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Abstract

We present a new algorithm to compute a geodesic path over a triangulated surface. Based on Sethian’s
Fast Marching Method and Polthier’s Straightest Geodesics theory, we are able to generate an iterative
process to obtain a good discrete geodesic approximation. It can handle both convex and non-convex
surfaces.

We define a new class of curves, called geodesic Bézier curves, that are suitable for modeling on manifold
triangulations. As a natural generalization of Bézier curves, the new curves are as smooth as possible.
We discuss the construction of C0 and C1 piecewise Bézier splines. We also describe how to perform
editing operations, such as trimming, using these curves. Special care is taken to achieve interactive rates
for modeling tasks.

After giving an appropriated definition of convex sets on triangulations, we use it to study the conver-
gence of the geodesic algorithm, as well as the convex hull property of geodesic Bézier curves. We prove
some results concerning convex sets.

Keywords: Discrete Geodesic, Geodesic Bézier Curve, Manifold Triangulation, de Casteljau Algo-
rithm, Discrete Differential Geometry, Spline Curves, Free-Form Design, Convex Sets
on Triangulations.
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Resumo

Neste trabalho apresentamos um novo algoritmo para calcular geodésicas em triangulações. Baseado no
“Fast Marching Method” desenvolvido por Sethian e na teoria de “Straightest Geodesics” de Polthier,
geramos um processo iterativo que permite obter uma boa aproximação da geodésica discreta. Nosso
algoritmo funciona tanto em superfı́cies convexas quanto não convexas.

Definimos uma nova classe de curvas, chamadas de curvas de Bézier geodésicas, que são adequadas
para modelagem em triangulações. Sendo uma generalização das curvas de Bézier planas, as novas
curvas são tão suaves quanto possı̀vel. Discutimos a construção de splines de Bézier C0 e C1. Também
descrevemos um modo de realizar operações de edição, como “trimming”, usando estas curvas.

Damos uma definição alternativa de conjuntos convexos em triangulações, a qual é mais adequada ao
estudo da convergência do algoritmo para calcular geodésicas. Esta definição também permite provar
a propriedade do fecho convexo das curvas de Bézier geodésicas. Além disso provamos algumas pro-
priedades relativas aos conjuntos convexos em triangulações.

Keywords: Geodésica Discreta, Curva de Bézier Geodésica, Algoritmo de de Casteljau, Conjuntos
Convexos em Triangulações, Geometria Diferencial Discreta.
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1 Introduction

Discrete surfaces, especially triangulations, are present in many applications ranging from simple 3D
objects to sophisticated mechanical engines or complex scanning models. Consequently, a wide range of
modeling techniques have been developed [3, 4, 6, 20, 22, 36] to create or modify them. Most of these
techniques rely on the use of parameterizations, carrying the difficulties associated to their use.

A great amount of effort has been devoted to obtaining good parameterizations for discrete surfaces. A
very good reference for this subject can be found on the tutorials of Floater and Hormann [12, 13] and the
references therein. However, the selection of the parameterization appropriated for certain application
depends both on the surface and the application itself.

In this thesis we develop an algorithm to compute geodesic curves on triangulations. Since it does not
depend on a parameterization, any modeling operation depending on geodesics will also be parame-
terization independent. That property permitted us to develop a simple geodesic-based toolbox to do
modeling operations directly on the mesh without facing the problems associated to parameterizations.
The definition and study of geodesic Bézier curves, as well as the construction of C0 and C1 splines, help
us to design complicated curves on the surface, or to determine and select a region that can be trimmed,
have a texture mapped to it, or even be painted with a color different from the rest of the surface. Those
basic operations are, several times, the starting point for more sophisticated applications.

1.1 Notations and Preliminary Definitions

1.1.1 Discrete Surfaces

We restrict this work to the study of curves defined on manifold triangulations. Thus, we will use the
following definition of discrete surfaces.

Definition 1.1 A discrete surface S is a finite set F of (triangular) faces such that:

1. Any point in S lies in at least one triangle in F .

2. The intersection of two different triangles in F is either empty, or consists of a common vertex, or
of a common edge.

3. Each point in S has a neighborhood which is either homeomorphic to a disc, or homeomorphic to
a semi-disc.

Let P be a vertex of the discrete surface S, and θ be the sum of all its incident angles. The discrete
Gaussian curvature of S at P is given by κ(P ) = 2π − θ [26]. The vertices of discrete surfaces are
classified according to Gaussian curvature:

1



2 CHAPTER 1. INTRODUCTION

Definition 1.2 A mesh vertex is classified according to the sum θ of its incident angles as:

1. Euclidean if 2π − θ = 0,

2. Spherical if 2π − θ > 0, or

3. Hyperbolic if 2π − θ < 0.

1.1.2 Curve Notations

We denote by a greek letter (α, β, γ, . . .) a curve over a smooth surface, and use capital greek letters (A,
B, Γ, . . .) to denote curves over discrete surfaces.

A polygonal line Γ on a triangle mesh S is defined as a sequence of nodes {P0, P1, . . . , Pn} ⊂ S such
that every line segment PiPi+1 is also contained in S. We refer to polygonal vertices as nodes, in order
to differentiate them from mesh vertices.

1.1.3 Length Functional

The length functional L(γ) = length(γ) defined on the set of curves over a smooth surface G can be
extended to S as:

L(Γ) =
∑

f∈F

L(Γ|f ),

where L(Γ|f ) is measured according to the Euclidean metric in face f .

1.1.4 Continuity

Curves defined over a triangulation S cannot be smooth, the only exception being when they are com-
pletely defined on a planar part of S, which is usually not the case. However, as continuity is a local
property we can analyze the intrinsic behavior of a curve C on S by looking at the intersection of the
neighborhoods of each curve point with S.

We define Ck continuity at points having a neighborhood isometric to a plane as the usual Ck continuity
in the unfolding of that neighborhood. In particular, this applies to points lying in the interior of mesh
edges and faces. In the case of mesh vertices, continuity is not well defined.

1.2 Overview

Chapter 2 describes an iterative algorithm to compute geodesic paths on triangulations. Two different
iteration strategies to reach the geodesic curve are presented. This algorithm is very suitable for the
modeling tasks discussed later in this work.

Geodesic Bézier curves, which are suitable for modeling on manifold triangulations, are defined in chap-
ter 3. Some results about their smoothness and their similarity with classical Bézier curves are proved.
It is also presented a discussion on the construction of C0 and C1 piecewise Bézier splines, and it is
described how to perform editing operations, such as trimming, using these curves. Special care is taken
to achieve interactive rates for modeling tasks.

After giving an appropriated definition of convex sets on triangulations, in chapter 4, we use it to study
the convergence of the geodesic algorithm, as well as the convex hull property of geodesic Bézier curves.
Some results concerning convex sets are proved. Finally in section 5 we give concluding remarks and
indicate potential further research.



2 Discrete Geodesic Curves

Figure 2.1: Geodesics over the Stanford bunny. The first approximations, the geodesics, and both.
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4 CHAPTER 2. DISCRETE GEODESIC CURVES

Geodesic curves are useful in many areas of science and engineering, such as robot motion planning,
terrain navigation, surface parameterization [12], remeshing [31] and front propagation over surfaces
[27]. The increasing development of discrete surface models, as well as the use of smooth surfaces dis-
cretization to study their geometry, demanded the definition of Geodesic Curves for polyhedral surfaces
[2, 26], and hence the study of efficient algorithms to compute them.

Such curves are called Discrete Geodesics and there exist some different definitions for them, mostly
depending on the application in which they are used. Considering a geodesic as a shortest path between
two points on the surface is perhaps the more widely used definition.

In this chapter we are concerned with the problem of computing a locally shortest geodesic joining two
points over the surface. There are some slightly different formulations for this problem. The simplest
version is the single source shortest path problem, in which one wishes to find a shortest path between
a source point and any other point on the surface. Another, more complex, version of the problem asks
for a subdivision on the surface such that a shortest path between any pair of points in the surface can be
found quickly; this is known as the all pairs shortest path problem.

Most of the algorithms use front propagation or some other kind of Dijkstra’s-like algorithm. In 1987
Mitchell, Mount and Papadimitriou [24] proposed the Continuous Dijkstra technique to build a data
structure from which we can find a shortest path between the source and any point in time O(k +
log m), where k is the number of faces crossed by the path and m is the number of mesh edges. This
algorithm runs in O(m2 log m) time and requires O(m2) space. In 1999 Kapoor [15] also used wave
propagation techniques, very similar to Continuous Dijkstra, but with more efficient data structures, to
get an O(n log2 n) algorithm, n being the number of mesh vertices. Sethian’s Fast Marching Method
(FMM from now on) was used by Kimmel and Sethian [18] to define a distance function from a source
point to the rest of the surface in O(n log n), and integrate back a differential equation to get the geodesic
path. Unlike the others, the last algorithm does not give the exact geodesic paths but an approximation
to it; this approximation could be improved using the iterative process we propose in this paper. The
algorithm of Chen and Han [5] builds a data structure based on surface unfoldings. In contrast to the
other algorithms, it does not follow the wave front propagation paradigm and runs in O(n2) time with
O(n) space. There are many other algorithms to compute shortest geodesics; for more information, we
refer the reader to [5, 15, 18, 24, 32] and the references therein.

