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Abstract

We give a general necessary condition for the extremal (largest and smallest) Lya-
punov exponents of a Hölder continuous cocycle over a volume preserving partially
hyperbolic diffeomorphism to coincide. This condition applies to smooth cocycles,
with linear and projective cocycles as special cases. It is based on an abstract
rigidity result for fiber bundle sections that are holonomy-invariant, or even just
continuous, over the strong-stable leaves and the strong-unstable leaves of the dif-
feomorphism. As an application, we prove that the subset of Hölder continuous
linear cocycles for which the extremal Lyapunov exponents do coincide is meager
and even has infinite codimension.
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1. Introduction

Let f : M → M be a measurable transformation and π : V → M be a finite-
dimensional vector bundle over M . A linear cocycle over f is a transformation
F : V → V satisfying π◦F = f◦π and acting by linear isomorphisms Fx : Vx → Vf(x)

on the fibers. Let V be endowed with a measurable Riemannian metric, and let µ
be an f -invariant probability measure on M . If

(1.1) x 7→ max{0, log ‖Fx‖} is µ-integrable.

then, by the sub-additive ergodic theorem of Kingman [15],

λ+(F, x) = lim
n→∞

1

n
log ‖Fn

x ‖

exists at µ-almost every point. Analogously, if

(1.2) x 7→ max{0, log ‖F−1
x ‖} is µ-integrable.

then

λ−(F, x) = lim
n→∞

1

n
log ‖(Fn

x )−1‖−1

exists at µ-almost every point. The numbers λ+(F, x) and λ−(F, x) are the extremal
Lyapunov exponents of the cocycle. If (f, µ) is ergodic then they are constant on
a full measure set. It is easy to see that λ+(F, x) ≥ λ−(F, x) whenever they are
defined. We study conditions under which these two numbers coincide.

This problem has a long and rich history, initiated by the work of Fursten-
berg [10], which dealt with the case when the cocycle arises from independent
choices of random matrices, that is, when (f, µ) is a Bernoulli shift and Fx depends
only on the first coordinate of x. Furstenberg proved that the extremal Lyapunov
exponents must be distinct except, possibly, in the very special event that there
be some probability measure invariant under all the matrices Fx. Ledrappier [16]
proposed an alternative approach to this and related results that is particularly
well suited to our purposes here. A recent series of papers by Bonatti, Gomez-
Mont, Viana [3, 5, 24] extended the conclusions to Hölder continuous cocycles over
“chaotic” transformations: in the broadest set up, given in [24], one assumes that
(f, µ) is hyperbolic, in the non-uniform sense of Pesin theory, and satisfies a local
product condition.

Here we prove, for the first time, that a Furstenberg type criterion is compatible
with the presence of neutral (neither expanding nor contracting) behavior of the
base transformation, as long as this does not take place along all tangent directions.
In precise terms, we take f to be a partially hyperbolic diffeomorphism preserving
a Lebesgue measure µ on a manifold M , where partial hyperbolicity means that
the derivative admits an invariant splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu

where Es is uniformly contracted and Eu is uniformly expanded by the derivative
Df , but the behavior of Df along the central bundle Ec is only required to be
in between (dominated by) the other two. The dynamics of volume preserving
partially hyperbolic diffeomorphisms has been intensively studied in the last decade
or so. We refer the reader to [7, 11, 12] and [4, Chapter 8], for updated surveys of
progress in this field. We take advantage of some of this progress, specially of ideas
introduced by Burns, Wilkinson [8] in their proof of the Pugh, Shub [19] ergodicity
conjecture (under a mild center bunching property, that we also assume here).
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1.1. Generic linear cocycles. Unless stated otherwise, we assume f : M → M to
be a C2 partially hyperbolic center bunched diffeomorphism (the precise definitions
of these and other notions involved in the statements will be recalled later). The first
main theorem states that every fiber bunched linear cocycle over such a partially
hyperbolic diffeomorphism is approximated by another whose extremal Lyapunov
exponents are stably distinct:

Theorem A. Assume f is volume preserving and accessible, and the linear cocycle
F is Hölder continuous and fiber bunched. Then F is approximated, in the Cr,α

topology, by open sets of cocycles G such that λ−(G, x) < λ+(G, x) at µ-almost
every point. Even more, the subset of cocycles in a neighborhood for which the
Lyapunov exponents coincide has infinite codimension: it is contained in finite
unions of closed submanifolds with arbitrarily high codimension.

It is implicitly assumed that the vector bundle is sufficiently smooth for Cr,α

regularity of the cocycle to be well defined. Notice that the exponents are constant
on a full measure subset of M , because the hypothesis implies f is ergodic [8].

1.2. Measurable rigidity – projective cocycles. Theorem A will be deduced,
in Section 9, from certain perturbation arguments together with the following rigid-
ity result for cocycles whose extremal Lyapunov exponents coincide. A measur-
able set S ⊂ M is bi-saturated if it consists of entire strong-stable leaves and
entire strong-unstable leaves of the partially hyperbolic diffeomorphism f . Let
P(F ) : P(V) → P(V) be the projective cocycle induced by F in the projectivization
of V . By a slight abuse of language, we also denote by π the fiber bundle projection
P(V) →M .

Theorem B. Assume f is volume preserving and the linear cocycle F is Hölder
continuous and fiber bunched. Assume λ−(F, x) = λ+(F, x) at µ-almost every point.
Then every P(F )-invariant probability m on P(V) such that π∗m = µ admits a
disintegration {m̃x : x ∈M} into conditional probabilities along the fibers such that

(a) the disintegration is invariant under stable holonomy and under unstable
holonomy of P(F ) over a full measure bi-saturated set MF ⊂M ;

(b) if f is accessible then MF = M and the conditional probabilities m̃x depend
continuously on the base point x ∈M , relative to the weak∗ topology.

Invariant probability measures m that project down to µ always exist in this
setting, because the cocycle P(F ) is continuous and the domain is compact. We
postpone the definition of stable and unstable holonomies for a little while. Indeed,
Theorem B is a special case of a much more general result, valid for smooth cocycles
over partially hyperbolic diffeomorphisms, that we are going to state in the sequel.

1.3. Smooth cocycles. Let π : E →M be a measurable fiber bundle whose leaves
are manifolds endowed with a bounded Riemannian structure. By this we mean E
comes with a system of local coordinates π−1(U) → U×N whereN is a Riemannian
manifold and the coordinate changes are measurable maps

(1.3) (U ∩ V ) ×N → (U ∩ V ) ×N, (x, ξ) 7→ (x, gx(ξ))

such that every gx is a diffeomorphism, depending measurably on the base point
x relative to the C1 topology, and both the derivative Dgx(ξ) and its inverse are
uniformly bounded in norm. Then one may consider a Riemannian metric on the
fibers, varying measurably with the base point, transported from N via these local
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coordinates. This metric depends on a choice of the coordinates, but only up to a
uniformly bounded factor, which does not affect the notions that follow.

A smooth cocycle over f is a measurable transformation F : E → E such that
π ◦ F = f ◦ π, every Fx : Ex → Ef(x) is a diffeomorphism depending measurably on

x in the C1 topology, and the norms of the derivative DFx(ξ) and its inverse are
uniformly bounded. In particular, the functions

(x, ξ) 7→ log ‖DFx(ξ)‖ and (x, ξ) 7→ log ‖DFx(ξ)−1‖

are integrable, relative to any probability measure on E . The extremal Lyapunov
exponents of F at a point (x, ξ) ∈ E are

λ+(F, x, ξ) = lim
n→∞

1

n
log ‖DFn

x(ξ)‖

λ−(F, x, ξ) = lim
n→∞

1

n
log ‖DFn

x(ξ)−1‖−1 .

The limits exist m-almost everywhere, with respect to any F-invariant probability
m on E , by Kingman [15], and we have λ−(F, x, ξ) ≤ λ+(F, x, ξ). We shall only be
interested in measures m that project down to µ under π.

In our setting the base space M is a topological space (even a manifold). We will
always assume the fiber bundle is continuous and the smooth cocycle is continuous.
The first assumption means that local coordinates of E are defined on a neighbor-
hood of every point and the coordinate changes (1.3) are homeomorphisms such
that the diffeomorphisms gx depend continuously on x in the C1 topology (uni-
formly on compact parts of N). The second one means that F is a continuous map
such that the diffeomorphisms Fx depend continuously on x in the C1 topology.

Definition 1.1. We call stable holonomy for F a family Hs of homeomorphisms
Hs

x,y : Ex → Ey defined for all x and y in the same strong-stable leaf of the diffeo-
morphism f and satisfying

(a) Hs
y,z ◦Hs

x,y = Hs
x,z and Hs

x,x = id

(b) Fy ◦Hs
x,y = Hs

f(x),f(y) ◦ Fx

(c) (x, y) 7→ Hs
x,y(ξ) is continuous, uniformly on ξ in any compact subset of N .

Unstable holonomy is defined analogously, for pairs of points in the same strong-
unstable leaf.

Example 1.2. Let f : M → M be a partially hyperbolic diffeomorphism for
which there exists a central foliation Wc with compact leaves, that is, an invariant
continuous foliation with compact smooth leaves tangent to the central subbundle
Ec at every point. Let E be the disjoint union of the leaves of Wc. The natural
projection P : E → M given by P | Wc(x) = x makes E a continuous fiber bundle,
in the sense we have just given. Moreover, the map f induces a smooth cocycle
F : E → E , mapping each y ∈ Wc(x) to f(y) ∈ Wc(f(x)), and this cocycle is
continuous, in the sense we have just given. Assume f is dynamically coherent,
that is, there exist invariant foliations Wcs and Wcu with smooth leaves tangent to
Ec ⊕Es and Ec ⊕Eu, respectively. Then the cocycle F admits stable and unstable
holonomies: Hs

x,y(z) is the point where the strong-stable leaf through z ∈ Wc(x)
intersects the central leaf Wc(y), and analogously for unstable holonomy.
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This construction, combined with Theorem 7.6 below, is used by Wilkinson [25]
in a her very recent development of a Livsič theory for partially hyperbolic diffeo-
morphisms.

1.4. Measurable rigidity – smooth cocycles. Assume F admits stable holo-
nomy. Let m be any probability measure on E that projects down to µ, and let
{mx : x ∈ M} be a disintegration into conditional probabilities along the fibers.
The disintegration is invariant under stable holonomy (or s-invariant) if

(1.4) (Hs
x,y)∗mx = my

for every x and y in the same strong-stable leaf. The definition of invariance under
unstable holonomy (or u-invariance) is analogous. In either case, one speaks of
essential invariance if the invariance relation (1.4) holds for x and y in some full
measure subset of M .

Theorem C. Assume f is volume preserving and the smooth cocycle F admits
stable and unstable holonomies. Let m be an F-invariant probability measure on E
such that π∗m = µ, and assume λ−(F, x, ξ) = 0 = λ+(F, x, ξ) at m-almost every
point. Then m admits a disintegration {m̃x : x ∈M} into conditional probabilities
along the fibers such that

(a) the disintegration is invariant under stable holonomy and under unstable
holonomy of F over a full measure bi-saturated set MF ⊂M ;

(b) if f is accessible then MF = M and the conditional probabilities m̃x depend
continuously on the base point x ∈M , relative to the weak∗ topology.

Theorem B corresponds to the special case of projective cocycles associated to
linear cocycles: E = P(V) and Fx = P(Fx). Indeed, it is not difficult to see that

λ+(P(F ), x, ξ) = λ+(F, x) − λ−(F, x) = −λ−(P(F ), x, ξ)

wherever these exponents are defined. Moreover, we are going to see that if F
is fiber bunched then its projectivization admits stable and unstable holonomies.
Therefore, Theorem B is indeed contained in Theorem C.

1.5. Holonomy invariance. The proof of Theorem C has two main stages. The
first one, that we state as Theorem 5.1, is to show that every disintegration of m is
essentially invariant under both stable holonomy and unstable holonomy. This is
based on a non-linear extension of an abstract criterion of Ledrappier [16] for linear
cocycles, proposed in Avila, Viana [2] and quoted here as Theorem 5.4. Center
bunching and accessibility are not used at this point. On the other hand, they are
very important for the second stage of the proof:

Theorem D. Assume the smooth cocycle F admits stable and unstable holonomies.
Let Ψ be a measurable function assigning to each point x in M a probability measure
on the fiber Ex. Assume Ψ is essentially invariant under stable holonomy and
essentially invariant under unstable holonomy. Then,

(a) Ψ coincides µ-almost everywhere with some function Ψ̃ defined on a full
measure bi-saturated set MΨ ⊂ M and invariant under stable holonomy
and under unstable holonomy;

(b) if f is accessible then MΨ = M and Ψ̃ is continuous, relative to the weak∗

topology.
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As before, µ denotes a Lebesgue measure. However, in this theorem we do not
assume f to be volume preserving. The proof of part (a) is given in Section 7, and
is based on ideas of Burns, Wilkinson [8] that we recall in Section 6. Part (b) of the
theorem is proved in Section 8. It is worth pointing out that the cocycle F itself
plays no significant role here. Indeed, the results we actually prove, that contain
Theorem D (Theorems 7.6 and 8.1), hold for sections of continuous fiber bundles
invariant under stable and unstable holonomies, and make no mention to cocycles.

One can go one step further and dispose of the holonomies as well, as follows.
The notions we are going to introduce and our next main result apply, in particular,
to functions Ψ : M → P with values in some topological space P , viewed as sections
of the trivial fiber bundle X = M × P .

Definition 1.3. A measurable section Ψ : M → X of a continuous fiber bundle
π : X → M is s-continuous if the map (x, y,Ψ(x)) 7→ Ψ(y) is continuous on the
set of pairs of points (x, y) in the same local strong-stable leaf. The notion of u-
continuous is analogous, considering strong-unstable leaves instead. Finally, Ψ is
bi-continuous if it is both s-continuous and u-continuous.

We shall also consider essential versions of s-continuity and u-continuity, where
the continuity condition is taken to hold on some full measure subset only, but is
required to be locally uniform (see Remark 7.14). Then we say Ψ is bi-essentially
continuous if it is both essentially s-continuous and essentially u-continuous. Re-
call that a polish space is a complete metrizable space, and for metrizable spaces
separability is the same as existence of a countable basis of open sets.

Theorem E. Let π : X →M be a continuous fiber bundle.

(a) Assume the fiber of X is a separable polish space. Then every bi-essentially
continuous section Ψ : M → X coincides µ-almost everywhere with some
bi-continuous section Ψ̃ : MΨ → X defined on a full measure bi-saturated
set MΨ ⊂M .

(b) Assume f is accessible (not necessarily fiber bunched). Then every bi-

continuous section Ψ̃ : M → X is continuous on the whole M .

2. Partially hyperbolic diffeomorphisms

We say that a diffeomorphism f : M → M of a compact manifold is partially
hyperbolic if there is a nontrivial splitting of the tangent bundle

TM = Es ⊕ Ec ⊕ Eu

that is invariant under the derivative map Df , and there exists a Riemannian
metric on M for which one can choose continuous positive functions ν, ν̂, γ, γ̂ with
ν, ν̂ < 1 and ν < γ < γ̂−1 < ν̂−1 such that, for any unit vector v ∈ TpM ,

‖Df(v)‖ < ν(p) if v ∈ Es(p),(2.1)

γ(p) <‖Df(v)‖ < γ̂(p)
−1

if v ∈ Ec(p),(2.2)

ν̂(p)−1 <‖Df(v)‖ if v ∈ Eu(p).(2.3)

We say that f is volume preserving if it preserves a probability µ in the measure
class of a volume induced by some Riemannian metric. This is not ambiguous since
the volumes of any two Riemannian metrics lie in the same measure class.



7

We will often use the following notational convention: given any continuous
function τ : M → R+, we denote

(2.4) τn(p) = τ(p)τ(f(p)) · · · τ(fn−1(p)) for any n ≥ 1.

2.1. Accessibility and center bunching. The stable and unstable bundles Es

and Eu of f are uniquely integrable and their integral manifolds form two transverse
(continuous) foliations Ws and Wu, whose leaves are immersed submanifolds of the
same class of differentiability as f . These foliations are referred to as the strong-
stable and strong-unstable foliations. They are invariant under f , meaning that

f(Ws(x)) = Ws(f(x)) and f(Wu(x)) = Wu(f(x)),

where Ws(x) and Ws(x) denote the leaves of Ws and Wu, respectively, passing
through any x ∈ M . These foliations are, usually, not transversely smooth. But
they are always absolutely continuous: the holonomy maps between any pair of
cross-sections preserve the class of zero Lebesgue measure sets (see Section 2.2 for
definitions and [1] for a proof of this fact in the present setting).

Definition 2.1. A measurable set is s-saturated (or Ws-saturated) if it is a union
of entire strong-stable leaves, u-saturated (or Wu-saturated) if it is a union of entire
strong-unstable leaves, and bi-saturated if it is both s-saturated and u-saturated.
We say that f is accessible if ∅ and M are the only bi-saturated sets, and essentially
accessible if every bi-saturated set has either zero measure or full measure.

Pugh, Shub [19] conjectured that essential accessibility implies ergodicity, for a
C2, partially hyperbolic, volume preserving diffeomorphism. In [20] they showed
that this does hold under a few additional assumptions, called dynamical coherence
and center bunching. To date, the best result in this direction is due to Burns,
Wilkinson [8], who proved the Pugh-Shub conjecture assuming only a milder form
of center bunching:

Definition 2.2. A C2 partially hyperbolic diffeomorphism is center bunched if the
functions ν, ν̂, γ, γ̂ may be chosen to satisfy

(2.5) ν < γγ̂ and ν̂ < γγ̂.

When the diffeomorphism is just C1+α, for some α > 0, one uses a stronger
condition: να < γγ̂ and ν̂α < γγ̂. The arguments in [8] extend to this setting, and
so do all our present results.

2.2. Adapted metric and local strong leaves. Let F be a foliation of some
n-dimensional manifold M , with d-dimensional smooth leaves. For r > 0, we
denote by F(x, r) the connected component of x in the intersection of the leaf F(x)
through x with the Riemannian ball B(x, r). A foliation box for F is the image
of Rd ×Rn−d under a homeomorphism that maps each Rd × {y} diffeomorphically
to some subset of a leaf of F ; let us call the image a horizontal slice. A cross-
section to F is a smooth codimension-d disk inside a foliation box that intersects
each horizontal slice exactly once, transversely and with angle uniformly bounded
from zero. Then, for any pair of cross-sections Σ and Σ′ there is a well defined
holonomy map Σ → Σ′, assigning to each x ∈ Σ the unique point of intersection of
Σ′ with the horizontal slice through x. The foliation is absolutely continuous if all
these homeomorphisms map zero Lebesgue measure sets to zero Lebesgue measure
sets. In all the cases we deal with in this work, we even have that the Jacobians
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(Radon-Nikodym derivatives) of all holonomy maps are bounded by a uniform
constant. See [1] for the case of strong-stable and strong-unstable foliations of
partially hyperbolic diffeomorphisms.

Let M be endowed with a Riemannian metric adapted to f , that is, such that
properties (2.1)-(2.3) hold. Clearly, these properties are not affected by rescaling.
At a few steps in the course of the argument we do allow for the Riemannian
metric to be multiplied by some large constant. Let R > 1 be fixed, once and for all.
Rescaling the metric, if necessary, we may assume that the Riemannian ball B(x,R)
is contained in foliation boxes for both Ws and Wu, for every x ∈ M . For each
symbol ∗ ∈ {s, u}, define the local leaf of W∗ through x to be W∗

loc(x) = W∗(x,R).
Rescaling the metric once more, if necessary, we may ensure that, given any p ∈M
and x, y ∈ B(p,R),

y ∈ Ws
loc(x) implies dist(f(x), f(y)) ≤ ν(p) dist(x, y),

and, similarly,

y ∈ Wu
loc(x) implies dist(f−1(x), f−1(y)) ≤ ν̂(f−1(p)) dist(x, y).

As a consequence, given any p, x, y ∈M ,

(a) f(Ws
loc(x)) ⊂ Ws

loc(f(x)) and f−1(Wu
loc(x)) ⊂ Wu

loc(f
−1(x)).

(b) If f j(x) ∈ B(f j(p), R) for 0 ≤ j < n, and y ∈ Ws
loc(x), then

dist(fn(x), fn(y)) ≤ νn(p) dist(x, y);

(c) If f−j(x) ∈ B(f−j(p), R) for 0 ≤ j < n, and y ∈ Wu
loc(x), then

dist(f−n(x), f−n(y)) ≤ ν̂−n(p) dist(x, y).

These properties of the strong-stable and strong-unstable foliations of f are useful
guidelines to the notion of fake foliations introduced in [8], that we are going to
recall in Section 6.2.

3. Linear cocycles: fiber bunching and holonomies

Let F : V → V be a linear cocycle over a volume preserving diffeomorphism. The
theorem of Oseledets [17] states that, under the integrability assumptions (1.1) and
(1.2), Lebesgue almost every point x ∈ M admits a splitting of the corresponding
fiber

V = E1
x ⊕ · · · ⊕Ek

x , k = k(x)

and real numbers λ1(F, x) > · · · > λk(F, x) such that

(3.1) lim
n→±∞

1

n
log ‖Fn

x (vi)‖ = λi(F, x) for every non-zero vi ∈ Ei
x.

