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Abstract

We study the local and global well-posedness issues of the initial value problem (IVP) as-
sociated to the coupled system of Korteweg-de Vries equations. Using the bilinear estimates
established by Kenig, Ponce and Vega in the Fourier transform restriction space we prove a
local result for given data in the Sobolev spaces of indices greater than -3/4. We prove that
this local result is optimal by showing that the map data-solution is not twice differentiable
at the origin. Further, under certain restrictions on the coefficients, we extend the local
solution to a global one when the data is in the Sobolev spaces of indices greater than -3/10.
We also consider the IVP associated to a coupled system of modified Korteweg-de Vries
equations. We further refine the low-high frequency technique introduced by Bourgain and
simplified by Fonseca, Linares and Ponce to develop an iteration process below the energy
space and prove a global well-posedness result for data in the Sobolev spaces with indices
greater than 4/9. Finally we consider a bi-dimensional generalization of the Korteweg-de
Vries equation, called Zakharov-Kuznetsov equation, and prove that if a sufficiently smooth
solution to the associated IVP is supported in a non-trivial time interval then it vanishes
identically.
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Introduction

The first model we are interested to investigate in this work is the following system of
nonlinear dispersive equations
Wi+ AW,y + BOW)W, + CW,, = 0, z,t€R (0.0.1)
W(z,0) = Wy(x), o
where W = (u,v)" with v = u(z,t) and v = v(z,t), real valued functions. The typical
examples of the models we want to consider are the coupled system of the Korteweg-de Vries
(KdV) equations. The above model arises in various physical contexts to describe several
nonlinear phenomena.
Our main purpose here is to address the well-posedness issues to the initial value problem
(IVP) (0.0.1). The notion of well-posedness we are going to use is the following:

Definition 1 An IVP in a Banach space X is said to be locally well-posed if there exist
a time T > 0 and a unique solution in the interval [T, T| such that the solution depends
continuously upon the given data and satisfies the persistence property, it means, for given
data ¢ € X the solution u(t) € X for allt € [-T,T] describes a continuous curve in X. If
the existence time interval is arbitrarily large we say that the IVP is globally well-posed and
if any one of the above conditions fails to hold we say the IVP is ill-posed.

A large amount of work has been devoted to study (0.0.1). For example, when

B 1 a3 B U+ agv Aol + a1v (0 0

with a1, ag, a3,7 € R and by, by € RT, the system (0.0.1) is a well known model introduced by
Gear and Grimshaw [26] to describe the strong interaction of two dimensional, long, internal
gravity waves propagating on a neighboring pycnoclines in a stratified fluid.

Ut + Uggpe + 03Vgzz + Uy + a10V; + az(uv)y = 0, z,t€R,

b1vs + Vgzz + b2G3Ugey + VU + botoutiy + boar (uv)y + rv, = 0, (0.0.3)
u(z,0) = é(z),

v(z,0) = ¥(z).
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The system (0.0.3) has the structure of the KdV equation
U + Uggy + Uy = 0, z,teR, (0.0.4)

coupled through dispersive as well as nonlinear effects. Several properties of the system
(0.0.3) including existence theory for the associated IVP and the existence and stability of
solitary wave solution can be found in the literature. For an extensive description of this
model we refer to the work of Bona, Ponce, Saut and Tom [8]. They used Kato’s theory
for abstract evolution equations to obtain well-posedness results in classical Sobolev spaces.
Further they utilized the theory developed by Kenig, Ponce and Vega [41] to get the local
result in H'(R) x H'(R). Gear and Grimshaw [26] showed that the following quantities

/udw, /vdw and /(b2U2 + b1v?) dx

are conserved by the flow of (0.0.3). Bona et. al. [8] derived a new conserved quantity
2 L3 2 2 g 13
{bg(um + 2a3u,v, — gu — au”v — a uv’) + v — §U } dz.

Using these four conserved quantities they were able to get an a priori estimate in the energy
space H!(R) x H!(R) by imposing the condition 1—bea2 > 0 on the coefficients. This a priori
estimate permits one to extend the local solution to a global one. This result is obtained
by neglecting the dimensionless parameter r. Later, Ash, Cohen and Wang [4] studied this
problem in the X, spaces introduced by Bourgain to deal with the nonlinear dispersive
equations. Using bilinear estimates established by Kenig, Ponce and Vega [38] they proved
local well-posedness for given data in L?(R) x L*(R). Also, they utilized the L?-conserved
quantity to extend the local solution to the global one in that space. Recently, Saut and
Tzvetkov [55] considered the IVP (0.0.3) without neglecting the constant r and proved global
well-posedness in L?(R) x L*(R).

Using the concentration compactness technique, Bona and Chen [7] proved the existence
of solitary waves for the system (0.0.3) as global minimizers to the constrained variational
problem. Later, Albert and Linares [3] proved that the solitary waves are stable in a weak
sense by considering a2by < 1. Recently, Menzala, Vasconcellos and Zuazua [48] showed
that the solutions of the KdV equation in a bounded interval under the effect of a localized
damping decay exponentially in time. The method of proof is a combination of multiplier
techniques, compactness arguments and the unique continuation property of the KdV equa-
tion. A similar result for the IVP (0.0.3) was obtained by Bisognin, Bisognin and Menzala
[6] whenever the conditions b; = by and 0 < a3 < 1 hold.

Since (0.0.3) is a coupled system of KdV equations, it is natural to ask whether it shares
similar results like KdV equations. In other words, whether we can lower the Sobolev index
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in H*(R) x H*(R) as in the case of KdV equation to get well-posedness results? Using
the scaling argument we can have an insight to this question. Observe that if (u,v) solves
(0.0.3) (note that we are neglecting the parameter r, otherwise the scaling doesn’t work)
with initial data (¢,) then for A > 0 so does (u*,v*) with initial data (¢*,1?); where
uMz,t) = N2u(Ax, A3t), v (z,t) = No(Ax, X3t), ¢*z) = N2¢(Az) and Y (z) = A2(A\x).
Note that,

1™ M o rrs = A2 10D, )l igo s (0.0.5)

where H*(R) denotes the homogeneous Sobolev space of order s. Thus, we see from (0.0.5)
that the well-posedness result for the IVP (0.0.3) could be achieved in H*(R) x H*(R) for
s> —3/2.

Bourgain [13] showed that the well-posedness result obtained by Kenig, Ponce and Vega
[38] for the KAV equation in H*(R), s > —3/4, is essentially optimal if one strengthens the
usual notion of well-posedness by requiring the flow-map

¢ ug(t), [t <T

should act smoothly (for eg. C?) on the space under consideration (instead of just continu-
ous). This notion of well-posedness seems to be natural because, if one uses the contraction
mapping principle to solve the integral equation associated with the Cauchy problem, the
flow-map acts smoothly from H?® to itself. In fact, for s > —3/4 the flow-map is real analytic
(see for eg., [38] [39] [15]). Takaoka [63] used this technique to show that the nonlinear
Schrodinger equation with derivative in a nonlinear term is ill-posed in H*(R), s < 1/2. Fur-
ther, Tzvetkov [67] showed that the KdV equation is locally ill-posed in H*(R) for s < —3/4
if one requires only C? regularity of the flow-map in the notion of well-posedness. Following
the same scheme, we prove that the IVP (0.0.3) is ill-posed in H*(R) x H*(R), s < —3/4.
This result is in agreement with the KdV results. So, one expects that the IVP (0.0.3) be
locally well-posed in H*(R) x H*(R) for s > —3/4. In fact, using the bilinear estimates es-
tablished by Kenig, Ponce and Vega [38], we prove that the IVP (0.0.3) is locally well-posed
in H*(R) x H*(R), s > —3/4.

On the other hand, we should mention that, Nakanishi, Takaoka and Tsutsumi [52]
constructed a counterexample to prove that the bilinear estimate established by Kenig,
Ponce and Vega [38] fails when s = —3/4. Therefore the critical index s = —3/4 cannot
be achieved using this method. However, Christ, Colliander and Tao [20] showed recently
the existence of the solutions to the TVP associated to the KdV equation in H~3/4(R) using
a generalized Miura transform to transfer the existing local theory for the modified KdV
equation in H'/4(R).

Note that, in the Sobolev spaces of negative index, conservation laws are not available to
extend the local solution to a global one. To overcome this difficulty, i.e. lack of conservation



4 M. Panthee

laws, quite recently, Colliander, Keel, Staffilani, Takaoka and Tao [22] introduced a variant
of Bourgain’s method [12] called I-method to obtain a global solution to KdV equation in
Sobolev spaces of negative index. For this, they introduced a notion of an almost conserved
quantity by utilizing an appropriate Fourier multiplier operator I. To obtain such almost
conserved quantity they exploited some internal cancellation which the KdV equation satis-
fies. The cancellation plays a main role in this process. In our case, it is not possible to get
such cancellation unless the coefficients a3 = 0 and b; = by (see Lemma 1.3 below). It seems
that we cannot get more cancellation in the general case because the IVP under consideration
is not completely integrable. Using this method, under above conditions on the coefficients,
we prove that the IVP (0.0.3) is globally well-posed in H*(R) x H*(R), s > —3/10.
For p € Z* and

10 Lyp—1yp+l 1 oo 0 0
Az(o 1 ) B(W):<p;upvp %Z;}i-lvp—l . 0=y (0.0.6)

p+1

the model (0.0.1) turns out to be a coupled system of generalized KdV equations

Ut + Uggy + (UPUP_H);U =0
Vg + Vage + (WPTH0P), = 0, z,teR (0.0.7)
u(z,0) = ¢(z), v(z,0)=1(z),

and arises in various physical situations. This system has the following conserved quantities

L (u,v) = /IR (u? +02) do 0.0.8)
and

_ 2, 2 2 prloptl

I(u,v) = /R {u? +v2 ol }dx, (0.0.9)
and admits sech solitary wave solutions. This system has been widely studied in the literature
(see for example [2], [51] and references therein) and can also be solved by the inverse
scattering method. In [2] Alarcon, Angulo and Montenegro established a general existence
theory for the associated IVP along with the orbital stability of the solitary wave solutions.
When p = 1, this model reduces to a system of modified KdV (mKdV) equations coupled
through the nonlinear terms. Montenegro [51] used the theory developed by Kenig, Ponce
and Vega [39] in the mKdV context to prove that the IVP associated to this particular model
for given data in H*(R) x H*(R) has local solution when s > 1/4 and global solution when
s > 1. So there is a gap in the Sobolev indices between the local and global existence results.



Introduction 5

Bourgain [12] introduced a new technique to get the global solution below energy spaces.
Let us explain in brief about how to implement the Bourgain’s technique in the case of a
general dispersive equation,

wy + P(D)w + f(w) =0 (0.0.10)
w(z,0) = ¢(z).

Suppose that the IVP (0.0.10) has local solution in H*° for some sy € (0,1) and its flow
satisfies the H' conservation law. To extend the local solution to the global one below the
energy space H', we proceed as follows.

We decompose the initial data ¢ € H®, s <1, to ¢ = ¢1 + 11, where ¢; and 1, are given
by,

61(6) = xge<mo(€),  ¥1(€) = xye>ny0(9).

In other words, we decompose ¢ into low and high frequency parts so that the low frequency
part ¢; is regular with H'-norm large and the high frequency part v, although does not
improve regularity, has H*-norm small. In fact,

¢l S N7 and [hullme SNPTF, 0<p<s<L

~y

We evolve the low frequency part ¢; according to the original IVP (0.0.10) so that we
have the existence result say in [0, d]. Let ¢; — u;(t) be the evolution of the low frequency
part. Now we evolve the high frequency part ¢, according to the difference equation

{ult + P(D)oy + f(ur+v1) — f(u) =0, z,teR (0.0.11)

1)1(.’)3, 0) = wl(x)’
with variable coefficients depending on the solution w;. For simplicity, let us denote the
evolution of the high frequency part 1, — v1(t) by vi(t) = U(t)1y + 21(t), where U(t) is the
unitary group associated to the linear problem. The main feature of this technique is that
the existence interval [0, 0] is the same for both u; and vy and w(t) = wuy(t) + v1(¢) solves

the IVP (0.0.10). Note that the inhomogeneous part z;(t) of the evolution v (¢) of the high
frequency part 1, is smoother than the data itself. In fact, for some o = «(s) > 0

lz1(t) ||z S N~ (0.0.12)
Thus at time t = § we add z;(0) to u1(d) and repeat the above argument with new data

¢z = u1(6) + 21() and Yy = U(0)h1
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to obtain the solution in [6, 2]. Then we iterate this process to cover the time interval [0, 7]
for arbitrary 7" > 0. In each step of iteration it is necessary to control the involved norms
taking care of the contribution arising from (0.0.12) (also called as error term). In fact, we
can proceed with this iteration process as long as the total error is at most comparable with
the size of ||¢1||z: and at this point we obtain restriction on the Sobolev index s.

Soon after Bourgain [12] introduced this technique to get the global solution to the
two-dimensional Schrodinger equation below energy space, several authors have applied it to
obtain the global solution to various nonlinear dispersive models. Fonseca, Linares and Ponce
[24] simplified this technique to get the global solution to the mKdV equation in H*(R),
s > 3/5. It is also applied to get the global solutions to the semi-linear wave equations (see
Kenig, Ponce and Vega [37]) and critical generalized KdV equations (see Fonseca, Linares
and Ponce [25]). Also, Takaoka used this technique to get the global solutions to KP-II
equation in [64] and to the Schrodinger equation with derivative in [63]. Further, Pecher
[54] followed the same technique to prove the global well-posedness for the 1D Zakharov
system below the energy space. Recently, using the argument in [24], Carvajal and Linares
[18] proved that the IVP associated to the higher order nonlinear Schrédinger equation is
globally well-posed in H*(R), s > 5/9.

Here we further refine this technique by exploiting the uniform bound of the solution (see
(2.2.1) below) obtained by using iteration in the energy space. With proper choice of the
Sobolev indices we develop an iteration process below the energy space and prove that the
IVP (2.1.1) is globally well-posed for data in H*(R) x H*(R), s > 4/9.

