
Abstract

We introduce Cr-open sets, r = 1, 2, . . . ,∞, of symplectic diffeomorphisms and

Hamiltonian systems exhibiting large robustly transitive sets. As a consequence of

the constructions we show that, arbitrarily C∞-close to certain (nearly) integrable

Hamiltonian systems with more than two degrees of freedom, there exist systems

with unbounded robustly transitive sets.
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Chapter 1

Introduction and main results

The theory of Kolmogorov, Arnold and Moser, (KAM) gives a precise description of

the dynamics of a set of large measure of orbits for any small perturbation of a non-

degenerate integrable Hamiltonian system. These orbits lie on the invariant KAM

tori for which the dynamics are equivalent to irrational (Diophantine) rotations. This

theory applies for the autonomous Hamiltonians, time-periodic Hamiltonians and also

symplectic diffeomorphisms. A basic and natural question is what happens for other

orbits. What is the possible behavior of most orbits (in the topological sense) for

generic systems?

In the case of autonomous systems in two degrees of freedom or time-periodic

systems in one degree of freedom (i.e., 1.5 degrees of freedom), KAM Theorem proves

the stability of all orbits, in the sense that the actions do not vary much along the

orbits. Since each KAM torus has codimension one in the phase space, its complement

is disconnected and contains two connected invariant components. Thus, any orbit

remains between two nearby invariant tori. This, of course, is not the case if the

degree of freedom is larger than two, where the KAM tori are of codimensions at

least two. A natural question arises: Do generic perturbations of integrable systems

in higher dimensions exhibit instabilities?

1



The problem of instabilities for high dimensional nearly integrable Hamiltonian

systems (i.e. small perturbations of integrable systems) has been considered one of the

most important problems in Hamiltonian dynamics. The first example of instability

is due to Arnold [A2], who constructed a family of small perturbations of a non-

degenerate integrable Hamiltonian system that exhibits instability in the sense that

there are orbits for which the variation of action is large. This kind of topological

instability is sometimes called the Arnold diffusion. In fact, he had conjectured [A1,

pp. 176] that the answer of the above question should be positive. While there is

a large number of works and announcements towards this conjecture, specially in

the recent years (see e.g. [CY], [D], [DLS], [KMV], [Ma], [X], and references there),

little is known about “most of the orbits” in the complement of invariant or periodic

Diophantine tori. Although it is very difficult to prove the existence of “some” instable

orbits in general, it is the simplest expected non-trivial behavior in the complement

of invariant tori. For instance, one may ask about transitivity or topological mixing.

On the other hand, in non-conservative dynamics, there are several important

recent contributions about robust transitivity. Recall that a diffeomorphism of a

manifold M is transitive if it has a dense orbit in the whole manifold. Such a diffeo-

morphism is called Cr-robustly transitive if it belongs to the Cr-interior of the set of

transitive diffeomorphisms. It has been known since the 1960’s, that any hyperbolic

basic set is C1-robustly transitive. The first examples of non-hyperbolic C1-robustly

transitive sets are due to M. Shub [Sh] and R. Mañé [Mñ]. For a long time their ex-

amples remained unique. Then, L. Dı́az (who was mainly interested in the dynamical

consequences of hetero-dimensional cycles), jointly with C. Bonatti, discovered [BD]

a semi-local source for transitivity, which is C1 robust. They called it blender. Using

this tool, one may construct examples of robustly transitive sets and diffeomorphisms.

Conversely, Bonatti, Dı́az, Pujals, Ures, [DPU], [BDP] have shown that any C1 ro-

bustly transitive set admits an invariant dominated splitting on its tangent bundle,
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and a weak form of hyperbolicity holds. This result has been extended independently

by Horita, Tahzibi [HT] and by Saghin [Sa] to the symplectic case, where the robust

transitivity holds only in the space of symplectic diffeomorphisms. Another impor-

tant result in this direction is due to Arnaud, Bonatti and Crovisier [BC], [ABC].

They show that generically in the C1 topology any symplectic diffeomorphism on

a compact manifold is transitive. They also prove that on non-compact manifolds,

generic orbits of generic diffeomorphisms are not bounded. It is important to note

that the C1 topology is essential in all these results, because of the use of several

basic perturbation lemmas (connecting lemmas, Franks Lemma, etc.) known only in

the C1 topology. For the recent surveys on this topic and on a related theory about

stably ergodic diffeomorphisms on compact manifolds, developed in the last decade

by C. Pugh, M. Shub, and many others, see [BDV, chapters 7,8], [PS], [PSh].

A goal of this paper is to study the dynamics in the complement of invariant KAM

tori with a focus on the non-local robust phenomena. We develop the methods of

robust transitivity into the context of symplectic and Hamiltonian systems. And then

we apply them for the nearly integrable symplectic and Hamiltonian systems with

more than two degrees of freedom. We introduce such Hamiltonians or symplectic

diffeomorphisms exhibiting unbounded or large robustly transitive sets. Then, the

instability (or the so-called Arnold diffusion) is obtained as a consequence of the

existence of large or unbounded robustly transitive sets.

1.1 Preliminaries

Let us now introduce some definitions before stating the main results. Let f : M −→

M be a diffeomorphism of a compact manifold M . An f -invariant subset Λ is par-

tially hyperbolic if its tangent bundle TΛM splits as a Whitney sum of Tf -invariant
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subbundles:

TΛM = Eu ⊕ Ec ⊕ Es,

and there exist a Riemannian metric on M and constants 0 < λ < 1 and µ > 1 such

that for every p ∈ Λ ,

0 <‖ Tpf |Es ‖< λ < m(Tpf |Ec) ≤‖ Tpf |Ec ‖< µ < m(Tpf |Eu)

The co-norm m(A) of a linear operator A between Banach spaces is defined by

m(A) := inf{‖ A(v) ‖ : ‖ v ‖= 1}. The bundles Eu, Ec and Es are referred to as

the unstable, center and stable bundles of f , respectively.

An example of a partially hyperbolic set is a hyperbolic set, for which Ec = 0.

Let f and g be two diffeomorphisms on manifolds M and N , respectively. Suppose

that Λ ⊂ M is an invariant hyperbolic set for f . We say g is dominated by f |Λ if

Λ×N is a partially hyperbolic set for f × g, with Ec = TN .

In a similar way one may define partially hyperbolic sets in a non-compact bound-

aryless manifold.

Let p be a hyperbolic periodic point of g, we say that p is δ-weak hyperbolic if

1− δ < m(Tpg) <‖ Tpg|Es
p ‖< 1 < m(Tpg|Eu

p ) <‖ Tpg ‖< 1 + δ.

Let X be a metric space, and F : X → X. A set Y ⊂ X is transitive for F if for

any U1, U2 open in X, such that Ui ∩ Y 6= ∅, there is some n with F n(U1) ∩ U2 6= ∅.

If in addition, for any open sets U1, U2 ⊂ Y (in the restricted topology), there is some

n with F n(U1) ∩ U2 6= ∅, then we say Y is strictly transitive. A stronger property is

topological mixing, where F n(U1) ∩ U2 6= ∅ holds for any sufficiently large n.

Let Dr be a subspace of Diffr(M) with the Cr topology.

An invariant set X ⊂ M of f has continuation in Dr, if there exist an open
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neighborhood U of f in Dr, and a continuous map Φ : U → P(M) such that, Φ(f) =

X, and for any g ∈ U , the set Φ(g) ⊂ M is homeomorphic to X and invariant for

g. Then we call Φ(g) is the continuation of X for g. Here, P(M) is the space of all

subsets of M with the Hausdorff topology.

A compact set Y ⊂ M is Dr-robustly transitive for f ∈ Dr, if for any g ∈ Dr

sufficiently close to f , the continuation of Y does exist and it is transitive for g. More

generally if M is not compact, a non-relatively compact set Y ⊂ M is Dr-robustly

transitive if it is the union of an increasing sequence of Dr-robustly compact transitive

sets. In the same way one may define robustly (strictly) topological mixing.

A point x is non-wandering for a diffeomorphism f if for any neighborhood U

of x there is n ∈ N such that fn(U) ∩ U 6= ∅. By Ω(f) we denote the set of all

non-wandering point of f .

A point x is recurrent for a homeomorphism f if lim infn→∞ dist(x, fn(x)) = 0. A

homeomorphism or diffeomorphism is said recurrent if almost all points are recurrent.

Now, let us recall some basic facts and definitions of symplectic topology. A

symplectic manifold is a C∞ smooth boundaryless manifold M together with a closed

non-degenerate differential 2-form ω. We denote it by (M,ω) but sometimes we just

write M . Examples of symplectic manifolds are orientable surfaces, even dimensional

tori and cylinders, and the cotangent bundle T ∗N of an arbitrary smooth manifold.

A C1 diffeomorphism f is symplectic if f preserve ω; i.e. f∗ω = ω. We denote by

Diffr
ω(M) the space of Cr symplectic diffeomorphisms of M with the Cr topology,

1 ≤ r ≤ ∞. If the symplectic form ω is exact, that is ω = dα for some 1-form α, and

f∗α − α = dS for some smooth function S : M → R, then we say that f is an exact

symplectic diffeomorphism.

The following theorem is a variant of the results [HPS] on persistence of normally

hyperbolic laminations extended to the non-compact embedded.

Theorem 1.1. Let M and N be two boundaryless manifolds (not necessarily com-
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pact). Let f1 ∈ Diff1(M) with an invariant hyperbolic compact set Λ. Let f2 ∈

Diff1(N) such that is dominated by f1|Λ. Then the invariant set Λ×N has a unique

continuation for f1 × f2 in Diff1(M ×N)

1.2 Main results

Our main result concerning symplectic diffeomorphisms is the following.

Theorem A. Let M and N be two symplectic manifolds (not necessarily compact),

and 1 ≤ r ≤ ∞. Let f1 ∈ Diffr
ω(M) such that there exists an open set U ⊂ M whose

maximal invariant set Λ is a hyperbolic transitive compact set. Let f2 ∈ Diffr
ω(N)

such that:

a) f2 is dominated by f1|Λ, and

f2 has a δ-weak hyperbolic periodic point for some positive δ = δ(f1, f2).

b) For any f̃2 sufficiently Cr close to f2, Ω(f̃2) = N .