Chapter overview: In section 2.1 we do a quick review of the definitions for smooth and discrete
surfaces. Section 2.2 presents the geodesic algorithm, which is the main contribution of this chapter. We
begin with an approximate path and use an iterative process to approach the true geodesic path. Finally
in section 2.3 we show some experimental results and adapt our algorithm to the single source shortest
path problem.

2.1 Geodesic Curves

Geodesic curves generalize the concept of straight lines for smooth surfaces. Therefore, they have several
“good” properties, discussed on section 2.1.1. Unfortunately it is not possible to find such a class of
curves over meshes sharing all these properties; as a consequence there are some different definitions for
geodesic curves on discrete surfaces, discussed in section 2.1.2, that depend on their proposed use. The
rest of this section was mainly extracted from references [10, 26].

2.1.1 Geodesic curves on smooth surfaces

Consider a smooth two-dimensional surface G and a differential tangent vector field w : U ⊂ G → TPG.

Definition 2.1 Let y ∈ TPG, and consider a parameterized curve α : (−ε, ε) → U , with α(0) = P ,
α′(0) = y and let w(t), t ∈ (−ε, ε) be the restriction of the vector field w to the curve α. The vector
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obtained by the projection of (dw/dt)(0) onto the plane TPG is called the covariant derivative at P of
the vector field w relative to the vector y. This covariant derivative is denoted by (Dw/dt)(0).

The definition of the covariant derivative depends only on the field w and the vector y and not on
the curve α. This concept can be extended to a vector field which is defined only at the points of a
parameterized curve. We denote the covariant derivative of a vector field w(t), defined along a curve α,
by (Dw/dt)(t). For details on this subject see [10].

Consider a curve γ : I → G parameterized by arc length, i.e, |γ ′(t)| = 1 for all t in I . An example of a
differential vector field along γ is given by the field w(t) = γ ′(t) of the tangent vectors of γ.

Definition 2.2 γ is said to be geodesic at t ∈ I if the covariant derivative of γ ′ at t is zero, i.e.,

Dγ′(t)

dt
= 0;

γ is a geodesic if it is a geodesic for all t ∈ I .

The following prop characterizes geodesic curves.

Proposition 2.1 The following properties are equivalent:

1. γ is a geodesic.

2. γ is a locally shortest curve; i.e, it is a critical point of the length functional L(γ) = length(γ).

3. γ′′ is parallel to the surface normal.

4. γ has vanishing geodesic curvature κg = 0 1.

From item 4 of Proposition 2.1 above, it can be concluded that geodesic curves are as straight as they can
be, if we see them from an intrinsic point of view. As a matter of fact, the curve variation up to a second
order takes place only in the direction of the surface normal if it has vanishing geodesic curvature. On
the other hand, item 2 tells us that a shortest smooth curve joining two points a geodesic. The converse
is not true in general: there are geodesic curves which are critical points of the length functional but are
not shortest. Nevertheless, the property of being shortest is desirable for curves in many applications and
it is perhaps the characterization of geodesic curve more used in practice. Another interesting property
of geodesics is that they may have self-intersections, which is impossible for shortest curves.

2.1.2 Discrete geodesics

A curve defined over a mesh will be regular only if it is completely contained in one face or on a set
of connected coplanar faces. The existence of such set of connected and coplanar faces is very rare.
Therefore, the existence of regular curves passing through more than one face is unlikely. This is the
first obstacle that we encounter when trying to generalize geodesics to discrete surfaces. The second one
is the fact that it is not possible in general to find a large enough set of curves over discrete surfaces for
which all items of Proposition 2.1 hold.

There are some different generalizations of geodesic curves to a discrete surface S, all of them called
of discrete geodesics. Quasi-geodesics were defined by Aleksandrov and Zalgaller [2] as limit curves of
geodesics on a family of converging smooth surfaces. They also defined discrete geodesics as critical
points of the length functional over polyhedral surfaces; in other words, they define them as locally short-
est curves over S. From now on we call them shortest discrete geodesics or simply shortest geodesics.
In particular, the problem we address in this chapter is to find a shortest geodesic joining two points over
a triangular mesh.

Polthier and Schmies [26] defined straightest geodesics inspired in the characterization of smooth ge-o-
de-sics given by item 4 of proposition 2.1. They defined discrete geodesic curvature as a generalization

1The geodesic curvature κg generalizes to surfaces the concept of curvature of a plane curve. See reference [10].
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of the well-known concept of geodesic curvature and straightest geodesics as polygonal curves over S
with zero geodesic curvature everywhere. If we call θ the sum of incident angles at a point P of a curve
Γ over S and θr and θl the respective sum of right and left angles (see figure 2.2), the discrete geodesic
curvature of Γ at P is defined as

κg(P ) =
2π

θ

(θ

2
− θr

)
.

Choosing θl instead of θr, or changing the orientation of Γ, changes the sign of κg. A straightest geodesic
is a curve with zero discrete geodesic curvature at each point. In particular, straightest geodesics always
have θr = θl at every point.

α0

α1

α2α3β0

β1

β2 β3 α0

α1

β0

β1

Figure 2.2: Right and left angles (θr and θl resp.) in a curve. θr =
∑

αi and θl =
∑

βi.

Let us formalize the concept of discrete geodesic that we are going to use, following [2].

Definition 2.3 Given two points X and Y on a surface S, a shortest arc XY is the shortest of the
rectifiable curves joining the points X and Y .

Definition 2.4 A curve in which each point has a neighborhood for which the segment of the curve in it
is a shortest arc is called a shortest geodesic.

Remark 2.1 The term shortest geodesic may be confusing. Although every shortest arc is always a
shortest geodesic, the converse is not true. Note also that a shortest geodesic is a critical point of the
length functional, and that a shortest arc is a global minimum, not necessarily unique. Thus, we refer to
shortest arcs as optimal shortest geodesics.

The following two lemmas were extracted from [24].

Lemma 2.2 Let S be a connected discrete surface. There exists a shortest geodesic from P to any other
point Q ∈ S. Furthermore, among the shortest geodesics between P and Q there exists at least one that
is optimal.

Lemma 2.3 The general form of a shortest geodesic is a path which goes through an alternating se-
quence of vertices and edge-crossing subpaths such that the unfolded image of the edge-crossing subpath
is a straight line segment, and the left and right angles of the path are greater than or equal to π when
passing through a mesh vertex.

The following proposition explores the difference between straightest and shortest geodesic. It was
proved by Polthier and Schmies [26] and will be very useful in defining an strategy to compute a shortest
geodesic.

Proposition 2.4 The concepts of straightest and shortest geodesics differ in the following way:

1. A geodesic γ containing no surface vertex is both shortest and straightest.

2. A straightest geodesic through a spherical vertex is not locally shortest.

3. There exist a family of shortest geodesics through a hyperbolic vertex. Exactly one of them is a
straightest geodesic.
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2.2 Geodesic Computation

The algorithm that we propose to compute a shortest geodesic Γ between A and B on a surface S consist
of two main steps. First, compute a curve Γ0 joining A and B; second, evolve it to Γ. These steps are
sketched in algorithm 2.1 and the next two subsections explain in detail how to perform them.

Algorithm 2.1 Compute Geodesic

Input: A triangular Mesh S, and two points A and B on it.
Output: A discrete geodesic Γ joining A and B.

step 1. Get initial approximation Γ0

step 2. Iteratively correct Γi (i = 0, 1, · · · ) to reach a good approximation Γn of Γ

2.2.1 Getting an initial approximation

Finding an initial curve Γ0 over S is rather simple if we consider A and B as vertices, which is not a
restriction at all, since we can add them to the set of vertices in an easy manner, see figure 2.3. Thus, in
the following, A and B will be treated as vertices.

•
A

•
A

•
A

•
A

(a) (b)

Figure 2.3: Inserting the point A in S as a mesh vertex: it belongs to the interior of a face (a) and to an
edge (b).

We need an initial polygonal curve Γ0 joining vertices A and B. The simplest idea is to take some
path restricted to the edges. The closer Γ0 is to the real geodesic Γ, the fewer the number of iterations
needed in the second step. Our first attempt was using Dijkstra’s Algorithm, but there are some exam-
ples where Dijkstra’s algorithm may produce a minimum path that is very far from a geodesic one. In
figure 2.4 we compare the results of using Dijkstra’s Algorithm and FMM to compute Γ0 in a regular
plane triangulation.

