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Abstract

This work is devoted to the analysis of local convergence of some recently proposed
Newton—type methods for solving optimization problems. We also develop natural
extensions of those techniques to the setting of variational problems. We emphasize
that all results are new already in the optimization setting, while variational extensions
can be considered as additional contributions.

The first method considered is the stabilized Sequential Quadratic Programming
(sSQP) algorithm, proposed by S.J. Wright and further studied by W.W. Hager, by
A. Fischer, and by S.J. Wright. This method has been developed for preserving su-
perlinear/quadratic convergence in the case of nonunique Lagrange multipliers (i.e.,
degenerate constraints), which is a challenging problem in contemporary optimization.
Previously, convergence of sSQP was proven either under the Mangasarian—Fromovitz
constraint qualification and the second-order sufficient condition for optimality, or un-
der the strong second-order sufficient condition for optimality. We prove primal-dual
quadratic convergence assuming only the second-order sufficient condition for optimal-
ity, without any constraint qualification assumptions, thus improving significantly over
any of the previous results. In addition, we introduce a natural extension of sSQP tech-
niques to the variational setting. We show also that in the variational setting, under
a suitable second-order condition, the so-called natural residual provides a local error
bound for the solution set of the associated Karush-Kuhn-Tucker (KKT) system. This
is the first error bound for variational KKT systems that does not assume anything
about the constraints of the underlying variational problem.

The second method considered is the Sequential Quadratically Constrained Quadra-
tic Programming (SQCQP) algorithm, studied by M. Anitescu, and by M. Fukushima,
Z.-Q. Luo and P. Tseng. Previously, convergence of SQCQP was proven either under
the Mangasarian—Fromovitz constraint qualification and the quadratic growth condi-
tion, or under the convexity assumptions, the Slater constraint qualification and the
strong second-order sufficient condition for optimality. We prove a new primal-dual
quadratic convergence result assuming the linear independence constraint qualification,
strict complementarity, and the usual second-order sufficient condition for optimal-
ity. This result is complementary to the two previous ones, being neither weaker nor
stronger. In addition, we obtain superlinear convergence of the primal sequence under
a Dennis-Moré type condition, as well as extend the method to variational problems.

Key words. Stabilized sequential quadratic programming, sequential quadrat-
ically constrained quadratic programming, Karush-Kuhn-Tucker system, variational
inequalities, Newton methods, superlinear convergence, quadratic convergence, error
bound, Dennis-Moré condition.
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Introduction

The finite-dimensional variational inequality problem provides a broad unifying setting
for the study of optimization, equilibrium, and related problems, and serves as a useful
computational framework for solution of a host of applications in the mathematical
sciences.

The subject of variational inequalities has its origin in the calculus of variations
associated with the minimization of infinite-dimensional functionals. The systematic
study of the subject began in the early 1960s and it was used as an analytic tool for
studying free boundary problems defined by nonlinear partial differential operators
arising from unilateral problems in elasticity and plasticity theory and in mechanics.
In real-life applications of infinite-dimensional problems, the discretization strategy is
mainly determined by the solvers available for finite-dimensional problems. Hence,
any procedure should aim at incorporating existing software and avoid subproblems
for which no computational methods are available.

The development of the finite-dimensional variational inequalities also began in the
early 1960s but followed a different path. Unlike its infinite-dimensional counterpart,
which was conceived in the area of partial differential systems, the finite-dimensional
variational inequality was born in the domain of Mathematical Programming. In the
recent monograph, F. Facchinei and J.-S. Pang [10] present state-of-the-art in finite-
dimensional variational inequalities and complementarity problems. We shall use not
only some results from [10], but also its notation and terminology, for the most part.

This work is organized in three chapters, as follows. In the first chapter, we re-
call the fundamental Newton method for solving smooth nonlinear equations and the
Josephy-Newton method for solving generalized (set-valued) equations. In both cases,
we relate local behavior of the method with sensitivity analysis of the problem in ques-
tion, following the modern view of Variational Analysis [27, 37]. In order to introduce
computational methods for optimization and their properties, we present a brief re-
view of nonlinear programming theory and terminology, with emphasis on the use of
constraint qualifications and optimality conditions, including the second-order suffi-
cient conditions for optimality. We present the Sequential Quadratic Programming
(SQP) method as a particular case of Newton or Josephy-Newton method, depending
on whether inequality constraints are present or not in the problem. To deal with
nonlinear programs with nonunique Lagrange multipliers (degenerate constraints), we
present Wright’s stabilized SQP algorithm and give a summary of its local convergence



theory. In this introductory chapter, globalization of SQP is considered only as a
motivation to present a modification of SQP, called the Sequential Quadratically Con-
strained Quadratic Programming (SQCQP) method. We describe briefly some facts
about local and global convergence of SQCQP. To complete the background material,
we introduce the variational problem that will be the main focus of our further de-
velopment, with optimization being a special case. We also mention relations with
other well-known problems and extend some concepts from the optimization case to
the variational context.

In the second chapter, we introduce a stabilized Newton method for solving vari-
ational problems that generalizes sSQP for optimization. We prove that this method
has a local primal-dual quadratic convergence rate, assuming only that the starting
point is close to a primal-dual pair satisfying a suitable second-order condition (in the
case of optimization, this assumption coincides with the standard second-order suffi-
cient condition for optimality). We emphasize that no constraints qualifications are
assumed, which gives a significantly stronger result than any other one in the existing
literature.

The third chapter describes an extension of the Sequential Quadratically-Con-
strained Quadratic-Programming method for variational problems. We show that the
generated primal-dual sequence converges locally at a quadratic rate under the assump-
tions of the linear independence constraint qualification, strict complementarity and
a suitable second-order condition. In the case of optimization, this result gives a new
property, complementing what has been known before. Also, we provide a necessary
and sufficient condition for superlinear convergence of the primal sequence under a
Dennis-Moré type condition.



Basic notation and terminology

R™: the n-dimensional Euclidean space,
RY ={x € R"|2; >0 i=1,...,n}: the nonnegative orthant,
R+ = RL: nonnegative real numbers,
(-,-): the Euclidean inner product,
| - ||: the Euclidean norm,
B: the open unit ball (the underlying space is always clear from the context),
I: the identity matrix (the dimension is always clear from the context),
M T: the transpose of a matrix M € R™*",
M7z: submatrix of M € R™*" with rows indexed by the set Z C {1,...,m},
x7: subvector of z € R™ with coordinates indexed by Z C {1,...,n},
ut = {v € R'| (u,v) = 0}: orthogonal complement of u € R’
£(t) = o(t): any function £ : Ry — RY such that lim; .o t71|€(2)]| = 0,
é(t) = O(t): any function ¢ : Ry — R? such that limsup,_,t~|é(t)]| < oo,
t, — 07: when ¢, — 0 and {t;} C R, Vk,
U'(z, n): the full derivative of U : R™ x R™ — R? at the point (z, 1),
U’ (z, 1): the partial derivative of ¥ with respect to x at the point (z, 1),
dist(z, S) = infycg ||z — s||: the distance from z € R! to a nonempty set S C R/,
[Is(2): the Euclidean projection of z € R! on the set S C R,
K*={ueR'|(u,v) >0 VYve K}: (positive) dual of the cone K C R/,
gph= = {(z,y) € R" x R™ | y € Z(x)}: the graph of a multifunction = from R" to
subsets of R™,
= (y) = {zr € R"|y € Z(x)}: inverse graph of the multifunction Z,
Recall that a set K C R! is a cone if v € K implies that tv € K for all t € R.
A matrix M € R is said to be copositive on a cone K C R! if (Mwv,v) > 0 for all
v € K, and strictly copositive if this inequality is strict for all v € K \ {0}.



Chapter 1

Background Material

In this chapter, we collect some basic facts about Newton-type methods, first and sec-
ond order optimality conditions, constraint qualifications, and variational problems,
that will be used in the sequel. We also survey previous results on stabilized sequential
quadratic programming and sequential quadratically constrained quadratic program-
ming that motivate our contributions.

1.1 Newton Method

A very important tool to solve optimization and variational problems is the Newton
Method. The classical Newton algorithm for smooth equations serves as a prototype
of many procedures, as it reflects some fundamental principles that lead to fast local
convergence.

Consider first the problem

find z € R" s.t. G(z) =0, (1.1)

where the function G : R™ — R" is continuously differentiable. The main idea of the
Newton Method is to replace the function G by its linearization at the current iterate,
resulting in an approximate problem that can be solved more easily. Specifically, given
an iterate z*, we define the next Newton iterate zF*' as the solution of the linear
equation

find z € R" s.t. G(2") + G'(2")(z — 2*) = 0. (1.2)

To begin our discussion of local analysis of the method, we recall the result that
states the well-definedness of the Newton sequence {2*} and its convergence to a zero
z of G. Tt, also shows that the convergence rate is fast. To this end, let us formalize
this concept: let {2*} C R" be a sequence of vectors tending to the limit z # 2* for all
k. We will say that the convergence rate is (at least) linear if

: |25 — z|]
lim sup

oo [2F =2l
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superlinear if

i 1220,
k—oo ||2F — Z]| ’
and quadratic if
. [
limsup ———5 < 0

k—oo  ||12F — Z||?

In each case, we say that {z*} converges to z (at least) linearly, superlinearly and
quadratically, respectively.
We can now state the well known convergence result of the Newton Method.

Theorem 1.1.1 Let G : R™ — R"™ be continuously differentiable in a neighborhood of
z € R" satisfying G(zZ) = 0. Suppose that G'(Z) is nonsingular. Then there exists a
neighborhood V of z such that if 2° € V, the Newton sequence {z¥} is well-defined and
converges superlinearly to zZ. Furthermore, if G' is Lipschitz-continuous in a neighbor-
hood of zZ, then the convergence rate is quadratic.

We remark that the nonsingularity of G’(z) implies not only local uniqueness of the
solution z, but also that the solution of the equation in (1.1) remains locally unique
under small perturbations of G of the form G(z)+p, p € R™. To see this property, note
that by the Implicit Function Theorem there exist v > 0 and a function z : R* — R",
defined implicitly by 0 = G(z(p)) + p, that is well-defined and Lipschitz-continuous (in
particular, single-valued) for p € vB.

Also, the stability property of problem (1.1) can be seen as a certain regularity
condition of the solution set of the perturbed problem. To formulate this condition, we
say that a closed multifunction = from R"™ to the subsets of R™ has the Aubin property
at (p°, 2°) € gph = if there exist £y, Yo, £o > 0 such that

E(p2) N (zo +e9B) C E(pl) + éoHp2 — leB Vpt, p* € p° + 1o B. (1.3)

Some authors refer to this concept saying that = is pseudo-Lipschitz-continuous at the
point (p°, 20).
For our purposes, if we define the multifunction

X(p) ={2 € R" | 0=G(z) +p},

which is the solution set of the perturbation of problem (1.1), then the nonsingularity
of G'(z) implies that for all p € B the multifunction ¥(p) is single-valued and has the
Aubin property at (0, 2).

Another multifunction that plays an important role in convergence analysis of
Newton-type methods is

LY(p)={2€R"|0=G(2) + G'(2)(z — 2) + p},

5



which is the solution set of the perturbed linearization of the problem (1.1) at the point
z.

To arrive to concepts appropriate for convergence analysis of Newton-type methods
in the more general settings where nonsingularity of G’(z) is no longer a relevant
regularity condition, we point out that when G is continuously differentiable at z and
G(z) = 0, then the following statements are equivalent:

(i) G’(Z) is nonsingular;
(ii) X has the Aubin property at (0, 2);
(iii) LY has the Aubin property at (0, 2).

In the set-valued settings, where property (i) is no longer the appropriate condition,
properties (ii) or (iii) are still relevant and meaningful, and can be used to obtain
convergence of Newton-type methods. Furthermore, depending on the specific problem,
these properties can usually be translated into constructive conditions on the problem
data.

By the Implicit Function Theorem (i)=>(ii).

For completeness, we give the proof of (ii)=-(iii), adapting that of [27, Theorem
4.69] (we note that while the assertion is in principle not new, there seems to be no
proof in the literature which is as simple as the one we give below for our setting). By
(i), there exist €,v,¢ > 0 such that

Y(p)n(z+eB) CcE(p) +Lp—-pIB  Vp.peqB.

Take € small enough such that e/ < 1. Since G is continuously differentiable at z, we
have that exists dg > 0 such that

1G(2) —G(2) = G'(2) (= — 2)|| < ¢el|z — Z| Vz,2 € Z+0B.
Choose § < min{dp,e,v/e} and f < min{d(1 —el)/4¢,y — ed}. Fix p,p € B and let

z € LE(p) N (2+ $B). Note that z € £(q) N (2 + &B) for g =p — G(2) + G'(2)(z — 2)
and that

lall < llpll +1G(2) = G(2) = G'(2) (2 = 2)| < B +e6/2 <.
Similarly, we have that p — G(2) + G'(2)(2 — z) € vB for any 2 € z + §B. Let 2! = z,
then by the Aubin property of ¥ there exists 22 € X (p — G(2!) + G'(2) (2! — %)) such

that
2t = 2 < dl - [p - GE) + G 2] = o=l

By induction, suppose that there exist 22,..., 2" ! with
deN(p-GET+E () - 7))
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and 2" — 27| < Ll||p—p||(e€)"2 for i = 2,...,n—1. Then, by the choice of 3 we have

, i 5 A

28 =zl <|lz' =z|+D |l =27 < 5 + =Bl X_(ety ?
=2 =2

oyt |]|—A||<5+2w j

P=PI=57T777

2 1—¢f <0

<

Then, p—G(2")+G'(2)(2'—z) € yB fori = 2,...,n—1. Again, by the Aubin property
of ¥, there exists 2" € ¥ (p — G(z" ') + G'(2)(2"! — 2)) such that

2" =1 < AIGE?) — G - G - 2|
< tel}e" ! = 2| < tlp — 5l (20"

We thus get |[2" — 2"7!|| — 0. Hence, {2"} is a Cauchy sequence converging to some
2> € Z+ 0B. By the definition of X, we have that

0=G(z") - GRE"H+G (=) (""" —2)+p.
Taking limit as n — oo, we obtain 0 = G'(2)(z™ — 2) + p, i.e., 2 € LX(p). Since

14
1—¢/f

" = 2l < Yol =2 <l = Bl (0 < ;I =l
1=2

1=2

thus, taking limits, we have ||z — z*°|| < 1_£6£Hp -7
The proof of (iii)=-(ii) is a particular case of the proof of [9, Theorem 1], that we

include here for completeness. By (iii), there exist €,v,¢ > 0 such that
LE(p)n(z+eB) C LE(p) +lp—pIB  Vp.peB.

Let H(z) = G'(2)(z — 2z) and take § < min{e,v/||G'(2)||} (note that if G'(Z) = 0 then
L3 does not satisfy the Aubin property). We will show that H(z 4+ dB) is open, and
therefore, G'(z) nonsingular. Choose 2 € z + 0B and define p = —H(2). Consider a
sequence {p*} such that p* — p. Since

1l = IHE) < IG" )12 = 2l < SIG" (=) <,
then p*,p € vB for k large enough. Thus we have
LY(p) N (2 +eB) C LS(p") + ¢||p — p"|| B

By definition of p and the choice of §, we have that Z € LY (p) N (2 +eB). Hence, there
exists a sequence {2*} such that 2% € LY(p*) and ||2 — 2*|| < £||p — p*||. This implies
that 0 = G'(2)(2* — z) + p* and 2¥ — 2 € 7+ §B. Then, for sufficiently large k, we
have that —p* = H(2*) € H(z + B).



In the sequel, we shall need to solve a particular type of generalized equation. To
be more specific, we shall be interested in solving the problem

find z € R" s.t. 0 € G(2) + N¢(2), (1.4)

where GG : R™ — R" is continuously differentiable, C' C R" is a nonempty convex set,

and
Nc(z):{éUER"Hv,w—zKO,VweC} iz;g (1.5)

is the normal cone to C' at z € R™
When C' = R", Ng = {0} and we recover the nonlinear equation G(z) = 0. A
natural extension of the Newton method to the setting of (1.4) is the well-known
Josephy-Newton algorithm [21]: at the k-th iteration, define 2**! as solution of the
problem
find z € R" s.t. 0 € G(2") + G'(zF) (2 — 2F) + No(2). (1.6)

To begin the discussion of local behavior of the Josephy-Newton method, let us
define the multifunctions associated to solution sets of perturbations of (1.4) and of its
linearization:

Y(p)={z€R"|0e€ G(2)+Nc(z) + p}, (1.7)

and

LY(p)={z€R"|0€ G(2)+ G'(2)(z — 2) + No(2) + p}, (1.8)

where z € R" is a solution of (1.4). Note that z € ¥(0) and z € LX(0).