The next model we want to study is the two dimensional generalization of the KdV
equation (0.0.4). The KdV model was obtained in [46] to describe the propagation of one di-
mensional surface gravity waves with small amplitude in a shallow channel of water. This is
a widely studied model and arises in various physical contexts. It has very rich mathematical
structure and can also be solved using inverse scattering technique. There are two dimen-
sional generalizations of the KdV model that arise to govern the motion where transversal
effects are also taken into consideration. The most known two dimensional generalizations
of the KdV equation are the Kadomtsev-Petviashvelli (KP) equation

(Ut + Uggy + ULg) g + gy = 0, a=+1 (0.0.13)
and Zakharov-Kuznetsov (ZK) equation
Ut + (Upg + Uyy)z + vty = 0. (0.0.14)

The equation (0.0.13) derived by Kadomtsev and Petviashvelli [33] describes the evolution
of weakly two dimensional long water waves of small amplitude while the equation (0.0.14)
derived by Zakharov and Kuznetsov [66] models the propagation of nonlinear ion-acoustic
waves in magnetized plasma. Much effort has been devoted to study several properties
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of these models, see for example [23], [5] and references therein. In particular, the well-
posedness issue for the IVP associated to (0.0.14) has also been studied extensively in recent
literature. Using the method developed by Kenig, Ponce and Vega [44] to show local well-
posedness for the IVP associated with the KdV equation in H*(R), s > 3/4, Faminskii [23]
proved the local well-posedness for the IVP associated to (0.0.14) when the given data is in
H™(R?), m > 1, integer. He also proved the global well-posedness in the same space using
the conserved quantities

/2 u?(t) dedy = / u dxdy (0.0.15)
R

R2

and

/ (ul + ul — 1u3)(t) dzdy = / (o2 + ug, — 1ug) dzdy, (0.0.16)
R2 3 R2 v 3
satisfied by the flow of (0.0.14).

In this work, we are concerned about the following question: If a sufficiently smooth real
valued solution v = u(z,y,t) to the IVP associated to (0.0.14) is supported compactly on a
certain time interval, is it true that v = 07 In some sense, it is a weak version of the unique
continuation property (UCP) which is defined as follows:

Definition 2 If a solution u to certain evolution equation vanishes on some non-empty open
set Q1 of Q) then it vanishes in the horizontal component of Q1 in 2, where Q) is the domain
of the evolution operator under consideration.

A pioneer work in this direction is due to Carleman [17]. Carleman’s method was based on
the weighted estimates for the associated solutions. Later, Carleman’s method was improved
and extended to address the UCP for parabolic and hyperbolic operators (see [29] and [50]).
As far as we know the first work dealing with the UCP for a general class of dispersive
equations in one space dimension is due to Saut and Scheurer [56]. Carleman type estimates
were the main tools used by them. In particular, the class considered in [56] includes the KdV
equation. Also, D. Tataru [65] proved the UCP for Schrédinger equation by deriving some
Carleman type estimates. Further, Isakov [32] considered a large class of evolution equations
with nonhomogeneous principal part and proved the UCP. Later, Zhang [69] proved the
UCP for the KdV and modified KdV (mKdV) equations using inverse scattering theory
and Miura’s transformation. This slightly stronger result implies the UCP for the KdV
equation obtained in [56]. To prove this result, Zhang [69] introduced some decay condition
to the solution and exploited the fact that the KdV and mKdV equations are integrable.
Bourgain [14] introduced a new approach to address a wider class of evolution equations
using complex variables techniques. The method introduced in [14] is more general and can
also be applied to models in higher spatial dimensions. Recently, Kenig, Ponce and Vega
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[36], using Carleman’s type estimate and the result due to Saut and Scheurer [56] proved
that; if a sufficiently smooth solution u of the generalized KdV equation is supported in
(—o0,b) or in (a,00) at two different instants of time then u = 0. The exponential decay
property of the solution is essential in the argument employed in [36]. Quite recently, Carvajal
and Panthee [19] extended the argument introduced in [14] and [36] to prove the UCP for
Hasegawa-Kodama equation which is a mixed equation of type KdV and Schrodinger. Also
there are recent works due to Iério in [30] and [31] dealing with the UCP for equations of
Benjamin-Ono type and Kenig, Ponce Vega [35] for nonlinear Schrédinger equation.

Here we are going to generalize the scheme in [14] to address a bi-dimensional (spatial)
model and provide an affirmative answer to the question posed above.

We organize this work as follows. First we list some notations that will be used throughout
this work. Chapter 1 contains the results concerning the Cauchy problem for the IVP (0.0.3).
Chapter 2 deals with the global solution to the system of mKdV equations. In Chapter 3 we
establish the unique continuation property for the ZK equation. Finally, we present some
discussion regarding the further scope and extension of the work conducted here.



Notation

Here we give some notations that we are going to use throughout this work.

e N - set of natural numbers
e R - set of real numbers

e 7 - set of integers

e C - set of complex numbers
° (')g’ju Or Ug.., OT % - partial derivative of u w.r.t. variable x of order &

o f(&):= (2m)™" [, e7* € f(x) dw - Fourier transform of f

o fV(z) = (2m)™"/2 [, €= f(£) d€ - inverse Fourier transform of f

o Dif:=(=82)*2f =[|-|°f(-)]" - Riesz potential of order —s.

e S(R") - Schwartz space on R”

e C([0,T]; X) - space of continuous functions from [0, 7] into X

o [Iflls = (SO + [P F(€)[* de)'7?

e H*(R) := H*® - Sobolev space of order s with norm || f||s

o LF(LY), (1 <p< o) - Banach spaces LP(R : LY(R)) for variables ¢ and x respectively
e (, ¢ - various constants whose exact values are immaterial

e A < B - there exists a constant C' > 0 such that A < CB

A 2 B - there exists a constant C' > 0 such that A > CB

e AnB-A<Band A>B
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1 flle = (fg | f(z)[P dx)l/p, 1 < p < oo, with usual modification for p = oo
X*:= H*(R) x H*(R) - Cartesian product of Sobolev spaces

X = L*(R) x L*(R) - Cartesian product of L? spaces

€1 = 1 + e for £ = (£,9)

€l exee = || fllze + [l9l|ze

p/a 1/p
| fllzzLg, = (fR (fOT |f(z, )] dt) dm) - mixed L2 Ll-norm with usual modifica-
tion for p = oo
£z = (1 f1lezeg, + gl zre,
suppf - support of f
f * g - convolution product of f and g

at+ =a+efore>0



Chapter 1

Cauchy Problem for a Coupled
System of KdV Equations

1.1 Introduction

This chapter is devoted to investigate the well-posedness issues associated to the IVP

Ut + Uggpe + A3Vzzz + Uy + a10V; + a2(uv)y = 0, z,teR

b1Vt + Vgzz + b2a3Ugey + VV; + Dottty + boar (uv), = 0, (1.1.1)
u(z,0) = ¢(z),

v(z,0) = ¢(z),

where v = u(z,t) and v = v(z,t) are real valued functions and a;, as, as, by, by are real
constants with by, by positive.

Let us begin by introducing a function space where we are going to find solution to the
IVP (1.1.1). For s € R and —1 < b < 1, we define a Hilbert space X, as a completion of
the Schwartz space $(R?) with respect to the norm

. /
s = ([ @ b= €02+ )1 P agar) ™,

where f given by
fler =n [ ey dre
R2

denotes the Fourier transform of f in both x and ¢ variables.

11
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Let us recall some properties of the space X, regarding the regularity. First, observe
that for f € X, one has,

1£l1x,s = (1 + D)°U () fll 3 (a1g).

where U(t) = e % is the unitary group associated with the linear problem.
If b > 1/2, the previous remark and the Sobolev lemma imply,

Xep C C(R; H (R)).

Now we are in position to state the main results of this chapter.

1.2 Main Results

The first result is concerned about the local well-posedness for the IVP (1.1.1) and reads as
follows.

Theorem 1.1 For any (¢,v) € H*(R) x H*(R), s > —3/4 and b € (1/2,1), there exist
T =T(||®]lms, |||zs) and a unique solution of (1.1.1) in the time interval [—T,T| satisfying

u,v € C([-T,T]; H*(R)), (1.2.1)
u,v € Xgp C LY (R L7 (R)), for1<p< o0, (1.2.2)
(u2)za (1)2)30 € Xs,b—l; (123)
and
U, vy € X5 3p-1- (1.2.4)

Moreover, given T' € (0,T), the map (¢,v) — (u(t),v(t)) is smooth from H*(R) x H*(R)
to C([-T",T"]; H*(R)) x C([-T",T"]; H*(R)).

Our next theorem deals with the global well-posedness for the IVP (1.1.1). More precisely,
we prove the following result.

Theorem 1.2 The initial value problem (1.1.1) is globally well-posed in H*(R) x H*(R),
s > —3/10 in the case when a3 = 0 and by = bs.

The final result of this chapter is concerned about the ill-posedness for the IVP (1.1.1). In
fact, we prove the following theorem showing that the local result given by Theorem 1.1 is
sharp.

Theorem 1.3 Let s < —3/4, then there is no T > 0 such that the flow-map
(¢, ¢) = (u(t),v(t)),  t€(0,T]
be C? Frechet-differentiable at the origin from H*(R) x H*(R) to C([0,T]; H*(R) x H*(R)).
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1.3 Reduction of the Problem and Preliminary Esti-
mates

In this section we decouple the dispersive terms in the system (1.1.1). Also we recall some
estimates that will be useful in the proof of Theorem 1.1.

If a3 = 0 there is no coupling in the dispersive terms. So we suppose az # 0. As
mentioned above, we are interested to decouple the dispersive terms in the system (1.1.1).
For this, let a2by # 1 and define,

A:{(1—%)2+4b;1“§}1/2>0 and ai:%(l—i-blli/\).

Our assumption a3by # 1 guarantees that ax # 0. Thus we can write the system (1.1.1) in
a matrix form and then diagonalize the matrix of coefficients corresponding to the dispersive
terms as in [55]. After that we make the change of scale

u(z,t) = ﬂ(af/g‘x,t) and v(z,t) = f)(oflﬁx,t).

Then we obtain the system of equations

Ut + Uggy + U, + bUT, + c(40), = 0,
By + Vg + Glilly + b7, + &(10), = 0, (131)
(z,0) = ¢(x), o

@(xa 0) = 775(37)’
where a,b, ¢ and @, b, ¢ are constants.

Remark 1.1 Notice that the nonlinear terms involving the functions @ and v are not eval-
uated at the same point. Therefore those terms are not local anymore. Hence we should be
careful in making the estimates. In the ezisting literature, see for instance [55] and [4], this
feature of the nonlinear terms was not pointed out which may lead to wrong conclusions.

Remark 1.2 Due to the previous remark, in Proposition 1.1 below, we need to estimate
terms of the form 0,(u(Ax,t)v(Bz,t)) or more generally 0,(u(Azx + C,t)v(Bx + D,t)). It
1s not difficult to prove the same inequality since the only changes coming out are from the
contributions given by the constants A, B,C and D.

The system (1.3.1) has a pair of KdV equations coupled only in the nonlinear terms. It
is enough to prove local well-posedness for system (1.3.1) because the results for the IVP
(1.1.1) can be obtained in the obvious way.
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Hence, our interest is to solve the system (1.3.1) for initial data (¢,4)) in H*(R) x H*(R),
s > —3/4. For this we use the Fourier transform restriction space X, discussed above. For
the sake of simplicity, from now onwards we will drop ” and use the notation u, v, ¢, in
the system (1.3.1).

Using Duhamel’s principle, we study the following system of integral equations equivalent
to the system (1.3.1),

{ u(t) = Ut)p — jo (t — ) F(u, v, ug, ve) (') dt,

v(t) =U(t)y — fO (t — )G (u, v, ug, vy)(t') dt’, (1.3.2)

where U(t) = e "% is the unitary group associated with the linear problem and F and G are
respective nonlinearities.

To find a local solution to (1.3.1) we can replace (1.3.2) with the following system of
integral equations,

{u(t) = (U () — 1 (t) fo Ut — )5 () F(u, v, ug, vg) (') dt', (133)
v(t) = YU ()Y — i (?) fo Ut — t")s(t)G(u, v, ug, vg)(t) dt’, e

where 1, € C§°(R), 0 < ¢; <1 is a cut-off function given by,

1, <1
1= {o, [t > 2
and 5 = 1(t/5), 0 <6 < 1.
Now, let us recall some estimates which will be used to prove the local well-posedness
result.

Lemma 1.1 Let s € R, ¥/,b € (1/2,1) with b’ < b and § € (0,1); then we have,

s (U ()] x,, < ) (1.3.4)
b—b'

IsFllx, s < OS5 [Pl . (1.3.5)
i

|este) [ v -y ar (1.36)
0 Xs,b ’

and

¢ -2

qu,;(t)/ Ut —t)F(t)dt| < 6" F|x,, . (1.3.7)
0
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Proposition 1.1 Let s > —3/4, then there exists 1/2 < b < 1 such that the following
bilinear estimate holds,

[wo)ellx,yr < Cllullx, llvllx,,- (1.3.8)

The proof of Lemma 1.1 can be found in ([40], [38]) and that of Proposition 1.1 in [38],
so we skip the details.

1.4 Local Well-posedness Result

In this section we supply the proof of Theorem 1.1, the local well-posedness result for the
IVP (1.1.1).