(a) (b)

Figure 2.4: First Approximation Γ0: Dijkstra’s Algorithm (a) and FMM (b).
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We decided to use FMM to define a distance function in the vertices of the mesh, as done by Kimmel
and Sethian [18]. They solve the Eikonal equation

|∇D| = 1,

where D(P ) is the (geodesic) distance from A to any point P on S (see references [18, 30] for details).
The efficiency of this process relies on the propagation of D over S maintaining a narrow band of vertices
close to the front. Once D is computed for every vertex, they must solve the ordinary differential equation

dχ(s)

ds
= −∇D

to get the geodesic path χ(s). To integrate this equation, using Huen’s method, D is approximated in the
interior of a face by interpolating a second degree polynomial to the previously computed values of D at
the vertices of the face and its three neighboring faces. This process involves some numerical problems
and some care must be taken. For instance, the minimum of the interpolant polynomial could be reached
in the interior of the face, or the polynomial could be a degenerated quadric. In our implementation,
we avoid integration and proceed as follows: place point B in path Γ0, add to Γ0 the neighbor of B
with minimal distance from A, go on in this way and stop when A is reached. We sketch this process in
algorithm 2.2. The correctness of this step is guaranteed since the distance D was defined increasingly
from A. Moreover, the same argument permits us to stop FMM once D(B) is computed. The remaining
points (where D was not defined) will have D(P ) = ∞.

Algorithm 2.2 First Approximation

Input: A triangular mesh S, and two points A and B on it.
Output: A restricted to edges path Γ0 joining A and B.

step 1. Compute D(P ) for each vertex P in S using FMM
step 2. Put B in Γ0

step 3. P0 = B, i = 0
while Pi is not equal to A

Pi+1 = Neighbor of Pi with smaller distance D(Pi+1) from A.
Put Pi+1 in Γ0

i = i + 1

Even when we use the whole Kimmel and Sethian’s algorithm to compute a shortest geodesic Γ̂, it must
be corrected since distance computation and integration are performed approximately, and consequently
are error-prone. In the next section we describe our strategy to improve the initial approximation.

2.2.2 Correcting a path

Once we have an approximation Γi to the geodesic Γ, we need to correct it in order to get a new curve
Γi+1 closer to Γ. Since Γi is a polygonal line joining A and B, we just have to correct the position of
interior nodes, trying to reduce, as much as possible, the length of the curve Γi. As Γ has to coincide
with a line segment inside every face of S, we restrict the vertices of our successive approximations Γ0,
Γ1, Γ2 . . . to lie on edges or vertices of S.

The path correction step is described in algorithm 2.3. It is inspired in Polthier’s straightest geodesics
theory, more precisely in the characterization given in proposition 2.4 about the differences between
shortest and straightest geodesics.
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Algorithm 2.3 Path Correction

Input: A triangular mesh S, and a polygonal curve Γi joining A and B.
Output: A shorter path Γi+1 joining A and B.

Pi+1,0 = Pi0 = B and Pi+1,n′ = Pin = A
for j = 1, 2, · · · , n − 1

correct the position of node Pij

Each node Pij is corrected to the new position Pi+1,j′ such that the curve segment between nodes
Pi+1,j′−1 and Pi,j+1 goes to the geodesic joining them, restricted to the set of faces that are neighbors
to Pij .

Note that we use Pi+1,j′−1, the last corrected node, instead of Pi,j−1. Doing that, we do not need extra
space to store the new curve, since it is enough to substitute Pij’s position by its new position Pi+1,j′ .
We will also get a better correction Pi+1,j′ since, to compute its position, we use a node whose position
was previously corrected. Finally, we are able to prove that our algorithm actually reduces the length
of Γi at each step, what cannot be guaranteed using the old neighbor Pi,j−1.

In some cases (when Pij coincides with a mesh vertex) it is necessary to replace node Pij by more than a
node when correcting Γi. Also, some nodes may be eliminated when approaching a mesh vertex. These
facts justify the notation Pi+1,j′ used above for the corrected node in curve Γi+1.

We will use different procedures to correct the positions of the nodes of the polygonal Γi which belong
to the interior of mesh edges and of those coinciding with mesh vertices, since they do not behave in the
same way. For instance, a point belonging to an edge has only two adjacent triangles while a vertex may
have any number of them.

Correction of a node in the interior of an edge.

Suppose the polygonal curve Γi is given by the sequence of nodes B = Pi0, Pi1, . . . , Pin = A. For a
node Pij (j ∈ {1, 2, . . . , n − 1}) lying in the interior of an edge e, we wish to correct its position in
order to get a shorter curve Γi+1. To do that, we unfold the two triangles adjacent to e, and define the
new Pi+1,j′ as the intersection point of e with the line joining Pi+1,j′−1 and Pi,j+1 (see figure 2.5 (a)).

•
•

•

•

}

Pi,j−1

Pij

Pi,j+1

P
i+1,j′

P
i+1,j′−1

(a)
•

•

•

•

}

Pi,j−1

Pi+1,j′−1

Pij

Pi,j+1

P
i+1,j′

(b)

Γi

Γi+1

Figure 2.5: Correcting the node position on an edge. Intersection inside the edge (a), and outside (b).
Corrected nodes are marked with the symbol }.

Sometimes there is not an intersection point, as in figure 2.5 (b). In such cases we replace Pij by the
vertex of e which is closer to the intersection point between the line containing e and the line passing by
Pi+1,j′−1 and Pi,j+1.

In both cases the corrected node Pi+1,j′ gives the shortest curve passing by Pi+1,j′−1 and Pi,j+1 inside
the two triangles sharing edge e.
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Correction of a node coinciding with a mesh vertex.

When Pij coincides with a mesh vertex, the correction is not so simple as in the previous case. Notice
that, now, Pij usually belongs to more than two triangles. We need to find a shortest path between
Pi+1,j′−1 and Pi,j+1 in the union of all triangles containing Pij as vertex. Suppose Pij corresponds
to the kth vertex of S; then, such union of triangular faces, the star of vertex k, will be denoted by Sk.
For simplicity Pi+1,j′−1 and Pi,j+1 are supposed to be on the boundary of Sk; otherwise one of them
belongs to the interior of Sk and in that case we can eliminate it from Γi without any loss of information.
In fact, this node elimination will result in a shorter curve (see figure 2.6).

•

•

•

•

Pi,j−1

Pij Pi,j+1

Pi,j+2

•

•

•

•

Pi,j−1

Pij

Pi,j+1

Figure 2.6: Elimination of a node inside Sk.

We first classify node Pij as in definition 1.2 by computing left and right angles θl and θr, and then we
shorten the curve by taking into account proposition 2.4. If Pij is euclidean then Sk can be isometrically
unfolded to be part of a plane and we just have to join the images of Pi+1,j′−1 and Pi,j+1 in the unfolding
of Sk. If Pij is spherical then no shortest curve may pass through it; in this case choose the part of Sk

with smaller angle, flatten it up, and join Pi+1,j′−1 to Pi,j+1. Finally, when Pij is hyperbolic we have
two cases. The first one occurs when θr and θl are both larger than π. In this case no correction is
needed, since the curve cannot be shortened by moving Pij (see proof of proposition 2.4 [26]). If one of
the angles, say θr, is smaller than π then the geodesic must pass through the corresponding side of Sk;
we then proceed to flatten it up an compute the line joining Pi+1,j′−1 and Pi,j+1.

In all cases we have to compute the intersections of the computed line with the edges of the corresponding
flattened part of Sk and we have to insert them in the polygonal curve in the correct order. Like in
previous case, it could happen that the intersection point is outside of some edge (see figure 2.7); in that
case we insert the vertex of the edge in the path as we did before. Doing that, we usually obtain a path
which is not the shortest one inside the star of Pij . It can be improved performing a new node correction
on the extreme of the corresponding edge, obtaining the shortest path between the neighbors of Pij

2.

•

•

•

•

•
•

(a) (b)

Γn

Γn+1

Figure 2.7: Correcting a node coinciding with a mesh vertex. Convex star (a) and non-convex star (b).
The resulting path before the additional correction in the non-convex star is shown as a dotted line.

Remark 2.2 Note that, in all cases, it is sufficient to trace the geodesic line in the side of Sk with smaller
angle. At hyperbolic vertices, the geodesic can only be traced on the smaller angle’s side since the other
side has angle bigger than π and the curve cannot be shortened in it. On the other hand, it is possible

2Note that in this case the correction has “gone” outside the star of Pij .
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sometimes to shorten the curve in both sides of an spherical vertex, but the law of the cosines ensures
that the shortest one is obtained in the side with smaller angle. Although the problem of selecting the
right side of Sk to look for Pi+1,j′ seems not to be necessary at euclidean vertices, the shortest path
should also pass through the side with the smaller angle. In order to be convinced of this fact, suppose
that Sk is part of a plane (otherwise we can flatten it isometrically), and consider the triangle formed by
Pi+1,j′−1, Pij and Pi,j+1; the angle in Pij , which is an interior angle of a triangle, must be less than π,
hence the smallest between θr and θl, since their sum is 2π.

2.2.3 Implementation issues

Is it necessary to add new vertices to S?

To simplify the exposition, we supposed that both extremes of a geodesic are vertices of the mesh S. We
suggested to add, if necessary, new vertices to S. However, this is not necessary at all. In fact, we can
perform all computations without adding any new vertex to S; lets see:

Defining the initial curve Γ0: The definition of the distance function D begins by setting D(A) = 0,
and them propagating a wave until D(B) is set. If A lies in the interior of a face f , we begin setting D at
the vertices of f as the euclidean distance D(V ) = ‖V −A‖2 from A to V , and then propagate the wave.
If A lies in the interior of an edge e, we begin setting D at all the vertices of the two neighboring faces
of e. The propagation stops when the distance function D have been set at one of the vertices which are
neighbors of B. As for point A, there are three neighbors if B lies inside a face, or four if B lies inside
an edge. Finally, the first approximation is computed as in algorithm 2.2, but beginning at the neighbor
of B with smaller value of the distance function D, and stopping when a neighbor of A was reached.
After that we add B and A to Γ0 as first and last point respectively.

