we have ‖u‖2
(L2) =

∑
α∈J α!u2

α.

Remark 4.7 In Section 9.3 we introduce the family of spaces (L2)s, s ∈ R defined
by

(L2)s := L2(S ′, es‖ω‖2−θdµ(ω)), (4.8)

with norm ‖v‖2
(L2)s

:=
∫
S′ |v|

2es‖ω‖
2
−θdµ for v : S ′ → R. Using the Fernique’s

theorem, there is a constant cF > 0, such that for all s < cF , Lemmas 4.5 and
4.6 can be extended to the space (L2)s. When S ′ is constructed from the Hilbert

space H and the operator A as in Section 4.3.2, then cF =
λ2

1

2
. In this case, for

u ∈ (L2)s and s <
λ2

1

2
, we have

u(ω) =
∑
α∈J

uα,sHσ(s),α(ω), (4.9)

where the σ-Fourier-Hermite polynomials are defined by

Hσ2(s),α(ω) :=
1√
σ∗(s)

d(α)∏
j=1

hσ2
j (s),αj(〈ω, ηj〉), ω ∈ S ′,

where σ∗ = σ∗(s) :=
∫
S′ e

s‖ω‖2−θdµ(ω) and σj(s) :=
(

1− 2s
λ2θ
j

)− 1
2
. Here hσ,n is the

σ-Hermite polynomial.

Remark 4.8 For the Chaos expansion in terms of multiple Wiener-Itô integrals
and Wick ordered polynomials we refer to Hida [1980], Hida et al. [1993], Holden
et al. [1996], Kuo [1996] and Obata [1994].
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Chapter 5

Non-matching Mortar
Discretization Analysis for the
Coupling Stokes/Darcy Equations

We consider the coupling across an interface of fluid and porous media flows with
Beavers-Joseph-Saffman transmission conditions. Under an adequate choice of
Lagrange multipliers on the interface we analyze inf-sup conditions and optimal
a priori error estimates associated with the continuous and discrete formulations
of this Stokes-Darcy system. We allow the meshes of the two regions to be non-
matching across the interface. Using mortar finite element analysis and appro-
priate scaled norms we show that the constants that appear on the a priori error
bounds do not depend on the viscosity, permeability and ratio of mesh parameters.
Numerical experiments are presented.

5.1 Introduction

We analyze the coupling across an interface of fluid and porous media flows.
This problem appears in several applications such as well-reservoir coupling in
petroleum engineering, transport of substances across groundwater and surface
water, and (bio)fluid-organ interactions. More precisely, we consider the following
situation: an incompressible fluid in a region Df can flow both ways across an
interface Γ into a saturated porous medium domain Dp. The model studied here
consists of Stokes’ equations in the fluid region Df and Darcy’s law for the filtra-
tion velocity in the porous medium region Dp. The transmission conditions we
consider on the interface Γ are the Beavers-Joseph-Saffman conditions which are
widely accepted by the scientific community; see Beavers and Joseph [1967], Jäger
and Mikelić [2000] and Saffman [1971]. In this paper we study inf-sup conditions
and a priori error estimates associated with the continuous and discrete formu-
lations of this Stokes-Darcy system. There are previous works addressing such
issues, Layton et al. [2002], Rivière and Yotov [2005], Discacciati and Quarteroni
[2004], Burman and Hansbo [2007], as well as related problems such as Stokes-
Laplacian systems, Discacciati et al. [2002], Quarteroni et al. [2002], Discacciati
[2004], Stokes-Navier Stokes, Girault et al. [2005], Quarteroni and Valli [1999], and

43



Stokes-Darcy equations

preconditioned iterative methods, Discacciati and Quarteroni [2003], Discacciati
[2004], Discacciati and Quarteroni [2004], Galvis and Sarkis [2006], among others
Mardal et al. [2002], Arbogast and Lehr [2006].

This paper is organized as follows: in Section 5.2 we discuss norms and semi-
norms of dual spaces on subsets. The differential systems are introduced in Sec-
tion 5.3, where velocity and normal flux are considered as the boundary data for
the Stokes part Γf = ∂Df\Γ and the Darcy part Γp = ∂Dp\Γ, respectively; for
other formulations and boundary data see Discacciati et al. [2002] and Discacciati
and Quarteroni [2003]. The transmission conditions on the interface Γ, known as
Beavers-Joseph-Saffman conditions, are then introduced. In Section 5.4 we ana-
lyze weak formulations of the continuous model and we discuss the choice H1/2(Γ)
as the space for Lagrange multipliers in order to couple these two systems of par-
tial differential equations. In Layton et al. [2002], Layton, Schieweck, and Yotov
developed existence and uniqueness of the weak solution for this problem. They

were able to show the inf-sup condition on the smaller space H
1/2
00 (Γ). Recall that

H
1/2
00 (Γ) is the subspace of functions in H1/2(∂Dp) that vanish on ∂Dp \Γ. In this

paper, we use tools developed in Section 5.2 and in Layton et al. [2002] to present
a complete analysis for the inf-sup condition with Lagrange multipliers on the
space H1/2(Γ). We note that from the physical point of view the space H1/2(Γ) is
the correct choice since the Lagrange multipliers are related to the Darcy pressure
on the interface Γ and the value of the Darcy pressure at Γ ∩ ∂(Df ∪ Dp) is not
prescribed when flux boundary condition is imposed on the porous side exterior
boundary Γp. We note however that in the case where the pressure is imposed

as the boundary condition on the Darcy exterior boundary Γp, the space H
1/2
00 (Γ)

would be the correct choice; see Discacciati et al. [2002]. In Section 5.5 we derive
the discrete inf-sup conditions and in Section 5.6 the a priori error estimates. We
consider the triangular P2\P1 Taylor Hood elements space for the free flow re-
gion Df and the lowest order Raviart-Thomas for the Darcy region Dp. In Layton
et al. [2002], Layton, Schieweck and Yotov developed a priori error estimates for
the matching case, while in Rivière and Yotov [2005], and also in Burman and
Hansbo [2007], the authors considered the non-matching case using Discontinuous
Galerkin finite element discretizations. In this paper we consider the coupling via
Lagrange multipliers and we develop an analysis based on mortar finite elements
techniques (see Bernardi et al. [1994] and Wohlmuth [2000]) and scaled norms in
order to obtain constants independent of the permeability, viscosity and ratio of
mesh parameters. We also pay special attention to the constants appearing in the
a priori error estimates. In Appendix B (Section 5.10) we provide the construction
of the Fortin interpolation for P2\P1 Taylor Hood elements. In Section 5.7 we
test numerically the algorithms and in Section 5.8 we make some conclusions.

5.2 Preliminaries and notations

Let D be a bounded Lipschitz continuous domain and let Γ ⊂ ∂D and Γc := ∂D\Γ
be of non-vanishing (n− 1)-dimensional measure with respect to ∂D. Here n = 2
or 3.
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To avoid the proliferation of constants, we will use the notation A � B to
represent the inequality A ≤ (constant) ·B.

Lemma 5.1 Given µ ∈ H1/2(Γ), define E
1/2
Γ µ := γ0ϕ where γ0 is the trace on ∂D

and ϕ is the weak solution of −∆ϕ = 0 in D
ϕ = µ on Γ
∂ηϕ = 0 on Γc.

Then E
1/2
Γ µ ∈ H1/2(∂D) and ‖E 1/2

Γ µ‖H1/2(∂D) � ‖µ‖H1/2(Γ).

For µ ∈ H1/2(Γ) let E
1/2
00,Γµ denote the extension by zero on Γc. Remember that

E
1/2
00,Γµ ∈ H1/2(∂D) if and only if µ ∈ H1/2

00 (Γ). We have the following result:

Lemma 5.2 For all µ ∈ H1/2(∂D) there exist µΓ ∈ H1/2(Γ) and µΓc ∈ H1/2
00 (Γc)

such that µ = E
1/2
Γ µΓ + E

1/2
00,ΓcµΓc. This decomposition is unique.

Proof. Let µ ∈ H1/2(∂D). Take µΓ = µ|Γ and µΓc = ϕ|Γc where ϕ = µ− E
1/2
Γ µΓ.

Observe that µΓ ∈ H1/2(Γ) and

‖E 1/2
Γ µΓ‖H1/2(∂D) � ‖µΓ‖H1/2(Γ) ≤ ‖µ‖H1/2(∂D),

therefore, ϕ ∈ H1/2(∂D). Observe also that E
1/2
00,ΓcµΓc = ϕ because µ and E

1/2
Γ µΓ

coincide on Γ. For the uniqueness, if 0 = E
1/2
Γ µΓ + E

1/2
00,ΓcµΓc then E

1/2
Γ µΓ is the

trace of the weak solution of the problem: −∆ϕ = 0 in D, ϕ = 0 on Γ, ∂ηϕ = 0
on Γc. Then µΓ = 0.

We have two dual spaces associated with Γ, the space H
−1/2
00 (Γ) (the dual of

H
1/2
00 (Γ)) and H−1/2(Γ) (the dual space of H1/2(Γ)). The first space is larger than

the second one.

Definition 5.3 If f ∈ H−1/2(∂D), then f |Γc = 0 means by definition that:

〈f,E 1/2
00,Γcµ〉∂D = 0 for all µ ∈ H1/2

00 (Γc).

A useful result related with this definition is the following:

Lemma 5.4 If f ∈ H−1/2(∂D), there are fΓ ∈ H−1/2(Γ) and fΓc ∈ H
−1/2
00 (Γc)

such that, for all µ ∈ H1/2(∂D), let µ = E
1/2
Γ µΓ + E

1/2
00,ΓcµΓc as defined in Lemma

5.2, we have:
〈f, µ〉∂D = 〈fΓ, µΓ〉Γ + 〈fΓc , µΓc〉Γc . (5.1)

Proof. For µΓ ∈ H1/2(Γ) and µΓc ∈ H1/2
00 (Γc) define:
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〈fΓ, µΓ〉Γ := 〈f,E 1/2
Γ µΓ〉∂D 〈fΓc , µΓc〉Γc := 〈f,E 1/2

00,ΓcµΓc〉∂D.

We obtain

〈fΓ, µΓ〉Γ ≤ ‖f‖H−1/2(∂D)‖E
1/2
Γ µΓ‖H1/2(∂D) � ‖f‖H−1/2(∂D)‖µΓ‖H1/2(Γ),

and so fΓ ∈ H−1/2(Γ). Analogously fΓc ∈ H−1/2
00 (Γc). Moreover:

〈fΓ, µΓ〉Γ + 〈fΓc , µΓc〉Γc = 〈f,E 1/2
Γ µΓ + E

1/2
00,ΓcµΓc〉∂D = 〈f, µ〉∂D.

Remark 5.5 In particular, if f ∈ H−1/2(∂D) and f |Γc = 0, see Definition 5.3
above, we have from (5.1) that:

〈f, µ〉∂D = 〈fΓ, µΓ〉Γ.

Hence, functionals in H−1/2(∂D) which are zero when restricted to ∂D \ Γ can be
identified with functionals in H−1/2(Γ).

Remark 5.6 Given fΓ ∈ H−1/2(Γ) we can define f ∈ H−1/2(∂D) by 〈f, µ〉∂D :=

〈fΓ, µΓ〉Γ, where µ = E
1/2
Γ µΓ + E

1/2
00,ΓcµΓc as defined in Lemma 5.2. We have a

similar result for fΓ ∈ H−1/2
00 (Γc).

Define the space H(div, D) by

H(div, D) :=
{
v ∈ L2(D) : ∇·v ∈ L2(D)

}
,

with the norm
‖v‖2

H(div, D) := ‖v‖2
L2(D) + ‖∇·v‖2

L2(D). (5.2)

Recall that if v ∈ H(div, D) then v ·η ∈ H−1/2(∂D). For the next result see
Wohlmuth et al. [2000].

Lemma 5.7 For each u ∈H(div, D) with
∫
∂D
u ·η = 〈u ·η, 1〉∂D = 0 we have:

sup
φ∈H1/2(∂D)

φ 6= constant

〈u ·η, φ〉∂D
|φ|H1/2(∂D)

� ‖u ·η‖H−1/2(∂D) ≤ sup
φ∈H1/2(∂D)

φ 6= constant

〈u ·η, φ〉∂D
|φ|H1/2(∂D)

.

with a constant which depends only on D.

Using an argument similar to the one given in Wohlmuth et al. [2000] we have:

Lemma 5.8 For each f ∈ H−1/2(Γ) with
∫

Γ
f = 〈f, 1〉Γ = 0, we have:

sup
φ∈H1/2(Γ)

φ 6= constant

〈f, φ〉Γ
|φ|H1/2(Γ)

� ‖f‖H−1/2(Γ) ≤ sup
φ∈H1/2(Γ)

φ 6= constant

〈f, φ〉Γ
|φ|H1/2(Γ)

,

with a constant which depends only on Γ.
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Proof. Observe that if α is a constant then 〈f, α〉Γ = α〈f, 1〉Γ = 0 and for

φ ∈ H1/2(Γ) non-constant we have

〈f, φ〉Γ
‖φ‖H1/2(Γ)

≤ 〈f, φ〉Γ
|φ|H1/2(Γ)

,

then

‖f‖H−1/2(Γ) = sup
φ∈H1/2(Γ)

φ 6=constant

〈f, φ〉Γ
‖φ‖H1/2(Γ)

≤ sup
φ∈H1/2(Γ)

φ 6=constant

〈f, φ〉Γ
|φ|H1/2(Γ)

which gives the right inequality. Using a Poincaré inequality, there exists a positive
constant which depends only on Γ, such that

‖ψ‖2
H1/2(Γ)

� |ψ|2H1/2(Γ)

holds for all ψ ∈ H1/2(Γ) with
∫

Γ
ψ = 0. For φ ∈ H1/2(Γ) non-constant we have:

ψ := φ−
∫

Γ

φ 6= 0,

and
〈f, ψ〉Γ
‖ψ‖H1/2(Γ)

=
〈f, φ〉Γ
‖ψ‖H1/2(∂D)

� 〈f, φ〉
|ψ|H1/2(Γ)

=
〈f, φ〉
|φ|H1/2(Γ)

.

This gives an equivalent norm in the subspace of H−1/2(Γ) of zero average
functionals.

Definition 5.9 For f ∈ H−1/2(Γ), f with zero average (〈f, 1〉Γ = 0), define:

|f |H−1/2(Γ) := sup
φ∈H1/2(Γ)

φ 6= constant

〈f, φ〉Γ
|φ|H1/2(Γ)

= sup
φ∈H1/2(Γ)∫
Γ φ=0,φ 6=0,

〈f, φ〉Γ
|φ|H1/2(Γ)

.

We have the following result:

Lemma 5.10 For µ ∈ H1/2(Γ) with
∫

Γ
µ = 0 we have:

|µ|H1/2(Γ) = sup
f∈H−1/2(Γ)

〈f,1〉=0

〈f, µ〉Γ
|f |H−1/2(Γ)

.

Proof. Consider (H1/2(Γ) ∩ L2
0(Γ))∗, the dual space of H1/2(Γ) ∩ L2

0(Γ), and

observe that a functional f0 ∈ (H1/2(Γ) ∩ L2
0(Γ))∗ can be extended to one in

H1/2(Γ)∗, say f , by the following formula: 〈f, φ〉 := 〈f0, φ0〉 where φ ∈ H1/2(Γ)
and φ0 := φ−

∫
Γ
φ.
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5.3 P.D.E model

In general, Df , Dp ⊂ Rn, Γ = Df ∩ Dp, D = int(Df ∪ Dp), Df and Dp are
Lipschitz, so it is possible to define outward unit normal vectors, denoted by ηj,
j = f, p. The tangent vectors on Γ are denoted by τ 1 (n = 2), or τ l, l = 1, 2
(n = 3). In order to avoid a setting that is too general, when n = 2 we consider
Df = (1, 2)× (0, 1) and Dp = (0, 1)× (0, 1) or a regular Lipschitz perturbation of
this configuration. Analogous conditions are consider for the case n = 3.

Define Γj := ∂Dj \ Γ, j = f, p. Velocities are denoted by uj : Dj → Rn,
j = f, p. Pressures are pj : Dj → R, j = f, p.

As it was mentioned previously, Stokes’ equations are the the model for the fluid
region. The model basically consists of conservation of mass and conservation of
momentum, and we have: −∇·T (uf , pf ) = f f in Df

∇·uf = gf in Df

uf = hf on Γf .
(5.3)

Here T (v, p) := −pI+2νDv where ν is the fluid viscosity andDv := 1
2
(∇v+∇Tv)

is the linearized strain tensor.

For the porous domain Dp, Darcy’s law is used, i.e., (up, pp) satisfies on Dp: up = −κ
ν
∇pp + f p in Dp (Darcy’s law)

∇·up = gp in Dp

up ·ηp = hp on Γp.
(5.4)

In general κ is a symmetric and a uniformly positive definite tensor that represents
the rock permeability. For simplicity on the analysis we assume that κ is a real
positive constant. Recall that ν is the fluid viscosity.

We also impose the compatibility condition∫
Df

gf +

∫
Dp

gp −
∫

Γf

hf ·ηf −
∫

Γp

hp = 0. (5.5)

The systems presented above must be coupled across the interface Γ. The follow-
ing conditions are imposed (see Layton et al. [2002], Discacciati and Quarteroni
[2003], Discacciati et al. [2002], Discacciati and Quarteroni [2004] and references
therein):

Conservation of mass across Γ: It is expressed by:

uf ·ηf + up ·ηp = 0 on Γ. (5.6)

This means that the fluid that is leaving a region enters in the other one.

Balance of normal forces across Γ: From Cauchy formula we see that

Σ(uf , pf ) := T (uf , pf )ηf

48 Juan Galvis



Stokes-Darcy equations

is the force on ∂Df acting on the fluid volume inside Df , i.e., Σ is the Cauchy
stress (or traction) vector. The force on Γ from Df side is then Σ(uf , pf ). The only
force acting on the interface from Dp side is the one given by pp in the direction
of ηp and must be equal to the component of Σ in this direction. We get

pf − 2νηTfD(uf )ηf = pp on Γ. (5.7)

The other components of Σ are more delicate and treated below.

Beavers-Joseph-Saffman condition: This condition is a kind of empirical law
that gives an expression for the tangential component of Σ. It is expressed by:

uf ·τ l = −
√
κ

αf
2ηTfD(uf )τ l on Γ, l = 1, n− 1. (5.8)

In the general case, κ is a symmetric and uniformly positive definite tensor,
and κ in (5.8) is replaced by τl · κ · τl.

A related condition is

(uf − up) ·τ l = −
√
κ

αf
2ηTfD(uf )τ l on Γ, l = 1, n− 1,

which is known as the Beavers-Joseph condition. But it turns out in practice that
the component of up in τ l direction is small compared with that of uf . When more
general cases are considered, suitable interface conditions have to be imposed. An
analytical way to find the right interface conditions is via homogenization (see
Hornung [1997]).

5.4 Weak formulations and inf-sup analysis

In this section we derive and analyze several weak formulations associated with
the Stokes-Darcy system presented in Section 5.3.

5.4.1 Weak formulations

According to Appendix 5.9, it is enough to consider the case gf = 0 and hf = 0
in (5.3) and gp = 0 and hp = 0 in (5.4).

For Df define

Xf := H1
0 (Df ,Γf )

n and Mf := L2(Df ). (5.9)

where H1
0 (Df ,Γf )

n means by definition the subspace of functions vf such that
each component of vf belongs to H1(Df ) and vanishes on Γf .

For Dp we introduce the following spaces:

Xp := H0(div, Dp,Γp) and Mp := L2(Dp), (5.10)

where H0(div, Dp,Γp) is defined as the subspace of H(div, Dp) of functions with
vanishing normal component on Γp in the sense of Definition 5.3. Recall that if
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up ∈H(div, Dp) then up ·ηp ∈ H−1/2(∂Dp); see (5.2).

Define X := Xf ×Xp with the usual norm, i.e., given v = (vf ,vp) ∈X,

‖v‖2
X := |vf |2H1(Df )n + ‖vp‖2

H(div, Dp). (5.11)

We also set M := Mf ×Mp with the norm ‖q‖2
M := ‖qf‖2

L2(Df )
+ ‖qf‖2

L2(Dp)
.

In order to derive a weak formulation we first proceed formally and then we
introduce the adequate rigorous framework.

We start with the Stokes’ equation (5.3). For all vf ∈Xf we have:

(−2ν∇·Duf ,vf )Df + (∇pf ,vf )Df = (f f ,vf )Df . (5.12)

From the Green formula we have

−(∆uf ,vf )Df = (∇uf ,∇vf )Df − (∇ufηf ,vf )Γ

= (∇uf ,∇vf )Df − 〈ηTf∇ufηf ,vf ·ηf〉Γ

−
n−1∑
l=1

〈τ Tl ∇ufηf ,vf ·τ l〉Γ,

and

−(∇·∇uTf ,vf )Df = (∇uTf ,∇vf )Df − 〈∇uTf ηf ,vf〉Γ
= (∇uTf ,∇vf )Df − 〈ηTf∇uTf ηf ,vf ·ηf〉Γ

−
n−1∑
l=1

〈τ Tl ∇uTf ηf ,vf ·τ l〉Γ,

then

−(2∇·Duf ,vf )Df = 2(Duf ,Dvf )Df − 2〈ηTfDufηf ,vf ·ηf〉Γ

−2
n−1∑
l=1

〈τ Tl Dufηf ,vf ·τ l〉Γ.

For the second term on (5.12) we have:

(∇pf ,vf )Df = 〈pf ,vf ·ηf〉Γ − (pf ,∇·vf )Df . (5.13)

For uf ,vf ∈Xf and qf ∈Mf define:

af (uf ,vf ) := 2ν(Duf ,Dvf )Df +
n−1∑
l=1

ναf√
κ
〈uf ·τ l,vf ·τ l〉Γ, (5.14)

bf (vf , qf ) := −(qf ,∇·vf )Df . (5.15)

By replacing (5.13) in (5.12), and using the condition (5.8), we obtain for all
vf ∈Xf and qf ∈Mf{

af (uf ,vf ) + bf (vf , pf ) + 〈pf − 2νηTfD(uf )ηf ,vf ·ηf 〉Γ = (ff ,vf )Df

bf (uf , qf ) = 0.
(5.16)
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Analogously, defining

ap(up,vp) := (
ν

κ
up,vp)Dp for all up,vp ∈Xp, (5.17)

bp(vp, qp) := −(qp,∇·vp)Dp for all vp ∈Xp and qp ∈Mp,

we have for all vp ∈Xp and qp ∈Mp{
ap(up,vp) + bp(vp, pp) + 〈pp,vp ·ηp〉Γ = (f p,vp)Dp
bp(up, qp) = 0.

(5.18)

To couple the two subproblems (5.16) and (5.18) we use balance of normal
forces (5.7) and a Lagrange multiplier which also approximate the Darcy pressure
on the interface Γ. Introduce the Lagrange multiplier λ :

λ = pp = pf − 2νηTfD(uf )ηf = pf − 2νηTf∇uηf . (5.19)

Then we get :

af (uf ,vf ) + bf (vf , pf ) + 〈vf ·ηf , λ〉Γ = (ff ,vf )Df
for all vf ∈Xf

ap(up,vp) + bp(vp, pp) + 〈vp ·ηp, λ〉Γ = (fp,vp)Dp
for all vp ∈Xp

bf (uf , qf ) = 0 for all qf ∈Mf

bp(up, qp) = 0 for all qf ∈Mp

〈uf ·ηf + up ·ηp, µ〉Γ = 0 for all µ ∈ Λ

(5.20)

where the space Λ is defined below.

Define a : X ×X → R and b : X ×M → R by:

a(u,v) := af (uf ,vf ) + ap(up,vp), (5.21)

b(v, q) := bf (vf , qf ) + bp(vp, qp), (5.22)

Using (5.6) we obtain, a(u,v) + b(v, p) + 〈vf ·ηf + vp ·ηp, λ〉Γ = (f f ,vf )Df + (f p,vp)Dp
b(u, q) = 0
〈uf ·ηf + up ·ηp, µ〉Γ = 0.

(5.23)

Note that if p is a solution of (5.23), then p plus any constant is also a solution
of (5.23); this follows directly from applying the divergence theorem on the first
equation of (5.23) and using (5.19). In addition, using the the divergence theorem
on the second equation of (5.23) and the compatibility condition (5.5) we have that
the equation (5.23) is automatically satisfied for constant test functions q ∈ M .
Therefore, we can replace the space M in (5.20) by the following subspace of M

M◦ :=

{
q = (qf , qp) ∈M :

∫
Df

qf +

∫
Dp

qp = 0

}
. (5.24)

We have to choose a suitable function space Λ for λ. Observe that on the porous
exterior boundary Γp we consider zero flux as boundary condition, i.e., vp·ηp = 0
on Γp. Recalling Definition 5.3, this means that

〈vp ·ηp,E
1/2
00,Γp

φ〉∂Dp = 0 for all φ ∈ H1/2
00 (Γp),
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where E
1/2
00,Γp

denotes the extension by zero on Γcp = Γ. Then, according to Lemma

5.4 and Remark 5.5 we can think of vp ·ηp as a distribution in H−1/2(Γ), more

precisely, we can define vp ·ηp|Γ ∈ H−1/2(Γ) as

〈vp ·ηp|Γ, φ〉Γ := 〈vp ·ηp,E
1/2
Γ φ〉∂Dp , φ ∈ H1/2(Γ), (5.25)

where E
1/2
Γ is the extension operator defined in Lemma 5.1. This is the main math-

ematical motivation for choosing Λ as H1/2(Γ) rather than H
1/2
00 (Γ). On the fluid

exterior boundary Γf we are using Dirichlet boundary condition, i.e., vf = 0 on Γf .

Then vf ·ηf |Γ ∈ H
1/2
00 (Γ) relatively to ∂Df . Then vf ·ηf |Γ ∈ H

1/2
00 (Γ) relatively to

∂Dp. Here we use the fact thatH
1/2
00 (Γ), which is the trace ofH1

0 (Df ,Γf ), is equiva-
lent to the trace of H1

0 (Dp,Γp) if the shape and measure of Df are of the similar size

of those of Dp; see Grisvard [1985] and Nečas [1967]. Since H
1/2
00 (Γ) ⊂ H−1/2(Γ)

we conclude that vf ·ηf |Γ ∈ H−1/2(Γ). In what follows we denote vp ·ηp|Γ simply
by vp ·ηp and vf ·ηf |Γ by vf ·ηf .

From the previous discussion we conclude that vf ·ηf + vp ·ηp ∈ H−1/2(Γ) and
so we choose for λ the space

Λ := H1/2(Γ) with ‖ · ‖2
Λ := ‖ · ‖2

H1/2(Γ)
= ‖ · ‖2

L2(Γ) + | · |2H1/2(Γ) (5.26)

and define bΓ : X × Λ→ R by:

bΓ(v, µ) := 〈vf ·ηf , µ〉Γ + 〈vp ·ηp, µ〉Γ, v = (vf ,vp) ∈X, µ ∈ Λ, (5.27)

with the second duality pairing as in (5.25).

From Lemma 5.4 we have the following result.

Lemma 5.11 bΓ : X × Λ→ R defined in (5.27) and (5.25) is continuous.

Another reason for choosing H1/2(Γ) instead of H
1/2
00 (Γ) is because the Lagrange

multiplier represents the porous pressure on Γ, see (5.19), and hence there is no
physical reason for the pressure pp to vanish on Γ ∩ ∂D when flux boundary
conditions are imposed on the porous side exterior boundary Γp. The space we

choose for Λ is richer than H
1/2
00 (Γ), therefore the equation

bΓ(u, µ) = 0 for all µ ∈ Λ = H1/2(Γ)

applied to u is a stronger condition than considering µ on the space H
1/2
00 (Γ).

As a result, better mass conservation near Γ ∩ ∂D is achieved. On the other

hand, choosing H
1/2
00 (Γ) as the spaces of Lagrange multipliers associated to the

porous pressure would be more appropriate if zero pressure was imposed on ∂D;
see Discacciati et al. [2002].
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First weak formulation

We finally arrive to the weak formulation of the problem: Find (u1, p1, λ1) ∈
X ×M◦ × Λ such that: a(u1,v) + b(v, p1) + bΓ(v, λ1) = `(v) for all v ∈X

b(u1, q) = 0 for all q ∈M◦

bΓ(u1, µ) = 0 for all µ ∈ Λ,
(5.28)

where
`(v) := (f f ,vf )Df + (f p,vp)Dp for all v ∈X. (5.29)

and the bilinear forms a, b and bΓ are defined in (5.21), (5.22) and, (5.27) and
(5.25), respectively.

Next we introduce two other weak formulations and we refer to them as the
second and the third weak formulations; see (5.32) and (5.35). The second weak
formulation is an intermediate step for deriving the third weak formulation. The
third formulation is the most fundamental one among the three formulations and it
is where most of the analysis is carried on. Once the inf-sup condition is established
for the third weak formulation, the inf-sup for the other two formulations follow
straightforwardly; see Remark 5.18. The analysis of the third weak formulation
is based on seminorms and on the theoretical tools developed in Section 5.2. The
three weak formulations are all equivalent in the following sense (see Remarks 5.12
and 5.13):

1. If we know a solution (û, p̂, λ̂) for one weak formulation, then we can construct
a solution for the other two weak formulations. This construction is done by
removing or by recovering the mean value of the fluid and porous pressure
solutions and the mean value of the Lagrange multiplier solution.

2. All three weak formulations have the same velocity solutions.

The Proposition 5.25 establishes the inf-sup condition for the third weak for-
mulation, therefore, the existence and uniqueness of the solution follow; see Sub-
section 5.4.1. Hence, existence of a solution for the first and second weak formu-
lations follows from Remarks 5.12 and 5.13. Finally, the Remark 5.18 establishes
the inf-sup conditions for the first and second weak formulations and therefore,
the uniqueness of their solution.

Second weak formulation

Now we introduce an equivalent weak formulation for (5.28) by eliminating the
velocities with non-zero mean normal jump across Γ and also the Lagrange mul-
tipliers that are constants; see Remark 5.12 below. Define

X◦ =

{
v = (vf ,vp) ∈X : bΓ(v, 1) =

∫
Γ

vf ·ηf + vp ·ηp = 0

}
(5.30)

and
Λ◦ := H1/2(Γ) ∩ L2

0(Γ) with norm | · |Λ◦ := | · |H1/2(Γ). (5.31)
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The second weak formulation: Find (u2, p2, λ2) ∈X◦ ×M◦ × Λ◦ such that: a(u2,v) + b(v, p2) + bΓ(v, λ2) = `(v) for all v ∈X◦
b(u2, q) = 0 for all q ∈M◦

bΓ(u2, µ) = 0 for all µ ∈ Λ◦.
(5.32)

Remark 5.12 It is easy to see that if (u1, p1, λ1) ∈ X × M◦ × Λ solves the
weak formulation (5.28) then u1 ∈ X◦ and (u1, p1, λ2) solves (5.32) with λ2 =
λ1 − 1

|Γ|

∫
Γ
λ1. To see the converse, let (u2, p2, λ2) ∈ X◦ ×M◦ × Λ◦ be a solution

of (5.32). Construct w = (0,wp) ∈X such that

wp ·ηp =
1

|Γ|
on Γ and wp ·ηp = 0 on Γp,

and define
λ̄ := `(w)− a(u2,w)− b(w, p2)

and set λ1 := λ2 + λ̄. Then (u2, p2, λ1) solves (5.28). Indeed, observe that
bΓ(w, λ1) = λ̄ and that for v = (vf ,vp) ∈ X we can find α such that v2 :=
v + αw ∈X◦. Hence, we obtain

a(u2,v) + b(v, p2) + bΓ(v, λ1) = {a(u2,v2) + b(v2, p2) + bΓ(v2, λ2)}
−α{a(u2,w) + b(w, p2) + bΓ(w, λ1)}

= `(v2)− α{a(u2,w) + b(w, p2) + λ̄}
= `(v2)− α`(w) = `(v).

The second and third equations of (5.28) are also easily verified.

Third weak formulation

We can continue with the elimination of piecewise constant pressures on each
subdomain together with velocities with non-zero mean normal component on Γ.
Define

X◦◦ =

{
v = (vf ,vp) ∈X◦ :

∫
Γ

vf ·ηf = 0 and

∫
Γ

vp ·ηp = 0

}
(5.33)

and

M◦◦ :=

{
q = (qf , qp) ∈Mf ×Mp :

∫
Df

qf = 0 and

∫
Dp

qp = 0

}
, (5.34)

and consider the following formulation: Find (u3, p3, λ3) ∈ X◦◦ ×M◦◦ × Λ◦ such
that:  a(u3,v) + b(v, p3) + bΓ(v, λ3) = `(v) for all v ∈X◦◦

b(u3, q) = 0 for all q ∈M◦◦

bΓ(u3, µ) = 0 for all µ ∈ Λ◦.
(5.35)
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Remark 5.13 Let (u2, p2, λ2) ∈ X◦ × M◦ × Λ◦ be a solution of (5.32). We
next show that u2 ∈ X◦◦. Consider the following piecewise constant pressure

pc = (1,− |Df ||Dp| ) ∈M
◦. From the second equation in (5.32) we have

0 =

∫
Df

∇·u2
f −
|Df |
|Dp|

∫
Dp

∇·u2
p =

∫
Γ

u2
f ·ηf −

|Df |
|Dp|

∫
Γ

u2
p ·ηp,

and since u2 ∈X◦, i.e., ∫
Γ

u2
f ·ηf +

∫
Γ

u2
p ·ηp = 0,

we obtain
∫

Γ
u2
f ·ηf =

∫
Γ
u2
p ·ηp = 0, therefore, u2 ∈X◦◦. Now set

p3 :=

(
p2
f −

1

|Df |

∫
Df

p2
f , p

2
p −

1

|Dp|

∫
Dp

p2
p

)
∈M◦◦.

Then b(v, p3) = b(v, p2) for all v ∈ X◦◦ and we conclude that (u2, p3, λ2) solves
(5.35).

Now the converse. Suppose (u3, p3, λ3) ∈ X◦◦ ×M◦◦ × Λ◦ solves (5.35). Let

z = (zf , zp) ∈ X◦ be any function such that
∫

Γ
zf ·ηf = −

∫
Γ
zp ·ηp = |Dp|

|Df |+|Dp|
.

Then

b(z, pc) =

∫
Df

∇·zf −
|Df |
|Dp|

∫
Dp

∇·zp

=

∫
Γ

zf ·ηf −
|Df |
|Dp|

∫
Γ

zp ·ηp = 1.

Define
γ := `(z)− a(u3, z)− b(z, p3)− bΓ(z, λ3)

and p2 := p3 +γpc where, as before, pc = (1,− |Df ||Dp| ). Next we show that (u3, p2, λ3)

solves (5.32). Indeed, if (v, q, µ) ∈ X◦ ×M◦ × Λ◦ we can find ε such that v3 :=
v + εz ∈X◦◦. Then we have

a(u3,v) + b(v, p2) + bΓ(v, λ3) (5.36)

= {a(u3,v3) + b(v3, p3) + bΓ(v3, λ3)}+ γb(v3, pc)

−ε{a(u3, z) + b(z, p3) + bΓ(z, λ3) + γb(z, pc)}
= `(v3)− ε`(z) = `(v).

Here we have used the fact that b(v3, pc) = 0 for all v3 ∈ X◦◦. The second and
third equation of (5.32) are also easily verified.

5.4.2 Inf-sup analysis

In the subsequent sections, we consider only the formulation (5.35), and we aban-
don the super-index 3 to avoid proliferation of indexes. In particular we establish
the inf-sup associated to this formulation, see Proposition 5.17. See also Remark
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5.18 for the inf-sup of the first and second weak formulations.

Define

V = (V f ,V p) := {v ∈X◦◦ : bΓ(v, µ) = 0 for all µ ∈ Λ◦} (5.37)

with X◦◦ and Λ◦ defined in (5.33) and (5.31), respectively. The space V is closed
because the linear map BΓ : X → Λ′ defined by BΓ(v)µ := bΓ(v, µ) is continuous

and V = Ker BΓ. It is easy to see that for v ∈ V we have vp·ηp = vf ·ηp ∈ H
1/2
00 (Γ).

Then we can formulate problem (5.35) as:{
a(u,v) + b(v, p) = `(v) for all v ∈ V
b(u, q) = 0 for all q ∈M◦◦,

(5.38)

with M◦◦ defined in (5.34). Since up ·ηp = uf ·ηf ∈ H
1/2
00 (Γ), some regularity

results on up and pp can be derived which depends on smoothness and convexity
properties of ∂Dp. We note however that no extra regularity is used to establish
the continuous and discrete inf-sup conditions. Regularity is assumed only in the
Section 5.6 where a priori error estimates are established.

Now, define

Z = (Zf ,Zp) := {v ∈X◦◦ : b(v, q) = 0 for all q ∈M◦◦} . (5.39)

Then we can also formulate problem (5.35) as:{
a(u,v) + bΓ(v, λ) = `(v) for all v ∈ Z
bΓ(u, µ) = 0 for all µ ∈ Λ◦.

(5.40)

Remark 5.14 The Korn inequality implies that the bilinear form af defined in
(5.14) is Xf -elliptic; see Braess [2001] and Nečas [1967]. The bilinear for ap
defined in (5.17) is H(div0, Dp)-elliptic, here H(div0, Dp) consists of functions in
H(div,Dp) with vanishing divergence, i.e., the kernel of bilinear form bp. Then
the bilinear form “a” defined in (5.21) is Xf ×H(div0, Dp)-elliptic.

Define
W p := Xp ∩H1(Dp)

2 and W = (Xf ,W p) (5.41)

with
‖v‖W p

:= ‖vp‖H1(Dp)2 and ‖v‖2
W := ‖vf‖2

Xf
+ ‖vp‖2

W p
. (5.42)

The use of a subspaceW ∩X◦◦ with a stronger norm ‖·‖W ≥ ‖·‖X is a common
strategy in showing continuous and discrete inf-sup conditions without assuming
any regularity on the solution of the associated problem Girault and Raviart [1986]
and Brezzi and Fortin [1991]; see also Lemmas 5.15 and 5.23, and Proposition 5.21.

From the usual inf-sup condition for the Stokes problem on the whole domain
D and since M◦◦ ⊂ M◦, we easily derive the inf-sup condition associated to the
formulation (5.38).
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Lemma 5.15 There is a constant ρ > 0 such that

inf
q∈M◦◦

q 6=0

sup
v∈V

v 6=0

b(v, q)

‖v‖X‖q‖M
≥ inf

q∈M◦◦

q 6=0

sup
v∈V ∩W

v 6=0

b(v, q)

‖v‖W‖q‖M
≥ ρ > 0.

with W and ‖ · ‖W defined in (5.41) and (5.42), respectively.

Lemma 5.15, Remark 5.14 and the fact that (Ker b∩V ) ⊂ (Xf×H(div0, Dp))
guarantees stability of the weak formulation (5.38); see Brezzi and Fortin [1991]
and Girault and Raviart [1986].

Recall that Z ⊂ H(div0, Df )×H(div0, Dp); see (5.39). To see that the weak
formulation (5.40) is stable, next lemma shows that the inf-sup condition between
spaces Z and Λ◦ holds (see Brezzi and Fortin [1991] and Girault and Raviart
[1986]). The proof presented here follows the same ideas as Layton et al. [2002],
Lemma 3.4. The main difference is that we are working with the spaces Λ◦ and
Z.

