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RESUMO 
 

Esta tese trata da existência de Equilíbrio de Nash em estratégias puras 
no contexto de leilões. Iniciamos com uma discussão do assunto, 
mostrando seus fundamentos e principais resultados. Em seguida, 
estabelecemos um lema básico para caracterização do comportamento 
ótimo em leilões, que é usado como base no estudo de leilões não-
monótonos. Para esse tipo de leilões, apresentamos novos resultados 
de existência, compreendendo vários tipos de leilões simétricos com 
informação privada independente e multidimensional. Mostramos que 
uma regra simples de desempate é capaz de garantir a existência de 
equilíbrio para uma grande classe de leilões. Após aplicarmos tais 
resultados para leilões com lances multidimensionais, estudamos 
leilões assimétricos monótonos, e damos uma prova curta de existência 
que engloba casos não cobertos por resultados anteriores. Em seguida, 
criticamos a hipótese de afiliação, usualmente empregada em Teoria 
de Leilões. Por fim, apresentamos um teorema de ponto fixo para 
correspondências que não requer a hipótese de convexidade de seus 
valores. 
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ABSTRACT 
 

This thesis deals with Pure Strategy Equilibria in Auctions. We begin 
by introducing the subject through a presentation of its fundamentals 
and a survey of the main results. After a basic result about the bidding 
behavior, we study auctions with multidimensional types and without 
monotonic assumptions. We are able to give new existence results for 
this kind of symmetric auctions, with independent types. We also show 
that a simple tie-breaking rule is sufficient to ensure the existence of 
pure strategy equilibrium. We apply these results to the study of single 
object auctions with multidimensional bids. We also give a new proof 
of equilibrium existence for monotonic asymmetric auctions, in a 
setting that includes new results, e.g., the pure strategy equilibrium 
existence for asymmetric double auctions. All these results are under 
the assumption of independence. We argue that affiliation, the 
assumption normally used as a generalization of independence, is not 
convenient. Finally, we present a fixed point theorem for set-valued 
maps that does not need the assumption of convex values.  
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mente esta: a de agradecimentos. É, talvez, a última lição a recolher desta importante
etapa de amadurecimento intelectual. Para fazer justiça, os agradecimentos deveriam
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proporciona é particularmente auspicioso para a pesquisa. Considero um privilégio
ter desfrutado desse ambiente, assim como sou grato pelo est́ımulo que emana de seu
respeitável ńıvel de produção acadêmica. Naturalmente, são também credores de minha
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APRESENTAÇÃO

Esta tese trata da existência de equiĺibrio de Nash em estratégias puras no contexto
de leilões. Está composta por sete caṕitulos, que correspondem aos artigos desenvolvi-
dos durante sua preparação.

O Caṕitulo 1, “Equilibria in Auctions: From Fundamentals to Applications”, con-
stitui uma introdução a todo o assunto de equiĺibrio de Nash em leilões. É um artigo
escrito com o fim de oferecer uma rápida visão dos principais aspectos do problema da
existência de equiĺibrio em leilões, mesmo para não-economistas ou não matemáticos.
É, portanto, um artigo de divulgação (e pesquisa) do campo, servindo perfeitamente

como a introdução de nosso trabalho. Neste caṕitulo, por exemplo, introduzimos os
principais conceitos que serão usados nos caṕitulos seguintes, e também discutimos os
fundamentos e escolhas metodológicas adotadas pela Teoria de Leilões.

O Caṕitulo 2, “The Basic Principle of Bidding”, apresenta o primeiro resultado que
obtive em minha pesquisa. O prinćipio é bastante simples: todos os lances de um
participante de um leilão são para igualar o benef́icio marginal do lance ao seu custo
marginal. Embora bastante intuitivo, é um resultado novo em Teoria de Leilões e vale
em condições bastante gerais. Sua generalidade pode ser usada para a obtenção de
conclusões da observação de lances reais ou experimentais, mesmo durante o peŕiodos
iniciais, em que os jogadores ainda estão aprendendo. Isso pode abrir a possibilidade de
investigar como mudam as crenças dos agentes ao longo das iterações e se eventualmente
elas convergem para uma Common Prior, como usualmente se postula.

O Caṕitulo 3, “Pure Strategy Equilibria of Multidimensional Non-Monotonic Auc-
tions”, provavelmente contém os resultados teóricos mais relevantes desta tese. Gen-
eralizamos os resultados de existência de equiĺibrio em leilões simétricos com tipos
independentes até agora dispońiveis. Enfraquecemos as hipóteses de tipos unidimen-
sionais com utilidades monótonas, para qualquer dimensão de tipos e sem hipóteses
sobre a monotonicidade das funções de utilidade. Também explicitamos quais são as
condições em que não são necessárias regras especiais de desempate. No caso em que
tais condições não são satisfeitas, oferecemos uma simples regra de desempate que
garante a existência de equiĺibrio em qualquer dos casos analisados.

O Caṕitulo 4, “Single Object Auctions with Multidimensional Bids” é na verdade
uma extensão curta da análise do Caṕitulo 3. O problema abordado, no entanto, pode
ter uma importância que a literatura parece não haver ainda considerado suficiente-
mente. De fato, vários leilões do mundo real são leilões com lances multidimensionais.
Há provavelmente razões importantes para isto. Este caṕitulo é uma abordagem inicial
para alguns desses tipos de leilões.
O Caṕitulo 5, “Is Affiliation a Good Assumption?”, mostra como é restritiva e insat-

isfatória a hipótese de afiliação, largamente utilizada na literatura sobre leilões como
uma conveniente generalização de independência. O artigo, porém, não se limita a
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6 APRESENTAÇÃO

apresentar a cŕitica. Ao final, apresentamos uma proposta de metodologia que, uma
vez desenvolvida, pode se mostrar mais geral e mais aplicável à realidade, ainda com
conclusões interessantes.

O Caṕitulo 6, “Monotonic Equilibria of Auctions” dá uma demonstração relativa-
mente curta para a existência de equiĺibrios monótonos. Em particular, permite obter
um resultado original para a existência de equiĺibrio em leilões duplos com tipos inde-
pendentes e utilidades assimétricas. Tal tipo de resultado pode ser considerado como
uma contribuição à fundamentação microeconômica para equiĺibrios com expectativas
racionais.

O Caṕitulo 7, “A Fixed Point Theorem for Non-Convex Set-Valued Maps”, é, na
verdade, um artigo puramente matemático, embora apresentemos, ao seu final, uma
aplicação para Teoria de Jogos. O teorema de ponto fixo nele apresentado é uma espécie
de Teorema de Kakutani sem a hipótese de convexidade nos valores da correspondência
(“set-valued map”). Vale apenas para espaços de funções e usa como substituto para
a convexidade o conceito de decomponibilidade. Em muitos casos, esta condição é
bastante natural, mas o teorema ainda requer algumas condições de continuidade que
podem ser restritivas. É importante frisar que a busca de um teorema de ponto fixo sem
a hipótese de convexidade também foi motivada pela questão de equiĺibrio em leilões,
uma vez que esse tipo de jogo não goza de tal propriedade.

Optamos por apresentar os caṕitulos em formatos próximos aos dos artigos, de forma
que gozam de suficiente autonomia. O leitor observará, no entanto, que todos obedecem
a um único tema, que dá unidade a esta tese: a existência de Equiĺibrio de Nash em
jogos de informação incompleta e, em particular, em Leilões. Por que esse assunto é
relevante e por que nos dedicamos a ele? Esta breve apresentação não comporta a
resposta a tão importante questão. Mas se a curiosidade do leitor ficou despertada,
permita-me transformá-la em est́imulo para que vire a página e comece a buscar, no
Caṕitulo 1, minha tentativa de respondê-la.



CHAPTER 1

EQUILIBRIA IN AUCTIONS: FROM FUNDAMENTALS TO

APPLICATIONS

Abstract. This chapter presents the main results of equilibria existence in auctions,
and it is equally an introduction and a guide for the literature. We departure from
the fundamentals of the area, explaining its assumptions and methodology to attack
the relevant questions. Then, we cite the most important applications of the theory,
showing how it can be useful to auction practitioners.

1. Introduction

Auctions are intensively and widely used in the economy: in the internet, in the
market of bonds and treasury bills, in privatization of public firms, in the allocation
of spectrum, etc. Even some economic institutions not commonly thought as auctions,
like R&D races and lobbying, can be well modelled as auctions.1

This intensive use creates a strong demand for theoretical results that could give
guidance to auction practitioners. Among the main questions, there are some very
complex issues: what is the expected revenue and how to increase it? How the rules of
the auction attract bidders and affect their bidding behavior? How to prevent collusion?
Is the auction efficient – in the economic sense of giving the object to whom value it
the most? What is the value and impacts of information? How the seller has to treat
the information of his own? And so on.
It is evident that in all of the above questions, the strategic aspects of the behavior of

the seller and that of the bidders have to be considered. Indeed, one could say that the
most important aspect of the study of auctions is to understand the strategic aspects
of its design. This opens the door to understand all the other questions, as efficiency,
revenue, collusion, etc. From the complete understanding of the strategic behavior of
participants, the theorist can infer better founded conclusions about the phenomena
observed in the real auctions and derive advices.
The scientific tool for treating strategic iterations is Game Theory, a well explored

and fruitful area of Economics. Its most used and accepted concept is Nash equilibrium.
In some sense, it is from the understanding of the properties of the equilibrium that
the theory can provide useful conclusions.2

The purpose of this chapter is to describe the subject of Nash equilibria in auctions,
being an introduction and a guide for the literature.3 We begin in section 2, where we
make a detailed and careful construction of the standard models of auctions. In section
3, we discuss the suitability of Nash equilibrium concept for Auction Theory. In section
4, we explain why the standard results in general games do not apply to auctions,
leading to the necessity of special results. In particular, the observations of these two

1See footnote 8.
2As we discuss in section 3 it is still possible to say something without the use of the equilibrium

concept.
3The reader interested in other issues of Auction Theory is referred to the survey of Klemperer

(1999).
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8 CHAPTER 1

sections justify the number of papers dealing with the question of existence. We proceed
in section 5 by discussing the results in mixed strategies and its limitations. The pure
strategy results are briefly surveyed in section 6 and its assumptions discussed in section
7. In section 8 and 9 we discuss, respectively, the dimension and the dependence of
the private information of the bidders. Section 10 approaches the applicability of the
theory to the reality. Section 11 is a brief conclusion.

2. A Model for Auctions

Let restrict us to auctions of one indivisible object.4 We begin by fixing the number
of bidders, n.5 In general, the object has uncertain value to the participants, and we
can model it as random variables, V1, ..., Vn, one for each bidder. Of course, the value
is permitted (but not required) to be the same for all bidders. If they are equal, the
auction is said to be a (pure) common value auction, as we define at the end of this
section.
The case where the value of each bidder is common knowledge between the bidders

is trivial for one object auctions: the bidder with the highest valuation will win any
form of auctions and pay the second highest valuation. Indeed, a price slightly above
the second highest valuation implies that only one bidder desires the object. So, the
allocation problem is solved at that price and the opponents have no way to push
upward the price that the winner will pay. Nevertheless, this argument uses some
implicit assumptions. First, we are ignoring strategic behavior by the seller. In other
words, he is passive and/or do not have information about the valuation of the bidders.
Otherwise, he could design auctions to extract the rent from the bidders, as showed
by an example in Myerson (1981) or by McAfee, McMillan and Reny (1989). Another
point is that the bidders have no rights on the object (as is usually the case in auctions).
If this is not the case, we turn to bargaining models. Finally, this simplicity is restricted
to single object auctions. For auctions of many objects, even the complete information
case is not trivial.6

Consider first the sealed bid auctions, that is, auctions where the only thing that
the bidder has to do is to write a bid in a envelope and to delivery it to the auctioneer.
The bidder with the highest bid receives the object but the payment depends on the
auction rule or format. The more common formats are the following:

• first-price auctions: the winner pays his bid;
• second-price auctions: the winner pays the second highest bid (or the highest
looser bid);

• All pay auction: all bidders pay their bids, but, as before, just the player with
the highest bid receives the object.7

4This is the most treated case in the literature, although recent efforts have been made to treat multi-
unit auctions. This class of auctions is very important, because it embraces the auctions for treasury
bills and bonds, spectrum rights, energy contracts and so on. We treat some aspects of multi-unit
auctions in section 10.
5Some papers are interested in analyze how the conditions and rules of the auction affect the number

of participants. Then, its number is not assumed fixed in the beginning. See, for instance, Levin and
Smith (1994).
6See, for instance, Menezes (1996).
7Although not very common in practice, the all pay auctions can model, for instance, the R&D

races. Everybody pays the investment in the research, but the firm that invested the most reaches the
patent first, and receives the prize. In lobbying, everyone gives a gift to the decision maker, but the
favor goes to whom gave the most valuable gift.
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• War of attrition: the losers pay their bids and the winner pays the highest
losers’ bid.8

A very popular auction format that are not included in the sealed bid class is the
English or open auction. In this format, the bidders successively place bids in order to
outbid the opponents. When no bidder wants to place a higher bid, the auction ends
and the author of the last bidder is the winner, paying his bid.9

Another example is the Dutch auction, used to sell flowers in Holland: the auction
starts displaying a very high price for the item and then such price continuously lowers,
until some participant claims the object. At that moment, the price stops and the bid-
der pay it. Theoretically, Dutch auction is equivalent to a first-price auction, because
no information is learned during the auction and the strategy is equivalent to decide at
what price to buy the object, exactly the same decision of a first-price sealed-bid auc-
tion. Interestingly, empirical and experimental studies do not confirm this theoretical
equivalence.10

We will mainly focus on the first-price auctions, one of the most treated in the
literature. The problem of the bidder is simply to choose a bid in order to maximize
his expected profit, where the profit is the difference between the value of the object
and the payment, in case of winning. But, “expected” in which sense?
Each bidder has some information about Vi, that leads to conditional distribution of

its value. Of course, this includes the case where the bidder knows with certainty the
true value of Vi. Also, each bidder i forms beliefs about the values of Vj , for j 6= i and
about the beliefs that bidders j 6= i have about Vi. Unfortunately, the things do not
stop here: each bidder i has now to consider the beliefs of the bidders j 6= i over the
beliefs of i over the beliefs of j, and so on. This makes the problem rather complex and
apparently intractable.
In order to address the issue, let us first observe that the situation described is a

game of incomplete information. It is a game because each participant has to choose
an action (the bid) and the payoff of each participant depends on the actions (bids) of
everyone. It is of incomplete information because the players do not know what the
payoffs of the participants are. The solution for these kind of games was given in the
insightful and remarkable paper of Harsanyi (1967-8).11 In the case of auctions with
risk neutral bidders, we can describe his approach as follows.12

2.1. Auctions as Incomplete Information Games. The payoff of bidder i is 0 if
he looses and Vi − bi if he is the winner. So, the uncertainty about the payoff is in Vi,
the value of the object. If such object is, for instance, the right to explore a petroleum
field, the value depends on the quantity and the quality of the oil in the field, the
cost of drilling and extraction – that are affected by the technology used by the firm

8The war of attrition models conflicts among animals and the struggle for survival among firms.
9Some auction houses use the practice of maintain the reserve price unrevealed. So, if the last bid

is not above the reserve price, there is no winner. In this situation, the object is said to be “bought
in”, which is a terminology consistent with the best way of model unrevealed reserve prices: it works
like a bid of the seller.
10See Lucking-Reiley (1999) and Kagel, Harstad and Levin (1987).
11Without the Harsanyi’s tools, Vickrey (1961) has achieved some of the most important conclusions

in Auction Theory for a long period. His remarkable paper can be considered the foundation of the
field.
12There is no difficult in treat other attitudes towards risk. Indeed, the original treatment in section

3 of Harsanyi (1967-8) includes this case.
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–, the international prices of the petroleum and some other private characteristics of
the firms. In other words, many variables usually are the determinants of the value of
the object. Between these variables, some are known by the bidder himself, some are
known by the other bidders, and some are unknown to all of them.
Thus, it is convenient and realistic to describe Vi as a function of a set of parameters,

that is, to assume that

Vi = ui (a0i, a1i, ..., ani) ,(1)

where a0i is a vector of parameters that are unknown to all players and aki is a vector of
parameters that are unknown to some of the players but are known to player k, for k =
1, ..., n.13 The subscript i in the above parameters is just to say that they are referred
to the value of the object to player i. Without loss of generality, we can assume that
the function ui is common knowledge for all players.

14 Harsanyi assumes that the set
of all possible values of the parameters aki is Aki, (a subset of) an Euclidean space with
the convenient dimension. The vector ak = (ak1, ..., akn) , for k = 1, ..., n describes
the information that player k has about the functions ui, for i = 1, ..., n. The vector
a0 = (a01, ..., a0n) summarizes the parameters that none players have about ui. Of
course, we can write Vi as function of the vector a = (a1, ..., an), where the unnecessary
parameters does not influence the payoff. So, we can write

Vi = ui (a0, a) ,(2)

where a is also denoted by (ai, a−i), with a−i ≡ (a1, ..., ai−1, ai+1, ..., an). The range
of a is denoted by A and the range of a−i by A−i.
Harsanyi adheres to the Bayesian doctrine, that assumes that the players attribute

subjective probabilities to the unknown parameters, that is, each player form a sub-
jective probability over A. Of course, we could again parameterize the possible prob-
abilities and say that ski is the parameter that player k knows about the subjective
probability of player i. Repeating the previous procedure, si denotes the vector of pa-
rameters known to bidder i. We end up by saying that each player form a probability
µi = µsii , over the set of unknown parameters: A0 × A−i × S−i. It is assumed that
µsii is a conditional probability µi (·|si) and that there is a prior distribution µi (·) over
A0 ×A× S. Finally, it is assumed that the priors are equal across the players, that is,
µ1 = ... = µn = µ.

15 So, the differences between the subjective probabilities are due to
the parameters si.
The parameters that are unknown to all players do not influence their behavior in

the auction. Thus, bidders can restrict attention to V i, the expected value of Vi with
respect to a0. That is, we can eliminate the vector a0 in equation (2), so that we have

V i = ui (a|si) =
Z
A0

ui (a0, a)µ (da0, a|si) .(3)

13The reader can think in the parameters as being random variables correlated to the random
variable Vi. The utility function in equation (1) is, then, just a conditional expectation.
14This is valid if the parameters can be infinite dimensional, since the uncertainty over all functions

can be parameterized by such kind of parameter. The hypothesis that the parameter lies in an Euclidean
space is the restritive one.
15This is known as Common Prior Assumption.
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Now, we embrace all the information that bidder i possess before choosing the bid
in a unique vector

ti = (ai, si) = (ai1, ..., ain, si1, ..., sin)(4)

and call it the type (or the signal) of bidder i. It represents all information that he has
about: his own payoff, the payoff of the others, his own beliefs and the beliefs of the
others. Again we write t = (t1, ..., tn) so that we can rewrite (3) as

V i = vi (t) = ui (a|si) .(5)

Now, we can introduce some standard concepts of Auction Theory.

(1) Private Values - If vi (t) depends just on ti, that is, if there is no parameter
known to some player j 6= i but unknown to player i, the auction is said to be a
private value auction. In other words, player i knows everything that the entire
set of players know about his payoff.

(2) Common Value - If vi (t) = v (t) for all i, that is, if the value of the object is
the same for all bidders, it is a common value auction.16

(3) Symmetric, Interdependent Values - If vi (t) = v (ti, t−i), where v (ti, t−i) =
v
¡
ti, t

0
−i
¢
for all t0−i that is a permutation of t−i, we are in a symmetric auction

that can have (or not) private value parts. This is the case analyzed by Mil-
grom and Weber (1982) and it is a clear generalization of the common and the
private value settings.17

(4) Asymmetric, Interdependent Values - If vi (t) does not assume any of the
above special forms, we are in a general asymmetrical, interdependent value
auction.

It is worth to highlight that common value is not the opposite of private values, as
one may wrongly conclude from the terminology. Common value means that the value
of the object is equal to all participants (but see footnote 17), while private value means
that all information regarding the value of the object to a bidder is actually possessed
by him.

3. Why Nash Equilibrium?

Despite the almost omnipresence of the concept of Nash equilibrium, it is worth to
discuss whether it is convenient to apply it for auctions.
First of all, Nash equilibrium is concise, simple and indicates self stable behaviors

by the players.18 The stability of the outcome is, indeed, one of the more important
requirement to an economist. Otherwise, he would study or derive properties of a
phenomenon that is likely to disappear.
Another reason comes from the following argument: assume that a group of special-

ists is required to give (individual) advisories to participants how to play a game. If

16Some authors call this pure common value and use the term “common value” to what we call
interdependent value.
17We are implicitly assuming that the space of types is the same.
18The concept, in its own, requires just this: the stability of the actions. Nevertheless, especially in

extensive form games, there are good examples of Nash equilibrium that are not stable. This has led
to some refinements of the concepts. See van Damme (1983).
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the recommendations are not equilibrium, some player(s) can do better by choosing
another action. In other words, the recommended strategies will be self defecting.
Of course, there are some objections to the above arguments and to the use of

the concept. One of the most important is that Nash equilibrium strategies are, in
general, very difficult to calculate, especially in auctions. So, how the players would
compute their equilibrium strategies to even consider play them? More than that, if
one player learns the equilibrium strategies but is not sure that the others will follow
their strategies, then to play his equilibrium strategy may not be the best thing to do.
An answer to this point is that the players will learn the equilibrium in some time,

and those who do not learn the equilibrium strategy will be rolled out of the market.19

In auctions, it would mean that the experienced players, or the players that survive
to many auctions, have learned to play the equilibrium strategies. Experimenters have
confirmed this at least in private value auctions.20

Nevertheless, in the real world such learning process has some problems. It implicitly
requires that the bidders participate in a number of similar auctions, with similar
bidders, but preferably not the same. The reason is that if the same bidders meet
repeatedly in the auctions, it is likely to arise some form of collusion.
Another point is that the “transitory” period of learning the equilibrium can prolong

for a non-negligible time. This would depend of the uncertainty involved and the
information that are revealed at the end of the auction, which is not much, in general.
For example, the estimated values of the bidders are unobservable and, in some auctions,
only the highest bid is known after its end.
Adding to the list of difficulties, some experimenters reported consistent bidding

behavior above the Nash equilibrium prescription.21 This leads to consider what can
be said if the players does not follow Nash equilibrium strategies.
Indeed, it is worth to remember that, as Pearce (1984) and Bernheim (1984) pointed

out, rationality of the players does not imply Nash equilibrium. It only implies the
use of rationalizable strategies. In this setting, Battigalli and Siniscalhi (2003) de-
rived interesting conclusions. Some of them can be explanations for the findings of
experimentalists that are in contradiction with equilibrium behavior.
Even under weaker hypothesis, it is still possible to say something interesting. In

the chapter 2, we prove the “Basic Principle of Bidding”, that roughly says that any
rational bidder with unitary demand always bid in order to equalize the marginal utility
of bidding to its marginal cost. As stated, it is so simple that seems obvious, but it is a
new interpretation. It does not depend on assumptions about the dimension of types,
monotonicity or linear separability of the utility function. If one accepts the Becker
doctrine,22 we can derive conclusions about all bids observed, learning something even
about inexperienced bidders.

19This is the classic evolutionary argument to justify equilibrium.
20See, e.g., Kagel, Harstad and Levin (1987). The common value setting is more controversial. See

Kagel (1995).
21See Kagel (1995) for a discussion and a survey of the corresponding literature.
22We call “Becker doctrine”, after Gary Becker, the notion that we can better understand the human

behavior by maintaining the assumption that they are rational and maximize utility conditioning in
the information that they have. So, useful conclusions about beliefs can be derived from the observed
behavior. In the case of auctions, this would mean that we can learn something about the beliefs and
utility function of the bidders, even if they do not have a Common Prior. In that case, only their beliefs
are inconsistent, but they are rationally following the Basic Principle of Bidding.
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Concluding this discussion, we would remember that if there is something that an
economist must understand is the concept of “trade-offs”. In our case: weaker as-
sumptions lead to weaker conclusions. As long as we interested in more substantive
information about auctions, we have to accept the cost of obtaining it, and to work at
least with the notion of Nash equilibrium.
We hope that it is now apparent to the reader that the notion that bidders follow

Nash equilibrium strategies is, in fact, a “meta-assumption” for our methodology.23

More clearly: we believe that the acceptance of this meta-assumption provides an
optimum combination between the mathematical structure that we require in our model
of the world and the conclusions that we derive from it.
Having justified the methodology, let us focus in the question of existence and char-

acterization of Nash equilibrium.

4. Equilibria Existence in Games

The first general existence result for equilibrium in games, is that of Nash (1950).24

The hypotheses of his theorem is that of continuity and quasiconcavity of the utility
functions. With them, it is easy to prove that the correspondence (set-valued map)
of the best-responses are upper semicontinuous with closed and convex values. An
application of Kakutani’s Theorem concludes the proof.
Unfortunately, auctions are neither continuous nor quasiconcave.
The utilities in auctions are discontinuous because of ties in winning bids that occur

with positive probability. In those cases, it is necessary to break the tie by giving
the object to one of the tying bidders. However a bidder that receives the object with
probability strictly less than one can bid arbitrarily close of the tying bid and increasing
discontinuously the probability of winning. This implies a discontinuous changing in
the utility. In the appendix, we give counterexamples to show that standard auctions
are not quasiconcave.25

Since discontinuous games are not so rare (indeed, they are very common), some
papers have tried to weaken Nash’s assumptions. Among them, we can cite Dasgupta
and Maskin (1986), Simon (1987), Baye et. al. (1993) and Reny (1999). In the last
(and more general) paper, the condition of continuity is weakened to the requirement of
better reply security and the quasiconcavity is dispensed, at least for the mixed strategy
result.26 Reny (1999) also shows how his theorem proves the existence of equilibrium
for multi-unit, private value, independent types, pay-your-bid auctions.27 It is still
unclear how far Reny’s Theorem go to prove general existence results in auctions.
What is important to highlight here is that the problem of existence of equilibrium

in auctions is more difficult than in other economic games. This factor and the interest

23Of course, it is a testable (meta-) assumption. We have to recognize, nevertheless, that it is hard
to test it, even in experiments, where the conditions are controlled. Kagel (1995) describe an intense
debate about the consistency between the observed behavior of individuals in experiments and the
assumption that they play Nash equilibria. In empirical tests, the things are even more problematic.
See Laffont (1997).
24See also Debreu (1952) and Glicksberg (1952).
25Because auctions are not quasiconcave, in chapter 7 we work with a theorem similar to Kakutani’s,

without the requirement of convexity of values. Nevertheless, it still needs continuity properties that
are too restrictive for auctions.
26It is still necessary to pure strategy equilibrium.
27The reader unfamiliar with these terms can consult section 7, below.
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in such results lead to many papers dealing with the question of equilibria existence in
auctions.

5. Mixed Strategy Equilibrium and Tie-Breaking Rules

The most general available result that applies to auctions is that of Jackson, Simon,
Swinkels and Zame (2002). They guarantee the existence of equilibrium in general
discontinuous games and all kind of (atomless) distribution of types. Nevertheless,
their result has at least two undesirable characteristics: first, it requires that the tie
breaking rule were endogenously determined; second, it is in mixed strategy.
The standard way of solving ties in games is to appeal to a random device, like a

coin, to decide the outcome of the game. Under this standard rule, many discontinuous
games do not have equilibria. Simon and Zame (1990) are probably the first to point
out that a special (and endogenous) tie-breaking rule can solve the problem of existence.
The paper of Jackson, Simon, Swinkels and Zame (2002) is, indeed, a generalization of
Simon and Zame (1990) for games with incomplete information.
Lebrun (1996) seems to be the first to mention the need of special tie-breaking rules

in Auction Theory. Maskin and Riley (2000) also express its importance and adopt a
special (non-endogenous) tie-breaking rule for auctions where the types of the bidders
are finite: in case of a tie, conduct a second-price auction among the tying bidders.
The problem with endogenous rules is that the rules of the game cannot be previously

specified. The theoretical result also does not offer guidance for the way of chosen the
rule. It is just an existence result. Then, the players begin the game (or at least decide
to participate) without knowing what is the rule.
At least to private value auctions, Jackson and Swinkels (2004) solve a part of the

problem. They show that the equilibrium is invariant for the tie breaking rules, so that
the problem becomes of minor importance. Nevertheless, their paper still provides the
result in mixed strategy.28

The problem with mixed strategy is twofold: first, it is difficult to accept that in
auctions, where it is involved sometimes considerable amount of money, a bidder chooses
the bid through a random device (like a coin).29 Second - and more important for
Auction Theory - the mixed strategy equilibrium fail to provide useful information
about the bidding behavior of the players.
In chapter 3, we offer the following contributions to this problem: first, we give

necessary and sufficient conditions for the existence of equilibria without ties with
positive probability. Up to now, the literature had not clarified when it is necessary
and when it is not necessary the use of special tie breaking rules in auctions. Second,
we propose an exogenous and simple tie-breaking rule for the use when the necessary
and sufficient conditions do not hold. This result has the advantage of being in pure
strategy. Also, it does not require the announcement of types (as Jackson et. al.), but
it can be implemented through an all-pay auction.30

Before we describe their result, we would like to review some of the previous results
in pure strategy.

28They offer a specialization of the result that leads to pure strategies equilibria.
29In fact, this is a general objection to mixed strategies in game theory.
30The important restrictions that they made are that the types are independent and the utilities

are symmetric.
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6. Pure Strategy Equilibrium

Roughly speaking, two methods have been used in the literature for establishing equi-
librium in pure strategy. The first is to analyze the solution of a (set of) differential
equation(s) derived from the first order condition of the bidder’s best-reply problems,
and then, under some assumptions, to prove that this solution satisfies sufficient con-
ditions for an equilibrium.
The second method begins by restricting the feasible bids or types to discrete sets.

Then, the auction is reduced to a finite game which is showed to have equilibrium.
The properties of convergence guarantee the desired behavior at the limit as the grid
of actions/types becomes finer.
The first method has the advantage of characterizing the equilibrium strategy and, in

some cases, providing its analytical expression. On the other hand, the second method
seems more general.
Papers that use the first approach includes Milgrom and Weber (1982), Lebrun

(1999), Lizzeri and Persico (2000), and Krishna and Morgan (1997). Milgrom and
Weber (1982) assume that types are affiliated and that each bidder’s utility function
is increasing in all types.31 Under these conditions, they show that there exists a
pure strategy equilibrium for which the bidding functions are monotonic. Their results
cover the first-price, the second price and English auctions but require, as an important
condition, symmetry. Krishna and Morgan (1997) use similar methods to the case of
all-pay auction (first-price all-pay auction) and war of attrition (second-price all-pay
auction). Lebrun (1999) extends the differential equation approach to the asymmetric
first-price auction, but with private values and independent types. Lizzeri and Persico
(2000) use the approach to the case of common values with reserve price, affiliated
types, but only two bidders.
Maskin and Riley (2000), Athey (2001) and Reny and Zamir (2004) follow the second

approach. Maskin and Riley (2000) establish existence of equilibrium for asymmetrical
first-price auctions with either affiliated types and private values or independent types
and common value. Athey (2001)’s model embraces a wider class of discontinuous
games. She establishes the existence for several games and, in particular, she obtains
existence for the 2 bidder first-price auction with affiliated types and common value.
Reny and Zamir (2004) extend her result to the n bidders’ case.
Table 1 below summarizes the findings for first-price auctions, the case more treated

in the literature.

31Affiliation can be defined as follows. Consider n real random variables t1, ..., tn and let f (·) be
its joint density function. Then, the variables are affiliated if f (t) · f (t0) 6 f (t ∨ t0) · f (t ∧ t0), where
t ∨ t0 ≡ (max {t1, t01} , ..., max {tn, t0n}) and t ∧ t0 ≡ (min {t1, t01} , ..., min {tn, t0n}). For a definition
without use of the density function and other discussions, see Milgrom and Weber (1982). In chapter
6, we argue that affiliation is a very restrictive assumption.
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Assumptions Symmetric, in-
terdependent
values

Asymmetric,
private values

Asymmetric,
interdepen-
dent values

Independent
types, n bid-
ders

Lebrun (1996,
1999)

Maskin and
Riley (2000)

Affiliated
types, 2 bid-
ders

Lizzeri and
Persico (2000),
Athey (2001)

Affiliated
types, n bid-
ders

Milgrom and
Weber (1982)

Maskin and
Riley (2000)

Reny and Za-
mir (2004)

Table 1 - Summary of existence results in first-price auctions

We will not describe all the results in other formats of auctions, but just cite some
of them.
The second-price auction is analyzed by Milgrom (1981). Many papers treat English

auctions, but Milgrom and Weber (1982) is a good starting point. Williams (1991)
treats double auctions with the simplification that the bid is determined depending just
on the buyers’ bid. His setting is a symmetric private value auction with independent
types, risk neutrality and unitary demand. Fudenberg, Mobius and Szeidl (2003) and
Perry and Reny (2003) provide more general results in double auctions, but for large
number of bidders.
Amann and Leininger (1996) and Krishna and Morgan (1997) study the cases of all

pay auctions and war of attrition.
Building in a general method developed by Milgrom and Shannon (1994), Athey

(2001) provide general pure strategy equilibria results when a game satisfies a “non-
primitive” condition, namely, “single crossing property”. She applies her result to
various unidimensional auctions. Extending Athey’s theorem to the multidimensional
framework, McAdams (2003) prove the existence of pure strategy equilibrium in multi-
unit uniform price auctions.32

If we want to add to this list the results regarding other issues, but with equilibrium
results, the list becomes interminable.33 Even limiting ourselves to papers that treat
the equilibrium (almost always) as a central question, we find that our list is still
incomplete.
It is amazing that all of the above results share a common characteristic: the equi-

librium bidding functions are monotonic non-decreasing.34 This is a so universal char-
acteristic that one could ask why this is so. Obviously, this comes from the assumptions

32Remember that Reny (1999) proves the existence just for “pay-your-bid” multi-unit auctions.
33Such issues are, e.g., risk aversion (Matthews (1983), Maskin and Riley (1984)), collusion (McAfee

and McMillan (1992)), entry of bidders (Levin and Smith (1994), Campbell (1998)), financial con-
straints (Zheng (2001), Fang and Parreiras (2002)), etc.
34There exist some exceptions. In Zheng (2001), the private information is the budget constraint,

and the bidding behavior can be non-monotonic. Nevertheless, there is also a monotonic equilibrium.
McAdams (2003b) gives an example with three bidders and affiliated types, where a non-monotonic
equilibrium can exist. Ewerhart and Fieseler (2003) and Athey and Levin (2001) study auctions with
multidimensional bids that can exhibit non-monotonic equilibria.
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usually made. Thus, it is worth to analyze such assumptions and discover whether they
are restrictive or not.

7. The Standard Assumptions in Auction Theory

We can distinguish three classes of assumptions that lead to the monotonic bidding
functions: 1) about the types (dimension and distribution); 2) about the dependence of
the utility with the types; 3) about the cross dependence of the utility with the types
and bids.
Under the first class of hypotheses, it’s normal to suppose that types are unidimen-

sional and independent or affiliated.35

In the second class, generally it is assumed that utilities (values) are strictly increas-
ing with own type and constant (private values) or non-decreasing (interdependent
values) with other’s types.
The third class of hypotheses assumes that the second cross derivative of types and

bids are positive (∂2btu > 0). Risk neutrality and risk aversion, for instance, imply this
class of hypothesis. It is known as “single crossing conditions”.36,37

Regarding the first class, we argue in subsection 7.1 that the simplification to uni-
dimensional types is not harmful in private values settings, while it can be restrictive
in interdependent values cases. Independence and affiliation is briefly discussed in
subsection 9.

7.1. Dimension of Types. As equation (4) makes clear, the type of a bidder is per
se multidimensional. So, why unidimensional types are that used in auction theory?
The main reason is, of course, simplicity. When the types are real numbers, the real

analysis can be used and it is clear how is easy to work with it in comparison with
multidimensional analysis.
Although it seems restrictive, the unidimensionality of types is acceptable at least in

the case of private values with independent types. Indeed, in this case, the bidders do
not have information concerning the value of the object to the opponents. So, we can
reparameterize the signals of each bidder to the unidimensional type

τ i ≡ E [Vi|ti] ,
and this summarizes all the information that bidder i needs to know. In other words,
τ i is a sufficient statistic for the information of bidder i. This is the reason why
the unidimensional signal is understood as the value for the bidder.38 In the case of

35Of course, when dealing with continuous types, distributions are routinely assumed to be atomless.
36See Athey (2001) for a discussion on single crossing conditions. We will not discuss this class,

since it has, at least in Auction Theory, the good justification of risk aversion or risk neutrality.
37The term Single Crossing Condition is also used for the property that ∂iui > ∂iuj , for j 6= i. This

is used for establishing efficiency. See Dasgupta and Maskin (2000) and Krishna (2002 and 2003).
38It is worth to see also footnote 14 of Milgrom and Weber (1982), p. 1097, that we reproduce here

for reader’s convenience:

To represent a bidder’s information by a single real-valued signal is to make two
substantive assumptions. Not only must his signal be a sufficient statistic for all of
the information he possesses concerning the value of the object to him, it must also
adequately summarize his information concerning the signals received by the other
bidders. The derivation of such a statistic from several separate pieces of information
is in general a difficult task (see, for example, the discussion in Engelbrecht-Wiggans
and Weber [17]). It is in the light of these difficulties that we choose to view each Xi
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dependent types, the argument is a bit more problematic, since the bidder does not want
to loose information when summarizing his information to a unidimensional variable.
Nevertheless, the reduction can be done if there is a unidimensional sufficient statistic
τ i that summarizes all the relevant information for the bidder.
In the case of interdependent values, when each bidder has some valuable information

regarding the values of the others, the existence of such sufficient statistics is less clear.
At least when the types are independent, we show in chapter 3 that it there exists
(under some assumptions on the utility function).
Of course, the case with interdependent values and correlated types is much more

demanding and it cannot be reduced to the unidimensional case in general. This is
problematic, since this setting is just the more likely to describe real situations. Indeed,
in the real auctions the bidders generally base their behavior in many observations and
variables, and their estimates might not be independent. But this is the subject of the
next subsection.

7.2. Distribution. Concerning the distribution of the types, most of the equilibrium
results assume independence. Of course this is a strong assumption and it is very
valuable to try to relax it.
Milgrom and Weber (1982) do that through the concept of affiliation. Under this

kind of dependence, they prove the existence in first-price, second-price and English
auctions. Since their paper, any model that relaxes the independence hypothesis in
Auction Theory uses the concept of affiliation.39

Despite such agreement – or because of it –, in chapter 6 we argue that affiliation is
not a satisfactory or valuable generalization of independence, since it is very unstable
and restrictive. More than that, we argue that the recommendations derived from
affiliation are very unreliable and not suitable to apply directly in the real world. We
also provide alternative explanations for the phenomena that affiliation is considered
to successfully explain, as the predominant use of English auctions. That chapter also
proposes an alternative approach to treat dependence.

7.3. Monotonicity of the utilities. The discussion about the dimension on types also
revealed some of the main reasons to assume that the value function (5) is monotonic.
Indeed, in the private values case, this is straightforward, but in the interdependent
values case, the justificative is much less compeling. If the bidders’ information is
multidimensional, the assumption is clearly restrictive.
If we want a more general theory for multidimensional information, it is necessary

to cope with non-monotonicity. In chapter 3, we present a method to deal with multi-
dimensional and non-monotonic auctions.

8. Multidimensional Bids

Multidimensional bids can model the very important case of multi-unit auctions, as
Treasury Bill auctions. Indeed, each bidder is required to submit a demand function,
that is a vector bi = (bi1, ..., biL), where bih specifies the price that the bidder are

as a “value estimate,” which may be correlated with the “estimates” of others but is
the only piece of information available to bidder i.

39Jackson and Swinkels (2004) is an exception, but their result is in mixed strategy, as we have
previously said.
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prepared to pay for the h− th unity of the object that he receive. The importance of
such auctions are sufficient to justify the interest in them.
The most important sealed price formats for multi-unit auctions are the following:

• Discriminatory (or “pay-your-bid” auction) – each bidder pays exactly the bid
given for the unity received. For instance, if bidder i wins 3 objects with the
bid bi = (16, 12, 9, 7, 5, 4), then he pays 16 + 12 + 9 = 37.

• Uniform Price Auction – all the units are sold by the same price, that is chosen
between the lowest winning and the highest losing bid. In the example above,
if the highest losing bid was 7 and the lowest winning bid was 9, the price can
be anything between 7 and 9 (but it is specified before the auction itself). If
it is, say, the lowest winning bid, bidder i in the example above has to pay
3 · 7 = 21.40

• Vickrey Auctions – for each unit bought, the seller pays only the minimum
necessary to win such unit. For instance, suppose that the maximum bids of
the opponents of bidder i are 18, 11, 10, 7, 4, 2. Then, for the first unit, bidder
i has to pay 2, for the second, 4 and for the last, 7, that is, he pays 13.

As in the case of single unit auctions, there are open formats in close correspondence
with the given above. The literature on these kind of auctions is growing at a fast pace.
For a more complete and detailed introduction, see Krishna (2002).
Nevertheless, there are other cases where multidimensional bid can arise, even for

single unit auctions. This can model situations like the buy of a service with many
different characteristics. For instance, some companies and governments buy goods
and specially services through a mechanism where the potential suppliers are requested
to specify not only prices, but also warranty, quality, time to delivery and other char-
acteristics. All these characteristics have to be taken in account in order to decide the
winner in the contest.
An example is the auction for the B Band of mobile phones in Brazil. The government

asked for bids that include not only the price for the license (pi), but also the price to
the consumers (ci). The winner was the company with highest B (pi, ci) = 0, 6pi−0, 4ci.
We treat auctions of this kind in chapter 4.