Correcting points inside a face: Although the nodes of geodesics curves are restricted to the edges
and vertices of the mesh, some times may be interesting to consider curves having nodes in the interior
of faces. This happens, for instance, in the computation of geodesic Bézier curves in chapter 3 where
nodes in the interior of faces are obtained due to a subdivision process. To avoid adding new vertices to
the mesh we must provide a rule to correct nodes in the interior of faces. Fortunately, this rule is very
simple: as a geodesic must be a straight line in the interior of faces, whenever we need to correct a node
inside a face we just eliminate it from the curve.

Stopping criterion

An iterative process should always be controlled by a stop criterion, usually based on some error measure.
Perhaps the most natural error measure for geodesic computation is given by curve length. However,
the difference between the lengths of two successive approximations could be very small even when
the curve is far from a shortest geodesic. This behavior is due to the fact that the evolution of the
curve has small variation close to mesh vertices, what is usually solved in a second iteration step. In
our implementation, we define a measure of error for each curve node based on proposition 2.4, and
then define a curve error measure as the maximum node error. For nodes lying in the interior of mesh
edges and nodes coinciding with euclidean mesh vertices, we define the error as the discrete geodesic
curvature κg, since in those cases shortest and straightest geodesics coincide. For nodes coinciding with
spherical mesh vertices we define the error as a huge value, since no shortest geodesic can pass through
it. For nodes coinciding with hyperbolic mesh vertices we define the error as zero if both θl and θr are
greater than π and as a huge value otherwise, because only in the first case a shortest geodesic can pass
through it.
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Boundary handling

In some cases a geodesic path can touch a boundary or even coincide in part with it. For example in
a plane with a hole or a non convex polygon as boundary, see figure 2.8. In order to correctly handle

Figure 2.8: Geodesics touching the boundary.

those cases we must take some care close to the boundary. A very simple and effective way to overcome
this problem is to try every boundary vertex as an hyperbolic one. The curve Γi divides the star of the
boundary vertex Pin into two regions, one of them containing the boundary, we assign 2π to the angle
(θr or θl) corresponding with that side of the curve. With this simple procedure, we update a boundary
vertex only if the side of Γi interior to the surface has angle smaller than π, otherwise it remains the
same since Γi cannot be improved in a neighborhood of Pin. In figure 2.9 are shown some geodesics
touching the boundary in the bunny model.

Figure 2.9: Geodesics touching the boundary in the bunny model. Right: Initial approximations. Left:
The geodesics.

Speeding up convergence.

In order to improve the performance of our algorithm, we explore a different correction strategy. We put
all the interior nodes of the curve Γ0 in a heap sorted by the error. In each step the node with the largest
error is corrected, then it and its neighbors are updated in the heap.

This strategy is particularly useful if part of the path Γ0 is close to be a geodesic between two intermediate
vertices, but it is far from the real geodesic between the extremes A and B of Γ0. This is the case of
geodesic Bézier curves, see chapter 3.



2.3. EXPERIMENTS 13

Table 2.1: Run time and number of node corrections for the originally proposed method and the alterna-
tive method using a heap.

Num. of Original Method Using a Heap
Nodes changes time changes time

1 49 60649 0.60 38089 0.65
2 29 37021 0.37 20469 0.35
3 46 126303 1.22 48478 0.82
4 103 1291478 12.58 549298 9.37
5 126 481039 4.85 80585 1.40
6 75 161026 1.60 51123 0.88

To test the originally proposed algorithm against the strategy proposed in this section we measured (see
table 2.1) the number of node corrections and the run time (in seconds) using each method. The program
stopped when the error was smaller than 0.005. The number of node corrections was considerably
smaller using a heap; as a consequence run times were smaller most of the times.

Run times were measured in an “Intel Pentium 4 CPU 1.60GHz” running Fedora Core 1.

2.2.4 Convergence

Consider the sequence L(Γi) of curve lengths. A lower bound on the set {L(Γi), i = 0, 1, 2, · · · } is
given by 0 since the length of Γi must be always positive. On the other hand, the length of Γi is reduced
at every vertex correction, so we have the inequalities

L(Γ0) ≥ L(Γ1) ≥ · · · ≥ L(Γi−1) ≥ L(Γi) ≥ · · · ≥ 0,

hence the sequence L(Γi) converges. Based on this fact and considering that Γi+1 is not allowed to be
far from Γi (Γi+1 lies in the union of triangular faces touching Γi), we have an indication that our method
converges to a curve Γ̂ which is very close to a shortest geodesic, i.e., to a local minimizer of the length
functional. In chapter 4 we do a deeper study of the convergence of algorithm 2.1. A natural question
is whether Γ̂ is also a global minimizer. As in many other optimization problems, global optimality
depends on the initial approximation Γ0. The curve Γ0 given by FMM usually happens to be a good
initial approximation (see figure 2.1), and we can expect our final curve to be very close to a global
minimizer of the length functional.

2.3 Experiments

In this section we show some results of our algorithm. In figures 2.1, 2.8, 2.10 and 2.11 we show some
geodesics over the Stanford bunny, Costa’s surface and a face model. In figures 2.1 and 2.8 we also show
the first approximations Γ0 for the geodesics in the bunny model.

2.3.1 Single source problem

Closely related with our algorithm is the single source shortest path problem. This problem consists of
computing a shortest path from a source point A to every point in the surface S.

To extend our algorithm in order to solve the single source problem is straightforward. We just need
run the distance approximation given by FMM until it has been computed for all surface points instead
of stopping when a target point B is reached as done in step 1 of algorithm 2.1. After that, step 2 in
algorithm 2.1 must be performed for each point of S.
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(a) (b)

Figure 2.10: Some geodesics over Costa’s Surface, all sharing a common extreme (a), and a zoom close
to the common extreme (b).

Figure 2.12 shows some examples of the application of this algorithm to compute a geodesic from a
vertex to all other vertices in a sphere and a simplified Stanford bunny mesh. Notice that no two curves
cross over, which is a necessary condition for them to be shortest geodesics. This gives an indication of
the correctness of the algorithm.



2.3. EXPERIMENTS 15

(a) (b)

Figure 2.11: Some geodesics over a Face model, all sharing a common extreme (a), and a zoom close to
the common extreme (b).

Figure 2.12: Using our algorithm to solve single source problem.





3 Geodesic Bézier Curves

Figure 3.1: Modeling on the surface of a cow. From left: the control polygons of two closed curves and
a C1 spline, the corresponding curves, a region is filled with a different color and other is trimmed, final
result.

17
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Designing free-form curves is a basic operation in Geometric Modeling. Doing so in Euclidean space
is a widely studied problem; see [7, 11] and many others. The problem becomes harder, however, if we
wish to design on a curved geometry, such as triangulated surfaces. Most existing work for the later task,
relies on imposing a suitable parameterization, which is usually an unintuitive approach that leads to a
series of “trial and error” operations. We pursue instead a direct design in the geometry of the surface,
an approach that has received much less attention.

In this chapter we introduce a new class of curves that are suitable for free-form modeling directly on
the geometry of a manifold mesh. Defined by means of the de Casteljau Algorithm, they are a natural
generalization of Bézier curves. Thus, we call them “Intrinsic Bézier Curves”.

Chapter overview: This chapter begins, in section 3.1, with a summary of related work. After summa-
rizing classical Bézier curves theory, we define in section 3.2 the new class of curves and compare them
to the classical ones. A study of their use in modeling operations is done in section 3.3. Section 3.4
describes the construction of piecewise Bézier spline curves on triangulations.

3.1 Related Work

The de Casteljau algorithm has been adapted to Riemannian manifolds using geodesic interpolation [25].
However, it has been applied only to some surfaces where geodesic computation is relatively easy, such
as spheres or Lie groups; see [8, 29] and the references therein for details. The only modeling operation
studied in those works is the construction of cubic splines. Furthermore, trimming seems to be very hard
to perform in this setting. We define curves using the same idea as in [25], but we consider manifold
triangulations.

Another generalization of cubic splines to smooth manifolds is given in [14, 28]. The curves are defined
by interpolating a set of knot points on the surface, minimizing an energy functional. These results are
also applicable to triangulations, but they require the computation of local smooth approximations. If the
position of a knot is changed, the whole curve must be recomputed since there is no local control of its
shape. On the other hand, the interpolation of tangent vectors or higher derivatives has not been studied.
Using geodesic Bézier curves we can overcome these difficulties, and it becomes possible to prescribe
derivatives at knot points and to have local control of the segments of the Bézier spline curve.

Trimming is a very important application in CAGD. This operation is usually done by means of a param-
eterization. One has to figure out which curve in the parameter space corresponds to the desired curve
on the surface, which is generally a difficult problem. Most of the time these curves are obtained as the
result of CSG operations, or more general surface intersections [20, 6]. An approach for subdivision
surfaces is to modify the original (coarse) mesh in order to obtain a trimmed limit surface [4, 22]. Our
trimming operations are done directly on the mesh and no parameterization is needed.

