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Abstract

We consider reversible, conservative Ginzburg-Landau processes in a
random environment, whose potential are bounded perturbations of the
Gaussian potential, evolving on a d-dimensional cube of length L. We prove
in all dimensions that the spectral gap of the generator and the logarithmic
Sobolev constant are of order L2 almost surely with respect to the envi-
ronment. We folow here the martingale approach introduced in [LY]. The
main ideas are essentially the same but there are several tecnical difficulties
coming from the unboundedness of the spins. The main ingredients for the
Ginzburg-Landau process without environment are a local central limit the-
orem, uniform over the parameter and the environment from which follows
the equivalence of ensembles, and sharp large deviations estimates.
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0.1 Introduction

Poincaré and logarithmic Sobolev inequalities are powerful tools in the
analysis of stochastic processes. A sharp estimate for the spectral gap, for
instance, is of fundamental importance in the derivation of the hydrody-
namic equation of nongradient systems [18], [16]. In the same way, the
spectral gap and the logarithmic Sobolev inequality played a central role in
the investigation of the decay to equilibrium of conservative systems in in-
finite volume [1], [2], [10], [8], [13]. More recently, [7] a logarithmic Sobolev
inequality was one of the main tools in the derivation of the scaling limit of
a non-attractive weakly asymmetric process whose hydrodynamic equation
is given by a first order hyperbolic equation.

We continue in this article the investigation started in [11] and present a
sharp estimate of the spectral gap and of the logarithmic Sobolev constant
for Ginzburg-Landau processes in random environment whose potential is a
bounded perturbation of the Gaussian potential. We believe, however, that
the approach presented here extend to the case where we have a bounded
perturbation of a convex potencial. In this case, it was recently observed
by Caputo that whem the potencial is a purely convex function, the L?
behavior of the inverse of the spectral gap and of the logatimic Sobolev
constant cam be easily obtained by tecniques introduced for models with
convex interactions. The precise assumptions are given in chapter 1. We
follow here the martingale approach introduced in [15].

As for the Ginzburg—Landau process without environment, the main in-
gredients needed in the proof are a local central limit theorem, uniform over
the parameter and the environment from which follows the equivalence of en-
sembles, and sharp large deviations estimates presented in chapter 5. In the
presence of the environment these estimates are technically more demand-
ing and some new arguments are needed. To bound the terms coming from
the environment, we will need to require the environment to take bounded
values and to impose a nice behavior of the variance and the mean as the
chemical potential diverges.

The derivation of sharp estimates for the spectral gap and the logarithmic
Sobolev inequality for conservative interacting particle systems has started
with the pioneering work of Lu and Yau [15] and Yau [19], [20], where the
martingale method was introduced. Landim, Sethuraman and Varadhan in
[12] extended to unbounded spin systems the sharp estimate of the spectral
gap, while Landim and Yau [13] proved the Poincaré and the logarithmic
Sobolev inequality for Ginzburg-Landau processes where the potential is
a bounded perturbation of the Gaussian potential. The estimate of the



spectral gap was extended by Caputo in [4] for bounded perturbations of
strictly convex potentials and was examined by Chafai [6] with an alternative
approach. The martingale method was revisited recently by Cancrini and
Martinelli in [3].

In the context of conservative systems in random environment, Quastel
and Yau [17] proved a sharp estimate for the spectral gap of the symmetric
exclusion process in random environment using the martingale approach.
Caputo [5] presents a general method to derive Poincaré inequalities for
conservative dynamics and deduces a sharp estimate for the spectral gap of
symmetric exclusion processes in random environment.

The article in conceived as follows. In chapter 1, we present the main
results. We prove the spectral gap in chapter 1 and the logarithmic Sobolev
inequality in chapter 2. These chapter rely on estimates presented in chapter
3, 4 and 5. In chapter 3 we present some consequences of a local central
limit theorem, uniform over the parameters. In chapter 4 we examine the
assumptions made on the environment and in chapter 5 we prove some large
deviations estimates.



Chapter 1

Spectral Gap

1.1 Notation and Results

For L > 1, denote by Ay the cube {1,...,L}¢. Configurations of the
state space RM are denoted by the Greek letters 7, £, so that 7, indicates
the value of the spin at z € Ay, for the configuration n. The configuration n
undergoes a diffusion on RA whose infinitesimal generator Ly, is given by

1 1
Loy =5 2 @O =8)" = 5 D (Vy(ny) = Vi(no))(@y, — Bn.) -
z,yGAL r,yEAL
llzyll=1 l|lz,yl|=1

Vz: R — R represents the potential V;(a) = hya + V(a), where V(a) =
(1/2)a?+ F(a), F: R — R is a smooth bounded function such that ||F’||s <
00, h = {h;, € Z%} is a collection of i.i.d. random variables to be specified
later and

/e_v(z) dr = 1.

Denote by Z: R — R the partition function

Z(\) :/ V@ gq (1.1)
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by R: R — R the density function 9y log Z()\), which is smooth and strictly

increasing, and by ® the inverse of R so that

1 /Oo ®(a)a—V (a)
o0 = ——— ae da
Z(®(a)) J -0

for each o in R.

Denote by vy the measure Z()\) ! exp{A\a—V (a)}da, by gr(a) = Z(\) ! exp{a—
V(a)} its density with respect to the Lebesgue measure and by o2()\) the
variance of vy: 02(\) = 0% log Z(\) or

o?(\) = /oo a’gx(a)da — (/OO agx(a) da)z.

—0o0 — 00

We assume throughout this thesis that o(-) has limits at -00: There exists
03 < oo such that

~ 20\) _ 2
AEIfooJ (N = o7 (1.2)

This is a new assumption with respect to the non-random case needed in
order to estimate some terms which appears through the environment (cf.
Lemma 4.1.2). We prove at the end of chapter 4 that (1.2) holds, if, for
instance, F' has limits at the boundary of R:

lim F(a) = Fy (1.3)

a—*+oo
for some finite values F4.

For X in R, and a finite subset A of Z?, denote by 1//}\" y the product measure
on RA defined by



1 _ _
Vz}\l,/\(dn) = H Z(A—h )e[’\ P e V(””“’)dnx
zeA *

Most of the times we omit the superscript h in V}\‘ - Notice that EVR “ ] =
’ ,(a)+hy

o for all o in R, z in A.

For each M in R, denote by ,uk s the canonical measure on A with total
spin equal to M :

() = ot | S =)

TEA

Expectation with respect to a measure m is denoted by F,,. Notice that
the canonical measure uK s does not depend on A but depends on h.

An elementary computation shows that the measures {URL’ v A€ R},
] , M € R} are reversible for the Markov process with generator Ly, .

Ao MER ible for the Mark ith tor La,
In fact,

1
< £ALf7g >yh =3 Z / [(&71 87]y) f:|g H Weknz—vz(nz)dnz
e e, 2O
1 1 -
W’yE”Ale z€EAL z
1 1 -
DY / (0. — 03,)f] [@n. — 00 TT Je
ol sen, T



3 3 [0 =i [ - oo TT e

ﬁ?’yEHALl z€AL
z,y||=
1 1 B
2 S [0t Vi [en -0l TT goe o
z,yEA ], 2€A,
[lz,yll=1
1 1 B
g zehy ©
1 ) )
5 D / (Va(na) = Vy ) |00, = 0009 T1 Zo e an.
ﬁ;yye\(\:% ZGAL

The Dirichlet form Dj, associated to L, is given by

1

h

Da, (WA f) = 5 Z <(T™Vf)? >uh
w’yeAL Y
llz,yll=1

In this formula and below, for a probability measure u, <. >, stands for the
expectation with respect to p. Furthemore, for z , y € Z¢, T®¥ represents
the operador which acts on smooth functions f as

peag = 008
.

T

and p stands for a invariant measures I/RL ) or ,uRL M-

For a positive integer L and M € R, denote by W (L, M, h) the inverse
of the spectral gap of the generator £, with respect to the measure ,u/}{L’ M

<ff >R

W(L,M,h) — sup ——— "AM
f DAL(MRD]\/[af)



In this formula the supremum is carried over all smooth functions f in
LQ(,uRL ) and < f; f >, stands for the variance of f with respect to u. We
also denote this variance by the symbol Var (p, f). Let

W(L,h) = sup W(L,M,h) .
MeR

We assume that the environment of i.i.d. random variables h = {h,, x €
7%} take bounded values: There exists Ag < oo such that |h,| < Ag. This
is the only assumption needed on the environment. We denote by P the
probability on [—Ay, Ao]Zd corresponding to the environment h and by E,
expectation with respect to IP.

Theorem 1.1.1 Assume (1.2). There exists an almost sure event Qo of
[— Ay, Ag]Zd with the property that for all h in Qq, there exists a finite con-
stant Cy depending only on ||F||so, ||[F'|lcc and h such that

W (L,h) < Co(F,h)L?

for all L > 2.

A lower bound of the same order is easy to derive (cf. [11]). Fix a
smooth function H : [0,1]% — R such that [ H(u)du = 0 and let fr(n) =
> wen, H(F)Mz. An elementary computation shows that

D dan =5 S [H(L) - m(F)]

z,yEN],
lz,yll=1

The basis {ej, 1 < j < d} stands for the canonical basis of R?. By Corollary

<fw.fu>v, .M
3.14,as L — o0 L
’ » L?Dpg (vap,m.fH)

Mo,

T converges to

8



J H(u)%du

< Mey s Ney >,jg W This proves that

liminf LW (L, h) > 0.

L—oo

For L > 2, a probability measure v on R and a function f such that
< f?2 >,=1, denote by Sy, (v, f) the entropy of f?dv with respect to v:

Sa, (1, f) = / £ log f2dv ;

and by 6(L, M, h) the inverse of the logarithmic Sobolev constant of the
Ginzburg-Landau process on the cube Ay with respect to the measure

h .
MAL’M.

Sa (ub
0(L7M7h) = sup AL(IU’AL”M f) .

f Dag (MRLM’ f)

In this formula, the supremum is carried over all smooth functions f in
2(, h 2 _
L*(uj, ar) such that < f >V’RL,J\4_ 1. Let

O(L,h) = sup 6(L, M,h) .
MeR

To prove the logarithmic Sobolev inequality, we shall require that the
function I'1 (A\) = R(A\) — A has limits at the boundary of R: There exists 'y
such that

li T =TI5. 1.4
Jim D) = T (14



We prove at the end of chapter 4 that (1.4) holds, if, for instance, F
satisfies (1.3).

Theorem 1.1.2 Assume (1.2), (1.4) and that |[F" |« < oco. There exists
an almost sure event Qg of [—AO,AO]Zd with the property that for all h in

Do, there exists a finite constant C(h) depending only on ||Flls, ||F’|lco,
|F"||00 and h such that

O(L,h) < C(F, h)L?

for all L > 2.

We follow here the martingale method developed by Lu and Yau to prove
the Spectral Gap and a bound on the Logarithmic Sobolev constant for a
conservative interacting particle system. This approach relies on a two a-
priori estimates. First, a local central limit theorem for independent random
variables with marginals equal to the marginals of the product measure vy, ,
uniform over the parameter A € R. Second, a spectral gap or a logarithmic
Sobolev inequality, uniform over the density, for a Glauber dynamics on one
site which is reversible with respect to the one-site marginal of the canonical
invariant measure.

1.2 One-site spectral gap

To fix ideas, we prove Theorem 1.1.1 in dimension 1. The reader can
find in section A.3.3 of [KL| the arguments needed to extend the proof to
higher dimensions. To detach the main ideas, we divide the proof in four
steps. The proof goes by induction on the size of the cube. We start with
L=2

In this section all constants denoted by Cj depend only on ||F||_, and
all constants denoted by C depend only on ||F||, ||F’| - In the case they

10



depend on some other parameter, the dependence is stated explicitly. These
constants may change from line to line.

Consider a smooth function f : R*? — R. We want to estimate <
i >ﬂ'/§2,M in terms of the Dirichlet form of f . Since for the measure

MR%M the total spin is fixed to be equal to M, let g(a) = f(M — a,a) and
. . hl .
notice that < f, f >#R2,M is equal to < g,g >N?\’L1,M’ where 1,7, is the

marginal distribution of n; with respect to ,ul[{L’ M

The following result is helpful. Fix L > 2, M in R and an environment
h. The Glauber dynamics has a positive spectral gap which is uniform with
respect to L, M and h :

Lemma 1.2.1 There is a finite constant Cy depending only on || F||s such
that

for every L > 2, M in R, environment h and every smooth function f: R —
‘ h,1
R in L2(:“AL,M)'

In the case of grand canonical measures, this result is true under the more
general hypothesis of strict convexity at infinity of the potential ([Le] and
references therein). In the case of canonical measures the main problem is
to obtain a good approximation of the one-site marginal in terms of the
one-site marginal of grand canonical measures.

Before proving this result, we conclude the first step. Applying this re-
sult to the function g defined above, we obtain that its variance is less than
or equal to C(]E”h,l [(Dg/0m)?]. Since dg/0m = (Of /On2 — Of /Om), we

Ao, M

have that

11



<ff b = <GI>un = <gig > ha

2, M

< Co EHX;NI [(aangJQ} = Co E“lxva K;?gly}

= Cy ENXQ,M Kgé; — aanfl>2} .

This shows that W(2,h) < Cy, proving Theorem 1.1.1 in the case L = 2.
We conclude this step with the

Proof of Lemma 1.2.1 We first prove the lemma for the grand canonical
measure. Fix A € R and denote by V}\I’LI , the one-site marginal of the product

measure V/}\lb y- Fix z) € R, that will be specified later, and f € LQ(V}:’; \)-

By Schwarz inequality, the variance of f is bounded above by

Var(vy, 5, f) < /R(f(fv) — flan)2e M@y

oo o0 ) y
< / () dy / (2 — 22)e” X @ da+ / () dy / (z — 22)e” A @ dg,
) Yy — 00 —00

where V{*(z) = —Az + ha +log Z(A — h) + V(z). It remains to show that
the expressions inside braces are uniformly bounded in x and X for an apro-
priate choice of x). Both expressions are handled in the same way and we
consider, to fix ideas, the first one where we need to estimate
[e.e]
y

/ " Py / (2 — an)e X @da,

Choose ) = A — h and change variables to reduce the previous expression
to

12



e¢] o

Fy)%dy / e V@A) gy

A—h y—A+h

_ f( ) /OO l,e()\fh)(er)\fh)f%(xf)\+h)2+logZ()\fh)fF(er)\fh)d:C
A—h Ath

<Cy | fly)’e N Way
A—h

where Cy = e:vp{2HFHOO}.

This conclude the proof of the lemma in the case of grand canonical mea-
sures. We now prove the Lemma for canonical measures.

For XA in R, denote by P,  the probability measure on the product space
RY that makes the coordinates {Xk, k > 1} independent random variables
with X having density Z(\ — hy) " exp{[\ — hx]z — V(z)}. Denote by Ep_»
expectation with respect to P, .