9. Applications of Auction Theory

Auction Theory is useful for theoretical and practical purposes. In the following
subsections, we try to briefly illustrate both kind of applications.

9.1. Double Auctions. Double auctions are market institutions where the sellers
place offers (a price for which they accept sell their objects) and buyers place proposals
(prices for which they buy the objects). Of course, there is a great variety of manners
where the offers and proposals (bids) can be placed and the transactions made, but a
reasonable and popular example of double auction is a “standard” financial market. In
fact, double auction can be the correct model for many of the market institutions that

40If the price is chosen to be the lowest winning bid, this is a multi-unit version of the first-price
auction, while if it is highest losing bid, this is a multi-unit version of the second-price auction. Neverthe-
less, observe that these are not the only multi-unit versions of such auctions. Indeed, the pay-your-bid
auction is another multi-unit version of the first-price auction, and the Vickrey auction below is another
version for the second price auctions.
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are used in the real world. Thus, it is clear that the understand of such mechanisms
are highly worth.
Among the real world applications, it is the study of market mechanism as the finan-

cial markets. In these institutions, bidders can use their private information in order
to manipulate the price of the object. Obviously, as the number of bidders increase,
the power to do so diminishes. Nevertheless, the correct theoretical construction to
analyze such possibilities is Auction Theory.
On the other hand, some important questions in the General Equilibrium Theory and

Rational Expectation Equilibrium Theory can be correctly and fruitfully addressed via
double auctions, as price taking behavior, expectations’ formation, efficiency, strategic
behavior, informational asymmetries, etc. Milgrom (1981) address, for instance, the
microeconomic foundation for Rational Expectation Theory through Auction Theory.

9.2. Designing of Market Mechanisms. Up to now, some very successful applica-
tions of Auction Theory to the design of real auctions were reported. The cases of
spectrum allocation auctions seems to be the most famous.41

It is interesting to observe that the main concern in such auctions were the question of
efficiency, although the revenue were also a concern. Fortunately, the theory seems well
developed in the question of efficiency.42 Also the question of revenue maximization
were intensively explored. This can explain the participation of economists in such
designs.

10. Conclusion

We have offered an introductory view of the subject of equilibria in auction. In doing
that, we reviewed the literature and pointed out some applications. As important ap-
plications of Auction Theory, we distinguish the following: (1) multi-unit auctions, that
model the selling mechanisms of Treasury Bills; (2) double auctions, that can serve as a
basis for strategic foundations for general equilibrium theory and rational expectations
equilibria; (3) the design of auction formats for specific situations as electricity and
public resources as electromagnetic spectrum. These three wide range of applications
are likely to maintain for a long time the interest in Auction Theory.

Appendix
Counterexamples for the Quasiconcavity of Auctions

We give counterexamples for independent private values auction with types uniformly
distributed on [0, 1]. An example with non-monotonic bidding function is easy. Con-
sider that bidder 2 follows the strategy b (t2) =

1
2 , and bidder 1 consider two strategies:

b1 (t1) =

½
5/8, if t1 ∈

£
6
8 ,
7
8

¤
0, otherwise

and

41See Binmore and Klemperer (2002), Milgrom (2004) and Klemperer (2004).
42See Maskin (1992), Dasgupta and Maskin (2000) Jehiel and Moldovanu (2001).
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b2 (t1) =

½
5/8, if t1 ∈

£
7
8 , 1
¤

0, otherwise

Each strategy gives a positive payoff. Nevertheless, b (t) = 1
2b
1 (t) + 1

2b
2 (t) never wins

and, hence, has a zero payoff.
Now, we provide a counterexample with non-decreasing bidding functions. Assume

that the bidder 2 follows the strategy

b (t2) =


t2
3 , if t2 ∈

£
0, 38

¢
5
32 +

t2
4 , if t2 ∈

£
3
8 ,
7
8

¢
5t2 − 4 if t2 ∈

£
7
8 , 1
¤

Observe that there is a discontinuity in t2 =
3
8 : b

³
3
8
−´

= 1
8 <

1
4 = b

¡
3
8

¢
. Nevertheless,

b is increasing. The probability that bidder 1 wins with a bid b is given by

G (b) =


3b, if b ∈ £0, 18¢
3
8 , if b ∈ £18 , 28¢

4b− 5
8 if b ∈ £28 , 38¢

b+4
5 if b ∈ £38 , 1¤

Now, consider two strategies for bidder 1: b1 (t) = 1
8 , ∀t ∈ [0, 1] and b1 (t) = 3

8∀t ∈ [0, 1]. Its payoffs are: Z 1

0

µ
t− 1

8

¶
3

8
dt =

9

64
, andZ 1

0

µ
t− 3

8

¶
7

8
dt =

7

64
,

Nevertheless, the bidding function b (t) = 1
2b
1 (t) + 1

2b
2 (t) = 2

8 gives the payoff:Z 1

0

µ
t− 2

8

¶
3

8
dt =

6

64
< min

½
9

64
,
7

64

¾
,

which shows that the auction is not quasiconcave even for monotonic strategies.



22 CHAPTER 1

.



CHAPTER 2

THE BASIC PRINCIPLE OF BIDDING

Abstract. The Basic Principle of Bidding simply says that every bidder bids in
order to equalize the marginal utility to the marginal cost of bidding. It holds for
every kind of auctions, with monotonic or non-monotonic utilities, multidimensional
dependent types, asymetries and any attitude towards risk. Moreover, it does not
require the Common Prior Assumption. So, it can be used as a very reliable property
of the bidding behavior, even for initial trials in experiments.

JEL Classification Numbers: C62, C72, D44, D82.

Keywords: auctions, pure strategy equilibria, non-monotonic bidding functions,
tie-breaking rules

1. Introduction

Many experimental and empirical works suggest that the participants of auctions do
(or at least may) not follow their equilibrium strategies.1 Although there is a consid-
erable debate about this point, it highlights the assumption that equilibrium behavior
might be too strong. An alternative approach is to assume only that the players follow
rationalizable strategies, instead of equilibrium strategies. Pursuing this idea, Batti-
galli and Siniscalchi (2003) show that some empirical and experimental findings can
be explained. Nevertheless, they still assume what Harsanyi (1967-8) calls consistency
of beliefs, that is, the subjective probability that players attribute to the distribution
of types of the opponents is just a conditional distribution and the conditional distri-
bution of all players comes from the same prior distribution.2 This is almost always
assumed in game theory, but does not need to be true, as Harsanyi stresses. Indeed, at
the beginning of the iteration between players, they may have inconsistent beliefs. As
a result, the first rounds of the game do not satisfy the consistency of beliefs and have
to be discarded in order to use the received theory.
Of course, one may think that nothing can be said without this basic assumption.

We show, on the contrary, that something interesting can be said. If we adhere to the
even weaker assumption that bidders are rational, then we prove that they act in order
to equalize their marginal utility to the marginal cost of bidding. This basic principle
can provide insights for empirical and experimental studies, since every bid (even the
initial or the apparently inconsistent ones) bears valuable information about the beliefs
of the players. Also, the principle holds under fairly general conditions, which are given
by the Characterization Lemma.
The Characterization Lemma is valid for dependent types (with arbitrary dimension),

asymmetric utilities with any attitude towards risk and does not require assumptions as
to monotonicity or separability of transfers. The model embraces all kind of sealed-bid
auctions where each player is interested in just one object (to buy or sell).

1For a survey of experimental works, see Kagel (1995) and for the empirical literature on auction
data, see Laffont (1997).

2This is also called common prior assumption.
23
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When one introduces the additional hypotheses of risk neutrality, symmetry and
monotonicity of the utility function, the characterization provided by the Lemma re-
duces to the first-order conditions obtained by Milgrom and Weber (1982) for first- and
second-price auctions, by Krishna and Morgan (1997) for the all-pay auction and war
of attrition, and by Williams (1991) for buyers’-bids double auctions.
In the next section we describe the model. Section 3 presents the Characterization

Lemma, which is proved in section 4. Section 5 is a brief conclusion.

2. The Model

There are N players.3 Player i (i = 1, ...,N) receives a private information, ti, and
chooses an action that is a real number (i.e., he submits a bid bi). The “auction house”
computes the bids and determines who “wins” and who “looses”. If player i wins, he
receives ui (t, b) and if she looses, she receives ui (t, b), where t = (ti, t−i) is the profile
of all signals and b = (bi, b−i) is the profile of bids submitted.4

Information
We assume that the private signal of each player, ti, lives in an arbitrary probabilistic

space, (Ti,=i, τ i). We assume that the product space, (T,=, τ), is such that τ is
absolutely continuous with respect to the product ×Ni=1τ i of its marginals.

Bidding
After receiving the private information, each player submits a sealed proposal, that is,

a bid (or offer) that is a real number. There is a reserve price bmin > 0, that correspond
to the minimum valid bid.5 In addition, the bidders can make a non-participation
decision (-1).

Allocation and payoffs
We suppose that each bidder sees a number that depends only on the submitted

bids by the opponents and that determines the threshold of the winning and losing
events. We denote such number as b(−i). For instance, if the auction is an one-object
auction where all players are buyers, b(−i) is the maximal bid of the opponents, that
is, b(−i) ≡ maxj 6=i bj , provided bj > bmin for at least one player j 6= i. If there are K
objects for selling and a reserve price b0 > 0, then b(−i) ≡ max

n
bmin, b

−i
(K)

o
, where b−i(m)

is the m-th order statistic of (b1, ..., bi−1, bi+1, ..., bN ), that is, b−i(1) > b
−i
(2) > ... > b

−i
(N−1).

In double auctions between m sellers and n = I −m buyers, there are m objects for
selling and the m highest bids are “winners” in the sense that they end the auction
with one object, being the player a buyer or a seller. Then, for a player i (buyer or

seller) b(−i) ≡ max
n
bmin, b

−i
(m)

o
.

3Our model is inspired in auction games, although it can encompass a general class of discontinuous
games. For convenience and easy understanding, we will use the terminology of auction theory, such
as “bidding functions” and “bids” for strategies and actions, respectively.
4We consider the dependence on b instead of bi because we want to include in our results auctions

where the payoff depends on bids of the opponents, such as the second-price auction, for instance. Also,
this allows the study of “exotic” auctions, i.e., auctions where the payment is an arbitrary function of
all bids.
5If there is no reserve price (in the usual sense), let bmin = 0.
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If bi < bmin (that is, player i does not participate), the payoff is 0. If bi > b(−i),
player i is “holder of an object” (and she has a ex-post payoff ui (t, b) in this situation).
If bmin 6 bi < b(−i), player i receives ui (t, b).6
Observe that the model permits to treat buyers and sellers in the same manner.

Only, if player i is a seller, she begins with a object and if bi < b(−i), she sells her
object. If she is a buyer, the situation bi < b(−i) corresponds to maintain her previous
situation: without the object. Also, the model allows for any specification of the price
to be paid by the bidders.
If bi = b(−i), there is a tie and a specific rule (that may include a random device

and/or the requirement of a further action ai) may determine if the player is a winner or
a looser.7 We model this by saying that the player receives uTi (t, b, a), a value between
ui (t, b) and ui (t, b).

8 We do not need to specify uTi (t, b, a) for the two first results.

This setting is very general and applies to a broad class of discontinuous games. For
example, ui (t, b) = vi (t) − bi and ui (t, b) = 0 correspond to a first-price auction with
risk neutrality.9 If ui (t, b) = vi (t)− bi and ui (t, b) = −bi we have the all-pay auction.
If ui (t, b) = vi (t) − b(−i) and ui (t, b) = −bi, this is the war of attrition. As pointed
out by Lizzeri and Persico (2000), we can have also combinations of these games. For
example, ui (t, b) = vi (t) − αbi − (1− α) b(−i) and ui (t, b) = 0, with α ∈ (0, 1), gives
a combination of the first- and second-price auctions. Another possibility is the third-
price auction or an auction where the payment is a general function of the others’ bids.
It is also useful to consider K-unit auctions with unitary demand, among N buyers,
1 < K < N . Then, b(−i) = b−i(K). Then, a pay-your-bid auction is given by ui (t, b) =
vi (ti)− bi and ui (t, b) = 0. If it is a uniform price with the price determined by the
highest looser’s bid, ui (t, b) = vi (ti)− b(−i) and ui (t, b) = 0. If it is a uniform price
with the price determined by the lowest winner’s bid, ui (t, b) = 0, ui (t, b) = vi (ti)−
b(−i) if bi > b−i(K−1) and ui (t, b) = vi (ti)− bi otherwise. Observe that even in this last
case, ui (t, b) is continuous if vi (ti) is.

Notation
In order to avoid confusion, we will use bold letters to denote bidding functions,

i.e., b = (bi)i∈I ∈ ×i∈I L1 (Ti, [−1,M ]). If we fix the other’s strategies, b−i, let
Fb(−i) (bi|ti) ≡ τ−i ({t−i : b−i (t−i) < bi} | ti) and fb(−i) (·|ti) be its Radon-Nykodim
derivative with respect to the Lebesgue measure, i.e., the density function.10 We use the
notation F⊥b(−i) (·|ti) for the distribution function of the singular part of the measure

6In most auctions, ui is normalized as 0. However, in double and all-pay auctions or if there is an
entry fee, this is not the case.
7The required action can be the submission of another bid for a Vickrey auction that will decide

who will receive the object (as in Maskin and Riley (2000)) or the announcement of the type (as in
Jackson et. al. (2002)). Since the only revealed information in the case of a tie is its occurrence, the
action can be required together with the submission of the bid.
8The specification of a tie-breaking rule is important for the existence of equilibria, as shown by

Jackson et al. (2002). With this terminology, the proposal of an “endogenous tie-breaking rule” of
Simon and Zame (1990) corresponds to specify endogenously uTi in order to ensure the equilibrium
existence.
9If we put ui (t, b) = Ui (vi (t)− bi) we can have any attitude towards risk.
10Note that, with such convention, the cumulative distribution functions - c.d.f.’s - are left

continuous.
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Fb(−i) (·|ti) , that is, the part that assigns positive measure to sets of bids with zero
Lebesgue measure.
If the profile b−i is fixed, the expected payoff of bidder i of type ti, when bidding bi,

is:

Πi(ti, bi,b−i) ≡
Z h

ui (t, bi,b−i (t−i)) 1[bi>b(−i)(t−i)](1)

+ uTi (t, bi,b−i (t−i) , a) 1[bi=b(−i)(t−i)]

+ui (t, bi,b−i (t−i)) 1[bi<b(−i)(t−i)]
i
τ−i (dt−i|ti) .

if bi ∈ [0,M ] and Πi(ti, bi,b−i) = 0 if bi < 0. It is worth observing that if the
probability of bid bi being equal to b(−i), conditional on ti, is zero, the tie-breaking
rule is not important and the second term in the integral may be omitted.
Again, when there is no possibility of confusion, we will writeΠi(ti, bi) forΠi(ti, bi,b−i)

and omit the arguments and the measure. So, we have

Πi(ti, bi)

=

Z n
ui1[bi>b(−i)] + u

T
i 1[b(−i)=bi] + ui

³
1− 1[bi>b(−i)] − 1[b(−i)=bi]

´o
=

Z n
ui1[bi>b(−i)] +

¡
uTi − ui

¢
1[b(−i)=bi] + ui

o
=

Z
ui1[bi>b(−i)] +

Z ¡
uTi − ui

¢
1[b(−i)=bi] +

Z
ui.

where ui ≡ ui − ui is the net payoff.

3. The Basic Principle of Bidding

Our first result is a characterization of the payoff through its derivative with respect
to the bid given by an integral expression, i.e., a kind of fundamental theorem of
calculus. For this, we will need the following assumption:

(H) ui and ui are absolutely continuous on bi and ∂biui and ∂biui are essentially
bounded.

Lemma 1 (Payoff Characterization) – Assume (H). Fix a profile of bidding
functions b−i. The payoff can be expressed by

Πi(ti, bi) = E
h¡
uTi − ui

¢
(ti, bi, ·) 1[b(−i)=bi]|ti

i
+

Z
[0,bi)

E[ui (ti, bi, ·) |ti,b(−i) = β]dF⊥b(−i) (β|ti) +
Z
[0,bi)

∂biΠi(ti,β)dβ.

where ∂biΠi(ti,β) exists for almost all β and in this case it is given by

(2) ∂biΠi(ti,β) = E
h
∂biui (ti,β, ·) 1[β>b(−i)] + ∂biui (ti,β, ·) 1[β<b(−i)]|ti

i
+E[ui (ti,β, ·) |ti,b(−i) = β]fb(−i) (β|ti) .
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Proof. The proof follows the demonstration of the Leibiniz rule. The main point
is the use of a theorem of Rudin (1966) on the derivatives of measures and its integral
expression. See the details in the next section.¥

The most important part of Lemma 1 is the expression of ∂biΠi(ti,β). One of the
best ways to understand Lemma 1 is through the following:

Corollary 2 (The Basic Principle of Bidding)–Under regularity assumptions,
the optimum bid is such that the marginal cost of bidding is equal to the marginal utility
from bidding. More formally: if Πi(ti, ·) is differentiable at bi ∈ argmaxβ Πi(ti,β) and
there is no tie with positive probability at bi, then

(3) E[ui|ti,b(−i) = bi]fb(−i) (bi|ti) = −E
h
∂biui1[bi>b(−i)] + ∂biui1[bi<b(−i)]|ti

i
.

Obverse that E[ui|ti,b(−i) = bi]fb(−i) (bi|ti) represents the marginal benefit of bid-
ding, that is, the marginal utility that a bidder has from changing from losing to

winning events. On the other hand, E
h
−∂biui1[bi>b(−i)]|ti

i
represents the marginal

cost of changing the bid in all the events where a bidder is already winning. In the

same manner, E
h
−∂biui1[bi<b(−i)]|ti

i
represents the marginal cost of changing the bid

in the events where he is loosing. Thus, we can read the above condition in an intuitive
and simple manner: at the optimum of the best-reply problem, the marginal benefit of
bidding, E[ui|ti,b(−i) = bi]fb(−i) (bi|ti), must be equal to its marginal cost,

−E
h
∂biui1[bi>b(−i)] + ∂biui1[bi<b(−i)]|ti

i
.

Note that we do not require separability in the monetary transfer (risk neutrality) to
reach such an interpretation.
This interpretation is useful for understanding the bidding behavior. In first-price

auctions, the marginal cost of bidding is what implies a decreasing in the way bidders
bid. In second-price auctions, the marginal cost of bidding is zero (because ∂biui = 0),
so that each bidder bids until its marginal utility of bidding became zero.
Corollary 1 is a generalization of the necessary conditions first-order for the first- and

second-price auctions presented in Milgrom and Weber (1982), for the war of attrition
and all-pay auctions presented in Krishna and Morgan (1997), as we show in Examples
1- 4 below. Example 5 shows how the Basic Principle of Bidding is concise. Such
an example is the application of Corollary 1 for double auctions and it presents a
comparison with the equivalent expression obtained by Williams (1991).

Example 1 – First-price auction

When we restrict ourselves to the case of the first-price auction with risk neutrality
(i.e., ui = 0 and ui = vi − bi), then ∂biui = −1 and ∂biui = 0. The condition (3)
becomes:

(4) bi = E[vi|ti,b(−i) = bi]−
Fb(−i) (bi|ti)
fb(−i) (bi|ti)

.
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This (necessary) first-order condition provides a useful way to determine best-reply
bids. Note that this expression admits non-monotonic bidding functions b(−i), con-
trary to Milgrom and Weber’s model. It also encompasses asymmetries in utilities and
distribution of types. Assuming affiliation and monotonic utilities, Milgrom and We-
ber (1982) can restrict themselves to the space of non-decreasing symmetric bidding
functions (i.e., bi = b

∗, for all i ∈ I). Thus,

b(−i) (t−i) = max
j 6=i

b∗ (tj) = x⇐⇒ t(−i) ≡ max
j 6=i

tj = (b
∗)−1 (x) ,

i.e., conditioning on b(−i) = bi is the same to conditioning on t(−i) = ti.Also, fb(−i) (bi|ti) =
ft(−i) (ti|ti) / (b∗ (ti))0 and Fb(−i) (bi|ti) = Ft(−i) (ti|ti). With this, (4) becomes

b∗0 (s) = {E £v|ti = s, t(−i) = s¤− b∗ (s)} ft(−i) (s|s)Ft(−i) (s|s)
whose solution is shown to be an equilibrium under affiliation.

Example 2 – Second price auction

In the second price auction, Milgrom and Weber’s model is equivalent to ui (t, b) =
vi (t) − b(−i) and ui (t, b) = 0. Then, ∂biui = ∂biui = 0 and (3) reduces to E[vi −
bi|ti,b(−i) = bi] fb(−i) (bi|ti) = 0 which can be simplified to

bi = E[vi|ti,b(−i) = bi].
Again with monotonicity and symmetry assumptions, Milgrom and Weber’s expression
for the equilibrium bid function can be obtained:

b∗ (s) = E
£
v|ti = s, t(−i) = s

¤ ≡ v̄ (s, s) .
Example 3 – All-pay auction

Krishna and Morgan (1997) extend the method of Milgrom and Weber (1982) to the
cases of war of attrition and all-pay auctions. In the all-pay auction, their model is
equivalent to ui (t, b) = vi (t)−b(−i) and ui (t, b) = −bi. Then, ∂biui = 0 and ∂biui = −1.
So, (3) reduces to

E[vi (t) |ti,b(−i) = bi]fb(−i) (bi|ti) = 1.
Under the same hypothesis of monotonicity and symmetry, they find the following
differential equation:

b∗0 (s) = E
£
v|ti = s, t(−i) = s

¤
ft(−i) (s|s) ,

whose solution they show to be an equilibrium under affiliation.

Example 4 – War of attrition

In the war of attrition, Krishna and Morgan (1997) model is equivalent to ui (t, b) =
vi (t)− b(−i) and ui (t, b) = −bi. Then, ∂biui = 0 and ∂biui = −1. So, (3) reduces to

E[vi (t) |ti,b(−i) = bi]fb(−i) (bi|ti) = 1− Fb(−i) (bi|ti) .
Again, with monotonicity and symmetry, they derive the equation

b∗0 (s) = E
£
v|ti = s, t(−i) = s

¤ 1− Ft(−i) (s|s)
ft(−i) (s|s)

,
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and the equilibrium is shown to exist under affiliation.

Example 5 – Double auction

In the analysis of a double auction with private values, risk neutrality, independent
types and symmetry among buyers and sellers, Williams (1991) assumes that the pay-
ment is determined by the buyer’s bid. So, it is optimum for the seller to bid her
value. To analyze the behavior of the buyer i, Williams (1991) reaches the following
expression:

∂biΠi(v,β) =
£
nf1 (β)Kn,m

¡
b−1 (β) ,β

¢
(5)

+ (m− 1) f2 (vb)
b0 (β)

Ln,m
¡
b−1 (β) ,β

¢¸
(v − β)

−Mn,m

¡
b−1 (β) ,β

¢
where b denotes here the symmetric bidding function followed by all buyers, f1 is the
common density function of sellers, f2 is the common density function of buyers, n is
the number of sellers, m is the number of buyers and Mn,m (·, ·) is given by:11

Mn,m (v,β) ≡
X

i+j=m,
06 i6m−1

µ
n
j

¶µ
m− 1
i

¶
F1 (β)

j F2 (v)
i (1− F1 (β))n−j (1− F2 (v))m−1−i .

The expression (5) is just a special case of (3). In fact, the expression in brackets in
(5) is just fb(−i) (β) and Mn,m

¡
b−1 (β) , b

¢
is Fb(−i) (β).

An important application of the Characterization Lemma will be given in the next
section where we give necessary and sufficient conditions to the existence of equilibrium
in common-value auctions with multidimensional independent types and non-monotonic
utilities.
Another possibility is the investigation of how far auction theory can lead us under

a weaker hypothesis. For instance, the Characterization Lemma can be understood
as a general condition for bidding behavior, able to describe the behavior of rational
bidders without assuming that bidders follow their equilibrium strategies. We have
exposed such a possibility in the introduction (subsection 1.1).

4. Proof of Lemma 1

Let us first rewrite the expression of Πi:

Πi(ti, bi) = E [ui|ti] +E
h¡
uTi − ui

¢
1[b(−i)=bi]|ti

i
+E

h
ui1[bi>b(−i)]|ti

i
,

where ui = ui − ui.
We consider each term above separately. The first one has a derivative with respect

to bi almost everywhere and is equal to E [∂biui|ti]. The derivative of the last term
with respect to bi is just E [∂biui|ti]. Also,

E [ui|ti] =
Z
E [∂biui|ti] dβ.

11To obtain Kn,m (·, ·) just substitute n−1 for n where it occurs inMn,m (·, ·). To obtain Ln,m (·, ·),
substitute m− 2 for m− 1 where it occurs in Mn,m (·, ·).
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The second term is different from zero just where there is an atom in the distribution
of b(−i). Thus, it is equal to zero for almost all bi, and its derivative is zero almost
everywhere.
Now consider the last term in its original form,

R
ui1[bi>b(−i)]. Let a

n → b+i (i.e.,

an > bi; the other case is analogous). We haveZ n
ui (ti, a

n, ·) 1[an>b(−i)]
o
−
Z n

ui (ti, bi, ·) 1[bi>b(−i)]
o

=

Z n
[ui (ti, a

n, ·)− ui (ti, bi, ·)] 1[an>b(−i)]
o
+

Z
ui (ti, bi, ·) 1[an>b(−i)> bi].

Since ui has bounded derivative with respect to almost all bi,
ui(ti,an,·)−ui(ti,bi,·)

an−bi →
∂biui, for almost all bi. Also, 1[an>b(−i)] → 1[bi>b(−i)]. These imply that

ui (ti, a
n, ·)− ui (ti, bi, ·)
an − bi 1[an>b(−i)]→ ∂biui1[bi>b(−i)]

for almost all bi and these functions are (almost everywhere) bounded. By the Lebesgue
Theorem, the integral converges, that is, there exists

lim
an→bi

Z
ui (ti, a

n, ·)− ui (ti, bi, ·)
an − bi 1[an>b(−i)]

and it is equal to E
h
∂biui (ti, bi, ·) 1[bi>b(−i)]|ti

i
.

Now we want to determine the derivative of the other term. For this purpose, define
for each ti ∈ Ti fixed, the measure ρ over R+ by

ρ (V ) ≡
Z
ui (ti, bi, ·) 1[b(−i)∈V ].

We have

lim
an→bi

1

an − bi

Z
ui (ti, bi, ·) 1[an>b(−i)> bi]

= lim
an→bi

1

an − bi ρ ([bi, a
n))

= lim
an→bi

½
ρ ([bi, a

n))

m ([bi, an))

¾
= Dρ (bi)

where the existence of lim
r→0

ρ(B(bi,r))
m(B(bi,r))

= Dρ (bi) is ensured by Theorem 8.6 of Rudin

(1966) for almost all bi, that is, m
³n
v : @ lim

r→0
ρ(B(bi,r))
m(B(bi,r))

o´
= 0. Theorem 8.6 of Rudin

(1966) also says that Dρ coincides almost everywhere with the Radon-Nikodym deriv-

ative dρ
dm (.) and that

ρ (V ) = ρ⊥ (V ) +
Z
V

dρ

dm
(β) dβ.

where ρ⊥ denotes the orthogonal part of ρ, and it has the property

lim
an→bi

1

an − biρ
⊥ ([bi, an)) = 0,
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by the same theorem.
It is easy to see that ρ is absolutely continuous with respect to Fb(−i) . The Radon-

Nikodym Theorem guarantees the existence of the Radon-Nikodym derivative of ρ with
respect to Fb(−i) , denoted by E[ui (ti, bi, ·) ||ti,b(−i) (t−i) = β] such that

ρ (V ) ≡
Z
V
E[ui (ti, bi, ·) |ti,b(−i) = β]dFb(−i) (β|ti) .

Then, it is easy to see that the Radon-Nikodym derivative dρ
dm (bi) is simply

E[ui (ti, bi, ·) |ti,b(−i) (t−i) = bi]fb(−i) (bi|ti) ,
where fb(−i) (·|ti) is the Radon-Nikodym derivative of Fb(−i) (·|ti). Thus,

∂biΠi(ti,β) = E
h
∂biui (ti,β, ·) 1[β>b(−i)] + ∂biui (ti,β, ·) 1[β<b(−i)]|ti

i
+E[ui (ti,β, ·) |ti,b(−i) = β]fb(−i) (β|ti) ,

and, by the Lebesgue Theorem,

Πi(ti, bi) = E
h¡
uTi − ui

¢
(ti, bi, ·) 1[b(−i)=bi]|ti

i
+

Z
[0,bi)

E[ui (ti, bi, ·) |ti,b(−i) = β]dF⊥b(−i) (β|ti) +
Z
[0,bi)

∂biΠi(ti,β)dβ.

This concludes the proof.¥

5. Conclusion

We think the Basic Principle can be useful to the empirical and experimental liter-
ature, because of its generality.
For example, each bid in a experiment can be considered, even the initial ones. This

would permit to observe how the agents learn and modify their priors. The fact that it
does not assume the common prior assumptions seems a very attractive characteristic.
In the empirical literature, it can lead to generalizations of the identification results.

Indeed, Athey and Haile (2002) use simpler versions of the Basic Principle in their
results on identification.



32 CHAPTER 2

.



CHAPTER 3

PURE STRATEGY EQUILIBRIA OF MULTIDIMENSIONAL AND

NON-MONOTONIC AUCTIONS

Abstract. We give necessary and sufficient conditions for the existence of symmet-
ric equilibrium without ties in interdependent values auctions, with multidimensional
independent types and no monotonic assumptions. In this case, non-monotonic equi-
libria might happen. When these conditions are not satisfied, we are still able to prove
the existence of pure strategy equilibrium with an “all-pay auction tie-breaking rule”
that consists in conducting an all-pay auction in case of tie. As a direct implication
of these results, we obtain a generalization of the Revenue Equivalence Theorem.

JEL Classification Numbers: C62, C72, D44, D82.

Keywords: auctions, pure strategy equilibria, non-monotonic bidding functions,
tie-breaking rules

1. Introduction

The received literature on pure strategy equilibria on auctions is mainly restricted
to the setting of unidimensional types and monotonic utilities. Although recent efforts
have been made to treat the case of multidimensional types (see McAdams (2003),
for instance), the monotonicity assumption is usually maintained. In dealing with
multidimensional types, this is obviously restrictive (see also our examples in section
5).
So, to develop a satisfactory theory of equilibria with multidimensional types, it is

necessary to take in account the possibility of non-monotonic utility functions.
However, even in the unidimensional case, non-monotonic auctions are problematic.

To see why, consider a symmetric first-price auction between two buyers, such that
the value of the object is given by v (ti, t−i) = α+ ti+ βt−i, with independent types
distributed on [0, 1].
The received theory ensures the existence of a monotonic pure strategy equilibrium

only if β > 0. See Milgrom and Weber (1982), Maskin and Riley (2000), Athey (2001).
If β < 0, we only know that there exists a tie-breaking rule (endogenously defined) that
guarantees the existence of mixed strategy equilibrium (see Jackson, Simon, Swinkels
and Zame (2002), henceforth JSSZ).
That the case β < 0 is problematic can be seen through particular cases. Indeed, if

α = 5, β = −4 and the distribution is uniform on [0, 1], this is example 1 of JSSZ. If
α = 3, β = −2 and types assumes values 0 or 1 with probabilities 23 and 1

3 , respectively,
it is the example 3 of Maskin and Riley (2000). Both cases are counterexamples to
the existence of equilibrium, even with special tie-breaking rules. Maskin and Riley
(2000) show that there is no equilibrium for their example neither under the standard
tie-breaking rule (that assigns the object randomly to the tying bidders), nor under
the Vickrey auction tie-breaking rule, defined as “if a tie occurs for the high bid, a
Vickrey auction is conduct among the high bidders”. JSSZ make the claim, corrected

33
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in Jackson, Simon, Swinkels and Zame (2004), that there is no tie-breaking rule that
is type-independent that ensures the existence of equilibrium for their example.
Some questions arise from the contrast of the theoretical results for β > 0 and β < 0:

For which set of β the standard tie-breaking rule is sufficient to ensure the existence of
equilibrium? Is it possible to define a specific tie-breaking rule for all β? For which set
of β there is no equilibrium in pure strategy? The results are valid only for first-price
auctions? Is there any β < 0 such that the obtained equilibria for different auctions
obey the Revenue Equivalence Theorem? Is the equilibrium unique?
This paper provides the following answer to the above questions: If β > −1, there

exists equilibrium in pure strategies under the standard tie-breaking rule. If we adopt
an “all-pay auction tie-breaking rule”, that consists in conducting an all-pay auction
among the tying bidders in the case of a tie, then there exists a pure strategy equilibrium
for all β (provided α > max {0,−β}, otherwise the object can have negative values).
Moreover, the all-pay auction tie-breaking rule works for all standard type of auctions
and the equilibria obtained under it obey the Revenue Equivalence Theorem. We also
prove that the equilibrium is unique if β > −1, but are multiple otherwise.
It is important to note that the all-pay auction tie-breaking rule is “type-independent”,

in the sense that it does not require private information. So, our result contradicts the
claim of JSSZ that there is no type-independent tie-breaking rule that supports the
existence of equilibrium. Correcting this claim, Jackson et.al. (2004) gives another
example that does not have equilibrium with type-independent tie-breaking rule. This
new example does not contradict our theory. The reason is that it is not a standard
auction: there is an uncertainty about the number of objects in the auction.
Our results hold for symmetric auctions with independent (non-atomic) types, but

are valid for a wide class of auction formats where the bidders have unitary demands
(first-price, second-price, all-pay, war of attrition). Moreover, we impose no restriction
about the dimension of the set of types, nor make monotonic assumptions about the
value of the object. All the answers provided above for the specific example are given
in a general setting (that of weakly separable utilities, as defined by assumption H3 in
section 5). Of course, the condition for the existence of equilibrium is something more
complex for this general case, but it is still easy to verify.
Our results are based in what we call the “Indirect Auction Approach”, which we

describe in the subsection 1.1. In section 2, we describe the model. Section 3 formally
presents the Indirect Auction Approach. Section 4 develops the theory for general
auctions, obtaining necessary and sufficient conditions for the existence of equilibrium.
Section 5 particularizes to the case of weakly separable utilities and gives a concise
condition for the existence of equilibrium. Moreover, the all-pay auction tie-breaking
rule is introduced and the equilibrium existence proved. As a corollary, we obtain
the Revenue Equivalence Theorem. Section 6 concludes with a discussion about the
limits of our results and reviews the contributions of the paper in light of the related
literature. All the proofs are collected in appendices.

1.1. The Indirect Auction Approach. For standard auctions, higher bids corre-
spond to higher probability of winning. If a bidding function b (·) is fixed and followed
by all participants in a symmetric auction, we can associate to each bid (and so, to each
type), the probability of winning. All types that bid the same bid under b (·) have the
same probability of winning. This allows us to introduce the concept of conjugation.
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If b (t) = b (s), and hence, t and s have the same probability of winning, we say that t
and s are conjugated.
The use of the probability of winning as analytical tool is not new in auction theory.

Sometimes in the literature, what we call conjugation is named “reduced form”: “The
function relating a bidder’s type to his probability of winning is the reduced form of the
auction.” (Border, 1991, p. 1175). See also Matthews (1984) and Chen (1986). There-
fore, what we will call “indirect auction” can be also called “reduced form auction”.
These papers analyze problems related to the characterization and existence of optimal
auctions. Hence, the auction is treated, as Myerson (1981) does, only by considering
the probability of winning and the payments. In turn, our problem is to find the equi-
librium for fixed auction rules. Moreover, our indirect auction is not “equivalent” to
the direct one. So, it is not a merely “reduced form” of the auction. (See remarks after
Theorem 1 in section 4). It is in the light of these differences and in the attempt to do
not confuse terms that we decided to use a different terminology.
The terminology comes from the “Taxation Principle” which allows us to implement

the optimal direct truthful mechanism through some convenient indirect one. In this
case, we are implementing the equilibrium in the auction using an indirect auction
obtained from the reparameterization of types through the probability of winning.
Returning to the description of the method, the main idea is to reparameterize the

types and to associate to all conjugated types s ∈ S, the probability of winning the
auction. As stated, this idea should seem unpromising since the probability of winning
will be different for each different bidding function that we begin with. Moreover, if we
do not previously fix a bidding function, no conjugation can be defined.
To overcome these problems, we define conjugations without needing to mention

bidding functions, as a suitable reparameterization of the types. The definition comes
from an insight acquired from the above notion of conjugation. Once we have defined
conjugations (Definition 2 in Section 3), we can define in subsection 3.2 the Indirect
Auction. For this, we simply integrate the utilities of the direct auction for all types
that are conjugated. From our definition of conjugation, the indirect auction is now an
auction with the same format of the direct auction (for instance, a first-price auction
if the original auction is a first-price auction) between two players with independent
signals, uniformly distributed on [0, 1]. This makes the analysis of equilibrium existence
easier. An important result of the subsection 3.2 is the relationship between the payoffs
of direct and indirect auctions, which is made in Proposition 1.
With these preparatory results, we can finally deal with the problem of equilibrium

existence in section 4. First, we prove that the existence of a regular equilibrium implies
nice properties for the conjugation that it defines. This is the content of Theorem 1.
These properties are almost sufficient for the existence of the equilibrium, which is
proved in Theorem 2: since we have defined the conjugation without mentioning a
bidding function, then whenever we can find a conjugation that meets the conditions
of Theorem 2, there exists a regular equilibrium of the direct auction. If we manage to
find the correct conjugation, we are done. We show how to perform this task in two
examples (1 and 2) at the end of section 4.
In section 5, we treat the case of weakly separable utilities that include the separable

utilities as a special case, that is, v (ti, t−i) = v1 (ti) + v2 (t−i). In this setting, we are
able to give necessary and sufficient conditions for the existence of regular equilibrium
(Theorem 3). This is useful, but it raises the question: what can be done if the necessary
and sufficient conditions of Theorem 3 are not met?
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Theorem 4 provides the answer. If we conduct an all-pay auction in the case of ties,
the equilibrium exists in pure strategies with ties of positive probability. Moreover, we
generalize the Revenue Equivalence Theorem for this setting, even with the tie-breaking
rule.

2. The Model

There are N bidders in an auction of L < N homogenous objects, but each bidder
is interested in just one object. Player i (i = 1, ...,N) receives a private information,
ti, possibly multidimensional, and chooses a bid bi ∈ B ≡ {bOUT } ∪ [bmin,+∞), where
bmin > bOUT is the minimal valid bid and if bi = bOUT , bidder i does not participate in
the auction and gets a payoff of 0.
Let t = (ti, t−i) be the profile of all signals and b = (bi, b−i), the profile of submitted

bids. Let b−i(m) be the m-th order statistic of (b1, ..., bi−1, bi+1, ..., bN ), that is, b
−i
(1) >

b−i(2) > ... > b
−i
(N−1). Let b(−i) ≡ max

n
bmin, b

−i
(L)

o
.

The auction is a standard one. That is, the bidder i receives an object if bi > b(−i)
and none if bi < b(−i). Ties (bi = b(−i)) are broken by the standard tie-breaking rule,
that is, the object is randomly divided between the tying bidders. More specifically,
the payoff of bidder i is given by

ui (t, b) =


v (ti, t−i)− pW

¡
bi, b(−i)

¢
, if bi > b(−i)

−pL ¡bi, b(−i)¢ , if bi < b(−i)
v(ti,t−i)−bi

m , if bi = b(−i)

where v is the value of the object for all bidders, pW and pL are the payments made in
the events of winning and losing, respectively and m is the number of bidders tying.
Our setting is given by the following assumptions:

(H0) The types are independent and identically distributed in the same compact
set S, according to a non-atomic probability measure µ on S. v is positive (v > 0),
continuous and symmetric in its last N − 1 arguments, that is, if t0−i is a permutation
of t−i, v

¡
ti, t

0
−i
¢
= v (ti, t−i).

The restrictive aspect of (H0) is the symmetry. The others are very natural. For
instance, the assumption that v is positive is not restrictive, since S is compact and,
hence, v assumes a minimum m. Then, if we add m + 1 to the value of the object, v
becomes positive.
The specific auction is determined by pW and pL. We will consider alternatively, two

cases. The first one, embodied in (H1)-1 below, cover first-price auctions, for instance.
The second case is defined by (H1)-2 and covers second price auctions, among other
more exotic formats.

(H1)Over the domainB×B, pW and pL are non-negative, differentiable, pL (bOUT , ·) =
0, ∂1p

W > 0, ∂1pL > 0 and, alternatively:
(H1)-1: ∂1p

W (·) > 0 or ∂1pL (·) > 0 or
(H1)-2: ∂1p

W = ∂1p
L ≡ 0 and ∂2

¡
pW − pL¢ > 0.

Observe that assumption (H1) is rather weak. It covers virtually all kind of standard
single-objetc auctions or multi-unit auctions with unitary demands, and allows the use
of entry fees. Some examples are:
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(F) First-price auctions: pW
¡
bi, b(−i)

¢
= bi and p

L
¡
bi, b(−i)

¢
= 0.

(S) Second-price auctions: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= 0.

(A) All-pay auctions: pW
¡
bi, b(−i)

¢
= bi and p

L
¡
bi, b(−i)

¢
= bi.

(W) War of attrition: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= bi.

An active reserve price, that is, a bmin that excludes some bidders, makes the state-
ment of our equilibrium results more complex. So, we will postpone the analysis of
this case to the Appendix B and through the paper we will make use of the following
assumption:

(H2) v, pW , pL and bmin are such that no bidder plays bOUT , that is, no bidder
prefers to stay out of the auction.