Then there is a Cr-arc {Fµ}µ∈[0,1] of Cr symplectic diffeomorphisms on M ×N , such

that F0 = f1 × f2, and for all µ ∈ (0, 1], there exist a set Γµ ⊂ Λ×N verifying

1. Γµ is robustly strictly topologically mixing in Diffr
ω(M ×N) for Fµ,

2. for any x ∈ Λ, the set ({x} ×N) \ Γµ is closed and has Lebesgue zero measure.

In particular, Γµ = Λ×N

Theorem A, roughly speaking, says that if the product of a hyperbolic basic set

Λ by any non-wandering dynamics on N is partially hyperbolic then we can perturb

it such that (the continuation of) Λ×N become a robustly topological mixing set.

Remark that the non-wandering hypothesis (b) is obviously satisfied if the mani-

fold N is compact or has a finite volume.
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Corollary B. Let f1 ∈ Diffr
ω(M) with a quasi-elliptic periodic point, and f2 ∈

Diffr
ω(N) be an integrable diffeomorphism, where M and N are compact symplectic

manifolds, and r ∈ N∪{∞}. Then f1×f2 is C∞ approximated by F ∈ Diffr
ω(M×N)

such that F has a robustly topological mixing set whose projection on N is equal to

N .

Corollary B is also related to an interesting example of Shub and Wilkinson [SW].

They proved that the product of “Anosov × Standard map” on T4 is C∞ approx-

imated by (symplectic) stably ergodic systems. The ergodicity implies transitivity,

but not topologically mixing. In the proof they use the central tool in the theory of

stable ergodicity, namely, the accessibility. Two things seem essential in their proof.

The first one is global (partial) hyperbolicity and the second one is compactness. See

also Remark 6.1. On the other hand, their example can not occur near to integrable

systems. In fact, there is no ergodic nearly integrable system, because the union of

invariant KAM tori has positive Lebesgue measure. Corollary B may also provides a

local and topological version of this example.

Let (M,ω) be a symplectic manifold and H : R ×M → R a Cr function, called

the (time dependent) Hamiltonian. For any t ∈ R, the vector field XHt determined

by the condition

ω(XHt , Y ) = dHt(Y ) or equivalently iXHt
ω = dHt

is called the Hamiltonian vector field associated with Ht := H(t, ·) or the symplectic

gradient of Ht. The Hamiltonian H is called time periodic if Ht = Ht+T for some

T > 0. A diffeomorphism is called Hamiltonian diffeomorphism if it is the time-one

map of some time periodic Hamiltonian flow.

Remark 1.2. Theorem A can be stated in the context of exact and Hamiltonian dif-

feomorphisms, and also time-dependent Hamiltonians. The statements are analogues
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and it is left to the reader.

Theorem C. Let M and N be two symplectic manifolds (not necessarily compact),

and h1 and h2 be two Cr Hamiltonians on M and N , respectively. Let f1 and f2 be the

time one map of the hamiltonian flow generated by h1 and h2, respectively. Suppose

that

(i) h1 is time periodic and f1 has a transversal homoclinic point,

(ii) f2 is dominated by a hyperbolic invariant set of f1,

(iii) the whole manifold N is the non-wandering set for h2.

Then the Hamiltonian h1+h2 is approximated in C∞ topology by time-periodic Hamil-

tonians Hµ on M ×N exhibiting a topologically mixing partially hyperbolic invariant

set Ξ × N . Moreover, for any small perturbation of Hµ, the continuation of this set

is well defined, and either it remains topologically mixing or it contains wandering

points converging to infinity.

As a matter of fact, all known results about instability (Arnol’d diffusion) of

symplectic or Hamiltonian systems concern with nearly integrable systems. There

are two reasons for it. First, for nearly integrable systems stability seems a priori

highly probable, and the invariant KAM tori are the “obstructions for instability”.

So, to study the instabilities in general, one considers perturbations of integrable

systems as the most crucial examples. Second, KAM theory gives useful dynamical

information of the system, and this information is crucial in the classical methods for

proving instabilities. One of the advantages of Theorem C is that the initial system

h1 + h2 is not necessarily close to the integrable systems.

When the manifold N is of dimension two, then as we mentioned before, existence

of invariant KAM tori provides the stability of all points. In particular, there is no

wandering point. The following corollary concerns the class of integrable systems that

contains the so-called a priori unstable integrable Hamiltonian systems H (cf. [CY],

[DLS], [X]).
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Corollary D. Let H0(p, q, x, y, t) = h2(p)+h1(x, y, t) be a time-periodic Hamiltonian,

where t ∈ T := R/Z is the time, (p, q) ∈ R× T, and (x, y) ∈ Rn × Tn. Suppose that

h2(p) = p2, and let h1 be an arbitrary Hamiltonian with some non-hyperbolic periodic

orbit. Then, C∞-arbitrarily close to H0, there are Cr (r ≥ 5) open sets of time

periodic Hamiltonians exhibiting instability, namely, there exist topologically mixing

invariant sets containing arbitrary large regions of the action variable p.

Let us say a few words on the proofs. The first ingredient is a new tool in sym-

plectic dynamics called symplectic blender, a semi-local source of robust transitivity.

It is based on the seminal work of Bonatti and Dı́az [BD]. The symplectic blender

provides robustness of the density of stable and unstable manifolds of a hyperbolic

periodic point, in any compact region, which implies robustness of transitivity or even

topological mixing.

Another main ingredient is that we reduce the problem to a one of the iterated

function systems. Indeed, in comparison with the classical methods for instabil-

ity, here we follow the dynamical consequences of the whole structure of homoclinic

intersections of a normally hyperbolic submanifold, instead of only one of such inter-

sections. Any homoclinic intersection introduces a holonomy map (or the outer maps

of [DLS]), hence considering the whole structure of homoclinic intersections we will

have infinitely many different outer maps, and this allows us to obtain instability, but

also transitivity. We found the iterated function system as a natural and nice context

to set down this idea. As a model one may consider perturbations of the product

of a horseshoe and an integrable twist map and then results on the iterated func-

tion system yield minimality of (strong) stable and unstable foliations. Then using

the symplectic blender one can show that transitivity (or even topological mixing)

appears in an action variable and in a robust fashion.

Note specially that we do not use any KAM-type invariant sets in the proof. For

instance, recurrency has an important role. And therefore, the classical problem,
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the large gap problem does not make sense here, although the large gaps between

Diophantine tori may appear in a normally hyperbolic manifold N .

This thesis is organized as the following. In Chapter 2 we study transitivity of two

different kinds of the iterated function systems (IFS). Namely, the IFSs of expanding

maps, and the IFSs of recurrent diffeomorphisms. We use the former ones in Chapter

3, where we introduce the symplectic blenders. In Chapter 4 we prove Theorem A.

In Chapter 5 we prove Theorem C and Corollary D. Finally, in Chapter 6 several

remarks and open problems related to the main results are discussed.
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Chapter 2

Iterated function system

In this chapter we study transitivity of some iterated function system (IFS). In the

IFSs, instead of taking iteration by only one map, one considers all the possible

compositions and iterations of several maps. As a consequence, a point x may have

an infinite number of orbits. The transitivity of the iterated function systems of

expanding maps has a fundamental role in the construction and properties of blenders

(see Chapter 3). Also the transitivity of the iterated function system of symplectic

maps shall be used in the proof of density of (strong) stable and unstable manifolds

(see Chapter 4).

Let g1, g2, . . . , gn be some maps defined on the metric space X. The iterated

function system G(g1, g2, . . . , gn) is the action of the (semi-) group generated by

{g1, g2, . . . , gn} on X. We use the notion of multi-index σ = (σ1, . . . , σk) ∈ {1, 2, . . . , n}k

for gσ = gσk
◦ · · · ◦ gσ1 . We also denote |σ| := k.

An orbit of x ∈ X under the iterated function system G = G(g1, g2, . . . , gn) is a

sequence {g
Σk

(x)}∞k=1 where Σk = (σ1, . . . , σk) and {σi}∞i=1 ∈ {1, 2, . . . , n}N.

The G-orbit of x denoted by Orbit+G (x) is the set of points lying on some orbit of

x ∈ X under the IFS G. The G-orbit of a subset U ⊂ X is defined as the union of all

its orbits, i.e. Orbit+G (U) = ∪x∈UOrbit+G (x).
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Similarly, we denote Orbit−G (x) as the set of points that x lies on (some of) their

orbits.

Definition 2.1. The IFS G(g1, g2, . . . , gn) is said transitive if the G-orbit of any open

set is dense. A set U is transitive for G if the G-orbit any open subset of U is dense

in U . This is equivalent to the existence of some point with dense G-orbit in U .

Remark 2.2. In similar way one defines IFS of maps gi : Ui ⊂ X → X. In this case,

the possible compositions of gi’s depends to each point. gi(Ui) is not necessarily a

subset of Uj and so gj ◦ gi is only defined on Ui ∩ g−1
i (Uj).

2.1 Contracting and expanding maps

In this section we study the transitivity for the iterated function systems of contracting

and expanding maps. The results presented here will be used in the construction of

blender in Chapter 3.

A map φ on a metric space (X, d) is contracting iff there is a constant 0 < K < 1

such that d(φ(x), φ(y)) < Kd(x, y), for all x, y ∈ X. The contraction bound (if exists),

is a number λ ∈ (0, 1) for which, φ in addition satisfies λd(x, y) < d(φ(x), φ(y)), for all

x, y ∈ X. This constant does not exist for any contracting map. For example, if some

points converges super-exponentially fast to the unique fixed point of φ, and it can

easily be constructed. For generic smooth contracting map φ on Rn, the contraction

bound does exist if we consider its restriction on a compact domain U . In this case,

the constant is equal to inf{m(Dfz) : z ∈ U}.

Proposition 2.3. Let U ⊂ Rn be an open disk containing 0 and φ : U → U be a

contracting map with the contraction bound λ and φ(0) = 0. Then there exists k ∈ N

such that for any ε > 0 small there exist vectors c1, . . . , ck ∈ Bε(0) and a number

δ > 0 such that

Bδ(0) ⊂ Orbit+G (0),
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where G = G(φ, φ+ c1, . . . , φ+ ck). Moreover,

δ ≥ ε

1− λ
, and k < C(n) · λ−n.

Moreover, these properties are robust in the following sense:

Let φ0 = φ and φi = φ + ci. Let Ui be the set of contacting maps close to φi that

their contraction bounds are also close to that of φi. Then the same is true if at each

iteration in the G-orbit of 0 one replace the corresponding φi by any φ̃i ∈ Ui.