The Lyapunov exponents λi(F, x) and the Oseledets subspaces Ei
x are uniquely

defined µ-almost everywhere, and they vary measurably with the point x. Moreover
λ1(F, x) = λ+(F, x) and λk(F, x) = λ−(F, x). Finally, the exponents λi(F, x) are
constants on orbits, and so they are constant almost everywhere when f is ergodic.

Throughout, K will represent both R and C. We focus on the case when the
vector bundle is trivial: V = M × Kd. Then the cocycle has the form

F (x, v) = (f(x), A(x)v) for some A : M → GL(d,K).
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Conversely, any A : M → GL(d,K) defines a cocycle over f , that we denote by FA.
Note that Fn(x, v) = (fn(x), An(x)v) for n ∈ Z, where

An(x) = A(fn−1(x)) · · ·A(f(x))A(x) and A−n(x) =
(
An(f−n(x))

)−1

if n ≥ 1, and A0(x) = id. We also write λi(A, x) and λ±(A, x) to mean λi(FA, x)
and λ±(FA, x), respectively. The relation (3.1) translates to

(3.2) lim
n→±∞

1

n
log ‖An(x)vi‖ = λi(A, x) for every non-zero vi ∈ Ei

x.

For each r ∈ {0, 1, . . .} and 0 ≤ α ≤ 1, let Gr,α(M,d,K) be the space of Cr,α

maps from M to GL(d,K), that is, maps whose derivative of order r exists and is
α-Hölder continuous. The Cr,α topology is defined by the norm (for α = 0 omit
the last term)

(3.3) ‖A‖r,α = max
0≤i≤r

sup
x∈M

‖DiA(x)‖ + sup
x 6=y

‖DrA(x) −DrA(y)‖
dist(x, y)α

.

By continuity and compactness, every cocycle FA with A ∈ Gr,α(M,d,K) satisfies
the integrability conditions (1.1) and (1.2). We always assume r + α > 0. Then
every A ∈ Gr,α(M,d,K) is Hölder continuous,

‖A(x) −A(y)‖ ≤ ‖A‖0,β dist(x, y)β , with β =

{
α if r = 0
1 if r ≥ 1.

3.1. Fiber bunched linear cocycles. Let f : M → M be a partially hyperbolic
diffeomorphism, and ν and ν̂ be the functions in (2.1) and (2.3).

Definition 3.1. We say that A ∈ Gr,α(M,d,K) is fiber bunched if

(3.4) ‖A(x)‖ ‖A(x)−1‖ν(x)β < 1 and ‖A(x)‖ ‖A(x)−1‖ν̂(x)β < 1,

for every x ∈M (interchangeably, we say that the cocycle FA is fiber bunched).

Remark 3.2. This notion has appeared before in [3, 5, 24], where it was called
domination. The present terminology seems preferable, for a number of reasons.
One, is by analogy with the notion of center bunching in Definition 2.2. Perhaps
more important, the natural notion of domination for smooth cocycles corresponds
to a rather different condition, see Definition 4.1. The relation between the two is
explained in Section 4.3: a linear cocycle is fiber bunched if and only the associated
projective cocycle is dominated. Moreover, a notion of fiber bunching can be defined
for smooth cocycles as well (see [2]), similar to (3.4) and stronger than domination.

We are going to see that if A is fiber bunched then the linear cocycle FA,
and its projectivization P(FA), admit stable and unstable holonomies, and these
holonomies depend in a differentiable way on A ∈ Gr,α(M,d,K). All our arguments
hold, up to appropriate adjustments, under the weaker assumption that (3.4) holds
for some power AN , N ≥ 1. Notice that fiber bunching is an open condition: if
A is fiber bunched then so is every cocycle B in a C0 neighborhood, just because
M is compact. Even more, still by compactness, if A is fiber bunched then there
exists m < 1 such that

(3.5) ‖B(x)‖ ‖B(x)
−1‖ν(x)βm < 1 and ‖B(x)‖ ‖B(x)

−1‖ν̂(x)βm < 1

for every x ∈ M and every B in a C0 neighborhood of A. It is in this form that
the definition will be used in the proofs.
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Lemma 3.3. Suppose A ∈ Gr,α(M,d,K) is fiber bunched. Then there is C > 0
such that

‖An(y)‖ ‖An(z)−1‖ ≤ Cνn(x)−βm

for all y, z ∈ Ws
loc(x), x ∈ M , and n ≥ 1. Moreover, the constant C that may be

taken uniform on a neighborhood of A.

Proof. Since A ∈ Gr,α(M,d,K) is β-Hölder, there exists L1 > 0 such that

‖A(f j(y))‖/‖A(f j(x))‖ ≤ exp(L1 dist(f j(x), f j(y)β)

≤ exp(L1ν
j(x)β dist(x, y)β)

and similarly for ‖A(f j(z))−1‖/‖A(f j(x))−1‖. By sub-multiplicativity of the norm

‖An(y)‖ ‖An(z)−1‖ ≤
n−1∏

j=0

‖A(f j(y))‖ ‖An(f j(z))−1‖.

In view of the previous observations, the right hand side is bounded by

exp
[
L1

n−1∑

j=0

νj(x)(dist(x, y)β + dist(x, z)β)
] n−1∏

j=0

‖A(f j(x))‖ ‖An(f j(x))−1‖

Since ν(·) is strictly smaller than 1, the first factor is bounded by some C > 0. By
fiber bunching (3.5), the second factor is bounded by νn(x)−βm. It is clear from
the construction that L1 and C may be chosen uniform on a neighborhood. �

Proposition 3.4. Suppose A ∈ Gr,α(M,d,K) is fiber bunched. Then there is L > 0
such that for every pair of points x, y in the same leaf of the strong-stable foliation
Ws,

(1) Hs
x,y = limn→∞An(y)

−1
An(x) exists (a linear isomorphism of Kd)

(2) Hs
fj(x),fj(y) = Aj(y) ◦Hs

x,y ◦Aj(x)−1 for every j ≥ 1

(3) Hs
x,x = id and Hs

x,y = Hs
z,y ◦Hs

x,z

(4) ‖Hs
x,y − id ‖ ≤ L dist(x, y)β whenever y ∈ Ws

loc(x).

(5) Given a > 0 there is Γ(a) > 0 such that ‖Hs
x,y‖ < Γ(a) for any x, y ∈ M

with y ∈ Ws(x) and distWs(x, y) < a.

Moreover, L and the function Γ(·) may be taken uniform on a neighborhood of A.

Proof. In order to prove claim (1), it is sufficient to consider the case y ∈ Ws
loc(x)

because An+j(y)−1An+j(x) = Aj(y)−1An(f j(y))−1An(f j(x))Aj(x). Furthermore,
once this is done, claim (2) follows immediately from this same relation. Each
difference ‖An+1(y)−1An+1(x) −An(y)−1An(x)‖ is bounded by

‖An(y)−1‖ ‖A(fn(y))−1A(fn(x)) − id ‖ ‖An(x)‖.
Since A is β-Hölder, there is L2 > 0 such that the middle factor is bounded by

L2 dist(fn(x), fn(y))β ≤ L2

[
νn(x) dist(x, y)

]β
.

Using Lemma 3.3 to bound the product of the other factors, we obtain

(3.6) ‖An+1(y)−1An+1(x) −An(y)−1An(x)‖ ≤ CL2

[
νn(x)(1−m) dist(x, y)

]β
.

The sequence νn(x)β(1−m) is uniformly summable, since ν(·) is bounded away from
1. Let K > 0 be an upper bound for the sum. It follows that An(y)−1An(x) is
a Cauchy sequence, and so it does converge. This finishes the proof of claim (1).
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Claim (3) is a direct consequence. Moreover, adding the last inequality over all n,
we also get ‖Hs

x,y − id ‖ ≤ L dist(x, y)β with L = CL2K. This proves claim (4). As
a consequence, we also get that there exists γ > 0 such that ‖Hs

x,y‖ < γ for any
points x, y in the same local strong-stable leaf. To deduce claim (5), notice that for
any x, y in the same (global) strong-stable leaf there exist points z0, . . . , zn, where
n depends only on an upper bound for the distance between x and y along the leaf,
such that z0 = x, zn = y, and each zi belongs to the local strong-stable leaf of zi−1

for every i = 1, . . . , n. Together with (3), this implies ‖Hs
x,y‖ < γn. It is clear from

the construction that L2 and Γ(·) may be taken uniform on a neighborhood. The
proof of the proposition is complete. �

The family of maps Hs
x,y given by this proposition is a stable holonomy for A (or

the cocycle FA). The next proposition states that these maps vary continuously
with the base point.

Proposition 3.5. Suppose A ∈ Cr,α(M,d,K) is fiber bunched. Then the map

(x, y) 7→ Hs
x,y

is continuous on W s
N = {(x, y) ∈M×M : fN (y) ∈ Ws

loc(f
N (x))}, for every N ≥ 0.

Proof. Notice that dist(x, y) ≤ 2R for all (x, y) ∈ W s
0 , by our definition of local

strong-stable leaves in Section 2.2. So, the Cauchy estimate in (3.6)

(3.7)
‖An+1(y)−1An+1(x) −An(y)−1An(x)‖ ≤ CL2

[
νn(x)(1−m) dist(x, y)

]β
.

≤ CL2(2R)βνn(x)β(1−m)

is uniform on W s
0 . This implies that the limit in part (1) of Proposition 3.4 is

uniform on W s
0 . That implies case N = 0 of the present proposition. The general

case follows immediately, using property (2) in Proposition 3.4. �

Remark 3.6. Since the constants C and L2 are uniform on some neighborhood of
A, the Cauchy estimate (3.7) is also locally uniform on A. Thus, the limit in part
(1) of Proposition 3.4 is locally uniform on A as well. Consequently, the stable
holonomy also depends continuously on the cocycle, in the sense that

(A, x, y) 7→ Hs
A,x,y is continuous on Gr,α(M,d,K) ×W s

0 .

Using property (2) in Proposition 3.4 we may even replace W s
0 by any W s

N .

Dually, one finds an unstable holonomy (x, y) 7→ Hu
x,y for A (or the cocycle FA),

given by
Hu

x,y = lim
n→−∞

An(y)−1An(x)

whenever x and y are on the same strong-unstable leaf, and it is continuous on
Wu

N = {(x, y) ∈M ×M : f−N (y) ∈ Ws
loc(f

−N(x))}, for every N ≥ 0. Even more,

(A, x, y) 7→ Hu
A,x,y is continuous on every Gr,α(M,d,K) ×Wu

N .

3.2. Differentiability of holonomies. Now we study the differentiability of sta-
ble holonomies Hs

A,x,y as functions of A ∈ Gr,α(M,d,K). Notice that Gr,α(M,d,K)
is an open subset of the Banach space of Cr,α maps from M to the space of all
d× d matrices and so the tangent space at each point of Gr,α(M,d,K) is naturally
identified with that Banach space. The next proposition is similar to Lemma 2.9 in
[24], but our proof is neater: the previous argument used a stronger fiber bunching
condition.
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Proposition 3.7. Suppose A ∈ Gr,α(M,d,K) is fiber bunched. Then there exists
a neighborhood U ⊂ Gr,α(M,d,K) of A such that, for any x ∈ M and any y,
z ∈ Ws(x), the map B → Hs

B,y,z is of class C1 on U , with derivative

(3.8) ∂BH
s
B,y,z : Ḃ 7→

∞∑

i=0

Bi(z)−1
[
Hs

B,f i(y),f i(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hs
B,f i(y),fi(z)

]
Bi(y).

Proof. Recall fiber bunching is an open condition and the constants in Lemma 3.3
and Proposition 3.4 may be taken uniform on some neighborhood U of A. There are
three main steps. First, we suppose that y, z are in the local strong-stable leaf of x,
and prove that the expression ∂BH

s
B,y,z Ḃ is well defined for every B ∈ U and every

Ḃ in TBGr,α(M,d,K). Next, still in the local case, we show that this expression
indeed gives the derivative of our map with respect to the cocycle. Finally, we
extend the conclusion to arbitrary points on the global strong-stable leaf of x.

Step 1. For each i ≥ 0, write

(3.9) Hs
B,f i(y),fi(z)B(f i(y))−1Ḃ(f i(y)) −B(f i(z))−1Ḃ(f i(z))Hs

B,f i(y),fi(z)

as the following sum

(Hs
B,f i(y),fi(z) − id)B(f i(y))−1Ḃ(f i(y)) +B(f i(z))−1Ḃ(f i(z))(id−Hs

B,f i(y),fi(z))

+ [B(f i(y))−1Ḃ(f i(y)) −B(f i(z))−1Ḃ(f i(z))].

By property (4) in Proposition 3.4, the first term is bounded by

(3.10) L ‖B(f i(y))−1‖ ‖Ḃ(f i(y))‖ dist(f i(y), f i(z))β

≤ L ‖B−1‖0,0 ‖Ḃ‖0,0

[
νi(x) dist(y, z)

]β

and analogously for the second one. The third term may be written as

‖B(f i(y))−1[Ḃ(f i(y)) − Ḃ(f i(z))] + [B(f i(y))−1 −B(f i(z))−1]Ḃ(f i(z))‖.
Using the triangle inequality, we conclude that this is bounded by

(3.11)
(
‖B(f i(y))−1‖Hβ(Ḃ) +Hβ(B−1) ‖Ḃ(f i(z))‖

)
dist(f i(y), f i(z))β .

≤ ‖B−1‖0,β ‖Ḃ‖0,β

[
νi(x) dist(y, z)

]β

,

where Hβ(φ) means the smallest C ≥ 0 such that ‖φ(z) − φ(w)‖ ≤ C dist(z, w)β

for all z, w ∈M . Notice, from the definition (3.3), that

(3.12) ‖φ‖0,0 +Hβ(φ) = ‖φ‖0,β ≤ ‖φ‖r,α for any function φ.

Let C1 = sup
{
‖B−1‖0,β : B ∈ U

}
. Replacing (3.10) and (3.11) in the expression

preceding them, we find that the norm of (3.9) is bounded by

(2L+ 1)C1 ν
i(x)β dist(y, z)β‖Ḃ‖0,β

Hence, the norm of the ith term in the expression of ∂BH
s
B,y,z Ḃ is bounded by

(3.13) 2(L+ 1)C1 ν
i(x)β‖Bi(z)−1‖ ‖Bi(y)‖ dist(y, z)β‖Ḃ‖0,β

≤ C2 ν
i(x)β(1−m) dist(y, z)β‖Ḃ‖0,β
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where C2 = 2C(L+1)C1 and C is the constant in Lemma 3.3. In this way we find,

(3.14) ‖∂BH
s
B,y,z(Ḃ)‖ ≤ C2

∞∑

i=0

νi(x)β(1−m) dist(y, z)β‖Ḃ‖0,β

for any x ∈M and y, z ∈ Ws
loc(x). This shows that the series defining ∂BH

s
B,y,z(Ḃ)

does converge at such points.
Step 2. By part (1) of Proposition 3.4 together with Remark 3.6, the map

Hs
B,y,z is the uniform limit Hn

B,y,z = Bn(z)−1Bn(y) when n → ∞. Clearly, every
Hn

B,y,z is a differentiable function of B, with derivative

∂BH
n
B,y,z(Ḃ) =

n−1∑

i=0

Bi(z)−1
[
Hn−i

B,f i(y),fi(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hn−i
B,f i(y),fi(z)

]
Bi(y).

So, to prove that ∂BH
s
B,y,z is indeed the derivative of the holonomy with respect to

B, it suffices to show that ∂Hn
B,y,z converges uniformly to ∂Hs

B,y,z when n→ ∞.

Write 1 −m = 2τ . From (3.6) and the fact that ν(·) is strictly smaller than 1,

‖Hn
B,y,z −Hs

B,y,z‖ ≤ CL2

∞∑

j=n

νj(x)β(1−m) dist(y, z)β

≤ C3ν
n(x)2βτ dist(y, z)β ≤ C3ν

n(x)βτ dist(y, z)β

for some uniform constant C3 (the last inequality is trivial, but it will allow us to
come out with a positive exponent for νi(x) in (3.15) below). More generally, and
for the same reasons,

‖Hn−i
B,f i(y),f i(z) −Hs

B,f i(y),fi(z)‖ ≤ C3ν
n−i(f i(x))βτ dist(f i(y), f i(z))β

≤ C3ν
n−i(f i(x))βτ νi(x)β dist(y, z)β

= C3ν
n(x)βτνi(x)β(1−τ) dist(y, z)β

for all 0 ≤ i ≤ n, and all y, z in the same local strong-stable leaf. It follows,
using also Lemma 3.3, that the norm of the difference between the ith terms in the
expressions of ∂BH

n
B,y,z and ∂BH

s
B,y,z is bounded by

(3.15) C3ν
n(x)βτνi(x)β(1−τ) dist(y, z)β‖Bi(z)−1‖ ‖Bi(y)‖

≤ CC3ν
n(x)βτνi(x)βτ dist(y, z)β.

Combining this with (3.13), we find that ‖∂BH
n
B,y,z − ∂BH

s
B,y,z‖ is bounded by

CC3

n−1∑

i=0

νi(x)βτνn(x)βτ dist(y, z)β + C2

∞∑

i=n

νi(x)2βτ dist(y, z)β .

Since νi(x) is bounded away from 1, the sum is bounded by C4ν
n(x)βτ dist(y, z)β,

for some uniform constant C4. This latter expression tends to zero uniformly when
n→ ∞, and so the argument is complete.

Step 3. From the property B(z)Hs
B,y,z = Hs

B,f(y),f(z)B(y) in Proposition 3.4,

we find that if Hs
B,f(y),f(z) is differentiable on B then so is Hs

B,y,z and the derivative

is determined by

(3.16) Ḃ(z)Hs
B,y,z +B(z) · ∂BH

s
B,y,z(Ḃ) = Hs

B,y,z · Ḃ(y) + ∂BH
s
B,y,z(Ḃ) ·B(y).
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Combining this observation with the previous two steps, we conclude that Hs
B,y,z

is differentiable on B for any pair of points y, z in the same (global) strong-stable
leaf: just note that fn(y), fn(z) are in the same local strong-stable leaf for large n.
Moreover, a straightforward calculation shows that the expression in (3.8) satisfies
the relation (3.16). Therefore, (3.8) is the expression of the derivative for all points
y, z in the same strong-stable leaf. The proof of the proposition is now complete. �

Corollary 3.8. Suppose A ∈ Gr,α(M,d,K) is fiber bunched. Then there exists
θ < 1 and a neighborhood U of A and, for each a > 0, there exists C5(a) > 0 such
that

(3.17) ‖
∞∑

i=k

Bi(z)−1
[
Hs

B,f i(y),f i(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hs
B,f i(y),f i(z)

]
Bi(y)‖ ≤ C5(a) θ

k ‖Ḃ‖0,β

for any B ∈ U , k ≥ 0, x ∈M , and y, z ∈ Ws(x) with distWs(y, z) < a.

Proof. Let θ < 1 be an upper bound for ν(·)β(1−m). Suppose first distWs(y, z) < R.
Then y, z are in the same local strong-stable leaf, and we may use (3.13) to get
that the expression in (3.17) is bounded above by

C2

∞∑

i=k

νi(x)β(1−m) dist(y, z)β‖Ḃ‖0,β ≤ C′
5 θ

k ‖Ḃ‖0,β

for some uniform constant C′
5. This settles the case a ≤ R, with C5(a) = C′

5. In
general, there is l ≥ 0 such that distWs(y, z) < a implies distWs(f l(y), f l(z)) < R.
Suppose first that k ≥ l. Clearly, the expression in (3.17) does not change if we
replace y, z by f l(y), f l(z) and replace k by k − l. Then, by the previous special
case, (3.17) is bounded above by

C′
5 θ

k−l ‖Ḃ‖0,β

and so it suffices to choose C5(a) ≥ C′
5θ

−l. If k < l then begin by splitting (3.17)
into two sums, respectively, over k ≤ i < l and over i ≥ l. The first sum is bounded
by C′′

5 (a)‖Ḃ‖0,β for some constant C′′
5 (a) > 0 that depends only on a (and l, which

is itself a function of a). The second one is bounded by C′
5 ‖Ḃ‖0,β, as we have just

seen. The conclusion follows, assuming we choose C5(a) ≥ C′
5θ

−l + C′′
5 (a)θ−l. �

For future reference, let us also state the dual analogues of Proposition 3.7 and
Corollary 3.8 for unstable holonomies:

Proposition 3.9. Suppose A ∈ Gr,α(M,d,K) is fiber bunched. Then there exists
a neighborhood U ⊂ Gr,α(M,d,K) of A such that, for any x ∈ M and any y, z ∈
Wu(x), the map B → Hu

B,y,z is of class C1 on U with derivative

(3.18) ∂BH
u
B,y,z : Ḃ 7→ −

∞∑

i=1

B−i(z)−1
[
Hu

B,f−i(y),f−i(z)B(f−i(y))−1Ḃ(f−i(y))

−B(f−i(z))−1Ḃ(f−i(z))Hu
B,f−i(y),f−i(z)

]
B−i(y).
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Corollary 3.10. In the same setting as Proposition 3.9, if distWu(y, z) < a then,

(3.19) ‖
∞∑

i=k

B−i(z)−1
[
Hu

B,f−i(y),f−i(z)B(f−i(y))−1Ḃ(f−i(y))

−B(f−i(z))−1Ḃ(f−i(z))Hu
B,f−i(y),f−i(z)

]
B−i(y)‖ ≤ C5(a) θ

k ‖Ḃ‖0,β.

for every k ≥ 0.

