
Poincaré and Logarithmic Sobolev Inequality for

Ginzburg-Landau Processes in Random

Environment

Jeronimo Monteiro

Orientador: Claudio Landim

October 8, 2004



A Deus e as quatro mulheres da minha vida: minha mãe Regina,
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Eci.



Agradecimentos

Ao Professor Claudio Landim, meu orientador durante o doutorado, por
sua paciência, disponibilidade e dedicação aos seus orientandos.
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que compartilhamos em nossos estudos.



Abstract

We consider reversible, conservative Ginzburg–Landau processes in a
random environment, whose potential are bounded perturbations of the
Gaussian potential, evolving on a d-dimensional cube of length L. We prove
in all dimensions that the spectral gap of the generator and the logarithmic
Sobolev constant are of order L−2 almost surely with respect to the envi-
ronment. We folow here the martingale approach introduced in [LY]. The
main ideas are essentially the same but there are several tecnical difficulties
coming from the unboundedness of the spins. The main ingredients for the
Ginzburg-Landau process without environment are a local central limit the-
orem, uniform over the parameter and the environment from which follows
the equivalence of ensembles, and sharp large deviations estimates.
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0.1 Introduction

Poincaré and logarithmic Sobolev inequalities are powerful tools in the
analysis of stochastic processes. A sharp estimate for the spectral gap, for
instance, is of fundamental importance in the derivation of the hydrody-
namic equation of nongradient systems [18], [16]. In the same way, the
spectral gap and the logarithmic Sobolev inequality played a central role in
the investigation of the decay to equilibrium of conservative systems in in-
finite volume [1], [2], [10], [8], [13]. More recently, [7] a logarithmic Sobolev
inequality was one of the main tools in the derivation of the scaling limit of
a non-attractive weakly asymmetric process whose hydrodynamic equation
is given by a first order hyperbolic equation.

We continue in this article the investigation started in [11] and present a
sharp estimate of the spectral gap and of the logarithmic Sobolev constant
for Ginzburg-Landau processes in random environment whose potential is a
bounded perturbation of the Gaussian potential. We believe, however, that
the approach presented here extend to the case where we have a bounded
perturbation of a convex potencial. In this case, it was recently observed
by Caputo that whem the potencial is a purely convex function, the L2

behavior of the inverse of the spectral gap and of the logatimic Sobolev
constant cam be easily obtained by tecniques introduced for models with
convex interactions. The precise assumptions are given in chapter 1. We
follow here the martingale approach introduced in [15].

As for the Ginzburg–Landau process without environment, the main in-
gredients needed in the proof are a local central limit theorem, uniform over
the parameter and the environment from which follows the equivalence of en-
sembles, and sharp large deviations estimates presented in chapter 5. In the
presence of the environment these estimates are technically more demand-
ing and some new arguments are needed. To bound the terms coming from
the environment, we will need to require the environment to take bounded
values and to impose a nice behavior of the variance and the mean as the
chemical potential diverges.

The derivation of sharp estimates for the spectral gap and the logarithmic
Sobolev inequality for conservative interacting particle systems has started
with the pioneering work of Lu and Yau [15] and Yau [19], [20], where the
martingale method was introduced. Landim, Sethuraman and Varadhan in
[12] extended to unbounded spin systems the sharp estimate of the spectral
gap, while Landim and Yau [13] proved the Poincaré and the logarithmic
Sobolev inequality for Ginzburg-Landau processes where the potential is
a bounded perturbation of the Gaussian potential. The estimate of the
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spectral gap was extended by Caputo in [4] for bounded perturbations of
strictly convex potentials and was examined by Chafai [6] with an alternative
approach. The martingale method was revisited recently by Cancrini and
Martinelli in [3].

In the context of conservative systems in random environment, Quastel
and Yau [17] proved a sharp estimate for the spectral gap of the symmetric
exclusion process in random environment using the martingale approach.
Caputo [5] presents a general method to derive Poincaré inequalities for
conservative dynamics and deduces a sharp estimate for the spectral gap of
symmetric exclusion processes in random environment.

The article in conceived as follows. In chapter 1, we present the main
results. We prove the spectral gap in chapter 1 and the logarithmic Sobolev
inequality in chapter 2. These chapter rely on estimates presented in chapter
3, 4 and 5. In chapter 3 we present some consequences of a local central
limit theorem, uniform over the parameters. In chapter 4 we examine the
assumptions made on the environment and in chapter 5 we prove some large
deviations estimates.
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Chapter 1

Spectral Gap

1.1 Notation and Results

For L ≥ 1, denote by ΛL the cube {1, . . . , L}d. Configurations of the
state space RΛL are denoted by the Greek letters η, ξ, so that ηx indicates
the value of the spin at x ∈ ΛL for the configuration η. The configuration η
undergoes a diffusion on RΛL whose infinitesimal generator LΛL

is given by

LΛL
=

1
2

∑
x,y∈ΛL
‖x,y‖=1

(∂ηx − ∂ηy)
2 − 1

2

∑
x,y∈ΛL
‖x,y‖=1

(V ′
y(ηy)− V ′

x(ηx))(∂ηy − ∂ηx) .

Vx : R → R represents the potential Vx(a) = hxa + V (a), where V (a) =
(1/2)a2+F (a), F : R → R is a smooth bounded function such that ‖F ′‖∞ <
∞, h = {hx, x ∈ Zd} is a collection of i.i.d. random variables to be specified
later and

∫
e−V (x) dx = 1 .

Denote by Z : R → R the partition function

Z(λ) =
∫ ∞

−∞
eλa−V (a) da , (1.1)
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by R : R → R the density function ∂λ log Z(λ), which is smooth and strictly

increasing, and by Φ the inverse of R so that

α =
1

Z(Φ(α))

∫ ∞

−∞
a eΦ(α)a−V (a) da

for each α in R.

Denote by νλ the measure Z(λ)−1 exp{λa−V (a)}da, by gλ(a) = Z(λ)−1 exp{λa−
V (a)} its density with respect to the Lebesgue measure and by σ2(λ) the
variance of νλ: σ2(λ) = ∂2

λ log Z(λ) or

σ2(λ) =
∫ ∞

−∞
a2gλ(a) da −

( ∫ ∞

−∞
agλ(a) da

)2
.

We assume throughout this thesis that σ2(·) has limits at ±∞: There exists
σ2
± < ∞ such that

lim
λ→±∞

σ2(λ) = σ2
± . (1.2)

This is a new assumption with respect to the non-random case needed in
order to estimate some terms which appears through the environment (cf.
Lemma 4.1.2). We prove at the end of chapter 4 that (1.2) holds, if, for
instance, F has limits at the boundary of R:

lim
a→±∞

F (a) = F± (1.3)

for some finite values F±.

For λ in R, and a finite subset Λ of Zd, denote by νh
Λ,λ the product measure

on RΛ defined by

5



νh
Λ,λ(dη) =

∏
x∈Λ

1
Z(λ− hx)

e[λ−hx]ηx−V (ηx)dηx

Most of the times we omit the superscript h in νh
Λ,λ. Notice that Eνh

Λ,Φ(α)+hx
[ηx] =

α for all α in R, x in Λ.

For each M in R, denote by µh
Λ,M the canonical measure on Λ with total

spin equal to M :

µh
Λ,M

(
·

)
= νh

Λ,λ

(
·

∣∣∣ ∑
x∈Λ

ηx = M
)

.

Expectation with respect to a measure m is denoted by Em. Notice that
the canonical measure µh

Λ,M does not depend on λ but depends on h.

An elementary computation shows that the measures {νh
ΛL,λ, λ ∈ R},

{µh
ΛL,M , M ∈ R} are reversible for the Markov process with generator LΛL

.
In fact,

< LΛL
f, g >νh

Λ,λ
=

1
2

∑
x,y∈ΛL
‖x,y‖=1

∫ [
(∂ηx − ∂ηy)

2
f
]
g

∏
z∈ΛL

1
Z(λz)

eληz−Vz(ηz)dηz

−1
2

∑
x,y∈ΛL
‖x,y‖=1

∫
(V ′

x(ηx)− V ′
y(ηy))

[
(∂ηx − ∂ηy)f

]
g

∏
z∈ΛL

1
Z(λz)

eληz−Vz(ηz)dηz

= −1
2

∑
x,y∈ΛL
‖x,y‖=1

∫ [
(∂ηx − ∂ηy)f

][
(∂ηx − ∂ηy)g

] ∏
z∈ΛL

1
Z(λz)

eληz−Vz(ηz)dηz
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−1
2

∑
x,y∈ΛL
‖x,y‖=1

∫
(V ′

x(ηx)− V ′
y(ηy))

[
(∂ηx − ∂ηy)f

]
g

∏
z∈ΛL

1
Z(λz)

eληz−Vz(ηz)dηz

+
1
2

∑
x,y∈ΛL
‖x,y‖=1

∫
(V ′

x(ηx)− V ′
y(ηy))

[
(∂ηx − ∂ηy)f

]
g

∏
z∈ΛL

1
Z(λz)

eληz−Vz(ηz)dηz

=
1
2

∑
x,y∈ΛL
‖x,y‖=1

∫
f(∂ηx − ∂ηy)

2g
∏

z∈ΛL

1
Z(λz)

eληz−Vz(ηz)dηz

+
1
2

∑
x,y∈ΛL
‖x,y‖=1

∫
(V ′

x(ηx)− V ′
y(ηy))f

[
(∂ηx − ∂ηy)g

] ∏
z∈ΛL

1
Z(λz)

eληz−Vz(ηz)dηz

= < LΛL
g, f >νh

ΛL,λ

The Dirichlet form DΛL
associated to LΛL

is given by

DΛL
(νh

Λ,λ, f) =
1
2

∑
x,y∈ΛL
‖x,y‖=1

< (T x,yf)2 >νh
Λ,λ

In this formula and below, for a probability measure µ, < . >µ stands for the
expectation with respect to µ. Furthemore, for x , y ∈ Zd, T x,y represents
the operador which acts on smooth functions f as

T x,yf =
∂f

∂ηx

− ∂f

∂ηy

and µ stands for a invariant measures νh
ΛL,λ or µh

ΛL,M .

For a positive integer L and M ∈ R, denote by W (L,M, h) the inverse
of the spectral gap of the generator LΛL

with respect to the measure µh
ΛL,M :

W (L,M,h) = sup
f

< f ; f >µh
ΛL,M

DΛL
(µh

ΛL,M , f)
·
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In this formula the supremum is carried over all smooth functions f in
L2(µh

ΛL,M ) and < f ; f >µ stands for the variance of f with respect to µ. We
also denote this variance by the symbol Var (µ, f). Let

W (L,h) = sup
M∈R

W (L,M,h) .

We assume that the environment of i.i.d. random variables h = {hx, x ∈
Zd} take bounded values: There exists A0 < ∞ such that |hx| ≤ A0. This
is the only assumption needed on the environment. We denote by P the
probability on [−A0, A0]Z

d
corresponding to the environment h and by E,

expectation with respect to P.

Theorem 1.1.1 Assume (1.2). There exists an almost sure event Ω0 of
[−A0, A0]Z

d
with the property that for all h in Ω0, there exists a finite con-

stant C0 depending only on ‖F‖∞, ‖F ′‖∞ and h such that

W (L,h) ≤ C0(F,h)L2

for all L ≥ 2.

A lower bound of the same order is easy to derive (cf. [11]). Fix a
smooth function H : [0, 1]d → R such that

∫
H(u)du = 0 and let fH(η) =∑

x∈ΛL
H( x

L)ηx. An elementary computation shows that

DΛL
(µh

ΛL,M , f) =
1
2

∑
x,y∈ΛL
‖x,y‖=1

[
H

( y

L

)
−H

(x

L

)]2
.

The basis {ej , 1 ≤ j ≤ d} stands for the canonical basis of Rd. By Corollary

3.1.4, as L →∞, M
Ld → α,

<fH ,fH>νΛL
,M

L2DΛL
(νΛL,M ,fH)

converges to
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< ηe1 , ηe1 >νh
α

∫
H(u)2du∫

‖(∇H)‖2du
. This proves that

lim inf
L→∞

L−2W (L, h) > 0.

For L ≥ 2, a probability measure ν on RΛL and a function f such that
< f2 >ν= 1, denote by SΛL

(ν, f) the entropy of f2dν with respect to ν:

SΛL
(ν, f) =

∫
f2 log f2dν ;

and by θ(L,M,h) the inverse of the logarithmic Sobolev constant of the
Ginzburg-Landau process on the cube ΛL with respect to the measure
µh

ΛL,M :

θ(L,M,h) = sup
f

SΛL
(µh

ΛL,M , f)

DΛL
(µh

ΛL,M , f)
·

In this formula, the supremum is carried over all smooth functions f in
L2(µh

ΛL,M ) such that < f2 >µh
ΛL,M

= 1. Let

θ(L,h) = sup
M∈R

θ(L,M,h) .

To prove the logarithmic Sobolev inequality, we shall require that the
function Γ1(λ) = R(λ)−λ has limits at the boundary of R: There exists Γ±
such that

lim
λ→±∞

Γ1(λ) = Γ± . (1.4)
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We prove at the end of chapter 4 that (1.4) holds, if, for instance, F
satisfies (1.3).

Theorem 1.1.2 Assume (1.2), (1.4) and that ‖F ′′‖∞ < ∞. There exists
an almost sure event Ω0 of [−A0, A0]Z

d
with the property that for all h in

Ω0, there exists a finite constant C(h) depending only on ‖F‖∞, ‖F ′‖∞,
‖F ′′‖∞ and h such that

θ(L,h) ≤ C(F,h)L2

for all L ≥ 2.

We follow here the martingale method developed by Lu and Yau to prove
the Spectral Gap and a bound on the Logarithmic Sobolev constant for a
conservative interacting particle system. This approach relies on a two a-
priori estimates. First, a local central limit theorem for independent random
variables with marginals equal to the marginals of the product measure νλ ,
uniform over the parameter λ ∈ R. Second, a spectral gap or a logarithmic
Sobolev inequality, uniform over the density, for a Glauber dynamics on one
site which is reversible with respect to the one-site marginal of the canonical
invariant measure.

1.2 One-site spectral gap

To fix ideas, we prove Theorem 1.1.1 in dimension 1. The reader can
find in section A.3.3 of [KL] the arguments needed to extend the proof to
higher dimensions. To detach the main ideas, we divide the proof in four
steps. The proof goes by induction on the size of the cube. We start with
L = 2.

In this section all constants denoted by C0 depend only on ‖F‖∞ and
all constants denoted by C1 depend only on ‖F‖∞, ‖F ′‖∞. In the case they
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depend on some other parameter, the dependence is stated explicitly. These
constants may change from line to line.

Consider a smooth function f : RΛ2 → R. We want to estimate <
f, f >µh

Λ2,M
in terms of the Dirichlet form of f . Since for the measure

µh
Λ2,M the total spin is fixed to be equal to M, let g(a) = f(M − a, a) and

notice that < f, f >µh
Λ2,M

is equal to < g, g >
µh,1

ΛL,M
, where µh,1

ΛL,M is the

marginal distribution of η1 with respect to µh
ΛL,M .

The following result is helpful. Fix L ≥ 2, M in R and an environment
h. The Glauber dynamics has a positive spectral gap which is uniform with
respect to L, M and h :

Lemma 1.2.1 There is a finite constant C0 depending only on ‖F‖∞ such
that

Var (µh,1
ΛL,M , f) ≤ C0 E

µh,1
ΛL,M

[( ∂f

∂η1

)2]

for every L ≥ 2, M in R, environment h and every smooth function f : R →
R in L2(µh,1

ΛL,M ).

In the case of grand canonical measures, this result is true under the more
general hypothesis of strict convexity at infinity of the potential ([Le] and
references therein). In the case of canonical measures the main problem is
to obtain a good approximation of the one-site marginal in terms of the
one-site marginal of grand canonical measures.

Before proving this result, we conclude the first step. Applying this re-
sult to the function g defined above, we obtain that its variance is less than
or equal to C0Eµh,1

Λ2,M
[(∂g/∂η1)2]. Since ∂g/∂η1 = (∂f/∂η2 − ∂f/∂η1), we

have that
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< f ; f >µh
Λ2,M

= < g; g >µh
Λ2,M

= < g; g >
µh,1

Λ2,M

≤ C0 E
µh,1

Λ2,M

[( ∂g

∂η1

)2]
= C0 Eµh

Λ2,M

[( ∂g

∂η1

)2]
= C0 Eµh

Λ2,M

[( ∂f

∂η2
− ∂f

∂η1

)2]
.

This shows that W (2,h) ≤ C0, proving Theorem 1.1.1 in the case L = 2.
We conclude this step with the

Proof of Lemma 1.2.1 We first prove the lemma for the grand canonical
measure. Fix λ ∈ R and denote by νh,1

ΛL,λ the one-site marginal of the product

measure νh
ΛL,λ. Fix xλ ∈ R, that will be specified later, and f ∈ L2(νh,1

ΛL,λ).
By Schwarz inequality, the variance of f is bounded above by

Var(νh
ΛL,λ, f) ≤

∫
R

(f(x)− f(xλ))2e−V h
λ (x)dx

≤
∫ ∞

xλ

f ′(y)2dy

∫ ∞

y
(x− xλ)e−V h

λ (x)dx+
∫ xλ

−∞
f ′(y)2dy

∫ y

−∞
(x− xλ)e−V h

λ (x)dx.

where V h
λ (x) = −λx + hx + log Z(λ− h) + V (x). It remains to show that

the expressions inside braces are uniformly bounded in x and λ for an apro-
priate choice of xλ. Both expressions are handled in the same way and we
consider, to fix ideas, the first one where we need to estimate

∫ ∞

xλ

f ′(y)2dy

∫ ∞

y
(x− xλ)e−V h

λ (x)dx.

Choose xλ = λ − h and change variables to reduce the previous expression
to
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∫ ∞

λ−h
f ′(y)2dy

∫ ∞

y−λ+h
xe−V h

λ (x+λ−h)dx

=
eF (y)

eF (y)

∫ ∞

λ−h
f ′(y)2dy

∫ ∞

y−λ+h
xe(λ−h)(x+λ−h)− 1

2
(x−λ+h)2+log Z(λ−h)−F (x+λ−h)dx

≤ C0

∫ ∞

λ−h
f ′(y)2e−V h

λ (y)dy

where C0 = exp
{

2‖F‖∞
}

.

This conclude the proof of the lemma in the case of grand canonical mea-
sures. We now prove the Lemma for canonical measures.

For λ in R, denote by Ph,λ the probability measure on the product space
RN that makes the coordinates {Xk, k ≥ 1} independent random variables
with Xk having density Z(λ−hk)−1 exp{[λ−hk]x−V (x)}. Denote by Eh,λ

expectation with respect to Ph,λ.
Denote by γ1(λ), σ2(λ), {γk(λ), k ≥ 3} the expectation, the variance and

the k-th truncated moment of a random variable with density Z(λ)−1 exp{λx−
V (x)}:

γ1(λ) = 1
Z(λ)

∫
R x eλx−V (x) dx ,

σ2(λ) = 1
Z(λ)

∫
R[x− γ1(λ)]2 eλx−V (x) dx ,

γk(λ) =
1

Z(λ)

∫
R
[x− γ1(λ)]k eλx−V (x) dx . (2.1)

For a finite subset Λ of N, denote by fh,λ,Λ, gh,λ,Λ the density of the
random variable

1
σ2(h, λ,Λ)1/2

∑
j∈Λ

[Xj − γ1(λ− hj)]

∑
j∈Λ

[Xj − γ1(λ− hj)] ,
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respectively. In this formula,

σ2(h, λ,Λ) =
∑
j∈Λ

σ2(λ− hj) .

We prove in Chapter 3 an Edgeworth expansion for fh,λ,ΛL
uniform over the

parameter λ.
Let R(x) = Rh,L,M (x) be the Radon-Nikodym derivative of µh,1

ΛL,M (dx)

with respect to the Lebesgue measure. Fix a smooth function f in L2(µh,1
ΛL,M )

and xλ in R to be specified later. The variance of f with respect to µh,1
ΛL,M

is bounded above by

∫
R

(
f(x)− f(xλ)

)2
R(x) dx .

By Schwarz inequality, the previous expression is less than or equal to

∫ ∞

xλ

dx [f ′(x)]2R(x)
{ 1

R(x)

∫ ∞

x
dy (y − xλ)R(y)

}
+

∫ xλ

−∞
dx [f ′(x)]2R(x)

{ 1
R(x)

∫ x

−∞
dy (xλ − y)R(y)

}
.

It remains to show that the expressions inside braces are uniformly bounded
in x, L, M and h for an appropriate choice of xλ. Both expressions are han-
dled in the same way and we consider, to fix ideas, the first one where we
need to estimate

sup
x≥xλ

{ 1
R(x)

∫ ∞

x
dy (y − xλ)R(y)

}
. (2.2)
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For a finite subset Λ of N, denote by g̃h,λ,Λ the density of the random
variable

∑
j∈Λ Xj .