Remark that if φ is smooth, then Dφ(0) may have complex or real eigenvalues (all

constants depend to λ which is close to m(Dφ(0))).

In order to prove this proposition, we start with a non-perturbative version of it,

which also clarifies the robustness of transitivity.

Definition 2.4. We say that an iterated function system G(φ1, . . . , φk) of contracting

maps has the covering property if there is a open set D such that

D ⊂
k⋃

i=1

φi(D).

The set of (unique) fixed points zi’s of φi’s is well-distributed if any open ball of

diameter d and centered in D contains some zi, where

d ≥ λ−1 ·max{r | ∀x ∈ D,∃i, Br(x) ⊂ φi(D)}

and λ is the minimum of the contraction bounds of φi’s.

Proposition 2.5. Let φi : Rn −→ Rn, i = 1, 2, . . . , k, be contracting maps, and

φi(zi) = zi be their unique fixed points. Suppose that the iterated function system

G = G(φ1, . . . , φk) has covering property on D. Then for any x ∈ D there exists a
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Figure 2.1: The covering and well-distributed properties. The disk D is the largest
one and the other disks are its images under φi’s.

sequence {σj}∞j=1 such that for all j ∈ N, σj ∈ {1, 2, . . . , k}, and

φ−1
σj
◦ φ−1

σj−1
◦ · · · ◦ φ−1

σ1
(x) ∈ D.

In addition, if the set {zi}k
i=1 is well-distributed in D then

D ⊂ Orbit+G (0).

Proof. To prove the first part notice that given a point x ∈ D, the covering

property says that there is σ1 ∈ {1, 2, . . . , k} such that φ−1
σ1

(x) ∈ D. Then, inductively,

one constructs a sequence {σj}∞j=1 such that φ−1
σj
◦ φ−1

σj−1
◦ · · · ◦ φ−1

σ1
(x) ∈ D.

Now we prove the second part. The well-distributed property yields that for any

small ball Br(x0) in D, either it belongs to some φi(D) or it contains the fixed point of

some φi. Now, If the ball Br(x0) is very small then it belongs to the domain of some φi,

i.e. Br(x0) ⊂ φi(D), and so there is x1 ∈ D such that Bλ−1·r(x1) ⊂ φ−1
i (Br(x0)) ⊂ D.

We may continue this process inductively. Since, the ratio of the balls is increasing

exponentially, after some iteration, it would be large enough to contain the fixed point

of some φi. This completes the proof.

Remark 2.6. The well-distributed property yields that for any small ball Br(x0) in D,

14



either it belongs to some φi(D) or it contains the fixed point of some φi. The latter

case could be weakened to “or it contains some few G-iterations of the fixed point of

some φi”.

Proof of Proposition 2.3. It is enough to show that there exist a number k,

and certain (small) translations of the map φ, the covering property and the well-

distributed hypothesis holds in some open ball Bε(0). Then using Proposition 2.5

we obtain the density of G-orbit of 0. It is not difficult to see that k < C(n) · λ−n.

The persistency follows the fact that the covering property and the well-distributed

hypothesis are C0 robust properties if the contraction bounds of the nearby maps are

close to the initial ones.

2.2 Recurrent diffeomorphisms

In this section we study the transitivity for the iterated function system of recurrent

diffeomorphisms. The results of this section shall be used in the proof of the main

theorem.

Let us first recall some definitions. An orbit is said quasi periodic if its closure

T is diffeomorphic to a torus and the dynamics on T is conjugate to an irrational

rotation on the torus.

A Hamiltonian on a 2n-dimensional manifold is called completely integrable if it

has n integrals in involution. Recall that an integral is a smooth real function on

N (or N × R in the case of time dependent Hamiltonian) which is constant along

the orbits of the Hamiltonian flow. A Hamiltonian is called integrable if it is locally

completely integrable. A diffeomorphism is called integrable if it is the time-one map

of some integrable Hamiltonian flow.

Liouville-Arnold Theorem says that if f ∈ Diffr
ω(N) is integrable then N = ∪Ni,

where
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• Ni’s are mutually disjoint open sets,

• for any i, Ni is invariant and diffeomorphic to Dn ×Tn by a diffeomorphism hi,

• any torus h−1
i ({x}×Tn) is f -invariant and its dynamics is conjugate to a rota-

tion.

We may also suppose that

• the family {Ni} is locally finite in N .

Lemma 2.7. Let f1 be an integrable symplectic diffeomorphism on the symplectic

manifold N . Then arbitrarily close to f1 there exists another integrable symplectic

diffeomorphism f2 which is conjugated to f1 by a smooth change of coordinates on N

such that

1. any f1-invariant torus intersects transversally some f2-invariant torus, and vice

versa,

2. given two open sets U, V ⊂ N , there is a chain of tori Tj, j = 1, 2, . . . , s, in-

variant for fσj
, σj = 1 or 2, such that, each Tj, (j < s), intersects transversally

Tj+1, T1 intersects U and Ts intersects V .

Proof. We construct a symplectic diffeomorphism φ ∈ Diffr
ω(N) close to the

identity such that f2 = φ ◦ f1 ◦ φ−1 has the desired properties. As mentioned before,

N = ∪Ni, where Ni is diffeomorphic to Dn × Tn by a diffeomorphism hi. It is

convenient to consider the polar coordinate system on Dn × Tn, that is, any point is

represented by

(r1, . . . , rn, θ1, . . . , θn),

where 0 ≤ ri < 1 and θi ∈ T.

The construction of φ has two steps.

Step 1. Let ψ1 ∈ Diffr
ω(R2) be the time one map an integrable Hamiltonian flow such

that in the polar coordinate we have
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• ψ1(r, θ) = (r, θ), if r ≥ 1,

• ψ1({r = c}) 6= {r = c}, if 1 > c ≥ 0,

• any two open set in the unit disk {r < 1} are connected by a chain of circles

{r = cj} and ψ1({r = ci}).

Note that it is not difficult to define ψ1 explicitly. Now let

ψ =

n times︷ ︸︸ ︷
ψ1 × · · · × ψ1 .

Define ϕ ∈ Diffr
ω(N) by

ϕ =

 h−1
i ◦ ψ ◦ hi on Ni

id on N \ ∪Ni

The smoothness of ϕ on each Ni is trivial, and on the boundary of Ni’s follows from

the fact that Ni’s are a locally finite family in N , they are mutually disjoint and ψ is

equal to the identity on the boundary of Dn × Tn.

Step 2. Let i > j such that ∂Ni ∩ ∂Nj contains a regular hypersurface (codimension

one) Sij. Then for any such i, j we consider a small open neighborhood Uij of some

point of the hypersurface Sij. The sets Uij are pairwise disjoint. Let U+
ij = Uij ∩ Ni

and U−
ij = Uij ∩Nj. Then consider a symplectic diffeomorphism ϕij supported in Uij

such that

ϕij(U
−
ij ) ∩ U+

ij 6= ∅ and ϕij(U
+
ij ) ∩ U−

ij 6= ∅.

Now we take the composition of the all the above diffeomorphisms to define φ ∈

Diffr
ω(N), that is

φ := (◦ijϕij) ◦ ϕ.

It is not difficult to see that f2 = φ ◦ f1 ◦ φ−1 has the desired properties.
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Proposition 2.8. Let T1 be an integrable symplectic diffeomorphism on the sym-

plectic manifold N . Then arbitrarily close to T1 there exists an integrable symplectic

diffeomorphism T2 on N such that the iterated function system G(T d
1 , T

d′
2 ) has a dense

orbit, for any d, d′ ∈ Z. Moreover, almost all points have dense G-orbits.

Proof. Let T2 be some integrable diffeomorphism. Let S0 be the set of all quasi

periodic points for T1, which is T1-invariant. Similarly, let S ′0 the set of all quasi

periodic points for T2, which is T2-invariant. It follows that the complements of S0

and S ′0 have zero Lebesgue measure, and Lebesgue measure is invariant under T1

and T2. Let S the set of all points whose orbits under the iterated function system

G(T1, T2) belong to S0 ∩ S ′0.

Claim. The set S has total Lebesgue measure.

Proof of Claim. We use an inductive process. Let the sequence of sets Sk and

S ′k, k ∈ N defined as the following:

Sk+1 :=
⋂
n∈Z

T n
1 (S ′k),

S ′k+1 :=
⋂
n∈Z

T n
2 (Sk).

By the definitions, Sk is T1-invariant and S ′k is T2-invariant. The complements of

these sets have zero Lebesgue measure. Furthermore, if x ∈ Sk then for all n,m ∈

Z, Tm
2 ◦ T n

1 (x) ∈ S ′k−1, since Sk ⊂ S ′k−1. So Sk contains the set of all points in N

whose first k-th iterations under G(T d
1 , T

d′
2 ) belong to S0, for any d, d′ ∈ Z. More

precisely,

Sk = {x ∈ N | ∀n1,m1, . . . , nk,mk ∈ Z, T nk
2 ◦ Tmk

1 ◦ · · · ◦ T n1
2 ◦ Tm1

1 (x) ∈ S0}.

This shows that S = ∩∞k=0Sk. The complement of this set has zero Lebesgue measure.

This completes the proof of the claim.
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Now we apply Lemma 2.7 for T1. Then we obtain φ ∈ Diffr
ω(N) close to the

identity. Now we set T2 := φ ◦ T1 ◦ φ−1. Then given two open sets U, V , there is a

chain of tori Tj, j = 1, 2, . . . , s, invariants for Tσj
, σj = 1 or 2, such that, each Tj

intersects (transversally) Tj+1, T1 intersects U and Ts intersects V . It is not difficult

to find an orbit of G which shadows this chain. For any z ∈ S, there is nz such that

T nz
σj

(z) is close to Tj+1 if z is sufficiently close to Tj. The set S is G(T1, T2)-invariant.

So if z ∈ S is sufficiently close to T1, then it has a G-orbit shadowing all Tj, and

therefore there is an orbit from U to V . Moreover, given any point x ∈ S and any

open set U , there is a finite sequence of tori Ti, i = 1, . . . , n, invariant for T1 or T2

(alternatively), such that x ∈ T1, Tn∩U 6= ∅, and for any i, Ti intersects transversally

Ti+1. Then it follows that there exists Σ = (σ1, . . . , σm) such that T
Σ
(x) ∈ U . This

completes the proof.