As can be seen, the nonsingularity of G’(Z) does not seem to be an appropriate
regularity condition in this case. However, when C' is polyhedral, the Aubin property
of ¥ or of LY at (0, 2) are still sufficient conditions to guarantee the well-definedness
and convergence of the sequence {z*} generated by (1.6).

In order to extend the classical result about Newton method of Theorem 1.1.1,
S.M. Robinson [34] shows that a type of Implicit Function Theorem for generalized
equations holds if (1.4) is strongly regular at z, i.e., LY is locally single-valued and
Lipschitz-continuous around the origin. By [9, Theorem 1], if C' is polyhedral, the
strong regularity of (1.4) at z is equivalent to the Aubin property of LY at (0, 2),
and, using that G is continuously differentiable at z, it can be proved (for example
[27, Theorem 4.69]) that LY has the Aubin property at (0, z) if and only if ¥ has the
Aubin property at (0, z).

Before stating the convergence result, we remark that a condition weaker than the
Aubin property of ¥ at (0, Z) can be used. Following the work of J.F. Bonnans [3], we
say that z € ¥(0) is semistable if there exist €1,7 > 0 such that

X(p)N(Z+e1B) C 2+ 7|p||B. (1.9)

Note that for v = &1 /7 we are involving only p € R™ such that ||p|| < 7, because if
|p|| > ~ the inclusion (1.9) holds trivially. As can be seen, the semistability of z € ¥(0)

8



is weaker than the Aubin property of ¥ at (0, z), but it is not sufficient to guarantee
the result by itself. Let us say that z € X(0) is hemistable if for all @ > 0 there exists
g9 > 0 such that if |2 — Z|| + ||M — G'(Z)|| < &2 then

{zeR"|0€G(2)+ M(z—2)+Nc(2)} N (z+ aB) # 0.
We can now state the following convergence result.

Theorem 1.1.2 [3, Theorem 2.2] If Z is a semistable and hemistable solution of (1.4),
then there exists € > 0 such that if ||2° — z|| < e, we have the following:

1. At each step k there exists a solution z*** of (1.6) satisfying ||2**! — 2F|| < 2e.

2. The sequence {z*} defined in this way converges superlinearly (quadratically if G
is locally Lipschitz) to z.

Also, in the same work, J.F. Bonnans shows that strong regularity at z implies
both, semistability and hemistability at z (see [3, Remark 2.4 (ii)]). In the case of opti-
mization problems, the conditions of strong regularity, semistability and hemistability,
have a natural interpretation in terms of constraint qualifications and second-order
conditions. This point will be clear in the sequel.

1.2 Constraint Qualifications and Optimality Con-
ditions

One of the problems that we are interested to solve is the classical nonlinear program-
ming problem

min f(z)
s.t. h(z) =0, (1.10)
g(x) <0,

where f : R" — R, h: R® — Rl and g : R® — R™ are twice continuously differentiable
functions.

A very important tool in the study of optimization problems are the first-order
necessary optimality conditions. These conditions can be seen as geometrical conditions
in a neighborhood of a local minimizer. To this end, let us define the tangent cone of
a closed set D at a point x € D as

Tn(z) = {d € R"

3 sequences d* — d and t;, — 07 }

with = + t,d* € D for all k € N (1.11)

This cone, also called Bouligand cone or contingent cone, captures the asymptotic
geometry of D around z. Now, we can state the conditions mentioned before.

9



Theorem 1.2.1 Ifx € D is a local minimizer of f on D, then
(f'(z),d) >0 Vd € Tp(x).

In general, a vector ¥ € D satisfying this inequality is called a stationary point of the
problem of minimizing f over the set D.
When D is represented by finitely many differentiable inequalities and equalities:
D={zeR"|h(z)=0,g(z) <0}, (1.12)
there are several conditions on the constraint functions h and ¢ under which 7p(z)
becomes a polyhedral cone. These conditions on the constraints are known as constraint
qualification (CQ). One of the more general of these CQs is Abadie’s CQ, also known

as quasireqularity, which simply postulates that 7p(x) is equal to the linearization cone
of D at x defined as:

B n| (Rj(x),d) =0 j=1,...,1
Folo) = {d R Gy <o Viezw)
where Z(z) is the active index set at z, i.e.,
I(x)={ie{l,...,m}|gi(xz) =0}. (1.13)

The linearization cone Lp(x) is also known as the cone of first-order feasible variations
at . Of course, Abadie’s CQ is not a constructive condition (it is not a condition
on the problem data h and ¢ only). This is the reason why other more constructive
CQs (see below) are more important, both in theory of optimality conditions and for
convergence analysis of computational methods.

One of the advantages of the polyhedrality of £p(x) is that, by Farkas’ Lemma, we
obtain that

(f'(x),dy >0  Vde Lp(x),

if and only if, there exist multipliers (or dual variables) A € R’ and u; > 0,4 € Z(x),
such that

0= f’(x)+ZAjh;(x)+ > wigi(x).

1€Z(x)

To write this condition in the standard format, let us introduce the Lagrangian
function associated to problem (1.10), L : R® x R! x R™ — R such that

L(x, A p) = f(x) + (A h(2)) + (1, 9(2))- (1.14)

Hence, we have that
Li(x, A p) = f'(2) + W' () "A+ g'(2) "o

10



We can now write the previous equivalence in this format:
reD, (f'(x),dy>0  Vde Lp(x) (1.15)

if and only if 3(\, ) € R x R™ such that
= h(x) (1.16)

where the notation | means “perpendicular” (i.e., (i, g(z)) = 0).

The system (1.16) is known as the Karush-Kuhn-Tucker (KKT) system of the non-
linear program (1.10). We call a triple (z, A, i) satisfying the KKT system a KKT
triple of (1.10), and = a KKT point for (1.10). For any point = € R", the set

M(z) = {(\pu) € REx R™| (@, \, ) is a KKT triple }, (1.17)

is called the Lagrange multipliers set associated to x.
Clearly, the last requirement in the KKT system, ie., 0 < p L g(x) < 0, is
equivalent to the condition

0<pi gi(r)<0, pgi(x)=0, i=1,...,m.
This condition is called complementarity condition. If, in addition, we have that
w; >0, VieI(x), (1.18)

then we say that strict complementarity (SC) condition holds.
Using the multipliers associated to inequality constraints, we shall introduce the
following index sets at (z, u):

Li(w,p) ={i € L(x) | i > 0}, Zo(w,p) = L(x) \ Ly (x, ), (1.19)

known as the sets of strongly and weakly active constraints, respectively. Easily, it can
be seen that the strict complementarity condition is equivalent to Zo(z, u) = 0.

By definition of the tangent cone, it is not hard to prove that 7p(z) C Lp(x) for
any « € D. Thus, to show that Z is a quasiregular point, i.e., 7p(Z) = Lp(Z), we only
need conditions for the constraint functions h and g at z under which Lp(z) C 7p(Z).
Those conditions are called constraint qualification conditions; the most widely used
are the following:

(ACQ) Affine CQ:

hj jzl,...,landgi \V/ZGZ((Z’)

are affine in a neighborhood of z. (1.20)

11



(LICQ) Linear Independence CQ:

hy(z),j=1,...,1 and g(%), i€ I(T),

are linearly independent. (1.21)
(SCQ) Slater’s CQ:
h is affine, g; is convex for all i € Z(z) and
34 € R st. h(#) = 0 and gi(3) <0 Vi I(z). (1.22)
(MFCQ) Mangasarian-Fromovitz CQ:
h.(z), j =1,...,1, are linearly independent and (1.23)

JdeR"s.t. W(£)d =0 and (¢/(z),d) <0 VieI(z).

Any of these conditions (1.20)—(1.23) is sufficient to guarantee that Lp(Z) C 7p(),
and hence 7p(z) = Lp(z) follows.

Now, we can formalize those properties with the Karush-Kuhn-Tucker Theorem.

Theorem 1.2.2 Let f, h and g be differentiable at a local minimizer T of problem
(1.10), with the derivative of h being continuous at T. If T satisfies any of the conditions
(1.20)—(1.23) then there exist vectors A € R! and i € R™ such that

0= L(Z,\ i)
0= h(z) (1.24)
0<pilg(x<o.

It can be proved that under the LICQ (1.21) at z, the Lagrange multiplier set M ()
is a singleton. With more effort, it can be proven that under the MFCQ (1.23) at = we
can guarantee that the Lagrange multipliers set M(Z) is compact. There is another
CQ, stronger that MFCQ but weaker than LICQ, under which M(Z) is a singleton;
we state this constraint qualification at a pair (z, f):

(SMFCQ) Strict Mangasarian-Fromovitz CQ:

W) j =Ll and  gl(®), i € I,(,0)
are linearly independent and 3d € R"™ s.t. h/(Z)d = 0, (1.25)

A, A,

(gi(z),d) =0 VieZ, (Z,n) and (g.(z),d) <0 Vi€ ZLy(z,pn).
This condition depends, a priori, on a choice of a multiplier &, but this detail turns
out to be not important, because it can be shown that M(z) = {(\, z)} if and only if
the SMFCQ (1.25) holds at (z, f1).
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1.2.1 Second-Order Sufficient Conditions

Second-order sufficient conditions are also important properties for the study of local
convergence of iterative methods to solve problem (1.10).

Following the approach appearing in [36], the main idea is to find a condition to
impose on a KKT triple (Z, A, fi) of the problem (1.10) to ensure that Z will be a strict
local minimizer of (1.10). To this end, let us write the KKT system (1.24) in the
following form:

L(3, 3, B) 0
0e —h(z) + 0 : (1.26)
—g(7) N (1)
where ‘ | o0 \
_ veR™|v<0,{v,u) =0} if p >0,
NBT(M) N { (), otherwise,

is the normal cone to the nonnegative orthant R7" at ;€ R™. Using (1.5), it can be

easily seen that
0

0
M R7 (1)
As it was shown in Section 1.1, important aspects of the behavior of a generalized

equation are captured in its linearization around a given point. To make use of this
linearization, let us define

NRanlxRT(% )\aﬂ) =

Gz, A\, 1) = —h(z)

—g(x)

L (2, A ) ]

Then, the linearized form of (1.26) at (7, A, ii) will be

rT—x
0 € G(J_zaj‘al_L) + Gl('fa 5‘7/1) |: A= 5\ +NIR”><IRZ><IRT($7>\7/*L)7 (127>
W fi

which is a generalized equation with unknowns (z, A, ) € R™ x R! x R™. Since

Ly (. A p) W ()" g'(x)
G'(x,\, 1) = —h(x) 0 0 :
—g'(x) 0 0

rewriting (1.27) we obtain

{ F1(@) + L@, A, i) (x — 2) + B(2) " A+ ¢'(2) " 0 ]
0€ —h(z) — N (z)(x — T) + 0 . (1.28)
—9(%) = ¢'(¥)(z — 7) Nrp (1)




A brief examination of this last generalized equation is sufficient to note that this is
the KKT system associated to the problem

min - (f(z),z — %) + 5(L, (x A )z —7),2—7)
h(z)+ b (Z)(x — &) = (1.29)

9(z) +g'(@)(x = 7) <

Since we are looking for a condition to ensure that z will be a strict local minimizer
of (1.10), a simple approach to take is to impose some such conditions on (1.29). Thus,
let us consider vectors of the form =z = z + v and find a condition under which v = 0
is the unique solution for u in a neighborhood of zero. For i ¢ Z(Z), we have that
9:(Z) + (gi(%),u) < 0 for all u small enough. Hence, for u sufficiently small (and taking
into account that h(z) = 0 and g¢;(z) = 0,7 € Z(Z)), the feasible set of (1.29) will be
given by vectors u such that h'(Z)u = 0 and (g}(Z),u) <0, ¢ € Z(z). Then u € Lp(Z).
Since (z, A, ji) is a KKT triple, by (1.15) we have that {f'(z),u) > 0.

If (f'(z),u) > 0, in the objective function

the first-order term will be dominant for v small enough, implying that for u # 0 the
objective will be strictly greater than at u = 0. If (f'(Z),u) = 0, then the only way
to obtain strict increase in the objective function is to resort to the second-order term
and to require that (L” (Z, A, ji)u,u) > 0.
We can now use these observations to formulate an appropriate set of conditions.
Suppose that (A, ji) € M(Z). We say that the second-order sufficient condition
(SOSC) holds at (z, A, i) if

(LT (z, A\, p)u,u)y >0  YueCl(z;D,f)\{0}, (1.30)
where
C(z; D, f) = Lp(z)N f'(z)*. (1.31)

The set (1.31) is called the critical cone at  for the problem (1.10). If z is a KKT
point, then for any (A, u) € M(Z) the critical cone can also be written as

h'(Z)u =0,
C(Q_:;D’ fl) = u€R" <g;(j)’u> =0 Vie I+(ZZ‘,,U), . (132)
(g)(T),u) <0 Vi€ Ty(T, p)

There is also another, and stronger, form of (1.30) that is often used in the literature
to obtain good behavior (in some sense) of the KKT triple (z, A, iz). This strengthened
form is called strong second-order sufficient condition (SSOSC), and it states that

(LY (2, N\, @)u,u) >0  YVuelt(z,u)\{0}, (1.33)
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where

CH@. 1) = {u € R | W(@hu =0, (g/(x),u) =0 VieT,(zp)}.
Clearly, (1.33) is stronger than (1.30), because

C(z; D, f') cCH(z, ).

It is also important to note that the cone C*(Z, 1) in SSOSC is a subspace, while
the cone C(z; D, f') in SOSC is not, in general. The subspace structure simplifies
many issues. For this reason, proving convergence of an algorithm assuming SOSC is
almost always significantly more challenging than when SSOSC is assumed (when the
two conditions are not the same, of course. Note that they are the same, for example,
when there are no inequality constraints or when strict complementarity holds).

1.3 Sequential Quadratic Programming

The Sequential quadratic programming (SQP) algorithm is one of the most efficient
general-purpose methods for solving nonlinear optimization problems.

To relate this method with the general Newton schemes discussed above, we shall
begin with the equality constrained nonlinear program

min f(z)

s.t. h(z)=0. (1.34)

To solve this problem we shall generate a primal-dual sequence such that at the
k-th iteration we define (z**1 A1) where A\¥*1 is a multiplier associated to a local
minimum (or a stationary point) z**! of

i ((a), g = 5) + LGS ) — o),y — o) (1.35)
St h(:L‘k) + h’(:vk)(y _ xk) = 0. .

Note that the ACQ (1.20) guarantees the existence of a multiplier.
If z is a local minimizer of (1.34) with an associated multiplier A, then

0=G(z, )\,
where
G, ) = [ %29”(;3) ] .
Since the KKT system associated to (1.35) is

0= f'(&") + Ly (2%, AF) (24! — k) 4 I (2F) TARH,
0= h(mk) + h’(:L‘k)(:L‘kJrl _ :L‘k),
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taking w = (x, A), this system can be seen to be equivalent to
0= Gw") + G (w") (W — w*).

Hence, the sequence generated by solving subproblems (1.35) is the same as the one
generated by Newton method (1.2) applied to find a zero of G.

In order to use the convergence result of Theorem 1.1.1, we need the nonsingularity
of G'(w). By simple calculations it can be seen that a sufficient condition for this
nonsingularity property hold is that both LICQ (1.21) and SOSC (1.30) hold at (7, \).
To summarize, let us state the local convergence result.

Theorem 1.3.1 Let f and h be twice continuously differentiable in a neighborhood of
a solution T of (1.34). Suppose that LICQ (1.21) holds at T and that for the unique
associated multiplier A SOSC (1.30) holds at (z,)\). Then, there exists a neighborhood
V of (z,)\) such that if (x°,\°) € V then the sequence {(z*, \¥)} generated by (1.35)
is well-defined and converges superlinearly to (Z,)\). Furthermore, if f” and h" are
Lipschitz-continuous in a neighborhood of T then the convergence rate is quadratic.

For future reference, note that under the assumptions of Theorem 1.3.1, the primal-
dual solution is locally unique.
When the problem to solve is (1.10), i.e.,

min f(z)
s.t. h(z) =0,
g(z) <0,

the SQP method generates a sequence {(z% \F p*)} such that for each k,
(2R AFFL R is the nearest vector to (2%, \F, u*) where (AF+1) /#+1) are multipliers
associated to a local minimum (or stationary point) z**1 of
min - (f'(a"),y — @) + F(LL 8 N (y — o),y — 2F)
y n
st h(zb) + 1 (2F)(y — %) = 0, (1.36)
9(@*) + g'(a*)(y — 2*) < 0.