We may write the density R(·) in terms of the densities gh,λ,Λ(·) or g̃h,λ,Λ

for appropriate sets Λ. Choose λ so that

M = Eνh
ΛL,λ

[ ∑
x∈ΛL

ηx

]
=

∑
x∈ΛL

γ1(λ− hx) . (2.3)

Remark 1.2.2 Let X absolutely continuous random variable with density
fuction fX . Then, for every a 6= 0, b ∈ R,

faX+b(u) = fX

(u− b

a

)1
a
.

Indeed, if H is a continuous bounded function,

E[H(aX + b)] =
∫

H(u)faX+b(u)du =
∫

H(y)
1
a
fX

(y − b

a

)
dy.

Remark 1.2.3 Let X1, ..., XL independents random variables with densities
fj. Then:

∫
x1+...+xL=M

L∏
j=1

fj(xj)dx1...dxL−1

=
∫

f1(x1)...fL−1(xL−1)fL(M − x1 − ...− xL−1)dx1...dxL−1

= f∑L
j=1 Xj

(M) = f∑L
j=1 Xj−γ1(j)(M −

L∑
j=1

γ1(j))
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We now compute the ratio R(x)
R(y) explicitly:

Fix a test fuction H : R → R. By definition of the canonical measure µh
ΛL,M ,

Eh,1
ΛL,M [H(η1)] = Z(λ− h1)−1

∫
H(x1)1∑L

j=1 xj=Me
∑L

j=1 V
hj
λ (xj)dx1...dxL−1∫

1∑L
j=1 xj=Me

∑L
j=1 V h

λ (xj)dx1...dxL−1

= Z−1

∫
dx1H(x1)e(λ−h1)x−V (x1)

∫
x2+...+xL=M−x1

fλ,h,2(x2)...fλ,h,L(xL)dx2...dxL−1∫
x1+...+xL=M fλ,h,1(x1)...fλ,h,L(xL)dx1...dxL−1

In view of Remark 1.2.3, the previous expression can be writte

= Z(λ− h1)−1

∫
dx1H(x1)e(λ−h)x1−V (x1)

f∑L
j=2 Xj

(M − x1)

f∑L
j=1 Xj

(M)
.

= Z(λ−h1)−1

∫
dx1H(x1)e(λ−h1)x1−V (x1)

f∑L
j=2(Xj−γ1(λ−hj))

(γ1(λ− h1)− x)

f∑L
j=1(Xj−γ1(λ−hj))

(0)
.

Thus, with the notation introduced just before Remark 1.2.2,

R(x) =
1

Z(λ− h1)
e[λ−h1]x−V (x)

gh,λ,Λ2,L
(γ1(λ− h1)− x)
gh,λ,ΛL

(0)

=
1

Z(λ− h1)
e[λ−h1]x−V (x)

g̃h,λ,Λ2,L
(M − x)

g̃h,λ,ΛL
(M)

,

where Λ2,L = {2, . . . , L}. Choose xλ = λ− h1. Since ‖F‖∞ is finite, then

R(y)
R(x)

=
e(λ−h1)y− y2

2
−F (y)

eλx−h1x−x2

2
−F (x)

g̃h,λ,Λ2,L
(M − y)

g̃h,λ,Λ2,L
(M − x)

,

16



≤ C0
e
−(y−(λ−h1))2

2

e
−(x−(λ−h1))2

2

g̃h,λ,Λ2,L
(M − y)

g̃h,λ,Λ2,L
(M − x)

.

Up to this point we proved that

sup
x≥xλ

1
R(x)

∫ ∞

x
(y − xλ)R(y)dy

≤ C0 sup
x≥xλ

∫ ∞

x
(y − xλ)

e
−(y−(λ−h1))2

2

e
−(x−(λ−h1))2

2

g̃h,λ,Λ2,L
(M − y)

g̃h,λ,ΛL
(M − x)

dy ,

= C0 sup
x≥λ−h1

∫ ∞

x
(y − xλ)

e
−(y−(λ−h1))2

2

e
−(x−(λ−h1))2

2

g̃h,λ,Λ2,L
(M − y)

g̃h,λ,ΛL
(M − x)

dy .

Performing the change of variables

y′ = y − (λ− h1)

x′ = x− (λ− h1)

We obtain that the previous expression is equal to

C0 sup
x≥0

∫ ∞

x
y
e
−y2

2

e
−x2

2

g̃h,λ,Λ2,L
(M − y − λ + h1)

g̃h,λ,ΛL
(M − x− λ + h1)

dy. (2.4)

We need therefore to estimate

exp{x2/2− y2/2}
g̃h,λ,Λ2,L

(M − y − λ + h1)
g̃h,λ,Λ2,L

(M − x− λ + h1)
. (2.5)
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In view of the proof for grand canonical measure, which can be found in
[11], to complete the proof, it remains to show that the ratio on the right
hand side is uniformly bounded. To this end, we replace the parameter λ by
an appropriate parameter µ making small the argument of the denominator.
A computation shows that

g̃h,λ,Λ2,L
(a) = exp{(λ− µ)a}

L∏
j=2

Z(µ− hj)
Z(λ− hj)

g̃h,µ,Λ2,L
(a).

In fact, for b ∈ R

g̃h,λ,Λ2,L
(b) =

∫
∑L

j=2 xj=b

L∏
j=2

fλ,h,j(xj)
L−1∏
j=2

dxj

=
∫

∑L
j=2 xj=b

e
∑L

j=2([λ−hj ]xj−V (xj)−log Z(λ−hj))
L−1∏
j=2

dxj

=
∫

∑L
j=2 xj=b

e
∑L

j=2(λ−µ)xj

L∏
j=2

Z(µ− hj)
Z(λ + hj)

L∏
j=2

fµ,h,j(xj)dx2...dxL−1

= e(λ−µ)b
L∏

j=2

Z(µ− hj)
Z(λ− hj)

g̃h,µ,Λ2,L
(b).

Thus, the ratio appearing in (2.4) is equal to

g̃h,λ,Λ2,L
(M − y − λ + h1)

g̃h,λ,Λ2,L
(M − x− λ + h1)

= e(λ−µ)(x−y)
g̃h,µ,Λ2,L

(M − y − λ + h1)
g̃h,µ,Λ2,L

(M − x− λ + h1)

= e(λ−µ)(x−y)
gh,µ,Λ2,L

(M −
∑L

j=2 γ1(µ− hj)− y − λ + h1)

gh,µ,Λ2,L
(M −

∑L
j=2 γ1(µ− hj)− x− λ + h1)

18



= e(λ−µ)(x−y)

fh,µ,Λ2,L

(
M−

∑L
j=2 γ1(µ−hj)−y−λ+h1

σ2(h,µ,Λ2,L)
1
2

)
fh,µ,Λ2,L

(
M−

∑L
j=2 γ1(µ−hj)−x−λ+h1

σ2(h,µ,Λ2,L)
1
2

) .

Choose µ so that

L∑
j=2

γ1(λ− hj)−
L∑

j=2

γ1(µ− hj) = x

Then,

M−
L∑

j=2

γ1(µ−hj)−x−λ+h1 = γ1(λ−h1)+
L∑

j=2

(γ1(λ−hj)−γ1(µ−hj))−x−λ+h1

= Γ1(λ− h1).

Notice that µ ≤ λ because x ≥ 0 and γ1(·) is an increasing function. With
this choice, the ratio on the right hand side of (2.5) becomes

exp{(λ− µ)(x− y)}
gh,µ,Λ2,L

(Γ1(λ− h1) + x− y)
gh,µ,Λ2,L

(Γ1(λ− h1))
(2.6)

= exp{(λ− µ)(x− y)}
fh,µ,Λ2,L

(
σ2(h, µ,Λ2,L)−1/2

{
Γ1(λ− h1) + x− y

})
fh,µ,Λ2,L

(
σ2(h, µ,Λ2,L)−1/2Γ1(λ− h1)

)

The exponential is bounded by 1 because µ ≤ λ and x ≤ y. To conclude the
proof of the lemma it is therefore enough to show that the previous ratio is
uniformly bounded.
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We first consider the case in which L is large. We first consider the
denominator.

fh,µ,Λ2,L

(
σ2(h, µ,Λ2,L)−1/2Γ1(λ− h1)

)
.

By lemma 3.1.1.

σ2(h, µ, Λ2,L) ≥ C
√

L− 1.

By the proof of lemma 3.1.1.

‖γ1(λ− h1)− λ + h1‖ = ‖Eλ[X1]− λ + h1‖ ≤ C0.

uniformly in λ.

In particular, by the Local Central Limit Theorem, there exist L0 =
L(‖F‖∞), C0, such that

fh,µ,Λ2,L

(
σ2(h, µ,Λ2,L)−1/2Γ1(λ− h1)

)
≥ C.

for L ≥ L0.

We now turn to the numerator of 2.6. By Local Central Limit Theorem

fh,µ,Λ2,L

(
σ2(h, µ,Λ2,L)−1/2

{
Γ1(λ− h1) + x− y

})
≤ C0.
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In view of these estimate (2.4) is bounded by

C̃0

∫
ye

x2−y2

2 dy ≤ C0

this proves the lemma for L large.

We now turn to the case in which L is small.

For 2 ≤ L ≤ L0, denote by f̃h,λ,Λ the density of the random variable

1√
|Λ|

∑
j∈Λ

{
Xj − [λ− hj ]

}
.

The ratio of the previous formula can be written as

f̃h,µ,Λ2,L

(
|Λ2,L|−1/2

{∑L
j=2 Γ1(µ− hj) + Γ1(λ− h1) + x− y

})
f̃h,µ,Λ2,L

(
|Λ2,L|−1/2

{∑L
j=2 Γ1(µ− hj) + Γ1(λ− h1)

}) ·

Since ‖Γ1‖∞ < ∞, by Lemma 3.1.7, this ratio is bounded by exp{C0L0}.
This concludes the proof of the lemma.
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1.3 Decomposition of the variance

We will obtain now a recursive equation for W (L,h). Assume that we
already estimated W (K,h) for 2 ≤ K ≤ L− 1 . Let us write the identity

f − Eµh
ΛL,M

[f ] =
{

f − Eµh
ΛL,M

[f |ηL]
}

+
{

Eµh
ΛL,M

[f |ηL]− Eµh
ΛL,M

[f ]
}

.

Through this decomposition we way express the variance of f as

Eµh
ΛL,M

[(
f − Eµh

ΛL,M
[f ]

)2]
(3.1)

= Eµh
ΛL,M

[(
f − Eµh

ΛL,M
[f |ηL]

)2]
+ Eµh

ΛL,M

[(
Eµh

ΛL,M
[f |ηL]− Eµh

ΛL,M
[f ]

)2]
.

The first term on the right-hand side is easily analyzed through the induc-
tion assumption and a simple computation on the Dirichlet form. We write

Eµh
ΛL,M

[(
f − Eµh

ΛL,M
[f |ηL]

)2]
= Eµh

ΛL,M

[
Eµh

ΛL,M

[(
f − Eµh

ΛL,M
[f |ηL]

)2 ∣∣∣ ηL

] ]
= Eµh

ΛL,M

[
Eµh

ΛL−1,M−ηL

[(
fηL − Eµh

ΛL−1,M−ηL

[fηL ]
)2] ]

.

Here we used the fact that Eµh
ΛL,M

[.|ηL] = Eµh
ΛL−1,M−ηL

[.]. In this formula

and below fηL stands for the real function defined on RΛL−1 whose value at
(ξ1, ..., ξL−1) is given by fηL(ξ1, ..., ξL−1) = f(ξ1, ..., ξL−1, ηL). By the induc-
tion assumption this last expectation is bounded above by

W (L−1,h)Eµh
ΛL,M

[
DΛL−1

(
µh

ΛL−1,M−ηL
, fηL

)]
≤ W (L−1,h)DΛL

(
µh

ΛL,M , f
)

.
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Thus we proved that

Eµh
ΛL,M

[(
f − Eµh

ΛL,M
[f |ηL]

)2]
≤ W (L− 1,h)DΛL

(
µh

ΛL,M , f
)

. (3.2)

The second term in (5.4) is nothing more than the variance of Eµh
ΛL,M

[f |ηL],
a function of one variable. Lemma 1.2.1 provides an estimate for this ex-
pression:

Eµh
ΛL,M

[(
Eµh

ΛL,M
[f |ηL]−Eµh

ΛL,M
[f ]

)2]
≤ C0Eµh

ΛL,M

[( ∂

∂ηL
Eµh

ΛL,M
[f |ηL]

)2]
(3.3)

for some constant C0 depending only on ‖F‖∞.
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1.4 Bounds on Glauber Dynamics, small values of
L

We now estimate the right hand side (3.3), which is the Glauber Dirich-
let form of Eµh

ΛL,M
[f |ηL], in terms of the Kawasaki Dirichlet form of f . A

straightforward computation gives that:

∂

∂ηL
Eµh

ΛL,M
[f |ηL] =

1
L− 1

L−1∑
x=1

Eµh
ΛL,M

[ ∂f

∂ηL
− ∂f

∂ηx

∣∣∣ ηL

]
(4.1)

+ Eµh
ΛL,M

[
f ;

1
L− 1

L−1∑
x=1

V ′(ηx)
∣∣∣ ηL

]
.

In this formula E[f ; g|F ] = E[fg|F ]−E[f |F ]E[g|F ] stands for the con-
ditional covariance of f and g. Notice that the variables hx do not appear
because we have covariance terms. We examine these two terms separately
(4.1).

The first expression on the right hand side of (4.1) is easily estimated.
Recall the definition of the operator T x,yf . Since T x,yf =

∑
x≤y≤L−1 T y+1,yf ,

by Schwarz inequality , we have that

( 1
L− 1

L−1∑
x=1

Eµh
ΛL,M

[ ∂f

∂ηx

− ∂f

∂ηy

∣∣∣ηL

])2
=

( 1
L− 1

L−1∑
x=1

L−1∑
y=x

Eµh
ΛL,M

[ ∂f

∂ηy+1

− ∂f

∂ηy

∣∣∣ηL

])2

≤ 1
L− 1

L−1∑
x=1

(L− x)
L−1∑
y=x

Eµh
ΛL,M

[( ∂f

∂ηy+1

− ∂f

∂ηy

)2∣∣∣ηL

]

≤ 1
L− 1

L−1∑
y=1

Eµh
ΛL,M

[( ∂f

∂ηy+1

− ∂f

∂ηy

)2∣∣∣ηL

] L−1∑
x=y

(L− x)

≤ L
L−1∑
y=1

Eµh
ΛL,M

[( ∂f

∂ηy+1

− ∂f

∂ηy

)2∣∣∣ηL

]
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Hence, we have that

Eµh
ΛL,M

[( 1
L− 1

L−1∑
x=1

Eµh
ΛL,M

[ ∂f

∂ηx

− ∂f

∂ηy

∣∣∣ηL

])2]
≤ LDΛL

(µh
ΛL,M , f). (4.2)

The second term in (4.1) is also easy to handle for small values de L.
Since V (φ) = 1

2φ2 + F (φ) and since
∑

1≤x≤L−1 ηx is fixed for the measure
EΛL,M [.|ηL]. the square of the second term on the right hand side is equal
to

Eµh
ΛL,M

[
f ;

1
L− 1

L−1∑
x=1

F ′(ηx)
∣∣∣ηL

]2

=
(
EΛL−1,M−ηL

[
fηL ;

1
L− 1

L−1∑
x=1

F ′(ηx)
])2

≤ EΛL−1,M−ηL

[
fηL ; fηL

]
EΛL−1,M−ηL

[( 1
L− 1

L−1∑
x=1

F̃ (ηx)
)2]

.

In this formula, F̃ stands for F ′ − EνΛL−1
,M−ηL

[F ′].

By the induction assumption, the first variance is bounded above by
W (L−1,h) DΛL−1

(µh
ΛL−1,M−ηL

, fηL). For the second one, we divide the cube
ΛL−1 in two cubes of the same size and use the inequality (a+b)2 ≤ 2a2+2b2

to separate the variance in two variances on cubes of size L/2. We now ap-
ply (3.1.5) to estimate the variance with respect to canonical measures by
variances with respect to grand canonical measures. Since F ′ is bounded
and the grand canonical measure is product, these last variances are clearly
of order L−1. Taking expectations with respect to µh

ΛL,M , we finally obtain
that

Eµh
ΛL,M

[
Eµh

ΛL,M

[
f ;

1
L− 1

L−1∑
x=1

V ′(ηx)
∣∣∣ηL

]]2
≤ C1

L
W (L− 1)DΛL

(µh
ΛL,M , f).
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for some finite constant C1 depending on ‖F ′‖∞ only.

From this estimate and we get that the left hand side of, which is the
second term of, is bounded above by

C1

{
L +

W (L− 1,h)
L

}
DΛL

(µh
ΛL,M , f).

Putting together this estimate with (3.2), we obtain that

V arµh
ΛL,M

[f ] ≤
{(

1 +
C1

L

)
W (L− 1,h) + C1L

}
DΛL

(µh
ΛL,M , f)

or, taking a supremum over smooth functions f ,that

W (L,h) ≤
(
1 +

C1

L

)
W (L− 1,h) + C1L.

This inequality permits, together with the estimate W (2,h) ≤ C0 obtained
in section 1.1, to derive estimates of W (L,h) for small values of L. We
obtain by induction that W (L,h) ≤ C1L

t, uniformly over the environment,
for some power t which depends only on ‖F‖∞, ‖F ′‖∞.

Notice that we would obtain the right bound L2 if we could prove that the
constant C∗

1 , which appears in the previous inequality, is strictly less than
2. Therefore, to prove the spectral gap, we have to improve our bounds on
the covariance term to derive a factor of order εL−1 for ε < 2.

The bound W (L,h) ≤ C1L
t will be used for small values of L. We now

consider large values of L.
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1.5 Bounds on Glauber Dynamics, large values of
L

Here again we want to estimate the second term of (5.4). Applying
Lemma 1.2.1, we bound this expression by the right hand side of (3.3). The
first term of (4.1) is handled as before, giving (4.2). The second one requires
a deeper analysis. Its square is equal to :

Eµh
ΛL,M

[
f ;

1
L− 1

L−1∑
x=1

F ′(ηx)
∣∣∣ ηL

]2
= Eµh

ΛL−1,M−ηL

[
f ;

1
L− 1

L−1∑
x=1

F ′(ηx)
]2

.

(5.1)

Here and below we omit the subscript ηL of f .
Fix ε > 0 small, a random environment h in some set Ω0 and a positive
integer K = K(ε) ≥ 2. Both Ω0 and K will be specified later. For each
L ≥ K2, divide the interval {1, . . . , L − 1} into ` = b(L − 1)/Kc adjacent
intervals of length K or K + 1, where bac represents the integer part of a.
Keep in mind that K is large but fixed, while L (and thus `) increase to
+∞.

Denote by Ij the j-th interval and by Mj the total spin on Ij : Mj =∑
x∈Ij

ηx. The right hand side of the previous formula is bounded above by

2
(
Eµh

ΛL−1,M−ηL

[
f ;

∑̀
j=1

aj

{ 1
|Ij |

∑
x∈Ij

F ′(ηx)− Eµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]}])2

(5.2)

+ 2
(
Eµh

ΛL−1,M−ηL

[
f ;

∑̀
j=1

ajEµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]])2

,

where aj = |Ij |/(L−1). Taking conditional expectation with respect to Mj ,
we have

2
(
Eµh

ΛL−1,M−ηL

[
Eµh

ΛL−1,M−ηL

[
f ;

∑̀
j=1

aj

{ 1
|Ij |

∑
x∈Ij

F ′(ηx)
}
|Fj

]])2
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+ 2
(
Eµh

ΛL−1,M−ηL

[
f ;

∑̀
j=1

ajEµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]])2

where Fj = σ(Mj ; ηx ∈ Mj).We rewrite the first term as

2
( ∑̀

j=1

ajEµh
ΛL−1,M−ηL

[
Eµh

Ij ,Mj

[
f ;

1
|Ij |

∑
x∈Ij

F ′(ηx)
] ])2

≤ 2
∑̀
j=1

ajEµh
ΛL−1,M−ηL

[
Var(µh

Ij ,Mj
, f)Var(µh

Ij ,Mj
,

1
|Ij |

∑
x∈Ij

F ′(ηx))
]

. (5.3)

By the induction assumption, the variance Var(µh
Ij ,Mj

, f) is bounded
above by W (|Ij |, τjh)DIj (µ

h
Ij ,Mj

, f), where τjh stands for the translation of
the environment h for the origin to coincide with the left end of the interval
Ij . By the a-priori estimate obtained in Step 3, this expression is bounded
by C1K

tDIj (µ
h
Ij ,Mj

, f).