Remark 2.9. If the set of quasi periodic points is residual then following the same

argument in the proof, we conclude that the set of all points with dense orbit for

G(T1, T2) is also residual.

Remark 2.10. The change of coordinates could be chosen to be an analytic exact

Hamiltonian diffeomorphism, however it required a non-local proof. Moreover, it

could be close to the identity map even in the strong Whitney topology.

Example 2.11. Let N = R× (R/2πZ) and

T1 : (I, θ) 7−→ (I, θ + h(I)).

In this case, we choose the change of coordinates

φ : (I, θ) 7−→ (I + ε cos θ, θ).

And then we define T2 = φ ◦ T1 ◦ φ−1. Now the above argument works well.

19



Now, we establish a result about recurrent diffeomorphism. Recall that, by re-

current diffeomorphism we meant that almost all points are recurrent. Poincaré

recurrence Theorem yields that conservative diffeomorphisms on compact manifolds

are recurrent.

Theorem 2.12. Let T ∈ Diffr
ω(N) be a recurrent diffeomorphism. Then for every

ε > 0,

1. there exist T1, T2 ∈ Bε(T ) ⊂ Diffr
ω(N) such that G(T, T1, T2) is transitive,

2. for any open ball V ⊂ N and any bounded domain Nc ⊂ N , there exist k ∈ N

and T1, T2, . . . , Tk ∈ Bε(T ) ⊂ Diffr
ω(N) such that Nc ⊂ Orbit−G (V ), where G =

G(T, T1, T2, . . . , Tk).

Proof. If T = id, then we choose φ1 an integrable symplectic diffeomorphism on

the manifold N such that almost all points are quasi periodic, and dCr(φ1, id) <
1
2
ε.

Proposition 2.8 implies that for any open set V there exists, φ2 in Diffr
ω(N) and ε-close

to the identity in the Cr topology, such that, Orbit−Gφ
(V )∩Orbit+Gφ

(V ) is (open and)

dense in N , where Gφ = G(φ1, φ2). In other words, Gφ is transitive. This completes

the proof of (1) in the case that T = id.

For an arbitrary recurrent T , let R be the set of recurrent points of T , which is

also invariant for φ1 and φ2. This set is dense. In fact, following an argument similar

to the Claim in the proof of Proposition 2.8 this set has total Lebesgue measure (and

also is residual).

Let V is an open set in N , and z ∈ R∩Orbit−Gφ
(V ). This intersection is obviously

non-empty. Then, there are d ∈ N and Σ = (σ1, . . . , σd), σi = 1, 2, such that

z ∈ (φ
Σ
)−1(V ).
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Moreover, for any i = 1, 2, . . . , d, and any lj ∈ Z, j = 1, 2, . . . , i,

z̃i := (T li ◦ φσi
) ◦ · · · ◦ (T l1 ◦ φσ1)(z) ∈ R.

So, using recurrency, for some (large) lj ∈ N, the orbit (z̃i)i shadows (zi)i, where

zi = φσi
◦ · · · ◦ φσ1(z). This shows that for some lj ∈ N, the point z̃d belongs to V .

But (z̃i)i is an orbit of z under the iterated function system of

G2 = G(T, T ◦ φ1, T ◦ φ2).

In other words, z̃d ∈ V ∩Orbit+G2
(z). Recall that, R∩Orbit−Gφ

(V ) is dense in N . So,

the G2-orbit of any point in a dense set, intersects V . The same is true for backward

G2-orbits. Thus, Orbit±G2
(V ) is (open and) dense in N , and G2 is transitive. This

completes the proof of (1).

Given Nc ⊂⊂ N bounded, and V ⊂ N open, we let X = B1(Nc) \Orbit−G2
(V ). X

is a compact set with empty interior. So for any x ∈ X there exists, hx in Diffr
ω(N)

and ε-close to the identity in the Cr topology, such that h−1
x (x) ∈ V − := Orbit−G2

(V ).

Since V − is open, there is a neighborhood Ux of x such that h−1
x (Ux) ⊂ V −. The family

{Ux} is open cover of the compact set X. So there exist k ∈ N, x1, x2, . . . , xl ∈ X and

hx1 , hx2 , . . . , hxk
∈ Bε(id) ⊂ Diffr

ω(N) such that

X ∩ h−1
x1

(X) ∩ · · · ∩ h−1
xk

(X) = ∅.

Thus

T−1(X) ∩ (hx1 ◦ T )−1(X) ∩ · · · ∩ (hxk
◦ T )−1(X) = ∅.

Therefore,

Nc ⊂⊂ T−1(V −) ∩ (hx1 ◦ T )−1(V −) ∩ · · · ∩ (hxk
◦ T )−1(V −).

21



If we define G := G(T, T ◦ φ1, T ◦ φ2, hx1 ◦ T, . . . , hxk
◦ T ), then we have

Nc ⊂⊂ Orbit−G (V ).

Remark 2.13. As it has been mentioned, if N is compact or has finite volume, by

the Poincaré recurrence Theorem, T is recurrent. For non-compact manifold N with

unbounded volume we know that almost all points are either recurrent or converge

to infinity. Moreover, in the interior of the non-wandering set of T , generic points (in

a residual set) are recurrent. So, when the non-wandering set has (large) non-empty

interior, as the same as above, there is an iterated function system of its nearby

systems exhibiting transitivity in the interior of the non-wandering set. See also

Section 5.1.

2.3 Skew products and IFS

In this section we explain the relation between iterated function systems and skew

products over shifts.

Let τ be the full shift with d symbols.

τ : dZ → dZ

x = (. . . , x−1, x0;x1, . . . ) 7→ (. . . , x0, x1;x2, . . . )

It is natural to define the local and global unstable manifolds of a point x ∈ dZ for τ

as the following

W u
loc(x; τ) = {(zi) | ∀i ≤ 0, zi = xi}

W u(x; τ) =
⋃
i≥0

τ i(W u
loc(τ

−i(x); τ)) = {(zi) | ∃i0 ∈ Z,∀i ≤ i0, zi = xi}.
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Let Φ : dZ × Y → dZ × Y be a skew product such that

Φ(x, y) = (τ(x), φx(y)),

such that φx is a homeomorphism on Y , for any x ∈ dZ. Assume that the family of

φx’s are uniformly bi-Lipschitz, i.e., there exists L > 1 such that ∀x ∈ dZ, ∀y, y′ ∈ Y,

1

L
dist(y, y′) ≤ dist(φx(y), φx(y

′)) ≤ L · dist(y, y′).

Then one may define the strong unstable manifold as follows.

W uu(x, y; Φ) := {(a, b) | dist(Φi(x, y),Φi(a, b)) ∼ exp(iL) as i→ −∞}.

To make this definition appropriate to our purpose we consider the following metric

on dZ,

dist(x, z) =
∑
i∈Z

e−|i|L|xi − zi|.

Assume that φx depends only to [xi | i ≤ i0], and denote it by φ[x≤i0
]. To avoid

complications we also assume that i0 = 0.

Therefore, Φ = τ × φx on the set {z ∈ dZ | zi = xi, i ≤ 0} × Y . So, the local

unstable manifold of (x, y) for Φ contains W u
loc(x; τ)×{y}. Then we have the following

proposition.

Proposition 2.14. For any (x, y) ∈ dZ × Y and n ∈ N,

Φn(x, y) =(τn(x), φ[x≤n−1
] ◦ · · · ◦ φ[x≤0

](y)),

Φ−n(x, y) =(τ−n(x), φ−1
[x≤−n

] ◦ · · · ◦ φ
−1
[x≤−1

](y)).

W uu
loc (x, y; Φ) =W u

loc(x; τ)× {y} = {(zi) | ∀i ≤ 0, zi = xi} × {y},

W uu(x, y; Φ) =
⋃
i≥0

Φi(W uu
loc (Φ

−i(x, y); Φ).
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Since W uu
loc (x, y; Φ) is a product set and Φ is a product on it, so Φi(W uu

loc (x, y; Φ)

is a finite union of some local strong unstable manifolds. Therefore, we have the

following proposition.

Proposition 2.15. For any (x, y) ∈ dZ × Y , the global strong unstable manifold

W uu
loc (x, y; Φ) is a countable are countable unions of some local unstable manifolds

W uu
loc ((x

i, yi); Φ).

Locally constant skew products

From now on we assume that φx depends only to x0. Then, Φ = τ × φj on the set

{z ∈ dZ | z0 = j} × Y , for any j ∈ {1, 2, . . . , d}. The next propositions shed some

light on the relation between (locally constant) skew product over shift and iterated

function systems.

Let G = G(φ1, φ2, . . . , φd). Proposition 2.14 implies that for any (x, y) ∈ dZ × Y

and n ∈ N,

Φn(x, y) = (τn(x), φxn−1 ◦ · · · ◦ φx0(y)).

This yields that by taking different base points x, one can realize the orbit of y under

the IFS G. Since the skew product Φ does not depends on xi, i > 0, so we get the

entire positive G-orbit of y by taking all points on W u
loc(x; τ). So we have the following

proposition.

Proposition 2.16. For any (x, y) ∈ dZ×Y , the projection of
⋃

n>0 Φn(W uu
loc (x, y; Φ))

on Y is equal to Orbit+G (φx0(y)). In particular, if (x, y) is a fixed point of Φ, then the

projection of W uu(x, y; Φ) on on Y is equal to Orbit+G (y).

This proposition turns out to be very useful in the study of dynamical properties of

strong stable/unstable manifolds of certain partially hyperbolic systems. For instance,

to obtain the density of the strong unstable manifold (see §4.3).
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Here we just mention the geometrical meaning of this fact. At each iteration of

the length of W uu
loc (x, y; Φ) grows exponentially and it intersects the domain of all

φi ’s. Therefore, all possible compositions of φi’s do appear in the positive orbit

of W uu
loc (x, y; Φ). Indeed, we have the following proposition which gives a precise

description of the global strong unstable manifolds for Φ.

Proposition 2.17. For any (x, y) ∈ dZ × Y ,

W uu(x, y; Φ) =
⋃
σ∈Σ

W uu
loc (x

σ, φx,σ(y); Φ),

where

Σ = {σ = (σ1, . . . , σn) | n ∈ N, 1 ≤ σi ≤ d},

φx,σ = φσn−1 ◦ · · · ◦ φσ1 ◦ φ−1
x−n+1

◦ · · · ◦ φ−1
x−1

and φx,(σ1) = id,

xσ = (. . . , x−n, σ1, . . . , σn;x1, . . . ).