Recent works [35, 34, 33] define a general framework for curve subdivision schemes. Geodesic Bezier
curves fits into this framework. However, smoothness of limit curves is only studied – and proved – in
the case of smooth manifolds, considering meshes as an approximation of smooth surfaces, what is not
always the case. For example, a potential user may be interested in modeling on a coarse mesh instead of
a refined one. Besides, models with sharp features are best approximated with non-smooth surfaces. In
this thesis we analyze the smoothness of geodesic Bézier curves in the context of triangular meshes, and
also how to handle modifications in the position of control points at interactive rates, what is not done in
those works. Our results are also applicable to the other geodesic-based subdivision schemes fitting into
this framework.
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3.2 Geodesic Bézier Curves

Bézier curves are of great importance when modeling on R
n. A natural question is how to generalize

them to curved geometries. In this section we propose a class of curves that generalize Bézier curves to
manifold triangulations.

3.2.1 Classical Bézier Curves

Given n+1 control points P0, P1, . . . , Pn in R
d, they define a curve given by the following parametric

expression:

P (u) =

n∑

i=0

(
n

i

)
(1 − u)n−iuiPi, 0 ≤ u ≤ 1, (3.1)

P is known as Bézier curve of degree n, and the set of control points P0, P1, . . . , Pn forms its control
polygon. Note that P interpolates the two extreme control points P0 and Pn, being tangent to the control
polygon at these points. It also “imitates” the form of the control polygon, making the task of designing
with Bézier curves very intuitive. That’s the reason why Bézier curves are so popular for CAD/CAGD
applications. More information about this subject can be found in [7, 11]; figure 3.2 shows an example
of a Bézier curve of degree 3.

The de Casteljau Algorithm [9] provides a geometric procedure to evaluate a Bézier curve at any param-
eter u ∈ [0, 1], using repeated linear interpolation:

Algorithm 3.1 de Casteljau

Input: The control points P0, P1, . . . , Pn and a parameter u ∈ [0, 1]
Output: The point P (u).

step 1. for i = 0, . . . , n set P
[0]
i (u) = Pi.

step 2. for j = 1, . . . , n
for i = j, . . . , n

P
[j]
i =interpolate(P [j−1]

i−1 (u), P
[j−1]
i (u), u).

step 3. P (u) = P
[n]
n

In step 2 we use the function interpolate(A,B, u), which performs a linear interpolation between A and
B with parameter u: interpolate(A,B, u) = (1 − u)A + uB.

�
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�

�

�
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�

Figure 3.2: A subdivision step of a control polygon and its Bézier curve.

From de Casteljau’s algorithm one can define a subdivision scheme whose limit curve is the Bézier curve
given by the control polygon. Given a parameter value u and a control polygon, we can obtain two new
control polygons for the segments P ([0, u]) and P ([u, 1]):
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Algorithm 3.2 Subdivision of a control polygon

Input: The control points P0, P1, . . . , Pn and a parameter u ∈ [0, 1]
Output: Two sets of control points defining P ([0, u]) and P ([u, 1]).

step 1. deCasteljau((P0, P1, . . . , Pn), u).
step 2.

P ([0, u]) =bezier(P [0]
0 , P

[1]
1 , . . . , P

[n]
n )

P ([u, 1]) =bezier(P [n]
n , P

[n−1]
n , . . . , P

[0]
n )

Evaluating the curve at u, using de Casteljau’s algorithm, provides the intermediary interpolated points
P

[j]
i . The output (step 2) are the control polygons defining both (Bézier) segments of the curve. Fig-

ure 3.2 shows a subdivision step of the control polygon of a degree 3 Bézier curve.

Algorithm 3.2 provides the rule for the subdivision scheme converging to the curve. Additionally, this
scheme can be made adaptive by stopping the subdivision whenever a control polygon can be considered
as “almost straight”.

3.2.2 Bézier Curves on Manifold Triangulations

Intrinsic Bézier curves are defined by means of the subdivision algorithm for classical Bézier curves.
Given a control polygon P0, P1, . . . , Pn on a surface S, we want to compute a curve C on S interpolating
P0 and Pn, whose shape is controlled by the position of the interior points P1, P2, . . . , Pn−1.

The curve C is defined as the limit of the subdivision scheme given in algorithm 3.2 of section 3.2.1.
The main difference is that the sides of the control polygon are no longer line segments, but geodesics
connecting the control points. This imposes the necessity of modifying the interpolation step on algo-
rithm 3.1. The equivalent to linear interpolation in the geometry of the surface is the interpolation along
geodesic lines. Algorithm 3.3 describes the interpolation step in the case of manifold triangulations:

Algorithm 3.3 Interpolation on Manifold Triangulations

Input: A manifold triangulation S, two points Q1 and Q2 on it and a parameter u ∈ [0, 1]
Output: A point Q on S interpolating Q1 and Q2.

step 1. Γ =ComputeGeodesic(Q1, Q2).
step 2. Q = the point of Γ such that

dΓ(Q1, Q) = udΓ(Q1, Q2)

In algorithm 3.3, dΓ(A,B) computes the distance between A and B along Γ. Note that since Γ is a
polygonal line, it is very simple to perform step 2.

To compute an approximation of C, we can use the subdivision adaptive algorithm. It stops at some
prescribed level of subdivision or when the control polygon can be considered as a geodesic segment;
i.e., when all of its control vertices have error smaller than a prescribed tolerance. Figure 3.3 shows some
geodesic Bézier curves along with their control polygons.

The use of de Casteljau’s algorithm in the definition of geodesic Bézier curves makes them a general-
ization of planar Bézier curves. Note that a geodesic on a plane is a straight line. Therefore, when the
triangulation is planar both concepts coincide; see for example the curves designed on the (planar) faces
of the cube in figure 3.3. As in the case of classical Bézier curves, we have a parameterization of our
curves with parameter u ∈ [0, 1]. Evaluation at any particular parameter value can be performed easily
by subdividing the corresponding control polygon at each level of subdivision, imitating the bisection
algorithm used to compute roots of polynomials. Previous calculations can be used to evaluate at new
parameter values, this can be useful when performing many evaluations.

It is known that shortest geodesics are not unique on triangulations. Consequently, the use of a different
subdivision parameter may lead to a different curve. So geodesic Bézier curves depends on the control
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Figure 3.3: Some geodesic Bézier curves. Control polygons are also shown in the Cube model.

points and the chosen subdivision parameter u. To our experience, the curves obtained with different
values of u are very close to each other. We are currently studying the theoretical issues related to the
choice of of u. In practice, selecting a fixed value of u gives us a subdivision curve. In this work we have
chosen u = 0.5 and therefore we have a midpoint subdivision scheme. All the figures were generated in
this way.

Geodesic algorithm selection
There are several algorithms to compute geodesics (see chapter 2) and any of them could be used both
to compute geodesic Bézier curves and to perform user interaction. We chose the algorithm described
in chapter 2 for two reasons. In first place, it relies on the correction of an initial curve assumed to be
close to the true geodesic. Since de Casteljau’s algorithm is a sort of corner-cutting process, a part of
each control polygon can be used as initial curve to compute the geodesics needed in the computation
of control polygons in the following level of subdivision. On the other hand, during interaction the new
control polygons are very close to the previous ones and they can be computed very fast. Using other
algorithms as [32] also permits very fast interaction, but at the cost of storing a tree for each control
point. The tree associated with a control point must be updated any time its position is changed.

3.2.3 Properties of Geodesic Bézier Curves

Geodesic Bézier curves share some properties with classical ones.

Proposition 3.1 Geodesic Bézier curves interpolate P0 and Pn and are tangent to the control polygon
at these points.

Proof: Consider the first line segment of the first side (geodesic line) of the control polygon. It is entirely
contained in a face F and for N large enough, the initial sub-polygon at level N is entirely contained in
F . So, the corresponding curve segment is a segment of a planar Bézier curve, which is tangent to the
first segment of the N th level subpolygon, that is contained on the first side of the 1st level polygon. So,
the curve is tangent to its control polygon at P0; the same applies to Pn.

The convex hull property of classical Bézier curves is very important. It permits to know where the
curve is even before evaluating it. This is specially important when designing using the de Casteljau’s
algorithm. In this case we can stop subdividing when the control polygon is almost straight. After
defining convex hull in chapter 4 we will establish the convex hull property for geodesic Bézier curves.
A consequence of the convex-hull property is that geodesic Bézier curves have linear precision, i.e, if
all the control points are evenly distributed on a shortest geodesic, the resulting geodesic Bézier curve
is the same shortest geodesic with parameterization proportional to curve length. If the points are not
evenly distributed the resulting curve is also the geodesic but its parameterization is not proportional to
the curve length.
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Classical Bézier curves has C∞-continuity. Lets study the smoothness of geodesic Bézier curves:

Proposition 3.2 A geodesic Bézier curve has (at least) C1 continuity when intersecting an edge of the
mesh.