4. Smooth cocycles: domination and holonomies

We are going to introduce a concept of domination for smooth cocycles, related
to the notion of fiber bunching in the linear setting, and observe that dominated
smooth cocycles admit stable and unstable holonomies (Proposition 4.2) and these
holonomies vary continuously with the cocycle (Proposition 4.3). We also include
some comments on the special case of projective cocycles. These facts are mentioned
to make the analogy to the linear case more apparent, but they will otherwise not
be used in the present paper: whenever we deal with smooth cocycles we simply
assume stable and unstable holonomies exist.

4.1. Dominated smooth cocycles. For each β > 0 let Cβ(f, E) be the space of
cocycles F that are β-Hölder continuous, meaning distC1(Fx,Fy) ≤ C dist(x, y)β

for some C > 0 and every x, y ∈M .

Definition 4.1. A cocycle F ∈ Cβ(f, E) is dominated if there is θ < 1 such that

(4.1) ‖DFx(ξ)−1‖ ν(x)β ≤ θ and ‖DFx(ξ)‖ ν̂(x)β ≤ θ for all (x, ξ) ∈ E
In other words, all the contractions of F along the fibers are strictly weaker than

the contractions of f along strong-stable leaves, and analogously for the expansions.
The observations that follow extend, after straightforward adjustments, to the case
when (4.1) holds instead for some iterate F`, ` ≥ 1.

This condition is designed so that the usual graph transform argument yields a
“strong-stable” lamination and a “strong-unstable” lamination for the map F:

Proposition 4.2. Assume F ∈ Cβ(f, E) is dominated. Then there exists a unique
partition Ws = {Ws(x, ξ) : (x, ξ) ∈ E} of the fiber bundle E such that

(1) every Ws(x, ξ) is a β-Hölder graph over Ws(x), with Hölder constant C
uniform on x

(2) F(Ws(x, ξ)) ⊂ Ws(F(x, ξ)) for all (x, ξ) ∈ E
(3) the family of maps Hs

x,y : Ex → Ey defined by (y,Hs
x,y(ξ)) ∈ Ws(x, ξ), when

y ∈ Ws(x), is a stable holonomy for F

(4) each map Hs
x,y : Ex → Ey, with y ∈ Ws(x), coincides with the uniform limit

of (Fn
y )−1 ◦ Fn

x as n→ ∞.

Moreover, there is a dual statement for strong-unstable leaves.

Outline of the proof. This follows from the same partial hyperbolicity methods (see
Hirsch, Pugh, Shub [13]) used in the previous section for linear cocycles. Existence
(1) and invariance (2) of the family Ws follow from a standard application of the
graph transform argument [13]. Property (3) is a consequence, in view of the
definition of Hs

x,y. To prove (4), notice that

Hs
x,y = (Fn

y )−1 ◦Hs
fn(x),fn(y) ◦ Fn

x ,
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because the lamination Ws is invariant under F. Also, by part (1), the uniform C0

distance from Hs
fn(x),fn(y) to the identity is bounded by

C dist(fn(x), fn(y))β ≤ C
[
νn(x) dist(x, y)

]β
.

Putting these two observations together, we find that

distC0(Hs
x,y, (F

n
y )−1 ◦ Fn

x) ≤ Lip
(
(Fn

y )−1
)

distC0(Hs
fn(x),fn(y), id)

≤ C sup
ξ

‖DFn
y (ξ)−1‖ νn(x)β dist(x, y)β .

So, by the domination condition (4.1),

distC0(Hs
x,y, (F

n
y )−1 ◦ Fn

x) ≤ Cθn dist(x, y)β .

Thus we obtain (4), and this closes our outline of the proof. �

4.2. Continuous dependence of holonomies. Let Dβ(f, E) ⊂ Cβ(f, E) denote
the subset of dominated cocycles. It is clear from the definition that this is an open
subset, relative to the uniform C1 metric

(4.2) distC1(F,G) = sup
x∈M

distC1(Fx,Gx).

We are going to see that stable holonomies vary continuously with the cocycle inside
Dβ(f, E), relative to this metric.

Let Ws(G) = {Ws(G, x, ξ) : (x, ξ) ∈ E} denote the strong-stable lamination of a
dominated cocycle G, as in Proposition 4.2, and Hs

G = Hs
G,x,y be the corresponding

stable holonomy:

(4.3) (y,Hs
G,x,y(ξ)) ∈ Ws(G, x, ξ).

Recall Ws(G, x, ξ) is a graph over Ws(x). We also denote by Ws
loc(G, x, ξ) the

subset of points (y,Hs
G,x,y(ξ)) with y ∈ Ws

loc(x).

Proposition 4.3. Let (Fk)k be a sequence of cocycles converging to F in Dβ(f, E).
Then

(1) every Ws(Fk, x, ξ) is a Lipschitz graph, with Lipschitz constant uniform on
x, ξ, and k

(2) Ws
ε (Fk, x, ξ) converges to Ws

loc(F, x, ξ), as graphs over the same domain,
uniformly on (x, ξ) ∈ E

(3) Hs
Fk,x,y(ξ) converges to Hs

F,x,y(ξ) for every x ∈M , y ∈ Ws(x), and ξ ∈ Ex,

and the convergence is uniform over all y ∈ Wloc(x).

Outline of the proof. This is another standard consequence of the classical graph
transform argument [13]. Indeed, the assumptions imply that the graph transform
of Fk converges to the graph transform of F in an appropriate sense, so that the
corresponding fixed points converge as well. This yields (1) and (2). Part (3) is
a direct consequence of (2) and the definition (4.3), in the case y ∈ Ws

ε (x). The
general statement follows, using the invariance property (h2):

Hs
Fk,x,y = (Fn

k,y)−1 ◦HFk,fn(x),fn(y) ◦ Fn
k,x.

Related facts have been proved in [24, Section 4] for linear cocycles, along these
lines. �
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4.3. Projective cocycles. The projective cocycle defined by A ∈ Gr,α(M,d,K) is
the smooth cocycle

FA = P(FA) : M × P(Kd) →M × P(Kd)

given by FA(x, [v]) = (f(x), [A(x)v]), where [w] denotes the projective class of a
non-zero vector w ∈ Kd. Then, for every x, n, and ξ ∈ P(Kd),

Fn
A,x(ξ) =

An(x)ξ

‖An(x)ξ‖
(on the right hand side, think of ξ as a unit vector in Kd). It follows that,

DFn
A,x(ξ)ξ̇ =

projAn(x)ξ(A
n(x)ξ̇)

‖An(x)ξ‖ ,

where projw v = v − w(w · v)/(w · w) is the projection of v to the orthogonal
complement of w. This implies that

(4.4) ‖DFn
A,x(ξ)‖ ≤ ‖An(x)‖/‖An(x)ξ‖ ≤ ‖An(x)‖‖An(x)−1‖

for every x, ξ, and n. Analogously, replacing An by its inverse,

(4.5) ‖DFn
A,x(ξ)−1‖ ≤ ‖An(x)−1‖‖An(x)‖

for every x, ξ, and n. These two inequalities imply

λ+(FA, x, ξ) ≤ λ+(A, x) − λ−(A, x) and λ−(FA, x, ξ) ≥ λ−(A, x) − λ+(A, x)

It also follows from (4.4)-(4.5) that A is fiber bunched (Definition 3.1) if and only
if FA is dominated (Definition 4.1). Then we could use Proposition 4.2 to conclude
that FA admits stable and unstable holonomies. However, it is also possible to
exhibit these holonomies explicitly: if Hs

x,y and Hu
x,y are holonomies of FA then

P(Hs
x,y) and P(Hu

x,y) are holonomies of FA = P(FA).

5. Invariant measures of smooth cocycles

In this section we prove the following result, and use it to reduce the proof of
Theorem C to proving Theorem D:

Theorem 5.1. Let f be a C2 partially hyperbolic, volume preserving diffeomor-
phism, F be a smooth cocycle over f admitting stable and unstable holonomies, and
m be an F-invariant probability on E such that π∗m = µ and λ−(F, x, ξ) = 0 =
λ+(F, x, ξ) at m-almost every point. Then, for any disintegration {mx : x ∈M} of
m into conditional probabilities along the fibers, there exists a full µ-measure subset
M s such that mz = (Hs

y,z)∗my for every y, z ∈M s in the same strong-stable leaf.

Remark 5.2. The hypotheses of the theorem are invariant under time reversion. So,
replacing f and F by their inverses, we get that the disintegration is also invariant
under strong-unstable holonomy over some full µ-measure subset Mu.

Let us recall that a disintegration of m is a family of probability measures
{mx : x ∈M} on the fibers Ez, such that

m(E) =

∫
mx(Ex ∩X) dµ(x)

for every measurable subset X . Such a family exists and is essentially unique,
meaning that any two coincide on a full measure subset. See Rokhlin [21].
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Before proving Theorem 5.1, let us deduce Theorem C. Given any disintegration
{mx : x ∈M} of the probability m, define Ψ(x) = mx at every point. According to
Theorem 5.1 and Remark 5.2, Ψ is essentially s-invariant and essentially u-invariant.
By Theorem D, there exists a bi-invariant function Ψ̃ defined on some bi-saturated
full measure set M̃ and coinciding with Ψ almost everywhere. Then we get a new
disintegration {m̃x : x ∈ M} by setting m̃x = Ψ̃(x) when x ∈ M̃ and extending
the definition arbitrarily to the complement. The conclusion of Theorem D means
that this new disintegration is both s-invariant and u-invariant on M̃ . Moreover,
it is continuous if f is accessible.

5.1. Abstract invariance criterion. Let (M∗,M∗, µ∗) be a Lebesgue space, that
is, a complete separable probability space. Every Lebesgue space is isomorphic
mod 0 to the union of an interval, endowed with Lebesgue measure, and a finite or
countable set of atoms. See Rokhlin [21, § 2]. Let T : M∗ → M∗ be an invertible
measurable transformation. A σ-algebra B∗ ⊂ M∗ is generating if its iterates
T n(B∗), n ∈ Z generate the whole M∗ mod 0: for every E ∈ M∗ there exists E′ in
the smallest σ-algebra that contains all the T n(B∗) such that µ∗(E∆E′) = 0.

Theorem 5.3 (Ledrappier [16]). Let B : M∗ → GL(d,K) be a measurable map such
that the functions x 7→ log ‖B(x)±1‖ are µ∗-integrable. Let B ⊂ M∗ be a generating
σ-algebra such that both T and B are B-measurable mod 0. If λ−(B, x) = λ+(B, x)
at µ∗-almost every x ∈M then, for any P(FB)-invariant probability m that projects
down to µ∗, any disintegration x 7→ mx of m along the fibers is B-measurable mod 0.

The proof of Theorem 5.1 is based on an extension of this result for smooth
cocycles that was recently proved by Avila, Viana [2]. For the statement one
needs to introduce the following notion. A deformation of a smooth cocycle F is a
continuous transformation F̃ : E → E of the form

F̃ = H ◦ F ◦ H−1

where H : E → E is a homeomorphism of the form H(x, ξ) = (x,Hx(ξ)) such that
the Hx : Ex → Ex are Hölder continuous, with uniform Hölder constants. To each
F-invariant probability m corresponds an F̃-invariant probability m̃ = H∗m.

Theorem 5.4 (Avila, Viana [2]). Let F̃ be a deformation of a smooth cocycle

F. Let B ⊂ B∗ be a generating σ-algebra such that both T and x 7→ F̃x are B-
measurable mod 0. Let m̃ be an F̃-invariant probability that projects down to µ∗. If
λ−(F, x, ξ) ≥ 0 for m-almost every (x, ξ) ∈ E then any disintegration x 7→ m̃x of m̃
along the fibers is B-measurable mod 0.

5.2. Global essential invariance. Here we prove Theorem 5.1 from the following
local version, whose proof is postponed until Section 5.4. Recall that, for each
symbol ∗ ∈ {s, u}, we denote by W∗(x, r) the intersection of the leaf W∗(x) with
the Riemannian ball of radius r around x, and we write W∗

loc(x) = W∗(x,R).

Proposition 5.5. Assume the setting of Theorem 5.1. Let Σ be a cross-section
to the strong-stable foliation Ws of f and let δ ∈ (0, R). Then there exists a full
µ-measure subset N s(Σ, δ) of

N (Σ, δ) =
⋃

z∈Σ

Ws(z, δ)
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such that mz = (Hs
y,z)∗my for every y, z ∈ N s(Σ, δ) in the same strong-stable leaf.

Then there exists a full Lebesgue measure subset Σ0 of the cross-section such that
N s(Σ, δ) intersects every Ws(z, δ), z ∈ Σ0 on a full Lebesgue measure subset.

Fix any δ < R. For each x ∈ M , consider a cross-section Σ(x) such that
N (Σ(x), δ) contains x in its interior, and let N s(x) ⊂ N (Σ(x), δ) and Σ0(x) ⊂ Σ(x)
be full Lebesgue measure subsets as in Proposition 5.5. By compactness, we may
find ε > 0 and points x1, . . . , xN such that N (Σ(xj), δ), j = 1, . . . , N cover M and,
even more, the Riemannian ball of radius ε around every point of M is contained
in some N (Σ(xj), δ). Define

(5.1) M s =
( n⋃

j=1

N s(xj)
)
\

( n⋃

j=1

⋃

z∈Σ(xj)\Σ0(xj)

Ws(z)
)
.

The union of all strong-stable leaves through the Σ(xj) \ Σ0(xj), j = 1, . . . , N has
zero µ-measure, because these sets have zero Lebesgue measure inside the corre-
sponding cross-sections, and the strong-stable foliation is absolutely continuous;
see [1, 6, 18]. Thus, M s has full µ-measure. Given any y, z ∈ M s inside the same
strong-stable leaf Ws(x), we may find y = s0, s1, . . . , sk−1, sk = z inside Ws(x)
and such that dist(si−1, si) < ε for every 1 ≤ i ≤ k. Then, for each i we may
find j such that si−1 and si are both contained in N (Σ(xj), δ). By construction,
the subset N s

j (Σ(xj), δ) has full Lebesgue measure inside Ws(z, δ) for every z in

Σ0(xj). So, up to replacing the si by appropriate nearby points inside the same
local leaf, we also have that si−1 and si are both contained in N s(Σ(xj), δ). Then

(Hs
si−1,si

)∗(msi−1) = msi
for every 1 ≤ i ≤ k, and so (Hs

y,z)∗my = mz.

This reduces the proof of Theorem 5.1 to proving Proposition 5.5.

5.3. A local Markov construction. The proof of Proposition 5.5 can be outlined
as follows. The assumption that the cocycle admits stable holonomy allows us to
construct a special deformation F̃ of the smooth cocycle F which is measurable
mod 0 with respect to a certain σ-algebra B. Applying Theorem 5.4 we get that
the disintegration of m̃ is also B-measurable mod 0, where m̃ is the F̃-invariant
measure corresponding to m. When translated back to the original setting, this B-
measurability property means that the disintegration of m is essentially invariant
on the domain N (Σ, δ), as stated in Proposition 5.5.

In this section we construct F̃ and B. The next proposition is the main tool.
It is essentially taken from Proposition 3.3 in [24], so here we just outline the
construction.

Proposition 5.6. Let Σ be a cross-section to the strong-stable foliation Ws and
δ ∈ (0, R/2). Then there exists N ≥ 1 and a family of sets {S(z) : z ∈ Σ} such that

(1) Ws(z, δ) ⊂ S(z) ⊂ Ws
loc(z) for all z ∈ Σ;

(2) for all l ≥ 1 and z, ζ ∈ Σ, if f lN (S(ζ)) ∩ S(z) 6= ∅ then f lN(S(ζ)) ⊂ S(z).

Outline of the proof. Fix N big enough so that νN (x) < 1/4 for all x ∈ M , and
denote g = fN . For each z ∈ Σ define S0 = Ws(z, δ) and

(5.2) Sn+1(z) = S0(z) ∪
⋃

(j,w)∈Zn(z)

gj(Sn(w))
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where Zn(z) =
{
(j, w) ∈ N × Σ : gj(Sn(w)) ∩ S0(z) 6= ∅

}
. Clearly, S0(z) ⊂ S1(z)

and Z0(z) ⊂ Z1(z). Notice that if Sn−1(z) ⊂ Sn(z) and Zn−1(z) ⊂ Zn(z) for every
z ∈ Σ, then, ⋃

(j,w)∈Zn−1(z)

gj(Sn−1(w)) ⊂
⋃

(j,w)∈Zn(z)

gj(Sn(w)).

Therefore, by induction, Sn(z) ⊂ Sn+1(z) and Zn(z) ⊂ Zn+1(z) for every n ≥ 0.
Define

S∞(z) =
∞⋃

n=0

Sn(z) and Z∞(z) =
∞⋃

n=0

Zn(z).

Then Z∞(z) is the set of (j, w) ∈ N×Σ such that gj(S∞(w)) intersects S0(z), and

S∞(z) = S0(z) ∪
⋃

(j,w)∈Z∞(z)

gj(S∞(w)).

The choice of N ensures that S∞(z) ⊂ Ws(z, 2δ). Finally, define

S(z) = S∞(z) \
⋃

(k,ξ)∈V (z)

gk(S∞(ξ))

where V (z) =
{
(k, ξ) ∈ N × Σ : gk(S∞(ξ)) 6⊂ S∞(z)

}
. This family of sets satisfies

the conclusion of the proposition. �

Since the conclusion of Proposition 5.5 is not affected when f and F are replaced
by its iterates fN and FN , we may assume the integer N in Proposition 5.6 to be
equal to 1. Let M∗ = M and T = f . Let M∗ be the µ-completion of the Borel
σ-algebra of M and µ∗ be the canonical extension of µ to M∗. Then (M∗,M∗, µ∗)
is a Lebesgue space and T is an automorphism in it.

For each z ∈ Σ let r(z) ≥ 0 be the largest integer (possibly infinite) such that
f j(S(z)) does not intersect the union of S(w), w ∈ Σ for all 0 ≤ j ≤ r(z). Let B
be the σ-algebra of sets E ∈ M∗ such that, for every z and j, either E contains
f j(S(z)) or is disjoint from it. Notice that an M-measurable function on M is

B-measurable precisely if it is constant on every f j(S(z)). Define F̃ : E → E to be

F̃ = H ◦ F ◦ H−1, where

Hx =

{
Hs

x,fj(z) if x ∈ f j(S(z)) for some z ∈ Σ and 0 ≤ j ≤ r(z)

id otherwise.

It is easy to check that the family {Hx : x ∈M} is uniformly Hölder continuous.
The definition implies that

(5.3) F̃x = Hs
f(x),fj+1(z) ◦ Fx ◦Hs

fj(z),x = Ffj(z)

if x ∈ f j(S(z)) for some z ∈ Σ and 0 ≤ j < r(z). Moreover,

(5.4) F̃x = Hs
f(x),w ◦ Fx ◦Hs

fr(z)(z),x

if x ∈ f r(z)(S(z)) for some z ∈ Σ, where w ∈ Σ is given by f r(z)+1(S(z)) ⊂ S(w).

In all other cases, F̃x = Fx.

Lemma 5.7. The following properties hold

(1) T = f and x 7→ F̃x are B-measurable
(2) distC0(Hx, id) is uniformly bounded
(3) {T n(B) : n ∈ N} generates M∗ mod 0.
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Proof. The relations (5.3) and (5.4) show that F̃x is constant on f j(S(z)) for every

z ∈ Σ and 0 ≤ j ≤ r(z). Thus, x 7→ F̃x is B-measurable. B-measurability of f is a
simple consequence of the Markov property in Proposition 5.6. Indeed, let E ∈ B
and let z ∈ Σ and 0 ≤ j ≤ r(z) be such that f−1(E) intersects f j(S(z)). Then E
intersects f j+1(S(z)). We claim that E contains f j+1(S(z)). When j+1 ≤ r(z) this
follows immediately from E ∈ B. Whenj = r(z), notice that f j+1(S(z)) ⊂ S(w)
for some w ∈ S(z), and E ∈ B must contain S(w). So the claim holds in all cases.
It follows that f−1(E) contains f j(S(z)). This proves that f−1(E) ∈ B, and so the
proof of claim (1) is complete. To prove claim (2), observe that

diam f j(S(z)) ≤ diamWs S(z) ≤ R,

for all z ∈ Σ and j ≥ 0, and so

sup
x∈M

distC0(Hx, id) ≤ sup
dist(a,b)≤R

distC0(Hs
a,b, id).