Lemma 5.16 There is a constant γ > 0, such that

inf
µ∈Λ◦

µ6=0

sup
v∈Z

v 6=0

bΓ(v, µ)

‖v‖X |µ|Λ◦
≥ γ > 0. (5.43)

Proof. Fix µ ∈ Λ◦, then µ ∈ H1/2(Γ) and
∫

Γ
µ = 0, in particular if µ 6= 0 then

µ is not a constant. From Lemma 5.10 we have that there exists fΓ ∈ H−1/2(Γ)
such that 〈fΓ, 1〉Γ = 0 and:

〈fΓ, µ〉Γ
|fΓ|H−1/2(Γ)

≥ 1

2
|µ|H1/2(Γ) =

1

2
|µ|Λ◦ . (5.44)

From Remark 5.6 we introduce f ∈ H−1/2(∂Dp) given by:

〈f, φ〉∂Dp := 〈fΓ, φ|Γ〉Γ for all φ ∈ H1/2(∂Dp) (5.45)

with
|f |H−1/2(∂Dp) ≤ C1|fΓ|H−1/2(Γ) (5.46)

and zero mean on ∂Dp, i.e., 〈f, 1〉∂Dp = 〈fΓ, 1〉Γ = 0. By using the normal trace
theorem, and a continuous Stokes problem (f has zero mean on ∂Dp) we can find
vp ∈H(div, Dp) with ∇ ·vp = 0 in Dp such that:

‖vp‖H(div, Dp) ≤ C|f |H−1/2(∂Dp) (5.47)

vp ·ηp = f on ∂Dp. (5.48)

Observe that vp ∈X◦p. Indeed, if φ ∈ H1/2
00 (Γp) then

〈vp ·ηp, φ〉∂Dp = 〈f, φ〉∂Dp = 〈fΓ, φ|Γ〉Γ = 〈fΓ, 0〉Γ = 0
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and 〈vp ·ηp, 1〉∂Dp = 〈fΓ, 1〉Γ = 0.

Choosing vf = 0, we have v := (vf ,vp) ∈ Z and:

bΓ(v, µ)

‖v‖X
=

0 + 〈vp ·ηp,E
1/2
Γ µ〉∂Dp

‖vp‖H(div, Dp)

by (5.25)

≥ 1

C

〈f,E 1/2
Γ µ〉∂Dp

|f |H−1/2(∂Dp)

by (5.47) and (5.48)

=
1

CC1

〈fΓ, µ〉Γ
|fΓ|H−1/2(Γ)

by (5.45) and (5.46)

≥ 1

CC1

1

2
|µ|H1/2(Γ) by (5.44).

For (q, µ) ∈ M◦◦ × Λ◦ define |(p, µ)|2M×Λ◦ := ‖p‖2
M + |µ|2Λ◦ . From Lemma 5.15

and Lemma 5.16 we can show:

Proposition 5.17 There is a constant β > 0 such that:

inf
(q,µ)∈M◦◦×Λ◦

(q,µ)6=(0,0)

sup
v∈X◦◦

v 6=0

b(v, q) + bΓ(v, µ)

‖v‖X |(q, µ)|M×Λ◦
≥ β > 0. (5.49)

Proof. Given (q, µ) ∈ M◦◦ × Λ◦, if q 6= 0, from Lemma 5.15 there exists v̂ ∈ V
such that

b(v̂, q)

‖v̂‖X
≥ ρ‖q‖M > 0,

where ρ independent of q. If µ 6= 0, from Lemma 5.16 there exists z ∈ Z such
that

bΓ(z, µ)

‖z‖X
≥ γ|µ|Λ◦ > 0,

where γ independent of µ.
Observe that, if q 6= 0

sup
v∈X◦◦

v 6=0

b(v, q) + bΓ(v, µ)

‖v‖X
≥ b(v̂, q) + bΓ(v̂, µ)

‖v̂‖X
=
b(v̂, q) + 0

‖v̂‖X
≥ ρ‖q‖M .

Analogously, if µ 6= 0,

sup
v∈X◦◦

v 6=0

b(v, q) + bΓ(v, µ)

‖v‖X
≥ 0 + bΓ(z, µ)

‖z‖X
≥ γ|µ|Λ◦ ,
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then

sup
v∈X◦◦

v 6=0

b(v, q) + bΓ(v, µ)

‖v‖X
≥ min{ρ,γ}

2

(
‖q‖M + |µ|Λ◦

)
≥ min{ρ,γ}

2
|(q, µ)|M×Λ◦ .

Proposition 5.17 permit us to formulate problem (5.35) as{
a(u,v) + c(v, (p, λ)) = `(v) for all v ∈X◦◦
c(u, (q, µ)) = 0 for all (q, µ) ∈M◦◦ × Λ◦,

(5.50)

where c(v, (q, µ)) := b(v, q) + bΓ(v, µ). Then (5.49) in Proposition 5.17 can be

written as: there exists β = min{ρ,γ}
2

> 0 such that

inf
(q,µ)∈M◦◦×Λ◦

(q,µ)6=0

sup
v∈X◦◦

v 6=0

c(v, (q, µ))

‖v‖X |(q, µ)|M×Λ◦
≥ β > 0. (5.51)

This inf-sup condition, together with the fact that a is Xf × H(div0, Dp)-
elliptic and a and c are bounded, (according to the abstract saddle point theory)
guarantees the well-posedness of the problem (5.50) or (5.35); see Brezzi and Fortin
[1991] and Girault and Raviart [1986].

Remark 5.18 We now obtain the inf -sup condition for the weak formulation
(5.32). Consider z introduced in Remark 5.13. Note that in Remark 5.13 we only
have required z ∈X◦ and∫

Γ

zf ·ηf = −
∫

Γ

zp ·ηp =
|Dp|

|Df |+ |Dp|
.

Now we also require the divergence of z to be constant on each subdomain and
also that zf · ηf = −zp · ηp. For instance, we can solve a Stokes problem with
constant divergence on the fluid side and a Darcy problem with the corresponding
boundary data and constant divergence on the porous side, with divergences values
satisfying the subdomain compatibility conditions. Then we have

b(z, q3) = 0 for all q3 ∈M◦◦, and bΓ(z, µ2) = 0 for all µ2 ∈ Λ◦. (5.52)

We now show show that the inf-sup condition for the weak formulation (5.32)
holds. The spaces involved are X◦ for velocities, and M◦ and Λ◦ for pressures and
Lagrange multipliers, respectively; see (5.30), (5.24) and (5.31). Take q2 ∈ M◦

and µ2 ∈ Λ◦ and let pc = (1,− |Df ||Dp| ) ∈ M◦ as in Remark 5.13. We can write

q2 = q3 + qpc where q3 ∈M◦◦. Note that

‖q2‖M ≤ ‖q3‖M + |q̄|‖pc‖M .

From Proposition 5.25 and a Poincaré inequality, there exists v3 ∈X◦◦ such that

b(v3, q3) + bΓ(v3, µ2) ≥ β̃‖v3‖X
{
‖q3‖M + ‖µ2‖Λ◦

}
,
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where β̃ is a positive constant independent of v3. If q̄ 6= 0 let

v2 = v3 + β̃‖v3‖X‖pc‖M
q̄

|q̄|
z = v3 + rz, with r = β̃‖v3‖X‖pc‖M

q̄

|q̄|
.

Observe that ‖v2‖X ≤ (1 + β̃‖z‖X‖pc‖M)‖v3‖X . We have

b(v2, q2) = {b(v3, q3) + q̄b(v3, pc)}+ r{b(z, q3) + q̄b(z, pc)}
= {b(v3, q3) + 0}+ r{0 + q̄} (see (5.52))

= b(v3, q3) + |q̄|‖v3‖X‖pc‖M

and

bΓ(v2, µ2) = bΓ(v3, µ2) + rbΓ(z, µ2) = b(v3, µ2) + 0.

Then

b(v2, q2) + bΓ(v2, µ2) = b(v3, q3) + bΓ(v3, µ2) + |q̄|‖v3‖X‖pc‖M
≥ β̃‖v3‖X

{
‖q3‖M + ‖µ2‖Λ◦

}
+|q̄|‖v3‖X‖pc‖M

= β̃‖v3‖X
{
‖q3‖M + |q̄|‖pc‖M + ‖µ2‖Λ

}
≥ β̃‖v3‖X

{
‖q2‖M + ‖µ2‖Λ◦

}
≥ β̃

1 + β̃‖z‖X‖pc‖M
‖v2‖X

{
‖q2‖M + ‖µ2‖Λ◦

}
.

This gives the inf-sup condition for weak formulation (5.32).

We now obtain the inf-sup condition for the weak formulation (5.28). The
spaces are X for velocities, M◦ for pressures, and Λ defined in (5.26) for Lagrange
multipliers. Consider w introduced in Remark 5.12. Note that in Remark 5.12 we
have required w = (0,wp) with

wp ·ηp =
1

|Γ|
on Γ and wp ·ηp = 0 on Γp.

Now we also require that the divergence of w be a constant on Dp. Given µ1 ∈ Λ
and q1 ∈ M◦, we write µ1 = µ2 + µ̄ where

∫
Γ
µ2 = 0, i.e., µ2 ∈ Λ◦. From the

inf-sup for weak formulation (5.32) deduced above, we can find v2 ∈X◦ such that

b(v2, q1) + bΓ(v2, µ2) ≥ β̂‖v2‖X
{
‖q1‖M + ‖µ2‖Λ◦

}
If µ̄ 6= 0 define v1 = v2 + β̂‖v2‖X |Γ|

1
2
µ̄
|µ̄|w. Note that

‖v1‖X ≤ (1 + β̂‖w‖X |Γ|
1
2 )‖v2‖X and ‖µ1‖Λ � ‖µ2‖Λ + |µ̄||Γ|

1
2 .

And we proceed as before to obtain the inf-sup condition for the weak formulation
(5.28).

60 Juan Galvis



Stokes-Darcy equations

5.5 Finite element approximation

In Section 5.3 the problem for the coupling fluid flow with porous media flow
in its continuous form was presented, while in Section 5.4 it was presented its
variational formulation and well-posedness. Now a two dimensional non-matching
grid finite element approximation is discussed. We choose the P2\P1 triangular
Taylor Hood finite elements for approximating the free fluid side velocity and
pressure, while we use the lowest order triangular Raviart-Thomas finite element
to approximate the filtration velocity and the porous pressure; see Section 5.5.1
below. In Section 5.5.2 a discrete non-conforming Lagrange multiplier space to
couple the Taylor-Hood and Raviart-Thomas spaces is introduced. It is important
for the analysis to choose the Stokes side as the mortar side, i.e., to place the
discrete Lagrange multiplier on the Darcy side. In this case the discrete map from
mortar to non-mortar side is continuous in L2(Γ) norm. Extensions of the results
to other than Stokes and Darcy finite element spaces are straightforward; just take
the Lagrange multiplier spaces that are used to hybridize mixed finite elements
of the Darcy equation; see Brezzi and Fortin [1991]. We establish the discrete
inf-sup conditions related to the weak formulation (5.38), (5.40) and (5.35). The
extension of the results to the three dimensional case is also straightforward.

5.5.1 Discretization

From now on we assume thatD has polygonal boundary. Let Thj be a triangulation
of Dj, j = f, p. We do not assume that they match at the polyhedral interface Γ.
We choose P2\P1 triangular Taylor-Hood finite elements; see Brenner and Scott
[1994], Brezzi and Fortin [1991] and Girault and Raviart [1986]. Define

Xhf :=

{
vf ∈Xf :

vfK = v̂fK ◦ F−1

K on K and

v̂K ∈ P2(K̂)2

}
∩ C0(Df )

2, (5.53)

and

X◦hf := {vhf ∈Xhf :

∫
Γ

vhf ·ηf = 0}, (5.54)

where vfK := vf |K . We also define

Mhf :=

{
qf ∈Mf :

qfK = q̂fK ◦ F−1

K on K and

q̂fK ∈ P1(K̂)

}
∩ C0(Df ),

M◦
hf

:= {qf ∈Mhf :

∫
Df

qf = 0}. (5.55)

We have the following result.

Lemma 5.19 (Taylor-Hood elements) Suppose that Thf is non-degenerate and
has no triangle with two edges on ∂Df . Then, there exists a bounded linear oper-

ator I
TH

hf
: Xf →Xhf such that

bf (vf − I
TH

hf
vf , phf ) = 0 for all phf ∈M◦

hf
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and ‖ITHhfvf‖Xf
� ‖vf‖Xf

, with constant independent of hf . In addition we have:

‖vf − I
TH

hf
vf‖L2(Df )2 � hsf |vf |Hs(Df )2 s = 1, 2. (5.56)

|vf − I
TH

hf
vf |H1(Df )2 � hf |vf |H2(Df )2 (5.57)∫

Γ

I
TH

hf
vf ·ηf =

∫
Γ

vf ·ηf (which implies I
TH

hf
: X◦f →X◦hf ) (5.58)

|ITHhfvf |H1/2(Γ)2 � |vf |H1/2(Γ)2 . (5.59)

A constructive and apparently new proof using Fortin interpolation is given
in Appendix 5.10, or see Brenner and Scott [1994], Brezzi and Fortin [1991] and
Girault and Raviart [1986].

A direct consequence of Fortin’s criterion and the previous lemma is that, if Thf
is non-degenerate and has no triangle with two edges on ∂Df , then (X◦hf ,M

◦
hf

)

satisfies the inf-sup condition; see (5.54) and (5.55).

For the porous region we are going to use the lowest order Raviart-Thomas
finite elements based on triangles. In general the Raviart-Thomas elements in a
cell are defined by (see Braess [2001], Brezzi and Fortin [1991] and Girault and
Raviart [1986]):

RTk(K) := (Pk(K))n + Pk(K)x,

and if v ∈ RTk(K) then ∇·v ∈ Pk(K) and v ·η|ei ∈ Pk(ei), for all edge ei. Then
we choose:

X◦hp :=

{
vp ∈Xp : vp|K ∈ RT0(K) and

∫
Γ

vp ·ηp = 0

}
, (5.60)

and

M◦
hp :=

{
pp ∈Mp : pp|K ∈ P0(K) with

∫
Dp

pp = 0

}
. (5.61)

Velocities of lowest order Raviart-Thomas finite elements, RT0(K), K ∈ Thp ,
are then of the form:

vp(x1, x2) =

(
a
b

)
+ c

(
x1

x2

)
.

We have the following result; see also Braess [2001] and Brezzi and Fortin
[1991]. Recall the definition of W p in (5.41).

Lemma 5.20 (Raviart-Thomas elements) For K ∈ Thp , define the operator

I
RT

hp,K : H(div, K) ∩H1(K)2 → RT0(K) by

I
RT

hp,Kvp · ηp|e =
1

|e|

∫
e

vp · ηp (5.62)

and define I
RT

hp : W p → RT0 locally by: I
RT

hpvp|K = I
RT

hp,Kvp. Then∫
Dp

∇·(vp − I
RT

hpvp)qhp = 0 for all qhp ∈M◦
hp (5.63)
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and ‖IRThpvp‖H(div, Dp) � ‖vp‖W p
with ‖ · ‖W p

defined in (5.42). The property (5.62)

implies that I
RT

hp : X◦p∩W p →X◦hp. In addition, with the property (5.63) we have

I
RT

hp : Zp ∩W p → Z◦hp. Moreover, if vp ∈ H1(Dp)
2 then

‖vp − I
RT

hpvp‖L2(Dp)2 � hp|vp|H1(Dp)2 , (5.64)

and
‖∇·(vp − I

RT

hpvp)‖L2(Dp) � hp|∇·vp|H1(Dp).

By using Fortin’s idea we can establish the inf-sup condition for the spaces
(X◦hp ,M

◦
hp

) defined in (5.60) and (5.61), respectively.

5.5.2 Discrete inf-sup condition

Let Γ ∩ Thp be the trace on Γ of the porous side triangulation. We consider
piecewise constant Lagrange multiplier space:

Λ◦hp =

{
µhp ∈ L2(Γ) :

µhp |ep is constant on each edge

ep ∈ Γ ∩ T hpp and
∫

Γ
µ = 0

}
.

We note that this choice leads to non-conforming finite elements associated to
Λ◦ since piecewise constant functions do not belong to H1/2(Γ); see (5.31).

We also introduce for later use

Λhp =
{
µhp ∈ L2(Γ) : µhp |ep is constant on each edge ep ∈ Γ ∩ T hpp

}
. (5.65)

Define h = (hf , hp),

X◦◦h := X◦hf ×X
◦
hp ⊂X

◦◦, M◦◦
h := M◦

hf
×M◦

hp ⊂M◦◦ (5.66)

and

V h = (V hf ,V hp) :=
{
vh ∈X◦◦h : ([[vh]]·ηf , µhp)Γ = 0 for all µhp ∈ Λ◦hp

}
,

where [[vh]] := vhf − vhp on Γ for all vh ∈X◦h. Also define

Zh = (Zhf ,Zhp) := {vh ∈X◦◦h : b(vh, qh) = 0 for all qh ∈M◦◦
h } . (5.67)

For zhp ∈ X◦hp ·ηp|Γ = Λ◦hp , (i.e., zhp piecewise constant on Γ relatively to Thp
and with zero mean on Γ) define Ehpzhp ∈ X◦hp as the discrete velocity solution
of the problem

ap(Ehpzhp ,vhp) + bp(vhp , p̂hp) = 0 for all vhp ∈X◦hp such

that vhp ·ηp = 0 on Γp,
bp(Ehpzhp , qhp) = 0 for all qhp ∈M◦

hp

Ehpzhp ·ηp = zhp on Γ.

(5.68)

63 Juan Galvis



Stokes-Darcy equations

We note that a discrete divergence free Raviart-Thomas vector field is also a
divergence free vector field. Therefore, using Mathew [1993] we have

‖Ehpzhp‖2
L2(D) = ‖Ehpzhp‖Xp

� |zhp |H−1/2(Γ). (5.69)

We have the following result.

Proposition 5.21 Suppose that Thf is non-degenerate and has no triangle with
two edges on ∂Df and consider W defined in (5.41). There exists a linear con-
tinuous operator

Πh : (V ∩W )→ V h

such that
b(Πhv − v, qh) = 0 for all qh ∈M◦◦

h , (5.70)

and
‖Πhv‖X � ‖vp‖W p

≤ ‖v‖W . (5.71)

with ‖ · ‖W defined in (5.42).

Proof. Write Πh(v) = (Πhfv,Πhpv) where Πhfv := I
TH

hf
vf and

Πhpv := I
RT

hpvp +Ehp

(
Qhp(I

TH

hf
vf ·ηp)− I

RT

hpvp ·ηp
)
,

where Qhp denotes the L2-projection on Λhp , i.e., on the space of piecewise constant
functions on Γ.

Let µhp ∈ Λ◦hp . We have

([[Πhv]]·ηp, µhp)Γ = (Πhpv ·ηp, µhp)Γ − (Πhfv ·ηp, µhp)Γ

= (Qhp(I
TH

hf
vf ·ηp), µhp)Γ − (I

TH

hf
vf ·ηp, µhp)Γ

= 0 by definition of Qhp ,

and then obtain Πhv ∈ V h.

Now we show (5.71). Observe that

‖Πhv‖X ≤ ‖Πhfvf‖Xf
+ ‖Πhpvp‖Xp

≤ ‖ITHhfvf‖Xf
+ ‖IRThpvp‖Xp

+‖Ehp

(
Qhp(I

TH

hf
vf ·ηp)− I

RT

hpvp ·ηp
)
‖Xp

.

The bound (5.71) follows from the boundedness of I
TH

hf
(Lemma 5.19), I

RT

hp (Lemma

5.20), Ehp (Equation (5.69)), and from the following two bounds:

1. From the boundedness of I
TH

hf
and Qhp , and from a trace theorem, we have

|Qhp(I
TH

hf
vf ·ηp)|H−1/2(Γ) � ‖Qhp(I

TH

hf
vf ·ηp)‖L2(Γ)

≤ ‖ITHhfvf ·ηp‖L2(Γ)

� |vf ·ηp|H1/2(Γ)

= |vp ·ηp|H1/2(Γ)

� ‖vp‖W p

≤ ‖v‖W .
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2. From the normal trace theorem and the boundedness of I
RT

hp we have

|IRThpvp ·ηp|H−1/2(Γ) � ‖I
RT

hpvp‖Xp
� ‖vp‖W p

≤ ‖v‖W .

Remark 5.22 We note that when the mesh Thf (Df ) restricted to Γ is a refinement
of the mesh Thp(Dp) restricted to Γ, then by using (5.109) in Appendix B we have

Qhp(I
TH

hf
vf ·ηp) = Qhpvf ·ηp. Also from (5.62) we have I

RT

hpvp ·ηp = Qhpvp ·ηp.
Hence using that vp ·ηp = vf ·ηf ∈ H

1/2
00 (Γ) we obtain

Ehp

(
Qhp(vf ·ηp)− I

RT

hpvp ·ηp
)

= 0. (5.72)

In the following result we establish the discrete inf-sup condition using Fortin’s
Lemma.

Lemma 5.23 Suppose that Thf is non-degenerate and has no triangle with two
edges on ∂Df . Consider V and M◦◦

h defined in (5.67) and (5.66), respectively.
Then (V h,M

◦◦
h ) satisfies the discrete inf-sup condition, i.e., there is a constant

ρ̃ > 0 independent of h, such that:

inf
qh∈M◦◦h
qh 6=0

sup
vh∈V h

vh 6=0

b(vh, qh)

‖vh‖X‖qh‖M
≥ ρ̃ > 0.

Proof. Take qh ∈M◦◦
h . From Lemma 5.15 we can find v 6= 0 ∈ V ∩W such that

b(v, qh)

‖v‖W
≥ ρ‖qh‖M .

Then from Proposition 5.21 we have

ρ‖qh‖M ≤
b(v, qh)

‖v‖W
=
b(Πhv, qh)

‖v‖W
≤ b(Πhv, qh)

1
C
‖Πhv‖X

,

where C is the constant in (5.71).

For µhp ∈ Λ◦hp , define ũhp = ũhp(µhp) ∈X◦hp as velocity solution of the discrete
problem{

ap(ũhp ,vhp) + bp(vhp , php) = −(vhp ·ηp, µhp)Γ for all vhp ∈X◦hp
bp(ũhp , qhp) = 0 for all qhp ∈M◦

hp

(5.73)

and introduce
|µhp |2Λ◦hp := ap(ũhp(µhp), ũhp(µhp)). (5.74)

and for µhp ∈ Λhp (see Remark 5.26),

‖µhp‖Λ◦hp
:= |µhp − µ̄hp|Λ◦hp + |Γ|

1
2 |µ̄hp | (5.75)
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where µ̄hp := 1
|Γ|

∫
Γ
µhp .

In order to see that | · |Λhp is a norm on Λ◦hp , observe that if µhp is such that

|µhp |Λhp = 0, then ũhp(µhp) vanishes. If we take vhp in (5.73) such that{
vhp ·ηp = µhp
bp(vhp , qhp) = 0 qhp ∈M◦

hp
,

we see that ‖µhp‖L2(Γ) = 0, that is µhp = 0. Then | · |Λhp is positive.

The norm Λ◦hp is the natural discrete version of the norm H1/2(Γ) scaled by the

factor
√

κ
ν

for the space Λ◦hp . Indeed, by using (5.68) and (5.73), we have

sup
zhp∈X◦hp · ηp|Γ=Λ◦hp

(zhp , µhp)√
ν
κ
|zhp |H−1/2(Γ)

� sup
zhp∈Λ◦hp

(Ehpzhp ·ηp, µhp)√
ν
κ
‖Ehpzhp‖L2(D)

= |µhp |Λ◦hp .(5.76)

We have the following result.

Lemma 5.24 The spaces (Zh,Λ
◦
hp

) satisfy the discrete inf-sup condition, i.e.,
there is a constant γ̃ > 0 such that:

inf
µhp∈Λ◦hp

λhp 6=0

sup
vh∈Zh
vh 6=0

([[vh]]·ηf , µhp)Γ

‖vh‖X |µhp|Λ◦hp
≥ γ̃ > 0.

Proof. Take µhp ∈ Λ◦hp and let ũhp(µhp) be the velocity solution of (5.73). Since

ũhp(µhp) ∈ Zhp then ∇·ũhp = 0. Take vh = (0, ũhp(µhp)) ∈ Zhf ×Zhp , then from
(5.73)

([[vh]]·ηf , µhp)Γ

‖vh‖X |µhp |Λ◦hp
=

ap(ũhp(µhp), ũhp(µhp))

‖ũhp(µhp)‖L2(Dp)|µhp|Λ◦hp
=

√
ν

κ
> 0.

For (qh, µhp) ∈ M◦◦
h × Λ◦hp define |(qh, µhp)|2M×Λ◦hp

:= ‖qh‖2
M + |µhp |2Λ◦hp . Then

using the same argument of Proposition 5.17 we have:

Proposition 5.25 Under assumptions of Lemmas 5.23 and 5.24 we have that
there exists β̃ > 0 such that

inf
(qh,µhp )∈M◦◦h ×Λ◦hp

(qh,µhp )6=(0,0)

sup
vh∈X◦◦h
vh 6=0

b(vh, qh) + ([[vh]]·ηf , µhp)Γ

‖v‖X‖(qh, µhp)‖M × Λ◦hp

≥ β̃ > 0. (5.77)

Remark 5.26 With the inf-sup condition (5.77) of Proposition 5.25 we can es-
tablish the inf-sup conditions corresponding to the discrete versions of the first and
the second weak formulations in (5.28) and (5.32), respectively. This is done using
similar arguments to those given in Section 5.4.2; see Remark 5.18.
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5.6 Error analysis

We remark that the constants involved in the notation � are all independent,
not only of the mesh size but also independent of the parameters ν and κ. In
addition, using scaling arguments, it is easy to see that 1√

ν
pf ,
√
νuf ,

√
κ
ν
pp and√

ν
κ
up are all O(1), therefore, we keep those factors on the a priori error estimates.

We introduce the following energy norms

|vf |2af := af (vf ,vf ), (5.78)

‖vp‖2
ap

:= ap(vp,vp), (5.79)

and
‖v‖2

a := a(v,v). (5.80)

We next establish a priori error estimates for the Stokes and Darcy velocities.

Proposition 5.27 Suppose that Thf is non-degenerate and has no triangle with
two edges on ∂Df . Let h := max{hf , hp}. Then we have the following estimate

‖u− uh‖a � h
(√

ν|uf |H2(Df )2 +
√

ν
κ
|up|H1(Dp)2

)
+ hp

1√
ν
|pf |H1(Df ).

Moreover, if the refinement condition of Remark 5.72 is satisfied then

‖u− uh‖a � hf
√
ν|uf |H2(Df )2 + hp

√
ν
κ
|up|H1(Dp)2 .

Proof. From Proposition 5.25 we have that Zh ∩ V h is not empty, where Zh

and V h are defined in (5.67) and (5.67), respectively. Then, the discrete problem
associated with (5.38) can also be described as: find uh ∈ Zh ∩ V h such that

a(uh,vh) = `(vh) vh ∈ Zh ∩ V h,

where a is elliptic in Zh ∩ V h. Furthermore, uh is also the only velocity solution
of 

a(uh,vh) + b(vh, ph) + ([[vh]]·ηf , λhp) = `(vh) for all vh ∈X◦◦h
b(uh, qh) = 0 for all qh ∈M◦◦

h

([[uh]]·ηf , µhp) = 0 for all µhp ∈ Λ◦hp .
(5.81)

For any wh ∈ Zh ∩ V h we have that vh := uh −wh ∈ Zh ∩ V h and

a(vh,vh) = a(uh,vh)− a(wh,vh) = `(vh)− a(wh,vh). (5.82)

Let (u, p, λ) be the solution of the continuous problem (5.20). Then

`(vh) = a(u,vh) + b(vh, p) + bΓ(vh, λ)

and using (5.82) it follows that

a(vh,vh) = a(u−wh,vh) + b(vh, p) + bΓ(vh, λ),

67 Juan Galvis



Stokes-Darcy equations

and

‖uh −wh‖a = ‖vh‖a ≤ ‖u−wh‖a

+ sup
zh∈Zh∩V h

b(zh, p)

‖zh‖a
+ sup
zh∈Zh∩V h

bΓ(zh, λ)

‖zh‖a
.

Hence, using
‖u− uh‖a ≤ ‖u−wh‖a + ‖uh −wh‖a,

we obtain

‖u− uh‖a ≤ 2 inf
wh∈Zh∩V h

‖u−wh‖a (5.83)

+ sup
zh∈Zh∩V h

b(zh, p)

‖zh‖a
+ sup
zh∈Zh∩V h

bΓ(zh, λ)

‖zh‖a
.

To bound the first term on the right-hand size of (5.83) we letwh = Πhu, where
Πh is defined in Proposition 5.21. Proposition 5.21 guarantees that wh ∈ V h. In
addition, since b(u, qh) = 0 for all qh ∈ M◦◦

h , (5.70) guaranties that wh = Πhu ∈
Zh and we have

‖u−Πhu‖a ≤ ‖uf −Πhfuf‖af
+ ‖up −Πhpup‖ap

≤ ‖uf − I
TH

hf
uf‖af

+ ‖up − I
RT

hpup‖ap

+‖Ehp

(
Qhp(I

TH

hf
uf ·ηp)− I

RT

hpup ·ηp
)
‖ap
.

From (5.57) in Lemma 5.19 we obtain

‖uf − I
TH

hf
uf‖af

� hf
√
ν|uf |H2(Df )2 (5.84)

and from (5.64) in Lemma 5.20 we obtain

‖up − I
RT

hpup‖ap
� hp

√
ν

κ
|up|H1(Dp)2 (5.85)

since ∇·up = 0.
From the boundedness of Ehp in (5.69), we have

‖Ehp

(
Qhp(I

TH

hf
uf ·ηp)− I

RT

hpup ·ηp
)
‖ap

�
√
ν

κ
|Qhp(I

TH

hf
uf ·ηp)− I

RT

hpup ·ηp|H−1/2(Γ).

Therefore, we need to estimate the following three terms:

|Qhp(I
TH

hf
uf ·ηp)− I

RT

hpup ·ηp|H−1/2(Γ) ≤

|Qhp(I
TH

hf
vf ·ηp)− I

TH

hf
uf ·ηp|H−1/2(Γ) + |ITHhfuf ·ηp − uf ·ηp|H−1/2(Γ)

+‖uf ·ηp − I
RT

hpup ·ηp‖H−1/2(Γ) (5.86)
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1. Approximation property (5.87), boundedness of I
TH

hf
in (5.59) and the trace

theorem give

|Qhp(I
TH

hf
uf ·ηp)− I

TH

hf
uf ·ηp|H−1/2(Γ) � hp|I

TH

hf
uf ·ηp|H1/2(Γ)

� hp|uf ·ηp|H1/2(Γ)

= hp|up ·ηp|H1/2(Γ)

≤ hp|up|H1/2(Γ)2

� hp|up|H1(Dp)2 .

2. The trace theorem and approximation properties of I
TH

hf
(Lemma 5.19) give

|ITHhfuf ·ηp − uf ·ηp|H−1/2(Γ) � hf‖uf ·ηp‖H1/2(Γ)

= hf‖up ·ηp‖H1/2(Γ)

� hf |up|H1(Dp)2 .

3. The normal trace theorem and the approximation property (5.64) of I
RT

hp imply

|up ·ηp − I
RT

hpup ·ηp|H−1/2(Γ) � hp|up ·ηp|H1/2(Γ)

� hp|up|H1(Dp)2 .

We note that we have used

|Qhpµ− µ|H−1/2(Γ) � hp|µ|H1/2(Γ), (5.87)

since by using local arguments we have ‖Qhpµ− µ‖L2(Γ) � h
1/2
p |µ|H1/2(Γ) and then

|Qhpµ− µ|H−1/2(Γ) = sup
φ∈H1/2(Γ)

〈Qhpµ− µ, φ〉Γ
|φ|H1/2(Γ)

≤ sup
φ∈H1/2(Γ)

‖Qhpµ− µ‖L2(Γ)‖Qhpφ− φ‖L2(Γ)

|φ|H1/2(Γ)

� hp|µ|H1/2(Γ).

We now bound the second term on the right-hand size of (5.83). Note that since
we are using lowest order Raviart-Thomas elements, the porous side components
of Zh defined in (5.67) are divergence free, i.e., Zhp ⊂ Zp, where Zp is defined
in (5.39), therefore, bp(zh, q) = 0 for all q = (qf , qp) ∈ M◦◦. In addition, we have
b(zh, p− qh) = 0 for zh ∈ Zh ∩ V h. In summary, we have

|b(zh, p)| = |bf (zhf , pf )| = |bf (zhf , pf −Qfpf )| � hf
1√
ν
|pf |H1(Df )‖zh‖a,

where we have used the first order approximation of the L2-projection operator
Qf on the fluid pressure space M◦

hf
.
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To bound the third term on the right-hand size of (5.83) we have

bΓ(zh, λ) = 〈λ, zhf ·ηf〉Γ + 〈λ, zhp ·ηp〉Γ
= 〈λ, zhf ·ηf〉Γ + 〈Qhpλ, zhp ·ηp〉Γ zhp ·ηp is constant in e

= 〈λ−Qhpλ, zhf ·ηf〉Γ zhp ∈ Zh,

hence,

|bΓ(zh, λ)| � hp
1√
ν
|λ|H1/2(Γ)

√
ν|zhf ·ηf |H1/2(Γ). (5.88)

By using (5.19) on Γ (on the Df side) and trace theorems we obtain

|bΓ(zh, λ)| � hp

(
1√
ν
|pf |H1(Df ) +

√
ν|uf |H2(Df )2

)
‖zh‖a (5.89)

and the proposition follows.

Remark 5.28 We note that we could have used the porous media side in (5.19)
to bound |λ|H1/2(Γ) in (5.88). In this case, we would have obtained

|bΓ(zh, λ)| � hp√
ν
|pp|H1(Dp)‖zh‖a. (5.90)

Even thought we obtain the term hp multiplying pp in in (5.90), the bound (5.89)
is qualitatively better than the bound (5.90). Note that by using scaling arguments

we have
√

κ
ν
pp = O(1). Therefore, the bound hp√

ν
|pp|H1(Dp) is very pessimist due to

the fact that in practice the value of κ is very small.

We next establish a priori error estimates for the Stokes and Darcy pressures.

Proposition 5.29 Suppose that Thf is non-degenerate and has no triangle with
two edges on ∂Df . Let h := max{hf , hp}. Then we obtain the following estimate

1√
ν
‖pf − phf‖L2(Df ) +

√
κ

ν
‖pp − php‖L2(Dp)

� h

(√
ν|uf |H2(Df )2 +

√
ν

κ
|up|H1(Dp)2 +

1√
ν
|pf |H1(Df )

)
+ hp

√
κ

µ
|pp|H1(Dp).

Moreover, if the refinement condition of Remark 5.72 is satisfied then

1√
ν
‖pf − phf‖L2(Df ) +

√
κ

ν
‖pp − php‖L2(Dp)

� hf

(√
ν|uf |H2(Df )2 +

1√
ν
|pf |H1(Df )

)
+ hp

(√
κ

µ
|pp|H1(Dp) +

√
ν

κ
|up|H1(Dp)2

)
.

Proof. To obtain an expression for the pressure error, observe that for all vh ∈
V h ∩ (H1

0 (Df )×H0(div, Dp)) (i.e., vhf = 0 on ∂Df and vhp ·ηp = 0 on ∂Dp) and
all qh ∈M◦◦

h

b(vh, ph − qh) = a(u− uh,vh) + b(vh, p− qh). (5.91)
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This holds true in particular for vh = (vhf , 0) and qh = (qhf , 0). If we take
qhf = Qfpf , i.e., the L2-projection on the discrete fluid pressure space, we obtain

bf (vhf , phf −Qfpf ) = af (uf − uhf ,vhf ) + bf (vhf , pf −Qfpf ).

Then, using the standard discrete inf-sup condition for the fluid problem, we have

1√
ν
‖phf −Qfpf‖L2(Df )

� sup
vhf∈V hf

∩H1
0 (Df )

af (uf − uhf ,vhf ) + bf (vhf , pf −Qfpf )

‖vhf‖af

� ‖uf − uhf‖af
+

1√
ν
‖pf −Qfpf‖L2(Df )

� ‖uf − uhf‖af
+ hf

1√
ν
|pf |H1(Df ),

and from a triangle inequality we obtain

1√
ν
‖pf − phf‖L2(Df ) � ‖uf − uhf‖af

+ hf
2√
ν
|pf |H1(Df ).

Analogously we obtain√
κ

µ
‖pp − php‖L2(Dp) � ‖up − uhp‖pf

+ 2hp

√
κ

µ
|pp|H1(Dp).

The proposition follows from the bound on velocity error given on Proposition
5.27.

Now we analyze a priori error estimate for λ in the discrete norm | · |◦Λhp defined

in (5.74); see also Arbogast et al. [2000]. Note that the norm Λ◦hp was defined for

piecewise constant functions on the Γhp triangulation. For functions µ ∈ L2(Γ),
we define

|µ|Λ◦hp := |Qhpµ|Λ◦hp , (5.92)

where Qhp is the L2-projection onto Λ◦hp . We have the following result:

Proposition 5.30 Suppose that Thf is non-degenerate and has no triangle with
two edges on ∂Df . Let h := max{hf , hp}. Then we have the following estimates:

|λ− λhp|Λ◦hp � h
(√

ν|uf |H2(Df )2 +
√

ν
κ
|up|H1(Dp)2

)
+ hp

1√
ν
|pf |H1(Df ), (5.93)

and √
κ

ν
|λ− λhp|H−1/2(Γ) � hp

√
κ

ν
|pp|H1(Dp) + |λ− λhp|Λ◦hp . (5.94)

Moreover, if the refinement condition of Remark 5.72 is satisfied then

|λ− λhp|Λ◦hp � hf
√
ν|uf |H2(Df )2 + hp

√
ν

κ
|up|H1(Dp)2 .
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Proof. Let ũhp(Qhpλ) and p̃hp(Qhpλ) be the solution of (5.73). Note that the

solution of (5.81) satisfies uhp = ũhp(λhp) and php = p̃hp(λhp). Then, using the
definition of the discrete norm Λ◦hp we have

|λ− λhp|Λ◦hp = ‖ũhp(Qhpλ)− uhp‖ap
, (5.95)

which can be bounded by

‖ũhp(Qhpλ)− uhp‖ap
≤ ‖ũhp(Qhpλ)− up‖ap

+ ‖up − uhp‖ap
. (5.96)

We use Proposition 5.27 to estimate the second term on the right-hand side of
(5.96). We next estimate the first term of the right-hand side of (5.96). Note that

ap(ũhp(Qhpλ)− up,vhp) + bp(vhp , p̃hp(Qhpλ)− pp) = 0. (5.97)

Inserting vhp = ũhp(Qhpλ) − uhp ∈ Zhp into (5.97) and recalling that Zhp ⊂ Zp

where Zhp and Zp are defined in (5.39) and (5.67), respectively, we have

ap(ũhp(Qhpλ)− up, ũhp(Qhpλ)− uhp) = 0.