Proof: Let s0 be the parameter value corresponding to the point P (s0) of C intercepting the edge e of
mesh S. We have two cases: (i) for N large enough, there is a segment CN,i of C completely contained
in the union of the two faces adjacent to e, and such that P (s0) ∈ CN,i; or (ii) case (i) does not hold and
s0 = k/2N , where k is an integer such that 0 < k < N .

In case (i) C is C∞ at P (s0), since it is a point of a plane Bezier curve defined in the unfolding of e. If
case (ii) holds, there is an N large enough such that each of the two polygons corresponding to level N
of subdivision is contained in one of the two faces adjacent to edge e. So, in the unfolding of the two
faces, the two segments of control polygons at level N with P (s0) as endpoint are collinear and have the
same length. As a consequence the plane spline defined by these two control polygon is (at least) C1 at
its junction point P (s0), and hence C is C1 at P (s0) too.

Proposition 3.3 Each connected component of the intersection of a geodesic Bézier curve with the inte-
rior of a mesh face is a C∞ plane curve, except for (at most) a countable set of points, where it is C1.

Proof: Let f be a face of S, and s the parameter value corresponding to the point P (s) of C
⋂

f .

As in the preceding proposition, there are two cases: (i) for N large enough, there is a segment CN,i of
C completely contained in f and such that P (s) ∈ CN,i; or (ii) case (i) does not hold and s = k/2N ,
where k is an integer such that 0 < k < N .

In case (i) C is C∞ at P (s), since it is a point of a plane Bezier curve defined in f . If case (ii) holds,
there is an N large enough such that each of the two polygons corresponding to level N of subdivision is
contained in f . So, the two segments of control polygons at level N with P (s) as endpoint are collinear
and have the same length. As a consequence the plane spline defined by these two control polygon is (at
least) C1 at its junction point P (s), and hence C is C1 at P (s) too.

Note that the set of points satisfying condition (ii) is finite in almost all the cases. When C pass
through a vertex of f , this set can be infinite. However, it is countable, since it is a subset of {s =
k/2N , s.t. k,N ∈ N, k < N} which is a countable set.

As a consequence of previous propositions we have that C is as smooth as possible in the interior of
faces and when crossing a mesh edge. The analysis of the passage of C through mesh vertices is more
complicated and is left as future work.

3.3 Modeling

In order to model with geodesic Bézier curves we must be able to perform the usual modeling operations.
Moreover, the user should be allowed to modify a curve at interactive rates. In this section we first
describe how to efficiently handle user interaction. Following that, we present a simple algorithm for
region fill and trimming.

3.3.1 User Interaction

Fast user interaction is very important in free-form design operations. The user should be able to modify
any previously defined curve by changing the position of some of its control points. This operation
should be as fast and easy as possible; for example, it must be possible to select and drag any control
point using the mouse. Every time the position of a control point is changed, its neighboring sides in
the control polygon should be recomputed. These (at most two) sides are geodesic lines and we must
recompute them very fast, at least approximately. Each new (recomputed) geodesic is very close to
the old (original) one, since one of their extremes remain fixed while the other one is very close to
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Figure 3.4: Igea model: Four different positions for the middle control point in a curve with three control
points.

the corresponding extreme in the old curve. Hence we use, as initial approximation for the algorithm
described in section 2.1, the original curve after adding to it the line segment joining its extreme to the
new control point position. Because the initial segment is very close to the recomputed one, this update
process runs very fast. Additionally, we force the geodesic computation to perform fewer iteration steps
during interaction since the user only needs to have a good idea of the shape of the control polygon. When
the user releases the mouse, full-precision geodesics are computed and the curve is then recomputed.
Figure 3.4 shows three different positions for the middle node during user interaction with a third order
curve.

3.3.2 Region Fill and Trimming

We are now concerned with the problem of identifying a piece of a surface S limited by one or more
curves defined on it. Solving this problem allows us to trim (cut) a piece of S, to paint it with a certain
color, or to map a texture to it. Given a point P in S, typically obtained by a mouse click, the idea is to
use a flood-fill algorithm, propagating a wavefront from this point until it reaches the boundary curves.
Algorithm 3.4 describes how to identify the faces in the region R that contains the point P .

Algorithm 3.4 Identify region

Input: A point P ∈ S
Output: The set SR = {f ∈ {faces of S}, s.t.f

⋂
R 6= ∅}

step 1. f = face containing P .
step 2. push(f ,LR)
step 3. while LR is not empty

g = pop(LR)
push(g,SR)
for h ∈{neighbors of g}

if(can propagate(g 7→ h))
push(h,LR)

In algorithm 3.4 above, LR is an auxiliary list of faces. The function can propagate returns true if the
following three conditions hold:

1. h does not belong to LR,

2. h does not belong to SR, and

3. R contains the edge common to g and h, or part of it.
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In practice it is not necessary to know if condition 3 holds. Instead we only consider the faces that are
adjacent to edges intersecting region R, see figure 3.6. When LR becomes empty we have in SR all the
faces contained in the interior of R and also the faces cutting the boundary curves. They are colored red
and green respectively in figure 3.5 (left). Once we have identified the set SR of faces cutting R, we

Figure 3.5: Region finding stages. Left: set SR with boundary faces highlighted. Middle and Right: the
region R after eliminating the part of boundary faces not belonging to it.

•
•
•

•
•

Figure 3.6: Propagation directions. Arrows indicate by what edges can the wave be propagated. Bullets
indicate what portion of the edges belong to R (shadowed region).

must decide which part of the boundary faces belongs to R. To do that, during propagation we mark
each portion of an edge intersecting R, see figure 3.6. With this information we can decide which part
of the planar subdivision defined by the boundary curves in each face belongs to R.

The above described process can easily be performed if the seed point P belongs to a face which is
entirely contained in R. If P belongs to a face crossed by the boundary of R, we subdivide it until P
is inside an interior face (see figure 3.7). For texture mapping or trimming it is not sufficient to identify

•P •P

•
•

Figure 3.7: Locating seed point

the part of S (i.e., the region R) selected by the user. It is also necessary to have a model of it. In those
cases we can triangulate the corresponding part of each face crossed by the boundary of R. Figure 3.8
shows some regions filled or trimmed in the Cube and the Bunny models.

3.4 Piecewise Bézier Spline Curves

A powerful tool for modeling is the use of piecewise spline curves, allowing local control of the shape of
the curve as well as faster computations by means of segments f low degree. We want to compute piece-
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Figure 3.8: Filled and trimmed regions: Trimmed Cube and Stanford’s bunny with two trimmed regions
and one filled.

wise spline curves of geodesic Bézier curves, so next we investigate how to guarantee some continuity
at junction points.

As usual, C0 continuity is reached by defining the first control point of a segment Ci+1 to be the same as
the last control point of its previous segment Ci. To guarantee C1 continuity is harder because we must
have the last side of the control polygon of Ci aligned with the first side of the control polygon of Ci+1.
Moreover, the length of these two sides must be the same. This means that we need to locate three
control points in the same geodesic line. In other words, the position of the two first control vertices of
the segment Ci+1 are determined by the position of the control vertices of the previous segment Ci.

Given the control polygon of the ith segment Ci of a spline curve C, how to compute the two first control
points P i+1

0 and P i+1
1 of Ci+1? Its first control point P i+1

0 is the same as the last control point P i
m

of Ci. The second one, P i+1
1 , is hard to find because we do not know how to continue the geodesic line

between P i
m−1 and P i

m. For smooth surfaces we can compute the unique geodesic passing by a point in
a direction. This is not the case for shortest geodesics on meshes. Nevertheless the straightest geodesics
defined by [26] have this nice property. For that reason we define the first side of the control polygon
of Ci+1 as the straightest geodesic continuing the last side of the control polygon of Ci. It is known [26]
that if a straightest geodesic does not pass by a spherical vertex, it is also a shortest geodesic. So we
can expect that most of the times our control polygon will be defined by means of shortest geodesics. It
is important to note that all the properties of section 3.2.3 are also satisfied if we replace one or more
of the shortest geodesics by straightest ones. Thus, the relaxation we did to the definition of the control
polygon, in order to have C1 continuity, is more than justified.

Finally note that modifying the position of P i
m−1 modifies the position of P i+1

1 and vice versa. In the
last case, the last side of the control polygon of Ci will be a straightest geodesic. Modifying the position
of the junction point conduce us to modify at least the position of one of the control points P i

m−1 and
P i+1

1 . Figure 3.9 show the use of C1 splines to write in the surface of the Stanford’s bunny model. The
middle curve in figure 3.1 is a C1 spline, composed by 8 Bézier segments.
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Figure 3.9: Splines on the surface of the bunny.



4 Convex Sets on Discrete
Surfaces

To define convex sets in triangulations requires some care. A naive definition, as the intersection of the
surface with a convex set, will not work because it ignores the intrinsic geometry of the surface. As in
the case of geodesics, there are different definitions obtained by imitating the behavior of plane convex
sets [2], but they are too restrictive. For example, non-optimal shortest geodesics are not convex in the
usual sense. Our definition allow them to be convex.

In this chapter we define convex sets based on the geodesic curvature of the boundary curves, and derive
the concept of convex hull in manifolds. Those definitions are very useful to prove the convergence of
the geodesic algorithm of chapter 2, and the convex hull property of geodesic Bézier curves defined in
chapter 3.