The right hand side is uniformly bounded, since the stable holonomy depends con-
tinuously on the base points, and the space of (a, b) ∈M ×M with dist(a, b) ≤ R is
compact. This proves claim (2). To prove the last claim, observe that fn(B) is the
σ-algebra of sets E ∈ M∗ such that every f j+n(S(z)) either is contained in E or is
disjoint from E. Observe that the diameter of f j+n(S(z)) goes to zero, uniformly,
when n goes to ∞. It follows that every open set can be written as a union of sets
En ∈ fn(B) and, hence, belongs to the σ-algebra generated by {fn(B) : n ∈ N}.
This proves that the latter σ-algebra coincides mod 0 with the completion M∗ of
the Borel σ-algebra. �

5.4. Local essential invariance. Now we deduce Proposition 5.5. By assump-
tion, λ−(F, x, ξ) = λ+(F, x, ξ) at m-almost every point. Lemma 5.7 ensures that all
the other assumptions of Theorem 5.4 are fulfilled as well. We conclude from the
theorem that the disintegration {m̃x : x ∈M} of the measure m̃ = H∗m is measur-
able mod 0 with respect to the σ-algebra B. Then, there exists a full µ-measure set
Xs ⊂ M such that the restriction of the disintegration to Xs is constant on every
f j(S(z)) with z ∈ Σ and 0 ≤ j ≤ r(z). The disintegrations of m and m̃ are related
to one another by

m̃x =
(
Hx)∗mx =

{
(Hs

x,fj(z))∗mx if x ∈ f j(S(z)) for z ∈ Σ and 0 ≤ j ≤ r(z)

mx otherwise.

Define N s(Σ(xj), δ) = Xs ∩ N (Σ, δ). Recall that W(z, δ) ⊂ S(z) for all z ∈ Σ.
Then, for every z1, z2 ∈ N s(Σ(xj), δ) in the same W(z, δ),

(Hz,z1)∗mz1 = m̃z1 = m̃z2 = (Hz,z2)∗mz2 and so mz2 = (Hz1,z2)∗mz1 .

This proves the first claim in the proposition. The second one is an immediate
consequence, since the strong-stable foliation is absolutely continuous (see [1, 6, 18]).
The proofs of Proposition 5.5 and Theorem 5.1 are now complete.

6. Density points

Here we recall ideas of Burns, Wilkinson [8], that will have an important role in
Section 7. Let λ be the Riemannian volume associated to the metric adapted to f
described in Section 2.2. We denote by λS the volume of the Riemannian metric
induced on an immersed submanifold S. Given a foliation F with smooth leaves,
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we denote by λF (A) the volume of a measurable subset A of some leaf F , relative
to the Riemannian metric λF induced on that leaf.

6.1. Density sequences. It is clear that λ and the invariant volume µ have the
same zero measure sets. More important for our proposes, they have the same
Lebesgue density points. Recall that x ∈ M is a Lebesgue density point of a set
X ⊂M if

lim
δ→0

λ(X : B(x, δ)) = 1

where λ(A : B) = λ(A ∩B)/λ(B) is defined for general subsets A, B with λ(B) > 0.
The Lebesgue Density Theorem asserts that λ(X ∆ DP(X)) = 0 for any measurable
set X , where DP(X) is the set of Lebesgue density points of X .

Balls may be replaced in the definition by other, but not arbitrary, families of
neighborhoods of the point. We say that a sequence of measurable sets (Yn)n is a
Lebesgue density sequence at x ∈M if

(a) (Yn)n nests at a point x: Yn ⊃ Yn+1 for every n and ∩nYn = {x}
(b) (Yn)n is regular : there is δ > 0 such that λ(Yn+1) ≥ δλ(Yn) for every n
(c) x is a density point of a set X if and only if:

lim
n→∞

λ(X : Yn) = 1.

Some of the sequences we are going to mention satisfy these conditions for special
classes of sets only. In particular, we say (Yn)n is a Lebesgue density sequence at x
for bi-essentially saturated sets if (a), (b), (c) hold for every bi-essentially saturated
set. Let us recall the definition of this last notion.

Definition 6.1. A measurable set X ⊂M is essentially s-saturated if there exists
a set Xs ⊂M consisting of entire strong-stable leaves (i.e. an s-saturated set) such
that µ(X∆Xs) = 0. Analogously, X ⊂ M is essentially u-saturated if there exists
a set Xu ⊂M consisting of entire strong-stable leaves (i.e. a u-saturated set) such
that µ(X∆Xu) = 0. Moreover, X is bi-essentially saturated if it is both essentially
s-saturated and essentially u-saturated.

Burns, Wilkinson [8] propose two main techniques for constructing new Lebesgue
density sequences: internested sequences and the Cavalieri’s principle. The first one
is quite simple and applies to general measurable sets. Two sequences (Yn)n and
(Zn)n that nest at x are said to be internested if there is k ≥ 1 such that

Yn+k ⊆ Zn and Zn+k ⊆ Yn for all n ≥ 0.

Lemma 6.2 (Lemma 2.1 in [8]). If (Yn)n and (Zn)n are internested then one
sequence is regular if and only if the other one is. Moreover,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λ(X : Zn) = 1,

for any measurable set X ⊂M .

Consequently, if (Yn)n and (Zn)n are internested then one is a Lebesgue density
sequence (for bi-essentially saturated sets) if and only the other one is.
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6.1.1. Cavalieri’s principle. The second technique is a lot more subtle and is specific
to subsets essentially saturated by some absolutely continuous foliation F (with
bounded Jacobians). Let U be a foliation box for F and Σ be a cross-section to F
in U . The fiber of a set Y ⊂ U over a point q ∈ Σ is the intersection of Y with the
local leaf of F in U containing q. The base of Y ⊂ U is the set ΣY of points q ∈ Σ
whose fiber Y (q) is a measurable set and has positive λF -measure. The absolute
continuity of F ensures the base is a measurable set. We say Y fibers over some
set Z ⊂ Σ if the basis ΣY = Z. Given c ≥ 1, a sequence of sets Yn contained in U
has c-uniform fibers if

(6.1) c−1 ≤ λF (Yn(q1))

λF (Yn(q2))
≤ c for all q1, q2 ∈ ΣYn

and every n ≥ 0.

Proposition 6.3 (Proposition 2.7 in [8]). Let (Yn)n be a sequence of measurable
sets in U with c-uniform fibers, for some c. Then, for any locally F-saturated
measurable set X ⊂ U ,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λΣ(ΣX : ΣYn
) = 1.

By locally F -saturated we mean that the set is a union of local leaves of F in the
foliation box U . Sets that differ from a locally F -saturated one by zero Lebesgue
measure subsets are called essentially locally F -saturated.

Proposition 6.4 (Proposition 2.5 in [8]). Let (Yn)n and (Zn)n be two sequences
of measurable subsets of U with c-uniform fibers, for some c, and ΣYn

= ΣZn
for

all n. Then, for any essentially locally F-saturated set X ⊂ U ,

lim
n→∞

λ(X : Yn) = 1 ⇐⇒ lim
n→∞

λ(X : Zn) = 1.

6.2. Fake foliations and juliennes. Juliennes were proposed by Pugh, Shub [19]
as density sequences particularly suited for partially hyperbolic dynamical systems.
These are sets constructed by means of invariant foliations that are assumed to exist
(dynamical coherence) tangent to the invariant subbundles Es, Eu, Ecs = Ec⊕Es,
Ecu = Ec⊕Eu, and Ec, and they have nice properties of invariance under iteration
and under the holonomy maps of the strong-stable and strong-unstable foliations.
As mentioned before, strong-stable and strong unstable foliations (tangent to the
subbundles Es and Eu, respectively) always exist in the partially hyperbolic setting.
However, that is not always true about the center, center-stable, center-unstable
subbundles Ec, Ecs, Ecu.

One main novelty in Burns, Wilkinson [8] was that, for the first time, they
avoided the dynamical coherence assumption. A version of the julienne construction
is still important in their approach, but now the definition involves, instead, certain
“approximations” to the, possibly nonexistent, invariant foliations, that they call
fake foliations. We will not need to use fake foliations nor juliennes directly in this
paper but, for the reader’s convenience, we briefly describe their main features.

6.2.1. Fake foliations. The central result about fake foliations is Proposition 3.1 in
[8]: for any ε > 0 there exist constants 0 < ρ < r < R such that the ball of radius
r around every point admits foliations

Ŵu
p , Ŵs

p , Ŵc
p, Ŵcu

p , Ŵcs
p .

with the following properties, for any ∗ ∈ {u, s, c, cs, cu}:
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(1) For every x ∈ B(p, ρ), the leaf Ŵ∗
p (x) is C1 and the tangent space TxŴ∗

p (x)
is contained in the cone of radius ε around E∗

x.

(2) For every x ∈ B(p, ρ),

f(Ŵ∗
p (x, ρ)) ⊂ Ŵ∗

f(p)(f(x)) and f−1(Ŵ∗
p (x, ρ)) ⊂ Ŵ∗

f−1(p)(f
−1(x)).

(3) Given x and n ≥ 1 such that f j(x) ∈ B(f j(p), r) for 0 ≤ j < n,

• if y ∈ Ŵs
p(x, ρ) then fn(y) ∈ Ŵs

p(fn(x), ρ) and

dist(fn(x), fn(y)) ≤ νn(p) dist(x, y)

• if f j(y) ∈ Ŵcs
p (f j(q), ρ) for 0 ≤ j < n then fn(y) ∈ Ŵcs

p (fn(x)) and

dist(fn(x), fn(y)) ≤ γ̂n(p)−1 dist(x, y).

There is a similar statement with f , Ŵs, Ŵcs replaced by f−1, Ŵu, Ŵcu.

(4) Ŵu
p and Ŵc

p sub-foliate Ŵcu
p , and Ŵs

p and Ŵc
p sub-foliate Ŵcs

p .

(5) Ŵs
p(p) = Ws(p, r) and Ŵu

p (p) = Wu(p, r).

(6) All the fake foliations Ŵ∗, ∗ ∈ {u, s, c, cs, cu} are Lipschitz continuous, and
so are their tangent distributions.

(7) Assuming f is center bunched, every leaf of Ŵcs
p is C1 foliated by leaves of

Ŵs
p and every leaf of Ŵcu

p is C1 foliated by leaves of Ŵu
p .

The local invariance property (2) and the exponential bounds (3) should be
compared to the corresponding facts (a), (b), (c) for genuine foliations in Section 2.2.
Concerning the uniqueness property (5), notice that the fake strong-stable and
strong-unstable foliations need not coincide with the genuine ones, Ws and Wu, at
points other than p. The regularity properties (6) and (7) hold uniformly in p ∈M .

6.2.2. Juliennes. Another direct use of the center bunching condition, besides the
smoothness property (7) above, is in the definition of juliennes. In view of the
first center bunching condition, ν < γγ̂ (there is a dual construction starting from
ν̂ < γγ̂ instead), we may find continuous functions τ and σ such that

ν < τ < σγ and σ < min{γ̂, 1}.
Let p ∈M be fixed. For any x ∈ Ws(p, 1) and n ≥ 0, define

B̂c
n(x) = Ŵc

p(x, σn(p)) and Sn(p) =
⋃

x∈Ws(p,1)

B̂c
n(x).

The (fake) center-unstable julienne of order n ≥ 0 centered at x ∈ Ws(p, 1) is
defined by

Ĵcu
n (x) =

⋃

y∈ bBc
n(x)

Ĵu
n (y), where Ĵu

n (y) = f−n(Ŵu
fn(p)(f

n(y), τn(p))).

The latter is the (fake) unstable julienne of order n ≥ 0 centered at y, and is defined
for every y ∈ Sn(p). See Figure 1.

Observe that Ĵcu
n (x) is contained in the smooth submanifold Ŵcu

p (x), and it has
positive measure relative to the Riemannian volume λccu defined by the restriction

of the Riemannian metric to Ŵcu
p (x). Notice also that fake center-unstable leaves

are transverse to the strong-stable foliation, as a consequence of property (1) in
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Sn(p)

Ws(p, 1)

xx

y

bBc

n
(x)bBc

n
(x)

bJu

n
(y)

Ĵcu
n (x)

Figure 1.

Section 6.2.1. One key feature of center-unstable juliennes is that, unlike balls for
instance, they are approximately preserved by the holonomy maps of the strong-
stable foliation:

Proposition 6.5 (Proposition 5.3 in [8]). For any x, x′ ∈ Ws(p, 1), the sequences

hs(Ĵcu
n (x)) and Ĵcu

n (x′) are internested, where hs : Ŵcu
p (x) → Ŵcu

p (x′) is the holo-
nomy map induced by the strong-stable foliation Ws.

6.3. Lebesgue and julienne density points. Let S be a locally s-saturated set
in a neighborhood of p. For notational simplicity, we write

λccu(S : Ĵcu
n (x)) = λccu(S ∩ Ŵcu

p (x) : Ĵcu
n (x)).

Notice that S ∩ Ŵcu
p (x) coincides with the base of S over Ŵcu

p (x).

Definition 6.6. We call x ∈ Ws(p, 1) a cu-julienne density point of S if

lim
n→∞

λccu(S : Ĵcu
n (x)) = 1.

Observe that if x ∈ Ws(p, 1) is a cu-julienne density point of S then so is every
x′ ∈ Ws(p, 1). Indeed, absolute continuity (with bounded Jacobians) gives that

lim
n→∞

λccu(S : Ĵcu
n (x)) = 1 =⇒ lim

n→∞
λccu(S : hs(Ĵcu

n (x))) = 1.

By Proposition 6.5 hs(Ĵcu
n (x)) and Ĵcu

n (x′) are internested. Hence, by Lemma 6.2,

lim
n→∞

λccu(S : hs(Ĵcu
n (x))) = 1 =⇒ lim

n→∞
λccu(S : Ĵcu

n (x′)) = 1.

Another crucial property of center-unstable juliennes is

Proposition 6.7 (Proposition 5.5 in [8]). Let X be a measurable set that is both s-
saturated and essentially u-saturated. Then x ∈ Ws(p) is a Lebesgue density point
of X if and only if x is a cu-julienne density point of X.

We are not in a position to use this proposition directly, because the saturation
hypotheses are not fully satisfied by the sets we deal with. On the other hand, the
proof of this proposition has several steps, involving various nesting sequences, and
each step uses only part of the conditions in the hypothesis. We are going to detail
the main steps, and recall the definitions of the relevant nesting sequences Bn(x),
Cn(x), Dn(x), Gn(x), in order to be able to use them individually in our context.
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By definition, Bn(x) is just the Riemannian ball of radius σn(p) centered at x:

Bn(x) = B(x, σn(p)).

Lemma 6.8. Let S ⊂ M be any measurable set. Then, x is a Lebesgue density
point of S if and only if limn→∞ λ(S : Bn(x)) = 1.

Proof. This follows from the fact that the ratio σn+1(p)/σn(p) = σ(fn(p)) of suc-
cessive radii is less than 1, and is uniformly bounded away from both 0 and 1. �

Next, let us introduce nesting sequences

Cn(x) =
⋃

q∈Dcs
n (x)

Wu(q, σn(p)) and Dn(x) =
⋃

q∈Dcs
n (x)

f−n(Wu(fn(y), τn(p))),

fibering over the same sequence of bases

Dcs
n (x) =

⋃

y∈cWs
p(x,σn(p))

B̂c
n(y) =

⋃

y∈cWs
p(x,σn(p))

Ŵc
p(x, σn(p)).

By property (2) in Section 6.2.1, Dcs
n (x) is contained in the submanifold Ŵcs(x).

Lemma 6.9. Let S ⊂M be any measurable set. Then,

lim
n→∞

λ(S : Bn(x)) = 1 ⇐⇒ lim
n→∞

λ(S : Cn(x)) = 1.

Proof. Continuity and transversality of the fake foliations Ŵc
p and Ŵs

p imply that

the sequencesDcs
n (x) and Ŵcs(x, σn(p)) are internested. Then, similarly, continuity

and transversality of the foliations Wu and Ŵcs
p imply that the sequences Cn(x)

and Bn(x) are internested. Then the claim follows from Lemma 6.2. �

Lemma 6.10. Let S ⊂M be locally essentially u-saturated. Then,

lim
n→∞

λ(S : Cn(x)) = 1 ⇐⇒ lim
n→∞

λ(S : Dn(x)) = 1.

Proof. By definition, Cn(x) andDn(x) both fiber overDcs
n (x), with fibers contained

in strong-unstable leaves. The fibers of Cn(x) are uniform, in the sense of (6.1),
because they are all comparable to balls of fixed radius σn(p) inside strong-unstable
leaves. Proposition 5.4 in [8] gives that the fibers of Dn(x) are uniform as well.
Then the claim follows from Proposition 6.4. �

Finally, we also define

Gn(x) =
⋃

q∈ bJcu
n (x)

Ws(q, σn(p)).

Lemma 6.11. Let S ⊂M any measurable set. Then,

lim
n→∞

λ(S : Dn(x)) = 1 ⇐⇒ lim
n→∞

λ(S : Gn(x)) = 1.

Proof. The sequences Dn(x) and Gn(x) are internested, according to Lemma 8.1
and Lemma 8.2 in [8]. Then the claim follows from Lemma 6.2. �

Lemma 6.12. Let S ⊂M be locally s-saturated. Then,

lim
n→∞

λ(S : Gn(x)) = 1 ⇐⇒ lim
n→∞

λccu(S : Ĵcu
n (x)) = 1.
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Proof. By definition, Gn(x) fibers over Ĵcu
n (x). By Proposition 5.4 of [8], the fibers

are uniform. Then the claim follows from Proposition 6.3. �

Proposition 6.7 is obtained in [8] by concatenating Lemmas 6.8 through 6.12.

7. Bi-essential invariance implies essential bi-invariance

Let f : M → M be a partially hyperbolic diffeomorphism and π : X → M
be a continuous fiber bundle with fibers modelled on some topological space P :
by this we mean X is equipped with local coordinates π−1(U) → U × P over the
neighborhood U ⊂M of any point, such that all coordinate changes (U ∩V )×P →
(U ∩ V ) × P are homeomorphisms. Thus, every fiber Xx, x ∈ M is a topological
space homeomorphic to P .

Definition 7.1. A stable holonomy on X is a family hs
x,y : Xx → Xy of homeomor-

phisms defined for all x, y in the same strong-stable leaf of f and satisfying

(a) hs
y,z ◦ hs

x,y = hs
x,z and hs

x,x = id
(b) the map (x, y, η) 7→ hs

x,y(η) is continuous.

Unstable holonomy is defined analogously, for pairs of points in the same strong-
unstable leaf.

In what follows we assume stable and unstable holonomies exist on X and have
been chosen once and for all.

Definition 7.2. A measurable section Ψ : M → X of the fiber bundle X is called
s-invariant if

hs
x,y(Ψ(x)) = Ψ(y) for every x, y in the same strong-stable leaf

and essentially s-invariant if this relation holds restricted to some full measure
subset. The definition of u-invariant and essentially u-invariant functions is anal-
ogous, considering unstable holonomies and strong-unstable leaves instead. Finally,
Ψ is bi-invariant if it is both s-invariant and u-invariant, and it is bi-essentially in-
variant if it is both essentially s-invariant and essentially u-invariant.

Remark 7.3. It is clear from the definitions that if a section Ψ : M → X is s-
invariant then it is s-continuous, in the sense introduced in Section 1:

(x, y,Ψ(x)) 7→ Ψ(y) = hs
x,y(Ψ(x))

is continuous on the set of pairs of points in the same strong-stable leaf. Analo-
gously, u-invariant sections are u-continuous. In Remark 7.14 we make a similar
observation for essential ∗-invariance and essential ∗-continuity.

These notions extend immediately to sections defined over bi-saturated subsets
of M . We also need the following mild condition on the topological space:

Definition 7.4. A topological space P is refinable if there exists an increasing
sequence of finite or countable partitions Q1 ≺ · · · ≺ Qn ≺ · · · into measurable
subsets such that any sequence (Qn)n with Qn ∈ Qn for every n and ∩nQn 6= ∅
converges to some point η ∈ P , in the sense that every neighborhood of η contains
Qn for all large n. (Then, clearly, η is unique and ∩nQn = {η}.)
Remark 7.5. Every topological space with a countable basis {Un : n ∈ N} of open
sets is refinable: take Qn to be the finite partition of M generated by {U1, . . . , Un}.
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We call a continuous fiber bundle X refinable if the fibers Xx, x ∈M are refinable.

Theorem 7.6. Let f : M →M be a C2 partially hyperbolic center bunched diffeo-
morphism and X be a refinable fiber bundle with stable and unstable holonomies.
Then, given any bi-essentially invariant section Ψ : M → X , there exists a bi-
saturated set MΨ with full measure, and a bi-invariant section Ψ̃ : MΨ → X that
coincides with Ψ at almost every point.

Before proving this theorem, let us note that Theorem D(a) is a particular case.
Take P to be the space of probability measures on N , endowed with the weak∗

topology, that is, the smallest topology for which the integration operator

P → R, η 7→
∫
ϕdη

is continuous, for every continuous function ϕ : N → R with compact support.

Lemma 7.7. P is a separable polish space and, in particular, it is refinable.

Proof. It is well known that the space of continuous functions on a compact topo-
logical space X , endowed with the uniform norm, admits a countable dense subset.
Then the same is true for the space C0

c (X,R) of continuous functions with compact
support on a σ-compact space X . Let {ϕk : N → R : k ∈ N} be a countable dense
subset of the unit ball in C0

c (N,R). Then

dist(η1, η2) =

∞∑

k=1

1

2k

∣∣
∫
ϕk dη1 −

∫
ϕ2 dη2

∣∣

defines a metric on X that induces the weak∗ topology. This metric is complete.
Indeed, if (ηn)n is a Cauchy sequence in P then every (

∫
ϕk dηn)n is a Cauchy

sequence in R. It follows that

(7.1) lim
n

∫
ϕdηn

exists for every ϕ = ϕk, k ∈ N. Then it actually exists for every ϕ ∈ C0
c (N,R), be-

cause any continuous function with compact support is uniformly approximated by
linear combinations of the ϕk. The operator defined by (7.1) on C0

c (N,R) is linear
and positive. Hence, by the Riesz representation theorem ([22, Theorem 2.14]), it
represents some positive measure η on N :

(7.2)

∫
ϕdη = lim

n

∫
ϕdηn for all ϕ ∈ C0

c (N,R).