Denote by 71()), 2(\), {7%(A), k > 3} the expectation, the variance and
the k-th truncated moment of a random variable with density Z(\) ™! exp{\z—

V(x)}:

71()\) = Lmee’\%_V(”"’) dx
0.2 — Z(l)\ fR e/\a:—V(x) dx |
1 _ k Az—V(x)
W = Fa7 L= da. (21)

For a finite subset A of N, denote by fn A, gnaa the density of the
random variable

h)\Al/QZ 71)\ h)]

DX = = hy)]

JEA

13



respectively. In this formula,

(A A) = ) (A —hy) .
JEA

We prove in Chapter 3 an Edgeworth expansion for fj, x A, uniform over the
parameter \.
Let R(xz) = Rn 1, m(z) be the Radon-Nikodym derivative of N}X’;M(dff)

with respect to the Lebesgue measure. Fix a smooth function f in L? (,ul[;L1 )

and z) in R to be specified later. The variance of f with respect to NR; M
is bounded above by

[ (4@ = @) Ria)da

By Schwarz inequality, the previous expression is less than or equal to

| aelr@PR@) {505 [ dv-a)rw)

+ /_; dx [f’(ac)]QR(:r){R(lx)/_zo dy (zx — y)R(y)} :

It remains to show that the expressions inside braces are uniformly bounded
in z, L, M and h for an appropriate choice of x). Both expressions are han-
dled in the same way and we consider, to fix ideas, the first one where we
need to estimate

s {5 [ dvlo =R} 2.2

T>T )\

14



For a finite subset A of N, denote by gy a the density of the random
variable ..\ X.

We may write the density R(-) in terms of the densities gn A A(-) OF Jh A
for appropriate sets A. Choose A so that

M = EVIA«LYA[ > nx} = > m(A—hs). (2.3)

zEAL x€EAL

Remark 1.2.2 Let X absolutely continuous random variable with density
fuction fx. Then, for every a # 0, b € R,

ua—b)l

fax+o(u) = fx (

a.

Indeed, if H is a continuous bounded function,

a

BlH(eX +0) = [ Hwfoxsads= [ H) 5t ("7 )y

Remark 1.2.3 Let X4, ..., X1, independents random variables with densities
fj- Then:

L
/ Hfj(zcj)dﬂfl...da:Lfl

1+...—|—:EL:M j:1

= /f1($1)-'-fL—1(xL—1)fL(M — T — ... — xL_l)darl...de_l
L
=for, x,(M) = for x, (M - > )
j=1

15



We now compute the ratio % explicitly:

Fix a test fuction H : R — R. By definition of the canonical measure ,uI/{L Mo

EVY GIHm)) = Z(A = hy) ™
A M flzL xj:MeEJLﬂVf(zj)dxl...d:n,;_l

j=1

B Z_lfdle(ml)e(’\_hl)z_V(“) fzﬁmﬂL:Mﬂl Ian2(x2).. fann(zr)drs...dep_q

Jortoap=nr Pont (@) fanp(zr)der...dzy

In view of Remark 1.2.3, the previous expression can be writte

fszzz Xj (M N :El)

fzf:l Xj (M)

=Z(\— hl)_l /dﬂle(xl)e()‘_h)ml—V(ﬂcl)

A—hi)—=z
= Z(A*hl)_l /d$1H($1)e(>\—h1)$1—V(ﬂf1) fZJLﬂ(inw()‘fhj))(qq( ) )
Fsr (x;—moen)(©)

Thus, with the notation introduced just before Remark 1.2.2,

1 pA—h1]lz=V () IarAs (1A= h1) — @)

Rlr) = ——
() ZA =) 9n A, (0)
= #e[)\fhl]:p—‘/(m) hay g (M — ) |
Z()\ - hl) gh,)\,AL (M)

where Ag;, ={2,...,L}. Choose zy = X\ — hy. Since || F|| is finite, then

R(y) M my—5-F) ha Ay (M —y)
R(:C) e/\x—hlr—g—F(aﬁ) gh’)\,AzyL(M — a:)

i

16



—(=(=h1)? _
o2 Ian s, (M —y)

SCo———o 7 =
6% gh,)\,AQ’L(M_:L‘)

Up to this point we proved that

sup R(lx) | =iy

—(y=(A—h1)?
< Cp sup /Oo(y z)° I gh’A’AQ‘L(M_y)dy
> U0 — L)\ ~ )
x>z Jz ew gh,)\,AL(M — x)

—(y=(A=h1)? _
Co sup /Oo(y . )e T Ghoane, (M —y)
= (g — T\ -
xZA*hl T ew gh,)\,AL(M — x)

dy

Performing the change of variables

We obtain that the previous expression is equal to

2
/°° e Gnan,, (M —y—A+M)
Cy sup
xX

Yy = Y.
2>0 2 G, (M —x — X+ hy)

We need therefore to estimate

2 9 1oy IhAAs L (M —y — A+ hy)
expix®/2 — 21 = . .
Pl 2=y }gh,A,A2,L(M —z =X+ hy)

17
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In view of the proof for grand canonical measure, which can be found in
[11], to complete the proof, it remains to show that the ratio on the right
hand side is uniformly bounded. To this end, we replace the parameter A by
an appropriate parameter y making small the argument of the denominator.

A computation shows that

—hy) -

Thasp (@) = exp{(A — p)a} H Z 7 )gh,,u A p (@)

In fact, for b € R

gh,/\,AQ,L (b) = / I H f)\ Jhug .’,U] H d$]

i=2%5=b j=9

L1
_ /z . bezfﬁ([khﬂxrvuj)flogzwhmdej
j=2%3— ]:2
L Z(u—hy)
:/ : elvj= 2(>\ M)xjnmnfu’h] $])d.fl?2 d.’L’L 1
Zj:zzj—b j=2
L Z(u—hy)
— o(A=p)b _ )
e H Z()\ h])gh»M»AzL(b)

Thus, the ratio appearing in (2.4) is equal to

Ghahe (M —y—A+h
ghv)‘vAQ,L (M T —A+Mh

O (a—y) TRt (M =y = A+ hn)
gh NNV (M rT—A+ hl)

)
)
(M =y —hy) —y— A+ h)
(

_ (O a—y) Thomhar
Tz (M = Y7 = hy) =2 = A+ ha)

18



M‘Zf:z Y1(p—hj)—y—A+h1 )
02(h7#7A2,L)%

M=% yi(u—hy)—z—A+h )
0'2(h7M7A2,L)%

fha“?AQ,L (
fh:,u‘:AQ,L (

— O-m(y)

Choose pu so that

L L
Z’Yl(/\ —hy) — Z'Yl(ﬂ —hj) ==z
j=2 j=2
Then,
L L
M= " yi(p=hj)—z—=A+h = i(A=h1)+Y_(n(A=hy) =y (p—h;))—z—A+hy
j=2 j=2
=T1(A— hy).

Notice that p < A because x > 0 and ~;(+) is an increasing function. With
this choice, the ratio on the right hand side of (2.5) becomes

Inp sy (L1(A = 1) + 2 —y)
I Agr (T1(A = h1))

Fipra,s (070 1, Ao p) DL (N = o) + 2y })
Fguia s (201, A0 1) 20N = )

(2.6)

exp{(A — p)(z — y)}

= exp{(A = p)(z —y)}

The exponential is bounded by 1 because i < A and z < y. To conclude the
proof of the lemma it is therefore enough to show that the previous ratio is
uniformly bounded.

19



We first consider the case in which L is large. We first consider the
denominator.

fhvll,Az,L (UQ(hv 12 A2,L)71/2F1()\ — h1)>.

By lemma 3.1.1.

o2(h, 1, Ag,z) > OV — 1.

By the proof of lemma 3.1.1.

[v1(A = k1) = A+ ha]| = [[EA[X1] = A+ Ay < Co.

uniformly in .

In particular, by the Local Central Limit Theorem, there exist Ly =
L(||F')|»)s Co, such that

fguas (0201, 80.) 72T (A= 1)) = C.
for L > Lyg.

We now turn to the numerator of 2.6. By Local Central Limit Theorem

finguiras (720,11 A2.0) 2PN = ) 2 =y} ) < Co.

20



In view of these estimate (2.4) is bounded by

B 2202
Go / ye 7 dy < Co

this proves the lemma for L large.

‘We now turn to the case in which L is small.

For 2 < L < Ly, denote by fh, AA the density of the random variable

ﬁZ{Xj—[A—hj]}-

JEA
The ratio of the previous formula can be written as

Fopros (102,072 S2E (= hy) + D13 = b)) + 2~y }) |
Fogito s (lAz,Llfl/z{ o Talp —hy) +Ti(A = hl)})

Since ||I']|co < 00, by Lemma 3.1.7, this ratio is bounded by exp{CoLo}.
This concludes the proof of the lemma. m|
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1.3 Decomposition of the variance

We will obtain now a recursive equation for W(L,h). Assume that we
already estimated W (K, h) for 2 < K <L — 1. Let us write the identity

f—F

h
HAp M

A ={f =By U} +{Ey | i) =By 171}

h
A, M

Through this decomposition we way express the variance of f as

2
E'“‘RL,M[<f_E'“RL,M[f]> } (3.1)
= B (=B )] + B [(Ba U - By 1)

The first term on the right-hand side is easily analyzed through the induc-
tion assumption and a simple computation on the Dirichlet form. We write

ENIXL,M Kf N E'“]XL,M UmL])? - EMRLJ\/I |:EHRL7M [(f B EMRLJW [me])Q ‘ UL] ]

2
= EMRL,M {ENRLfl,M—nL [(fnL - ENRLil,M—nL [fnLD } } ’

Here we used the fact that En  [|nr] = En [.]. In this formula
Ap,,M H

Ap,_1,M—np,
and below f,, stands for the real function defined on R*:-1 whose value at
(517 '“7§L—1) is given by f’V]L (517 '“7§L—1> = f(€17 "‘7§L—17 77L) By the induc-

tion assumption this last expectation is bounded above by

WE=L0En [Da (bR, arny f )| € WE=L 0D, (1], 01, F) -
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Thus we proved that

(=B )] < WE =100y, (1,00 f) - (32)

h
HAp M

The second term in (5.4) is nothing more than the variance of En [fInL],
L

a function of one variable. Lemma 1.2.1 provides an estimate for this ex-
pression:

Bt (B, )5, 10)] < ok [(5 B, L)) ]

for some constant Cy depending only on || F/s.
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1.4 Bounds on Glauber Dynamics, small values of
L

We now estimate the right hand side (3.3), which is the Glauber Dirich-
let form of EMR " [fInL], in terms of the Kawasaki Dirichlet form of f . A
L

straightforward computation gives that:

d 1 = of  of
o D) = 7 2 e Fmg g |7

L—1
1 ,
+ By i z_jl V' (1)

-

In this formula E[f; g|F] = E[fg|F] — E[f|F|E[g|F] stands for the con-
ditional covariance of f and g. Notice that the variables h, do not appear

because we have covariance terms. We examine these two terms separately
(4.1).

The first expression on the right hand side of (4.1) is easily estimated.
Recall the definition of the operator T%¥ f. Since T*Y f = ngygL—l TYTLyf
by Schwarz inequality , we have that

L-1 L-1L-1
<L_1;EMRLMW—§,7{77LD2 (St ula o m])
L—1
S S (€t R
L—1
SO IN (Co s SETAP SR
L—1
<130, 7))
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Hence, we have that

MO0 AN D IR e

The second term in (4.1) is also easy to handle for small values de L.
Since V(¢) = 3¢ + F(¢) and since > 1<e<r—1 " 18 fixed for the measure
En, m[-Inc]. the square of the second term on the right hand side is equal
to

-1 2 -1

,uAL M [fv 1 Z F'(nz) 77L] = (EAL*LM—T]L [fmj ﬁ Z F,(nz)}>2

=1 r=1

L-1

< Epp_ o M-ny |:f7lL; fnL] By M-y [(ﬁ Z F(nx))Q} '

xr=

In this formula, F' stands for F’ — Eyy, -y [F'].

By the induction assumption, the first variance is bounded above by
W(L—1,h) Dy, , (’U'RL—I:M*WL’ fn..)- For the second one, we divide the cube
A1 in two cubes of the same size and use the inequality (a+b)? < 2a?+2b?
to separate the variance in two variances on cubes of size L/2. We now ap-
ply (3.1.5) to estimate the variance with respect to canonical measures by
variances with respect to grand canonical measures. Since F’ is bounded
and the grand canonical measure is product, these last variances are clearly
of order L~!. Taking expectations with respect to ,u/}{L’ A+ we finally obtain
that

n)]" < W@ 1D 8, ).

By B, [0 ZV’ (2)

25



for some finite constant C depending on ||F’||o only.

From this estimate and we get that the left hand side of, which is the
second term of, is bounded above by

01{L + VV(L;Lh)}DAL(NRL,M’f)‘

Putting together this estimate with (3.2), we obtain that

Var,, [f] < {(1 + %)W(L —1,h) + ClL}DAL (1, a0 f)

HAp, M

or, taking a supremum over smooth functions f ,that

W(L,h) < (1 + %)W(L —1,h) + C4 L.

This inequality permits, together with the estimate W (2,h) < C{ obtained
in section 1.1, to derive estimates of W(L,h) for small values of L. We
obtain by induction that W (L, h) < CiL!, uniformly over the environment,
for some power ¢ which depends only on ||F||so, ||F”||oo-

Notice that we would obtain the right bound L? if we could prove that the
constant C, which appears in the previous inequality, is strictly less than
2. Therefore, to prove the spectral gap, we have to improve our bounds on
the covariance term to derive a factor of order eL~! for ¢ < 2.

The bound W (L,h) < C; L' will be used for small values of L. We now
consider large values of L.
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1.5 Bounds on Glauber Dynamics, large values of
L

Here again we want to estimate the second term of (5.4). Applying
Lemma 1.2.1, we bound this expression by the right hand side of (3.3). The
first term of (4.1) is handled as before, giving (4.2). The second one requires
a deeper analysis. Its square is equal to :

L-1

1 /
E#RL,M [f§ -1 Z F (1)

x=1

9 . 1 L—-1 - 9
TIL:| - lu‘RL,LJ\/I*T]L |:f, L — 1 ; (TII)]

(5.1)

Here and below we omit the subscript ny, of f.
Fix € > 0 small, a random environment h in some set €}y and a positive
integer K = K(g) > 2. Both Qp and K will be specified later. For each
L > K2, divide the interval {1,...,L — 1} into £ = |(L — 1)/K| adjacent
intervals of length K or K + 1, where |a| represents the integer part of a.
Keep in mind that K is large but fixed, while L (and thus ¢) increase to
+00.