Hence,

ap(ũhp(Qhpλ)− up, ũhp(Qhpλ)− up) + ap(ũhp(Qhpλ)− up,up − uhp) = 0,

and by using a Cauchy-Schwarz inequality we obtain

‖ũhp(Qhpλ)− up‖ap
≤ ‖uhp − up‖ap

and (5.93) follows. To obtain the estimate (5.94), we note that from (5.76) we
have √

κ

µ
‖Qhpλ− λhp‖L2(Γ) = sup

zhp∈Λ◦hp

(zhp , Qhpλ− λhp)√
ν
κ
|zhp|L2(Γ)

� |λ− λhp |Λ◦hp ,

therefore,

|λ− λhp|H−1/2(Γ) � |λ−Qhpλ|H−1/2(Γ) + ‖Qhpλ− λhp‖L2(Γ), (5.98)

and (5.94) follows from (5.98) and (5.87).

Remark 5.31 Note that we are discretizing the third weak formulation (5.35).
We have to recover the piecewise constant pressure in each subdomain. Recall
the function z of Remark 5.13. Note that we can compute zh := Πh(z) =
(Πhfz,Πhpz); see Proposition 5.21. Then

γh := `(zh)− a(uh, zh)− b(zh, ph)− ([[zh]]·ηf , λhp)Γ,

and γh p
c = γh(p

c
f , p

c
p) is the approximation for piecewise constant pressure in each

subdomain Dj, j = f, p. Observe that

|γ − γh| � |a(u− uh, zh)|+ |b(zh, p− ph)|+ |([[zh]]·ηf , γ − γhp)Γ|.
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These last terms can be estimated using the results of this section. Analogously
we can recover the mean value λ̄ of the Lagrange multiplier. Indeed, we can find
wh = (0,whp) ∈Xf ×Xp such that

whp ·ηp =
1

|Γ|
on Γ and whp ·ηp = 0 on Γp

so we can define, see Remark 5.12,

λ̄h := `(w)− a(uh,w)− b(w, ph).

In this case
|λ̄− λ̄h| � |a(u− uh, w)|+ |b(w, p− ph)|.

The last two terms can be estimated using the results of this section.

5.7 Numerical results

In this section we present numerical experiments in order to verify the estimates
established in the paper. We consider Df = (1, 2)× (0, 1) and Dp = (0, 1)× (0, 1).
We consider αf = 0.

The velocity solution for Stokes’ equations is given by uf (x, y) = (y(1−y),−x+
2 + 2(x− 1)y) with pressure pf (x, y) = −2x− ν

κ
y+ 5/2 + 5ν

12κ
. Note that uf is not

divergence free.
The velocity solution for Darcy’s equation is up(x, y) = (1−2x+x2 +y−y2,−1+

x+ 2y− 2xy) with pressure pp(x, y) = ν
κ
((1−x)y(1− y)−x+x2− x3

3
+ 3

4
− y) + 1

2
.

Note that the normal component of up has a parabolic profile on the interface
Γ = 1 × (0, 1) while its tangential component is zero. Note also that Duf =(

0 0
0 ∗

)
on Γ, and pf = pp on Γ. The exact solution is compatible with (5.7)

with (5.8) when αf = 0.
A similar example is presented in Burman and Hansbo [2007], where the term

∇ ·Duf is replaced by ∆uf in the Stokes equations.

In Figure 5.1 we show the computed solution of the coupled problem. On the
porous side we have plotted the velocity in the center of each triangle. In Figure
5.2 we zoom part of the interface and plot the y component of the velocities.

In Figure 5.3 we show the behavior of the error (in the scaled norms defined in
(5.78), (5.79) and (5.80)) with respect to the discretization parameters. Here we
also show ‖λ − λhp‖Λhp , i.e., the Lagrange multiplier approximation error in the
discrete norm defined in (5.92).

We observe according to Figure 5.3, the error in the norm ‖·‖2
a defined in (5.80),

which is the sum of the fluid velocity and porous velocity errors in the scaled
norms, is of linear order. This agree with Proposition 5.27. Analogously, the
pressure error is of linear order. This also agree with the result about the pressure
error, see Proposition 5.29. We finally observe that the Lagrange multiplier error
in the discrete norm defined in (5.92) is also of linear order.
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Figure 5.1: Computed velocities (left) and pressures (right). On the porous side we have plot
the value of the velocity at the centroid of each triangle.

Figure 5.2: The x-component of the discrete velocity (left figure), where on the porous side (left
subdomain) we plot the two values of the x component of the velocities at the midpoint of each
edge; recall that Raviart-Thomas elements allow discontinuous tangential velocities on interior
edges. The discrete (in blue) and the exact (in red) Lagrange multipliers on the interface (right
figure).

5.8 Conclusion

We study the coupling across an interface between fluid and porous medium flows,
consisting of Stokes’ equations in the fluid region Df and Darcy’s law for the filtra-
tion velocity in the porous medium region Dp. After discussing the adequate choice

of H1/2(Γ), rather than H
1/2
00 (Γ), as the Lagrange multiplier space, we present a

complete analysis for the inf-sup and approximation results associated with the
continuous and discrete formulations of this Stokes/Darcy system. We choose
the triangular P2\P1 Taylor Hood finite elements and the lower order Raviart-
Thomas elements as discrete spaces for the free and porous medium subdomains,
respectively. Optimal a priori discrete error estimates do not depend on the co-
efficients ν and κ and ratio of mesh parameters. Sharper local estimates can also
be obtained for the case where the fluid mesh on the interface Γ is a refinement
of the porous mesh on Γ. The numerical experiments show good agreements with
our theoretical results.
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Figure 5.3: Velocities errors (right) and pressures errors (left).

5.9 Appendix A: Non-homogeneous boundary conditions

The non-homogeneous boundary condition can be reduced to the homogeneous
case when hf ∈ H1/2(Γf )

2 and hp ∈ H−1/2(Γp). First construct ωf ∈ H1(Df )
2

such that 
−∇·T (wf , p̃f ) = 0 in Df

∇·wf = gf in Df

wf = hf on Γf
T (wf , p̃f )·ηf = 0 on Γ

(5.99)

From the divergence theorem∫
Γf

wf ·ηf =

∫
Df

gf −
∫

Γf

hf ·ηf . (5.100)

Now put uf = ωf + ζf where uf satisfies the non-homogeneous system (5.3).
So we are looking for ζf that satisfy: −∇·T (ζf , pf ) = f f +∇·2νD(ωf ) in Df

∇·ζf = 0 in Df

ζf = 0 on Γf
.

Analogously, on the porous region, the non-homogeneous case can be reduced
to the homogeneous one. In this case hp ∈ H−1/2(Γp). Construct wp ∈H(div, Dp)
such that 

ν
κ
wp +∇p̃p = 0 in Dp

∇·wp = gp in Dp

wp ·ηp = hp on Γp,
wp ·ηp = wf ·ηp on Γ,

(5.101)

with wf defined in (5.99). This construction is possible since the compatibility
condition (5.5) and (5.100) imply that the system (5.101) is compatible.

Put up = ωp + ζp. Then we look for ζp such that:
ν
κ
ζp +∇pp = − ν

κ
ωp in Dp

∇·ζp = 0 in Dp

ζp ·ηp = 0 Γp.
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In terms of weak formulation, with ω := (ωf ,ωp), we have: find (ζ, p, λ) ∈
X ×M◦ × Λ satisfying : a(ζ,v) + b(v, p) + bΓ(v, λ) = `(v)− a(ω,v) for all v ∈X

b(ζ, q) = 0 for all q ∈M◦

bΓ(ζ, µ) = 0 for all µ ∈ Λ,

which is the same problem (5.28) with a different right hand side.

5.10 Approximation properties of Taylor-Hood finite ele-
ments

In this appendix, the domain of reference is Df . Recall the definitions of Xf

and M◦
hf

on (5.53) and (5.55), respectively. In order to simplify the notation in

some cases we omit the subscript that refers to the domain. In particular, all the
operators defined in this section act on velocities defined on Df .

Let Q : Xf → Xhf be Clement interpolation (see Braess [2001], Clément
[1975] and Scott and Zhang [1990]). It is know that Q is bounded, i.e.,

|Qvf |H1(Df )2 � |v|H1(Df )2 , (5.102)

and we have

‖vf −Qvf‖L2(Df )2 � hs|vf |Hs(Df )2 , s = 1, 2. (5.103)

|vf −Qvf |H1(Df )2 � h|vf |H2(Df )2 , (5.104)

|Qvf |H1/2(Γ)2 � |vf |H1/2(Γ)2 , (5.105)

‖vf −Qvf‖L(Γ)2 � h
1
2 |vf |H1/2(Γ)2 . (5.106)

This interpolation is basically a Clement interpolation on Γ, i.e., values zero at
the interface relative boundary points and a Clement interpolation at the interior
nodes.

Given K ∈ Thf and e edge of K, let η(K)
e = (η1

e , η
2
e) denote the normal to e

exterior to K, τ (K)
e = (τ 1

e , τ
2
e ) the tangential vector to e (with ∂K anticlockwise

oriented), and xe the midpoint of the edge e. Each interior edge belongs to two
triangles K1 and K2. Let ηe denote one of the directions η(K1)

e or η(K2)
e . For

boundary edges ηe denotes η(K)
e . Analogously, for interior edges let τ e denote one

of the directions τ (K1)
e or τ (K2)

e , and for boundary edges τ e = τ (K)
e .

Let φ(K)

i , i = 1, 2, 3, be the edge bubble Taylor-Hood basis functions based on
the midpoints of the edges of K. Let ψ(K)

i := φ(K)

i ηei , i = 1, 2, 3, and ϑ(K)

i :=

φ(K)

i τ ei , i = 1, 2, 3. Observe that:∫
K
ψ(K)

i ·ηei 6= 0, ψ(K)

i ·τ ei = 0 i = 1, 2, 3.

ϑ(K)

i (xei) ·τ ei 6= 0, ϑ(K)

i ·ηei = 0 i = 1, 2, 3.
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Now consider the following subspaces of Xhf :

W
η
hf

:= {vhf ∈Xhf : v|K ∈ Span{ψ(K)

1 ,ψ(K)

2 ,ψ(K)

3 }} ∩Xhf

and
Wτ

hf
:= {vhf ∈Xhf : v|K ∈ Span{ϑ(K)

1 ,ϑ(K)

2 ,ϑ(K)

3 }} ∩Xhf .

Note that if vhf ∈ W
η
hf

then vhf ·ηf |Γ ∈ H
1/2
00 (Γ) and vhf ·τ f |∂Df = 0. Also

note that if vhf ∈W
τ
hf

then vhf ·τ f |Γ ∈ H
1/2
00 (Γ) and vhf ·ηf |∂Df = 0.

Let Πη : Xf →W
η
hf

be (locally) defined by :

Πηvf ∈ Span{ψ(K)
1 ,ψ

(K)
2 ,ψ

(K)
3 },

such that ∫
ei

Πηvf ·η =
1

|ei|

∫
ei

vf ·ηei , i = 1, 2, 3

for all K ∈ Th. In other words, Πηvf = α1ψ1 + α2ψ2 + α3ψ3, where

αi :=

∫
ei
vf ·ηei∫

ei
ψi ·ηei

=

∫
ei
vf ·ηei∫
ei
φ(K)

i

.

From a trace theorem and a scaling argument we have that:

|αi|2 �
1

h2
f

‖vf‖2
L2(K)2 + |vf |2H1(K)2 .

Then

|Πηvf |H1(Df )2 � max
1≤i≤3

|αi|2 �
1

h2
f

‖vf‖2
L2(Df )2 + |vf |2H1(Df )2

and

‖Πηvf‖2
L2(Df )2 � h2

f max
1≤i≤3

|αi|2 � ‖vf‖2
L2(Df )2 + h2

f |vf |2H1(Df )2 . (5.107)

Observe that ∫
K

∇·Πηvf =

∫
∂K

Πη(vf ) ·η =

∫
∂K

vf ·η =

∫
K

∇·vf .

We also have
‖Πηvf‖L2(Γ)2 � ‖vf‖L2(Γ)2 . (5.108)

Define Υη : Xf →Xhf by:

Υηvf := Qvf + Πη(vf −Qvf ), (5.109)

then we obtain the following results.

Lemma 5.32 The operator Υη defined in (5.109) is bounded

|Υηvf |H1(Df )2 � |vf |H1(Df )2 , (5.110)
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moreover,
‖vf −Υηvf‖L2(Df )2 � hs‖vf‖Hs(Df )2 s = 1, 2. (5.111)

and
|vf −Υηvf |H1(Df )2 � h|vf |H2(Df )2 . (5.112)

We also have
|Υηvf |H1/2(Γ)2 � ‖vf‖H1/2(Γ)2 , (5.113)

and ∫
e

Υηvf ·ηe =

∫
e

vf ·ηe for all edge e. (5.114)

Proof. From (5.107) we have, for s = 1, 2,∑
K∈Th

‖Πη(vf −Qvf )‖2
L2(K)2 (5.115)

�
∑
K∈Th

(
‖vf −Qvf‖2

L2(K)2 + h2
f |vf −Qvf |2H1(K)2

)
� h2s

f |vf |2Hs(Df )2 + h
2(s−1)+2
f |vf |2Hs(Df )2 by (5.103) and (5.102).

� h2s
f |vf |2Hs(Df )2 . (5.116)

Then, using an inverse estimate (see Braess [2001]) and (5.116) we get

|Πη(vf −Qvf )|H1(K)2 � 1

hf
‖Πη(vf −Qvf )‖L2(K)2 � |vf |H1(Df )2 ,

and hence

|Υηvf |H1(Df )2 ≤ |Qvf |H1(Df )2 + |Πη(vf −Qvf )|H1(Df )2 by definition of Υη

� |vf |H1(Df )2 + |vf |H1(Df )2 � |vf |H1(Df )2 .

To show (5.111) we have that

‖vf −Υηvf‖L2(Df )2

= ‖vf −Qvf −Πη(vf −Qvf )‖L2(Df )2 by definition of Υη.

≤ ‖vf −Qvf‖L2(Df )2 + ‖Πη(vf −Qvf )‖L2(Df )2

� hsf |vf |Hs(Df )2 + hs|vf |Hs(Df )2 ; by (5.103) and (5.116)

� hsf |vf |Hs(Df )2 , s = 1, 2.

Analogously we get (5.112). To proof (5.113) observe that

|Υηvf |H1/2(Γ)2 ≤ |Qvf |H1/2(Γ)2 + |Πη(vf −Qvf )|H1/2(Γ)2

� ‖Qvf‖H1/2(Γ)2 + h
− 1

2
f |Πη(vf −Qvf )|L2(Γ)2

� |vf |H1/2(Γ)2 + h
− 1

2
f ‖vf −Qvf‖L2(Γ)2 by (5.105) and (5.108)

� |vf |H1/2(Γ)2 by (5.106).

The last assertion, (5.114), is straightforward.
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Given qhf ∈Mhf , define (locally) Π̂τqhf ∈W
τ
hf

by

Π̂τqhf |K ∈ Span{ϑ(K)

1 ,ϑ(K)

2 ,ϑ(K)

3 }

with
Π̂τqhf (xe) · η = 0 and Π̂τqhf (xe) · τ = ∇qhf (xe) · τ (5.117)

at midpoints xe of all interior edges e. For edges on Γf we define Π̂τq|e = 0.

Note that Π̂τqhf is zero at the vertices of all elements of Thf and observe that

Π̂τqhf ∈ H1(Df )
2 because the above equation are consistent in neighbor triangles

which gives Π̂τqhf continuous (see Braess [2001], Chapter II, Theorem 5.2).

Lemma 5.33 Suppose that Thf is non-degenerate and has no triangle with two

edges on ∂Df and consider the operator Π̂τ defined in (5.117). Then

‖Π̂τqhf‖L2(Df )2 � |qhf |H1(Df ) for all qhf ∈M◦
hf
,

and there exists a positive constant such that:∫
Df

Π̂τqhf ·∇qhf � |qhf |2H1(Df ) � ‖qhf‖2
L2(Df ) for all qhf ∈M◦

hf
.

From Lemma 5.33 and the boundedness of Π̂τ , the spaces Wτ
hf

(with the

L2(Df )-norm) and M◦
hf

(with the H1(Df )-norm) satisfy the inf-sup condition

independent of hf with respect to the bilinear form defined in (5.15) by:

bf (vf , qf ) := −(qf ,∇·vf )Df for all vf ∈Xf and qf ∈M◦
f .

Also observe that if vf ∈ Wτ
hf

then vf · η = 0 on ∂Df and then bf (vf , qf ) =∫
Df
vf · ∇qf by the Green formula. Then, according to the Brezzi’s splitting

theorem, see Braess [2001] and Girault and Raviart [1986], we can always obtain
a stable solution w ∈Wτ

hf
of:{

(w,vf )Df + bf (vf , pf ) = (z,vf )Df for all vf ∈Wτ
hf

bf (w, qf ) = bf (z, qf )Df for all qf ∈M◦
hf
,

(5.118)

where z ∈ L2(Df )
2.

Given z, denote by Υτz the solution of (5.118). Then

‖Υτz‖L2(Df )2 � ‖z‖L2(Df )2 , (5.119)

and bf (Υτz, qhf ) = bf (z, qhf ) for qhf ∈M◦
hf

.

In order to proof Lemma 5.19 define

I
TH

hf
vf := Υηvf + Υτ (vf −Υηvf ).

Observe that:

|ITHhfvf |H1(Df )2 ≤ |Υηvf |H1(Df )2 + |Υτ (vf −Υηvf )|H1(Df )2
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� |vf |H1(Df )2 +
1

hf
‖Υτ (vf −Υηvf )‖L2(Df )2

by (5.110) and
inverse estimate.

� |vf |H1(Df )2 +
1

hf
‖vf −Υηvf‖L2(Df )2 by (5.119)

� |vf |H1(Df )2 + |vf |H1(Df )2 by (5.111).

Then the operator I
TH

hf
is bounded (with constant independent of hf ). In addition

for phf ∈M◦
hf

we get:

bf (I
TH

hf
vf , phf ) = bf (Υηvf , phf ) + bf (Υτ (vf −Υηvf ), phf )

= bf (Υηvf , phf ) + bf (vf −Υηvf , phf ) by definition of Υτ .

= bf (vf , phf ).

To obtain (5.56) observe that from definition of I
TH

hf
we have:

‖vf − I
TH

hf
vf‖L2(Df )2

≤ ‖vf −Υηvf‖L2(Df )2 + ‖Υτ (vf −Υηvf )‖L2(Df )2

� ‖vf −Υηvf‖L2(Df )2 + ‖vf −Υηvf‖L2(Df )2 by (5.119)

� hsf |vf |Hs(Df )2 s = 1, 2. by (5.111).

The proof of (5.57) is similar. Inequality (5.59) is obtained from (5.113).
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Chapter 6

BDD and FETI Methods for
Mortar Coupling of Stokes-Darcy
Systems

We consider the coupling across an interface of a fluid flow and a porous media
flow. The differential equations involve Stokes’ equations in the fluid region and
Darcy’s equations in the porous region, and coupled through an interface with
adequate transmission conditions. The discretization consists of P2/P1 triangular
Taylor-Hood finite elements, the lowest order triangular Raviart-Thomas finite
elements, and the mortar piecewise constant Lagrange multipliers on the interface.
Nonmatching meshes across the interface are allowed. Due to the small values
of the permeability parameter κ of the porous medium, the resulting discrete
symmetric saddle point system is very ill conditioned. We design and analyze two
preconditioners, one based on Balancing Domain Decomposition (BDD) methods
and the other one based on Finite Element by Tearing and Interconnecting (FETI)
methods. For both methods, we derive condition number estimates of order C1(1+
1
κ
). In case the fluid discretization is finer than the porous side discretization, we

derive a better estimate of order C2( κ+1
κ+(hp)2 ) for the FETI preconditioner. Here

hp is the mesh size of the porous side triangulation. The constants C1 and C2 are
independent of the permeability κ, the fluid viscosity ν, and the mesh ratio across
the interface. Numerical experiments confirm the sharpness of the theoretical
estimates.

6.1 Introduction and problem setting

We consider the coupling across an interface of a fluid flow and a porous media
flow. The model consists of Stokes’ equations in the fluid region, Darcy’s equa-
tions for the filtration velocity in the porous medium, and a coupling through an
interface with adequate transmission conditions. Such problem appears in sev-
eral applications like well-reservoir coupling in petroleum engineering, transport
of substances across groundwater and surface water, and (bio)fluid-organ interac-
tions. There are some works that address numerical analysis issues of this model.
For inf-sup conditions and approximation results associated to the continuous and
discrete formulations for Stokes-Darcy systems we refer Galvis [2004], Galvis and
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Sarkis [2007b] and Layton et al. [2002], and for Stokes-Laplacian systems we refer
Discacciati et al. [2002] and Discacciati and Quarteroni [2003]. For mortar dis-
cretization analysis we mention Galvis and Sarkis [2007b] and Rivière and Yotov
[2005], while for preconditioning analysis for Stokes-Laplacian systems we refer
Discacciati [2004, 2005] and Discacciati and Quarteroni [2004]. Here in this pa-
per, we are interested on preconditioners for Stokes-Mortar-Darcy systems with
flux boundary conditions, therefore, the global system as well as the local sys-
tems require flux compatibilities. We propose and analyze two preconditioners
based on Balancing Domain Decomposition (BDD) methods and Finite Element
by Tearing and Interconnecting (FETI) methods, respectively, and present numer-
ical experiments in order to verify the theory. In the BDD method, the energy of
the preconditioner is controlled by the Stokes system, while in the FETI method,
the energy is controlled by the Darcy system. For general references, we mention
Achdou et al. [1999], Brenner and Sung [2007], Dryja and Proskurowski [2003],
Mandel [1993], Mandel and Brezina [1996] and Pavarino and Widlund [2002],
Toselli and Widlund [2005] for BDD methods and Brenner and Sung [2007], Dryja
and Proskurowski [2003], Farhat and Roux [1991], Klawonn and Widlund [2001],
Mandel and Tezaur [1996] and Toselli and Widlund [2005] for FETI methods.
Besides the preliminary work presented in Galvis and Sarkis [2006], up to our
knowledge, algorithms and theoretical analysis concerning BDD and FETI type
preconditioners for Stokes-Darcy coupling are missing.

In this paper we consider Taylor-Hood finite element methods for the free fluid
side and lowest order Raviart-Thomas element for the porous side. The BDD and
FETI analysis to be developed here can also be straightforwardly extended to the
three dimensional case and to other discretizations, e.g., the P2/P0 coupled with
Raviart-Thomas; see Discacciati et al. [2002], Galvis and Sarkis [2007b], Layton
et al. [2002] and Rivière and Yotov [2005]. Here, we consider only the two sub-
domain case, i.e., when exact local solvers are applied to the Stokes and Darcy
regions. For the case of discontinuous pressure finite elements, BDD and FETI
type methods based on partitions of the Stokes and Darcy domains can be con-
sidered as well. In this case, the most difficult part of designing and analyzing the
methods is related to the subdomains that touch the Stokes/Darcy interface, and
this is the case studied here. Subdomains that do not touch the Stokes/Darcy
interface Γ can be treated as in the classical versions of BDD and FETI type al-
gorithms. We also mention that extension to Balancing Domain Decomposition
with Constraints (BDDC) and dual-primal FETI (FETI-DP) methods can also be
considered; see Brenner and Sung [2007], Dohrmann [2003], Dryja et al. [2005],
Farhat et al. [2000], Li [2005], Li and Widlund [2006, 2007] and Tu [2005].

Let Df , Dp ⊂ Rn be polyhedral subdomains, define D := int(D
f ∪ Dp

) and
Γ := ∂Df ∩ ∂Dp, with outward unit normal vectors ηi on ∂Di, i = f, p. The
tangent vectors on Γ are denoted by τ 1 (n = 2), or τ l, l = 1, 2 (n = 3). The
exterior boundaries are Γi := ∂Di \ Γ, i = f, p. Fluid velocities are denoted by
ui : Di → Rn, i = f, p, and pressures by pi : Di → R, i = f, p.

We consider Stokes equations in the fluid region Df and Darcy equations for
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the filtration velocity in the porous medium Dp. More precisely, we have the
following systems of equations in each subdomain:

Stokes’ equations Darcy’s equations
−∇ · T (uf , pf ) = ff in Df

∇ · uf = gf in Df

uf = hf on Γf


up = −κν∇p

p in Dp

∇ · up = gp in Dp

up · ηp = hp on Γp.
(6.1)

Here T (v, p) := −pI + 2νDv, where ν is the fluid viscosity, Dv := 1
2
(∇v+∇vT )

is the linearized strain tensor and κ denotes the rock permeability. For simplicity
on the analysis, we assume that κ is a real positive constant. We impose the
following conditions:

1. Interface matching conditions across Γ; see Discacciati et al. [2002], Discac-
ciati and Quarteroni [2003, 2004] and Layton et al. [2002] and references
therein.

(a) Conservation of mass across Γ: uf · ηf + up · ηp = 0 on Γ.

(b) Balance of normal forces across Γ: pf − 2νηfTD(uf )ηf = pp on Γ.

(c) Beavers-Joseph-Saffman condition: This condition is a kind of empirical
law that gives an expression for the component of the Cauchy stress
tensor in the tangential direction of the interface Γ; see the works Beavers
and Joseph [1967] and Jäger and Mikelić [2000]. It is expressed by:

uf · τ l = −
√
κ

αf
2ηfTD(uf )τ l l = 1, n− 1; on Γ.

2. Compatibility condition: The divergence and boundary data satisfy (see Galvis
and Sarkis [2007b]),

〈gf , 1〉Df + 〈gp, 1〉Dp − 〈hf · ηf , 1〉Γf − 〈hp, 1〉Γp = 0.

6.2 Weak formulation

In this section we present the weak version of the coupled system of partial differ-
ential equations introduced above. Without loss of generality, we consider hf = 0,
gf = 0, hp = 0 and gp = 0 in (6.1); see Galvis and Sarkis [2007b].

The problem can be formulated as: Find (u, p, λ) ∈X ×M0 ×Λ such that for
all (v, q, µ) ∈X ×M0 × Λ: a(u,v) + b(v, p) + bΓ(v, λ) = f(v)

b(u, q) = 0
bΓ(u, µ) = 0,

(6.2)

where X = Xf ×Xp := H1
0 (Df ,Γf )n ×H0(div, Dp,Γp) and M0 is the subset of

M := L2(Df )× L2(Dp) ≡ L2(D) of pressures with zero average value in D. Here
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H1
0 (Df ,Γf ) denotes the subspace of H1(Df ) of functions that vanish on Γf . The

space H0(div, Dp,Γp) consists of functions in H(div, Dp) with zero normal trace
on Γp, where

H(div, Dp) :=
{
v ∈ L2(Dp)n : divv ∈ L2(Dp)

}
.

For the Lagrange multiplier space we consider Λ := H1/2(Γ). See Galvis and
Sarkis [2007b] for a discussion on the choice of the Lagrange multipliers space Λ
and how to derive the weak formulation (6.2) and other equivalent weak formula-
tions; see also Layton et al. [2002].

The global bilinear forms are

a(u,v) := af
αf

(uf ,vf ) + ap(up,vp)

and
b(v, p) := bf (vf , pf ) + bp(vp, pp),

with local bilinear forms af
αf
, bf and bp defined by

af
αf

(uf ,vf ) := 2ν(Duf ,Dvf )Df (6.3)

+
n−1∑
`=1

ναf√
κ
〈uf · τ `,vf · τ `〉Γ, uf ,vf ∈Xf ,

ap(up,vp) := (
ν

κ
up,vp)Dp , up,vp ∈Xp, (6.4)

bf (vf , qf ) := −(qf ,∇ · vf )Df , vf ∈Xf , qf ∈M f , (6.5)

bp(vp, pp) := −(pp,∇ · vp)Dp , vp ∈Xp, pp ∈Mp, (6.6)

and with weak conservation of mass bilinear form defined by

bΓ(v, µ) := 〈vf · ηf , µ〉Γ + 〈vp · ηp, µ〉Γ, v = (vf ,vp) ∈X, µ ∈ Λ. (6.7)

The second duality pairing of (6.7) is interpreted as

〈vp · ηp, Eηp(µ)〉∂Dp .

Here Eηp is any continuous lift-in operator from H1/2(Γ) to H1/2(∂Dp); recall that
Γ ⊂ ∂Dp. See Galvis [2004] and Galvis and Sarkis [2007b].

The functional f in the right hand side of (6.2) is defined by

f(v) := f f (vf ) + fp(vp), for all v = (vf ,vp) ∈X,

where f i(vi) := (f i,vi)L2(Di) for all vi ∈X i, i = f, p.

The bilinear forms af
αf
, bf are associated to Stokes’ equations and the bilinear

forms ap, bp to Darcy law. The bilinear form af
αf

includes interface matching con-
ditions 1.b and 1.c above. The bilinear form bΓ is used to impose the weak version
of the interface matching condition 1.a above. For the analysis of this weak for-
mulation and the well-posedness of the problem; see Galvis and Sarkis [2007b] and
Layton et al. [2002].
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6.3 Discretization

From now on we consider only the two dimensional case. We note that the ideas
developed in the following can be easily extended to case of three dimensional
subdomains.

We assume that Di, i = f, p, are two dimensional polygonal subdomains. Let
T ihi(Di) be a geometrically conforming shape regular and quasi-uniform triangu-
lation of Di with mesh size parameter hi, i = f, p. We do not assume that these
two triangulations match at the interface Γ. For the fluid region, let Xf

hf
and M f

hf

be P2/P1 triangular Taylor-Hood finite elements; see Braess [2001], Brenner and
Scott [1994] and Brezzi and Fortin [1991]. More precisely,

Xf
hf

:=

{
u ∈Xf :

∀K ∈ T f
hf

(Df ), uK = ûK ◦
F−1
K and ûK ∈ P2(K̂)2

}
∩ C0(D

f
)2, (6.8)

where uK := u|K and

M f
hf

:=

{
p ∈ L2(Df ) :

∀K ∈ T f
hf

(Df ), pK = p̂K ◦
F−1
K and p̂K ∈ P1(K̂)

}
∩ C0(D

f
).

Denote M̊
f

hf ⊂ M f
hf

the discrete fluid pressures with zero average value in Df .
For the porous region, let Xp

hp ⊂ Xp and Mp
hp ⊂ L2(Dp) be the lowest order

Raviart-Thomas finite elements based on triangles; see Braess [2001] and Brezzi

and Fortin [1991]. Let M̊
p

hp ⊂ Mp
hp be the subset of pressures in Mp

hp with zero
average value in Dp.

Define Xh := Xf
hf
×Xp

hp ⊂ X and Mh := M f
hf
×Mp

hp ⊂ L2(Df ) × L2(Dp).
Note that in the definition of the discrete velocities we assume that the bound-
ary conditions are included, i.e., for vf

hf
∈ Xf

hf
we have vf

hf
= 0 on Γf and for

vphp ∈X
p
hp we have that vph · ηp = 0 on Γp.

Let T php(Γ) be the restriction to Γ of the porous side triangulation T php(Dp). For
the Lagrange multipliers space we choose piecewise constant functions on Γ with
respect to the triangulation T php(Γ),

Λhp :=
{
λ : λ|epj = λepj is constant in each edge epj of T php(Γ)

}
, (6.9)

i.e., the master is on the fluid region side and the slave is on the porous re-
gion side; see Ben Belgacem and Maday [1997], Bernardi et al. [1994], Dryja and
Proskurowski [2003] and Wohlmuth [2000]. The choice of piecewise constant La-
grange multipliers leads to a nonconforming approximation on Λhp since piecewise
constant functions do not belong to H1/2(Γ). For the analysis of this noncon-
forming discretization and a priori error estimates we refer to Galvis and Sarkis
[2007b].
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6.4 Primal and dual formulations

In order to simplify notation and since there is no danger of confusion, we will
denote the finite element functions and the corresponding vector representation
by the same symbol, i.e., when writing finite element functions we will drop
the indices hi. Recall that we have the pair of spaces (Xh,Mh) associated to

the coupled problem and spaces associated to each subproblem: (Xf
hf
,M f

hf
) and

(Xp
hp ,M

p
hp). We will keep the subscript hi, i = f, p, in the notation for local sub-

spaces Xf
hf
,M f

hf
,Xp

hp and Mp
hp .

Since we are interested in preconditioning issues we assume αf = 0 in the def-
inition of the fluid side local bilinear form af

αf
in (6.3). We denote af = af0 ; see

Remark 6.9 for the case αf > 0.

With the discretization chosen in Section 6.3 we obtain the following symmetric
saddle point linear system

Af BfT 0 0 CfT

Bf 0 0 0 0
0 0 Ap BpT −CpT

0 0 Bp 0 0
Cf 0 −Cp 0 0



uf

pf

up

pp

λ

 =


f f

gf

f p

gp

0

 (6.10)

with matrices Ai, Bi, Ci and columns vectors f i, gi, i = f, p, defined by

ai(ui,vi) = viTAiui,
bi(ui, qi) = qiTBiui,
(ui · ηf , µ)Γ = µTCiui,
f i(vi) = viTf i,
gi(qi) = qiTgi.

(6.11)

Matrix Af corresponds to ν times the discrete version of the linearized stress ten-
sor on Df . Note that in the case αf > 0, the bilinear form af

αf
in (6.3) includes

a boundary term; see Remark 6.9. The matrix Ap corresponds to ν/κ times a
discrete L2-norm on Dp. Matrix −Bi is the discrete divergence in Di, i = f, p,
and matrices Cf and Cp correspond to the matrix form of the discrete conserva-
tion of mass on Γ. Note that ν can be viewed as a scaling factor since it appears
in both matrices Af and Ap. Therefore, it is not relevant for preconditioning issues.

Consider the following partition of the degrees of freedom: For i = f, p, let
uiI
piI
uiΓ
p̄i


Interior displacements + tangential velocities on Γ,
Pressures with zero average in Di,
Interface outward normal velocities on Γ,
Constant pressure in Di.

Then, for i = f, p, we have the block structure:

Ai =

[
AiII AiTΓI
AiΓI AiΓΓ

]
, Bi =

[
Bi
II BiT

ΓI

0 B̄iT

]
and Ci =

[
0 0 C̃i 0

]
.
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Note that the (2, 1) entry of Bi corresponds to integrating an interior velocity
against a constant pressure, then it vanishes due to the divergence theorem. We
have the following matrix representation of the coupled problem in (6.10):

AfII BfTII AfTΓI 0 0 0 0 0 0

BfII 0 BfTΓI 0 0 0 0 0 0

AfΓI BfTIΓ AfΓΓ B̄fT 0 0 0 0 C̃fT

0 0 B̄f 0 0 0 0 0 0

0 0 0 0 ApII BpTII ApTΓI 0 0

0 0 0 0 BpII 0 BpIΓ 0 0

0 0 0 0 ApΓI BpTIΓ ApΓΓ B̄pT −C̃pT

0 0 0 0 0 0 B̄p 0 0

0 0 C̃f 0 0 0 −C̃p 0 0





ufI

pfI

ufΓ

p̄f

upI

ppI

upΓ

p̄p

λ


=



ffI

gfI

ffΓ

ḡf

fpI

gpI

fpΓ

ḡp

0


. (6.12)

Following Dryja and Proskurowski [2003], Pavarino and Widlund [2002], we
choose the following matrix representation in each subdomain Di, i = f, p,

AiII BiT
II AiTΓI 0

Bi
II 0 Bi

IΓ 0

AiΓI B
iT
IΓ AiΓΓ B̄iT

0 0 B̄i 0

 =

[
Ki
II KiT

ΓI

Ki
ΓI Ki

ΓΓ

]
. (6.13)

6.4.1 The primal formulation

From the last equation in (6.12) we see that the mortar condition on Γ (using the

Darcy side as the slave side) can be imposed as upΓ = (C̃p)−1C̃fufΓ = ΠufΓ, where
Π is the L2(Γ) projection on the space of piecewise constant functions on each
subinterval ep ∈ T php(Γ). We note that C̃p is a diagonal matrix for the lowest order
Raviart-Thomas elements.

Now we eliminate uiI , p
i
I , i = f, p, and λ, to obtain the following (saddle point)

Schur complement

S

 ufΓ
p̄f

p̄p

 =

 bΓ

b̄f

b̄p

 . (6.14)

Here S is given by

S : =

 SfΓ B̄fT 0
B̄f 0 0
0 0 0

+ Π̃T

 SpΓ 0 B̄pT

0 0 0
B̄p 0 0

 Π̃

= S̃f + S̃p

=

 SfΓ + ΠTSpΓΠ B̄fT ΠT B̄pT

B̄f 0 0

B̄pΠ 0 0

 =

[
SΓ B̄T

B̄ 0

]
,
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where

Π̃ :=

 Π 0 0
0 1 0
0 0 1

 , B̄T := [B̄fT ΠT B̄pT ]. (6.15)

Here, we have denoted

S̃f :=

 SfΓ B̄fT 0
B̄f 0 0
0 0 0

 and S̃p := Π̃T

 SpΓ 0 B̄pT

0 0 0
B̄p 0 0

 Π̃. (6.16)

The local matrices SiΓ and B̄i and the local Schur complement Si are given by

Si =

[
SiΓ B̄iT

B̄i 0

]
:= Ki

ΓΓ −Ki
ΓI

(
Ki

ΓΓ

)−1
KiT

ΓI , i = p, f. (6.17)

The right hand side of (6.14) is given by bΓ

b̄f

b̄p

 =


 f fΓ
ḡf

0

−
 Kf

ΓI

(
Kf

ΓΓ

)−1
[
f fI
gfI

]
0

+


 ΠTfpΓ

0
ḡp

− Π̃T

 Kp
ΓI (Kp

ΓΓ)−1

[
f pI
gpI

]
0

 .

We note that the reduced system (6.14), as well as the original system (6.12), is
solvable when b̄f + b̄p = 0, and the solution is unique when we restrict to pressures
with zero average value on D.

From now on we only work with functions defined on Γ and extended inside
the subdomain using the discrete Stokes and Darcy problems. It is convenient to
define the space

VΓ :=
{
vΓ = (vfΓ, v

p
Γ) : vfΓ = SH(vf · ηf |Γ) and vpΓ = DH(vp · ηp|Γ))

}
(6.18)

and

M0 :=

{
q ∈Mh :

qi = piecewise const. in Di, i = f, p,
and

∫
Df
qf +

∫
Dp
qp = 0

}
.

Here SH (DH) is the velocity component of the discrete Stokes (Darcy) harmonic

extension operator that maps discrete interface normal velocity ufΓ ∈ H
1/2
00 (Γ)

(respectively upΓ ∈ (H1/2(Γ))′) to the solution of following problem: Find ui ∈X i
hi

and pi ∈ M̊
i

hi such that for all vi ∈X i
hi and qi ∈ M̊

i

hi , i = f, p, we have:
af (SHuf ,vf ) + bf (vf , pf ) = 0

bf (SHuf , qf ) = 0

SHuf · ηf = ufΓ on Γ
SHuf = 0 on Γf ,

(6.19)

90 Juan Galvis



BDD and FETI for Stokes-Darcy

and 
ap(DHup,vp) + bp(vp, pp) = 0

bp(DHup, qp) = 0
DHup · ηp = upΓ on Γ
DHup · ηp = 0 on Γp.

(6.20)

The degrees of freedom associated with SHuf ·τ f on Γ are free. This corresponds
to imposing the natural boundary condition τ TD(SHuf )ηf = 0 on Γ.