We denote the auction described above by (S, µ, v). Observe that we make no restric-
tion about the dimension of S. Also, we are considering just symmetric auctions. Thus,
throughout this section, when we talk about a strategy, we always mean a symmetric
one. Under these assumptions we will introduce a new approach to prove existence of
equilibria in auctions. We call it the “Indirect Auction Approach”. This is the subject
of the next section.

3. The Indirect Auction Approach

In the subsection 3.1, we describe the basic element of our method: the conjugation.
In subsection 3.2, the indirect auction is defined and its basic properties derived. See
the introduction for a description of the approach.

3.1. Conjugations. We will be interested in regular bidding functions as defined be-
low:

Definition 1. A bounded measurable function b : S → R is regular if the c.d.f.

Fb (c) ≡ Pr {s ∈ S : b (s) < c}
is absolutely continuous and strictly increasing in its support, [b∗, b∗].

From the fact that Fb (·) is absolutely continuous, we conclude that Fb (c) = Pr
{s ∈ S : b (s) 6 c}. Let S denote the set of regular functions. Observe that S contains
non-monotonic bidding functions. It is formed by functions b that do not induce ties
with positive probability (because Fb is absolutely continuous) and that do not have
gaps in the support of the bids (because Fb is increasing).
If a bidding function b ∈ S is fixed, let us call the c.d.f. of the maximum bid of the

opponents P̃ b. That is, we define the transformation P̃ b : R+ → [0, 1] by:

P̃ b (c) = (Pr {ti ∈ S : b (ti) < c})N−1(1)

= Pr
©
t−i ∈ SN−1 : b (tj) < c, j 6= i

ª
.

By the definition of S, P̃ b is strictly increasing and its image is the whole interval [0, 1].
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Now, we will denote by P b : S → [0, 1] the composition P b = P̃ b ◦ b. So, for a fixed
b ∈ S, followed by all players, P b (ti) is the probability of player i of type ti wins the
auction:

P b (ti) = Pr
©
t−i ∈ SN−1 : b(−i) (t−i) < b (ti)

ª
(2)

= Pr
©
t−i ∈ SN−1 : b (tj) 6 b (ti) ,∀j 6= i

ª
.

The following observation is important: from the symmetry required by (H0), the

above function does not depend on i and P b (ti) S P b (tj) if and only if b (ti) S b (tj).
Obviously, two players have the same probability of winning if and only if they play
the same bids. So, we have the following:©

t−i ∈ SN−1 : b(−i) (t−i) < b (ti)
ª
=
n
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

o
,

where P b(−i) (t−i) ≡ maxj 6=i P b (tj). The equality of these events and (2) imply that

P b (ti) = Pr
n
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

o
.

This observation is what will allow us to define conjugations without mentioning bidding
functions. This will be very important in order to state our results. We have the
following:

Definition 2. A conjugation for the auction (S, µ, v) is a measurable and surjective
function P : S → [0, 1] such that for each i = 1, ... N ,
(3)

P (ti) = Pr{t−i ∈ SN−1 : P(−i) (t−i) 6 P (ti)} = [Pr{tj ∈ S : P (tj) < P (ti) , j 6= i}]N−1 .

Observe that in the above definition, we do not need to mention the strategy b ∈ S.
It is also clear from the previous discussion that definition 2 is not empty, that is, for
any regular function b ∈ S there exists a conjugation defined by (2) that satisfies the
above definition.
Observe also that, since the range of P is [0, 1], we have, for all c ∈ [0, 1],

(4) Pr
©
t−i ∈ SN−1 : P(−i) (t−i) < c

ª
= c.

The above equation will be important in the sequel. It simply means that the distrib-
ution of P(−i) (t−i) is uniform on [0, 1].
Given b ∈ S, equation (2) defines just one conjugation compatible with it. On the

other hand, given a conjugation P , any function b ∈ S that is an increasing transfor-
mation of P is compatible with P . To see this, suppose that there is an increasing
function h : [0, 1]→ R+, such that b (ti) = h (P (ti)) for µ−almost all ti ∈ S. Then,

P (ti) = Pr {t−i : P (tj) < P (ti) ,∀j 6= i}
= Pr {t−i : h (P (tj)) < h (P (ti)) ,∀j 6= i}
= Pr {t−i : b (tj) < b (ti) ,∀j 6= i} .

That is, given a conjugation P , there are many functions b ∈ S compatible with it. In
particular, b = P is a bidding function compatible with P .
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3.2. Indirect Auctions. We proceed to define the indirect auction
³
S̃, µ̃, ṽ

´
related

to the direct auction (S, µ, v). The relation between them is given by the conjugation
P : S → [0, 1]. If the direct type of a player is ti ∈ S, the indirect type will be P (ti).
So, S̃ is just [0, 1]. For each direct strategy b : S → R, it will correspond an indirect
strategy b̃ : [0, 1] → R, such that the direct strategy will be the composition of the
indirect strategy and the conjugation, that is, b = b̃ ◦ P , where P = P b. What is this
indirect strategy? Remember that P b = P̃ b ◦ b and P̃ b is increasing. So, given b, if we
take the indirect strategy as b̃ ≡

³
P̃ b
´−1

then b = b̃ ◦ P , as we want. On the other
hand, if it is given an indirect strategy b̃ and a conjugation P , we have the associated
direct strategy b = b̃ ◦ P . So we have just to define the indirect payoffs:

Definition 3. Fix a conjugation P for an auction (S, µ, v). The indirect utility

function of bidder i associated to this conjugation is ṽ : [0, 1]2 → R, given by

(5) ṽ(x, y) ≡ E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y].

Now, fix a conjugation P and define the following function:

(6) Π̃ (x, c) ≡ E [Π (ti, c) |P (ti) = x] ,
where, Π (ti, c) is the interim payoff of the direct auction. The notation should suggest

to the reader that Π̃i (x, c) will be the interim payoff of the indirect auction. Indeed,
we have the following:

Proposition 1. Assume (H0). Given b ∈ S, consider the corresponding conjugation
P = P b (as defined by (2)) and the indirect bidding function b̃ =

³
P̃ b
´−1

. Alterna-

tively, given a conjugation P and an indirect bidding function b̃, let b = b̃ ◦ P be the
corresponding direct bidding function. Thus,
(i)

(7) Π̃ (x, c) =

Z b̃−1(c)

0

h
ṽ (x,α)− pW

³
c, b̃ (α)

´i
dα−

Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα.

(ii) Assume that P is such that for all s with P (s) = x, and for all x, y ∈ [0, 1],

(8) ṽ (x, y) = E[v(t)|P (ti) = x, P(−i)(t−i) = y] = E[v(t)|ti = s, P(−i)(t−i) = y].
Then, for all ti such that P (ti) = x and for all c ∈ B,
(9) Π̃ (x, c) = Π (ti, c) .

Proof. See Appendix A.¥

Observe that, because of (7), Π̃ (x, c) is formally equivalent to the interim payoff of
an auction between two bidders, with signals uniformly distributed on [0, 1], where the

opponent is following the strategy b̃ (·) and the (common-value) utility function is given
by ṽ (x,α). So, we define the indirect auction as follows:
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Definition 4. Given an auction (S, µ, v) and a conjugation P for it, the associated
indirect auction is an auction between two players with independent types uniformly
distributed on [0, 1] and where the utility function is ṽ defined by (5). The indirect

auction is denoted by
³
S̃, µ̃, ṽ

´
where µ̃ is the Lebesgue measure in S̃ = [0, 1].

The reader should keep in mind that the indirect auction is just an auxiliary and
fictitious auction that will help in the analysis of the “direct” one. It is clear through
definitions 1-4 how a conjugation relates the direct and the indirect auction. Obviously,
a function b̃ : [0, 1] → R+ is equilibrium of the indirect auction if for almost all x ∈
[0, 1], Π̃

³
x, b̃ (x)

´
> Π̃ (x, c), ∀c ∈ B = {bOUT } ∪ [bmin,+∞).

4. Characterization and Sufficient Conditions for Regular Equilibria

The results and definitions of the two previous subsections allow us to show that
the existence of a direct equilibrium implies the existence of the indirect one (Theorem
1, below). Conversely, (with an extra relatively weak assumption of consistency of
payoffs), the existence of equilibrium in indirect auctions implies the existence in direct
ones (Theorem 2).

Theorem 1 (Necessary Conditions). Assume (H0)-(H2). If there is a pure strategy
equilibrium b ∈ S for the direct auction (S, µ, v) and there exists ∂bΠ (s, b (s)) for all s,
then:
(i) the associated conjugation P = P b (given by (2)) satisfies the following property:

if s ∈ S is such that P (s) = x, then1
(10)
ṽ (x, x) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P(−i)(t−i) = x];

(ii) the indirect bidding function b̃ =
³
P̃ b
´−1

, where P̃ b is given by (1), is the

increasing equilibrium of the indirect auction.

Moreover, if ṽ is continuous, that is, if it has a continuous representative, then:

(iii) (H1)-1 implies that b̃ is differentiable and

(11) b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ,
and (H1)-2 implies that

(12) ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0;

(iv) the expected payment of a bidder of type ti is given by

p (ti) =

Z P (ti)

0
ṽ (α,α) dα;

1This condition is related to an analogous condition of Araujo and Moreira (2001).
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(v) for all x and y ∈ [0, 1],
(13)

Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0.

Proof. See Appendix C.¥

Theorem 1 says that if a multidimensional auction has a regular equilibrium, then
it can be reduced to a unidimensional auction with two players (the indirect one).
However, the reader should note that such reduction is non-trivial and that the indirect
auction is not equivalent to the direct one. The indirect auction is a “fictitious” game,
where each bidder is facing up a “fictitious” player, the “opponent”, that does not
correspond to a real player. So, the dimension reduction is meant in this particular
sense.
Observe that the expression in condition (iv) does not depend on the specific format

of the payment rules, pW and pL, but it depends on the conjugation. If the conjugation
is different for different auction formats, then we do not have the Revenue Equivalence
Theorem. Nevertheless, for the class of auctions considered in the next section, we are
able to prove that the conjugation is unique and the Revenue Equivalence Theorem
holds. On the other hand, condition (iv) plays an important role to prove the existence
of equilibrium in the next result.
Theorem 2 is a kind of converse of Theorem 1. The main difference is that we do not

require ṽ to be continuous and we need condition (i)’, which is slightly stronger than
condition (i) in Theorem 1.

Theorem 2 (Sufficient Conditions). Assume (H0)-(H2). Consider a direct auction

(S, µ, v), a conjugation P and its associated indirect auction
³
S̃, µ̃, ṽ

´
. Assume that

(i)’ for all s ∈ S such that P (s) = x, and all y ∈ [0, 1],

(14)
ṽ (x, y) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y] = E[v(ti, t−i)|ti = s, P(−1)(t−i) = y];
(ii) for all x and y ∈ [0, 1],Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0;

(iii) there is an increasing function b̃, such that

p̂ (y) ≡
Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα,

where p̂ (P (ti)) = p (ti) is the expected payment of a bidder of type ti.

Then, b̃ is the equilibrium of the indirect auction and b = b̃ ◦ P is the equilibrium
of the direct auction. Moreover, if ṽ is continuous, there exists ∂bΠ (s, b (s)) for all s
(which implies that all conditions of Theorem 1 are satisfied).

Proof. See Appendix C.¥

Remark 1. For the four specific formats, namely, the first-price auction (F), second-

price auction (S), all-pay auction (A) and war of attrition (W), the function b̃ is given,
respectively, by
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(F) b̃ (x) =
1

x

Z x

0
ṽ (α,α) dα(15)

(S) b̃ (x) = ṽ (x, x)(16)

(A) b̃ (x) =

Z x

0
ṽ (α,α) dα(17)

(W) b̃ (x) =

Z x

0

ṽ (α,α)

1− α
dα(18)

Conditions (iii) and (iv) reduce to the requirement that the function b̃ above is increas-
ing. In particular, the equilibrium may exist for an all-pay auction, for instance, but
not for a first-price auction.

Remark 2. Although natural, condition (i)’ can be still too restrictive. We need
it in order to apply Proposition 1 and reach the conclusion that for all ti such that
P (ti) = x and for all c ∈ R, we have: Π̃ (x, c) = Π (ti, c) (see (9) in Proposition 1).
In turn, this implies that the equilibrium of the indirect auction is equilibrium of the
direct auction. So, instead of assuming condition (i)’ above, it would be sufficient to
require the (necessary) condition (i) of Theorem 1 and that (9) is valid.

Theorem 2 reduces the problem of equilibrium existence to find a conjugation that
meets requirements (i)’, (ii) and (iii). In the next section we treat a still general case
(weakly separable auctions) where such conjugation can be easily defined. Nevertheless,
we would like to give two examples where the assumptions of the next section are not
satisfied. These examples illustrate a kind of heuristics for the existence problem. In
example 1, we have a monotonic equilibrium and also a U-shaped one, which shows that
the conjugation is not unique. In example 2, there is no monotonic equilibrium, but
there is a bell-shaped equilibrium. Another example where Theorem 2 can be applied
is an example provided by Jehiel, Meyer-ter-Vehn, Moldovanu and Zame (2004).

Example 1 – Consider a symmetric first-price auction with two bidders, types
uniformly distributed on [0, 1] and utility function given by

v(ti, t−i) = ti +
¡
3− 4ti + 2t2i

¢
t−i.

Observe that ∂tiv (ti, t−i) = 1−4t−i+4tit−i can be negative. Thus, the received theory
cannot be applied. Nevertheless, there exists a monotonic equilibrium. Indeed, in this
case, the conjugation will be given by P (ti) = ti and we obtain

ṽ(x, y) = x+
¡
3− 4x+ 2x2¢ y.

This clearly satisfies condition (i)’. Condition (ii) follows from the fact that x > y
implies

Z x

y
[ṽ(x, z)− ṽ(z, z)] dz = (x− y)2

6

£
3 + 3x2 − 8y + 3y2 + x (−4 + 6y)¤ > 0.

Condition (iii) is also satisfied, because the function

b̃ (x) =
1

x

Z x

0
v (z, z) dz =

x
¡
24− 16x+ 3x2¢

12
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Figure 1. Equilibrium bidding function in Example 1.

is increasing. Clearly, the above function implies condition (iv). Thus, there exists a
monotonic equilibrium by Theorem 2.
Nevertheless, this is not the unique equilibrium. If we assume that there exists a

U-shaped equilibrium, the conjugation can be expressed by P (ti) = |c (ti)− ti|, where
c (ti) is the type that bid the same as ti (see Figure 1). Observe that c ◦ c (ti) = ti.
Condition (i) of Theorem 1 requires that

s+
¡
3− 4s+ 2s2¢ s+ c (s)

2
= c (s) +

³
3− 4c (s) + 2c (s)2

´ s+ c (s)
2

,

that is,

s− c (s) = [s− c (s)] [4− 2c (s)− 2s] s+ c (s)
2

,

which simplifies to [s+ c (s)] [2− s− c (s)] = 1⇒ s+ c (s) = 1. Then, c (s) = 1−s and
P (s) = |1− 2s|. This gives the expression:

ṽ (x, y) =
1

2
+
1

4

"
3− 4

µ
1− x
2

¶
+ 2

µ
1− x
2

¶2
+ 3− 4

µ
1 + x

2

¶
+ 2

µ
1 + x

2

¶2#
which simplifies to ṽ (x, y) =

¡
5 + x2

¢
/4 and condition (i)’ and (ii) are easily seen to

be satisfied. Also, condition (iii) and (iv) are satisfied, since

b̃ (x) =
1

x

Z x

0
ṽ (z, z) dz =

5

4
+
x2

12

is increasing. Then, b (s) = 5
4 +

(1−2s)2
12 is a direct equilibrium, plotted in Figure 1.

Observe that no tie rules are needed in this case, because ties occur with zero prob-
ability. However, for each equilibrium bid, exactly two types pool and have the same
probability of winning.
Example 1 has a monotonic equilibrium, as is usual in auction theory, but there is

another non-monotonic equilibrium. Example 2 below shows a case where there is no
monotonic equilibrium, but there is a bell-shaped equilibrium (Figure 2).

Example 2 – Consider again a symmetric first-price auction with two bidders
and signals uniformly distributed in [1.5, 3] such that the value of the object is given
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Figure 2. Equilibrium bidding function in Example 2.

by v (ti, t−i) = ti
¡
t−i − ti

2

¢
. In Appendix D, we show that this auction does not have

monotonic regular equilibria, but there is a bell-shaped equilibrium as shown in Figure
2.

Example 1 shows that it is possible for a standard auction to have multiple equilibria.
Example 2 suggests that the correct conjugation can fail to exist – at least with a fixed
shape (that we begin by assuming). Thus, one would be interested in cases where it
is possible to ensure the uniqueness of the equilibrium and where it is possible to find
explicitly the conjugation. We do this under the context of assumption H3, to be
presented in the next subsection.

5. Equilibrium Existence of Weakly Separable Auctions

Theorem 2 teaches us that the question of equilibrium existence is solved if we are
able to find the proper conjugation. In examples 1 and 2 of the previous section we
have shown situations where the conjugations could be obtained. However, there we
assumed some features of the conjugation that are not necessary and were able to find
the correct conjugation for those settings. Now we will work in a setting where a
conjugation always exists: the weakly separable auctions. These are the auctions that
satisfy the following assumption:

(H3) (Weak Separability). v (ti, t−i) is such that if v (ti, t−i) < v (t0i, t−i) for some t−i
then v

¡
ti, t

0
−i
¢
< v

¡
t0i, t

0
−i
¢
for all t0−i. Moreover, if C ⊂ R has zero Lebesgue measure,

then µ{s ∈ S : v1 (s) ∈ C} = 0, where
v1 (s) ≡ E [v (ti, t−i) |ti = s] .

Assumption (H3) is restrictive, but it is valid in many economic meaningful cases.
For instance, for separable utilities such as v (ti, t−i) = u1 (ti)+ u2 (t−i), it requires
only that u1 (ti) does not assume any value with positive probability. The same is

valid for utilities like v (ti, t−i) = {
£
u1 (ti)

¤α
+
£
u2 (t−i)

¤β}γ , or v (ti, t−i) = γ
£
u1 (ti)

¤α£
u2 (t−i)

¤β
, with α, β, γ > 0. Of course, private values are included in the separable

utilities case. Of course, there are cases that do not satisfy it, such as the examples 1 and
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2 above. It is also clear that (H3) can deal with even more complicated dependences,
as examples 3 and 4 below illustrates.
Under (H3), we can define explicitly the conjugation:

(19) P (ti) ≡ Pr
©
t−i ∈ SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
.

Then, ṽ is given by

(20) ṽ(x, y) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y].
Under (H3), we can give a necessary and sufficient condition for the equilibrium

existence of the direct auction: merely that the solution b̃ to the first-order condition
of the indirect auction be increasing. This is the content of the following:

Theorem 3 (Necessary and Sufficient Condition For Equilibrium Existence). As-
sume (H0)-(H3). There exists an equilibrium b ∈ S if there exists an increasing function
b̃ that satisfies

(21)

Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα.

If this is the case, the equilibrium of the direct auction is given by b = b̃ ◦ P and the
expected payment of a bidder of type s is given by

(22) p (s) =

Z P (s)

0
ṽ (α,α) dα.

Additionally, if ṽ is continuous, then there exists an equilibrium b ∈ S and there exists
∂bΠ (s, b (s)) for all s if and only if there exists an increasing function b̃ that satisfies
the following:

• For (H1)-1, b̃ is differentiable and

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ;
with initial condition

R 1
0 p

L
³
b̃ (0) , b̃ (α)

´
dα = 0.

• For (H1)-2, b̃ is continuous and satisfies, for all x ∈ (0, 1),
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0.

Moreover, if there is a unique b̃ that satisfies such properties, the equilibrium
of the direct auction in regular pure strategies is also unique.

Proof. See Appendix C.¥

Remark 3. As explained in Remark 1, if a multidimensional auction has a regular
equilibrium, it can always be reduced (in a non-trivial way) to a one dimension auction
(the indirect auction). So, for obtaining equilibrium existence, we have to consider
auctions that can be so “reduced”. This is what assumption H3 allows us to explicitly
do. It still encompasses cases where such reduction is not trivial, as we show in examples
3 and 4 below. The reduction of the dimension of types is not a novelty in auction
theory. While studying the efficiency of auctions, Dasgupta and Maskin (2000) use
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a condition close to H3, while Jehiel, Moldovanu and Stacchetti (1996) made such
reduction for the purpose of revenue maximization. Nevertheless, for the purpose of
showing equilibrium existence in auctions, one cannot use only H3 or the Dasgupta
and Maskin’s condition, since the received theory would require the extra assumption
of monotonicity of ṽ on the reparameterized types. As we show in examples 4 and 5,
this is not always possible. So, an important feature of Theorem 3 is that it does not
require ṽ to be monotonic.

Example 3 (Spectrum Auction).2

Consider a first-price auction of a spectrum license. The license covers two periods
of time:
(1) In the first period, the regulator lets the winner explores its monopoly power.

Let t1i be the estimative of bidder i of the monopolist surplus in this first period. Of
course, the true surplus will be better approximated by

¡
t11 + ...+ t

1
N

¢
/ N . If the bidder

i (a firm) wins the auction, it has to invest t2i , a privately known amount, to build the
network that will support the service. So, in the first period, the license gives to the
firm

t11 + ...+ t
1
N

N
− t2i .

(2) In the second period, the regulator makes an estimate of the operational costs of
the firm. The regulator cannot observe the true operational cost, t3i , which is a private
information of the firm. Nevertheless, the regulator has a proxy that is a sufficient
statistic for the mean operational cost of all participants in the auction,

¡
t31 + ...+ t

3
N

¢
/

N . The regulator will fix a price that will give zero profit for a firm with the mean
operational costs.3 So, in the second period, the license gives to the winner

t31 + ...+ t
3
N

N
− t3i .

So, the value of the object is given by

v (ti, t−i) =
t11 + ...+ t

1
N

N
− t2i +

t31 + ...+ t
3
N

N
− t3i .

Let the signals ti =
¡
t1i , t

2
i , t

3
i

¢
, i = 1, ..., N be independent. Observe that the problem

cannot be reduced to a single dimension. Indeed, if we summarize the private infor-
mation by, say, si = t1i /N − t2i + t3i (1/N − 1), we lose the information about t1i and
t3i that are needed for the value function of bidders j 6= i. Also, the model cannot be
reparameterized to an increasing one. If we try to put −t3i in the place of t3i , then the
dependence of v (ti, t−i) on the signals t3j will be decreasing. So, the received theory
does not ensure the existence of pure strategy equilibrium for this case. Nevertheless,
assumption (H3) is trivially satisfied. In Appendix D, we assume the ti =

¡
t1i , t

2
i , t

3
i

¢
are independent and uniformly distributed on

£
s1, s1

¤ × £s2, s2¤ × £s3, s3¤, with s1, s2,
s3 > 0 and we show that a sufficient condition for the existence of equilibrium in pure
strategy is

s1

N
− s2 − s3N − 1

N
− 1 > 0.

2This example is more complex, but formally similar to example 5 of Dasgupta and Makin (2000).
3We assume that the regulator is institutionally constrained to follow such a procedure, so the

optimality of this regulation is not an issue here.
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The derivation in Appendix D indeed provides necessary and sufficient conditions for the
existence of equilibrium. Above, we have only simplified it for a sufficient condition.¥

Example 4 – Job Market
We can model the job market (for, say, a manager) as an auction between compet-

ing firms, where the object is the job contract with that manager. It is natural to
assume that the manager has a multidimensional vector of characteristics, m = (m1,
..., mk). For the sake of simplicity, we assume that the firms learn such characteristics
through interviews and curriculum analysis. Each firm also has a position to be filled
by the manager, with specific requirements for each dimension of the characteristics.
For instance, if dimension 1 is ability to communicate and the position is to be the
manager of a production section, there is level of desirability of this ability. An overly
communicative person may not be good. The same goes for the other characteristics.
A bank may desire a sufficiently (but not exaggeratedly) high level of risk loving or
audacity on the part of the manager, while a family business may desire a much lower
level. Even efficiency or qualification can have a level of desirability. Sometimes, the
rejection of a candidate is explained by over-qualification. Therefore, let ti = (t1i , ...,
tKi ) be the value of the characteristics desired by the firm.
Since the firms are competitors, then if one hires the employee, the other will remain

with a vacant position, at least for a time.4 In this way, the winning firm also benefits
from the fact that its competitors have a vacant position – and, then, are not operating
perfectly well. The higher the abilities required for the job, the more the competitor
suffers.5 So, the utility in this auction is as

v (ti, t−i) =
KX
k=1

akmk −
KX
k=1

bk
³
tki −mk

´2
+
X
j 6=i

KX
k=1

cktkj ,

where ak is the level of importance of characteristic k of the manager, bk > 0 represents
how important is the distance from the desired level tki of the characteristic k, and
ck is the weight of the benefit that firm i receives from the fact that the competitors
are lacking

P
j 6=i t

k
j of the ability k. As in the previous example, we cannot simplify

this model to a unidimensional monotonic model. In Appendix D we analyze the case
where there is just one dimension (K = 1), 2 players (N = 2) and types are uniformly
distributed on [0, 1], b = b1 > 0. We show that if m1 = m > 1/2, there exists a pure
strategy equilibrium in regular strategies if and only if

c ≡ c1 > max
½
2b (m− 2)

3
,
2b (1− 2m) (1 +m)

3

¾

4Of course, this model works only for non-competitive job markets. In other words, the buyers
(the contracting firms) have no access to a market with many homogenous employees to hire. This is
implicit when we model it as an auction. So, this is the reason why a firm that does not contract the
manager suffers – it is not possible to find a suitable substitute instantaneously. It is possible that
this also occurs in other kinds of auctions.
5If firms act in a oligopolistic market, it is possible to justify such externality through the fact

that the vacant position influences the quality of the product delivered by the firms and, hence, the
equilibrium in this market.
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Figure 3. Equilibrium bidding function in Example 4.

and if m < 1/2, there exists a pure strategy equilibrium in regular strategies if and
only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Observe that for both cases the value c = 0 ensures the existence of equilibrium. This
is expected, since it corresponds to a private value auction.
For a = b = 1/5, c = 1/20 and m = 1/3, the equilibrium bidding function is shown

in Figure 3.
¥

Now, we can return to the example given in the introduction. Theorem 3 gives the
conditions for the equilibrium existence.

Example 5 (JSSZ, example 1, Maskin and Riley, example 3) – Let us consider a
first price auction with two bidders, independent types uniformly distributed on [0, 1].
Let v1 (ti) = ti and v

2 (t−i) = α + βt−i. It is clear that P (ti) = ti in this case and
ṽ (x, y) = α+ x+ βy. So, ṽ (x, x) = α + (1 + β)x. So,

b̃ (x) =
1

x

Z x

0
ṽ (z, z) dz =

1

x

·
αx+

(1 + β)x2

2

¸
= α+

(1 + β)x

2
,

which is increasing only if β > −1. Observe that for b̃ (·) > 0, it is necessary α >
− (1 + β)x/2, otherwise negative bids have to be allowed.¥

The example above is used by JSSZ to show that equilibrium may fail to exist
under the standard tie-breaking rule. They then provide a general existence result
based on endogenous tie-breaking rules. Nevertheless, their result has some undesirable
properties. First, it is in mixed strategies. Second, the tie-breaking rule is endogenous,
so it is not possible to know what rule has to be applied in order to guarantee the
existence. Third, the rule requires that the players announce their types, which is
theoretically convenient but it is unfeasible in the real world.
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Instead, consider the following rule: if a tie occurs, conduct an all-pay auction among
the tying bidders. If another tie occurs, split randomly the object.6

We show now that this “all-pay auction tie-breaking rule” ensures the existence
of equilibrium for all auctions hat we are considering. Therefore, the generality and
simplicity of the rule can be counted as its last advantage.

Theorem 4 (General Existence). Assume (H0) -(H3) and that the all-pay auc-

tion tie-breaking rule is adopted. If there is a continuous function b̃, not necessarily
increasing, such thatZ y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα,

then there exists a pure strategy equilibrium.

Proof. See Appendix C.¥

Remark 4. The main ingredients in the proof of Theorem 4 are the payment
expression and the fact the bidding function of an all-pay auction is increasing. This
is so because in the all-pay auction, the bid

b̃ (x) =

Z x

0
ṽ (α,α) dα

is exactly the expect payment, which implies (21), and it is increasing, because ṽ is
positive, since v is positive by (H0).

The reader should note that Theorem 4 does not claim the uniqueness of the equi-
librium. Indeed, if b̃ is not increasing, there are many equilibria. There are two sources
for this multiplicity.
The first source is that under the all-pay auction tie-breaking rule, any level of the

bid in the range where b̃ is not increasing can be chosen to be the level of the tie. This
is shown in the Figure 4. For instance, any a0 can be chosen between x0 and x1. Once
one of the three elements ak, bk or ck is determined, so are the other two. However,
these possibilities lead to the same expected payment and payoff for each bidder in the
auction.
Another point is that the tie-breaking rule is not unique, in general. It can be shown,

for instance, that for cases where b̃ is decreasing (as in example 1 of JSSZ) and for some
specifications of v, there is a continuum of tie-breaking rules (like that defined by JSSZ
for their example 1), which ensures the existence of equilibrium. All these tie-breaking
rules nevertheless imply different revenues. In light of this observation, the existence
of equilibrium with an endogenous tie-breaking rule seems even more problematic as a
solution concept, since it can sustain many different behaviors at equilibrium.
The reader may observe that the expression of the payment in Theorem 3 depends

only on the conjugation, which is fixed for all kind of auctions. Also, the payment is
exactly the same under the all-pay auction tie-breaking rule. So, we have the following:

Theorem 5 (Revenue Equivalence Theorem). Consider auctions that satisfy (H0)
-(H3) and with the all-pay auction tie-breaking rule. Then, any format of the auction

6Observe that in the second auction (the tie-breaking auction), the bids and payments can be less
than in the first auction.



50 CHAPTER 3

ak ck 

bk 

x0 x1 y0 y1 

z1 

z0 

Figure 4. Possible specifications for the level of the tie.

gives the same revenue, provided the bidders follow the symmetric equilibrium specified
by Theorem 4.

Proof. See Appendix C.¥

6. Conclusion

Now we will briefly highlight what are the most important contributions of this paper
and to discuss possible extensions.

6.1. The Contributions. Our contributions can be summarized as follows:

• Equilibrium Existence in the Multidimensional Setting - McAdams (2003a) gen-
eralizes Athey (2001) for multidimensional types and actions. He works with
discrete bids and continuous types. Our approach gives the existence with
continuum types and bids. Our result provides the expressions of the bid-
ding functions, while his is an existence result only. His assumptions requires
monotonicity and are not on the fundamentals of the model. On the other hand,
our results do not cover multi-unit auctions nor asymmetries as his. JSSZ give
the existence for multidimensional games, including cases with dependence,
while we require independence. However, they need an endogenous tie breaking
rule and the existence is in mixed strategies, while our results are in pure strate-
gies. Jackson and Swinkels (2004) show the existence of equilibria for a large
class of multidimensional private value auctions. Their setting is private val-
ues, while ours is interdependent values. They allow asymmetries, dependence
of signals and multi-units, but the existence is given in mixed strategies.

• Equilibrium Existence in Non-Monotonic Settings - We are not aware of any
general non-monotonic equilibrium existence results in pure strategies. Zheng
(2001), Athey and Levin (2001) and Ewerhart and Fieseler (2003) present cases
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where non-monotonicity arises. So, our results develop a theory to deal with
the situations where the usual monotonicity is not fulfilled.7

• Uniqueness of Equilibrium - We are able to ensure the uniqueness of equilibrium
in the symmetric interdependent values auctions that satisfy assumption H3,
extending the well known uniqueness of unidimensional and monotonic auctions.

• Necessary and Sufficient Conditions for the Existence of Equilibrium with-
out Ties - The results of JSSZ do not allow one to distinguish when special
tie-breaking is needed or not. Our approach clarifies, under assumption H3,
whether ties occur with positive probability (and there is a potential need for
special tie-breaking rules).

• All-Pay Auction Tie-Breaking Rule - When there is a need for a tie with pos-
itive probability, we are able to offer an exogenous tie-breaking rule, which is
implemented through an all-pay auction. Moreover, the equilibrium that the
rule implements is in pure strategies. For private value auctions, Jackson and
Swinkels (2004) show that the equilibrium is invariant for any trade-maximizing
tie-breaking rule. Nevertheless, this does not need to hold for the interdepen-
dent values auctions that we treat.

• Revenue Equivalence Theorem - We have also generalized the Revenue Equiv-
alence Theorem (Theorem 5). Furthermore, Theorem 2 and Appendix B show
that there is a deep connection between the revenue equivalence and the exis-
tence of equilibrium. Riley and Samuelson (1981) and Myerson (1981) establish
that revenue equivalence is a consequence of the equilibrium behavior. Proposi-
tion 5 and Corollary 1 in Appendix B show that the revenue equivalence is also
sufficient for the existence of equilibrium (if an extra condition is satisfied).

Thus, our results have clarified some aspects of the equilibrium existence problem in
auctions. The theory shows that, under assumption H3, there is no additional difficult
in working with the more general setting of multidimensional types and non-monotonic
utilities besides those difficulties already possible in the unidimensional setting.8 More-
over, this approach allows the equilibrium bidding functions to be expressed in a simple
manner. This is so because the equilibrium bidding function of a general auction can
be expressed by the equilibrium bidding function of an auction with two bidders and
types uniformly distributed on [0, 1].

6.2. The Limits of the Method. Our theory makes two important assumptions:
independence of the types and symmetry.
The generalization of this approach for dependent types involves some difficulties,

because the conjugation would depend in a complicated way on types. Nevertheless, we
believe that some extension can be done if we assume conditional independence.9 It is
worth remembering that the problem with dependence is not specific to our approach.
Jackson (1999) gives a counter-example for the equilibrium existence of an auction with
bidimensional affiliated types. Fang and Morris (2003) also obtain negative results, not
only for the existence of equilibrium but also for the revenue equivalence.

7Of course, papers that provide existence in distributional (mixed) strategies can treat non-
monotonic settings as well.
8Theorem 3 shows that the non-existence of the equilibrium comes from the non-monotonicity of

the indirect bidding function. This can occur also in unidimensional setting, although it can be more
usual in multidimensional models.
9de Castro (2004b) proposes the use of conditional independence as an alternative for affiliation.
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On the other hand, asymmetry does not seem to impose severe restriction on the
existence of equilibrium. We believe that the approach of the indirect auction can be
adapted to this case, although not in a straightforward way. If this can be done, it is
unlikely that we will obtain simple expressions as in this paper.
Another limitation of our theory is that it is applied to single-unit auctions.
Finally, the relaxation of assumption H3 is an obvious direction to pursue, although

H3 seems to encompass many important economical examples.
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7. Appendix A - Proof of the Basic Results

We will need the following result, which was proved, in a more general setting, by
de Castro (2004a).

Lemma 1 (Payoff Characterization) – Assume (H0)-(H2). Fix b (·) ∈ S. The
bidder i’s payoff can be expressed by

Π(ti, bi, b (·)) = Πi(ti, bmin) +
Z
(bmin,bi)

∂biΠ(ti,β, b (·))dβ,

where ∂biΠ(ti,β, b (·)) exists for almost all β with

∂biΠ(ti,β, b (·)) = E
h
−∂1pW

¡
β, b(−i) (t−i)

¢
1[β>b(−i)(t−i)] − ∂1p

L
¡
β, b(−i) (t−i)

¢
1[β<b(−i)(t−i)]

i
+E[v (ti, t−i)− pW (β,β) + pL (β,β) |b(−i) (t−i) = β]fb(−i) (β) .

a.e., where b(−i) (t−i) ≡ maxj 6=i b (tj) .
Proof. Let us define b(−i) (t−i) ≡ maxj 6=i b (tj). Since bi = b(−i) (t−i) with probabil-

ity zero, we have

Π(ti, bi, b (·)) =

Z
SN−1

£
v(ti, t−i)− pW

¡
bi, b(−i) (t−i)

¢¤
1[bi>b(−i)(t−i)]

Y
j 6=i
µ (dtj)

+

Z
SN−1

£−pL ¡bi, b(−i) (t−i)¢¤ 1[bi<b(−i)(t−i)]Y
j 6=i
µ (dtj) .

Take a sequence an → b−i , i.e., a
n < bi (the other case is analogous). We want to prove

that there exists limn→∞Dn (bi) / (bi − an) for almost all bi, where
Dn (bi) = Π(ti, bi, b (·))−Π(ti, an, b (·)).

In the sequel, we will omit the measure
Q
j 6=i µ (dtj) and the terms t−i. We have:

Dn (bi) =

Z £
v(ti, ·)− pW

¡
bi, b(−i) (·)

¢¤
1[bi>b(−i)(·)]1[an>b(−i)(·)]

+

Z £−pL ¡bi, b(−i) (·)¢¤ 1[bi<b(−i)(·)]
−
Z £

v(ti, ·)− pW
¡
an, b(−i) (·)

¢¤
−
Z £−pL ¡an, b(−i) (·)¢¤ 1[an<b(−i)(·)]

=

Z £
v(ti, ·)− pW

¡
bi, b(−i) (·)

¢
+ pL

¡
an, b(−i) (·)

¢¤
1[bi>b(−i)(·)>an]

+

Z £−pW ¡bi, b(−i) (·)¢+ pW ¡an, b(−i) (·)¢¤ 1[an>b(−i)(·)]
+

Z £−pL ¡bi, b(−i) (·)¢+ pL ¡an, b(−i) (·)¢¤ 1[bi<b(−i)(·)]
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Let us call the three last integrals as D1n (bi), D
2
n (bi) and D

3
n (bi), respectively. Since

pW and pL are differentiable, we have

lim
n→∞

D2n (bi)

bi − an = − lim
n→∞

Z
pW

¡
an, b(−i) (·)

¢− pW ¡bi, b(−i) (·)¢
bi − an 1[bi>b(−i)(·)]

= −
Z

∂1p
W
¡
bi, b(−i) (·)

¢
1[bi>b(−i)(·)]

and

lim
n→∞

D3n (bi)

bi − an = − lim
n→∞

Z
pL
¡
an, b(−i) (·)

¢− pL ¡bi, b(−i) (·)¢
bi − an 1[an<b(−i)(·)]

= −
Z

∂1p
L
¡
bi, b(−i) (·)

¢
1[bi<b(−i)(·)].

everywhere. So, if we put a0 = bmin and bi > bmin, the Fundamental Theorem of
Calculus gives

(23) D20 (bi) =

Z
(bmin,bi)

Z
−∂1pW

¡
α, b(−i) (·)

¢
1[bi>b(−i)(·)]dα

and

(24) D30 (bi) =

Z
(bmin,bi)

Z
−∂1pL

¡
α, b(−i) (·)

¢
1[bi<b(−i)(·)]dα.

Now, define the measure ρ over R+ by

ρ (V ) ≡
Z
SN−1

£
v(ti, t−i)− pW

¡
bi, b(−i) (t−i)

¢
+ pL

¡
bi, b(−i) (t−i)

¢¤
1[b(−i)(t−i)∈V ]

Y
j 6=i
µ (dtj) .

Observe that, since b ∈ S, ρ is absolutely continuous with respect the Lebesgue measure
λ. We have

lim
n→∞

D1n (bi)

bi − an = lim
n→∞

ρ ([an, bi))

bi − an = lim
an→bi

½
ρ ([an, bi))

λ ([an, bi))

¾
=
dρ

dλ
(bi) ,

where dρ
dλ (.) is the Radon-Nikodym derivative of ρ with respect to λ. Indeed, the

existence of such limit is ensured by Theorem 8.6 of Rudin (1966) for almost all bi, that
is,

λ

µ½
bi : @ lim

an→bi

½
ρ ([an, bi))

λ ([an, bi))

¾¾¶
= 0.

It is easy to see that the Radon-Nikodym derivative dρ
dλ (bi) is simply

E[v (ti, t−i)− pW (β,β) + pL (β,β) |b(−i) (t−i) = β]fb(−i) (β) ,

where fb(−i) (β) is the Radon-Nikodym derivative of the distribution of maximum bids,R
1[b(−i)(t−i)∈V ]. Moreover, Theorem 8.6 of Rudin says that

(25) ρ ((bmin, bi)) =

Z
(bmin,bi)

dρ

dλ
(α) dα.

Thus, (23), (24) and (25) imply that

Π(ti, bi, b (·)) = Π(ti, bmin) +
Z
(bmin,bi)

∂biΠ(ti,β, b (·))dβ,
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where

∂biΠ(ti,β, b (·)) = E
h
−∂1pW

¡
β, b(−i) (t−i)

¢
1[β>b(−i)(t−i)] − ∂1p

L
¡
β, b(−i) (t−i)

¢
1[β<b(−i)(t−i)]

i
+E[v (ti, t−i)− pW (β,β) + pL (β,β) |max

j 6=i
b (tj) = β]fb(−i) (β) .

This concludes the proof.¥

Proof of Proposition 1. Let us introduce the following notation:

Π+i (ti, c) =

Z £
v (ti, ·)− pW

¡
c, b(−i) (·)

¢¤
1[c>b(−i)(·)]Πj 6=iµ (dtj)

Π−i (ti, c) =
Z
pL
¡
c, b(−i) (·)

¢
1[c<b(−i)(·)]Πj 6=iµ (dtj) ,

Π̃+,−i (φi, c) ≡ E
h
Π+,−i (ti, c) |P (ti) = φi

i
.

Let us begin with the proof for Π̃+i and Π
+
i . Let us denote the conditional expectation

by

(26) gti,c (α) ≡ E
h
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢ |P b(−i) (t−i) = α
i
.

The event
£
c > b(−i) (t−i)

¤
occurs if and only if

h
P̃ b (c) > P b(−i) (t−i)

i
occurs. Then, we

have

Π+i (ti, c) =

Z
gti,c

³
P b(−i) (t−i)

´
1[
P̃ b(c)>P b

(−i)(t−i)
] Πj 6=iµ (dtj) .