Proof. It is easy to see that for any σ, σ′ ∈ Σ, W u
loc(x

σ; τ) = W u
loc(x

σ′ ; τ) if and

only if σ = σ′. Moreover, τn(xσ) ∈ W u
loc(x; τ) if σ = (σ1, . . . , σn). Therefore,

W u(x; τ) =
⋃
σ∈Σ

W u
loc(x

σ; τ).

On the other hand, the projection of W uu(x, y; Φ) on dZ is equal to W u(x; τ), since

Φ is skew product.

W uu(x, y; Φ) =
⋃
n≥0

Φn(W uu
loc (Φ

−n(x, y); Φ).

Φ(W uu
loc (Φ

−1(x, y); Φ)) = Φ(W u
loc(τ

−1(x); τ)× {φ−1
x−1

(y)})

= (τ × φx−1)(W
u
loc(τ

−1(x); τ)× {φ−1
x−1

(y)})

= τ(W u
loc(τ

−1(x); τ))× {y}
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Then,

Φ(W uu
loc (Φ

−1(x, y); Φ)) =
⋃
|σ|=1

W uu
loc (x

σ, y; Φ).

From the definition of global unstable manifolds and Proposition 2.14 it follows

that for any n ∈ N,

Φn(W uu
loc (p, q; Φ)) =

⋃
a∈W u

loc(p;τ)

{(τn(a), φan−1 ◦ · · · ◦ φa0(q))}

=
⋃

η=(p0,a1,...,an−1)
a=(...,p0;a1,a2,...)

{(τn(a), φη(q))}

Now let (p, q) = Φ−n(x, y), then pi = xi−n, (∀i ∈ Z), and q = φ−1
x−n

◦· · ·◦φ−1
x−1

(y). Thus,

τn(a) = (..., p0, a1, . . . , an; a>n) = (..., x−n, a1, . . . , an; a>n) and η = (x−n, a1, . . . , an−1).

Therefore,

φη(q) = φηn ◦ · · · ◦ φη1 ◦ φ−1
x−n

◦ · · · ◦ φ−1
x−1

(y)

= φan−1 ◦ · · · ◦ φa1 ◦ φx−n ◦ φ−1
x−n

◦ φ−1
x−n+1

◦ · · · ◦ φ−1
x−1

(y)

= φan−1 ◦ · · · ◦ φa1 ◦ φ−1
x−n+1

◦ · · · ◦ φ−1
x−1

(y).

It yields that,

Φn(W uu
loc (Φ

−n(x, y); Φ)) =
⋃

η=(p0,a1,...,an−1)
a=(...,p0;a1,a2,...)

{(τn(a), φη(q))}

=
⋃
|σ|=n

W uu
loc (x

σ, φx,σ(y); Φ).

This completes the proof.

The stable manifolds for these maps are defined as the unstable manifolds of

corresponding inverse maps. Similar results hold for stable manifolds.
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Chapter 3

Symplectic blender

Definition, existence and properties of symplectic double blenders are discussed in

this chapter.

Bonatti and Dı́az in [BD] introduced blenders, geometric models for certain hy-

perbolic sets originated in the unfolding of heterodimensional cycles, that play an

important role as a mechanism for creation of cycles, and semi-local source of tran-

sitivity. Although their methods may be modified for the conservative case, the

symplectic case is more delicate.

In [BD] a cs-blender, roughly speaking, is a hyperbolic (locally maximal) invariant

set with a splitting of the form Ess ⊕ Eu ⊕ Euu, dimEu = 1, such that a convenient

projection of its stable set has larger topological dimension than the stable set itself.

This phenomenon is robust in the C1 topology. Similarly, one may define cu-blender.

Their constructions essentially use a hyperbolic set with a one-dimensional weakly

hyperbolic subbundle. On the other hand, to apply this local tool for systems with

higher dimensional central bundles they use a chain of blenders with one-dimensional

central bundles and different indices (i.e. dimension of the stable bundle) connected

to each other. This allows them to use such blenders in more situations. This is of

course impossible in the symplectic case, since all eigenvalues are pairwise conjugate
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and so all hyperbolic periodic points have the same index. So in the symplectic case

we involve higher central dimensions in the creation of a blender. We construct a

new class of such blenders in the symplectic (or Hamiltonian) systems that work like

a chain of cs-blenders and a chain of cu-blenders simultaneously.

In section 3.1, regardless of the symplectic case, we study blenders with higher

central dimensions when the central bundle is uniformly unstable (stable, respectively)

and we construct a cs-blender (cu-blender, respectively). In section 3.2, we consider

the case that the central bundle splits into two stable and unstable subbundles, that

is, the maximal invariant set is hyperbolic of the form Ess ⊕Es ⊕Eu ⊕Euu, and we

create a blender which exhibits the features of both cu- and cs- blenders. We call it

double-blender. Note that this case is very compatible with the symplectic case where

the eigenvalues of periodic points are pairwise conjugate. In section 3.3, we study the

symplectic case, and we introduce the symplectic version of the above phenomenon,

which we call symplectic blender.

Let us state here a formal definition of symplectic and double blenders.

Definition 3.1. Let B is an open embedded ball on which there are four invariant

cone-fields Css, Cs, Cu, Cuu, invariant under the derivative DF . A vertical strip (or

u-strip) is an embedded (u)-dimensional disk in B, which contains the uu-leaves of

each its points. Similarly we define horizontal strip (or s-strip).

Definition 3.2. The pair (P,B) is a double blender for the diffeomorphism F if satisfies

the following features:

B-1 P is a hyperbolic saddle periodic point of F .

B-2 B is an open embedded ball on which there are four cone fields Css, Cs, Cu,

Cuu, invariant under the derivative DF .

B-3 For any G sufficiently close to F in the C1 topology, the stable manifold of

PG intersects any u-strip in B, and the unstable manifold of PG intersects any
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s-strip in B. Here PG is the continuation of P .

Definition 3.3. A symplectic blender is a double blender for a symplectic (or Hamil-

tonian) diffeomorphism.

In order to give a more clear picture of the dynamics of the above phenomena we

start by a simple affine model for each one and then we relax the construction to the

more flexible versions, robust under C1 small perturbations, which is the subject of

section 3.4. In fact, we may also define blenders in another way which takes in to

account their construction, rather than their properties (see also [BDV, chapter 6]).

Throughout this section we consider the diffeomorphism f of R2 which is the

Smale horseshoe on U := [0, 1]2 and is of the form that follows.

The vertical sub-rectangles X1 = I1 × [0, 1] and X2 = I2 × [0, 1] are connected

components of f(U) ∩ U and also the horizontal sub-rectangles Y1 = f−1(X1) and

Y2 = f−1(X2) are connected components of f−1(U) ∩ U . The restrictions of f to Y1

and to Y2 are affine maps with linear part

±1
4

0

0 ±4

 .

From now on we suppose x ∈ Ess, y ∈ Euu, associated to f and we denote by (x0, y0)

the unique fixed point of f in X1 .

3.1 cs-blender with higher dimensional unstable

central bundle

The following proposition about the iterated function system of expanding maps is a

special case of Proposition 2.3.
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Figure 3.1: IFS of expanding maps

Proposition 3.4. For i = 0, 1, 2, 3, let gi(x, y) := (aix+ bi, ciy + di) where 1 < ai =

ci =
16

15
< 2 and bi, di’s are such that the fixed points of g0, .., g3 are respectively,

P0 = (0, 0), P1 = (1, 1), P2 = (−0.1, 1.1), P3 = (1.1, 0.1) . See Figure 1. Given any

open rectangle Σ ⊂ [0, 1]2 there is gσ ∈ G(g1, g2, g3, g4) such that (0, 0) ∈ gσ(Σ). This

property persists for all (uniformly) expanding maps g̃i close to gi if their expansion

bounds (i.e. the contraction bounds of g̃−1
i ) are also close to those of gi’s.

Now, consider the diffeomorphism F of R4 such that in B := [−1, 1]2 × [0, 1]2 is

of the form:

F (p, q;x, y) := (gi(p, q); f(x, y)), if (x, y) ∈ Bi and (p, q) ∈ [−1, 1]2,

where B1 = X1 ∩ Y1, B2 = X2 ∩ Y2, B3 = X1 ∩ Y2, B4 = X2 ∩ Y1, and gi’s are

the expanding maps taken in Proposition 3.4 Observe that F (B) ∩ B contains the

four boxes [−1, 1] × [−1, 1] × X1, [−1, 3
4
] × [−1, 1] × X1, [−1, 1] × [−1, 3

4
] × X2 and

[−1, 3
4
]×[−1, 3

4
]×X2 and that Q = (0, 0, x0, y0) is the (unique) hyperbolic fixed saddle

of F of index 3. Let W s
loc(Q) = {0}×{0}× [0, 1]×{y0} be the connected component

of W s(Q) ∩B that contains Q.

Definition 3.5. A vertical strip with respect to Q, or simply vertical strip, is a rectangle

30



∆ = Σ × {x} × [0, 1], where x ∈ [0, 1] and Σ is a closed rectangle (with non-empty

interior) in [0, 1]2.

The next proposition gives the main geometric property of cs-blender.

Proposition 3.6. Every vertical strip ∆ with respect to Q intersects W s(Q).

Proof. This proposition may be reduced to the transitivity of the iterated function

system G(g0, g1, g2, g3). Any vertical strip intersects all Bi’s, and the map F restricted

to each of Bi is equal to gi × f . The image of any vertical strip ∆ contains a union

of four vertical strips ∆j each of which intersects all Bis. So the G-orbit of (0, 0)

corresponds to some points in W s(Q), and is the same as the projection of W s(Q)

to the central direction along the Es ⊕ Euu. Proposition 3.4 shows that the orbit

of (0, 0) is dense in [0, 1]2. This means that the projection of W s(Q) to the central

direction along the Es ⊕ Euu is dense in [0, 1]2. So W s(Q) intersects every vertical

strip ∆.