For i = f, p, define the normal trace component of X i
hi by

Zi
hi =

{
vi · ηi|Γ : vi ∈X i

hi

}
. (6.21)

Associated with the coupled problem (6.12) we introduce the balanced subspace

VΓ,B̄ :=

{
vfΓ ∈ Z

f
hf

: (vfΓ,Πv
f
Γ) ∈ VΓ, and

∫
Γ

vfΓ · ηf = 0

}
, (6.22)

with VΓ defined in (6.18); see Pavarino and Widlund [2002]. Observe that VΓ,B̄ =

KerB̄, where B̄ is defined in (6.15) and (6.17). Then for vfΓ ∈ VΓ,B̄ we have

B̄vfΓ = 0. We will refer to functions vfΓ ∈ VΓ,B̄ as balanced functions. If vpΓ = ΠvfΓ
and vfΓ is a balanced function then we also say that vpΓ is a balanced function or

the pair (vfΓ,Πv
f
Γ) is balanced.

6.4.2 Dual formulation

In the system (6.12), we first eliminate the unknowns ufI , p
f
I and upI , p

p
I . We obtain

SfΓ B̄fT 0 0 C̃fT

B̄f 0 0 0 0

0 0 SpΓ B̄pT −C̃pT

0 0 B̄p 0 0

C̃f 0 −C̃p 0 0




ufΓ
p̄f

upΓ
p̄p

λ

 =

 b̃f

b̃p

0

 , (6.23)

where SiΓ, K
i
II and Ki

IΓ, i = f, p, are defined in (6.17) and (6.13). The right hand
side of (6.23) is given by

 b̃f

b̃p

0

 =



[
f fΓ
ḡf

]
−Kf

ΓI

(
Kf

ΓΓ

)−1
[
f fI
gfI

]
[
fpΓ
ḡp

]
−Kp

ΓI (Kp
ΓΓ)−1

[
f pI
gpI

]
0

 .
Let Ni :=

[
C̃i 0

]
and consider Si, i = f, p, defined in (6.17). Then the

matrix in the left hand side of (6.23) can be rewritten as Sf 0 N fT

0 Sp −NpT

N f −Np 0

 .
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Now we eliminate the unknowns ufΓ, p̄
f and upΓ, p̄

p. We end up with the reduced
system

Fλ = c, (6.24)

where the operator F is defined by

F := N f (Sf )−1N fT +Np(Sp)−1NpT , (6.25)

and the right hand side c is given by

c = N f (Sf )−1

{[
f fΓ
ḡf

]
−Kf

ΓI

(
Kf

ΓΓ

)−1
[
f fI
gfI

]}
−

Np(Sp)−1

{[
fpΓ
ḡp

]
−Kp

ΓI (Kp
ΓΓ)−1

[
f fI
gpI

]}
.

Note that F is positive semidefinite and since a discrete Lagrange multiplier in
Λhp does not have necessarily zero mean average value on Γ, then, the operator F
has one simple zero eigenvalue corresponding to a constant Lagrange multiplier.
The above linear system, as well as the original linear system (6.12), is solvable
for zero mean right hand side, i.e., for cT · (1, . . . , 1) = 0.

6.5 BDD preconditioner

In this section we design and analyze a BDD type preconditioner for the Schur
complement system (6.14); see Brenner and Sung [2007], Dryja and Proskurowski
[2003] and Toselli and Widlund [2005], and also Achdou et al. [1999], Dryja et al.
[2005], Mandel [1993], Pavarino and Widlund [2002] and Tu [2005]. For the sake of
simplicity on the analysis we assume that Γ = {1}×(0, 1), Df = (1, 2)×(0, 1) and
Dp = (0, 1) × (0, 1). We introduce the velocity coarse space on Γ as the span of
the normal velocity v0 = y(1−y) (with v0 also denoting its vector representation).
Define:

R0 :=

[
vT0 0
0 I2×2

]
, S0 := R0SR

T
0 and Q0 := RT

0 S
†
0R0. (6.26)

The system (6.14) is solvable when the right hand side satisfy b̄f + b̄p = 0 with
uniqueness of the solution in the space of vectors with pressure component having
zero average value on D. Then, we have that S0 is invertible restricted to vec-
tors with pressure component in M0. The low dimensionality of the coarse space
(which is spanned by φf0 and a constant pressure per subdomain Di, i = f, p,)

and the fact that the functions φf0 is independent of the triangulation parameters
imply stable discrete inf-sup condition for the coarse problem.

Denote S̃0 := vT0 SΓv0 and S̃ := B̄v0S̃
−1
0 vT0 B̄

T . We can write (see (6.15) and
(6.26))

S0 =

[
S̃0 (B̄v0)T

B̄v0 0

]
.
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A simple calculation using the formula for the inverse of a saddle point matrix
gives

Q0 =

[
v0S̃

−1
0 vT0 − v0S̃

−1
0 vT0 B̄

T S̃−1B̄v0S̃
−1
0 vT0 v0S̃

−1
0 vT0 B̄

T S̃−1

S̃−1B̄v0S̃
−1
0 vT0 S̃−1

]
,

and using (6.15) we obtain

Q0S =

[
v0S̃

−1
0 vT0 SΓ − v0S̃

−1
0 vT0 B̄

T S̃−1B̄v0S̃
−1
0 vT0 SΓ + v0S̃

−1
0 vT0 B̄

T S̃−1B̄ 0

S̃−1B̄v0S̃
−1
0 vT0 SΓ − S̃−1B̄ I

]
,

or Q0S =

[
P 0
G I

]
. Here, we have defined

P :=
(
v0S̃

−1
0 vT0 SΓ − v0S̃

−1
0 vT0 B̄

T S̃−1B̄v0S̃
−1
0 vT0 SΓ

)
+v0S̃

−1
0 vT0 B̄

T S̃−1B̄

G := S̃−1B̄ − S̃−1B̄v0S̃
−1
0 vT0 SΓ.

With this notation we have that I − Q0S =

[
I − P 0
G 0

]
. Elementary calcula-

tions show that P2 = P and B̄(I − P) = 0, hence I − P is a projection and its
image is contained on the balanced subspace defined in (6.22); see also Pavarino
and Widlund [2002].

Given a residual r =
[
fTΓ ḡT

]T
, the coarse problem Q0r, with Q0 defined in

(6.26), is the solution of the coupled problem (6.12) with one velocity degree of
freedom (v0), and a constant pressure per subdomain Di, i = f, p, with mean zero

in D = int(D
f ∪Dp). Note that the matrix S0 defined in (6.26) can be computed

easily and in order to ensure zero mean pressure on D we can use a Lagrange
multiplier.

For balanced functions vfΓ and ufΓ, the SΓ-inner product is defined by (see
(6.15)):

〈ufΓ, v
f
Γ〉SΓ

:= 〈SΓu
f
Γ, v

f
Γ〉 = ufTΓ SΓv

f
Γ.

Recall that B̄ufΓ=0 when ufΓ is balanced. Then, on this subspace of balanced
functions, the SΓ inner product coincides with the S-inner product defined by〈 vfΓ

q̄f

q̄p

 ,
 ufΓ
p̄f

p̄p

〉
S

:=

 vfΓ
q̄f

q̄p

T S
 ufΓ
p̄f

p̄p

 =

[
vfΓ
q̄

]T [
SΓ B̄T

B̄ 0

] [
ufΓ
p̄

]
,

where p̄T = [ p̄p p̄p ]T . Consider the BDD preconditioner operator given by

S−1
N := Q0 + (I −Q0S) (S̃f )† (I − SQ0) , (6.27)

where S̃f is defined in (6.16); see Dryja and Proskurowski [2003] and Pavarino
and Widlund [2002]. The notation (S̃f )† stands for the pseudo-inverse of S̃f , i.e.,

(S̃f )† =

[
(Sf )−1 0

0 0

]
,
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with Sf defined in (6.17). The preconditioned operator is given by

S−1
N S = Q0S + (I −Q0S) (S̃f )†S (I −Q0S)

=

[
P 0
G I

]
+

[
I − P 0
G 0

]
(S̃f )†

[
SΓ B̄T

B̄ 0

] [
I − P 0
G 0

]
. (6.28)

Note that applying (Sf )−1 to a vector

[
ufΓ
p̄

]
is equivalent to solving the linear

system 
AfII BfT

II AfTΓI 0

Bf
II 0 Bf

IΓ 0

AfΓI B
fT
IΓ AfΓΓ B̄fT

0 0 B̄f 0



wfI
sfI
wfΓ
s̄f

 =


0
0

ufΓ
p̄f

 .
If ufΓ is balanced, so is balanced the velocity component of (Sf )−1

[
ufΓ
p̄f

]
. Then

using elementary calculations with the matrices in (6.28) we obtain that

〈S−1
N S

[
uΓ

p̄

]
,

[
vΓ

q̄

]
〉S = 〈(SfΓ)−1SΓuΓ, vΓ〉SΓ

,

for uΓ, vΓ ∈ Range(I − P). In order to bound the condition number of the pre-
conditioned operator S−1

N S, we only need to analyze the condition of the operator

(SfΓ)−1SΓ. Note that

c〈ufΓ, u
f
Γ〉SΓ

≤ 〈
(
Sf
)−1

SΓu
f
Γ, u

f
Γ〉SΓ

≤ C〈ufΓ, u
f
Γ〉SΓ

is equivalent to
c〈SfufΓ, u

f
Γ〉 ≤ 〈SΓu

f
Γ, u

f
Γ〉 ≤ C〈SfufΓ, u

f
Γ〉. (6.29)

The next theorem shows that the condition number estimate for the BDD method
introduced in (6.27) is of order O(1+ 1

κ
), where κ is the permeability of the porous

medium; see (6.1).

Theorem 6.1 If ufΓ is a balanced function then

〈SfΓu
f
Γ, u

f
Γ〉 ≤ 〈SΓu

f
Γ, u

f
Γ〉 ≺

(
1 +

1

κ

)
〈SfΓu

f
Γ, u

f
Γ〉.

Proof. The lower bound follows trivially from S̃fΓ and S̃pΓ being positive on the

subspace of balanced functions. Next we concentrate on the upper bound.
Let vfΓ be a balanced function and vpΓ = ΠvfΓ. Define vp = DHvpΓ; see (6.20).

Using properties of the discrete operator DH , see Mathew [1993], we obtain

〈SpΓv
p
Γ, v

p
Γ〉 = ap(vp,vp) � ν

κ
‖vpΓ‖

2
(H1/2)′(Γ).

Using the L2-stability property of mortar projection Π, we have

‖vpΓ‖
2
(H1/2)′(Γ) ≺ ‖v

p
Γ‖

2
L2(Γ) = ‖vfΓ‖

2
L2(Γ) ≺ ‖v

f
Γ‖

2

H
1/2
00 (Γ)

.
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With SH defined in (6.19), define vf = SHvfΓ. Using properties of SH, see
Pavarino and Widlund [2002], we have

ν‖vfΓ‖
2

H
1/2
00 (Γ)

� af (vf ,vf )

and then

〈SpΓv
p
Γ, v

p
Γ〉 ≺

1

κ
〈SfufΓ, u

f
Γ〉. (6.30)

This gives the upper bound and finishes the proof.

1. Initialize

x(0) = Q0b+ w

d(0) = b− Sx(0)

with w ∈ Range(I −Q0S). Recall that all vectors have three components, for

instance, x =

 xΓ

x̄f

x̄p

 and b =

 bΓ
b̄f

b̄p

.

2. Iterate k = 1, 2, . . . until convergence

Precondition: z(k−1) = (S̃f )†d(k−1)

Project: y(k−1) = (I −Q0S)z(k−1)

βk = 〈y(k−1), d(k−1)〉/〈y(k−2), d(k−1)〉 [β(1) = 0]

r(k) = y(k−1) + β(k)r(k) [r(1) = y(0)]

α(k) = 〈y(k−1), d(k−1)〉/〈d(k), Sr(k)〉
x(k) = x(k−1) + α(k)r(k)

d(k) = d(k−1) − α(k)Sr(k)

Figure 6.1: Implementation of the projected preconditioned conjugate gradient algorithm for
the system (6.14) involving the BDD preconditioner (6.27).

Recall that we consider the preconditioned projected conjugate gradient method
applied to the Schur complement problem (6.14). We have written the algorithm
in Figure 6.1.

6.6 FETI preconditioner

In this section we analyze a FETI preconditioner for the reduced linear system
(6.24); see Brenner and Sung [2007], Dryja and Proskurowski [2003] and Toselli
and Widlund [2005], and also Farhat and Roux [1991], Klawonn and Widlund
[2001] and Mandel and Tezaur [1996]. Recall the definition of F in (6.25). We
propose the following preconditioner

(Np)†(Sp)(Np)†T , (6.31)

where (Np)† is the pseudo-inverse (Np)† =
[

(C̃p)−1 0
]
.

Note that after computing the action of (Sf )−1 and (Sp)−1, in the application
of F to a zero average Lagrange multiplier, we end up with balanced functions.
Therefore, in order to apply the preconditioned operator (Np)†(Sp)(Np)†TF to a
zero mean Lagrange multiplier, we do not need to solve a coarse problem at the
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beginning of the CG, neither inside of the CG iteration.

The FETI preconditioner in (6.31) can be considered as the dual preconditioner
of the BDD preconditioner defined in (6.27); see the proof of Lemma 6.2 below.

Recall the definition of Si, i = f, p, in (6.17) and the definition of space of

balanced functions VΓ = V f
Γ × V p

Γ in (6.22) and (6.21). We prove the following
result.

Lemma 6.2 Let λ ∈ Λhp ∩ L2
0(Γ) be a zero mean Lagrange multiplier. Then

〈N f (Sf )−1N fTλ, λ〉 ≺ 1

κ
〈Np(Sp)−1NpTλ, λ〉.

Proof. Consider a zero mean Lagrange multiplier λ. Define t = (Sp)−
1
2NpTλ and

wf = N fTλ. Then it is enough to prove that

‖(Sf )−
1
2wf‖2 ≺ ‖t‖2.

Since wf is balanced, i.e., wf ∈ V f
Γ , we have that

‖(Sf )−
1
2wf‖2 = sup

zf∈Zfhf

〈(Sf )− 1
2wf , zf〉2

‖zf‖2

= sup
vfbalanced

〈wf , vf〉2

‖(Sf ) 1
2vf‖2

= sup
vfbalanced

〈λ,N fvf〉2

‖(Sf ) 1
2vf‖2

= sup
vfbalanced

〈(Sp)− 1
2Npλ, (Sp)

1
2 (Np)−1N fvf〉2

‖(Sf ) 1
2vf‖2

.

Then using the Cauchy-Schwarz inequality and (6.30) in the proof of Theorem
6.1, we have

‖(Sf )−
1
2wf‖2 = sup

vfbalanced

〈t, (Sp) 1
2 (Np)−1N fvf〉2

‖(Sf ) 1
2vf‖2

≤ ‖t‖2 sup
vfbalanced

‖(Sp) 1
2 (Np)−1N fvf‖2

‖(Sf ) 1
2vf‖2

≺ 1

κ
‖t‖2.

Using Lemma 6.2 we can derive the following estimate for the condition number
of the FETI preconditioner defined in (6.31).

Theorem 6.3 Let λ be a zero mean Lagrange multiplier. Then

〈Np(Sp)−1NT
p λ, λ〉 ≺ 〈Fλ, λ〉 ≺

(
1 +

1

κ

)
〈Np(Sp)−1NpTλ, λ〉.
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The condition number estimate O(κ+1
κ

) can be improved in the case where the
fluid side triangulation is finer than the porous side triangulation. This case has
some advantages when κ is small. In order to fix ideas and simplify notation we
analyze in detail the case where the triangulation of the fluid side is a refinement
of the porous side triangulation. In particular, in Theorem 6.6, we will prove
that the condition of the FETI preconditioned operator is of order O( κ+1

κ+(hp)2 ) in

this simpler situation. The analysis that we will present to prove Theorem 6.6
can be extended easily for the case where the fluid side triangulation is finer than
(and not necessarily a refinement of) the porous side triangulation; see Remark 6.7.

We assume that the fluid side discretization on Γ, T f
hf

(Df )|Γ, is a refinement
of the corresponding porous side discretization, T php(Dp)|Γ. That is, assume that
hp = rhf for some positive integer r. We will refer to this assumption as the nested
refinement assumption. For j = 1, . . . ,mp, we introduce the normal fluid velocity
φfj as the P2 bubble function defined on T php(Dp)|Γ and with support on the in-
terval epj = {0} × [(j − 1)hp, jhp]. Recall that we are using P2/P1 Taylor-Hood
discretization on the fluid side. Under the nested refinement assumption we have
that φfj ∈ Zf

hf
with Zf

hf
defined in (6.21). Denote Zf

hf ,b
as the subspace of Zf

hf

spanned by all φfj , j = 1, . . . ,mp, and set Zf
hf ,0

as the subspace of Zf
hf

spanned by

functions with zero average on all edges epj , j = 1, . . . ,mp. Note that Zf
hf ,b

and

Zf
hf ,0

form a direct sum for Zf
hf

and the image ΠZf
hf ,0

is the zero vector.

Before deriving the condition number estimate of the FETI preconditioner un-
der the nested refinement assumption we first prove a preliminary lemma.

Lemma 6.4 Assume that hp = rhf , where r is a positive integer. If vfΓ,b ∈ Z
f
hf ,b

and vfΓ,b is a balanced function then

〈SfΓv
f
Γ,b, v

f
Γ,b〉 ≺

κ

(hp)2
〈SpΓΠvfΓ,b,Πv

f
Γ,b〉.

Proof. Let vfΓ,b =
∑mp

j=1 βjφ
f
j ∈ Z

f
hf ,b
⊂ Zf

hf
and note that since the basis functions

φfj , j = 1, . . . ,mp, do not overlap each other on Γ, they are orthogonal in L2(Γ)

and also in H1
0 (Γ). Then

‖vfΓ,b‖
2
L2(Γ) =

mp∑
j=1

β2
j ‖φ

f
j ‖2

L2(Γ) � hp
mp∑
j=1

β2
j , (6.32)

and

|vfΓ,b|
2
H1(Γ) =

mp∑
j=1

β2
j |φ

f
j |2H1

0 (epj ) �
1

hp

mp∑
j=1

β2
j . (6.33)

Using (6.32), (6.33) and a interpolation estimate we see that

‖vfΓ,b‖
2

H
1/2
00 (Γ)

�
mp∑
j=1

β2
j �

1

hp
‖vfΓ,b‖

2
L2(Γ).
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Note also that

〈SfvfΓ,b, v
f
Γ,b〉 ≤ af (SHvfΓ,b,SHv

f
Γ,b) � ν‖vfΓ,b‖

2

H
1/2
00 (Γ)

.

Denote by zpΓ,b =
∑mp

j=1 ρjχepj the unique piecewise constant function such that

ΠvfΓ,b = zpΓ,b. Observe that |ρj| � |βj|, j = 1, . . . ,mp. We obtain

〈SfΓv
f
Γ,b, v

f
Γ,b〉 ≺

ν

hp
‖vfΓ,b‖

2
L2(Γ) �

ν

hp
‖zpΓ,b‖

2
L2(Γ)

≺ ν

(hp)2
‖zpΓ,b‖

2
(H1/2)′(Γ) �

κ

(hp)2
〈SpΓz

p
Γ,b, z

p
Γ,b〉,

where we have used an inverse inequality for piecewise constant functions.

We now translate Lemma 6.4 in a result concerning to our dual preconditioner.

Lemma 6.5 Assume that hp = rhf , where r is a positive integer and let λ be a
zero mean Lagrange multiplier. Then

(hp)2

κ
〈Np(Sp)−1NpTλ, λ〉 ≺ 〈N f (Sf )−1N fTλ, λ〉.

Proof. We proceed as before. Let t = (Sf )−
1
2N fTλ and w = Npλ. Then

‖(Sp)−
1
2w‖2 = sup

zf∈Zf
hf

〈(Sp)− 1
2w, zf〉2

‖zp‖2
(6.34)

= sup
vp balanced

〈w, vf〉2

‖(Sp) 1
2vp‖2

= sup
vp balanced

〈λ,Npvp〉2

‖(Sp) 1
2vp‖2

= sup
vfb balanced

〈λ,N fvfb 〉2

‖(Sp) 1
2 (Np)−1N fvfb ‖2

= sup
vfb balanced

〈(Sf )− 1
2N fTλ, (Sf )

1
2vfb 〉2

‖(Sp) 1
2 (Np)−1N fvfb ‖2

≤ ‖t‖2 sup
vfb balanced

‖(Sf ) 1
2vfb ‖2

‖(Sp) 1
2 (Np)−1N fvfb ‖2

≺ κ

(hp)2
‖t‖2,

where the last step follows from Lemma 6.4.

From Lemmas 6.2 and 6.5, the next theorem follows.

Theorem 6.6 Assume that hp = rhf , where r is a positive integer. Let λ be a
zero mean Lagrange multiplier, then(

1 +
(hp)2

κ

)
〈Np(Sp)−1NpTλ, λ〉 ≺ 〈Fλ, λ〉 ≺

(
1 +

1

κ

)
〈Np(Sp)−1NpTλ, λ〉.
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Remark 6.7 Theorem 6.6 can be extended for the case where hf ≤ 2hp. We only
need to extend the argument given in the proof of Lemma 6.4. The basic idea in
the proof of Lemma 6.4 is to associate a bubble function φfj ∈ Z

f
hf

to each porous
side element epj , j = 1, . . . ,mp, in such a way that we can construct a one to

one and continuous map vfΓ,b 7→ zpΓ,b. The bubble functions φfj , j = 1, . . . ,mp,

can be chosen orthogonal in L2(Γ) and in H1
0 (Γ). This can also be done when

hf ≤ hp. The smaller the hf , the closer is the size of the support of the bubble
φfj to the size of the element epj since more and more elements ef can be associ-
ated to only one element ep. This construction can also be carried out in the case
hp < hf ≤ 2hp where non-orthogonal Taylor-Hood basis functions must be used.
This last situation leads to the appearance of an additional constant that depends
on the non-orthogonality; see Section 6.7.

Remark 6.8 We note that Lemma 6.4 can be used directly to obtain a bound for
the balancing domain decomposition preconditioner similar to the one presented in
Section 6.5 but with S̃p instead of S̃f in (6.27); see Proposition 2 of Galvis and
Sarkis [2006]. In this case an additional variable elimination is needed. We have

to eliminate the component of the normal fluid velocity in the space Zf
hf ,0

and work

with the Schur complement with respect to the space Zf
hf ,b

. This is rather difficult

to implement (we can use Lagrange multipliers in this case). Then passing to the
dual preconditioner permit us to take advantage of the case where the fluid side
discretization on Γ is a refinement of the corresponding porous side discretization.

Remark 6.9 Theorems 6.1, 6.3 and 6.6 are also valid for the case αf > 0 in (6.3).
To see this we need to compare, for different values of αf , the energy of discrete
extensions for a given normal velocity defined on Γ. Given the outward normal ve-
locity vfΓ on Γ, let SHαfv

f
Γ denote the discrete harmonic extension in the sense of

(af
αf
, bf ), that is, the solution of problem (6.19) with af replaced by af

αf
. Recall that

af = af0 , where af0 = aαf when αf = 0, and therefore, SHvfΓ = SH0v
f
Γ. Note that

in (6.19) we have imposed the natural boundary condition τ TD(SHuf )ηf = 0 on

Γ. Now we define another extension denoted by ŜHvfΓ. Given the outward normal

velocity vfΓ on Γ, let ŜHvfΓ be the (af , bf )-discrete harmonic extension given by the

solution of (6.19) with the boundary condition ŜHvfΓ · τ = 0. For both SH and

ŜH are imposed essential boundary condition vfΓ for the normal component on Γ.
The difference between them is in how the boundary condition is imposed for the
tangential component on Γ. For the SH is imposed homogeneous natural bound-

ary condition, while for ŜH is imposed homogeneous essential boundary condition.

Note that both extensions, SHαf and ŜH, satisfy the zero discrete divergence con-
dition, i.e., the second equation of (6.19).

Using the minimization property of the (af
αf
, bf )-discrete harmonic extension SHαf

and the (af , bf )-discrete harmonic extension ŜH we get

af (SHvfΓ,SHv
f
Γ)

= af0(SHvfΓ,SHv
f
Γ) (by definition)
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1. Initialize

x(0) = 0 (No coarse problem)

λ(0) = c

2. Iterate k = 1, 2, . . . until convergence

Precondition: y(k−1) = (Np)†(Sp)(NpT )†d(k−1)

βk = 〈y(k−1), d(k−1)〉/〈y(k−2), d(k−1)〉 [β(1) = 0]

r(k) = y(k−1) + β(k)r(k) [r(1) = y(0)]

α(k) = 〈y(k−1), d(k−1)〉/〈d(k), F r(k)〉
x(k) = x(k−1) + α(k)r(k)

d(k) = d(k−1) − α(k)Fr(k)

Figure 6.2: Implementation of the preconditioned conjugate gradient algorithm for the system
(6.24) involving the FETI preconditioner (6.31).

≤ af0(SHαfv
f
Γ,SHαfv

f
Γ) (by the minimization property of SH)

≤ af
αf

(SHαfv
f
Γ,SHαfv

f
Γ) (αf > 0)

≤ af
αf

(ŜHvfΓ, ŜHv
f
Γ) (by the minimization property of SHαf )

= af0(ŜH0v
f
Γ, ŜH0v

f
Γ) (because ŜHuf · τ f = 0 on Γ)

� ν‖vfΓ‖
2

H
1/2
00 (Γ)

� af (SH0v
f
Γ,SHv

f
Γ).

The last two equivalences follow from properties of the (af , b)-discrete harmonic

extensions SH and ŜH (which coincides with the discrete Stokes harmonic exten-
sion); see Girault and Raviart [1986] and Pavarino and Widlund [2002]. The two
equivalences appearing above are independent of the permeability, fluid viscosity
and mesh sizes. Then, the energy of the (af

αf
, b)-discrete harmonic extensions is

equivalent to the energy of the (af , b)-discrete harmonic extension, i.e., the dis-
crete Stokes harmonic extension. This equivalence guarantees the extensions of
Theorems 6.1, 6.3 and 6.6 to the case αf > 0.

We solve the system (6.24) using preconditioned conjugate gradient. We have
written the algorithm in Figure 6.2.

6.7 Numerical results

In this section we present numerical tests in order to verify the estimates in The-
orems 6.1, 6.3 and 6.6. We consider Df = (1, 2)× (0, 1) and Dp = (0, 1)× (0, 1);
see Burman and Hansbo [2007] and Galvis [2004] for examples of exact solutions
and compatible divergence and boundary data. Note that the reduced systems
(6.14) and (6.24) involve only degrees of freedom on the interface Γ. In our test
problems we compute the eigenvalues of the preconditioned operators.

To solve both reduced systems (6.14) and (6.24) we can use the PCG algo-
rithms described in Figures 6.1 and 6.2. Recall that the original system (6.10)
is a “three times” saddle point problem. Note that since the finite element basis
of M f

hf
×Mp

hp and Λhp have non-zero mean, the finite element matrix in (6.12)
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has the kernel composed by constant pressures in D = int(Df ∪Dp) and constant
Lagrange multipliers on Γ. The corresponding system is solved up to a constant
pressure and a constant Lagrange multiplier. These constants can be recovered
when imposing the zero average pressure constraint; see Galvis and Sarkis [2007b].

hf ↓ hp → 3−1 ∗ 2−0 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1, 1.0189 1, 1.0198 1, 1.0194 1, 1.0193 1, 1.0193
2−1 ∗ 2−1 1, 1.0209 1, 1.0200 1, 1.0197 1, 1.0196 1, 1.0196
2−1 ∗ 2−2 1, 1.0217 1, 1.0205 1, 1.0202 1, 1.0201 1, 1.0201
2−1 ∗ 2−3 1, 1.0220 1, 1.0208 1, 1.0204 1, 1.0203 1, 1.0203
2−1 ∗ 2−4 1, 1.0221 1, 1.0209 1, 1.0205 1, 1.0204 1, 1.0204

Table 6.1: Minimum and maximum eigenvalues for the BDD preconditioned operator. Here
κ = 1 and αf = 0.

6.7.1 BDD preconditioner

In the case of the BDD preconditioner (6.27) for (6.14), we solve a coarse problem
before reducing the system to ensure balanced velocities at the beginning of the
CG iterations.

hf ↓ hp → 3−1 ∗ 2−0 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1, 27.7647 1, 21.0147 1, 20.6035 1, 20.3686 1, 20.2893
2−1 ∗ 2−1 1, 28.1390 1, 21.3303 1, 20.8549 1, 20.6550 1, 20.5836
2−1 ∗ 2−2 1, 28.8104 1, 22.0017 1, 21.3392 1, 21.1424 1, 21.0735
2−1 ∗ 2−3 1, 29.0687 1, 22.2367 1, 21.6045 1, 21.3626 1, 21.2955
2−1 ∗ 2−4 1, 29.1810 1, 22.3479 1, 21.7006 1, 21.4666 1, 21.3929

Table 6.2: Minimum and maximum eigenvalues for the BDD preconditioned operator. Here
κ = 10−3 and αf = 0.

hf ↓ hp → 3−1 ∗ 2−0 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1, 1891.43 1, 1977.08 1, 1945.05 1, 1932.10 1, 1928.32
2−1 ∗ 2−1 1, 2095.91 1, 1997.27 1, 1972.77 1, 1961.34 1, 1957.88
2−1 ∗ 2−2 1, 2168.17 1, 2053.57 1, 2021.03 1, 2010.27 1, 2006.90
2−1 ∗ 2−3 1, 2201.81 1, 2079.68 1, 2044.05 1, 2032.42 1, 2029.13
2−1 ∗ 2−4 1, 2215.58 1, 2090.10 1, 2054.33 1, 2042.26 1, 2038.90

Table 6.3: Minimum and maximum eigenvalues for the BDD preconditioned operator. Here
κ = 10−5 and αf = 0.

We consider αf = 0 and ν = 1, and different values of hf and hp with non-
matching grids across the interface Γ; see Table 6.1 for the results when κ = 1,
Table 6.2 for κ = 10−3 and Table 6.3 for the case κ = 10−5. These three tables
reveal growth of order O(1+ 1

κ
) in κ and hence, verify the sharpness of the estimate

in Theorem 6.1.
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hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−5

2−1 ∗ 2−0 1.0000, 1.0208 1.0000, 1.0194 1.0000, 1.0193 1.0000, 1.0193
2−1 ∗ 2−1 1.0017, 1.0200 1.0000, 1.0197 1.0000, 1.0196 1.0000, 1.0196
2−1 ∗ 2−2 1.0026, 1.0205 1.0004, 1.0202 1.0000, 1.0200 1.0000, 1.0201
2−1 ∗ 2−3 1.0027, 1.0208 1.0007, 1.0204 1.0001, 1.0203 1.0000, 1.0203
2−1 ∗ 2−4 1.0028, 1.0209 1.0007, 1.0205 1.0002, 1.0204 1.0000, 1.0204
2−1 ∗ 2−5 1.0028, 1.0209 1.0007, 1.0206 1.0002, 1.0205 1.0000, 1.0204

Table 6.4: Minimum and maximum eigenvalues of the FETI preconditioned operator. Here
κ = 1 and αf = 0.

hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1.000, 20.7608 1.000, 20.4405 1.000, 20.3110 1.000, 20.2732
2−1 ∗ 2−1 2.707, 20.9627 1.000, 20.7177 1.000, 20.6034 1.000, 20.5688
2−1 ∗ 2−2 3.634, 21.5257 1.425, 21.2003 1.000, 21.0927 1.000, 21.0590
2−1 ∗ 2−3 3.714, 21.7868 1.651, 21.4305 1.106, 21.3142 1.000, 21.2813
2−1 ∗ 2−4 3.760, 21.891 1.663, 21.5333 1.162, 21.4126 1.026, 21.3790
2−1 ∗ 2−5 3.771, 21.937 1.673, 21.5768 1.164, 21.4561 1.040, 21.4220

Table 6.5: Minimum and maximum eigenvalues of the FETI preconditioned operator. Here
κ = 10−3 and αf = 0.

6.7.2 FETI preconditioner

In the case of the FETI preconditioner (6.31), we solve the reduced system (6.24)
up to a constant Lagrange multiplier and a constant pressure. These constants

are recovered after enforcing zero mean pressure on D = int (D
f ∪Dp

); see Galvis
and Sarkis [2007b]. We note that the FETI method can be viewed as the dual
preconditioner counterpart of the BDD preconditioner. We repeat the same ex-
periments mentioned above for this preconditioner.

We consider αf = 0, ν = 1 and different values of hf and hp with nonmatching
grids across the interface Γ; see Table 6.4 for the results when κ = 1, Table 6.5 for
κ = 10−3 and Table 6.6 for the case κ = 10−5. Note that in Tables 6.4, 6.5 and 6.6
the minimum eigenvalues strictly greater than one when hf ≤ 2hp, and the value
of the minimum eigenvalues seem to stabilize very quick for smaller hf with fixed
hp. This confirms the extension of Theorem 6.6 for the case where hf ≤ 2hp; see
Remark 6.7. In Table 6.7 we present the numerical results where one of the meshes
on the interface is a refinement of the other side triangulation on the interface.
We observe a behavior similar to the behavior of Table 6.6 with a bigger value for

hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1.00, 1977.08 1.00, 1945.05 1.00, 1932.10 1.00, 1928.32
2−1 ∗ 2−1 171.72, 1997.27 1.00, 1972.77 1.00, 1961.34 1.00, 1957.88
2−1 ∗ 2−2 264.44, 2053.57 43.45, 2021.03 1.00, 2010.27 1.00, 2006.90
2−1 ∗ 2−3 272.35, 2079.68 66.10, 2044.05 11.58, 2032.42 1.00, 2029.13
2−1 ∗ 2−4 276.95, 2090.10 67.29, 2054.33 17.20, 2042.26 3.64, 2038.90
2−1 ∗ 2−5 278.09, 2094.70 68.32, 2058.68 17.42, 2046.61 5.04, 2043.20

Table 6.6: Minimum and maximum eigenvalues of the FETI preconditioned operator. Here
κ = 10−5 and αf = 0.
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the minimum eigenvalue when hf ≤ hp. This verifies the estimates of Theorem
6.6. This shows that the FETI preconditioner is scalable for the parameters faced
in practice, i.e., the fluid side mesh finer than the porous side mesh and a small
permeability κ. We conclude that the numerical experiments concerning the FETI
preconditioner reveal the sharpness of the results obtained in Theorems 6.3 and
6.6 and Remark 6.7.

hf ↓ hp → 2−1 ∗ 2−1 2−1 ∗ 2−2 2−1 ∗ 2−3 2−1 ∗ 2−4

2−1 ∗ 2−0 1.00, 2002.47 1.00, 1961.35 1.00, 1937.86 1.00, 1929.93
2−1 ∗ 2−1 690.43, 2034.03 1.00, 1986.49 1.00, 1966.50 1.00, 1959.36
2−1 ∗ 2−2 627.36, 2101.17 176.56, 2034.92 1.00, 2015.24 1.00, 2008.35
2−1 ∗ 2−3 639.68, 2124.67 151.62, 2061.45 44.91, 2037.26 1.00, 2030.55
2−1 ∗ 2−4 642.44, 2135.79 154.45, 2071.06 38.04, 2047.66 11.98, 2040.29
2−1 ∗ 2−5 643.47, 2140.73 154.86, 2075.43 38.73, 2051.91 10.20, 2044.66

Table 6.7: Minimum and Maximum eigenvalues of the FETI preconditioned operator. Here
κ = 10−5 and αf = 0. The refinement condition of Theorem 6.6 is satisfied under the diagonal.

Recall that we have assumed αf = 0. Now consider αf > 0. Numerical exper-
iment were performed with αf > 0 reveling results similar to the ones presented
above for the case αf = 0. We only include Table 6.8 which shows the extreme
eigenvalues of the FETI preconditioned operator for the case αf = 1, ν = 1 and
κ = 10−5. This table presents a similar behavior to the one with αf = 0 in Table
6.6 and hence, confirms Remark 6.9 which says that the parameter αf does not
play much role for preconditioning.

hf ↓ hp → 3−1 ∗ 2−1 3−1 ∗ 2−2 3−1 ∗ 2−3 3−1 ∗ 2−4

2−1 ∗ 2−0 1.00, 1705.47 1.00, 1678.07 1.00, 1666.84 1.00, 1663.55
2−1 ∗ 2−1 162.74, 1814.26 1.00, 1787.53 1.00, 1776.50 1.00, 1773.22
2−1 ∗ 2−2 251.56, 1843.50 41.65, 1812.69 1.00, 1801.61 1.00, 1798.29
2−1 ∗ 2−3 267.47, 1849.46 63.63, 1816.43 11.24, 1804.66 1.00, 1801.34
2−1 ∗ 2−4 272.29, 1850.65 66.82, 1817.38 16.75, 1805.30 3.58, 1801.91
2−1 ∗ 2−5 273.34, 1851.08 67.99, 1817.68 17.37, 1805.57 4.97, 1802.14

Table 6.8: Minimum and maximum eigenvalues of the FETI preconditioned operator. Here
κ = 10−5 and αf = 1.

6.8 Conclusions and final comments

We consider the problem of coupling fluid flows with porous media flows with
Beavers-Joseph-Saffman condition on the interface. We choose a discretization
consisting of Taylor-Hood finite elements of order two on the free fluid side and
the lowest order Raviart-Thomas finite element on the porous fluid side. The
meshes are allowed to be nonmatching across the interface.

We design and analyze two preconditioners for the resulting symmetric linear
system. We note that the original linear system is symmetric indefinite and in-
volves three Lagrange multipliers: one for each subdomain pressure and a third
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one to impose the weak conservation of mass across the interface Γ; see Section 6.1.

One preconditioner is based on BDD methods and the other one is based on
FETI methods. In the case of the BDD preconditioner, the energy is controlled
by the Stokes side, while in the FETI preconditioner, the energy is controlled by
the Darcy system; see Theorems 6.1 and 6.3. In both cases a bound C1(κ+1

κ
)

is derived. Furthermore, under the assumption that the fluid side mesh on the
interface is finer than the corresponding porous side mesh, we derive the better
bound C2( κ+1

κ+(hp)2 ) for the FETI preconditioner; see Theorem 6.6 and Remark 6.7.

This better bound also shows that the FETI preconditioner is more scalable for
parameters faced in practice, e.g., problems with small permeability κ and where
the fluid side mesh is finer than the porous side mesh. The constants C1 and C2

above are independent of the fluid viscosity ν, the mesh ratio across the interface,
and the permeability κ.
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Chapter 7

Balancing Domain Decomposition
Methods for Discontinuous
Galerkin Discretization

A Discontinuous Galerkin (DG) discretization of a Dirichlet problem for second
order elliptic equations with discontinuous coefficients in two dimensions is con-
sidered. The problem is considered in a polygonal region D which is a union of
disjoint polygonal substructures Di of size O(Hi). Inside each substructure Di, a
triangulation Thi(Di) with a parameter hi and a conforming finite element method
are introduced. To handle nonmatching meshes across ∂Di, a DG method, sym-
metric and with interior penalty terms on the ∂Di, is considered. In this paper
we design and analyze Balancing Domain Decomposition algorithms for solving
the resulting discrete systems. Under certain assumptions on the coefficients and
the mesh sizes across ∂Di, a condition number estimate C(1 + maxi log2 Hi

hi
) is

established with C independent of hi, Hi and the jumps of the coefficients. The
algorithm is well suited for parallel computations and can be straightforwardly
extended to three-dimensional problems. Results of numerical tests are included
which confirm the theoretical results and the imposed assumption.