Note that, in contrast with the equality constrained problem, here subproblems may
have multiple local solutions under natural assumptions, even in a neighborhood of
(Z, )\, i) (see [4, Example 13.1]). This is the reason for the “localization” requirement
that (281 NeHL 4EF1) s nearest to (2%, A\, u¥) among possibly multiple solutions. In
practice, this requirement is simply ignored, of course. But as a matter of convergence
analysis, such a requirement is absolutely necessary in order to eliminate possible sta-
tionary points that are far from the region of the analysis.

Let us consider #, a local minimum of (1.10), with associated multipliers (\, ji).
Thus, as was noted in (1.26), for (z, A\, u) = (Z, A, i) we have

0€ Gz, A\ ) +NR"XRZXRT(I’ A, 1), (1.37)
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where

G, A p)=| —h(z)

—g(z)

The KKT system associated to the subproblem (1.36) is
0= Fia¥) + L (" X p) (@ — a) £ ()TN ()T,
0 = h(x®) + (%) (a1 — 2F),
0 <t Lg(ah) + ¢/ (@h) (a1 —2¥) < 0.

L (z, A, 1) ]

Thus, taking w = (x, A, ), this system is equivalent to
0 € G(w") + G (W*) (W — wk) + Npn gt smy (). (1.38)

Hence, the sequence generated by solving subproblems (1.36) is the same as the one
generated by the Josephy-Newton method (1.6) with C' = R" x R' x R7" and G defined
above.

In [34, Section 4], S.M. Robinson shows that under the LICQ (1.21) at z, if the
unique (), i) € M () satisfies SOSC (1.30) and SC (1.18), then the generalized equa-
tion (1.37) is strongly regular at (z, A, fi). He also proved that the strong regularity of
(1.37) at (z,\, i) is guaranteed under LICQ (1.21) together with the SSOSC (1.33).
Hence, we can obtain the classical convergence result of SQP method from Theorem
1.1.2.

Theorem 1.3.2 Let f, h and g be twice continuously differentiable in a neighborhood
of a solution T of (1.10). Suppose that LICQ (1.21) holds at T and that for the unique
associated multiplier (X, i), SSOSC (1.33), or SOSC (1.30) and SC (1.18) hold. Then
there exists a neighborhood V of (Z, A, i) such that if (z°,\°, u®) € V, then the se-
quence {(x®, Nk 1i¥)}, generated by (1.36), is well-defined and converges superlinearly
to (z,\, fi). Furthermore, if f", W' and g" are Lipschitz-continuous in a neighborhood
of T then the convergence rate is quadratic.

As LICQ (1.21) implies SMFCQ (1.25) and SSOSC (1.33) implies SOSC (1.30),
we can conclude this section with the more general convergence result, due to J.F.
Bonnans. Note that this result also follows from convergence properties of the Josephy-
Newton method, because SMFC(Q and SOSC imply semistability and hemistability of
the associated generalized equation [3].

Theorem 1.3.3 [3, Theorem 6.1] Let f, h and g be twice continuously differentiable
in a neighborhood of a solution T of (1.10). Suppose that SMFCQ (1.25) holds at
T and that for the unique associated multiplier (X, 1) the SOSC (1.30) holds. Then
there exists a neighborhood V of (Z,\, 1) such that if (2°,\°, u®) € V then the se-
quence {(x®, Nk 1i*)}, generated by (1.36), is well-defined and converges superlinearly
to (z,\, fi). Furthermore, if f", W' and g" are Lipschitz-continuous in a neighborhood
of T then the convergence rate is quadratic.
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It is important to stress that Theorem 1.3.3 is the sharpest known result on local
convergence of SQP, and that it subsumes that the primal-dual solution is isolated (in
particular, uniqueness of the multiplier).

1.4 Stabilized Sequential Quadratic Programming

As has been discussed in the previous section, superlinear convergence of the SQP
method can be guaranteed only when at a local solution z of (1.10) the Lagrange
multipliers set M(Z) is a singleton. Dealing with situations where the latter is not
the case, is considered one of the challenges in contemporary optimization. S.J Wright
[41] proposed stabilized Sequential Quadratic Programming (sSQP) algorithm to tackle
problems with nonunique multipliers.

In order to simplify the notation, from now on we shall deal with the inequality
constrained problem, which is also consistent with the literature on the subject. We
also note that since our eventual convergence result does not assume anything about the
constraints (in particular, no CQs), considering inequality constraints only certainly
does not lead to any loss of generality (we could just write equalities as inequalities
with opposite signs, as violation of LICQ by such a formulation is of no concern for
us).

Let the problem be

min f(x)
s.t. g(x) <0. (1.39)

As discussed above, the classical SQP method generates a sequence {(z*, %)} such
that for each k, (x**1, y**1) is the nearest vector to (2%, u*) where p*+1 is a multiplier
associated to a local minimum (or stationary point) z*! of

min {7,y — o) + HELGR ) - 1),y — o) (1.40)
st g(@*) + ¢/ (a")(y — 2*) <0.

To understand the stabilization procedure, note that we can derive the subproblem
(1.40) from the following min-max problem:

min max (/@) y = a*) + H{LL G i) = o),y - o)
() + ¢ )y - 2).

The idea is to control the behavior of the dual sequence {1*} adding a proximal penalty
B A1) will be a local minimax for the problem

term. Hence, (z"t, p
: k ky 1 ko k k k
min max (@), y = 2f) + 5 (L@ 1)y — 2%,y = %)
O'Ik k
v, g(ab) + g (%) (y — a¥)) — ZEH2 |l — |2,
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where the dual stabilization parameter o(z*, u*) > 0 is some computable quantity
measuring the violation of optimality conditions for (1.39) at (2%, u*). After some
calculations, it can be seen that this minimax problem is equivalent to solving the
following quadratic programming subproblem:

. N S LU (2% %Y (g — 2F) 1y — ¥ o (z*,uk) 2
wolin @)y = o) 4 gL i)y = 2h),y = ) + 2]

s.t. g(z®) + ¢ (%) (y — 2%) — o (a®, u¥) (v — p*) < 0. (1.41)

One advantage of sSQP is easy to see from the mere formulation of the subproblem:
unlike in SQP, subproblem (1.41) is always feasible (just take y = z* and v large
enough). In the case of SQP subproblems, a constraint qualification is needed (at
least, MFCQ) to guarantee feasibility.

Concerning local behavior of this method, in [41] superlinear convergence of sSQP
has been established under the MFCQ (1.23), SOSC (1.30) for all & € M(Z), and the
assumption that the initial dual iterate u° is close enough to a multiplier ji satisfying
the strict complementarity condition (1.18). In [42], superlinear convergence of sSQP
has been shown without strict complementarity, under MFCQ (1.23) and the SSOSC
(1.33). In [43], the assumption of strict complementarity has also been removed from
the results of [41], thus showing superlinear convergence under MFCQ (1.23) and SOSC
(1.30) for all @ € M(z). If MFCQ is not assumed, then superlinear convergence can
be shown under the assumption of SSOSC (1.33) for some i € M(z), provided that
u° is close enough to such fi [15]; see also [13].

For completeness, we proceed to formally state the result where no constraint qual-
ification is assumed.

Theorem 1.4.1 [15, Theorem 1] Let f and g be twice Lipschitz-continuously differ-
entiable functions in a neighborhood of a local minimizer T of (1.39), and suppose that
there exists i € M(Z) such that (Z, 1) satisfies the SSOSC (1.33).

Then for any choice of the constant py sufficiently large, there exist constants py,d
and (3 with the property that pd < py and for each starting guess (z°, u°) € (Z, i)+ 9B,
there are iterates (z*, u*) contained in (T, i)+ B, where (z*, u*) is the unique solution
of (1.41) and oy, = o(x*, u*) is any scalar that satisfies the condition

pollz* — z|| < op < p1.
Moreover, the following estimate holds:

L e e R (el VA Tl R T Tl )

1

where ("1 and i* are the closest elements of M(Z) to u**' and u*, respectively.

In Chapter 2, we prove a new superlinear convergence result stronger than Theorem
1.4.1 (or any of the other results cited above), assuming only SOSC (1.30) and not
assuming any constraint qualification. As an additional bonus, our result is obtained
in the setting of variational problems, for which we introduce a natural extension of

sSQP.
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1.5 Globalization of the Sequential Quadratic
Programming method

There are at least three classes of techniques to globalize a local algorithm: line-
search, trust-region and filter. Here, we consider only the line-search approach, mostly
to motivate SQCQP, a modification of SQP that avoids the so-called Maratos effect.
To this end, let us define the penalty function for (1.10)

Ts(x) = f(x) + Bp(x), (1.42)

where 5 > 0 and p : R" — R, is zero on the feasible set of (1.10) and positive outside
of it. Examples of this kind of penalty functions are the ¢; and /., penalty functions,

ie.,
m

plr) = Z [hj ()] + > max{0, gi(x)}

i=1

and
p(z) = max{|hi(z)|,..., [l(2)], 91(2), ..., gm(2)},

respectively. 3
At the k-th iteration, the globalized SQP will find the KKT triple (Z¥+%, \FF1 gk+1)
of subproblem (1.36) as before, and shall define

(xlﬁq7 /\kz+1,Mk+1) _ (:Ek + tk(i,k:-&-l . xk)) /N\k-i-l’/lk—f—l) :

where t; € (0, 1] is obtained by a line-search procedure in the primal space that guar-
antees a sufficient decrease of the function

t— Tp, (25 + (3 — b)) — Vg, (a%).

For a line-search procedure and update of the penalty parameter [, see, e.g., [4, 15.1].

As can be seen, when t;, # 1, the generated sequence differs from that in Section 1.3.
Hence, we can only guarantee superlinear convergence of the sequence if ¢, = 1 for all k
sufficiently large. Unfortunately, there are problems satisfying all natural assumptions
(see [29, Example 18.1]), where t; = 1 is rejected by any penalty function of the form
(1.42), even though this step would have made good progress toward a solution. This
undesirable phenomenon is called the Maratos effect [25].

One of the techniques for avoiding the Maratos effect is using a second-order cor-
rection, that we proceed to describe. In the literature, it seems to be always introduced
for the equality constrained case. We shall merely follow the tradition.

The following argument is informal. It serves as an intuition for introducing cor-
rective second order terms to avoid the Maratos effect. Consider y € R™ such that

Ozhj(xk)+(h;(xk),y—xk>+;(h;’(xk)(y—xk),y—xk> jg=1,...,0. (1.43)
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Neglecting third-order terms we can suppose that for j = 1,...,1 we have
- - 1 - -
hj<xk+1) — hj<l'k) + <h;(xk)7xk+1 _ Qik> 4 §<h;/(xk)(xk+1 _ :Ck),l'kJrl _ Ik>

k+1

Also, for y near """ we can suppose that

(R () (y — %),y — 2%) = () (@ = a9), 75— ).

Then, using these relations we conclude that

— (B (), 25— ab) 4+ (R (2%). y — o)
+ (h’.(xk),y—:ikﬂ).

Hence, the second order correction will consist in defining y* as the vector y € R"
nearest to ¥*! that satisfies

0= h(ijrl) + h’(xk)(y . i‘k+1),
and finding ¢, € (0, 1] that guarantees a sufficient decrease of the function
t— Tp, (xk +t(F — ) + 2 (yF - ik“)) — T, (aF).
Obviously, after this change, we have to set x*™! = a¥ 4 5 (T8 — 2%) + 3 (y* — T+ L),
Under some hypothesis, it can be proven that, with this correction, the value t, = 1
will be accepted for all & sufficiently large (see [4, Proposition 15.7]). Note that when
tr = 1, we obtain that z**! = ¢* and it is a vector satisfying (1.43), a quadratic

approximation of the original constraints. This gives an idea of a modification of the
SQP method that will be considered in the next section.

1.6 Sequential Quadratically Constrained
Quadratic Programming

The Sequential Quadratically Constrained Quadratic Programming (SQCQP) method
solves at each iteration a subproblem that involves quadratic constraints and a qua-
dratic objective function. For simplicity, we shall deal with the inequality constrained
problem (1.39). To solve

min f(x)
s.t. g(x) <0,
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the SQCQP method generates a primal-dual sequence {(2*, u*)} such that for each k,

pFttis a multiplier associated to #5*1, the nearest to z* local minimum (or stationary
point) of
. 1
min - (f(@"),y —a") + (@) (g — ),y —a¥) (1.44)

1
st (@) +{g(@h)y — ")+ Sl @)y — ),y =2 <0 i =1, m.

As some previous work on SQCQP and related methods, we mention [31, 32, 40,
22,1, 14, 38]. In the convex case, subproblem (1.44) can be cast as a second-order cone
program [24, 28], which can be solved efficiently by interior-point algorithms (such as
26, 39]). In [1], nonconvex subproblems (1.44) were also handled quite efficiently by
using other nonlinear programming techniques. Even though quadratically constrained
subproblems are computationally more difficult than linearly constrained ones (as in the
more traditional SQP methods), they are manageable by modern computational tools
and the extra effort in solving them can be worth it. L.e., at least in some situations,
one may expect that fewer subproblems will need to be solved, when compared to
SQP. Some numerical validation of this observations can be found in computational
experiments of [1].

In order to guarantee global convergence, SQCQP methods require some modifica-
tions to subproblem (1.44), as well as a linesearch procedure for an adequately chosen
penalty function. (See, for example, [14, 38]). But under certain assumptions, locally,
all those modifications reduce precisely to (1.44). Moreover, the unit stepsize satisfies
the linesearch criteria under very mild conditions [38, Proposition 8| (in particular, no
second-order sufficiency is needed), which is one of the attractive features of SQCQP.
Thus, what is relevant for local convergence analysis is precisely the method given by
(1.44). Note that, as a consequence of acceptance of the unit stepsize, the Maratos
effect [25, 33] does not occur in SQCQP.

As for the local convergence results, in [1] local primal superlinear rate of conver-
gence of a trust-region SQCQP method is obtained under the MFCQ (1.23) and a
certain quadratic growth condition. We note that, under MFCQ, quadratic growth
is equivalent to the SOSC (1.30), see [5, Theorem 3.70]. Quadratic convergence of
the primal-dual sequence is obtained in [14]. The assumptions in [14] are as follows:
convexity of f and of g, the Slater condition (1.22) (equivalent to MFCQ in the convex
case) and a condition stronger than the SSOSC (1.33) (implying quadratic growth).
This set of assumptions is stronger than those in [1], but the assertions in the two
papers are different and not comparable, because neither of the two results implies the
other one.

We remark, for future reference, that quadratic convergence of {(x*, u*)} to (z, ji)
does not imply even superlinear or linear convergence of {z*} to Z. For example (see [4,
Exercise 12.8]), let u! € (0,1) and consider the sequence {(z*, 1i*)}1>1 C R? generated
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by

k
k+1 _ (k2 k1) T if k is odd,
wo =) and e { pFthH2 if K is even.
Hence, if k is odd we obtain that (z**+!, u**1) (ggk, ) ((Mk){ (Mk)2> and
(", p*) = ((,uk)Q,u ) If k is even we have zF71 = (u*=1)2 = p* then (2%, uFtl) =

((ur1)2, k1) = ((h), (uh)?) and (2%, i) = (2570, 1) = (b, b)),
Thus (2%, %) — (0,0) and
k‘+1|

o

lim sup Gl =2 lim sup
koo (%, 1®)]? ’ koo [2F]

In particular, we have quadratic convergence of {(x*, u*)}, but not even linear conver-
gence of {z*}.

Thus, if one is interested in primal convergence rate, it must be analyzed separately,
independently of any primal-dual analysis.

In Chapter 3, we show a new local convergence result which complements [14] and
[1] (neither stronger nor weaker). We prove primal-dual quadratic convergence under
LICQ (1.21), SOSC (1.30) and SC (1.18). Additionally, we provide a necessary and
sufficient condition for superlinear convergence of the primal sequence. Also, our results
hold in the more general variational setting, for which we introduce an extension of

SQCQP.