It is easy to check η is a probability. The definition (7.2) means that the Cauchy
sequence (ηk)n converges to η in the weak∗ topology. Finally, the family

{
η ∈ X : αk <

∫
ϕk dη < βk for 1 ≤ k ≤ m

}
,

indexed by m ∈ N and αk, βk ∈ Q, is a countable basis of open sets for P . By
Remark 7.5, it follows that P is refinable. �

Associated to π : E → M , we have a new fiber bundle Π : X → M , whose fiber
over a point x ∈ M is the space of probability measures on the corresponding Ex.
It is easy to see that this is a continuous fiber bundle with leaves modelled on the
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space P we have just introduced: if π−1(U) → U × N , v 7→ (π(v), ψπ(v)(v)) is a
continuous local chart for E then

Π−1(U) → U × P, η 7→ (Π(η), (ψΠ(η))∗(η))

is a continuous local chart for X . The cocycle F : E → E induces a cocycle on X , by
push-forward, but this will not be needed here. More important for our purposes,
the stable and unstable holonomies of F induce homeomorphisms

hs
x,y = (Hs

x,y)∗ : Xx → Xy and hu
x,y = (Hu

x,y)∗ : Xx → Xy

for points x, y in the same strong-stable leaf or the same strong-unstable leaf,
respectively. It is easy to see that these homeomorphisms form stable and unstable
holonomies on X . Indeed, the group property (a) and the continuity property (b)
in Definition 7.1 follow easily from the corresponding properties for Hs and Hu in
Definition 1.1: for (a) this is obvious, and for (b) it is checked in the next lemma.
Since the statement is local, we may pretend the fiber bundle is trivial (X = M×P )
and so the holonomies are homeomorphisms of P .

Lemma 7.8. Let x, y ∈ M and η ∈ P . For any neighborhood V ⊂ P of hx,y(η)
there exists δ > 0 and a neighborhood U ⊂ P of η, such that hz,w(U) ⊂ V for every
(v, w) with dist(x, z) ≤ δ and dist(y, w) ≤ δ.

Proof. Consider any x, y ∈ M and η ∈ P . Let (xn)n → x and (yn)n → y, and let
(ηn)n → η in P . We want to prove that

(7.3) (Hs
xn,yn

)∗ηn → (Hs
x,y)∗η .

To this end, let ϕ : N → R be any continuous function with compact support.
Given ε > 0, fix δ > 0 such that |ϕ(z) − ϕ(w)| ≤ ε whenever dist(z, w) ≤ δ. By
the continuity condition (c) in Definition 1.1, given any compact set K ⊂ N , there
exists ρ1 > 0 such that

dist(Hs
x,y(ξ), Hs

x′,y′(ξ)) ≤ δ for all x′ ∈ B(x, ρ1), y
′ ∈ B(y, ρ1), and ξ ∈ K.

Choose K large enough so that it contains some neighborhood of Hs
y,x(suppϕ).

Then we may find ρ2 > 0 such that

suppϕ ⊂ Hs
x′,y′(K) for every x′ ∈ B(x, ρ2) and y′ ∈ B(y, ρ2).

It follows that |ϕ ◦Hs
x,y(ξ) − ϕ ◦Hs

xn,yn
(ξ)| ≤ ε for every large n and every ξ ∈ N

(consider the cases ξ ∈ K and ξ /∈ K separately). As a consequence,
∣∣∣
∫
ϕ ◦Hs

x,y dηn −
∫
ϕ ◦Hs

xn,yn
dηn

∣∣∣ ≤ ε

for every large n. Moreover, the hypothesis (ηn)n → η implies
∣∣∣
∫
ϕ ◦Hs

x,ydη −
∫
ϕ ◦Hs

x,ydηn

∣∣∣ ≤ ε,

since ϕ ◦Hs
x,y is a continuous function with compact support. Adding the last two

inequalities we find that
∫
ϕ ◦Hs

xn,yn
dηn converges to

∫
ϕ ◦Hs

x,ydη when n→ ∞.
Since ϕ is an arbitrary function with compact support, this implies (7.3), and so
the lemma is proved. �

Now it is clear that Theorem D(a) corresponds to the statement of Theorem 7.6
in the special case of the section Ψ(x) = mx of the fiber bundle X wee have defined.



30

7.1. Lebesgue densities. Let Ψ : M → P be a measurable function with values
in a refinable space.

Definition 7.9. A point x ∈ P is a point of measurable continuity of Ψ if there is
υ ∈ P such that x is a Lebesgue density point of Ψ−1(V ) for every neighborhood
V ⊂ P of υ. Then υ is called a density value of Ψ.

Let MC(Ψ) denote the set of measurable continuity points of Ψ. It is easy to
see that the density value is unique, when it exists. Thus, we have a well defined
function Ψ̃ : MC(Ψ) → P assigning to each point x of measurable continuity its

density value Ψ̃(x). We call Ψ̃ the Lebesgue density of Ψ.

Lemma 7.10. For any measurable function Ψ : M → P , the set MC(Ψ) has full

Lebesgue measure and Ψ = Ψ̃ almost everywhere.

Proof. Let Q1 ≺ · · · ≺ Qn ≺ · · · be a sequence of partitions of the space P as in
Definition 7.4. Let

M̃ =
⋂

n≥1

⋃

Q∈Qn

Ψ−1(Q) ∩ DP(Ψ−1(Q)).

Since Ψ−1(Q)∩DP(Ψ−1(Q)) has full measure in Ψ−1(Q), and
{
Ψ−1(Q) : Q ∈ Qn

}

is a partition of M for every n, the set on the right hand side has full measure in M
for every n. This proves that M̃ is a full measure subset of M . Next, we check that
M̃ is contained in the set of points of measurable continuity of Ψ. Indeed, given
any point x ∈ M̃ , let Qn ∈ Qn be the sequence of atoms such that x ∈ Ψ−1(Qn).
Then x is a density point of Ψ−1(Qn) for every n ≥ 1, in view of the definition of

M̃ . Notice that ∩nQn is non-empty, since it contains Ψ(x). Then, according to
Definition 7.4, there exists υ ∈ X such that every neighborhood V contains some
Qn. It follows that x is a density point of Ψ−1(V ) for any neighborhood V ⊂ X
of υ, that is, υ is a density value for Ψ at x. This shows that x ∈ MC(Ψ) with

Ψ̃(x) = υ. Moreover, υ must coincide with Ψ(x), since the intersection of all Qn

contains exactly one point. In other words, Ψ̃(x) = Ψ(x) for every x ∈ M̃ . �

More generally, let Ψ : M → X be a measurable section of a refinable fiber
bundle X . Let x ∈ M be fixed. Using a local chart, one may identify the fiber Xy

over every point y in an neighborhood U of x with the fiber Xx over x and, thus,
view Ψ | U as a function with values in Xx. Two such local expressions Ψ1 : U → Xx

and Ψ2 : U → Xx of the section Ψ are related by

Ψ1(y) = hy(Ψ2(y)),

where (y, ξ) 7→ (y, hy(ξ)) is a homeomorphism with hx = id. So, a point υ ∈ Xx is
a density value of Ψ1 at x if and only it is a density value of Ψ2 at x. Moreover,
any local expression Ψ3 : V → Xz of the section Ψ near any other point z ∈ U is
related to Ψ1 : U → Xx by

Ψ1(y) = gy(Ψ3(y)),

where (y, ξ) 7→ (y, gy(ξ)) is a homeomorphism. So, z is a point of measurable
continuity for Ψ3 if and only if it is a point of measurable continuity for Ψ1.

These observations allow us to extend Definition 7.9 to sections of refinable fiber
bundles, as follows. We call υ ∈ Xx a density value of the section Ψ : M → X
at the point x if it is a density value for some (and, hence, any) local expression
U 7→ Xx as before. We call x a point of mesurable density of the section Ψ if it
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admits some density value or, equivalently, if it is a point of measurable density
for some (and, hence, any) local expression of Ψ. The subset MC(Ψ) of points of
measurable continuity has full Lebesgue measure in M , since it intersects every
domain U of local chart on a full Lebesgue measure subset. Recall Lemma 7.10.
Finally, the Lebesgue density of Ψ is the section MC(Ψ) → X assigning to each
point x of measurable continuity its (unique) density value.

7.2. Proof of bi-invariance. Now Theorem 7.6 is a direct consequence of the
next proposition: it suffices to take MΨ = MC(Ψ) and Ψ̃ = the Lebesgue density
of Ψ, and apply the proposition together with Lemma 7.10.

Proposition 7.11. Let f : M →M be a C2 partially hyperbolic center bunched dif-
feomorphism and X be a refinable fiber bundle with stable and unstable holonomies.
For any bi-essentially invariant section Ψ : M → X , the set MC(Ψ) is bi-saturated

and the Lebesgue density Ψ̃ : MC(Ψ) → X is bi-invariant on MC(Ψ).

Proof. For any x ∈ MC(Ψ) and y ∈ Ws(x, 1), we are going to prove hs
x,y(Ψ̃(x)) is

a density value of Ψ at y. It will follow that y ∈ MC(Ψ) and Ψ̃(y) = hs
x,y(Ψ̃(x)).

Analogously, one gets that if x ∈ MC(Ψ) and y ∈ Wu(x, 1) then y ∈ MC(Ψ) and

Ψ̃(y) = hu
x,y(Ψ̃(x)). The proposition is an immediate consequence of these facts.

It is convenient to think of π : X → M as a trivial bundle on neighborhoods Ux

of x and Uy of y, identifying π−1(Ux) ≈ Ux × P and π−1(Uy) ≈ Uy × P via local
coordinates, and we do so in what follows.

Let V ⊂ P be a neighborhood of hs
x,y(Ψ̃(x)). We are going to show that y is a

density point of Ψ−1(V ). By the continuity of unstable holonomies (property (b)

in Definition 7.1), there exists a neighborhood W ⊂ V of hs
x,y(Ψ̃(x)) and a number

ε > 0 such that

(7.4) hu
w1,w2

(W ) ⊂ V for all w1, w2 ∈ B(y, ε) with w1 ∈ Wu
loc(w2).

By the same continuity property for stable holonomies, there exists a neighborhood
U ⊂ P of Ψ̃(x) and a number δ0 > 0 such that

(7.5) hs
z,w(U) ⊂W for every z ∈ B(x, δ0) and w ∈ B(y, ε).

The assumption that Ψ is bi-essentially invariant (Definition 7.2) implies that there
exists a full measure set Ssu such that

(7.6)
hs

ξ,η(Ψ(ξ)) = Ψ(η) for any ξ, η ∈ Ssu in the same strong-stable leaf

hu
ξ,η(Ψ(ξ)) = Ψ(η) for any ξ, η ∈ Ssu in the same strong-unstable leaf.

We also need the following lemma, whose proof we postpone for a while:

Lemma 7.12. Let x be a point measurable continuity of Ψ. Then for any open
neighborhood U of the point Ψ̃(x) ∈ P there exists δ > 0 and L ⊂ B(x, δ) such that

(1) Ψ(L ∩ Ssu) ⊂ U .
(2) L is a union of local leaves of Ws inside B(x, δ).
(3) Each of these local leaves contains some point of Ssu.

(4) x is a cu-julienne density point of L: limn→∞ λccu(L : Ĵcu
n (x)) = 1.

Let L and δ be as given by this lemma. Of course, we may suppose δ ≤ δ0. We
extend the local leaves in L along Ws

loc(x), long enough so as to cross B(y, ε). Let

L̃ denote this extended set. See Figure 2. Since cu-julienne density points of locally
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s-saturated sets are preserved by stable holonomy, as we have seen in Section 6.3,
property (4) in Lemma 7.12 yields

lim
n→∞

λccu(L̃ : Ĵcu
n (y)) = 1.

Applying Lemmas 6.12 and 6.11, we deduce that limn→∞ λ(L̃ : Dn(y)) = 1. Now

define A = L̃ ∩ Ssu ∩B(y, ε). Since Ssu has full measure, we have

lim
n→∞

λ(A : Dn(y)) = 1.

Next, let Au be the u-saturate A inside B(y, ε) and define B = Au ∩ Sus. Since
Au ⊃ A and Ssu has full measure, we have

lim
n→∞

λ(B : Dn(y)) = 1.

Now, by construction, the set B is locally essentially u-saturated. So, we may use
Lemmas 6.10, 6.9, and 6.8 to conclude that y is a Lebesgue density point of B.

So, to prove y is a Lebesgue density point of Ψ−1(V ), it suffices to show that
Ψ(B) ⊂ V . Consider any point b ∈ B. By definition b ∈ Ssu ∩ B(y, ε) and there

exists w ∈ L̃∩Ssu∩B(y, ε) such that b and w are on the same local strong-unstable
leaf. By part (3) of Lemma 7.12, there exists z ∈ L∩ Ssu in the same local strong-
stable leaf as w. By part (1) of Lemma 7.12, we have Ψ(z) ∈ U . Then, by (7.6)
and (7.5),

Ψ(w) = hs
z,w(Ψ(z)) ∈ W.

Finally, by (7.6) and (7.4),

Ψ(b) = hu
w,b(Ψ(w)) ∈ V,

as we claimed. This reduces the proof of the proposition to the

Proof of Lemma 7.12. By the continuity of stable holonomies (Definition 7.1), there

exists δ2 > 0 and a neighborhood U2 ⊂ U of Ψ̃(x) such that

(hs
z1,z2

)(U2) ⊂ U if z1, z2 ∈ B(x, δ2) are on the same local strong-stable leaf.

and there exists δ1 > 0 and a neighborhood U1 ⊂ U2 of Ψ̃(x) such that

(hu
z1,z2

)(U1) ⊂ U2 if z1, z2 ∈ B(x, δ1) are on the same local strong-unstable leaf.

Let δ = min {1, δ1, δ2}. Since x is a point of measurable continuity of Ψ, it is a
Lebesgue density point of Ψ−1(U1). Then, since Ssu has full measure, x is also a
density point of L1 = Ψ−1(U1) ∩ Ssu. Let Lu

1 be the local u-saturate of S1 inside
B(x, δ) and let L2 = Lu

1 ∩ Ssu. It is follows that x is a Lebesgue density point of
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Lu
1 , because Lu

1 ⊃ L1, and then it is also a density point of L2, because Ssu has full
measure. Then, using Lemmas 6.8, 6.9, 6.10, and 6.11 we conclude that

lim
n→∞

λ(L2 : Gn(x)) = 1.

Notice that in Lemma 6.10 we used the fact that L2 is essentially u-saturated.
Take L to be the local s-saturate of L2 inside B(x, δ). Consider any point

z ∈ L ∩ Ssu. By definition, there exist z1 ∈ Ψ−1(U1) ∩ Ssu and z2 ∈ Lu
1 ∩ Ssu such

that z1 is in the local strong-unstable leaf of z2, and z2 in the local strong-stable
leaf of z. Consequently, in view of our choices of U1 and U2,

Ψ(z2) = hu
z1,z2

(Ψ(z1)) ∈ U2 and then Ψ(z) = hs
z2,z(Ψ(z2)) ∈ U.

This proves claim (1) in the lemma. Claims (2) and (3) are clear from the con-
struction: L is a local s-saturate of a subset of Ssu. Notice also that

lim
n→∞

λ(S : Gn(x)) = 1,

because L ⊃ L2. It follows, using Lemma 6.12, that x is a cu-julienne density point
of the locally s-saturated set L. This gives claim (4) in the lemma. �

Now the proofs of Proposition 7.11 and Theorem 7.6 are complete. �

7.3. Bi-essential continuity implies essential bi-continuity. In this section
we show how to adapt the previous arguments to prove the following proposition
which, clearly, contains part (a) of Theorem E:

Proposition 7.13. Let f : M → M be a C2 partially hyperbolic center bunched
diffeomorphism and X be a refinable fiber bundle whose fiber is a polish metric
space. For any bi-essentially continuous section Ψ : M → X the set of points of
measurable continuity is bi-saturated and Ψ̃ : MC(Ψ) → X is bi-continuous.

Remark 7.14. As introduced in Section 1, our definition of essential ∗-continuity,
∗ ∈ {s, u} is that the ∗-continuity property holds on some full measure subset
S∗, uniformly on the neighborhood of every point. In formal terms: given x0,
y0 ∈ M and η0 ∈ P there exists ρ > 0 such that for any α > 0 there exists β > 0
satisfying, for any x1, x2 ∈ B(x0, ρ)∩S∗ with Ψ(x1), Ψ(x2) ∈ B(η0, ρ) and any y1,
y2 ∈ B(y0, ρ) ∩ S∗,

(7.7)
dist(x1, x2) < β, dist(y1, y2) < β, yi ∈ W∗

loc(xi) for i = 1, 2,

and dist(Ψ(x1),Ψ(x2)) < β =⇒ dist(Ψ(y1),Ψ(y2)) < α

(it is implicit the fiber bundle has been trivialized near x0 and y0). As a special
case, corresponding to x0 = y0 and x1 = x2 = y2, we get the following continuity
property on strong leaves that will be used in the sequel:

(7.8)
x1, y1 ∈ B(x0, β/2) ∩ S∗, y1 ∈ W∗

loc(x1), Ψ(x1) ∈ B(η0, ρ)

=⇒ dist(Ψ(x1),Ψ(y1)) < α

(it is no restriction to suppose β < α < ρ). Notice that if X is a locally compact
fiber bundle with holonomies, then every essentially ∗-invariant section is essentially
∗-continuous. That is because, in the locally compact case, Definition 7.1 implies
the holonomies are locally uniformly continuous. Compare Remark 7.3.
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Proof. Let x ∈ MC(Ψ) and y ∈ Ws
loc(x). We are going to show that y ∈ MC(Ψ)

and Ψ̃ satisfies the s-continuity condition at (x, y, Ψ̃(x)). Dual arguments prove
u-saturation and u-continuity. The combination of these two facts contains the
conclusion of the proposition.

Denote Ssu = Ss ∩ Su be the intersection of the two full measures sets in Re-
mark 7.14. Using (7.7) with x0 = x, y0 = y, and η0 = Ψ̃(x), we find that for any
ε ∈ (0, ρ) there exists δ ∈ (0, ε) such that

(7.9)
x1, x2 ∈B(x, δ) ∩ Ssu, y1, y2 ∈ B(y, δ) ∩ Ssu, yi ∈ Ws

loc(xi) for i = 1, 2,

and Ψ(x1),Ψ(x2) ∈ B(Ψ̃(x), 2δ) =⇒ dist(Ψ(y1),Ψ(y2)) < ε.

Using (7.8) with x0 = y0 = x and η0 = Ψ̃(x), we find δ1 ∈ (0, δ) such that

(7.10)
x1, z1 ∈ B(x, δ1) ∩ Ssu, z1 ∈ Wu

loc(x1), Ψ(z1) ∈ B(Ψ̃(x), ρ)

=⇒ dist(Ψ(x1),Ψ(z1)) < δ.

Define Aε = Ψ−1
(
B(Ψ̃(x), δ1)

)
∩B(x, δ1)∩Ssu and let Au

ε be the intersection of Ssu

with the local u-saturate of Aε inside B(x, δ1). By definition, for any x1 ∈ Au
ε there

is z1 ∈ Aε in the local strong-unstable leaf of x1. This implies Ψ(z1) ∈ B(Ψ̃(x), δ1).
Thus, we may use (7.10) to conclude that dist(Ψ(x1),Ψ(z1)) < δ and, consequently,

(7.11) Ψ(x1) ∈ B(Ψ̃(x), 2δ) for every x1 ∈ Au
ε .

Let L̃ be the family of local strong-stable leaves through the points of Au
ε , extended

long enough along W s
loc(x) so as to cross B(y, δ). Define Bε = L̃ ∩ B(y, δ) ∩ Ssu.

In view of (7.11), we may use (7.9) to conclude that

(7.12) dist(Ψ(y1),Ψ(y2)) < ε for all y1, y2 ∈ Bε.

Of course, we may take the correspondences ε 7→ δ 7→ δ1 to be monotone. Then
the Ψ(Bε), ε > 0 are a monotone family of subsets of the fiber P , with diameter
going to zero when ε goes to zero. Hence, since P is complete, there exists exactly
one point η in the intersection of the closures of all these sets. By (7.12),

(7.13) Ψ(Bε) ⊂ B(η, ε) for every ε > 0.

Using (7.8) with x0 = y0 = y and η0 = η, we find δ2 ∈ (0, δ) such that

(7.14)
y1, w1 ∈ B(y, δ2) ∩ Ssu, w1 ∈ Wu

loc(y1), Ψ(y1) ∈ B(η, ρ)

=⇒ dist(Ψ(y1),Ψ(w1)) < ε.