7.1 Introduction

DG methods are becoming more and more popular for approximation of PDEs
since they are well suited for dealing with complex geometries, discontinuous co-
efficients and local or patch refinements; see Arnold et al. [2002], Dryja [2003] and
the references therein. A goal of this paper is to design and analyze Balancing
Domain Decomposition (BDD) algorithms for the resulting discrete problem; see
Mandel [1993], Dryja and Widlund [1995] and also Toselli and Widlund [2005].
There are also several papers devoted to algorithms for solving DG discrete prob-
lems. In particular in connection with domain decomposition methods, we can
mention Feng and Karakashian [2001], Lasser and Toselli [2003], Antonietti and
Ayuso [2005] where overlapping Schwarz methods were proposed and analyzed
for DG discretization of elliptic problems with continuous coefficients. In Dryja
[2003] a non optimal multilevel additive Schwarz method is designed and analyzed
for the discontinuous coefficient case. In Brenner and Wang [2005] a two-level
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ASM is proposed and analyzed for DG discretization of fourth order problems.
In Dryja et al. [2007b] we have also successfully extended these preconditioners
to the Balancing Domain Decomposition (BDDC) with constraints method. Up
to our knowledge BDD algorithms for DG discretization of elliptic problems with
continuous and discontinuous coefficients have not been analyzed in literature.

The paper is organized as follows. In Section 7.2, the differential problem and
its DG discretization are formulated. In Section 7.3, the problem is reduced to
a Schur complement problem with respect to the unknowns on ∂Di, and discrete
harmonic functions defined in a special way are introduced. In Section 7.4, the
BDD algorithm is designed and analyzed for the Schur complement problem using
the general theory of hybrid methods; see Toselli and Widlund [2005]. The local
problems are defined on ∂Di and on faces of ∂Dj common to Di, while the coarse
space, restriction and prolongation operators are defined via a special partitioning
of unity on the ∂Di. Sections 7.5 and 7.6 are devoted to numerical experiments
and final remarks, respectively.

7.2 Differential and discrete problems

Consider the following problem: Find u∗ ∈ H1
0 (D) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (D) (7.1)

where a(u, v) =
N∑
i=1

∫
Di

ρi∇u∇vdx and f(v) =
∫
D
fvdx.

We assume that D̄ = ∪Ni=1D̄i and the substructures Di are disjoint shape regular
polygonal subregions of diameter O(Hi) that form a geometrically conforming
partition of D, i.e., for all i 6= j the intersection ∂Di∩∂Dj is empty, or a common
vertex or face of ∂Di and ∂Dj. We assume f ∈ L2(D) and for simplicity of
presentation let ρi be a positive constant, i = 1, . . . , N .

Let us introduce a shape regular triangulation in each Di with triangular ele-
ments and the mesh parameter hi . The resulting triangulation on D is in general
nonmatching across ∂Di. Let Xi(Di) be a finite element (FE) space of piecewise
linear continuous functions in Di. Note that we do not assume that the functions
in Xi(Di) vanish on ∂Di ∩ ∂D. Define

Xh(D) = X1(D1)× · · · ×XN(DN).

The discrete problem obtained by the DG method, see Arnold et al. [2002], Dryja
[2003], is of the form:

Find u∗h ∈ Xh(D) such that

ah(u
∗
h, v) = f(v) for all v ∈ Xh(D) (7.2)

where

ah(u, v) ≡
N∑
i=1

bi(u, v) and f(v) ≡
N∑
i=1

∫
Di

fvidx, (7.3)

bi(u, v) ≡ ai(u, v) + si(u, v) + pi(u, v), (7.4)
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ai(u, v) ≡
∫
Di

ρi∇ui∇vidx, (7.5)

si(u, v) ≡
∑

Fij⊂∂Di

∫
Fij

ρij
lij

(
∂ui
∂n

(vj − vi) +
∂vi
∂n

(uj − ui)
)
ds, (7.6)

pi(u, v) ≡
∑

Fij⊂∂Di

∫
Fij

ρij
lij

δ

hij
(uj − ui)(vj − vi)ds, (7.7)

di(u, v) ≡ ai(u, v) + pi(u, v), (7.8)

with u = {ui}Ni=1 ∈ Xh(D) and v = {vi}Ni=1 ∈ Xh(D). We set lij = 2 when
Fij ≡ ∂Di∩∂Dj is a common face of ∂Di and ∂Dj, and define ρij = 2ρiρj/(ρi+ρj)
as the harmonic average of ρi and ρj, and hij = 2hihj/(hi+hj). In order to simplify
the notation we include the index j = 0 and set li0 = 1 when Fi0 ≡ ∂Di∩∂D has a
positive measure, and set u0 = 0 and v0 = 0, and define ρi0 = ρi and hi0 = hi. The
outward normal derivative on ∂Di is denoted by ∂

∂n
and δ is the positive penalty

parameter.
It is known that there exists a δ0 = O(1) > 0 such that for δ ≥ δ0, we obtain

2|si(u, u)| ≤ di(u, u) and therefore, the problem (7.2) is elliptic and has a unique
solution. An error bound of this method is given in Arnold et al. [2002] for
continuous and in Dryja [2003] for discontinuous coefficients.

7.3 Schur complement problem

In this section we derive a Schur complement problem for the problem (7.2).

Define
o

X i (Di) as the subspace of Xi(Di) of functions that vanish on ∂Di.
Let u = {ui}Ni=1 ∈ Xh(D). For each i = 1, . . . , N , the function ui ∈ Xi(D) can be
represented as

ui = P̂iu+ Ĥiu, (7.9)

where P̂iu is the projection of u into
o

X i (Di) in the sense of bi(., .). Note that

since P̂iu and vi belong to
o

X i (Di), we have

ai(P̂iu, vi) = bi(P̂iu, vi) = ah(u, vi). (7.10)

The Ĥiu is the discrete harmonic part of u in the sense of bi(., .), where Ĥiu ∈
Xi(Di) is the solution of

bi(Ĥiu, vi) = 0 vi ∈
o

X i(Di), (7.11)

with boundary data given by

ui on ∂Di and uj on Fji = ∂Di ∩ ∂Dj. (7.12)

We point out that for vi ∈
o

X i (Di) we have

bi(Ĥiu, vi) = (ρi∇Ĥiu,∇vi)L2(Di) +
∑

Fij⊂∂Di

ρij
lij

(
∂vi
∂n

, uj − ui)L2(Fij). (7.13)
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Note that Ĥiu is the classical discrete harmonic except at nodal points close to ∂Di.
We will sometimes call Ĥiu discrete harmonic in a special sense, i.e., in the sense of
bi(., .) or Ĥi. Hence Ĥu = {Ĥiu}Ni=1 and P̂u = {P̂iu}Ni=1 are orthogonal in the sense

of ah(., .). The discrete solution of (7.2) can be decomposed as u∗h = P̂u∗h + Ĥu∗h
where for all v ∈ Xh(D), ah(P̂u∗h, P̂v) = f(P̂v) and

ah(Ĥu∗h, Ĥv) = f(Ĥv). (7.14)

Define Γ ≡ (∪i∂Dihi) where ∂Dihi is the set of nodal points of ∂Di. We
note that the nodes on both side of ∪i∂Di belong to Γ. We denote the space
V = Vh(Γ) as the set of all functions vh in Xh(D) such that P̂vh = 0, i.e., the

space of discrete harmonic functions in the sense of Ĥi. The equation (7.14) is the
Schur complement problem associated to (7.2).

7.4 Balancing domain decomposition

We design and analyze a BDD method Mandel [1993], Toselli and Widlund [2005]
for solving (7.14) and use the general framework of balancing domain decomposi-
tion methods; see Toselli and Widlund [2005]. For i = 1, . . . , N , let Vi be auxil-
iary spaces and Ii prolongation operators from Vi to V , and define the operators
T̃i : V → Vi as

bi(T̃iu, v) = ah(u, Iiv) for all v ∈ Vi.
and set Ti = IiT̃i. The coarse problem is defined as

ah(P0u, v) = ah(u, v) for all v ∈ V0.

Then the BDD method is defined as

T = P0 + (I − P0)

(
N∑
i=1

Ti

)
(I − P0). (7.15)

We next define the prolongation operators Ii and the local spaces Vi for i =
1, ..., N , and the coarse space V0. The bilinear forms bi and ah are given by (7.4)
and (7.3), respectively.

7.4.1 Local problems

Let us denote by Γi the set of all nodes on ∂Di and on neighboring faces F̄ji ⊂ ∂Dj.
We note that the nodes of ∂Fji (which are vertices of Dj) are included in Γi. Define

Vi as the vector space associated to the nodal values on Γi and extended via Ĥi

inside Di. We say that u ∈ Vi if it can be represented as u := {u(i)
l }l∈#(i), where

#(i) = {i and ∪ j : Fij ⊂ ∂Di}. Here u
(i)
i and u

(i)
j stand for the nodal value of u

on ∂Di and F̄ji. We write u = {u(i)
l } ∈ Vi to refer to a function defined on Γi, and

u = {ui} ∈ V to refer to a function defined on all Γ. Let us define the regular zero
extension operator Ĩi : Vi → V as follows: Given u ∈ Vi, let Ĩiu be equal to u on
the nodes of Γi and zero on Γ\Γi. Then we associate with each Dk, k = 1, · · · , N ,

the discrete harmonic function uk inside each Dk in the sense of Ĥk.
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A face across Di and Dj has two sides, the side inside D̄i, denoted by Fij, and
the side inside D̄j, denoted by Fji. In addition, we assign to each face one master
side m(i, j) ∈ {i, j} and one slave side s(i, j) ∈ {i, j}. Then, using the interface
condition, see below, we show that Theorem 7.1 holds, see below, with a constant
C independent of the ρi, hi and Hi.

The Interface Condition. We say that the coefficients {ρi} and the local
mesh sizes {hi} satisfy the interface condition if there exist constants C0 and C1,
of order O(1), such that for any face Fij = Fji the following condition holds

hs(i,j) ≤ C0hm(i,j) and ρs(i,j) ≤ C1ρm(i,j). (7.16)

We associate with each Di, i = 1, · · · , N , the weighting diagonal matrices

D(i) = {D(i)
l }l∈#(i) on Γi defined as follows:

• On ∂Di (l = i)

D
(i)
i (x) =

 1 if x is a vertex of ∂Di,
1 if x is an interior node of a master face Fij
0 if x is an interior node of a slave face Fij

(7.17)

• On ∂Dj (l = j)

D
(i)
j (x) =

 0 if x is an end point of Fji,
1 if x is an interior node of a slave face Fji
0 if x is an interior node of a master face Fji

(7.18)

• For x ∈ Fi0 we set D
(i)
i (x) = 1

The prolongation operators Ii : Vi → V , i = 1, . . . , N , are defined as Ii = ĨiD
(i)

and they form a partition of unity on Γ described as

N∑
i=1

IiĨ
T
i = IΓ, (7.19)

where IΓ is an identity operator.

7.4.2 Coarse problem

We define the coarse space V0 ⊂ V as

V0 ≡ Span{IiΦ(i), i = 1, ..., N} (7.20)

where Φ(i) ∈ Vi denotes the function equal to one at every node of Γi.

Theorem 7.1 If the interface condition (7.16) holds then there exists a positive
constant C independent of hi, Hi and the jumps of ρi such that

ah(u, u) ≤ ah(Tu, u) ≤ C(1 + log2 H

h
)ah(u, u) ∀u ∈ V, (7.21)

where T is defined in (7.15). Here log H
h

= maxi log Hi
hi

.

For the proof see Dryja et al. [2008].
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7.5 Numerical experiments

In this section, we present numerical results for the preconditioner introduced in
(7.15) and show that the bounds of Theorem 7.1 are reflected in the numerical
tests. In particular we show that the interface condition (7.16) is necessary and
sufficient.

We consider the domain D = (0, 1)2 divided into N = M ×M squares sub-
domains Di which are unions of fine elements, with H = 1/M . Inside each sub-
domain Di we generate a structured triangulation with ni subintervals in each
coordinate direction and apply the discretization presented in Section 7.2 with
δ = 4. In the numerical experiments we use a red and black checkerboard type
of subdomain partition. On the black subdomains we let ni = 2 ∗ 2Lb and on
the red subdomains we let ni = 3 ∗ 2Lr , where Lb and Lr are integers denoting
the number of refinements inside each subdomain Di. Hence the mesh sizes are
hb = 2−Lb

2N
and hr = 2−Lr

3N
, respectively. We solve the second order elliptic problem

−div(ρ(x)∇u∗(x)) = 1 in D with homogeneous Dirichlet boundary conditions. In
the numerical experiments, we run PCG until the l2 initial residual is reduced by
a factor of 106.

In the first test we consider the constant coefficient case ρ = 1. We consider
different values of M×M coarse partitions and different values of local refinements
Lb = Lr, therefore keeping constant the mesh ratio hb/hr = 3/2. We place the
master on the black subdomains. Table 7.1 lists the number of PCG iterations and
in parenthesis the condition number estimate of the preconditioned system. We
note that the interface condition (7.16) is satisfied. As expected from the analysis,
the condition numbers appear to be independent of the number of subdomains and
grow by a logarithmical factor when the size of the local problems increases. Note
that in the case of continuous coefficients the Thereom 7.1 is valid without any
assumption on hb and hr if the master sides are chosen on the larger meshes.

M↓ Lr → 0 1 2 3 4 5
2 13 (6.86) 17 (8.97) 18 (12.12) 19 (16.82) 21 (22.23) 22 (28.25)
4 18 (8.39) 22 (11.30) 26 (14.74) 30 (19.98) 33 (26.64) 36 (34.19)
8 20 (8.89) 24 (11.57) 28 (14.82) 32 (20.03) 37 (26.64) 42 (34.04)
16 19 (9.02) 24 (11.63) 27 (14.83) 32 (20.05) 37 (26.67) 42 (34.06)

Table 7.1: PCG/BDD iterations count and condition numbers for different sizes of coarse and
local problems and constant coefficients ρi.

We now consider the discontinuous coefficient case where we set ρi = 1 on the
black subdomains and ρi = µ on the red subdomains. The subdomains are kept
fixed to 4× 4. Table 7.2 lists the results on runs for different values of µ and for
different levels of refinements on the red subdomains. On the black subdomains
ni = 2 is kept fixed. The masters are placed on the black subdomains. It is easy
to see that the interface condition (7.16) holds if and only if µ is not large, which
it is in agreement with the results in Table 7.2.
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µ ↓ Lr → 0 1 2 3 4
1000 90 (2556) 133 (3744) 184 (5362) 237 (7178) 303 (9102)
10 33 (29.16) 40 (42.31) 47 (58.20) 52 (75.55) 57 (94.59)
0.1 17 (8.28) 19 (8.70) 19 (9.21) 19 (9.50) 19 (9.65)

0.001 18 (8.83) 18 (8.95) 18 (9.46) 18 (9.83) 18 (10.08)

Table 7.2: PCG/BDD iterations count and condition numbers for different values of the coeffi-
cients and the local mesh sizes on the red subdomains only. The coefficients and the local mesh
sizes on the black subdomains are kept fixed. The subdomains are also kept fixed to 4× 4.

7.6 Final remarks

We end this paper by mentioning extensions and alternative Neumann-Neumann
methods for DG discretizations where the Theorem 7.1 holds: 1) The BDD al-
gorithms can be straightforwardly extended to three-dimensional problems; 2)
Additive Schwarz versions and inexact local Neumann solvers can be considered;
see Dryja et al. [2008]; 3) BDDC methods can be designed and analyzed, see Dryja
et al. [2007b]; 4) On faces Fij where hi and hj are of the same order, the values
of (7.17) and (7.18) at interior nodes x of the faces Fij and Fji can be replaced

by
√
ρi√

ρi+
√
ρj

. 5) Similarly, on faces Fij where ρi and ρj are of the same order, we

can replace (7.17) and (7.18) at interior nodes x of the faces Fij and Fji by hi
hi+hj

.

Finally, we remark the conditioning of the preconditioned systems deteriorates as
we increase the penalty parameter δ to large values.
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Chapter 8

BDDC Methods for
Discontinuous Galerkin
Discretization of Elliptic
Problems

A Discontinuous Galerkin (DG) discretization of Dirichlet problem for second or-
der elliptic equations with discontinuous coefficients in 2-D is considered. For
this discretization, Balancing Domain Decomposition with Constraints (BDDC)
algorithms are designed and analyzed as an additive Schwarz method (ASM).
The coarse and local problems are defined using special partitions of unity and
edge constrains. Under assumption on the coefficients and mesh sizes across ∂Di,
where Di are subregions of the original region D, a condition number estimate
C(1+maxi log(Hi/hi))

2 is established with C independent of hi, Hi and the jumps
of the coefficients. The algorithm is well suited for parallel computations and can
be straightforwardly extended to the 3-D problems. The results of numerical tests
are enclosed which confirm the theoretical results and the imposed assumption.

8.1 Introduction

In this paper, a Discontinuous Galerkin approximation of elliptic problems with
discontinuous coefficients is considered. The problem is considered in a polygonal
region D which is a union of disjoint polygonal subregions Di. The discontinuities
of the coefficients occur across ∂Di. The problem is approximated by a conforming
finite element method (FEM) on matching triangulation in each Di and nonmatch-
ing one across ∂Di. This kind of triangulation and composite discretization are
motivated first of all by the regularity of the solution of the problem being dis-
cussed. Discrete problems are formulated using DG methods, symmetric and with
interior penalty terms on the ∂Di; see Arnold [1982], Arnold et al. [2002], Dryja
[2003]. A goal of this paper is to design and analyze Balancing Domain Decompo-
sition with Constraints (BDDC) algorithms for the resulting discrete problem; see
Dohrmann [2003], Mandel et al. [2005] and Li and Widlund [2006] for conforming
finite elements. In the first step, the problem is reduced to the Schur complement
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problem with respect to unknowns on ∂Di for i = 1, . . . , N . For that, discrete
harmonic functions defined in a special way are used. The method is designed and
analyzed for the Schur complement problem using the general theory of ASMs;
see Toselli and Widlund [2005]. The local problems are defined on Di and faces of
∂Dj which are common to Di plus zero average values constrains on edges of Di

or/and faces of Dj. The coarse spaces are defined using a special partitioning of
unity with respect to Di and introducing master and slave sides of substructures.
A side Fij = ∂Di∩∂Dj is master when ρi ≥ ρj, otherwise it is slave, so if Fij ⊂ ∂Di

is master then Fji ⊂ ∂Dj, Fij = Fji, is slave. The hi− and hj− triangulations on
Fij and Fji, respectively, are built in a way that hi ≥ hj if ρi ≥ ρj where hi and
hj are the parameters of these triangulations. It is proved that the algorithm is
almost optimal and its rate of convergence is independent of hi and hj, the number
of subdomains Di and the jumps of coefficients. The algorithm is well suited for
parallel computations and it can be straightforwardly extended to the problems
in the 3-D cases.

DG methods are becoming more and more popular for approximation of PDEs;
see Arnold [1982], Arnold et al. [2002] and literature therein. There are also some
papers devoted to algorithms for solving the resulting discrete problem, in par-
ticular domain decomposition methods. We first mention Feng and Karakashian
[2001] and Lasser and Toselli [2003] where overlapping Schwarz methods were
proposed and analyzed for DG discretization of elliptic problems with continuous
coefficients. In Dryja [2003] for the considered discrete problem, a multilevel ASM
is designed and analyzed but it is not optimal. In Brenner and Wang [2005] a two-
level ASM is proposed and analyzed for DG discretization of fourth order problems.
Up to our knowledge BDDC algorithms for DG discretization of elliptic problems
with continuous and discontinuous coefficients have not been analyzed in litera-
ture. We note that part of the analysis presented here has previously appeared as
a technical report for analyzing several DG preconditioners of Neumann-Neumann
type; see Dryja and Sarkis [2006]. In Dryja et al. [2007a] we have also successfully
extended these preconditioners to the Balancing Domain Decomposition (BDD)
method.

The paper is organized as follows. In Section 8.2 the differential problem and its
DG discretization are formulated. In Section 8.3 the Schur complement problem is
derived using discrete harmonic function in a special way. Some technical tools are
presented in Section 8.4. Sections 8.5 and 8.6 are devoted to designing a BDDC
algorithm while Section 8.7 and 8.8 are devoted to the proof of the main result
Theorem 8.5. In Section 8.9 are introduced coarse spaces of dimension twice less
than those defined in Section 8.6. Finally in Section 8.10 some numerical experi-
ments are presented which confirm the theoretical results. The enclosed numerical
results show that the introduced assumption on the coefficients and the parameter
steps are sufficient and necessary.
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8.2 Differential and discrete problems

8.2.1 Differential problem

Consider the following problem: Find u∗ ∈ H1
0 (D) such that

a(u∗, v) = f(v), ∀v ∈ H1
0 (D) (8.1)

where

a(u, v) :=
N∑
i=1

∫
Di

ρi∇u∇vdx and f(v) :=

∫
D

fvdx.

We assume that D̄ = ∪Ni=1D̄i and the substructures Di are disjoint shaped regular
polygonal subregions of diameter O(Hi) and form a geometrical conforming par-
tition of D, i.e., ∀i 6= j the intersection ∂Di∩∂Dj is empty or is a common vertex
or face of ∂Di and ∂Dj. We assume f ∈ L2(D) and for simplicity of presentation
let ρi be a positive constant.

8.2.2 Discrete problem

Let us introduce the shape regular triangulation in each Di with triangular ele-
ments and hi as mesh parameter. The resulting triangulation on D is in general
nonmatching across ∂Di. Let Xi(Di) be the regular finite element (FE) space of
piecewise linear continuous functions in Di. Note that we do not assume that
functions in Xi(Di) vanish on ∂Di ∩ ∂D. Define

Xh(D) := X1(D1)× · · · ×XN(DN).

A discrete problem obtained by DG method, see Arnold et al. [2002], Dryja [2003],
is of the form:

Find u∗h ∈ Xh(D) such that

ah(u
∗
h, vh) = f(vh), ∀vh ∈ Xh(D) (8.2)

where

ah(u, v) =
N∑
i=1

âi(u, v) and f(v) =
N∑
i=1

∫
Di

fvidx, (8.3)

âi(u, v) := ai(u, v) + si(u, v) + pi(u, v), (8.4)

ai(u, v) :=

∫
Di

ρi∇ui∇vidx, (8.5)

si(u, v) :=
∑

Fij⊂∂Di

∫
Fij

ρij
lij

(
∂ui
∂n

(vj − vi) +
∂vi
∂n

(uj − ui)
)
ds, (8.6)

pi(u, v) :=
∑

Fij⊂∂Di

∫
Fij

ρij
lij

δ

hij
(uj − ui)(vj − vi)ds, (8.7)

and u = {ui}Ni=1 ∈ Xh(D), v = {vi}Ni=1 ∈ Xh(D). We set lij = 2 when Fij =
∂Di ∩ ∂Dj is a common face of ∂Di and ∂Dj, and define ρij := 2ρiρj/(ρi + ρj) as
the harmonic average of ρi and ρj, and hij := 2hihj/(hi +hj). In order to simplify
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notations we include the index j = ∂ and put li∂ := 1 when Fi∂ := ∂Di ∩ ∂D
has positive measure. We also set u∂ = 0, v∂ = 0 and define ρi∂ := ρi and
hi∂ := hi. The ∂

∂n
denotes the outward normal derivative on ∂Di, and δ is the

penalty positive parameter. We note that when ρij is given by harmonic average,
min{ρi, ρj} ≤ ρij ≤ 2 min{ρi, ρj}.

We also define
di(u, v) := ai(u, v) + pi(u, v), (8.8)

and

dh(u, v) :=
N∑
i=1

di(u, v). (8.9)

It is known that there exists a δ0 = O(1) > 0 such that for δ ≥ δ0, we obtain
2|si(u, u)| ≤ di(u, u) and therefore, the problem (8.2) is elliptic and has a unique
solution. An a priori error estimates of the method are optimal for the continuous
coefficient, see Arnold [1982], Arnold et al. [2002], but is not for discontinuous
coefficients; see Dryja [2003]. In the later case the error is O(h1/2) only in the
H1− broken norm if the solution of (8.1) u∗ ∈ H3/2+ε(D), with ε > 0. On the
other hand we cannot expect more regularity of u∗ in the case of discontinuous
coefficients in a general case.

We use the dh−norm, also called broken norm in Xh(D) with weights given by
ρi and δ

lij

ρij
hij

. For u = {ui} ∈ Xh(D) we note that

dh(u, u) =
N∑
i=1

{ρi ‖ ∇ui ‖2
L2(Di)

+
∑

Fij⊂∂Di

δ

lij

ρij
hij

∫
Fij

(ui − uj)2ds}. (8.10)

Lemma 8.1 There exists δ0 > 0 such that for δ ≥ δ0 we have that for all u ∈
Xh(D) holds

γ0di(u, u) ≤ âi(u, u) ≤ γ1di(u, u), i = 1, . . . , N, (8.11)

and
γ0dh(u, u) ≤ ah(u, u) ≤ γ1dh(u, u) (8.12)

where γ0 and γ1 are positive constants independent of the ρi, hi and Hi.

The proof essentially follows from (8.38), see below, or refer to Dryja [2003].

8.3 Schur complement problem

In this section we derive a Schur complement version for the problem (8.2). We
first introduce some auxiliary notations.

Let u = {ui} ∈ Xh(D) be given. We can represent ui as

ui = Hiui + Piui (8.13)

where Hiui is the discrete harmonic part of ui in the sense of ai(., .), see (8.5), i.e.,

ai(Hiui, vi) = 0 ∀vi ∈
o

X i(Di) (8.14)
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Hiui = ui on ∂Di, (8.15)

while Piui is the projection of ui on
o

X i (Di) in the sense of ai(., .), i.e.

ai(Piui, vi) = ai(ui, vi), ∀vi ∈
o

X i(Di). (8.16)

Here
o

X i (Di) is a subspace of Xi(Di) of functions which vanish on ∂Di, and

Hiui is the classical discrete harmonic part of ui. Let us denote by
o

Xh (D) the

subspace of Xh(D) defined by
o

Xh (D) := {
o

X i(Di)}Ni=1 and consider the global

projections Hu := {Hiui}Ni=1 and Pu := {Piui}Ni=1 : Xh(D)→
o

Xh (D) in the sense

of
∑N

i=1 ai(., .). Hence, a function u ∈ Xh(D) can therefore be decomposed as

u = Hu+ Pu. (8.17)

The function u ∈ Xh(D) can also be represented as

u = Ĥu+ P̂u (8.18)

where P̂u = {P̂iui}Ni=1 : Xh(D)→
o

Xh(D) is the projection in the sense of ah(., .),

the original bilinear form of (8.2), see (8.3). Since P̂iui ∈
o

X i(Di) and vi ∈
o

X i(Di),
we have

ai(P̂iu, vi) = ah(u, vi).

The discrete solution of (8.2) can be decomposed as u∗h = Ĥu∗h + P̂u∗h. To find

P̂u∗h we need to solve the following set of usual discrete Dirichlet problems:

Find P̂iu∗h ∈
o

X i(D) such that

ai(P̂iu∗h, vi) = f(vi), ∀vi ∈
o

X i(Di) (8.19)

for i = 1, · · · , N . Note that these problems are local and independent, so they can
be solved in parallel. This is a precomputational step.

We now formulate the problem for Ĥu∗h. Let Ĥiu be the discrete harmonic part

of u in the sense of âi(., .), see (8.4), where Ĥiu ∈ Xi(Di) is the solution of

âi(Ĥiu, vi) = 0 ∀vi ∈
o

X i(Di), (8.20)

ui on ∂Di and uj on Fji ⊂ ∂Dj are given (8.21)

where uj are given on Fji = ∂Di ∩ ∂Dj. We point out that for vi ∈
o

X i(Di) we
have

âi(ui, vi) = (ρi∇ui,∇vi)L2(Di) +
∑

Fij⊂∂Di

ρij
lij

(
∂vi
∂n

, uj − ui)L2(Fij). (8.22)

Note that (8.20) - (8.21) has a unique solution. To see this, let us rewrite (8.20)
in the form

ρi(∇Ĥiu,∇ϕki )L2(Di) = −
∑

Fij⊂∂Di

ρij
lij

(
∂ϕki
∂n

, uj − ui)L2(Fij) (8.23)
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where ϕki are nodal basis functions of
o

X i (Di) associated with interior nodal points

xk of the hi-triangulation of Di. Note that
∂ϕki
∂n

does not vanish on ∂Di when xk is

a node of an element touching ∂Di. We see that Ĥiu is a special extension into Di

where u is given on ∂Di and on all the Fji, and therefore, it depends on the values
of uj given on Fji = ∂Di ∩ ∂Dj and on F∂i (we already have assumed u∂ = 0 for

j = ∂). Note that Ĥiu is the discrete harmonic except at nodal points close to

∂Di. We will call sometimes Ĥiu as discrete harmonic in special sense, i.e., in the
sense of âi(., .) or Ĥi. We set that Ĥu = {Ĥiu}Ni=1 ∈ Xh(D).

Note that (8.20) is obtained from

ah(Ĥu, v) = 0 (8.24)

for u ∈ Xh(D) and when taking v = {vi}Ni=1 ∈
o

Xh(D). It is easy to see that

Ĥu = {Ĥiu}Ni=1 and P̂u = {P̂iui}Ni=1 are orthogonal in the sense of ah(., .), i.e.

ah(Ĥu, P̂v) = 0, u, v ∈ Xh(D). (8.25)

In addition,
HĤu = Hu, ĤHu = Ĥu (8.26)

since Ĥu and Hu do not change the values of u on all the nodes on boundaries of
the subdomais Di also denoted by

Γ := (∪i∂Dihi), (8.27)

where ∂Dihi is the set of nodal points of ∂Di. We note that definition of Γ includes
the nodes on both sides of ∪i∂Di.

We are now in the position to be able to derive a Schur complement problem
for (8.2). Let us apply the decomposition (8.18) in (8.2). We get

ah(Ĥu∗h + P̂u∗h, Ĥvh + P̂vh) = f(Ĥvh + P̂vh)

or
ah(Ĥu∗h, Ĥvh) + 2ah(Ĥu∗h, P̂vh) + ah(P̂u∗h, P̂vh) = f(Ĥvh) + f(P̂vh).

Using (8.19) and (8.24) we have

ah(Ĥu∗h, Ĥvh) = f(Ĥvh), ∀vh ∈ Xh(D). (8.28)

This is the Schur complement problem for (8.2). We denote the space Vh(Γ) or in
short notation V , which we will use later, as the set of all functions vh in Xh(D)

such P̂vh = 0, i.e., the space of discrete harmonic functions in the sense of the Ĥi.
We rewrite the Schur complement problem as:

Find u∗h ∈ Vh(Γ) such that

S(u∗h, vh) = g(vh), ∀vh ∈ Vh(Γ) (8.29)

where here and below u∗h ≡ Ĥu∗h, and

S(uh, vh) = ah(Ĥuh, Ĥvh), g(vh) = f(Ĥvh). (8.30)

This problem has a unique solution.
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8.4 Technical tools

Our main goal is to design and analyze a BDDC method for solving (8.29). This
will be done in the next section. We now introduce some notations and facts used
later. Let u = {ui}Ni=1 ∈ Xh(D) and v = {vi}Ni=1 ∈ Xh(D). Let di(., .) and dh(., .)
be the bilinear forms defined in (8.8) and (8.9).

Note that for u, v ∈
o

Xh(D)

di(u, v) = ai(u, v) = ρi(∇ui,∇vi)L2(Di) (8.31)

and for u ∈ Xh(D)
γ0dh(u, u) ≤ ah(u, u) ≤ γ1dh(u, u) (8.32)

in view of Lemma 8.1, where γ0 and γ1 are positive constants independent of hi,
Hi and ρi. The next lemma shows the equivalence between discrete harmonic
functions in the sense H and in the sense Ĥ, and therefore we can take advantage
of all the discrete Sobolev results known for H discrete harmonic extensions.

Lemma 8.2 For u ∈ Xh(D) we have

di(Hu,Hu) ≤ di(Ĥu, Ĥu) ≤ Cdi(Hu,Hu), i = 1, . . . , N, (8.33)

and
dh(Hu,Hu) ≤ dh(Ĥu, Ĥu) ≤ Cdh(Hu,Hu) (8.34)

where Hu = {Hiui}Ni=1 and Ĥu = {Ĥiu}Ni=1 are defined by (8.14) - (8.15) and
(8.20) - (8.21) respectively, and C is a positive constant independent of hi, u, ρi
and Hi.

Proof. We note that P and H are projections in the sense of
∑

i ai(., .) while P̂
and Ĥ are projections in the sense of ah(., .). Therefore, the left hand side of (8.34)
follows from properties of minimum energy of discrete harmonic extensions in the∑

i ai(., .) sense. To prove the right hand side of (8.34) note that

dh(Ĥu, Ĥu) = dh(Ĥu,HĤu+ PĤu) (8.35)

= dh(Ĥu,Hu)) + dh(Ĥu,PĤu)

in view of (8.26). The first term is estimated as

dh(Ĥu,Hu) ≤ εdh(Ĥu, Ĥu) +
1

4ε
dh(Hu,Hu), (8.36)

with arbitrary ε > 0. To estimate the second term in the right hand side of (8.35)

note that for v := PĤu ∈
o

X(D) and using (8.23), we get

dh(Ĥu, v) =
N∑
i=1

ρi(∇Ĥiui,∇vi)L2(Di) (8.37)

= −
N∑
i=1

∑
Fij⊂∂Di

ρij
lij

(
∂vi
∂n

, uj − ui)L2(Fij).

122 Juan Galvis



BDDC for DG

The term in the right hand side of (8.37) are estimated as

|ρij(
∂vi
∂n

, uj − ui)L2(Fij)| ≤ ρij ‖
∂vi
∂n
‖L2(Fij)‖ ui − uj ‖L2(Fij) (8.38)

≤ C
ρij

h
1/2
i

‖ ∇vi ‖L2(Di)‖ ui − uj ‖L2(Fij)

≤ C
ρij

h
1/2
ij

‖ ∇vi ‖L2(Di)‖ ui − uj ‖L2(Fij)

≤ C{ερij ‖ ∇vi ‖2
L2(Di)

+
ρij

4εhij
‖ ui − uj ‖2

L2(Fij)
}

≤ C{2ερi ‖ ∇vi ‖2
L2(Di)

+
ρij

4εhij
‖ ui − uj ‖2

L2(Fij)
},

where we have used that hij ≤ 2hi and ρij ≤ 2ρi. Substituting this into (8.37), we
get

dh(Ĥu, v) ≤ C
N∑
i=1

{2ερi ‖ ∇PiĤiui ‖2
L2(Di)

+
ρij

4hijε

∑
Fij⊂∂Di

‖ ui − uj ‖2
L2(Fij)

}, (8.39)

and using
‖ ∇PiĤiui ‖L2(Di)≤‖ ∇Ĥiui ‖L2(Di),

we obtain

dh(Ĥu, v) ≤ C{εdh(Ĥu, Ĥu) +
1

4ε
dh(Hu,Hu)}, (8.40)

and then

dh(Ĥu, Ĥu) ≤ C{εdh(Ĥu, Ĥu) +
1

4ε
dh(Hu,Hu)}.

Choosing a sufficiently small ε, the right hand side of (8.34) follows.

8.5 Balancing domain decomposition with constraints

We design and analyze BDDC methods for solving the Schur complement problem
(8.29); see Dohrmann [2003], Mandel et al. [2005], Li and Widlund [2006] for
conforming elements. We follow the general framework of ASM as stated below in
Lemma 8.3; see Toselli and Widlund [2005]. For i = 0, . . . , N , let Vi be auxiliary
spaces and Ii prolongation operators from Vi to V , and define the operators T̃i :
V → Vi as

bi(T̃iu, v) = ah(u, Iiv) ∀v ∈ Vi
and set Ti = IiT̃i. Then the ASMs, in particular the BDDC method, are defined
as

T =
N∑
i=0

Ti. (8.41)

The bilinear form ah is defined in (8.3). The bilinear forms bi, the operators Ii,
and the spaces Vi, i = 0, . . . , N , are defined in the next subsections.
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Lemma 8.3 Suppose the following three assumptions hold:

i) There exists a constant C0 such that for all u ∈ V there exists a decomposition

u =
∑N

i=0 Iiu
(i) with u(i) ∈ Vi, i = 0, . . . , N , and

N∑
i=0

bi(u
(i), u(i)) ≤ C2

0ah(u, u).

ii) There exist constants εij, i, j = 1, . . . , N , such that for all u(i) ∈ Vi, u(j) ∈ Vj,

ah(Iiu
(i), Iju

(j)) ≤ εijah(Iiu
(i), Iiu

(i))1/2ah(Iju
(j), Iju

(j))1/2.

iii) There exists a constant ω such that

ah(Iiu, Iiu) ≤ ωbi(u, u) ∀u ∈ Vi, i = 0, . . . , N.

Then, T is invertible and

C2
0ah(u, u) ≤ ah(Tu, u) ≤ (ρ(ε) + 1)ωah(u, u), ∀u ∈ V.

Here, ρ(ε) is the spectral radius of the matrix ε = {ε}Ni,j=1.

8.5.1 Notations and the interfacing condition

Let us denote by Γi the set of all nodes on ∂Di and on neighboring faces Fji ⊂ ∂Dj.
We note that the nodes of ∂Fji (which are vertices of Dj) are included in Γi. De-
fine Wi as the vector space associated to the nodal values on Γi and extended via

Ĥi inside Di. We say that u(i) ∈ Wi if u(i) is represented as u(i) := {u(i)
l }l∈#(i),

where #(i) = {i and ∪ j : Fij ⊂ ∂Di}. Here u
(i)
i and the u

(i)
j stand for the nodal

values of u(i) on ∂Di and the Fji, respectively. We write u = {ui} ∈ V to refer to
a function defined on all Γ with each ui defined (only) on ∂Di. We point out that
Fij and Fji are geometrically the same even though the mesh on Fij is inherited
from the Di mesh while the mesh on Fji corresponds to the Dj mesh.

Denote by Λi := {Fij : Fij ⊂ ∂Di} ∪ {Fji : Fji = Fij, Fji ⊂ ∂Dj} the set of all
faces of Di and all faces of Dj touching Di. Given u(i) ∈ Wi and F`k ∈ Λi we use
the notation

u
(i)
`k =

1

|F`k|

∫
F`k

u(i)ds.

Let us define the regular zero extension operator Ĩi : Wi → V as follows: Given
u(i) ∈ Wi, let Ĩiu

(i) be equal to u(i) on nodes Γi and zero on Γ\Γi.
A face across Di and Dj has two sides, the side contained in ∂Di, denoted by

Fij, and the side contained in ∂Dj, denoted by Fji. In addition, we assign to each
pair {Fij, Fji} a master (mortar) and a slave (nonmortar) side. If Fij is a slave
side then Fji is a master side and vice versa. If Fij is a slave side we will use the
notation δij (instead of Fij) to recall this fact while if Fij is mortar side we will
use the notation γij. The choice of slave-master sides are such that the interfacing
condition, stated next, can be satisfied. In this case Theorem 8.5 below holds with
constant C independent of the ρi, hi and Hi.
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Assumption 8.4 (The interfacing condition) We say that the coefficients {ρi}
and the local mesh sizes {hi} satisfy the interfacing condition if exist constants C0

and C1, of order O(1), such that for any face Fij the following conditions hold{
hi ≤ C0hj and ρi ≤ C1ρj if Fij is a slave side, or
hj ≤ C0hi and ρj ≤ C1ρi if Fij is a master side.