1.7 Variational Problems

Let us consider the following variational problem:
find 7 € D s.t. (F(7),y—7) >0 Vyez+Tp(T), (1.45)

where F' : R™ — R" is continuously differentiable, D is given by (1.12) and 7p(Z) is
the tangent cone defined by (1.11).
When D is convex, (1.45) is equivalent to the classical variational inequality [10]:

find z € D st. (F(z),z—z)>0 VYxeD. (1.46)

It is good to emphasize that the variational inequality (1.46) makes no sense without
the convexity assumption on D, despite sometimes appearing in the literature without
this assumption (It is enough to think of minimizing f(z) = 2%, € R, on the set
D = {—2;1;2}, and observe that the (global) minimizer 7 = 1 does not satisfy (1.46)
for F(z) = f'(x)). The sensible formulation for a variational problem over a nonconvex
set D is (1.45).

Replacing D by a closed convex cone K C R", (1.45) is equivalent to

findz e R"st. K*3 F(z) Lz €K,
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where K* = {u € R" | (u,v) > 0 Vv € K}, which is known as the (generalized)
complementarity problem. The particular case when K = R™ x RY}*> with n; +ny =n
is known as the mized complementarity problem (MCP).

Note that when in (1.45)

F(z) = f(z), z€R", (1.47)

we obtain the first-order necessary optimality conditions described in Theorem 1.2.1.
Also, when D is given by (1.12), the concepts of Section 1.2 can be extended to the
variational context, as discussed next.

Let us introduce the vector function ¥ : R" x R! x R™ — R" such that

U(w, A\ p) = F(x) + 1 (2)' A +4¢(2) p (1.48)

Since (1.15) is equivalent to (1.16), we have that if Z is a quasiregular point (i.e.,
Tp(%) = Lp(7)), then 7 is a solution of (1.45) if and only if there exist vectors A € R/
and it € R™ such that -
0 = \Ij(i7 A? ﬂ)?
0= h(z), (1.49)
0<ulg(x<O.

We shall refer to (1.49) as the KKT system of (1.45). In this context, (7, A, i) will
be a KKT triple of (1.45) and the Lagrange multipliers set M, will be defined as in
(1.17). .

We say that the second-order condition (SOC) holds at (z, A, i) if

(U (z, N\, )u,u) #0  Yu € C(z; D, F)\{0}, (1.50)
where
C(z;D,F) = Lp(T) N F(2)".

If 7 is a KKT point, then C(z; D, F') will coincide with the expression (1.32), introduced
for the optimization case, for any (A, u) € M(Z). Note that since the cone C(z; D, F')
is convex, (1.50) means that the quadratic form has the same nonzero sign for all
u € C(z; D, F)\ {0}. Sometimes, we shall distinguish the two cases, using SOC* if

(U (z,\, i)u,u) >0  Yuel(x; D, F)\{0}, (1.51)
and SOC™ if
(W (Z,\, i)u,u) <0 Yuel(z;D, F)\{0}. (1.52)

As can be seen, in the case of the optimization problem corresponding to (1.47), we
have that
U(x, A\, p) = Li(x, A, ),

and hence SOC* (1.51) reduces to SOSC (1.30).
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Chapter 2

Stabilized Newton-Type Method
for Variational Problems without
Constraint Qualifications

This chapter corresponds to the material from paper [12].

The stabilized version of the sequential quadratic programming algorithm (sSQP)
had been developed in order to achieve fast convergence despite possible degeneracy of
constraints of optimization problems, when the Lagrange multipliers associated to a so-
lution are not unique. Superlinear convergence of sSQP has been previously established
under the second-order sufficient condition for optimality (1.30) and the Mangasarian-
Fromovitz constraint qualification (1.23), or under the strong second-order sufficient
condition for optimality (1.33) (in that case, without constraint qualification assump-
tions). We prove a superlinear convergence result stronger than the above, assuming
SOSC (1.30) only. In addition, our analysis is carried out in the more general setting of
variational problems, for which we introduce a natural extension of sSQP techniques.
In the process, we also obtain a new error bound for Karush-Kuhn-Tucker systems for
variational problems.

2.1 Introduction

Given smooth mappings F' : R — R" and g : R® — R™, we consider the following
variational inequality (VI) problem:

findx e D st. (F(z),y—z)>0 Vye€xz+Tp(x), (2.1)

where
D={zeR"|g(z)<0,i=1,...,m},

and 7p(z) is the (standard) tangent cone to the set D at the point € D. Throughout
this chapter, we assume that F' is once and ¢ is twice continuously differentiable.
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When for some smooth function f : R — R it holds that
F(z) = f'(z), =z e€R", (2.2)

then (2.1) describes (primal) first-order necessary optimality conditions for the opti-

mization problem
min f(z) st. x € D. (2.3)

To motivate the development consider, for the moment, the optimization problem
(2.3). Tterations of the fundamental sequential quadratic programming method (SQP,
e.g., [2]) for (2.3) consist of solving subproblems of the form

yeR™

st g(@®) + g (2%)(y — 2*) <0,
where
L:R"xR™—TR, L(z,u) = f(z)+ {,g(x)),

is the Lagrangian of (2.3), and (2%, uF) € R™ x R is the current primal-dual iter-
ate. Let £ € R™ be a local solution of (2.3), and let M(Z) be the set of Lagrange
multipliers associated to z. The minimal conditions [3] which guarantee that the SQP
method outlined above is locally well-defined and superlinearly convergent are the ex-
istence and uniqueness of the Lagrange multiplier i associated to Z (also known as the
strict Mangasarian-Fromovitz constraint qualification) and the second-order sufficient

condition (SOSC)
(Ly(z, p)d, d) >0 VdeC(z;D, f)\ {0}, (2.4)
where

C(z; D, f)={d e R" | {f'(z),d) =0, (g;(2),d) <0 VieI(z)} (2.5)
= {d eR" | <g;(i‘)7d> =0 Vie I+(‘7_37ﬁ)7 <g£(:f’),d> <0 Vie IO(i‘na)}?

is the critical cone of (2.3) at z, with
I=TIx)={ie{l,...,m}|g(x) =0}
the set of constraints active at z, and
I (z,p) ={i € Z(z) | i >0}, Zo(z, i) = I(x) \ I4-(Z, 1),

being the set of strongly and weakly active constraints, respectively.

We emphasize that convergence of SQP requires certain regularity of constraints
(specifically, the strict Mangasarian-Fromovitz constraint qualification).

To deal with the case when constraint qualifications may be violated (and multi-
pliers associated to the primal solution of the optimization problem (2.3) may not be
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unique), a stabilized version of SQP (sSQP) has been introduced in [41]. This method
can be stated [23] in the form of solving subproblems
. 1ok o ok L1 (ok kNG kY o ok oz uk) 2
Golin (@) y = 2t L (N i)y — o),y — 2b) + A
st g(@®) + g @)y — a*) — o (a® pF) (A = p*) <0,

where (2%, i) € R™ x RT" is again the current primal-dual iterate, while the dual sta-
bilization parameter o(x*, u*) > 0 is some computable quantity measuring violation of
optimality conditions for (2.3) at the point (z*, u¥). As is easy to see, unlike in SQP, the
subproblems (2.6) are always feasible, regardless of constraint qualification. In [41], su-
perlinear convergence of sSQP has been established under the Mangasarian-Fromovitz
constraint qualification (MFCQ, which is equivalent to nonemptiness and compactness
of the multiplier set M(z)), SOSC (2.4) for all &z € M(Z), and the assumption that
the initial dual iterate 1 is close enough to a multiplier such that jizz > 0 (in partic-
ular, strict complementarity is assumed). In [42], superlinear convergence of sSQP has
been shown without strict complementarity, under MFCQ and the strong second-order

sufficient condition (SSOSC)
(Li(2,p)d, d) >0 VdecC(z,p)\ {0}, (2.7)

(2.6)

assumed for all 1 € M(Z), where
C'(z,p) ={d e R" | (gi(z),d) =0 VieI.(z,0)}

In [43], the assumption of strict complementarity has also been removed from the
results of [41], thus showing superlinear convergence under MFCQ and SOSC (2.4) for
all o € M(z). If MFCQ is not assumed, then superlinear convergence can be shown
under the assumption of SSOSC (2.7) for some i € M(Z), provided that u° is close
enough to such [ [15]; see also [13]. In fact, it was posed as an open question in [13,
p. 117] whether or not some condition weaker than SSOSC could be used to prove
sSQP convergence when no constraints qualifications are assumed. In this chapter,
we answer this question in an affirmative manner. We show that if the starting point
is close to (z, 1) satisfying SOSC (2.4), then the sSQP method is well-defined and
converges superlinearly. Moreover, our development is carried out for the variational
setting, in which sSQP for optimization is a special case.

Let us now go back to the variational problem (2.1). In this context, a natural
extension of sSQP is the following iterative procedure, obtained from the variational
formulation of optimality conditions for (2.6). To this end, define

U:R"xR™ - R", Y(z,u)=F(z)+d ) pn
Let (2%, u*) € R™ x R be the current primal-dual approximation to a solution of
(2.1), and define
F(a*) + W (o, p*) (y — o)

O R" X R™ - R"xR™, $k(y,\) = Cf(l‘ka/lk))\ )
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and
Ap={(y,N) e R" x R™ | g(z") + g(z")(y — 2*) — o (a*, ") (X — pi*) < 0},

where o(z*, i*) > 0 is the dual stabilization parameter.
Consider affine variational subproblems of the form

find (y,\) € Ar st. (Pr(y, A, (z,v) — (y,A)) >0 V(z,v) € Ag. (2.8)

As it can be easily seen, in the optimization case (2.2), the variational subproblem
(2.8) is precisely the first-order (primal) necessary optimality condition for the sSQP
subproblem (2.6). Thus, our framework contains sSQP for optimization as a special
case. Note that the framework makes good sense also in the variational setting, where
solving the fully nonlinear problem (2.1) is replaced by solving a sequence of fully
affine subproblems (2.8) (the mapping @y is affine and the set Ay is polyhedral). As
in sSQP, the feasible set in (2.8) is always nonempty. We shall prove that under a
suitable second-order condition, the method outlined above is locally well-defined and

converges superlinearly to a solution of the Karush-Kuhn-Tucker (KKT) system for
(2.1), which is

0=U(z,p) =F(x)+ g ) pu,
0% Lol <0, (2.9)

where o L g(x) means that (i, g(z)) = 0. We make the standing assumption that the
KKT system (2.9) has a primal-dual solution (in fact, if the constraints are degenerate,
there are many dual solutions associated to the same primal solution). The setting of
assuming existence of multipliers, while not assuming any specific constraint qualifi-
cation conditions ensuring such existence, is common when dealing with degenerate
problems, e.g., [42, 13, 18, 44, 20, 19].

The rest of the chapter is organized as follows. In Section 2.2, we recall the general
iterative framework of Fischer [13] that will be used to prove superlinear convergence
of our algorithm. We note that in [13], the general framework has been applied to the
method of proximally-regularized linearizations of monotone mixed complementarity
problems (MCP), and to sSQP for KKT systems arising from optimization. Compared
to the first item, our iterations are different (regularization is in the dual space only),
and we do not assume any monotonicity or convexity. Compared to the second item,
we cover KKT systems that include variational problems, and prove superlinear con-
vergence under SOSC instead of SSOSC employed in [13]. In Section 2.3, we prove
that subproblems (2.8) are locally solvable if o(-) provides a local error bound [30] on
the distance to the solution set of the KKT system (2.9). In Section 2.4, among other
things, we derive a suitable error bound. The results of Sections 2.3 and 2.4 show that
the assumptions of [13], stated in Section 2.2, are verified, which implies superlinear
convergence of the method given by (2.8).
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2.2 Fischer’s general iterative framework for prob-
lems with nonisolated solutions

Let G : RY — R! be a continuous map, N be a closed set-valued map from R? to the
subsets of R!, and consider the generalized equation (GE)

find w e R? st. 0€ G(w)+ N(w). (2.10)

Denote by X, the (nonempty) solution set of (2.10).
Consider a class of methods that, given s € R?, generate the next iterate by solving
a subproblem of the form

find w e R? st. 0¢€ Alw,s)+ N(w), (2.11)
where A(-, s) is an approximation of G(-) around s. Denote by
Z(s)={weR"|0e Alw,s) +N(w)}

the solution set of (2.11). In local convergence analysis it is standard to assume that
the distance between two consecutive iterates is not too large (without very strong
assumptions, subproblems (2.11) may have other solutions that are far away from a
given solution of (2.10) that is being approximated; those solutions are irrelevant for
local analysis and should be excluded). To this end, define

Ze(s) ={w € Z(s) | [Jw— s|| < cdist(s,X,)},
where ¢ € [1,400) is arbitrary but fixed, and consider the iterative scheme
w e Z,(w*), k=0,1,... ,uw’cR% (2.12)
The following holds (see [13, Theorem 1]).

Theorem 2.2.1 Let 3, be the (nonempty) solution set of (2.10) and let Lo # 0 be a
closed subset of ¥X,. Suppose that

1. (Upper Lipschitz-continuity of the solution set of GE)
There exist numbers €1,7,¢ > 0 such that, with Q) = X+ 1B, it holds that

S(p)NQ C X, +Lp||B VpeqB,

and

S(p) = {w € R | 0 € G(w) + N (w) + p}.

2. (Precision of approximation of G(-) by A(:,s))
There exists €9 > 0 such that

sup {||R(w, s)|| |w € s + cdist(s,X.)B} < o(dist(s,3,)) Vs € g+ 2B,
where R(w, s) = G(w) — A(w, s).
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3. (Solvability of subproblems)
There exists e3 > 0 such that Z.(s) # 0 for all s € Yo + e3B.

Then there exists € > 0 such that for any w® € Xy + B, the iterates defined by
(2.12) are well defined and converge superlinearly to some w* € ¥,. Furthermore, the
convergence is of order [ if the function o(-) in Item 2 satisfies

o(t) < cot? Wt €0,1],
for some ¢y >0 and 5 > 1 (in particular, convergence is quadratic if 3 = 2).

Let the vectors [ € RP (lower bounds) and u € RP (upper bounds) be given,
where R = R U {—o00, +00}. Moreover, assume that [; < u;, i = 1,...,p. Define
C={weR!|; <w; <w, i=1,...,p} and denote by N¢(w) the normal cone to
C at w € RY. In the sequel, we shall also make use of the following error bound result.

Theorem 2.2.2 [13, Theorem 2] Let G : R? — RY be a locally Lipschitz-continuous
function. If 3q is bounded and Assumption 1 in Theorem 2.2.1 is satisfied with N' =
N¢, then there are B3y > 0 and ey > 0 such that

IIs — ¢ (s — G(s))|| > Bodist(s, L) Vs € ¥g + e0B.

To relate the proposed iterative scheme (2.8) to the framework above, define

—g(x)

Let w = (z,u) € R" x R™ = R% Then the the KKT system (2.9) for problem (2.1) is
equivalent to solving the generalized equation (2.10) with G and N given by (2.13).

Since subproblem (2.8) of our method is an affine VI, it is equivalent to solving the
KKT system of finding (y, A, v) € R™ x R™ x R™ such that

Gz, p) = l i, ) 1 . N(z,p) = [Nﬁg(u) ] . (2.13)

0= F(a*) + W, (2", 1)y — ") + ' (=" v,
0= O-(xkv :uk)/\ - O-(xk7ﬂk)y7
0<vLlg(a®) +g'(a")(y —2") — a2, 1) (X = p*)] <0.

Noting that A = v, by the second relation, the system above is then equivalent to
finding (y, A\) € R™ x R™ such that

0= F(2*) + W, (2" 1) (y — 2") + ¢/ (a") "
= Wk, )+ U, )y — 2 + g ()T - ), (2.14)
0< AL [g(a") + ¢ (a")(y — 2*) — o(a, u¥) (A = ")) < 0.

Letting now w = (z,u) € R" x R™ = R4, s € RY,
Aw, ) = G(s) + (G'(s) + A(s) ) (w—s),  Als) = [0 0 ] ,
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where G is defined in (2.13), we obtain that solving (2.14) (and thus (2.8)) is equivalent
to solving GE subproblems of the form (2.11).

The rest of the work proves that problem (2.10) and subproblem (2.11), correspond-
ing to problem (2.9) and subproblem (2.14), respectively, satisfy the assumptions in
Theorem 2.2.1. The hard part is to prove, under a (weak) second-order condition
only, the upper Lipschitz-continuity of the solution set of the KKT system (2.9) and,
specially, solvability of subproblems (2.14) (Assumptions 1 and 3 of Theorem 2.2.1).