Now we appeal to the Lemma 2.2, p. 43, of Lehmann (1959). This lemma says the
following: if R is a transformation and if µ∗ (B) = µ

¡
R−1 (B)

¢
, thenZ

R−1(B)
g [R (t)]µ (dt) =

Z
B
g (α)µ∗ (dα) .

In our case, R = P b(−i) and µ
∗ ([0, c]) = µ∗ ([0, c)) = τ−i

³¡
P b
¢−1
(−i) ([0, c))

´
= Pr{t−i ∈

SN−1 : P b (tj) < c} = c, by (4). So, µ∗ is exactly the Lebesgue measure, and we have

(27) Π+i (ti, c) =

Z P̃ b(c)

0
gti,c (α) dα.

From this and the definition of Π̃+i , we have

Π̃+i (φi, c) = E

"Z P̃ b(c)

0
gti,c (α) dα|P b (ti) = φi

#

=

Z P̃ b(c)

0
E
h
gti,c (α) |P b (ti) = φi

i
dα

=

Z P̃ b(c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα,

where the second line comes from a interchange of integrals (Fubbini’s Theorem) and
the last line comes from independency and the definition of ṽ (φi,α) and g

ti,c (α) (see
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(5) and (26)). Also from the fact that b̃ =
³
P̃ b
´−1

, we can substitute P̃ b, to obtain

(28) Π̃+i (φi, c) =

Z b̃−1(c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα.

Now, we can repeat the above procedures with Π−i (φi, c) and obtain:

(29) Π̃−i (φi, c) =
Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα.

Adding up, that is, putting Π̃i (φi, c) = Π̃
+
i (φi, c)− Π̃−i (φi, c), we obtain the interim

payoff of the indirect auction. This concludes the proof of the first part.
For the second part, observe that the equality (8) implies that for all ti such that

P b (ti) = P
b (s) = x,

E
h
gti,c (α) |P b (ti) = x

i
= E

h¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b (ti) = x, P b(−i) (t−i) = α
i

= E
h¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |ti = s, P b(−i) (t−i) = α
i

= E
h¡
v (s, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b(−i) (t−i) = α
i

= gs,c (α) .

Then,

Π̃+i (x, c) = E

"Z P̃ (c)

0
gti,c (α) dα|P b (ti) = x

#

=

Z P̃ (c)

0
E
h
gti,c (α) |P b (ti) = x

i
dα

=

Z P̃ (c)

0
gs,c (α) dα

= Π+i (s, c) ,

where the last line comes from (27). Obviously, the same can be shown for Π−i and
Π̃−i . So, the proof is complete.¥

8. Appendix B - Indirect Auction Equilibria

In this appendix, we will analyze auctions between two players, with independent
types uniformly distributed on [0, 1]. Since this is the setting of the indirect auction,
we will use notation consistent with that, although the results of this appendix are
independent from the results of section 4. For (i,−i) = (1, 2) or (2, 1) let

ũi (x, b) =


ṽ (xi, x−i)− pW (bi, b−i) , if bi > b−i
−pL (bi, b−i) , if bi < b−i
ṽ(xi,x−i)−bi

2 , if bi = b−i
be the ex-post payoff. We will assume

(H0)’ The types are independent and uniformly distributed on [0, 1]. ṽ is positive,
measurable and bounded above.
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By the definition of the indirect auction, we are interested only in nondecreasing
equilibria b̃, strictly increasing in the range of winning types. That is, for a non-
decreasing strategy b̃, define x0 to be the minimum type that bids at least bmin. So we
require b̃ to be increasing in [x0, 1] and equal to b̃ (x) = −1 for x < x0. In order to be
an equilibrium, b̃ must satisfy the following:

(30)

Z x0

0

h
ṽ (x0,α)− pW

³
b̃ (x0) , b̃ (α)

´i
dα−

Z 1

x0

pL
³
b̃ (x0) , b̃ (α)

´
dα = 0.

Indeed, the above integral is the payoff of x0. If it is negative, then x0 can do better
by bidding −1. If the above integral is positive, then x0 > 0, otherwise the payoff of
x0 = 0 would reduce to − R 1x0 pL ³b̃ (x0) , b̃ (α)´ dα which is nonpositive because pL is
positive. If x0 > 0, for a x < x0 sufficiently close of x0, the payoffZ x0

0

h
ṽ (x,α)− pW

³
b̃ (x0) , b̃ (α)

´i
dα−

Z 1

x0

pL
³
b̃ (x0) , b̃ (α)

´
dα

is still positive (because of the continuity of ṽ). So, x is receiving zero but could obtain

a strictly positive payoff by bidding b̃ (x0) = bmin.

So, for a fixed b̃, we assume the following:

(H2)’ There exists x0, the mininum indirect type that satisfies (30) and x0 ∈ [0, 1).
We have the following:

Proposition 2 (Case 1). Assume (H0)’, (H1)-1, that is, ∂1p
W (·) > 0 or ∂1pL (·) > 0,

(H2)’ and that ṽ is continuous. Let b̃ be an increasing equilibrium of the indirect

auction. Then, b̃ is differentiable and satisfies

(31) b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
Proof. Suppose that player −i follows b̃. The interim payoff of player i with (indirect)
type xi is

Π̃(xi, bi, b̃ (·)) =

Z £
ṽ(xi, x−i)− pW (bi, b (x−i))

¤
1[bi>b̃(x−i)]dx−i

−
Z
pL (bi, b (x−i)) 1[bi<b̃(t−i)]dx−i.

If b̃ is discontinuous, there exists x∗ > x0, with
lim sup

x<x∗
b̃ (x) < lim inf

x>x∗
b̃ (x) .

Consider bidders x+εi that bids β+ε = b̃
¡
x+εi

¢
= lim infx>x∗ b̃ (x) + ε and x−εi that

bids β−ε = b̃
¡
x−εi

¢
= lim supx<x∗ b̃ (x) − ε. For ε > 0 sufficiently small, the eventh

β+ε > b̃ (x−i)
i
is arbitrarily close of

h
β−ε > b̃ (x−i)

i
. So,Z

ṽ(xi, x−i)1[β+ε>b̃(x−i)]dx−i −
Z
ṽ(xi, x−i)1[β−ε>b̃(x−i)]dx−i

=

Z
ṽ(xi, x−i)1[β+ε>b̃(x−i)� β−ε]dx−i
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is arbitrarily small. On the other hand,

−
Z h

pW
¡
β+ε, b (x−i)

¢
1[β+ε>b̃(x−i)] + p

L
¡
β+ε, b (x−i)

¢
1[β+ε<b̃(t−i)]

i
dx−i

+

Z h
pW

¡
β−ε, b (x−i)

¢
1[β−ε>b̃(x−i)] + p

L
¡
β−ε, b (x−i)

¢
1[β−ε<b̃(t−i)]

i
dx−i

=

Z £¡
pW

¡
β−ε, b (x−i)

¢− pW ¡β+ε, b (x−i)¢¢¤ 1[β−ε>b̃(x−i)]dx−i
+

Z £
pL
¡
β−ε, b (x−i)

¢− pL ¡β+ε, b (x−i)¢¤ 1[β−ε<b̃(t−i)]dx−i
+r

=

Z Z β+ε

β−ε
−∂1pW (z, b (x−i)) 1[β−ε>b̃(x−i)]dx−i

+

Z Z β+ε

β−ε
−∂1pL (z, b (x−i)) 1[β−ε<b̃(x−i)]dx−i

+r

where r denotes integrals over the event
h
β+ε > b̃ (x−i) > β−ε

i
. Observe that the sum

of the two integrals is negative and bounded away from zero, because of ∂1p
W (·) > 0

or ∂1p
L (·) > 0. So, it is not optimal for bidder x+εi to bid β+ε and this contradicts b̃

to be equilibrium. So, b̃ is continuous. Let us prove that it is differentiable. We have

Π̃(x, b̃ (x) , b̃ (·))− Π̃(x, b̃ (x+ h) , b̃ (·))

=

Z x

0

h
ṽ (x,α)− pW

³
b̃ (x) , b̃ (α)

´i
dα−

Z 1

x
pL
³
b̃ (x) , b̃ (α)

´
dα

−
Z x+h

0

h
ṽ (x,α)− pW

³
b̃ (x+ h) , b̃ (α)

´i
dα+

Z 1

x+h
pL
³
b̃ (x+ h) , b̃ (α)

´
dα

=

Z x+h

x

h
−ṽ (x,α) + pW

³
b̃ (x+ h) , b̃ (α)

´
− pL

³
b̃ (x+ h) , b̃ (α)

´i
dα

+

Z x

0

h
pW

³
b̃ (x+ h) , b̃ (α)

´
− pW

³
b̃ (x) , b̃ (α)

´i
dα

+

Z 1

x

h
pL
³
b̃ (x+ h) , b̃ (α)

´
− pL

³
b̃ (x) , b̃ (α)

´i
dα.

Since the first integrand is continuous, by the Mean Value Theorem, there exists x∗
between x and x+ h such that

Z x

x+h

h
ṽ (x,α)− pW

³
b̃ (x+ h) , b̃ (α)

´
+ pL

³
b̃ (x+ h) , b̃ (α)

´i
dα

= h
h
−ṽ (x, x∗) + pW

³
b̃ (x+ h) , b̃ (x∗)

´
− pL

³
b̃ (x+ h) , b̃ (x∗)

´i
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Because pW and pL are differentiable and b̃ continuously increasing, there exists x∗∗
and x∗∗∗ between x and x+ h such thatZ x

0

h
pW

³
b̃ (x+ h) , b̃ (α)

´
− pW

³
b̃ (x) , b̃ (α)

´i
dα =

h
b̃ (x+ h)− b̃ (x)

i Z x

0
∂1p

W
³
b̃ (x∗∗) , b̃ (α)

´
dαZ 1

x

h
pL
³
b̃ (x+ h) , b̃ (α)

´
− pL

³
b̃ (x) , b̃ (α)

´i
dα =

h
b̃ (x+ h)− b̃ (x)

i Z 1

x
∂1p

L
³
b̃ (x∗∗∗) , b̃ (α)

´
dα.

So, since Π̃(x, b̃ (x) , b̃ (·))− Π̃(x, b̃ (x+ h) , b̃ (·)) > 0, we have

(32)
b̃ (x+ h)− b̃ (x)

h
>

h
ṽ (x, x∗)− pW

³
b̃ (x+ h) , b̃ (x∗)

´
+ pL

³
b̃ (x+ h) , b̃ (x∗)

´i
R x
0 ∂1pW

³
b̃ (x∗∗) , b̃ (α)

´
dα+

R 1
x ∂1p

L
³
b̃ (x∗∗∗) , b̃ (α)

´
dα.

Now, consider the difference:

0 6 Π̃(x+ h, b̃ (x+ h) , b̃ (·))− Π̃(x+ h, b̃ (x) , b̃ (·))

=

Z x+h

x

h
ṽ (x+ h,α)− pW

³
b̃ (x) , b̃ (α)

´
+ pL

³
b̃ (x) , b̃ (α)

´i
dα

−
Z x+h

0

h
pW

³
b̃ (x+ h) , b̃ (α)

´
− pW

³
b̃ (x) , b̃ (α)

´i
dα

−
Z 1

x+h

h
pL
³
b̃ (x+ h) , b̃ (α)

´
− pL

³
b̃ (x) , b̃ (α)

´i
dα

= h
h
ṽ
¡
x+ h, x0

¢− pW ³b̃ (x) , b̃ ¡x0¢´+ pL ³b̃ (x) , b̃ ¡x0¢´i
−
h
b̃ (x+ h)− b̃ (x)

i Z x+h

0
∂1p

W
³
x
00
, b̃ (α)

´
dα

−
h
b̃ (x+ h)− b̃ (x)

i Z 1

x+h
∂1p

L
³
x
000
, b̃ (α)

´
dα,

where the existence of x0, x00and x0000 between x and x+h is ensured by the Mean Value
Theorem. Thus, we obtain

(33)
b̃ (x+ h)− b̃ (x)

h
6

h
ṽ (x+ h, x0)− pW

³
b̃ (x) , b̃ (x0)

´
+ pL

³
b̃ (x) , b̃ (x0)

´i
R x+h
0 ∂1pW

³
x00 , b̃ (α)

´
dα+

R 1
x+h ∂1p

L
³
x000 , b̃ (α)

´
dα

When we make h→ 0, the right hand side in (32) and (33) both converge to

ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
So, b̃ is differentiable at x ∈ (x0, 1) and b̃0 (x) is equal to the expression above.¥

Proposition 3 (Case 2). Assume (H0)’, (H1)-2, that is, ∂1p
W = ∂1p

L = 0 and

∂2
¡
pW − pL¢ > 0 and that ṽ is continuous. Let b̃ be an increasing equilibrium of the

indirect auction. Then

(34) x ∈ (x0, 1)⇒ ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0.
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Proof. Given b, b0, let us define the function h as

h (z) ≡ pW (b, z)− pL ¡b0, z¢ .
Since ∂1p

W = ∂1p
L ≡ 0 and ∂2

¡
pW − pL¢ > 0, h does not depend on b or b0 and is

differentiable and increasing.
By contradiction, assume that (34) is false, that is, there exists x∗ ∈ (x0, 1) such

that

(35) ṽ (x∗, x∗) > h
³
b̃ (x∗)

´
.

Because ṽ is continuous and b̃ is increasing, for sufficiently small δ > 0, we have

ṽ (x∗ − δ, x∗ − δ) > h
³
b̃ (x∗)

´
> h

³
b̃ (x∗ − δ)

´
.

Since the set of the points of discontinuity of b̃ is enumerable, we may assume that (35)

holds for a point x∗ where b̃ is continuous. Thus, for sufficiently small ε and δ > 0,
∀α ∈ [x∗, x∗ + ε],

ṽ (x∗,α) > h
³
b̃ (x∗) + δ

´
> h

³
b̃ (α)

´
.

Consider the following difference:

Π̃(x∗, b̃ (x∗ + ε) , b̃ (·))− Π̃(x∗, b̃ (x∗) , b̃ (·))

=

Z x∗+ε

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗ + ε) , b̃ (α)

´i
dα−

Z 1

x∗+ε
pL
³
b̃ (x∗ + ε) , b̃ (α)

´
dα

−
Z x∗

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗) , b̃ (α)

´i
dα+

Z 1

x∗
pL
³
b̃ (x∗) , b̃ (α)

´
dα

=

Z x∗+ε

x∗

h
ṽ (x∗,α)− h

³
b̃ (α)

´i
dα > 0

where we used the property ∂1p
W = ∂1p

L ≡ 0 in order to obtain the last equality. This
contradicts the optimality of b̃ (x∗) for x∗.
Now, assume that there is a x∗ ∈ (x0, 1) such that

ṽ (x∗, x∗) < h
³
b̃ (x∗)

´
.

Again, we may assume that x∗ is a point of continuity of b̃. Hence, for ε, δ > 0
sufficiently small, ∀α ∈ [x∗ − ε, x∗],

ṽ (x∗,α) < h
³
b̃ (x∗)− δ

´
< h

³
b̃ (α)

´
.

Similarly,

Π̃(x∗, b̃ (x∗) , b̃ (·))− Π̃(x∗, b̃ (x∗ − ε) , b̃ (·))

=

Z x∗

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗) , b̃ (α)

´i
dα−

Z 1

x∗
pL
³
b̃ (x∗) , b̃ (α)

´
dα

−
Z x∗−ε

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗ − ε) , b̃ (α)

´i
dα+

Z 1

x∗−ε
pL
³
b̃ (x∗ − ε) , b̃ (α)

´
dα

=

Z x∗

x∗−ε

h
ṽ (x∗,α)− h

³
b̃ (α)

´i
dα < 0.
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This completes the proof of (34). So, we have

(36) b̃ (x) = h−1 (ṽ (x, x)) ,

which shows that b̃ is continuous. Moreover, b̃ is increasing if and only if x 7−→ ṽ (x, x)
is also increasing.¥

Now, we will analyze the equilibrium existence in both cases 1 and 2. Instead of
assuming that ṽ is continuous, as we did in the last two propositions, we will assume
directly its consequence, that is, we suppose that there exists a function b̃ that satisfies
the following:

Case 1 : ∂1p
W (·) > 0 or ∂1pL (·) > 0, b̃ is differentiable and

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
Case 2 : ∂1p

W = ∂1p
L = 0, ∂2

¡
pW − pL¢ > 0, b̃ is continuous, and

x ∈ (x0, 1)⇒ ṽ (x, x) = h
³
b̃ (x)

´
= pW

³
b̃ (x) , b̃ (x)

´
− pL

³
b̃ (x) , b̃ (x)

´
.

Observe that we do not assume that b̃ is increasing. This is so because this is exactly
the setting of Theorem 4. To treat non-increasing b̃, we define the following:

Modified Auction - The bidder submits a type y ∈ [0, 1]. In any event, the payment
is determined as if the bidder has submitted the bid b̃ (y). The bidder wins against
opponents who announce types below y and loses to opponents who announce types
above y. If there is a tie, the object is given with probability 1/2 for each bidder.

Observe that if b̃ is increasing, the modified auction is simply the indirect auction.
If b̃ is not increasing, the difference is that the events of winning are not determined by
b̃ but by the announced type y. The rule of the modified auction implies the following
interim payoff:

Π̂ (x, y) =

( R y
0

h
ṽ (x,α)− pW

³
b̃ (y) , b̃ (α)

´i
dα− R 1y pL ³b̃ (y) , b̃ (α)´ dα, if y > x0

0 if y < x0

We can simplify the above expression to

(37) Π̂ (x, y) =

½ R y
0 ṽ (x,α) dα− p̂ (y) , if y > x0
0 if y < x0

where

p̂ (y) ≡
( R y

0 p
W
³
b̃ (y) , b̃ (α)

´
dα+

R 1
y p

L
³
b̃ (y) , b̃ (α)

´
dα, if y > x0

0, if y < x0

In case 1, b̃, pW and pL are differentiable on (x0, 1), p̂ and Π̂ are also differentiable. So,
for every y ∈ (x0, 1), we have

p̂0 (y) = ∂y

½Z y

0
ṽ (x,α) dα− Π̂ (x, y)

¾
= ṽ (x, y)− ∂yΠ̂ (x, y) .
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Truth-telling is always optimal if

(38) Π̂ (x, x)− Π̂ (x, y) > 0.
In case 1, this is equivalent to Z x

y
∂yΠ̂ (x,α) dα > 0

if x, y > x0. Also, if x, y > x0, ∂yΠ̂ (x, y) |y=x must be zero, so that
(39) ∂yΠ̂ (x, y) |y=x= 0⇒ p̂0 (x) = ṽ (x, x) .

Indeed, these are simply the second- and the first-order conditions, respectively. So,
for y > x0,

p̂ (y) =

Z y

x0

ṽ (α,α) dα+ p̂ (x0) .

Now, let us turn to case 2. Since b̃ is only continuous, p̂ is not necessarily differen-
tiable. Nevertheless, if y > x0,

p̂ (y) =

Z y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα

=

Z y

x0

h
pW

³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (y) , b̃ (α)

´i
dα+ p̂ (x0)

=

Z y

x0

h
³
b̃ (α)

´
dα+ p̂ (x0)

=

Z y

x0

ṽ (α,α) dα+ p̂ (x0) .

Observe that the expression above is exactly the same of case 1. For y < x0, the
payment is zero. For y = x0, p̂ (y) is obtained from (30):Z x0

0
ṽ (x0,α) dα−

Z x0

0
pW

³
b̃ (x0) , b̃ (α)

´
dα+

Z 1

x0

pL
³
b̃ (x0) , b̃ (α)

´
dα = 0.

So, we have proved the following:

Proposition 4 (Payment Rule). Assume (H0)’, (H1) and (H2)’. Then, both for
case 1 or case 2, we have

(40) p̂ (y) =


p̂ (x0) +

R y
x0
ṽ (α,α) dα, if y > x0R x0

0 ṽ (x0,α) dα, if y = x0
0, if y < x0

Now, we turn to the equilibrium existence.

Proposition 5 (Equilibrium). Assume (H0)’, (H1), (H2)’ and (40). Then, truth-
telling is equilibrium of the modified auction if and only if, for all x, y ∈ [0, 1],

(41)


R x
y [ṽ (x,α)− ṽ (α,α)] dα > 0, if x, y > x0R x
x0
[ṽ (x,α)− ṽ (α,α)] dα+ R x00 [ṽ (x,α)− ṽ (x0,α)] dα > 0, if x > x0 > y

0 >
R y
x0
[ṽ (x,α)− ṽ (α,α)] dα+ R x00 [ṽ (x,α)− ṽ (x0,α)] dα if y > x0 > x
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Proof. Given (40), the optimality condition for truth-telling, namely, Π̂ (x, x) −
Π̂ (x, y) > 0, is equivalent toZ x

0
ṽ (x,α) dα−

Z x

x0

ṽ (α,α) dα− p̂ (x0)

−
Z y

0
ṽ (x,α) dα+

Z y

x0

ṽ (α,α) dα+ p̂ (x0)

=

Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0(42)

if x, y > x0. The other cases are immediate.¥

As we have said before, if b̃ is increasing, the modified auction is just the original
(unmodified) auction. Then, we have

Corollary 1. Assume (H0)’, (H1), (H2)’ and that b̃ is increasing and implies (40).

Then, if (41) holds, b̃ is equilibrium of the indirect auction.

Observe that Corollary 1 does not require ṽ to be continuous.

9. Appendix C - Proofs of the Theorems

Proof of Theorem 1.
(i) If b ∈ S, it defines a conjugation P b by (2). The bid b (ti) = β is optimal for

bidder ti against the strategy b (·) of the opponents. This and the fact that ∂bΠ (s, b (s))
= 0 imply that

E
£
v (ti, ·) |ti = s, b(−i) (t−i) = β

¤
= pW (β,β)− pL (β,β)−

Et−i

h
∂bip

W 1[bi>b(−i)] + ∂bip
L1[bi<b(−i)]

i
fb(−i) (β)

.

Observe that the right-hand side does not depend on s (it depends on it only by the
fact that β = b (s) is the optimum bid for such bidder). Thus, the left-hand side has to
be the same for all s that are bidding the same bid in equilibrium, which implies that
(10) holds.
(ii) If b (ti) maximizes Π (ti, c) for ti, and P (t

0
i) = P (ti) , then b (t

0
i) = b (ti). Then,

b (ti) maximizes Π̃ (P (t
0
i) , c) for all t

0
i such that P (t

0
i) = P (ti), from the definition

of Π̃ (P (ti) , c) given by (6). In other words, b̃ (x) =
³
P̃ b
´−1

(x) = b
¡
P−1 (x)

¢
is the

equilibrium of the indirect auction.
If ṽ is continuous, we appeal to the results of the Appendix B. Propositions 2 and 3

proves (iii), Proposition 4 proves (iv) and Proposition 5 gives (v).¥

Proof of Theorem 2. Corollary 1 of Appendix B proves that conditions (ii) and

(iii) are sufficient for b̃ to be the equilibrium of the indirect auction. Now, Proposition
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1 proves that condition (i)’ implies that for all s such that P (s) = x, Π̃ (x, c) = Π (s, c)

(see (9)). Now, if we put b (s) = b̃ (P (s)), then

Π (s, b (s)) = Π̃
³
P (s) , b̃ (P (s))

´
and

Π (s, c) = Π̃ (P (s) , c) .

But this is sufficient to show the equilibrium existence in the direct auction, since b̃ is
the equilibrium in the indirect auction, which implies that

Π̃
³
P (s) , b̃ (P (s))

´
> Π̃ (P (s) , c) ,

for all c ∈ R. If ṽ is continuous, Π̃ (x, c) is differentiable at all c ∈ R. This concludes
the proof.¥

Through the proof of Theorem 3, we will make successive use of the following fact:

Lemma 2. Assume (H1), (H2) and (H3). For any σ−field Σ on SN−1, we have

∃t−i : v
¡
s0, t−i

¢
> v (s, t−i)

⇔ ∀t−i : v
¡
s0, t−i

¢
> v (s, t−i)

⇔ E
£
v (ti, t−i) |ti = s0,Σ

¤
> E [v (ti, t−i) |ti = s,Σ] , a.s.

Proof. (H3) gives the first equivalence. By (H2), v is continuous over a compact. So,
if ∀t−i : v (s0, t−i) > v (s, t−i), there is δ > 0 so that d (t−i) ≡ v (s0, t−i) − v (s, t−i) −
δ > 0 for all t−i. Then, for any Σ, E [d (t−i) |Σ] > 0 almost surely.10 This implies that
E[v (ti, t−i) | ti = s0,Σ] > E[v (ti, t−i) | ti = s,Σ], a.s. On the other hand, E[v (ti, t−i) |
ti = s

0,Σ] > E[v (ti, t−i) | ti = s,Σ] a.s. implies that ∃t−i : v (s0, t−i) > v (s, t−i).¥

Proof of Theorem 3. Equilibrium Existence. If we define P by (19), it is a
conjugation. Let us prove that it satisfies condition (i)’ of Theorem 2. If for some x, y
and s, such that P (s) = x, we have

ṽ (x, y) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y] < E[v(ti, t−i)|ti = s, P(−1)(t−i) = y],
then, for at least one t−i and s0, P (s0) = x, v (s, t−i) > v (s0, t−i). But then, by
(H3), v (s, t−i) > v (s0, t−i) for all t−i which implies v1 (s) > v1 (s0) and P (s) > P (s0),
a contradiction with the assumption that P (s) = P (s0) = x. So, condition (i)0 is
satisfied.
Let us prove condition (ii) of Theorem 2. If x > y, for all ti and t

0
i such that

P (t0i) = x and P (ti) = y, we have v (t
0
i, t−i) > v (ti, t−i) for all t−i, by (H3). Then, for

all z ∈ [0, 1] ,
ṽ (x, z) ≡ E £v (ti, t−i) |P (ti) = x, P(−i) (t−i) = z¤

> E
£
v (ti, t−i) |P (ti) = y, P(−i) (t−i) = z

¤
= ṽ (y, z) .

Then, if y < α < x, ṽ (x,α)− ṽ (α,α) > 0 and we have:Z x

y
[ṽ (x,α)− ṽ (α,α)] dα > 0.

10See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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Now if x < α < y, we have ṽ (x,α) − ṽ (α,α) < 0 so that condition (ii) is satisfied.
Since our assumption is the condition (iii) of Theorem 2, this implies the existence of

equilibrium, with the equilibrium bidding function given by b = b̃ ◦ P .

Sufficiency. Conditions (i)’ and (ii) of the Theorem 2 was shown in the first part,
above. Proposition 4 in appendix B proves condition (iii) of Theorem 2. Then, there

exists a equilibrium b = b̃ ◦ P. Since ṽ is continuous, Theorem 2 shows the existence of
∂bΠ (s, b (s)) for all s.

Necessity. According to Theorem 1, given a b ∈ S, the associated conjugation P b
(given by (2)) is such that for all s ∈ ¡P b¢−1 (x),

E[v(ti, t−i)|P b(ti) = x, P b(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x].
If P b (s) = P b (s0) and there is some t−i such that v(s, t−i) < v (s0, t−i), Lemma 2
implies that

E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x] < E[v(ti, t−i)|ti = s0, P b(−i)(t−i) = x],
which contradicts the previous equality between the conditional expectations. We con-
clude that

(43) P b (s) = P b
¡
s0
¢⇒ v (s, t−i) = v

¡
s0, t−i

¢
for all t−i.

Let us define ṽ1 (x) as E
£
v (ti, t−i) |P b (ti) = x

¤
and prove that it is non-decreasing.

Suppose by absurd that there exist x and y, x > y, such that ṽ1 (x) < ṽ1 (y).
First, we claim that for all ti and t

0
i such that P

b (ti) = x and P
b (t0i) = y, we have

v (ti, t−i) < v (t0i, t−i) for all t−i. Otherwise, v (ti, t−i) > v (t0i, t−i) for some t−i and,
by (H3), v

¡
ti, t

0
−i
¢
> v

¡
t0i, t

0
−i
¢
for all t0−i. Then, Lemma 2 and (43) would imply that

ṽ1 (x) = E
£
v (ti, t−i) |P b (ti) = x

¤
> E

£
v (ti, t−i) |P b (ti) = y

¤
= ṽ1 (y), a contradiction

with our (absurd) assumption. Thus, the claim is proved.
This claim and Lemma 2 imply that

ṽ (x, z) ≡ E
h
v (ti, t−i) |P b (ti) = x, P b(−i) (t−i) = z

i
< E

h
v (ti, t−i) |P b (ti) = y, P b(−i) (t−i) = z

i
= ṽ (y, z) ,

for all z ∈ [0, 1], a.s. Thus, Z x

y
[ṽ (x,α)− ṽ (y,α)] dα < 0.

By condition (v) of Theorem 1, we also have thatZ x

y
[ṽ (y,α)− ṽ (α,α)] dα 6 0.

Summing up these two integrals, we obtainZ x

y
[ṽ (x,α)− ṽ (α,α)] dα < 0,

which contradicts condition (v) of Theorem 1. This contradiction establishes that x > y
⇒ ṽ1 (x) > ṽ1 (y).
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Suppose now that there exists x > y such that ṽ1 (x) = ṽ1 (y). Then, the monotonic-
ity of ṽ1 (just proved) gives

(44) ∀φ ∈ [y, x] , ṽ1 (φ) = ṽ1 (x) = ṽ1 (y) .
Let S0 =

n
s ∈ S : b̃ (y) 6 b (s) < b̃ (x)

o
. From (2), for all s ∈ S0, P b (s) ∈ [y, x]. Then,

(43) and (44) imply that s ∈ S0 ⇒ v1 (s) = ṽ1 (x). Assumption (H3) requires that

µ (S0) = 0. Observe that S0 = A\B, where A ≡
n
s ∈ S : b (s) < b̃ (x)

o
and B =n

s ∈ S : b (s) < b̃ (y)
o
. But then, µ (A) = µ (B). However, from the definition of b̃ as

the inverse of P̃ b, we have the following:

0 < x− y = P̃ b
³
b̃ (x)

´
− P̃ b

³
b̃ (y)

´
= (µ (A))N−1 − (µ (B))N−1 ,

which is a contradiction. So, we have proved that x = P b (s0) > P b (s) = y implies
v1 (s0) = ṽ1 (x) > ṽ1 (y) = v1 (s) and P b (s0) = P b (s) implies v1 (s0) = v1 (s). In other
words, P b (s0) S P b (s) if and only if v1 (s0) S v1 (s) which allows us to conclude that

P b (ti) = Pr
©
t−i ∈ T−i = SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
,

as we have defined in (19). In other words, the conjugation is unique.

Now, ṽ and b̃ in Theorem 1 are exactly those defined in the statement of Theorem
3. So, Theorem 1 implies the claims about b̃.

Uniqueness. Since ṽ is continuous, Propositions 2 and 3 in Appendix B says that
any equilibrium b̃ satisfy the conditions given. If there is just one b̃ that satisfy such
conditions, then the equilibrium of the indirect auction is unique. Since the previous
step (necessity) shows that the conjugation is unique, the equilibrium of the direct
auction is unique.¥

Proof of Theorem 4. If b̃ is strictly increasing, then b = b̃ ◦P is an equilibrium of
direct auction, by Theorem 3.
So, we have to show that an equilibrium exists if b̃ is not increasing. For future

use, remember that in the first part of the proof of Theorem 3, we have established
conditions (i)’ and (ii) of Theorem 2 and that

(45) x > y ⇒ ṽ (x, z) > ṽ (y, z) ,∀z ∈ [0, 1] .
Let us define b (x) = supα∈[0,x] b̃ (α). As we discussed after the statement of Theorem

4, this is just one of the possible specification for the equilibrium bidding function. The
only exception is when the tie is to occur including the highest bidder. In such a case,
it is mandatory to have the bid of the tieing bidders following the above definition. The
reason will become clear in the sequel.
Remember that b̃ is absolutely continuous. Then, there is an enumerable set of

intervals [ak, ck] where b (x) is constant. Let bk ≡ b (x) for x ∈ [ak, ck]. (See Figure 5.)
Therefore, there is a tie among the indirect types in [ak, ck] for the bidding function

b. Let bk be the specified bid for indirect types in [ak, ck], that is, b ([ak, ck]) = {bk}.
The tie is solved by an all-pay auction among the tying bidders.
The unique information that bidders have for the second auction is that there is a

tie in bk, that is, P(−i) (t−i) ∈ [ak, ck].
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x

bid
b(x)

a1 c1 a2 a3 c3 c2 

b1 

b2 

b3 

Figure 5. Indirect Equilibrium Bidding Function

By the definition of P (19), P(−i) satisfies the following:

Pr
¡©
t−i ∈ SN−1 : P(−i) (t−i) < x

ª |P(−i) (t−i) ∈ [ak, ck]¢ = x− ak
ck − ak .

So, in the tie-breaking auction, the (direct) type ti of bidder i is competing against
players tj in the set {s ∈ S : P (s) ∈ [ak, ck]} and the equilibrium is to bid the increasing
function11

b̃2 (x) =
1

ck − ak

Z x

ak

ṽ (α,α) dα.

Indeed, from condition (ii) of Theorem 2, we have that

1

ck − ak

·Z x

ak

ṽ (x,α) dα−
Z x

ak

ṽ (α,α) dα

¸
> 1

ck − ak

·Z y

ak

ṽ (x,α) dα−
Z y

ak

ṽ (α,α) dα

¸
for any x, y ∈ [ak, ck].
Thus, in the whole auction, the bidder of indirect type x ∈ [ak, ck] who follows the

strategy b (x) and, in case of a tie, the above strategy, will receive the expected payoffZ ak

0
[ṽ (x,α)− ṽ (α,α)] dα+ (ck − ak)

½
1

ck − ak

Z x

ak

[ṽ (x,α)− ṽ (α,α)] dα
¾

=

Z x

0
[ṽ (x,α)− ṽ (α,α)] dα

Deviation in the second auction is suboptimal. By deviating from b, but bidding in the
range of b, that is, bidding b (y) 6= b (x), he will get

Π̃i
¡
x, b (y)

¢
=

Z y

0
[ṽ (x,α)− ṽ (α,α)] dα,

11It is increasing because ṽ is positive.
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if b (y) is not a bid with positive probability. This cannot be profitable by condition
(ii). If it is a bid with positive probability, the second stage will be again an all-pay
auction, where the bidder cannot improve its payoff, again by condition (ii).
Now, if x bids β < infx∈[0,1] b (x), then his payoff will beZ 1

0
pL
¡
β, b (α)

¢
dα 6 0,

because pL 6 0. Therefore, this deviation cannot be profitable.
If x bids β > supx∈[0,1] b (x) = b̃ (x) > b̃ (1), for some x. Since ∂1p

W (·) > 0,

pW
¡
β, b (z)

¢
> pW

³
b̃ (1) , b (z)

´
. Then,Z 1

0
pW

¡
β, b (α)

¢
>
Z 1

0
pW

³
b̃ (1) , b (α)

´
dα =

Z 1

0
ṽ (α,α) dα.

Then, the payoff of the bidder with indirect type x that bids β will beZ 1

0

£
ṽ (x,α)− pW ¡β, b (α)¢¤ dα

6
Z 1

0
[ṽ (x,α)− ṽ (α,α)] dα

=

Z x

0
[ṽ (x,α)− ṽ (α,α)] dα+

Z 1

x
[ṽ (x,α)− ṽ (α,α)] dα

<

Z x

0
[ṽ (x,α)− ṽ (α,α)] dα,

where the last inequality comes from (45). Thus, the deviation to β is unprofitable.
In Theorem 3, we also proved condition (i)’. Then, the equilibrium in the indirect

auction gives the equilibrium for the direct one.¥

Proof of Theorem 5. If y is an indirect type that is not involved in ties, the
payment is given byZ y

0
pW

³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0
ṽ (α,α) dα.

If x ∈ [ak, ck], in the notation of the previous proof, the expected payment of x will beZ ak

0
ṽ (α,α) dα+ (ck − ak)

½
1

ck − ak

Z x

ak

ṽ (α,α) dα

¾
=

Z x

0
ṽ (α,α) dα.

So, if the equilibrium specified in the proof of Theorem 4 is followed, the expected
payment does not of the auction format.¥

10. Appendix D - Proofs for the Examples

Proof of example 2.
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Figure 6. Equilibrium bidding function in Example 1.

First, let us show that there is no monotonic equilibria for this auction. By con-
tradiction, assume that there is an increasing equilibrium bidding function. Then,
P (ti) =

ti−1.5
1.5 and condition (i)’ is trivial. We have

ṽ (x, y) = (1.5x+ 1.5)

·
1.5y + 1.5− 1.5x+ 1.5

2

¸
=
9 (x+ 1) (2y − x+ 1)

8
.

Thus, the necessary condition (ii) is not satisfied, because x > y implies

Z x

y
[ṽ(x,α)− ṽ(α,α)] dα = −3 (x− y)

3

8
< 0.

Thus, there is no monotonic equilibrium.
Now, we will show that there are multiple equilibria non-monotonic for this auction.

Assume that there exists a bell-shaped equilibrium and that, for each x, there are

two types, f (x) and g (x) , such that P (ti) = x =
3−g(x)+f(x)−1.5

1.5 , which implies that
g (x) = f (x)+ 1.5 (1− x). (See Figure 6).
Condition (i)’ requires

f (x)

µ
f (y) + g (y)

2
− f (x)

2

¶
=
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

⇔ f (y) + g (y)

2

·
f (x)− f (x) + g (x)

2

¸
=
f (x)2 − g (x)2

4

⇔ f (y) + g (y)

2
=
f (x) + g (x)

2
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Then, f (y) + g (y) is a constant, and we have f (x) = k + 3/4x. Since f (0) = 1.5,
k = 1.5. We obtain:

ṽ (x, y) =
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

=

µ
9

4

¶2
− (3/2 + 3/4x)

2 + (3− 3/4x)2
4

=

µ
9

4

¶·
1 +

x

4
− x

2

8

¸
,

which satisfies condition (ii) because it is increasing in x on [0, 1]. Condition (iii) and
(iv) are also satisfied, since

b̃ (x) =
1

x

Z x

0
ṽ (α,α) dα =

3
¡
24 + 3x− x2¢

32

is increasing on [0, 1].¥

Proof for Example 3 - Spectrum Auction
Let us assume that ti =

¡
t1i , t

2
i , t

3
i

¢
are independent and uniformly distributed on£

s1, s1
¤ × £s2, s2¤ × £s3, s3¤, with s1, s2, s3 > 0. We have
v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i +
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i

Let us denote by v1 the expression in the first line above, that is,

v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i .

The conjugation P and the c.d.f. P̃ are given by:

P
¡
t1i , t

2
i , t

3
i

¢
=
£
Pr
©¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
< v1

¡
t1i , t

2
i , t

3
i

¢ª¤N−1
.

and

P̃ (k) =

·
Pr

½¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
+
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i < k¾¸N−1 .

We can reparameterize the problem so that

P̃ (k) =
h
Pr
n
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < l (k)

oiN−1
,

where a =
¡
s1 − s1¢ /N > 0, b = − ¡s2 − s2¢ < 0, c = − (N − 1) ¡s3 − s3¢ /N < 0 and

l (k) = k − s
1

N
+ s2 +

N − 1
N

s3 − N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i .

It is elementary to obtain that, for a uniform distribution on [0, 1]3 and a > 0, b < 0,
c < 0 and k > b+ c,

Pr
n
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < l

o
=
(l − b− c)3
6abc

.

So,

P̃ (k) =
[l (k)− b− c]
(6abc)N−1

3(N−1)
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and

ṽ (x, y) =

½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i¾ y

+E

Pj 6=i
³
t1j + t

3
j

´
N

|max
j 6=i

P (tj) = y

 .
The candidate for the equilibrium on the first-price indirect auction is

b̃ (x) =
1

x

Z x

0
ṽ (α,α) dα,

which is differentiable, with b̃0 (x) = [ṽ (x, x)− x] /x. Then, Theorem 3 tells us that
there exists an equilibrium in regular pure strategies for this auction if and only if

ṽ (x, x)− x =
½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i− 1¾x

+E

Pj 6=i
³
t1j + t

3
j

´
N

|max
j 6=i

v1 (tj) = P̃
−1 (x)

 > 0
Depending on the values of sn, sn, for n = 1, 2, 3, the above expression can be positive or
negative. If it is always positive, b̃ is increasing and it is the equilibrium of the indirect
auction. In the other case, there is no equilibrium without ties. For instance, a sufficient

condition for the existence of equilibrium in pure strategy is s
1

N − s2− s3N−1N − 1 > 0.¥

Proof for Example 4 - Job Market
We assume that there are two players with unidimensional signals uniformly distrib-

uted on [0, 1] and that m ∈ [0, 1], b > 0. Following the method given by Theorem 3,
we first obtain

v1 (ti) = am+
c

2
− b (ti −m)2 .

We will consider two cases.

First case: m 6 1/2. We have

P (ti) =

 1− 2m+ 2ti, if 0 6 ti < m
1− 2ti + 2m, if m 6 ti < 2m
1− ti, if 2m 6 ti 6 1

So,

ṽ (x, y) =


am+ c (1− y)− b (1− x−m)2 , if 0 6 x, y < 1− 2m
am+ c (1− y)− b

4 (1− x)2 , if 0 6 y < 1− 2m 6 x 6 1
(a+ c)m− b (1− x−m)2 , if 0 6 x < 1− 2m 6 y 6 1
(a+ c)m− b

4 (1− x)2 , if 1− 2m 6 x, y 6 1
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Now, it is easy to obtain, for x < 1− 2m,

b̃ (x) =
1

x

Z x

0

h
am+ c (1− y)− b (1− y −m)2

i
dy,

= am+ c− b (1−m)2 − x
h c
2
+ b (m− 1)

i
− b
3
x2,

which is increasing if c 6 2b(m+1)
3 . For x > 1− 2m,

b̃ (x) =
1

x

½
1

6
(1− 2m) £6am+ 3c (1 + 2m)− 2b ¡1−m+m2

¢¤
+

Z x

1−2m

·
(a+ c)m− b

4
(1− y)2

¸
dy

¾
⇒ b̃ (x) =

(1− 2m) [2c− b (1− 2m)]
4x

+m (a+ c)− b
4
+
b
¡
3x− x2¢
12

whose derivative can be simplified to

b̃0 (x) = −(1− 2m) [2c− b (1− 2m)]
4x2

+
b (3− 2x)

12
.