Proof.[Proof of Theorem 1.1:] We consider the following function space where we seek a
solution to the IVP (1.3.1). For given (¢,v) € H*(R) x H*(R) and b > 1/2, let us define,

Hun = {(v,v) € Xyp x Xgp 2 |ullx,, <M, [v|x,, < N},

sb—

where M = 2Cy||¢||gs and N = 2Co||9||gs- Then Hyy is a complete metric space with
norm,

(s 0)lllscaen = llullx,, + llvllx, .-

Without loss of generality, we may assume that M > 1 and N > 1. For (u,v) € Hyn,
let us define the maps,

Dylu,v] = v () U(t)d — 1/}1 ) J5 Ut — st F (u, v, ug, vg) () dt! (14.1)
Uy lu,v] = o ()U(t)y (t) [y Ut — )05 ()G (1, v, ug, vg) () dt'. o
We prove that ® x ¥ maps H sy into H,,y and is a contraction.
Using (1.3.4) and (1.3.6) we get from (1.4.1),
1@, v]llx, , < Collllus + CllgsF(u, v, v, v2)|lx, , (1.4.2)
1w, v]llx,, < Coll$llms + CllthsG (u, v, i, va) | x,--
Now, using (1.3.5) we get from (1.4.2) for ¥’ < b and 0 = 8((’1 b;,)
12[u, v]llx,, < Collgllms + COllF(u, v, ua, va)lx, 0, (1.4.3)
190w, v]lx,,, < Collgllms + oG, v, uave)llx, -
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Using the bilinear estimate (1.3.8), the estimate (1.4.3) yields,

1@, v]llx,, < Collollm + Crd’{lullk,, +llvllk, , + llullx,, Ivllx, .} (1.4.4)
1w, v]llx,, < Collvllas + Cod’{llull%,, + W%, , + lullx, llvllx, . }-
As (u,v) € Hprn, with our choice of M and N we get from (1.4.4),
1w, v]llx,, < § + C18°{M? + N> + MN} (1.45)
1w, v]llx,, < 5 + C20°{M? + N* + MN}. h

If we choose ¢ such that
80 < (2 max{Cy, Co}(M + N)Q)_l,
then we get from (1.4.5),
|®fu, olllx,, < M and [ Wfu,vllx,, < N.
Therefore,
(®fu, v], ¥u,v]) € Hurn-

Now, we need to show that ® x ¥ : (u,v) — (®[u,v], ¥[u,v]) is a contraction. For this,
let (u,v), (u1,v1) € Hyn, then as above using Lemma 1.1 and Proposition 1.1 we get,

{u,v] ~ @fus, vllx,,, < Cu*(M + W) [llu = wrllx,, + [[o = vilx, ] 110
19w, v] = Tlug, »]|lx,, < Co6®(M + N)[|lu— uillx,, + [lv — villx,,]-
If we choose 4 such that
8’ < (4max{Cy, Co}(M + N)?) ™",
then (1.4.6) yields,
@, 0] — ®fus,villx,, < 3k = wllx,, + o~ willx,,) i
19w, v] = Oluy, v1]|lx,, < 3lllu—uillx,, + v —villx,,]-

Therefore the map ® x U is a contraction and we obtain a unique fixed point (u,v) which
solves the IVP (1.3.1) for ¢t € [-T,T] with T < 6. The remainder of the proof follows a
standard argument so we skip it. Just to be precise, the smothness of the flow-map follows
by using Implicit Function Theorem. O
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1.5 Global Well-posedness Result

This section is devoted to extend the local solution obtained in the previous section to the
global one. Using usual conservation laws we have global solution in H*(R) x H*(R), s > 0.
So, we suppose s < 0 throughout this section. Our aim here is to derive an almost conserved
quantity and use it to prove Theorem 1.2. For this, let us define the Fourier multiplier
operator I by,

Tu(§) = m(€)a(e),
where m(&) is a smooth and monotone function given by
1, < N,
mey =4 €l
N7PEP, €l = 2N,

with NV > 1 to be fixed later.

Note that, I is the identity operator in low frequencies, {£ : |£| < N}, and simply an
integral operator in high frequencies. In general, it commutes with differential operators and
satisfies the following property.

Lemma 1.2 Let —3/4 < s <0 and N > 1. Then the operator I maps H*(R) to L*(R) and
I fllz2wy S N7l e my- (1.5.1)
Proof.
ITFI32 = ITF1132 = Im(-) f112
= [ ferdas [ moPiOPdes [ NP

lE|<N N<|¢|<2N |€]>2N
. 1.,
< ON||f|% + N2 / L+ FEP+ =) de
€/>2N 'S
< ON7*||fl3e-

O

As discussed in the introduction let us consider the IVP (1.1.1) with a3 = 0 and b; = b,,
that is,

Ut + Uggr + Uz + A 0V, + ag(uv), = 0,

b1vy + Vgzz + VU + baaouty + byay (uv), = 0,
u(z,0) = ¢(z),

v(z,0) = ¥(z).

(1.5.2)
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After introducing the multiplier operator I, we have the following variant of the local
well-posedness for the IVP (1.5.2).

Theorem 1.4 For any (¢,v) € H*(R) x H*(R), s > —3/4, the IVP (1.5.2) is locally well-
posed in the Banach space 7' L*x [7'L? = {(¢,v) € H* x H®*, with norm [|I¢||p2+ || I¢||z2}
with the existence lifetime satisfying,

6 2 (gll7> + 119117)~", >0 (1.5.3)

Moreover,

{||¢,51u||xo,,, < O8]z (1.5.4)

[¥sTvllx,, < ClITYL2-
The proof of this theorem is not difficult and follows by using the same procedure used

to prove the local well-posedness for the IVP (1.3.1) (see the Proof of Theorem 1.1) once we
have the bilinear estimate

|0:1wo)llx, _,, < Clliulx, ;, ITvl1x, (1.5.5)

The proof of the bilinear estimate (1.5.5) is easy and follows by using the usual bilin-
ear estimate (1.3.8) due to Kenig, Ponce and Vega [38] combined with the following extra
smoothing bilinear estimate whose proof is given in Colliander, Keel, Staffilani, Takaoka and
Tao [22].

Proposition 1.2 The bilinear estimate

10 { (Tulv — I(uv)}lxs | < CNTTF|Tul| s
0,—1— 0,—

1
2 2t

Irollxs | (156)

holds.

Now we proceed to introduce the almost conserved quantity. Using the Fundamental
Theorem of Calculus, the equation and integration by parts we get,

)
17u(@) s =10 + [ G (Tu(o). Tu(t) at

=[11u(0)|[3 + 2/05 (& ru(e), 1u(r)) dt

:”IU(O)”%2 + 2/0 (I(_uwww — UUy — 1 VU — ag(uv)w), Iu(t)) dt (157)

s
=||Tu(0)]|2, + 2/0 (I(—uugy — a1vvg — ag(uv),), Tu(t)) dt
=[[7u(0)||72 + Ri(9),
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where
s
Ry (0) = / / Op(—Iu? — a1 Tv* — 2ay1 (uv))Tu dzdt. (1.5.8)
0o Jr
Similarly,

[Hv(@)IIZ> = ITv(0)lIZ> + Ra(6), (1.5.9)

where

g 1 2
Ry(0) = / /(%(——Iv2 — bzﬂhﬁ — b2a1](uv))[u dxdt. (1.5.10)
o JR b1 b1 b

Let us define R(9) := R;(d) + Ra(6), so that we have from (1.5.7) and (1.5.9),
17u(8) 7> + 1Tv ()72 = [Hu(0)[Z> + [ITv(0)[IZ> + R(6). (1.5.11)

We will obtain the so called almost conserved quantity from (1.5.11) by treating R(0) as
an error term. In what follows we prove a cancellation property which plays a vital role in
our analysis.

Lemma 1.3 The following cancellations hold.

5 5
/ / 0y (Tw)*Tu dzxdt = 0 = / / 0y (Iv)*Iv dxdt (1.5.12)
o Jr 0o Jr

and
a161I1 + 2(1,2b1]2 + b2a213 + 262a1I4 = 0, if bl = bg, (1513)

where

5 5
Ilz/ /ax(IU)QIuda:dt, 12=/ /(%(Iulv)fud:cdt,
o Jr o Jr
5 5
Igz/ /8w(lu)2h)dmdt and I4=/ /(%(Iu]v)]vdmdt.
o Jr o Jr
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Proof. The proof of (1.5.12) is trivial and (1.5.13) follows by using integration by parts. In
fact, for by = bo,

0,1[1+20,2[2 + CLQI?, + 2&1[4 =

b 5
:al/ /aw(IU)ZIudxdt+2a2/ /aw(fulv)ludmdt
o JrR o JrR
5 b
—I—ag/ /am(lu)2lvdacdt+2a1/ /aw(IuIv)Ivdacdt
o JrR o JrR
5 )
—al/ /(IU)Zazludxdt—ag/ /Ivé?ac(lu)2 dxdt
o Jr o Jr
5 b
—0,2/ /(Iu)Qaszdxdt—al/ /Iu(?m(lv)2 dxdt
o Jr o JrR
5 6
—al/ /ax[fu(IU)Q] d:rdt—@/ /8w[IU(Iu)2] dxdt
o Jr o Jr

Remark 1.3 Note that, it is here in Lemma 1.3, where the restriction by = by on the
coefficients appears. From here onwards we will use this restriction on the coefficients.

Using Lemma 1.3, R(J) can be written as,

//a{fu }Iudxdt+—/ /8{]1} (Iv?) Mo dzdt

+a /0 /R 0, {(Iv)? — I(v?)}Tu dzdt + ay /0 /R 0, {(Tw)? — (Iu?)} v dudt
+ % /0 6 /R O, {Tulv — I(uv)}u dadt + 2a; /0 5 /R O, {Tulv — I(uv)} v dzdt.

Using Plancherel identity and Cauchy-Schwarz inequality as in [60] we get,

(1.5.14)

1R)| < C{lo{Tuto ~ 1)l , (Mullyg , + Il )
+ (100 ~ T s |+ 1000 16" e Miule , (1515)

)

+ (10:A(10)* = 1(o*)Hixs , +110:{(Tu)* = I(u*)}]|xs 1_)||IU||X37_1+}-

[ T 2
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Now, using (1.5.15) and Proposition 1.2 the identity (1.5.11) yields the following almost
conservation law,

Hu(@)I[72 + [Tv(O)I7> < [Hu(0)I7: + [[Tv(0)II7:

3
N w3 Tul%s |1
+CN 7| U||Xg,_%++|| U||Xg,_%+|| U”Xg,—%+ (1.5.16)
+ || Tv]|? Iu + || Tv]3 }
| IIXg,_%II ||xg’_%+ | ||Xg,_%+

Now we are in position to prove the global well-posedness result.

Proof.[Proof of Theorem 1.2:] To prove the theorem it is enough to show that the local
solution to the IVP (1.5.2) can be extended to [0,7] for arbitrary 7" > 0. To make the
analysis easy we use the scaling introduced in the introduction. That is, if (u,v) solves the
IVP (1.5.2) with initial data (¢,v) then for 1 > X > 0 so does (u*,v*); where u*(z,t) =
AN2u(Ax, A3t), vM(x,t) = Nv(A\x, A3t); with initial data (¢*,1*) given by ¢*(z) = N2¢(\z) ,
Y (x) = A2p(Ax). Observe that, (u, v) exists in [0, T if and only if (u*, v}) exists in [0, 7/\3].
So we are interested in extending (u*,v*) to [0, T/\3].
Using Lemma 1.2 we have,

{HWHU < CAIHN=* 8] s,

1.5.17
1M < OATFSN=* [ . (1:5.17)

N = N(T) will be selected later, but let us choose A = A(IV) right now by requiring that,

C M\stsN—s bl s = \/? < 1,
. (1.5.18)
CAP N (|9 ge = /T < 1.
From (1.5.18) we get, A ~ N5% and using (1.5.18) in (1.5.17) we get,
||I¢)\||%2 < %0 <1 (1.5.19)
A7 < § < 1.

Therefore, if we choose ¢; arbitrarily small then from Theorem 1.4 we see that the IVP
(1.5.2) is well-posed for all ¢ € [0, 1].
Now, using the almost conserved quantity (1.5.16), the identity (1.5.19) and Theorem 1.4,
we get,
I W7 + 1A DI < 5+ 5 + N7 {32}
S22 2°2 (1.5.20)
< € + CN_Z_I_GO.
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So, we can iterate this process C !N~ times before doubling || Tu*(¢)]|2, || Tv*(t)|%- By

this process we can extend the solution to the time interval [0, C~* N3] by taking C~'N%~
time steps of size O(1). As we are interested in extending the solution to the time interval
[0, T/A3], let us select N = N(T) such that, C"'N&~ > T//X3. That is,

Ni= > 0% ~ TN 55

Therefore for large IV, the existence interval will be arbitrarily large if we choose s such
that s > —3/10. This completes the proof of the theorem. 0

1.6 Ill-posedness Result

As in the local well-posedness result, we consider the system (1.3.1). Note that we have
dropped “” and retained the notation u,v,¢pandt. Let W = (u,v)”, then the IVP (1.3.1)
can be written as,

(1.6.1)

W (z,0) = Wo(a),

where,

BOW) = ( au + dv cu-l—bv).

&u-i—civ 6u+1~)v

For fixed ® € H5(R) x H*(R), consider the solution W = W? of the IVP

(1.6.2)

W, + Wage + BIW)W, =0,
W(z,0) =6d(x), jeR

We will show that the flow-map §® +— W?°(z, ) fails to be C? at the origin when s < —3/4.
More precisely, we prove the following theorem which in turn implies Theorem 1.3.

Theorem 1.5 Let s < —3/4, then there is no T > 0 such that the flow-map
50— W(t), te(0,T]

be C? Frechet-differentiable at the origin from H*(R) x H*(R) to C([0,T]; H*(R) x H*(R)).
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Proof. We prove it by contradiction. Suppose that the flow-map be C? differentiable at the
origin. Using Duhamel’s formula we have from (1.6.2),

t
WO (z,t) = 6U(t)®(x) — / Ut —t"\BW?®(x,t))W2(z,t') dt', (1.6.3)
0
where U (t) is the unitary group associated to the linear problem. Differentiating (1.6.3) with
respect to § we get,

4 s
WD)~ U)a(a) = Wi, (164
21170 T t
awgié(z,t)‘d:o = —2/0 Ut —t")B(Wi(z,t"))Wig(z,t") dt' := Wa(x,t). (1.6.5)

Our assumption of the C? regularity of the flow-map at the origin implies that,

W2, D)l oz < C I (1.6.6)

HsxHs*

Now, we look for ® € H*(R) x H*(R) so that (1.6.6) fails to hold whenever s < —3/4.
For this, let I; :== [-N,—N +a], I := [N + a, N +2a] with N > 1 and a < 1, define ¢ by
the formula

3(€) = a IN " {x1(€) + x1(©)}, (1.6.7)

and take ® = (¢, )7
It is easy to see that

101 e e ~ 1. (1.6.8)

Now we proceed to calculate ||[Wa (-, t)|| s« s~ For this, let us first calculate Wi (z,t) and
WQ (:c, t)
From (1.6.4) we have ,

—~ (z) €3 &
Wi (€,) = €€ d(¢).
Therefore,

oo,
Wl(x,t)ma 2 N 5< gel Ul pint+ite? de

ez’w§+z’t§3 d¢
ffEIlLJIQ
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From (1.6.5) we get,

Wole,t) = —2 / Ul — Y BOW, (o, ) Wi (2. £) di

e ited 7 . o 2 GEe) 1
= §62$€+zt§3¢(€ - 51)¢(£1) ( % M dfl df,
R2 3¢61(€-61)
where ¢’ =a+b+c+d and b’ =@+ b+ é+ d. Therefore, using (1.6.7) we get,
N~ i€ +i "h(&,&1,1)
Wo(z,t) ~a™'N 25/ ewﬁﬂt&s(“ 1 S1s d§ d&,,
2(2,1) ElenUn 3 b h(& &,t) &d&

§-§1€1UIy

where h(£,&,t) = £l o1  Hence, formally we have,

E€1(6-&1)
(:L‘) _1 2s 'Lt§3 ] ]_fA 5 51: )dé.l
W- ,t) ~ N~
2> (§1) ge ( > JA(@ (&,6,1) dé,

— ( pl(f: t) +p2(£a ) +p3(§at) )
’ q1 (55 t) + q2 (ga t) + Q3(£a t) ’

where,

A)={&:&eh,E-&eli}
AE)={& &4 e, E-& ely}
As)={& & el ,E-&el, or ey, 6—-& €1}

Let E(w) =p; and g}@) =gqj, j =1,2,3, then,
| filz,1) fa(z,t) f3(z, 1)
Wale,t) = ( 01 (2, 1) ) * ( 4o, 1) ) * ( 43 2,1 ) (1.6.9)
= F1($,t) + Fg(x,t) + F3($,t)

Let us find an upper bound for H* x H* norm of Fi. f& €I and € — & € I then
& ~ 1€ =& | ~ || ~ N and we get,

IFl e = / €26, 1) + as (6, 1) ?) de
R

—3it€€1(E—&1) _ 1 p 2 y
/Al@ gE—g) %

~ [N g )
< C«a72N 25— 4( b/2)

= CaN 24,
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Therefore,

1A, e < CazN~*72, (1.6.10)
Similarly,

1ol e < CaZN~*72, (1.6.11)

Now we find, with proper choice of o and N, the lower bound for the H* x H* norm of
F3.
Iffl i and§—§1 e I Ol"fl e I, and{f—fl € I; then |§1| NN, |§—§1‘ ~ N and
|| ~ a. Therefore,
1€61(E = &1)| ~ N’a.