The following is a direct consequence of the above proposition:

Proposition 3.7. Suppose that there is a hyperbolic periodic point P of F of index

1 whose one-dimensional unstable manifold crosses B along a vertical segment γ :=

{p} × {q} × {x} × [0, 1] such that p, q ∈ (0, 1). Then W s(P ) ⊂ W s(Q).

Proof. For any open set U that intersects W s(P ), the inclination Lemma yields

that there exists some positive integer n such that F n(U) approximates a compact

part of W s(P ) which contains γ. In particular, F n(U) contains a vertical strip w.r.t.

Q in B. Proposition 3.6 implies that W s(Q) intersects F n(U) and so it intersects U .

This shows that W s(Q) accumulates to any point in W s(P ).

Thus the one-dimensional stable manifold ofQ looks like a 3-dimensional manifold,

as its closure contains the 3-dimensional manifold W s(P ).
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3.2 Double-blender: affine model

In the 3-dimensional cs-blenders, if one projects the cube and its pre-image along of

stable direction a figure like Smale horseshoe appears but two right and left rectangles

overlap, while in the projections along the weak unstable direction do not overlap.

Having this in mind, consider a 4-dimensional horseshoe with the splitting of the form

Ess⊕Es⊕Eu⊕Euu such that the projection along Ess give a figure like 3-dimensional

horseshoe but its two wings overlapping and the same feature for the inverse map and

Euu. This led us to the following affine model.

Consider the following maps on R, which are maps in central bundle

ψ1(p) := 4
5
p ϕ1(q) := 5

4
q

ψ2(p) := 4
5
p+ 2

5
ϕ2(q) := 5

4
q − 1

2

Note that ϕi := ψ−1
i , and (p, q) ∈ Ec.

Let F be a diffeomorphism on R4 such that in B := [−1, 1]2 × [0, 1]2 is of the

following form:

F (p, q;x, y) := (ψi(p), ϕj(q); f(x, y)), if (x, y) ∈ Xi ∩ Yj and (p, q) ∈ [−1, 1]2.

The dynamics of F inside the box B is hyperbolic, Ess⊕Es⊕Eu⊕Euu. The maximal

invariant set in B, i.e., Λ =
⋂
F n(B) is a cs-blender, if we consider Ess⊕Es as stable

direction, Eu as central and Euu as strong unstable directions. Similarly Λ is a cu-

blender if we consider Ess as strong stable direction, Es as central and Eu ⊕ Euu as

unstable directions. Therefore Λ is a double-blender. Note that using the results of

the previous section, we may consider multi-dimensional central bundle, i.e., both of

weak stable and unstable bundles of arbitrary dimension ≥ 1.
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3.3 Symplectic blender: affine model

We consider the following maps on R, which are maps in central bundle

ψ(p) := λp , ϕ(q) :=
1

λ
q,

where 1− λ > 0 is small enough.

The symplectic diffeomorphism F on R4 is defined as the product of the above

maps:

F (p, q;x, y) := (ψ(p), ϕ(q); f(x, y)).

We shall perturb F by the time-one map of the flow of a Hamiltonian vector field

such that the resulting map is a diffeomorphism with the properties of the model in

the previous section.

Let α and β be smooth bump functions on R such that for all t ∈ R, 0 ≤ α(t) ≤ 1,

and

α(t) = 1 if t ∈ I1 ∪ I2 and α(t) = 0 if t /∈ J1 ∪ J2,

where J1 and J2 are disjoint neighborhoods of I1 and I2, respectively.

Similarly, for all t ∈ R, 0 ≤ β(t) ≤ 1, and β(t) = 1 if t ∈ [−1, 1] and β(t) = 0 if

t /∈ [−3
2
, 3

2
].

We define Fε := Φε ◦ F , where Φε is the time-one map of the flow associated to

the Hamiltonian

Hε := εα(x)α(y)β(p)β(q)((i− 1)p− (j − 1)q) , if x ∈ Ji and y ∈ Jj, i, j ∈ {1, 2}.

The support of Hε is the disjoint union of four boxes of dimension 4. Then we have

the following
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Theorem 3.8. Let Fε be the Hamiltonian diffeomorphism as defined above. If ε >

1 − λ > 0 are small enough, then Fε has the form of the affine model of double

blender and so the maximal invariant set for Fε inside the B := [−1, 1]2 × [0, 1]2 is a

symplectic double-blender.

3.4 Symplectic blender: general construction

We use cone-field structures to make sure that the feature that we explained in the

affine cases remains for all nearby systems.

In the above affine models we have four cone fields Css, Cs, Cu, Cuu, invariant under

the derivative DF . These cone fields will define invariant foliations in the box B. Of

course, these foliations in the affine models coincide with the vertical and horizontal

segments and strips. We may repeat all the above process by replacing these vertical

and horizontal segments with the almost vertical/horizontal strips/segments, and

reducing the iterated function system in central bundles.

Now we prove the robustness of the main features of blenders. We know that these

cone fields remain invariant for any C1 nearby system G. So for nearby systems we

will have almost vertical/horizontal strips/segments. These almost vertical/horizontal

segments allow us to introduce the corresponding iterated function systems of expand-

ing/contracting maps in central bundles. The new iterated function systems are close

to the initial ones, and so thanks to the results of section 2.1, we have robustness of

transitivity property of iterated function system of such expanding maps. Therefore

the dynamical feature of blender appears also for any G in a C1 neighborhood of F .

We summarize this section in the following theorem (see also section 4.2).

Theorem 3.9. Let M and N be two symplectic manifolds (not necessarily compact).

Let r = 1, 2, . . . ,∞. Suppose that f1 ∈ Diffr
ω(M) has a hyperbolic periodic point p1

with transversal homoclinic intersections and f2 ∈ Diffr
ω(N) has a hyperbolic periodic
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point p2 such that its hyperbolicity is weak enough. Then, there is a Cr-arc {Fµ}µ∈[0,1]

of Cr symplectic diffeomorphism on M ×N such that,

1. F0 = f1 × f2.

2. There is a neighborhood V of {Fµ}µ∈(0,1] in Diff1(M ×N) such for any G ∈ V,

the pair (PG,B) is a double blender, where PG is the continuation of hyperbolic

P0 = (p1, p2) and B is an embedded open disk in M ×N .

Note that, this is not the only way to create blenders. In fact, one may create them

by a perturbation of a system exhibiting a quasi transversal homoclinic or heteroclinic

intersection, by the similar ways, but with more technical details (see [BD] and [N]).

Here we only considered the case where the unperturbed system is a product of two

systems, one of them with a transversal homoclinic intersection and the other one

with a hyperbolic saddle with weak hyperbolicity. Because it is sufficient for the

proof of our main theorems.
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Chapter 4

Proof of Theorem A

In this chapter we give the proof of Theorem A. The proof is constructive. It is divided

in five parts. First we introduce the perturbations in Section 4.1. Then in the four

sequel sections we prove that the perturbed systems satisfy the desired properties.

In Section 4.2 we prove the existence of a symplectic blender. Then in Section 4.3

we use the results of iterated function systems of recurrent diffeomorphisms (Section

2.2) to prove that the strong stable and unstable manifolds of almost all points in the

central manifold intersects the constructed blender. In Section 4.4 we show that this

property is robust under small perturbation, and here we use the dynamical properties

of the blender. Then we complete the proof in Section 4.5 by proving that there is a

hyperbolic periodic point such that its stable and unstable manifolds are both dense

in the set Λ×N in a robust way, concluding the robustly topological mixing.

4.1 The perturbations

Let r = 1, 2, . . . ,∞, f1 ∈ Diffr
ω(M) and f2 ∈ Diffr

ω(N) as in Theorem A. Let U ⊂M

be a small simply connected open set, such that for some k ∈ N, Λ :=
⋂

n∈Z f
kn
1 (U)

is an invariant hyperbolic compact set for fk
1 . By choosing U suitable and k large

enough, we may suppose that fk
1 |Λ is conjugate to a shift of d symbols {1, . . . , d}.
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The required number d of symbols in the proof depends to dimN and f1 × f2. By

taking fk
1 , and fk

2 instead of f1 and f2, we may assume that Λ is f1- invariant and

Λ :=
⋂

n∈Z f
n
1 (U) is conjugate to a shift of symbols {1, . . . , d}, where d is sufficiently

large. We identify the set identify Λ with that set {1, . . . , d}Z.

In order to define our local perturbation we first consider open sets Aij and pair-

wise disjoint open sets Ãij in the way that

Aij ∩ Λ = {(xi)i∈Z | x0 = i, x1 = j} and Aij ⊂ Ãij.

In a similar way we defineAI and ÃI as neighborhoods of IZ, where I ⊂ {1, 2, . . . , d}.

In addition we set Ai,∗ = ∪jAij.

By the assumptions, f2 has a δ-weak hyperbolic periodic point p2 , for some positive

δ = δ(f1, f2) close to zero. Suppose that Tp2
N = Es

p2
⊕ Eu

p2
. We consider p1 ∈ Λ a

hyperbolic fixed point for f1. Let P0 = (p1 , p2).

Let φs be the linear contracting map given by Df2|Es
p2

. Proposition 2.3 gives a

number l as a required number of elements of IFS to obtain transitivity in some small

disk. This number only depends on the dimension of N and the contraction bound

of φs.

We fix the number d = 2l + 4, and its related k and U as above. And let

I = {1, 2, . . . , d− 4}, J1 = {1, d− 3, d− 2} and J2 = {1, d− 1, d}.

Let δ > 0 is small enough and ε : [0, 1] −→ [0, δ]2 is an smooth simple curve such

that ε(0) = (0, 0).

Let F0 = f1 × f2.

For µ ∈ (0, 1], Fµ is defined as the following. Let (ε1, ε2) := ε(µ), and consider

Hamiltonians ε1h̃1 and ε2h̃2 supported on pairwise disjoint sets as follows. Let ψε1

and ψε2 , respectively their associated diffeomorphism. Now let Ψµ = ψε2 ◦ ψε1 . Since

the support of ψεi
’s are pairwise disjoint, they may commute with each others.
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We define

Fµ := Ψµ ◦ F0.

The aim of this chapter is to show that Fµ has the properties claimed in Theorem A.

One may describe briefly the perturbation Hamiltonians as the following:

1. Let Hamiltonian h̃1 : M × N −→ R supported on (ÃI \ Ã1∗) × N , such that

ψε1 ◦ F0 has a symplectic blender. The detailed definition of h̃1 is presented in

Section 4.2 and there we show the existence of a blender (P0,B).