Since the term x2 (3− 2x) is increasing, the bidding function will be increasing if and
only if b̃0 (1− 2m) > 0, that is,

c 6 2b (1− 2m) (1 +m)
3

.

We conclude that in the case of m < 1/2, there exists a pure strategy equilibrium in
regular strategies if and only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Second case: m > 1/2. We have

P (ti) =

 ti, if 0 6 ti < 2m− 1,
1− 2m+ 2ti, if 2m− 1 6 ti < m
1− 2ti + 2m, if m 6 ti 6 1

and

ṽ (x, y) =


am+ cy − b (x−m)2 , if 0 6 x, y < 2m− 1
am+ cy − b

4 (1− x)2 , if 0 6 y < 2m− 1 6 x 6 1
(a+ c)m− b (x−m)2 , if 0 6 x < 2m− 1 6 y 6 1
(a+ c)m− b

4 (1− x)2 , if 2m− 1 6 x, y 6 1
For x < 2m− 1,

b̃ (x) =
1

x

Z x

0

h
am+ cy − b (y −m)2

i
dy,

= am− bm2 + x
³ c
2
+ bm

´
− b
3
x2,

which is increasing in the considered interval if and only if c > 2
3b (m− 2).



CHAPTER 3 73

For x > 2m− 1,

b̃ (x) =
−2c (2m− 1)− b (2m− 1)2

4x
+
12 (a+ c)m− b ¡3− 3x+ x2¢

12
which gives

b̃0 (x) =
2c (2m− 1) + b (2m− 1)2

4x2
+
b (3− 2x)

12
.

Following the same procedure of the first case, b̃0 (x) > 0,∀x ∈ [2m− 1, 1] if and only if

c > −2b (2m− 1) (1 +m)
3

.

We conclude that, if m > 1/2, there exists a pure strategy equilibrium in regular
strategies if and only if

c > max
½
2

3
b (m− 2) , 2b (1− 2m) (1 +m)

3

¾
.

¥
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CHAPTER 4

SINGLE OBJECT AUCTIONS WITH MULTIDIMENSIONAL BIDS

Abstract. We study some formats of single object auctions with multidimensional
bids. We show that it is possible to extend the results of Athey and Levin (2001)
and Ewerhart, C. and K. Fieseler (2003). We observe that such kind of auctions can
have interesting properties, as that of revealing information more efficiently.

JEL Classification Numbers: C62, C72, D44, D82.

Keywords: auctions, pure strategy equilibria, non-monotonic bidding functions,
tie-breaking rules

1. Introduction

In the previous chapter, we have extended equilibrium existence results in auctions
with unitary demands, from unidimensional to multidimensional types. Nevertheless,
we considered only unidimensional bids. It is worth wondering what can be said about
multidimensional bids.
Maybe the most obvious example of auctions with multidimensional bids are multi-

unit auctions. Indeed, in these auctions each bidder submits prices for each unit to be
received. The models used in the previous chapters need important modifications to
approach this case. This comes from the fact that our assumption of unitary demand
allows us to consider only two situations for each bidder: to receive the object or not
(ignoring the ties). Then, it is sufficient to consider just two utility functions, ui and
ui, one for each of these situations. When there are K objects in the auction, and the
bidders have multiunit demand, we need to consider K + 1 outcomes for each bidder:
to end with k = 0, 1, ..., K objects and, for the outcome of receiving k objects, to
consider the utility function uki . This will require the lemma of characterization and
the basic principle of bidding to be rephrased in order to take into account all these
new possibilities. It seems reasonable to hope that the approach will be fruitful in this
case, but, of course, careful work is needed to obtain valuable results.
Nevertheless, multi-unit auctions are not the only interesting case of auctions with

multidimensional bids. Indeed, many single-object auctions have multidimensional
bids. For instance, in the timber auctions conducted by the U.S. Forest Service, the
bidders generally are required to submit individual prices for each kind of trees to be
harvested in the tract. Also, in a procurement auction for an engineering service, a
buyer may request prices of the materials and of the working hours to be spent on the
service. Yet another example is a procurement auction of non-homogenous products.
In this case the bidders have to submit not only the price of the object but also its
characteristics (quality, durability, warranty, reliability, capacity, time to delivery, etc.),
that affect the utility of that product to the buyer. So, it is reasonable for the buyer to
take into account such characteristics (part of the multidimensional bid) when deciding
which proposal to accept.
Since the result of the auction for each bidder is only winning or losing, the seller

has to specify a complete order to the multidimensional bids. We can assume that this
75
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order is given by a scoring function. For a real example, if b1i and b
2
i are the prices (bids)

submitted by bidder i for the two species of trees in a tract, the U.S. Forest Service
declares the winner to be the bidder with the highest expected payment b1i t

1
0 + b

2
i t
2
0,

where t10 and t
2
0 are the estimates for the quantity of each species made previously by

the U.S. Forest Service. Doing so, the Forest Service is trying to maximize the expected
payment that it will receive from the bidders.
In the example of procurement of non-homogenous products, the bid is (pi, qi), where

qi stands for the quality of the product offered and pi, for its price. The scoring rule
can be given by U (qi) − pi, where U tries to capture the value that the auctioneer
attributes to quality. That is, the bid (pi, qi) that leads to the higher surplus U (qi)−pi
is the winning bid.
Another example is the auction for the B Band of mobile phones in Brazil. The

government asked for bids that include not only the price for the license (pi), but also
the price to the consumers (ci). The winner was the company with highest B (pi, ci) =
0, 6pi − 0, 4ci.
In this chapter, we present two models that analyze the previous examples. In section

2, we analyze a procurement auction of unit-price contracts. In section 3, we treat the
case of non-homogenous products. In section 4, we conclude.

2. Unit-Price Contracts

In this subsection, we present a model of procurement auction with multidimensional
bids that generalizes the model of Ewerhart and Fieseler (2003). Although our model
is phrased for procurement auctions, easy adaptations can be made in order to deal
with the situation analyzed by Athey and Levin (2001): the timber auctions conducted
by the U.S. Forest Service.
A firm (or a government) procures a service to be executed. Its engineers estimate

the amount of each input to be used to execute it: materials, working hours, etc. If
there are m input factors to the service, the engineers estimate the amounts t10, ..., t

m
0

that will be used. We denote the vector of estimates by t0 = (t
1
0, ..., t

m
0 ).

The potential suppliers of the service (who will be called sellers) have private infor-
mation about their technologies. That is, seller i knows the quantity of inputs t1i , ...,
tmi that he will need to complete the service. Let ti = (t

1
i , ..., t

m
i ).

The buyer then conducts a procurement auction, and request the potential suppliers
to submit multidimensional bids bi =

¡
b1i , ..., b

m
i

¢ ∈ Rm+ . The non-negative number bki
is the price that seller i asks for each unit of the k − th input. Based on the vector of
bids, the buyer decides to buy the service from the bidder with the least cost, that is,
bidder i such that bi · t0 = minj bj · t0, where bj · t0 denotes the inner product

Pm
k=1 b

k
j t
k
0.

In other words, there is a scoring function that is used by the buyer to evaluate the
bids. It is just a function B : Rm → R, given by B (bi) = bi · t0. The bid with the
lowest score (expected payment) is the winner.
Once the winner is chosen, say bidder i, the buyer signs a contract with him, speci-

fying the unit price that will be charged, p =
¡
p1, ..., pm

¢
. The signed contract can be a

lowest-score contract (corresponding to a first-price auction), where p ·t0 = minj B (bj),
or a second-score contract, in which case p · t0 = B(−i) ≡ minj 6=iB (bj).1 In the first

1All pay auctions and war of attrition seem inadequate in this setting: the buyer pays something
even to those who do not win. We will not consider these formats.
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case, p = bi is, then, the contract signed. In the second case the bidder is free to choose
p in order to met the requirement p · t0 = B(−i).
After the contract is signed, the service is executed, the true amount of inputs used,

t1i , ..., t
m
i , is revealed and the transfer (payment) p · ti is made by the buyer to the seller.

We assume that the buyer can observe the efforts made by the contractor so that there
is no moral hazard. It would be possible to include in the model the possibility of
moral hazard, but this will turn the problem much more complex. However, the reader
should note that our assumption is not so restrictive. We can understand t1i , ..., t

m
i

as the optimal level of the observable variables that are chosen by the contractor i,
given the technology of observation of the buyer and the technology available to the
contractor. So, the unique true restriction of the model is that, at the moment of
bidding at the auction, the seller has solved all uncertainties regarding its technology,
so that his choices deterministically imply the outcome of the observable.
This kind of contract is called unit-price contract and it is widely used in the real

world. A natural question is “why?” Indeed, one could guess that it would be better
(or at least equivalent) for the buyer to ask for an unidimensional bid: the price of the
whole project. Then the buyer could contract the seller with the cheapest proposal.
The intuition for the use of unit-price contracts is that this enables the contractor and
the buyer to share risks. With the unidimensional bid, the risk becomes entirely on the
part of the contractor.
We assume that seller i faces a cost c (ti) of providing the service. The profit of seller

i is, then,

p · ti − c (ti) .
So, the problem of the seller is

max
bi∈Rm+

E
n
[p · ti − c (ti)] 1[t0·bi<B(−i)]

o
= max
bi∈Rm+

[p · ti − c (ti)] Pr
£
t0 · bi < B(−i)

¤
Observe that this problem can be broken into two parts. The level β = t0 · bi

determines the probability of winning the auction. Under an optimum level β, the
seller is free to choose bi (and hence, p), which maximizes p · ti − c (ti).
So, in a first-scoring auction, where p = bi, this problem is

max
bi:bi·t0=β

bi · ti,

since −c (ti) is a constant. In a second-scoring auction, the problem is

max
p∈Rm+ ,p·t0=B(−i)

p · ti.

Both problems are linear with linear restrictions and they are formally equivalent. So,
the maximum is obtained by a corner solution, which is very easy to obtain. For a fixed
level β or for a B(−i) = β, the problem is

max
p∈Rm+ ,p·t0=β

[p · (ti − t0) + p · t0]
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Let k (ti) be defined as argmaxk
¡
tki − tk0

¢
. Then, the solution is, clearly,

b (ti,β) =

Ã
0, ..., 0,

β

t
k(ti)
0

, 0, ..., 0

!
,

where all entries are zero, but that in position k (ti). With this bid, the profit is

β

t
k(ti)
0

t
k(ti)
i − c (ti) = t

k(ti)
i

t
k(ti)
0

"
β − c (ti) t

k(ti)
0

e
k(ti)
i

#
.

The problem of the bidder now becomes to choose the score level β in

argmax
β> 0

t
k(ti)
i

t
k(ti)
0

"
β − c (ti) t

k(ti)
0

e
k(ti)
i

#
Pr
£
β < B(−i)

¤
(1)

= argmax
β> 0

"
β − c (ti) t

k(ti)
0

e
k(ti)
i

#
Pr
£
β < B(−i)

¤
So, all types ti that have the same c (ti) t

k(ti)
0 /t

k(ti)
i must choose the same optimum

bid. Then, we define the conjugation:2

P (ti) = Pr

t−i ∈ T−i : c (tj) t
k(tj)
0

t
k(tj)
j

> c (ti)
t
k(ti)
0

t
k(ti)
i

, ∀j 6= i
 .

Also, define, for all x = P (ti),

c̃ (x) ≡ c (ti) t
k(ti)
0

t
k(ti)
i

,

which is well defined from the definition of the conjugation. Observe that types ti with

higher P (ti) are eager to win, because they have a lesser adjusted cost c (ti) t
k(ti)
0 /t

k(ti)
i .

Interestingly, in the unit-price auction, it is not the seller with the lower costs that
wins. Indeed, the auction favors those players who have types with high difference

t
k(ti)
i − tk(ti)0 , because the term t

k(ti)
0 /t

k(ti)
i lowers the true costs to the “virtual cost”

c (ti) t
k(ti)
0 /t

k(ti)
i . Another important observation is that, as we have said before, the

players that conjugated do not need to have the same payoff. This comes from the fact

that factor t
k(ti)
i /t

k(ti)
0 adjusts the “virtual payoff”,

h
β − c (ti) tk(ti)0 /e

k(ti)
i

i
. See (1).

Turning back to the solution of the auction, in the first-score auction the problem of
the seller now simplifies to

max
β
[β − c̃ (x)] Pr £β < B(−i)¤ .

By the definition of conjugation, FB(−i) (β (x)) = 1−x, so that Pr
£
β (x) < B(−i)

¤
= x.

The first-order condition becomes

β0 (x) =
β (x)− c̃ (x)

x
,

which, together with the initial condition β (0) = c̃ (0), gives the symmetric equilibrium:

β1 (x) = x

·
c̃ (0)−

Z x

0

c̃ (α)

α2
dα

¸
.

2Of course, we again work under the assumption of non-atoms in the distribution of c (ti) t
k(ti)
0 /t

k(ti)
i .
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For a second-score auction, the problem is

max
β

£
p
¡
B(−i)

¢ · t0 − c̃ (x)¤Pr £β > B(−i)¤ .
Observe that the first term does not depend on β (besides the dependence on B(−i))
and the other is increasing in β. Since the strategy is increasing in the conjugation,
then the solution is given simply by that β such that p

¡
B(−i)

¢ · t0 − c̃ (x) > 0 if and
only if β > B(−i). That is,

β2 (x) = c̃ (x) ,

and, after the result of the auction, the contract p
¡
B(−i)

¢
is signed.

Ewerhart and Fieseler (2003) solve just the first-score auction for the particular case
where there are two players, the types are unidimensional and the costs linear. The
interpretation is that all sellers are assumed to have the same type (equal to one) for
one of the inputs (materials). The cost is given by c (ti) = cM + cLt

L
i , where cM is the

cost of materials and cL is the cost of labor. Under these simplifications, they obtain
unimodal behavior (with increasing and decreasing regions fixed). They can thus show
the existence of equilibrium with the standard monotonic methods.

3. Non-Homogeneous Products

In this section we consider a procurement auction where the product to be delivered
may have different characteristics. In other words, the products are non-homogenous.
So, the buyer requires each seller to submit, together with a price b0i , a vector of
characteristics, bci =

¡
b1i , ..., b

m
i

¢
, of the product the seller plans to deliver. So, the

whole bid is the vector bi = (b
0
i , b

1
i , ..., b

m
i ).

The bids are ranked through a scoring function that we will assume to be of the
form: B (bi) = V

¡
b1i , ..., b

m
i

¢− b0i , where V can be (or not) the utility that the buyer

attributes to the good with characteristics
¡
b1i , ..., b

m
i

¢
. We assume this form of the

scoring rule for the sake of simplicity.
Each seller has multidimensional private information ti. The private information is

related to the cost of producing the good, that is, the cost of delivering a good with
characteristics bci =

¡
b1i , ..., b

m
i

¢
by a seller with type ti is c (ti, b

c
i).

The payment to the seller is pi in a first-score auction. In a second-score auction,
the second highest score, B(−i) ≡ maxj 6=iB (bj), has to be matched, but the firm is free
to choose the price and the characteristics to do so. That is, the firm chooses bi such
that B

¡
bi
¢
= B(−i).3 If the contract p =

¡
p0, pc

¢
= (p0, p1, ..., pm) = bi is signed, the

seller ends up with a profit of p0 − c (ti, pc) and the buyer a utility U (pc) − p0, where
U can (or not) be equal to V . The problem of the bidder is to choose bi in order to

max
bi∈Rm+

E
n£
p0 − c (ti, pc)

¤
1[B(bi)>B(−i)]

o
= max
bi∈Rm+

£
p0 − c (ti, pc)

¤
Pr
£
B (bi) > B(−i)

¤
3Other variations are possible. For instance, the seller may be required to meet the exact bid bj

of an opponent j such that B (bj) = B(−i). Another possibility is to require that the price b
0
j of this

bidder is matched and to choose a vector of characteristics b
c
i that is at least as good as that of j, that

is, V
³
b
c
i

´
> V (bj). For the sake of simplicity, we will restrict our attention to the two rules described.
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Again, the problem can be broken into two parts. For each score level β, the bidder
finds the contract p = p (ti,β) to solve

h (ti,β) ≡ max
p:B(p)=β

p0 − c (ti, pc) .

The second problem is to choose the β in order to maximize

max
β> 0

h (ti,β) Pr
£
β > B(−i)

¤
.

Let us analyze the first problem. The condition is that B (p) = V (pc) − p0 = β. So,
the problem can be simplified to obtain pc that solves

max
pc∈Rm

V (pc)− c (ti, pc) ,

since the choice p0 = V (pc)−β ensures the restriction of the original problem. Suppose
that there is a unique pc = pc (ti) that solves the above problem.
We obtain h (ti,β) = V (p

c (ti))− c (ti, pc (ti))− β. The second problem is now

max
β> 0

[V (pc (ti))− c (ti, pc (ti))− β] Pr
£
β > B(−i)

¤
.

It becomes clear that the types with the same level V (pc (ti)) − c (ti, pc (ti)) will bid
the same β. Let v1 (ti) be defined as V (p

c (ti))− c (ti, pc (ti)). Then, it is natural to
define the conjugation:

P (ti) = Pr
©
t−i ∈ T−i : v1 (tj) < v1 (ti) ,∀j 6= i

ª
.

Define ṽ1 (x) as E
£
v1 (ti) |P (ti) = x

¤
. Observe that ṽ1 (x) = v1 (ti) if P (ti) = x and

that v1 (ti) = ṽ
1◦ P (ti).

Then, the solution of the first-score auction is given by

β1 (x) =
1

x

Z x

0
ṽ1 (α) dα.

For the second-score auction, the strategy is simply β2 (x) = ṽ (x).

4. Conclusion

Although some papers are dedicated to the analysis of auctions with multidimen-
sional bids (Athey and Levin (2001) and Ewerhart, C. and K. Fieseler (2003)), this
seems still insufficient to cope with the reasons to use such auctions.
We conjecture that the main reason for the use auctions with multidimensional bids

is to obtain a better revelation of the (multidimensional) information of the bidders.
In this paper, we give some steps in the direction of a unifying approach that allows

the study of auctions with multidimensional bids.
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MONOTONIC EQUILIBRIA OF AUCTIONS

Abstract. We prove that the correspondence of best-reply is non-decreasing for
various auction formats, with independent types. Also, we offer an alternative method
to prove the existence of asymmetric equilibrium for N bidders with independent
types. This method gives new results for the existence of equilibrium in double
auctions.

JEL Classification Numbers: C62, C72, D44, D82.
Keywords: equilibrium existence in auctions, pure strategy Nash equilibrium,

monotonic equilibrium.

1. Introduction

This paper provides an alternative method of proving the existence of equilibrium for
monotonic asymmetrical auctions. One of its contribution is to offer a single approach
that works for all kind of single object auctions normally considered in the literature.
Doing that, we are able to offer an existence result that covers new cases, as that of
the double auction with asymmetric utilities and independent types.
In section 2, we describe the model and present the preliminary results. In section 3,

we prove our monotonic best reply result, which is the base for the equilibrium existence
result given in section 4. We briefly conclude in section 5. The appendix contains the
details of the proofs.

2. The Model and Preliminary Results

There are n players: {1, ..., n}. Player i ∈ {1, ..., n} receives a private information, ti,
and choose an action that is a real number (i.e., she submits a bid bi). The auctioneer
compares the bids and determines who “wins” and who “looses”. If player i wins, she
receives ui (t, b) and if she looses, she receives ui (t, b), where t = (ti, t−i) is the profile
of all signals and b = (bi, b−i) is the profile of bids submitted.1

Information
Types are independent. Because ui (t, b) and ui (t, b) can have any form, we may

assume without loss of generality that the private signal of each player, ti, is a real
number uniformly distributed on [0, 1].2

Bidding

1We consider the dependence on b instead of bi because we want to include in our results auctions
where the payoff depends on bids of the opponents, as the second price auction, for instance. This also
allows us to study “exotic” auctions, i.e., auctions where the payment is an arbitrary function of all
bids.
2Our assumption rules out just the case of atoms in the distribution of types.
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After receiving the private information, each player submits a sealed proposal, that is,
a bid (or offer) that is a real number. There is a reserve price bmin > 0 and a maximum
allowed bid (bmax), which are commonly know.

3 In addition, the bidders can take a
non-participation decision (-1). Then, the space of bids is B = {−1} ∪ [bmin, bmax].4

Allocation and Payoff
We suppose that each bidder sees a number that depends only on the submitted

bids by the opponents and that determines the threshold of the winning and losing
events. We denote such number as b(−i). For instance, if the auction is an one-object
auction where all players are buyers, b(−i) is the maximal bid of the opponents, that
is, b(−i) ≡ maxj 6=i bj , provided bj > bmin for at least one player j 6= i. If there are K
objects for selling and a reserve price bmin, then b(−i) ≡ max

n
bmin, b

−i
(K)

o
, where b−i(m)

is the m-th order statistic of (b1, ..., bi−1, bi+1, ..., bn), that is, b−i(1) > b
−i
(2) > ... > b

−i
(N−1).

In double auctions between m sellers and k = n−m buyers, there are m objects for
selling and the m highest bids are “winners” in the sense that they end the auction
with one object, being the player a buyer or a seller. Then, for a player i (buyer or

seller) b(−i) ≡ max
n
bmin, b

−i
(m)

o
.

If bi < bmin (that is, player i does not participate), the payoff is 0. If bi > b(−i),
player i is “holder of an object” (and she has a ex-post payoff ui (t, b) in this situation).
If bmin 6 bi < b(−i), player i receives ui (t, b).5
Observe that the model permits to treat buyers and sellers in the same manner.

Only, if player i is a seller, she begins with a object and if bi < b(−i), she sells her
object. If she is a buyer, the situation bi < b(−i) corresponds to maintain her previous
situation: without the object. Also, the model allows for any specification of the price
to be paid by the bidders.
If bi = b(−i), there is a tie and a specific rule (that may include a random device

and/or the requirement of a further action ai) may determine if the player is a winner or
a looser.6 We model this by saying that the player receives uTi (t, b, a), a value between
ui (t, b) and ui (t, b).

7 We do not need to specify uTi (t, b, a) for the two first results.

This setting is very general and applies to a broad class of discontinuous games. For
example, ui (t, b) = vi (t) − bi and ui (t, b) = 0 correspond to a first price auction with
risk neutrality. If ui (t, b) = vi (t) − bi and ui (t, b) = −bi we have the all-pay auction.
If ui (t, b) = vi (t) − b(−i) and ui (t, b) = −bi, this is the war of attrition. As pointed
out by Lizzeri and Persico (2000), we can have also combinations of these games. For

3If there is no reserve price (in the usual sense), let bmin = 0.
4We assume a maximum permitted bid to rule out behaviors (equilibria) in which one bidder bids

arbitrarily high and the others bid zero. This could happen in third price auctions, for instance.
5In most auctions, ui is normalized as 0. However, in double and all-pay auctions or if there is an

entry fee, this is not the case.
6The required action can be the submission of another bid for a Vickrey auction that will decide

who will receive the object (as in Maskin and Riley (2000)) or the announcement of the type (as in
Jackson et. al. (2002)). Since the only revealed information in the case of a tie is its occurrence, the
action can be required together with the submission of the bid.
7The specification of a tie-breaking rule is important for the existence of equilibria, as shown by

Jackson et al. (2002). With this terminology, the proposal of an “endogenous tie-breaking rule” of
Simon and Zame (1990) corresponds to specify endogenously uTi in order to ensure the equilibrium
existence.
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example, ui (t, b) = vi (t) − αbi − (1− α) b(−i) and ui (t, b) = 0, with α ∈ (0, 1), gives
a combination of the first and second price auctions. Another possibility is the “third
price auction” or an auction where the payment is a general function of the others’
bids.

Notation and Definitions
Let I and N be, respectively, the sets of (strictly) increasing and nondecreasing

functions from [0, 1] to B. We endow I and N with the norm topology of L1 ([0, 1] , B).
Thus, the elements of I and N are, indeed, equivalence classes of the functions that
differ only in a set of zero measure and where at least one representative of each class is
non-decreasing or strictly increasing. It is not difficult to see that the set N is compact.8

In order to avoid confusion, we will use bold letters to denote bidding functions,
i.e., b = (b1, ...,bn) ∈ Nn. If we fix the other’s strategies, b−i, let Fb(−i) (bi) ≡
λn−1 ({t−i : b−i (t−i) 6 bi}) and fb(−i) (·) be its Radon-Nykodim derivative with respect
to the Lebesgue measure λn−1, i.e., the density function.
A profile of functions b−i ∈ Nn−1 is regular if Fb(−i) (·) is strictly increasing, that

is, b−i do not have gaps in its range. If the profile b−i is fixed, the expected payoff of
bidder i of type ti, when bidding bi, is:

9

Πi(ti, bi,b−i) ≡
Z h

ui (t, bi,b−i (t−i)) 1[bi>b(−i)(t−i)]

+ uTi (t, bi,b−i (t−i) , a) 1[bi=b(−i)(t−i)]

+ui (t, bi,b−i (t−i)) 1[bi<b(−i)(t−i)]
i
dt−i

if bi ∈ [bmin, bmax] and Πi(ti, bi,b−i) = 0 otherwise.
We will adopt the following notation for events:

Wi (β) =
n
t−i ∈ [0, 1]n−1 : β > b(−i) (t−i)

o
;

Ti (β) =
n
t−i ∈ [0, 1]n−1 : β = b(−i) (t−i)

o
;

Li (β) =
n
t−i ∈ [0, 1]n−1 : β < b(−i) (t−i)

o
.

When there is no possibility of confusion, we will write Πi(ti, bi) for Πi(ti, bi,b−i) and
omit the arguments, the set of integration, [0, 1]n−1 and the measure (dt−i). So, we
have

8One way to see this is to remember Helly’s Theorem, that says that a sequence of nondecreasing
functions has a subsequence that converges pointwise to a nondecreasing function for all the continuity
points of the limit function. The pointwise convergence implies the convergence in L1. Thus, the
representative function in each equivalence class bmi ∈ N has a convergent subsequence that converges
to bi ∈ N . Another way to see this is to prove that N is totally bounded, construting, for each ε > 0,
a finite covering of N with sets of diameter less than ε. This can be done with step functions for a
sufficiently fine grid.
9If the probability of bid bi of being equal to b(−i), conditional on ti, is zero, the tie-breaking rule

is not important and the second term in the integral may be omitted.
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Πi(ti, bi)

=

Z ©
ui1Wi(bi) + u

T
i 1Ti(bi) + ui

¡
1− 1Wi(bi) − 1Ti(bi)

¢ª
=

Z ©
ui1Wi(bi) +

¡
uTi − ui

¢
1Ti(bi) + ui

ª
=

Z
Wi(bi)

ui +

Z
Ti(bi)

¡
uTi − ui

¢
+

Z
ui,

where ui ≡ ui − ui is the net payoff.
Finally, we define the interim and the ex-ante best-reply correspondence, respectively,

by
Θi (ti,b−i) ≡ argmax

β∈B
Πi (ti,β,b−i) ,

and
Γi (b−i) ≡ arg max

bi∈L1([0,1],B)
Vi (bi,b−i) ,

where Vi (bi,b−i) =
R
Πi (ti,bi (ti) ,b−i) dti is the ex-ante payoff.

Preliminary Result
Our results are based in the Basic Principle of Bidding, stated by Araujo, de Castro

and Moreira (2004) under a more general setting. For our purposes is sufficient to
known an implication of their result, namely that against regular bidding functions
b−i, such that b∗ ≡ inf{β > bmin: Fb(−i) (β) > 0}, the payoff can be written in the
following format:

Πi(ti, bi,b−i) = Πi(ti, b∗) +
Z
[b∗,bi)

∂biΠi(ti,β)dβ.

where ∂biΠi(ti,β) exists for almost all β ∈ [bmin, bmax] and is given by

∂biΠi(ti,β) = E
h
∂biui (ti,β, ·) 1[β>b(−i)] + ∂biui (ti,β, ·) 1[β<b(−i)]

i
+E[ui (ti,β, ·) |b(−i) = β]fb(−i) (β) .

3. Monotonic Best Reply

The literature has focused on auctions whose properties are such that the equilibrium
bidding functions are non-decreasing or, more precisely, strictly increasing. In this
section, we deal with hypotheses that lead to such conclusions. Let us begin with the
some definitions.

From now on, we will assume that the following assumptions hold for all i ∈ I:
(A0) ui and ui are continuous on t and b.

10

(A1) Ttypes are independent and uniformly distributed on [0, 1].

(A2) ui ≡ ui − ui is strictly increasing in ti.
10Since the domains are compact sets, this implies that the functions are absolutely continuous and

bounded.
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(A3) For almost all t 6 t0 and b, ∂biui (b, t) 6 ∂biui (b, t
0) .

(A4) For almost all t 6 t0 and b, ∂biui (b, t) 6 ∂biui (b, t
0) .

It is worth to discuss the hypotheses. (A1) and (A2) are standard in auction the-
ory. Assumption (A3) and (A4) are weaker versions of supermodularity (∂2bitiui > 0 and
∂2bitiui > 0). Roughly speaking, it means that a bidder with higher valuation is less sen-
sible to changes in his bid. This assumption is always satisfied in the second price auc-
tion. For the first price auction, ui (t

0
i, t−i, b) = U (v (t)− bi), then ∂2bitiui = U 00 ·(−1)·v0.

If v0 > 0, as usual, then ∂2bitiui > 0 ⇔ U 00 6 0, i.e., in this setting, supermodularity is
equivalent to weak risk aversion.
Our firs result is related to Proposition 1 of Maskin and Riley (2000). Such propo-

sition says that if there is a best reply, it is monotonic, but they proved it for first
price auctions only. Theorem 1 says that there exists a monotonic best reply to regular
functions and it is unique, in the sense made clear in the Remark 1, below.11

Theorem 1. Assume (A0)-(A4). Fix a profile b−i of regular functions. Then, for
each ti, Θi (ti,b−i) is no empty. Moreover, if t1i < t

2
i , b

1
i ∈ Θi

¡
t1i ,b−i

¢
, Fb(−i)

¡
b1i
¢
> 0

and b2i ∈ Θi
¡
t2i ,b−i

¢
, then b1i 6 b2i .12

Proof. See the appendix.¥

Remark1. Theorem 1 has an important consequence. It implies that the best-reply
to purely increasing strategies is unique. To see why, let b−i be a profile of regular
functions. The set of types ti where Θi (ti,b−i) has diameter greater than ε > 0 is
finite. Then, Θi (ti,b−i) is uni-valued except for a countable set of types ti. Thus,
ti 7−→ Θi (ti,b−i) is a non-decreasing function, well defined except in its points of
discontinuity.

4. Equilibrium Existence

In this section we present a method to obtain the existence of equilibrium in monotonic
auctions from Theorem 1. Remark 1 made clear that the function ti 7−→ Θi (ti,b−i) is
in N if b−i ∈ In−1. Thus, for each i = 1, ..., n, the correspondence of best replies to
b−i is, in fact a function Γi : In−1 → N . Let us prove that Γi is continuous.
Consider a sequence

©
bm−i

ª
m∈N

⊂ In−1, bm−i → b−i, b−i ∈ In−1, and let bi ≡
Γi
¡
b−i

¢
. Consider also {bmi }m ⊂ I, bmi = Γi

¡
bm−i

¢
. Then, Vi

¡
bmi ,b

m
−i
¢
> Vi

¡
bi,b

m
−i
¢
,

∀bi ∈ N . Since N is compact, there is a subsequence of bmi converging to a function
bi. Since b−i is strictly increasing, Vi (bi,b−i) is continuous at bi and b−i. Then,
we have Vi

¡
bi,b−i

¢
> Vi

¡
bi,b−i

¢
by the continuity and Vi

¡
bi,b−i

¢
> Vi

¡
bi,b−i

¢
because bi ≡ Γi

¡
b−i

¢
. But then, bi is also a best-reply, what we have seen to be

unique. Hence, bi ≡ bi and Γi is continuous.
Now, for each bi ∈ I, let Um

¡
bi
¢
be the open set

Um
¡
bi
¢
= {bi ∈ I :

°°bi − bi°°1 < 1

m
},

11For the definition of regular functions, see section 2, notation.
12Remember that, Θi (ti,b−i) is the best-reply interim correspondence, that is,

Θi (ti,b−i) ≡ arg max
β∈[−1,M]

Πi(ti,β,b−i).
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where k·k1 is the norm of L1. It is easy to see that ∪bi∈SUm
¡
bi
¢
is a open cover of N .

Since N is compact, it has a finite subcover. Let Km be the finite set of indices λ such
that ∪λ∈KmUm

¡
bλi
¢ ⊃ N . Let ©ψλ

ª
λ∈Km be a partition of the unity subordinate to

this finite open cover. That is, ψλ : N → [0, 1],
P

λ∈Km ψλ (bi) = 1 for all bi ∈ N and

ψλ (bi) = 0, unless bi ∈ Um
¡
bλi
¢
. Define the continuous transformation:

Λmi (bi) =
X

λ∈Km

ψλ (bi)b
λ
i .

Since each bλi is purely increasing, so it is Λ
m
i (bi).

13 For later use, observe that
Λmi (bi) is purely increasing and it is strictly above bi.
It is clear that Λmi :N → I is continuous. Now we define Λm−i : N

n−1 → In−1 as
Λm−i ≡ ×j 6=iΛmj and Λm : Nn → In as Λm≡ ¡Λmi ,Λm−i¢. We can conclude that for all
m ∈ N, the transformation Γ ◦ Λm : Nn → Nn, defined by

Γ ◦ Λm (b) ≡ ¡Γi ¡Λm−i (b−i)¢¢ni=1 ,
is continuous. By the Schauder-Tychonoff Theorem, Γ ◦ Λm has a fixed point, which
we denote by bm.14

To understand the meaning of bmi , suppose that for all j 6= i, player j follows bmj , but
player i 6= j mistakenly considers that every player j 6= i is using strategy Λmj

³
bmj (·)

´
.

Then, the best strategy for bidder i is to follow bmi .
Now, since N is compact in the strong topology of L1, there is a convergent subse-

quence that converges to a bidding function b∗. Now, we have just to prove that b∗ is
equilibrium, that is,

Vi
¡
b∗i ,b

∗
−i
¢
> Vi

¡
bi,b

∗
−i
¢
,∀bi ∈ L1 ([0, 1] , B) ,∀i.

Equivalently, we need to show that for all i and almost all ti ∈ [0, 1] ,

Πi
¡
ti,b

∗
i (ti) ,b

∗
−i
¢
> Πi

¡
ti,β,b

∗
−i
¢
,∀β ∈ B.

If b∗ does not have ties with positive probability, the event {t ∈ T : b∗i (ti) =
b∗(−i) (t−i) for at least one player i} has zero measure. Then, the continuity of ui in
the event {t ∈ T : b∗i (ti) > b∗(−i) (t−i)} and the continuity of ui in the event {t ∈ T :
b∗i (ti) < b∗(−i) (t−i)} implies that Vi is continuous. The result now follows from the

definition of bmi , that says that Vi
¡
bmi ,Λ

m
−i
¡
bm−i

¢¢
> Vi

¡
bi,Λ

m
−i
¡
bm−i

¢¢
, ∀bi, ∀i. Then,

we need only to deal with the possibility of ties.
For solve this, let us define the allocation function am : [0, 1]n → {0, 1}n as

am (t) = (am1 (t) , ..., a
m
n (t)) ,

where

ami (ti, t−i) =

(
1, if bmi (ti) > Λ

m
(−i)

¡
bm−i

¢
(t−i)

0, if bmi (ti) < Λ
m
(−i)

¡
bm−i

¢
(t−i)

13If ti < t0i, b
λ
i (ti) < bλ

i (t
0
i) and ψλ (bi)b

λ
i (ti) < ψλ (bi)b

λ
i (t

0
i) for each λ ∈ Km

i such that
ψλ (bi) > 0. Then, Λmi (bi) (ti) < Λmi (bi) (t

0
i), since they are finite sums of ψλ (bi)b

λ
i (ti) and

ψλ (bi)b
λ
i (t

0
i), respectively.

14A reference for Schauder-Tychonoff Theorem is Theorem V.10.5, p. 456, of Dunford and Schwartz
(1958). Observe that N is convex and compact.
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Observe that if ami (t) is well defined for almost all t because Λ
m
(−i)

¡
bm−i

¢
is increasing.

So, am (t) is well defined in L1 ([0, 1]n , {0, 1}n) for all m ∈ N. The set {am}m∈N is

compact in L1 ([0, 1]n , {0, 1}n). To see this, observe that for each i, ami (ti, t−i) is
nondecreasing in ti and nonincreasing in t−i. Thus, for each i, {ami (·)}m∈N is compact
and the claim follows. So, there is a convergent subsequence (that we will denote by
the same superscript), am (t)→ a (t), where the convergence is in the L1 sense.

Tie-Breaking Rule: If there is a tie, all bidders are requested to reveal their types
and the final allocation is given by a (t), that is, bidder i receives an object if and only
if ai (t) = 1.

With the Tie-Breaking Rule just defined (which is an endogenous tie-breaking rule),
we have equilibrium. This will follow from two lemmas. The first shows that there is
no profitable deviation from bidding differently of the bid specified by b∗. The second
says that it is optimum to state the true type in case of bidding.

Lemma 1. If bmi (ti)→ b∗i (ti) = β, there is no β0 ∈ B such that

Πi
¡
ti,b

∗
i (ti) ,b

∗
−i
¢
< Πi

¡
ti,β

0,b∗−i
¢
.

Proof. The idea is very simple. If there is such β0, then β0 would be a profitable
deviation along the sequence, which is impossible because bmi (ti) is the best reply, by
definition. The details are given in the appendix.¥

Lemma 2. In case of a tie, it is optimum for all bidders to reveal their true types.
Proof. The idea is to prove that they cannot make a profit by misreporting. See the

appendix. ¥

These two lemmas prove the following:

Theorem 2. Assume (A0)-(A4) and the tie-breaking rule just specified. Then, there
exists a pure strategy non-decreasing equilibrium.

5. Possible Extensions and Conclusion

The aim of this paper is to show a method of prove that can ensure the existence
of equilibrium of asymmetrical single object auctions. Possible extensions can be the
analysis of multidimensional settings, as McAdams (2003) did with Athey (2001)’s
method.
In any case, our work can be extended, at least with some adaptations, to multidi-

mensional settings. For instance, we can consider an individual demanding m units as
m individuals with a very good knowledge of the signals of the others. Such knowledge
can be parametrized by an epsilon and the behavior as epsilon goes to zero is analyzed.
When the actions are multidimensional, some function can summarize the bid, chang-
ing it to the unidimensional case again. For example, in a procurement auction, a firm
bids offering both price and quality, and the buyer may have a function to combine
the two dimensions in order to rank the proposals. So, the action can be taken as
unidimensional again.
Another possible extension is to relax assumptions like (A3) and (A4), that are

related to Single Crossing Properties, and, consequently, investigate non-monotonic
equilibria. A possible method to be used is that of Araujo and Moreira (2001).
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Appendix

Proof of Theorem 1.
Fix types t1i < t

2
i , b

1
i ∈ Θi

¡
t1i ,b−i

¢
and b2i ∈ Θi

¡
t2i ,b−i

¢
, where b−i is a fixed regular

strategy. For a contradiction, suppose that b2i < b
1
i . Since [0, 1]

n−1 and Bn are compact
and ui is (absolutely) continuous, there exists δ > 0 such that ui

¡
t1i , t−i, b

¢
+ 2δ <

ui
¡
t2i , t−i, b

¢
for all t−i ∈ [0, 1]n−1 and all b ∈ Bn. For a bid β ∈ B, define the functions

g1 (t−i) = ui
¡
t1i , t−i,β,b−i (t−i)

¢
, and

g2 (t−i) = ui
¡
t2i , t−i,β,b−i (t−i)

¢
.

Then, g1 (t−i) + 2δ < g2 (t−i). By the positivity of conditional expectations,

E
£
g2 − g1 − 2δ|b(−i) = β

¤
> 0.

So, by the independence (A1), we conclude that

(1) E[ui
¡
t1i , ·

¢ |b(−i) = β] + δ < E[ui
¡
t1i , ·

¢ |b(−i) = β].

By assumptions A3 and A4,

(2) E
h
∂biui

¡
t1i , ·

¢
1[β>b(−i)]

i
6 E

h
∂biui

¡
t2i , ·

¢
1[β>b(−i)]

i
.

and

(3) E
h
∂biui

¡
t1i , ·

¢
1[β<b(−i)]

i
6 E

h
∂biui

¡
t2i , ·

¢
1[β<b(−i)]

i
.

Then, (1), (2), (3) and the expression of ∂biΠi(ti,β,b−i) given by (??) imply that for
almost all β,

(4) ∂biΠi(t
2
i ,β,b−i) > ∂biΠi(t

1
i ,β,b−i) + δfb(−i) (β) .