For 0 < € < 1, choose N and « such that N?«a = N~¢. Hence for & € A3(§) we have,
for fixed ¢ and large N,

‘ e-Bitebi(E—€1) _

T ‘ >0 > 0. (1.6.12)

Now,

" ” /3a |§|25 - 45|§| b’2 ‘/ o 3itEEL (€~ 61)_1d€ ng
i xre o e &) U

Using the Mean Value Theorem for integrals and (1.6.12) it is easy to see that,

‘/ e ditg€1(6—61) _ dg
1 EaE—-8&)

Also, it is easy to see that |A3(&)| ~ a. In fact, |A3(¢)| < |I1| + |I2] € 2a. On the
other hand, if £ € (7a /4, 9a/4) C (e, 3a) then [—-N 4+ /4, —N +3a/4] C A3(€) and we get

[43(§)] = a/2.
Now using (1.6.13), we get,

> C[A3(8)|- (1.6.13)

JB\CD

||F3||2's><Hs 2 CN~ 4s 72( +b/2)/ \5\2”2042(15 CN~ 4s 23+3

A\I

Therefore,

IF3)|%,. -, > CN~Za s, (1.6.14)

SxHS
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Observe that supp F, C [—2N, —2N + 2q], supp F, C [2N + 2q, 2N + 4| and supp F, C
[, 3a], which are clearly disjoint, therefore using (1.6.8), (1.6.9), (1.6.10), (1.6.11) and
(1.6.14) in (1.6.6) we obtain,

L 190 ize = W2 0) [0 g1
> (|5, ) e e
> CNfQSa‘H—%
— CN74573N76(3+%)'

Hence
N—4s—3 S CN€(5+3/2). (1.6.15)

Case I: If —3/2 < s < —3/4 then s+ 3/2 > 0 and (1.6.15) gives N(-4s=3)=c(s+3/2) < O
which is a contradiction for N > 1 if we choose 0 < € < (—4s —3)/(s + 3/2).

Case II: If s < —3/2 then s +3/2 < 0 and (1.6.15) gives N=*~3 < C, which is again a
contradiction for NV > 1.

Hence for s < —3/4, (1.6.6) fails to hold for our choice of ®, which completes the proof
of the theorem. O



Chapter 2

Global Well-posedness for a Coupled
System of mKdV Equations

2.1 Introduction

This chapter is concerned about the global solution to the following IVP

Ut + Uggy + (UUQ):E =0
Vg + Vg + (©0), = 0, z,t€R (2.1.1)
’U,(.T, O) = ¢(x)’ U(.T, 0) = ¢(x)’

where u = u(z,t) and v = v(z,t) are real valued functions. This is the particular case of the
model (0.0.7) when p = 1.

The system (2.1.1) has a structure of the modified Korteweg-de Vries (mKdV) equation
coupled through nonlinear effects and is a special case of a broad class of nonlinear evolution
equations of physical interest (see for eg [1]). Many complex physical phenomena can be
modeled as mKdV equation. In recent years much effort has been made to study the mKdV
model (see for example [9], [11], [24], [39], [61] and references therein). This model has also
been studied using inverse scattering theory (see [49], [57] and references therein).

The Cauchy problem as well as the existence and stability of solitary wave solutions
to (2.1.1) is widely studied in the literature (see for example [51] and [2]). Recently using
the argument developed by Kenig, Ponce and Vega [39] in context of the mKdV equation,
Montenegro [51] proved that the IVP (2.1.1) is locally well-posed for given data (¢,1)) €
H*(R) x H*(R), s > 1/4. More precisely, the following theorem has been proved in [51].

27
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Theorem 2.1 Let s > 1/4. Then for all (¢,v) € X°, there exist T = T(||@|| z1/4, ||¥]| z1/4)
[in fact T ~ c||(¢,%)||51. > 0] and a unique solution (u(t),v(t)) to the IVP (2.1.1) such
that

(u,v) € C([-T,T] : X*)

| D2 0sul| pgo 2, < 00, | D70:0]| oo 12, < 00, (2.1.2)
||8xu||L%OL;/2 < 00, ||8wv||L%OL;/2 < 00, (2.1.3)
[ Dgull sy < oo, |1D3vl| 10 < o0, (2.1.4)
llul|Larse < oo, |vllLazss < oo. (2.1.5)

Moreover, for any T' € (0,T), there exists a neighborhood V of (¢,v) in X* such that
the map (¢, ) — (4,0) from V into the class defined by (2.1.2) to (2.1.5) with T' in place
of T is Lipschitz.

Using the conservation laws (0.0.8) and (0.0.9) satisfied by the flow of (2.1.1), the local
solution can be extended to the global one for the initial data in H*(R) x H*(R), s > 1.
Hence, there is a gap in Sobolev indices between the existence of the local and global solution
to the IVP (2.1.1). In this work, we will fill this gap to some extent.

2.2 Main Result and the Scheme of the Proof

Here we further refine the high-low frequency technique introduced by Bourgain [12] and
more simplified by Fonseca, Linares and Ponce [24], in the context of the mKdV equation.
For this we exploit the uniform bound of the solution (see (2.2.1) below) obtained by using
iteration in the energy space. With proper choice of the Sobolev indices we develop an
iteration process below the energy space and prove that the IVP (2.1.1) is globally well-
posed for data in H*(R) x H*(R), s > 4/9. More precisely, we prove the following result.

Theorem 2.2 For any (¢,v) € H*(R) x H*(R), s > 4/9, the unique solution to the IVP
(2.1.1) provided by Theorem 2.1 extends to any time interval [0, T].

To prove this theorem we use the sharp smoothing effects present in the solution of the
linear problem associated to the IVP (2.1.1) combined with the iteration process introduced
by Bourgain [12]. The proof will be carried out in two steps. In the first step we closely
follow the modified techniques developed by Fonseca, Linares and Ponce [24] to perform
iteration in the energy space and prove that the local solution to the IVP (2.1.1) can be
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extended to a global one for given data in H*(R) x H*(R), s > 3/5. Moreover, we obtain
that the solution grows according as

sup 1(u(®), v(®) || mexcms < T3 35 <5< 1, (2.2.1)
0,T

with N = N(T) ~ T%©®5=3) sufficiently large.

In the second step, we take so € (3/5,1) and the data in H°(R) x H*(R), 1/4 < s < s.
Utilizing the uniform bound (2.2.1) of the solution in H*(R) x H*(R) obtained in the first
step, we develop an iteration process in this space by controlling the involved norms and
complete the proof (for details, see proof of the Theorem 2.2 below).

2.3 Linear Estimates

In this section we give some linear estimates associated to the IVP (2.1.1). These estimates
are not new and can be found in literature. We will not give the details of the proofs rather
we just sketch the idea of the proof and mention the references where these can be found.
Let U(t) be the group generated by the operator 2. First let us state the smoothing effects.

Theorem 2.3 If ¢ € L*(R), then

10:U ()¢l 5oz < 9]l 2 (2.3.1)

If g€ LLL? then for any T > 0
¢
lo. [ Ut~ )g(.t) sz < lglass (23.2)
0
Ifg € Lg/(Ha)Lf, 0<6<1, then for any T > 0
t 1
D2 [ U~ 00900 ) iz < IO O gl ymy (2.33)
0

Proof. For the proof of the homogeneous smoothing effect (2.3.1) see section 4 in [42]
(see also [39]). Inequality (2.3.2) is the dual version of the smoothing effect (2.3.1). The
estimate (2.3.3) can be found in [18]. In fact, the Minkowski integral inequality and the
Cauchy-Schwarz inequality yield,

t T
o, [ Ut -ty eyt < [ IDagl izt < TV Dglizy (239
0 0
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Now, application of Stein’s interpolation (see [62]) between the dual version of the
smoothing effect (2.3.2) and the estimate (2.3.4) by considering the analytic family of oper-
ators T, f = D;Z(fot oUt—1)f(-, ) dt"), z€ C, 0 <Rz < 1 gives,

¢
||8$/ U(t — t’)g(.’ t/) dt,”L%OL% < CT0/2||Dgg||Li/(2—0)L%, (2.3.5)

0
which implies the required estimate. 0

Observe that, if D¢ € L? for 0 < # < 1, then using Stein’s interpolation between the
homogeneous smoothing effect (2.3.1) and [|U(¢) fllzzza < T"?|| |12 we get,
10:U )6 0, < T D31 (2:36)
Now we give the maximal function estimates.
Theorem 2.4 If ¢ € HY*, then
U (0)llsrz < D *$lso- (23.7)
Ifpe H*, s>3/4 and 0 < T <1 then
Ul 2 < cllllae- (2.3.8)
Ifp € HOF2/4 0 <9 <1 and0<T <1 then
1Tl pz0+0 10 < cll@llmoanya. (2.3.9)

Proof. The proof of the estimates (2.3.7) and (2.3.8) can be found in [41] and [45]. The
estimate (2.3.9) can be obtained by interpolating (2.3.7) and (2.3.8). O

Theorem 2.5 If ¢ € L*(R), then

|U#)¢lls o < cll@ll 2 (2.3.10)

and

10U ()1l 3052 < el Dy "¢l 2. (2.3.11)
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Proof. The estimates of this theorem can be found in [39]. The estimate (2.3.10) follows by
interpolating (2.3.1) and (2.3.8). The estimate (2.3.11) follows by using Stein’s interpolation
between (2.3.1) and (2.3.7). 0

Theorem 2.6 Let 1/4 <0< 1. If D’¢ € L2, then
DU (£)@|| 10/ 200-3) 572 < T2~ D2\ 2. (2.3.12)
z t

Proof. The proof of this estimate can be found in [18] which follows by interpolating (2.3.6)
and
DU ()] 570 10/5-40) < | Dobl|z2, 0 <6 <1 (2.3.13)
Ly

The estimate (2.3.13) can be obtained by interpolating the homogeneous smoothing effect
(2.3.1) and the maximal function estimate (2.3.7). O

Finally we have the Leibniz’s rule for fractional derivatives whose proof is given in [39].

Theorem 2.7 Let a € (0,1), oy, 0 € [0,0], a1 + a2 = a. Let p,p1,p2,4,q1,¢2 € (1,00) be
such that%:p%-f-p%, %= qil-l-q%. Then

1Dz (f9) = FDZg — 9D fllzzrg, < cllDF" fllpzapar (10729l 22 po2 (2.3.14)

Moreover, for a; = 0 the value g = 00 s allowed.

2.4 Preliminary Results

We decompose the given data (¢,1) € X*, s <1 to low and high frequency parts as,

{¢($) = (xqig1<m9(6)” (2) + (xe>38(6)) (2) = d1(x) + dal(a)
(@) = (Xga<m¥ (€)Y (2) + Oe>nyv (€)Y (@) i= () + ¥ (@),
where N > 1 arbitrary but fixed.

Then we have, (¢1,7%1) € X?, 0 <8< 1 and (¢, 9) € XP, 0<p<s<1.
As discussed in the introduction, we evolve (¢, ) according to the IVP*

(2.4.1)

U + Utggr + (UIU%)J: =0
V1t + Voggr + (U%UI)z =0 (242)
ul(x,O) = ¢1(*/E)7 Ul(.’L',O) :wl(x)a

*We use the notations w1y := (u1)¢, U1, := (u1), and similar for other terms.




32 M. Panthee

which is the same as the IVP (2.1.1). We evolve (¢3, 1) according to the difference equation

Unt + Ungze + (U1 + u2)(v1 +v2)%)s — (U107); =0
(7 + Vorzx + ((ul + u2)2(v1 + U2))$ - (U'%Ul)a: - 0 (243)
UQ(x’O) :¢2($)’ UQ(.T,O) =¢2(37)a

with coefficients depending on the solution (uq,v;) to the IVP (2.4.2). It is clear that
u = uy + uy and v = vy + vy solve the IVP (2.1.1). For simplicity, let us write (2.4.3) as

Ugy + Uger + F=0
Vot + Vogee + G =0 (244)

UQ(‘T’O) = ¢2($)7 U2(~T7O) = ¢2(x)7

where
B =2u1 01095 + 2u102015 + 20102U12 + 20102020 + 2UgV1V15 + 2UpU1V2g (2.4.5)
+ 2UgV9014 + 201Valay + 2UgVaVs; + VJULg + VU, + Vi lay
and
G =2v1U1Uze + 201U2U1g + 2UrUgVis + 201UzUog + 202U1U1g + 202U1 Uzg (2.4.6)

2 2 2
+ 209U g + 2U1ULVg + 2V2UoUog + U1y + U Vg + USV2,.