Assumption 2 is easily seen to be satisfied, because

[R(w,s)| = [G(w) = A(w, s)|
= [|G(w) = G(s) = (G'(s) + A(s))(w — 5|

[ 16 s+ tlw = 9) = @) w — s)a| + [A(s)w = )]

(/01 1G (s + t(w — 5)) — G'(s)||dt + 0(3)) lw — s,

<

IN

which implies that
|R(w, s)|| < o(dist(s, 2))

when w € s + ¢ dist(s, 2,)B and
o(s) < Ly dist(s, X,)

for some L; > 0. The latter inequality holds for any reasonable choice of o(-), for
example a residual o(-) of the KKT system (by the Lipschitz-continuity); this will be
made evident in Section 2.4.

Note also that if, in addition, the derivatives F” and ¢” are Lipschitz-continuous,
then so is G/, and we have that

| R(w, s)|| < Laodist(s, 3.)?. (2.15)

2.3 Solvability of subproblems

We now prove that KKT subproblems of the form (2.14) (which are equivalent to affine
variational subproblems (2.8)) are locally solvable if a certain second-order condition
holds, and if the dual regularization parameters o (z*, i*) are of the order of the distance
to the solution set of the KKT system (2.9) for problem (2.1). A specific computable
way of choosing such parameters will be discussed in Section 2.4.

Let Z be a solution of VI (2.1), and let

M(z) ={p € R™| (z,n) solves (2.9)}

be the associated (nonempty) set of Lagrange multipliers. Let the sets of active,
strongly active and weakly active constraints (Z = Z(z), Z,(z, u) and Zy(z, ), re-
spectively) be defined as in Section 2.1.
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We say that (z,1), with @ € M(Z), satisfies the positive second-order condition
(SOCT) for the KKT system (2.9) if

(V! (z, @)u,u) >0  YVuel(z; D, F)\{0}, (2.16)
where

C(#: D, F) = {u e R" | (F(z),u) =0, {¢(Z),u) <0 ViecI(z)} (2.17)
={u e R"[(gi(z),u) =0 VieI (T, p), (gi(Z),u) <0 VieIy(z,pu)}.

(As it is well known, the second equality above does not depend on the choice of
w € M(z)). In the case of the optimization problem (2.3), C(z; D, F)) is the standard
critical cone (2.5) at Z, and (2.16) is the standard second-order condition (2.4) which
is sufficient for optimality of the point Z.

As already mentioned, we assume also that the function o(-) satisfies the error
bound property. As Lemma 2.4.3 in Section 2.4 shows that under SOC* (2.16) the
primal part z of the solution is locally unique, we can write our error bound in the
following form: there exist a neighborhood V of (Z, i) and constants (35 > (31 > 0 such
that for all (x,p) € V it holds that

B (e — 3 + dist(p, M(2))) < 0w, 1) < Bo(flw — 7| + dist(p, M(2))).  (2.18)

More details on a computable choice of ¢(-) will be given in Section 2.4.

We start with extending SOC™ (2.16) from the copositivity property of the matrix
in a primal cone to uniform positivity, in a neighborhood of the point (z, i), of a certain
function in a certain parametric primal-dual cone.

Proposition 2.3.1 Suppose that SOCT (2.16) holds at (Z, 1) and that o satisfies the
second inequality in (2.18). Then there exist a constant ~; > 0 and a neighborhood V
of (z,u) such that for all (x,u) € V it holds that

(W (2, ), w) + o, ) o)) = ([lel® + oz, lol?) - V(u,v) € K(,p),  (2.19)

where
K(z,p) = {(u,v) € R" x R¥ égg(x)’u;

( (z, pvi Vi € T(2, )
gi x),u )

ol e, We%@ﬁ>}' 220

IA

Proof. Suppose the contrary, i.e., that there exist (%, u*) — (z, i) and (u*,v*) €
K (2%, %) such that

1
(WG (2, 1), u) + oo < - (Ill* + onl[o"%), (2.21)
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where 0}, = o(2F, u¥). Evidently, (2.21) subsumes (u*, v¥) # 0.

Let n, = ||(u®, \/orv*)|| > 0. Passing onto a subsequence, if necessary, we can assume
that i

1 U U

TERNE .

Observe that since o;, — 0 by the second inequality in (2.18), while \/axv*/ny is
bounded, it holds that

k k
o = o YR L, (2.23)
Mk Nk

Since K (2%, u¥) is a cone, we have that (u*/ny, v*/ny) € K (2%, u¥). Dividing now the
relations in (2.20) by 7 and taking limits, considering (2.23), we obtain that
(@), 8) =0 VieT,(zh), (g(@).a) <0 VieTE g,
ie,u€C(z;D,F).
On the other hand, dividing (2.21) by 77 and taking limits we have that
(U,(z, i)u, @) + [|lw]|* < 0. (2.24)

This shows that (V.(z, @)u,u) <0 for uw € C(z; D, F'). Hence, u = 0. Now from (2.24)
we have that @w = 0 also, in contradiction with (2.22). n

Corollary 2.3.2 Suppose that SOCT (2.16) holds at (Z,[1) and that o satisfies the
right inequality in (2.18). Then there exists a neighborhood V of (z, i) such that the
matrix -
vz, 1) gr(x)
TR 2.25
“g(e) olem! (2:29)
is nonsingular for all (x,u) € V such that o(x, ) > 0.

Proof. By Proposition 2.3.1, there exists a neighborhood V of (z, i) such that (2.19)

holds. Let (z,u) € V, o(z, ) > 0, and suppose that (u,v) is a vector in the kernel of
the matrix (2.25), i.e.,

0=V (z,)u+ gy(x)" v, (2.26)
0=—g7(x)u+o(x,uv. (2.27)

By (2.27) we have that (¢}(x),u) = o(x, u)v; for all i € Z. This shows that (u,v) €
K(z,p) defined in (2.20). Also, multiplying (2.27) by v we have

(gr(@)u, v) = o(z, p)lv].
Multiplying by u both sides in (2.26), we then obtain that

0 = (W (2, p)u, u) + {gr(2) "v,u) = (¥, (2, p)u, u) + oz, ||
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Then, by (2.19), we have that 0 > v (||lul|* + o(z, p)||v||*). Hence, u = 0 and v = 0,
implying that the matrix in (2.25) is nonsingular. ]

Our proof of existence of solutions of subproblems is done in two steps. We start by
showing that a certain part of KKT subproblem (2.14) has a solution. We shall make
use of the existence result in [10, Theorem 2.5.10]. More specifically, we shall need a
consequence of [10, Theorem 2.5.10], which we state as follows.

Theorem 2.3.3 Let K be a closed convexr cone in R and M € R™'. Suppose that
d = 0 is the unique solution of the generalized complementarity problem

K>dl MdeK*, (2.28)

and that M 1is copositive on K.
Then for all ¢ € R!, the generalized complementarity problem of finding d € R!
such that
K>dl Md+qe K~

has a nonempty compact solution set.

Clearly, if M is strictly copositive on K, then (2.28) has the origin as the unique
solution, and all the assumptions of Theorem 2.3.3 hold.

Proposition 2.3.4 Suppose that SOCT (2.16) holds at (Z, 1) and that o satisfies the
second inequality in (2.18). Then there ezists a neighborhood V of (z, 1) such that

for all (x,p) € V with o(x,u) > 0, the mized complementarity problem of finding
(y, \z) € R™ x RPI such that

0= F(z) + W, (,n)(y — ) + gz(z) Az,
0 gi ( ) < ( ) - ZE) - O-(I7/J“)<>‘z - Mi)? (NS I“F(j’ﬂ)’ (229)
O—)‘ [ ( )+<gi< )7@/—1'>—U(35a/l)()\z’—m)] SO? iezo('f’ﬁ)?

has a nonempty compact solution set.

N

Proof. Define

_ | Velzp) 0 _ | Fle) =V (z, p)z
M= ON O'(CL’,[L)I]’ q—[ 0 g ’

bi = gi(x) — (gi(x),x) + o(x, p)pi Vi€ L,
and the |Z| x (n + |Z|) matrix A with rows given by transposing

= | e |
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where ¢ € Rl is the i-th vector of the canonical basis. With this notation, it can be
seen that (2.29) is equivalent to solving the following affine VI:

findze @ st. (Mz+q,z—2) >0 Vz € Q, (2.30)
where
Q={2eR" xR | Az, 2 + bs, =0, Az, 2 + bz, <0},

Iy = I.(x, ji), To = To(7, ).
Let (@, 07) be the unique solution of the linear system

Vo (2, 1)  gr(x)" 1 [ u ] _ [ —F(x) — g7(2) iz
—gr(z) oz, p)l || vz 9z()

Y

which exists due to Corollary 2.3.2. Define Z = (x + @, uz + v7). For each i € T we
then have that

(a',Z) = (gi(x),2) — oz, ) + (gi(x), @) — o(x, p)v;

= (gi(z),x) — oz, p)pi — gi(z)
= —b,.

In particular, z € ) and all the constraints defining the polyhedral set () are active at
Z. Note that, in the adopted notation, the cone K = K(x, ) defined in (2.20) can be
written as

K={deR"xR¥ | Az,d =0, Az,d < 0}.
Hence,
Q={zeR" xR | A7 (+ —2) =0,A7,(z —2) <0} =2+ K.
We can then write (2.30) in the following form:
findd € K st. (Md+ M2+q,d—d)>0 VdeK,
which is the generalized complementarity problem
K>dlMd+Mzi+qe K" (2.31)

By Proposition 2.3.1, there exist a neighborhood V of (z, i) such that (2.19) holds
for all (x, ) € V. This shows that if o(z, u) > 0, then M is strictly copositive on the
cone K. Now Theorem 2.3.3 implies that (2.31) has a nonempty compact solution set.
n

We next show that the step given by solving the system (2.29), which is part of

our subproblem (2.14), satisfies the localization property appearing in the iterative
framework of Section 2.2.
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Proposition 2.3.5 Suppose that SOCT (2.16) holds at (Z, 1) and that o satisfies both
inequalities in (2.18). Then there exist a neighborhood V of (Z, i) and a constant 3 > 0
such that for all (x,p) € VN (R™ x RY) with o(x, ) > 0, it holds that

< 3o (x, p),

y—x
AL — iz

where (y, A7) is any solution of (2.29).

Proof.  For contradiction purposes, suppose there exists a sequence {(2*, u*)} C
R"™ x R such that

k_ ok
(%, 1) > (2. ) amd , = || [ > ko
AT = Hi7
where o = o(2F, i¥) > 0 and (y*, \Y) satisfies
0= F(a") + (2" ") (y* — 2") + g7 (") " A7, (2.32)
0= gi(2") + (gi(a®),y* — &) — ou(N] — pf), i € To (7, ), (2.33)

0 < AP L [g:(a%) + (gi(a"), 4" — 2"y — o (N — )] <0, i € To(z, 1) (2.34)

By the assumption above,

O 1
— < =-—=0. 2.35
o < E (2.35)

Note first that, by (2.18), it holds
lgz (=)l = llgz(a") — gz(@)| < erlla” — 2| < eao, (2.36)

lgz(=*) = g2 (@) < eslla* — 7| < caop. (2.37)

Denote fi* = ) (") Since ff = 0 for ¢ ¢ Z, we have that

1F (") + gp(a®) k| = 1F(¥) + gr(a®)T b — F(z) - g(2)T |
< o (|lo* = 2]+ lluk — agl)
< C60%;, (2.38)

where the first inequality follows from the Lipschitz-continuity of the functions involved,
while the last one from (2.18).
Taking a subsequence, if necessary, we can assume that

k_ ok u
Qgal-lle e
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Using (2.32), we have that
0= F(a") + gr(a™) Tug + W (2%, 1) (" — 2%) + g7(a") "0 — pg).
Dividing by 7 and taking limit as k — oo, using (2.35) and (2.38) we obtain
0= (z,a)u+ gy (z) " w. (2.40)
By (2.33) and (2.34), using also that p% > 0, we have that
(M7, 92(2") + g7 (") (0 — %) — on (N — i) = 0,

(1, 9z(a*) + g7(a®)(y" — 2*) — o1 (A7 — 7)) < 0.
Hence,
(A7 — 1z, 92(a%) + g7(a*)(y" — 2%) — ox (A7 — piz)) > 0.
Dividing by n? and letting k — oo, using (2.35) and (2.36) we obtain that

(w, g7(z)u) > 0. (2.41)
Also, from (2.33) and (2.34), dividing by 7, and taking limits we have that
(9i(%),u) =0 Vi eI (z,p), (gi(z),u) <O Vi€ Lz, p1).

Thus u € C(z; D, F).
Multiplying by u" in (2.40) and using (2.41), we obtain

0> (V.(Z, p)u, u),
so that SOCT (2.16) implies u = 0. Hence,
0= g5(z) " w. (2.42)

Consider the QR-factorization of ¢%(z), that is
_ R
4o =] g |-

where [U V] € R#I*l is an orthogonal matrix and R' has a null kernel (in particular,
the columns of V' give an orthonormal basis for ker g% (zZ)").
Since

gz(2%) = g2(7) + () (2" — 2) + O(l|2" — 7||*) = g7(7) (=" — 7) + O([]a" — 7*)

Vg (z) =0, (2.43)
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we have that
V7gz(a*) = O(||z" — z|*).
By (2.18), we then have that
IV gz(z")]| < eroi. (2.44)
By (2.42), we have that 0 = ¢4(Z)"w = RTUTw. Thus U w = 0. Hence,
w=UU"w+VViw=VV"Tw. (2.45)
Let
I" = {i € T | gi(a") + (gi(a"), y" — 2") — o (A} — pif) = 0}
Clearly, there exists an index set J such that Z¥ = J for infinitely many indices k.
From now on, we consider the subsequence such that Z%F = 7, without introducing
further subindices.
If i ¢ J then \F =0, so that \f — uF = —pF < 0. Thus from (2.39), w; <0 for all
i¢J.
Let us define the cone
Q={¢eR"|&=0i€T;&>0,i¢ T}
Since w; < 0 for @ ¢ J, it holds that
—w € Q.
By (2.33) and (2.34), we have that

—g7(a") = g7(a")(y" — 2*) + on(N; — 1if) € Q.
Multiplying this relation by VT, dividing by o and using (2.43), gives
Vigz(a®)  VT(gz(a®) — gz(@)) (y* — 2¥) N V(A —p3)
NkOk Ok Mk Mk

Taking limits, using (2.44), (2.37), (2.35) and the facts that (y* — 2*)/ny — v =0 and
that the set V' 'Q is closed, we obtain that

ViweV'Q.

Then there exists £ € @ such that VTw = V¢, Since —w € Q* and w = VV Tw,
we conclude that

cvV'Q.

0> (w,&) = (VV'w,&) = (VV'E €)= Vgl

Thus V'w = V'€ =0, so that (2.45) implies w = 0.
Then (u,w) = 0, in contradiction with (2.39). =

We now extend the solution of (2.29) to the solution of our subproblem (2.14),
showing also that the needed localization property holds.
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Theorem 2.3.6 Suppose that SOCt (2.16) holds at (Z,) and that o satisfies both
inequalities in (2.18).

Then there exist a neighborhood V of (Z, i) and a constant vy > 0 such that for all
(z, 1) € VN (R™ x RT) with o(x, 1) > 0, there exists (§,\), a solution of the mized
complementarity problem of finding (y,\) € R™ x R™ such that

0=F(z)+ W (z, p)(y —z) + 4'(z) "\
0<XALfg(x)+g'(x)(y —x)—d(ﬂfﬂ)(A w)] <0,

is

Proof. By Proposition 2.3.5, there exist a neighborhood V of (z, i) and a constant
~v3 > 0 such that

(2.46)

satisfying
< Y40 (@, 1) (2.47)

H [ Az — bz ] H < 1s0(x, ), (2.48)

for any (z,p) € V such that o(x, ) > 0 and any solution (y, Az) of (2.29).

Set ¥ =y, A = Az and \; = 0 for all i ¢ Z. With this choice, the system (2.29)
gives the equality in (2.46), as well as the complementarity condition in (2.46) for those
indices in Zy(Z, f1).

For i ¢ Z, we have that

g9i(x) + (gi(x), 57 — ) — o(x, ) (N — ) = gi(x) + (gi(2), § — x) + o, p)p;
< gi(7)/2<0

if (z, p) is sufficiently close to (z, z) (so that o(x, 1) is small enough and, consequently,
so is (y — x), by (2.48)). This verifies the complementarity conditions in (2.46) for the
indices not in 7.

Given the second relation in (2.29), it remains to check the nonnegativity of \;,
i€Z,(z, ). Fori € T,(x, ), we have that

i =i+ (N — i) > /2 >0
if (, p) is sufficiently close to (, i) (so that o(z, i) is small enough and, consequently,
so is (Ar — pz), by (2.48)).