Denote by I; the j-th interval and by M; the total spin on I;: M; =
Y oac 1, M- The right hand side of the previous formula is bounded above by

> Fm) =By [uZF’"zHDz(“)

j=1 ‘ j| z€l;j z€l;

/
. /
+2(EMRL 1,M— "7L|: ’;aj “I M [‘I‘ZF 7795 H) ’

z€l;

where a; = |I;|/(L —1). Taking conditional expectation with respect to M;,
we have

2By (B, [ a{m S PaliE]])

j=1 | J’ z€l;
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(E“RL 1. M- 77L|:fz TN [\I|ZF,U‘T”>

zel;

where F; = o(Mj;n, € M;).We rewrite the first term as

¢
2
. /
2(21(ZJEHRL11M"IL|: “I M [f’ |1 ZF Ml H)
]:

z€l;

<22a1 BR, e nL[Var(MI M?f)VrMI Mv,I‘EI:F/nm ] (5.3)
xE

By the induction assumption, the variance Var(u}‘j’ M f) is bounded

above by W (|I;|,7;h) Dy, (MZMJ_, f), where 7;h stands for the translation of
the environment h for the origin to coincide with the left end of the interval
I;. By the a-priori estimate obtained in Step 3, this expression is bounded

by CLE'Dr (i} ap,o f)-

Now

MIM[{|I|ZF?7$ u, M, {|]|ZF T]x]} (5.4)

z€l; z€l;

{|B}j| ; F’(nz) - E‘u?j,Mj [’[1]| ; F/(nm)} }}

|2 Z u; M [F (12); F(Uy)]

I or

1 -

< Pl ng oy 1023 ()] (5.5)
TFY
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nlj _ /
where F/'(.) = F'(.)— < F >M?ij

J

If |I;| is large enough, by equivalence of ensembles

ClE|
EV}}A[F/(UI)] - E/—L]?j,Mj [F,(ﬁx)] = Tﬁo

The second term in (5.5), is bounded by

Ep [(Fow) =By | [F'0)])(F) =By | [Fn)])]+ ClF o

2 2770

Since the grand canonical measure is a product measure, (5.6) is bounded
by

W [F00]) (e [F]mig, [Pan])+ i

CIF CIFl . CIF
-5 |75 |75

/
(B 70| =

j7

The second term of (5.5) is bounded by

2
C||F'||5,
7|

Then the variance of ||~ Zzgj F'(n,) with respect to MZ,M]- is bounded
above by Co|L;j|7!||F’||% uniformly over M;, h. (5.4) is thus less than or
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equal to

¢

Cth h

T ,X;EHRLL]M_"L Dy, (w1, v 1)
]:

Since the previous sum is bounded by the global Dirichlet form Dy, (,uRL_h M—np>
f), we proved that the first term of (5.2) is bounded above by

C1K!
L DAL—I(/’LRL_17M7’I’]L7‘}C) . (5.7)

The next result provides an estimate for the second covariance in (5.2). For
Ain R, let 62(\) = E[o?(A — hy)].

Lemma 1.5.1 Let A = A(L, M — nr, h) so that

E. { 3 7790} - M. (5.8)

VAL_1A
rEAL 1

There exist finite constants Cy, Cy such that

< (e + DI (77 S o0 k) =20 J¥ortuy v )

for all K >2, L > K?.
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It is now easy to conclude the proof of the lemma. Fix 0 < ¢ < 1/2.
Choose K large enough for C7/K; to be smaller that ¢, where Cy is the
constant appearing in the previous lemma. Let Ky = Ky(eCj L o?) be the
positive integer given by (4.1.5) with o2 in place of U, where Cj is the
constant appearing in the statement of the previous lemma. Fix Ky =
max{ K7, Ko}. For this fixed integer Ky, consider the sequence of disjoint
intervals {IF,...,Il'} introduced above and an environment h in the set
Qo(Ko,02(+),eCy ") defined in (4.1.5).

By (4.1.5), there exists fy = £o(h,eC;*, Ko,0%(-)) for which the right
hand side of the statement of the previous lemma is bounded above by

2¢e

TE Lf; f]

h
HAp _y.M—np,

for all £ > £y. This bound together with (5.7) gives that (5.2), and therefore
(5.1), is less than or equal to

C1K} 2e
L DAL_l(MAg_l,M—nL7f) + f MRLfl’]u_nL

[fors fac] -

Since (5.1) is just the square of the second term of (4.1), taking expec-
tation with respect to ,uRL,M in (5.1) and recalling (4.2), we have that (3.3)
is bounded above by

K Coe
CL(L+ 32 ) Day ik /) + By F ]

Choose ¢ small enough for Cpe < 1. Adding this term to (3.2), in view
of the decomposition (5.4), we deduce that

31



2
EMXL,MKJ[_ MIXL,M[fD }
< (1 - %)_1 (W(L ~1,h)+ ClL>DAL(MRL,M7 £)

for L large enough. Note that the integer Lg from which this inequality
holds depends on the environment h because ¢y depends on h.

Taking supremum over smooth functions f: R — R in Lz(MRL,M ), we
obtain that

W(L,h) < (1 . %>_1(W(L— 1,h) +C’1L> .

It is not difficult to deduce from this recursive relation the existence of
a constant C = C (|| F||so, || F’]|00, h) such that W(L,h) < CL? for all L > 2.
This concludes the proof of Theorem 1.1.1. m|

We conclude this section with the

Proof of Lemma 1.5.1. For each finite subset A of Z, denote by Ry : R —
R the smooth strictly increasing function

R = By [ o]

zEA

and denote by @, the inverse of Ry. For 1 <j </, let A; : R — R be given
by



where A is given by (5.8), let

*

1
P = B, 2

m . =

and rewrite the sum

¢

ZajEuh [|] S Fln) } (5.10)

j=1 €l

as

Zaj{E"lf M; [|I1]] Z F/(n’”)} - @y (M /11;1) [|I | - Z (s ]} (5.11)

J

j=1 xel;

+iaj{E?MMw[u|zmz}— Ajlm3) — AL m )M 15— ) )
j=1
+ﬁa]{ D)+ AL /|| = m3) )
j=1

This decomposition is easy to understand. In the first term we compare
an expectation with respect to a canonical measure with an expectation
with respect to a grand canonical measure. In view of Corollary 3.1.4 for
the difference to be small, the chemical potential should be @, (M;/|I;|).
The second term is a Taylor expansion up to the first order and the last one
is what remains.

Notice that A;(m}) is a function of L, M —ny, and h only. It is therefore

a constant with respect to the measure u Ap 1 M=y The same statement is
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true for Z§:1 a;j(M;/|1;| —m}). Since we may add constants in covariances,
by the previous observation, we may substitute (5.10) by (5.11) where the
third term in (5.11) is replaced by

0
> aj(Af(m3) — o) (M;/|I;] —m3)

j=1
where ¢ = 52(\) 7! — 1.

o -1
Up to this point, we have replaced the average of E“?ijj [17;] erlj F'(12)]

by the sum of three terms. We estimate separately the covariance of f with
each term.

Set first

1 1
G = E [— F } —E [— r } .
J M?j,Mj ’Ij‘ Z (1) ”};,@Ij(Mj/ujD |Ij‘ Z (1)

z€l; z€l;

Since F’ is bounded, by the equivalence of ensembles, Corollary 3.1.4,
\G?] < (/K. Hence, by Lemma 1.5.3, the contribution of the first term in
(5.11) to the covariance appearing in the statement of the lemma is bounded
by

Cq

pepe— h
KL Hap_y.M—np

[f5 1] (5.12)

Consider now the second term in (5.11):
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S) = By [‘”ZF’%}—A( 7) = Ajm3) (M /1]

v, @ (M /1151)

= Aj(M;/|L;]) — Aj(mj) — Aj(mj)(M;/|1;| —mj)

We need estimate:

ECL
lu‘AL 1M77L|: J ]

Since we are allowed to add constants in covariances, by Schwarz inequality,

the square of the covariance is bounded above by

Eg U Ex nL[(i%Sj)Q} ,
=

The second expectation in (5.13) is equal to

ZGQE h SJQ] + ZajakEMR [S]Sk] .

MAL 1,M—np, L—1.M—-np,

J#k
where

S; =80 — En [SY)

v
AL_1.2

and A is given by (5.8).
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We estimate separately the diagonal and the off diagonal terms. The
sum of the diagonal term is less than or equal to

CK
En  [S]+ En  [5]]

PAL 1A L AL 1A

for some constant Cj which depends only on || F||s.

We have

En [SA<Exn  [(S9)7

FAp_ya 70 = THAL

By Lemma 4.1.1, [|A%|loc < Co. In particular, S;-) is absolutely bounded by
Co(M;/|I;] — ) and in this case

2:2 0 2:
aEVkLl/\S <C() CLE|1171 M/‘I‘— )]
C
<

In the same way

En [S< c(E!le 1S4 + E.n [54])

PApL 1 L—1A Y Papaat
<CExn [5Y
'uAL oA J
C

36



In particular , first term in (5.8) is bounded by

by definition of .

Second term in (5.12) is bounded by

Ex [S,S1]

PAp . M—ng,
CK | 2 o2
S EMRL,l,A[SjSk] + T EMRL,LA[SJ' Sk]

Since the grand canonical measure “RL , 1s a product measure and since
— 1

each term has mean zero with respect to /J/}[{L—l, y the first term vanishes.

Second term

CK s C
DR R e

because, we showed that

En [S?]<—.

AL 1A
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Then the second term in (5.8) is bounded by CTK

By Lemma 3.1.1, each expectation is bounded by CyK 2 so that the con-
tribution to the covariance of the second term in (5.11) is bounded again by
(5.12).

We turn now to the third term in (5.11) without A;(m}) and with A;(m})
replaced by A; (m;‘) — ¢, as explained above. We need to estimate

; ai{ A3m) + A5 (mH /11|~ m) )’

(E/‘RL_l M—ng, [f’

J

l

Remark 1.5.2 i)By Lemma 4.1.1,

1

! Zmelj o (P, (m;‘) — hg)

J— 1 P
G0, 20— )

Aj(m3)

because m; = Ry, (A\) and dy, = Rl_jl.

ii)



because Zle M; = M s a constant.

Since we are allowed to add constants in covariances, by Schwarz in-
equality, the square of the covariance is bounded above by

!
E“}/{L—LanL [f’ f] Var“RL—LanL |:{ Zl aj [A; (m]) N C] (|IJJ| N mj) }} ’
" (5.15)
the variance in (5.16) is equal to
L
JZ:; ajVarMhL v [[A;(m;‘) — (] <|I]]| - m*)}
+ ZajakCOV“RL_l,JVI—nL [[A;-(mj)—c] <‘Ijj‘_mj); [AL.(m})—C] (’T]j—mk” :

i#k

We estimate separately the diagonal and the off diagonal terms. The sum
of the diagonal term is equal to

¢ .
jz::l a?(A;(m;‘) —¢)?E,n [(f\gj‘ — mj)Q] :

Ap—1,M=ng,

By the equivalence of ensembles, the sum of the diagonal term is less than
or equal to

l
; B ) P By [(f‘fj’ —m)]



l . I; M; 4
+CZa?(A;»(mj) - C)2|£|\/E#RL1,A [(uj‘ - m;‘) }
j=1

By Lemma 3.1.1, this expression is less than or equal to

Since ¢ = E[o?(\ — h1)]~! — 1, and since 02(+) is bounded above and below
by finite, strictly positive constants, the previous expression is bounded by

On the other hand, by the equivalence of ensembles, Corollary 3.1.4, each
off diagonal term is bounded by

5 e ) =)Ao~ Bl = m) (s = mi)

T % K M; *
+j;ajak(Aj(mj)_c)(Ak(mk)_c)CL 127 S [(W - mj)Q(m —m
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for some finite constant Cjy depending only on || F'||«. Since the grand canon-
ical measure V}{L_l ) is product and since each term has mean zero with

respect to VRLA’ y» the first term vanishes. Since the measure is product,
the contribution of the off diagonal terms is bounded by

This concludes the proof of the lemma. m|

We now turn to a simple technical lemma needed in the proof of Lemma
1.5.1 above.

Lemma 1.5.3 Fiz \ given by (5.8). For 1 < j <, let Gg be a family of
functions in L2(1/1’{L717>\). Assume that each function G? depends only on

the variables {n, ,x € I;}. There exists a finite constant Cy, depending only
on ||F ||, such that

L 9 L
. (0 . 2 02
(Bt e, [P0 G)) = OO VA2 By G

for all L, M — ng, and h.

Proof: Since we are allowed to add constants in covariances, by Schwarz
inequality, the square of the covariance is bounded above by

¢ 2
B Al B [(;ajaj) } , (5.16)
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where

Gj =G} — En [GY

v
Ap—1A

and A is given by (5.8). The second expectation in (5.16) is equal to

GG - (5.17)

L—1-M—-ng,

L
2 2
D 4GBy (G + > ajaBy
i=1 ik

We estimate separately the diagonal and the off diagonal terms. Since
2K < L, by Corollary 3.1.6 and since the variance is bounded by the L?
norm, the sum of the diagonal term is less than or equal to

L@

-1

4 L
§ 2 2 E 2
C(] ajEVRL717>\ [G]] < CO ajEyll\]L
i=1 i=1

for some constant Cj which depends only on || F||s.

On the other hand, by the equivalence of ensembles, Corollary 3.1.4,
each off diagonal term is bounded by

1/2
E n )\[GJG]C] + 7{E h [GQGz]}

At d

for some finite constant Cy depending only on || F'||s. Since the grand canon-
ical measure V}QM1 ) is product and since each G; has mean zero with respect
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to VRLil y» the first term vanishes. Since the measure is product, the con-
tribution of the off diagonal terms is bounded by

/

%L[{j#ajak{Eyg M[Gg]EulAm M[Gi]} i
CoK 1/2\ 2
< L(;aj{EVRL m[ Gg)g]} )

because the variance is bounded by the L? norm. To conclude the proof, it
remains to apply Schwarz inequality and to recall that ¢ < 2L/K. O
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Chapter 2

Logarithmic Sobolev
Inequality

We prove in this section Theorem 1.1.2. The approach is similar to the
one presented in last section for the spectral gap. We will derive a recursive
formula for #(L,h) in terms of (L —1,h) and L in four steps. As before, for
j =0, 1,2, all constants C; are allowed to depend on || F¥)||, for 0 <i < j
and may change from line to line. Here F() stands for the i-th derivative of
F.

2.1 One-site logarithmic Sobolev inequality

We start our proof with the case L = 2. Let f: R" — R be a smooth
function such that < f? > =L Let g(m) = f(n1, M — ). Since the
Y

total spin is fixed to be M, we have that < g° > =< 12 > = 1 and
25 25

that Sa, (,LL11{27M,9) = S, (uR%M, f). The next lemma permits to estimate
the entropy of S, (,ulx% a+9) in terms of the Glauber Dirichlet form of g.
This result is in fact a logarithmic Sobolev inequality for the Glauber dy-
namics obtained when restricting the Kawasaki exchange dynamics to one
site. Recall that ,uRLl s Tepresents the one-site marginal of ,ukb M-
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Lemma 2.1.1 There exists a finite constant Cy depending only on ||F| s
such that

[ P08 H? el yytam) < G [(50)7] @)

for every L > 2, M in R, environment h and smooth function H: R — R

in LQ(MX’Ll’M) such that < H? > = 1.
LM

In the case of grand canonical measures, this result is true under the
more general hypothesis of strict convexity at infinity of the potencial( cf
(14) and references therein). In case of canonical measures the main prob-
lem is to obtain a good aproximation of the one-site marginal in terms of
the one-site marginal of grand canonical measures.