Now

Eµh
Ij ,Mj

[{ 1
|Ij |

∑
x∈Ij

F ′(ηx)− Eµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]}

; (5.4)

{ 1
|Bj |

∑
x∈Ij

F ′(ηx)− Eµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]}]

.

=
1

|Ij |2
∑

x,y∈Ij

Eµh
Ij ,Mj

[
F̃ ′(ηx); F̃ ′(ηy)

]
≤ 1
|Ij |

4
∥∥F ′∥∥2

∞ +
1

|Ij |2
∑
x 6=y

Eµh
Ij ,Mj

[F̃ ′(ηx); F̃ ′(ηy)] (5.5)

28



where F̃ ′(.) = F ′(.)− < F ′ >µh
Ij ,Mj

.

If |Ij | is large enough, by equivalence of ensembles

Eνh
Ij ,λ

[F ′(ηx)]− Eµh
Ij ,Mj

[F ′(ηx)] ≤
C ‖F ′‖∞
|Ij |

The second term in (5.5), is bounded by

Eνh
Ij ,λ

[(
F ′(ηx)−Eµh

Ij ,Mj

[
F ′(ηx)

])(
F ′(ηy)−Eµh

Ij ,Mj

[
F ′(ηy)

])]
+

C ‖F ′‖∞
|Ij |

.

(5.6)

Since the grand canonical measure is a product measure, (5.6) is bounded
by

(
Eνh

Ij ,λ

[
F ′(ηx)

]
−Eµh

Ij ,Mj

[
F ′(ηx)

])(
Eνh

Ij ,λ

[
F ′(ηy)

]
−Eµh

Ij ,Mj

[
F ′(ηy)

])
+

C ‖F ′‖∞
|Ij |

.

≤
C ‖F ′‖∞
|Ij |

C ‖F ′‖∞
|Ij |

+
C ‖F ′‖∞
|Ij |

The second term of (5.5) is bounded by

C ‖F ′‖2
∞

|Ij |
.

Then the variance of |Ij |−1
∑

x∈Ij
F ′(ηx) with respect to µh

Ij ,Mj
is bounded

above by C0|Ij |−1‖F ′‖2
∞ uniformly over Mj , h. (5.4) is thus less than or
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equal to

C1K
t

L

∑̀
j=1

Eµh
ΛL−1,M−ηL

[
DIj (µ

h
Ij ,Mj

, f)
]

.

Since the previous sum is bounded by the global Dirichlet form DΛL−1
(µh

ΛL−1,M−ηL
,

f), we proved that the first term of (5.2) is bounded above by

C1K
t

L
DΛL−1

(µh
ΛL−1,M−ηL

, f) . (5.7)

The next result provides an estimate for the second covariance in (5.2). For
λ in R, let σ̃2(λ) = E[σ2(λ− h1)].

Lemma 1.5.1 Let λ = λ(L,M − ηL,h) so that

Eνh
ΛL−1,λ

[ ∑
x∈ΛL−1

ηx

]
= M − ηL . (5.8)

There exist finite constants C0, C1 such that

(
Eµh

ΛL−1,M−ηL

[
f ;

∑̀
j=1

ajEµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]])2

≤
{ C1

KL
+

C0

L

1
`

∑̀
j=1

( 1
|Ij |

∑
x∈Ij

σ2(λ− hx)− σ̃2(λ)
)2}

Var(µh
ΛL−1,M−ηL

, f)

for all K ≥ 2, L ≥ K2.
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It is now easy to conclude the proof of the lemma. Fix 0 < ε < 1/2.
Choose K1 large enough for C1/K1 to be smaller that ε, where C1 is the
constant appearing in the previous lemma. Let K2 = K2(εC−1

0 , σ2) be the
positive integer given by (4.1.5) with σ2 in place of U , where C0 is the
constant appearing in the statement of the previous lemma. Fix K0 =
max{K1,K2}. For this fixed integer K0, consider the sequence of disjoint
intervals {IL

1 , . . . , IL
` } introduced above and an environment h in the set

Ω0(K0, σ
2(·), εC−1

0 ) defined in (4.1.5).
By (4.1.5), there exists `0 = `0(h, εC−1

0 ,K0, σ
2(·)) for which the right

hand side of the statement of the previous lemma is bounded above by

2ε

L
Eµh

ΛL−1,M−ηL

[f ; f ]

for all ` ≥ `0. This bound together with (5.7) gives that (5.2), and therefore
(5.1), is less than or equal to

C1K
t
0

L
DΛL−1

(µΛh
L−1,M−ηL

, f) +
2ε

L
Eµh

ΛL−1,M−ηL

[fηL ; fηL ] .

Since (5.1) is just the square of the second term of (4.1), taking expec-
tation with respect to µh

ΛL,M in (5.1) and recalling (4.2), we have that (3.3)
is bounded above by

C1

(
L +

Kt
0

L

)
DΛL

(µh
ΛL,M , f) +

C0ε

L
Eµh

ΛL,M
[f ; f ] .

Choose ε small enough for C0ε ≤ 1. Adding this term to (3.2), in view
of the decomposition (5.4), we deduce that
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Eµh
ΛL,M

[(
f − Eµh

ΛL,M
[f ]

)2]
≤

(
1− 1

L

)−1(
W (L− 1,h) + C1L

)
DΛL

(µh
ΛL,M , f)

for L large enough. Note that the integer L0 from which this inequality
holds depends on the environment h because `0 depends on h.

Taking supremum over smooth functions f : RΛL → R in L2(µh
ΛL,M ), we

obtain that

W (L,h) ≤
(
1− 1

L

)−1(
W (L− 1,h) + C1L

)
.

It is not difficult to deduce from this recursive relation the existence of
a constant C = C(‖F‖∞, ‖F ′‖∞,h) such that W (L,h) ≤ CL2 for all L ≥ 2.
This concludes the proof of Theorem 1.1.1.

We conclude this section with the

Proof of Lemma 1.5.1. For each finite subset Λ of Z, denote by RΛ : R →
R the smooth strictly increasing function

RΛ(λ) = Eνh
Λ,λ

[ 1
|Λ|

∑
x∈Λ

ηx

]

and denote by ΦΛ the inverse of RΛ. For 1 ≤ j ≤ `, let Aj : R → R be given
by

Aj(m) = Eνh
Ij ,ΦIj

(m)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]

, (5.9)
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where λ is given by (5.8), let

m∗
j = Eνh

ΛL−1,λ

[ 1
|Ij |

∑
x∈Ij

ηx

]

and rewrite the sum

∑̀
j=1

ajEµh
Ij ,Mj

[
|Ij |−1

∑
x∈Ij

F ′(ηx)
]

(5.10)

as

∑̀
j=1

aj

{
Eµh

Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eνh

Ij ,ΦIj
(Mj/|Ij |)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]}

(5.11)

+
∑̀
j=1

aj

{
Eνh

Ij ,ΦIj
(Mj/|Ij |)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
−Aj(m∗

j )−A′
j(m

∗
j )(Mj/|Ij | −m∗

j )
}

+
∑̀
j=1

aj

{
Aj(m∗

j ) + A′
j(m

∗
j )(Mj/|Ij | −m∗

j )
}

.

This decomposition is easy to understand. In the first term we compare
an expectation with respect to a canonical measure with an expectation
with respect to a grand canonical measure. In view of Corollary 3.1.4 for
the difference to be small, the chemical potential should be ΦIj (Mj/|Ij |).
The second term is a Taylor expansion up to the first order and the last one
is what remains.

Notice that Aj(m∗
j ) is a function of L, M −ηL and h only. It is therefore

a constant with respect to the measure µh
ΛL−1,M−ηL

. The same statement is
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true for
∑`

j=1 aj(Mj/|Ij |−m∗
j ). Since we may add constants in covariances,

by the previous observation, we may substitute (5.10) by (5.11) where the
third term in (5.11) is replaced by

∑̀
j=1

aj(A′
j(m

∗
j )− c)(Mj/|Ij | −m∗

j ) ,

where c = σ̃2(λ)−1 − 1.

Up to this point, we have replaced the average of Eµh
Ij ,Mj

[|Ij |−1
∑

x∈Ij
F ′(ηx)]

by the sum of three terms. We estimate separately the covariance of f with
each term.

Set first

G0
j = Eµh

Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eνh

Ij ,ΦIj
(Mj/|Ij |)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]

.

Since F ′ is bounded, by the equivalence of ensembles, Corollary 3.1.4,
|G0

j | ≤ C1/K. Hence, by Lemma 1.5.3, the contribution of the first term in
(5.11) to the covariance appearing in the statement of the lemma is bounded
by

C1

KL
Eµh

ΛL−1,M−ηL

[f ; f ] . (5.12)

Consider now the second term in (5.11):
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S0
j = Eνh

Ij ,ΦIj
(Mj/|Ij |)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
−Aj(m∗

j )−A′
j(m

∗
j )(Mj/|Ij | −m∗

j )

= Aj(Mj/|Ij |) − Aj(m∗
j ) − A′

j(m
∗
j )(Mj/|Ij | −m∗

j ) ,

We need estimate:

Eµh
ΛL−1,M−ηL

[ l∑
j=1

ajS
0
j ; f

]
.

Since we are allowed to add constants in covariances, by Schwarz inequality,
the square of the covariance is bounded above by

Eµh
ΛL−1,M−ηL

[f ; f ] Eµh
ΛL−1,M−ηL

[( ∑̀
j=1

ajSj

)2]
, (5.13)

The second expectation in (5.13) is equal to

∑̀
j=1

a2
jEµh

ΛL−1,M−ηL

[S2
j ] +

∑
j 6=k

ajakEµh
ΛL−1,M−ηL

[SjSk] . (5.14)

where

Sj = S0
j − Eνh

ΛL−1,λ
[S0

j ]

and λ is given by (5.8).
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We estimate separately the diagonal and the off diagonal terms. The
sum of the diagonal term is less than or equal to

Eµh
ΛL−1,λ

[S2
j ] +

CK

L

√
Eµh

ΛL−1,λ
[S4

j ]

for some constant C0 which depends only on ‖F‖∞.

We have

Eµh
ΛL−1,λ

[S2
j ] ≤ Eµh

ΛL−1,λ
[(S0

j )2].

By Lemma 4.1.1, ‖A′′
j ‖∞ ≤ C0. In particular, S0

j is absolutely bounded by
C0(Mj/|Ij | −m∗

j )
2 and in this case

∑̀
j=1

a2
jEνh

ΛL−1,λ
[(S0

j )2] ≤ C0

∑̀
j=1

a2
jEνh

ΛL−1,λ
[(Mj/|Ij | −m∗

j )
4] .

≤ C

K2
.

In the same way

Eµh
ΛL−1,λ

[S4
j ] ≤ C

(
Eµh

ΛL−1,λ
[S4

j ] + Eµh
ΛL−1,λ

[S4
j ]

)
≤ CEµh

ΛL−1,λ
[S4

j ]

≤ C

K4
.
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In particular , first term in (5.8) is bounded by

l∑
j=1

K2

L2

{ C

K2
+

CK

L

1
K2

}
≤ C

KL

by definition of l.

Second term in (5.12) is bounded by

Eµh
ΛL−1,M−ηL

[SjSk]

≤ Eµh
ΛL−1,λ

[SjSk] +
CK

L

√
Eµh

ΛL−1,λ
[S2

j S2
k ].

Since the grand canonical measure µh
ΛL−1,λ is a product measure and since

each term has mean zero with respect to µh
ΛL−1,λ the first term vanishes.

Second term

CK

L

√
Eµh

ΛL−1,λ
[S2

j S2
k ] ≤ C

LK

because, we showed that

Eµh
ΛL−1,λ

[S2
j ] ≤ C

K2
.
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Then the second term in (5.8) is bounded by CK
L .

By Lemma 3.1.1, each expectation is bounded by C0K
−2 so that the con-

tribution to the covariance of the second term in (5.11) is bounded again by
(5.12).

We turn now to the third term in (5.11) without Aj(m∗
j ) and with A′

j(m
∗
j )

replaced by A′
j(m

∗
j )− c, as explained above. We need to estimate

(
Eµh

ΛL−1,M−ηL

[
f ;

∑̀
j=1

aj

{
Aj(m∗

j ) + A′
j(m

∗
j )(Mj/|Ij | −m∗

j )
}])2

=
(
Eµh

ΛL−1,M−ηL

[f ;
{ l∑

j=1

aj [A′
j(m

∗
j )− c]

(Mj

|Ij |
−m∗

j

)}
]

Remark 1.5.2 i)By Lemma 4.1.1,

A′
j(m

∗
j ) =

1
|Ij |−1

∑
x∈Ij

σ2(ΦIj (m
∗
j )− hx)

− 1

=
1

|Ij |−1
∑

x∈Ij
σ2(λ− hx)

− 1

because m∗
j = RIj (λ) and ΦIj = R−1

Ij
.

ii)

Eµh
ΛL−1,λ

[
l∑

j=1

aj(c− 1)
[ Mj

|Bj |
−m∗

j

]
; f ]

= (c− 1)Eµh
ΛL−1,λ

[ 1
K

l∑
j=1

Mj ; f
]

= 0
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because
∑L

j=1 Mj = M is a constant.

Since we are allowed to add constants in covariances, by Schwarz in-
equality, the square of the covariance is bounded above by

Eµh
ΛL−1,M−ηL

[f ; f ] Varµh
ΛL−1,M−ηL

[{ l∑
j=1

aj [A′
j(m

∗
j )− c]

(Mj

|Ij |
−m∗

j

)}]
,

(5.15)

the variance in (5.16) is equal to

∑̀
j=1

a2
jVarµh

ΛL−1,M−ηL

[
[A′

j(m
∗
j )− c]

(Mj

|Ij |
−m∗

j

)]
+

∑
j 6=k

ajakCovµh
ΛL−1,M−ηL

[
[A′

j(m
∗
j )−c]

(Mj

|Ij |
−m∗

j

)
; [A′

k(m
∗
k)−c]

(Mk

|Ik|
−m∗

k

)]
.

We estimate separately the diagonal and the off diagonal terms. The sum
of the diagonal term is equal to

∑̀
j=1

a2
j (A

′
j(m

∗
j )− c)2Eνh

ΛL−1,M−ηL

[(Mj

|Ij |
−m∗

j

)2]
.

By the equivalence of ensembles, the sum of the diagonal term is less than
or equal to

l∑
j=1

a2
j (A

′
j(m

∗
j )− c)2Eµh

ΛL−1,λ

[(Mj

|Ij |
−m∗

j

)2]
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+C

l∑
j=1

a2
j (A

′
j(m

∗
j )− c)2

|Ij |
L

√
Eµh

ΛL−1,λ

[(Mj

|Ij |
−m∗

j

)4]

By Lemma 3.1.1, this expression is less than or equal to

C0

L

1
l

∑̀
j=1

(A′
j(m

∗
j )− c)2

+
C0K

L2

1
l

∑̀
j=1

(A′
j(m

∗
j )− c)2 .

Since c = E[σ2(λ− h1)]−1 − 1, and since σ2(·) is bounded above and below
by finite, strictly positive constants, the previous expression is bounded by

C0

L

1
`

∑̀
j=1

( 1
|Ij |

∑
x∈Ij

σ2(λ− hx)− σ̃2(λ)
)2

+
C0K

L2

1
`

∑̀
j=1

( 1
|Ij |

∑
x∈Ij

σ2(λ− hx)− σ̃2(λ)
)2

.

≤ C0K

L2

l∑
j=1

{
1 +

K

L

}
≤ CK

L

On the other hand, by the equivalence of ensembles, Corollary 3.1.4, each
off diagonal term is bounded by

∑
j 6=k

ajak(A′
j(m

∗
j )− c)(A′

k(m
∗
k)− c)EL−1,λ[(

Mj

|Ij |
−m∗

j )(
Mk

|Ik|
−m∗

k)]

+
∑
j 6=k

ajak(A′
j(m

∗
j )−c)(A′

k(m
∗
k)−c)C

K

L

√
Eµh

ΛL−1,M−ηL

[(
Mj

|Ij |
−m∗

j )2(
Mk

|Ik|
−m∗

k)
2]
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for some finite constant C0 depending only on ‖F‖∞. Since the grand canon-
ical measure νh

ΛL−1,λ is product and since each term has mean zero with
respect to νh

ΛL−1,λ, the first term vanishes. Since the measure is product,
the contribution of the off diagonal terms is bounded by

CK2

L2

∑
j 6=k

K

L

1
K

≤ CK

L
.

This concludes the proof of the lemma.

We now turn to a simple technical lemma needed in the proof of Lemma
1.5.1 above.

Lemma 1.5.3 Fix λ given by (5.8). For 1 ≤ j ≤ `, let G0
j be a family of

functions in L2(νh
ΛL−1,λ). Assume that each function G0

j depends only on
the variables {ηx , x ∈ Ij}. There exists a finite constant C0, depending only
on ‖F‖∞, such that

(
Eµh

ΛL−1,M−ηL

[
f ;

∑̀
j=1

ajG
0
j

])2
≤ C0Eµh

ΛL−1,M−ηL

[f ; f ]
∑̀
j=1

a2
j Eνh

ΛL−1,λ
[(G0

j )
2]

for all L, M − ηL and h.

Proof: Since we are allowed to add constants in covariances, by Schwarz
inequality, the square of the covariance is bounded above by

Eµh
ΛL−1,M−ηL

[f ; f ] Eµh
ΛL−1,M−ηL

[( ∑̀
j=1

ajGj

)2]
, (5.16)

41



where

Gj = G0
j − Eνh

ΛL−1,λ
[G0

j ]

and λ is given by (5.8). The second expectation in (5.16) is equal to

∑̀
j=1

a2
jEµh

ΛL−1,M−ηL

[G2
j ] +

∑
j 6=k

ajakEµh
ΛL−1,M−ηL

[GjGk] . (5.17)

We estimate separately the diagonal and the off diagonal terms. Since
2K ≤ L, by Corollary 3.1.6 and since the variance is bounded by the L2

norm, the sum of the diagonal term is less than or equal to

C0

∑̀
j=1

a2
jEνh

ΛL−1,λ
[G2

j ] ≤ C0

∑̀
j=1

a2
jEνh

ΛL−1,λ
[(G0

j )
2]

for some constant C0 which depends only on ‖F‖∞.

On the other hand, by the equivalence of ensembles, Corollary 3.1.4,
each off diagonal term is bounded by

Eνh
ΛL−1,λ

[GjGk] +
C0K

L

{
Eνh

ΛL−1,λ
[G2

jG
2
k]

}1/2

for some finite constant C0 depending only on ‖F‖∞. Since the grand canon-
ical measure νh

ΛL−1,λ is product and since each Gi has mean zero with respect

42



to νh
ΛL−1,λ, the first term vanishes. Since the measure is product, the con-

tribution of the off diagonal terms is bounded by

C0K

L

∑
j 6=k

ajak

{
Eνh

ΛL−1,λ
[G2

j ]Eνh
ΛL−1,λ

[G2
k]

}1/2

≤ C0K

L

( ∑̀
j=1

aj

{
Eνh

ΛL−1,λ
[(G0

j )
2]

}1/2)2

because the variance is bounded by the L2 norm. To conclude the proof, it
remains to apply Schwarz inequality and to recall that ` ≤ 2L/K.
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Chapter 2

Logarithmic Sobolev
Inequality

We prove in this section Theorem 1.1.2. The approach is similar to the
one presented in last section for the spectral gap. We will derive a recursive
formula for θ(L,h) in terms of θ(L−1,h) and L in four steps. As before, for
j = 0, 1, 2, all constants Cj are allowed to depend on ‖F (i)‖∞ for 0 ≤ i ≤ j
and may change from line to line. Here F (i) stands for the i-th derivative of
F .

2.1 One-site logarithmic Sobolev inequality

We start our proof with the case L = 2. Let f : RΛ2 → R be a smooth
function such that < f2 >µh

Λ2,M
= 1. Let g(η1) = f(η1,M − η1). Since the

total spin is fixed to be M , we have that < g2 >µh
Λ2,M

=< f2 >µh
Λ2,M

= 1 and

that SΛ2(µ
h
Λ2,M , g) = SΛ2(µ

h
Λ2,M , f). The next lemma permits to estimate

the entropy of SΛ2(µ
h
Λ2,M , g) in terms of the Glauber Dirichlet form of g.

This result is in fact a logarithmic Sobolev inequality for the Glauber dy-
namics obtained when restricting the Kawasaki exchange dynamics to one
site. Recall that µh,1

ΛL,M represents the one-site marginal of µh
ΛL,M .