(8.42)

We associate with each Di, i = 1, · · · , N , the weighting diagonal matrices

D(i) = {D(i)
l }l∈#(i) on Γi defined as follows:

• On ∂Di (l = i)

D
(i)
i (x) =

 1 if x is a vertex of∂Di,
1 if x is interior node of a master face Fij,
0 if x is interior node of a slave face Fij,

(8.43)

• On Fji (l = j)

D
(i)
j (x) =

 0 if x is end point of the face Fji,
1 if x is interior of a slave face Fji,
0 if x is interior node of a master face Fji,

(8.44)

• For x ∈ Fi∂ we set D
(i)
i (x) = 1.

The prolongation operators Ii : Wi → V , i = 1, . . . , N , are defined as

Ii = ĨiD
(i), (8.45)

and they form a partition of unity on Γ described as

N∑
i=1

IiĨ
T
i = IΓ. (8.46)

8.6 Local and global spaces

The local spaces Vi = Vi(Γi), i = 1, . . . , N , are defined as the subspaces of Wi of
functions with zero average faces values on all faces Fij and Fij associated to the
subdomain Di, i.e., for all F`k ∈ Λi.

For u(i), v(i) ∈ Vi(Γi) we define the local bilinear form bi as

bi(u
(i), v(i)) := âi(Ĩiu

(i), Ĩiv
(i)), (8.47)

where the bilinear form âi was defined in (8.4).

Now we define a BDDC coarse space. As in BDDC methods, here we define the
coarse space using local bases and imposing continuity condition with respect to
the primal variables; see Dohrmann [2003], Mandel et al. [2005], Li and Widlund
[2006].
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Recall that Λi := {Fij : Fij ⊂ Di} ∪ {Fji : Fji = Fij, Fji ⊂ Dj} is the set of all
faces of Di and all faces of Dj touching Di. For F`k ∈ Λi define the local coarse

basis function Φ
(i)
F`k
∈ Wi by

bi(Φ
(i)
F`k
, v) = 0, ∀v ∈ Vi(Γi) (8.48)

with
1

|F`k|

∫
F`k

Φ
(i)
F`k

= 1

and ∫
F`′k′

Φ
(i)
F`k

= 0, ∀F`′k′ 6= F`k with F`′k′ ∈ Λi.

Note that Φ
(i)
Fk`
6= Φ

(i)
F`k

.

Define V0i = V0i(Γi) := Span{Φ(i)
F`k

: F`k ∈ Λi} ⊂ Wi. Then (8.48) implies that

Vi is Ĥi−orthogonal to V0i, and Wi is a direct sum of V0i and Vi, i.e., V0i⊕Vi = Wi.

The global coarse space V0 is defined as the set of all u0 := {u(i)
0 } ∈

∏N
i=1 V0i(Γi)

such that for i, j = 1, . . . , N , we have

u
(i)
0`k = u

(j)
0`k ∀F`k ∈ Λi ∩ Λj. (8.49)

The coarse prolongation operator I0 : V0 → V is defined as I0u0 =
∑N

i=1 Iiu
(i)
0

and the bilinear form b0 is of the form

b0(u0, v0) :=
N∑
i=1

bi(u
(i)
0 , v

(i)
0 ).

8.7 Main result

In this section we state and proof our main result.

Theorem 8.5 Let the Assumption 8.4 be satisfied. Then there exists a positive
constant C independent of hi, Hi and the jumps of ρi such that

ah(u, u) ≤ ah(Tu, u) ≤ C

(
1 + log

H

h

)2

ah(u, u) ∀u ∈ V, (8.50)

where T is defined in (8.41). Here log H
h

= maxi log Hi
hi

.

Proof. By the general theorem of ASMs we need to check the three key assump-
tions of Lemma 8.3.

Assumption(i) We prove that for u = {ui}Ni=1 ∈ V there exist u0 ∈ V0 and

u(i) ∈ Vi such that

I0u0 +
N∑
i=1

Iiu
(i) = u (8.51)
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and

b0(u0, u0) +
N∑
i=1

bi(u
(i), u(i)) = a(u, u). (8.52)

Let u = {ui}Ni=1 ∈ V (Γ). Define u
(i)
0 ∈ V0i(Γi) as

u
(i)
0 =

∑
F`k∈Λi

( 1

|F`k|

∫
F`k

u`ds
)

Φ
(i)
F`k

(8.53)

where functions Φ
(i)
Fik

were defined in (8.48). Note that u
(i)
0 and u have the same

average faces values on all faces F`k ∈ Λi, i.e.,
1

|F`k|

∫
F`k

u`ds =
1

|F`k|

∫
F`k

u
(i)
0 ds = u

(i)
0`k

1

|F`k|

∫
F`k

u`ds =
1

|F`k|

∫
F`k

u
(j)
0 ds = u

(j)
0`k,

(8.54)

then for all F`k ∈ Λi ∩ Λj we have

u
(i)
0`k = u

(j)
0`k. (8.55)

Define u0 ∈ V0 by u0 = {u(i)
0 }Ni=1 and set w = u− I0u0. Then we can write

w =
N∑
i=1

Ii(Ĩ
T
i u− u

(i)
0 ) =

N∑
i=1

Iiu
(i),

where we have defined u(i) = ĨTi u− u
(i)
0 ∈ Vi. Since the prolongation operators Ii

form a partition of unity, (8.51) holds.

To check (8.52) observe that u(i) has zero edge average values on all faces

F`k ∈ Λi, hence it is Ĥi−orthogonal to u
(i)
0 ; see (8.48). Then from the definition

of b0 we have

b0(u0, u0) +
N∑
i=1

bi(u
(i), u(i)) =

N∑
i=1

bi(u
(i)
0 , u

(i)
0 ) + bi(u

(i), u(i))

=
N∑
i=1

bi(u
(i)
0 + u(i), u

(i)
0 + u(i))

=
N∑
i=1

bi(Ĩ
T
i u, Ĩ

T
i u) = ah(u, u).

This ends the proof of Assumption(i).

Assumption(ii) We need to prove that

ah(Iiu
(i), Iju

(j)) ≤ Cεija
1/2
h (Iiu

(i), Iiu
(i)) a

1/2
h (Iju

(j), Iju
(j)) (8.56)
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for u(i) ∈ Vi and u(j) ∈ Vj, i, j = 1, · · · , N, and the spectral radius %(ε) of
ε = {εij}Ni,j=1 is bounded. In our case %(ε) ≤ C with constant independent of hi
and Hi. This follows from coloring arguments and the fact that u(i) and u(j) are
different from zero only on Di and Dj and their neighboring substructures.

Assumption(iii). We need to prove that for i = 1, · · · , N,

ah(Iiu
(i), Iiu

(i)) ≤ ωbi(u
(i), u(i)), ∀u(i) ∈ Vi (8.57)

and
ah(I0u0, I0u0) ≤ ωb0(u0, u0), ∀u0 ∈ V0 (8.58)

with ω ≤ C(1 + log H
h

)2 where C is a positive constant independent of hi, Hi and
the jumps of ρi.

For the proof of (8.57) see Lemma 8.6, and for the proof of (8.58) see Lemma
8.7 in the next section.

8.8 Auxiliary lemmas

In this section we complete the proof of Theorem 8.5 by proving two auxiliary
lemmas associated with (8.57) and (8.58).

Lemma 8.6 Assume that Assumption 8.4 holds. Then for u(i) ∈ Vi, i = 1, . . . , N ,
we have

ah(Iiu
(i), Iiu

(i)) ≤ C

(
1 + log

H

h

)2

bi(u
(i), u(i)), (8.59)

where C is independent of hi, Hi and the jumps of ρi.

Proof. In order to prove (8.59) we can replace ah(Ĥu, Ĥu) by dh(Hu,Hu) in
the left hand side of (8.59) and in its right hand side we can put di(HĨiu(i),HĨiu(i))
instead of bi(u

(i), u(i)); see Lemma 8.1 and Lemma 8.2.
In order to simplify notations, all the functions are considered as harmonic

extensions in the H sense. Hence, we denote HIiu by Iiu and let u = {u(i)
l }l∈#(i) ∈

Vi. Using (8.8), (8.9) and (8.45) we obtain

dh(Iiu
(i), Iiu

(i)) = di(ĨiD
(i)u(i), ĨiD

(i)u(i)) +
∑
j

dj(ĨiD
(i)u(i), ĨiD

(i)u(i)) (8.60)

where the sum is taken over Dj with common faces to Di. The first term of the
right hand side of (8.60) can be estimated as

di(ĨiD
(i)u(i), ĨiD

(i)u(i)) (8.61)

= ρi

∫
Di

|∇D(i)
i u

(i)
i |2dx+

∑
Fij⊂∂Di

δ

lij

ρij
hij

∫
Fij

(D
(i)
i u

(i)
i −D

(i)
j u

(i)
j )2dx.

To bound the first term of (8.61) we use

ρi ‖ ∇D(i)
i u

(i)
i ‖2

L2(Di)
≤ 2ρi{‖ ∇(D

(i)
i u

(i)
i − u

(i)
i ) ‖2

L2(Di)

+ ‖ ∇u(i)
i ‖2

L2(Di)
}
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therefore,

ρi ‖ ∇(D
(i)
i u

(i)
i − u

(i)
i ) ‖2

L2(Di)
≤ C

∑
δij⊂∂Di

ρi ‖ ũ(i)
i ‖2

H
1/2
00 (δij)

.

Here ũ
(i)
i = u

(i)
i at the interior nodal points of δij and ũ

(i)
i = 0 on ∂δij. Recall that

δij denotes Fij when Fij is a slave side. It can be proved, see for example Toselli
and Widlund [2005], that

ρi ‖ ũ(i)
i ‖2

H
1/2
00 (δij)

≤ C

(
1 + log

Hi

hi

)2

ρi|u(i)
i |2H1(Di)

. (8.62)

Here we have used the fact that u
(i)
i has zero average face values.

We now estimate the second term of (8.61) and (8.67), see below. Note that for
Fi∂, i.e. for faces on ∂D, the estimates of the terms corresponding to Fi∂ follow
straightforwardly. On a slave face Fij of ∂Di, i.e. where hi ≤ C0hj and ρi ≤ C1ρj,
or on Fi∂, we have

‖ D(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖2

L2(Fij)
≤ Chi max

Fij
|u(i)
i |2 (8.63)

and
ρij
hij
‖ D(i)

i u
(i)
i −D

(i)
j u

(i)
j ‖2

L2(Fij)
≤ Cρi max

Fij
|ui|2

≤ C

(
1 + log

Hi

hi

)
ρi|u(i)

i |2H1(Di)
,

where we have used ρij ≤ 2ρi and hi ≤ Chij since hi < C0hj. We also have
used that u(i) has zero average face value on any face of Λi, therefore, Poincaré
inequality has be used to bound the H1(Di)−norm by the seminorm.

On a master side Fij of ∂Di, i.e. where hj ≤ C0hi and ρj ≤ C1ρi, we have

‖ D(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖L2(Fij) ≤ ‖ u(i)

i − u
(i)
j ‖L2(Fij) (8.64)

+ ‖
∑

xjv∈∂Fij

u
(i)
j (xjv)ϕ

j
v ‖L2(Fij),

and using a triangular inequality we obtain

‖ u(i)
j (xjv)ϕ

j
v ‖L2(Fij)≤‖ u

(i)
i (xiv)ϕ

i
v ‖L2(Fij) + ‖ u(i)

i (xiv)ϕ
i
v − u

(i)
j (xjv)ϕ

j
v ‖L2(Fij) .(8.65)

Where ϕjv is the nodal basis functions corresponding to xjv. The first term of (8.65)
can be estimated as

‖ u(i)
i ϕ

i
v ‖2

L2(Fij)
≤ C max

Fij
|u(i)
i |2hi ≤ Chi

(
1 + log

Hi

hi

)
|u(i)
i |2H1(Di)

,

while the second term of (8.65) can be bounded as in (8.81), see below. Using
these estimates in (8.61) and Lemma 8.1 we get

di(Iiu
(i), Iiu

(i)) ≤ C

(
1 + log

Hi

hi

)2

bi(u
(i), u(i)). (8.66)
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We estimate the second term of (8.60) by bounding dj(ĨiD
(i)u(i), ĨiD

(i)u(i)) by

the term bi(u
(i), u(i)). For u = {u(i)

l } ∈ Vi we have

dj(ĨiD
(i)u(i), ĨiD

(i)u(i))

= ρj ‖ ∇D(i)
j u

(i)
j ‖2

L2(Dj)
+
δ

lij

ρij
hij

∫
Fij

(D
(i)
i u

(i)
i −D

(i)
j u

(i)
j )2dx. (8.67)

We need only to estimate the first term of (8.67) since the second term has been
already estimated; see (8.63), (8.64) and (8.65). If Fij is a slave side of ∂Di then

D
(i)
j vanishes, and so vanishes ‖ ∇D(i)

j u
(i)
j ‖2

L2(Dj)
. We now estimate the case

where Fij is a master side of ∂Di and it is not equal to Fi∂. On Fji we decompose

u
(i)
j = w

(i)
j +

∑
xjv∈∂Fji u

(i)
j (xjv)ϕ

j
v, where w

(i)
j = D

(i)
j u

(i)
j . We have

‖ ∇w(i)
j ‖2

L2(Dj)
≤ C ‖ w(i)

j ‖2

H
1/2
00 (Fji)

= C{|w(i)
j |2H1/2(Fji)

+

∫
Fji

(w
(i)
j )2

dist(s, ∂Fji)
ds}. (8.68)

We now estimate the first term of (8.68). Let Qj be the L2- projection on the hj-
triangulation of Fji. Then

|w(i)
j |2H1/2(Fji)

≤ 2{|w(i)
j −Qju

(i)
i |2H1/2(Fij)

+ |Qju
(i)
i |2H1/2(Fij)

} (8.69)

≤ C{ 1

hj
‖ w(i)

j − u
(i)
i ‖2

L2(Fij)
+ ‖ ∇u(i)

i ‖2
L2(Di)

}

and

‖ w(i)
j − u

(i)
i ‖2

L2(Fij)

≤ 2 ‖ u(i)
j − u

(i)
i ‖2

L2(Fij)
+2 ‖

∑
xjv∈∂Fij

u
(i)
j (xjv)ϕ

i
v ‖2

L2(Fij)
(8.70)

where the second term of (8.70) can be bounded as before and using the fact that
ρj ≤ C1ρi.

It remains to estimate the second term of (8.68). In order to simplify notation,
we take Fij as the interval [0, H]. Note that∫

Fji

(w
(i)
j )2

dist(s, ∂Fji)
ds ≤ C{

∫ H/2

0

(w
(i)
j )2

s
ds+

∫ H

H/2

(w
(i)
j )2

(H − s)
ds}. (8.71)

Let us estimate the first term in the right hand side of (8.71). We have

∫ H/2

0

(w
(i)
j )2

s
ds =

∫ hj

0

(w
(i)
j )2

s
ds+

∫ H/2

hj

(u
(i)
j )2

s
ds

≤ C{u(i)
j (hj)

2 +

∫ H/2

hj

(u
(i)
i )2 − (u

(i)
j )2

s
ds+

∫ H/2

hj

(u
(i)
i )2

s
ds}
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≤ C{u(i)
j (hj)

2 +
1

hj
‖ u(i)

i − u
(i)
j ‖2

L2(Fji)
+

(
1 + log

Hj

hj

)
max
Fij
|u(i)
i |2}

≤ C{ 1

hj
‖ u(i)

i − u
(i)
j ‖2

L2(Fij)
+

(
1 + log

Hi

hi

)(
1 + log

Hj

hj

)
‖ u(i)

i ‖2)H1(Di)}.

The second term of (8.71) is estimated similarly. Substituting these estimates to

(8.71) and using that u
(i)
i has zero average faces values we get∫

Fji

(u
(i)
j )2

dist(s, δFji)
ds ≤ C{

(
1 + log

H

h

)2

(‖ ∇u(i)
i ‖2

L2(Di)
+ (8.72)

+
1

H2
i

‖ u(i)
i ‖2

L2(Di)
) +

1

hj
‖ u(i)

i − u
(i)
j ‖2

L2(Fij)
}.

In turn, substituting (8.69) and (8.72) into (8.68), and the resulting estimate into
(8.67), plus using Lemma 8.1, we get

dj(ĨiD
(i)u(i), ĨiD

(i)u(i)) ≤ C

(
1 + log

H

h

)2

bi(u
(i), u(i)). (8.73)

Using (8.66) and (8.73) in (8.60), we get

dh(Iiu
(i), Iiu

(i)) ≤ C

(
1 + log

H

h

)2

bi(u
(i), u(i)).

The proof of Lemma 8.6 is complete.

Lemma 8.7 Assume that Assumption 8.4 holds. Then for u0 ∈ V0, V0 defined by
(8.49), we have the following inequality

ah(I0u0, I0u0) ≤ C

(
1 + log

H

h

)2

b0(u0, u0) (8.74)

where C is independent of hi, Hi and the jumps of ρi.

Proof. By Lemma 8.1 and Lemma 8.2

ah(Ĥu, Ĥu) ≤ Cdh(Ĥu, Ĥu) ≤ Cdh(Hu,Hu), (8.75)

where dh(., .) is defined by (8.9). Hence, to prove the result (8.74) we can replace

ah(Ĥu, Ĥu) by dh(Hu,Hu) in the left hand side of (8.74).
In order to simplify the notation we write u instead of u0 and put I0u0 = I0u =∑N
i=1 Iiu

(i). We have

di(I0u, I0u) = ρi ‖ ∇{(Iiu(i))i +
∑

Fij⊂∂Di

(Iju
(j))i} ‖2

L2(Di)
(8.76)

+
∑

Fij⊂∂Di

∫
Fij

ρij
lij

δ

hij
({(Iiu(i))i + (Iju

(j))i} − {(Iiu(i))j + (Iju
(j))j})2ds.

To bound the second term of the right hand side of (8.76) let us consider the case
where Fij is a mortar face. The proof for the case where Fij is a slave side is
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similar; see also the arguments given in (8.63) and afterwards. Then using the
definition of Ii and D(i) we obtain

J =

∫
Fij

ρij
lij

δ

hij
({(Iiu(i))i + (Iju

(j))i} − {(Iiu(i))j + (Iju
(j))j)

2ds (8.77)

=

∫
Fij

ρij
lij

δ

hij

(
{D(i)

i u
(i)
i −D

(i)
j u

(i)
j } − {D

(j)
j u

(j)
j −D

(j)
i u

(j)
i }
)2

ds

=

∫
Fij

ρij
lij

δ

hij

(
{D(i)

i u
(i)
i −D

(i)
j u

(i)
j } − {D

(j)
j u

(j)
j − 0}

)2

ds

=

∫
Fij

ρij
lij

δ

hij

(
{D(i)

i u
(i)
i − (D

(i)
j +D

(j)
j )u

(i)
j }+D

(j)
j {u

(i)
j − u

(j)
j }
)2

ds

=

∫
Fij

ρij
lij

δ

hij

{u(i)
i − u

(i)
j } −

∑
xjv∈∂Fji

{u(i)
j (xjv)− u

(j)
j (xjv)}ϕjv

2

ds

Where ϕjv is the nodal basis function corresponding to xjv. Then

J ≤ C

∫
Fij

ρij
lij

δ

hij
{u(i)

i − u
(i)
j }2ds

+Chj
ρij
lij

δ

hij
max
xv∈∂Fji

{u(i)
j (xjv)− u

(j)
j (xjv)}2 (8.78)

It remains to estimate the second term of (8.78), we estimate a bound for the

difference |u(i)
j (xjv) − u

(j)
j (xjv)| with xjv ∈ ∂Fji. First note that u

(i)
ji = u

(j)
ji since

there are primal variables associated to the faces Fji ∈ Λi and Fji ∈ Λj; see (8.49).
Therefore

|u(i)
j (xjv) − u

(j)
j (xjv)| ≤ |u

(j)
j (xjv)− u

(j)
ji |+ |u

(i)
j (xjv)− u

(i)
ji | (8.79)

≤ C

(
1 + log

Hj

hj

) 1
2

‖ ∇u(j)
j ‖L2(Di) +|u(i)

j (xjv)− u
(i)
ji |.

To get the estimate of the first term of the right hand side of (8.79) we have used a
Poincaré inequality and a L∞ bound for FEM functions, see Toselli and Widlund
[2005]. The second term of (8.79) is estimated as

|u(i)
j (xjv)− u

(i)
ji | ≤ |u

(i)
j (xjv)− u

(i)
i (xiv)|+ |u

(i)
i (xiv)− u

(i)
ij |+ |u

(i)
ij − u

(i)
ji |

≤ C{|u(i)
j (xjv)− u

(i)
i (xiv)|+

(
1 + log

Hi

hi

) 1
2

‖ ∇u(i)
i ‖L2(Di) (8.80)

+h
− 1

2
j ‖ u(i)

i − u
(i)
j ‖L2(Fij)},

where we have used a Poncaré inequality and a L∞ bound for FEM functions to
obtain the second term in the right hand side of (8.80) and a Cauchy-Schwarz
inequality to obtain the third term of (8.80). To estimate the first term of (8.80),

let Qju
(i)
i be the L2−projection of u(i) on the hj triangulation of Fji. We obtain

|u(i)
j (xjv)− u

(i)
i (xiv)| ≤ |u

(i)
j (xjv)−Qju

(i)
i (xiv)|+ |Qju

(i)
i (xiv)− u

(i)
i (xiv)|

≤ C{h−
1
2

j ‖ u(i)
j − u

(i)
i ‖L2(Fij) +

(
1 + log

Hj

hj

) 1
2

‖ ∇u(i)
i ‖L2(Di)}, (8.81)
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where the first estimate has followed from a inverse inequality and the second
from the approximation properties of the L2 projection and a L∞ bound for FEM
functions.

By Lemma 8.1 and Lemma 8.2 we can bound di(HĨiu(i),HĨiu(i)) by bi(Ĥiu
(i), Ĥiu

(i)).
Then we conclude that J of (8.77) can be estimated as

J ≤ C

(
1 + log

H

h

)
{bi(u(i), u(i)) + bj(u

(j), u(j)}, (8.82)

since ρij ≤ Cρi and hj ≤ Chij.

It remains to estimate the first term in (8.76). We have

‖ ∇{(Iiu(i))i +
∑

Fij⊂∂Di

(Iju
(j))i} ‖2

L2(Di)

= ‖ ∇{(D(i)
i +

∑
Fij⊂∂Di

D
(j)
i )u

(i)
i +

∑
Fij⊂∂Di

D
(j)
i (u

(j)
i − u

(i)
i )} ‖2

L2(Di)

≤ C{‖ ∇u(i)
i ‖2

L2(Di)
+
∑

δij⊂∂Di

|D(j)
i (u

(j)
i − u

(i)
i )|2

H
1/2
00 (δij)

}, (8.83)

where the sum in (8.83) reduces to the slaves sides Fij. From (8.49) we obtain

|D(j)
i (u

(j)
i − u

(i)
i )|2

H
1/2
00 (Fij)

≤ 2{|D(j)
i (u

(j)
i − u

(j)
ij )|2

H
1/2
00 (Fij)

+ |D(j)
i (u

(i)
i − u

(i)
ij )|2

H
1/2
00 (Fij)

} (8.84)

and therefore the first term of (8.84) is estimated as

ρi|D(j)
i (u

(j)
i − u

(j))
ij )|2

H
1/2
00 (Fij)

≤ 2ρi{|D(j)
i (u

(j)
i − u

(j)
j )|2

H
1/2
00 (Fij)

+ |D(j)
i (u

(j)
j − u

(j)
ji )|2

H
1/2
00 (Fij)

+|D(j)
i (u

(j)
ji − u

(j)
ij )|2

H
1/2
00 (Fij)

}

≤ Cρi{
1

hj
‖ u(j)

i − u
(j)
j ‖2

L2(Fji)
+

(
1 + log

Hj

hj

)2

‖ ∇u(j)
j ‖2

L2(Dj)
}

≤ C

(
1 + log

Hj

hj

)2

bj(u
(j), u(j)) (8.85)

since when Fij is a slave side ρi ≤ C1ρj and in view of Lemma 8.1. The second
term of (8.84) is bounded by

ρi|D(j)(u
(i)
i − u

(i)
ij )|2

H
1/2
00 (Fij)

≤ Cρi

(
1 + log

Hi

hi

)2

‖ ∇u(i)
i ‖L2(Di)

≤
(

1 + log
Hi

hi

)2

bi(u
(i), u(i)). (8.86)
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Using (8.85) and (8.86) in (8.84) and the resulting inequality in (8.83) and
(8.77) we see that

ρi ‖ ∇{(Iiu(i))i +
∑

Fij⊂∂Di

(Iju
(j))i} ‖2

L2(Di)

≤ C

(
1 + log

H

h

)2

{bi(u(i), u(i)) + bj(u
(j), u(j))},

this estimate and (8.82) imply that

di(I0u0, I0u0) ≤ C

(
1 + log

H

h

)2

{bi(u(i), u(i)) + bj(u
(j), u(j))}.

Summing this over i and using Lemma 8.1 and Lemma 8.2 we get (8.74).

8.9 Smaller global spaces

In Section 8.6 we have defined the coarse space with a primal variable associated
to each face F`k ∈ Λi. In this case the number of constrains per subdomain is twice
the number of edges of ∂Di for floating subdomains Di. In this section we discuss
choices of subsets of Λi which imply smaller coarse problems and still maintain
the bound (8.50) of Theorem 8.5.

Recall that a face across Di and Dj has two sides, the side contained in ∂Di,

denoted by Fij, and the side contained in ∂Dj, denoted by Fji. Let Λ̃i, i =
1, . . . , N , be such that for all pair of neighboring subdomains Di and Dj the

subset Λ̃i ∩ Λ̃j contains one and only one face from each pair {Fij, Fji}, i.e., Fij
or Fji. We denote the chosen face by λij = λji. For instance, we can choose Λ̃i as
the set of mortar faces λij associated to Di.

After choosing Λ̃i, the local spaces Vi = Vi(Γi), i = 1, . . . , N, are defined as the
subspaces of Wi of functions with zero average faces values on all faces λ`k ∈ Λ̃i

while the spaces V0i are defined as V0i = V0i(Γi) = Span{Φ(i)
λ`k

: λ`k ∈ Λ̃i} ⊂ Wi

where the functions Φ
(i)
λik

are defined as in Section 8.6 replacing Λi by Λ̃i in each
subdomain; see (8.48).

From now on we will use the notation

u
(i)
λ`k

=
1

|λ`k|

∫
λ`k

u(i)ds,

where u(i) ∈ Wi. The global coarse space V0 is now defined as the set of all

u0 = {u(i)
0 } ∈

∏N
i=1 V0i(Γi) such that for i = 1, . . . , N , we have

u
(i)
0λij

= u
(j)
0λij

∀λij ∈ Λ̃i. (8.87)

Recall that u
(i)
0 is defined locally. Then we have the following possible cases of

continuity with respect to the primal variables:
Case 1 λij = λji = Fij. This case imposes continuity of the average face values

of u
(i)
0 and u

(j)
0 on Fij; see (8.87).
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Case 2 λij = λji = Fji. This case imposes continuity of the average face value on
Fji.

Example 8.8 Consider the domain D = (0, 1)2 and divide it into N = M ×M
squares subdomains Di which are unions of fine elements, with H = 1/M . We
note that for floating subdomains Di, Λi has eight coarse basis functions while Λ̃i

has only four coarse basis functions.

The bilinear forms ah, bi and the operators Ii, i = 1, . . . , N, and the operator
I0 are defined in Section 8.5 and Section 8.6.

We now show that with these new local and global spaces Theorem 8.5 still
holds. The proof is basically the same as the one given in Section 8.7 and Section
8.8 with some minor modifications depending on which of the above cases is con-
sidered and also on a modification of the Poincaré inequality.

Theorem 8.9 If the Assumption 8.4 holds, then there exists a positive constant
C independent of hi, Hi and the jumps of ρi such that

ah(u, u) ≤ ah(Tu, u) ≤ C

(
1 + log

H

h

)2

ah(u, u) ∀u ∈ V, (8.88)

where T is defined in (8.41), the local spaces Vi, i = 1, . . . , N, are defined above
in this section and the global space V0 is defined using (8.87). Here log H

h
=

maxi log Hi
hi

.

Proof. We now mention the main modifications of the proof of the three key as-
sumptions of Lemma 8.3.

Assumption(i) Let u = {ui}Ni=1 ∈ V (Γ). Define u
(i)
0 ∈ V0i(Γi) by

u
(i)
0 =

∑
λ`k∈Λ̃i

( 1

|λ`k|

∫
λ`k

uds
)

Φ
(i)
λ`k

(8.89)

and proceed as in the proof of Theorem 8.5.
Assumption(ii) Same argument given to verify Assumption(ii) in the proof of

Theorem 8.5.

Assumption(iii) We modify the proof of Lemma 8.7 and Lemma 8.6 as follows:

For the proof of Lemma 8.7 we consider the following cases to obtain a bound
for the left hand side of (8.79),

Case 1 λij = λji = Fji. In this case we use the same argument as in the proof
of in Lemma 8.7 to estimate the left hand side of (8.79).
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Case 2 λij = λji = Fij. In this case we estimate

|u(i)
j (xjv)− u

(j)
j (xjv)| ≤

|u(i)
j (xjv)− u

(i)
Fji
|+ |u(j)

j (xjv)− u
(j)
Fji
|+ |u(i)

Fji
− u(j)

Fji
|. (8.90)

The first and second term of (8.90) can be bounded as in Case 1. The third

term of (8.90) is bounded as follows. Since λij = λji = Fij we have that u
(i)
Fij

= u
(j)
Fij

;

see (8.87). Then

|u(i)
Fji
− u(j)

Fji
| ≤ |u(i)

Fji
− u(i)

Fij
|+ |u(j)

Fij
− u(j)

Fji
| (8.91)

and we obtain

|u(i)
Fji
− u(i)

Fij
| ≤ CH

− 1
2

j ‖ u(i)
Fji
− u(i)

Fij
‖L2(Fij)≤ Ch

− 1
2

j ‖ u(i)
ji − u

(i)
ij ‖L2(Fij) .

An analogous bound holds also for the second term of (8.91); see (8.79).

For the proof of Lemma 8.6 we can apply Poincaré inequality only in the case
λij = Fij ⊂ ∂Di. If this is not the case, i.e., if λij = Fji ⊂ Dj, we still can bound
the H1(Di) norm by the seminorm using the following argument: If u(i) ∈ Vi and
λij = Fji then u(i) has zero average value on Fji. Therefore,

‖ ui ‖L2(Di) ≤ ‖ ui − u(i)
Fij
‖L2(Di) + ‖ u(i)

Fij
− u(i)

Fji
‖L2(Fij)

≤ ‖ ∇ui ‖L2(Di) +
1

H
1/2
i

‖ u(i)
ij − u

(i)
ji ‖L2(Fij) .

Having modified the proof of Lemma 8.7 and Lemma 8.6, then Assumption(iii)
follows.

8.10 Numerical experiments

In this section, we present numerical results for the preconditioner introduced in
(8.41) and show that the bounds of Theorem 8.5 and Theorem 8.9 are reflected on
the numerical tests. In particular we show that the Assumption 8.4, see (8.42), is
sufficient and necessary.

We consider the domain D = (0, 1)2 and divide into N = M × M squares
subdomains Di which are unions of fine elements, with H = 1/M . Inside each
subdomain Di we generate a structured triangulation with ni subintervals in each
coordinate direction and apply the discretization presented in Section 8.2 with
δ = 4. This value δ = 4 was chosen because numerically it was observed that the
L2 approximation error seem to stabilize when δ becomes larger. The minimum
value of δ that gives a positive definite system is δmin = 1.565. In the numerical
experiments we use the black and white checkerboard type of subdomain partition.
On the white subdomains we let ni = 2 ∗ 2Lw and on the black subdomains we let
ni = 3 ∗ 2Lb , where Lw and Lb are integers denoting the number of refinements

inside each subdomain Di. Hence, the mesh sizes are hw = 2−Lw

2M
and hb = 2−Lb

3M
, re-

spectively. We solve the second order elliptic problem −div(ρ(x)∇u∗(x)) = 1 in D
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with homogeneous Dirichlet boundary conditions. In the numerical experiments,
we run PCG until the l2 initial residual is reduced by a factor of 10−6.

In the first test we consider the constant coefficient case ρ = 1. We consider
different values of M×M coarse partitions and different values of local refinements
Lw = Lb, therefore, keeping constant the mesh ratio hw/hb = 3/2. We place the
mortars on the white subdomains. We note that the interfacing condition (8.42)
is satisfied. Table 8.1 lists the number of PCG iterations and in parenthesis the
condition number estimate of the preconditioned system in the case we choose
eight coarse functions per subdomain. As expected from the analysis, the condi-
tion numbers appear to be independent of the number of subdomains and seems
to grow by a logarithmic factor when the size of the local problems increases. Note
that in the case of continuous coefficients Theorem 8.5 and Theorem 8.9 are valid
without any assumption on hw and hb if the mortar sides are chosen on the larger
meshes.
Table 8.2 is the same as before however, now we have chosen Λ̃i as being the set
of mortar faces of Di. In this case we have four coarse basis functions in each sub-
domain. We note that even though the coarse problems are smaller the results are
very similar to the ones presented in Table 8.1 where coarse problems are larger. As
in the case of Table 8.2 the smallest eigenvalue of the preconditioned operator is 1.

We now consider the discontinuous coefficient case where we set ρi = 1 on the
white subdomains and ρi = µ on the black subdomains. The subdomains are kept
fixed to 4× 4, i.e., 16 subdomains. Table 8.3 lists the results on runs for different
values of µ and for different levels of refinements on the black subdomains. On
the white subdomains ni = 2 is kept fixed. The mortars are placed on the white
subdomains. It is easy to see that the interfacing condition (8.42) holds if and
only if µ is not large, which it is in agreement with the results seem in Table 8.3.
We repeat the same experiment of Table 8.3 but this time with four coarse local
basis functions associated to the mortar side of the subdomain. The results are
presented in Table 8.4.

M ↓ Lb → 0 1 2 3 4 5
2 12 (5.7) 14 (6.7) 15 (7.5) 18 (10.6) 19 (14.5) 19 (19.0)
4 14 (5.8) 18 (8.5) 21 (11.7) 24 (15.2) 27 (19.2) 29 (23.9)
8 15 (5.9) 20 (9.1) 24 (12.3) 27 (15.8) 31 (19.6) 34 (24.0)
16 15 (6.0) 20 (9.4) 25 (12.8) 28 (16.3) 31 (20.1) 35 (24.5)
32 15 (6.0) 20 (9.3) 25 (12.8) 28 (16.3) 32 (20.2)

Table 8.1: PCG/BDDC iterations count and condition numbers for different sizes of coarse and
local problems and constant coefficients ρi with 8 coarse basis functions per subdomain.

8.11 Conclusions

In this paper several BDDC methods with different coarse spaces for DG dis-
cretization of second order elliptic equations with discontinuous coefficients have
been designed and analyzed. It has been proved that the methods are almost
optimal and very well suited for parallel computations. Their rate of convergence
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M ↓ Lb 0 1 2 3 4 5
2 13 (5.7) 15 (6.7) 16 (7.5) 18 (10.7) 19 (14.5) 19 (18.9)
4 15 (5.8) 19 (8.5) 22 (11.7) 24 (15.1) 27 (19.2) 29 (23.8)
8 17 (6.1) 21 (9.1) 25 (12.3) 28 (15.7) 31 (19.6) 34 (24.0)
16 18 (6.1) 23 (9.4) 27 (12.8) 30 (16.3) 32 (20.1)
32 18 (6.1) 24 (9.4) 27 (12.8) 30 (16.3)

Table 8.2: PCG/BDDC iterations count and condition numbers for different sizes of coarse
and local problems and constant coefficients ρi with 4 coarse basis functions per subdomain
associated to its mortar faces.

µ ↓ Lb → 1 2 3 4 5
1000 165(2822.6) 263(3746.6) 282(4758.9) 287(5922.3) 310(7168.88)
10 37(32.9) 43(42.3) 47(52.8) 51(64.8) 53(77.7)
0.1 17(6.8) 16(6.8) 17(6.8) 17(6.9) 17(6.9)

0.001 16(7.12) 16(7.16) 16(7.25) 17(7.38) 18(7.50)

Table 8.3: PCG/BDDC iterations count and condition numbers for different values of coefficients
and the local mesh sizes on the black subdomains only. The coefficients and the local mesh sizes
on the white subdomains are kept fixed. The subdomains are also kept fixed to 4 × 4 and 8
coarse basis functions in each subdomain are used.

are independent of the parameter of triangulations, the number of substructures
and the jumps of coefficients. The numerical tests confirm theoretical results. The
methods can be straightforwardly extended to 3-D cases. Finally, we remark that
the condition of the preconditioned systems deteriorates as we increase the penalty
parameter δ to large values.
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Chapter 9

A Priori Error Estimates for
Wiener-Chaos Finite Element
Approximations of the Darcy’s
Equation in Random Porous
Media

We consider the white noise analysis constructed from a Hilbert space and an op-
erator to define and characterize adequate spaces for solving the ordinary (rather
than Wick) product stochastic pressure equation. A weak form of this equation
involves different spaces for the solution and test functions and we establish a
continuous inf-sup condition and well-posedness of the problem. We generalize
the numerical approximations proposed in Benth and Theting [Stochastic Anal.
Appl., 20 (2002), pp. 1191–1223] for Wick stochastic partial differential equations,
and in Roman and S. [Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 941–
955] for the ordinary product stochastic pressure equation, and establish discrete
inf-sup conditions and provide a priori error estimates for a wide class of norms.
The proposed numerical approximation is based on Wiener-Chaos finite element
methods and leads to the solution of a positive symmetric linear system. We also
improve and generalize the approximation results of Benth and Gjerde [Stochas-
tics Stochastics Rep., 63 (1998), pp. 313–326] and Cao [ Stochastics, 78 (2006),
pp. 179–187] when a (generalized) process is truncated by a finite Wiener-Chaos
expansion. Finally, we present numerical experiments to validade the results.

9.1 Introduction

In the mathematical studies of transport of pollutants in groundwater and oil
recovery processes, we have to approximate the solution of a system of stochastic
partial differential equations which models the two-phase flow in a porous medium.
The system is composed of a transport equation for the saturation (the relative
volume of one of the two fluids) coupled with an equation for the velocity field
given by the Darcy’s Law and the incompressibility condition of the flow. The
randomness enters the problem through the unknown properties of the rocks,

140



Wiener-Chaos FEM

especially the permeability tensor. In this paper we deal with one of the equations
derived from this system, specifically, we consider an equation of the form:{

−∇x · (κ(x, ·)∇xu(x, ·)) = f(x, ·), for all x ∈ D
u(x, ·) = 0, for all x ∈ ∂D,

(9.1)

where log κ(x, ·) is a Gaussian field and f is a (possible random) forcing term; see
Ghanem and Spanos [1991], Furtado and Pereira [2003], Roman and Sarkis [2006],
Babuška et al. [2007] and references therein. We emphasize that the assumption
of the stochastic structure of the permeability function κ(x, ·) is due, more than
anything else, to lack of data and accuracy in the measurements of the media.
One approach that has been studied, when the parameters in the equation are
not completely known, is to replace the true values of these parameters by some
kind of average. By replacing the stochastic coefficient κ(x, ·) in the equations by
the average κ̄(x) we obtain some information about the solution, but usually this
information is not enough to make more precise predictions of nonlinear function-
als of the solution or to know what effect the small fluctuations in the parameter
values actually have on the solution.