4.1 Discrete Geodesic Curvature

Polthier and Schmies [26] defined straightest geodesics as curves with zero geodesic curvature κg(P ),
where

κg(P ) =
2π

θ

(θ

2
− θr

)
.

In order to obtain a similar characterization for shortest geodesics, we must employ an alternative defi-
nition of discrete geodesic curvature:

Definition 4.1 The discrete geodesic curvature of a polygonal curve at a given point P is given by the
following expression.

κs(P ) =





0, if θ(P ) > 2π, θr(P ) ≥ π and θl(P ) ≥ π
∞, if θ(P ) < 2π and θr(P ) = θl(P )
κg(P ), otherwise

Remark 4.1 We use the notation κs to distinguish this new definition of discrete geodesic curvature
from Polthier’s one. The subindex s stands for shortest.

Remark 4.2 Boundary points are treated as hyperbolic, as done in section 2.2.3.

With this alternative definition of geodesic curvature at hand, we can characterize discrete shortest
geodesics on triangulations:

Proposition 4.1 A polygonal curve Γ contained in a manifold triangulation S is a shortest geodesic if
and only if its geodesic curvature κs is identically zero.

Proof: Let Γ be a shortest geodesic on S and P a node of Γ. If P does not coincide with a mesh vertex,
or coincides with an euclidean one, then θr and θl are equals; consequently κs(P ) = κg(P ) = 0. If P

27
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coincides with a hyperbolic vertex then both θr and θl must be greater than π, hence κs(P ) = 0. Finally,
P cannot coincide with a spherical vertex.

On the other hand, suppose that Γ have zero geodesic curvature everywhere. That means –see defini-
tion 4.1 and proposition 2.4– that a small perturbation in the position of any vertex will increase the
length of Γ. Thus, it is a local minimum of the length functional and consequently a shortest geodesic.

4.2 Convex Sets

It is known that if the boundary of a plane convex set is a smooth curve, then its curvature does not
change its sign [10]. If the boundary is a polygonal line, then at each vertex the angle corresponding
to the interior of the set is smaller that the exterior one. Based on these facts, we define convex sets on
triangulations.

Definition 4.2 Let C be a connected subset of a surface S. C is convex if its boundary ∂C can be
parametrized by a closed curve Γ : I −→ ∂C such that:

1. ∀t ∈ I κs(Γ(t)) ≤ 0, and

2. the interior of set C is always situated in the left side of Γ.

Remark 4.3 If we replace’≤’ by ’≥’ and ’left’ by ’right’ in definition 4.2, we get an equivalent definition
of convex set.

Remark 4.4 We do not require the curve Γ parameterizing ∂C to be simple. Otherwise, a simple
geodesic curve would not be convex. Figure 4.1 shows two convex sets in a plane with a hole where
the boundary curves are not simple.

Figure 4.1: In a plane with a hole, two convex sets whose boundary curves are not simple.

Remark 4.5 Convex sets in a plane triangulation (without holes) are also convex in the usual sense.

Unfortunately, the usual properties of planar convex sets do not hold in the general case for convex sets
on triangulations. In next section we are going to see an example where the intersection of two convex
sets is not connected. Besides, there are convex sets having two different points that cannot be joined by
an optimal shortest geodesic. However, a convex set always contains a shortest geodesic, not necessary
optimal, joining two any points in it.

Proposition 4.2 Let C be a convex set on the surface S and let A and B be two points of C. Then there
exists a shortest geodesic joining A and B that is completely contained in C.

Proof: Consider the surface S ′ defined by the set C. There exists a geodesic Γ joining A and B on S ′,
see [24]. We must prove that Γ is a geodesic on S.
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If Γ does not touch the boundary of S ′ then it is also a geodesic on S. Suppose now that the point P ∈ Γ
belongs to the boundary of S ′. If we choose an orientation of Γ such that the angle θl of Γ at P is the
one in the interior of S ′, then θl must be greater than or equal to π, because boundary points are treated
as hyperbolic vertices. This means that the angle θl of ∂C at P is also greater than or equal to π, but as
C is a convex set then, looking to ∂C as a curve on S, the angle θr of ∂C at P must also be greater than
or equal to π. Hence, P is a hyperbolic or euclidean point on S and the geodesic curvature κs(P ) of Γ
at P is also zero when looking to Γ as a curve on S. This means that Γ is a geodesic on S.

Remark 4.6 The converse of proposition 4.2 does not hold. In figure 4.2 we show a non-convex set,
contained in a plane with a hole, where every pair of points can be joined by a shortest geodesic.

Figure 4.2: A set in plane with a hole. It contains a shortest geodesic between any pair of points although
it is not convex.

4.3 Convex Hull

We want to define convex hull as the intersection of convex sets. To do that, we must study if convexity
is preserved by this set operation. Unfortunately, this is not true; for example, the intersection of two
meridians in a sphere results in a two-point set which is not even connected.

Although intersection does not preserve convexity, we still can use it to define convex hull. The following
lemma states that each connected component of the intersection is a convex set:

Lemma 4.3 The intersection of two convex sets C1 and C2 is a collection of convex sets.

Proof: We know that the intersection of two convex sets may have more than one connected component.
Let C be one of such connected components; we must prove that it is a convex set.

The boundary of C is formed by a sequence of curves belonging to the boundaries of C1 and C2. So, if
we prove that κs remains smaller than or equal to zero at the intersection of the boundaries of C1 and C2,
then we are done. But this is true because the left angle θl(∂C(P )) at those points is smaller that both
θl(∂C1(P )) and θl(∂C2(P )), and thus the geodesic curvature of ∂C at P is also negative:

κs(P ) =
2π

θ

(θ

2
− θr

)
=

2π

θ

(θr + θl

2
− θr

)
=

2π

θ

(θl − θr

2

)
≤ 0.

The above formula holds everywhere, except at some hyperbolic vertices where θl is greater than π, but
in those cases κs(P ) = 0. Note that if P coincides with a spherical mesh vertex, then θl is necessary
smaller than θr.

After lemma 4.3 we can define the convex hull of curves on manifold triangulations:
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Definition 4.3 Let Γ be a curve defined on a surface S. The convex hull Γ of Γ is the intersection of all
convex sets containing Γ.

Γ =
⋃

Γ⊂Ci

Ci.

Remark 4.7 Note that we cannot extend the concept of convex hull in manifolds to arbitrary sets. For
instance, the convex hull of two poles of a sphere would be the two points, which is not a connected set.
However, this concept is well defined for curves, for which the convex hull is always a convex connected
set.

The following proposition will be useful in section 4.5.

Proposition 4.4 Given a simple polygonal curve Γ, joining two different points A and B, the area of its
convex hull A(Γ) is equal to zero if and only if Γ is a simple shortest geodesic.

Proof: If Γ is a simple shortest geodesic, then it is a convex set and consequently Γ = Γ, so A(Γ) = 0.

Now assume that A(Γ) = 0, and suppose it is not a shortest geodesic. There exists an interior node
Pi ∈ Γ where κs(P ) 6= 0. Hence, the set bounded by the geodesic joining Pi−1 and Pi+1, and the
segment of Γ between Pi−1 and Pi+1 belongs to Γ. But the area of that set, which is a subset of Γ, is not
zero, which is a contradiction.

After defining convex hull, it is interesting to know how its shape depends on the curve. Next lemma
answer this question for polygonal curves.

Lemma 4.5 The boundary of the convex hull Γ of a polygonal curve Γ is composed of a sequence of
geodesic segments whose extremes are nodes of Γ.

Proof: We know that κs(∂Γ(.)) ≤ 0, suppose that κs(P ) < 0 at a point P ∈ ∂Γ. If P /∈ Γ, then we can
join two points of its neighboring sides in ∂Γ by a geodesic segment Γ0 not crossed by Γ. Substituing
the portion of ∂Γ between those points by Γ0 we obtain a convex set C0 ⊂ Γ containing Γ, but then Γ
would not be the convex hull of Γ.

If the boundary ∂C of a convex set is a polygonal curve, we can distinguish two type of nodes in it, those
where the geodesic curvature κs is zero, and those with non-null geodesic curvature. From now on, we
refer to the last ones as vertices. Doing this, we can look at ∂C as a polygon whose sides are geodesics.

4.4 On the Metric of Discrete Surfaces

Until now, the definition of the length functional was the only metric property of triangulations needed
for our exposition. In next section we will need other metric properties as distance and limit.

Given a connected discrete surface, as defined in chapter 1, a distance between its points can be defined.

Definition 4.4 The distance between two points P and Q on a connected discrete surface S is defined
as the length of an optimal shortest arc joining P and Q.

ρ(P,Q) = inf
ΓP Q⊂S

{L(ΓPQ)}

As stated in lemma 2.2, if S is connected there always exists a shortest arc joining P and Q. Hence the
distance ρ is well defined. The surface S, provided with ρ, becomes a metric space [1, 2]. A metric like
this one, where the distance between two points is the same as the length of the shortest arcs joining them,
is called intrinsic. Note that on the interior of each face the metric of S coincides with the euclidean
metric and then the length of curves, as defined in section 1.1.3, is the same as the length of curves on
the intrinsic metric of S.