Let Bu
ε be the intersection of Ssu with the local u-saturate of Bε ∩B(y, δ2) inside

B(y, δ2). By definition, for any w1 ∈ Bu
ε there exists y1 ∈ Bε ∩B(y, δ2) in the same

strong-unstable leaf. Property (7.13) ensures that Ψ(y1) ∈ B(η, ε). So, we may use
(7.14) to conclude that dist(Ψ(y1),Ψ(w1)) < ε, and so dist(Ψ(w1), η) < 2ε. This
proves that

(7.15) Ψ(Bu
ε ) ⊂ B(η, 2ε).

According to Lemma 7.15 below, this implies that y is a Lebesgue density point
of Ψ−1(B(η, 2ε)). Since ε is arbitrary, it follows that η is a density value for Ψ
at y, and so y is a point of measurable continuity. Therefore, MC(Ψ) is indeed
s-saturated.

Lemma 7.15. The point y is a Lebesgue density point of Bu
ε .
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Proof. Since x is a point of measurable continuity of Ψ, it is a Lebesgue density
point of Aε. Then x is also a density point of Au

ε , because Aε is contained in
Au

ε up to a zero measure subset. Since Au
ε is essentially u-saturated, we may use

Lemmas 6.8 through 6.11 to conclude that limn→∞ λ(Au
ε : Gn(x)) = 1. Then

x is a cu-julienne density point of L̃: this follows from the previous observation
together with Lemma 6.12, because L̃ ∩B(x, δ) is locally s-saturated and contains
Au

ε . Since cu-julienne density points of locally s-saturated sets are preserved by
stable holonomy, as we have seen in Section 6.3, it follows that y is also a cu-
julienne density point of L̃. Applying Lemmas 6.12 and 6.11, we deduce that
limn→∞ λ(L̃ : Dn(y)) = 1. This implies limn→∞ λ(Bu

ε : Dn(y)) = 1, because Bu
ε

contains L̃ ∩ B(y, δ) up to a zero measure subset. Since Bu
ε is locally essentially

u-saturated, we may use Lemmas 6.10 through 6.8 to conclude that y is a Lebesgue
density point of Bu

ε . The proof of the lemma is complete. �

Now we only have to show that the Lebesgue density Ψ̃ is s-continuous on
MC(Ψ). To this end, consider any x̄ ∈ MC(Ψ) satisfying dist(x, x̄) < δ/2 and

dist(Ψ̃(x), Ψ̃(x̄)) < δ/2 and any ȳ ∈ Ws
loc(x̄) with dist(y, ȳ) < δ/2. Conducting the

previous construction with x̄, ȳ in the place of x, y one finds sets Āε, Ā
u
ε ⊂ B(x̄, δ)

and B̄ε, B̄
u
ε ⊂ B(ȳ, δ). Define also

Dε = Ψ−1
(
B(Ψ̃(x̄), δ/2)

)
∩B(x̄, δ/2) ∩D

Then Dε is non-empty, since x̄ ∈ DP(Dε), and it is contained in Aε ∩ Āε. It follows
that Au

ε ∩ Āu
ε , Bu ∩ B̄u, and Bu

ε ∩ B̄u
ε are all non-empty. Then, in view of (7.15)

and the corresponding fact for x̄, the diameter of Ψ(Bu
ε )∪Ψ(B̄u

ε ) is bounded by 4ε.

It follows that dist(Ψ(y), Ψ̃(ȳ)) ≤ 4ε, because the closure Ψ(Bu
ε ) ∪ Ψ(B̄u

ε ) contains

both Ψ̃(y) and Ψ̃(ȳ). This proves that Ψ̃ is s-continuous on MC(Ψ). The proof of
Proposition 7.13 is complete. �

8. Accessibility and continuity

Now we suppose that f is accessible, in addition to being center bunched. Then
MC(Ψ) = M for every bi-essentially invariant function, because the set of measur-

able continuity points is bi-saturated, and so the Lebesgue density Ψ̃ is defined on
the whole M . Thus, part (b) of Theorem D is now a consequence of the following
result, that we are going to prove next:

Theorem 8.1. Let f : M →M be a partially hyperbolic accessible diffeomorphism
and X be a continuous fiber bundle with stable and unstable holonomies. Then any
bi-invariant section Ψ̃ : M → X is continuous.

Moreover, Theorem 8.1 is a consequence of part (b) of Theorem E since, by
Remark 7.3, every bi-invariant section is bi-continuous. In the sequel we prove
Theorem E(b).

8.1. Accessible sequences. The main ingredient in the proof of Theorem E(b)
is to show that small open sets can be reached by “nearby” su-paths starting from
a fixed point in M . For the precise statement, to be given in Proposition 8.3, we
need the following

Definition 8.2. Let z, w ∈M . An accessible sequence connecting z to w is a finite
sequence of points [y0, y1, . . . , yn] such that y0 = z, yj ∈ W∗(yj−1) for 1 ≤ j ≤ n
where each ∗ ∈ {s, u}, and yn = w.
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Proposition 8.3. Given x0 ∈ M , there is w ∈ M and an accessible sequence
[y0(w), . . . , yN (w)] connecting x0 to w and satisfying the following property: for
any ε > 0 there exist δ > 0 and L > 0 such that for every z ∈ B(w, δ) there exists
an accessible sequence [y0(z), y1(z), . . . , yN (z)] connecting x0 to z and such that

dist(yj(z), yj(w)) < ε and distW∗(yj−1(z), yj(z)) < L for j = 1, . . . , N

where distW∗ denotes the distance along the strong (either stable or unstable) leaf
common to the two points.

8.2. Proof of continuity. Here we deduce Theorem E(b) from Proposition 8.3.
Since continuity is preserved by the holonomies, it suffices to prove that the section
Ψ̃ is continuous at some point in order to conclude that it is continuous everywhere.

Fix x0 ∈ M and then let w ∈ M and [y0(w), y1(w), . . . , yN(w)] be an accessible
sequence connecting x0 to w such as in Proposition 8.3. We are going to prove
that Ψ̃ is continuous at w. Take the fiber bundle π : X → M to be trivialized on
the neighborhood of every node yj(w), via local coordinates. Let V ⊂ P be any

neighborhood of Ψ̃(w) = Ψ̃(yN (w)). Since Ψ̃ is bi-continuous, we may find numbers

εj > 0 and neighborhoods Vj of Ψ̃(yj(w)) such that VN = V and

(8.1)
x ∈ B(yj−1(w), εj), y ∈ B(yj(w), εj), y ∈ W∗j (x), Ψ̃(x) ∈ Vj−1

=⇒ Ψ̃(y) ∈ Vj

for every j = 1, . . . , N . Let ε = min {εj : 1 ≤ j ≤ N}. Using Proposition 8.3 we
find δ > 0 and, for each z ∈ B(w, δ), an accessible sequence [y0(z), y1(z), . . . , yN (z)]
connecting x0 to z, with

(8.2) yj(z) ∈ B(yj(w), ε) ⊂ B(yj(w), εj) for j = 1, . . . , N.

We may suppose δ < ε. Consider any z ∈ B(w, δ). Clearly, Ψ̃(x) = Ψ̃(y0(z)) ∈ V0.

Then, we may use (8.1)-(8.2) inductively to conclude that Ψ̃(yj(z)) ∈ Vj for every

j = 1, . . . , N . The last case, j = N , gives Ψ̃(z) ∈ V . We have shown that

Ψ̃(B(w, δ)) ⊂ V . This proves that Ψ̃ is continuous at w, as claimed.
In this way, we reduced the proof of Theorem E(b) to proving Proposition 8.3.

8.3. Non-injective parametrizations. In this section we prepare the proof of
Proposition 8.3, that will be given in the next section.

8.3.1. Exhaustion of accessibility classes. Fix any point x0 ∈ M . For each r ∈ N,
we consider the following sequence of sets Kr,n, n ∈ N:

Kr,1 = {y ∈ Ws(x0) : distWs(x0, y) ≤ r} and

Kr,n =
⋃

x∈Kr,n−1

{y ∈ W∗(x) : distW∗(x, y) ≤ r} , for n ≥ 2,

where ∗ = s when n is odd, and ∗ = u when n is even. That is, Kr,n is the set of
points that can be reached from x0 using an accessible sequence with n legs whose
lengths do not exceed r.

Lemma 8.4. Every Kr,n is closed in M and, hence, compact.

Proof. It is clear from the definition that Kr,1 is closed. The general case follows by
induction. Suppose Kr,n−1 is closed, and let z belong to the complement of Kr,n.
Then, by definition,

Z = {y ∈ W∗(z) : distW∗(x, y) ≤ r}
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does not intersect the closed set Kr,n−1. It follows that U ∩ Kr,n = ∅ for some
neighborhood U of the set Z. By continuity of strong (stable or unstable) foliations,
and their induced Riemannian metrics, for every point w in a neighborhood of z,

{y ∈ W∗(z) : distW∗(x, y) ≤ r} ⊂ U

and hence, the set on the left hand side is disjoint from Kr,n−1. This proves that
points w in that neighborhood of z do not belong to Kr,n either. Thus, Kr,n is
indeed closed. �

By definition, the union of Kr,n over all (r, n) is the accessibility class of x0.
Since we are assuming that f is accessible, this union is the whole manifold:

M =
⋃

r,n∈N

Kr,n.

Since M is a Baire space, it follows that Kr,n has non-empty interior for some r
and n, that we consider fixed from now on.

Our immediate goal is to define a continuous “parametrization” (non-injective)

(8.3) Ψn : Kr,n → Kr,n

of the set Kr,n by a convenient compact subspace Kr,n of a Euclidean space, that
we are going to introduce in the sequel. Let ds and du denote the dimensions of the
strong-stable leaves and the strong-unstable leaves, respectively. This Euclidean
space will be the alternating product of Rds and Rdu , with n factors, each of which
parametrizing one leg of the accessible sequence. The case n = 2 is described in
Figure 3.

Φ

Rdu

Rds0 x0

Ws(x0)

Wu

Figure 3.

8.3.2. Fiber bundles induced by local strong leaves. The following lemma will be
useful in the construction of (8.3). The whole point with the statement is that U
does not need to be small. The diffeomorphisms in the statement are as regular as
the partially hyperbolic diffeomorphism f itself.

Lemma 8.5. For any contractible space A, any continuous function Ψ : A → M ,
and any symbol ∗ ∈ {s, u}, there exists a homeomorphism

Θ : A× Rd∗ → {(a, y) : a ∈ A and y ∈ W∗
loc(Ψ(a))}

that maps every {a} × Rd∗ diffeomorphically to {a} × W∗
loc(Ψ(a)) and satisfies

Θ(a, 0) = (a,Ψ(a)) for all a ∈ A.
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Proof. We consider the case ∗ = s. Since Ws is a continuous lamination with
smooth leaves (see [23]), for each p ∈ M we may find a neighborhood Up and a
continuous map

Φp : Up × Rds →M

such that Φp(x, 0) = x and Φp(x, ·) maps Rds diffeomorphically to Ws
loc(x), for

every x ∈ Up. Using these maps we may endow the set

Fs = {(x, y) : x ∈M and y ∈ Ws
loc(x)}

with the structure of a continuous fiber bundle over M , with local charts

Up × Rds → {(x, y) : x ∈ Up and y ∈ Ws
loc(x)} (x, v) 7→ (x,Φp(x, v)).

Then F s
Ψ = {(a, y) : a ∈ A and y ∈ Ws

loc(Ψ(a))} also has a fiber bundle structure,
with local coordinates

Θp : Ψ−1(Up) × Rds → {(a, y) : Ψ(a) ∈ Up and y ∈ Ws
loc(Ψ(a))}

given by Θp(a, v) = (a,Φp(Ψ(a), v)). This fiber bundle admits the space of diffeo-
morphisms of Rds that fix the origin as a structural group: all coordinate changes
along the fibers belong to this group. The core of the proof is the general fact (see
[14, Chapter 4,Theorem 9.9]) that, for any topological group G, any fiber bundle
over a contractible paracompact space that has G as a structural group is G-trivial.
When applied to F s

Ψ this result means that there exists a global chart

Θ : A× Rds → {(a, y) : a ∈ A and y ∈ Ws
loc(Ψ(a))} , Θ(a, v) = (a,Φ(a, v))

such that every Φ(a, ·) maps Rds to the strong-stable leaf through Ψ(a), and every
Φ(a, ·)−1 ◦ Φp(Ψ(a), ·) is a diffeomorphism that fixes the origin of Rds . The latter
gives that Φ(a, 0) = Φp(Ψ(a), 0) = Ψ(a) for all a ∈ A. �

8.3.3. Construction of non-injective parametrizations. Now we construct Kr,n and
Ψ as in (8.3). Let l ≥ 1 be fixed such that, for any x ∈M ,

{y ∈ Ws(x) : distWs(x, y) ≤ 2r} ⊂ f−l
(
Ws

loc(f
l(x))

)

{y ∈ Wu(x) : distWu(x, y) ≤ 2r} ⊂ f l
(
Ws

loc(f
−l(x))

)
.

(8.4)

Our argument is somewhat more transparent when l = 0, and so the reader should
find it convenient to keep that case in mind throughout the construction.

Define E1 = {y ∈ M : f l(y) ∈ Ws
loc(f

l(x0))} and Φ1 : E1 → M to be the
inclusion. Notice that E1 is contractible and Φ1(E1) contains Kr,1. Since E1 is a
smooth disc, there exists an diffeomorphism Θ1 : Rds → E1 with Θ1(0) = x0. Then

Ψ1 = Φ1 ◦ Θ1 : Rds →M

is a continuous function whose image contains Kr,1. Notice that the pre-image

Kr,1 = Ψ−1
1 (Kr,1) is compact: Kr,1 = {y ∈ Ws(x0) : distWs(x0, y) ≤ r} and we

have a factor 2 in (8.4). Next, define

E2 =
{
(a, y) : a ∈ Rds and f−l(y) ∈ Wu

loc(f
−l(Ψ1(a)))

}

and Φ2 : E2 → M , Φ2(a, y) = y. Notice that Φ2(E2) contains Kr,2. Using
Lemma 8.5 with A = Rds , Ψ = f−l ◦ Ψ1, and ∗ = u, we find a homeomorphism

Θ2 : Rds × Rdu → {(a, y) : a ∈ Rds and y ∈ Wu
loc(f

−l(Ψ1(a)))}
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that maps each {a}×Rdu diffeomorphically to {a}×Wu
loc(f

−l(Ψ1(a))) and satisfies
Θ2(a, 0) = (a, f−l(Ψ1(a))). Clearly, the map

Γ2 : {(a, y) : a ∈ Rds and y ∈ Wu
loc(f

−l(Ψ1(a)))} → E2, Γ2(a, y) = (a, f l(y))

is a homeomorphism, and Γ2(Θ2(a, 0)) = (a,Ψ1(a)). Then

Ψ2 = Φ2 ◦ Γ2 ◦ Θ2 : Rds × Rdu →M

is a continuous map whose image contains Kr,2. Moreover, Ψ2 may be viewed as a
continuous extension of Ψ1, because

Ψ2(a, 0) = Φ2(Γ2(Θ2(a, 0))) = Φ2(a,Ψ1(a)) = Ψ1(a)

for all a ∈ Rds . In general, Ψ−1
2 (Kr,2) needs not be compact. However,

Kr,2 =
{
(a, b) ∈ Rds × Rdu : a ∈ Kr,1 and distWu(Ψ2(a, 0),Ψ2(a, b)) ≤ r

}

is compact and satisfies Ψ2(Kr,2) = Kr,2. Repeating this procedure, we construct
continuous maps

Ψj : Rds × Rdu × · · · × Rd∗ →M

(there are j factors, and so ∗ = u if j is even and ∗ = s if j is odd), contractible
sets Ej , and compact sets Kr,j such that each Ψj is a continuous extension of Ψj−1,
in the previous sense, and Ψj(Kr,j) = Kr,j. We stop this procedure for j = n. The
corresponding map Ψn is the non-injective parametrization announced in (8.3).

8.4. Selection of nearby accessible sequences. Now we prove Proposition 8.3.
We need the following general fact about regular values of continuous functions.

Definition 8.6. Let Φ : A → B be a map between topological spaces A and B. A
point x ∈ A is regular for Φ, if for every neighborhood V of x we have Φ(x) ∈ Φ(V)◦.
A point y ∈ B is a regular value of Φ if every point of Φ−1(y) is regular.

Proposition 8.7. Let A be a compact metrizable space and B a locally compact
Hausdorff space. If Φ : A → B is continuous then the set of regular values of Φ is
residual.

Proof. We are going to prove that the image of the set of non-regular points is
meager. The assumptions imply that A admits a countable base T of open sets,
and the map Φ is closed. If x is a non-regular point of Φ, then there exists V ∈ T
such that Φ(x) does not belong to the interior of Φ(V). Therefore, Φ(x) belongs to
the closed set ∂Φ(V), which has empty interior because Φ(V) is closed. Then, the
image of non-regular points is a subset of the meager set

⋃ {
∂Φ(V) : V ∈ T

}
. �

We apply this proposition to the continuous map Ψn : Kr,n → Kr,n. Recall that,
by construction, the image Kr,n has non empty interior. Then, in particular, Ψn

has some regular value w ∈ Kr,n. Let (a1, . . . , an) ∈ Kr,n be any point in Kr,n

such that Ψn(a1, . . . , an) = w. Let ε > 0 be as in the statement of the proposition.
Since the functions Ψ1, Ψ2, . . . , Ψn are continuous, there exists ρ > 0 such that if
|aj − bj | < ρ, for j = 1, . . . , n, then

(8.5) dist(Ψj(a1, . . . , aj),Ψj(b1, . . . , bj)) < ε

for all j = 1, . . . , n. Using that the point (a1, . . . , an) is regular (Definition 8.6), we
get that the image Ψn(V ) of the neighborhood

V = Kr,n ∩ {(b1, . . . , bn) : |aj − bj | < ρ, for j = 1, . . . , n}
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has w in its interior. In other words, there exists δ > 0 such that B(w, δ) ⊂ Ψn(V ).
Consider any point z ∈ B(w, δ). Then there exists (b1(z), . . . , bn(z)) ∈ V such that
z = Ψn(b1(z), . . . , bn(z)). Define

yj(z) = Ψj(b1(z)), . . . , yj(z))

for j = 1, . . . , n, and y0(z) = w. Then [y1(z), . . . , yn(z)] is an accessible sequence
connecting x0 to z. The inequalities (8.5) mean that

dist(yj(z), yj(w)) < ε for j = 1, . . . , n.

Moreover, since Ψn(b1(z), . . . , bn(z)) ∈ Kr,n, the distance between every yj−1(z)
and yj(z) along their common strong (stable or unstable) leaf does not exceed r.
Proposition 8.3 follows taking L = r and N = n.

9. Generic linear cocycles over partially hyperbolic maps

In this section we prove Theorem A. Let us begin by giving an outline of the
proof. We take the vector bundle to be trivial V = M ×Kd. This greatly simplifies
the presentation, but is not really necessary for our arguments, which are mostly
local: for obtaining the conclusion we consider modifications of the cocycle sup-
ported in a neighborhood of certain special points (the pivots, see Proposition 9.8),
where triviality holds anyway, by definition. Let Kx = {x} × Kd be the fiber of V
and P(Kx) = {x} × P(K) be the fiber of the projective bundle P(V) over the point
x. We call loop of f : M → M at x ∈ M any accessible sequence γ = [y0, . . . , yn]
connecting a point x ∈M to itself, that is, such that y0 = yn = x. Then we denote

Hγ = H∗n
yn−1,yn

◦ · · · ◦H∗j
yj−1,yj

◦H∗1
y0,y1

: P(Kx) → P(Kx)

where ∗j ∈ {s, u} is the symbol of the strong leaf common to the nodes yj−1 and
yj. Theorem B(b) implies that if λ+(F ) = λ−(F ) then any F -invariant probability
measure m that projects down to µ admits a disintegration {mz : z ∈M} such that

(9.1) (Hγ)∗mx = mx for any loop γ.

We consider loops with slow recurrence, for which some node yr, that we call pivot,
is slowly accumulated by the orbits of all the nodes including its own. Using
perturbations of the cocycle supported on a small neighborhood of the pivot, we
prove that the map F 7→ Hγ assigning to each cocycle the corresponding holonomy
over the loop is a submersion. In fact, we are able to consider several independent
loops with slow recurrence, γ1, . . . , γm, and prove that the map

F 7→ (Hγ1 , . . . , Hγm
)

is a submersion. Consequently, for typical cocycles, the matrices Hγi
are in general

position, and so they have no common invariant probability in the projective space.
This shows that for typical cocycles the condition (9.1) fails and, hence, the extremal
Lyapunov exponents are distinct.

Let us also point out that these arguments extend, more or less directly, to
SL(d,K)-valued cocycles (see Remarks 9.9 and 9.15), so that the statement of the
theorem remains valid restricted to the subspace Sr,α(M,d,K) of cocycles with
detFx = 1 at every point. It would be interesting to investigate the case of G-
valued cocycles for more general subgroups of GL(d,K), for instance the symplectic
group.
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9.1. Accessibility with slow recurrence. An important step is to prove that
loops with slow recurrence do exist. Beforehand, let us give the precise definition.

Definition 9.1. A family {γ1, . . . , γm} of loops γi = [yi
0, . . . , y

i
n(i)] has slow recur-

rence if there exists c > 0 and for each 1 ≤ i ≤ m there exists 0 < r(i) < n(i) such
that, for all i, l = 1, . . . ,m, all 0 ≤ j ≤ n(i), and all k ∈ Z,

dist
(
fk(yi

j), y
l
r(l)

)
≥ c/(1 + k2)

with the exception of k = 0 when (i, j) = (l, r(l)).