One way to evaluate nonlinear functionals of the solution involves Monte-Carlo
approximations. Briefly speaking, Monte-Carlo approximations require knowing
the solution, or approximations of the solution, for many paths or realizations in
the space of outcomes. In principle, if we know the distribution of the processes
modeling the coefficients in the equation, we can simulate many trajectories of
the coefficients, and for each trajectory, we can apply a finite element method
(FEM) to obtain an approximation of the solution for that particular realization.
Then, Monte-Carlo approximations of a nonlinear functional g of the solution are
of the form E[g(û(x, ·)] ≈ 1

M

∑M
i=1 g(û(a)(x, ωi)), where E denotes the expectation

operator, M is the number of realizations, and û(a)(x, ωi) is a finite element ap-
proximation of the solution at x for the ith-trajectory ωi. However, this procedure
is very expensive and time consuming as it involves assembling and solving large
linear systems as many times as trajectories are simulated. We also mention that
the Monte Carlo approach gives relevant information about the average value of
the solution only when the variance of the solution is of moderated size. The vari-
ance of the solution depends on the size and correlation width of the introduced
noise; see Holden et al. [1996].

Alternatively to the Monte-Carlo approach, methods that somehow “separate”
the stochastic part from the deterministic part are very attractive to researchers.
A point of practical importance of these methods is that they can be used in
numerical simulation schemes to obtain numerical realizations of a random process.
To illustrate the advantage of these methods, let us suppose that the solution of
(9.1) can be represented as

û(x, ω) =
∑
α∈I

ûα(x)Yα(ω), (9.2)

where I is a countable index set and {Yα}α∈I is a collection of random variables
with known probability distributions. Let us say we have an approximation of the
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solution of the form

û(x, ω) ≈ û(a)(x, ω) =
∑
α∈Ĩ

û(a)
α (x)Yα(ω), (9.3)

where Ĩ is a finite index set with Î ⊂ I. Assume that we compute and store

the deterministic functions {û(a)
α }α∈Ĩ . Then, when a simulation is required, all we

need to do is to generate values for the random variables {Yα}α∈Ĩ , and assemble
the solution according to (9.3). In this way, we will need to solve a very large

linear system only once in order to compute the deterministic coefficients û
(a)
α (x).

Since

û(x, ω)− û(a)(x, ω) =
∑
α∈I\Î

ûα(x)Yα(ω) +
∑
α∈Ĩ

(
ûα(x)− û(a)

α (x)
)
Yα(ω)

we conclude that relevancy of the information we obtain using the procedure
described above depends mainly on:

1. The kind of expansion used in (9.2) and (9.3). (In this paper we use the
Wiener-Chaos expansion).

2. The finite dimensional problem involved in the computation of the coefficients

{û(a)
α }α∈J̃ in (9.3). Usually this problem is a Galerkin type problem that uses

the original coefficient κ or an approximation of it, for instance, a truncated
Karhúnen-Loève or Wiener-Chaos expansion.

The Karhúnen-Loève (KL) expansion of a stochastic process with continuous
covariance function is well-used in many engineering applications as an efficient
tool to store a random process. This expansion is optimal in the Fourier sense, as
it minimizes the mean square error resulting from truncation after a finite num-
ber terms. A fundamental issue inherited from the KL expansion is the excess of
oscillations of the terms of the expansion near the boundary ∂D. Using the KL
expansion also requires the computation of the eigenvalues and eigenfunctions of
the Covariance operator associated to the coefficient; see Babuška and Chatzi-
pantelidis [2002], Babuška et al. [2007, 2004], Frauenfelder et al. [2005], Ghanem
[1999a,b], Ghanem and R. [1999], Ghanem and Spanos [1991], Jin et al. [2007],
Keese [2003], Matthies and Keese [2005], Nobile et al. [2007], Schwab and Todor
[2003] and references therein. We note that for an approximation of a log−normal
coefficient κ it is possible to use its truncated KL expansion or the exponential of
the truncated KL expansion of log κ.

In this paper we will propose a finite dimensional problem for computing the
coefficient of an approximation of the type (9.3) that uses the original log−normal
coefficient κ. We avoid the use of an approximatedKL expansion for the coefficient
κ of (9.1) and we do not assume finite dimensionality of the noise. In this work
the expansion (9.3) is of the form of a truncated Wiener-Chaos expansion. The
Wiener-Chaos expansion is the orthogonal expansion, in terms of Fourier-Hermite
stochastic polynomials, of random processes defined in the white noise space. The
use of Wiener-Chaos expansion gives us some freedom when defining the white
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noise space. For instance, we can use the construction of the white noise space
based on L2(Rd) and the Hermite functions that have several interesting analytical
and algebraic properties. Such properties can be explored to manipulate products
of functions, to compute norms, and to improve the complexity and stability of
the algorithms. We note that using Wiener-Chaos expansion for approximating
the solution has an additional advantage since it is possible to deduce, based on
Sobolev, Kodratiev, Hida and others norms on the white noise space, convergence
rates of the procedure of truncating the Wiener-Chaos expansion; see Da Prato
[2006], Hida et al. [1993], Holden et al. [1996], Kuo [1996] and references therein.

The approximation of solutions of partial differential equations based on Wiener-
Chaos expansion has been considered extensively in the literature. We mention
Benth and Theting [2002] and Theting [2000] where they analyze the stochastic
pressure equation interpreting the ordinary product as Wick product. These works
also consider other Wick stochastic partial differential equations. They use the
white noise calculus and propose and approximation by truncating the Wiener-
Chaos expansion of the solution. They present a priori error estimates based in
the work of Benth and Gjerde [1998] on convergence rates of the procedure of
truncating the Wiener-Chaos expansion. Here we also mention Cao [2006] where
the estimates in Benth and Gjerde [1998] are improved. In Roman and Sarkis
[2006] they present and explain several features which show the advantages of us-
ing the white noise calculus as a natural framework for the study of the stochastic
pressure equation without replacing the ordinary product by Wick product. We
note however that they consider a permeability process κ(x, ω;φ) = ρ0 + eWφ(x,ω),
where Wφ(x, ω) is the 1-dimensional smoothed white noise process defined on the
1-dimensional white noise probability space

(
S ′(Rd),B(S ′(Rd)), µ

)
; see Section

9.7.1 below. The constant ρ0 > 0 is added to obtain uniform ellipticity of the
associated bilinear form. Observe that for different φ ∈ L2(Rd) there is a different
permeability function κ(·, ·, φ) associated to it. Applying properly the Wiener-
Chaos decomposition they obtain a symmetric positive definite linear system of
equations whose solutions are the coefficients of a Galerkin-type approximation to
the solution of the original equation. They do not provide a priori error estimates.

In this paper we use the white noise theory in a general setup to construct and
characterize adequate spaces to prove the existence and uniqueness of the solution
of the ordinary product stochastic pressure equation. Here, when writing the weak
form of the equation we choose different spaces for the solution and test functions.
This infinite dimensional problem is of Petrov-Galerkin type and we can estab-
lish the inf-sup condition and the well-posedness of the problem. This generalizes
the approximation proposed in Benth and Theting [2002] and Roman and Sarkis
[2006] to the spaces introduced to obtain existence and uniqueness of the weak
solution of (9.1). For the finite dimensional problem we also use different spaces
for the solution and the test functions, however it leads to the solution of a posi-
tive symmetric linear system. We prove the inf-sup stability of this approximation
and provide a priory error estimates for a wide class of norms that depends on the
choice of a sequence of weights. We also generalize and improve the results of Cao
[2006] and Benth and Gjerde [1998] on approximation of a (generalized) process
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by its truncated Wiener-Chaos expansion. We present numerical experiments in
order to confirm the theory.

From the modeling point of view, the general setup considered, permit us several
choices which result in different numerical methods and different a priori error
estimates.

In order to circumvent the ellipticity and to develop a priori error estimates,
we consider two types of norms. The first type, introduced to define the spaces for
the solution of the stochastic pressure equation, measures the exponential decay
of the solution in the white noise probability space implied by the same type of
decay in the forcing term for our particular choice of the permeability κ which
is of the form κ(x, ω;φ) = eWφ(x,ω) as in Roman and Sarkis [2006] without the
constant term added to obtain uniform ellipticity. The second type of norms are
used to derive a priori error estimates, are of Hida-Kuo-Kondrative-Streit type
and depend on the choice of sequence of weights; see Hida [1980], Kuo [1996],
Holden et al. [1996], Hida et al. [1993], Da Prato [2006] and references therein.
For some particular choices, these norms measure the regularity of the process
in the white noise probability space variable just as the Sobolev norms measure
regularity of functions. We point out that we consider a general setup which per-
mits a unified analysis for several modelling choices such as smoothed white noise
process and genelized KL expansions. For regularity result of the pressure equa-
tion for this type of norms we refer to Theting [2000] and Galvis and Sarkis [2008].

We mention that a different approach to ours is considered in Babuška et al.
[2007]. By using Lp spaces for the probability space, they show the well-posedness
for problems where the permeability coefficient is finite dimensional lognormal; see
Lemma 1.2 and Example 1 in Babuška et al. [2007]. They consider a coefficient of

the form of κ(x, ω) = e
∑K
j=1 aj(x)Yj(ω) and assume that each deterministic function

aj is bounded in D and their result depend on the quantity
∑K

j=1 supx∈Daj(x)2.
Using our approach, the assumption required to show well-posednes of the problem
for this particular form of the permeability κ is supx∈D

∑K
j=1 λ

2θ
j aj(x)2 < ∞. For

a coefficient of the form
κ(x, ω) = e

∑∞
j=1 aj(x)Yj(ω)

an extension of their result would require
∑∞

j=1 supx∈D aj(x)2 < ∞ and our as-

sumption for this infinite dimensional noise case is that supx∈D
∑∞

j=1 λ
2θ
j aj(x)2 <

∞. Here θ > 0 and {λj}∞j=1 is any sequence with 1 < λ1 ≤ λ2 ≤ · · · and∑∞
j=1 λ

−2θ
j <∞; see Theorem 9.6 below.

This paper is structured as follows. In Section 9.2 we introduce the white noise
calculus framework to be used in the rest of the paper. Section 9.3 is dedicated to
describe the problem we are dealing with and to introduce the adequate spaces for
the solution of the stochastic pressure equation. These spaces are characterized
in Section 9.4 where additional norms are introduced in order to measure de reg-
ularity in the ω variable. Two examples of such norms are presented. In Section
9.5 we consider a Galerkin approximation and deduce a priori error estimates.
The resulting linear system is studied in Section 9.6. Section 9.7 discusses some
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modeling choices and finally in Section 9.8 we present a one dimensional numerical
experiment.

9.2 Framework: White Noise Analysis

Let H be a real Hilbert space with inner product (·, ·)H and norm ‖ · ‖H . Let A
be an operator on H such that there exists an H-orthonormal basis {ηj}∞j=1 with

1. Aηj = λjηj, j = 1, 2, . . . .

2. 1 < λ1 ≤ λ2 ≤ · · · .
3.
∑∞

j=1 λ
−2θ
j <∞ for some constant θ > 0.

For p > 0 define Sp := {ξ ∈ H; ‖ξ‖p <∞} where

‖ξ‖2
p := ‖Apξ‖2

H =
∞∑
j=0

λ2p
j (ξ, ηj)

2
H

and for p < 0 let Sp be the dual space of S−p. It is easy to see that ‖·‖p = ‖Ap ·‖H
and the duality pairing between Sp and S−p is an extension of the H inner product.
We also define

S = ∩p≥0Sp (with the projective limit topology)

and S ′ as the dual space of S, i.e., we use the standard countable Hilbert space
constructed from (H,A); see Kuo [1996] and Obata [1994].

Let S ′ be the probability space with the sigma-field B(S ′) of Borel subsets
of S ′. The probability measure µ is given by the Bochner-Minlos theorem and
characterized by

Eµe
i〈·,ξ〉 :=

∫
S′
ei〈ω,ξ〉dµ(ω) = e−

1
2
‖ξ‖2H , for all ξ ∈ S. (9.4)

Here, the pairing 〈ω, ξ〉 = ω(ξ) is the action of ω ∈ S ′ on ξ ∈ S, and Eµ denotes the
expectation with respect to the measure µ; see [Obata- 1994, Chapter 1-3], [Holden
et al.- 1996, Chapter 2], [Hida- 1980, Chapter 3], Hida et al. [1993], Kuo [1996]
and Berezanskĭı [1986]. The measure µ is often called the (normalized) Gaussian
measure on S ′. The reason for this can be seen from the following remark:

Remark 9.1 Equation (9.4) says that: for any test function ξ ∈ S, the ran-
dom variable 〈·, ξ〉, is normally distributed with zero mean and variance ‖ξ‖2

H . If
ξ1, . . . , ξj ∈ S are orthonormal in H then the random variables 〈·, ξ1〉, . . . , 〈·, ξj〉
are independent and normally distributed with mean zero and variance equal to
one; see Holden et al. [1996], Kuo [1996] and Obata [1994].

The following particular case of Fernique’s Theorem will be used throughout
this paper; see Shigekawa [2004], Bogachev [1998], Kuo [1975], Da Prato [2006]
and Da Prato and Zabczyk [1992].
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Lemma 9.2 We have∫
S′
es‖ω‖

2
−θdµ(ω) =


∏∞

j=1

(
1− 2s

λ2θ
j

)− 1
2
, s <

λ2θ
1

2

+∞ s ≥ λ2θ
1

2

Proof. Note that ‖ω‖2
−θ =

∑∞
j=1 λ

−2θ
j 〈ω, ηj〉2. Using the monotone convergence

theorem when s > 0 or the dominated convergence theorem when s < 0 we have∫
S′
es‖ω‖

2
−θdµ(ω) = lim

J→∞

∫
S′
es
∑J
j=i λ

−2θ
j 〈ω,ηj〉2dµ(ω)

= lim
J→∞

J∏
j=1

1√
2π

∫
R
esλ
−2θ
j y2

e−
1
2
y2

dy

= lim
J→∞

J∏
j=1

1√
2π

∫
R

exp

(
−1

2

(
1− 2s

λ2θ
j

)
y2

)
dy

=
∞∏
j=1

(
1− 2s

λ2θ
j

)− 1
2

.

In view of the assumption
∑∞

j=1 λ
−2θ
j < ∞, the infinite product above converges

when s <
λ2θ

1

2
, and goes to +∞ when s approaches

λ2θ
1

2
from below. Because the

integral above is monotonically increasing with respect to s, the lemma follows.

We note that Lemma 9.2 implies that
∫
S′ ‖ω‖

2
−θdµ <∞ which in turn implies

that µ(S−θ) = 1. To see this note that if S ′ \ S−θ = {ω : ‖ω‖2
−θ = ∞} then

µ(S ′ \ S−θ) > 0 would imply that
∫
S′
‖ω‖2

−θdµ = ∞. Without further comments,
we use that µ(S−θ) = 1 throughout this paper.

Definition 9.3 The 1-dimensional smoothed white noise associated to H and A
is the map w : S ×
mathcalS ′ −→ R given by w(ξ) = w(ξ, ω) = 〈ω, ξ〉 for ω ∈ S ′, ξ ∈ S.

It is not difficult to prove that when ξ ∈ H and we choose ξn ∈ S such that
ξn → ξ in H, then 〈ω, ξ〉 := limn→+∞〈ω, ξn〉 exists in L2(µ), and is independent
of the choice of {ξn}∞n=1. Thus, the definition of smoothed white noise can be
extended to functions in H. In what follows we use the notation (L2) for the
space L2(µ). We always interpretate properties in the ”almost everywhere” or
”almost surely” sense, therefore to make notation and formula less cumbersome,
we will sometimes omit such words.

Definition 9.4 Let D ⊂ Rd. Using the map w of Definition 9.3 we can construct
a stochastic process, called the smoothed white noise process Wφ(x, ω), as follows:

Wφ(x, ω) := w(φx, ω) = 〈ω, φx〉, x ∈ D, ω ∈ S ′,

where φx ∈ H, for all x ∈ D. For examples and properties of φx, see Section 9.7.

Remark 9.5 Note that the process {Wφ(x, ·)}x∈D has the following properties:
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i) For each x ∈ D, Wφ(x, ·) is normally distributed with zero mean and variance
‖φx‖H .

ii) For each x, x̂ ∈ D we have that EµWφ(x, ·)Wφ(x̂, ·) = (φx, φx̂)H .

9.3 The Problem and Variational Formulation

Given φx ∈ Sθ for all x ∈ D we consider the following problem:{
−∇x · (κ(x,w;φ)∇xu(x,w;φ)) = f(x, ω), for all x ∈ D

u(x, ·;φ) = 0, for all x ∈ ∂D (9.5)

for all w ∈ S ′, where
κ(x, ω;φ) := eWφ(x,ω) = e〈ω,φx〉 (9.6)

and the exponent Wφ(x, ω) is the 1-dimensional smoothed white noise process of
Definition 9.4. Thus, κ is log-normal random process. Observe that for different
maps x 7→ φx ∈ Sθ there is a different permeability function κ(·, ·, φ) associated
to it. We will omit, whenever there is no danger of confusion, the dependence of
κ on the map x 7→ φx just to make the notation less cumbersome.

To motivate the definition of the spaces for the solution of (9.5), observe that
since µ(S−θ) = 1 and φx ∈ Sθ for all x ∈ D, we can write

|〈ω, φx〉| ≤ ‖ω‖−θ sup
x∈D
‖φx‖θ ω-a.s. in S ′.

Denote Cθ = Cθ(φ) := supx∈D ‖φx‖θ. Then we have for all ε > 0

− ε
2
‖ω‖2

−θ −
C2
θ

2ε
≤ −‖ω‖2

−θCθ ≤ 〈ω, φx〉 ≤ ‖ω‖2
−θCθ ≤

ε

2
‖ω‖2

−θ +
C2
θ

2ε

and

κmin(w) := e−
C2
θ

2ε e−
ε
2
|ω|2−θ ≤ κ(x,w) ≤ e

C2
θ

2ε e
ε
2
‖ω‖2−θ =: κmax(w). (9.7)

When u(·, ω) is the weak solution of (9.5) for almost all ω ∈ S ′, then from the
Lax-Millgram Lemma we should have

|u(·, ω)|2H1
0 (D) ≤

1

κmin(ω)2
‖f(·, ω)‖2

H−1(D) = e
C2
θ
ε eε‖ω‖

2
−θ‖f(·, ω)‖2

H−1(D).

Then for s ∈ R we can write

|u(·, ω)|2H1
0 (D)e

s‖ω‖2−θ ≤ e
C2
θ
ε ‖f(·, ω)‖2

H−1(D)e
(s+ε)|ω|2−θ a.s. in S ′

and integrating both sides we obtain∫
S′
|u(·, ω)|2H1

0 (D)e
s‖ω‖2−θdµ(ω) ≤ e

C2
θ
ε

∫
S′
‖f(·, ω)‖2

H−1(D)e
(s+ε)‖ω‖2−θdµ(ω). (9.8)

This last inequality gives us an idea of the spaces where we can seek the solutions
and choose the test functions. For the solution space we use the left-hand side
norm given in (9.8), while for the test functions spaces we take right-hand side
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dual norm.

Define Ums as the space of functions u : D × S ′ → R such that∫
S′
‖u(·, ω)‖2

Hm(D)e
s‖ω‖2−θdµ(ω) < +∞ (9.9)

with norm

‖u‖2
Ums :=

∫
S′
‖u(·, ω)‖2

Hm(D)e
s‖ω‖2−θdµ(ω) (9.10)

and seminorm

|u|2Ums :=

∫
S′
|u(·, ω)|2Hm(D)e

s‖ω‖2−θdµ(ω). (9.11)

Note that U0
0 = L2(D)⊗ (L2) and in general Ums = Hm(D)⊗ (L2)s where

(L2)s := L2(S ′, es‖ω‖2−θdµ(ω)) (9.12)

with norm ‖v‖2
(L2)s

:=
∫
S′ |v(ω)|2es‖ω‖2−θdµ. We also define Û1

s := H1
0 (D)⊗ (L2)s ⊂

U1
s , i.e., the functions in U1

s which vanish on ∂D almost sure in ω. By using a

Poincaré inequality, the seminorm | · |U1
s

is a norm equivalent to ‖ ·‖U1
s

in Û1
s . Since

the space (L2)s is the dual of (L2)−s and the H−1(D) is the dual of H1
0 (D), we

can identify the dual space of Û1
−s with U−1

s where the duality pairing is given by

〈f, v〉 :=

∫
D×S′

f(x, ω)v(x, ω)dxdµ for all v ∈ Û1
−s, f ∈ U−1

s . (9.13)

We also define the bilinear form a : Û1
s × Û1

−s+ε → R by

a(u, v) :=

∫
D×S′

κ(x, ω)∇u(x, ω)∇v(x, ω)dxdµ. (9.14)

The weak formulation of problem (9.5) is introduced as follows:{
Find û ∈ Û1

s such that

a(û, v) = 〈f, v〉 for all v ∈ Û1
−s+ε,

(9.15)

where the duality pairing between f ∈ U1
s−ε and v ∈ Û−s+ε is given by

〈f, v〉 =

∫
D×S′

f(x, ω)v(x, ω)dxdµ.

Theorem 9.6 (Inf-sup condition) Let ε > 0 and assume that Cθ = supx∈D ‖φx‖θ <
∞. Then the following results follow:

1. The bilinear form a : Û1
s × Û1

−s+ε → R is continuous and ||a|| ≤ e
C2
θ

2ε .

2. The bilinear form “a” satisfies the following inf-sup condition:

inf
u∈Û1

s \{0}
sup

v∈Û1
−s−ε\{0}

a(u, v)

|u|U1
s
|v|U1

−s−ε

≥ e−
C2
θ

2ε . (9.16)
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3. For any v ∈ Û1
−s−ε \ {0} there exists u(v) ∈ Û1

s+2ε such that a(u, v) 6= 0.

4. For any f ∈ U−1
s+ε ⊂ U−1

s−ε there exists a unique solution û ∈ Û1
s of problem

(9.15) and

‖û‖U1
s
≤ Ce

C2
θ

2ε ‖f‖U−1
s+ε
, (9.17)

where C is the Poincaré inequality constant which is independent of ε and θ.

Proof. We proceed as follows:

1. From (9.7) we have

a(u, v) =

∫
D×S′

κ(x, ω)∇u(x, ω)∇v(x, ω)dxdµ

≤ e
C2
θ

2ε

∫
S′
e
ε
2
|ω|2−θ |u(·, ω)|H1

0 (D)|v(·, ω)|H1
0 (D)dµ ≤ e

C2
θ

2ε |u|U1
s
|v|U1

−s+ε
.

2. Given u ∈ Û1
s \ {0} define

vr(x, ω) :=

{
u(x, ω)e(s+ ε

2
)‖ω‖2−θ , if x ∈ D and ‖w‖−θ ≤ r

0, if x ∈ D and ‖w‖−θ > r.

Denote B(r) := {ω ∈ S ′ : ‖w‖−θ ≤ r}. From (9.7) we see that

a(u, vr) =

∫
D×B(r)

κ(x, ω)|∇u(x, ω)|2e(s+ ε
2

)‖ω‖2−θdxdµ(ω)

≤ e
C2
θ

2ε

∫
D×B(r)

|∇u(x, ω)|2e(s+ε)‖ω‖2−θdxdµ(ω)

≤ e
C2
θ

2ε eεr
2

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω) ≤ e
C2
θ

2ε
+εr2|u|2U1

s
<∞,

and therefore, a(u, vr) is well defined for all r. We also have

|vr|2U1
−s−ε

=

∫
D×B(r)

|∇u(x, ω)|2e2(s+ ε
2

)‖ω‖2−θe−(s+ε)‖ω‖2−θdxdµ(ω)

=

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω) ≤ |u|2U1
s

and using (9.7) we obtain

a(u, vr) =

∫
D×B(r)

κ(x, ω)|∇u(x, ω)|2e(s+ ε
2

)‖ω‖2−θdxdµ(ω)

≥ e−
C2
θ

2ε

∫
D×B(r)

e−
ε
2
‖ω‖2−θ |∇u(x, ω)|2e(s+ ε

2
)‖ω‖2−θdxdµ(ω)

= e−
C2
θ

2ε

∫
D×B(r)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω).
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For any arbitrary δ > 0, takeR(δ) > 0 such that
∫
D×B(R)

|∇u(x, ω)|2es‖ω‖2−θdxdµ(ω) >

(1− δ)|u|2U1
s
. We obtain a(u, vR) > (1− δ)e−

C2
θ

2ε |u|2U1
s

and then,

sup
v∈U1

−s−ε

a(u, v)

|v|U1
−s−ε

≥ a(u, vR)

|vR|U1
−s−ε

> (1− δ)e−
C2
θ

2ε

|u|2U1
s

|u|U1
s

= (1− δ)e−
C2
θ

2ε |u|U1
s
.

Because δ > 0 is arbitrary, we conclude that the inf-sup condition (9.16) holds.

3. Given v ∈ Û1
−s−ε \ {0} we can take ur defined by

ur(x, ω) :=

{
v(x, ω)e(−s− ε

2
)‖ω‖2−θ , if x ∈ D and ‖w‖−θ ≤ r

0, if x ∈ D and ‖w‖−θ > r.

Note that

|ur|2U1
s+2ε

=

∫
D×B(r)

|∇v(x, ω)|2e2(−s− ε
2

)‖ω‖2−θe(s+2ε)‖ω‖2−θdxdµ(ω)

≤ e2εr2

∫
D×B(r)

|∇v(x, ω)|2e(−s−ε)‖ω‖2−θdxdµ(ω) ≤ e2εr2|v|2U1
−s−ε

<∞,

and take R large enough to have

a(uR, v) ≥ e−
C2
θ

2ε

∫
D×B(R)

e−
ε
2
‖ω‖2−θ |∇v(x, ω)|2e(−s− ε

2
)‖ω‖2−θdxdµ(ω) > 0. (9.18)

4. Let Ta : Û1
s → U−1

s−ε be the linear continuous operator defined by

a(u, v) = 〈Tau, v〉 for all u ∈ Û1
s , v ∈ Û1

−s+ε,

and let R(Ta) be the range of Ta. Now we show that R(Ta) ∩ U−1
s+ε is closed in

U−1
s+ε. Indeed, let {un} ⊂ Û1

s be a sequence such that {Taun} ⊂ U−1
s+ε converge to

f in U−1
s+ε. From the inf-sup (9.16), for all integers m and n we have

|um − un|U1
s
≤ e

C2
θ

2ε sup
v∈Û1

−s−ε\{0}

a(um − un, v)

|v|U1
−s−ε

≤ e
C2
θ

2ε sup
v∈Û1

−s−ε\{0}

〈Ta(um − un), v〉
|v|U1

−s−ε

≤ e
C2
θ

2ε ‖Ta(um − un)‖U−1
s+ε

which implies that {un} is a Cauchy sequence in Û1
s , and hence has a limit u ∈ Û1

s .
By continuity we have that Tau = f , then f ∈ R(Ta) and since f ∈ U−1

s+ε we have
that f ∈ R(Ta) ∩ U−1

s+ε. So we have R(Ta) ∩ U−1
s+ε is closed in U−1

s+ε. Now we show
R(Ta) ∩ U−1

s+ε = U−1
s+ε. Assume by contradiction that there exists v ∈ (U−1

s+ε)
∗ =

Û1
−s−ε such that v 6= 0 and 〈f, v〉 = 0 for all f ∈ R(Ta)∩U−1

s+ε. With uR introduced
in 3. above, we have from (9.7)

〈TauR, z〉 = a(uR, z) ≤ e
C2
θ

2ε |uR|U1
s+2ε
|z|U1

−s−ε
for all z ∈ Û1

−s−ε,
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which implies that TauR ∈ (Û1
−s−ε)

∗ = U−1
s+ε. Taking f = TauR implies 0 =

〈TauR, v〉 = a(uR, v) and using (9.18) we conclude v = 0 which gives a contradic-
tion. So R(Ta) ∩ U−1

s+ε = U−1
s+ε. Therefore, problem (9.15) has a unique solution

when the right hand side f ∈ U−1
s+ε. Now (9.17) follows directly from the inf-sup

condition (9.16).

Remark 9.7 From Theorem 9.6 , when f ∈ U−1
0 = H−1(D) ⊗ (L2), the solution

u ∈ Û1
s for every s < 0 (take ε = −s). In order that u ∈ Û1

0 = H1
0 (D) ⊗ (L2) we

need f ∈ U−1
ε for some ε > 0. When the right hand side f is given by a finite sum

of Fourier-Hermite polynomials we have that the solution u ∈ Û1
s for every s with

s <
λ2θ

1

2
; see Definition 9.9 and Theorem 9.10.

Remark 9.8 If Ũ ⊂ Û1
s+ε ⊂ Û1

s for some ε > 0, then the pair of spaces Ũ and

Ṽ , where Ṽ is defined by Ṽ :=
{
ue(s+ ε

2
)‖·‖2−θ ;u ∈ Ũ

}
, also satisfies the inf-sup

condition. This will be useful when constructing finite element spaces in Section
9.5; see Remark 9.19.

9.4 Characterization of the Spaces (L2)s and Ums
In the following we characterize the space (L2)s defined in (9.12). This is enough
for characterizing the tensor product space Ums . Since there is no danger of con-
fusion we denote functions in Ums and (L2)s by the same symbols.

We need to consider multi-index of arbitrary length. To simplify the nota-
tion, we regard multi-indices as elements of the space (NN

0 )c of all sequences
α = (α1, α2, . . .) with elements αj ∈ N0 = N∪{0} and with compact support, i.e.,
with only finitely many αj 6= 0. We write J = (NN

0 )c. Given α ∈ J , define the
order and length of α, denoted by d(α) and |α| respectively, by

d(α) := max {j : αj 6= 0} (9.19)

and
|α| := α1 + α2 + . . .+ αd(α).

We also introduce the σ-Hermite polynomials, hσ2,n, where σ > 0 and n =
0, 1, 2, . . . . These polynomials can be defined by the generating function identity

etx−
1
2
σ2t2 =

∞∑
n=0

tn

n!
hσ2,n(x). (9.20)

When σ2 = 1 we denote h1,n simply by hn. The σ-Hermite polynomials are an

orthogonal basis for L2(R, e−
1

2σ2 x
2

dx).

For s <
λ2θ

1

2
, define σj = σj(s) :=

(
1− 2s

λ2θ
j

)− 1
2
, j = 1, 2, . . . , and for α ∈ J

denote

σα = σα(s) :=

d(α)∏
j=1

σ
αj
j (s)
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and define

σ∗ = σ∗(s) :=

∫
S′
es‖ω‖

2
−θdµ(ω). (9.21)

From Lemma 9.2, σ∗ =
∏∞

j=1 σj < ∞ when s <
λ2θ

1

2
. Now we define the σ(s)-

Fourier-Hermite polynomials.

Definition 9.9 Let s <
λ2θ

1

2
, α = (α1, α2, . . .) ∈ J and σ = σ(s) as before. Define

Hσ2,α(ω) :=
1
√
σ∗

d(α)∏
j=1

hσ2
j ,αj

(〈ω, ηj〉); ω ∈ S ′.

We now state the Wiener-Itô Wiener-Chaos expansion theorem; see Da Prato
[2006], Hida [1980], [Holden et al.- 1996, Theorem 2], Hida et al. [1993] and Obata
[1994]. For completeness we include the proof of the orthogonality of the σ(s)-
Fourier-Hermite polynomials.

Theorem 9.10 For s <
λ2θ

1

2
the σ(s)-Fourier-Hermite polynomials are orthogonal

in (L2)s. Moreover,
‖Hσ2(s),α‖2

(L2)s
= α!σ(s)2α.

Then, polynomials in ω are elements of in (L)s and every u ∈ (L2)s is of the form

u =
∑
α∈J

uα,sHσ(s)2,α

with ‖u‖2
(L2)s

=
∑

α∈J α!σ(s)2αu2
α,s.

Proof. Take α,β ∈ J and let M = max{d(α), d(β)}. Note that the random

variables

M∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)esλ
−2θ
j 〈·,ηj〉 and

∞∏
j=M+1

esλ
−2θ
j 〈·,ηj〉

are independent (see Remark 9.1). Then

1

σ∗

∫
S′
Hσ2,α(ω)Hσ2β(ω)es‖ω‖

2
−θdµ(ω)

=

∫
S′

∞∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)
esλ
−2θ
j 〈·,ηj〉

σj(s)
dµ

=

∫
S′

M∏
j=1

hσ2
j ,αj

(〈·, ηj〉)hσ2
j ,βj

(〈·, ηj〉)
esλ
−2θ
j 〈·,ηj〉

σj(s)
dµ

∫
S′

∞∏
j=M+1

esλ
−2θ
j 〈·,ηj〉

σj(s)
dµ

=
M∏
j=1

σ
2αj
j αj!δαj ,βj = α!σ2αδα,β.
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Remark 9.11 The corresponding tensor product norm for u ∈ Ums with s <
λ2θ

1

2
is given by

‖u‖2
Ums =

∑
α∈J

α!σ(s)2α‖uα,s‖2
Hm(D),

where u =
∑

α∈J uα,sHσ(s)2,α with uα,s ∈ Hm(D) for all α ∈ J .

In (L2)s with s <
λ2θ

1

2
we introduce the system of Hilbert norms

||u||2p;ρ,s :=
∑
α∈J

ρ(α, p)2α!σ(s)2αu2
α,s, (9.22)

where u =
∑

α∈J uα,sHσ(s)2,α. We assume that ρ(α, q) ≥ ρ(α, p) > 0 and
ρ(α, 0) = 1 for all q > p ≥ 0 and α ∈ J . Usually the weights ρ(α, s) are the
eigenvalues of some nonnegative operator in (L2)s with the σ(s)-Fourier-Hermite
polynomials as eigenfunctions; see Benth and Gjerde [1998], Holden et al. [1996],
Hida et al. [1993], Obata [1994], Kuo [1996], Bogachev [1998], Cochran et al. [1998]
and Benth and Theting [2002].

For p > 0 define the spaces (Sp)ρ,s by

(Sp)ρ,s := {v ∈ (L2)s : ‖v‖p;ρ,s <∞}. (9.23)

For p < 0 define (Sp)ρ,s as the dual space of (S−p)ρ,s. We have (S0)ρ,s = (L2)s and
the inclusion (Sq)ρ,s ⊂ (Sp)ρ,s holds for all q > p.

Let N,K ∈ N0 and define

J N,K := {α ∈ J : d(α) ≤ K, and, |α| ≤ N} (9.24)

and

PN,K := span
{
Hσ(s)2,α : α ∈ J N,K

}
= span


d(α)∏
j=1

〈ω, ηj〉αj : α ∈ J

 ,

i.e., PN,K consists of polynomials in 〈ω, η1〉, . . . , 〈ω, ηK〉 of total degree at most
N . Let QN,K

s be the orthogonal projection on PN,K in the (L2)s-norm. This
projection is equivalent to the procedure of truncating the expansion in terms of
σ(s)-Fourier-Hermite polynomials by eliminating the coefficients corresponding to
multi-indices outside J N,K . We also define the RK approximation of (L2)s by

AKs := span
{
Hσ(s)2,α : d(α) ≤ K

}
and denote by QK

s the orthogonal projection on AKs in the (L2)s-norm.

We have the following approximation results:

Theorem 9.12 Assume that s <
λ2θ

1

2
. Then for all v ∈ (Sq)ρ,s and p < q we have

‖v −QN,K
s v‖2

p;ρ,s ≤M2
1‖QK

s v −QN,K
s v‖2

q;ρ,s +M2
2‖v −QK

s v‖2
q;ρ,s

153 Juan Galvis



Wiener-Chaos FEM

with

M1 = M1(ρ, p, q) := max
d(α)≤K,|α|>N

ρ(α, p)

ρ(α, q)
(9.25)

and

M2 = M2(ρ, p, q) := max
d(α)>K

ρ(α, p)

ρ(α, q)
. (9.26)

Proof. Fix s <
λ2θ

1

2
and note that QN,K

s v =
∑

α∈JN,K vα,sHσ2,α. Then recalling

the definition of J N,K in (9.24) we see that

||v −QN,K
s v||2p;ρ,s =

∑
α 6∈JN,K

ρ(α, p)2α!σ(s)2αv2
α,s

=
∑

α 6∈JN,K

ρ(α, q)2α!σ(s)2αv2
α,s

ρ(α, p)2

ρ(α, q)2

=
∑

d(α)≤K,|α|>N

ρ(α, q)2α!σ(s)2αv2
α,s

ρ(α, p)2

ρ(α, q)2
+

∑
d(α)>K

ρ(α, q)2α!σ(s)2αv2
α,s

ρ(α, p)2

ρ(α, q)2

≤
(

max
d(α)≤K,|α|>N

ρ(α, p)2

ρ(α, q)2

)
‖QK

s v −QN,K
s v‖2

q;ρ,s +(
max
d(α)>K

ρ(α, p)2

ρ(α, q)2

)
‖v −QK

s v‖2
q;ρ,s

≤ M2
1‖QK

s v −QN,K
s v‖2

q;ρ,s +M2
2‖v −QK

s v‖2
q;ρ,s,

where M1 and M2 are defined in (9.25) and (9.26), respectively.

Corollary 9.13 Assume that s <
λ2θ

1

2
. Then for all v ∈ (Sq)ρ,s and p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max {M1,M2} ‖v‖q;ρ,s

with M1 and M2 defined in (9.25) and (9.26), respectively.

If v ∈ (Sq)ρ,s is of finite dimensional noise type, i.e., is such that

v =
∑

d(α)≤K

vα,sHσ(s)2,α(ω)

then, for all p < q

‖v −QN,K
s v‖p;ρ,s ≤M1(ρ, p, q)‖v‖q;ρ,s.

Several examples of weights ρ(α, p) can be considered. We next mention two
examples.

Example 9.14 See Cao [2006], Benth and Gjerde [1998], Holden et al. [1996],
Kuo [1996] and Obata [1994]. Take ν ∈ [0, 1) and

ρ(α, p)2 = (α!)νλ2pα, α ∈ J . (9.27)
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Note that we can write

||u||2p;ρ,s = ||Γ⊗,ν(A)pu||2(L2)s
=

∫
S′
|Γ⊗,ν(A)pu(ω)|2es‖ω‖2−θdµ(ω),

where Γ⊗,ν(A) is the operator defined by Γ⊗,ν(A)Hσ2,α = (α!)νλαHσ2,α. Note also
that Γ⊗,0(Ap) = Γ⊗,0(A)p. In the case of ν = 0 and s = 0, Γ⊗,0(A) is called the
Second Quantization of A; Hida et al. [1993].

Corollary 9.15 Assume that s <
λ2θ

1

2
and consider ρ defined in (9.27). Then for

every p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max

{
1

λN+1
1

,
1

λK+1

}q−p
‖v‖q;ρ,s.

Proof. Recalling the fact 1 < λ1 ≤ λ2 ≤ . . . , we see that for all q > p,

M1(ρ, p, q) = max
d(α)≤K,|α|>N

d(α)∏
i=1

1

λ
αi(q−p)
i

=
1

λ
(N+1)(q−p)
1

and

M2(ρ, p, q) = max
d(α)>K

d(α)∏
i=1

1

λ
αi(q−p)
i

=
1

λ
(q−p)
K+1

,

and the lemma follows.