We conclude the first step before proving the lemma. From the previous
statement applied to L = 2 and H = g we have that

dg \2
SAQ(MR%M’f) - SA2(M}/{2,M79) < COEH}/:’le[(aim> }

= ()] = B, (G- o))

because dg/0m = 0f/0m — Of/On2. This proves that 6(2,h) < Cp uni-
formly in h, proving theorem 1.2 in the case L = 2. We conclude this step
with the

Proof of Lemma 2.1.1
We first prove of lemma in the case of grand canonical measures. Recall

that we denote by /ﬁk; s the one-site marginal of the measure ,ukL - We
want to show that there exists a constant Cy, independent of A, such that
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[ @ og @ik (da) < Co [IT@PUR, () (12

for all smooth functions H: R — R such that < H? >Mh,1 = 1. Since the
Ap,M

potencial V is a bounded pertubation of the Gaussian potencial, by Corol-
lary 6.2.45 in [DS], the previous inequality holds with a constant Cy that
might depend on h. All the matter here is to show that we may find a finite
constant independent of h. A change of variables permits to rewrite the left
hand side of (1.2) as

a2
/ Hy(a)?log Hy(a)?e @) \262da

where Hy(a) = H(a + ), Fx(a) = F(a+ A) +log Z(\) and Z()) is a nor-
malizing constant. It is easy check that H:I:eFA Hoo < 2lFlls . In particular,
by Corollary 6.2.45 in [DS], the previous expression is bounded above by

941 F 1 / H}\(a)Qe_FA(“)\}ﬁe_azda: 2¢"1F 1l / [H' (@) 11" \(da)

This prove the lemma in the case of grand canonical measures with Cy =
24 Fllos .

For canonical measures, we just need to use the local central limit theo-
rem for large values of L and explicit computations for small values of L. We
start with the case of large values of L. Fix a smooth function H: R — R

with < H? > n1 = 1 and recall the notation introduced in the proof of
A, M

Lemma 1.2.1.

We base our proof on two facts. First, that if a function W is strictly
convex then the measure py (dr) = Z~!exp{—W (z)}dxr associated to the
potential W satisfies a logarithmic Sobolev inequality. Secondly, if u(dz)
satisfies a logarithmic Sobolev inequality, and f is a density with respect
to u, which is bounded below and above (0 < C; < f < C1), then fdu
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satisfies a logarithmic Sobolev inequality. The proof of these two well known
sentences can be found, for instance, in [14].

In view of these statements, we just need to show that the above density
is equivalent to the density of a measure associated to a convex potential.
Here and below two functions g, f are said to be equivalent, f ~ g, if there
exists a finite, strictly positive constant Cy depending only on V' (and not
on h, M, A or L) such that Cpg < f < C'O_lg. We shall rely on the local
central limit theorem to show the equivalence of the above density with some
density associated to a convex potential.

For A in R, denote by P}, \ the probability measure on the product space
RY that makes the coordinates {Xj, k > 1} independent random variables
with X having density Z(\ — hy) "t exp{[\ — hx]z — V(z)}. Denote by En_»
expectation with respect to Py ».

Denote by v1()), a2(A), {7x(A), & > 3} the expectation, the variance and
the k-th truncated moment of a random variable with density Z(\) ™! exp{\z—

Vi(x)}:

n(y) = Z(&) /R r AV gy
() = Z(lA) /R [ — (V)2 V@ g
() = Z(lA) /R [~ (]F V@ g (1.3)

For a finite subset A of N, denote by fh A A, gn,xa the density of the random
variable

i S Rl 0 -,
Y jEA jeA

respectively. In this formula,
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2(h, A, A) Za (A — hy)
JEA

Take A% = H?log H?. The left hand side of (1.1) can be written as

h
1 fA(xl)leL zj:MezjlleVAJ(Ij)dIEL..dl’L,1

j=1

En [Am)’] = :
Fap.m Z()‘ o hl) f 1 L 621@11 V;L] (xj)darl...da:L_l
ij

1 [ doy A(zy)2eP—h1)z= V“”“)fmﬁ ap =Mz IAh2(@2)- fap(@r)des.. dep

"z Jortodap=nt Pxni (@) o (@r)der..dep

In view of Remark 1.2.3, the previous expression can be writte

M —
= 1 /dxlA(xl)Qe(’\_hl)v’Ul—V(xl)fzf2 Xj( )
Z(A—hl) fzjl‘le](M)

_ 1 2 (A—h1)z1—V (1) fsz:2(Xj—W1(>\—hj))(fyl(/\ - hl) B xl)
= dl‘1A(331) €
Z(A—hy) fozl(Xj—vl(/\—hj))(O)

2 _[A—hi]a—V(a) IR A A2 LA —h1) —a)

b a)?lo a)” e lamvia : a
CZ(A—h) /H( J'log H(a) gna, (0) da,
(1.4)

where A is chosen according to (1.2.3).

For L large enough gp x A, (0) is of order L~12 In fact
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1

-1
- - > 5
o, a, Ay pra(0) = CoL

ghaa, (0)

by Lemma 1.3.1.

We may therefore replace the denominator in the previous integral by CoL~1/2.
Choose i according to

L L
M= m(A\=h) => nlp—h) +a. (1.5)
j=1

=2

The numerator in (1.4) is equal to

L

1
(A=hj)z;—V;(z;)
/1ZJL—2Ij——Maj| |2 Z()\ hj)e TR dxy . dx g

_ Z(1 = hj) Oz (u—hy)e;—Vi(z;)
== 125:2 z;=M—a H me e J73 TN Z(,LL — h])dﬁﬂQdIL

L
ZI_IZ('u 3)60\ ) (M a)gh/\AL(M—a)
L—1 L1
Z(k—=hj) (n—py(M—a)
- a M—a— — h,
e Z()\ h] e In /\7AL( a ;710‘ h ))
T 2= hy)
=[] ph = emizaigy ., 0
j:H2 Z()\ ]) SN2 1L
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By Theorem 3.1.2, gn A, ; (0) is of order L~Y2 for L large enough. We need
therefore to show that

L L
exp {(/\—hl)a—V(a)—l—(x\—u)(M—a)—i—Zlog Z(u—hj)—ZIOg Z()\—hj)}
=2 =1

is equivalent to a density associated to a strictly convex potential. The ex-
pression exp{(A —hi)a —V(a) —log Z(X — hi1)} is equivalent to a exp{—(a —
A+ h1)%/2} because

1 a2
— = (Ah1)a—%—F(a)

(—hy)? )
_ e 2 e*(‘l*();*hlw 7F(a)
Z(\— 1)
—(a—r—rp)?
= Coe 2

by Lemma 3.1.1.

By the estimates above, we may replace exp{(A—h1)a—V (a)—log Z(A—h1)}
by exp{—(a — A + h1)?/2}. Recall identity (1.5) and define © by
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L-1 L—-1

= Sla=Ath) =) S (a—hy) = 3 [log Z (s — hy)~log Z(\ ~ )]
j=1 j=1

It remains to shows that © is strictly convex. Since, Z'(X)/Z(X) = 11 ().
We have,

L—-1 L—-1 L—1
(00)(a) = a=A+h1+0ap Y 11(u—=hj)—=(A=p) > ' 1(1=h;)Oap—0ap Y _ 71 (n—h;).
j=1 j=1 j=1

=a—At+hi+AX—pu=a—p+h.
because

L
aaﬂZ'Yi(N_hj) = -1
J=2
and

L-1 L-1

1
Oq log Z(u— h;) = ———7'"(n—h;)0,
jz; (1 i) ; Z(i— h; (1 5)Oapt

L—-1
= Qapty_ (1 — ).
7j=1

in view of (1.5). In particular, since v{(\) = a2()\),

(220)(a) = 1 — Oup



1
=14 —0
Sy (= hy)
1
=14 = .
Zj:QU (1 — hyj)

Therefore, © is strictly convex for L large enough. This proves the lemma
in the canonical case for large values of L.

We now turn to the case of small values of L. Recall the notation intro-
duced just before Lemma 3.1.7. Choose A so that M = >,/ (A — hy).

The Radon-Nikodym derivative of MX; o With respect to the Lebesgue mea-
sure can be written as

#e[)\—hl]a—V(a) Ih Ay, (M —a)
Z(A = h1) I Az (M)
r A—hi—a
_ VI L phila-v(@ fh’A"EQ’L< V-1 ) .
VL —1Z(A—hy) Faaa, (0)

By Lemma 3.1.7, the denominator is bounded above by C¥ for some fi-
nite constants C7, while the numerator is bounded by C¥exp{—(\ — hy —
a)?/2(L —1)}. Similar lower bounds can be obtained. Therefore, the mea-

sure [ A’Ll a is equivalent to the density associated to the strictly convex

potential (1/2)(L/L — 1)(a — A\ + h1)?. This proves the lemma for small
values of L. |

We now obtain a recursive formula for #(L, h) in terms of (L —1,h), L.
Assume that 0(K,h) < oo for 2< K < L —1.
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2.2 Decomposition of the Entropy

Use an elementary property of the conditional expectation to decompose
the entropy as

S (i, s f /f2 log = [fg‘ ]duRL,M (2.1)

h,L
s [ By Pl By | [Pl iy o)

Here ,uRLL s stands for the one-site marginal of /f/{b M at nr.

The first term on the right hand side of (2.1) is estimated through the
induction assumption. Indeed, taking conditional expectation with respect
to 1, we may rewrite this integral as

f2 f2 2 h,L
E 1 E ’ d .
/ Rosion By ] 8 By [PTnu]) kT ks 1)

HAp, M

Since the integral of fZ/EMRL " [f2|nL] with respect to 'LLRL—hM*r]L is equal

3

to 1, the previous expression is bounded above by

h 2 1/2 2 h,L
OL-1,0) [ Dy (R, s £/ By P ) By L) di )

A direct computation shows that this expression is less than or equal to

G(L -1, h)DAL (/‘RL,Ma f) . (2'2)
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The second term in (2.1) is estimated through Lemma 2.1.1. Let H(nz) =
uh [f2|nL]"/?. By Lemma 2.1.1, the second term on the right hand side
L

of (2.1) is bounded above by

alF2 ]2
(Pl

A computation, similar to the one performed in (4.1), shows that (9H /onr)?
is equal to

1 1 ofr  of?
A 2.3
AEyn  L1?Ini] {L -1 Hap.m {aTIL O L} (2:3)
1 L—1 9
2. /
By P ZlV () [ me]}

Following the computation presented just after (4.1), we obtain by Schwarz
inequality, that

for some finite universal constant Cy. We have thus a bound on the first
term in (2.3).
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The analysis of the second term on the right hand side of (2.3) is more
demanding and is the main goal of section 3 and 4.

2.3 Bounds on the Glauber dynamics, small values
of L

We first replace V(1) by F'(n:) because 3y, ny is fixed for the
measure B n [-|ne]. The following lemma will be particularly useful.
Ls

Lemma 2.3.1 There exists a finite constant Co depending only on || F"|
such that

Bl > F )] < SULD Z I (Aol I CRY

r=1

forall L > 2, M in R, environment h and smooth functions g in LQ(/J,/’{MM)
such that < g* > =1
A, M

Proof: Denote by Fy, a(n.) the function F'(,) — Epn [F'(ng)]. With
L

this notation,

L

1
2. / _
E“RL,M |:g 7ZZF(77£):| - MA M|: ZFLM Uz] .

r=1

By the entropy inequality, this expression is bounded above by
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arlos | o0 {5 Frann)} i, e + S50 (1 00.9)

r=1

for every 8 > 0. By Proposition 5.1.1, the first term is bounded above by
C5 03 for some finite constant Cy that depends only on ||F”||o. Minimizing
over > 0 we obtain that the left hand side of (3.1) is bounded above by

CoL7'8y, (MRL,Mag) .

By definition of #(L,h), this expression is less than or equal to the right
hand side of (3.1). O

It follows from Lemma 2.3.1 applied to the measure Mlﬁq, M—ny, and to
the function g2 = fZ/EuR Ny [f2|nr] that the second term of (2.3) is bounded
L

B

above by

029 Zl . [ Tm,z+1f)2 )UL} .

Taking expectation with respect to ,ukb s in this formula and in (2.4), we
obtain that the expectation of (2.3) is less than or equal to

Co{L + L710(L — 1,1) } Dy (8, s f) -

The second term of (2.1), which is bounded by the expectation with respect
to ,uI[{L’ a of (2.3), is less than or equal to the same expression. Therefore,
in view of (2.2),
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S, an f) < {CoL+ (14 CoL™O(L = 1,0) }Da, (iR, ar. f) -

In particular, by definition of (L, h),
0(L,h) < CoL + (14 CoL™HO(L —1,h) .

This relation, together with the bound (2, h) < Cy, proved in the first sec-
tion, gives that §(L,h) < L! for some finite ¢, which depends on Cs. Notice
that this estimate is uniform over the environment h.

2.4 Bounds on the Glauber dynamics, large values
of L

We now give an alternative estimate of the second term of (2.3) that we
shall use for large values of L.

Proposition 2.4.1 Fiz § > 0. There exists a finite constant Co and a set
of environments ., which has P probability one, such that for any h in .,
there exists L, = Lyi(h) such that for all L > Ly,

50(L, h)

(Bt [92;iiF'<nm>})2 < {Gr+ }Da, (1 arrg) (1)
=1

: : o T2(,h 2 _
for all M in R and functions g in L (:“AL,M) such that < g >“’1§L,M_ 1.

We first assume this result to conclude the proof of Theorem 1.1.2.
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Proof of Theorem 1.1.2. Recall the decomposition (2.1) of the entropy
and the estimate (2.2). The second term on the right hand side of (2.1)
was estimated by Lemma 2.1.1, giving (2.3). The first term of (2.3) was
bounded by (2.4). Fix 6 < 2. By Proposition 2.4.1 applied to the measure
M%fl,anL and the function g2 = f2/Ep, am—n, [f*|nL], there exists a set Q.
of P probability one with the following property. For each h in 2, there
exists L, = L. (h) such that for L > L,, the second term in (2.3) is bounded
above by

50(L —1,h)

{CQL t—7 7 }DALfl (lu'f\L—hM_nL’f/Eﬂ

1)

h
Ar,M—n

for some finite constant Cs and all M, n;,. Taking expectations with respect
to ,ul/{L,M in (2.3), we obtain that the second term in (2.1) is less than or
equal to

56(L — 1,h)

%EL+ o

§ Dy (8, 1)

In particular, by (2.2) and (2.1),

4]
Sup iRy e f) < {CoL+ 1+ T2)0(L = 1 1) D, (1, v f)

or, by definition of §(L, h),

agh)g{@L+u+zﬁjw@—Lh&_

Since § < 2, it is easy to derive form this inequality the existence of a finite
constant C'(h) such that §(L,h) < C(h)L? for all L > 2. The constant may
depend on h because ¢, depends on the environment. This concludes the
proof of Theorem 1.1.2. O
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We now turn to the proof of Proposition 2.4.1. For clarity reasons, we
divide it in several lemmas. We first repeat the procedure presented in Step
4 of the previous section. Fix K > 1 and divide the interval {1,..., L} into
¢ = |L/K| adjacent intervals of length K or K + 1. Denote by I; the j-th
interval and by M the total spin on I;: M; = Eazelj Nz. As for the proof of
the spectral gap, K will be large but fixed, while ¢ will increase to infinity.
The left hand side of (4.1) is bounded above by

Jj=1 z€l; zel;
1< 2
2 /
2By, [ 1B, [ X 7 @]])
Jj= FAS

Lemma 2.4.2 There exists a finite constant Cy such that

G2, P { TP -5y, [Zre)]}])

7j=1 xEIj Z‘Elj

CoK?
<
- L

DAL (MXL,M’ g)

for all K >2, L > K?, M in R, environment h and smooth functions g in
2(,,h 2 _
LA (pi, ar) such that < g >/"1§L,M_ 1.