It is convenient to distinguish accessible sequences [y0, y1, . . . , yn] according to
the nature of the last leg: we speak of accessibility s-sequence if yn−1 and yn belong
to the same strong-stable leaf, and we speak of accessibility u-sequence if yn−1 and
yn belong to the same strong-unstable leaf. Let ds and du be the dimensions of the
strong-stable leaves and strong-unstable leaves, respectively.

Proposition 9.2. For any m ≥ 1 and any (x1, . . . , xm) ∈ Mm, there exists a
family γi of loops with slow recurrence, where each γi is a loop at xi.

The proof of this proposition requires a number of preparatory results.

Lemma 9.3. Given any finite set {w1, . . . , wn} ⊂M , any y ∈M , and any symbol
∗ ∈ {s, u}, there exists a full Lebesgue measure subset of points w ∈ W∗

loc(y) such
that

(9.2) dist(fk(wj), w) ≥ c/(1 + k2)

for some c > 0 and for all 1 ≤ j ≤ n and all k ∈ Z.

Proof. Consider ∗ = s: the case ∗ = u is analogous. Since local strong-stable leaves
are a continuous family of C2 embedded disks, there exists a constant D1 > 0 such
that

λWs
loc(y)

(
Ws

loc(y) ∩B(z, c/(1 + k2))
)
≤ D1(c/(1 + k2))ds

for any z ∈ M . Thus, the Lebesgue measure of the subset of points w ∈ Ws
loc(y)

not satisfying inequality (9.2) for some fixed c > 0 is bounded by
n∑

j=1

∑

k∈Z

D1c
ds(1 + k2)−ds ≤ D2 c

ds with D2 = nD1

∑

k∈Z

(1 + k2)−ds <∞.

Making c→ 0, we conclude that the inequality (9.2) is indeed satisfied by Lebesgue
almost every point in Ws

loc(y). �

Corollary 9.4. Given any m ≥ 1, any (x1, . . . , xm) ∈ Mm, and any ∗ ∈ {s, u},
then for every (z1, . . . , zm) in a full Lebesgue measure subset of Mm there exist
c > 0 and accessibility ∗-sequences [yi

0, . . . , y
i
n(i)] connecting xi to zi such that

dist(fk(yi
j), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m, all 0 ≤ j < n(i), and all k ∈ Z.

Proof. Consider ∗ = s: the case ∗ = u is analogous. Since the strong-stable
foliation is absolutely continuous, it suffices to prove that, given any points yi ∈M ,
1 ≤ i ≤ m, the conclusion holds on a full Lebesgue measure subset of points
zi ∈ Ws

loc(yi), 1 ≤ i ≤ m. Now, by the accessibility assumption, there exist
accessibility sequences [yi

0, . . . , y
i
r(i)] connecting xi to yi. Consider each zi in the
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full Lebesgue measure subset of Ws(yi) given by Lemma 9.3, applied to the finite
set {

yi
j : 1 ≤ i ≤ m and 0 ≤ j ≤ r(i)

}
.

and the point y = yi. Then the accessibility s-sequences [yi
0, . . . , y

i
k(i), zi] satisfy

the conditions in the conclusion. In view of the observation at the beginning, this
proves the corollary. �

Lemma 9.5. For any m ≥ 1 and any (y1, . . . , ym) ∈ Mm, there exists a full
Lebesgue measure subset of (z1, . . . , zm) ∈ Ws

loc(y1) × · · · ×Ws
loc(ym) such that

dist(fk(zi), zl) ≥ c/(1 + k2)

for some c > 0 and for all i, l = 1, . . . ,m and all k ≥ 0, except k = 0 when i = l.
The statement remains true if one replaces Ws

loc by Wu
loc and k ≥ 0 by k ≤ 0.

Proof. It is clear that each strong-stable leaf contains at most one periodic point.
As an easy consequence we get that, that given any κ ≥ 1, there exists a full
Lebesgue measure subset of (z1, . . . , zm) ∈ Ws

loc(y1) × · · · × Ws
loc(ym) such that

fk(zi) 6= zl for all i, l = 1, . . . ,m and all 0 ≤ k < κ, except k = 0 when i = l.
Then the condition in the statement holds, for some c > 0, restricted to iterates
0 ≤ k < κ. Let us focus on k ≥ κ. For each i, l = 1, . . . ,m, define

Ek
i,l =

{
z ∈ Ws

loc(yl) : dist(fk(zi), zl) < 1/(1 + k2) for some zi ∈ Ws
loc(yi)

}
.

The diameter of fk(Ws
loc(yi)) is bounded by C1θ

k, where C1 > 0 is some uniform
constant and θ < 1 is an upper bound for the contraction function ν(x) in (2.1).
Consequently,

diam(Ek
i,l) ≤ C1θ

k + 2/(1 + k2) ≤ C2/(1 + k2)

for another uniform constant C2 > 0. It follows that

λWs
loc(yl)

( m⋃

i=1

∞⋃

k=κ

Ek
i,l

)
≤ m

∞∑

k=κ

C2(1 + k2)−ds .

On the one hand, the right hand side of this expression goes to 0 when κ goes to
infinity. On the other hand, in view of our previous observations, for any κ ≥ 1,
Lebesgue almost every (z1, . . . , zm) ∈ Ws

loc(y1) × · · · ×Ws
loc(ym) with

zl /∈
m⋃

i=1

∞⋃

k=κ

Ek
i,l

satisfies the conclusion of the lemma for some c ∈ (0, 1). This proves that the
subset of (z1, . . . , zm) for which the conclusion of the lemma does not hold has zero
Lebesgue measure, as claimed. �

Corollary 9.6. For any m ≥ 1, and every (z1, . . . , zm) in a full Lebesgue measure
subset of Mm, there exists c > 0 such that

dist(fk(zi), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m and all k ∈ Z, except k = 0 when i = l.
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Proof. It suffices to prove that the conditions obtained replacing k ∈ Z by either
k ≥ 0 or k ≤ 0 are satisfied on full Lebesgue measure subsets of Mm, and then
take the intersection of these two subsets. We consider the case k ≥ 0, as the
other one is analogous. Suppose there is a positive Lebesgue measure subset of
(z1, . . . , zm) ∈ Mm for which the condition is not satisfied: the forward orbit of
some zi accumulates some zl faster than c/(1 + k2) for any c > 0. Then, since M
is covered by the foliation boxes of the strong-stable foliation, there exist foliation
boxes Ui, 1 ≤ i ≤ m such that this exceptional subset intersects U = U1 × · · ·×Um

on a positive Lebesgue measure subset. The domain U is foliated by the products
Ws

loc(y1) × · · · × Ws(ym) of local strong-stable leaves. We denote this foliation
as Ws,m. Given any holonomy maps hi : Σ1

i → Σ2
i between cross-sections to the

strong-stable foliation Ws inside Ui, the products Σj = Σj
1 × · · · × Σj

m are cross-
sections to Ws,m, and the holonomy map of Ws,m is

h : Σ1 → Σ2, h(z1, . . . , zm) = (h1(z1), . . . , hm(zm)).

Since all the hi are absolutely continuous, so is h: the Jacobians are related by
Jh(z1, . . . , zm) = Jh1(z1) · · ·Jhm(zm). This absolute continuity property implies
that every positive Lebesgue measure subset of U intersects Ws

loc(y1)×· · ·Ws
loc(ym)

on a positive Lebesgue measure subset, for a subset of (y1, . . . , ym) with positive
Lebesgue measure. In particular, the exceptional set intersects some leaf of Ws,m

on a positive Lebesgue measure subset. This contradicts Lemma 9.5, and this
contradiction proves the corollary. �

Corollary 9.7. For any m ≥ 1, any (x1, . . . , xm) ∈ Mm, and any ∗ ∈ {s, u}, and
a full Lebesgue measure set D∗ of (z1, . . . , zm) ∈Mm, there exists c > 0 such that

(9.3) dist(fk(zi), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m and all k ∈ Z, except k = 0 when i = l, and there exist
accessibility ∗-sequences [yi

0, . . . , y
i
n(i)] connecting xi to zi, for 1 ≤ i ≤ m such that

(9.4) dist(fk(yi
j), zl) ≥ c/(1 + k2)

for all i, l = 1, . . . ,m, all 0 ≤ j < n(i), and all k ∈ Z.

Proof. Just take the intersections of the full Lebesgue measure subsets given in
Corollary 9.4, for ∗ ∈ {s, u}, and in Corollary 9.6. �

Proof of Proposition 9.2. Given m ≥ 1 and (x1, . . . , xm) ∈Mm, let Ds and Du be
the full Lebesgue measure sets given by Corollary 9.7, and then consider

(z1, . . . , zm) ∈ Ds ∩Du .

The corollary yields, for each 1 ≤ i ≤ m, an accessibility s-sequence [yi
0, . . . , y

i
r(i)]

and an accessibility u-sequence [wi
0, . . . , w

i
t(i)] connecting xi to zi. Then

γi = [yi
0, . . . , y

i
r(i) = wi

t(i), . . . , w
i
0]

is a loop at xi, and properties (9.3)-(9.4) mean that the family {γ1, . . . , γm} of loops
has slow recurrence. �
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9.2. Holonomies on loops with slow recurrence. As we pointed out before,
the tangent space at each point B ∈ Gr,α(M,d,K) is naturally identified with the
Banach space of Cr,α maps from M to the space of linear maps in Kd. This means
that we may view the tangent vectors Ḃ as Cr,α functions assigning to each z ∈M
a linear map Ḃ(z) : Kz → Kf(z).

Let A ∈ Gr,α(M,d,K) fiber bunched. As we gave seen in Section 3.2, there exists
a neighborhood U ⊂ Gr,α(M,d,K) of A such that every B ∈ U is fiber bunched.
Then, for any loop γ = [y0, . . . , yn] at a point x ∈ M , and any 0 ≤ k < l ≤ n, we
have linear holonomy maps

HB,γ,k,l = H∗l

B,yl−1,yl
◦ · · · ◦H∗k+1

B,yk,yk+1
: Kyk

→ Kyl
.

Furthermore, all the maps B 7→ HB,γ,k,l are C1 on U . In particular, the derivative
of B 7→ HB,γ = HB,γ,0,n is given by

(9.5) ∂BHB,γ : Ḃ 7→
n∑

l=1

HB,γ,l,n

[
∂BHB,γ,l−1,l(Ḃ)

]
HB,γ,0,l−1.

The main result in this section is

Proposition 9.8. Let A ∈ Gr,α(M,d,K) be fiber bunched and U be a neighborhood
as above. For each x ∈ M and m ≥ 1, let γi = [yi

0, y
i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a

family of loops at x with slow recurrence. Then

U 3 B 7→ (HB,γ1 , . . . , HB,γm
) ∈ GL(d,Kx)m

is a submersion: the derivative is surjective at every point, even restricted to the
subspace of tangent vectors Ḃ supported on a small neighborhood of the pivots.

In the proof we use (9.5) together with the expressions for the ∂BHB,γ,l−1,l(Ḃ)
given in Propositions 3.7 and 3.9. The idea is quite simple. Perturbations in the
neighborhood of the pivots affect the holonomies over all the loop legs, of course.
However, Corollaries 3.8 and 3.10 show that the effect decreases exponentially fast
with time, and slow recurrence means that the first iterates need not be considered.
Combining these two ideas one shows (Corollary 9.12) that the derivative is a small
perturbation of its term of order zero. The latter is easily seen to be surjective
(Lemma 9.13), and then the same is true for any small perturbation.

Remark 9.9. Essentially the same arguments yield an SL(d,K)-version of this
proposition: the map U ∩Sr,α(M,d,K) 3 B 7→ (HB,γ1 , . . . , HB,γm

) ∈ SL(d,Kx)m is
a submersion. Clearly, it remains true that the derivative is a small perturbation of
its term of order zero. Then the main point is to observe that the restriction of the
operator S in Lemma 9.13 maps TBSr,α(M,d,K) surjectively to THB,γ

SL(d,Kx).

Before getting into the details, let us make an easy observation that allows
for some simplification of our notations. If γ = [y0, . . . , yn] is a loop with slow
recurrence then so is γ̄ = [yn, . . . , y0], and HB,γ̄ is the inverse of HB,γ . Hence,
the statement of the proposition is not affected if one reverses the orientation of
any γi as described. So, it is no restriction to suppose that every loop γ has the
orientation for which the pivot yr satisfies

(9.6) yr ∈ Ws(yr−1) ∩Wu(yr+1),

and we do so in all that follows.
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Lemma 9.10. Let γ = [y0, . . . , yn] be a loop with slow recurrence and yr be the
corresponding pivot. Then, there is τ > 0 such that for any small ε > 0 and any
tangent vector Ḃ supported on B(yr, ε),

‖∂BHB,γ,l−1,l(Ḃ)‖ ≤ θ
√

τ/ε ‖Ḃ‖0,β for any l 6= r, and

‖∂BHB,γ,r−1,r(Ḃ) +B(yr)
−1Ḃ(yr)H

s
B,yr−1,yr

‖ ≤ θ
√

τ/ε ‖Ḃ‖0,β.

Proof. By Definition 9.1, there exists c > 0 such that

dist(fk(yl), yr) ≥ c/(1 + k2) for all (l, k) ∈ {0, . . . , n} × Z, (l, k) 6= (r, 0).

Consider ε < c. Then B(yr, ε) contains no other node of the loop. Moreover, for
any 0 ≤ l ≤ n and any k ≥ 1,

fk(yl) ∈ B(yr, ε) =⇒ |k| ≥ t(ε), where t(ε) =
√
c/ε− 1.

Let us denote by ∂BHB,γ,l−1,l,t(ε)(Ḃ) the t-tail of the derivative, that is, the sum
over i ≥ t in Proposition 3.7 (case ∗l = s) or Proposition 3.9 (case ∗l = u). Then, for

any Ḃ ∈ TBGr,α(M,d,K) supported in B(yr, ε), the expression in Proposition 3.7
becomes

(9.7) ∂BHB,γ,l−1,l(Ḃ) = ∂BHB,γ,l−1,l,t(ε)(Ḃ)

for all l 6= r, and

(9.8) ∂BHB,γ,r−1,r(Ḃ) = −B(yr)
−1Ḃ(yr)H

s
B,yr−1,yr

+ ∂BHB,γ,l−1,l,t(ε)(Ḃ)

for l = r. This applies to the loop legs with symbol ∗l = s. Observing that the sum
in Proposition 3.9 does not include the term i = 0, we conclude that (9.7) extends
to all loop legs with symbol ∗l = u. Next, by Corollaries 3.8 and 3.10,

(9.9) ‖∂BHB,γ,l−1,l,t(Ḃ)‖ ≤ C5(a) θ
t ‖Ḃ‖0,β,

for every 1 ≤ l ≤ n and any t ≥ 0, where a is an upper bound for the distances
between consecutive loop nodes. Choose any τ < c. The lemma follows directly
from (9.7), (9.8), (9.9) with t = t(ε), because t(ε) <

√
τ/ε for all small ε > 0. �

Corollary 9.11. Let γi = [yi
0, y

i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a family of loops at x

with slow recurrence and yr(i), 1 ≤ i ≤ m be the corresponding pivots. Then there
exists τ > 0 such that, for any small ε > 0, any 1 ≤ j ≤ m, and any tangent vector
Ḃ supported on B(yj

r , ε), r = r(j)

‖∂BHB,γi,l−1,l(Ḃ)‖ ≤ θ
√

τ/ε ‖Ḃ‖0,β for all (i, l) 6= (j, r), and

‖∂BHB,γj ,r−1,r(Ḃ) +B(yj
r)

−1Ḃ(yj
r)H

s
B,yj

r−1,yj
r
‖ ≤ θ

√
τ/ε ‖Ḃ‖0,β.

Proof. The case i = j is contained in Lemma 9.10. The cases i 6= j follow from the
same arguments, observing that

dist(fk(yi
l ), y

j
r) ≥ c/(1 + k2) for every k ∈ Z

and so fk(yi
l ) ∈ B(yj

r , ε) implies |k| ≥ t(ε), for every 0 ≤ l ≤ n(i). �

Corollary 9.12. Let γi = [yi
0, y

i
1, . . . , y

i
n(i)], 1 ≤ i ≤ m be a family of loops at x

with slow recurrence, and yr(i), 1 ≤ i ≤ m be the corresponding pivots. Then, there
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exists K1 > 0 such that, for any small ε > 0, any 1 ≤ j ≤ m, and any tangent
vector Ḃ supported on B(yj

r , ε), r = r(j)

‖∂BHB,γi
(Ḃ)‖ ≤ K1θ

√
τ/ε ‖Ḃ‖0,β for all i 6= j, and

‖∂BHB,γj
(Ḃ) +HB,γj ,r,n(j)B(yj

r)
−1Ḃ(yj

r)HB,γj,0,r‖ ≤ K1θ
√

τ/ε ‖Ḃ‖0,β

Proof. This follows from replacing in (9.5) the estimates in Corollary 9.11. By
Proposition 3.4(5), the factors HB,γi,0,l−1 and HB,γi,l,n(i) are bounded by some
uniform constant K2 that depends only on the loops. Then, for every i 6= j,
Corollary 9.11 and the relation (9.5) gives

‖∂BHB,γi
(Ḃ)‖ ≤

n(i)∑

l=1

K2
2‖∂BHB,γ,l−1,l(Ḃ)‖ ≤ K1θ

√
τ/ε ‖Ḃ‖0,β,

as long as we choose K1 ≥ K2
2 maxi n(i). This gives the first part of the corollary.

Now we consider i = j. For the same reasons as before, all but one term in the

expression (9.5) are bounded by K2
2θ

√
τ/ε ‖Ḃ‖0,β . The possible exception is

HB,γj,r,n(j)

[
∂BHB,γj,r−1,r(Ḃ)

]
HB,γj ,0,r−1,

corresponding to l = r. By Corollary 9.11, this last expression differs from

−HB,γj ,r,n(j)B(yj
r)

−1Ḃ(yj
r)H

s
B,yj

r−1,yj
r
HB,γj ,0,r−1 =

−HB,γj,r,n(j)B(yj
r)

−1Ḃ(yj
r)HB,γj ,0,r

by a term bounded by K2
2θ

√
τ/ε ‖Ḃ‖0,β . This completes the proof. �

Lemma 9.13. Let γ = [y0, . . . , yn] be a loop at x ∈ M and 0 < r < n be fixed.
Then the linear map

S : TBGr,α(M,d,K) → THB,γ
GL(d,Kx) ' L(Kd

x,K
d
x)

Ḃ 7→ −HB,γ,r,nB(yr)
−1Ḃ(yr)HB,γ,0,r

is surjective, even restricted to the subspace of tangent vectors Ḃ vanishing outside
some neighborhood of yr. More precisely, there existsK3 > 0 such that for 0 < ε < 1
and Θ ∈ L(Kd,Kd) there exists ḂΘ ∈ TBGr,α(M,d,K) vanishing outside B(yr, ε)

and such that S(ḂΘ) = Θ and ‖ḂΘ‖0,β ≤ K3 ε
−β ‖Θ‖.

Proof. Let τ : M → [0, 1] be a Cr,α function vanishing outside B(yr, ε) and such
that τ(yr) = 1 and the Hölder constant Hβ(τ) ≤ 2ε−β. For Θ ∈ L(Kd,Kd), define

ḂΘ ∈ TBGr,α(M,d,K) by

ḂΘ(w) = B(yr)H
−1
B,γ,r,n ΘB(yr)

−1 τ(w)B(w)H−1
B,γ,0,r .

Notice that ḂΘ(yr) = B(yr)H
−1
B,γ,r,n ΘH−1

B,γ,0,r and so S(ḂΘ) = Θ. Moreover,

(9.10) ‖ḂΘ‖0,0 ≤ ‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖ ‖B‖0,0 ‖Θ‖.

For any w1, w2 ∈M the norm of ḂΘ(w1) − ḂΘ(w2) is bounded by

‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖

(
‖τ(w1) − τ(w2)‖‖B(w1)‖ + |τ(w2)|‖B(w1) −B(w2)‖

)
‖Θ‖.
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Consequently, the Hölder constant Hβ(ḂΘ) of ḂΘ is bounded above by

(9.11) ‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖

(
2ε−β‖B‖0,0 +Hβ(B)

)
‖Θ‖.

Adding the inequalities (9.10) and (9.11), and taking

K3 = ‖H−1
B,γ,r,n‖ ‖H−1

B,γ,0,r‖ ‖B(yr)‖ ‖B(yr)
−1‖ ‖B‖0,β,

one obtains ‖ḂΘ‖0,β ≤ K3e
−β‖Θ‖. �

Proof of Proposition 9.8. For each 1 ≤ j ≤ m, let Sj be the operator associated to
γ = γj as in Lemma 9.13. Let Θj be any element of the unit sphere in L(Kx,Kx).

By Lemma 9.13, for any small ε > 0 there exists a tangent vector Ḃ(j,Θj) supported

in B(yj
r(j), ε) such that

Sj

(
Ḃ(j,Θj)

)
= Θj and ‖Ḃ(j,Θj)‖ ≤ K3e

−β.