Note that from Theorem 2.1 we have the existence result for the IVP (2.4.2). To get the
existence result for the IVP (2.4.4) we need the following theorem.

Theorem 2.8 Suppose the initial data (¢1,11) of the IVP (2.4.2) satisfy

(o1, 91)||x < ¢
|(#1,91) || xr < eN'=5.

Then for the ezistence time T ~ c||(¢1,11)|| 512 ~ ¢cN~07%) obtained in Theorem 2.1
(i) The solution (uy,vy) to the IVP (2.4.2) satisfies,

sup | (ur (8), v1.(8) llxr = sup{lfus (8)llazs + oz (Dl 1] < eN**. (2.4.8)

(2.4.7)

(1i) Moreover, for any 8 € [1/4,1), the solution (ui,vq) to the IVP (2.4.2) satisfies,
sy 00)ll5 ~ NO, (2.4

where || (u1,v1)]|ls = max{{lur[lg, [lvr]ls} and,
1 ls = £l rs + 11 D700 f | nzorz. + 10 £l 20,372

; (2.4.10)
+ 1Dz fllezrse + [1fllcace + 10:f llrgerz -
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Proof. The proof of (2.4.8) follows by using the conservation laws (0.0.8) and (0.0.9) com-
bined with the Gagliardo-Nirenberg inequality. The estimate (2.4.9) can be obtained by
using the hypothesis (2.4.7) and the local well-posedness result. 0

The following theorem provides the existence result for the IVP (2.4.4).

Theorem 2.9 Let (¢o,12) € X, s > 1/4 and (u1,v1) be the unique solution given by
Theorem 2.8. Then there exists a unique solution (ug,ve) to the IVP (2.4.4) in the same
interval of existence of (uq,v1), [0,T] such that,

(UQ,’UQ) € C([O,T] : Xs)

| Dz0zusa|| Lo 2. < 00, | D30 va| Lo 2. < 00, (2.4.11)
||8$u2||L%0L5T/2 < 00, ||8$U2||L%OL;/2 < 00, (2.4.12)
[ Dgusz|| 310 < o0, [ Dgva|| 20 < 00, (2.4.13)
||ua||Larse < o0, |lv2]|LaLse < o0 (2.4.14)

Proof. We will prove this theorem following the argument in [39]. As in [39] we will
give details only for the case s = 1/4, for this we consider the equivalent integral equation
associated to the IVP (2.4.4), i.e,

us(t) = U(t)po — [ U(t —t')F(t') dt’ (2.4.15)

va(t) = Ut)es — [ Ut —t)G(t') dt,
where F' and G are defined in (2.4.5) and (2.4.6) respectively.

Let us define,
Xz = {(uz,v2) € C((0,T] : X4(R)) : [[(uz, v2) |14 < a},

where

ll(uz; v2)ll1/a = max{{luzlly/a, [[vallr/a};
with

1/4
1F 0y = Nz mosn + 110340, fl e, + 100 1l oo (2.4.16)

+ 1D fllzgeso + 1 lzazge + 1185l gor2.
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Finally, we define,

(2.4.17)

By, [u2, v2] = U(t)d2 — fo (t=t)F(t')dt
Wy, [ug, va] = U(t)y fo tGt') dt'.

and show that ® x ¥ maps X, r into X, and is a contraction.
Using the linear estimates established in section 2.3 we obtain,

(@, 9) e < ell(2, )l xs + T2 D/ Fll 131,
+ 1F Nl 20z + 1D Gllzre + Gl 222} (2.4.18)
= cl| (2, )l 520 + T2 {A1 + A + Az + Ag}.

Now using the definition of F' we get,

Ar < e[ID* (urvrvas) | p2z2, + 1 D5/ (wrvavie) lp2. + (|13 (v102u10) | 2222
+ ||Dal;/4(U1U2Uzw)||LgL2T + ”D;M(U’QUIUM)”L%L% + ||D3;/4(U2U102w)||LgL2T
+ |D3* (ugvavia) |22, + 1Dy * (v1vause) e 2. + 11Dy (ugvavas) | 1212 (2.4.19)
+ ||D;/4(Ugu1$)“LgL2T + ||Di/4(vfu2w)||LgL2T + ||D;/4(U§U2x)||LgL2T]
= A+ Ao+ + Apo.
Also, we can have the similar expressions for Ay, A3 and Aj,.
Using the Leibniz’s rule for fractional derivative and Holder’s inequality we get,
A= C||Di/4(ulvlv2z)”L%L%

< c[IIDy/* (uawy)| 1209 p10l|V2a | 0 572 + lurvs Dy *vos| 2212,

L20L,
+ [[vae Dy * (w1 01) | 212 ] (2.4.20)
< C[||Di/4(ulvl)||L30/9L1T0||v2w||L20Ls/2 + ||u1||L4L°°||U1||L4L°°||D1/4U2w||L°°L2]

< c[1D/* (urvi)l 2oro pyollvalliya + Nulljallvallyallvalla) -
Again, using the Leibniz’s rule for fractional derivative and Holder’s inequality we have,

||Di/4(uw1)”L§°/9L1TO < C[“ul”L%L%o||D;/41)1||L3L1T0 + ”ulDiMUl”LiO/QLlTO

1/4
+ oDyl 209 1 (2.4.21)

C[||U1||L3L%°||Dglc/4?’1||LgL1T0 + ||Ul||L;1L%°||Di/4U1||LgL1T0]

cflud| 1/4 flva | 1/4-
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Inserting (2.4.21) in (2.4.20) we obtain,

Ary < el (ua, ) I all (a2, v2) 14

Also, we can get the analogous estimates for A, ;, j =2,3,...,12.
Therefore, from (2.4.19) we obtain,

Ar < e[ll(ur, va)lI5 pall (uzy v2) 1 + 1 Cus, v0)lyall (2, v2) 14 + [l (uz, v2) 134] -
Using the similar argument we can get for j = 2, 3,4,
Ay < e[l (ur, )17 all (uz, v2)ll o + W, v0) ljall Cuz, v2) 174 + Bz, v2) 13 4] -
Hence,
(@, ©) 114 < ell($2, )| s + T2 { I ur, 01) 134
+ N ur, vi) lljall (a2, v2) /s + [ (u2, v2) |||f/4} Il (w2, v2)l1/4-

Let us set a = 2c max{||(d1,¥1)|| x1/4, || (D2, ¥2)|| x1/4}. With this choice, if we take T such
that ca®T'/? < 1/10, then (2.4.22) yields,

(2.4.22)

a 3
(@, D)llrjs < 5 + 50 <

10
Therefore, ® x ¥ maps X, r into X, 7. Using the same argument we can show that ® x ¥
is a contraction. The rest of the proof follows a standard argument. 0

In what follows we need the following results.

Corollary 2.1 Let (uy,v1) and (uz,ve) be solutions to the IVPs (2.4.2) and (2.4.4) with
initial data (p1,vn), (¢2,12) € X, s > 1/4 respectively. For 1/4 < p < s < 1, let (¢a,2)
satisfies,

(b2, o) [|xp ~ NP7° (2.4.23)
and (¢1,11) satisfies the conditions of Theorem 2.8. If

(s, v2)ll = max{[uzllp, vzl

where,
7 = e+ 10230l + 03u e+ 1D e
Then,
I Cuzy w)ll,, ~ NP2
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Proof. Using the definition of || - ||, and the linear estimates established in section 2.3 we
obtain,

Iz, w2)ll,p < €ll(@2,92)llxe + T2 {IDEF ||z, + 1F |l 203, + ID5G lrzez, + 1G22z, }

= c||(¢2, ¥2)||x» + B1 + By + B3 + By.
(2.4.24)

From the definition of F' we get,

By < T (|| DE(urv1vag) |22 + 1D%(uavavia) |rar2, + 11 D4 (01v2w10) | 1212
+ | D3 (u1voves) |22 + (| DE(uavivie)||r2 2. + [|Df (uav1vos) || L2 2
+ | Dg (uav2v1s) | 22, + | Do (vivauas) || 2 2, + (| Df (u2v2v0) || 122 (2.4.25)
+ |1 D8 (v3usa) | 222, + 1 Do (v uge) L2 12, + 1D8(v3us) || 212,]

:=DBi1+ Bia+---+ By

Using the Leibniz’s rule for fractional derivative and Holder’s inequality one gets,

I

By = T'2|| D (w1v1va,)|| 1212
< T2 1 D2 (usvn)l 20 yollvell o 572 + 1v2e DE(uavs) 2223
+ [lurvr D5vael 1202 ] (2.4.26)
< T [||D§(U1U1)||L30/9L1To||U2w||L%oL;/2 + [l parsellvall Larse (| DEvas | oo 2 ]
< T2 [|valr/al| D5 (wr 1) | 2070 po T luallyallvallyyallvall,]

Again using the Leibniz’s rule for fractional derivative we get,

1DZ(urv1)l] j2070 20 < cllluillazs | Dhvi |l s o + [lus Dgor[ 2070 20 + ||711D§U1||L3:0/9L1To}
< C[|\|U1|||1/4|||U1 I, + ||U1||L§L%°||D§U1||L5L1T0}

< cflluallazallvilly + ellvrllsjallullo]-
(2.4.27)

Inserting (2.4.27) in (2.4.26) we obtain,

Buy < [l (ur, va) lhjall (ur, va) ol Cuz, v2) laa + W Cur, o) IR all(u, w2) ). (2.4.28)

Using the similar argument it is easy to get, for j = 2,3, 5,11,

By < [l (ur, 1) layall Cur, 1) Dpll Cuz, v2)l1ya + g, v) I3 all (s w2) ], (2:4.29)
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for j =4,6,7,8,10,

Buy < T2 [[|(ug, 1) ol Cuz, w2) U134 + Wl Cur, w0) lagall Cu, v2) lajall Cuz, w2) ], (24.30)

and for j = 9,12,
Bij < T2 (|| (w2, v2) I3 14l (ua, w) [l - (2.4.31)

Now, using Theorem 2.8, Theorem 2.9 and T ~ N~(07%) we get from (2.4.28) - (2.4.31),

1
Byj < eN* ot ol (uzw)ll,  G=1,2,3,5,11, (2.4.32)
Bij < eN** + eN~#[|(uz, va) |, j =14,6,7,8,10 (2.4.33)
and
Bij < eN 2| (uz, v3)ll, j=9,12. (2.4.34)

The use of (2.4.32) - (2.4.34) in (2.4.25) yields,

1 —35 —s
By < e ll(uz, va)llp + N4 (ua, wa) [l + NP7 (2-4.35)
Now we estimate the term B,. From the definition of F' we get,

By < T2 [|lurvrvaa|lr2zz, + [luavaviallrazz, + llv1vsunallrazz + llurvavas |2z
+ lugvivig|lrarz + luavives |2z + luavoviallpa sz, + lv1vauss|l a2, (2.4.36)

+ lugvavasllza e + lvaurallzara + lvPuzsllz2 2, + l[v3ussll 212 ]

=By + By + -+ Bya.
Using Hoélder’s inequality, Theorem 2.8, Theorem 2.9 and 7"~ N~ we obtain,

By < T2 ||ugllzazee lvillcazes 1vaoll oo 2
< cT'/? |||U1|||1/4 lva |||1/4 llv2 |||1/4
< T2 (ug, 1) 1% /40l (2, v2) |14
< N2 N2(=9) Na=s < (NP5,
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We can have the similar estimates for By, j =2,3,...,12, so that
.B2 S cNP~, (2437)

Also, with the argument applied in B; and By we get the similar estimates for B3 and
B, respectively.

Therefore, using (2.4.35), (2.4.37) and the analogous estimates for By and B, we obtain
from (2.4.24),

1 —35 —s
ll (o, v2)ll, < ell (@2, 92)llxe + {5 + N7}l (uz, va)ll, + eN*7.

Choosing N > 1 such that eN~45 < 1/3 we get the required result. O

Proposition 2.1 Define || (uz, vs)llo = max{|[uzflo, [lv2llo} where,

Ifllo = 1A llzgezz + 102 f | zeorz, + 1f |z rse-

Let (uy,v1) and (ug,ve) be solutions to the IVPs (2.4.2) and (2.4.4) with (¢1,71) € X'

and (¢2,¢2) € X° respectz"uely satzsfymg ||(¢1,¢1)||X1 ~ N'=* and ”(QS?an)”X ~ N—s,
1/4<s< 1. Then

Il (uz; v2)llo ~ N°. (2.4.38)
Proof. By the definition of || - [|o and linear estimates established in section 2.3 we obtain,
I (uz, v2)llo < €ll($2, v2)llx + T {1 Fllzrz + Gllizz }- (2.4.39)

From the definition of F' we get,

1 F 222 < clllurvivasllrare + [[uivevisllzrz + [[viveusll 2z, + lluivevee|| 22

+ llugvive, [ p2zz, + luavivesllrare, + luevavisllrzrs, + |[vivaussl L2 12,

X , ] (2.4.40)
+ lugvavag |l L2z + lvuiall L2z + lvivesl| 2, + lv3u2ell L2102 ]
::F1+F2+"'+F12.
Now, using Holder’s inequality and the definition of || - [|o and || - [|1/4 we obtain,

Fy < cllurllzars vl zans vasllreons, < clunllapallonllyjallvallo < ell(ur, vi)lI34ll (uz, v2) lo.
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Similarly,

F, < C||U1||L;1L°T°||U1U2||L3L1T0||U1x||L%oL;/2 < C|||U1\|\1/4H\U2|H0||\Ul\|\1/4 <c|| (ul,vl)\l\%/4l\| (w2, v2) lo-

We can apply the similar argument to get,

Fj < cll(ur, v0) Iall(uz, v2)llo, 5 = 3,5,11.

Fy < cf|(uy, 1) llyall (s v2) 1 all (w2, v2)lo; - 5 = 4,6,7,8,10.
Fj < cf|(uz, v2)lI jall (w2, v2)llo, 5 =9, 12.