Since b−i is regular, the difference Πi(t2i , b
1
i ,b−i) − Πi(t2i , b2i ,b−i) can be write as the

integral: Z
[b2i ,b1i )

∂biΠi(t
2
i ,β,b−i)dβ

>

Z
[b2i ,b1i )

∂biΠi(t
1
i ,β,b−i)dβ + δ

Z
[b2i ,b1i )

f (β) dβ

>δ
h
Fb(−i)

¡
b1i
¢− Fb(−i) ¡b2i ¢i ,

where the first inequality comes from (4) and the second comes from the fact that
b1i ∈ Θi

¡
t1i ,b−i

¢
, that is, Z

[b2i ,b1i )
∂biΠi(t

1
i ,β,b−i)dβ > 0.

Now, since b−i is regular and Fb(−i)
¡
b1i
¢
> 0, then ε = δ[Fb(−i)

¡
b1i
¢ − Fb(−i)

¡
b2i
¢
]

> 0. So, Πi
¡
t2i , b

1
i ,b−i

¢
> Πi

¡
t2i , b

2
i ,b−i

¢
+ ε. This contradicts the fact that b2i ∈

Θi
¡
t2i ,b−i

¢
.¥

Proof of Lemma 1.
From now on, the type ti is fixed and let us denote b

∗
i (ti) by β

∗ and bmi (ti) by β
m.

By contradiction, suppose that there is β0 and η > 0 such that
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Πi(ti,β
0,b−i)−Πi

¡
ti,β

∗,b∗−i
¢
> η.

To fix ideas, suppose that β0 > β∗ (the other case is completely analogous). Then,
Wi (β

∗) ⊂Wi

¡
β0
¢
and Li (β

∗) ⊃ Li
¡
β0
¢
, where

Wi (β) = {t−i ∈ [0, 1]n : β > b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai (t) = 1},
and

Li (β) = {t−i ∈ [0, 1]n : β < b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai (t) = 0}.
Just to see the continuity, remember that:

Πi(ti,β
0,b∗−i)−Πi

¡
ti,β

∗,b∗−i
¢

=

ÃZ
Wi(β

0)
ui +

Z
Li(β

0)
ui

!
−
ÃZ

Wi(β
∗)
ui +

Z
Li(β

∗)
ui

!

=

Z
Wi(β

∗)

£
ui
¡
β0, ·¢− ui (β∗, ·)¤+ Z

Li(β
0)

£
ui
¡
β0, ·¢− ui (β∗, ·)¤

+

Z
Wi(β

0)\Wi(β
∗)
ui
¡
β0, ·¢− Z

Li(β
∗)\Li(β0)

ui (β
∗, ·)

Let us define the following events:

Wm
i (β) =

n
t−i ∈ [0, 1]n−1 : β > Λm(−i)

¡
bm−i

¢
(t−i)

o
;

Tmi (β) =
n
t−i ∈ [0, 1]n−1 : β = Λm(−i)

¡
bm−i

¢
(t−i)

o
;

Lmi (β) =
n
t−i ∈ [0, 1]n−1 : β < Λm(−i)

¡
bm−i

¢
(t−i)

o
,

Then, we have that (passing to a subsequence, if needed) when m → ∞, βm → β∗,
1Wm

i (β
m) → 1Wi(β

∗), 1Lmi (β
m) → 1Li(β∗), Λ

m
−i
¡
bm−i

¢
(t−i) → b∗−i (t−i) for almost all t−i.

From the continuity of the ui and ui, we have that for sufficiently high m,¯̄
Πi(ti,β

m,Λm−i
¡
bm−i

¢
)−Πi

¡
ti,β

∗,b∗−i
¢¯̄
<

η

3

and ¯̄
Πi(ti,β

0,Λm−i
¡
bm−i

¢
)−Πi

¡
ti,β

0,b∗−i
¢¯̄
<

η

3
.

So,

Πi(ti,β
0,Λm−i

¡
bm−i

¢
)−Πi(ti,βm,Λm−i

¡
bm−i

¢
) >

η

3
> 0,

which is an absurd, since

βm ∈ Θi
¡
ti,Λ

m
−i
¡
bm−i

¢¢
= argmax

β∈B
Πi
¡
ti,β,Λ

m
−i
¡
bm−i

¢¢
.

This concludes the proof.¥

Proof of Lemma 2.
Proof. As in lemma 1, let the type ti be fixed and denote b

∗
i (ti) by β

∗ and bmi (ti)
by βm. Now, we have to distinguish the winning events for the announced types. So,
let

Wi

¡
β, t̃i

¢
= {t−i ∈ [0, 1]n : β > b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai

¡
t̃i, t−i

¢
= 1},
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and

Li
¡
β, t̃i

¢
= {t−i ∈ [0, 1]n : β < b∗(−i) (t−i) or β = b∗(−i) (t−i) and ai

¡
t̃i, t−i

¢
= 0}.

By contradiction assume that there is a type t0i 6= ti such that for η > 0, we have

(5) =

ÃZ
Wi(β∗,t0i)

ui +

Z
Li(β∗,t0i)

ui

!
−
ÃZ

Wi(β
∗,ti)

ui +

Z
Li(β

∗,ti)
ui

!
> 10η.

To fix ideas, assume that t0i > ti, so that Wi (β
∗, ti) ⊂ Wi (β

∗, t0i) and Li (β
∗, ti) ⊃

Li (β
∗, t0i), because b

m
−i, b

∗
−i ∈ Nn−1. Simplifying the expression above, we obtain:Z

Wi(β
∗,ti)

£
ui
¡
ti, t−i,β∗,b∗−i (t−i)

¢− ui ¡ti, t−i,β∗,b∗−i (t−i)¢¤
+

Z
Li(β∗,t0i)

£
ui
¡
ti, t−i,β∗,b∗−i (t−i)

¢− ui ¡ti, t−i,β∗,b∗−i (t−i)¢¤
+

Z
Wi(β∗,t0i)\Wi(β

∗,ti)
ui (β

∗, ·)−
Z
Li(β

∗,ti)\Li(β∗,t0i)
ui (β

∗, ·)

The first two integrals are zero. Observe that the setWi (β
∗, t0i) \Wi (β

∗, ti) is exactly
Li (β

∗, ti) \Li (β∗, t0i). Let us call it A. It is easy and useful to see that
(6) A ⊂

n
t−i : b∗(−i) (t−i) = β∗

o
.

If we remember that ui ≡ ui − ui, we can rewrite (5) as

(7)

Z
A
ui(ti, t−i,β∗,b∗−i (t−i))dt−i > 10η.

Let M be an upper bound for max {|ui| , |ui| , |ui|}. Because b∗−i (·) is nondecreasing,
there exists δ1 > 0 such that

(8) Pr{t−i : β∗ − 2δ1 < b∗(−i) (t−i) < β∗} < η/M.

and

(9) Pr{t−i : β∗ < b∗(−i) (t−i) < β∗ + 2δ1} < η/M.

Indeed, this comes from the continuity of the probability:

lim
δ↓0
Pr
³
{t−i : β∗ − 2δ < b∗(−i) (t−i) < β∗}

´
= Pr

Ã\
δ>0

{t−i : β∗ − 2δ < b∗(−i) (t−i) < β∗}
!

= 0,

and analogously for Pr{t−i : β∗ < b∗(−i) (t−i) < β∗ + 2δ1}.
Since ui, ui and ui are absolutely continuous, there exists δ2 > 0, such that for all

ti, t−i, bi, b−i, b0−i, β
00 and β0,

(10)
¯̄
β00 − β0

¯̄
< 4δ2 ⇒

¯̄
ui(ti, t−i,β00, b−i)− ui(ti, t−i,β0, b−i)

¯̄
< η,

(11)
¯̄
β00 − β0

¯̄
< 4δ2 ⇒

¯̄
ui(ti, t−i,β

00, b−i)− ui(ti, t−i,β0, b−i)
¯̄
< η.
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There exists δ3 such that

(12) max
k 6=i

¯̄
bk − b0k

¯̄
< 4δ3 ⇒

¯̄
ui(ti, t−i, bi, b−i)− ui(ti, t−i, bi, b0−i)

¯̄
< η.

Fix 0 < δ < min {δ1, δ2, δ3}.
The functions Λmj

³
bmj

´
are nondecreasing and converge to b∗j . Moreover, there

exists a set U ⊂ [0, 1]n−1 such that Λm−i
¡
bm−i

¢ → b∗−i uniformly on U and such that

Pr
³
[0, 1]n−1 \U

´
< η/M . So, there exists m1 such that m > m1 implies that

(13) sup
t−i∈U

max
j 6=i

|Λmj
¡
bmj
¢
(tj)− b∗j (tj) | < δ.

Also, there is m2 such that m > m2 implies |βm − β∗| < δ. We will define

Am ≡Wm
i

¡
bmi

¡
t0i
¢¢ \Wm

i (β
m)

=
©
t−i : am

¡
t0i, t−i

¢
= 1 and am (ti, t−i) = 0

ª
.

Remember that, since b∗i (t
0
i) = b

∗
i (ti) = β∗,

A ≡Wi

¡
β∗, t0i

¢ \Wi (β
∗, ti)

=
©
t−i : a

¡
t0i, t−i

¢
= 1 and a (ti, t−i) = 0

ª
.

We know that am → a in L1. Finally, there is m3 such that m > m3 implies

(14) Pr (Am∆A) <
η

M
.

From now on, fix some m > max {m1,m2,m3}.
Because Λm

¡
bm−i

¢
is increasing, we can omit the terms with uTi in the following

difference:

Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
=

Z
Wm
i (bmi (t0i))

ui(ti, t−i,bmi
¡
t0i
¢
,Λm−i

¡
bm−i

¢
(t−i))

+

Z
Lmi (bmi (t0i))

ui(ti, t−i,b
m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢
(t−i))

−
Z
Wm
i (β

m)
ui(ti, t−i,βm,Λm−i

¡
bm−i

¢
(t−i))

−
Z
Lmi (β

m)
ui(ti, t−i,β

m,Λm−i
¡
bm−i

¢
(t−i))

From now on, we will substitute the arguments (ti, t−i,bmi (t
0
i) ,Λ

m
−i
¡
bm−i

¢
(t−i)) and

(ti, t−i,βm,Λm−i
¡
bm−i

¢
(t−i)) by (bmi (t

0
i) , ·) and (βm, ·), respectively. Since ui > −M,
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ui > −M and ui > − M , we have:
Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>

Z
U∩Wm

i (bmi (t0i))
ui(b

m
i

¡
t0i
¢
, ·) +

Z
U∩Lmi (bmi (t0i))

ui(b
m
i

¡
t0i
¢
, ·)

−
Z
U∩Wm

i (β
m)
ui(β

m, ·)−
Z
U∩Lmi (βm)

ui(β
m, ·)

+

Z
[0,1]n−1\U

(−M)

Since Pr
³
[0, 1]n−1 \U

´
< η/M , the last integral is greater than −η. Rearranging the

terms,

Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
> −η +

Z
U∩Wm

i (bmi (t0i))\Wm
i (β

m)

£
ui(b

m
i

¡
t0i
¢
, ·)− ui(βm, ·)

¤
+

Z
U∩Wm

i (β
m)

£
ui(b

m
i

¡
t0i
¢
, ·)− ui(βm, ·)

¤
+

Z
U∩Lmi (bmi (t0i))

£
ui(b

m
i

¡
t0i
¢
, ·)− ui(βm, ·)

¤
From (13) and (10),Z

U∩Wm
i (β

m)

£
ui(b

m
i

¡
t0i
¢
, ·)− ui(βm, ·)

¤
>

Z
U∩Wm

i (β
m)
(−η) > −η.

Analogously, from (13) and (11),Z
U∩Lmi (bmi (t0i))

£
ui(b

m
i

¡
t0i
¢
, ·)− ui(βm, ·)

¤
>

Z
U∩Lmi (bmi (t0i))

(−η) > −η

Remember that Am ≡Wm
i (b

m
i (t

0
i)) \Wm

i (β
m). Thus,

Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>
Z
U∩Am

£
ui(b

m
i

¡
t0i
¢
, ·)− ui(βm, ·)

¤− 3η
From (10) and (11), for t−i ∈ U ∩Am,

ui
¡
ti, t−i,bmi

¡
t0i
¢
,Λm−i

¡
bm−i

¢
(t−i)

¢− ui ¡ti, t−i,βm,Λm−i ¡bm−i¢ (t−i)¢
> ui

¡
ti, t−i,β∗,Λm−i

¡
bm−i

¢
(t−i)

¢− 2η.
We obtain:

Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>
µZ

U∩Am
ui(β

∗, ·)
¶
− 5η.

For t−i ∈ U ∩Am, we have maxk 6=i |Λmk (bmk ) (tk)− b∗k (tk)| < δ and Λm(−i)
¡
bm−i

¢
(t−i) ∈

[βm,β∗ + δ) ⊂ (β∗ − δ,β∗ + δ), that is,
¯̄̄
Λm(−i)

¡
bm−i

¢
(t−i)− β∗

¯̄̄
< δ.
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So, for such t−i,
¯̄̄
b∗(−i) (t−i)− β∗

¯̄̄
< 2δ. The event U ∩Am is contained in the union

of the following events:

U− = U ∩Am ∩
h
β∗ − 2δ1 < b∗(−i) (t−i) < β∗

i
;

U0 = U ∩Am ∩
h
b∗(−i) (t−i) = β∗

i
;

U+ = U ∩Am ∩
h
β∗ < b∗(−i) (t−i) < β∗ + 2δ1

i
.

By (8) and (9), PrU− < η/M and PrU+ < η/M . Thus, we have

Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢ > Z
U0

ui(β
∗, ·)− 7η.

The argument in the function above is (ti, t−i,β∗,Λm−i
¡
bm−i

¢
(t−i)). Observe that in U0,

maxk 6=i |Λmk (bmk ) (tk)− b∗k (tk)| < δ. So, (12) implies that

Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>
Z
U0

ui(ti, t−i,β∗,b∗−i (t−i))− 8η.

From (6), we know that A ⊂
h
b∗(−i) (t−i) = β∗

i
. So, we haveZ

U0

ui =

Z
U∩Am∩

[
b∗
(−i)(t−i)=β

∗
] ui

=

Z
U∩Am∩A

ui +

Z
U∩Am∩

[
b∗
(−i)(t−i)=β

∗
]
\A
ui

=

Z
A
ui −

Z
A\(U∩Am)

ui +

Z
(Am\A)∩U∩

[
b∗
(−i)(t−i)=β

∗
] ui

>
Z
A
ui −

Z
A\Am

M −
Z
Am\A

M

=

Z
A
ui −M Pr (A∆Am)

>

Z
A
ui − η,

where the last line comes from (14). Now we can use (7) to conclude that

Πi
¡
ti,b

m
i

¡
t0i
¢
,Λm−i

¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢
>

Z
A
ui(ti, t−i,β∗,b∗−i (t−i))dt−i − 9η

> 10η − 9η
= η > 0.

But the fact that βm ∈ Θi
¡
ti,Λ

m
−i
¡
bm−i

¢¢
, implies

Πi
¡
ti,β

0,Λm−i
¡
bm−i

¢¢−Πi ¡ti,βm,Λm−i ¡bm−i¢¢ 6 0
for all β0. This contradiction concludes the proof.¥
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CHAPTER 6

IS AFFILIATION A GOOD ASSUMPTION?

Abstract. We offer an alternative approach to the problem of dependence of signals
(private information), especially in auctions. Since the traditional solution to this
problem is given through the Milgrom and Weber’s concept of affiliation, we begin
by arguing that affiliation is excessively strong and does not appropriately cover
the notion of positive dependence. We provide an alternative explanation for the
predominant usage of English auctions in the real world, which has the additional
advantage of discriminating whether open or sealed-bid first-price should be used.
This is in accordance with the observation that one or other format is almost always
used in specific contexts. Empirical and experimental literatures are briefly reviewed,
but we are unable to find support for affiliation. Finally, we describe our method,
that also applies to multidimensional and asymmetrical auctions, to the contrary of
affiliation.

JEL Classification Numbers: C62, C72, D44, D82.

Keywords: affiliation, independence, auctions, monotonic equilibria, revenue
rank.

1. Introduction

One of the most important contributions of the remarkable and influential paper
of Paul R. Milgrom and Robert J. Weber (1982a) is the introduction of the concept
of affiliation in Auction Theory.1 Affiliation is a generalization of independence that
seems very appealing, at least at first glance, in the models of auctions.2 Under this
assumption, Milgrom and Weber (1982a) obtain two main results:3

• the equilibrium bidding functions are monotonic (this is only a generalization
of the independent types case);4

• the second price auction gives greater revenue than the first price auction (a
truly new result that breaks the important Revenue Equivalence Theorem).

In face of these results, it is possible to cite at least three reasons for the deep influence
of that paper in Auction Theory: (i) its mathematical generality and elegance; (ii) the
plausibility of the hypothesis of affiliation, as explained by a clear economic intuition;
(iii) the fact that it implies that English auctions yield higher revenues than first price
auctions (which, in turn, can explain the dominance of English auctions in practice).
The beauty and deepness of the paper is uncontestable. However, we dispute the

plausibility of affiliation, by arguing that it is hardly satisfied, despite the economic

1In two previous papers, Milgrom presented results that use the same concept, under the traditional
statistical name “monotone likelihood ratio property” (MLRP): Milgrom (1981a, 1981b). Nevertheless,
the concept is fully developed and the term affiliation first appears in Milgrom and Weber (1982a). See
also Milgrom and Weber (1982b).

2We give a definition of affiliation in section 2.
3The paper has many other conclusions. We restrict ourselves to these because they seem the most

important and relevant for our discussion.
4This is proved for the symmetric English, first price and second price auctions.
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intuition. This is the discussion made in section 2. There, we present a series of
conditions that correspond to the idea that the evaluations of the bidders have positive
dependence, i.e., if one’s value is high, then it is likely that the others’ values are also
high. Affiliation is the most restrictive of all such properties. Thus, an auction theorist
may be aware that the intuition provided is not compelling to accept the hypothesis of
affiliation.
In section 3, we argue that in the context of auctions, the assumptions of Milgrom

and Weber’s model are very unlikely to be met. In this discussion, we departure from
comments of Milgrom and Weber (1982) and present an example which illustrates
the difficulties with the standard model of unidimensional affiliated types. After the
example, we prove a theorem that indicates that the difficulties are robust.
In section 4, we treat the question of the monotonicity of the equilibrium bidding

function. We generalize the existence result for a condition strictly weaker than af-
filiation, in private value auctions. Then, we give a counterexample where a minor
modification of an affiliated distribution leads to a non-monotonic equilibrium. Section
5 parallels section 4 in the analysis of the revenue predominance of open auctions.
We argue in section 6 that affiliation is hardly acceptable as a reason for the predom-

inance of English auction in practice. We also offer an alternative explanation that has
the advantage of having a clear and easy economic intuition. Moreover, the explanation
can justify the specific and consistent uses of first price auctions and English auctions
in certain applications. That is, it has the predictive power to distinguish where one
or other auction has to be used. Affiliation, in turn, does not have such virtue.
In face of these arguments, we conclude that affiliation is not supported by theoretical

means. Thus, in section 7 we turn our attention to the empirical and experimental
literature and we find that there is no support for affiliation either. Section 8 examines
some further arguments in defense of affiliation. Then, in section 9 we present the
Conditional Independence Program, which we offer as a substitute for affiliation to
approach the question of dependence between signals.5 Section 10 is the conclusion.

2. Affiliation Is Not Synonymous of Positive Dependence

The introduction of the affiliation concept was made through a very appealing (at
least at first sight) economic intuition:

“Roughly, this [affiliation] means that a high value of one bidder’s esti-
mate makes high values of the others’ estimates more likely.”6

If there exists a f : RN → R+ for the random variables X1, ..., XN , affiliation can
be defined as the requirement that f (x) f (y) 6 f (x ∧ y) f (x ∨ y), where x and y are
realizations of (X1, ...,XN ) and x∧y = (min {xi, yi})Ni=1 and x∨y = (max {xi, yi})Ni=1.7
We illustrate the definition in Figure 1, where N = 2.
Affiliation requires that the product of the weights at the points (x0, y0) and (x, y)

(where both values are high or both are low) is greater than (x, y0) and (x0, y) (where
they are high and low, alternatively).
Thus, affiliation seems to be a good concept to express positive dependence.

5Conditional Independence Program does not consist in assuming that the signals are independent
given the true value of the object, as do Wilson (1977).
6Milgrom and Weber (1982a), p. 1096.
7The definition in the general case, i.e., without density function, is given in the appendix. For the

most parts of the paper, we will work with this definition.
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y

x x´

y´

f x ,y( ) f x´,y( )

f x ,y´( ) f x´,y´( )

Figure 1. Affiliated Variables.

Definition (informal) – Positive dependence is the statistical notion that describes
those situations where a high value of one of the variables makes more likely that the
other variables also take on high values.

Indeed, there is a predominant view in Auction Theory that understands affiliation
as a suitable synonymous of positive dependence. To see this, it is sufficient to consider
some standard comments about affiliation:

“(...) with affiliation, a higher value of the item for one bidder makes
higher values for other bidders more likely.”8

“This is similar to assuming positive correlation.” And, in a foot-
note: “It is actually a stronger assumption, but it is probably typically
approximately satisfied.”9

“Intuitively, this means that a high value of one of the variables, Sj
or Xi , makes it more likely that the other variables also take on high
values.”10

“(...) affiliated random variables, which means roughly that high σi
are good news in the sense of signalling high values of v.”11

“Intuitively, affiliation implies that large values for some of the com-
ponents make the other components more likely to be large than small.
In particular, it implies that a bidder who evaluates the object highly
will expect others to evaluate the object highly too.”12

“If reservation prices are ‘affiliated’ (technically, pair-wise positively
correlated), (...)”13

“The notion that bidder’s valuations may to some extent be correlated
is captured by the concept of affiliation: The vector of random variables
(s, x) is affiliated if, roughly, some variables’ being large makes it likely

8Kagel, Harstad and Levin (1987), p. 1275.
9Paul Klemperer (2003), p. 5.
10Vijay Krishna and Morgan (1997).
11Laffont (1997), p. 9.
12Li, Perrigne and Vuong (2002), p. 173.
13Maskin and Riley (2000), p. 413.
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that the other variables are large: If variables are affiliated, then they
are positively correlated.”14

From the above quotations, we can agree that the literature seems to mix two dif-
ferent ideas that we would like to state separately:
(1) Positive dependence is a sensible assumption; and
(2) affiliation is the suitable mathematical description of positive dependence.
We agree with the first notion, but the second is misleading, in our opinion. Hereafter

we call it “Rough Identification”, after the use of the word “rough” to identify affiliation
and positive dependence. The problem with the Rough Identification is that it hides
how strong is the affiliation hypothesis, as we will see.
A disclaim is needed, however. We are not saying that the quoted authors were

wrong in their attempt to provide an intuition for affiliation. An intuition is often very
helpful. Our point is only against the notion that neglects the particularity of affiliation
and the difference between it and the more general concept of positive dependence.
To clarify our arguments, let us begin by remembering that, in the statistical liter-

ature, various concepts were proposed to correspond to the informal notion of positive
dependence.15 Let us restrict to the case of two real random variables, X and Y , and
define some of these concepts:16

Property I - X and Y are positively correlated (PC) if cov(X,Y ) > 0.

Property II - X and Y are said to be positively quadrant dependent (PQD) if
cov(f (X) , g (Y )) > 0, for all f and g non-decreasing.

Property III - The real random variables X and Y are said to be associated (As)
if cov(f (X,Y ) , g (X,Y )) > 0, for all f and g non-decreasing.

Property IV - Y is said to be left-tail decreasing in X (LTD(Y |X)) if Pr[Y 6
y|X 6 x] is non-increasing in x for all y. X and Y satisfy property IV if LTD(Y |X)
and LTD(X|Y ).

Property V - Y is said to be positively regression dependent on X (PRD(Y |X))
if Pr[Y 6 y|X = x] = FY |X (y|x) is non-increasing in x for all y. X and Y satisfy
property V if PRD(Y |X) and PRD(X|Y ).

Property VI - Y is said to be Inverse Hazard Rate Decreasing in X (IHRD(Y |X))
if
FY |X(y|x)
fY |X(y|x) is non-increasing in x for all y, when both are in their respective support

and where fY |X (y|x) is the p.d.f. of Y conditional to X. X and Y satisfy property VI
if IHRD(Y |X) and IHRD(X|Y ).

14McAfee and McMillan (1987), p. 706.
15See, e.g., Lehmann (1966) and Esary, Proschan and Walkup (1967).
16Most of the concepts can be properly generalized to multivariate distributions. All of them, but

(VI), were previously defined and used.
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Property VII - Y and X are said to be affiliated (or that they satisfy property

(VII)) if
fY |X(y0|x)
fY |X(y|x) is non-increasing in x for all y and y

0 with y > y0, both in their

respective support.17

Although Property VII seems asymmetric, it is indeed symmetric. To see this and
that Property (VII) is equivalent to the previous definition of affiliation, observe that
Property (VII) holds if x > x0, y > y0 (in the support of the distribution) imply

fY |X (y0|x)
fY |X (y|x)

6
fY |X (y0|x0)
fY |X (y|x0)

⇔ fY |X
¡
y0|x¢ fY |X ¡y|x0¢ 6 fY |X ¡y0|x0¢ fY |X (y|x) .

Multiplying both sides on the right by fX (x) fX (x
0) we obtain the affiliation inequality

and now dividing by fY (y) fY (y
0), we obtain the symmetrical condition for property

(VII). Due to the fact that Property VII is equivalent to the monotonicity of
fY |X(y|x0)
fY |X(y|x) ,

it is also known as Monotone Likelihood Ratio Property (MLRP).
We have the following:

Theorem 1. The above properties are successively strong and are all different. In
other words,

(V II)⇒ (V I)⇒ (V )⇒ (IV )⇒ (III)⇒ (II)⇒ (I)

and all implications are strict.

This theorem shows how strong is the affiliation assumption.18 What is striking
about Theorem 1 is not its novelty, but rather the fact that it seems ignored by auction
theorists.19 Indeed, it is possible that the following reaction is raised:

Reaction 1 - We already know that affiliation is a strong assumption.

Our first answer to such position is that we do not know any paper that states that
affiliation is a restrictive assumption. Perry and Reny (1999), for instance, have a very
interesting example concerning the failure of the linkage principle (that is a consequence
of affiliation) for multi-unit auctions. They do not question the plausibility of affili-
ation nor that it is not likely to be valid even for single object auctions. Klemperer
(2003) also criticizes affiliation, but his point is different from ours. Indeed, as one of
the previous quotation shows, he seems sympathetic to the possibility that affiliation is
(approximately) satisfied. His criticism of affiliation is that there are other more impor-
tant issues, like asymmetry and collusion. We agree with him, although for a stronger
reason: we believe that affiliation is excessively strong, as suggested by Theorem 1.

17In statistic literature, affiliation is known as positively likelihood ratio dependent (PLRD). The
reason for this name becomes clear from this form of the definition. In the Appendix, we give a more
general definition of affiliation, that do not need the use of density functions.
18The reader should not be impressed for affiliation being the most particular of seven concepts

that describes positive dependence. Yanagimoto (1972) defines more than thirty concepts of positive
dependence and, again, affiliation is the most particular of every one.
19Some implications of Theorem 1 are trivial and most of them were previously established. Our

main contribution is around Property VI, that we use later to prove convenient generalizations of
equilibrium existence and revenue rank results, that were previously established for affiliation. We
prove that Property VI is strictly weaker than affiliation and that it is sufficient for but not equivalent
to Property V.
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A clue that affiliation is considered important and useful comes from its practical
uses. For instance, the auction theorists that were consultants to the Federal Commu-
nications Commission (FCC) in the spectral auction of 1993/4 have preferred an open
format from the faith on the linkage principle, despite other relevant problems.20 The-
orem 1 shows that such use is questionable and the faith in positive dependence does
not imply affiliation. In other words, the Rough Identification is hardly acceptable. At
least, we should be cautious in applying it to derive conclusions for real applications.
Finally, if it is known the particularity of the affiliation assumption, this has to be

reflected in clear statements in the literature and in a correspondent research effort to
relax it. We were unable to find another paper with any of these two characteristics.21

But, another reaction can be raised as follows.

Reaction 2 - We admit that there are counterexamples for each implications above,
but such counterexamples can be atypical and affiliation can be true in the majority of
cases where positive correlation (property I) holds.

In this regard, we would like to mention a result of Kotz, Wang and Hung (1988).
They made the following computational experiment:

(1) Generate random numbers gij , for i = 1, ..., m and j = 1, ..., n.
(2) Define the distribution of two random variables X and Y by the probabilities

pij = Pr (X = i, Y = j) = gij/
hPm

i=1

Pn
j=1 gij

i
, for i = 1, ..., m and j = 1, ...,

n.22

(3) Test if X and Y have any positive dependence property.23

They repeated the above procedures 3000 times, with m = n = 3. As expected,
they obtained property I (positive correlation) in 49.8% of the simulations. Affiliation,
in turn, appears in just 1.1% of the trials. We have reproduced their experiment with
m = n = 5 and 5000 trials and we do not find a single trial satisfying affiliation.
The reason for that becomes apparent if the reader consults the general definition of
affiliation given in the appendix. Affiliation requires a condition that has to be tested
for every sublattice. This is a rather strong property to require and it is the source of
its rarity.
This should suggest that affiliation is, indeed, a narrow condition and probably not a

good description of the world. Of course, our statements are intentionally provocative
of the following reaction:

Reaction 3 - There is no problem if an assumption is very rare or has zero measure.
The set where it holds, although of zero measure, can include exactly the important
cases.

20This is a point borrowed from Perry and Reny (1999). Of course, such preference can be also
justified by other means. See McMillan (1994).
21Jackson and Swinkels (2003) provide an existence result under distributional strategies for all kind

of dependence. Nevertheless, they are driven for the sake of obtaining a general theory, that is always
desirable. They do not present a criticism of affiliation.
22It is clear that pij � 0 and

∑ m
i=1

∑ n
j=1 pij =1.

23They tested among others, all the properties above, but VI.
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We agree with the position expressed in Reaction 3. One can remember, for instance,
that independence is also a very rare assumption and, in theoretical application, inde-
pendence is constantly used. Nevertheless, affiliation was offered as a generalization of
independence and the above remarks suggest that, out of independence, affiliation em-
braces just a few of the possible cases. So, why bother with affiliation if independence
gives almost the same cases?
We can make the argument from another point: the intuition says that positive

dependence is the set of important cases. Affiliation covers just a very tiny part of these
cases. So, the assumption is unsatisfactory because most of the “important cases” are
out of its scope.

Reaction 4 - It is not true that affiliation does not include important cases out of
independence. One has, for instance, the conditional independence models.

Conditional independence models assumes that the signals of the bidders are inde-
pendent conditional to the value of the object (see Wilson 1969, 1977).24 Assume that
f (t1, ..., tN |v) is the p.d.f. of the signals conditional to the value and that it is C2. It
can be proved that the signals is affiliated if and only if

∂2 log f (t1, ..., tN |v)
∂ti∂tj

> 0,

and

(1)
∂2 log f (t1, ..., tN |v)

∂ti∂v
> 0,

for all i, j.25 Conditional independence implies only that

∂2 log f (t1, ..., tN |v)
∂ti∂tj

= 0.

So, conditional independence is not sufficient for affiliation. To obtain the later, one
needs to assume (1) or that ti and v are affiliated. In other words, to obtain affiliation
from conditional independence, one has to assume affiliation itself. So, the justification
of affiliation through conditional independence is meaningless.
This can bring to the reader’s mind some usual method of obtaining affiliated signals:

to assume that the signals ti are a common value plus an individual error, that is,
ti = z + εi, where the εi are independent and identically distributed. This is yet not
sufficient for the affiliation of t1, ..., tN . Indeed, let g be the p.d.f. of the εi, i = 1, ...,
N . Then, t1, ..., tN are affiliated if and only if g is a strongly unimodal function.

26,27

Reaction 5 - But affiliation is equivalent to the first order stochastic dominance, as
shown by Milgrom, and this is a property with a reasonable economic meaning.

24See also Fundenberg et. al. (2003). See section 9, where we propose a new approach, named
Conditional Independence Program.
25This follows from a theorem of Topkis (), also cited by Milgrom and Weber (1982).
26The term is borrowed from Lehmann (1959). A function is strongly unimodal if log g is concave.

A proof of the affirmation can be found in Lehmann (1959), p. 509, or be obtained directly from the
previous discussion.
27It is a consequence of Theorem 2 in the next section that even if g is strongly unimodal, so that

t1, ..., tN are affiliated, we have that t1, ..., tN , ε1, ..., εN , z are not affiliated.
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Milgrom (1981a) states the following:

“Proposition” 2. The family of densities {f (·|x)} has the strict MLRP
if and only if for every no degenerate prior distribution G on Y and
every y and y0 in the range of Y with y0 > y, the posterior distrib-
ution G (·|Y = y0) dominates the posterior distribution G (·|Y = y) in
the sense of strict first-order stochastic dominance.28

In other words, the proposition says that affiliation is equivalent to Property V
(it is easy to see that first order stochastic dominance is, indeed, property V). This
“proposition” is misstated, as Theorem 1 shows: affiliation implies first order stochastic
dominance, but the converse is false. In the proof of Theorem 1, in the appendix, we give
two counterexamples for this, with symmetric and strictly positive density functions on
the support [0, 1]2.

Reaction 6 - This criticism is challenging a property that is equivalent to the Monotone
Likelihood Ratio Property, which is widely used in Statistics, Reliability Theory and in
many areas of economics. Then, it cannot be so important, otherwise the property
would be previously rejected in those areas.

In Statistics, affiliation is known as Positive Likelihood Ratio Dependence (PLRD),
the name given by Lehmann (1966) when he introduced the concept. PLRD is widely
known by statisticians to be a strong property and many papers in the field do use
weaker concepts (such as given by properties V, IV and III).
In Reliability Theory, affiliation is generally referred as Total Positivity of order two

(TP2), after Karlin (1968). Historical notes in Barlow and Proschan (1965) suggest
why TP2 is convenient for the theory. It is generally assumed that the failure rates of
components or systems follow specific probabilistic distributions and such special dis-
tributions usually have the TP2 property. So, it is natural to study its consequences. In
contrast, in Auction Theory, the signals represent information gathered by the bidders
and usually there is no reason for assuming that they have a specific distribution. In-
deed, this is rarely assumed. Thus, the reason for the use of TP2 in Reliability Theory
does not apply to Auction Theory.
Finally, we stress that our criticism is of the use of affiliation in Auction Theory, as

the subsequent sections emphasize. It is a work for the specialists in the other fields to
analyze whether it is appropriate for their applications. It can happen that affiliation
is not particularly restrictive given the setting where it is assumed. This leads to the
following:

Reaction 7 - Even if affiliation is a strong assumption, it works so well with the rest
of the model that we cannot abandon it.

In other words: even if we recognize the particularity of affiliation, this could be not
sufficient to preclude its use if it combines in a perfect way with the other assumed
conditions. However, this is not the case of Auction Theory, as we show in the next
section.

28See also Theorem 2.1 of Milgrom (1981b).
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3. And If Affiliation Were Positive Dependence?

In the previous section we show that the Rough Identification is misleading. In other
words, we argued that the agreement about positive dependence of signals is very far
from implying acceptance of affiliation.
Despite those arguments, in this section we make a concession: we will assume

that the Rough Identification is valid. In other words, we will assume that positive
dependence is synonymous of affiliation and that the estimates of the bidders have
positive dependence (hence, are affiliated). We will show, nevertheless, that even such
extreme assumption is not sufficient for the received theory.
The departure of our argument is a quote of Milgrom and Weber (1982), when they

explain why it is interesting to analyze common value auctions:

“(...) consider the situation in an auction for mineral rights on a tract
of land where the value of the rights depends on the unknown amount of
recoverable ore, its quality, its ease of recovery, and the prices that will
prevail for the processed mineral. To a first approximation, the values
of these mineral rights to the various bidders can be regard as equal,
but bidders may have differing estimates of the common value.”29

In the above context, it is likely that the expected value of an object is a function of
various variables (quality, price, etc.), that is, private information is a multidimensional
signal.30 In other words, if we want to work just with the “estimate” that a bidder
makes, then we have to accept that such estimate is built on a number of variables.
Now, the Rough Identification can be applied only to each variable taking in account

by the bidders. For instance, in an auction of offshore oil and gas lease auction, we
accept that the bidders’ estimates of the price of the oil are affiliated, as well the
bidders’ estimates for the amount of oil in it.
In order to concrete the discussion, consider an auction of one object where each

buyer observes private signals X1
i , ...,X

m
i that are his signals for the relevant vari-

ables.31 With such observations, buyer i computes the value of the object as τ i ≡
vi
¡
X1
i , ...,X

m
i

¢
. The Rough Identification leads to accept that for each fixed charac-

teristic - market share, Xk
i , for example - the variables X

k
1 , ...,X

k
N are affiliated. Would

this imply that the τ i are affiliated? If so, then the Rough Identification would pass
from the Xk

i to the τ i. Unfortunately, the answer is no, as the following example shows.

Example 1 - Auction of an Oil Lease
Consider the auction of a tract between two bidders. Buyer i has a private estimation

of the oil quality in the field, (qi), and the amount of recoverable ore (si). Estimates
of these two variables are drawn from independent distributions, but q1 and q2 are
affiliated, as well s1 and s2. The value of the field is calculated as τ i = p (qi) si− c (si),
where p (.) denotes the price of the oil according to its quality and c (.) is the cost of
oil extraction, depending, obviously, on the size.

29Milgrom and Weber (1982), p. 1093-4.
30Of course, this cannot be taken from a naive point of view. In many cases, multidimensional

random variables can be reduced to unidimensional ones. Nevertheless, we will illustrate that such
reduction is not free of consequences.
31In yet another example, if the object is a firm, the signals Xk

i are the evaluation of buyer i for the
assets of the firm, its market share, its technology, the locked-in consumers and so on.
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For simplicity, we will give numerical examples with discrete values: the size can be
S (small), M (medium) or B (big). The quality can be L (low) or H (high). There are
two bidders and their signals obey the distributions below that are easily checked to
be affiliated.

big 1/18 1/12 1/6
medium 1/12 1/6 1/12
small 1/6 1/9 1/18

2 ↑ / 1→ small medium big
Table 1 - Joint Distribution of Bidder’s Estimates for the Amount of Oil

High 1/3 1/3
Low 1/6 1/6

2 ↑ / 1→ Low High
Table 2 - Joint Distribution for the Estimates of the Quality of the Oil

We represent the small (S) size as 1, the medium (M) size as 2 and the big (B) as 3,
take a non-decreasing function of costs, c (1) = c (2) = 1 and c (3) = 3. Let p (L) = 1
and p (H) = 3. With this, the possible values of the hole are τ i = 0, 1 or 3. Such
specification leads us to the following distribution of types τ i :

3 5/36 5/36 1/6
1 23/216 5/36 7/72
0 2/27 5/72 5/72

τ2 ↑ /τ1 → 0 1 3
Table 3 - Distribution of Values

It is easy to see that this distribution is not affiliated: for example, using the four
probabilities in the right down corner, we have 5

36 · 572 > 7
72 · 572 .

We can go further. Suppose that the small size (S) is 1
42 , the medium size (M) is 56

and the big size (B) is 67 .We take an increasing function of costs, c
¡
1
42

¢
= 0, c

¡
5
6

¢
= 29

6

and c
¡
6
7

¢
= 5. Let p (L) = 6 and p (H) = 7. With these values, the possible values of

the petroleum field are τ i =
1
7 ,
1
6 or 1 and the distribution showed in Table 3 remains

the same, just substituting 0, 1 and 3 by 1
7 ,
1
6 and 1. Then, if bidder 1 has common

value utility u1 =
τ1+τ2
2 , as usual, the expected utility turns out to be non-monotonic.

Indeed, E
£
τ1+τ2
2 |τ1 = 1

7

¤
= 0.3332 > 0.3310 = E

£
τ1+τ2
2 |τ1 = 1

6

¤
.¥

The above example suggests that there are serious problems when affiliation has to
be applied to multidimensional settings.32 We go further, by proving that one of the
most important property of affiliation has to be restricted to unidimensional settings.
The result is the following:

Theorem 2. Suppose that the real random variables X, Y and Z = v (X,Y ) are
affiliated, where v : R2 → R is a non-decreasing function. Then, there are not real
numbers x < x0 and y < y0 in the convex support of X and Y such that v is strictly
increasing in both arguments in [x, x0] × [y, y0].33
32Previous examples of these problems were provided by Reny and Perry (1999) and Reny and

Zamir (2002).
33In other words, v is a function of just one of its two variables.
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To understand the consequences of Theorem 2, let us return to the setting previously
analyzed. Suppose that variables Xk

i , for k = 1, ..., m and i = 1, ..., n, are affiliated and
have convex support. Then, in order to the signals τ i = vi

¡
X1
i , ...,X

m
i

¢
be affiliated

for i = 1, ..., n, it is necessary that vi depends on just one of the signals X
k
i !