2. The Hamiltonian h̃2 : M × N −→ R is supported on (ÃJ1 \ Ã1∗) × N and its

restriction to Λ × N is locally constant with respect to variables in M . More

precisely,

ψε2 ◦ F0(x, q) = (f1(x), φ1 ◦ f2(q)), if x ∈ Ad−3,∗,

ψε2 ◦ F0(x, q) = (f1(x), φ2 ◦ f2(q)), if x ∈ Ad−2,∗,

where φ1 and φ2 are obtained in the proof of Theorem 2.12 (1). In Section

4.3 using the symbolic dynamics and the result of Section 2.2 we show that for

almost every z in the fibers {x} ×N ,

W ss(uu)(z;Fµ) ∩ B 6= ∅.

4.2 Constructing symplectic blender

Here we show that how to define the perturbation h̃1 : M × N −→ R in order to

create a symplectic blender B = AI × B. In fact, based on the affine models of

Chapter 3, we also sketch the proof of Theorem 3.9. Notice that Theorem A satisfies

the hypotheses of Theorem 3.9.
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Figure 4.1: Support of local perturbations projected to Λ. The blocks with the same
color are in the support of the same Hamiltonians. No perturbation is made in the
black or white parts

Proof of Theorem 3.9.

Let ∗ = s, u and ϕ∗ be the linear (contracting/expanding) map given by Df2|E∗
p2

.

Proposition 2.3 gives the linear maps ϕ∗1 := ϕ∗, ϕ∗2, . . . , ϕ
∗
l on E∗

p2
, such that |ϕ∗i−ϕ∗| <

ε1, and the corresponding IFS is transitive in some small disk D∗, satisfying the

covering property. We let B = Ds × Du. By the Hartman-Grobman Theorem, one

knows that f2 in some open set UB ⊂ N is conjugate to the linear map ϕs×ϕu in B.

Now we define Hamiltonian h̃1 in order to realize above IFS’s. Recall that ψε1 is

the time one map of ε1h̃1.

For i = 1, 2, . . . , l, we let

φs
i := ϕs

i , φu
i := ϕu.

And for i = l + 1, l + 2, . . . , 2l, we set

φs
i := ϕs, φu

i := ϕu
i−l.
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For simplicity we use the same notation for f2 on UB and its local linear maps

φs × φu on B. Then, in follows that for i, j ∈ I,

Fµ(x, q) = ψε1 ◦ F0(x, q) = (f1(x), (φ
s
i × φu

j )(q)), if x ∈ Ai,j, q ∈ B,

We identify f1 to its restriction to Λ. For any p = (pi)i∈Z ∈ Λ = {1, 2, . . . , d}Z,

the local and global unstable manifolds of p for f1 are

W u
loc(p ; f1|Λ) = {(xi) | ∀n ≤ 0, xi = pi}

W u(p ; f1|Λ) = {(xi) | ∃n0 ∈ Z,∀n ≤ n0, xi = pi}

From the fact that Fµ is a product in eachAi,j×B then follows thatW u
loc(p; f1|Λ)×

{q} is contained in the unstable manifold of (p, q). Since this set is an embedded disk

of the same dimension of the strong unstable subbundle associated to (p, q) follows

that the local and global strong unstable manifolds of (p, q) for Fµ are

W uu
loc (p, q;Fµ|Γ) = W u

loc(p; f1|Λ)× {q} = {(xi) | ∀n ≤ 0, xi = pi} × {q},

W uu(p, q;Fµ|Γ) =
⋃
n≥0

F n
µ (W uu

loc (F
−n
µ (p, q);Fµ|Γ)).

And also, similar to the affine models, a u-strip may be defined by

∆ = γuu ×Du × {qs}.

where γuu is a local unstable leaf in AI for f1|Λ; Du is an open set in Du, and qs ∈ Ds.

Thus, there is some i ∈ I such that for any j ∈ I, the u-strip ∆ intersects Ai,j×B.

Therefore,

Fµ(∆) ⊃
⋃
j∈I

γuu
i(j) × φu

j (Du)× {qs
i(j)},
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for some γuu
i(j) local unstable leaves in AI for f1|Λ, and some qs

i(j) ∈ Ds. Then, by

induction we get,

F k
µ (∆) ⊃

⋃
Σ∈Ik

γuu
i(Σ) × φu

Σ
(Du)× {qs

i(Σ)}.

We project this set along the strong unstable foliation and also along the stable

foliation. Then the fixed point of φu
1 corresponds to the local stable manifold of P0.

The iterations of the fixed point of φu
1 under the IFS of φu

j ’s, also correspond to some

parts of the global stable manifold of P0. The results of Section 2.1 shows that the IFS

of φu
j ’s is transitive. Indeed, the fixed point of φu

1 has a dense orbit in Du (under the

IFS of φu
j ’s). Therefore, the projection of W s(P0) along the strong unstable foliation

in B is dense on Du. This implies that W s(P0) intersects any u-strip in B.

Similarly we can show that W u(P0) intersects any s-strip in B. In other words,

the pair (P0,B) is a symplectic blender for Fµ.

In addition, we have the following proposition which is a consequence of the first

part of Proposition 2.5.

Proposition 4.1. Let ΛB := AI ∩ Λ. Under the hypotheses of Theorem 3.9 it is

possible to create symplectic blender with the following additional property:

B-4 Any forward and backward iteration of a uu-leaf (ss-leaf) intersecting

ΛB ×B, intersects ΛB ×B in a uu-segment (ss-segment, respectively).

Consequently, the set of all points whose strong (un)stable manifolds intersect ΛB×B,

is an invariant set.

Note that we can not replace the set ΛB ×B by the open set B .
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4.3 Almost minimality of stable and unstable

foliations

In this section that the strong stable and unstable manifolds of almost all points in

the central manifold N0 := {p1} ×N intersects the constructed blender. We refer to

this property by the almost minimality of the strong stable and unstable foliations.

Proposition 4.2. Let p ∈ Λ be a fixed point of f1 which is not in the support of

our perturbations. Then there is an open and dense set R ⊂ N with total Lebesgue

measure such that for every q ∈ R and for any n ∈ Z, W uu(F n
µ (p, q)) ∩ B 6= ∅.

Proof. The key elements in the proof are the symbolic dynamics, the results of

section 2.2 and Proposition 4.1.

We consider restriction of f1 to Λ. For any p = (pi)i∈Z ∈ Λ = {1, 2, . . . , d}Z, the

local and global unstable manifolds of p for f are

W u
loc(p ; f |Λ) = {(xi) | ∀n ≤ 0, xi = pi}

W u(p ; f |Λ) = {(xi) | ∃n0 ∈ Z,∀n ≤ n0, xi = pi}

The above remark implies that the local and global strong unstable manifolds of (p, q)

for Fµ are

W uu
loc (p, q;Fµ|Γ) = W u

loc(p; f |Λ)× {q} = {(xi) | ∀n ≤ 0, xi = pi} × {q},

W uu(p, q;Fµ|Γ) =
⋃
n≥0

F n
µ (W uu

loc (F
−n
µ (p, q);Fµ|Γ)).

Let T1 = f2, T2 = φ1 ◦ f2 and T3 = φ2 ◦ f2, where φ1 and φ2 are given as in the

proof of Theorem 2.12 (1).

Let q ∈ Rec(f2) ⊂ N such that there is a finite sequence (σi)
n
i=1 such that σi ∈
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{1, 2, 3} and

Tσn ◦ Tσn−1 ◦ · · · ◦ Tσ1(q) ∈ T−2
1 (B).

We denote the set of all such points by R1.

Now, we consider

x = (xi) = (

W u
loc(p)︷ ︸︸ ︷

. . . , p−2, p−1, p0 ;
IFS︷ ︸︸ ︷

a1, a2, . . . , an0 , 1, 1,

arbitrary︷ ︸︸ ︷
xn0+3, . . .),

where for i = 1, 2, . . . , n0,

ai = 1 if σi = 1,

ai = d− 3 if σi = 2,

ai = d− 2 if σi = 3.

It is clear that x ∈ W u(p, f1|Λ) and so (x, q) ∈ W uu(p, q;Fµ|Γ). We now take the

iterations of the point (x, q) under Fµ. Since Fµ restricted to Aai,J1 × N is equal to

f1 × Tσi
, inductively we have:

(f i
1(x), Tσi

◦ Tσi−1
◦ · · · ◦ Tσ1(q)) = F i

µ(x, q) ∈ W uu(F i
µ(p, q);Fµ).

In particular, for i = n0 + 1, F n0+1
µ (x, q) ∈ B. So,

W uu(F n0+1
µ (p, q);Fµ) ∩ B 6= ∅.

Now we apply Proposition 4.1. It implies that for all n ∈ Z,

W uu(F n
µ (p, q);Fµ) ∩ B 6= ∅.

Let R the set all points q ∈ N such that the above intersection holds. We proved

that R1 ⊂ R. The set R is open, because B is open and (the compact parts of)
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the strong stable and unstable manifolds depends continuously to the points. On the

other hand, in Section 2.2 it was shown that the set R1 has total Lebesgue measure.

This completes the proof.

Remark 4.3. As a matter of fact, any skew product symplectic diffeomorphisms on

a connected manifold is in fact a direct product of two symplectic diffeomorphism.

Let us explain it for the Hamiltonians. Let U ⊂ R2n × R2m, and h : U × R → R

be a Hamiltonian function and f be the time-one map of its corresponding flow. If

f(x, y; p, q) = (x, y, g(x, y; p, q)), where xi and yi are symplectic conjugate variables

and the same for pi and qi, then

ẋi = − ∂h

∂yi

= 0, ẏi =
∂h

∂xi

= 0, ṗi = − ∂h
∂qi

, q̇i =
∂h

∂pi

.

The first two equalities implies that h does not depend to x and y. So f is the product

id× g.

This is no longer true for disconnected invariant sets. So, we see that Fµ is a

skew-product on the disconnected invariant set Λ×N , while it could not be a skew

product on M ×N .

4.4 Robustness of the almost minimality of

foliations

The hypothesis (b) in Theorem A implies that F0 is partially hyperbolic on ΓF0 :=

Λ×N which is locally maximal. More precisely by the results of [HPS] we have:

H-1 ΓF0 is normally hyperbolic and F is plaque expansive (see [HPS, p.116 and

Theorem 7.2]).