44



Lemma 2.1.1 There exists a finite constant C0 depending only on ‖F‖∞
such that

∫
H(η1)2 log H(η1)2 µh,1

ΛL,M (dη1) ≤ C0Eµh,1
ΛL,M

[(∂H

∂η1

)2]
(1.1)

for every L ≥ 2, M in R, environment h and smooth function H : R → R
in L2(µh,1

ΛL,M ) such that < H2 >
µh,1

ΛL,M
= 1.

In the case of grand canonical measures, this result is true under the
more general hypothesis of strict convexity at infinity of the potencial( cf
(14) and references therein). In case of canonical measures the main prob-
lem is to obtain a good aproximation of the one-site marginal in terms of
the one-site marginal of grand canonical measures.

We conclude the first step before proving the lemma. From the previous
statement applied to L = 2 and H = g we have that

SΛ2(µ
h
Λ2,M , f) = SΛ2(µ

h
Λ2,M , g) ≤ C0Eµh,1

Λ2,M

[( ∂g

∂η1

)2]

= C0Eµh
Λ2,M

[( ∂g

∂η1

)2]
= C0Eµh

Λ2,M

[( ∂f

∂η2
− ∂f

∂η1

)2]

because ∂g/∂η1 = ∂f/∂η1 − ∂f/∂η2. This proves that θ(2,h) ≤ C0 uni-
formly in h, proving theorem 1.2 in the case L = 2. We conclude this step
with the

Proof of Lemma 2.1.1

We first prove of lemma in the case of grand canonical measures. Recall
that we denote by µh,1

ΛL,M the one-site marginal of the measure µh
ΛL,M . We

want to show that there exists a constant C0, independent of λ, such that
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∫
H(a)2 log H(a)2µh,1

ΛL,M (da) ≤ C0

∫
[H ′(a)]2µh,1

ΛL,M (da) (1.2)

for all smooth functions H : R → R such that < H2 >
µh,1

ΛL,M
= 1. Since the

potencial V is a bounded pertubation of the Gaussian potencial, by Corol-
lary 6.2.45 in [DS], the previous inequality holds with a constant C0 that
might depend on h. All the matter here is to show that we may find a finite
constant independent of h. A change of variables permits to rewrite the left
hand side of (1.2) as

∫
Hλ(a)2 log Hλ(a)2e−Fλ(a) 1√

2
e−

a2

2 da

where Hλ(a) = H(a + λ), Fλ(a) = F (a + λ) + log Z(λ) and Z(λ) is a nor-
malizing constant. It is easy check that

∥∥±eFλ
∥∥
∞ ≤ e2‖F‖∞ . In particular,

by Corollary 6.2.45 in [DS], the previous expression is bounded above by

2e4‖F‖∞
∫

Hλ(a)2e−Fλ(a) 1√
2
e−

a2

2 da = 2e4‖F‖∞
∫

[H ′(a)]2µ1
λ(da)

This prove the lemma in the case of grand canonical measures with C0 =
2e4‖F‖∞ .

For canonical measures, we just need to use the local central limit theo-
rem for large values of L and explicit computations for small values of L. We
start with the case of large values of L. Fix a smooth function H : R → R
with < H2 >

µh,1
ΛL,M

= 1 and recall the notation introduced in the proof of

Lemma 1.2.1.
We base our proof on two facts. First, that if a function W is strictly

convex then the measure µW (dx) = Z−1 exp{−W (x)}dx associated to the
potential W satisfies a logarithmic Sobolev inequality. Secondly, if µ(dx)
satisfies a logarithmic Sobolev inequality, and f is a density with respect
to µ, which is bounded below and above (0 < C1 ≤ f ≤ C−1

1 ), then fdµ
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satisfies a logarithmic Sobolev inequality. The proof of these two well known
sentences can be found, for instance, in [14].

In view of these statements, we just need to show that the above density
is equivalent to the density of a measure associated to a convex potential.
Here and below two functions g, f are said to be equivalent, f ∼ g, if there
exists a finite, strictly positive constant C0 depending only on V (and not
on h, M , λ or L) such that C0g ≤ f ≤ C−1

0 g. We shall rely on the local
central limit theorem to show the equivalence of the above density with some
density associated to a convex potential.

For λ in R, denote by Ph,λ the probability measure on the product space
RN that makes the coordinates {Xk, k ≥ 1} independent random variables
with Xk having density Z(λ−hk)−1 exp{[λ−hk]x−V (x)}. Denote by Eh,λ

expectation with respect to Ph,λ.
Denote by γ1(λ), σ2(λ), {γk(λ), k ≥ 3} the expectation, the variance and

the k-th truncated moment of a random variable with density Z(λ)−1 exp{λx−
V (x)}:

γ1(λ) =
1

Z(λ)

∫
R

x eλx−V (x) dx ,

σ2(λ) =
1

Z(λ)

∫
R
[x− γ1(λ)]2 eλx−V (x) dx ,

γk(λ) =
1

Z(λ)

∫
R
[x− γ1(λ)]k eλx−V (x) dx . (1.3)

For a finite subset Λ of N, denote by fh,λ,Λ, gh,λ,Λ the density of the random
variable

1
σ2(h, λ,Λ)1/2

∑
j∈Λ

[Xj − γ1(λ− hj)] ,
∑
j∈Λ

[Xj − γ1(λ− hj)] ,

respectively. In this formula,
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σ2(h, λ,Λ) =
∑
j∈Λ

σ2(λ− hj) .

Take A2 = H2 log H2. The left hand side of (1.1) can be written as

E
µh,1

ΛL,M
[A(η1)2] =

1
Z(λ− h1)

∫
A(x1)21∑L

j=1 xj=Me
∑L

j=1 V
hj
λ (xj)dx1...dxL−1∫

1∑L
j=1 xj=Me

∑L
j=1 V

hj
λ (xj)dx1...dxL−1

=
1
Z

∫
dx1A(x1)2e(λ−h1)x−V (x1)

∫
x2+...+xL=M−x1

fλ,h,2(x2)...fλ,h,L(xL)dx2...dxL−1∫
x1+...+xL=M fλ,h,1(x1)...fλ,h,L(xL)dx1...dxL−1

In view of Remark 1.2.3, the previous expression can be writte

=
1

Z(λ− h1)

∫
dx1A(x1)2e(λ−h1)x1−V (x1)

f∑L
j=2 Xj

(M − x1)

f∑L
j=1 Xj

(M)
.

=
1

Z(λ− h1)

∫
dx1A(x1)2e(λ−h1)x1−V (x1)

f∑L
j=2(Xj−γ1(λ−hj))

(γ1(λ− h1)− x1)

f∑L
j=1(Xj−γ1(λ−hj))

(0)
.

=
1

Z(λ− h1)

∫
H(a)2 log H(a)2 e[λ−h1]a−V (a)

gh,λ,Λ2,L
(γ1(λ− h1)− a)
gh,λ,ΛL

(0)
da ,

(1.4)

where λ is chosen according to (1.2.3).

For L large enough gh,λ,ΛL
(0) is of order L−1/2. In fact
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gh,λ,ΛL
(0) =

1
σ(h, λ,ΛL)

fh,λ,ΛL
(0) ≥ C0L

−1
2

by Lemma 1.3.1.

We may therefore replace the denominator in the previous integral by C0L
−1/2.

Choose µ according to

M =
L∑

j=1

γ1(λ− hj) =
L∑

j=2

γ1(µ− hj) + a . (1.5)

The numerator in (1.4) is equal to

∫
1∑L

j=2 xj=M−a

L∏
j=2

1
Z(λ− hj)

e(λ−hj)xj−Vj(xj)dx1...dxL−1

=
∫

1∑L
j=2 xj=M−a

L∏
j=2

Z(µ− hj)
Z(λ− hj)

e(λ−µ)xje(µ−hj)xj−Vj(xj)Z(µ− hj)dx2...dxL

=
L∏

j=2

Z(µ− hj)
Z(λ− hj)

e(λ−µ)(M−a)g̃h,λ,ΛL
(M − a)

=
L−1∏
j=1

Z(µ− hj)
Z(λ− hj)

e(λ−µ)(M−a)gh,λ,ΛL
(M − a−

L−1∑
j=1

γ1(µ− hx))

=
L∏

j=2

Z(µ− hj)
Z(λ− hj)

e(λ−µ)(M−a)gh,µ,Λ2,L
(0) .
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By Theorem 3.1.2, gh,µ,Λ2,L
(0) is of order L−1/2 for L large enough. We need

therefore to show that

exp
{

(λ−h1)a−V (a)+(λ−µ)(M−a)+
L∑

j=2

log Z(µ−hj)−
L∑

j=1

log Z(λ−hj)
}

is equivalent to a density associated to a strictly convex potential. The ex-
pression exp{(λ−h1)a−V (a)− log Z(λ−h1)} is equivalent to a exp{−(a−
λ + h1)2/2} because

fh,λ,1(a) =
1

Z(λ− h1)
e(λ−h1)a−a2

2
−F (a)

=
e

(λ−h1)2

2

Z(λ− h1)
e
−(a−(λ−h1))2

2
−F (a)

= C0e
−(a−λ−λL)2

2

by Lemma 3.1.1.

By the estimates above, we may replace exp{(λ−h1)a−V (a)−log Z(λ−h1)}
by exp{−(a− λ + h1)2/2}. Recall identity (1.5) and define Θ by

Θ(a) =
1
2
(a− λ + h1)2 − (λ− µ)(M − a) −

L∑
j=2

log
Z(µ− hj)
Z(λ− hj)

=
1
2
(a− λ + h1)2 − (λ− µ)

L∑
j=2

γ1(µ− hj) −
L∑

j=2

log
Z(µ− hj)
Z(λ− hj)
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=
1
2
(a−λ+h1)2−(λ−µ)

L−1∑
j=1

γ1(µ−hj)−
L−1∑
j=1

[
log Z(µ− hj)−log Z(λ− hj)

]
.

It remains to shows that Θ is strictly convex. Since, Z ′(λ)/Z(λ) = γ1(λ).
We have,

(∂Θ)(a) = a−λ+h1+∂aµ

L−1∑
j=1

γ1(µ−hj)−(λ−µ)
L−1∑
j=1

γ′1(µ−hj)∂aµ−∂aµ

L−1∑
j=1

γ1(µ−hj).

= a− λ + h1 + λ− µ = a− µ + h1.

because

∂aµ
L∑

j=2

γ′1(µ− hj) = −1

and

∂a

L−1∑
j=1

log Z(µ− hj) =
L−1∑
j=1

1
Z(µ− hj

Z ′(µ− hj)∂aµ

= ∂aµ

L−1∑
j=1

γ1(µ− h1).

in view of (1.5). In particular, since γ′1(λ) = σ2(λ),

(∂2
aΘ)(a) = 1− ∂aµ
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= 1 +
1∑L−1

j=1 γ′1(µ− hj)

= 1 +
1∑L

j=2 σ2(µ− hj)
·

Therefore, Θ is strictly convex for L large enough. This proves the lemma
in the canonical case for large values of L.

We now turn to the case of small values of L. Recall the notation intro-
duced just before Lemma 3.1.7. Choose λ so that M =

∑
1≤j≤L(λ − hj).

The Radon-Nikodym derivative of µh,1
ΛL,M with respect to the Lebesgue mea-

sure can be written as

1
Z(λ− h1)

e[λ−h1]a−V (a)
g̃h,λ,Λ2,L

(M − a)
g̃h,λ,Λ2,L

(M)

=
√

L√
L− 1

1
Z(λ− h1)

e[λ−h1]a−V (a)
f̃h,λ,Λ2,L

(
λ−h1−a√

L−1

)
f̃h,λ,ΛL

(0)
.

By Lemma 3.1.7, the denominator is bounded above by CL
1 for some fi-

nite constants C1, while the numerator is bounded by CL
1 exp{−(λ − h1 −

a)2/2(L− 1)}. Similar lower bounds can be obtained. Therefore, the mea-
sure µh,1

ΛL,M is equivalent to the density associated to the strictly convex
potential (1/2)(L/L − 1)(a − λ + h1)2. This proves the lemma for small
values of L.

We now obtain a recursive formula for θ(L,h) in terms of θ(L−1,h), L.
Assume that θ(K,h) < ∞ for 2 ≤ K ≤ L− 1.
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2.2 Decomposition of the Entropy

Use an elementary property of the conditional expectation to decompose
the entropy as

SΛL
(µh

ΛL,M , f) =
∫

f2 log
f2

Eµh
ΛL,M

[f2|ηL]
dµh

ΛL,M (2.1)

+
∫

Eµh
ΛL,M

[f2|ηL] log Eµh
ΛL,M

[f2|ηL]µh,L
ΛL,M (dηL) .

Here µh,L
ΛL,M stands for the one-site marginal of µh

ΛL,M at ηL.

The first term on the right hand side of (2.1) is estimated through the
induction assumption. Indeed, taking conditional expectation with respect
to ηL, we may rewrite this integral as

∫
Eµh

ΛL−1,M−ηL

[ f2

Eµh
ΛL,M

[f2|ηL]
log

f2

Eµh
ΛL,M

[f2|ηL]

]
Eµh

ΛL,M
[f2|ηL]µh,L

ΛL,M (dηL) .

Since the integral of f2/Eµh
ΛL,M

[f2|ηL] with respect to µh
ΛL−1,M−ηL

is equal
to 1, the previous expression is bounded above by

θ(L−1,h)
∫

DΛL−1

(
µh

ΛL−1,M−ηL
, f/Eµh

ΛL,M
[f2|ηL]1/2

)
Eµh

ΛL,M
[f2|ηL] dµh,L

ΛL,M (ηL) .

A direct computation shows that this expression is less than or equal to

θ(L− 1,h)DΛL
(µh

ΛL,M , f) . (2.2)
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The second term in (2.1) is estimated through Lemma 2.1.1. Let H(ηL) =
Eµh

ΛL,M
[f2|ηL]1/2. By Lemma 2.1.1, the second term on the right hand side

of (2.1) is bounded above by

C0Eµh,L
ΛL,M

[(∂EΛL,M [f2|ηL]1/2

∂ηL

)2]
.

A computation, similar to the one performed in (4.1), shows that (∂H/∂ηL)2

is equal to

1
4Eµh

ΛL,M
[f2|ηL]

{ 1
L− 1

L−1∑
x=1

Eµh
ΛL,M

[∂f2

∂ηL
− ∂f2

∂ηx

∣∣∣ ηL

]
(2.3)

+ Eµh
ΛL,M

[
f2;

1
L− 1

L−1∑
x=1

V ′(ηx)
∣∣∣ ηL

]}2
.

Following the computation presented just after (4.1), we obtain by Schwarz
inequality, that

1
4Eµh

ΛL,M
[f2|ηL]

{ 1
L− 1

L−1∑
x=1

Eµh
ΛL,M

[∂f2

∂ηL
− ∂f2

∂ηx

∣∣∣ ηL

]}2
(2.4)

≤ C0L

L−1∑
x=1

Eµh
ΛL,M

[
(T x,x+1f)2

∣∣∣ ηL

]

for some finite universal constant C0. We have thus a bound on the first
term in (2.3).
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The analysis of the second term on the right hand side of (2.3) is more
demanding and is the main goal of section 3 and 4.

2.3 Bounds on the Glauber dynamics, small values
of L

We first replace V ′(ηx) by F ′(ηx) because
∑

1≤y≤L−1 ηy is fixed for the
measure Eµh

ΛL,M
[ · | ηL]. The following lemma will be particularly useful.

Lemma 2.3.1 There exists a finite constant C2 depending only on ‖F ′′‖∞
such that

Eµh
ΛL,M

[
g2;

1
L

L∑
x=1

F ′(ηx)
]2

≤ C2θ(L,h)
L

L−1∑
x=1

Eµh
ΛL,M

[
(T x,x+1g)2

]
(3.1)

for all L ≥ 2, M in R, environment h and smooth functions g in L2(µh
ΛL,M )

such that < g2 >µh
ΛL,M

= 1.

Proof: Denote by F̃L,M (ηx) the function F ′(ηx) − Eµh
ΛL,M

[F ′(ηx)]. With
this notation,

Eµh
ΛL,M

[
g2;

1
L

L∑
x=1

F ′(ηx)
]

= Eµh
ΛL,M

[
g2 1

L

L∑
x=1

F̃L,M (ηx)
]

.

By the entropy inequality, this expression is bounded above by

55



1
βL

log
∫

exp
{

β
L∑

x=1

F̃L,M (ηx)
}

dµh
ΛL,M +

1
βL

SΛL
(µh

ΛL,M , g)

for every β > 0. By Proposition 5.1.1, the first term is bounded above by
C2β for some finite constant C2 that depends only on ‖F ′′‖∞. Minimizing
over β > 0 we obtain that the left hand side of (3.1) is bounded above by

C2L
−1SΛL

(µh
ΛL,M , g) .

By definition of θ(L,h), this expression is less than or equal to the right
hand side of (3.1).

It follows from Lemma 2.3.1 applied to the measure µh
L−1,M−ηL

and to
the function g2 = f2/Eµh

ΛL,M
[f2|ηL] that the second term of (2.3) is bounded

above by

C2θ(L− 1,h)
L

L−2∑
x=1

Eµh
ΛL,M

[
(T x,x+1f)2

∣∣∣ηL

]
.

Taking expectation with respect to µh
ΛL,M in this formula and in (2.4), we

obtain that the expectation of (2.3) is less than or equal to

C2

{
L + L−1θ(L− 1,h)

}
DΛL

(µh
ΛL,M , f) .

The second term of (2.1), which is bounded by the expectation with respect
to µh

ΛL,M of (2.3), is less than or equal to the same expression. Therefore,
in view of (2.2),
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SΛL
(µh

ΛL,M , f) ≤
{

C0L + (1 + C2L
−1)θ(L− 1,h)

}
DΛL

(µh
ΛL,M , f) .

In particular, by definition of θ(L,h),

θ(L,h) ≤ C0L + (1 + C2L
−1)θ(L− 1,h) .

This relation, together with the bound θ(2,h) ≤ C0, proved in the first sec-
tion, gives that θ(L,h) < Lt for some finite t, which depends on C2. Notice
that this estimate is uniform over the environment h.

2.4 Bounds on the Glauber dynamics, large values
of L

We now give an alternative estimate of the second term of (2.3) that we
shall use for large values of L.

Proposition 2.4.1 Fix δ > 0. There exists a finite constant C2 and a set
of environments Ω∗, which has P probability one, such that for any h in Ω∗,
there exists L∗ = L∗(h) such that for all L ≥ L∗,

(
Eµh

ΛL,M

[
g2;

1
L

L∑
x=1

F ′(ηx)
])2

≤
{

C2L +
δθ(L,h)

L

}
DΛL

(µh
ΛL,M , g) (4.1)

for all M in R and functions g in L2(µh
ΛL,M ) such that < g2 >µh

ΛL,M
= 1.

We first assume this result to conclude the proof of Theorem 1.1.2.
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Proof of Theorem 1.1.2. Recall the decomposition (2.1) of the entropy
and the estimate (2.2). The second term on the right hand side of (2.1)
was estimated by Lemma 2.1.1, giving (2.3). The first term of (2.3) was
bounded by (2.4). Fix δ < 2. By Proposition 2.4.1 applied to the measure
µh

L−1,M−ηL
and the function g2 = f2/EΛL,M−ηL

[f2|ηL], there exists a set Ω∗
of P probability one with the following property. For each h in Ω∗, there
exists L∗ = L∗(h) such that for L ≥ L∗, the second term in (2.3) is bounded
above by

{
C2L +

δθ(L− 1,h)
L− 1

}
DΛL−1

(
µf

ΛL−1,M−ηL
, f/Eµh

ΛL,M−ηL

[f2|ηL]1/2
)

for some finite constant C2 and all M , ηL. Taking expectations with respect
to µh

ΛL,M in (2.3), we obtain that the second term in (2.1) is less than or
equal to

{
C2L +

δθ(L− 1,h)
L− 1

}
DΛL

(µh
ΛL,M , f) .

In particular, by (2.2) and (2.1),

SΛL
(µh

ΛL,M , f) ≤
{

C2L + (1 +
δ

L− 1
)θ(L− 1,h)

}
DΛL

(µh
ΛL,M , f)

or, by definition of θ(L,h),

θ(L,h) ≤
{

C2L + (1 +
δ

L− 1
)θ(L− 1,h)

}
.

Since δ < 2, it is easy to derive form this inequality the existence of a finite
constant C(h) such that θ(L,h) ≤ C(h)L2 for all L ≥ 2. The constant may
depend on h because `∗ depends on the environment. This concludes the
proof of Theorem 1.1.2.
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We now turn to the proof of Proposition 2.4.1. For clarity reasons, we
divide it in several lemmas. We first repeat the procedure presented in Step
4 of the previous section. Fix K ≥ 1 and divide the interval {1, . . . , L} into
` = bL/Kc adjacent intervals of length K or K + 1. Denote by Ij the j-th
interval and by Mj the total spin on Ij : Mj =

∑
x∈Ij

ηx. As for the proof of
the spectral gap, K will be large but fixed, while ` will increase to infinity.
The left hand side of (4.1) is bounded above by

2
(
Eµh

ΛL,M

[
g2;

1
L

∑̀
j=1

{ ∑
x∈Ij

F ′(ηx)− Eµh
Ij ,Mj

[ ∑
x∈Ij

F ′(ηx)
]}])2

(4.2)

2
(
Eµh

ΛL,M

[
g2;

1
L

∑̀
j=1

|Ij |Eµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]])2

.