We conclude that even under the assumption that the Rough Identification is valid,
this is not sufficient to accept the use of affiliation.34

Thus, the justification for affiliation (or positive correlation) is based on a case where
it hardly holds. Consider the following reasoning, which closely relates the use of many
variables with the need of positive correlation (and, hence, affiliation, under the Rough
Identification):

“What are we to use in place of the independence assumption? When
the bidder’s costs or valuation depend on some common random factors,
so that all the bidders are estimating the same variables, their estimates
will be positively correlated even if their estimation errors are indepen-
dent. Positive correlation has been especially prominent in models of
auctions for oil and gas drilling rights, where the rights being acquired
are, to a first approximation, of equal value to each of the bidders, and
the main uncertainties concern such common factors as the quantities of
recoverable hydrocarbons, the cost of recovery, the costs of transporting
the product to market (perhaps through as yet undeveloped pipelines
over the Arctic Slope), future world energy prices, and so on. The com-
mon uncertainties found in these auctions also play a large role in the
sale of items like wine or art which are purchased at least partly for their
savings or investment value, as the parties estimate what it would cost
to purchase the same vintage in the future or what the eventual resale
price for the painting will be. So there is good reason to believe that
positive correlations among value estimates will often be present.
The actual equilibrium analysis of auctions relies on a stronger notion

than positive correlation. The appropriate concept, known as affiliation,
was introduced by Milgrom and Weber (1982).”35

We want to emphasize that this problem is related only to affiliation and not with
the notion of positive dependence. Indeed, our proof is heavily based in the use of
sublattice conditioning, as required by the general definition of affiliation (see the Ap-
pendix). Under association (property III), we have a result more favorable. Consider
the following:

Definition. A set of N functions g1, ..., gN , each defined on RNm → R is said to
be m-concordant if the functions are monotone in each of the Nm arguments and the
direction of monotonicity is the same for each block of m arguments, jm+1, ..., jm+m,
where 0 6 j 6 m− 1.
Jogdeo (1977) proves the following:

34A qualification is need, however. The theorem does not impede that the τ1, ..., τN are affiliated.
Only, the standard method to prove affiliation does not work if v depends on more than one argument.
On the absence of other results, assuming that τ1, ..., τN were affiliated is to impose an unjustified and
heroic assumption. Even if we do that, however, we do not solve all the problems, as we discuss below.

35Milgrom (1989), p. 13-4.
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Proposition 1. Assume that g1, ..., gN are m-concordant functions defined for Nm-
tuples, and that X1, ...,Xm are independent N -dimensional random variables such that
the components of Xk =

¡
Xk
1 , ...,X

k
N

¢
are associated for each k. Let X = (X1

1 , ..., X
m
1 ,

..., X1
N , ..., X

m
N ). Then, the random variables Vi = gi (X) , i = 1, ..., N are associated

(As).

Then, if each gi gives the value of an object as a function of all signals received by
all players, we just require that each signal contributes monotonically for the value,
and in the same manner for all players. In Proposition 1, each Xk, for k = 1, ...,m,
accounts for one kind of information (for example, the price of the oil, in the previous
example). The vector Xk =

¡
Xk
1 , ...,X

k
N

¢
represents the valuations of the players of the

information k. Proposition 1 requires that Xk
i are associated. Under its assumptions,

it implies that the values of the object for the bidders are associated.
It is also worth to note that if the concept is independence then the difficult also dis-

appears, since although τ i is not independent of the X
k
i (k = 1, ..., m) it is independent

of the τ j , for j 6= i.
Let us summarize our findings. We began this section by assuming that the Rough

Identification is true. Theorem 2 teaches us that affiliation would pass to the value of
the object if we take care of just one real-valued estimate. A situation where it occurs
is in auctions of non-durable goods, as fish. But even in fish auctions, the bidders shall
not take into account altogether, the color, the size and the smell of the fish. They are
permitted to consider just one of these variables.
Nevertheless, our faith in the theory could lead us to expect that, under the assump-

tions of 1) Rough Identification and 2) bidders’ estimates are just one real variable, the
theory could finally be applied. Nevertheless, this is yet not possible.
To describe the remaining difficulties, let us quote again Milgrom and Weber (1982):

“To represent a bidder’s information by a single real-valued signal is to
make two substantive assumptions. Not only must his signal be a suffi-
cient statistic for all of the information he possesses concerning the value
of the object to him, it must also adequately summarize his information
concerning the signals received by the other bidders. The derivation of
such a statistic from several separate pieces of information is in general
a difficult task. It is in the light of these difficulties that we choose to
view each Xi as a “value estimate,” which may be correlated with the
“estimates” of others but is the only piece of information available to
bidder i.”36

Now, the reasonable positive dependence assumption and the Rough Identification,
that were previously justified for the estimates of the bidders, have to apply, indeed,
for sufficient statistics. But it is not clear why their appeal would pass for the sufficient
statistics.
The problems do not stop here, however. Even if the sufficient statistics are affiliated,

it is not clear that the other assumptions of the model can be sustained, as that the
utility has to be monotonic with the sufficient statistics. This is reasonable if the signal
is a value, but why the value is monotonic with the signal if this is just a sufficient
statistic?

36Milgrom and Weber (1982), footnote 14, p. 1097.
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This discussion shows that we need a theory to derive and characterize the sufficient
statistics from the pieces of information possessed by the bidders. In the absence of such
a theory, we cannot be sure of what we are really assuming when we think in sufficient
statistics as values. Of course, it is possible that in many settings the assumption is
suitable, that is, the sufficient statistic is the value itself (for instance, in private values).
But we need to classify in which situations this is true.

4. Monotonic Equilibrium

We hope that the discussion of the previous section has made clear that affiliation
is hardly satisfied (out of the independency). Nevertheless, another reaction can be
raised as follows:

Reaction 8 - We assume affiliation because it entails the mathematical conditions
that enable us to prove interesting facts. Even if it is not satisfied, it is likely that its
consequences remain true in a great proportion of cases.

This reaction calls for a investigation of the robustness of the main consequences
of affiliation: the existence of monotonic equilibrium and the greater revenue of Eng-
lish/second price auctions. In this section, we address the first question, while the
second is treated in section 5.
Let us consider the private value, first price auction, where the bidders are risk

neutrals and receive a unidimensional signal, but the distribution of the signals is not
affiliated. We have the following:

Theorem 3. Consider a symmetric first price, private value auction between 2
bidders. Suppose also that bidders are risk-neutrals and there is a joint p.d.f., f :
[0, 1]2 → R+.37 Then, if the distribution satisfies Property VI, there is a symmetric
monotonic equilibrium.

Theorem 3 strictly generalizes the equilibrium existence, but we are not saying that
this generalization is important, since Property VI is too close of affiliation.38 Nev-
ertheless, it highlights the fact that the existence result is bounded to be valid under
Property VI. We conjecture that are counterexamples for the existence of equilibrium
under Property V.
The next result shows that minor perturbations in affiliation break the conclusion

that the bidding function is monotonic, even in unidimensional settings.

Proposition 2. Given η > 0 and a affiliated density function, that is, a function
f : [0, 1]n → [0, 1] that is the joint density function of n affiliated variables, there is a
density function fη such that kfη − fk < η and there is a non-monotonic equilibrium
under fη, where k·k represents the L1 norm.
Proof. See the appendix.

If we want a norm more restrictive than L1 norm, such as a Ck norm, k·kk, it is still
possible to show that there is a fη such that kfη − fk < η and there is no monotonic

37It is not necessary that the domain of f be [0, 1]2. We assume this for convenience.
38In some sense, its proof is already contained in Milgrom and Weber (1982a).
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equilibrium under fη. This shows that a small perturbation in affiliation leads to the
failure of the property of existence of a monotonic equilibrium bidding function.

5. Revenue Rank

In this section we derive an expression for the difference in revenue from second
and first price symmetric auctions. Indeed, we are interested in answering whether the
result on the rank of the auctions also holds for a concept weaker than affiliation.
Consider the auction of an indivisible object with 2 risk neutrals bidders and with

private values. Let f (x) be a symmetric probability density function. We have the
following:

Theorem 4. If f satisfies Property VI, then the second price auction gives greater
revenue than the first price auction. More than that, the revenue difference is given byZ

[ti,ti]

Z
[ti,x]

b
0
(y)

·
FY (y|y)
fY (y|y) −

FY (y|x)
fY (y|x)

¸
fY (y|x) dy · f (x) dx

where b (·) is the first price equilibrium bidding function, or by

Z
[ti,ti]

Z
[ti,x]

"Z
[ti,y]

L (α|y) dα
#
·
·
1− FY (y|x)

fY (y|x) ·
fY (y|y)
FY (y|y)

¸
· fY (y|x) dy · f (x) dx,

where L (α|t) = exp
h
− R tα fY (s|s)

FY (s|s)ds
i
.

From Theorem 4 we learn that the revenue predominance of the English (second
price) auction over the first price auction seems to be strongly dependent of the condi-
tion required for Property VI. In other words, one can conjecture that the revenue rank
can be broken for the other properties that express positive dependence. We conjecture
that this is possible even for Property V, but we do not have an example.39

6. Alternative Explanation for the Dominance of English Auctions

In the last two sections we saw that some provisions of affiliation are not robust. It
is still possible, however, to raise the following argument:

Reaction 9 - Affiliation is the best explanation for the huge dominance of English
auctions in the real world. So, this is an uncontestable fact that supports affiliation.

Indeed, another quote illustrates the common understanding in the theory:

“(...) the English (open, ascending) auctions are much more common
than any other form. Here we relax the independence assumption of the
standard model in order to explain the prevalence of English auctions
and of certain other auctions practices.”40

Let us discuss such explanation. First we need to clarify all the reasoning, with its
implicit assumptions and logical conclusions.

39Of course, the example should exhibit an equilibrium. Then, this has to be verified directly, since
Theorem 3 does ensure the equilibrium existence under Property V.
40Milgrom (1989), p. 13.
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(1) Under symmetry, affiliation implies that open auctions raise higher revenue;
(2) Types are affiliated;
(3) The players are symmetric;
(4) Bidders follow their (symmetric) equilibrium strategies;
(5) Open auctions leads to a higher expected revenue;
(6) The sellers learn that the open auctions produces higher expected revenue;
(7) Sellers seek expected revenue maximization;
(8) The choice of the auction’s format is a rational decision of the sellers;
(9) The open (or English) format is used.41

The claim 1 is the theoretical result of Milgrom and Weber. Claim 5 is the logical
consequence of 1, 2, 3 and 4. Now, with 5, 6, 7 and 8, one can conclude 9, the real
world fact that we want to explain through affiliation. Note that 2, 3, 4, 6, 7 and 8 are
all extra assumptions required to the conclusion.
It is easy to see how weak this reasoning is. We will analyze the argument backward.
It is worth to say that the whole attempt in explaining of the predominance of

English format through an economic reason can be misleading. The origin of the word
“auction” is “augere”, that means to rise (the price), as in an ascending auction. It
is clear that this form of auction is the oldest, for a good reason: in the antiquity, to
write and submit a sealed bid was not a trivial task. Since this is the first used form
of auctions, the predominance can be justified appealing just for inertia or cultural
preferences. Of course, an economist would prefer an economic explanation. But there
is no problem in translate the cultural inertia in terms of costs of change. In other
words, point 8 above can be no valid.
Another circumstance that challenges point 8 is the influence of bidders in the choice

of the auction’s format. The bidders may prefer English auction by a number of rea-
sons as because it may facilitate collusion. Also, open auctions are simpler and less
computationally demanding than a sealed-bid first-price auction.
Concerning point 7, it is far from obvious that sellers pursue (only) the revenue

maximization. Concerns as efficiency can be important in some cases. However, we do
not insist in a criticism for this point.
Point 6 is hard to believe. The empiricists and experimentalists could not established

it yet, even in laboratories and with the help of the theory.42 Thus, it is difficult to
accept that lay people, with no scientific expertise could grasp such conclusion, with no
help of an intuition. Of course, one can appeal to an evolutionary argument to sustain
that such conclusion is reached. The argument goes as follows: those that do not reach
to the correct format are ruled out of the market. This is problematic. Since the open
format is the first to be used in the history, then the “mutation” has to be from the
open to the first-price sealed bid auction. According to the theory, this “mutation” is
non-profitable. So, not only we are unable to justify the predominance of open auctions
through an evolutionary argument, but also we reach the absurd conclusion that the
sealed-bid format will never be used.
Point 5 is the heart of the contribution of affiliation to the argument. Our criticism

of this point is that we can reach it with a better condition that we describe below.

41There is an alternative reasoning based in ideas of evolutionary selection that leads to the same
conclusion. We comment it below.
42We discuss their results in section 7.
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In some experimental studies, the players do not follow equilibrium strategies. This
puts in doubt the plausibility of assumption 4.43 Asymmetries are very common in
practice, which puts in doubt assumption 3. We think that the previous sections were
sufficient to comment assumption 2.
In order to provide an alternative explanation, we will try to reach the conclusion in

5, without the use of 1 and 2, where affiliation plays a role. In other words, we will offer
an alternative reason for the consequence in 5, which is simpler and more natural than
affiliation. More than that, it has the advantage of being easily grasped by intuition,
which facilitates point 6.
This is an important advantage, because the hope that the sellers would learn the

predominance of a format is very problematic. As we will discuss in the next section,
the experimentalists and empiricists are still trying to establish such ranks. Why the
learning process of sellers would be better? Another problem is that if the learning
cannot be summarized in a clear intuition, then it is likely to take much more time to
the conclusion be accepted. Unfortunately, affiliation does not provide such intuition.
The revenue rank, as we have shown, depends on very technical statistical concepts,
developed only on the second half of the twenty century. Thus, it is hard to accept
that the learning of the affiliation consequence has spread out the world and explained
the preference for open auctions. This is especially difficult to believe once one realizes
that before Milgrom and Weber’s paper, nobody has provide any intuition of this
consequence, to the best of our knowledge.44 Also, it is hard to accept that a lay
person could grasp the point. In sum, affiliation does not perform well in the task of
providing the explanation.

6.1. Alternative explanation of the revenue rank. Our alternative theory for the
revenue priority of ascending auction is based on the easy concept of regret.
Suppose that someone wins a first price auction with the bid bi, and where the second

highest bid is b(−i). The winner becomes happy with the profit ti − bi, but he/she can
think that she might win even more, if his/her bid were b(−i)+ε, for a very small ε > 0.
So, he/she becomes sad with the money left on the table, bi− b(−i), that is, the money
that could be saved in the auction. In other words, the money left on the table can be
wrongly perceived as a loss.
The regret is very common and spread out, not only among individuals, but also

among firms. If the difference between the two highest bids is high, the winner can
be perceived as a fool. If he is a director of a firm, he has to give explanations to the
board.45

We emphasize that the “regret” is very simple and easy to understand for everyone
that works with auction. The interesting thing is the consequences of it: the open auc-
tion performs better even in the circumstances where it is expected by the receive theory

43See Kagel (1995).
44As Klemperer (2002) argues, the explanation through “winner’s curse” seems of little help. It is

valid only for common value auctions, while the revenue predominance implied by affiliation remains
valid under private values. Moreover, the “winner’s curse” effect occurs also with independence.
45In privatization of Banespa, a bank in Sao Paulo, Brazil, the highest bid was about US$ 7 billion,

made by Santander (a Spanish bank), and the second highest bid was US$ 1 billion, made by Bradesco
(another Brazilian bank). Through some days, the newspapers and magazines published declarations
of the executives of Santander justifying why they bid so high. Of course, we do not have access to the
explanations given to the council.
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that they lead to the same revenue (that is, under the hypotheses of the equivalence
theorem).
Consider a symmetric first price auction, with risk neutral bidders that give an

weight a > 0 to the loss, so if a bidder wins, he receives v (t) − bi − a
¡
bi − b(−i)

¢
=

v (t)+ab(−i)− bi (1 + a) and receives 0 otherwise. The Payoff Characterization Lemma
of Aloisio Araujo, Luciano de Castro and Humberto Moreira (2004) implies that in
equilibrium,

E[v (t) + ab(−i) − bi (1 + a) |ti,b(−i) = bi]fb(−i) (bi|ti) = (1 + a)Fb(−i) (bi|ti) ,
which simplifies to

b0 (ti) = E[v (t)− bi|ti, t(−i) = ti]
ft(−i) (ti|ti)

(1 + a)Ft(−i) (ti|ti)
.

As in Milgrom and Weber, define vE (x, y) = E[v (t) |ti = x, t(−i) = y], ev (t) = vE (t, t),
L (α|t) = exp

·
− R tα ft(−i) (s|s)

Ft(−i) (s|s)
ds

¸
and
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"
− 1
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ds
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=
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#) 1
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= L (α|t) 1
(1+a) > L (α|t) .

Thus, the bidding function with regret is

brg (t) =

Z
[ti,t]

vE (α,α) dLpl (α|t) = vE (t, t)−
Z
[ti,t]

Lpl (α|t) dev (α)
< b (t) ,

where b (t) is the equilibrium bidding function of the standard auction. Thus, from
the revenue equivalence theorem, the revenue in the open auction is greater than that
of the first price auction.
Thus, we proved the following:

Theorem 5. Under regret, symmetric common value setting with risk neutrality
and independent types, the second price auction leads to higher revenue than the first
price auction.46

The reader may note that we do not need the assumption of independence for the
result. If affiliation is added, the rank is only accentuated.
We can list some advantages of regret over affiliation as an explanation for English

revenue dominance. First, regret is simple to understand and provides a clear intuition
for the revenue superiority in open formats: in these auctions there is no regret. So, in
any auction where the regret is possible, the bidders will try to bidder less to reduce

46As the proof makes clear, the result remains true if we assume affiliation instead of independence.
This would not make clear our point: regret is another kind of relaxation of the assumptions of the
Revenue Equivalence Theorem.
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their posterior regret. With regret, the auctioneer may receive ready complaints for
the money left on the table and this can be a further reason for avoiding sealed-bid
formats.47

Another advantage of this explanation is that it allows to understand why some
auctions are always conducted via the same form (a feature that affiliation cannot
capture). Indeed, if the auctions are conducted in such way that at the end, the
bidders do not know the bids of the opponents, then there is no regret effect. In these
cases, other effects, like asymmetries and risk aversion, may lead to the situation where
first price auction performs better. For an example, consider the job markets auctions.
The employers do not know the bid of the others. So, there is no regret effect and we
can verify that these markets are almost always conducted via first price auctions.48

A final observation is worth. Many departures from the assumptions of the Rev-
enue Equivalence Theorem (RET) have been studied. Its main assumptions are: (1)
independence; (2) risk neutrality; (3) lack of collusion; (4) symmetry. Although the
standard relaxation of (1) – affiliation – implies the predominance of the open for-
mat, the relaxation of the other assumptions implies, in general, the contrary. It is well
known that risk aversion favors first price auctions (see Matthews (1983) and Maskin
and Riley (1984)). Since during an open auction, it is possible to identify and punish
an agreement’s defector, the possibility of collusion is more likely in the English format
than in the first price sealed bid format. So, again the latter performs better than the
former.
The consequences of asymmetries are less clear. Maskin and Riley (2000a) classify

three cases of asymmetries that lead to clear predominance of one of the formats. Two
of them favor first price auctions. Open auctions are superior only in the case of shifts
of probability to a low end point. This happens in this case because of the behavior
of “low balling” in the first price auction, from the part of the strongest bidder. This
seems to be a less representative case of asymmetry. So, it is likely that most of the
departures from the assumptions of the RET are likely to favor first price auction
(taking in account our argument that affiliation is very rare).49 Thus, in general terms,
the regret explanation is a relaxation of the assumptions of the RET that leads to a
more robust support to point 5. If the reasoning expressed by points 5-9 is intended
as explanation of the predominance of English auction, it is better to appeal to regret
than to affiliation.
In other words, the (considered strong) argument in favor of affiliation (expressed in

Reaction 9) is mild, in fact.

7. The Tests of Affiliation

Despite our (theoretical) arguments, another reaction could require more:

Reaction 10: A true test for an assumption must to be empirical and/or experimental.
So, we cannot dismiss affiliation without such tests.

47Boyes and Happel (1989), p. 40, relate such complaints in a first price auction conducted in
Arizona State University.
48Maskin and Riley (2000) explain this fact via an asymmetric reasoning. Nevertheless, we consider

that regret explains better the phenomenon.
49Of course, this is, also, a “rough” affirmative. We do not have a measure to indicate which depar-

ture of the assumptions of the RET is the most important. We hope empiricists and experimentalists
can give a contribution in this matter.
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This reaction points out the need of checking the validity of affiliation.
Fortunately, Milgrom and Weber’s results include many testable predictions, most

of them strongly based on the affiliation assumption. So, we can briefly survey the
empirical and experimental literature to look for support for affiliation. This is the
purpose of this section, although this cannot be taken as a complete or exhaustive
survey of the field. Indeed, for a survey of the experimental literature, see Kagel
(1995). Laffont (1997) is a comprehensive account of the empirical studies in auctions.
Anticipating the findings, it seems that the literature lacks a true test of affiliation.

Such absence can be understood only if the affiliation assumption is considered so good
that it is unquestionable. Our hope is that our arguments can stimuli the necessary
studies.

7.1. Experimental Literature. In the experimental literature, an important work
is Kagel, Harstad and Levin (1987).50 They produced affiliated signals that were dis-
tributed to individuals. The bidding behavior was collected. The main finding is that
individuals follow the Nash equilibrium strategies in first price auctions (the equilibrium
describe better the behavior than ad-hoc models proposed). Doses of public informa-
tion raised revenue, but lesser than predicted. Also, the second price auctions raise
more revenue than the English auction, mainly because there is overbidding. These
facts could be a falsification of the affiliation assumption, but they are rather weak
and the authors do not interpret the results in this way. It is interesting to look at
their table X, where they reproduce their results on revenue rank. From three sets of
experiments, two have produced more revenue on the first price than on the English
auction. In comparison with second price auction, the first price performed better in
one set of experiments. However, what is more striking in their table X is the predicted,
i.e., the theoretical differences in revenue. The signals range from $25 to $125 and they
are truly affiliated, but the theory says to expected revenue differences just from $0.08
to $0.69.
A more recent experiment was reported by Lucking-Reiley (1999). He conducted real

auctions of Magic cards through the internet, with experienced bidders. He found that
the Dutch auction leads to higher revenue than the first price auction (to the contrary
of the theory) and that the English and the second price are roughly equivalent. Both
facts are against the implications of Milgrom and Weber (1982) model, but, again, the
finding is not conclusive. Unfortunately, he does not compare the first and the second
price auctions.
We find that these experiments do not check properly affiliation. In fact, this is not

the authors’ purpose. An experimental test for affiliation has to include the investiga-
tion of the values of the individuals in their experiments. It is needed to discover the
estimates that each bidder makes and, then, check if such estimates are affiliated but
not independent (in which case affiliation matters). Of course, a number of issues have
to be considered when performing such tests. Some of them are whether the individ-
uals have well defined estimates and their behavior is consistent with such estimates.
Also, for the check of the affiliation hypothesis, a large set of data is probably needed.
Nevertheless, the process of collecting this data cannot interfere in the outcome, as
would happen if the repetition of the game could produce some kind of collusion, for
instance.

50See also Cox, Roberson and Smith (1982), Cox, Smith and Walker (1985a, 1985b) and Kagel and
Levin (1986).
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In sum, there is a large avenue to be covered by experimentalists. In the benefit
of the progress of Auction Theory, it is highly worth to test the plausibility of the
affiliation assumption.

7.2. Empirical Literature. We could split the vast empirical literature in at least two
distinct set of works. In the first, the theoretical one, the main attention is paid to the
structural econometric approach and the development of methods for nonparametric
(and parametric) estimation of auctions, mainly first price auctions. Another point
of interest is the question of identification, that is, the property of being possible to
recover the distribution of the unobservable from the distribution of the observable. See
Paarsch (1992), Laffont and Vuong (1993), Laffont, Ossard and Vuong (1995), Donald
and Paarsch (1996), Guerre, Perrigne and Vuong (2000), Haile and Tamer (2002), Li,
Perrigne and Vuong (2002), Athey and Haile (2002).
Most of these papers is devoted to independent models. More recently, attempts

have been made to extend the models to affiliation.51 As in the purely theoretical
literature, affiliation is taken as a good generalization of independence.
The other branch of the literature embraces the truly empirical works. In a series

of papers, Ken Hendricks and Robert H. Porter have extensively studied the U.S.
offshore oil and gas lease auctions conducted by the Department of the Interior, i.e.,
the sales of the Outer Continental Shelf. (See Hendricks, Porter and Boudreau (1987),
Hendricks, Porter and Spady (1989) and Porter (1995).) The main concern of them is
the bidding behavior with respect to the information. They distinguished the wildcat
leases auctions, where any bidder has a special informational advantage because the
tracts in the neighborhood are unexplored, and the drainage auctions, where some
bidder can be better informed because of the experience in a close tract. A length
discussion is made over questions as whether the common value paradigm is suitable
for wildcat leases auctions and about the proper model for drainage auctions. We find
little or none relation with affiliation.
The tests for revenue equivalence seem more relevant. For a set of data on English

and first price auctions run by the U.S. Forest Service for timber haversting rights,
Mead (1966) and Johnson (1979) found a tendency for the first price auctions to raise
more revenue than the English auctions. However, Hansen (1985, 1986) argued that
there was a selection bias caused by the way the Forest Service chose which auction
to use for each timber lot. After correcting for this bias, he found that the conclusion
does not sustain. Another related, but still inconclusive study was made by Tenorio
(1993) for the multi-unit currency auctions in Zambia.
Other references to empirical works in auctions are found in the survey of Laffont

(1997). We do not find a direct test of the assumption: it seems to exist an amazing
lack of experimental support for affiliation.

8. Discussion

Affiliation seems to have a very good reputation as an assumption within Auction
Theory. In this paper we show how far this notion is from being reasonable. Also,
we provide an alternative explanation to the predominance of English auctions. This
explanation has a very important feature: it allows to distinguish the situations where
the English auctions are preferred and where the first price auctions are better. Indeed,
if the auctions are conducted in such way that at the end, the bidders do not know the

51See Li, Perrigne and Vuong (2002) and Athey and Haile (2002).
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bids of the opponents, then there is no regret effect and the first price can dominate.
This is precisely the case of job markets.
Some final reactions need further comments.

Reaction 11 - Affiliation is a generalization of independence. Then, no matter what
we prove, affiliation is strictly preferred to independence.

We disagree. First, the theoretical manipulation under affiliation is much more cum-
bersome than under independence. That is, there is a considerable cost of passing from
independence to affiliation. The benefits, on the other hand, are poor: the monotonicity
of equilibrium is maintained (at hard work, in some cases) and the revenue differences
are likely to be of small magnitude.52 Moreover, the conclusions obtained under affilia-
tion can be misleading if we try to apply them to the reality, where affiliation is hardly
satisfied. Then, in this sense, affiliation is worse than independence.

Reaction 12 - Affiliation enables us to prove monotonic equilibrium and this is of
help in comparative statics.

Affiliation is problematic even for the task of proving the equilibrium existence. In
asymmetrical and/or multidimensional settings, affiliation fails to ensure the necessary
monotonicity.53 Even the monotone comparative statics are not always possible, as
McAdams (2003) observes. Then, for comparative statics purposes, it is better to
restrict ourselves to the independent case.

9. Alternative Method for Treating Dependence: The Conditional
Independence Program

An entirely negative paper can be useful, but it would be better to present some
alternative. Otherwise, the following reaction could emerge:

Reaction 13: Independence is a very strong assumption, not likely to be satisfied in
the real world. So, we need to treat the case where the signals of the bidders are, in
some extent, correlated. We need to stick on affiliation if we do not have an alternative
to treat dependent signals.

The purpose of this section is to discuss an alternative method to affiliation, that
we call the Conditional Independence Program (CIP). Conditional Independence is,
indeed, a concept widely and intensively used in Statistics, Psychology, Artificial Intel-
ligence, Scientific Methodology and Science Philosophy. Dawid (1979) seems to be a
precursor of many of these applications. The concept is also not new in Auction Theory.
Wilson (1969, 1977) analyzes some models with conditional independence. Neverthe-
less, differently of the CIP, he conditions in the true value of the object (and do not
show the existence of equilibrium). Unfortunately, after the introduction of affiliation,
Conditional Independence seems to be banned from Auction Theory, although some
recent papers use conditional independence in a close form of that of Wilson (see Fun-
denberg et. al. (2003) and also Reny and Perry (2003)). To describe the contribution
of the CIP, let us begin with an informal description.

52Although we have not proved this last point, there are indications in this direction.
53A counterexample is given by Reny and Zamir (2002).
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Consider, for instance, the behavior of two experienced bidders in wine auctions. If
we analyze only their bids, obviously they will be highly correlated: for a poor quality
lot they will bid a few; for a lot of good wine, they will bid high. Nevertheless, this high
correlation is not a reason to abandon the independent case model. Simply, one has
to condition the bids (and the signals) on the commonly known information: the lot
of the wine being sold. Similar reasoning applies to all auctions, as those of paintings,
drilling rights, timber, wool, etc.
When conditioning in these common knowledge characteristics, C, the dependence

may disappear. If it does, we are done, as we show in the subsection 9.2 below.
In the other case, even conditioning in C, the signals t1, ..., tN are dependent.

Nevertheless, there exists a statistics P such that, conditioning in P (and in C), t1, ...,
tN are independent.

54 In other words, P represents an information that is not commonly
known, but that is sufficient to make the bidders’ signals independent. For grasping
what P can be, consider an auction where the bidders consult the same report or the
same consultant in order to make their estimates, but this behavior is not commonly
known. The content of the report is P and, conditioning in it, the estimates are
independent. One could say that P embraces the characteristics of the observational
technology used by all the bidders. From a scientific point of view, it is better to
explicitly include in our models such variable P , otherwise we preclude ourselves to
learn something about the structure of dependence between the signals. A central idea
of the program is to take into account P . Now, we will describe more detailed the
CIP.55

9.1. Preliminaries. Let t1, ..., tN be multidimensional and (possibly) dependent vari-
ables. Let Ci be a commonly known factor that influences bidder i’s information, ti, for
i = 1, ..., N . Then, C = (C1, ..., CN ) is common knowledge. Observe that C may take
many different values. We assume that there is a conditional cumulative distribution
function (c.d.f.) F (t1, ..., tN |C) = FC (t1, ..., tN ).

56 Let P be another statistic such
that the signals ti are independent, conditioning in P , F

C (t1, ..., tN |P ) = FC (t1|P ) ·
...· FC (tN |P ). Let FC,Pi be the marginal for ti, when conditioning in both C and

P . Let us define Ii ≡ FC,Pi (ti), so that Ii and Ij are i.i.d. variables, with uniform
distribution in [0, 1] . Let

Qi (u;C,P ) = sup
n
ti : F

C,P
i (ti) 6 u

o
.

Then, ti = Qi (Ii;C,P ) for almost all ti. In other words, we have split each bidder’s
signal in three parts: a commonly know piece of information, C; an individually known
information, independent of the other bidders’ information, Ii and a statistics that sum-
marizes the dependence between the bidders’ opinion, but it is not commonly known,
P . The CIP consists in approaching the problem of the dependence of the signals
by, first, splitting the bidders’ information as above and then taking advantage of the
conditional independence that it describes, as the following methods show.

54We discuss below the existence of such P .
55This will not be a formal exposition. Especially in the subsequent subsections, some claims are

not rigorously stated and proved. Nevertheless, they are more or less well known. It is a matter of
future work to put CIP in mathematical statements and methods.
56It is not necessary to adopt the Bayesian doctrine that there is also a distribution for C or that

there is a joint distribution for (t1, ..., tN ) and C, although this is obviously possible.
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9.2. Conditional Independence Approach (CIA). If we assume that P =constant,
that is, the ti are independent conditioning in C, then the existence and characteriza-
tion of equilibrium follow immediately from the correspondent results for independent
types. Indeed, let us consider the auction where the signals are Ii, i = 1, ..., N , inde-
pendent and let bC = (bC1 (·) , ..., bCN (·)) be an equilibrium bidding functions profile, for
a fixed C. Then, since ti = Qi (Ii;C), we can define the bidding functions

bi (ti) = bi (Qi (Ii;C)) = b
C
i (Ii) ,

for i = 1, ..., N . We have the following

Lemma 1. If bC (I) = (bC1 (I1) , ..., b
C
N (IN )) specifies an equilibrium of an auction

with independent types I1, ..., IN for each C, and if ti = Qi (Ii;C), where C is commonly
known, then the profile b = (b1 (·) , ..., bN (·)), where bi (ti) = bCi (Ii), is equilibrium of
the auction with types ti.
Proof. It is a trivial consequence of the fact that bCi (Ii) is the optimal bid for each

C.¥

Observe that the strategies so obtained will depend on C, but since C is common
knowledge, there is no problem. Observe also that we do not take C to be the true
value of the object, which is unknown in general.
Of course, an empiricist has to be careful in order to apply the CIA. What is common

knowledge for the bidders participating in the auction is not necessarily easy to known
by the empiricist. For instance, it can be common knowledge for the bidders that a tract
is in a region of great productivity. This can be difficult to known from outside, but if
the empiricists does not condition in this information, their results will be correlated,
although the bidders’ signals and, hence, bids, are independent (conditioning in that
common knowledge information).
It is important to observe that, since we do not need to specify the relationship

between C and the signals, ti, affiliation does not hold, in general. We also emphasize
that the assumption that P is constant is not too strong. If we are considering, for
instance, a mineral rights auction, it is commonly known the specific region of the
tract and the public reports about it. If we make the conditioning in all these public
information, it may remain little that can be a source of dependence. Of course, this
is still possible and for treat these cases, we propose the following:

9.3. Conditional Independence Classification (CIC). If CIA cannot be applied,
there is a piece of information, P , which can be (partially) known to some bidders, but
is not common knowledge. We can classify some cases for P :

(1) If it is common knowledge that P is know to one (or some) bidder(s) — but
not for the others, we are in a situation in which some bidders have superior
information, a setting similar to the case analyzed by Engelbrecht-Wiggans,
Milgrom and Weber (1983). Their results suggest that, in this case, there is
equilibrium in mixed strategies and the less informed bidders have zero expected
rent.

(2) Another situation occurs when P is known (or can be obtained) by all bidders,
but it is not common knowledge. For instance, bidder i does not know that
bidder j knows P or bidder j does not know whether bidder i knows that
bidder k knows P , and so on. In this case, it is natural to expect that P
becomes common knowledge after some rounds of the auction game and we
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return to CIA. A good example of this case is given by Ashenfelter (1989). He
reports that some wine auctions in United States used to end with low prices
for the lot, in comparison with similar lots sold in Europe. He explains that the
reason for this was the fact that the auctions’ participant in USA consult the
same report for wines, and are deeply influenced by it. Since the report have
misleading indications for some wines – for instance, good wines considered
bad –, the price of those wine paid in USA were in general lower than the
price in Europe. Ashenfelter says that the aware bidders can take advantage
from this and buy good wines for small prices. Nevertheless, he concludes by
saying that the opportunities were disappearing. We interpret this by the fact
that the information of the report P was becoming common knowledge.

(3) If P can be discovered (even at some cost), then a) if it is not too costly, just
one or some bidders can make efforts to learn it (and we turn to the case 1); or
b) all the bidders try to learn P , and the situation turns to the case 2. In both
situations, this case is not stable.

(4) If it is too costly (or if it is impossible) to discover P , then it may be the
case of nonexistence of pure strategy equilibrium. If there is a mixed strategy
equilibrium, it is possible to interpret that the bidders are trying to obtain
an extra source of randomness, since they are not able to access the relevant
random variable P . We propose some alternative solutions for this in the next
subsections.

Of course, many questions arise for a convenient use of Conditional Independence
Classification. How can we distinguish a case from the other? Can we develop some
test? And what is, in reality, P , in specific cases? Do the bidders really try to learn
it? The different auction formats imply different dynamics for the learning of P? How
this affects the Revenue Equivalence Theorem?

9.4. Conditional Independence Approach with Correlated Strategies (CIA-
CS). Suppose that P cannot be commonly known by the players (because it is im-
possible or because it is too cost, as in case 4 of CIC above ). For instance, P can be
formed by the experience, education, culture, propaganda, concepts, values or even by
the common consequences of the evolutionary process of the human beings. To be more
concrete, consider the following: if one bidder likes a painting (because it is colorful or
because she finds it beautiful), the Darwinian evolution can make the other bidders’
appreciation of colors or the concept of beauty similar. In any case, there is a non
assessable variable P that influences the bidders’ valuation.
The bidders cannot explicitly derive their strategies upon the unknown P , but the

equilibrium strategies are not a matter of calculation. In a real auction, the bidders
do not “calculate” their equilibrium strategies. At best, the equilibrium behavior is
reached after some trials or rounds of the game. Then, if there is a random device
that can be used by all players – even not explicitly knowing it – this can sustain an
equilibrium behavior. Formally, we propose the following:

(1) Let Ii be obtained as above, and let b
C,P = (bC,P1 (·) , ..., bC,PN (·)) be a profile of

equilibrium bidding functions (if it there exists) obtained for the auction with
independent types Ii.

(2) Remembering that ti = Qi (Ii;C,P ), define the bidding functions

bi (ti) = bi (Qi (Ii;C,P )) = b
C,P
i (Ii) ,
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for i = 1, ..., N .
(3) Observe that, exactly as in Lemma 1, b = (b1 (·) , ..., bN (·)) constitutes a

(correlated) equilibrium of the game.

The unusual part of the above solution is that we allow the description of the bidding
strategies to depend on a not commonly known random variable, P . So, we are using
the correlated equilibrium concept as solution, but in a special form.57 It is a special
form because the players do not receive a direct indication of the action to adopt

(as in Aumann (1987)), but rather they play a function P 7→ bC,Pi (Ii). The real bid is
calculated from the realization of P . This special form is also consistent with Aumann’s
definitions.
Two difficulties can arise with this solution. The first is the impression that the

bidders do not know their bids. Some interpretations of mixed strategies assume exactly
this. Nevertheless, this is needed only for the interim stage, when we calculate the
payoff to determine the optimality of the strategy. The interim stage, however, is only
a theoretical moment – it does not correspond to a “real time” instant. In other words,

when the players meet at the auction, they can know their real bids bC,Pi (Ii).
The second difficult concerns the possibility of randomization based in the same

(not commonly known) device, P . But if the source of correlation is the education58,
the cultural inheritance or the propaganda59, why this cannot influence not only the
opinions but also the actions, even if it is not commonly known the values that it takes?
Of course, CIA-CS is likely to be controversial. We believe, however, that the ap-

proach is valuable at least because it raises many questions: what are the real sources
of the dependence of opinions and actions? How they can be accessed and learned? Is
it possible to play without the knowledge of the true mechanism producing the action?
In sum, CIA-CS puts again in perspective the need for a deeper understanding of how
the bidders form their strategies.
It is natural to expect that some auction theoreticians will be unsatisfied with CIA-

CS and we do not insist in its applicability for them. Rather, we point out two more
options. First, as in the case 4 of the CIC, an equilibrium may exists only in mixed
strategy (or do not exist at all). This may have interesting interpretations, as we discuss
in subsection 9.6 below. Another possibility is to appeal to the following:

9.5. Conditional Independence Approach with Monotonicity (CIA-M). It is
possible to assume, without loss of generality, that P is unidimensional. So, the general
problem is that of conditional independence with P an unknown unidimensional para-
meter. If one assumes monotonicity of the function F (t|P ) = F1 (t1|P ) · ... ·FN (tN |P )
with respect to P , we are impose a strong restriction, but that is still weaker than
affiliation.
Probably, the best examples of CIA-M are the works of Wilson (1977, 1979), Fun-

denberg et. al. (2003) and Reny and Perry (2003). Observe that the first papers do
not have existence results and the latter require large number of bidders.

57For the concept of correlated equilibrium, see Aumann (1974, 1987).
58Aumann (1987, p. 16) gives an example where the correlation of the strategies is intuitively

justified from the fact that the players went “to the same business school”.
59For instance, the propaganda viewed by the participants in a business event or by some clubs of

investments, parties, etc.
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It is likely that the above procedure will not give the existence of pure strategy
equilibria in general cases.60 This does not preclude the need for an analysis of what
are the cases where the equilibrium in pure strategy there exists. Before we finish this
discussion with the presentation of the last part of CIP, we make some comments.

9.6. Digression. The previous discussion made clear that the Conditional Indepen-
dence Program (CIP) puts in other perspective the importance of the results based in
the assumption of independent signals. Indeed, the equilibrium existence in the case of
dependent signals is derived trivally from such results under the cases treated by CIA
or CIA-CS. So, the following reaction can emerge:

Reaction 14. CIP brings nothing new. We already used conditional independence
assumptions and there is no new equilibrium existence results.

Conditional independence is not an assumption for CIP. Rather, the program spec-
ifies all the possible situations that can happen and offer an solution or interpretation
for all of them. The classification (CIC) is one of its important functions.
To the contrary of previous works, CIP does not assume the existence of a variable

upon which the bidder’s signals are independent. The central feature of CIP is exactly to
decompose the bidder’s signals in the commonly known part (C) and in a uncommonly
known part (P ). This (very simple) idea opens the door to:

(1) a reassessment of the value and utilization of the independent signals’ results;
(2) the investigation of how evolves the dependence of the bidder’s signals and how

it is related to their learning efforts;
(3) the investigation of the situations not covered by existence results.

Although the idea is very simple, these contributions seem worth and are certainly
original. Of course, some mathematical developments are still needed. We let then
to future works. Nevertheless, it is worth to note that CIP decouples the theoretical
investigation in two: the study of the dynamics of the information and the equilibrium
existence result in its own.
In any case, CIP can ensure the existence of equilibrium in cases where affiliation does

not work, like that of multidimensional signals and asymmetrical auctions. Also, it puts
in another perspective the importance of understanding the independent types case.
Indeed, it has the advantage of directly using the theory constructed for independence.

9.7. Conditional Independence Classification of Equilibrium Strategies (CIC-
ES). When the signals are independent, in general there exists equilibrium in pure
strategy. See, e.g., Athey 2001, Maskin and Riley (2000b), McAdams (2003), Araujo,
de Castro and Moreira (2004), etc.61 As we have already observed, out of the inde-
pendence, general results only exists in mixed strategy (see Matthew O. Jackson and
Jeroen M. Swinkels (2004)). So, our theoretical interests can point exactly to the cases
where P is not constant and cannot be used as a basis for randomizing actions (so that
CIA and CIA-CS do not apply). The alternative just presented, CIA-M, is already
known. Thus, it is possible the following:

60Indeed, we think that CIA-M is not the best research strategy to Auction Theory, as we explain
in the next subsection.
61Of course, this is “in general terms”. A completely general result seems impossible, as the coun-

terexample of M. Ali Khan, Kali P. Rath and Yeneng Sun (1999) shows.
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Reaction 15. CIP solves any problem. The truly problem of equilibrium existence
under dependence remains untouched under CIP.