Proof: Taking conditional expectation with respect to M;, {n., x & I;},
we rewrite the left hand side of the inequality presented in the statement of
the lemma as
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14

(% > Ex [E#I;Wj [9%] By {gf-; > F’(nx)} Dz (4.3)
j=1

IEGIJ‘

9%] (Eugwj’Mj [9? D F /(””)DZ} ’

’ :EEI]'

¢
l
< E
- L2 EN‘RL,JVI |:E“?j,M
J=1

where gJQ- = gz/E#II,_ . [¢?] has mean one with respect to ,u]}‘j,Mj. In the ex-
2770

pression Eu}‘ o [¢], it must be understood that only the variables 7, for x
My

. . 3 21 2

in [; are integrated so that Eﬂ?j’Mj lg°] = E”RL,M 97| M, {nz, © & I;}]. In the

l9%]] = 1.
Fix 1 < 5 < {. By the entropy inequality, Eﬂ?j,M‘j [g?;zxelj F'(n,)] is

last step we used Schwarz inequality and the fact ENRL,M[ Nl?j,Mj

bounded above by

1 B wer, Fi(nz) 1
510g/6 N dNZ,Mj + lej(NZ,Mjagj)

for every 8 > 0. Here, Fj(n,) = F'(1,) — En [F’]. By definition of 6, the
M

second term is bounded above by 0(|I;], 7;h)57 Dy, (,LL?J_’MJ_,gj), where 7;h
stands for the translation of the environment h for the origin to be at the
left end of the interval I;. By the a-priori estimate on 6 obtained in Step
3, this expression is less than or equal to C’2]Ij\t5*1DIj (Ng,ijgj)- On the
other hand, by Proposition 5.1.1, the first one is bounded above by Cof|1;|
for some finite constant Cy. Minimizing over # and summing over j, we get
that (4.3) is less than or equal to

4
Cz h CZKt h
f ’Ij’tEuRLyM [Eu?jv]\/[j [92] DIj(l“Ij,Mj?Qj) S L DAL(/"LAL,MLQ) °
j=1
This conclude the proof of lemma. m]
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We turn now to the second term of (4.2). Let a; = |I;|/L and recall the
definition of A; given in (5.9). Since we may add constants in a covariance,
the expectation in the second term of (4.2) is equal to

L

¢
M;
2. (Y. 2. A . J _ .
B, |95 22 06] + By, (07530 astiom) (7t = mi) |
=1 j=1

To estimate this covariance we need to consider two cases. Let [y, be the
constant given by Proposition 5.1.6 and fix 0 < é < 2. By Proposition 5.1.6,
there exists Ky > 2 for which the left hand side of (1.12) is bounded by 63
for all B < By and all K > Ky, L > K?, M in R and environment h.

Lemma 2.4.3 Fiz L > K? > Kg, M n R, an environment h and a
smooth function g in L2(M}1{L,M) such that < g? > = 1. Assume that

L
0(L, h)LilDAL(u/’{L’M,g) < 033. Then,

56(L, h)
ajGjD < T-DAL(M/’{L,M)Q)‘

1

4
2,
(EML\L,M [g ’

J

Proof: Fix a density ¢? satisfying the assumptions. By the entropy in-
equality, the expectation in the statement of the lemma is bounded by

1

l
1
i logEukbM{exp{5;|fj|c:j}] topSnl, g (44)

for every 8 > 0. By Proposition 5.1.6 and our choice of K, L, the first term
is bounded above by §5 for all 8 < (By. The second one, by definition of 6, is
bounded above by (0(L,h)/GL)Dx, (,uRbM,g). Therefore, (4.4) is less than
or equal to
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6(L,h)
6ﬁ + /BL DAL(IU’AI/’I\L,M7g)

for all B < (By. The value of 8 that minimizes this expression is

0(L, h)

53 = 5L DAL(MII{L,Mag) :

By hypothesis, 8, < 8y and we may therefore minimize in 3 < By to obtain
that the square of (4.4) is bounded above by

56(L,h
(L)DAL(IMRL,Mag) )

which concludes the proof of the lemma. m|

Recall the explicit formula for A’ ( ) given in Remark 1.5.2. Let
c = c(\) = E[o?(\ — hy)]7! - 1. Slnce 02() is bounded above and be-
low by strictly positive constants,

¢ o !
Z\IIA’ OZ (7 S0 -ha -2 )"

zel;

Fix § > 0. Let C* be the constant given by (4.1.6) with o2 in place of
U. Let K1 > Cpexp{CoCHC*}d~1, where Cj is the constant appearing in
Lemma 5.1.7 and C’é the one in the previous formula. Fix K > K7 and let
Q) be the set associated to (K,o?(-)) through (4.1.6). Fix an environment
h in Q5. By (4.1.6), there exists ¢y = ¢y(h), such that the right hand side
of (5.1.20) is bounded by 64 for all £ > ¢y. The next result follows from
these observations and the arguments presented in the proof of the previous
lemma.
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Lemma 2.4.4 There exists a constant K1 such that for all K > K, there
exists a set Q1 = Qq(K) with the following property. For all h in Qq, there
exists {1 = (1(K, h) such that for ¢ > {1, M in R and a smooth function g
. T72(, h 2 _

in L=(py, pr) such that < g >N}KL,M_ 1,

(B, (4]} < PP

if O(L, )L™ "Dy, (uk, arr9) < 0053

It remains to consider the case where the Dirichlet form of g is large.

Lemma 2.4.5 Fiz § > 0. There exist Ko = K2(6) and a finite constant Cs
with the following property. For each K > Ko, there exists a set of environ-
ments Qo = Qo(K) with P probability one such that for each h in Qo, there
exists lo = lo(h), such that for all £ > {o,

( . M[ Zay ])2 S {(W(i,h) + CthL}DAL(:LLkL,M%g) (4.5)

for all M in R and smooth function g in LQ(MA M) satisfying < g >
L,

l‘A M

Q(L,h)L_lDAL(/,LXL’M,g) > 6ﬁg .

Proof: The covariance E“}KL,M (g2 >_1<j<¢ @Gj] is equal to the covariance
of g2 and X5y 03 Hy, where Hy = By (11517 Syeq, F/0n2)]. Since g7
37
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is a density with respect to /“‘/}{L, - by Schwarz inequality, the left hand side
of (4.5) is bounded above by

¢ l
~ 2 ~ 2
2(YaiBy (- 1)]) + 2wk |- )) . (46)
j=1 b j=1 "

where H; = Epp 1517 X per, F/ (1)), m = M/L. Let M; = M;/|I].

;]

Since g2 is a density, and since by Lemma 5.1.8 R(#) = En [11;]~1 erlj F'(n.)]

A 1 01151
is Lipschitz continuous, uniformly in L and h, by Schwarz inequality the first
term is bounded above by

l
2 2 21717 712
COZQjEuRL’M {g [Mj —m] } < Co Y aja Ex o [g (M — M;] }
j=1 1<iz#j<t

for some finite constant Cy because m is just the average of the densities
m;.
By Lemma 2.4.6 below, each expectation is bounded by

6<F]i()\,h)—f1()\))2 + G(Fjj()\,h)—fl(/\)>2 + %

i 6(W1i(h) _ E[hl])Q + 6(W1j (h) — E[hl])2

dg 0g 2
t h h _
+ CoK Y Di(uf ars9) + Dy (88, 1,09) + En { S B Vb

In this formula, T'y, Ty and W, are defined in (4.7). Here we are assuming
that the cubes I; are ordered, that ¢ < j and that y; is the rightmost site in I;
and z; is the leftmost site in /;. An elementary computation shows that the
expectation in the previous formula is bounded above by LDy, (,uf{b M 9)-
Therefore, the first term in (4.6) is less than or equal to
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l
@ 3 (o -niw) + LY (w0 -2

7=1 7j=1

+ CoK LD, (pipb ar9) -

There exists Ky large enough for Cp/K to be smaller than 6233 /3 and
for the constant given by (4.1.5), with T'1(-) and Id(-) in place of U(-) to
be smaller than 5258 /6Cp (cf. the remark stated in the penultimate para-
graph of Chapter 4). Here I; stands for the identity and C{ for the constant
which appears in the previous formula. Fix K > K5 and let 29 be the set
of environments given by (4.1.5) associated to (K,T'1(-),d?82/6Cs) and to
(K,Id,6%83/6Cy). For any h in Qg, there exists fo = f5(h) such that for
£ > {5, the previous expression is bounded by

6°03 + CoK'LDn, (ipb 41,9) -

Since, by assumption,

(L, h)L™"Da, (R, 21,9) = 055,
the previous expression is less than or equal to

{59(L, h)

L +02K{L}DAL(MRL,M79) °

The second term in (4.6) is easier to estimate since one need just to take
g = 1 in the previous argument. Replacing ¢ by ¢/2, we conclude the proof
of the lemma. |

65



Proof of Proposition 2.4.1. Let K, = max{Ky, K1, K2}, where K; are
the integers given by Lemmas 2.4.3, 2.4.4, 2.4.5. Let Q, = Q1 Ny, where
Q; are the sets of environments given by Lemmas 2.4.4, 2.4.5 associated to
K,. Fix an environment h in Q, and let /,(h) = max{¢;(h),¢3(h)}, where
¢1(h) are the positive constants given by Lemmas 2.4.4, 2.4.5. For ¢ > /,,
in view of Lemmas 2.4.2, 2.4.3, 2.4.4, 2.4.5 and the the decomposition (4.2),
the left hand side of (4.1) is bounded above by

{CgK}i_l

856(L,h)
i 1

+ CoKIL 4 Dy, (HR, a0 9) -

Since K* is fixed, this concludes the proof. m|

We conclude this section with a technical result needed above. For a
finite subset A of Z, let

1
= T Zrl (A—hg), Wa(h) = Wth (4.7)

€A

and let T1(\) = E[I'y(A — hy)]. Consider a cube Asx as the union of two
intervals of size K. For i = 1, 2, denote by M;, the average spin over the

i-th cube: My = K~} Zlgng Ny, My = K~} ZK+1§1§2K Nz. Let

Un( WZ%/\ hs)

zEA

Lemma 2.4.6 There exist finite constants Cy, Co, such that

E.. [ 2(1\‘41—1\‘42)2] < 6(WAK(h)—E[h1]>2 v 6(WAK+1’2K(h)—E[h1])2

6(Day (B _fl(x))2 £ 6(Way o (1) —fl(/\)>2 (4.8)
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C
+ 52+ CoK Doy (i 00:9)

for every K > 1, M in R, environment h and function g in LQ(MXQK,M)
such that E,» [¢?] = 1.
Ag

KM

Proof: Fix an environment h and a charge M. By the entropy inequality
and by definition of 6, the left hand side of (4.8) is bounded above by

1
8

. 6(2K, h)
log EMIXQK,M {exp {ﬁ(l\/h — M2)2}] + TDAQK(MAQK,MaQ) .

By the a-priori estimate obtained in Step 2, the second term is less than
or equal to CK'3 1Dy, (:“AQK,Mag)‘ To estimate the first term, choose A

according to (2.3). Since (M; — Ms)? is bounded above by

2

6(]\7[1 - UAK()\,h)>2 n 6(FAK()\,h) _ fl(A)) + G(WAK(h) —E[hﬂ)2

F6(Wa e )~ E1]) 4 6(Tay e (1) i)’

+ 6(M2 - UAK+1,2K ()‘a h)>2 )

by Schwarz inequality, the first term is bounded by the sum of the previous
four expressions which are constants with respect to ,uRQK’ M With

2; log By [exp {125(1\‘41 —Un, (N, h))QH

+ 215 log E“RQK,M [exp {12[)’(]\22 — U1k (N h))2H .
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Recall that e < 14 ze® for z > 0 and that log(1 + x) < z to estimate the
first term by

6E n [(Ml — Un, (N, h)>2eXp {125(M1 - UAK(A,h)>2}]} :

HAgpe M

By Corollary 3.1.6, we may replace the expectation with respect to the
canonical measure by an expectation with respect to a grand canonical
measure, paying the price of a finite constant. Since the grand canonical
measures are product, by Schwarz inequality, by the definition of Uy, (A, h)
and by the uniform estimates in Lemma 3.1.1, the previous expression is
bounded above by

@ 1/2

B [exp {24ﬁ (M1 — Un (N, h))2}]

Since exp{az?} is a convex function for a > 0, this expression is less than
or equal to

% Sup E,, [eXp {245{771 - '71(A)}2H v

For B small enough, the previous expectation is bounded, uniformly in .
This proves the lemma. m|
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Chapter 3

Local Central Limit Theorem

3.1 Notation and Results

We prove in this chapter some estimates which follow from the local cen-
tral limit theorem and which play a central role in the proof of the spectral
gap and the logarithmic Sobolev inequality. All constants in this section
depend only on || F||sc-

Fix a sequence b = {bg,, k > 1} of real numbers. For X in R, denote
by P ) the probability measure on the product space RN that makes the
coordinates {Xy, k& > 1} independent random variables with X} having
density Z(A—by) L exp{[A—br]z —V(z)}. Denote by E}, \ expectation with
respect to P, x.

Recall from (1.3) that v1()\), 02()\), {7 ()\), k > 3} stand for the expec-
tation, the variance and the k-th truncated moment of a random variable
with density Z(\)~!exp{\z — V(x)}.

Lemma 3.1.1 Assume that ||[F||,, < oo. Then , there exist finite constant
{Ck,k > 1} depending only onk and ||F||.,, such that

o0’

0<Cyt<ao(N)?< Oy

0<Ct <\ < Gy
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for all X in R

proof:

2
We first clain that Z ()\)eTA is bounded above and below by finite positive
constants. Indeed, by definition,

7= > /daeé(a/\ﬁF(a) . - /daeéazFA(a)

where F)\(a) = F(a+ A). Since F is absolutely bounded, this expression is
\2
bounded below and above by \/ieTA eFlFlls | proving the clain.

We now claim that |y1(\) — A| is bounded by || F||_e?l"ll. Indeed , by
definition, the difference 1 (\) — A is equal to

1/(x)\)em_w22_F*($)dx
Z(A) Jr '

Changing variables, we may rewrite this integral as

392
fR re~ 7 @) gy

Iz 6_%_F)‘(x)d$ .

z2
Since fR xe 2 dx vanishes, by Schwartz inequality, the absolute value of this
expression is bounded above by

eFoo\}Q‘/Rxef(eF*(z) _1)da;).
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In the case F)\(x) > 0, the previous expression is bounded by

1 32'2
||F|| / “S|F
(& 0 — xI|e dx

< HF” eQeHFHoc
— 00

sincee™—1<xz,x2>0.

In the case F)\(x) <0, this expression is bounded by

z2
eFool/ e 7 e P — P g
V2 Jr

1 a2
§€HF°°\@/R|$€_2€F°°||FHOOW

2ell Flloo
< [Floce™
which proves the claim.

We now prove a lower bound for o(\)2. The same ideas permit to de-
rive an upper bound for o(\)? or upper and lower bounds for the moments

2
{72;(A),7 > 2}. A change of variables and the estimate on Z ()\)eTA gives
that

1 z2
o(N)? > 6_2”F”°°ﬁ /R[w +A—m(\)Pe T dr

1 z?
> e*2||F||oo inf / x+ 2= 5 dr > Ci > 0.
- B181< 7 (Nl V2 R[ | B
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This concludes the proof of the lemma.