This concludes the proof of the existence of a solution of (2.46). Finally, let i =
vz (). For i ¢ I, we have that

- . 1
A
by (2.18). Combining this relation with (2.48) we see that (2.47) holds. n
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Theorem 2.3.6 establishes that Assumption 3 of Theorem 2.2.1 is satisfied for ¥y =
{(z,n)}. In particular, subproblems given by (2.8) (equivalently, by (2.14)) are locally
solvable, and the distance between consecutive iterates can be bounded above by a
measure of violation of KKT conditions for the original problem (2.1).

2.4 Upper Lipschitz-continuity of the solution set
and a new error bound for KKT systems

This section shows satisfaction of Assumption 1 in Theorem 2.2.1, under the SOC
(U (z, mu,u) #0  Vu e C(z; D, F)\{0}, (2.49)

which is an extension of condition (2.16) used in Section 2.3 (Note that since the cone
C(z; D, F) is convex, (2.49) means that the inequality holds for all v € C(z; D, F)\{0}
either with the positive sign or with the negative sign). We also show that the so-called
natural residual [30]

o R" x R™ — R.. d%m—m iz, 1) ], (2.50)

min{—g(z), u}

where the minimum is applied component-wise, provides a local error bound (2.18) for
the solution set of the KKT system (2.9) under SOC (2.49). Note that, with this choice,
the right-most inequality in (2.18) follows from Lipschitz-continuity of the functions
involved and the fact that o(z, 1) = 0 for any g € M(Z).

We start with considering the following problem with affine constraints: find
(x, ) € R™ x R™ such that

0=F(z)+A'p,

0<pu L [Az+b] <0, (2.51)

where A € R™™ and b € R™. This is the KKT system associated to the variational
problem 3 3
findxe D st. (F(z),y—x)>0 Vye D, (2.52)
D={zecR"| Az +b<0}.
We first prove local uniqueness of the primal part of the solution of (2.51), under
SOC (1.50). Note that in the case of affine constraints, V! (z, i) = F'(z). Our result
is an extension of [16, Proposition 1], where the optimization case (2.3) is considered,

under the assumption that F'(z) = f”(z) is strictly copositive on the critical cone
(2.5).

Proposition 2.4.1 Let F' be continuously differentiable at a solution (Z, i) of (2.51)
such that )
(F'(Z)u,u) #0  Yu e C(z; D, F)\{0}.
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Then there exists a neighborhood V of T such that if x € V and (x, 1) is a solution of
(2.51), then © = T.

Proof. Suppose the contrary, i.e., that there exists a sequence (2%, u*) of solutions of

(2.51) such that 2% — z, 2% # z. Taking a subsequence, if necessary, we can assume

that

-z

l* — ]|

Using that Z(z*) C Z(z) for k sufficiently large, we have that if i ¢ Z(Z) then

i ¢ Z(2*) and, hence, uf = 0. Thus if i ¢ Z(Z) then u¥(Az + b); = 0 for all k
sufficiently large. Since this equality holds trivially for i € Z(z), we conclude that

—u # 0.

(F, Az +b) = 0 (2.53)

for all £ sufficiently large.
Since (2%, i¥) is a solution of (2.51), we have that

0 = (F(a®) +ATpk af — z) = (F(a), 2" — z) + (¥, A(z® — 7))
= (F(a%), 2" — 7) + (u¥, Ax* +b) — (uF, Az + 1)
= (F(a¥), 2" — 7), (2.54)

where in the last equation we use (2.53) and the complementarity condition for (z*, 1i*).
Dividing (2.54) by ||#¥ — Z|| and taking limits, we obtain that

(F(z),u) = 0. (2.55)

Ifi € Z(7), then (A(2* —)); = (Az¥+b); < 0. Dividing this inequality by ||z* —z||
and taking limits, we obtain that

(Au); <0 for all i € Z(z). (2.56)

Together with (2.55) this shows that u € C(z; D, F)\{0}.
Also, note that

(F(ah),u) = —(ATp"u) = = 37 pi(Au)i > 0, (2.57)

i€Z(zk)

where in the last inequality we use (2.56) and the fact that Z(z*) C Z(z).
Using now (2.55) and (2.57) we have that

0 = (F(@),u) = (F@a") + F'(a")(7 — "), u) + o(||2" — 7))
(F'(a*)(@ — %), u) + o([Ja* — z])).

v
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Dividing this relation by ||z* — Z|| and taking the limit, we conclude that
0 < (F'(Z)u,u).

On the other hand, using (2.54) and the fact that 7 is a solution of the variational
problem (2.52), while 2% € D, we have

0= (F(z"), 2" — z)
= (F(z),2" =) + (F'(2)(a" - 7),2" = 7) + o([|«" — 7|]*)
> (F'(7)(2" — 7),2" — 7) + of||2" - z||*).

Dividing this relation by ||2* — Z||?> and letting k¥ — 0o, we obtain in the limit
0> (F'(Z)u,u).

Hence,
(F'(Z)u,u) =0

for u € C(z; D, F)\{0}, in contradiction with the assumption. "

Let now F(z) = Mz +q, where M € R™" and ¢ € R". Consider the KKT system:
0=Mz+qg+ ATp,

0< L [Az+1] <0, (2.58)
associated to the affine variational problem
findze D st. (F(z),y—z)>0 VYyeD.
Define -
T = | M = | 1
so that (2.58) is equivalent to the generalized equation
e T (x,pn)+ Nz, pw, (2.59)

where N is defined in (2.13).
The following is an extension of [16, Lemma 1}, where M is assumed to be symmetric
and strictly copositive on C(z; D, F'), to variational setting.

Lemma 2.4.2 Suppose that (Z, 1) is a solution of (2.59) for ¢ and that
(Mu,u) #0  Yu e C(z; D, F)\{0}.

Then there exist 3 > 0 and neighborhoods V of T and U of 1 such that, if (z, i) is a
solution of (2.59) for v € U and x € V, then

lz — || < Bllv = .
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Proof. As it is well known [35], the multifunction F(x, ) = T'(z, ) + N (x, u) and

its inverse

F)={weR"xR™|0€ F(w) — v},

are polyhedral multifunctions. Furthermore, the function P such that P(x,pu) = x is
polyhedral, and so is the composition P o F~1.

By [35, Proposition 1], polyhedral multifunctions are locally upper Lipschitzian at
every point, and the Lipschitz constant is independent of the point. Thus, there exist
a constant 3 > 0 and a neighborhood U of 1) such that

PoF ) CPoF ') +B|lv—4|B Yy €l. (2.60)

Since P o F~1(¢) is the set of z-components of solutions of (2.58), by Proposition
2.4.1 there exists a neighborhood V of  such that

PoF ()N V = {z}.

Let p = dist(z, P o F~'(¥)\{Z}), and choose V smaller if necessary so that ¥V C
{z} + £B. Choose U sufficiently small so that

{ZY+Blv —Y||BCV Vel

If v € U and z € P o F '(¥) NV, we obtain from (2.60) that there exist & €
P o F1(¢)) and p € B such that z = & + §||v» — ¢||p. But then,
B . - ) PP
|2 =&l = ||z — =+ Bl — dllp| < lle 2l + Blw Dl < 5+ 5 <p.

implying that # = #. Hence, x = & + 3|[1) — 1||p for some p € B, i.e.,
|z — || < Bl — .

Thus, for our main problem (2.10) we can state the following error estimates, that
verify the upper Lipschitz-continuity property of the solution set of KKT systems.

Lemma 2.4.3 Let F be differentiable and g twice differentiable at T, and suppose that
there exists i € M(x) such that (z, 1) satisfies SOC (2.49).

Then there exist a neighborhood V of (Z, i) and constants v, 7 > 0 such that for
every (x,u) € V and for each p € y¥B satisfying

0€ Gz, p) + N(z, 1) +p, (2.61)
where G and N are defined in (2.13), it holds that

l = Z[| + [l = Mz ()] < 7l
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Proof. Throughout this proof, the generic constant 3 is uniformly bounded when V

is sufficiently small.
Consider the affine variational problem (2.59) with

M=V (z,n) and A= (7).

Let F(x,p) = T(x, p) + N(z, p).
Define ' = T'(z, u) — G(x, ) — p, where p satisfies (2.61). Then (z,u) € F~ ().
Define ¢? = T(Z, u) — G(Z, u). Since F(z) + ATji = 0, we have that
P = Mi+A'p—F@E) —ATp| | Mz+ AT N 0
o — Az + g(2) a —Azx g '
As g(z) € Ngr (1), this shows that (z, 1) € F~'(4?).
By the differentiability assumptions, 1! is close to 1% when (z, 1) is close to (7,

T, i)
and p is close to 0. Consequently, by choosing V and ~ sufficiently small, Lemma 2.4.2
gives us the estimate

lo — 2|l < Bl — 7|l = BIG(x, 1) = G(&, 1) = (T(w, 1) = T(@, 1)) +pll,  (2.62)

for all (x,u) € V and p € vB.
Given any ¢ > 0, using the differentiability assumptions and taking ) sufficiently
small, we obtain that

|Gz, p) = G(T,p) = T(x —2,0)| <elle—zl|  V(z,p)eV.
Combining this with (2.62), we have that
|l — 2| < Bellz — z[| + Bllpl

Thus, taking € < 1/, we obtain

. s
— 7 <
ol <
Consider the decomposition p = (u,v) € R" x R™. If i ¢ Z then ¢;(z) < 0. Thus,
we can take V and v small enough, so that ¢g;(x) —v; < 0. From (2.61) we have that
9(x) — v € Ngm(p). Hence, p1; = 0 for all i ¢ T and y; > 0 for i € Z. Since

I2ll- (2.63)

MZ)={veR"|F@)+¢ @) 'v=01,>0i€T;1,=0,i¢ I}
by Hoffman’s error bound for linear systems, we obtain that
e = all < BIF () +g'(2) " ull = Bl (2, W, (2.64)
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where fi = Ly (1)
From (2.61), we have that U(z, u) +« = 0. Then, using the differentiability as-
sumptions and taking V smaller if necessary, we have

W, Wl < 1, ] + 19 (2, 1) = U, w| < Nlull + Bl — |
Since ||u|| < ||p||, using (2.63), we obtain
W (z, )| < Bllpll
Combining this with (2.63) and (2.64) gives
l = Z[| + [l — all < 7lpll,

for some 7 > 0. =

This result shows satisfaction of Assumption 1 in Theorem 2.2.1 for 3y = {(z, 1) }.
Moreover, taking w = (x, 1) we have that

?

o(w) = |w = Mgnmy (w = G(w))

for o given by (2.50) and G given by (2.13). Hence, by Theorem 2.2.2, it now also
follows that the natural residual (2.50) provides a valid local error bound for the KKT
system (2.9). Specifically, we have the following.

Theorem 2.4.4 Let F be differentiable and g twice differentiable at Z, and suppose
there ezists i € M(Z) such that (Z, 1) satisfies SOC (2.49).

Then there ezist a neighborhood V of (Z, 1) and constants By > (1 > 0 such that
for all (x, ) €V the function o defined in (2.50) satisfies the error bound (2.18).

We note that Theorem 2.4.4 gives the first error bound for KKT systems in vari-
ational context that does not subsume some regularity-type assumptions about the
constraints. We refer the reader to [17] for a detailed discussion and comparisons of
error bounds for KKT systems.

The provided error bound completes the proof of superlinear convergence of our
method, that we formalize as follows.

Theorem 2.4.5 Let F' be differentiable and g twice differentiable at x, and suppose
that there exists i € M(Z) such that (Z, 1) satisfies SOCT (2.16).

Then there exist a neighborhood V of (Z, 1) such that for any (z°, u°) € VN (R" x
RT), the iterates defined by (2.12) are well defined and converge superlinearly to (Z, 1),
where 1 is some element of M(Z). Furthermore, the convergence is quadratic if F' and
g" are Lipschitz-continuous in a neighborhood of T.
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2.5 Concluding remarks

The approach presented here can be used also to prove the uniqueness of solutions of
subproblems (2.14), extending the result for optimization under SSOSC (2.7) obtained
n [15] (see also [13]). In our case, suppose that

(V' (z, p)u,u) >0 Yuel(z,a))\ {0}, (2.65)
where
CT(z, 1) ={u e R" [ (gi(z),u) =0 VieI ()}

Regarding the proof of Proposition 2.3.1, it can be seen that under SSOC (2.65 )
there exists a constant 75 > 0 such that for all (x, ) in a neighborhood of (z, i) it
holds that

(W, (@, u) + o, ) [o]]? > (el + o (2, w)ol?)  ¥(u,v) € K¥(z,p), (2.66)
where
E*(z, 1) = {(u,0) € R" x R™ | (g)(),u) = o(a, m)vi, i € Ty(z,0)}.  (2.67)

Since C(Z; D, F) C C*(z, i), we have that SOC* (2.16) and, thus, Propositions
2.3.1 and 2.3.4 hold. In particular, in the proof of Proposition 2.3.4, the generalized
complementarity problem

findd st. K>d.l Md+ M3+qe K",

where K is given by (2.20), has a nonempty compact solution set. Let d' and d* be
solutions of this complementarity problem. Then

(M(d" — d?),d" — d?) = (Md" + MZ+q— (Md®>+ Mz + q),d" — d)
—(Md" + M? +q,d*) — (Md*>+ M2 + q,d")
<0. (2.68)

Since KT (x, ) is a subspace and d',d*> € K C K*(x, i), we have that
d' —d*> € K" (x,p).

Since (2.66) implies that M is strictly copositive on K (x, i), from (2.68) we conclude
that d! — d> = 0. Hence, the mixed complementarity problem (2.29) has a unique
solution.

Let us now show that under SSOC (2.65), for (z, u) sufficiently close to (z, 1) we
have that (7, A) € R" x R, where \; = 0,i ¢ Z and (y, A7) is the solution of (2.29),
is the unique solution of (2.46) satisfying (2.47). By Theorem 2.3.6, (7, A\) € R" x RY
defined in this way is a solution of (2.46) satisfying (2.47). Conversely, if (g, ) €
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R™ x RT is a solution of (2.46) satisfying (2.47), and if (z, p) is sufficiently close to
(z, ), we have that

gi(z) +{gi(2),y — x) — (@, 1) (N — ;) <0, 1 ¢ Z,
N >0,i€Z,(z,p).
Then by the complementarity conditions in (2.46), we obtain that

Ni=0,i¢T,

gi(x) + (gi(x),§ — &) — oz, p)(Ni — ps) = 0, i € (7, jn).
Hence, (¢, A7) is a solution of (2.29), which has been established to be unique.
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Chapter 3

Local Convergence of Sequential
Quadratically Constrained
Quadratic Programming type
method for Variational Problems

This chapter corresponds to the material from paper [11].

We consider the class of quadratically-constrained quadratic-programming methods
in the framework extended from optimization to more general variational problems.
Previously, in the optimization case, Anitescu (2002) showed superlinear convergence
of the primal sequence under the Mangasarian-Fromovitz constraint qualification and
the quadratic growth condition. Quadratic convergence of the primal-dual sequence
was established by Fukushima, Luo and Tseng (2003) under the convexity assumptions,
the Slater constraint qualification, and a strong second-order sufficient condition. We
obtain a new local convergence result, which complements the above (it is neither
stronger nor weaker): we prove primal-dual quadratic convergence under the linear
independence constraint qualification, strict complementarity, and a second-order suf-
ficiency condition. Additionally, our results apply to variational problems beyond the
optimization case. Finally, we provide a necessary and sufficient condition for super-
linear convergence of the primal sequence under a Dennis-Moré type condition.