A metric space M is complete if every Cauchy sequence converges to a point of M . For a space provided
with an intrinsic metric we can give an equivalent definition of completeness, see [1].
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Definition 4.5 A metric of a space M is called complete if the Weierstrass theorem holds for M , i.e, if
each infinite bounded set in M has an accumulation point.

The following lemma is rather obvious and is probably proved somewhere else. However, we have not
seen it proved and will give a proof here.

Lemma 4.6 A discrete surface S, provided with its intrinsic metric, is a complete metric space.

Proof: From definition 4.5, it is enough to prove that every infinite set has an accumulation point.1
Suppose that the set A ∈ S is infinite. Since S has a finite number of faces, there is a face f ∈ S which
has infinite points of A. As in f the euclidean and intrinsic metric coincide, A has an accumulation point
on f , and so it has an accumulation point on S.

The following proposition will be useful in next section.

Proposition 4.7 Let {Cn}
∞
n=0 be a sequence of closed sets in a discrete surface S such that Cn+1 ⊂ Cn

and Cn 6= ∅. There exists a closet set C 6= ∅ such that C =
⋂∞

n=0 Cn and for all ε > 0 there exists an
n ∈ N such that if N ≥ n then ρ(P, C) < ε for all P ∈ CN .

Proof: The closed set C exists and is non-empty, see [21]. Lets prove the second part. Suppose that it
does not hold, i.e, there is an ε > 0 such that ∀n ∈ N there exists a point Pn ∈ Cn such that ρ(Pn, C) ≥ ε.
Consider the sequence {Pn}, from lemma 4.6 it has a subsequence {Pkn

} convergent to a point P and
ρ(P, C) ≥ ε. Given a k ∈ N, Pkn

∈ Ck for all kn ≥ k and hence P ∈ Ck, so P ∈ C and ρ(Pn, C) = 0.
But this is a contradiction with ρ(P, C) ≥ ε.

4.5 Applications

The definition of convex hull of curves on triangulations help us to study the convergence of the geodesic
algorithm presented in chapter 2.

In the rest of this chapter, {Γn}n∈N denotes the sequence generated by algorithm 2.1. The following
lemma will be used later:

Lemma 4.8 In a triangulation S, Γn+1 belongs to the convex hull of Γn.

Proof: At each vertex correction, for example at Pnj , the sequence Pn,j−1PnjPn,j+1 goes to the
geodesic segment joining the points Pn,j−1 and Pn,j+1, which is entirely contained in the convex hull
of the current curve Γn. So, each vertex of Γn+1 belongs to the convex hull of Γn and so does Γn+1.

Proposition 4.9 If every Γn is simple, then the sequence converges to a geodesic line.

Proof: Let Cn be the convex hull of Γn. Consider the set

C =
∞⋂

n=0

Cn.

From lemma 4.8 we know that Cn

⋂
Cn+1 = Cn+1. From proposition 4.7 we know that C exists and is

closed. Each Cn is convex and so does C.

We must prove that A(C) = 0 since, by proposition 4.4, only simple geodesic lines have convex hull
with area equal to zero.

By proposition 4.7, for an arbitrary ε > 0 we can find a natural number n such that all the vertices in the
boundary ∂Cn of Cn are at distance smaller than ε from the boundary ∂C of C.

Suppose that A(C) 6= 0. Each vertex of ∂Cn is also a node of Γn, see lemma 4.5. There is an n large
enough such that the vertices of ∂Cn are very close to ∂C and such that for each node Pnj ∈ Γn ∩ ∂Cn

the geodesic line joining its neighbors Pn,j−1 and Pn,j+1 in Γn intersects C. When we compute the
1Since we are considering the case of discrete surfaces, which are bounded, every infinite set on them is also bounded.
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A B

C

Cn

Γn

Figure 4.3: The convex hull of Γn is very close to C.

next curve Γn+1, it will pass through C, and as Pin belongs to the boundary of the convex hull of Γn,
there will be points of C outside of Cn+1, but this is impossible since ∀n C ⊂ Cn ⇒ C ⊂ Cn+1. As a
consequence A(C) must be zero and hence Γn

−→
n→∞Γ which is a geodesic.

Proposition 4.9 looks very restrictive, since we require that every curve Γn be simple. However, this
seems to be the general case. When we look for an initial approximation, using FMM, the resulting
curve Γ0 is certainly simple. After that, each correction is performed in a neighborhood of a curve node
and it us unlikely that self-intersection will occur.

To finish this section, we present another application of convex hulls:

Proposition 4.10 Geodesic Bézier curves satisfy the convex hull property. This is, a geodesic Bézier
curve is completely inside the convex hull of its control polygon.

Proof: This proposition is a direct consequence of lemma 4.8.

4.6 Non-Polygonal Curves

Up to now, all the material in this chapter was mainly dedicated to polygonal curves. In fact, as far
as this work is concerned, polygonal curves are enough. Nevertheless, we can extend our study about
convexity to sets with non-polygonal boundaries. We can also extend it to smooth manifolds. For the
sake of completeness, we consider them here.

Consider a piecewise smooth curve Γ on a triangulation S2. At points where the curve is smooth, it has
neighborhoods which are isometric to a piece of plane, so we define the geodesic curvature κs of Γ at
those points as the corresponding curvature in the unfolding. At non-smooth points, we define κs as the
curvature corresponding to the polygonal line defined by the left and right tangent on these points, when
it exists. Otherwise κs is not defined.

On smooth manifolds, the geodesic curvature is always defined for smooth curves. Consider a piece-
wise smooth curve γ, which is simple and closed. In points where γ is not smooth, we can look at the
corresponding left and right tangent lines in the plane tangent to the manifold. If the angle3 between
them is smaller than π, and the geodesic curvature at smooth points does not change its sign, then the set
bounded by γ is convex.

2Note that polygonal curves are special cases of piecewise smooth curves.
3This angle is measured in the same direction of the curve.



5 Conclusion

We have presented an iterative algorithm to compute a shortest geodesic between two points over a
discrete surface. At each step it computes a new curve with smaller length. This is done by reducing
locally the curve length at each vertex. It explores the fact that the intersection of a mesh face with a
shortest geodesic is a line segment, and hence its vertices lie on mesh vertices or edges. The proposed
iterative process allows also to improve an approximation given by any other (non-exact) algorithm. As
far as the author knows, there is not other algorithm which improves discrete geodesic approximations.
We have also given an strategy to speed up the convergence, it is specially useful when part of the initial
curve is close to be a geodesic as in the case of geodesic Bézier curves.

Using the geodesic algorithm, we defined geodesic Bézier curves, which are a generalization of Eu-
clidean Bézier curves to manifold triangulations, and studied some properties of them. They have the
advantage of being defined intrinsically, which makes them independent of any parameterization. We
have shown how to use them to define pieces or regions of a surface, allowing trimming, local texture
mapping, and region coloring. Fast user interaction joined with the possibility of constructing C0 and
C1 splines make of them a powerful tool for free-form modeling on manifold triangulations.

Convex sets on discrete surfaces were defined by imitating the property of plane convex sets of having
boundary curves that do not change the sign of the curvature. There were studied some properties of
convex sets on triangulation and it was defined convex hull of curves in this context. As applications
we get the convex hull property of geodesic Bézier curves and studied the convergence of the geodesic
algorithm.

5.1 Further Research

Although using a heap in the geodesic algorithm diminishes the amount of node corrections, we have not
great improvement in performance because at each correction the neighboring nodes must be updated
in the heap. It is interesting to study other correction strategies as the multiple choice approach, where
we randomly select few nodes and correct the one with largest error. It is very important to study the
order of convergence of the geodesic algorithm. It is also useful to compare the result with different
triangulations of simple surfaces as the cylinder, where it is trivial to compute the geodesics.

An interesting application of the geodesic algorithm would be to parameterize a triangulation using the
exponential map, what can lead to well-shaped charts.

There remain some theoretical issues associated with geodesic Bézier curves; it will be very interesting
to see which other properties of classical Bézier curves hold for the new curves and also which concepts
can be generalized to the geometry of manifold triangulations. For example, it is not clear how to define
the control polygons if we want C2 continuity or higher. The continuity of the curves at mesh vertices
has to be studied. One should also investigate whether there is something equivalent to affine invariance
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of Bézier curves in the case of geodesic Bézier curves. It would be interesting to compare the properties
of the limit curves defined by the de Casteljau’s subdivision algorithm with those of the well-known
subdivision schemes for curves and surfaces.

There are some works about geodesic computation in geometries other than manifold triangulations. So,
we can define geodesic Bézier curves for point clouds [23], for Riemannian manifolds [19], and for
smooth surfaces [17, 16]. The next step is to study how to handle user interaction in a fast way and
what properties of classical Bézier curves are inherited by geodesic Bézier curves on those geometries.
A good point to start could be subdivision surfaces where the extension of the ideas in this thesis seems
to be straightforward, with the nice property that user interaction could be handled at low resolution,
making it faster.

The extension of these results to other subdivision schemes, as well as the definition of interpolant splines
will certainly result in a design toolkit with wider capabilities.
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