Also, we have the similar estimates for ||G||>.2 . Collecting all these estimates we get
from (2.4.39),

[I(uz, w2)llo < ell(92, v2)llx + T2 { W (ur, 1) 14

(2.4.41)
+ [, v1) [l yall (uz, vo) l1ja =+ | (uz, v2) 174} (a2, v2) o

Finally, considering ¢7*/2{|] (u1, v1) I35 + | (ur, v1) 1 all (w2, v2)ll1ja+ [l (w2, v2) [ 4} < 3/10
for the choice of T'in Theorem 2.9 we get from (2.4.41),

[l (uz, v2)llo < cll(d2, o)l

which gives the required result. 0

Proposition 2.2 If (u1,v1) is a solution to the IVP (2.4.2) in [0,T], T < 1, then
||U1||L;/(1+6)L%o + H”l”L;‘/(“")L%o < c||(u1s v1) 1420y /45 0<6<1 (2.4.42)
and
lurall o9 52 + viall yaorons) s < T278 (ur, v)llg, 1/4<0 <1 (2.4.43)
Moreover, the solution (ug,vy) to the IVP (2.4.4) satisfies,
||U2||L§/(1+9>LOTQ + ”UQHLi/(W)L%o < |l (uzs v2) | (1420 /45 0<6<1 (2.4.44)
and

||u25”||L§°/(209_3)L§/2 + ||U25”||L§0/(20‘9_3)L5T/2 < cT?/?=1/8 (w2, v2)le, 1/4 <6 <1. (2.4.45)
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Proof. The estimate (2.4.42) follows by using the equivalent integral formula for (uq,v),
the estimate (2.3.9) and the choice of 7" in the local well-posedness result. The estimate
(2.4.43) follows by using the similar argument along with the estimate (2.3.12). The other
estimates follow analogously. O

The following Proposition gives the estimates for the X! and X norms of the inhomoge-
neous part of the evolution of the high frequency part.

Proposition 2.3 Let F and G be given by (2.4.5) and (2.4.6) with (ui,v1) and (ug, vs)
solutions to the IVPs (2.4.2) and (2.4.4) respectively. Define,
t t
(2(1), 2 (1)) = (- / Ut — #)F(t') dt', — / Ut — #)G(t) dt’). (2.4.46)
0 0

Let (¢1,v¢1) and (po,10o) satisfy the hypothesis of Corollary 2.1 and Proposition 2.1. If
3/b < s <1, then

3—"5s

sup ||(z1(2), z2(t))||x1 < ecN =2 (2.4.47)
t€[0,T1]
and
sup |[[(21(t), z2(t))]|x < eN7°. (2.4.48)
t€[0,T
Proof. Applying (2.3.3) and the definition of F' we get,
¢
[ Doz |22 = ||Dz/ Ut —t)F(t') dt'l|z2 < cl|[Fl|zz
0
< C{||U1“1“2w||L;L2T + [[urvaviall Ly oz, + llvivausellpizz + lurvaves ||y rz,
4.49)
+ lugviviz|lpa e, + [uevivesl|pize, + lugvoviallrize, + [lv1vauss|ryze,
+ llugvavasllprra, + lv3wiallpare, + v ugellryr, + lv3uoellryrs }
=2 22t 2.
Now we estimate 21 ;,7 = 1,2,...,12. To get estimates for all these terms we use similar

argument utilizing Theorem 2.8, Corollary 2.1, Proposition 2.1, Proposition 2.2 and the
choice of T. For the sake of clarity let us consider the most difficult terms u;v1v9, and
U1VaV1, in F and obtain,

211 = cllurvivas |z

VAN

C||u1||L§Lgs> ||Ul||L§L%° ||U2x||Lg<>L‘gp

ll (ur, v) 34l (w2, v2) o
CN3—255

IN

IN
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and

212 = C||U1U21)1x||L;L2T
< c“ul”Lg/?’L%o||/U2||LJ5DL1T0||U1Z||Li0/17L5T/2

T/ Il (w1, v1) H|1/2 (w2, va) llol (21, v1) |2

9—17s 3—5s
2 .

cN & <c¢cN

IN

IN

We can obtain similar estimates for the other terms in (2.4.49) too.
Using an analogous argument we can get,

||Zl||L% S CN_S.

Finally, we can also obtain similar estimates for z; and that concludes the proof. 0

Next, we derive some estimates that will be useful in the second step of the proof of
the main result. Now, we consider the given data in X?* 1/4 < s < s; < 1, and split into
low and high frequency parts according to the formula (2.4.1). For sy := s; + € < 1, the
low frequency part (¢1, 1) € X* with ||[(é1,%1)]|xs0 < ¢N*°~% and the high frequency part
(h2,109) € XP, 0 < p < s < 89, with ||(¢2,¢2)||XZ < ¢NP~*. Moreover, ||(¢1,91)||x < ¢
and by interpolation we obtain ||(¢1,v1)||xs < cN%(sofs), 0 < B < sp. As earlier we evolve
(¢1,11) and (o, 12) according to the IVPs (2.4.2) and (2.4.4) respectively. In this case also,
we can have the results analogous to Theorem 2.8 and Theorem 2.9 with the local existence
time replaced by

(e
T ~ ||(¢1,¢1)||;ﬁ/4 ~ N 5g(50—9)
and the estimate (2.4.9) replaced by
B (s9—s
I (ug, v1)[[xe < N9 1/4< B < s (2.4.50)
Also, it is easy to obtain the results analogous to Corollary 2.1 and Proposition 2.1, i.e.,

Il (ug, )|, < eNP72, 1/4 < p < s < s, (2.4.51)

| (ug, v2)flo < eN"°. (2.4.52)

Our next result is similar to Proposition 2.3. Before establishing it let us explain in brief
the argument we are going to employ. We want to develop an iteration process in X*° by
incorporating the inhomogeneous part of the evolution of the high frequency part with the
evolution of the low frequency part. For this, we need to know the growth of the X*° and
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X norms of the inhomogeneous part (21, 22), given by (2.4.46), of the solution to the IVP
(2.4.4).

For simplicity we analyze z1(t) considering one of the worst terms uv1v9, in F and get
estimate for

1D 21| 2 = [|1D7° /Ot U(t — 1) (urv1v20) () dt'|| 2.
Using (2.3.3) we get,
D221 |2 < CT%(l_SO)||u1v1v2$||Li/(1+so)L2T. (2.4.53)
Applying Hélder’s inequality, Proposition 2.1 and Proposition 2.2 we get from (2.4.53),

1

1 (2.4.54)
< 207 (g, )} I (uz, v2)|
>cC U1, V1)l (14+2s0) /4 1 \U25 V2)l0-

We will get the same estimate if we consider 2, too.
Note that we have control on || D**(uy, v1)||12 and are interested to control || D® (2, 23)|| 12
by it. From (2.4.54) it is clear that we will have such control on || D*(zy, 29)||2 only if

1+2
802 +4 80,

ie. sy >1/2, (2.4.55)

which is true, since in the second step of the proof of the main result we take sq € (3/5,1)
(see proof of Theorem 2.2). This condition also implies that the number of derivatives of
(21, 22) is not less than those of (u1,v;) justifying the incorporation of (zi, z5) with (uy, v)
in the iteration process.

The following Proposition provides the estimates for the X*° and X norms of (2, 29).

Proposition 2.4 Let z; and 2z be defined in (2.4.46) with F' and G given by (2.4.5) and
(2.4.6) respectively. Let (¢1,11) and (pa,15) satisfy the respective hypotheses of Corollary
2.1 and Proposition 2.1, then for so > 1/2,

3sp9—5s
sup ||(21(t), z2(t))||x0 < N2 (2.4.56)
t€[0,T
and
sup [|(21(t), zo(1))[Ix < eN7°. (2.4.57)

t€[0,T
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Proof. Using (2.3.3) and the definition of F' we get,
¢
1Dz 2 |2 = ||Di°/ Ut =) (¢) dt |12 < D207 F|| oo,
0

< cT%(PSO){||u1vlvgw||L§/(1+so)L2T + ||“1U2U1$||Li/(1+SO)L2T + ||1111)2u11||L§/(1+50)L2T
+ ||U1U2U2m||L§/(1+So)L% + ||U2U1U1z||L§/(1+so)L2T + ||u2U1UQm||Li/(1+so)L2T
+ ||U2U2U1w||Li/(1+so)L2T + ||U1U2u2w||Li/(1+50)L2T + ||U2U2U2x||Li/(1+so)L2T
+ ||v§u1w||Li/(1+so>L2T + ||U%U2$”Li/(1+80)L% + ||U§U2zc||L§/(1+so)L%}

=2 22t 2.
(2.4.58)

Now we estimate 21,7 = 1,2,...,12. To get estimates for all these terms we use similar
argument utilizing (2.4.50), (2.4.51), (2.4.52), Proposition 2.2 and the choice of T'. For the
sake of clarity let us consider one of the most difficult terms u;v,v9, in F' and obtain,

11—
21,1 = CT§(1 50)||u11)11)2$||L2/(1+s0)L2T

1
< T30 80)||U1||Li/(1+80)L%o||U1||L2/(1+60)L%o||U2w||Lg°L%

1
< 2070 (g, 00) [yl (2, 2) o
< B0 000\ o)
3sg—>5s

<cN“ 2 .

Similar estimates can also be obtained for the other terms in (2.4.58).
An analogous argument leads to,

||Zl||L% S CN_S.

Finally, we can also obtain similar estimates for z; and that concludes the proof. 0

2.5 Proof of the Global Well-posedness Result

In this section we give the proof of Theorem 2.2, the main result of this chapter.
Proof.[Proof of Theorem 2.2:] As mentioned in the introduction we carry-out the proof in
two steps.
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First step: Let (¢,9) € X*(R), 3/5 < s < 1 and N > 1 be arbitrary but fixed. Let us
decompose the initial data as in (2.4.1) to

() = ¢1(x) + ¢pa(7), (2.5.1)
Y(z) = ¢i(2) + o ().
Then we have,
”(qsla,l/)l)”X S (&
{n(asl,wl)nxa <eNH-, 0<B<. (2:5:2)
[(h2, ¥2)||xr < eNP7%, 0<p<s<l. (2.5.3)

Consider the TVP (2.4.2) with initial data (¢1,11) € X?, 1/4 < 8 < 1. From Theorem
2.1 there exists T satisfying

Ty < cll(¢1,¥1)lI 510 ~ N0, (2.5.4)
such that the IVP (2.4.2) has a unique solution (uy,v;) in the interval [0,7;]. Moreover,

sup || (ur(t), v1()) || x1 < eNO. (2.5.5)
tE[O,To]

Now, we consider the IVP (2.4.4) with initial data (@9, %2). In Theorem 2.9 we found
that the IVP (2.4.4) has a unique solution (us,vy) defined in the same interval of existence
of the solution (uy,v1), [0,7Tp] and is given by (2.4.15), i.e.

va(t) = U)oz + 22(t)-
where z1(t) and zy(t) are given by (2.4.46).
As mentioned in the introduction, v = u; 4+ u and v = vy + v, solve the IVP (2.1.1) in
the time interval [0, Tp].
Given T > 0 arbitrary, we are interested in extending the solution (u,v) of the IVP
(2.1.1) to the interval [0, T’]. For this, we iterate the above process in each interval of size T}
unless covering the whole interval. Now, at the time ¢ = T;, we have,

{U(To) = w1 (To) + U(To)$2 + 21(To) (2.5.7)

’U(T()) =1 (T()) + U(T())’(/JQ + ZQ(T()).
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Now we decompose (u(Tp),v(T)) as,

u(Ty) = @1(To) + 12(To)
{U(To) = 91(To) + 02(T), (2:58)
where,
{@1 (Ty) = w1 (To) + 21 (To), Uo(To) = U(Tp)p2 (2.5.9)
01 (Ty) = v1(To) + 22(To), Uo(To) = U(To)v,

and evolve (4,(7y),01(Tp)) and (G2(Ty), 02(75)) according to the IVPs (2.4.2) and (2.4.4)
respectively. Using previous procedure, to get solution to the IVP (2.1.1) in [Ty, 27| we
must guarantee that (41(7y), 91(75)) and (42(7Ty), 02(Tp)) satisfy the respective conditions
(2.5.2) and (2.5.3).

Since U(t) is unitary in H?, (i9(Tp), 92(20)) satisfies the same growth condition as that
of (g2, 19), i.e, (U2(Tp), 02(Ty)) € X? and

|(@2(To), 02(To)) |l xe = [|(d2, ¥2)||xr < NP5, p<s.

Now, let us check how is the growth of the X'-norm and the X-norm of (a(Ty), 91(Ty)).
Using Proposition 2.3 and estimate (2.5.5) we get

I (7o), 2T e < o (To), o (ToDlle + M (To), (Tl
< eNU=3) 4 N7,

On the other hand, using conservation law (0.0.8) and Proposition 2.3 we obtain,

[1(@1(To), 51 (To)) | x < [[(ua(To), vi(To)llx + [I(21(To), 22(To)) | x
< |(¢1,91)llx +eN—° (2.5.11)
c for sufficiently large N.

So, from (2.5.10) it is clear that the solution to the IVP (2.1.1) can be extended to the

3—5s

interval [Ty, 27p] if we can guarantee that N 2 < ¢N{~9) for large N and some appropriate
values of s. In what follows we select these values not only to guarantee this condition for a
single iteration but to cover the whole interval [0, T7].

To cover the interval [0, 7] we must iterate the above process T'/T, times. As seen earlier,
in each iteration, there will be a contribution of ||(z1, 29)||x: and |[|(z1, 22)||x- From (2.5.10)

3—5s

we see that the total contribution of ||(z1, 22)||x1 to cover [0,T] is, (T/To)N = .
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Thus the X'-norm of (2, 25) will grow uniformly as N*=*) on the interval [0, T] if we
have,
T 35
Z N < eNO9), (2.5.12)
To

Now, using Ty ~ N~(17%) from (2.5.4) we see that (2.5.12) is equivalent to,

3—5s

TN <ec. (2.5.13)

Therefore, to guarantee (2.5.12) we must choose N = N(T) satisfying
N(T) = T%=,

with 2223 >0, i.e. s > 3/5.