Lemma 2.4.2 There exists a finite constant C2 such that

( 1
L

∑̀
j=1

Eµh
ΛL,M

[
g2;

{ ∑
x∈Ij

F ′(ηx)− Eµh
Ij ,Mj

[ ∑
x∈Ij

F ′(ηx)
]}])2

≤ C2K
t

L
DΛL

(µh
ΛL,M , g)

for all K ≥ 2, L ≥ K2, M in R, environment h and smooth functions g in
L2(µh

ΛL,M ) such that < g2 >µh
ΛL,M

= 1.

Proof: Taking conditional expectation with respect to Mj , {ηx, x 6∈ Ij},
we rewrite the left hand side of the inequality presented in the statement of
the lemma as
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( 1
L

∑̀
j=1

Eµh
ΛL,M

[
Eµh

Ij ,Mj

[g2]Eµh
Ij ,Mj

[
g2
j ;

∑
x∈Ij

F ′(ηx)
] ])2

(4.3)

≤ `

L2

∑̀
j=1

Eµh
ΛL,M

[
Eµh

Ij ,Mj

[g2]
(
Eµh

Ij ,Mj

[
g2
j ;

∑
x∈Ij

F ′(ηx)
])2 ]

,

where g2
j = g2/Eµh

Ij ,Mj

[g2] has mean one with respect to µh
Ij ,Mj

. In the ex-

pression Eµh
Ij ,Mj

[g2], it must be understood that only the variables ηx for x

in Ij are integrated so that Eµh
Ij ,Mj

[g2] = Eµh
ΛL,M

[g2|Mj , {ηx, x 6∈ Ij}]. In the

last step we used Schwarz inequality and the fact Eµh
ΛL,M

[Eµh
Ij ,Mj

[g2]] = 1.

Fix 1 ≤ j ≤ `. By the entropy inequality, Eµh
Ij ,Mj

[g2
j ;

∑
x∈Ij

F ′(ηx)] is

bounded above by

1
β

log
∫

e
β

∑
x∈Ij

Fj(ηx)
dµh

Ij ,Mj
+

1
β

SIj (µ
h
Ij ,Mj

, gj)

for every β > 0. Here, Fj(ηx) = F ′(ηx)−Eµh
Ij ,Mj

[F ′]. By definition of θ, the

second term is bounded above by θ(|Ij |, τjh)β−1DIj (µ
h
Ij ,Mj

, gj), where τjh
stands for the translation of the environment h for the origin to be at the
left end of the interval Ij . By the a-priori estimate on θ obtained in Step
3, this expression is less than or equal to C2|Ij |tβ−1DIj (µ

h
Ij ,Mj

, gj). On the
other hand, by Proposition 5.1.1, the first one is bounded above by C0β|Ij |
for some finite constant C0. Minimizing over β and summing over j, we get
that (4.3) is less than or equal to

C2

L

∑̀
j=1

|Ij |tEµh
ΛL,M

[
Eµh

Ij ,Mj

[g2]DIj (µ
h
Ij ,Mj

, gj)
]
≤ C2K

t

L
DΛL

(µh
ΛL,M , g) .

This conclude the proof of lemma.
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We turn now to the second term of (4.2). Let aj = |Ij |/L and recall the
definition of Aj given in (5.9). Since we may add constants in a covariance,
the expectation in the second term of (4.2) is equal to

Eµh
ΛL,M

[
g2;

∑̀
j=1

ajGj

]
+ Eµh

ΛL,M

[
g2;

∑̀
j=1

ajA
′
j(mj)

(Mj

|Ij |
−mj

)]
.

To estimate this covariance we need to consider two cases. Let β0, be the
constant given by Proposition 5.1.6 and fix 0 < δ < 2. By Proposition 5.1.6,
there exists K0 ≥ 2 for which the left hand side of (1.12) is bounded by δβ
for all β ≤ β0 and all K ≥ K0, L ≥ K2, M in R and environment h.

Lemma 2.4.3 Fix L ≥ K2 ≥ K2
0 , M in R, an environment h and a

smooth function g in L2(µh
ΛL,M ) such that < g2 >µh

ΛL,M
= 1. Assume that

θ(L,h)L−1DΛL
(µh

ΛL,M , g) < δβ2
0 . Then,

(
Eµh

ΛL,M

[
g2;

∑̀
j=1

ajGj

])2
≤ δθ(L,h)

L
DΛL

(µh
ΛL,M , g) .

Proof: Fix a density g2 satisfying the assumptions. By the entropy in-
equality, the expectation in the statement of the lemma is bounded by

1
βL

log Eµh
ΛL,M

[
exp

{
β

∑̀
j=1

|Ij |Gj

}]
+

1
βL

SΛL
(µh

ΛL,M , g) (4.4)

for every β > 0. By Proposition 5.1.6 and our choice of K, L, the first term
is bounded above by δβ for all β < β0. The second one, by definition of θ, is
bounded above by (θ(L,h)/βL)DΛL

(µh
ΛL,M , g). Therefore, (4.4) is less than

or equal to
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δβ +
θ(L,h)

βL
DΛL

(µh
ΛL,M , g)

for all β < β0. The value of β that minimizes this expression is

β2
∗ =

θ(L,h)
δL

DΛL
(µh

ΛL,M , g) .

By hypothesis, β∗ < β0 and we may therefore minimize in β < β0 to obtain
that the square of (4.4) is bounded above by

δθ(L,h)
L

DΛL
(µh

ΛL,M , g) ,

which concludes the proof of the lemma.

Recall the explicit formula for A′
j(m

∗
j ) given in Remark 1.5.2. Let

c = c(λ) = E[σ2(λ − hx)]−1 − 1. Since σ2(·) is bounded above and be-
low by strictly positive constants,

1
`

∑̀
j=1

|Ij |(A′
j(m

∗
j )− c)2 ≤ C ′

0

`

∑̀
j=1

|Ij |
( 1
|Ij |

∑
x∈Ij

σ2(λ− hx)− σ̃2(λ)
)2

.

Fix δ > 0. Let C∗ be the constant given by (4.1.6) with σ2 in place of
U . Let K1 ≥ C0 exp{C0C

′
0C

∗}δ−1, where C0 is the constant appearing in
Lemma 5.1.7 and C ′

0 the one in the previous formula. Fix K ≥ K1 and let
Ω1 be the set associated to (K, σ2(·)) through (4.1.6). Fix an environment
h in Ω1. By (4.1.6), there exists `0 = `0(h), such that the right hand side
of (5.1.20) is bounded by δβ for all ` ≥ `0. The next result follows from
these observations and the arguments presented in the proof of the previous
lemma.
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Lemma 2.4.4 There exists a constant K1 such that for all K ≥ K1, there
exists a set Ω1 = Ω1(K) with the following property. For all h in Ω1, there
exists `1 = `1(K,h) such that for ` ≥ `1, M in R and a smooth function g
in L2(µh

ΛL,M ) such that < g2 >µh
ΛL,M

= 1,

(
Eµh

ΛL,M

[
g2;

∑̀
j=1

ajA
′
j(mj)

(Mj

|Ij |
−mj

)])2
≤ δθ(L,h)

L
DΛL

(µh
ΛL,M , g)

if θ(L,h)L−1DΛL
(µh

ΛL,M , g) < δβ2
0 .

It remains to consider the case where the Dirichlet form of g is large.

Lemma 2.4.5 Fix δ > 0. There exist K2 = K2(δ) and a finite constant C2

with the following property. For each K ≥ K2, there exists a set of environ-
ments Ω2 = Ω2(K) with P probability one such that for each h in Ω2, there
exists `2 = `2(h), such that for all ` ≥ `2,

(
Eµh

ΛL,M

[
g2;

∑̀
j=1

ajGj

])2
≤

{δθ(L,h)
L

+ C2K
tL

}
DΛL

(µh
ΛL,M , g) (4.5)

for all M in R and smooth function g in L2(µh
ΛL,M ) satisfying < g2 >µh

ΛL,M
=

1,

θ(L,h)L−1DΛL
(µh

ΛL,M , g) ≥ δβ2
0 .

Proof: The covariance Eµh
ΛL,M

[g2;
∑

1≤j≤` ajGj ] is equal to the covariance

of g2 and
∑

1≤j≤` ajHj , where Hj = Eµh
ΛIj

,Mj

[|Ij |−1
∑

x∈Ij
F ′(ηx)]. Since g2
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is a density with respect to µh
ΛL,M , by Schwarz inequality, the left hand side

of (4.5) is bounded above by

2
( ∑̀

j=1

ajEµh
ΛL,M

[
g2

(
Hj − H̃j

)])2
+ 2

( ∑̀
j=1

ajEµh
ΛL,M

[
Hj − H̃j

])2
, (4.6)

where H̃j = Eµh
ΛIj

,m|Ij |
[|Ij |−1

∑
x∈Ij

F ′(ηx)], m = M/L. Let M̄j = Mj/|Ij |.

Since g2 is a density, and since by Lemma 5.1.8 R(θ) = Eµh
ΛIj

,θ|Ij |
[|Ij |−1

∑
x∈Ij

F ′(ηx)]

is Lipschitz continuous, uniformly in L and h, by Schwarz inequality the first
term is bounded above by

C0

∑̀
j=1

ajEµh
ΛL,M

[
g2[M̄j −m]2

]
≤ C0

∑
1≤i6=j≤`

aj ak Eµh
ΛL,M

[
g2[M̄j − M̄i]2

]

for some finite constant C0 because m is just the average of the densities
mi.

By Lemma 2.4.6 below, each expectation is bounded by

6
(
ΓIi(λ,h)− Γ̃1(λ)

)2
+ 6

(
ΓIj (λ,h)− Γ̃1(λ)

)2
+

C0

K

+ 6
(
WIi(h)− E[h1]

)2
+ 6

(
WIj (h)− E[h1]

)2

+ C2K
t
{

DIi(µ
h
Ii,Mi

, g) + DIj (µ
h
Ij ,Mj

, g) + Eµh
ΛL,M

[{ ∂g

∂ηyi

− ∂g

∂ηxj

}2]}
.

In this formula, ΓΛ, Γ̃1 and WΛ are defined in (4.7). Here we are assuming
that the cubes Ij are ordered, that i < j and that yi is the rightmost site in Ii

and xj is the leftmost site in Ij . An elementary computation shows that the
expectation in the previous formula is bounded above by LDΛL

(µh
ΛL,M , g).

Therefore, the first term in (4.6) is less than or equal to
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C0

K
+

C0

`

∑̀
j=1

(
ΓIj (λ,h)− Γ̃1(λ)

)2
+

C0

`

∑̀
j=1

(
WIj (h)− E[h1]

)2

+ C2K
tLDΛL

(µΛh
L,M , g) .

There exists K2 large enough for C0/K to be smaller than δ2β2
0/3 and

for the constant given by (4.1.5), with Γ1(·) and Id(·) in place of U(·) to
be smaller than δ2β2

0/6C0 (cf. the remark stated in the penultimate para-
graph of Chapter 4). Here Id stands for the identity and C0 for the constant
which appears in the previous formula. Fix K ≥ K2 and let Ω2 be the set
of environments given by (4.1.5) associated to (K, Γ1(·), δ2β2

0/6C0) and to
(K, Id, δ2β2

0/6C0). For any h in Ω2, there exists `2 = `2(h) such that for
` ≥ `2, the previous expression is bounded by

δ2β2
0 + C2K

tLDΛL
(µΛh

L,M , g) .

Since, by assumption,

θ(L,h)L−1DΛL
(µh

ΛL,M , g) ≥ δβ2
0 ,

the previous expression is less than or equal to

{δθ(L,h)
L

+ C2K
t
1L

}
DΛL

(µh
ΛL,M , g) .

The second term in (4.6) is easier to estimate since one need just to take
g = 1 in the previous argument. Replacing δ by δ/2, we conclude the proof
of the lemma.
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Proof of Proposition 2.4.1. Let K∗ = max{K0,K1,K2}, where Ki are
the integers given by Lemmas 2.4.3, 2.4.4, 2.4.5. Let Ω∗ = Ω1 ∩ Ω2, where
Ωi are the sets of environments given by Lemmas 2.4.4, 2.4.5 associated to
K∗. Fix an environment h in Ω∗ and let `∗(h) = max{`1(h), `2(h)}, where
`1(h) are the positive constants given by Lemmas 2.4.4, 2.4.5. For ` ≥ `∗,
in view of Lemmas 2.4.2, 2.4.3, 2.4.4, 2.4.5 and the the decomposition (4.2),
the left hand side of (4.1) is bounded above by

{C2K
t−1
∗

`
+ C2K

t−1
∗ L +

8δ θ(L,h)
L

}
DΛL

(µh
ΛL,M , g) .

Since K∗ is fixed, this concludes the proof.

We conclude this section with a technical result needed above. For a
finite subset Λ of Z, let

ΓΛ(λ,h) =
1
|Λ|

∑
x∈Λ

Γ1(λ− hx) , WΛ(h) =
1
|Λ|

∑
x∈Λ

hx (4.7)

and let Γ̃1(λ) = E[Γ1(λ − h1)]. Consider a cube Λ2K as the union of two
intervals of size K. For i = 1, 2, denote by M̄i, the average spin over the
i-th cube: M̄1 = K−1

∑
1≤x≤K ηx, M̄2 = K−1

∑
K+1≤x≤2K ηx. Let

UΛ(λ,h) =
1
|Λ|

∑
x∈Λ

γ1(λ− hx) .

Lemma 2.4.6 There exist finite constants C0, C2, such that

Eµh
ΛK,M

[
g2(M̄1−M̄2)2

]
≤ 6

(
WΛK

(h)−E[h1]
)2

+ 6
(
WΛK+1,2K

(h)−E[h1]
)2

+ 6
(
ΓΛK

(λ,h)− Γ̃1(λ)
)2

+ 6
(
WΛK+1,2K

(λ,h)− Γ̃1(λ)
)2

(4.8)
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+
C0

K
+ C2K

tDΛ2K
(µh

Λ2K ,M , g)

for every K ≥ 1, M in R, environment h and function g in L2(µh
Λ2K ,M )

such that Eµh
Λ2K,M

[g2] = 1.

Proof: Fix an environment h and a charge M . By the entropy inequality
and by definition of θ, the left hand side of (4.8) is bounded above by

1
β

log Eµh
Λ2K,M

[
exp

{
β(M̄1 − M̄2)2

}]
+

θ(2K,h)
β

DΛ2K
(µΛh

2K ,M , g) .

By the a-priori estimate obtained in Step 2, the second term is less than
or equal to CKtβ−1DΛ2K

(µΛh
2K ,M , g). To estimate the first term, choose λ

according to (2.3). Since (M̄1 − M̄2)2 is bounded above by

6
(
M̄1 − UΛK

(λ,h)
)2

+ 6
(
ΓΛK

(λ,h)− Γ̃1(λ)
)2

+ 6
(
WΛK

(h)− E[h1]
)2

+ 6
(
WΛK+1,2K

(h)− E[h1]
)2

+ 6
(
ΓΛK+1,2K

(λ,h)− Γ̃1(λ)
)2

+ 6
(
M̄2 − UΛK+1,2K

(λ,h)
)2

,

by Schwarz inequality, the first term is bounded by the sum of the previous
four expressions which are constants with respect to µh

Λ2K ,M with

1
2β

log Eµh
Λ2K,M

[
exp

{
12β

(
M̄1 − UΛK

(λ,h)
)2}]

+
1
2β

log Eµh
Λ2K,M

[
exp

{
12β

(
M̄2 − UΛK+1,2K

(λ,h)
)2}]

.
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Recall that ex ≤ 1 + xex for x > 0 and that log(1 + x) ≤ x to estimate the
first term by

6Eµh
Λ2K,M

[(
M̄1 − UΛK

(λ,h)
)2

exp
{

12β
(
M̄1 − UΛK

(λ,h)
)2}]}

.

By Corollary 3.1.6, we may replace the expectation with respect to the
canonical measure by an expectation with respect to a grand canonical
measure, paying the price of a finite constant. Since the grand canonical
measures are product, by Schwarz inequality, by the definition of UΛK

(λ,h)
and by the uniform estimates in Lemma 3.1.1, the previous expression is
bounded above by

C0

K
Eνh

Λ2K,λ

[
exp

{
24β

(
M̄1 − UΛK

(λ,h)
)2}]1/2

.

Since exp{ax2} is a convex function for a > 0, this expression is less than
or equal to

C0

K
sup

λ
Eνλ

[
exp

{
24β{η1 − γ1(λ)}2

}]1/2
.

For β small enough, the previous expectation is bounded, uniformly in λ.
This proves the lemma.

68



Chapter 3

Local Central Limit Theorem

3.1 Notation and Results

We prove in this chapter some estimates which follow from the local cen-
tral limit theorem and which play a central role in the proof of the spectral
gap and the logarithmic Sobolev inequality. All constants in this section
depend only on ‖F‖∞.

Fix a sequence b = {bk, , k ≥ 1} of real numbers. For λ in R, denote
by Pb,λ the probability measure on the product space RN that makes the
coordinates {Xk, k ≥ 1} independent random variables with Xk having
density Z(λ−bk)−1 exp{[λ−bk]x−V (x)}. Denote by Eb,λ expectation with
respect to Pb,λ.

Recall from (1.3) that γ1(λ), σ2(λ), {γk(λ), k ≥ 3} stand for the expec-
tation, the variance and the k-th truncated moment of a random variable
with density Z(λ)−1 exp{λx− V (x)}.

Lemma 3.1.1 Assume that ‖F‖∞ < ∞. Then , there exist finite constant
{Ck, k ≥ 1} depending only onk and ‖F‖∞, such that

0 < C−1
2 < σ(λ)2 < C2

0 < C−1
k < γk(λ) < Ck
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for all λ in R

proof:

We first clain that Z(λ)e
−λ2

2 is bounded above and below by finite positive
constants. Indeed, by definition,

Z(λ) = e
λ2

2

∫
dae−

1
2
(a−λ)2−F (a) = e

λ2

2

∫
dae−

1
2
a2−Fλ(a)

where Fλ(a) = F (a + λ). Since F is absolutely bounded, this expression is

bounded below and above by
√

2e
−λ2

2 e±‖F‖∞ , proving the clain.

We now claim that |γ1(λ)− λ| is bounded by ‖F‖∞e2‖F‖∞ . Indeed , by
definition, the difference γ1(λ)− λ is equal to

1
Z(λ)

∫
R
(x− λ)eλx−x2

2
−Fλ(x)dx.

Changing variables, we may rewrite this integral as

∫
R xe−

x2

2
−Fλ(x)dx∫

R e−
x2

2
−Fλ(x)dx

.

Since
∫

R xe−
x2

2 dx vanishes, by Schwartz inequality, the absolute value of this
expression is bounded above by

e‖F‖∞
1√
2

∣∣∣ ∫
R

xe−
x2

2

(
e−Fλ(x) − 1

)
dx

∣∣∣.
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In the case Fλ(x) ≥ 0, the previous expression is bounded by

e‖F‖∞
1√
2

∫
R
|x|e−

x2

2 ‖F‖∞dx

≤ ‖F‖∞e2e‖F‖∞

since e−x − 1 ≤ x , x ≥ 0.

In the case Fλ(x) ≤ 0, this expression is bounded by

e‖F‖∞
1√
2

∫
R
|x|e−

x2

2 e−Fλ(x)|1− e−Fλ(x)|dx

≤ e‖F‖∞
1√
2

∫
R
|x|e−

x2

2 e‖F‖∞‖F‖∞dx

≤ ‖F‖∞e2e‖F‖∞

which proves the claim.

We now prove a lower bound for σ(λ)2. The same ideas permit to de-
rive an upper bound for σ(λ)2 or upper and lower bounds for the moments

{γ2j(λ), j ≥ 2}. A change of variables and the estimate on Z(λ)e
−λ2

2 gives
that

σ(λ)2 ≥ e−2‖F‖∞ 1√
2

∫
R
[x + λ− γ1(λj)]2e−

x2

2 dx

≥ e−2‖F‖∞ inf
β,|β|≤‖γ1(λ)−λ‖∞

1√
2

∫
R
[x + β]2e−

x2

2 dx ≥ C1 > 0.
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This concludes the proof of the lemma.