3.1 Introduction

Given sufficiently smooth mappings F': R — R" and ¢ : R — R™ (precise smooth-
ness requirements will be specified later, within the statements of our convergence
results), we consider the following variational problem [10]:

find z € D s.t. (F(z),y—2)>0 Vy ez +Tp(z), (3.1)
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where

D={zeR"|g(z)<0,i=1,...,m}

and 7p(Z) is the (standard) tangent cone to D at Z € D. When for some smooth
function f : R® — R it holds that

F(x) = f'(z), xeR", (3.2)

then (3.1) describes (primal) first-order necessary optimality conditions for the opti-
mization problem

min f(z) st. z€D. (3.3)

We consider the following iterative procedure. (As it will be seen below, in the case
of the optimization problem (3.3), it reduces to the sequential quadratically-constrained
quadratic-programming method, e.g., [1, 14, 38]. In the variational setting, this method
appears to be new.) If z¥ € R"™ is the current iterate, then the next iterate z**! is
obtained as a solution of the the following approximation of the variational problem
(3.1):

find z € Dy s.t. (Fp(z),y—2) >0 Vyex+Tp(z), (3.4)
where
Fi(x) = F(z*) + F'(2")(x — 2%), z e R",
(K 1k 2k Ly 00k Ak _ 2k <
i~ fo me| )+ @2 =) ¢ = x>_o,}7

and 7p, (z) is the tangent cone to Dy at x € Dy. Subproblem (3.4) can be considered as
a “one-step-further” approximation when compared to the classical Josephy-Newton
method for variational inequalities [21, 10|, where at every step the mapping F' is
approximated to the first order (as in (3.4)), but the set D is not being simplified
(unlike in (3.4)). Specifically, given the current iterate x*, the Josephy-Newton method
solves the following subproblem:

find x € D s.t. (Fg(z),y—2) >0  Vye€z+Tp(x). (3.5)

It is clear that subproblem (3.4) is structurally simpler than (3.5) (in (3.5) constraints
are general nonlinear, while in (3.4) they are quadratic). Thus, in principle, (3.4)
should be easier to solve. That said, we shall not be concerned here with specific
methods for solving subproblems of the structure of (3.4) (at the very least, the same
techniques as for (3.5) can be used). In the case of optimization, as discussed below,
specific methods are readily available.

For optimization problems (3.3), an iteration of the sequential quadratically-cons-
trained quadratic-programming method (SQCQP) consists of minimizing a quadratic
approximation of the objective function subject to a quadratic approximation of the
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constraints. Specifically, if z¥ € R™ is the current iterate, then the next iterate z** is
obtained as a solution of the following approximation of the original problem:

min (f'(z*), 2 — 2F) + ;(f”(xk)(x — M),z — 2% stz € Dy (3.6)

Note that taking into account (3.2), the variational subproblem (3.4) describes (primal)
first-order necessary optimality conditions for (3.6). Therefore, SQCQP for optimiza-
tion is a special case in our framework.

As some previous work on SQCQP and related methods, we mention [31, 32, 40,
22,1, 14, 38]. In the convex case, subproblem (3.6) can be cast as a second-order cone
program [24, 28], which can be solved efficiently by interior-point algorithms (such as
26, 39]). In [1], nonconvex subproblems (3.6) were also handled quite efficiently by us-
ing other nonlinear programming techniques. Even though quadratically constrained
subproblems are computationally more difficult than linearly constrained (as in the
more traditional SQP methods, [2]), they are manageable by modern computational
tools and the extra effort in solving them can be worth it. I.e., at least in some situa-
tions, one may expect that fewer subproblems will need to be solved, when compared
to SQP. Some numerical validation of this can be found in computational experiments
of [1].

In order to guarantee global convergence, SQCQP methods require some modifica-
tions to subproblem (3.6), as well as a linesearch procedure for an adequately chosen
penalty function. (See, for example, [14, 38]). But under certain assumptions, locally
all those modifications reduce precisely to (3.6). Moreover, the unit stepsize satisfies
the linesearch criteria under very mild conditions [38, Proposition 8] (in particular, no
second-order sufficiency is needed for this), which is one of the attractive features of
SQCQP. Thus, what is relevant for local convergence analysis is precisely the method
given by (3.6), and this is the subject of this chapter (except that we consider the more
general variational setting of (3.4)). Note that, as a consequence of acceptance of the
unit stepsize, the Maratos effect [25, 33] does not occur in SQCQP (of course, Maratos
effect can also be avoided in SQP methods, by introducing second-order correction
terms in the direction or by using an augmented Lagrangian merit function).

We next survey previous local rate of convergence results and compare them to
ours. As already mentioned, in the variational setting, our method appears to be new.
Therefore, we limit our discussion to the case of optimization. In [1], local primal
superlinear rate of convergence of a trust-region SQCQP method is obtained under
the Mangasarian-Fromovitz constraint qualification (MFCQ) and a certain quadratic
growth condition. We note that, under MFCQ, quadratic growth is equivalent to
the second-order sufficient condition for optimality (SOSC), see [5, Theorem 3.70].
Quadratic convergence of the primal-dual sequence is obtained in [14] (the dual part
of the sequence is formed by the Lagrange multipliers associated to solutions of (3.6)).
The assumptions in [14] are as follows: convexity of f and of g, the Slater condition
(equivalent to MFCQ in the convex case) and a strong second-order sufficient condition
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(implying quadratic growth). This set of assumptions is stronger than in [1], but the
assertions in the two papers are different and not comparable to each other. Thus,
neither of the two results implies the other one. To complement the picture, in this
chapter we prove a third local convergence result, which is in the same relation to the
two previous ones: it neither follows from them nor implies them. Specifically, we shall
establish primal-dual quadratic convergence under the linear independence constraint
qualification (LICQ), strict complementarity condition, and SOSC. Compared to [14],
our assumptions are essentially different (we do not make any convexity assumptions;
while [14] makes weaker regularity assumptions). Our assertions are stronger than in
[14], because in addition to primal-dual quadratic convergence we also prove superlinear
primal convergence. Compared to [1], our assumptions are more restrictive, of course.
But our assertions are stronger as well: we prove quadratic primal-dual convergence
and superlinear primal convergence instead of superlinear primal convergence only. In
addition, we shall exhibit a Dennis-Moré type [8] necessary and sufficient condition
for superlinear convergence of the primal sequence in the case when the primal-dual
convergence is given.

If ® : R* x R? — RP is Lipschitz continuous in a neighborhood of a point (7,&) €

R* x RP, by 0®(7,&) we denote the Clarke generalized Jacobian of ® at (7,¢), i.e.,

09(5,8) = conv { Jim #'(0",€) | (7,¢)) = (2., (6", €) € No }.
where conv denotes convex hull of a set, and Ny is the set of points at which @ is
differentiable (by Rademacher’s Theorem, ® is differentiable almost everywhere in a

neighborhood of (7,¢)). In the sequel, we shall make use of the following Implicit
Function Theorem.

Theorem 3.1.1 [6, p. 256] Let ® : R* x R? — RP be Lipschitz continuous in a
neighborhood of a point (5,&) € R* x RP such that ®(7,&) = 0.
Suppose that the set of p X p matrices M, for which there exists a p X s matriz N

such that [N, M| € 0®(7,£), has full rank.
Then there exist a neighborhood Uy of &, a neighborhood 0y of €, and a unique
Lipschitz continuous function & : Uy — Qo such that ®(o,&(0)) =0 for all o € U.

3.2 Primal-dual quadratic convergence
As it is well-known, under adequate constraint qualifications (which would be the case

here), the variational problem (3.1) is equivalent to solving the Karush-Kuhn-Tucker
(KKT) system: find (x, ) € R™ x R™ such that

0=V(z,u)=F(z)+ ¢ (z)p,
() = Fla) 42 .



For the same reason, solutions of subproblem (3.4) are described by the following mixed
complementarity problem [10] in (x, u) € R" x R™:

F(eb) + Fl@M) (@ — 2% + 3 mlgl@) + g/ (@)@ — ) =0, (3.8)
and for alli =1,...,m, itZ:hlolds that

Gia*) + (gl(a), 2 — 0%+ 3 (gl () — ), — o) <0, (3.9
i >0, (3.10)

i) + (g, 2 = %)+ (M) — M) -2 =0 @11

Note that in the case of the optimization problem (3.3), i.e., when (3.2) holds, the
above are precisely the optimality conditions for the SQCQP subproblem (3.6).

Let (z,11) € R™ x R™ be some fixed solution of the KKT system (3.7), which by
virtue of further assumptions will be locally unique.

We say that LICQ holds at z if

{9i(Z) | i € I} is a linearly independent set, (3.12)

where
I=Ix)={ie{l,...,m}|g(x) =0}

is the index set of active constraints at z € D. Under LICQ, the multiplier i associated
to the given z is unique by necessity. We shall also use the following partitioning of Z:

=T (z,p)={icl|pm>0}, Zo=Z(rp={icl|m=0}=T\1,,

corresponding to strongly and weakly active constraints, respectively.
We say that (Z, 1) satisfies the second-order condition (SOC) if

(V! (z,p)d, d) #0  VdeC(z;D,F)\ {0}, (3.13)
where
C(z;D,F)={ueR"|{d(z),u) =0 Viel, (g(7),u) <0 Viely}. (3.14)

Note that since the cone C(z; D, F') is convex, (3.13) means that the quadratic form
has the same nonzero sign for all d € C(z; D, F') \ {0}. In the case of the optimization
problem corresponding to (3.2), C(z; D, F) is the standard critical cone of (3.3) at z,
and

U(z, p) = Ly(z, p),
where

L:R"xR™ >R, Lz, p)=f(2)+> gz
=1
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is the Lagrangian of (3.3). Then (3.13) with the positive sign reduces to the classical
second-order sufficient condition for optimality

(LY (z,p)d,d) >0 VdeC(z;D,F)\{0}.

Finally, we say that the condition of strict complementarity holds at (Z, 1) if Zo = 0
or, equivalently,

;>0 Viel. (3.15)

We are now in position to state our first convergence result. Since we are not
making any convexity/monotonicity type assumptions, even under the stated below
conditions at (7, f), the mixed complementarity problem (3.8)-(3.11) (or the optimiza-
tion subproblem (3.6)) may have solutions “of no interest” far from 2% (or 7). We
therefore talk about the specific solution closest to 2*. This is typical in results of this
nature.

Theorem 3.2.1 Let (z,1) € R"xR™ be a solution of the KKT system (3.7). Suppose
that F' is differentiable and g is twice differentiable in some neighborhood of T, and
that the first derivative of F' and the second derivative of g are Lipschitz continuous
in this neighborhood. Suppose further that LICQ (3.12), SOC (3.13) and the strict
complementarity condition (3.15) are satisfied.

Then there exists a neighborhood U of T such that if x* € U, then the mized com-
plementarity problem (3.8)-(3.11) has a solution (z**!, u**1) € R™ x R™. Moreover,
if 2° € U and, for each k > 0, x**1 is the closest to x* solution of (3.8)-(3.11), then
there exists a meighborhood V of i such that (3.8)-(3.11) defines a unique sequence
{(2* L, PN which stays in U x V and converges quadratically to (Z, j1).

Proof. We first prove existence of a solution for the mixed complementarity problem

(3.8)-(3.11), starting with the equations (3.8) and (3.11). To this end, we shall apply
the Implicit Function Theorem (Theorem 3.1.1) to the mapping ® : R” x R" x R™ —
R™ x R™ defined by

Uz, p) + Vo (2, 1

i (91(z) + (g4 (2), 5 — 2) + gl (@) (y — 7).y — 2))

(z;y, 1) = (3.16)

(G (@) + (g (@), 4 — 7) + 2l () (y — ),y — )

Thinking of x € R™ as a parameter, the system ®(x;y, ) = 0 has n + m equations
and n 4+ m unknowns (y, ) € R® x R™ .

Since (7, 1) is a solution of the KKT system (3.7), we have that ®(z;z, i) = 0. By
our smoothness hypotheses on F' and g, ¢ is Lipschitz continuous in a neighborhood
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of (Z;x, ). Moreover, since ® is continuously differentiable with respect to y and p, it
easily follows that 0®(z; z, 1) is the set of matrices [N, M], where M is given by

V(2 0)  gi(2) 95(7) ... gp,(T)
g (@) 9i(7) .o 0

M= (®),®,) (@:z,0) = | Rph@ 0 @@ .. 0 | (3.17)
fimg(Z)T 0 0 gm(Z)

and
N € conv {llim o (5o 1) | (s yl i) — (353, ), (29! 1) € Dq»}-

To apply Theorem 3.1.1, it remains to show that M is nonsingular. Suppose that
M Lﬂ = 0, where v € R™ and w € R™. Then we have

(7, i+ Yo wigl(@) =0, (3.18)

i=1

fii{gi(Z), v) + wigi(x) =0, i=1,...,m. (3.19)

Since ¢;(z) < 0 and ji; = 0 for all ¢ ¢ Z, and by the strict complementarity condition
(3.15), ¢;(z) = 0 and f; > 0 for all i € Z, it follows from (3.19) that

(9i(7),v) =0, Viel

wi=0, Vi¢T. (3.20)

Since strict complementarity means that Zy = 0, frorn (3.14) and (3.20) we have that
v € C(Z; D, F). Multiplying both sides in (3.18) by v", we obtain

0 = (U, (z,m)v,v) +Y wi{gi(x),v) +> wilg(x
(1A i¢T
- <\II;<E7/1)U7U>>

where the second equality holda by (3.20). Since v € C(z; D, F), SOC (3.13) implies
that v = 0. Now by (3.18) and (3.20), using also that v = 0, we obtain that

0= Z wz’g;(‘f)

1€l

Then LICQ (3.12) implies that w; = 0 for all i« € Z. Taking into account (3.20), we
conclude that w = 0, so that (v, w) = 0. Hence, M is nonsingular.

Then, by Theorem 3.1.1, there exist a neighborhood U, of  in R", a neighborhood
Qo of (z,1) in R™ x R™, and a Lipschitz continuous function & : Uy — £ such
that ®(x;&(z)) = 0 for all z € Uy, where &(x) = (y(z),u(x)) and &(z) = (T, ).
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Furthermore, £ is unique in the sense that if & € Uy, (3, 1) € Qo and @(z; 7, 1) = 0,

then (g, i) = £(2).
Using the continuity of y and p at  and the strict complementarity condition
(3.15), it follows that the sets

Uy ={z €Uy | gi(x) + (gi(x),y(x) — 2) + 5{9; ()(y(x) — x),y(z) —x) <O,Vi ¢ T},

DO | —

={x el | p(z) >0,VieI},

are nonempty and open (and they contain z). Furthermore, since € is a neighborhood
of (z, 1), there exist a neighborhood W of z in R™ and a neighborhood V of i in R™
such that W x V C Q. Let

U3:{ZEEU1QZ/{2|§<I')EWXV}.

If 2 € Us, then (y(x), u(x)) € W x V and since ®(z;£(x)) = 0, using the definitions
of U; and Uy, we conclude that

1

5(9i (@) (y(z) — 2), y(x) —x),Vie I, (3.21)

0= gi(2) + (gi(2), y(x) =) + 5

0=p(x),VidgT.

Now, combining ®(z;&(x)) = 0 with (3.21) and with the definitions of U; and U,
we obtain that (y(z), u(z)) is a solution of the mixed complementarity problem (3.8)-
(3.11).

Now let 2% € Us, k > 0. We next show that if 2**! is the closest to x* solution of
(3.8)-(3.11) and p**! is the associated multiplier, then these are uniquely defined by
oFH = y(a®) and p**t! = p(a). First, note that the gradients of constraints in (3.9),
which are active at y(z*) form the set {gi(z*) + ¢/ (2%)(y(z*) — 2*) | i € Z}. For z*
sufficiently close to , this is a small perturbation of the linearly independent set in the
LICQ condition (3.12). Thus, it is linearly independent itself, which implies that u(z*)
is in fact the unique multiplier associated to y(z*). Taking U, sufficiently small (so
that Us is sufficiently small), it can also be seen that the closest to z* solution (among
all the solutions of (3.8)-(3.11)) is precisely y(z*), since it is the only solution in W.

From now on, ¥ € Us, 2% = y(a*) and p*! = p(a®).
By (3.8), we have that
0= F(:Ij‘k) +g/<xk)Tuk+l 4 < + ZﬂkJrl " > ( E+1 l'k)
= Pt + 5l + (P Sl ) (4 = ot
1€l
o () (™ = pp) + D — i) (@) (T - ), (3.22)
1€l
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where we have taken into account that u¥™ =0 for all i ¢ T.
By (3.21), we also have that

1
0= gi(a") + (gi(a"), o™ = 2¥) + S {gf (@M) (@™ —2f), 2 —af) Vie T (3.23)
Defining
/ T
H:R"x R - R x RY, H(z)=| '@ ;gé:()x) ML e = (),
relations (3.22) and (3.23) can be written as
0= H(") + H'(F)(2" — 2") + Erpr, (3.24)

where
Do = pb)gy () (" - 2t)
Eppi=| 1

§<g§’(xk)(:ck+1 — M), " M e

Note that (3.24) is not a Newton equation, as it is not linear with respect to zF+1.
However, we shall relate it, a posteriori, to a specially perturbed Newton type iterative
process. The rest of the proof makes this precise and establishes the quadratic rate of
convergence.