It follows from this lemma that

(A
sup ’YJ()

ACR UQ(A)j/Q‘ = (L)

for all j > 3, which is the estimate needed in order to prove the uniform
local central limit theorem.

For a finite subset A of N, denote by fy y A the density of the random vari-
able

1
WZ[Xj —nA=bj)],
Y Y ]EA

where, for k > 3,

2(b,\, M) Z" b)), (b, A\ A) Z’yk — b)) (1.2)
JEA JEA

Theorem 3.1.2 Assume that || F||s < 00. There exists No > 1 and a finite
constant Cy depending only on || F||sc such that

fb,)\,AN(.'L') — Le_:BQ/Q{l_ 73(b>)\7AN)x }‘ < CO

V2r 602(b, A, Ay )3/2 N

for all N > Ny, x in R, environment b and X in R.
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The proof of this result is in [9].

Remark 3.1.3 For a fized parameter A and b this is just the usual state-
ment of local central limit theorem for independents random variables with
finite fourth moments. The important point here is the uniformily over the
parameter X\ and the environment b. this uniformity can be obtained in
virtue of (1.1) and the estimates presented in the Lemma 3.1 .

In virtue of (1.1) and (1.2), both o(b, A\, Ay) and v3(b, A\, Ay) are of order
N. The second term in the expansion is therefore of order N~V/2. For a
fixed parameter A this is just the usual statement of the local central limit
theorem for independent random variables with finite fourth moments. The
important point here is the uniformity over the parameter A. This uniformity
can be obtained in virtue of (1.1) and the estimates of Lemma 3.1.1.

The local central limit theorem gives asymptotic expansions of the ex-
pectation of a function with respect to a canonical measure. This is the
content of the next result. Recall that E,[G;G] stands for the variance of
G with respect to v.

Corollary 3.1.4 Fiz ¢ > 1 and fix a function G: Rt — R. There exist
No > 1 and a finite constant Cy, depending only on || F||eo, such that for all
N > Ny, environment b, and M in R

Col . .
‘ M?\N,M[G] - EVXN,A[G]’ < WHGHoo if G is bounded and
Col
B, 16 - By 6] < 1o By GG

In these formulas, the chemical potential X, which depends on N, M and b,
1s chosen so that

M =E, {an} (1.3)

VANSA
TEAN
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The proof of this result is elementary (cf. Corollary A2.1.4 in [9]). Of course,
by changing the value of the constant C', the first inequality remains valid
for all values of N > /.

Corollary 3.1.5 Let G: R — R be a smooth bounded function and let
Gonmu = G — EMZ ; [G]. There exists a finite constant Cy, depending
N>

only on || F||co, such that

B, [ S onntn)] < ol

for all N > 1, environment b and M in R.

Proof:
The variance is equal a to

1 1
NEMRN’M[(Gb,L,M(Ul))Q] + <1 - N)E“RN,M [Gb,L,0 (M) G, L,m(12)]

The first expression is bounded by 4/ G|| 2N ~" for all L > 1 and M € R.
The second one, by definition of Gy, 1,y is equal to

(1= ) B 600G - By (GO}

By Corollary 3.3, since v°

~ is a product measure, the first term of the previos
expression is equal to E,p [G(n)]? £ CL7Y G|, where C is finite constant
depending only on||F|| . By the same result, the second term is equal to

E» [G(n)]? £CL™! HG||OO2, which concludes the proof.
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Recall the definition of the variance o?(b, A, A) and of the density fp A
given in (1.2). For 1 < K < N, denote by ,uRN 5y the marginal on RA%
of the canonical measure NRN, v+ An elementary computation shows that
MRN, &, 1s absolutely continuous with respect to the Lebesgue measure and
that its Radon-Nikodym derivative R% . (XK) is given by

i (A=bj)—aj]
Ry K) (b A Ay) S (St v o)
QE,AK(XK) 0?(b, A\, Ak N) Joray(0) ’

where xg = (21,...,2K), Ak v ={K +1,..., N}, for a finite set A,

1
b A=bjlx;—V(x;
g)\,A(XK) = leAl 720\1)])6[ ilzg =V (2;)

and A is chosen according to (1.3). The next result shows that the ra-
tio RR/, KM / gR A, is bounded above, uniformly over A, provided K /N is
bounded away from 1.

Corollary 3.1.6 There exists a finite constant Cy, depending only on || F||co,
such that

R?V,K,M (xk)

gf,A K (xK)

IN

Co .

for all N/2 > K > 1, M in R, environment b and xg in RAK . In this
formula, X is chosen for (1.3) to hold. In particular, if K < N/2, for any
local function H: RM — R,

ENRN7M[H(7717"W77K>] < COEVX

for X satisfying (1.3).

\H(m, .- 15| (1.4)

Ka/\[

75



For N large, the proof is an elementary consequence of the explicit for-
mula for the ratio R']DV, KM / gg Ay the estimates for the variance presented
in Lemma 3.1.1 and the local central limited theorem stated in Theorem
3.1.2. For N small, the local central limited theorem is replaced by a direct
inspection. More details can be found in [11].

This Corollary provides an estimate on the variance of functions with respect
to canonical measures in terms of the variance of the same function with re-
spect to grand canonical measures. Indeed, fix a function H : R — R,
assume that N > 2K and choose A according to (1.3). By Corollary 3.1.6,

E.w [H;H) < EuRN’M[(H—Eb [H])Q] < CoBy [HiH). (15)

14
HA N M AN A

Lemma 3.1.2 and its corollaries permit to estimate expectations with
respect to a canonical measure ,uRL’ > brovided L is large. The next result
provides an estimate for small values of L. The important point in this result
is once again the uniformity over the parameter A and the environment b.
For a finite set A of N, denote by fb7 aA the density of the random variable
|A|71/2 > jen{Xj — (A —1b;)} under the measure P, 5. Note that we are not

renormalizing by o%(b, A\, A) and that we are subtracting A\ — b; instead of
Y1 ()\ — bj)

Lemma 3.1.7 There exists a positive and finite constant Cy, depending
only on ||F||co, such that

1 ~ 1
Co o= < foray(®) < OF =e™™/?

Ver

for every X in R, N > 1 and environment b.

The proof is similar to the one of Lemma 5.6 in [11] and therefore omitted.
The same argument shows that gy(z) = Z(\)~!exp{A\z — V ()} is bounded
above and below by a Gaussian density. More precisely, there exists a finite,
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strictly positive constant Cjy depending only on || F'||s, such that

for every A in R.

We conclude this section with an important estimate. The proof of this
lemma follows closely the one of Lemma 5.7 in [11].

Lemma 3.1.8 There exists 51 > 0 and a finite constant Cy such that

EVXN’A[GXP {/81|AN|{mAN —Rb,AN()\)}QH <

for every A in R, environment b and N > 1. In this formula, my, stands
for the charge average in An: ma, = |[An|71Y Nz and Ry (N) =
EVXN N [mAN]'

TEAN

Proof:

For small values of L this statement is a straightforward consequence of the
previous lemma, the fact that v1(A) — A is absolutely bounded in Lemma*,
and the fact that the statement holds for Gaussian distributions.

For large values of L, with the notation introduced in the beginning of this
section, the expectation can be written as

/ eﬁoﬂ(A)2x2fA,L(fE)dw_
R

for some appropriate choice of A. Notice that the local central limit theorem,
stated in Theorem 3.2 , gives a good bound only for small values of x. The
idea is therefore to replace in the previos formula A by a variable p which
makes x a typical value. By a direct computation.
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70- Z —p)|zo xTro \/z ) —
fora, () = A( M)Le(/\ m)l A\/E+L'Yl()\)]fu7L( A 4 (71 (N) ’Yl(/l))>.
on A .z Tu

Choose p for the expression inside fp 4, to be small (in order to be able
to use the local central limit estimate):

zoxVL = Lim(A) — n(p))-

With this choice, since by Theorem 3.2 Cl_l < fapun, (0) < Cy for some
universal constant C, and since by lemma 3.1 o) is bounded,

fora,(x) = exp{Llog{?;} + (A= ,uJ)[azJA\FL + Lyi(N)]}

where &~ means that the left hand side is bounded above and below by the
right hand side multiplied by finite positive constants. The expression inside
the exponencial vanishes at = 0. It is also not difficult to show that it is
strictly concave in x (cf. [11]). In particular,

_ 2
fb))HAL (aj) ~ e sz °

for some finite constant Cy and we are back to the Gaussian case.
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Chapter 4

Environment

4.1 Notation and Results

We present in this chapter all results needed on the environment in the
proof of the spectral gap and the logarithmic Sobolev inequality. We start
with simple bounds on the derivative of a function. For a finite subset A
of Z, and an environment b, denote by Ry : R — R the smooth strictly
increasing function

RO = Eyg [0

TEA

and denote by ®, the inverse of Ry. Let Ax : R — R be given by

Mxim) = By, [ P

TzEA

Lemma 4.1.1 Fiz a finite subset A and an environment b. We claim that

1

T AT 2@ — )

A (m)
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Moreover, there exists a constant Cy, depending only on ||F|ls, such that
| A lloe < Co for all environment b.

Proof: We claim that

1 , B 1
Ex. [W%F(m] — Pp(0) — 6 — Wsz' (1.1)

TEA

Indeed, by definition of the product measure 1/}\’ Ao

1 ' _ b by ebe)a-V(@)
Eu [y 2 F10ne)] = m%zu—bx)/ Fl@e o

TEA

1 1 A—bg)a— % —F(a
WX oy

SN
1 / ! (A=b )afﬁfF(a)
= 2 [ (@ Fla) = At b e O
TEA -
+i Z /()\ - b - a)*e()\ibz)nigffr(a)da
A7 T2 = b)
1
= (] 2= o) = By (V)
zEA
1 1 o
€A T

Since RA(A) = |A|71 Y, cp Rizy(A) and since the each term in the last sum
vanishes, the previous expression is equal to
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1
A — Rp(N) — mme

zEA

where A\ = @, (0), which proves (1.1).

Thus

AL (0) = (N — 1

and

AR (0) = PR(N)

Since 5 = Rxl,

s 1
AT
and
" _ —1 " _ _R;«@)
O mer™ " " mop
and since

d 1 1 2
_ - (A_bx)"]:c_nz —F(nz)
) =1 xZEA O / Z(h—b,) " : e
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_ %Z </;a26(Abz)a“;F(a)da_ [/;ae(Abz)aa;F(a)da]Q)

1
77:1:,% =
By Z Al

TEA

by lemma 3.1.1, is in [%,C}

by (L.1),

d 1 1
LB Fn)] = ~
5500 18] 2 7' 09)] = BT @ =)

i , A7 30 en 13(2a(0) — b2)
Ll Fl(n)| = - |
a62 "R a0 [!A! Z } (|A|_1 2 0en 02 (@A) - bx)>3
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The statement of the lemma follows from these identities (3.1.2) and from
Lemma 3.1.1. O

We proceed with a lemma which explains the assumption made on (),

INIO
Let U : R — R be a continuous functions with limits at the boundary:

lim U(\) =Uy,  lim UK =0U- (1.2)

A—00

for some finite values U_, Uy. Let U(\) = E[U(X — hy)].

Recall that for K > 2, L > K?, we decompose the cube Az, in ¢ disjoint
cubes {Iy,...,I;} of length K or K 4+ 1. One should think that K is large
but fixed. The key point in the next result is the uniformity in A.

Lemma 4.1.2 Fiz a continuous function U satisfying (1.2), € > 0, K > 2
and an increasing function t. There exists a measurable set )y of sequences
h such that

o P[] =1,

e [For any h in Qq, there exists lo = £y(h) such that

—_

14
ZZ |1|(|“ZUA he) U()\))2 <c+e  (1.3)

z€l;
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for all £ > £y and all X in R. In this formula,

¢ = max {tmE[(+ 3 U0 —h) - 0W)
n=K,K+1 n

.’EEAn

Proof: Fix §p > 0. Since U(+) is a continuous bounded function with lim-
its at the boundaries A\ = +oo, for each Jy > 0, there exists a finite set of
chemical potentials I's, = {A1,..., A\, } with the property that for every X in
R, there exists \; in I's, such that

do
sup [UAN=b)-UN,—-b)| < ———= .
b.Jbl<Ao == ) K +1)1/2
In other words,
UX=b)—U —b)| < % (1.4)
sup min  sup —b) — i — < — .
XeR i€l b, [b|<Ag K +1)1/2

It is here and only here that we need the environment h to assume bounded
values and the assumption (1.2) on the asymptotic behavior of U(-).
In view of (1.4), the left hand side of (1.3) is less than or equal to

¢ - 2
662 +413éa§€§ (L) <|I|ZU U(/\i)) .

z€l;
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Fix §; > 0 and A; in I's,. Since the intervals {I;,1 < j < ¢} are disjoints,
it is not difficult to show that the sequence

o[ 2 (0 (g S om0 -000) -} 251

Jj=1 z€el;

is summable in ¢ if

(|1 )E K\I U D-000) ]

z€l;

In particular, since ¢; < ¢, by the Borel-Cantelli lemma, there exists a
set Qo = Qo(K, d1,U) with the following properties: P[Qy] = 1 and for any
h in Q, there exists ¢y = {y(h) such that

~

Z u\(mZU U(Ai))2 < c+6.

J=1 z€l;

for £ > ¢y. Since I's, is a finite set, we can make the previous inequality to
be uniform in \;.

In conclusion, for any sequence h in €2y, A in R and ¢ > £y, the expression
on the left hand side of (1.3) is bounded by ¢ + 662 + 441. This concludes
the proof of the lemma. m|

This lemma is used in two different situations: with ¢(n) = 1 and with
t(n) = n. In the first case, since U is bounded,



vanishes as n T oo, uniformly in A. In particular, taking K large enough, we
may turn the constant ¢ appearing in the right hand side of (1.3) as small
as we wish. Hence, for every € > 0, there exists Ko > 2 and a P-measure
one set  such that for any h in g, there exists £y = ¢o(h) such that

14

EZ 1 Y UN=hy) =T T (1.5)
‘

for all £ > ¢y and all X in R.

On the other hand, if t(n) = n, since U is bounded,

nE[(- 3 U0 k) -0 ] < 40l

CBEAn

Thus, we may take the constant ¢ in the right hand side of (1.3) to be equal
to 4||U||%, and € to be 1. In this case, the statement of the lemma becomes:
There exists C' = C(||U||oo) such that for all K > 2, there exists a P-measure
one set Qy = Qo(K,U) such that for any h in g, there exists ¢y = ¢y(h)
such that

for all £ > fy and all X in R.
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Notice that the previous results (1.5), (1.6) hold for U = Id, where Id
stands for the identity. Of course, the identity does not satisfy (1.2) but
we need this assumption only to guarantee uniformity over A, a parameter
which disappears in the case of the identity.

We conclude this chapter proving that (1.2), (1.4) hold if F' converges at
the boundary of R. Indeed, assume that there exists Fly such that

lim F(a) = Fy.

a—+o0

In this case, by the dominated convergence theorem, Z(\) exp{—\2/2} con-
verges to v2mexp{—F41} at £oo. The same argument shows that I'; con-
verge to 0 at the boundary and that o2 converges to 1.
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Chapter 5

Large Deviations Estimates

We obtain in this Chapter some estimates which play a central role in
the proof of the logarithmic Sobolev inequality.