It follows from this lemma that

sup
λ∈R

∣∣∣ γj(λ)
σ2(λ)j/2

∣∣∣ ≤ C̃j (1.1)

for all j ≥ 3 , which is the estimate needed in order to prove the uniform
local central limit theorem.

For a finite subset Λ of N, denote by fb,λ,Λ the density of the random vari-
able

1
σ2(b, λ,Λ)1/2

∑
j∈Λ

[Xj − γ1(λ− bj)] ,

where, for k ≥ 3,

σ2(b, λ,Λ) =
∑
j∈Λ

σ2(λ− bj) , γk(b, λ,Λ) =
∑
j∈Λ

γk(λ− bj) . (1.2)

Theorem 3.1.2 Assume that ‖F‖∞ < ∞. There exists N0 ≥ 1 and a finite
constant C0 depending only on ‖F‖∞ such that

∣∣∣fb,λ,ΛN
(x) − 1√

2π
e−x2/2

{
1− γ3(b, λ,ΛN )x

6σ2(b, λ,ΛN )3/2

}∣∣∣ ≤ C0

N

for all N ≥ N0, x in R, environment b and λ in R.
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The proof of this result is in [9].

Remark 3.1.3 For a fixed parameter λ and b this is just the usual state-
ment of local central limit theorem for independents random variables with
finite fourth moments. The important point here is the uniformily over the
parameter λ and the environment b. this uniformity can be obtained in
virtue of (1.1) and the estimates presented in the Lemma 3.1 .

In virtue of (1.1) and (1.2), both σ2(b, λ,ΛN ) and γ3(b, λ,ΛN ) are of order
N . The second term in the expansion is therefore of order N−1/2. For a
fixed parameter λ this is just the usual statement of the local central limit
theorem for independent random variables with finite fourth moments. The
important point here is the uniformity over the parameter λ. This uniformity
can be obtained in virtue of (1.1) and the estimates of Lemma 3.1.1.

The local central limit theorem gives asymptotic expansions of the ex-
pectation of a function with respect to a canonical measure. This is the
content of the next result. Recall that Eν [G;G] stands for the variance of
G with respect to ν.

Corollary 3.1.4 Fix ` ≥ 1 and fix a function G : R` → R. There exist
N0 ≥ 1 and a finite constant C0, depending only on ‖F‖∞, such that for all
N ≥ N0, environment b, and M in R

∣∣∣Eµb
ΛN ,M

[G] − Eνb
ΛN ,λ

[G]
∣∣∣ ≤ C0`

|ΛN |
‖G‖∞ if G is bounded and∣∣∣Eµb

ΛN ,M
[G] − Eνb

ΛN ,λ
[G]

∣∣∣ ≤ C0`

|ΛN |
√

Eνb
ΛN ,λ

[G;G] ·

In these formulas, the chemical potential λ, which depends on N , M and b,
is chosen so that

M = Eνb
ΛN ,λ

[ ∑
x∈ΛN

ηx

]
. (1.3)
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The proof of this result is elementary (cf. Corollary A2.1.4 in [9]). Of course,
by changing the value of the constant C, the first inequality remains valid
for all values of N ≥ `.

Corollary 3.1.5 Let G : R → R be a smooth bounded function and let
Gb,N,M = G − Eµb

ΛN ,M
[G]. There exists a finite constant C0, depending

only on ‖F‖∞, such that

Eµb
ΛN ,M

[( 1
N

N∑
x=1

Gb,N,M (ηx)
)2]

≤ C0
‖G‖2

∞
N

for all N ≥ 1, environment b and M in R.

Proof:
The variance is equal a to

1
N

Eµb
ΛN ,M

[(Gb,L,M (η1))2] +
(
1− 1

N

)
Eµb

ΛN ,M
[Gb,L,M (η1)Gb,L,M (η2)]

The first expression is bounded by 4‖G‖∞
2N−1 for all L ≥ 1 and M ∈ R.

The second one, by definition of Gb,L,M is equal to

(
1− 1

N

){
Eµb

ΛN ,M
[G(η1)G(η2)]− Eµb

ΛN ,M
[G(ηL)]

}
.

By Corollary 3.3 , since νb
α is a product measure, the first term of the previos

expression is equal to Eνb
α
[G(ηL)]2 ±CL−1‖G‖∞, where C is finite constant

depending only on‖F‖∞. By the same result, the second term is equal to
Eνb

α
[G(ηL)]2 ± CL−1‖G‖∞

2, which concludes the proof.
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Recall the definition of the variance σ2(b, λ,Λ) and of the density fb,λ,Λ

given in (1.2). For 1 ≤ K < N , denote by µb
ΛN ,K,M the marginal on RΛK

of the canonical measure µb
ΛN ,M . An elementary computation shows that

µb
ΛN ,K,M is absolutely continuous with respect to the Lebesgue measure and

that its Radon-Nikodym derivative Rb
N,K,M (xK) is given by

Rb
N,K,M (xK)

gb
λ,ΛK

(xK)
=

σ2(b, λ,ΛN )
σ2(b, λ,ΛK,N )

fb,λ,ΛK,N

(∑K
j=1[γ1(λ−bj)−xj ]

σ2(b,λ,ΛK,N )1/2

)
fb,λ,ΛN

(0)
,

where xK = (x1, . . . , xK), ΛK,N = {K + 1, . . . , N}, for a finite set Λ,

gb
λ,Λ(xK) =

∏
j∈Λ

1
Z(λ− bj)

e[λ−bj ]xj−V (xj)

and λ is chosen according to (1.3). The next result shows that the ra-
tio Rb

N,K,M/ gb
λ,ΛK

is bounded above, uniformly over λ, provided K/N is
bounded away from 1.

Corollary 3.1.6 There exists a finite constant C0, depending only on ‖F‖∞,
such that

Rb
N,K,M (xK)

gb
λ,ΛK

(xK)
≤ C0 .

for all N/2 ≥ K ≥ 1, M in R, environment b and xK in RΛK . In this
formula, λ is chosen for (1.3) to hold. In particular, if K ≤ N/2, for any
local function H : RΛK → R,

Eµb
ΛN ,M

[H(η1, . . . , ηK)] ≤ C0Eνb
ΛK,λ

[ |H(η1, . . . , ηK)| ] (1.4)

for λ satisfying (1.3).
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For N large, the proof is an elementary consequence of the explicit for-
mula for the ratio Rb

N,K,M/gb
λ,ΛK

, the estimates for the variance presented
in Lemma 3.1.1 and the local central limited theorem stated in Theorem
3.1.2. For N small, the local central limited theorem is replaced by a direct
inspection. More details can be found in [11].

This Corollary provides an estimate on the variance of functions with respect
to canonical measures in terms of the variance of the same function with re-
spect to grand canonical measures. Indeed, fix a function H : RΛK → R,
assume that N ≥ 2K and choose λ according to (1.3). By Corollary 3.1.6,

Eµb
ΛN ,M

[H;H] ≤ Eµb
ΛN ,M

[(
H − Eνb

ΛN ,λ
[H]

)2]
≤ C0Eνb

ΛN ,λ
[H;H] . (1.5)

Lemma 3.1.2 and its corollaries permit to estimate expectations with
respect to a canonical measure µb

ΛL,M , provided L is large. The next result
provides an estimate for small values of L. The important point in this result
is once again the uniformity over the parameter λ and the environment b.
For a finite set Λ of N, denote by f̃b,λ,Λ the density of the random variable
|Λ|−1/2

∑
j∈Λ{Xj − (λ− bj)} under the measure Pb,λ. Note that we are not

renormalizing by σ2(b, λ,Λ) and that we are subtracting λ − bj instead of
γ1(λ− bj).

Lemma 3.1.7 There exists a positive and finite constant C0, depending
only on ‖F‖∞, such that

C−N
0

1√
2π

e−x2/2 ≤ f̃b,λ,ΛN
(x) ≤ CN

0

1√
2π

e−x2/2

for every λ in R, N ≥ 1 and environment b.

The proof is similar to the one of Lemma 5.6 in [11] and therefore omitted.
The same argument shows that gλ(x) = Z(λ)−1 exp{λx−V (x)} is bounded
above and below by a Gaussian density. More precisely, there exists a finite,
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strictly positive constant C0 depending only on ‖F‖∞, such that

C0
1√
2π

e−(x−λ)2/2 ≤ gλ(x) ≤ C−1
0

1√
2π

e−(x−λ)2/2 (1.6)

for every λ in R.

We conclude this section with an important estimate. The proof of this
lemma follows closely the one of Lemma 5.7 in [11].

Lemma 3.1.8 There exists β1 > 0 and a finite constant C0 such that

Eνb
ΛN ,λ

[
exp

{
β1|ΛN |{mΛN

−Rb,ΛN
(λ)}2

}]
≤ C0

for every λ in R, environment b and N ≥ 1. In this formula, mΛN
stands

for the charge average in ΛN : mΛN
= |ΛN |−1

∑
x∈ΛN

ηx and Rb,ΛN
(λ) =

Eνb
ΛN ,λ

[mΛN
].

Proof:
For small values of L this statement is a straightforward consequence of the
previous lemma, the fact that γ1(λ)− λ is absolutely bounded in Lemma*,
and the fact that the statement holds for Gaussian distributions.
For large values of L, with the notation introduced in the beginning of this
section, the expectation can be written as

∫
R

eβ0σ(λ)2x2fλ,L(x)dx.

for some appropriate choice of λ. Notice that the local central limit theorem,
stated in Theorem 3.2 , gives a good bound only for small values of x. The
idea is therefore to replace in the previos formula λ by a variable µ which
makes x a typical value. By a direct computation.
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fb,λ,ΛL
(x) =

σλ

σµ
(
Zµ

Zλ
)Le(λ−µ)[xσλ

√
L+Lγ1(λ)]fµ,L(

xσλ

σµ
+
√

L(γ1(λ)− γ1(µ))
σµ

).

Choose µ for the expression inside fb,µ,ΛL
to be small ( in order to be able

to use the local central limit estimate):

xσλ

√
L = L[γ1(λ)− γ1(µ)].

With this choice, since by Theorem 3.2 C−1
1 ≤ fh,µ,ΛL

(0) ≤ C1 for some
universal constant C1, and since by lemma 3.1 σλ is bounded,

fb,λ,ΛL
(x) ≈ exp{L log{Zµ

Zλ
}+ (λ− µ)[xσλ

√
L + Lγ1(λ)]}.

where ≈ means that the left hand side is bounded above and below by the
right hand side multiplied by finite positive constants. The expression inside
the exponencial vanishes at x = 0. It is also not difficult to show that it is
strictly concave in x (cf. [11]). In particular,

fb,λ,ΛL
(x) ≈ e−C2x2

.

for some finite constant C2 and we are back to the Gaussian case.

78



Chapter 4

Environment

4.1 Notation and Results

We present in this chapter all results needed on the environment in the
proof of the spectral gap and the logarithmic Sobolev inequality. We start
with simple bounds on the derivative of a function. For a finite subset Λ
of Z, and an environment b, denote by RΛ : R → R the smooth strictly
increasing function

RΛ(λ) = Eνb
Λ,λ

[ 1
|Λ|

∑
x∈Λ

ηx

]

and denote by ΦΛ the inverse of RΛ. Let AΛ : R → R be given by

AΛ(m) = Eνb
Λ,ΦΛ(m)

[ 1
|Λ|

∑
x∈Λ

F ′(ηx)
]

.

Lemma 4.1.1 Fix a finite subset Λ and an environment b. We claim that

A′
Λ(m) =

1
|Λ|−1

∑
x∈Λ σ2(ΦΛ(m)− bx)

− 1 ·
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Moreover, there exists a constant C0, depending only on ‖F‖∞, such that
‖A′′

Λ‖∞ ≤ C0 for all environment b.

Proof: We claim that

Eνb
Λ,ΦΛ(θ)

[ 1
|Λ|

∑
x∈Λ

F ′(ηx)
]

= ΦΛ(θ) − θ − 1
|Λ|

∑
x∈Λ

bx . (1.1)

Indeed, by definition of the product measure νb
Λ,λ,

Eνm
Λ,λ

[ 1
|Λ|

∑
x∈Λ

F ′(ηx)
]

=
1
|Λ|

∑
x∈Λ

1
Z(λ− bx)

∫
F ′(a)e(λ−bx)a−V (a) da

=
1
|Λ|

∑
x∈Λ

∫
1

Z(λ− bx)
e(λ−bx)a−a2

2
−F (a)da

=
1
|Λ|

∑
x∈Λ

∫
(a + F ′(a)− λ + bx)

1
Z(λ− bx)

e(λ−bx)a−a2

2
−F (a)da

+
1
|Λ|

∑
x∈Λ

∫
(λ− bx − a)

1
Z(λ− bx)

e(λ−bx)η−a2

2
−F (a)da

=
1
|Λ|

∑
x∈Λ

{(λ− bx)−R{x}(λ)}

− 1
|Λ|

∑
x∈Λ

1
Z(λ− bx)

∫
∂a{(λ− bx)a− V (a)}e(λ−bx)a−V (a) da .

Since RΛ(λ) = |Λ|−1
∑

x∈Λ R{x}(λ) and since the each term in the last sum
vanishes, the previous expression is equal to
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λ − RΛ(λ) − 1
|Λ|

∑
x∈Λ

bx ,

where λ = ΦΛ(θ), which proves (1.1).

Thus

A′
Λ(θ) = Φ′Λ(λ)− 1

and

A′′
Λ(θ) = Φ′′Λ(λ)

Since ΦΛ = R−1
Λ ,

Φ′(θ) =
1

R′
Λ(θ)

and

Φ′′(θ) =
−1

[R′
Λ(θ)]3

R′′(Φ(θ)) =
−R′′

Λ(θ)
[R′

Λ(θ)]3

and since

d

dλ
RΛ(λ) =

1
Λ

∑
x∈Λ

∂λ

∫
1

Z(λ− bx)
ηxe(λ−bx)ηx− ηx

2

2
−F (ηx)dηx
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=
1
Λ

∑
x∈Λ

( ∫
1
Z

a2e(λ−bx)a−a2

2
−F (a)da−

[ ∫
1
Z

ae(λ−bx)a−a2

2
−F (a)da

]2)
=

1
|Λ|

∑
x∈Λ

Eνb
Λ,λ

[ηx; ηx] =
1
|Λ|

∑
x∈Λ

σ2(λ− bx)

by lemma 3.1.1, is in
[

1
C , C

]

d2

dλ2
RΛ(λ) =

1
Λ

∑
x∈Λ

∂λ

( ∫
1
Z

ηx
2e(λ−bx)ηx− ηx

2

2
−F (ηx)dηx

−
[ ∫

1
Z

ηxe(λ−bx)ηx− ηx
2

2
−F (ηx)dηx

]2)
=

1
Λ

∑
x∈Λ

(
Eνb

Λ,λ
[a3]− Eνb

Λ,λ
[a2]Eb

Λ,λ[a]− 2Eνb
Λ,λ

[a]{Eνb
Λ,λ

[a2]− Eνb
Λ,λ

[a]2}
)

=
1
Λ

∑
x∈Λ

(
Eνb

Λ,λ
[a3 − 3Eνb

Λ,λ
[a2]Eνb

Λ,λ
[a] + 2Eνb

Λ,λ
[a]3

)
=

1
Λ

∑
x∈Λ

Eνb
Λ,λ

[(ηx − Eνb
Λ,λ

[ηx])3]

=
1
|Λ|

∑
x∈Λ

γ3(λ− bx)

by (1.1),

d

dθ
Eνb

Λ,ΦΛ(θ)

[ 1
|Λ|

∑
x∈Λ

F ′(ηx)
]

=
1

|Λ|−1
∑

x∈Λ σ2(ΦΛ(θ)− bx)
− 1 ,

d2

dθ2
Eνb

Λ,ΦΛ(θ)

[ 1
|Λ|

∑
x∈Λ

F ′(ηx)
]

= −
|Λ|−1

∑
x∈Λ γ3(ΦΛ(θ)− bx)(

|Λ|−1
∑

x∈Λ σ2(ΦΛ(θ)− bx)
)3 ·
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The statement of the lemma follows from these identities (3.1.2) and from
Lemma 3.1.1.

We proceed with a lemma which explains the assumption made on σ2(·),
Γ1(·).

Let U : R → R be a continuous functions with limits at the boundary:

lim
λ→∞

U(λ) = U+ , lim
λ→−∞

U(λ) = U− (1.2)

for some finite values U−, U+. Let Ũ(λ) = E[U(λ− h1)].

Recall that for K ≥ 2, L ≥ K2, we decompose the cube ΛL in ` disjoint
cubes {I1, . . . , I`} of length K or K + 1. One should think that K is large
but fixed. The key point in the next result is the uniformity in λ.

Lemma 4.1.2 Fix a continuous function U satisfying (1.2), ε > 0, K ≥ 2
and an increasing function t. There exists a measurable set Ω0 of sequences
h such that

• P[Ω0] = 1,

• For any h in Ω0, there exists `0 = `0(h) such that

1
`

∑̀
j=1

t(|Ij |)
( 1
|Ij |

∑
x∈Ij

U(λ− hx)− Ũ(λ)
)2

≤ c + ε (1.3)
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for all ` ≥ `0 and all λ in R. In this formula,

c = max
n=K,K+1

{
t(n)E

[( 1
n

∑
x∈Λn

U(λ− hx)− Ũ(λ)
)2]}

Proof: Fix δ0 > 0. Since U(·) is a continuous bounded function with lim-
its at the boundaries λ = ±∞, for each δ0 > 0, there exists a finite set of
chemical potentials Γδ0 = {λ1, . . . , λr} with the property that for every λ in
R, there exists λi in Γδ0 such that

sup
b,|b|≤A0

∣∣∣U(λ− b)− U(λi − b)
∣∣∣ ≤ δ0

t(K + 1)1/2
.

In other words,

sup
λ∈R

min
λi∈Γδ0

sup
b,|b|≤A0

∣∣∣U(λ− b)− U(λi − b)
∣∣∣ ≤ δ0

t(K + 1)1/2
. (1.4)

It is here and only here that we need the environment h to assume bounded
values and the assumption (1.2) on the asymptotic behavior of U(·).

In view of (1.4), the left hand side of (1.3) is less than or equal to

6δ2
0 + 4 max

λi∈Γδ0

1
`

∑̀
j=1

t(|Ij |)
( 1
|Ij |

∑
x∈Ij

U(λi − hx)− Ũ(λi)
)2

.
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Fix δ1 > 0 and λi in Γδ0 . Since the intervals {Ij , 1 ≤ j ≤ `} are disjoints,
it is not difficult to show that the sequence

P
[1
`

∑̀
j=1

{
t(|Ij |)

( 1
|Ij |

∑
x∈Ij

U(λi − hx)− Ũ(λi)
)2
− cj

}
≥ δ1

]

is summable in ` if

cj = t(|Ij |)E
[( 1
|Ij |

∑
x∈Ij

U(λi − hx)− Ũ(λi)
)2]

.

In particular, since cj ≤ c, by the Borel-Cantelli lemma, there exists a
set Ω0 = Ω0(K, δ1, U) with the following properties: P[Ω0] = 1 and for any
h in Ω0, there exists `0 = `0(h) such that

1
`

∑̀
j=1

t(|Ij |)
( 1
|Ij |

∑
x∈Ij

U(λi − hx)− U(λi)
)2

≤ c + δ1 .

for ` ≥ `0. Since Γδ0 is a finite set, we can make the previous inequality to
be uniform in λi.

In conclusion, for any sequence h in Ω0, λ in R and ` ≥ `0, the expression
on the left hand side of (1.3) is bounded by c + 6δ2

0 + 4δ1. This concludes
the proof of the lemma.

This lemma is used in two different situations: with t(n) = 1 and with
t(n) = n. In the first case, since U is bounded,

E
[( 1

n

∑
x∈Λn

U(λ− hx)− Ũ(λ)
)2]
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vanishes as n ↑ ∞, uniformly in λ. In particular, taking K large enough, we
may turn the constant c appearing in the right hand side of (1.3) as small
as we wish. Hence, for every ε > 0, there exists K0 ≥ 2 and a P-measure
one set Ω0 such that for any h in Ω0, there exists `0 = `0(h) such that

1
`

∑̀
j=1

( 1
|Ij |

∑
x∈Ij

U(λ− hx)− Ũ(λ)
)2

≤ ε (1.5)

for all ` ≥ `0 and all λ in R.

On the other hand, if t(n) = n, since U is bounded,

nE
[( 1

n

∑
x∈Λn

U(λ− hx)− Ũ(λ)
)2]

≤ 4‖U‖2
∞ .