This reaction gives the opportunity to explain a different research strategy that CIP
allows to pursue (which we name Conditional Independence Classification of Equilib-
rium Strategies – CIC-ES). We base it in the following excerpt of the iluminating
paper of Ariel Rubinstein (1991, p. 922):

“The meaning of nonexistence. If what we are trying to model in game
theory are situations in which we expect regular behavior, then it is not
true that all descriptions of the world should have an equilibrium. The
mere fact that a game theoretician constructs a game does not mean
that the game corresponds to a regular mode of behavior. The modeller
should check the adequacy of the model as a decription of conveived
regularity.
“This brings me back to the mixed strategies issue. One of the reasons

that mixed strategies are popular in both game and economic theory,
in spite of being so unintuitive, is that many models do not have an
equilibrium in pure strategy. However, the nonexistence of a solution
concept in pure strategy does not necessarily mean that we should look
for stochastic explanations. It means that the description of the game
and the assumptions embedded in the solution concept are not consistent
with regularity. Expanding the model or changing the basic assumptions
are alternatives which the modeller should consider at least as favorably
as mixed strategies.”

A reexamination of the cases 3 and 4 in CIC shows that the problem with such cases
is exactly the lack of regularity in the play of the game. In case 3, this is excessively
clear. In case 4, the absence of regularity is more subtle. It comes from the description
of this case as one where the learning of the important variable P is impossible (or
too costly) for all the players. This means that the bidders are always lacking the
necessary information and cannot reach regular (stable) behavior in the game. In turn,
this brings the possibility of using mixed strategies: to appeal to stochastic behavior
when simple (pure strategy) behavior is not stable. This shows the deep connection
between the use of mixed strategy and the irregularity of the modeled situation.
In simple terms, CIC-ES consist in the classification of the models that have equilibria

in pure strategies and the models where equilibria exist only in mixed strategy. A
deeper understanding of these conditions will facilitate the description of the important
determinants of the strategic behavior of the players. Of course, these considerations
illustrate that CIP is, indeed, valid for a more general context than auctions. It fits
well for all incomplete information game, where the players’ signals can be correlated.
In sum, CIC-ES consists in solving the following problems:

(1) Decide whether there exists or not pure strategy equilibria in games of incom-
plete information (auctions);

(2) Study alternative modifications of the model to describe the behavior of the
bidders, rather than just accept the mixed strategies solution concept.

The justificative for the second point above come from the quotation of Rubinstein,
but also for the well known fact that the concept of mixed strategies has many problems.
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The discussion make clear that we view mixing as an expression of unstable behavior,
but this does not contradict the traditional views about mixed strategies.

10. Conclusion

We argued that affiliation is not a suitable assumption and have offered an alternative
program for the analysis of equilibrium existence in auction. The Conditional Indepen-
dence Program suggests ways for understanding the complex problem of dependence
of signals, while opens the door for many questions. Also, it builds a bridge between
Auction Theory and the fields where conditional independence is actively used and
studied, as in Psychology, Statistics, Artificial Intelligence, Scientific Methodology and
Philosophy of Sciences. This bridge can be valuable in bringing new ideas and insights.
In any case, we consider it a more convenient and robust tool for approaching the cases
of dependence, because it allows to approach asymmetries and multidimensionality, to
the contrary of affiliation.
This paper also has the purpose to remember to the experimental, empirical and the-

oretical auction community that there is important and open works to be undertaken:

• Experimental: to develop methods to learn the values that people attribute
to objects in an auction and whether they are correlated; to make relations
between their values and their bids;

• Empirical: to describe what are the kind of correlation (if any) of the bids in
real auctions;

• Theoretical: to develop models and to explore implications of CIP (or another
alternative for affiliation) for the description of strategic and rational behavior
of the bidders;

We hope that these efforts might allow Auction Theory to move forward and to
supersede affiliation as work assumption.
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Appendix

We begin by giving more general definitions of Association (As) and Affiliation without the

use of density functions.

Definition. A subset A of RN is called increasing if its indicator function 1A is non-

decreasing. A set S ⊂ RN is a sublattice if it contains x ∧ x0 ≡ (min {xi, x0i})Ni=1 and
x ∨ x0 ≡ (max {xi, x0i})Ni=1 as long as x and x0 are in S.
Definition. Random variables X1, ...,XN are associated if for all increasing sets A and B,

Pr [(X1, ...,XN ) ∈ A ∩B] ≥ Pr [(X1, ...,XN ) ∈ A] · Pr [(X1, ...,XN ) ∈ B] .

Definition. Random variables X1, ...,XN are affiliated if they are associated conditional on

any sublattice. In other words, if for all increasing sets A and B, and every sublattice S,

Pr [(X1, ...,XN ) ∈ A ∩B|S] ≥ Pr [(X1, ...,XN ) ∈ A|S] · Pr [(X1, ...,XN ) ∈ B|S] .

Proof of Theorem 1. The implication (V II) ⇒ (V I) is Lemma 1 of Milgrom and Weber

(1982). The implication (V ) ⇒ (IV ) is proved by Tong (1980), chap. 5. The implication
(IV ) ⇒ (III) is Theorem 4.3. of Esary, Proschan and Walkup (1967). It is obvious that

(III)⇒ (II)⇒ (I). Thus, we have just to prove that (V I)⇒ (V ). Assume that H (y|x) ≡
fY |X(y|x)
FY |X(y|x) is non-decreasing in x for all y. Then, H (y|x) = ∂y

£
lnFY |X (y|x)

¤
and we have

1− ln £FY |X (y|x)¤ = Z ∞

y
H (s|x) ds >

Z ∞

y
H
¡
s|x0¢ ds = 1− ln £FY |X ¡y|x0¢¤ ,

if x > x0. Then, ln
£
FY |X (y|x)

¤
6 ln

£
FY |X (y|x0)

¤
, which implies that FY |X (y|x) is non-

increasing in x for all y, as required by the property (V ).
The counterexamples for each passage are given by Tong (1980), chap. 5, except those

involving property (VI): (V ); (V I), (V I); (V II). For the first counterexample, consider

the following symmetric p.d.f. defined on [0, 1]2:

f (x, y) =
k

1 + 4 (y − x)2
where k = [arctan (2)− ln (5) /4]−1 is the suitable constant for f to be a p.d.f. We have the
marginal given by

f (y) =
k

2
[arctan 2 (1− y) + arctan 2 (y)]

so that we have, for (x, y) ∈ [0, 1]2:

f (x|y) = 2
h
1 + 4 (y − x)2

i−1
[arctan 2 (1− y) + arctan 2 (y)]−1 ,

F (x|y) = [arctan 2 (x− y) + arctan 2 (y)]
arctan 2 (1− y) + arctan 2 (y)

and

F (x|y)
f (x|y) = 2

h
1 + 4 (y − x)2

i
[arctan 2 (x− y) + arctan 2 (y)] .
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Observe that for y0 = 0.91, y = 0.9, x = 0.1,

F (x|y0)
f (x|y0) = 0.366863 > 0.366686 =

F (x|y)
f (x|y) ,

which violates property (VI). On the other hand,

∂y [F (x|y)] =
2

1+4y2
− 2

1+4(x−y)2
arctan (2− 2y) + arctan (2y)−

[arctan (2x− 2y) + arctan (2y)]
h

2
1+4y2

− 2
1+4(1−y)2

i
[arctan (2− 2y) + arctan (2y)]2

In the considered range, the above expression is non-positive, so that property (V) is satisfied.

Then, (V ); (V I).
Now, fix an ε < 1/2 and consider the continuous and symmetric density function over

[0, 1]2 :

f (x, y) =

½
k1, if x+ y 6 2− ε
k2, otherwise

where k1 > 1 > k2 =
£
2− k1

¡
2− ε2

¢¤
/ε2. The conditional density function is given by

f (y|x) =


1, if x 6 1− ε

k1
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x

k2
k2(x+ε−1)+k1(2−ε−x) , otherwise

and the conditional c.d.f. is given by:

F (y|x) =


1, if x 6 1− ε

k1y
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x
k2(y+x+ε−2)+k1(2−ε−x)
k2(x+ε−1)+k1(2−ε−x) , otherwise

and

F (y|x)
f (y|x) =

 1, if x 6 1− ε
y, if x > 1− ε and if y 6 2− ε− x
y + x+ ε− 2 + k1/k2 (2− ε− x) , otherwise

Since 1 − k1/k2 < 0, the above expression is non-increasing in x for all y, so that property
(VI) is satisfied. On the other hand, it is obvious that property (VII) does not hold:

f (1, 1) f (1− ε, 1− ε) = k2k1 < k
2
1 = f (1− ε, 1) f (1, 1− ε) .

This shows that (V I); (V II).¥

Proof of Theorem 2. For a contradiction, assume the existence of x < x0 and y < y0 in the
support of X and Y such that v is strictly increasing in both arguments in [x, x0] × [y, y0].
Let z4 = v (x

0, y0) > z3 = v (x0, y) , z2 = v (x, y0) > z1 = v (x, y). (See Figure 2.) Without
loss of generality, we assume that z3 > z2. (If they were equal, we can reduce y

0 and obtain
the desired inequality.)

Let S = {(X,Y,Z) : Z = z2 or z3 and X = x or x0} be a sublattice and let A =
{(X,Y,Z) : Y > y0 and Z > z2} and B = {(X,Y,Z) : X > x0 and Z > z3} be increasing
sets. Figures 3 and 4 illustrate such sets. (One of the axes are omitted in each figure.)

It is clear that AB = A∩B = {(X,Y,Z) : X > x0, Y > y0, Z > z3} and A∩B ∩ S =
{(x0, y0, z3)}. Such point is out of the support of X, Y, Z because v (x0, y0) = z4 > z3.
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This implies that Pr [AB|S] = 0.62 Nevertheless, P [A|S] > 0 and P [B|S] > 0. Then, the
necessary condition for affiliation, namely, Pr [AB|S] > P [A|S]P [B|S] does not hold, that
is, X,Y and Z are not affiliated.¥

62Although S has zero probability, the conditional probability Pr [AB|S] can be well defined
as the limit of Pr [AB|S +∆ε] when ε→ 0, where S+∆ε ≡ S = {(X,Y,Z) : Z ∈ [z2−ε, z2+ε]
∪ [z3−ε, z3+ε] and X ∈ [x−ε, x+ε] ∪ [x0−ε, x0+ε]}. It is easy to see that Pr [AB|S +∆ε] =
0 for sufficiently small ε.
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Proof of Theorem 3. The Lemma of Characterization of Araujo, de Castro and Moreira

(2004) implies that ∂bΠ (t, b) can be writing as

∂bΠ (t, b) = (t− b) fb(−i) (bi|ti)− Fb(−i) (bi|ti) ,
where fb(−i) (bi|ti) and Fb(−i) (bi|ti) are the p.d.f. and the c.d.f., respectively, of the maximum
bid of the opponents, conditioned to the signal ti. Let us consider the existence of a symmetric
monotonic equilibrium, b∗ (ti). If it is differentiable,

(b∗)0 (t) = (t− b∗ (t)) fY (t|t)
FY (t|t) .

The solution to this equation is given by b (t) =
R
[t,t] αdL (α|t) = t−

R
[t,t] L (α|t) dα, where

L (α|t) = exp
h
− R tα fY (s|s)

FY (s|s)ds
i
. So, we have

b
0
(y) = 1− L (y|y)−

Z
[t,y]

∂yL (α|y) dα

=
fY (y|y)
FY (y|y)

Z
[t,y]

L (α|y) dα.

It is clear, then, that b0 (y) > 0, as long as y > t. Now, suppose that a bidder of type t is
considering to bid b (y). Then,

∂bΠ (t, b (y)) = fY (t|t)
·
t− b (y)
b0 (y)

− FY (y|t)
fY (y|t)

¸
= fY (t|t)

·
t− y
b0 (y)

+
FY (y|y)
fY (y|y) −

FY (y|t)
fY (y|t)

¸
.

So, by IHRD(Y |X), the term in brackets has the signal of t−y, which shows that it is optimal
for bidder of type t to bid b (t).¥

Proof. of Proposition 2. Consider a symmetric first price auction with two bidders and

private values. Let f (t1, t2) be the density function of joint distribution of the affiliated signals
t1 and t2 with support T =

£
t, t
¤ × £t, t¤. Let E be the triangle with vertices in

¡
t, t− ε

¢
,¡

t− ε, t
¢
and

¡
t, t
¢
and let 1− 1

k be the probability of E, such that

fm (t1, t2) = kf (t1, t2) 1T\E
is a density function with support T\E. Let F and Fm denote the c.d.f. of f and fm,
respectively. It is easy to see that fm (t2|t1) = f (t2|t1) · g (t1), where

g (t1) =

(
1, if t 6 t1 6 t− ε

f (t1) /
hR 2t−ε−t1
t f (t1, t2) dt2

i
if t− ε 6 t1 6 t

Observe that, for a sufficiently small ε > 0, fm is η−close to f . We have the following:
Claim. The first price auction with the modified p.d.f. fm possess a symmetric equilibrium

that can be expressed by

bm (t) =

½
b (t) , if t 6 t 6 t− ε/2
b
¡
2t− ε− t¢ , if t− ε/2 6 t 6 t
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where b (t) is the symmetric equilibrium under the p.d.f. f . Consequently, this auction has a
non-monotonic equilibrium bidding function.

bm (t) =

½
b (t) , if t 6 t 6 t− ε/2
b
¡
2t− ε− t¢ , if t− ε/2 6 t 6 t

where b (t) is the symmetric equilibrium under the p.d.f. f .
Consider that bidder 2 uses the strategy bm (t) above. The payoff of bidder 1, of type t1,

bidding b1, is Π
m (t1, b1) = (t1 − b1)Fmb2 (b1|t1), where Fmb2 (b1|t1) ≡ Pr [bm (t2) < b1|t1].

The Characterization Lemma implies that, if fmb2 (b1|t1) > 0,

∂bΠ
m
1 (t1, b1) S 0⇐⇒ (t1 − b1) fmb2 (b1|t1)− Fmb2 (b1|t1) S 0

⇔ (t1 − b1) S
Fmb2 (b1|t1)
fmb2 (b1|t1)

We have three cases to analyze:
a) t 6 t < t− ε:

Fmb2 (b1|t1) =


0, if b1 < b (t)
Fb2 (b1|t1) if b (t) 6 b1 6 b

¡
t− ε

¢
Fb2 (b1|t1)

+ 1− F ¡2t− ε− b−1 (b1) |t1
¢
, if b

¡
t− ε

¢
6 b1 6 b

¡
t− ε/2

¢
1, if b1 > b

¡
t− ε/2

¢
where Fb2 (b1|t1) ≡ F

¡
b−1 (b1) |t1

¢
.

This permits to obtain

Fmb2 (b1|t1)
fmb2 (b1|t1)

=



0, if b1 < b (t)
Fb2 (b1|t1)
fb2 (b1|t1) , if b (t) 6 b1 6 b

¡
t− ε

¢
Fb2 (b1|t1)
fb2 (b1|t1)

+
1−F(2t−ε−b−1(b1)|t1)

fb2 (b1|t1) ,
if b

¡
t− ε

¢
6 b1 6 b

¡
t− ε/2

¢
+∞, if b1 > b

¡
t− ε/2

¢
Since b (t1) is the best reply for the original auction, and since

1− F ¡2t− ε− b−1 (b1) |t1
¢

fb2 (b1|t1)
> 0,

it is easy to see that the best reply is b∗1 = b
m (t1) = b (t1) < b

¡
t− ε

¢
.

b) t− ε 6 t 6 t− ε/2:

Fmb2 (b1|t1) =


0, if b1 < b (t)
Fb2 (b1|t1) · g (t1) if b (t) 6 b1 6 b

¡
t− ε

¢
Fb2 (b1|t1) · g (t1) + 1
−F (2t− ε− b−1 (b1) |t1) · g (t1) ,

if b
¡
t− ε

¢
6

b1 6 b
¡
t− ε/2

¢
1, if b1 > b

¡
t− ε/2

¢
Fortunately, the term g (t1) also appears in f

m
b2
(b1|t1). So, we have
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Fmb2 (b1|t1)
fmb2 (b1|t1)

=



0, if b1 < b (t)
Fb2 (b1|t1)
fb2 (b1|t1) , if b (t) 6 b1 6 b

¡
t− ε

¢
Fb2 (b1|t1)
fb2 (b1|t1)

+
1/g(t1)−F(2t−ε−b−1(b1)|t1)

fb2 (b1|t1) ,
if b

¡
t− ε

¢
6 b1

6 b
¡
t− ε/2

¢
+∞, if b1 > b

¡
t− ε/2

¢
Observe that

1

g (t1)
=

R 2t−ε−t1
t

f (t1, t2) dt2

f (t1)
= F

¡
2t− ε− t1|t1

¢
.

Then, ∂bΠ
m
1 (t1, b1) S 0⇔ bm (t1) = b (t1) S b1, as is required for the best reply to be bm (t1).

c) t− ε/2 6 t 6 t− ε:

Fmb2 (b1|t1) =
 0, if b1 < b (t)
Fb2 (b1|t1) · g (t1) if b (t) 6 b1 6 b

¡
t− ε/2

¢
1, if b1 > b

¡
t− ε/2

¢
from the fact that there is no t2 > 2t − ε − t1 in the support of the conditional distribution,
given t1. It is easy to see that

∂bΠ
m
1 (t1, b1) = (t1 − b1) fmb2 (b1|t1)− Fmb2 (b1|t1) > 0

for all b1 6 b
¡
t− ε/2

¢
because

∂bΠ1 (t1, b1) = (t1 − b1) fb2 (b1|t1)− Fb2 (b1|t1) S 0
⇔ b

¡
t− ε/2

¢
6 b (t) S b1

Since it does not improve the probability of winning but it is costly to bid above b
¡
2t− ε− t1

¢
,

this is the best reply bid, as we wanted to show.¥

Proof of Theorem 4. The dominant strategy for each bidder in the second price auction is to
bid his value: b2 (t) = t. Then, the expected payment by a bidder in the second price auction,
P 2, is given by:

P 2 =

Z
[t,t]

Z
[t,x]

yfY (y|x) dy · f (x) dx =

=

Z
[t,t]

Z
[t,x]

[y − b (y)] fY (y|x) dy · f (x) dx+
Z
[t,t]

Z
[t,x]

b (y) fY (y|x) dy · f (x) dx,

where b (·) gives the equilibrium strategy for symmetric first price auctions. Thus, the first

integral can be substituted by
R
[t,t]

R
[t,x]

b
0
(y) FY (y|y)fY (y|y) fY (y|x) dy · f (x) dx, from the equality:

b
0
(y) FY (y|y)fY (y|y) = y − b (y). On the other hand, the last integral can be integrated by parts, to:
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Z
[t,t]

Z
[t,x]

b (y) fY (y|x) dy · f (x) dx

=

Z
[t,t]

"
b (x)F (x|x)−

Z
[t,x]

b
0
(y)FY (y|x) dy

#
· f (x) dx

=

Z
[t,t]

b (x)F (x|x) · f (x) dx−
Z
[t,t]

Z
[t,x]

b
0
(y)FY (y|x) dy · f (x) dx

In the last line, the first integral is just the expected payment for the first price auction, P 1i .
Thus, we have

D = P 2 − P 1

=

Z
[t,t]

Z
[t,x]

b
0
(y)

FY (y|y)
fY (y|y) fY (y|x) dy · f (x) dx

−
Z
[t,t]

Z
[t,x]

b
0
(y)FY (y|x) dy · f (x) dx

=

Z
[t,t]

Z
[t,x]

b
0
(y)

·
FY (y|y)
fY (y|y) fY (y|x)− FY (y|x) dy

¸
· f (x) dx

=

Z
[t,t]

Z
[t,x]

b
0
(y)

·
FY (y|y)
fY (y|y) −

FY (y|x)
fY (y|x)

¸
fY (y|x) dy · f (x) dx

Remember that b (t) =
R
[t,t]

αdL (α|t) = t−R
[t,t]

L (α|t) dα, where L (α|t) = exp
h
− R t

α
fY (s|s)
FY (s|s)ds

i
.

So, we have

b
0
(y) = 1− L (y|y)−

Z
[t,y]

∂yL (α|y) dα

=
fY (y|y)
FY (y|y)

Z
[t,y]

L (α|y) dα.

We conclude that

D =

Z
[t,t]

Z
[t,x]

fY (y|y)
FY (y|y)

Z
[t,y]

L (α|y) dα
·
FY (y|y)
fY (y|y) −

FY (y|x)
fY (y|x)

¸
fY (y|x) dy · f (x) dx

=

Z
[t,t]

Z
[t,x]

"Z
[t,y]

L (α|y) dα
#
·
·
1− FY (y|x)

fY (y|x) ·
fY (y|y)
FY (y|y)

¸
· fY (y|x) dy · f (x) dx

This is the wanted expression.¥
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CHAPTER 7

A FIXED POINT THEOREM FOR NON-CONVEX SET-VALUED

MAPS

Abstract. We prove a theorem analogous to the Kakutani-Fan-Glicksberg’s theo-
rem in the Bochner-Lebesgue spaces, whose main feature is that the values of the
set-valued map can be nonconvex. In the place of convexity, we require decompos-
ability. In contrast with previous papers, we give our results in the weak topology
and show why this is important.

1. Introduction

Let (T, T , τ) be a non-atomic probability space and let E be a separable Banach
space. Let L = L1 (T, T , τ , E) be the space of Bochner integrable functions s : T → E.
A set K ⊂ L is said to be decomposable if for any r, s ∈ K, r1P + s1T\P ∈ K, ∀P ∈ T ,
where 1P (t) = 1 if t ∈ P and 0 otherwise.
Decomposability is a property that is a good substitute for convexity in Bochner

spaces (see Olech (1984)). This paper treats such substitutability with respect to the
Kakutani-Fan-Glicksberg’s fixed point theorem:

Theorem (Kakutani-Fan-Glicksberg). Let K be a nonempty compact convex
subset of a locally convex Hausdorf space. Assume that the set-valued map Γ : K ⇒ K
is upper semicontinuous and, for all x ∈ K, Γ (x) is nonempty, closed and convex.
Then, there exists x ∈ Γ (x).
Cellina, Colombo and Fonda (1986) provides an analogue to the above theorem where

K is a subset of L = L1 (T,E) and where the convexity is replaced by decomposability:

Theorem (Cellina, Colombo and Fonda). Let K be a nonempty closed subset
of L1 (T,E), with the norm topology, and let Γ : K ⇒ K be upper semicontinuous,
with closed graph such that for all x ∈ K, Γ (x) is nonempty, closed and decomposable.
Moreover, assume that Γ (K) is totally bounded and decomposable. Then, there exists
x ∈ Γ (x).
Observe that they specify the strong (norm) topology for L. This is undesirable,

since compact sets in the norm topology are rare. Indeed, in section 3 we prove that if
E has the Radon-Nikodým property, their assumptions imply that Γ (K) is unitary.
In section 4, we provide an alternative theorem to theirs, that do not require the use

of the strong topology, but of the weak topology of Lp, for 1< p <∞.
As an aplication, we obtain a Nash equilibrium existence result, in section 5.
The next section is dedicated to the definitions and to the statement of well known

results used in the sequel.

2. Preliminaries

If X and Y are topological spaces, we say that the set-valued map Γ : X ⇒ Y
is upper semicontinuous, abbreviated usc if, whenever Γ (x) ⊂ V for some open set
V ⊂ Y , there exists a neighborhood U of x, such that ∀x0 ∈ U ⇒ Γ (x0) ⊂ V .

131
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As in the introduction, let (T, T , τ) be a non-atomic probability space, E be a separa-
ble Banach space and L = L1 (T, T , τ , E) be the space of Bochner integrable functions
s : T → E. Let Π be the set of finite partitions π of T . For each partition π ∈ Π, define
the linear map Uπ : L→ L by

Uπf =
X
P∈π

R
P fdτ

τ (P )
1P

with the convention that 0/0 = 0. Introduce a partial ordering on Π by saying that
π > π0 if for each P ∈ π, there is a P0 ∈ π0, such that P ⊂ P0. Thus, with a fixed
topology in L, limπ Uπf exists if the net {Uπf}π∈Π is convergent for such topology.
Lemma III.2.1 of Diestel and Uhl (1977), p. 67, shows that Uπ is norm continuous and
kUπk 6 1. It is easy to see that Uπ is a compact operator.
Theorem 2 of Brooks and Dinculeanu (1979) states that a set K ⊂ L is relatively

norm compact if and only if: (1)K is uniformly integrable; (2) The set
©R
P fdτ : f ∈ K

ª
is relatively norm compact in E; (3) For a net of partitions, Uπf → f uniformly in K
in the norm topology.
Theorem IV.2.1. of Diestel and Uhl (1977), p. 101, states that, if E and E∗ have

the Radon-Nikodým property, a set K ⊂ L is relatively weakly compact if and only
if: (1) K is bounded; (2)K is uniformly integrable; and (3) for each P ∈ T , the set©R
P fdτ : f ∈ K

ª
is relatively weakly compact in E.

3. Strong Compactness and Decomposability

Cellina, Colombo and Fonda (1986)’s Theorem 2 assume that Γ (K) is totally bounded

(and decomposable) so that Γ (K) is norm compact (see the introduction). Observe

that Γ (K) is also decomposable.1 Then, the assumptions of the cited theorem im-
ply that, if E has the Radon-Nikodým property (e.g., if E is reflexive), then Γ (K) is
unitary. This follows from the following:

Proposition 1. Assume that E has the Radon-Nykodým Property. Let M ⊂ L =
L1 (T, T , τ , E) be norm compact and decomposable. Then M = {f}, for some f ∈ L.
Proof. For an absurd, suppose that there exists f , g ∈M , and

D = {t ∈ T : |f (t)− g (t)| > η}

such that τ (D) > δ, with η, δ > 0. Let ε = ηδ/6. Since M is norm compact, Uπ

converges uniformly on M , that is, we can find πε ∈ Π such that π > πε and h ∈ M
implies kUπh− hk =

R
|h (t)− Uπh (t)| τ (dt) < ε. We will obtain a contradiction if M

is also decomposable. Without loss of generality, we can fix a π > πε that contains sets
P1, ..., Pn ∈ π such that Pi ⊂ D and ∪ni=1Pi = D. Let fi be the value of Uπf (t) in Pi
and analogously for gi. We have

1Indeed, let M ⊂ L be decomposable and take P ∈ T , r, s ∈ M . Since we are using the norm
topology, there exist sequences {rn}, {sn} ⊂ M , so that rn → r, sn → s. Since M is decomposable,

un = rn1P + s
n1T\P ∈M , ∀n and un → u. Thus, u ∈M .
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kUπf − fk =
X
P∈π

Z
P
|f (t)− Uπf (t)| τ (dt) < ε

⇒
nX
i=1

Z
Pi

|f (t)− fi| τ (dt) < ε,

and an analogous property is valid for g. This permits to obtain that

nX
i=1

Z
Pi

|gi − fi| τ (dt) >
nX
i=1

·Z
Pi

|f (t)− g (t)| τ (dt)

−
Z
Pi

|f (t)− fi| τ (dt)−
Z
Pi

|g (t)− gi| τ (dt)
¸

> ηδ − 2ε = 2ηδ

3
.

For each i, consider the measure µ over Pi defined by µ (C) =
¡R
C fdτ ,−

R
C gdτ

¢
,

which has bounded variation.2 Theorem IX.1.10, p. 266 of Diestel and Uhl (1977)
implies that the s-closure of {µ (C) : C ⊂ Pi, C ∈ T } is s-compact and convex. So, there
exists Bi ⊂ Pi, Bi ∈ T such that xi ≡

R
Bi
fdτ− 1

2

R
Pi
fdτ and yi ≡ −

R
Bi
gdτ+ 1

2

R
Pi
gdτ

=
R
Pi\Bi gdτ −

1
2

R
Pi
gdτ satisfy |xi| < ε/2n and |yi| < ε/2n.

Put B = ∪iBi and define h = f1B + g1T\B. Clearly, h ∈ M , because M is decom-
posable and B ∈ T . We have

Uπh|Pi =
1

τ (Pi)

Z
Pi

£
f1Bi + g1Pi\Bi

¤
dτ

=
1

τ (Pi)

Z
Bi

fdτ +
1

τ (Pi)

Z
Pi\Bi

gdτ

=
1

τ (Pi)

·
1

2

Z
Pi

fdτ +
1

2

Z
Pi

gdτ + xi + yi

¸
,

For each i = 1,...,n, define mi = (fi + gi) /2. Thus,

Uπh|Pi = mi +
xi + yi
τ (Pi)

,

and we compute kUπh− hk asX
P∈π

Z
P
|h (t)− Uπh (t)| τ (dt)

=
nX
i=1

Z
Pi

|h (t)− Uπh (t)| τ (dt) +
X
P⊂DC

Z
P
|g (t)− Uπg (t)| τ (dt) .

This is not lesser than

2This can be seen from the fact thatM is bounded, which implies that µ is bounded. Then, Lemma
III.1.5, p. 97, of Dunford and Schwartz (1958) proves that µ is of bounded variation.
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nX
i=1

Z
Pi

|h (t)−mi| τ (dt)−
nX
i=1

Z
Pi

|xi|
τ (Pi)

τ (dt)−
nX
i=1

Z
Pi

|yi|
τ (Pi)

τ (dt)

=
nX
i=1

Z
Pi

·¯̄̄̄
fi +

gi − fi
2
− f (t)

¯̄̄̄
1Bi +

¯̄̄̄
gi +

fi − gi
2
− g (t)

¯̄̄̄
1Pi\Bi

¸
τ (dt)

−
nX
i=1

|xi|−
nX
i=1

|yi| .

Again, this is not lesser than
nX
i=1

½Z
Pi

|gi − fi|
2

τ (dt)−
Z
Bi

|f (t)− fi| τ (dt)

−
Z
Pi\Bi

|g (t)− gi| τ (dt)
)
− ε

>
2ηδ

3
− ηδ

6
− ηδ

6
− ηδ

6

=
ηδ

6
= ε.

This contradicts the uniform integrability of M and, hence, its compacity.¥

4. Main Results

Once we learn that the norm topology is not suitable for working with compact and
decomposable sets, we turn to the weak topology. We need to particularize the sets
involved. Let E be a reflexive Banach space and let L = Lp (T,T , τ , E) be separable,
with 1 6 p <∞, with τ a nonatomic probability measure. LetW be a weakly compact
and convex subset of L. By Theorem V.6.3. of Dunford and Schwartz (1958), p. 434,
the weak topology is metrizable in W . Let {x∗n}n∈N be an enumerable dense set in
Lq (T, T , τ , E∗), where p−1 + q−1 = 1. Then, the topology in W is generated by the
metric:3

d (f, g) =
X
n

1

2n
z

µ¯̄̄̄Z
T
hx∗n (t) , f (t)− g (t)i dτ

¯̄̄̄¶
,

where h·, ·i : E∗ × E → R is the bilinear form between the duals E∗ and E and
z : R+ → [0, 1] is the increasing function defined by

z (x) =
x

1 + x
.

We have the following:

Theorem 1. Let Γ : W ⇒ W be an upper semicontinuous map such that Γ (m) is
nonempty, closed and decomposable for all m ∈ W . Then, for every ε > 0, there exists
a continuous ε− approximate selection of Γ.
Proof. It is sufficient an adaptation of the proof of Theorem 1 of Cellina, Colombo

and Fonda (1986). We give all the steps here for reader’s convenience. Fix ε > 0. By

3See, for instance, Dunford and Schwartz (1958), V.6.3., p. 434.
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the upper semicontinuity of Γ, for each m ∈ M , there is δ (m) ∈ (0, ε/3) such that
ρ (m,m0) < δ (m) imply Γ (m0) ⊂ B (Γ (m) , ε/3) = {f ∈ L : d (f,Γ (m)) < ε/3}, where
we are abusing the notation by defining d (f,Γ (m)) = inf {d (f, g) : g ∈ Γ (m)}.
The compacity of W ensures the existence of a finite set {m1, ...,mn} ⊂ W , such

that the balls B (mi, δi) = {m ∈ W : ρ (m,mi) < δi} form a subcovering of W , with
δi = δ (mi) /2. Let {pi : i = 1, ..., n} be a continuous partition of the unity subordinate
to it. For each i = 1, ..., n, fix a ui ∈ Γ (mi). For each i and j=1,...,n, take vij ∈ Γ (mj)
such that

d (ui, vij) < d (ui,Γ (mj)) +
ε

3
.

Now, we define

µij (A) ≡
X
n

1

2n
z

µ¯̄̄̄Z
A
hx∗n (t) , ui (t)− vij (t)i dτ

¯̄̄̄¶
.

Thus µij (T ) = d (ui, vij) 6 d (ui,Γ (mj)) + ε/3.
Observe that µij is non-atomic since τ is. We know, by a standard application of

Lyapunov’s theorem, that there exists a family (Tα)α∈[0,1] such that
(P1) Tα ⊂ Tβ , if α 6 β.
(P2) µij (Tα) = αµij (T ).
(P3) τ (Tα) = ατ (T ).
Set α0 ≡ 0, αi (m) = p1 (m) + ...+ pi (m) and define the approximate selection as

sε (m) =
nX
i=1

ui1Tαi(m)\Tαi−1(m)

For each m ∈ W , define I (m) = {i ∈ {1, ..., n} : pi (s) > 0}. Then, the above sum is
given by

sε (m) =
X
i∈I(m)

ui1Tαi(m)\Tαi−1(m) .

We claim that sε has the required properties. Let us check that it is an ε− approxi-
mate selection of Γ. Fix m and let k be such that δk = max {δi : i ∈ I (m)}.
Then, for every i ∈ I (m) , we havemi ∈B (mk, 2δk) so that Γ (mi) ⊂B (Γ (mk) , ε/3).

Thus, d (ui,Γ (mk)) < ε/3. Define vk =
P
i∈I(m) vij1Tαi(m)\Tαi−1(m) .We have

dW×L ((m, sε (m)) , (mk, vk)) = ρ (m,mk) + d (sε (m) , vk) 6 ε/3 + d (sε (m) , vk) .

It is sufficient to prove that d (sε (m) , vk) 6 2ε/3. This term is given by

d

 X
i∈I(m)

ui1Tαi(m)\Tαi−1(m) ,
X
i∈I(m)

vik1Tαi(m)\Tαi−1(m)


=

X
n

1

2n
z

¯̄̄̄¯̄Z
*
x∗n (t) ,

X
i∈I(m)

(ui (t)− vik (t)) 1Tαi(m)\Tαi−1(m) (t)
+
dτ

¯̄̄̄
¯̄


=
X
n

1

2n
z

¯̄̄̄¯̄ X
i∈I(m)

Z D
x∗n (t) , (ui (t)− vik (t)) 1Tαi(m)\Tαi−1(m) (t)

E
dτ

¯̄̄̄
¯̄


6
X
n

1

2n
z

 X
i∈I(m)

¯̄̄̄
¯
Z
Tαi(m)\Tαi−1(m)

hx∗n (t) , ui (t)− vik (t)i dτ
¯̄̄̄
¯
 .
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If a, b > 0, it is easy to verify that z (a+ b) 6 z (a)+z (b). Since the limits are finite,
we can interchange the sums. Then, by the definition of µik, this is not greater thanX

i∈I(m)
µik
¡
Tαi(m)\Tαi−1(m)

¢
Now, by (P2), this is equal toX

i∈I(m)
[αi (m)− αi−1 (m)]µik (T )

6
X
i∈I(m)

pi (m)
h
d (ui,Γ (mk)) +

ε

3

i
6 2ε

3

X
i∈I(m)

pi (m) =
2ε

3
,

as we wanted to show. So, sε is a ε—approximate selection of Γ. Let us prove that it is
continuous. For m and m0 ∈W, d (sε (m) , sε (m0)) is given by

d

 X
i∈I(m)

ui1Tαi(m)\Tαi−1(m) ,
X
i∈I(m)

ui1Tαi(m0)\Tαi−1(m0)


In turn, this is equal to

X
n

1

2n
z

¯̄̄̄¯̄Z
*
x∗n (t) ,

X
i∈I(m)

ui (t)
h
1Tαi(m)\Tαi−1(m) − 1Tαi(m0)\Tαi−1(m0)

i
(t)

+
dτ

¯̄̄̄
¯̄


=
X
n

1

2n

X
i∈I(m)

z

µZ ¯̄̄D
x∗n (t) , ui (t)

h
1Tαi(m)\Tαi−1(m) − 1Tαi(m0)\Tαi−1(m0)

iE¯̄̄
dτ

¶

6
X
n

1

2n

X
i∈I(m)

z

µZ
|ui (t)|

¯̄̄
1Tαi(m)\Tαi−1(m) − 1Tαi(m0)\Tαi−1(m0)

¯̄̄
dτ

¶

6
X
i∈I(m)

X
n

1

2n
z

µZ
|ui (t)|

³¯̄̄
1Tαi(m) − 1Tαi(m0)

¯̄̄
+
¯̄̄
1Tαi−1(m) − 1Tαi−1(m0)

¯̄̄´
dτ

¶

6
X
i∈I(m)

X
n

1

2n
z

ÃZ
Tαi(m)4Tαi(m0)

|ui (t)| dτ +
Z
Tαi−1(m)4Tαi−1(m0)

|ui (t)| dτ
!
.

LetM be an upper bound forW . Given η > 0, there exists δ > 0 such that ρ (m,m0) < δ
implies τ

¡
Tαi(m)4Tαi(m0)

¢
, τ
¡
Tαi−1(m)4Tαi−1(m0)

¢
< η/2M , which proves the continuity.¥

Remark 1. It seems possible to follow the proofs of Bressan and Colombo (1988)
to obtain the extension of Theorem 1 to the case of a general metric space M . It
also seems possible to obtain the generalization of the continuous selection theorem
of Fryszkowski (1983). We do not undertake these lenght works here because we are
mainly interested in the next result, which does not need such generalizations.

Theorem 2. LetW be as above. Assume that Γ :W ⇒W is upper semicontinuous
and Γ (x) is nonempty, closed and decomposable for all x ∈ W . Then, there exists
x̄ ∈ Γ (x̄).
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Proof. By Theorem 1, there is a continuous 1/n− approximate selection fn of Γ,
that is, Graph {fn} ⊂ B

¡
Graph Γ, 1n

¢
. By the Schauder-Tychonoff Theorem, there

exists a fixed point sn = f (sn), such that sn = f (sn). From the definition of f ,n, there
exist xn and rn in W , with rn ∈ Γ (xn), such that

(4.1) d (sn, xn) + d (sn, rn) <
1

n
.

Since W is compact, sn has a subsequence that converges weakly to a point s. Thus,
rn * s and xn * s. Since Γ is upper semicontinuous, s ∈ Γ (s). Since Γ (W ) ⊂ K,
s ∈ Γ (s) ∩K, and it is a fixed point of the original set-valued map.¥

5. Application

We will now show how Theorem 2 can be used to prove the existence of pure strategy
equilibria in continuous games. There are I players. For i = 1, ..., I, let Ei be a
separable Banach space and Ai be a compact subset of Ei, representing the set of
actions of player i. Let Ti be the set of Harsanyi types of the players. Let Wi be the
set of pure strategies si : Ti → Ai. Let us denote W−i ≡ ×j 6=iWj . Each player has a
payoff function ui : Ti× Ai× W−i → R. Let us assume that ui satisfies the following
continuity assumption:

(C) Let {sni }n∈N ⊂ Wi and
©
sn−i
ª
n∈N ⊂ W−i be converging sequences. If s

n
i * si,

sn−i * s−i, then
ui
¡
ti, s

n
i (ti) , s

n
−i
¢
→ ui (ti, si (ti) , s−i) .

Let us define
Fi (ti, s−i) ≡ arg max

ai∈Ai
ui (ti, ai, s−i)

and the selection set-valued map

SFi (s−i) = {f ∈ Lp (Ti, Ti, τ i, Ei) : f (ω) ∈ Fi (ω) a.e.} .
Obviously, Fi has nonempty, closed values. So, the set-valued map SFi :W−i →Wi has
nonempty and weakly compact values. Indeed, this comes from the weak compactness
characterization given in section 2. Theorem 3.1 of Hiai and Umegaki (1977) shows
that SFi has decomposable values.
We say that s = (s1, ..., sn) is an equilibrium for the game if for all i = 1, ..., n, we

have si ∈ SFi (s−i). Then, we have the following:

Theorem 3. Assume (C). Then, the game has a pure strategy equilibrium.
Proof. Let us verify that the SFi is upper semicontinuous. Since its values are

weakly compact, it is sufficient to verify that its graph is closed. Let {sni }n∈N ⊂ Wi

and
©
sn−i
ª
n∈N ⊂W−i, with s

n
i * si, s

n
−i * s−i and sni ∈ SFi

¡
sn−i
¢
. By definition,

ui
¡
ti, s

n
i (ti) , s

n
−i
¢
> ui

¡
ti, ai, s

n
−i
¢
,∀ai ∈ Ai, a.e.

Now, by (C),
ui (ti, si (ti) , s−i) > ui (ti, ai, s−i) ,∀ai ∈ Ai, a.e.,

which implies that si ∈ SFi (s−i), as we want to show. Now, let us define the set-
valued map S : W → W , where W = ×Ii=1Wi, by S (s) ≡ ×Ii=1SFi (s−i).Then, S
satisfy the assumptions of Theorem 2. The fixed point s ∈ S (s) is easily seen to be an
equilibrium.¥
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