Let us show, with this choice the X-norm is also of O(1). We know from (2.5.11) that
the total contribution of ||(z1, z2)||x to cover the interval [0, 7] is (T'/Ty)N—*. Now, with the
choice of N we get for 3/5 < s <1,

T
~_N"* < TN N~ <,
Ty

as required.
Hence, we conclude that the IVP (2.1.1) has global solution whenever s > 3/5.
Also, it is easy to see that the solution can be written in the form

u(t) = U(t)p + wq(t) and v(t) = U(t)y + ws(t),
with

sup lw; ()| < T2/ 6573), (2.5.14)
0,7

From (2.5.14) and the choice of N we can obtain the following upper bound for the solution
to the IVP (2.1.1) in the X* norm

sup || (u(®), v(®))|lxs < eN*U=9) 3/5<s< 1. (2.5.15)
T

0,

Second step: Let (dg,¢9) € X*(R), 1/4 < s < s9, $o € (3/5,1) and N > 1 be arbitrary
but fixed. Let us decompose the initial data as in (2.4.1) to low and high frequency parts,
then we have,

{n(asl,wl)nx <c (2.5.16)

(61, ¥1)]| x50 < eN®O~*
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and
[(¢2,2) | xe < eNP*, 0< p<s. (2.5.17)

Also, by interpolating the estimates in (2.5.16) we get,

B (so—s
(81, %1)||xs < eN™™, 0< 8 < s (2.5.18)

Consider the IVP (2.4.2) with initial data (¢1,17) € X*®0. In the first step we saw that the
solution to the IVP (2.4.2) for given data in X*° exists in any time interval [0, T']. Moreover,
from (2.5.15) we have the following uniform bound for the X*°-norm of the solution,

sup [|(u1 (1), v1(2))l[x00 < eN*0l720), (2.5.19)
(0,71

As mentioned earlier, in this step we develop an iteration process in the space X*°, sy < 1 to
extend the local solution to any time interval [0, T]. From (2.5.16) we have ||(¢1,11)] x50 <
c¢N*®~% so we expect that the evolution of (¢, ) i.e., (uy1(t),v1(t)) in [0, T] also satisfy the
same growth condition. In other words, we want the following uniform bound

sup [|(ua(t), v.(1))[lxs0 < eN*0l ) < eN*o, (2.5.20)

)

But for the validity of (2.5.20) we must have

so(l1 —sg) < s9—s, ie., s8> s. (2.5.21)

Therefore, from here onwards we take s, satisfying (2.5.21) such that (2.5.20) is valid.
Now, we consider the IVP (2.4.4) with initial data (¢2,19). From an analysis analogous
to Theorem 2.9 we see that there exist 7j satisfying

—L(so—s
To < cl(61,91)lI 51/ < eN-507), (2.5.22)
and a unique solution (ug, v2) to the IVP (2.4.4) in the interval [0, 7j] given by,

Ug(t) = U(t)¢2 + z1 (t), ’UQ(t) = U(t)’(ﬂg + Zg(t), (2523)

where 2 (t) and 2(t) are as in (2.4.46).

In this case also u = u; + v1 and v = ug + v solve the IVP (2.1.1) in the time interval
[07 TO] :

Given T > 0 arbitrary, we are interested to extend the solution (u,v) of the IVP (2.1.1)
to the interval [0, T]. For this, we will iterate the above process in each interval of size Tj
unless covering the whole interval. At the time ¢ = T, we have,

{u(To) = u1(To) + U(To)d2 + 21 (To) (2.5.24)

U(To) =V (To) + U(To)’wg + ZQ(T()).
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Now we decompose (u(Tp),v(Tp)) by the formula,

u(To) = @1(To) + u2(To)
{U(To) = 01 (7o) + 02(Tp) (2.5.25)
where,
al(To) = ’LL1(T()) + Zl(To), ﬂQ(To) = U(T0)¢2
{wo) — () + 2(T),  B(Ty) = UTo)s. (25:26)

To extend the solution (u,v) to [Ty, 2Ty] we proceed as in the first step by evolving
(i1, 71) and (79, U2) according to the IVPs (2.4.2) and (2.4.4) respectively. For this we need
to guarantee that (@, 01) and (7, U2) satisfy the conditions (2.5.16) and (2.5.17) respectively.
Because of the group property, (i, 73) satisfies the desired condition, i.e.,

|| (tig, T2) || x0 ~ ||(¢2, ¥2)||x0 ~ NP7%, 1/4 < p <5< 8. (2.5.27)

Asin (2.5.11), it is easy to show that the first condition in (2.5.16) holds. Now, let us move
to check the X*-norm of (i, ).
Note that, from (2.5.20) and Proposition 2.4 we have,

3s9—>5s (2.5.28)

{”(UI(TO),’Ul(TO))“XSO < ¢Nso—$
|(21(T0), 22(T0)) || x50 < N7z .

Therefore, at t = Ty, from (2.5.26) and (2.5.28) we see that (@, ;) increases as

3s9—5s

(i, 5)|[ 0 < eN*0=* + N5 (2.5.29)

So, from (2.5.29) it is clear that the solution to the IVP (2.1.1) can be extended to the
interval [Tp, 27p] if we can guarantee that N Bzt < c¢N*o~* for large N and some appropriate
values of s and sy. In what follows we select these values not only to guarantee this condition
for a single iteration but to cover the whole interval [0, T'].

To cover the interval [0, 7] we must iterate the above process T'/T, times. As seen above,
in each iteration, there will be a contribution of ||(z1, 22)||xs. From (2.5.29) we see that the
total contribution of ||(2z1, 22)||xs0 to cover [0,T] is (T/TO)NSSOT_S

Thus the X®°-norm of (21, 22) will grow uniformly as N ~* on the interval [0, 7] if we

have,

T sg—bs
TN¥ < N, (2.5.30)

0



Coupled mKdV System 49

Now, using Ty ~ N~ from (2.5.22) we see that (2.5.30) is equivalent to,
TN 0@ Fs0)=s (2.5.31)
Therefore, to guarantee (2.5.30) we must choose N = N(T) satisfying
N(T) = T230/{2550*(30*S)(2+80)},
with 2sso — (so — $)(2 + s¢) > 0, which in turn gives,

2+S()
2+380

5> So. (2.5.32)

Thus we need to choose sq in such a way that the RHS of (2.5.32) is a minimum positive
number. Taking into account the identity (2.5.21), we must have sy > max{3/5,/s}. But,
as 1/4 < s < 3/5, we need to select sy > /s. Now, using this selection in (2.5.32) we obtain
1 > s> 4/9. Therefore, the IVP (2.1.1) has global solution if s > 4/9 and this completes
the proof of the theorem. O



Chapter 3

Unique Continuation Property for
Zakharov-Kuznetsov Equation

3.1 Introduction

Let us consider the following initial value problem (IVP),

{ut + (tgs + Uyy)z + utle =0, (2,y) €R?, L €R (3.1.1)

U(ﬂ?, Y, 0) = U()(l', y),

where u = u(x, y,t) is a real valued function.

This two dimensional generalization of the KdV equation was obtained by Zakharov and
Kuznetsov [66] to describe the propagation of nonlinear ion-acoustic waves in magnetized
plasma. Several properties of this equation including existence and stability of solitary wave
solutions have extensively been studied in the literature (see for eg. [5], [23], [58]).

As mentioned earlier, our concern is about the following question: If a sufficiently smooth
real valued solution u = u(z, y,t) to the IVP (3.1.1) is supported compactly on a certain time
interval, is it true that © = 07 In some sense, it is a weak version of the unique continuation
property (see Definition 2).

Our result in this work is in the same spirit to that of Bourgain in [14]. We derive some
new estimates to address a bi-dimensional (spatial) model and provide an affirmative answer
to the question posed above. More precisely, we prove the following result.

Theorem 3.1 Let u = u(z,y,t) be a smooth solution to the IVP (3.1.1) and I = [-T,T)
be a non trivial time interval. If for some B > 0

suppu(t) - [_BaB] X [_BaB]a Vite Ia

then u = 0.

a0
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As mentioned in the introduction, there are much stronger results of UCP for the KdV
and mKdV equation. For example, the UCP result due to Zhang in [69] implies the results
in [56] and [14] for the KdV equation. Zhang [69] used inverse scattering theory and Miura’s
transformation to get these results. In fact, he introduced some decay condition to the
solution and exploited the fact that the KdV and mKdV equations are completely integrable.
Recently, Kenig, Ponce and Vega [36] proved that if a sufficiently smooth solution u of the
generalized KdV equation is supported in (—o0,b) or in (a,00) at two different instants of
time then u = 0. To get this result they used Carleman’s type estimate and the result due
to Saut and Scheurer [56]. The exponential decay property of the solution is essential in the
argument employed in [36].

Remark 3.1 The equation (3.1.1) is not integrable (see [58] and [59]) and also we do not
know whether its solution has exponential decay property. So the methods in [69] and [36]
cannot be applied to get much stronger results as mentioned above.

3.2 Preliminary Estimates
This section is devoted to establish some preliminary estimates that will play fundamental
role in our analysis. Let us begin with the following result.
Lemma 3.1 Let u = u(zx,y,t) be a smooth solution to the IVP (3.1.1). If for some B > 0,
suppu(t) C B := [-B, B] x [-B, B,

then for all A = (§,n),0 = (0,6) € R?, we have,

() + io)| < edlolB, (3.2.1)
Where we have used |(z,y)| = max{|z|, |y|}

Proof. Using the Cauchy-Schwarz inequality and the conservation law (0.0.15) we have,

WD+ io) < [ e B (o) dx
< [ el ix
< maxe™ [ Jut) (o)l dx

u(t) (o dx)

< ¢ max e‘”0+y‘5(
7BS$7ySB R2

< ceBUOHI) < gelolB,
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For A = (£,n) and X = (¢, 1) define

—

u'(A) = sup u(t) (V)] (3.2.2)
and
m(\) = \gsl}iﬁ)g\ lu*(\)]. (3.2.3)
In'1>n]

Considering u(0) sufficiently smooth and taking into account the well-posedness theory
for the IVP (3.1.1) (see for example, Biagioni and Linares [5]), we have the following result.

Lemma 3.2 Let u € C([-T,T]; H®) be a sufficiently smooth solution to the IVP (3.1.1)
with supp u(t) C B, t € I, then for some constant By, we have,

By

A< ——. 3.2.4
) S 15 (3:2.)
Proof. The Cauchy-Schwarz inequality and the conservation law (0.0.15) yield,
/ ()N dX < [B[V2[|ut)]l2 S 1. (3.2.5)
R2
Now, using properties of the Fourier transform and (3.2.5) we get,
@)z < cllu®)l|zr < 1. (3.2.6)
Therefore,
u(@) (M| < flu®)llz= S 1, (3.2.7)
and consequently,
sup [u(t)(V)| < c. (3.2.8)
t
From the local well-posedness result (see [5]), we have,
||Dsu(t)||L%oL§y <e. (3.2.9)

Next, using the Cauchy-Schwarz inequality and (3.2.9) one gets,

. |Du(t)(z,y)| dedy < c( /11{2 | Du(t)(z, y)\dedy) 2 <ec. (3.2.10)
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Since,
A Nsa 1 1 —i(z
(APu()(V) = Dout)(N) = o | Du(t)(z,y)e v dedy,
R2
the estimate (3.2.10) implies,

—

AP lu(t) (V)] < C/R2 |Du(t)(z,y)| dzdy < c1. (3.2.11)

Therefore,

(3.2.12)

If we consider s = 4 (which is possible, because we have local well-posedness for the IVP
(3.1.1) in H') and combine (3.2.8) and (3.2.12) we get,

sup V)| < T (3.2.13)
If )\ is such that [£'| > |£] and || > |n|, then ﬁ > m Hence,
m() = sup sup (V)] < o < Tk
fe12le) tel T+ |N* — 14 A
as required. 0

Now, using Lemma 3.2, we have the following result.

Proposition 3.1 Let u(t) be compactly supported and suppose that there erists t € I with
u(t) # 0. Then there exists a number ¢ > 0 such that for any large number Q) > 0 there are
arbitrary large |\|-values such that,

m(A) > e(m *xm)(N) (3.2.14)
and
m(\) >e a. (3.2.15)

Proof. The argument is similar to the one given in the proof of lemma in page 440 in [14],
so we omit it. .
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Using the definition of m(A) and Proposition 3.1 we choose |A| large (with ||, |n| large)
and t; € I such that,

lu(t)) (V)| =u*(A) =m(X) > c(mxm)(\) +e <. (3.2.16)

In what follows we prove some estimates regarding derivative of an entire function. First,
let us recall a lemma whose proof is given in [14].

Lemma 3.3 Let ¢ : C — C be an entire function which is bounded and integrable on the
real azis and satisfies,

p(E+1i0)| < eB £ heR

Then, for A\, € RT we have,

#00)1 B( gup (6] [1+1og ( sup [6(6) )] (3:217)

&>M

Using this lemma, we have the following result.
Lemma 3.4 Let ® : C2 — C be an entire function satisfying
B\ +io)| S e N o€ R,

such that for zy fized, ®1(z1) := (21, 22) and for z; fived, ®o(z1) := ®(21, 22) are bounded
and integrable on the real azis. Then for A\, A\ € RT we have,

Vo, )] S B( sup [2(€ 1) [1+ [1og ( sup 2(€!)1)]] (3.218)
7' >As 7> g

Proof. Let X' = (¢,n) and fix 25 such that ' > A,. Applying the Lemma 3.3 for ®; we
obtain,

1B (\)] < B( sup |c1>1(§')\) [1 + | log ( sup |<1>1(g')\) H. (3.2.19)
&> >\
Now, let us fix z; such that & > \;. Again applying the Lemma 3.3 for ®, we get,

2,00 S B( sup 207/ ) [1+[1og ( sup [220)])]] (3.2.20)

' >A2
Since

VA1, Ag) := (21(A1), ®5(A2)),
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we obtain,

],

V00, \o)| S B max { ( sup [@(¢',)]) |1+ |1og ( sup le(€, 1))

&>\ &>\
(‘sup (&, m)]) [1+ [10g (sup [0 m)]) ] }
722 n' 22
< B sup [0(¢,m)[) [1+ | 1og ( sup [@(€n)1) ]
&>N >N
7' >Xo 7’22
as needed. n

Corollary 3.1 Let o € R? be such that,

-1
o] < B! [1+ |10g( sup |<1>(g',n')|)\] . (3.2.21)
€>x1>0
n’>Xy>0
Then,
sup |®(\ +i0)| <4 sup |®(N) (3.2.22)
>0 &>
n'>Xo 7' >N
and
sup |VO(N + io)| < B ( sup |q>(A')|) [1+ \1og( sup |<1>(X)|)\] (3.2.23)
>N &>x >0
7' >z 7' >z ' 22

Proof. The proof of (3.2.22) is immediate by using Corollary 2.9 in [14]. In fact, first fixing
n' > A and then fixing £ > A; we obtain,

sup |®(&" +10,n" + )| < sup (2 sup \@(f’,n'+i5)|)

5’12*1 n'>A2 &>\
=t (3.2.24)
<4 sup [@(X)].
&>x
n' >

~ To prove (3.2.23), we use the estimate (3.2.22) and Lemma 3.4. For this, let us define
®(z) = ®(z +i0), then ® is an entire function and moreover we have,

|®(2 +i0")| = |®(A+i(o +0")| < pctlo+o’|B < ectlo’|B
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Therefore, ® satisfies the conditions of Lemma 3.4 and we get,

V()| S B ( sup 18] ) |1+ log ( sup 2”1
7' >Ap 7' >xg

for any Aj, Ay € RT.
Hence, using the definition of ® and (3.2.22) we obtain,

IV(As + 6, Ag +i6))|
<B < sup |®(& + 16,7 +i5)|> [1 + ‘log( sup |®(&' + 146,71 —H'(S)\) |]

e &>0

72X 7' >
<48 (sup [2(¢,m)[) [1 + |tog (4 sup @& n)]) ]

¢2n e (3.2.25)

<B ( sup \(I)()\’)\) [(1 +log4) + (1 + log4)| log ( sup |<I>()\')\) ”

&> €2

7' > 7' >Xg
< B sup [o(V))) [1+]10g ( sup [2(X)])]]-

&2N &>\

n'>Xa 7' >Xa

Therefore,

sup (VO +io')| S B ((sup [@(V)[) [1+ 1og ( sup [o(&,m)])]].