Thus, we may take the constant c in the right hand side of (1.3) to be equal
to 4‖U‖2

∞ and ε to be 1. In this case, the statement of the lemma becomes:
There exists C = C(‖U‖∞) such that for all K ≥ 2, there exists a P-measure
one set Ω0 = Ω0(K, U) such that for any h in Ω0, there exists `0 = `0(h)
such that

1
`

∑̀
j=1

|Ij |
( 1
|Ij |

∑
x∈Ij

U(λ− hx)− Ũ(λ)
)2

≤ C (1.6)

for all ` ≥ `0 and all λ in R.
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Notice that the previous results (1.5), (1.6) hold for U = Id, where Id
stands for the identity. Of course, the identity does not satisfy (1.2) but
we need this assumption only to guarantee uniformity over λ, a parameter
which disappears in the case of the identity.

We conclude this chapter proving that (1.2), (1.4) hold if F converges at
the boundary of R. Indeed, assume that there exists F± such that

lim
a→±∞

F (a) = F± .

In this case, by the dominated convergence theorem, Z(λ) exp{−λ2/2} con-
verges to

√
2π exp{−F±} at ±∞. The same argument shows that Γ1 con-

verge to 0 at the boundary and that σ2 converges to 1.
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Chapter 5

Large Deviations Estimates

We obtain in this Chapter some estimates which play a central role in
the proof of the logarithmic Sobolev inequality.

5.1 Notation and Results

In this section, for j = 0, 1, 2, all constants Cj are allowed to depend on
‖F (i)‖∞ for 0 ≤ i ≤ j and may change from line to line. Here F (i) stands
for the i-th derivative of F .

Fix a differentiable function H : R → R with bounded derivative: ‖H ′‖∞ <
∞. For each L ≥ 1, x in ΛL, λ, M in R and environment h = {hx, x ∈ Z},
let

Hh,ΛL,λ(ηx) = H(ηx)− Eνh
ΛL,λ

[H(ηx)] ,

Hh,ΛL,M (ηx) = H(ηx)− Eµh
ΛL,M

[H(ηx)] .

Although the notation is slightly ambiguous, the context will always clarify if
we are subtracting the average with respect to the canonical measure or with
respect to the grand canonical one. Notice that Hh,ΛL,M (ηx)−Hh,ΛL,λ(ηx) =
Eνh

ΛL,λ
[H(ηx)] − Eµh

ΛL,M
[H(ηx)]. In particular, if λ is chosen according to
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(1.3), by Corollary 3.1.4,

∣∣∣Hh,ΛL,M (ηx)−Hh,ΛL,λ(ηx)
∣∣∣

=
∣∣∣Eνh

ΛL,λ
[H(ηx)]− Eµh

ΛL,M
[H(ηx)]

∣∣∣ ≤ C0‖H ′‖∞
|ΛL|

(1.1)

for some finite constant C0 depending only on ‖F‖∞ because

Eνh
ΛL,λ

[H(ηx);H(ηx)] ≤ Eνh
ΛL,λ

[{H(ηx)−H(θx)}2] ≤ ‖H ′‖2
∞σ2(λ− hx).

Here, θx stands for Eνh
ΛL,λ

[ηx] = γ1(λ− hx).

We claim that there exists a finite constant C0 depending only on ‖F‖∞
for which

|Hh,ΛL,λ(ηx)| ≤ C0‖H ′‖∞
(
1 +

∣∣∣ηx − Eνh
ΛL,λ

[ηx]
∣∣∣) , (1.2)

|Hh,ΛL,M (ηx)| ≤ C0‖H ′‖∞
(
1 +

∣∣∣ηx − Eµh
ΛL,M

[ηx]
∣∣∣)

for all L ≥ 1, M , λ in R and environment h. Consider first the grand canon-
ical case. By definition of Hh,ΛL,λ and by Schwarz inequality,

|Hh,ΛL,λ(ηx)| ≤ Eνh
ΛL,λ

[ ∣∣H(ηx)−H(ξx)
∣∣ ]

≤ ‖H ′‖∞Eνh
ΛL,λ

[ ∣∣ηx − ξx

∣∣ ]
≤ ‖H ′‖∞

{∣∣ηx − Eνh
ΛL,λ

[ηx]
∣∣ + σ2(λ− hx)1/2

}
.
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Of course, in the previous formulas, only the variable ξx is integrated. By
Lemma 3.1.1, the second term inside braces in the last expression is bounded
above by some finite constant C0 that depends on ‖F‖∞ only. This proves
the claim in the grand canonical case. The same arguments apply to the
canonical case provide we show that Eµh

ΛL,M
[ηx; ηx] is uniformly bounded.

But this is follows from estimate (3.1.5) of Corollary 3.1.6.

Proposition 5.1.1 Fix a differentiable function H : R → R with bounded
derivative. There exists a constant C0, depending only on ‖F‖∞, such that

1
β|ΛL|

log
∫

exp
{

β
∑

x∈ΛL

Hh,ΛL,M (ηx)
}

dµh
ΛL,M ≤ C0‖H ′‖2

∞β (1.3)

for all β > 0, L ≥ 2, M in R and environment h.

Proof: We first prove this result for the grand canonical measure in place
of the canonical measure. In this case we replace Hh,ΛL,M by Hh,ΛL,λ and,
since νh

ΛL,λ is a product measure, we only need to show that

1
β

log
∫

expβ
{

H(η1)− Eνλ
[H(η1)]

}
dνλ ≤ C0‖H ′‖2

∞β (1.4)

for all β > 0 and some constant C0 which depends only on ‖F‖∞

We consider first the case of β small. By the spectral gap for the the Glauber
Dynanics (Lemma 1.2.1), there exists a universal constant C0, such that

< f2 >νh
ΛL,λ

− < f >2
νh
ΛL,λ

≤ C0 < (∂η1f)2 >νh
ΛL,λ

.

90



for all smooth functions f in L2(νh,1
ΛL,λ). Let C1 = C0‖H ′‖2

∞ and assume that
β‖H ′‖∞ < |ΛL|−1/2.

Aplying this inequality to the function f = exp{β
2 Hh,ΛL,λ}, we obtain

that

Eνh
ΛL,λ

[
eβHh,ΛL,λ

]
≤

{
Eνh

ΛL,λ

[
e(β

2
)Hh,ΛL,λ

]}2
+C0

(β

2

)2∥∥H ′∥∥2

∞Eνh
ΛL,λ

[
eβHh,ΛL,λ

]
.

so that

Eνh
ΛL,λ

[
eβHh,ΛL,λ

]
≤ 1

1− C0‖R′‖2
∞(β

2 )2

{
Eνh

ΛL,λ

[
e(β

2
)Hh,ΛL,λ

]}2

≤ e( 1
2
)C0‖R′‖2∞β2

{
Eνh

ΛL,λ

[
e(β

2
)Hh,ΛL,λ

]}2

because (1 − x)−1 ≤ e2x for 0 ≤ x < 1
2 . Iterating this estimate n − 1 times

we obtain that

Eνh
ΛL,λ

[
eβHh,ΛL,λ

]
≤ exp

{
C1β

2
n∑

j=1

2−j
}{

Eνh
ΛL,λ

[
e( β

2n )Hh,ΛL,λ

]}2

The exponential is obviously bounded by exp{C1β
2}. On the other hand,

we claim that

lim
n→∞

n log Eνh
ΛL,λ

[
e

1
n

Hh,ΛL,λ

]
= 0 (1.5)
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showing that the left hand side of 1.4 is bounded above by C1β = C0β‖H ′‖2
∞

provided β < C
− 1

2
1 .

To prove 1.5, just notice that exp{ 1
nHh,ΛL,λ} is bounded above by 1 +

( 1
n)Hh,ΛL,λ + ( 1

n2 )Hh,ΛL,λexp{( 1
n)|Hh,ΛL,λ|}. Since log(1 + x) ≤ x and since

Hh,ΛL,λ has mean zero with with respect to νh
ΛL,λ, we obtain that

n log Eνh
ΛL,λ

[
e

1
n

Hh,ΛL,λ

]
≤ 1

n
Eνh

ΛL,λ

[
H2

h,ΛL,λexp
{ 1

n
|Hh,ΛL,λ|

}]

By 1.2, the right hand side is bounded above by

C

n
Eνh

ΛL,λ

[{
1 + (η1 − λ + h1)2

}
exp

{C|η1 − λ + h1|
n

}]

for some finite constant C depending only on ‖F‖2
∞ , ‖H ′‖2

∞. The expecta-
tion is bounded for all n ≥ 1 because νh

ΛL,λ has Gaussian tails. This prove

1.3 for β < C
− 1

2
1 .

We now turn to the case of large β, which is simpler. assume that
β‖H ′‖∞ ≥ |ΛL|−1/2. It follows from 1.2 that the left hand side of 1.3 is
bounded above by

C2

∥∥H ′∥∥
∞ + β−1 log Eνh

ΛL,λ

[
eβ‖H′‖∞C2|η1−λ+h1|

]
. (1.6)

Since e|x| ≤ ex + e−x, we need only to estimate Eνh
ΛL,λ

[exp{β‖H ′‖∞C2(η1 −
λ + h1)}] for β and −β. Recall the definition of the partition function
Z given in 1.1.1. The logarithm of the previous expectation is equal to
log Z(Φ(λ− h1) + β‖H ′‖∞C2)− log Z(Φ(λ− h1)− β‖H ′‖∞C2(λ− h1). An
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elementary computation gives that (log Z)′(Φ(λ − h1)) = λ − h1 so that
the previous difference can bewritten as logZ(Φ(λ − h1) + β‖H ′‖∞C2) −
log Z(Φ(λ − h1) − (log Z)′(Φ(λ − h1))β‖H ′‖∞C2. By Taylor’s expansion ,
this difference is bounded by (1

2)(β‖H ′‖∞C2)2(log Z)′′(λ) for some λ be-
tween Φ(λ−h1) and Φ(λ−h1)+β‖H ′‖∞C2. Since (log Z)′′(λ) = σ2(λ) and
since, by lemma 3.1.1, σ2(λ) is bounded uniformly in λ, we have that

log Eνh
ΛL,λ

[
exp

{
β
∥∥H ′∥∥

∞C2(η1 − α)
}]

≤ C
∥∥H ′∥∥2

∞β2.

for some constant depending only ‖F‖∞. Since log(a+b) ≤ log 2+max{log a, log b},
1.6 is bounded above by

C2

∥∥H ′∥∥
∞ +

log 2
β

= C3

∥∥H ′∥∥2

∞
β.

which is obviously bounded above by C4‖H ′‖2
∞β because β‖H ′‖∞ ≥ |ΛL|−1/2.

This conclude the proof of lemma in the case of the grand canonical mea-
sure.

We now turn to the canonical measure. We need to consider two cases.
Assume first that β‖H ′‖∞ ≤ |ΛL|−1/2. By Schwarz inequality, the left hand
side of (1.3) is bounded above by the sum of two terms. The second one is
similar to the first which is equal to

1
2β|ΛL|

log
∫

exp
{

2β

L/2∑
x=1

Hh,ΛL,M (ηx)
}

dµh
ΛL,M .

The difference is that we are now summing only over one half of the cube
and that we had to pay a factor 2 in the exponential to do it. Since
ex ≤ 1 + x + x2e|x|, since log(1 + x) ≤ x and since Hh,ΛL,M (ηx) has mean
zero with respect to µh

ΛL,M , the previous expression is bounded above by
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4β

|ΛL|

∫ { L/2∑
x=1

Hh,ΛL,M (ηx)
}2

exp
{

2β
∣∣∣ L/2∑

x=1

Hh,ΛL,M (ηx)
∣∣∣} dµh

ΛL,M .

Since e|x| ≤ ex + e−x, we may remove the absolute value in the exponential,
provide we estimate the expression for Hh,ΛL,M , as well as for −Hh,ΛL,M .

Fix λ given by (1.3). By Corollary 3.1.6, we may replace the canonical
measure by the grand canonical one paying the price of a finite constant and
turning Hh,ΛL,M into a non mean-zero function. At this point, we need to
estimate

C0β

|ΛL|

∫ { L/2∑
x=1

Hh,ΛL,M (ηx)
}2

exp
{

2β

L/2∑
x=1

Hh,ΛL,M (ηx)
}

dνh
ΛL,λ .

Since νh
ΛL,M is a product measure, expanding the square, we get that the

previous integral is less than or equal to

C0β

|ΛL|

L/2∑
x=1

A2(x)
∏
z 6=x

A0(z) +
C0β

|ΛL|
∑
x 6=y

A1(x)A1(y)
∏

z 6=x,y

A0(z) ,

where, for 1 ≤ x ≤ L/2 and j = 0, 1, 2,

Aj(x) = Eνh
ΛL,λ

[
Hh,ΛL,M (ηx)je2βHh,ΛL,M (ηx)

]
.

We claim that

94



A0(x) ≤ exp{C0β‖H ′‖∞L−1/2} (1.7)

∣∣A1(x)
∣∣ ≤ C0‖H ′‖∞

L1/2
(1.8)

A2(x) ≤ C0‖H ′‖2
∞ (1.9)

uniformly in 1 ≤ x ≤ L/2 and for some constant C0 which depends only on
‖F‖∞.

Since the lemma follows from these estimates in the case β‖H ′‖∞ ≤
L−1/2, we only need to prove them. We first examine the exponential A0(x).
By (1.1),

Eνh
ΛL,λ

[
e2βHh,ΛL,M (ηx)

]
≤ eC0βL−1‖H′‖∞Eνh

ΛL,λ

[
e2βHh,ΛL,λ(ηx)

]
.

Since Hh,ΛL,λ has mean zero with respect to νh
ΛL,λ, since ex ≤ 1+x+x2e|x|,

since by (1.2) |Hh,ΛL,λ(ηx)| ≤ C0‖H ′‖∞[1 + |ηx − Eνh
ΛL,λ

[ηx]| ] and since

β‖H ′‖∞ ≤ L−1/2 ≤ 1,

Eνh
ΛL,λ

[
e2βHh,ΛL,λ(ηx)

]
≤ 1 + Eνh

ΛL,λ
[(2βHh,ΛL,λ(ηx))2 exp{2βHh,ΛL,λ(ηx)|}]

≤ 1+Cβ2
∥∥H ′∥∥2

∞Eνh
ΛL,λ

[(1+|ηz−γ1(λ−hz)|)2 exp{Cβ
∥∥H ′∥∥

∞(1+|ηz−γ1(λ−hz)|)}]

≤ 1+Cβ2
∥∥H ′∥∥2

∞eCβ‖H′‖∞Eνh
ΛL,λ

[(1+|ηz−γ1(λ−hz)|)2 exp{Cβ
∥∥H ′∥∥

∞|ηz−γ1(λ−hz)|}]

≤ 1 + C0β
2‖H ′‖2

∞ sup
λ∈R

Eνλ

[
{1 + |η − γ1(λ)|2}e2C0|η−γ1(λ)|

]
.
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There exists some finite constant C ′
0, depending only on ‖F‖∞, such that

sup
λ∈R

Eνλ

[
{1 + |η − γ1(λ)|2}e2C0|η−γ1(λ)|

]
≤ C ′

0

because νλ has uniform Gaussian tails. Since 1 + x ≤ ex, we conclude that

Eνh
ΛL,λ

[
e2βHh,ΛL,M (ηx)

]
≤ eC0β‖H′‖∞(1 + Cβ2

∥∥R′∥∥2

∞)

≤ ecβ‖R′‖∞(1 + Cβ
∥∥R′∥∥

∞)

≤ exp{C0β‖H ′‖∞L−1/2} (1.10)

because β2‖H ′‖2
∞ ≤ L−1.

We now turn to A2(x) in (1.7). As before, we may replace Hh,ΛL,M (ηx)
by Hh,ΛL,λ(ηx) in the exponential. After this replacement, applying (1.1),

Eνh
ΛL,λ

[
Hh,ΛL,M (ηx)2e2βHh,ΛL,M (ηx)

]
≤ C0Eνh

ΛL,λ

[
Hh,ΛL,M (ηx)2e2βHh,ΛL,λ(ηx)

]

because β‖H ′‖∞ ≤ 1. The same estimate (1.1) gives that the previous ex-
pression is less than or equal to

C0‖H ′‖2
∞

|ΛL|2
Eνh

ΛL,λ

[
e2βHh,ΛL,λ(ηx)

]
+ C0Eνh

ΛL,λ

[
Hh,ΛL,λ(ηx)2e2βHh,ΛL,λ(ηx)

]
.

By (1.2), |Hh,ΛL,λ(ηx)| ≤ C0‖H ′‖∞(1+ |ηx−γ1(λ−hx)|). The previous sum
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is thus bounded by

C0‖H ′‖2
∞ sup

λ∈R
Eνλ

[
{1 + |η − α|2}e2C0|η−γ1(λ)|

]
.

This expression is less than C0‖H ′‖2
∞ because νλ has uniform exponential

tails.

It remains to estimate |A1(x)| which is given by

∣∣∣ Eνh
ΛL,λ

[
Hh,ΛL,M (ηx)e2βHh,ΛL,M (ηx)

] ∣∣∣ .

As before, we may replace Hh,ΛL,M (ηx) by Hh,ΛL,λ(ηx) in the exponential.
After this replacement, applying (1.1), we bound the previous expression by

C0

∣∣∣ Eνh
ΛL,λ

[
Hh,ΛL,λ(ηx)e2βHh,ΛL,λ(ηx)

] ∣∣∣ +
C0‖H ′‖∞
|ΛL|

Eνh
ΛL,λ

[
e2βHh,ΛL,λ(ηx)

]
.

By (1.9),the second term is seen to be less than or equal to

C0‖H ′‖∞
|ΛL|

e
2β

C0‖H′‖∞
|ΛL|

1
2 ≤

C0‖H ′‖∞
|ΛL|

because β‖H ′‖∞ ≤ β‖H′‖∞
|ΛL|

1
2

.

The first term, since |eb − 1| ≤ |b|e|b| and since Hh,ΛL,λ has mean zero,
is bounded by
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C0Eνh
ΛL,λ

[
Hh,ΛL,λ(ηx)

(
1 + |Hh,ΛL,λ(ηx)|βe2βHh,ΛL,λ(ηx)

)]
≤ C0βEνh

ΛL,λ

[
Hh,ΛL,λ(ηx)2e2β|Hh,ΛL,λ(ηx)|

]

because Eνh
ΛL,λ

[
Hh,ΛL,λ(ηx)

]
= 0, then the previous expression is bounded

by

C0β‖H ′‖2
∞ sup

λ∈R
Eνλ

[
{1 + |η − γ1(λ)|2}e2C0|η−γ1(λ)|

]

because β‖H ′‖∞ ≤ 1 in the range considered. This expression is bounded by
C0β‖H ′‖2

∞ because νλ has uniform exponential tails. Adding the two previ-
ous estimates we obtain that A1(x) is absolutely bounded by C0‖H ′‖∞L−1/2

in the range considered. This concludes the proof of Claim (1.7) and there-
fore the proof of the lemma in the case of small values of β.

We now turn to the case of large β. Assume that β2‖H ′‖2
∞ > |ΛL|−1.

We first replace Hh,ΛL,M by Hh,ΛL,λ. By (1.1), the left hand side of (1.3) is
bounded above by

1
β|ΛL|

log
∫

exp
{

β
∑

x∈ΛL

Hh,ΛL,λ(ηx)
}

dµh
ΛL,M +

C0‖H ′‖∞
|ΛL|

.

Since |ΛL|−2 ≤ |ΛL|−1 < β2‖H ′‖2
∞, |ΛL|−1 ≤ β‖H ′‖∞. In particular, the

second term is less than or equal to C0β‖H ′‖2
∞.

It remains to estimate the first term. By Schwarz inequality, this expres-
sion is bounded above by the sum of two terms,
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1
2β|ΛL|

log
∫

exp
{

2β
∑

1≤x≤L/2

Hh,ΛL,λ(ηx)
}

dµh
ΛL,M

+
1

2β|ΛL|
log

∫
exp

{
2β

∑
1+L/2≤x≤L

Hh,ΛL,λ(ηx)
}

dµh
ΛL,M .

Both terms are estimated in the same way. We consider only the first term:

1
2β|ΛL|

log
∫

exp
{

2β
∑

1≤x≤L/2

Hh,ΛL,λ(ηx)
}

dµh
ΛL,M .

By Corollary 3.1.6, this expression is less than or equal to

C0

β|ΛL|
+

1
2β|ΛL|

log
∫

exp
{

2β
∑

1≤x≤L/2

Hh,ΛL,λ(ηx)
}

dνh
ΛL,λ ,

where λ is chosen according to (1.3). Since |ΛL|−1 ≤ β2‖H ′‖2
∞, the first

term is bounded by Cβ‖H ′‖2
∞. It remains to consider the second one which

is equal to

1
2β|ΛL|

∑
1≤x≤L/2

log
∫

exp
{

2βHh,ΛL,λ(ηx)
}

dνh
ΛL,λ

because νh
ΛL,λ is a product measure. In view of (1.4), this expression is

bounded by Cβ‖H ′‖2
∞. This concludes the proof.