By Corollary 9.12, the norm of

(∂BHB,γ1 , . . . , ∂BHB,γj
, . . . , ∂BHB,γm

)(Ḃ) − (0, . . . , 0, Sj(Ḃ), 0, . . . , 0)

is bounded above by K3θ
√

τ/ε‖Ḃ‖, for any tangent vector supported in B(yj
r(j), ε).

For Ḃ = Ḃ(j,Θj) this gives that

‖(∂BHB,γ1 , . . . , ∂BHB,γj
, . . . , ∂BHB,γm

)(Ḃ(j,Θj)) − (0, . . . , 0,Θj, 0, . . . , 0)‖

is bounded by K1K3θ
√

τ/εe−β . Assume ε > 0 is small enough so that

K1K3θ
√

τ/εe−β < 1/(2m).

Then for any Θ = (Θ1, . . . ,Θm) with Θj in the unit sphere of L(Kx,Kx) we find

a tangent vector Ḃ(Θ) =
∑m

j=1 Ḃ(j,Θj) supported on the ε-neighborhood of the
pivots and such that

‖
(
∂HB,γ1 , . . . , ∂HB,γm

)(
Ḃ(Θ)

)
− Θ‖ < 1/2.

This implies that the image of the derivative (∂HB,γ1 , . . . , ∂HB,γm
) is the whole

target space L(Kd
x,K

d
x)m, as claimed. �

9.3. Invariant measures of generic matrices. Finally, we prove Theorem A.
The only missing ingredient is

Proposition 9.14. Given ` ≥ 1, let G2` be the set of (A1, . . . , A2`) ∈ GL(d,K)2`

such that there exists some probability η in P(C) invariant under the action of Ai

for every 1 ≤ i ≤ 2`. Then G2` is closed and nowhere dense, and it is contained in
a finite union of closed submanifolds of codimension ≥ `.

Remark 9.15. The arguments that we are going to present remain valid if one
replaces GL(d,K) by the subgroup SL(d,K) of matrices with determinant 1: just
note that the curves B(t) defined in (9.13) and (9.17) lie in SL(d,K) if the initial
matrix A does. Thus, the proposition holds for SL(d,K) as well.

Let us assume this proposition for a while, and use it to conclude the proof of
the theorem in the complex case. Let A ∈ Gr,α(M,d,K) be fiber bunched. Fix any
` ≥ 1 and x ∈M . By Proposition 9.2 there is a family γi, 1 ≤ i ≤ 2`, of loops at x
with slow recurrence. By Proposition 9.8, the map

U 3 B 7→ (HB,γ1 , . . . , HB,γ2`
) ∈ GL(d,Kx)2`
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is a submersion, where U is a neighborhood of A independent of `. Let Z be the
pre-image of G2` under this map. Then Z is closed and nowhere dense, and it is
contained in a finite union of closed submanifolds of codimension ≥ `.

We claim that λ−(B,µ) < λ+(B,µ) for all B ∈ U \ Z. Indeed, suppose the
equality holds, and let m be any P(FB)-invariant probability that projects down
to µ. By Theorem B, the measure m admits a disintegration {mz : z ∈ M}
which is invariant under strong-stable holonomies hs = P(Hs) and strong-unstable
holonomies hu = P(Hu), on the whole manifold M . In particular,

(9.12) P(HB,γi
)∗mx = mx for every 1 ≤ i ≤ 2`.

This contradicts the definition of G2`, and this contradiction proves our claim. Let
Z0 be the set of fiber bunched B ∈ Gr,α(M,d,K) for which λ−(B,µ) = λ+(B,µ).
We have shown that any fiber bunched A ∈ Gr,α(M,d,K) admits a neighborhood
U such that, for any ` ≥ 1, there exists a nowhere dense subset Z of U contained in
a finite union of closed submanifolds of codimension ≥ ` and such that Z0∩U ⊂ Z.
Thus, the closure of Z0 has infinite codimension and, in particular, is nowhere
dense.

The proof of Theorem A has been reduced to proving Proposition 9.14. The
proof of the proposition is presented in the next two sections.

9.3.1. Complex case. Let S be the subset of matrices A ∈ GL(d,C) whose eigen-
values are all distinct in norm. Then, S is an open and dense subset of GL(d,C)
whose complement is contained in a finite union of closed manifolds of positive
codimension. We use the following fact about variation of eigenvectors inside S:

Lemma 9.16. Let A ∈ S. Then there exist C∞ functions λi : SA → C and
vi : SA → P(Cd) defined on an open neighborhood SA of A, for each 1 ≤ i ≤ d, such
that vi(B) is the direction of an eigenvector of B associated to the eigenvalue λi(B),
for any B ∈ SA. Furthermore, the map SA → P(Cd)d, B 7→ (v1(B), . . . , vd(B)) is a
submersion.

Proof. Since each eigenvalue λi(A) is a simple root of the polynomial det(A−λ id), it
has a C∞ continuation λi(B) for all nearby matrices, given by the implicit function
theorem. Denote Li(B) = B − λi(B) id. It depends smoothly on B ∈ SA and, since
λi(B) remains a simple eigenvalue of B, it has rank d − 1. Since the entries of
adj(Li(B)) are cofactors of Li(B), the adjoint is a non-zero matrix that also varies
in a C∞ fashion with B. Moreover,

Li(B) · adj(Li(B)) = det(Li(B)) id = 0.

This means that any nonzero column of adj(Li(B)) is an eigenvector for Li(B),
depending in a C∞ fashion on the matrix, and so we may use it to define a function
vi(B) as in the statement. To check that the derivative of v at A is onto just consider
any differentiable curve (−ε, ε) 3 t 7→ (β1(t), . . . , βd(t)) such that βi(0) = vi(A) for
all i = 1, . . . , d. Define P (t) = [β1(t), . . . , βd(t)], that is, P (t) is the matrix whose
column vectors are the βi(t). Then define

(9.13) B(t) = P (t) diag[λ1(A), . . . , λd(A)]P (t)−1.

Then, B(0) = A and v(B(t)) = (β1(t), . . . , βd(t)) for all t. In particular, the derivative
Dv(A) maps B′(0) to (β′

1(0), . . . , β′
d(0)). So, the derivative is indeed surjective. �
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Let Z1 be the subset of A = (A1, . . . , A2`) such that Ai /∈ S for at least ` values
of i. Then Z1 is closed and it is contained in a finite union of closed submanifolds
of codimension ≥ `. For every A /∈ Z1 there are at least ` + 1 matrices Ai whose
eigenvalues all have distinct norms. Restricting to some open subset V of the com-
plement of Z1, and renumbering if necessary, we may suppose that these matrices
are A1, . . . , A`+1. By Lemma 9.16, reducing V if necessary, the map

V \ Z1 3 A 7→
(
vj(Ai)

)
1≤j≤d, 1≤i≤`+1

∈ P(Cd)d(`+1)

is a submersion. Consequently, there exists a closed subset Z2 of V \ Z1 contained
in a finite union of closed submanifolds of codimension ≥ ` such that for every
A ∈ V \ (Z1 ∪ Z2) there exists some 1 ≤ i ≤ ` such that

(9.14) va(Ai) 6= vb(A`+1) for every a, b ∈ {1, . . . , d}.
Now it suffices to prove that G2` ∩V is contained in Z1∪Z2. Indeed, suppose there
is A ∈ G2` ∩ V \ (Z1 ∪ Z2). By the definition of G2`, there exists some probability
measure η on P(Cd) such that

(9.15) (Al)∗η = η for every 1 ≤ l ≤ 2`.

Consider l = i, as in (9.14), and also l = ` + 1. Since all the eigenvalues of Ai

have distinct norms, η must be a convex combination of Dirac masses supported
on the eigenspaces of Ai. For the same reason, η must be supported on the set of
eigenspaces of A`+1. However, (9.14) means that these two sets are disjoint, and
so we reached a contradiction. This contradiction proves Proposition 9.14 in the
complex case.

9.3.2. Real case. The proof for real matrices is a bit more complicated due to the
possibility of complex conjugate eigenvalues. In particular, the set of matrices
whose eigenvalues are all distinct in norm is not dense. This difficulty has been
met before by Bonatti, Gomez-Mont, Viana [3], and we use a similar approach in
dimensions d ≥ 3. For d = 2 we use a different argument, based on the conformal
barycenter construction of Douady, Earle [9].

For each r, s ≥ 0 with r+2s = d, let S(r, s) be the subset of matrices A ∈ GL(d,R)
having r real eigenvalues, and s pairs of (strictly) complex conjugate eigenvalues,
such that all the eigenvalues that do not belong to the same complex conjugate
pair have distinct norms. Every S(r, s) is open and their union S = ∪r,sS(r, s) is
an open and dense subset of GL(d,R) whose complement is contained in a finite
union of closed submanifolds with positive codimension. Let Grass(k, d) denote the
k-dimensional Grassmannian of Rd, for 1 ≤ k ≤ d. In what follows we often think
of elements of Grass(2, d) as subsets of Grass(1, d) = P(Rd).

Lemma 9.17. Let F =
{
[(r1, . . . , rd)e

iθ] ∈ P(Cd) : θ ∈ [0, 2π], (r1, . . . , rd) ∈ Rd
}
.

Then F is closed in P(Cd) and the map Ψ : P(Cd)\F → Grass(2, d) defined by
Ψ(v) = Span {Re(v), Im(v)} is a submersion.

Proof. First, we recall the usual local charts in Grass(2, d). Let e1, . . . , ed the
canonical base of Rd and 1 ≤ i < j ≤ d be fixed. For any d × 2 matrix A we
denote by ϕ(A) the 2× 2 matrix formed by the ith and jth rows of A and by ϕ∗(A)
the (d − 2) × 2 matrix formed by the other rows of A. Let Ui,j be the open set of
planes L ∈ Grass(2, d) such that the orthogonal projection of L to Span {ei, ej} is
an isomorphism. This means that if L ∈ Ui,j with L = Span {v1, v2} then ϕ(AL)
is invertible, where AL = [v1, v2] is the matrix whose columns are the vectors v1,
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v2. Then the map φ : Ui,j → R2(d−2) defined by φ(L) = ϕ∗(AL)ϕ(AL)−1, where

we identify (d − 2) × 2 matrices with points in R2(d−2), is a local chart in the
Grassmannian.

Now, note that v, v ∈ Cd are linearly independent if and only if v ∈ P(Cd)\F .
Moreover, in that case Re(v), Im(v) are C-linearly independent and, in particu-
lar, Ψ(v) is well defined. It is clear from its expression in local charts that Ψ is
differentiable. Moreover, still in local charts, its derivative is given by

DΨ(v)v̇ = ϕ∗(Ȧ)ϕ(A)−1 − ϕ∗(A)ϕ(A)−1ϕ(Ȧ)ϕ(A)−1,

where v̇ ∈ TvP(Cd), A = [Re(v), Im(v)] and Ȧ = [Re(v̇), Im(v̇)]. Let Ḃ be in the
tangent space TΨ(v) Grass(2, d). Then Ḃ is a (d − 2) × 2 matrix with real entries.

Let Ȧ
Ḃ

be the d × 2 matrix defined by ϕ∗(Ȧ
Ḃ
) = Ḃϕ(A) and ϕ(Ȧ

Ḃ
) = 0. Since,

Ȧ
Ḃ

= [v̇1, v̇2], we have that DΨ(v)(v̇1 + iv̇2) = Ḃ. This finishes the proof of the
lemma. �

Lemma 9.18. Let A ∈ S(r, s). Then there exists an open neighborhood SA of A and
there exist C∞ functions

λj : SA → R, ξj : SA → Grass(1, d), for 1 ≤ j ≤ r, and

µk : SA → C \ R, ηk : SA → Grass(2, d), for 1 ≤ k ≤ s,

such that ξj(B) is the eigenspace of B associated to the eigenvalue λj(B), and ηk(B)
is the characteristic space associated to the conjugate pair of eigenvalues µk(B) and
µ̄k(B). Furthermore, the map

SA → Grass(1, d)r × Grass(2, d)s, B 7→ (ξj(B)1≤j≤r, ηk(B)1≤k≤s)

is a submersion.

Proof. Existence and regularity of the eigenvalues λj and µk follow from the im-
plicit function theorem. Moreover, the arguments in Lemma 9.16 imply that if
vj(B) is an eigenvector associated to the eigenvalue λj(B), for j = 1, . . . , r, and
vr+2k−1(B), vr+2k(B) are eigenvectors associated to µk(B), µ̄k(B), respectively, for
k = 1, . . . , s, then the map Φ defined by

(9.16) Φ(B) = (v1(B), . . . , vr(B), vr+1(B), . . . , vr+2s(B)) ∈ P(Rd)r × P(Cd)s

is C∞. We are going to show that this map is a submersion on some open neigh-
borhood SA of A. For this, it is sufficient to show that the derivative DΦ(A) is
onto. Consider any differentiable curve (−ε, ε) 3 t 7→ (β1(t), . . . , βr+s(t)) such that
βj(0) = vj(A) for j = 1, . . . , r and βr+k(0) = vr+2k−1(A) for k = 1, . . . , s. Define

(9.17)
P (t) = [β1(t), . . . , βr(t), βr+1, β̄r+1, . . . , βr+s, β̄r+s], and

B(t) = P (t) diag[λ1(A), . . . , λr(A), µ1(A), µ̄1(A), . . . , µs(A), µ̄s(A)]P (t)−1.

Observe that t 7→ B(t) is a curve in GL(d,R), with B(0) = A. Observe also that
Φ(B(t)) = (β1(t), . . . , βr+s(t) for all t ∈ (−ε, ε), and so DΦ(A) maps B

′(0) to the
vector (β′

1(0), . . . , β′
r+s(0)). So, the derivative is indeed surjective. Finally, define

ξj(B) = vj(B) for j = 1, . . . , r and

ηk(B) = Span {Re(vr+2k−1), Im(vr+2k−1)} for k = 1, . . . , s.

Clearly these maps are C∞. Moreover, since (9.16) is a submersion, Lemma 9.17
implies that B 7→ (ξj(B)1≤j≤r, ηk(B)1≤k≤s) is a submersion. �



51

Let Z1 be the subset of A = (A1, . . . , A2`) such that Ai /∈ S for at least ` values
of i. Then Z1 is closed and it is contained in a finite union of closed submanifolds
of codimension ≥ `. For every A /∈ Z1 there are at least `+ 1 values of i such that
Ai ∈ S, that is, Ai ∈ S(ri, si) for ri and si. Restricting to some open subset V of
the complement of Z1, and renumbering if necessary, we may suppose that these
matrices are A1, . . . , A`+1. By Lemma 9.18, reducing V if necessary, the map

(9.18) V \ Z1 3 A 7→
(
ξj(Ai)1≤j≤ri

, ηk(Ai)1≤k≤si

)

1≤i≤`+1

is a submersion.
Assume first that d ≥ 4, and so dim P(Rd) ≥ 3. Since the ξj(A) are points and

the ηk(A) are lines in the projective space, it follows that there exists a closed subset
Z2 of V \ Z1 contained in a finite union of closed submanifolds of codimension ≥ `
such that for every A ∈ V \ (Z1 ∪ Z2) there exists some 1 ≤ i ≤ ` such that

ξa(Ai) 6= ξb(A`+1)(9.19)

ξa(Ai) /∈ ηc(A`+1) and ξb(Ai) /∈ ηd(A`+1)(9.20)

ηc(Ai)∩ηd(A`+1) = ∅(9.21)

for every 1 ≤ a ≤ r(Ai), 1 ≤ b ≤ r(A`+1), 1 ≤ c ≤ s(Ai), and 1 ≤ d ≤ s(A`+1). Now
it suffices to prove that G2` ∩ V is contained in Z1 ∪ Z2. Indeed, suppose there is
A ∈ G2` ∩ V \ (Z1 ∪ Z2). By the definition of G2`, there exists some probability
measure η on P(Cd) such that

(9.22) (Al)∗η = η for every 1 ≤ l ≤ 2`.

Consider both l = i, as in (9.19)–(9.21), and l = ` + 1. Since all the eigenvalues
of Ai have distinct norms, apart from the complex conjugate pairs, the measure η
must be supported on

Σ(Ai) =
r⋃

j=1

{ξj(Ai)} ∪
s⋃

k=1

ηk(Ai).

Analogously, η must be supported on Σ(A`+1). However, conditions (9.19)–(9.21)
mean that the two sets Σ(Ai) and Σ(A`+1) are disjoint. This contradiction proves
the proposition in any dimension d ≥ 4.

For d = 3 the projective space P(R3) is only 2-dimensional, and so one can not
force a pair of 1-dimensional submanifolds ηk(A) to be disjoint, as required in (9.21).
However, the argument can easily be adapted to cover the 3-dimensional case as
well. Firstly, one replaces (9.21) by

(9.23) ηc(Ai) 6= ηd(A`+1)

for every 1 ≤ c ≤ s(Ai) and 1 ≤ d ≤ s(A`+1). (Both (9.21) and (9.23) are void if
either s(Ai) = 0 or s(A`+1) = 0; the only other possibility is s(Ai) = s(A`+1) = 1,
with c = d = 1.) Then the argument proceeds as before, except that we may no
longer have disjointness: when s = 1,

Σ(Ai) ∩ Σ(A`+1) = η1(Ai) ∩ η1(A`+1)

consists of exactly one point in projective space. Then η must be a Dirac measure
supported on this point. However, in view of (9.22), this would have to be a fixed
point of Ai contained in η1(Ai), which is impossible because the eigenspace ηi(Ai)
contains no invariant line. Thus, we reach a contradiction also in this case.
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Now we deal with the case d = 2. Let Z1 be as in the previous cases: for every
A /∈ Z1 there are at least ` + 1 values of i such that Ai ∈ S = S(2, 0) ∪ S(0, 1). As
before, it is no restriction to assume that these matrices are A1, . . . , A`+1. There are
three cases to consider:

First, suppose there exist 1 ≤ i, j ≤ ` + 1 such that Ai ∈ S(2, 0), that is, it has
two real (distinct) eigenvalues, and Aj ∈ S(0, 1), that is, it has a pair of complex
eigenvalues. We claim that in this case A can not belong to G2`. Indeed, on the
one hand, any probability measure η on P(R2) which is invariant under Ai ∈ S(2, 0)
must be a convex combination of Dirac masses at the two eigenspaces. On the other
hand, the action of Aj ∈ S(0, 1) on the projective space is a rotation whose angle is
not a multiple of π, and so it admits no such invariant measure.

Next, suppose all the matrices are hyperbolic: Ai ∈ S(2, 0) for all 1 ≤ i ≤ `.
In this case one can use precisely the same argument as we did before in higher
dimensions (conditions (9.20) and (9.21)-(9.23) become void). One finds a closed
subset Z2 contained in a finite union of submanifolds with codimension ≥ ` such
that G2` ∩ V is contained in Z1 ∪ Z2.

Finally, suppose all the matrices are elliptic: Ai ∈ S(0, 1) for all 1 ≤ i ≤ `. Recall
that every matrix A ∈ GL(2,R) with positive determinant induces an automorphism
hA of the Poincaré half plane H:

(9.24) A =

(
a b
c d

)
−→ hA(z) =

az + b

cz + d
.

The action of A on the projective plane may be identified with the action of hA on
the boundary of H, via

∂H → P(R2), x 7→ [(x, 1)]

(including x = ∞) so that P(A)-invariant measures on the projective plane may be
seen as hA-invariant measures sitting on the real axis. It is also easy to check that
hA has a fixed point in the open disc H if and only if A ∈ S(0, 1). Define φ(A) to be
this (unique) fixed point. It is easy to see that the A 7→ φ(A) is a C∞ submersion:
just use the explicit expression for the fixed point extracted from (9.24). The key
feature is the following consequence of a classical construction of Douady, Earle [9]:

Lemma 9.19. If A, B ∈ S(0, 1) have some common invariant probability measure
µ on ∂H then φ(A) = φ(B).

Proof. It is clear that elliptic matrices have no invariant measures with atoms of
mass larger than 1/3: such atoms would correspond to periodic points of A in
the projective plane with period 1 or 2, which would contradict the definition of
S(0, 1). In Proposition 1 of [9] a map µ 7→ B(µ) is constructed that assigns to each
probability measure µ with no atoms of mass ≥ 1/2 (see Remark 2 in [9, page26] )
a point B(µ) in the half plane H, in such a way that

B(h∗µ) = h(B(µ)) for every automorphism h : H → H.

When µ is A-invariant this implies hA(B(µ)) = B((hA)∗µ) = B(µ), and so the
conformal barycenter B(µ) must coincide with the fixed point φ(A) of the automor-
phism hA. Thus, if µ is a common invariant measure then φ(A) = B(µ) = φ(B). �

It follows from the previous observations that the map

V \ Z1 3 A 7→
(
φ(Ai)

)
1≤i≤`+1

∈ H`+1.
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is a submersion. Hence, there exists a closed subset Z2 of V\Z1 contained in a finite
union of closed submanifolds of codimension ≥ ` such that for every A ∈ V\(Z1∪Z2)
there exists some 1 ≤ i ≤ ` such that

(9.25) φ(Ai) 6= φ(A`+1).

Thus, we may apply Lemma 9.19 to conclude that if A ∈ V \ (Z1 ∪ Z2). In other
words, G2` ∩ V is contained in Z1 ∪ Z2.

The proofs of Proposition 9.14 and Theorem A are now complete.
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