> > €>x
7' >Xo 7' >Xa 2
which concludes the proof. m

—

Corollary 3.2 Lett € I, ®(z) = u(t)(z), o be as in Corollary 3.1 and m(X) be as in (3.2.3).
Then, for |o'| < |o| fized, we have

IVe(A = X +i0")| < B [m(\) + m(A = X)][1 + |logm(N)]]. (3.2.26)

Proof. Let ®(2) := ®(z +i0'), z = (21,22) = (£ +140,n +id). First, let us use (3.2.23) with
o = 0 and then use (3.2.22) to get, for |A;| = min{|& |, |€ — &1}, |A2| = min{|n|, [n — 7’|} and
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5\ = (XlaXQ):
IVOE\ — N 4id")| < sup |[VO(N +id’)| = sup |[VO(N)|
€2>1x] €2>1x]
7' 2| X2l 7' 2| Xa]
< B( sup [®N)]) |1+ [log( sup |®(N
<fizlia ) [1+] (%Rli )]
n 21A2 n 21A2
(3.2.27)
S B sup [®(XN)])|1+ [log( sup |®(N
(1, w0l oz )]
7' 2| x| 7' > A2
< Bm(M)|[L + [logm(N)[]
< Bm(A) + m(A = X)][1 + [logm(A)][],
which is the desired estimate. 0

3.3 Proof of the Main Result

In this section we present the proof of the main result of this chapter.

Proof.[Proof of Theorem 3.1:] Suppose that there exists ¢ € I such that u(t) # 0. We will
use the estimates derived in the previous section to arrive at a contradiction. For this we
proceed as follows. Form Duhamel’s principle, we have for ¢1,1, €

2]

u(ts) = Ults — t1)u(ty) — % U - #)(u2), () dt’, (3.3.1)

where U(t) given by,
U0 (@y) = [ I e ) aa,
R2

is the unitary group associated to the linear problem. Taking Fourier transform in the space
variables we get from (3.3.1),

— ——

) t2 —_———
u(BI(N) = D ) - / =t XE+E) 27 () . (3.32)
t1

Let to — t; = At, then from (3.3.2) we obtain,

RN ; 3 n [ ) 2 I\ (¢3 2) "5
u(ty)(N) = AU 1) (N) —% it E+E) g 2(41)()) dt’]. (3.3.3)

t1
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Let us change variable in the integral in (3.3.3) by defining s = ' — ¢, to get,

W) (A) = eAHE +en) [u/@(A) K[ i+ 2l 1 1) (V) ds|. (3.3.4)

0

Since u(t),t € I has compact support, by Paley-Wiener theorem, u( )(A) has analytic
continuation in C?, and we have,

U/(-t;)()\ +io) = eI AH(EHO HETin)(n+id)’) [u/(;)()\ + i)
3.3.5
(f;rle)/ e is{(&+i0)® (€+i0)(77+i6)2}u2@1)(/\+Z~J) ds|. ( )
0
Since,
(E+i0)% + (£ +140)(n +i0)* = £ -3¢0 — &n — €67 — 2006
+ (3620 — 63 + 2606 + On? — 05?),
the use of Lemma 3.1 in (3.3.5) yields,
ceAUBEI—-0°+26n0+0(n*~6%))
_ (3.3.6)
> [um)(r + i) - Y / S(3620-0"42605 000" =6 |y 25 1 1,) (A + i) | dis.
Let us take |A\| = max{|{|, |n|} very large with both |£| and |n| large such that
&n > 0. (3.3.7)
Choose 0 = o(A) with |o| = max{|f]|, |6|} ~ 0 such that,
AL <0 and JAL < 0. (3.3.8)
Moreover, let us suppose the following conditions are satisfied
6] 0]
= K and — < (3.3.9)
g {w o <L
With these choices, (3.3.6) can be written as
e AUBE?0+26n5+0n?) >
(3.3.10)

> |u(t)(X +io)| — €| / e BETANA) 25 ) (N + i0)| ds.
0
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Now, using (3.3.7) and (3.3.8) in (3.3.10) we obtain for At > 0,
At /\ At o
‘/ s BEOTAIHO) 305 71 V(N 4 4o ds‘ _ ‘/ e~ (& 0120end+101n) 25 13 Y(\ + o) ds
0 0
and for At < 0, making change of variables, s <> —s,

At —
‘ / es(3g2a+2sné+en2)u2( s+ t1)(\+io) ds‘
0
_ ‘ / 6*5(3529+257’5+9"2)u2(t1 —s)(A+10) dS‘
0

_ ‘ / =S GE 024101721 5) (A + o) ds‘.
0

Therefore, in any case we have,

o |At](362(01+21¢no] +16]n) Z‘U/@(A +io)]

At _ (3.3.11)
gl / ¢ #GE 2060 190 |27, I 5)(A + io)| ds.
0

In what follows we consider the case At > 0 (the analysis for At < 0 is similar). Since
e~ ® < 1 for x > 0, the estimate (3.3.11) can be written as,

— | At —
e~ GEFPION > 1y (t1) (A + io) | — [€] / ¢ SGE 20 +O) | 2 (1 1 )(\ + i) dis.
0
Finally, we write this last estimate in the following manner,

— Ay o
e_(3£2+n2)|9At‘ Z ‘u(tl)(/\)| _ |§‘/ 6—5(3f |6]4-2(énd]+|0|n )|U/2(t1 + S)(A)‘ ds
0
- \U(t1)|(:t\| +io) —u(t)(N)| (3.3.12)
- m/ e—s(3£2\9|+2|§n6|+\9|n2)‘UQ(tl +5)(\ +io) — u(t; + s)()\)‘ ds
0

= Il —IQ —13.

Now, our aim is to find appropriate estimates for I;, I, and I3 to get a contradiction in
(3.3.12).
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Let us estimate I;: Use of (3.2.2) and (3.2.14) yields,
I R _
|§|/ e—5(36210]+2(¢nd|+10|n )|u(,51 + 8)‘ % \u(tl + 5)|(,\) ds
0

|At|
< [€](u” *“*)(/\)/ o~ $(3€210/+2/€nd | +10n?) g
0
1 — e~ At(3€2(0/+2(€nd|+|6]n?)

3E210| + 2|End| + |0|n?

< lgl(mx m)(Y)
_ Jelm = m))

- 2[énd|
- m)
~ 2|nd|
Therefore,
m(A) _ m(})
I > - s A 3.1

Now, we estimate I5: For this let us define ®(z) = u(t1)(z), z = (21, 22) € C. Using (3.2.16)
we get,

(V)| = [u(t) (V)] = sup [S(X)] = m(Y). (3.3.14)
In’ 1>l

Let us choose |o| satisfying
o] S B [1+ [logm(N)[] 7, (3.3.15)

and use Corollary 3.1 to obtain,

L = [u(t) (A + io) — u(tr) (V)|
Slol sup [Va(t) (N +io)|
|7 > ¢
In'|>1n|

S lolBm(A)[1 + [logm())]]
S m(A)

(3.3.16)
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Next, we estimate I3: Using Proposition 3.1, Corollary 3.2 and taking |o| as in (3.3.15) we
get,

u2(ty + $)(A + o) — w2t + ) (V)|

- ‘ / ults + 8) (A + i — Nults + s) (V) dN — / ults + 8) (A = Nults + 8)(N) dN

——

< . |u(t/1?s)()\ — XN +i0) —u(ty + s)(A — )\I)Hu(t/l?s)(/\l)‘ dX

<lo| [ sup [Vulti +8)A =X +ic")| m(N) dN

R? |0’ |<]o]
< /R m(A) + m(h— X)]m(X) X

<m(A)ex + (mxm)(N)
<m(\)(cg+c ).

Therefore,

At
I < [glm(A)(c2 + ¢7') / e—5(€10+21gndl+01) g
0
1 — e~ |AtI(3€%|01+2[€nd|+01n?)
3€2(0| + 2[¢nd| + |0|n?

< [EmM)(e2+ ) (3.3.17)
- 2[&nd|

= [glm(\)(ez+¢ )

Now using (3.3.13), (3.3.16) and (3.3.17) in (3.3.12) we get,

2 5 5 10
Our choice in (3.3.9) gives, |£6] > 1 and |nf| > 1. Therefore,

e-eemioay > MA) _mQ) _mA) L s B (3.3.18)

e~ BEn)0llAt] o~ (31&[[£0]+Iml[no])| At|

o (el +nD)ad (3.3.19)
o -dAL

IAIA
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Finally, using (3.3.19) in (3.3.18), we obtain,

(Al
c|A||At -

which is a contradiction for |A| large, if we choose @ large such that % < c|At|. This
completes the proof of the theorem. 0



Conclusions and Remarks

Here we give a brief description of the main results obtained in this work and also mention
some future works.

In the first chapter we considered the initial value value problem (IVP) associated to
the coupled system of KdV equations (1.1.1) that describes the strong interaction of long
internal gravity waves in stratified fluids. This model consists of a pair of KdV equations
coupled through nonlinear as well as dispersive parts.

We studied the associated IVP (1.1.1) in the Fourier transform truncation space X,
introduced by Bourgain [15] in the context of the general class of evolution equations. Using
the bilinear estimates established by Kenig, Ponce and Vega [38] we proved the local well-
posedness result for given data in H*(R) x H*(R), s > —3/4. Also, using the idea introduced
by Bourgain [13], we proved that the local result is optimal by showing that the map data-
solution cannot be C? at the origin for given data in H*(R) x H*(R), s < —3/4. Further,
under certain conditions on the coefficients, we exploited the symmetry of the model to
derive an almost conserved quantity and used it to implement the I-method, a variant of the
method of Bourgain [12] recently introduced by Colliander et. al. [22], and proved that the
local solution can be extended to a global one for given data in H*(R) x H*(R), s > —3/10.
The results in Chapter 1 improve those obtained by Ash, Cohen and Wang in [4].

Observe that, the method used in Chapter 1 can also be applied to obtain analogous
results to the IVP associated to the following coupled KdV system of Nutku and Oguz [53]

{ut = Uggg + 2000, + VU + (WD), (3.3.20)

Vp = Uz + 26000 + vty + (uv)g,

where «, § are constants.

In the second chapter we addressed the global well-posedness problem to the IVP asso-
ciated to the system (2.1.1). The model in question has a pair of mKdV equations coupled
through nonlinear terms and arises in several physical situations. We studied this problem
using the low-high frequency technique introduced by Bourgain [12], and further simplified
by Fonseca, Linares and Ponce [24] in the mKdV context. Using the uniform bound of the
solution in certain Sobolev spaces below the energy space, we developed an iteration process
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in those spaces and proved that the local solution to the IVP associated to (2.1.1) can be
extended to any time interval [0, T] for given data in H*(R) x H*(R), s > 4/9. This result
improves the result obtained in Montenegro [51] where he showed that the IVP associated
to (2.1.1) for given data in H*(R) x H*(R), is locally well-posed when s > 1/4 and globally
well-posed when s > 1.

The third chapter was concerned about the bi-dimensional generalization (3.1.1) of the
KdV equation. This model was proposed by Zakharov and Kuznetsov [66] and governs
the propagation of nonlinear ion-acoustics waves in magnetized plasma. Various properties
related to this model like Cauchy problem, existence and stability of solitary waves are
studied by many authors (see [5], [23]). We extended the recent work of Bourgain [14] and
derived some new estimates to address a bi-dimensional model and proved that, if sufficiently
smooth solution to the Zakharov-Kuznetsov equation (3.1.1) is supported in a nontrivial time
interval then it vanishes identically.

There is still ample room to improve and extend the results obtained in this work. Also
there is strong possibility to use these techniques to new models as well. In what follows we
mention some open problem that may be of interest in the future.

It would be interesting to obtain the best possible global well-posedness result for the
IVP associated to (1.1.1), i.e., for data in H*(R) x H*(R), s > —3/4. For this, one can
expect to extend the variant of the method of Bourgain [12] introduced by Colliander et.
al. [21] in the KdV context. Also, it would be interesting to get global solution without
imposing restriction on the coefficients. The presence of the arbitrary constants suggests
one to proceed in some other way to implement the theory used in this work. Another nice
problem is to utilize the recent work of Lopes [47] to study the orbital stability of the solitary
wave solutions to the system (1.1.1). The next problem is to obtain the best possible global
well-posedness result for the IVP associated to (2.1.1).

Other interesting problem is to extend the argument used to prove the unique continua-
tion property for the Zakharov-Kuznetsov equation (3.1.1) to apply for the KP-II equation.

The study of the Cauchy problem associated to the following new coupled KdV and
mKdV systems [16], [28], [68],

1
= 5\Ugzzx — 6 T 6 T
{ut s(u uy) + 6vv (3.3.21)
Vp = —Vggg + UV,
and
=1 T 3 2 T 3 T)T 3 2 T
@ = —Grzz — 3(qPz)z + 6pgpz + 3(P* — ¢%)s-

will also be of interest.
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We believe that the methods employed to the models studied during the doctoral project
can be utilized (with necessary modification and generalization) to obtain similar results to
these new models but it has to be done.
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