The same proof gives the following estimate that we state for further
use.
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Lemma 5.1.2 Fix a differentiable function H : R → R with bounded deriva-
tive: ‖H ′‖∞ < ∞. There exists a constant C0, depending only on ‖F‖∞,
such that

1
β

log
∫

exp
{

βHh,ΛL,M (ηx)
}

dµh
ΛL,M ≤ C0‖H ′‖2

∞β

for all β > 0, L ≥ 2, x in ΛL, environment h and M in R.

Proposition 5.1.1 provides an estimate, uniform over the charge M , on
the expectation of |ΛL|−1

∑
x∈ΛL

Hh,ΛL,M (ηx) with respect to some measure
fdµh

ΛL,M in terms of the entropy of this measure.

Corollary 5.1.3 Fix L ≥ 2, M in R, an environment h, a differentiable
function H : R → R with bounded derivative and a density f with respect to
µh

ΛL,M . There exists a constant C0, depending only on ‖F‖∞, such that

( ∫ { 1
|ΛL|

∑
x∈ΛL

Hh,ΛL,M (ηx)
}

f dµh
ΛL,M

)2
≤ C0

‖H ′‖2
∞

|ΛL|
SΛL

(µh
ΛL,M ,

√
f) .

Proof: By the entropy inequality, the integral on the left hand side of the
statement of the lemma is bounded above by

1
β|ΛL|

log
∫

exp
{

β
∑

x∈ΛL

Hh,ΛL,M (ηx)
}

dµh
ΛL,M +

SΛL
(µh

ΛL,M ,
√

f)
β|ΛL|

for all β > 0. By Proposition 5.1.1, the first term is bounded above by
C0‖H ′‖2

∞β for some finite constant depending only on ‖F‖∞. Minimizing
in β we conclude the proof of the lemma.
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Lemma 5.1.2 provides a similar estimate in the case of a one site func-
tion.

Lemma 5.1.4 Fix L ≥ 2, M in R, an environment h, a differentiable
function H : R → R with bounded derivative and a density f with respect to
µh,1

ΛL,M . There exists a constant C0, depending only on ‖F‖∞, such that

( ∫
Hh,ΛL,M (η1) f(η1) dµh,1

ΛL,M

)2
≤ C0‖H ′‖2

∞S{1}(µ
h,1
ΛL,M ,

√
f) .

The proof is the same as the one of Corollary 5.1.3.

Fix K ≥ 1, L ≥ K2 and divide the interval {1, . . . , L} into ` = bL/Kc
adjacent intervals of length K or K + 1, where bac represents the integer
part of a. For 1 ≤ j ≤ `, denote by Ij the j-th interval, by Mj the total spin
on Ij : Mj =

∑
x∈Ij

ηx and let

mj = Eµh
ΛL,M

[ 1
|Ij |

∑
x∈Ij

ηx

]
,

m∗
j = Eνh

ΛL,λ

[ 1
|Ij |

∑
x∈Ij

ηx

]
,

Aj(m) = Eνh
Ij ,ΦIj

(m)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]

,

where λ is given by (1.3). Notice that

|mj −m∗
j | ≤ C0L

−1 (1.11)
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in virtue of Lemma 3.1.4 and Lemma (3.??).

Lemma 5.1.5 For 1 ≤ j ≤ `, let Gj = Gj(Mj ;M,L,h) be given by

Gj = Eµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eµh

ΛL,M

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− A′

j(mj)
(Mj

|Ij |
−mj

)
.

There exists a finite constant C∗
0 , depending only on ‖F‖∞, and a finite

constant C1, depending only on ‖F‖∞, ‖F ′‖∞, such that

|Gj | ≤ C∗
0 (Mj/|Ij | −m∗

j )
2 +

C1

|Ij |
.

Proof: Fix j and rewrite Gj as

Eµh
Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eνh

Ij ,ΦIj
(Mj/|Ij |)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]

+ Eνh
Ij ,ΦIj

(mj)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eµh

ΛL,M

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]

+ Aj(Mj/|Ij |) − Aj(mj) − A′
j(mj)(Mj/|Ij | −mj) .

The first two lines will be estimated by the equivalence of ensembles, while
the third is a Taylor expansion up to the second order.

By Corollary 3.1.4, the first line is bounded above by C1|Ij |−1 for some
finite constant C1. By Lemma 4.1.1, ‖A′′

j ‖∞ is finite. In particular, in view
of (1.11), the third term is bounded above by C0(Mj/|Ij | −m∗

j )
2 + C0L

−2.
Taking conditional expectation with respect to

∑
x∈Ij

ηx, {ηz, z 6∈ Ij} in the
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second expectation, the second line can be rewritten as

Eµh
ΛL,M

[
Eνh

Ij ,ΦIj
(mj)

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eµh

Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
] ]

.

Using the equivalence of ensembles, Corollary 3.1.4, we may replace the
second term inside the expectation by an expectation with respect to the
grand canonical measure with chemical potential given by ΦIj (Mj/|Ij |). We
may also add inside the expectation A′

j(mj)(Mj/|Ij | − mj), because this
expression has mean zero. We recover in this way the same Taylor expan-
sion up to the second order, which was shown above to be bounded by
C0(Mj/|Ij |−m∗

j )
2 +C0L

−2. Applying Corollary 3.1.6 to replace the canon-
ical measure µh

ΛL,M by the grand canonical, we obtain that the second term
in the decomposition of Gj is bounded above by C0|Ij |−1.

Proposition 5.1.6 There exist β0 > 0 and a finite constant C1 depending
only on ‖F‖∞, ‖F ′‖∞ such that

1
βL

log Eµh
ΛL,M

[
exp

{
β

∑̀
j=1

|Ij |Gj

}]
≤ C1β

K
(1.12)

for all β ≤ β0, all L ≥ K2, all M in R and all environment h.

Proof: We first prove the lemma in the grand canonical case with G re-
placed by the mean-zero function G. For 1 ≤ j ≤ `, let Gj = Gj(Mj ;M,L,h)
be given by

Gj = Eµh
Ij ,λ

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eµh

ΛL,λ

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− A′

j(m
∗
j )

(Mj

|Ij |
−m∗

j

)
.
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To keep notation simple, assume that all cubes Ij has the same length K.
Since µh

ΛL,λ is a product measure , the left hand side of (1.12) is equal to

1
βK

log Eµh
ΛL,λ

[
exp

{
βKG

}]

Since ex ≤ 1 + x + x2e|x|, since log(1 + x) ≤ x and since Eµh
ΛL,λ

[G] = 0, the
previous expression is less than or equal a to

β

K
log Eµh

ΛL,λ

[
(KG(M1))2exp

{
βK|G(M1)|

}]

We claim that there exists β1 and a finite constant C0 such that

β

K
log Eµh

ΛL,λ

[
(KG(M1))2exp

{
βK|G(M1)|

}]
≤ C0 (1.13)

for all m in R, all K ≥ 1 and β ≤ β1. Since G(M1) = Eh
I1,M1,λ[F ′]−A

(
M1
|I1|

)
+

A
(

M1
|I1|

)
−A(m1∗)−A′(m∗

1)
[

M1
|I1|−m∗

1

]
, by lemma 4.1.1 and Corollary 3.1.3 ,

G is bounded in absolute value by CK−1 +C
(

M1
|I1| −m∗

1

)2
for some constant

C. In particular, the left hand side of 1.10 is bounded above by

CeCβEµh
ΛL,λ

[{
1 + K2

(M1

|I1|
−m∗

1

)4
exp

{
CβK

(M1

|I1|
−m∗

1

)2}]
≤ CEµh

ΛL,λ

[
exp

{
C ′βK

(M1

|I1|
−m∗

1

)2}]

By Lemma 3.1.8, there exists β1 > 0 such that for β < β1, the expectation
is bounded uniformly in K and m. this prove claim (1.10) and that the left
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hand side of (1.9) is bounded by Cβ
K for β ≤ β1, wich concludes the proof of

the lemma in the grand canonical case.

We now turn to the canonical measure.

Fix β1 > 0 given by Lemma 3.1.8 and set β0 = β1/4C∗
0 , where C∗

0 is the
finite constant introduced in Lemma 5.1.5. By Schwarz inequality, the left
hand side of (1.12) is bounded by the sum of two terms. The first one is
equal to

1
2βL

log Eµh
ΛL,M

[
exp

{
2β

`/2∑
j=1

|Ij |Gj

}]
. (1.14)

The difference between the second one and the first is that we sum over
`/2+1 ≤ j ≤ ` instead of 1 ≤ j ≤ `/2. We are now in a position to estimate
the expectation with respect to a canonical measure by the expectation with
respect to a grand canonical measure through Corollary 3.1.6.

Assume first that β2 ≤ min{`−1, β2
0}. In this case, since exp{x} ≤

1 + x + x2 exp{|x|}, since log(1 + x) ≤ x and since the sum that appears
in the exponential of (1.12) has mean zero, the left hand side in (1.12) is
bounded above by

2β

L
Eµh

ΛL,M

[( `/2∑
j=1

|Ij |Gj

)2
exp

{
2β

∣∣∣ `/2∑
j=1

|Ij |Gj

∣∣∣}]
.

Since e|x| ≤ ex + e−x, we may remove the absolute value in the exponential
provide we estimate the previous expression with −β in place of β in the
exponential. Consider the case with β. Fix λ given by (1.3). By Corollary
3.1.6, the previous expression without the absolute value in the exponential
is less than or equal to
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C0β

L
Eνh

ΛL,λ

[( `/2∑
j=1

|Ij |Gj

)2
exp

{
2β

`/2∑
j=1

|Ij |Gj

}]
.

Since νh
ΛL,λ is a product measure, expanding the square we obtain that this

term is equal to

C0β

L

`/2∑
j=1

|Ij |2Eνh
ΛL,λ

[
G2

j e2β|Ij |Gj

] ∏
k 6=j

Eνh
ΛL,λ

[
e2β|Ik|Gk

]
(1.15)

+
C0β

L

∑
j 6=k

|Ij ||Ik|Eνh
ΛL,λ

[
Gj e2β|Ij |Gj

]
Eνh

ΛL,λ

[
Gk e2β|Ik|Gk

] ∏
i6=j,k

Eνh
ΛL,λ

[
e2β|Ii|Gi

]
.

There are three different types of terms in the previous formula and we
estimate them separately.

We claim that

Eνh
ΛL,λ

[
e2β|Ij |Gj

]
≤ expC1β

{
`−1 + β

}
, (1.16)

∣∣∣Eνh
ΛL,λ

[
Gje

2β|Ij |Gj

] ∣∣∣ ≤ C1

{ 1
L

+
β

K

}
,

Eνh
ΛL,λ

[
G2

je
2β|Ij |Gj

]
≤ C1

K2
.

Notice that, since β2 ≤ min{1, `−1}, in view of the previous bounds,
it is easy to show that (1.15) is less than or equal to C0βK−1, which is
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what we wanted to prove. Therefore, to conclude the proof in the case
β2 ≤ min{`−1, β2

0}, we need only to check (1.16). We start examining the
exponential terms. Since ex ≤ 1 + x + x2e|x|, the expectation is bounded
above by

1 + 2β|Ij |Eνh
ΛL,λ

[Gj ] + 4β2|Ij |2Eνh
ΛL,λ

[
G2

je
2β|Ij ||Gj |

]
. (1.17)

The linear term is easy to handle. By definition of Gj , the linear expec-
tation is equal to

Eνh
ΛL,λ

[
Eµh

Ij ,Mj

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
] ]

− Eµh
ΛL,M

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]

− A′
j(mj)

(
Eνh

ΛL,λ

[Mj

|Ij |

]
− Eµh

ΛL,M

[Mj

|Ij |

])
.

Since the expectation with respect to the canonical measure µh
Ij ,Mj

can be
understood as a νh

ΛL,λ conditional expectation with respect to the σ-algebra
generated by Mj , {ηx, x 6∈ Ij}, the first line is equal to

Eνh
ΛL,λ

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]
− Eµh

ΛL,M

[ 1
|Ij |

∑
x∈Ij

F ′(ηx)
]

.

By Corollary 3.1.4, this expression is bounded by C0‖F ′‖∞L−1. On the
other hand, since by Lemma 4.1.1, ‖A′

j(·)‖∞ is uniformly bounded in j, by
Corollary 3.1.4 and by Lemma 1.3.1, the second line is also bounded by
C0L

−1. The linear term in (1.17) is thus less than or equal to C1β|Ij |/L.
In view of Lemma 5.1.5, the quadratic term in (1.17) is bounded by

C1β
2eC1βEνh

ΛL,λ

[{
|Ij |2

(Mj

|Ij |
−m∗

j

)4
+ 1

}
e2C∗

0β|Ij |(Mj/|Ij |−m∗
j )2

]
.
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Since β ≤ β0 and since x2eax ≤ C(a)e2ax, the previous expression is bounded
above by

C1β
2Eνh

ΛL,λ

[
e4C∗

0β0|Ij |(Mj/|Ij |−m∗
j )2

]
.

Since 4C∗
0β0 = β1, this expression is bounded by C1β

2 in virtue of Lemma
3.1.8.

To conclude the proof of the estimate of the exponential term in (1.16)
it remain to recollect the previous estimate and to recall that 1 + x ≤ ex.

We turn now to the second expectation in (1.16). Since |ex−1| ≤ |x|e|x|,
this expectation is bounded above by

∣∣∣Eνh
ΛL,λ

[Gj ]
∣∣∣ + 2β|Ij |Eνh

ΛL,λ

[
G2

je
2β|Ij ||Gj |

]
.

We have seen in the estimate of the linear term in (1.17) that the first
expression in the previous formula is bounded above by C1L

−1 and we have
seen in the estimate of the quadratic term that the second one is bounded
above by C1βK−1. This proves the second bound in (1.16).

The third estimate in (1.16) follows from the estimate of the quadratic
term in (1.17). This concludes the proof of (1.16) and therefore of the lemma
in the case β2 ≤ min{`−1, β2

0}.
Assume now that `−1 ≤ β2 ≤ β2

0 . In this case, by Corollary 3.1.6, (1.14)
is bounded above by

C0

βL
+

1
2βL

`/2∑
j=1

log Eνh
ΛL,λ

[
exp

{
2β|Ij |Gj

}]
. (1.18)
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Since ex ≤ 1 + x + x2e|x| and since log(1 + x) ≤ x, the logarithm is less
than or equal to

2β|Ij |Eνh
ΛL,λ

[Gj ] + 4β2|Ij |2Eνh
ΛL,λ

[
G2

j exp
{

2β|Ij ||Gj |
}]

. (1.19)

We have seen in the estimate of (1.17) that the linear term is bounded by
C1β`−1 and that the quadratic term is bounded by C1β

2. In view of these
estimates, (1.18) is less than or equal to

C0

βL
+

C1

βK

{β

`
+ β

}
.

Since `−1 ≤ β2, this expression is less than or equal to C1β/K, which proves
the lemma.

Lemma 5.1.7 Fix K ≥ 2, L ≥ K2, an environment h, c, M in R and a
smooth function g in L2(µh

ΛL,M ) such that < g2 >µh
ΛL,M

= 1. There exists a

finite constant C0 depending on ‖F‖∞ such that

1
βL

log Eµh
ΛL,M

[
exp

{∑̀
j=1

|Ij |[A′
j(mj)− c]

(Mj

|Ij |
−mj

)}]

≤ C0β

K
exp

{C0

`

∑̀
j=1

|Ij |(A′
j(mj)− c)2

}
. (1.20)

for every β > 0.

Proof: Assume first that β2` ≤ 1. Let Hj = [A′
j(mj) − c](Mj/|Ij | −mj).

The beginning of the proof is identical to the one of Proposition 5.1.6 up to
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formula (1.15) with Hj in place of Gj . We claim that there exists a finite
constant depending only on F such that

Eνh
ΛL,λ

[
e2β|Ij |Hj

]
≤ expC0β

{
`−1 + β|Ij |X2

j

}
, (1.21)

∣∣∣Eνh
ΛL,λ

[
Hje

2β|Ij |Hj

] ∣∣∣ ≤ C0

{ 1
L

+ βX2
j

}
,

Eνh
ΛL,λ

[
H2

j e2β|Ij |Hj

]
≤

C0X
2
j

K
,

where Xj = A′
j(mj)− c. It follows from Lemma 4.1.1 that Xj is absolutely

bounded.
We start estimating the exponential. Recall that m∗

j stands for the ex-
pectation of the density of particles in Ij for the grand canonical measure
and that |mj − m∗

j | ≤ C0L
−1 according to (1.11). In particular, the expo-

nential term is less than or equal to

eC0β`−1|Xj |Eνh
ΛL,λ

[
e2β|Ij |Xj(Mj/|Ij |−m∗

j )
]

.

Since Xj is absolutely bounded, the first exponential is bounded by exp{C0β`−1}.
It remains to estimate the expectation. Since the expression in the expo-
nential has zero mean, expanding the exponential up to the second order,
we obtain that the expectation is bounded above by

1 + 4β2|Ij |X2
j Eνh

ΛL,λ

[
|Ij |(Mj/|Ij | −m∗

j )
2e2β|Ij | |Xj(Mj/|Ij |−m∗

j )|
]

.

Recall the definition of β1 introduced in Lemma 3.1.8. Since 2ab ≤ Aa2 +
A−1b2 for any A > 0, the previous expression is less than or equal to
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1 + 4β2|Ij |X2
j e2β2β−1

1 |Ij |X2
j Eνh

ΛL,λ

[
|Ij |(Mj/|Ij |−m∗

j )
2e(β1/2)|Ij |(Mj/|Ij |−m∗

j )2
]

.

Since ae(β1/2)a ≤ C(β1)ea for a > 0, since 1 + x ≤ ex, since Xj is bounded
and since β2 ≤ `−1 = K/L ≤ K−1, by Lemma 3.1.8, the previous expression
is bounded above by exp{C0β

2|Ij |X2
j }, which proves the first estimate in

(1.21).
To estimate the linear term, add and subtract Hj in the expectation and

recall that | exp{x} − 1| ≤ |x| exp{|x|}, |mj − m∗
j | ≤ C0/L to deduce that

the linear term is absolutely bounded by

C0|Xj |
L

+ 2βX2
j Eνh

ΛL,λ

[
|Ij |(Mj/|Ij | −mj)2e2β|Ij | |Xj(Mj/|Ij |−mj)|

]
.

Replace mj by m∗
j in the expressions above and recall that Xj is absolutely

bounded to estimate the sum by

C0

L
+ C0βX2

j Eνh
ΛL,λ

[
e2β|Ij | |Xj(Mj/|Ij |−m∗

j )|
]

+ C0βX2
j Eνh

ΛL,λ

[
|Ij |(Mj/|Ij | −m∗

j )
2e2β|Ij | |Xj(Mj/|Ij |−m∗

j )|
]

because β and Xj are bounded and |mj − m∗
j | ≤ C0/L. It remains to

repeat the arguments presented for the exponential term to obtain that this
expression is less than or equal to C0L

−1+C0βX2
j , proving the second claim

in (1.21).
By similar reasons, the quadratic term is bounded by C0K

−1X2
j . This

concludes the proof of (1.21).
With the estimates (1.15) it is not difficult to prove lemma in the case

β2` ≤ 1.
We turn now to the case `−1 ≤ β2 ≤ β2

0 and follow the second part of the
proof of Proposition 5.1.6 up to formula (1.19) with Hj in place of Gj . Since
|mj −m∗

j | ≤ C0L
−1 and since Xj is bounded, the linear term of (1.19) with

Hj in place of Gj is bounded by Cβ`−1. On the other hand, the quadratic
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term is less than or equal to C0β
2|Ij |X2

j . to derive this estimate, we need
to keep in mind that Xj is absolutely bounded and that K2 ≤ L. Is is easy
to conclude the proof of the lemma with these estimates.

We conclude this section with a technical result needed in the proof of
the logarithmic Sobolev inequality.

Lemma 5.1.8 Fix a bounded function H : R → R, an environment h and
L ≥ 2. The function H̃L,h : R → R defined by H̃L,h(m) = Eµh

ΛL,m|ΛL|
[H(η1)]

is Lipschitz continuous on R and the Lipschitz constant does not depend on
L.

Proof: An elementary computation shows that

∂MEµh
ΛL,M

[H(η1)] = −Eµh
ΛL,M

[F ′(η2);H(η1)]

= −Eµh
ΛL,M

[
H(η1)

{
F ′(η2)− < F ′(η2) >µh

ΛL,M

}]
.

By Corollary 3.1.4, the absolute value of the previous expression is bounded
above by C1L

−1 for some finite constant C0 depending on ‖H‖∞, ‖F‖∞ and
‖F ′‖∞ because the grand canonical measures are product. Since H̃ ′

L,h =
L∂MEµh

ΛL,M
[H(η1)] the lemma is proved.
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