First, note that H(z) = 0. By a proof similar to that for the nonsingularity of the
matrix M defined in (3.17), it can be seen that the matrix

is nonsingular (in the above formula for H'(Z), we have used the fact that g; = 0 for
all i ¢ 7). Since H'(Z) is nonsingular, there exists a constant n > 0 such that

zely={z e R || H (2)7) < n}).
Since F’ and ¢/,i = 1,...,m, are Lipschitz continuous functions in a neighborhood of
z, taking p > 0 sufficiently small, there exists a constant L > 0 such that ||H'(w) —
H'(2)| < L||lw — z|| for all w, z € Z + pB.

We next show that if ¥ € z + pB then there exists a constant ¢ > 0 such that
| Ex gyl < |25 — 2|2 for all k > 1, where ¥ = (2%, u%). Since ¢/,i =1,...,m, are
continuous at Z, there exists a constant v > 0 such that ||g/(z)| < v,i=1,...,m, for
all x € R" such that ||z — Z|| < p. Since 2* € z + pB implies ||z* — Z|| < p, we have
that

i
1Erpiall < Voyllpst — pgll [l — 2% + 2 3 Jlattt — k|2
ieT
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ym
< Viry(ma{[l = ], R = 2 T b
< \/ﬁ'}/HZk—H . Zk”Q + %”xk-‘rl . £Bk||2
< AV +m/2)|| = 2|

= ]2 =P (3.25)

where the monotonicity of the norm has been used repeatedly.

Let r = 1/(2n(L+4c)), and define Us = {z € Us | |ly(z) — Z||* + || () — fl|* < 7},
Us = Us x R7!. Then there exists § > 0 such that z + dB C Uy N Us.

Let ¢ = min{0, 7, p}, and define

U={zeR"| |lyl) = 2II* + lln(z) — l* <&}

Then z° € U implies that 2! — z|| < e.
Now, proceeding by induction, we will show that if || 2% —z|| < € then ||2*1—z|| < e.
By the construction of the set U, if ||2* — z|| < & then the following properties hold:

|H' (%)M < n, (3.26)
1
k- _
— <r=—-—— 3.27
I =2l <r = o (3.27)
1
E+1 5
— <r<< — 3.28
4 =2l << (3.28)

where in (3.26) we use that z* € Uy, (3.27) holds since e < 7, and (3.28) follows from
zF € Us. Also, because ¥ € Us, by (3.24) it follows that

=k (TN H(ZY) — H(Z) + Ergsr),
where H(z) = 0 was also taken into account. We further obtain

14 =2l = " =2 = H'(5)TN(H (") — H(Z) + B |

< H' () (M) 2) + H(Z) — H(2Y) — Bop|
1
< nH/O [H'(z H'(z —|—t(z —z))](zk—i)dt—Ek’kH
< nOMf—zw/Xl—ww+dVH*—%w)
0
< @ k__ z12 2 k+1 312 2 kE__ 312
< D)2k 2 4 2nel| M — 2|+ 2|2 — 2|

2
L _ 1 _
< (5 +20) 12 = 2P + 5124 - 2,

where the second inequality follows from (3.26) and the Mean-Value Theorem, in the
third inequality we use the Lipschitz continuity of H' and (3.25), for the fourth in-
equality we use that ||2FT1 — 2¥]|2 < 2(]|2F™ — z||2 + ||2* — 2||?), and the fifth inequality
follows from 2nc||z*™ — z|| < 3, which is ensured by (3.28).
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Now, rearranging terms in the relation above, we deduce that
|25 — 2| < (L + 40)||2* — 2% (3.29)

Then, by (3.27), we have |[2" — z|| < §|zF — z|| < e.
In consequence, if 2° € U then (z*1 u*1) € U x V for all k > 0, and since

pitt = [, = 0 for all i ¢ T, we have

o T _ 1\* _
@) = @ ) = 124 = 2 < Sl =2l << (5) Dt =2

so that {(z*"!, u*1)} converges to (z,1). Then, by (3.29), we conclude that the rate
of convergence is quadratic.

3.3 Primal superlinear convergence

Recall that quadratic convergence of {(x*, u*)} to (Z, i) does not imply even superlinear
or linear convergence of {xk} to Z. Assuming that some type of convergence occurs,
we next give necessary and sufficient conditions for superlinear convergence of the
primal sequence. This condition is of the Dennis-Moré type [8], allowing for using
approximations of derivatives. Specific update rules of quasi-Newton type are certainly
of great interest, yet this is beyond the scope of this work. But we note that our analysis
covers those situations where computing the derivatives involves computational work
and the precision of approximation can be controlled. Such is the case, for example,
when the derivatives are approximated by finite-difference procedures. The accuracy
parameter can be controlled using estimates for the distance to the solution via error
bounds (see [10] for a discussion of error bounds for variational problems and [17, 7]
for detailed comparisons in the context of KKT systems specifically). In particular,
such estimates give some idea of how precise should be the approximation in order to
conform to conditions (3.36) or (3.37) below.

Let Hj be some approximation of F'(z*) and G, be some approximation of g/’ (z*)
(of course, this includes the possibility of exact derivatives, as in the setting of Section
3.2). We consider a sequence {(z*, )} generated by the following process. Given
78 € R", Hy € RV and Gy, € R™"i = 1,...,m, find (", p**1) € R x R™ such
that:

F(.I’k) + Hk(xk+1 + Zluk+1 + G ( k+1 LL’k)) =0, (330>
and for alli =1,... m, 1t holds that

1
gi(a") + (gi(a"), o™ = a¥) + S (Gin(a"T —a®), 2 —af) <0, (3.31)

2
pktt >0, (3.32)

1
i (g (20) + (gi(at), 2T = af) - DGt = a), 2 = b)) = 0.(3.33)
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In the sequel, we shall consider separately the two possible cases in SOC (3.13)
(i.e., SOC*, when (3.13) holds with the positive sign and SOC~, when it holds with
the negative sign). Note also that since the cone C(z; D, F') is closed, those two cases
can be stated as follows: there exists ¢ > 0 such that

(U, i)u, u) > tlul|*  YueCl(z;D,F), (3.34)

and
—(‘I/;(f, o), u) > tHuH2 VueC(z; D, F). (3.35)

Theorem 3.3.1 Let (z,1) € R"xR™ be a solution of the KKT system (3.7). Suppose
that F' 1s differentiable and g is twice differentiable in some neighborhood of . Suppose
further that a sequence {(x*, u*)}, generated according to (3.30)-(3.33) with uniformly
bounded Gy, i =1,...,m, converges to (Z,[i).

If {2*} converges superlinearly to T then

Te [(V, (7, i) — My) (2" = 2%)] = of[|a"*" = 2¥])), (3.36)

where Il¢[-] denotes the orthogonal projector onto the cone C(Z; D, F') defined in (3.14)
and .
M), = Hy, + ZMfHGi,k-
i=1
Conversely, if LICQ (3.12) and SOC (3.13) are satisfied, then the rate of conver-
gence of {x*} to T is superlinear if SOCT (3.34) and (3.36) hold, or if SOC~ (3.35)
holds and
He [(My — W, (2, 1)) (" = 2b)] = o(||*+! — 2%)). (3.37)

Proof. Denote d* = 2! — z*. By (3.30), we have that

0= F(2") + Hyd" + > pl (g (%) + Gipd®) = U (¥, ") + Myd". (3.38)

=1

Also, we have

(7 — i )gi(2")

IR

s
I
—

Ut a) = Ut pt) +

= W(*, @) + 3 (A — 1) gi() + o[t — )

IR

-
Il
—

= —Md" + 3 (i — pf)gi(%) + o2 — 7], (3.39)

=1

where the last equality is by (3.38).



k+1

Suppose first that {z*} converges to T superlinearly, i.e., 2" — z = o(||z* — 7).

Since ¥(z, i) = 0, it holds that

Uk ) = Wz )+ V(@ )t — 2) + o2 — )
= W& p)d + (@, ) (@ - )+ ol - 2)
— (&, p)d + of[l2* — 2. (3.40)

Combining (3.40) and (3.39), we obtain

m

(Vo (2, 1) = My)d* = (™ = ) gi(@) + o([l2* — ). (3.41)

=1

Taking into account that G, are uniformly bounded and using the continuity

argument in (3.33), we conclude that for all sufficiently large k, it holds that uf“ —[; =

0,Vi ¢ T, and pi™ — fi; = pf*™ > 0,Vi € Zy. Then, by (3.41), for all v € C(z; D, F) it
holds that

m

(W@ p) = M) d* —o(||l2* = z]),0) = D(ui*" = ) {gi(z), v)

i=1

= > (W = ) {gi(),v)

1€l

= > (= ) (gi(T),v)

i€Zp

= > ug@),v) <0, (342)

i€y

where we have used that (g/(z),v) = 0,Vi € T, (¢}(Z),v) < 0,Vi € Zy (see (3.14)).
By properties of projection operator onto a convex cone, inequality (3.42) means that

e |(¥,(z, 1) = My)d* = of|l2* — z[|)] =o.

Then, by nonexpansiveness of the projection operator, it follows that

e (W, (2, 1) — My)d*]| = |t [(W,(z, i) — My)d* — o(||2* — )]
—1Il¢ [(‘I’; T, i) — Mk)dk} H
= of[l2" — 7|

It remains to show that o(||z* — Z||) = o(||d*||). For this, note that

o(||=* — z}) o([l=* — }) _ o(||=* — ])
2] [a* =[] = fla*+t =zl [la* = 2] = of]|z* — 2]
o(llz* — z[})/ll=* — ]|
1= of[|lz* — z[})/[|l* — ]

— 0 as k — oo.
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This concludes the proof of (3.36).
We now prove the sufficiency part, assuming LICQ and SOC. Denote

1
Do = gi(a®) + (gi(2"), d") + §<Gi,kdk> d*).
By the continuity argument (taking also into account uniform boundedness of G, ),
{T'ix} converges to g;(Z), as k — oo. Thus for all k sufficiently large, taking into

account (3.33), we have that

Fi,k<07 M?HZOa v2¢1'7

4
Dip=0, uf™ >0, VieZ,. (3.43)
By the Mean-Value Theorem, for each i = 1,...,m, there exists a vector z** in the
line segment joining z* and Z, such that
1 )
9:(x%) = 9:(2) + (6i(), " — 7) + (g (") (2" = 2), 2" — 7).
Note that {z"*} converges to z when k — co. For i € Z, we then obtain
1 - 1
o = 0B gl (2), 2 — ) L (o ) 0 — ), 0% — 2) 4 {fla"), d) + S {Cun
= (g/(7), 2" = ) + wy, (3.44)
where
1 - 1
wf = (gi(a) — gl(2), d) + gl (e — )t — ) - L(Gund, ).
Clearly,
wf = o([|2* — z[]) + o(||d"|]).
By LICQ (3.12), for each k, there exists u* € R" such that
gr(Z)uf = wh, where u” = o(||z" — z||) + o(||d"||). (3.45)
Let v* = 2! — Z + u*. Then by (3.45) and (3.44), we have
(9:(2),0") = (gi(7), 2" —2) +wf =Tip Viel (3.46)

Since I';, = 0, Vi € I, (by (3.43)) and I';, <0, Vi € Zy (by (3.31)), relation (3.46)
shows that v* € C(7; D, F). Since ¥(Z, i) = 0, we have that

0= (U(z, 1), v") = (F(2),0") + 3 fslgi(2),v") = (F(z),0").

€T
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We then obtain

(W )0 = )+ Zu’““ ).0%)
_ Zluk—i-l ) + Zukﬂr
€T €L
= 0, (3.47)
where we have used (3.46) for the second equality, and (3.43) with (3.33) for the last
equality.
Also,
U pf ) = Wk, @) + U (af, fa + o(]|d))

LEE

(U (2", p0) = My)d" + o([|d*|])
= (V(7, i) — My)d" + (W, (2", p*1) — W (7, 71))d" + o([|d"]])
(05 (2, 1) — My)d" + of||d"])), (3.48)

where (3.38) has been used in the second equality, and the last equality is by the
continuity of W’ . Let p* = v*/||v*|. Multiplying both sides in (3.48) by p* (which is
bounded), we conclude that

(WM, ), pr) = (W2, 1) — Mi)d®, p*) + o | d*]). (3.49)
On the other hand,
(Wt p ), ) = (W@, ), ") + (W (2, ) (2 = ), ) + o2t - Z)
= (W (&, ) (@ = 2),pF) + o(|[FH — 2)
= (W, (&, @) (" = 2),pF) + o( " — 2]), (3.50)

where the second equality follows from (3.47), and the last follows from the continuity
of ¥’ and boundedness of {p"*}.

Combining (3.49) and (3.50), we conclude that
(W(z, @) (2" = 2),p*) = (W,(3, i) — Mi)d", p*) + o(|d*||) + o[ «"" = Z])). (3.51)

Suppose now that SOC holds. Then for the case (3.35) and (3.37), by (3.51) and
(3.45), we have

tlok ]| < =, o) k,pk>
:< (— ﬂ) k+1 > <\If'xu >
= (M, — Wi (7, u>>d’3p )+ o(lld*]) + o(l|l=* — 2)) + o||="* — )
s<Hc[Mk—\1ﬂ z, m)d*|,p*) + ol []) + o(||z*+" — Z|) + o( 2" — Z)
= o(||d*]}) + o([|a™* — Z|)) + ol |2* — &),
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where the second inequality follows from the fact that for any closed convex cone K
and v € K, it holds that (z,v) < (Ilg[z],v) Va. Similarly, for the case (3.34) and (3.36)
we obtain

"] <

v (z, p)v*, p*)
(,(z, 72) — Mi)d*, p*) + o[|d"]]) + o(| 2" — Z[|) + o fJa* — z]))

(W, (2, 1) = My)d*],p*) + o([|d*])) + o(|**! = 2])) + of||2* — )
<||dk||>+o<||x'f“—:z||>+o<||x'f—zu>.

(
<
(e

IN

Summarizing, in both cases v* = o(||d*||) + o(||z* ™1 — Z||) + o(||z* — Z]|).
Since 2! — 7 = v* — uF = o||zF T — Z||) + o(||z* — Z||) + o(]|d*]|), there exists a
sequence {fx} converging to 0 such that

lzo 4 — 2| <ty (2t = 2] + [|l2* — 2] + [|d¥]))

(3.52)
< 2t (||lo** — 2| + [|l2* — 7)) -
Since t, < 1/2 for k sufficiently large, rearranging terms in (3.52) we obtain
k+1 _ = 92
|z fUH < b — 0 as k — oo.
||x* — Z| 1 — 2ty
In consequence, ! — z = o(||z* — z||), i.e., {2*} converges superlinearly to Z. "

In particular, Theorem 3.3.1 shows superlinear convergence of the primal sequence
{wk} to Z in the setting of Theorem 3.2.1, where H, = F'(z%), Gis. = g/(z"),i =
1,...,m, so that M}, = Hy, + >, b G — F'(Z) + X0, lig!(7) = V(T [1) as
k — oo. In this case, conditions (3.36) and (3.37) are automatically satisfied.

We also note that in the setting of Theorem 3.2.1 (or more generally, when the cone
C(z; D, F) is a subspace), we do not have to consider separately the two cases of SOC
(SOC™ (3.34) and SOC~ (3.35)) neither the two cases of the Dennis-Moré condition
((3.36) and (3.37)). Indeed, when C(z; D, F) is a subspace, we have (z,v) = (Il¢[z], v)
for all v € C(z; D, F'). We can further state the SOC (3.13) as

(V% (@, m)v,v)| = tllv]]* Vv e (@D, F),

and modify the corresponding parts of the proof of Theorem 3.3.1, as follows.

For the necessary part, note that for any x € R", there exists the unique decompo-
sition © = v + v* with v = Il¢[z] € C(z; D, F) and v* € C(z; D, F)*. Clearly, changing
the sign, one has —x = —v — v*, where —v = Il¢[—2] € C and —v* € Ct. Hence,
|e[z]|| = [|[He[—2x]|| for any x € R™. It follows that in this case, conditions (3.36) and
(3.37) are equivalent.
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For the sufficient part, we have that

= of[la*[)) + o2+ — 2[)) + o [l2* — 2],

and the rest of the proof applies.

3.4 Concluding remarks

We have established a new result on the quadratic convergence of the primal-dual se-
quence of the sequential quadratically-constrained quadratic-programming method. A
necessary and sufficient characterization of the superlinear convergence of the primal
sequence has also been provided. Additionally, the class of methods under considera-
tion has been extended from the optimization setting to the more general variational
problems.
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