5.1 Notation and Results

In this section, for j = 0, 1, 2, all constants C}; are allowed to depend on
| F@||s for 0 < i < j and may change from line to line. Here F¥) stands
for the i-th derivative of F'.

Fix a differentiable function H: R — R with bounded derivative: ||H'||o <
oo. For each L > 1, z in Ay, A, M in R and environment h = {h,, z € Z},
let

Hh,AL,)\(nw) =H(n:) — En [H(n)],

VAL

Hh,AL,M(nx) =H(n.) - FE [H (12)] -

h
HAp, M

Although the notation is slightly ambiguous, the context will always clarify if
we are subtracting the average with respect to the canonical measure or with
respect to the grand canonical one. Notice that Hy o, a1 (02) —Hna, A(12) =
EV}\‘L,A [H(n.)] — ENRL,M [H(n,)]. In particular, if A is chosen according to
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(1.3), by Corollary 3.1.4,

)Hh,AL,M(nx) — Hpap 2 (12)

Col H'||oo

AL (1.1)

= By [HO - By HO)| <

h
HAp, M

for some finite constant Cy depending only on || F'||s because

By [H()iH)] < By [{H(ne) = H(62)}] < [|H'|30° (A = ha).

VAL A VAL A

Here, 6, stands for E,n A[%] =v1(\ = hy).
L

We claim that there exists a finite constant Cp depending only on || F'||so
for which

[Hiapa ()] < CollH'llso(1+

77-77 - EVXL, ["735]

Ne — En (1]

[Hiag e (n)| < CollH'llo(1+

forall L > 1, M, X\ in R and environment h. Consider first the grand canon-
ical case. By definition of Hy A, x and by Schwarz inequality,

Hua,ae)| < B | [H(n) = HE)| | < |1H By | |ns— &l

h
A A LA

< HH/Hoo{|77w — EVRL,A[%H + 02()\ — hx)1/2} .
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Of course, in the previous formulas, only the variable £, is integrated. By
Lemma 3.1.1, the second term inside braces in the last expression is bounded
above by some finite constant Cyp that depends on ||F||« only. This proves
the claim in the grand canonical case. The same arguments apply to the

canonical case provide we show that £ n [M; Mz] is uniformly bounded.
L

But this is follows from estimate (3.1.5) of Corollary 3.1.6.

Proposition 5.1.1 Fiz a differentiable function H: R — R with bounded
derivative. There exists a constant Cy, depending only on ||F||e, such that

1
——log [ ex H, ) ¢ dph < Col|H'|), 1.3
s | {9 3 Huasaln ik < oS (01

forall 3 >0, L >2, M inR and environment h.

Proof: We first prove this result for the grand canonical measure in place
of the canonical measure. In this case we replace Hy z, v by Hna, x and,
since l//};L ) is a product measure, we only need to show that

S1og [ exp p{H(m) - BHm) s < GRS (1)

for all > 0 and some constant Cy which depends only on ||F||s

We consider first the case of 3 small. By the spectral gap for the the Glauber
Dynanics (Lemma 1.2.1), there exists a universal constant Cp, such that

2 2 2
<f >p =< f >h Ag Co < (O, f) >”Rm

LA L
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for all smooth functions f in L2(1/1}\1’L1)\). Let C; = CgHH'HiO and assume that
BIH |loe < [AL[7H2.

Aplying this inequality to the function f = exp{gH}L AL A}, we obtain
that

BH, ), a] 12 B2 0112 BHpa, .
B[] < {mp [eDmana] Voroy (D) |2 By [emann]

VAL A VAL A

so that

En [eﬁH“*AM} < L

V < (B[]
L= Goll R (32 R

< e(%)coanuioﬂ?{ E. {G@Hh,%,ﬂ }2

AL

because (1 —x)~! <e?® for 0 <z < % Iterating this estimate n — 1 times
we obtain that

En {eﬁHh»ALv*] < exp{01ﬁ2i2_j}{Eyh

VAL A AL

[e(%)Hh,AL,A} }2
j=1

The exponential is obviously bounded by exp{C13%}. On the other hand,
we claim that

lim nlog £ n [e%Hh»ALv*} =0 (1.5)
AL A

n—oo
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showing that the left hand side of 1.4 is bounded above by C} 3 = CoﬁHH’Hio

_1
provided 8 < C *.
To prove 1.5, just notice that exp{%thAL)\} is bounded above by 1 +
(%)Hh,ALQ\ + (nflz)Hh,AL,)\exp{(%)’Hh,AL,)\H“ Since log(l + 33) < z and since
Hy A, » has mean zero with with respect to VRL’A, we obtain that

+Hna ,)\] [ 2 {l H
nlogEVRLyA[e LA < EhL’ Hy o exp n|Hh7AL7>\|

By 1.2, the right hand side is bounded above by

QE h Hl +(m — A+ h1)2}exp{

n  YAp.a

C _
1 n/\ + D1l H

for some finite constant C depending only on || F|% , ||H’ Hio The expecta-
tion is bounded for all n > 1 because V}{L ) has Gaussian tails. This prove

_1
1.3 for g < Cy 2.

We now turn to the case of large (3, which is simpler. assume that
BIlH |o > |Ap|~Y2. Tt follows from 1.2 that the left hand side of 1.3 is
bounded above by

o[+ 5 Tog By [ Il (1.6)

Since el*l < e + e~*, we need only to estimate Ep lexp{B||H'|| ,C2(m —
L

A+ h1)}] for B and —(3. Recall the definition of the partition function
Z given in 1.1.1. The logarithm of the previous expectation is equal to
log Z(®(A — h1) + BI|H'|| ,C2) — log Z(®(A = h1) — Bl H'[| (o C2(A = h1). An
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elementary computation gives that (log Z) (®(A — hy)) = A — hy so that
the previous difference can bewritten as logZ(®(A — h1) + B||H'|| C2) —
log Z(®(A — h1) — (log Z)(®(X — h1))B||H'||,,C2. By Taylor’s expansion ,
this difference is bounded by (1)(8||H’||,C2)*(log Z)"(\) for some A be-
tween (A —hy) and (X — hy) + B||H'|| . ,C2. Since (log Z)”(A\) = o?(\) and
since, by lemma 3.1.1, 02()\) is bounded uniformly in \, we have that

tog By [eon{8]18]|oCalm — ) }] < | |2,6%

for some constant depending only || F'|| . Since log(a+b) < log2+max{loga,logb},
1.6 is bounded above by

log 2
g

2
Col|H'| o + =5~ = G5 [|H']| 8.

which is obviously bounded above by C’4||H/||C2>Oﬁ because 3| H' ||oo > |Az|~1/2.
This conclude the proof of lemma in the case of the grand canonical mea-
sure.

We now turn to the canonical measure. We need to consider two cases.
Assume first that 8||H'|| < |Ar|~Y/2. By Schwarz inequality, the left hand
side of (1.3) is bounded above by the sum of two terms. The second one is
similar to the first which is equal to

L)2

log/exp{2ﬁZHh,AL7M(77x)}d/i}/{L,M-

x=1

1
20|A L

The difference is that we are now summing only over one half of the cube
and that we had to pay a factor 2 in the exponential to do it. Since
e® < 1+ + x2el?l since log(1 + x) < = and since Hy a, a(7:) has mean
zero with respect to u]‘/{b > the previous expression is bounded above by
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L/2 L/2

\ii’ {ZHhAL, (Um)}zeXp{Qﬁ‘ZHhALv (1)

r=1

} d'uAL,

Since el?l < e? +e~?, we may remove the absolute value in the exponential,
provide we estimate the expression for Hy A, ar, as well as for —Hy A, -

Fix A given by (1.3). By Corollary 3.1.6, we may replace the canonical
measure by the grand canonical one paying the price of a finite constant and
turning Hy A, a into a non mean-zero function. At this point, we need to

estimate
L2 L/2
C
\AOLﬁ| { Z Hy Ay v (1) } exp {Zﬁ; Hh’AL’M(%)} v, x -

Since u}\lh a 1s a product measure, expanding the square, we get that the
previous integral is less than or equal to

L/2

C C
12 0 [+ (352 wena T e

TH#Y 2F£T,Y
where, for 1 <2z < L/2 and j =0,1,2,

Aj(w) = By A [Hh,AL7M(773:)j62ﬁHh’AL’M(%)

v
Ap,

We claim that
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Ao(x) < exp{Coff||H' | L™"/?} (1.7)

CollH' || o
)| < 1] (18)
As(a) < CollH'|E, (19)

uniformly in 1 <z < L/2 and for some constant Cy which depends only on
1l oo-

Since the lemma follows from these estimates in the case SB||H'||cc <
L™Y2 we only need to prove them. We first examine the exponential Ag(x).
By (1.1),

-1
En e2f8Hh7ALJ\/I(771):| < CBLT I oo 1, [ 28 g 2 (12)
ApA AL

Since Hy A, » has mean zero with respect to I/RL,)\, since % < 1+ x4 a2el®l,
since by (1.2) [Haa, 2x(nz)] < CollH |||l + |0z — En [nz]|] and since

L,>\
BIH |0 < L™Y2 <1,

Epo [ nannti)] <14 By [(28Hna, (00))? exp{20Hi a0 ()]}
L L

< WO H| LBy [ (A=ha))® exp{CB[|H||  (L+n: 7 (A=h2)}]

< W OR | H|2 M= (= (A=h2) ) exp{ OB H'|| In-—m (A—h2) 3]

< 14 G H e sup By [{14 = ()P} @m O]
€
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There exists some finite constant C{), depending only on ||F'||, such that

sup B, {1+ |0 — 11 (\)[Fe2ClnmOIT < cf
S

because vy has uniform Gaussian tails. Since 1 + z < e”, we conclude that

By [e0mmann@] < oMoy 1 c?|R2)

< M1 4 CBR)

< exp{Cof|| H'|l oo L™/?} (1.10)

because 2| H'||?, < L~1.

We now turn to As(x) in (1.7). As before, we may replace Hp A, (1)
by Hn A, A(1:) in the exponential. After this replacement, applying (1.1),

EV}\]L»)\ |:Hh7AL7M(nx)2e2BHh’ALJW(WZ)i| S COEV}\IL,)\ HhaAL7M(77$)2626Hh’ALY)\(nz)

because [||H'||cc < 1. The same estimate (1.1) gives that the previous ex-
pression is less than or equal to

COHHIHgo 28Hn Ap A(N2) 9 98Hy n. 2(1s)
WEVXLJ\ [e o + COEVXL»\ [Hh,AL,A(nz) e AL } .

By (1.2), |[Haa, A(M2)] < Col|H'||oo(1+ |17z —v1(A—he)|). The previous sum
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is thus bounded by

CollH' [ sup Buy [ {1+ Iy — o}l
€

This expression is less than Cy||H’||2, because vy has uniform exponential
tails.

It remains to estimate |A;(x)| which is given by

‘E hL \ [Hh,AL,M(%c)e?ﬁHh,AL,M(nz)] ‘ ‘

VA

As before, we may replace Hpa, av(nz) by Hna, A(12) in the exponential.
After this replacement, applying (1.1), we bound the previous expression by

Coll H' o 2]

26Hn A, A(N)
CO‘ EVII—{LA [HthLvA(/rlm)e g :| ‘ * ’AL‘ VAL’)\

By (1.9),the second term is seen to be less than or equal to

CollH | o

CollHllse 270 4 Coll H'l

ALI2

ALl - AL

!
because G| H'|| . < A
ﬁ” ||oo — \AL|%

The first term, since |e® — 1| < |blel®l and since Hy A, » has mean zero,
is bounded by
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C’OE”}\]L N [HthLJ\(nI) (1 + ‘Hh,AL,/\(Ux)|ﬁ62ﬁHthL’A(”z)>}

< CoBEyy [ Huay a(ne)?e? a0

because E”R R {Hh,AL, )\(771’)} = 0, then the previous expression is bounded
L
by

Co[H' [2asup B [{1-+ Iy = ma(3) Py )
S

because [||H'||co < 1in the range considered. This expression is bounded by
CoB||H'||%, because vy has uniform exponential tails. Adding the two previ-
ous estimates we obtain that A;(x) is absolutely bounded by Co||H'||ooL~'/2
in the range considered. This concludes the proof of Claim (1.7) and there-
fore the proof of the lemma in the case of small values of (3.

We now turn to the case of large 3. Assume that B2 H'||%, > |A|~t.
We first replace Hn A, pm by Hna, A By (1.1), the left hand side of (1.3) is
bounded above by

1 h COHHIHOO
A log/exp {ﬂ Z Hh,AL,,\(ﬂx)}dMAL,M + AL

TEAL

Since |[Az|72 < |AL|7t < B2H| A, |ALI7Y < B||H'||o- In particular, the
second term is less than or equal to CoS|| H'||%.

It remains to estimate the first term. By Schwarz inequality, this expres-
sion is bounded above by the sum of two terms,
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1
26|Az| og/exp {2/3 Z Hh,AL,)\(nac)}d,uAL’M

1<2<L/2

_l’_

log/exp{Qﬁ Z Hh,AL,A(TIx)}dMRL,M .

14+L/2<2<L

1
208|AL|

Both terms are estimated in the same way. We consider only the first term:

log/exp{Zﬂ Z Hh,AL,)\(na:)}dMRL,M'

1<a<L/2

1
208|AL|

By Corollary 3.1.6, this expression is less than or equal to

Ch , 1
BIALl  2B|AL

log/exp{2ﬁ > Hh,AL,A(Um)}dV/I\lL,/\’

1<z<L/2

where ) is chosen according to (1.3). Since |A|™! < B2%||H'||%,, the first
term is bounded by C3||H’||%,. It remains to consider the second one which
is equal to

1 h
m Z log/exp{Q’thyAL,A(nx)}dl/AL7/\

1<z<L/2

because IJXL y is a product measure. In view of (1.4), this expression is
bounded by C3||H'||%,. This concludes the proof. O

The same proof gives the following estimate that we state for further
use.
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Lemma 5.1.2 Fiz a differentiable function H: R — R with bounded deriva-
tive: ||[H'||oo < 00. There exists a constant Cy, depending only on ||F||oc,
such that

g [ exp { B, () dult, e < Coll 8

I

forall 3 >0, L>2,x in A, environment h and M in R.

Proposition 5.1.1 provides an estimate, uniform over the charge M, on
the expectation of [AL| ™" - cr, Hn,ap,am(72) with respect to some measure
fd,ukL a in terms of the entropy of this measure.

Corollary 5.1.3 Fiz L > 2, M in R, an environment h, a differentiable
function H: R — R with bounded derivative and a density f with respect to
uRbM. There exists a constant Cy, depending only on ||F||s, such that

(/{|AL| > Haanlne) 1 i) < Couﬁlnl Saashean V)

reAL

Proof: By the entropy inequality, the integral on the left hand side of the
statement of the lemma is bounded above by

S (1R, 2 VT)
5|A ‘log/exp {5 Z HhAL, Oh)}d'u'AL, + ﬂ’AL|

TEAL

for all 8 > 0. By Proposition 5.1.1, the first term is bounded above by
Col|H'||%,8 for some finite constant depending only on ||F||s. Minimizing
in 0 we conclude the proof of the lemma. m|
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Lemma 5.1.2 provides a similar estimate in the case of a one site func-
tion.