Remark 9.16 We note that Corollary 9.15 is valid for any choice of the sequence
{λj}∞j=1 with 1 < λ1 ≤ λ2 ≤ . . . such that

∑∞
j=1 λ

−2θ
j < ∞; see also Remark 9.23

and Section 9.7.1. For instance, Corollary 9.15 applied to the sequence {λj =
2j}∞j=1 with θ = 1 (s < 2) gives for all p ∈ R and t > 0,

‖v −QN,K
s v‖p;ρ,s ≤

1

2t
max

{
1

2tN
,

1

(K + 1)t

}
‖v‖p+t;ρ,s.

Benth and Gjerde [1998] and Cao [2006] consider the norms of Example 9.14
with weight ρ defined in (9.27) for the special case s = 0 and the sequence {λj =
2j}∞j=1. They derive approximation estimates valid only for p < 0 and t > 1.
Using our notation, Theorem 2 in Cao [2006], which substantially improves the
result of Benth and Gjerde [1998], reads as follows: Let p < 0 and assume that
t > 1. Then for any v ∈ (S)ρ,p+t,0

‖v −QN,K
s v‖p;ρ,0 ≤

√
B(t)

1

2tN
+ A(t)

1

Kt−1
‖v‖p+t;ρ,0, (9.28)

where

A(t) = e
2
t−1

t

t− 1
and B(t) = e

1
2t−1(t−1)

1

2t(t− 1)
.

It is easy to see that

1

2t
max

{
1

2tN
,

1

(K + 1)t

}
≤ 1

2t
√
B(t)

√
B(t)

1

2tN
+ A(t)

1

Kt−1
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and then, our estimate is sharper that the one given in Cao [2006] and moreover,
the proof is simpler and is valid for all p ∈ R and t > 0.

Example 9.17 See Bogachev [1998], Da Prato [2006], Hida et al. [1993], Malli-

avin [1995], Shigekawa [2004]. Given a multi-index α we denote 〈α, λ〉 :=
∑d(α)

i=1 αiλi.
As an alternative to the weight ρ introduced in Example 9.14 we can define

ρ(α, p)2 = 1 + 〈α, λ〉2p, p > 0, and ρ(α, 0) = 1, α ∈ J . (9.29)

In this case we can write

||u||2p;ρ,s = ||u||2(L2)s
+ ||Γ⊕(A)pu||2(L2)s

=

∫
S′

(
|u(ω)|2 + |Γ⊕(A)pu(ω)|2

)
es‖ω‖

2
−θdµ(ω),

where Γ⊕(A) is the operator defined by Γ⊕(A)Hσ2,α = 〈α, λ〉Hσ2,α. Note also that
in this case Γ(Ap) 6= Γ(A)p. It is easy to see that ||Γ⊕(A)p · ||2(L2)s

is a seminorm in

the space of function in (L2)s with u0 = 0 in its σ(s)-Fourier-Hermite expansion.
This seminorm can be computed using directional derivatives in the ω variable; see
Da Prato [2006].

Corollary 9.18 Assume that s <
λ2θ

1

2
and consider ρ defined in (9.29). Then for

every p < q we have

‖v −QN,K
s v‖p;ρ,s ≤ max

{
1

1 + (N + 1)λ1

,
1

1 + λK+1

}q−p
‖v‖q;ρ,s.

Proof. Recalling that 1 < λ1 ≤ λ2 ≤ . . . , we have for all q > p,

M1(ρ, p, q) = max
d(α)≤K,|α|>N

1(
1 +

∑d(α)
i=1 αiλi

)q−p =
1

(1 + (N + 1)λ1)q−p

and

M2(ρ, p, q) = max
d(α)>K

1(
1 +

∑d(α)
i=1 αiλi

)q−p =
1

(1 + λK+1)q−p
.

This finishes the proof.

9.5 The Galerkin Approximation and a Priori Error Esti-
mates

Recall that when s <
λ2θ

1

2
, polynomials in ω are functions in (L2)s. Let Xh

0 (D) ⊂
H1

0 (D) be the finite element space of piecewise linear functions with respect to a
triangulation of D. For N,K ∈ N0 and h > 0 define the following discrete spaces:

XN,K,h
s := Xh

0 (D)⊗ PN,K ⊂ Û1
s ⊂ U1

s = H1(D)⊗ (L2)s (9.30)

and

YN,K,hs :=
{
v : v(x, ω) = ṽ(x, ω)e(s+ ε

2
)‖PKω‖2−θ , ṽ ∈ XN,K,h

s

}
⊂ Û1

−(s+ε), (9.31)
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where the (H-orthogonal) projection on the span{η1, . . . , ηK}, denoted by PK , is
defined by

PKω :=
K∑
j=1

〈ω, ηj〉ηj, for all ω ∈ S ′. (9.32)

Remark 9.19 Alternatively to Remark 9.8, instead of multiplying ṽ(x, ω) by the

weight e(s+ ε
2

)‖ω‖2−θ , we have defined YN,K,hs in (9.31) by multiplying by the weight

e(s+ ε
2

)‖PKω‖2−θ . This is done in order to avoid computations of infinite series when
assembling the resulting linear system; see Section 9.6. We note also the Remark
9.8 case would require the assumption s+ε < λ2θ

1 /2 in order to establish the inf-sup
condition.

The discrete version of problem (9.15) is introduced as:{
Find ûN,K,hs ∈ XN,K,h

s such that
a(ûN,K,hs , v) = 〈f, v〉 for all v ∈ YN,K,hs .

(9.33)

Remark 9.20 Observe that the above Galerkin approximation ûN,K,hs satisfies a
variational equation with the original permeability κ defined in (9.6).

Since functions in XN,K,h
s depend only on 〈ω, ηj〉, j = 1, . . . , K, and not on

〈ω, ηj〉, j = K + 1, . . . , then for all u ∈ XN,K,h
s and v ∈ YN,K,hs (i.e., v(x, ω) =

ṽ(x, ω)e(s+ ε
2

)‖PKω‖2−θ with ṽ ∈ XN,K,h
s and PK defined in (9.32)) we have

a(u, v) =

∫
D×S′

e〈ω,φx〉∇u(x, ω)∇ṽ(x, ω)e(s+ ε
2

)‖PKω‖2−θdxdµ

=

∫
D×S′

e
∑∞
j=1(φx,ηj)〈ω,ηj〉∇u(x, ω)∇ṽ(x, ω)e(s+ ε

2
)‖PKω‖2−θdxdµ

=

∫
D

e
1
2

∑∞
j=K+1 aj(x)2

∫
S′
e
∑K
j=1 aj(x)〈·,ηj〉∇u∇ṽe(s+ ε

2
)‖PK ·‖2−θdµdx (9.34)

=

∫
D

e
1
2

(‖φx‖2H−
∑K
j=1 aj(x)2)

∫
S′
e
∑K
j=1 aj(x)〈·,ηj〉∇u∇ṽe(s+ ε

2
)‖PK ·‖2−θdµdx,

where we have used the formula
∫

R e
aj(x)yj 1√

2π
e−

y2
j
2 dyj = e

aj(x)2

2 and the notation

aj(x) := (φx, ηj)H . (9.35)

We have the following result:

Lemma 9.21 Let ε > 0 and s ∈ R be such that s <
λ2θ
K+1

2
and −s − ε < λ2θ

K+1

2
.

The bilinear form ”a” and the spaces (XN,K,h
s ,YN,K,hs ) satisfy the following inf-sup

condition:

inf
u∈XN,K,hs \{0}

sup
v∈YN,K,hs \{0}

a(u, v)

|u|U1
s
|v|U1

−(s+ε)

≥ e−
C2
θ

2ε∏∞
j=K+1 σj(−s− ε)

. (9.36)

Proof. Let u ∈ XN,K,h
s \ {0}. If v(x, ω) := u(x, ω)e(s+ ε

2
)‖PKω‖2−θ then v ∈ YN,K,hs
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and

|v|2U1
−(s+ε)

=

∫
D×S′

|∇u(x, ω)|2e2(s+ ε
2

)‖PKω‖2−θe−(s+ε)‖ω‖2−θdxdµ

=

∫
D×S′

|∇u(x, ω)|2e2(s+ ε
2

)‖PKω‖2−θe−(s+ε)(‖PKω‖2−θ+‖(I−PK)ω‖2−θ)dxdµ.

As in Lemma 9.2 for −(s+ ε) <
λ2θ
K+1

2
we have∫

S′
e−(s+ε)‖(I−PK)ω‖2−θdµ =

∞∏
j=K+1

σj(−s− ε) <∞.

Analogous computation holds for
∫
S′
es‖(I−PK)ω‖2−θdµ when s <

λ2θ
K+1

2
. Then,

|v|2U1
−(s+ε)

=
∞∏

j=K+1

σj(−s− ε)
∫
D×S′

|∇u(x, ω)|2es‖PKω‖2−θdxdµ

=

∏∞
j=K+1 σj(−s− ε)∏∞

j=K+1 σj(s)

∫
D×S′

|∇u(x, ω)|2es‖ω‖2−θdxdµ

=

∏∞
j=K+1 σj(−s− ε)∏∞

j=K+1 σj(s)
|u|2U1

s
,

and from (9.34) and the fact that e
1
2

∑∞
j=K+1 aj(x)2 ≥ 1, we have

a(u, v) ≥
∫
D×S′

e
∑K
j=1 aj(x)〈ω,ηj〉|∇u(x, ω)|2e(s+ ε

2
)‖PKω‖2−θdxdµ(ω)

≥ e−
C2
θ

2ε

∫
D×S′

e−
ε
2
|PKω|2−θ |∇u(x, ω)|2e(s+ ε

2
)‖PKω‖2−θdxdµ(ω)

= e−
C2
θ

2ε

∫
D×S′

|∇u(x, ω)|2es‖PKω‖2−θdxdµ(ω)

=
1∏∞

j=K+1 σj(s)
e−

C2
θ

2ε |u|2U1
s
.

Then

a(u, v)

|v|U1
−(s+ε)

≥
1∏∞

j=K+1 σj(s)∏∞
j=K+1 σj(−s−ε))∏∞

j=K+1 σj(s)

e−
C2
θ

2ε

|u|2U1
s

|u|U1
s

≥ e−
C2
θ

2ε∏∞
j=K+1 σj(−s− ε)

|u|U1
s
.

We conclude that the discrete inf-sup condition holds.

Lemma 9.22 For v =
∑

α∈J vα,sHσ2(s),α ∈ Û1
s ∩ Ums let vh =

∑
α∈J v

h
α,sHσ2(s),α

where vhα,s is the Clement finite element interpolation of vα,s on the space Xh
0 (D).

Then
‖v − vh‖U1

s
≤ Ĉh`−1‖v‖U`s , ` = 1, 2,

with the constant Ĉ independent of s and h.
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Define the tensor product spaces Ump;ρ,s := Hm(D)⊗ (Sp)ρ,s with (Sp)ρ,s defined
in (9.22) and (9.23). The tensor product norm is given by

||u||2
Ump;ρ,s

:=
∑
α∈J

ρ(α, p)2α!σ(s)2α‖uα,s‖2
Hm(D), (9.37)

and the seminorm is

|u|2
Ump;ρ,s

:=
∑
α∈J

ρ(α, p)2α!σ(s)2α|uα,s|2Hm(D), (9.38)

where the weights {ρ(α, p)} were introduced in Section 9.4.

Remark 9.23 As in Section 9.4 we have Um0;ρ,s = Ums and Umq;ρ,s ⊂ Ump;ρ,s for all
q > p. Theorem 9.12 and and Corollaries 9.13, 9.15 and 9.18 extend trivially to
the tensor product norm and seminorm defined in (9.37) and (9.38).

Using the tensor product norm (9.37) we can easily deduce the following a priori
error estimates:

Theorem 9.24 Let s ∈ R and ε > 0 be such that s+ 2ε <
λ2θ

1

2
and −s− ε < λ2θ

K+1

2
.

We have the following estimate:

|û− ûN,K,hs |U1
s
≤

(
1 + e

C2
θ
ε

∞∏
j=K+1

σj(−s− ε)

)
inf

z∈XN,K,hs

|û− z|U1
s+2ε

. (9.39)

Moreover, for all q > 0

|û− ûN,K,hs |U1
s
≤

C∗(s, ε)
{

max {M1(ρ, 0, q),M2(ρ, 0, q)} |û|U1
q;ρ,s+2ε

+ Ĉh`−1‖û‖U`s+2ε

}
where C∗(s, ε) = 1 + e

C2
θ
ε

∏∞
j=K+1 σj(−s− ε), M1 and M2 are defined in Theorem

9.13, and Ĉ is the constant of Lemma 9.22.

Proof. First note that for all v ∈ YN,K,hs we have

a(û− ûN,K,hs , v) = 0

and therefore, for all z ∈ XN,K,h
s

a(ûN,K,hs − z, v) = a(û− z, v).

Using the continuity 2. in Theorem 9.6, with s+ 2ε instead of s, we obtain

a(ûN,K,hs − z, v) ≤ e
C2
θ

2ε |û− z|U1
s+2ε
|v|U1

−s−ε
.

From the discrete inf-sup of Lemma 9.21 we have

|û− ûN,K,hs |U1
s
≤ |û− z|U1

s
+ |ûN,K,hs − z|U1

s
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≤ |û− z|U1
s

+ e
C2
θ

2ε

∞∏
j=K+1

σj(−s− ε) sup
v∈YN,K,hs \{0}

a(ûN,K,hs − z, v)

|v|U1
−s−ε

≤ |û− z|U1
s

+ e
C2
θ

2ε e
C2
θ

2ε

∞∏
j=K+1

σj(−s− ε)|û− z|U1
s+2ε

≤

(
1 + e

C2
θ
ε

∞∏
j=K+1

σj(−s− ε)

)
|û− z|U1

s+2ε

which gives (9.39). We need only to bound the second term of (9.39). This
can be done as follows: take the polynomial z = ζhN,K ∈ XN,K,h

s where ζN,K =

(Id⊗QN,K
s+2ε)û. Note that since s+ 2ε <

λ2θ
1

2
, polynomials in w are in (L2)s+2ε and

then ζN,K ∈ Û1
s+2ε is well defined. We have

|û− ζhN,K |U1
s+2ε
≤ |û− ζN,K |U1

s+2ε
+ |ζN,K − ζhN,K |U1

s+2ε
. (9.40)

Apply Theorem 9.13 (see Remark 9.23) with p = 0 and q > 0 to get

|û− ζN,K |U1
s+2ε

= |û− ζN,K |U1
0;ρ,s+2ε

≤ max {M1(ρ, 0, q),M2(ρ, 0, q)} |û|U1
q;ρ,s+2ε

. (9.41)

From Lemma 9.22 we get

|ζN,K − ζhN,K |U1
s+2ε
≤ Ch`−1‖û‖U`s+2ε

. (9.42)

Inserting (9.41) and (9.42) into (9.40) we get the result.

The following result follows from Corollary 9.15:

Corollary 9.25 Consider the weight ρ defined in (9.27). Under the assumptions
of Theorem 9.24 we have for all q > 0

|û− ûN,K,hs |U1
s
≤

C∗(s, ε)
{

max
{ 1

λN+1
1

,
1

λK+1

}q
|û|U1

q;ρ,s+2ε
+ Ĉh`−1‖û‖U`s+2ε

}
,

where C∗(s, ε) = 1 + e
C2
θ
ε

∏∞
j=K+1 σj(−s− ε) and Ĉ is the constant of Lemma 9.22.

From Corollary 9.18 we have the following a priori error estimate:

Corollary 9.26 Consider ρ defined in (9.29). Under the assumptions of Theorem
9.24 we have for all q > 0

|û− ûN,K,hs |U1
s
≤

C∗(s, ε)
{

max
{

1
1+(N+1)λ1

, 1
1+λK+1

}q
|û|U1

q;ρ,s+2ε
+ Ĉh`−1‖û‖U`s+2ε

}
.

where C∗(s, ε) = 1 + e
C2
θ
ε

∏∞
j=K+1 σj(−s− ε) and Ĉ is the constant of Lemma 9.22.
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9.6 The Resulting Linear System

We now analyze the properties of the resulting linear system for the discrete spaces

XN,K,h
s ⊂ Û1

s and YN,K,hs ⊂ Û1
−(s+ε) defined in (9.30) and (9.31), respectively.

From (9.34), we see that for all functions u ∈ XN,K,h
s and v ∈ YN,K,hs , i.e.,

v(x, ω) = ṽ(x, ω)e(s+ ε
2

)‖PKω‖2−θ with ṽ ∈ XN,K,h
s and PK defined in (9.32), we have

a(u, v) =

∫
D

bK(x)

∫
S′
e
∑K
j=1 aj(x)〈ω,ηj〉∇u(x, ω)∇ṽ(x, ω)e(s+ ε

2
)‖PKω‖2−θdµdx, (9.43)

where
bK(x) := e

1
2

(‖φx‖2H−
∑K
j=1 aj(x)2). (9.44)

For every u ∈ XN,K,h
s we introduce the function u : D × RK → R such that

u(x, 〈ω, η1〉, . . . , 〈ω, ηj〉) = u(x, ω), for all ω ∈ S ′,

and we denote XN,K,h
s := {u : u ∈ XN,K,h

s }. We also introduce

κK(x, y) := e
∑K
j=1 aj(x)yj , DK := diag(λ−θ1 , . . . , λ−θK )

and define the bilinear form a by

a(u, ṽ) := a(u, v), for all u, ṽ ∈ XN,K,h
s . (9.45)

Here v(x, ω) = ṽ(x, ω)e(s+ ε
2

)‖PKω‖2−θ . With this notation and using (9.43) we have

a(u, ṽ) =

∫
D

bK(x)

∫
RK

κK(x, y)∇xu(x, y)∇xṽ(x, y)e(s+ ε
2

)|DKy|2dµK(y)dx, (9.46)

where µK denotes the standard Gaussian measure in RK .

To simplify notation we set σ̌ = σ(s+ ε
2
), i.e., let σ̌j = σj(s+ ε

2
), j = 1, 2, . . . .

Let {ψ`}L`=1 be the standard hat basis functions for Xh
0 (D), then, the collection{

Ψ`,σ̌2,α : Ψ`,σ̌2,α(x, y) = ψ`(x)H σ̌2,α(y), ` = 1, . . . , L; α ∈ J N,K
}

is a basis of XN,K,h
s . Denote by {A(`,α),(m,β)} the matrix associated to the bilinear

form a defined in (9.45). From (9.46) we have

A(`,α),(m,β) =

=

∫
D

bK(x)

∫
RK

κK(x, y)Ψ`,σ̌2,α(x, y)Ψm,σ̌2,β(x, y)e(s+ ε
2

)|DKy|2dµK(y)dx(9.47)

=

∫
D

bK(x)κ?
K,α,β(x)∇ψ`(x)∇ψk(x)dx, (9.48)

where we have defined

κ?
K,α,β(x) :=

∫
RK

κK(x, y)H σ̌2,α(y)H σ̌2,β(y)e(s+ ε
2

)|DKy|2dµK(y). (9.49)
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Now we compute the integral in (9.49). From the definition of the σ̌-Fourier-
Hermite polynomials we see that

κ?
K,α,β(x) =

K∏
j=1

∫
R
hσ̌2

j ,αj
(yj)hσ̌2

j ,βj
(yj)e

aj(x)yje(s+ ε
2

)λ−2θ
j y2

j dµ1

=
K∏
j=1

σ̌j

∫
R
hσ̌2

j ,αj
(yj)hσ̌2

j ,βj
(yj)e

aj(x)yj
e
− 1

2σ̌2
j

y2
j

√
2πσ̌j

dyj.

=
K∏
j=1

σ̌jκ
?(x;αj, βj), (9.50)

where

κ?(x;αj, βj) :=

∫
R
hσ̌2

j ,αj
(yj)hσ̌2

j ,βj
(yj)e

aj(x)yj
e
− 1

2σ̌2
j

y2
j

√
2πσ̌j

dyj.

From the generating function identity (9.20) one can easily deduce

hσ̌2
j ,αj

(t)hσ̌2
j ,βj

(t) =

min{αj ,βj}∑
m=0

m!

(
αj
m

)(
βj
m

)
σ̌2m
j hσ̌2

j ,αj+βj−2m(t)

and

eaj(x)t = e
1
2
σ̌2
j aj(x)2

∞∑
m=0

1

m!
aj(x)mhσ̌2

j ,m
(t).

Then, we have

κ?(x;αj, βj) = e
1
2
σ̌2
j aj(x)2

min{αj ,βj}∑
m=0

m!

(
αj
m

)(
βj
m

)
aj(x)αj+βj−2mσ̌

2(αj+βj−m)
j .

(9.51)
Summarizing, we have that A(`,α),(m,β) defined in (9.47) can be easily computed

using (9.48). We only need to compute bK defined in (9.44) and κ?K defined in
(9.49). The later computation is reduced to the finite product in (9.50) where
each factor is given by (9.51).

Denote by {g`,α} the load vector. Each entry is given by

g`,α =

∫
D×S′

f(x, ω)ψ`(x)

d(α)∏
j=1

hσ̌2
j ,αj

(〈ω, ηj〉)e(s+ ε
2

)‖PKω‖2−θdxdµ(ω).

The integral with respect the ω variable is exactly the computation of the α−th
coefficient of the expansion of f(x, ·) in terms of σ(s + ε

2
)-Fourier-Hermite poly-

nomials. In particular if f does not depend on ω we have that g`,α = 0 when
α 6= 0.

Remark 9.27 It is easy to see that the matrix {A(`,α),(m,β)} associated to the
bilinear form a is symmetric and positive definite. It is a block square matrix of
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dimension
(
K+N
K

)
where each block (α,β) is the usual finite element matrix of

the discretization of a elliptic equation with coefficient given by bK(x)κ?K(x;α,β)
where bK is defined in (9.44) and κ?K defined in (9.49) is computed using (9.50)
and (9.51). This corresponds to a discretization of a coupled system of elliptic
equations.

Remark 9.28 Recall that we have set σ̌j = σj(s + ε
2
). The coefficients computed

after solving the resulting linear system are the coefficients of the approximated
solution in terms of σ(s+ ε

2
)-Fourier-Hermite polynomials. We can change these

coefficients to the coefficients of the solution in terms of the σ(s)-Fourier-Hermite
polynomials using the following formula easily deduced from the generating func-
tion identity (9.20):

Ĥσ̌2,α(ω) =
∑
γ≤α/2

α!

γ!(α− 2γ)!

(
σ2 − σ̌2

2

)γ
Ĥσ2,α−2γ(ω)

where

Ĥσ2,α(ω) :=

d(α)∏
j=1

hσ2
j ,αj

(〈ω, ηj〉); ω ∈ S ′.

This is a postprocessing step. Note that this formula can also be used to deduce the
expansion of the right-hand side term f in σ(s+ ε

2
)-Fourier-Hermite polynomials

from the standard Wiener-Chaos expansion (i.e., in in terms of Fourier-Hermite
polynomials).

9.7 On the Choice of H, A and φx

Several choices for the Hilbert space H and the operator A are possible. We
mention three possible choices of (H,A, φx). We will first review some known
results:

9.7.1 Known Results

The Schwartz Space and the Operator − d2

dx2 + x2 + 1

Consider the densely defined differential operator

A1 = − d2

dx2
+ x2 + 1. (9.52)

We have an L2(R) orthonormal system of eigenfunctions of A1 which are the
Hermite functions

en(x) :=
1√√

π(n− 1)!
e−

1
2
x2

hn−1(
√

2x), n = 1, 2, . . . , (9.53)

where hn is the nth degree Hermite polynomial. We have A1en = (2n)en, n =
1, 2, . . . .
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The family of tensors products

en := e(n1,...,nd) := en1 ⊗ . . .⊗ end , n = (n1, . . . , nd) ∈ Nd

form an orthonormal basis for L2(Rd). Let n(j) = (n
(j)
1 , . . . , n

(j)
d ) be the j-th multi-

index in some fixed ordering of all d-dimensional multi-indices n = (n1, . . . , nd) ∈
Nd. We assume that this ordering has the property that

i < j =⇒
d∏

k=1

(2n
(i)
k ) ≤

d∏
k=1

(2n
(j)
k ). (9.54)

Now define
ηj := en(j) = e

n
(j)
1
⊗ . . .⊗ e

n
(j)
d
, j = 1, 2, . . . . (9.55)

We have A⊗d1 ηj = λjηj where

λj :=
d∏

k=1

(2n
(j)
k ), j = 1, 2, . . . . (9.56)

Note that n(1) = (1, . . . , 1) ∈ Rd, λ1 = 2d and that 1 < λ1 ≤ λ2 ≤ . . . .

For the next result, see [Holden et al.- 1996, Lemma 2.3.3].

Lemma 9.29 (Zhang) With d(α) defined in (9.19) we have that

∑
α∈J

d(α)∏
k=1

(2k)−qαk <∞

if and only if q > 1.

Corollary 9.30 For {λj}∞j=1 defined in (9.56) we have that
∑∞

j=1 λ
−q
j <∞ for all

q > 1.

Proof. For α ∈ J define NZ(α) = #{j : αj 6= 0}. Observe that

∞∑
j=1

λ−pj =
∑
n∈Nd

d∏
k=1

(2nk)
−q =

∑
NZ(α)≤d

d(α)∏
k=1

(2k)−qαk <
∑
α∈J

d(α)∏
k=1

(2k)−qαk <∞,

where d(α) is defined in (9.19) and d is the dimension of Rd.

The covariance integral operator on L2(D) and the Mercer’s theorem

Consider the covariance operator Q : L2(D) → L2(D) associated to W (x, ω),
i.e., the integral operator with kernel the symmetric positive function C(x, x̂) =
EµW (x, ·)W (x̂, ·). This is a compact operator in L2(D) when its kernel is square
integrable and symmetric. We denote by {µj}∞j=1 and {ζj}∞j=1 the eigenvalues and

eigenfunction of Q. We have
∑

j µ
2
j <∞.
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We recall that from Mercer’s theorem (see Riesz and Sz.-Nagy [1990]) we can
write

C(x, x̂) =
∞∑
j=1

µjζj(x)ζj(x̂). (9.57)

For results on the decay of the eigenvalues, see [Frauenfelder et al.- 2005, Propo-
sition 2.3, 2.5 and 2.6].

9.7.2 Three modeling choices

With the notation and review of Section 9.7.1 we now mention three modeling
choices. The use of one or another depends on the information and computations
available for the problem.

First choice

The first modeling choice we propose is:

1. The Hilbert space H = L2(Rd).

2. The operator A = A⊗d1 with the sequence {λj}∞j=1 in (9.56) and the eigenfunc-
tions {ηj}∞j=1 in (9.55).

3. For all x ∈ D we define φx(x̂) := φ(x̂− x), x̂ ∈ Rd, where φ ∈ L2(Rd).

From Corollary 9.30 we can take any θ > 1
2

(independent of the dimension d).
In order to verify the assumption of Theorem 9.6 it is enough to take φ ∈ Sθ.
The functions aj defined in (9.35) are aj(x) = (φ(· − x), ηj) and in general can be
computed using numerical integration. In explicit applications the test function or
window φ can be chosen such that the diameter of the support of φ is the maximal
distance within which Wφ(x1, ·) and Wφ(x2, ·) are correlated; see Holden et al.
[1996]. We also recall that the map x 7→ φx may be chosen to match covariance
function; see Roman and Sarkis [2006].

It is easy to see that in this case, S = S(Rd) is the Schwartz space of rapidly
decreasing functions and then S ′ = S ′(Rd) is the space of tempered distributions.
The triplet (S ′(Rd),B(S ′(Rd)), µ) is called 1-dimensional white noise probability
space. The smoothed white noise of Definition 9.3 is called the 1-dimensional
d-parameter smoothed white noise. In Section 9.8 we present a numerical experi-
ment using this setup for the case of d = 1.

Second choice

The second modeling choice we propose is:

1. The Hilbert space H = L2(Rd).

2. The operator A = A⊗d1 with the sequence {λj}∞j=1 in (9.56) and the eigenfunc-
tions {ηj}∞j=1 in (9.55).

3. For all x ∈ D, φx =
∑∞

j aj(x)ηj where aj(x) :=
√
µjζj(x), j = 1, . . . , where

{µj}∞j=1 and {ζj}∞j=1 are the eigenvalues and eigenfunctions of the operator Q
introduced in Section 9.7.1.
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From (9.57) we see that C(x, x̂) =
∑∞

j=1 aj(x)aj(x̂) = (φx, φx̂)H , x, x̂ ∈ D. Note
that

‖φx‖2
θ =

∞∑
j=1

λ2θ
j µjζj(x)2, for all x ∈ D.

The assumption φx ∈ Sθ for all x ∈ D must be checked in each case, and the
convergence of the series depends on the decay of the eigenvalues and the L∞(D)-
norm of the eigenfunction which in turns depend on the regularity of the function
C(x, x̂); see [Frauenfelder et al.- 2005, Proposition 2.3, 2.5 and 2.6]. For the
numerical computation of the eigenfunctions and eigenvalues of Q, ?] and also
Frauenfelder et al. [2005]. We also note that φx defined in 3. above can be used
with any choice of Hilbert space H and operator A. A possible choice is the one
describe next and which can be viewed as a generalization of the Karhúnen-Loève
expansion.

Third choice

The third modeling choice we propose is:

1. The Hilbert space H = L2(D).

2. A = Q−1 with λj := 1
µj

, j = 1, 2, . . . , and ηj := ζj, j = 1, 2, . . . , where the µj
and ζj are the eigenvalues and eigenfunctions of the integral operator Q.

3. For all x ∈ D, φx =
∑∞

j aj(x)ηj where aj(x) :=
√
µjζj(x), j = 1, . . . .

According to Section 9.7.1 we can take any θ ≥ 1. In this case the expan-
sion of W (x, ω) in terms of σ(s)-Fourier-Hermite polynomials coincides with its
Karhúnen-Loève expansion for the case s = 0. We mention that in order to
make calculations, such as writing the expansion of the right-hand side f(x, ω) in
terms of σ(s)-Fourier-Hermite polynomials, we need to know the eigenfunctions
of Q. The assumption φx ∈ Sθ for all x ∈ D must be checked for each particular
problem. Observe also that ‖φx‖2

θ =
∑∞

j=1
1

µ2θ−1
j

ζj(x)2 for all x ∈ D.

9.8 Numerical Experiments

In this section we present numerical experiments with D = [0, 1], H = L2(R), and
A = A1 defined in (9.52) with θ = 1. In this case the Lemma 9.2 becomes

∫
S′
es‖ω‖

2
−θdµ(ω) =



( √
2

π
√
−s sinh

(
π
√
−s√
2

))− 1
2
, s < 0

1, s = 0( √
2

π
√
s

sin
(
π
√
s√

2

))− 1
2
, 0 < s < 2

+∞, s ≥ 2,

therefore, we can construct the general σ(s)-Fourier-Hermite polynomials for s <
2; see Theorem 9.10. We consider the modeling choice described in Section 9.7.2,
i.e., φx(·) = φ(· − x). To avoid numerical integration errors in the computation of
the functions aj(x) in (9.35), we choose the function φ as

φ(x) = e−
1
2
x2

. (9.58)
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In order to compute the discretization errors, let û and f be given by

û(x, ω) =
x(1− x)

2
e−〈ω,φx〉 (9.59)

and

f(x, ω) = 1− 1− 2x

2
〈ω, φ′x〉+

x(1− x)

2
〈ω, φ′′x〉 (9.60)

= 1 +
∞∑
j=0

(
x(1− x)

2
a′j(x)

)′
〈ω, ηj〉. (9.61)

It is easy to see that û in (9.59) is the exact solution of the problem (9.5) or (9.15)
with right-hand side f given by (9.60).

It is easy to see by using the generating function identity (9.20) and direct
calculations that the following results hold:

Lemma 9.31 For φ, û and f defined in (9.58), (9.59) and (9.60), respectively,
we have

1. ‖φ‖2
L2(R) =

√
π and ‖φ′‖2

L2(R) =
√
π

2
.

2. aj(x) := (φx, ηj) =
√ √

π
2j−1(j−1)!

xj−1e−
1
4
x2

.

3. The process f belongs to U−1
s for all s < 2.

4. û(x, ω) =
∑

α∈J ûα(x)Hα(ω) ∈ Û1
s for all s ∈ R where

ûα(x) = e
1
2
‖φ‖2

L2(R)
x(1− x)aα(x)

2α!
with aα(x) =

d(α)∏
j=1

aj(x)αj .

5. |û|2U1
0

=

(
1
12

+
‖φ′‖2

L2(R)

120

)
e

2‖φ‖2
L2(R) .

Throughtout this section, we solve the discrete problem (9.33) with s = 0 to
obtain

ûN,K,h(x, ω) =
∑

α∈JN,K

ûN,K,hα (x)Hα(ω).

In Figure 9.1 we show the approximation ûN,K,hα (x) − ûα(x) corresponding to
α = (0, 0, . . .) for K = N = k with k = 0, 1, 2, 3, 4, h = 1

4
and ε = 0, 1

2
. For

these small values of k (and 1/h) we already observe that ε = 1
2

gives a slightly
better approximation than ε = 0. Here we can observe the fast convergence of
the computed coefficient to the exact one. A similar behavior is also observed for
α = (1, 0, . . .); see Figure 9.2.

In Tables 9.1 and 9.2 we show the seminorm error |û − ûN,K,h|U1
0

for ε = 1
2

and ε = 0, respectively, and take h = 1
32

. We recall that this seminorm involves

the computation of |ûα − ûN,K,hα |2H1(D) for all α ∈ J N,K , and the computation of

|ûα|2H1(D) for all α ∈ J \J N,K . In these tables we see clearly the decay of the

errors with respect to N and K.
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Figure 9.1: Approximation of the coefficient u(0,0,0,...) for K = N = k, h = 1
4 and ε = 1

2 (solid
line) and ε = 0 (dashed line).

Figure 9.2: Approximation of the coefficient u(1,0,0,...) for K = N = k, h = 1
4 and ε = 1

2 (solid
line) and ε = 0 (dashed line).

We now analyze further the previous decay. Define the energy norm

|û− ûN,K,h|a := a(û− ûN,K,h, û− ûN,K,h)
1
2 .

In Table 9.3 we present errors in the seminorm | · |U1
0

and in the energy norm | · |a.
Here h = 1

16
, 1

32
, ε = 1

2
and K = N = k for several values of k. The second row of

Table 9.3 shows the number of Wiener-Chaos terms. The third row shows the U1
0−

interpolation error and, in parenthesis, the rate of convergence when we truncate
the degree and the length of the polynomials. We can see a fast convergence rate
when we increase k. The fourth row shows the error between the discrete and the
exact solution in the U1

0 seminorm for h = 1/16 and h = 1/32; we also show, in
parenthesis, the rate of convergence for h = 1/16. The decay follows the same
behavior as in third row, however not so fast. This deterioration is not due to the
mesh size h; see the errors associated to h = 1/16 and h = 1/32. The deterioration
is due to the constant in the a priori error estimate in Theorem 9.24. The larger
this constant is, the higher value of k is necessary for observing the asymptotic
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decay behavior. In order to minimize the effect of this constant, we now measure
the error in the energy norm. In the fifth row we observe a faster decay in the
error measured in the energy norm. In Table 9.4 we have the same data as in the
Table 9.3 except that now we take ε = 0. This case shows clearly a slower decay in
energy norm for higher values of k than for the case ε = 1

2
. This is also observed

in a less extent in the | · |U1
0
-norm.

K ↓ N → 1 2 3 4 5 6 7
1 1.6153 1.4358 1.2512 1.1108 1.0293 0.9918 0.9777
2 1.5970 1.3575 1.0672 0.7948 0.5896 0.4670 0.4104
3 1.5942 1.3446 1.0340 0.7299 0.4814 0.3084 0.2081
4 1.5938 1.3429 1.0296 0.7214 0.4669 0.2849
5 1.5938 1.3426 1.0291 0.7206 0.4659

Table 9.1: Total error in the seminorm | · |U1
0
. Here h = 1/32, ε = 1

2 .

K ↓ N → 1 2 3 4 5 6 7
1 1.6067 1.4272 1.2466 1.1104 1.0307 0.9933 0.9786
2 1.5863 1.3439 1.0560 0.7890 0.5886 0.4683 0.4118
3 1.5832 1.3301 1.0213 0.7222 0.4786 0.3086 0.2093
4 1.5828 1.3282 1.0167 0.7133 0.4637 0.2848 *
5 1.5827 1.3280 1.0162 0.7125 0.4626 * *

Table 9.2: Total error in the seminorm | · |U1
0
. Here h = 1/32, ε = 0.

k 0 1 2 3 4 5 6(K+N
K

)
1 2 6 20 70 252 924

|û−QN,K û|U1
0

1.6284 1.3761 0.9767 0.6162 0.3570 0.1920 0.0964

(1.18) (1.41) (1.59) (1.73) (1.86) (1.99)

|û− ûN,K,h|U1
0

1.7292 1.6157 1.3590 1.0375 0.7281 0.4626

1.7291 1.6153 1.3575 1.0340 0.7214 0.4659
(1.07) (1.18) (1.31) (1.43) (1.55)

|û− ûN,K,h|a 0.4319 0.3691 0.2598 0.1573 0.0836 0.0454
0.4318 0.3688 0.2589 0.1552 0.0790 0.0279

(1.17) (1.42) (1.67) (1.96) (2.83)

Table 9.3: Errors for K = N = k, h = 1/16, 1/32 and ε = 1
2 . For h = 1/32 we have added in

parenthesis the reduction factor, when passing to next value of k, corresponding to the projection
and finite element error in the seminorm | · |U1

0
and the finite element error in the energy norm.

9.9 Conclusions and Final Comments

We consider the white noise theory in a general setup to construct and character-
ize adequate spaces to prove the existence and uniqueness of the solution of the
ordinary (rather than Wick) product stochastic pressure equation. We introduce
the weak form of the stochastic pressure equation with different spaces for the
solution and test functions and prove the continuous inf-sup condition.

We propose a generalization of the approximation proposed in Benth and Thet-
ing [2002] and Roman and Sarkis [2006]. By incorporating a weight to measure
the exponential decay of the solution and the test functions in the white noise
probability, we circumvent the ellipticity of the problem and establish the well-
poseness of the problem and provide a priory error estimates for a wide class of
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k 0 1 2 3 4 5

|û− ûN,K,h|U1
0

1.7292 1.6072 1.3454 1.0249 0.7202 0.4746

1.7291 1.6067 1.3439 1.0213 0.7133 0.4626
(1.08) (1.2) (1.33) (1.43) (1.54)

|û− ûN,K,h|a 0.4319 0.3661 0.2611 0.1659 0.0971 0.0533
0.4318 0.3658 0.2602 0.1639 0.0932 0.0454

(1.18) (1.41) (1.59) (1.76) (2.05)

Table 9.4: Errors for K = N = k, h = 1/16, 1/32 and ε = 0. For h = 1/32 we have added in
parenthesis the reduction factor, when passing to next value of k, corresponding to the projection
and finite element error in the seminorm | · |U1

0
and the finite element error in the energy norm.

norms. The chosen approximation leads to the solution of a positive symmetric
linear system. We choose a particular model to test numerically our results. The
regularity result of the pressure equation for the types of norms considered in this
paper is an object of study of a separated work; see Galvis and Sarkis [2008].
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