Lemma 5.1.4 Fix L > 2, M in R, an environment h, a differentiable
function H: R — R with bounded derivative and a density f with respect to
uk’jM. There exists a constant Cy, depending only on ||F||e, such that

2
([ Huswartm) ) dil? )" < ColE S o V)

The proof is the same as the one of Corollary 5.1.3.

Fix K > 1, L > K? and divide the interval {1,...,L} into { = |L/K|
adjacent intervals of length K or K + 1, where |a] represents the integer
part of a. For 1 < j </, denote by I; the j-th interval, by M; the total spin
on Ij: M; = erlj 1, and let

1
A = [ Y P

l’EIj
where A is given by (1.3). Notice that

Imj —mj| < CoL™! (1.11)
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in virtue of Lemma 3.1.4 and Lemma (3.77).
Lemma 5.1.5 For 1< j </, let G; = Gj(M;; M, L,h) be given by

Gj = By, {Illgl > Fm)] - B [ulﬂ > Fm)| - A}(mj)(gj—mj) :

-’EEIj IEGIj

There exists a finite constant C§, depending only on ||F|l~, and a finite
constant Cy, depending only on || Flleo, || F'||0c, such that

* * Cl
G| < CO(Mj/‘Ij|_mj)2+|Tj"

Proof: Fix j and rewrite G; as

1 1
B, iy 2 F )] = 7y 2 )
“l;j,le |I]’ Z (n&?) V}‘jﬁ)Ij(]Wj/ujD ‘I]| Z (771)

IEI]' CCEIj
+En [—1 Y P )] _ E. [—1 Y F(n )]
1% T €T
o) L] 2 ]y

+ Aj(M;/|L]) — Aj(mg) — Al(mg)(M;/|I;] —my) .

The first two lines will be estimated by the equivalence of ensembles, while
the third is a Taylor expansion up to the second order.

By Corollary 3.1.4, the first line is bounded above by C;|I;|~! for some
finite constant Cy. By Lemma 4.1.1, || A7||~ is finite. In particular, in view
of (1.11), the third term is bounded above by Co(M;/|I;| — m;‘)2 + CoL 2.
Taking conditional expectation with respect to ) 1, Mes {n:, z € I;} in the
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second expectation, the second line can be rewritten as

1
Bty (Bt 0 [ 2 F00)] = B 7 )]
“XL,M V?jvqﬁj(mj) ’I]’ x; (7793) “I M ’I ‘ Z 77:E
J

T€l;

Using the equivalence of ensembles, Corollary 3.1.4, we may replace the
second term inside the expectation by an expectation with respect to the
grand canonical measure with chemical potential given by @ (M;/|I;]). We
may also add inside the expectation A(m;)(M;/|I;| — m;), because this
expression has mean zero. We recover in this way the same Taylor expan-
sion up to the second order, which was shown above to be bounded by
Co(M;/|I;] — m;‘)2 +CoL~2. Applying Corollary 3.1.6 to replace the canon-
ical measure u/}{L’ a by the grand canonical, we obtain that the second term
in the decomposition of G; is bounded above by Co|I;| 1. O

Proposition 5.1.6 There exist By > 0 and a finite constant C1 depending
only on ||Fl|co, [|[F']|co such that

glLl()gEM}A‘L,M [exp {ﬁi]]ﬂGj}] < % (1.12)

J=1

for all B < By, all L > K2, all M in R and all environment h.
Proof: We first prove the lemma in the grand canonical case with G re-

placed by the mean-zero function G. For 1 < j </, let G; = G;(M;; M, L, h)
be given by

gj_Eu‘h[uyZF,”f} MA“{\I\ZF/%} A5(m )(yj\ff\_mj)'

z€l; T€l;
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To keep notation simple, assume that all cubes I; has the same length K.
Since ,LLRL ) is a product measure , the left hand side of (1.12) is equal to

1

GK log E“RL,/\ [exp{ﬂKgH

Since €* < 1+ + z2el*!, since log(1 + ) < = and since En A[g] =0, the
L
previous expression is less than or equal a to

loe By [(KG(m) Penp{ prIg ()1}

We claim that there exists 81 and a finite constant Cj such that

Iﬁ(logEu‘xL,A (Kg(a))?eap{ BKIG(M)|}] < Co (1.13)

forallmin R, all K > 1 and 8 < (3. Since G(M7) = EE,M1,A[F/]_A<%>+

A(%) — A(myx)— A’ (m}) [% —mﬂ , by lemma 4.1.1 and Corollary 3.1.3 ,

2
G is bounded in absolute value by CK~! 4+ C (f\f—ﬁ — mf) for some constant

C. In particular, the left hand side of 1.10 is bounded above by

ce?py {1+ 1 (g —mi) eap{osre (17 —mi) )]
<CEy Jep{Cor (G- mi) )]

By Lemma 3.1.8, there exists 31 > 0 such that for § < 31, the expectation
is bounded uniformly in K and m. this prove claim (1.10) and that the left
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hand side of (1.9) is bounded by 5 for G < (31, wich concludes the proof of
the lemma in the grand canomcal case.

We now turn to the canonical measure.

Fix #; > 0 given by Lemma 3.1.8 and set §y = (1/4C(, where Cj is the
finite constant introduced in Lemma 5.1.5. By Schwarz inequality, the left
hand side of (1.12) is bounded by the sum of two terms. The first one is
equal to

/2

gglLlogEuxL,M lexp {263 111G} - (1.14)

=1

The difference between the second one and the first is that we sum over
/241 < j </instead of 1 < j < ¢/2. We are now in a position to estimate
the expectation with respect to a canonical measure by the expectation with
respect to a grand canonical measure through Corollary 3.1.6.

Assume first that 8% < min{¢~!,42}. In this case, since exp{z} <
1+ 2 + 2% exp{|z|}, since log(1 + ) < z and since the sum that appears
in the exponential of (1.12) has mean zero, the left hand side in (1.12) is
bounded above by

0/2

D M[@f 65) e {28] Y- 15165}

Since el < e 4 ¢, we may remove the absolute value in the exponential
provide we estimate the previous expression with —/3 in place of § in the
exponential. Consider the case with 5. Fix A given by (1.3). By Corollary
3.1.6, the previous expression without the absolute value in the exponential
is less than or equal to
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02 /2

Cof [(Zlf G;) exp {263 111G,

Jj=1

Since 1/}\‘ ) is a product measure, expanding the square we obtain that this
L,
term is equal to

£/2
Coﬁ / 9 2 28|1;|G; 26|11 |G,
§:|I]E [Gje i } ERA{ } (1.15)
7 L
k#j

C’
Cop Z |11 | B, . [Gj ezﬁlfj\c:j] EVXL,A [Gk ezﬂuk\(;k} E, n A[ 25|1i|ci} .
i#k ik

There are three different types of terms in the previous formula and we
estimate them separately.

We claim that

Eon { %Vj‘Gf] < expclﬁ{é—l +5} , (1.16)

VAL A

s, [esm]| < oz + &)

C
2 28|1;|G; 1
E‘A‘Lx[Gﬂ'e " ]} = K2

Notice that, since 42 < min{1,¢71}, in view of the previous bounds,
it is easy to show that (1.15) is less than or equal to CoBK !, which is
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what we wanted to prove. Therefore, to conclude the proof in the case
£? < min{¢~1, 82}, we need only to check (1.16). We start examining the
exponential terms. Since e* < 1+ z + z2el*l, the expectation is bounded
above by

L+ 28| Ey (6] + 4B PEy [G?ewuf”Gj‘] . (1.17)

The linear term is easy to handle. By definition of G, the linear expec-
tation is equal to

1 / 1 /
EV}\]L,)\ |:Eliljjj7]\4j |:’Ij‘ Z F (nx):| :| - EMIXL’N[ |:|I]’ Z F (nx):|

z€l; z€l;

M M
= A5m) (B[] = B ulin))
N N 7] B W

Since the expectation with respect to the canonical measure u?j M, can be

understood as a V/}\‘L , conditional expectation with respect to the o-algebra
generated by M;, {n,, = & I;}, the first line is equal to

B i S P00 = By [ S P ea]

IEI]' CCEIj

By Corollary 3.1.4, this expression is bounded by Col|F’||ocL~'. On the

other hand, since by Lemma 4.1.1, [|A}(-)[|cc is uniformly bounded in j, by

Corollary 3.1.4 and by Lemma 1.3.1, the second line is also bounded by

CoL~'. The linear term in (1.17) is thus less than or equal to C13|I;|/L.
In view of Lemma 5.1.5, the quadratic term in (1.17) is bounded by

M; 4 " -2
2,018 |2 J 205 8|1 |(M; /| I;]—m%)
Clﬂ el EV/}\ID/\ [{‘I]| (’I]‘ —mj) +1}€ 0F 4] /=My
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Since 3 < 3y and since z2e%* < C(a)e?*®, the previous expression is bounded
above by

0152E,,h [640550|1j|(Mj/\1j|—m§)2} '
AL A

Since 4C5 By = (1, this expression is bounded by C13? in virtue of Lemma
3.1.8.

To conclude the proof of the estimate of the exponential term in (1.16)
it remain to recollect the previous estimate and to recall that 1 + =z < e”.

We turn now to the second expectation in (1.16). Since |e* —1| < |z|el*!,
this expectation is bounded above by

LN

‘E hL,A[Gj]‘ + 2ﬂ|Ij|EU}\1L‘A [G?ewllequ '

We have seen in the estimate of the linear term in (1.17) that the first
expression in the previous formula is bounded above by C1L~! and we have
seen in the estimate of the quadratic term that the second one is bounded
above by C13K 1. This proves the second bound in (1.16).

The third estimate in (1.16) follows from the estimate of the quadratic
term in (1.17). This concludes the proof of (1.16) and therefore of the lemma
in the case 4% < min{¢~1, 2}.

Assume now that 71 < 32 < 32. In this case, by Corollary 3.1.6, (1.14)
is bounded above by

/2
Co 1
o * MjgllogEykm[exp{%IIJ'!GJH : (1.18)
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Since ¢ < 1+ x + x2el*l and since log(1 + z) < , the logarithm is less
than or equal to

2051 E | [G5] + 4B2\~TJ'|21—“7V1A1L,A [Gf exp{%!fjHGjl}] : (1.19)

We have seen in the estimate of (1.17) that the linear term is bounded by
C14¢~! and that the quadratic term is bounded by C132. In view of these
estimates, (1.18) is less than or equal to

gz + ;’}({ﬁw}

Since £~1 < 32, this expression is less than or equal to C13/K, which proves
the lemma. O

Lemma 5.1.7 Fix K > 2, L > K?, an environment h, ¢, M in R and a
. . 2 h 2 . .
smooth function g in L (:“AL,M) such that < g >“RL,1VI_ 1. There exists a

finite constant Cy depending on || F||~ such that
1 ‘ M,
il H(my) — j ,
ﬁLlogEulA,L,M[exp{Z|I|A m;j) C]<|IJ| mj>}]
CoB _ (Coy
< =Fexp {2 Y ILI(A5(my) — 0} . (1.20)
j=1

for every g > 0.

Proof: Assume first that 3%¢ < 1. Let H; = [AL(my) — ] (M;/|1;] — my).
The beginning of the proof is identical to the one of Proposition 5.1.6 up to
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formula (1.15) with H; in place of Gj. We claim that there exists a finite
constant depending only on F' such that

By | {G%I%\Hj} < expcoﬁ{fl +5|Ij|X§} , (1.21)
1
‘EZ,R [H ewuﬂﬂa} ‘ < Co{z+ﬂX]2}7

E . [H?e%lfj\Hj} < 7

VALA

where X; = A’(m;) — c. It follows from Lemma 4.1.1 that X is absolutely
bounded.

We start estimating the exponential. Recall that m} stands for the ex-
pectation of the density of particles in I; for the grand canonical measure
and that |m; —mj| < CoL~! according to (1.11). In particular, the expo-
nential term is less than or equal to

COBX5 g | 281X (M /11| =m3)
VA A
L»

Since X is absolutely bounded, the first exponential is bounded by exp{Cp3¢~'}.
It remains to estimate the expectation. Since the expression in the expo-
nential has zero mean, expanding the exponential up to the second order,

we obtain that the expectation is bounded above by

L AP By (11 |1 = )2 O G/l

Recall the definition of ; introduced in Lemma 3.1.8. Since 2ab < Aa® +
A2 for any A > 0, the previous expression is less than or equal to
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1+ 4ﬁ2lfj|Xf€252ﬁfl'lj'X§Euk NN /1| =2l 2N 15 =m3 )2
L

Since ae(®/2)e < C(B)e for a > 0, since 1 + z < €%, since X is bounded
and since 32 < /7! = K/L < K~!, by Lemma 3.1.8, the previous expression
is bounded above by exp{C062|Ij|XJ2}, which proves the first estimate in
(1.21).

To estimate the linear term, add and subtract H; in the expectation and
recall that |exp{z} — 1| < |z]exp{|z[}, |m; —m]| < Co/L to deduce that
the linear term is absolutely bounded by

Co| X;|

7 + 2ﬂX12EVRL,A 1| (M;/ |1 _mj)2e2ﬁ|1j|IXj(Mj/\Ijl—mj)l

Replace m; by m; in the expressions above and recall that X; is absolutely
bounded to estimate the sum by

C X (Mo 1L | —m*
TO + COﬁXJZEV[}\‘L’/\ |:€25‘IJHX](M]/|I]‘ mJ)‘]

+ CoPX]Ep [|1j|(Mj S| — w22 |Xj<Mj/uj|—m;>q

because # and X; are bounded and [m; — mj[ < Cp/L. It remains to
repeat the arguments presented for the exponential term to obtain that this
expression is less than or equal to Co L~} +C’05X]2, proving the second claim
in (1.21).

By similar reasons, the quadratic term is bounded by CoK~1X ]2 This
concludes the proof of (1.21).

With the estimates (1.15) it is not difficult to prove lemma in the case
B2 < 1.

We turn now to the case =1 < 5% < ﬂg and follow the second part of the
proof of Proposition 5.1.6 up to formula (1.19) with H; in place of G;. Since
[mj —mj| < CoL~! and since X; is bounded, the linear term of (1.19) with
Hj in place of G; is bounded by CB¢~1. On the other hand, the quadratic

111



term is less than or equal to Coﬂ2\fj|XJ2. to derive this estimate, we need
to keep in mind that X; is absolutely bounded and that K 2 < L. Is is easy
to conclude the proof of the lemma with these estimates. O

We conclude this section with a technical result needed in the proof of
the logarithmic Sobolev inequality.

Lemma 5.1.8 Fiz a bounded function H : R — R, an environment h and
L >2. The function H,n: R — R defined by Hyn(m) = E,n [H(m)]

Ap,m|AL]
1s Lipschitz continuous on R and the Lipschitz constant does not depend on

L.

Proof: An elementary computation shows that

OmEy  [Hm)] = —Bp | [F(12); Hm))

HAp M

[HOW{F' ()= < Fm) >}

h
HAp M

By Corollary 3.1.4, the absolute value of the previous expression is bounded
above by C; L~! for some finite constant Cy depending on || H ||so, ||F||s and
| F’||so because the grand canonical measures are product. Since H I h =
LaMEH}A'L,M [H(n1)] the lemma is proved. =
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