H-2 There is a neighborhood U ⊂ Diff1(M ×N) of F such that every G ∈ U has a
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(locally maximal) invariant ΓG homeomorphic to Λ × N and is a continuation

of ΓF0 .

H-3 There is a G-invariant foliation on ΓG by manifolds diffeomorphic to N that is,

the continuation of fibration defined on Λ×N . So G induces a homeomorphism

G̃ on the quotient of ΓG by the foliation. It then follows that G̃ is conjugate to

f1|Λ (see [HPS, Theorem 7.1]).

H-4 G restricted to ΓG is conjugate to a skew productG∗ : (x,w) 7−→ (f1(x), gx(w))

on Λ×N , which depends continuously on G.

Given Nc ⊂⊂ N , let ΓG,Nc ⊂ ΓG the continuation of Λ×Nc, that is, the image of

Λ×Nc by the homeomorphism given in H-2 above. We let N0 := {p1} ×N , and Ñ0

is the continuation of N0 for G.

In order to have all the above properties it is enough to consider the family {Fµ}

in the set U , by taking δ > 0 small enough.

IfW uu(p, q;Fµ)∩B 6= ∅, then there is L > 0 large enough, such thatW uu(p, q;Fµ)∩

B contains a uu-segment of B. B is open, so there is a neighborhood V(p,q) of (p, q)

such that for any point z ∈ V(p,q), W
uu(z;Fµ) ∩ B contains a uu-segment of B.

In Section 4.3 we proved that the set R of points whose strong stable and unstable

manifolds intersects B is dense (and of total measure) in N0 . Now we see that R

contains an open dense subset of N0 .

We call X = N \ R the exceptional set, which is a closed set with empty interior

and of zero measure.

Then, given any compact set Rc ⊂ R, there is some large L such that for any

z ∈ Rc, W
uu
Lc

(z;Fµ) ∩ B contains a uu-segment of B.

Since the compact parts of (strong) stable and unstable manifolds depends con-

tinuously to the diffeomorphism, there exists Wµ,Rc , a neighborhood of Fµ, such that
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for any G ∈ Wµ,Rc , and any z ∈ ΓG,Rc , W
uu
Lc

(z;G) ∩ B contains a uu-segment of B

(w.r.t. G).

In other words, we have robustness of the almost minimality of strong stable and

unstable foliations.

4.5 Transitivity and topological mixing

Recall the following two general fact on symplectic diffeomorphisms.

S-1 A normally hyperbolic invariant submanifold of symplectic diffeomorphism is a

symplectic submanifold (with a canonical 2-form which is the restriction of the

given symplectic form) and

S-2 The restriction of a symplectic diffeomorphism to its normally hyperbolic in-

variant submanifolds is preserving the restricted symplectic form.

Therefore, using H-1 - H-4, S-1 and S-2, the hypothesis (b) in Theorem A, yield

that if the neighborhood U of F0 is small enough, then for any G ∈ U , G|Ñ0
is

(smoothly) conjugate to a diffeomorphism g which is Cr close to f2 in Diffr
ω(N) and

so all points in Ñ0 are non-wandering for G. As mentioned before, the family Fµ is

constructed in U .

Let Nc be any open and bounded domain in N . Given ν > 0, let Xc,ν = Bν(Nc ∩

X). And let Rc,ν = Nc \Xc,ν ⊂ R.

Now for any G ∈ Wµ,Rc,ν , we first show that,

R̃c,ν ⊂ W s(PG) ∩W u(PG),

recall that, PG is the continuation of the hyperbolic point (p1 , p2).
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Let ∆ be an open set in ΓG such that ∆ ∩ R̃c,ν 6= ∅. Then, for any large number

n0, there is a point z∗ ∈ ∆ such that Gn(z∗) ∈ ∆ ∩ R̃c,ν for some n ≥ n0.

Let γ = W uu(z∗;G)∩∆, then for some large n > 0, Gn(γ) has diameter larger than

Lc and so contains W uu
Lc

(Gn(z∗);G). Since Gn(z∗) ∈ Rc,ν , we conclude that Gn(γ)

contains a uu-segment in B. Thus Gn(∆) contains a u-strip in B. The property B-4

of double-blender implies that W s(PG;G) intersects Gn(∆) and so

W s(PG;G) ∩∆ ∩ ΓG 6= ∅.

For any open set ∆′ in ΓG such that ∆′ ∩ R̃c,ν 6= ∅, similarly we can show that

some iteration of ∆′ contains a s-strip in the blender B, and so W u(zG;G) intersects

∆′ in ΓG.

In other words, the closure of stable and unstable manifolds of PG for G are both

contain R̃c,ν , for any Ñc and ν.

Now, H-4 and the density of f1 - stable and unstable manifold of p1 in Λ implies

that,

ΓG,Rc,ν ⊂ W s(PG;G) ∩W u(PG;G).

In particular for any Fµ,

ΓF0 ⊂ W s(P0;Fµ) ∩W u(P0;Fµ).

Whenever the stable and unstable manifolds of a periodic hyperbolic point are

both dense on some set, the inclination Lemma provides transitivity and topological

mixing.

Thus, for any Nc and ν > 0,

i) Rc,ν is topological mixing for G.

ii) ΓG,Rc,ν is strictly topological mixing for G.

47



And in particular,

i) N0 is topological mixing for any Fµ

ii) ΓF0 = Λ×N is strictly topological mixing for any Fµ.

The proof of Theorem A is completed.

Remark 4.4. In the perturbations introduced in the proofs we could use the generating

functions instead the Hamiltonians. It lets us to unify the proof of Theorem A and

its variation for the Hamiltonians. The Hamiltonian version of Theorem A shall be

used in the proof of Theorem C.
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Chapter 5

Instabilities in nearly integrable

systems

5.1 Instability versus recurrency

The following basic lemma shall be used in the proof of Theorem C.

Lemma 5.1. There is a residual subset R of int(Ω(f)) such that any point in R is

a (positively and negatively) recurrent point.

Proof. Let B = {Ui : i ∈ N} be a countable topological base in int(Ω(f)).

For every i ∈ N, there is ni ∈ N such that fni(Ui) ∩ Ui = ∅. Let xi ∈ Vi :=

f−ni(Ui) ∩ Ui. Since Bk = {Ui : i ≥ k} is also a topological base, the set {xi}∞r=k is

dense in int(Ω(f)). So
⋃∞

i=k Vi is open and dense subset of int(Ω(f)). Then, R+ :=⋂∞
k=1

⋃∞
i=k Vi is residual. We claim that R+ ⊂ Rec+(f). Since B is a topological base,

for any ε > 0 there is a kε such that, if i > k then diam(Ui) < ε. Now, for any x ∈ R+

and for i > kε, x ∈ Vi. So there is ni ∈ N such that, d(fni(x), x) < diam(Ui) < ε.

Since ε > 0 was arbitrary, this implies that x is a positively recurrent point. We could

do it for f−1 to obtain a residual subset R− of negatively recurrent points. Any point

in the residual set R = R− ∩R+ is positively and negatively recurrent.
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We say that a point x converges to infinity if for any bounded set U ther is a

number n0 such that for any n > n0, fn(x) /∈ U .

The following lemma is a corollary of a variation of Poincaré recurrence Theorem

for unbounded measures (due to Hopf) which yields that for conservative homeo-

morphisms on the manifolds with unbounded measure, almost all points either are

recurrent or converge to infinity.

Lemma 5.2. Let f be a conservative homeomorphism on a non-compact manifold

with unbounded Lebesgue measure. Then Lebesgue almost all points in Ω(f){ converge

to infinity, in the future and also past iterations.

As a matter of fact, similar results may be stated on each fiber of the invariant

sets such as ΓG in Theorem A. That is, “almost all points” means “almost all points

with respect to the Lebesgue measure on each fiber”, also residual and open sets in

the restricted topology in fibers.

Now, suppose that the assumption (b) in Theorem A fails. For instance, suppose

that Ω(f2) = N but for some f̃ close to f2, Ω(f̃2) ( N . In this case, the same results

on transitivity and topologically mixing hold on the interior of non-wandering set.

Indeed, we used the hypothesis Ω(f̃2) = N , only in the last step of the proof to show

that some of the arbitrary large iterations of generic points in Ñc remain in some

desired compact set Ñc′ . This follow from Lemma 5.1.

In contrast, let Uc ⊂⊂ M × N be an open set and ΓG,c = Uc ∩ ΓG such that

ΓG,c * Ω(G). Then, almost all points in some open subset of Uc converge to infinity

in the past and in the future. Moreover, there is an open set Vc ⊂ Uc such that

1. Vc ∩ ΓG,c 6= ∅.

2. Almost all (w.r.t the restricted Lebesgue measure) points in Vc ∩ Nx
c goes to

infinity both in the past and the future, where Nx
c is the intersection of some

fiber Nx with Uc. In this case, we have a sense of instability, that is, orbits which
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come from infinity and stay for some iterations near a transitive invariant set

and then go back to infinity.

These facts together with Theorem A leads to a dichotomy in this context:

existence of large robustly transitive sets or

existence of wandering orbits converging to infinity.

5.2 Proofs of Theorem C and Corollary D

In this section we complete the proofs of Theorem C and Corollary D. First we recall

the following result of Zenhder [Z] and Newhouse [Ne].

Theorem 5.3 (Zenhder-Newhouse). There is a residual set R ⊂ Diffr
ω(M), 1 ≤

r ≤ ∞, such that if f ∈ R, then any quasi-elliptic periodic point of f is a limit of

transversal homoclinic points of f .

A periodic point p of f of period n is called quasi-elliptic if Tpf
n has a non-real

eigenvalue of norm one, and all eigenvalues of norm one are non-real. Notice that

if f is Anosov, then robustly there is no quasi-elliptic periodic point. Indeed, Cr

generically every periodic point is either hyperbolic or quasi-elliptic (cf. [Ne]).

Proof of Theorem C. Let f1 and f2 be the time one map of the flow generated

by the Hamiltonians h1 and h2 respectively. Since f2 is integrable, it is dominated by

f1|Λ, and moreover a generic small perturbation of f2 has some hyperbolic periodic

point with arbitrary weak hyperbolicity. Let f̂2 be a small perturbation of f2 such

that its non-wandering set is the whole manifold N and has a hyperbolic periodic

point (with weak hyperbolicity). If f̂2 is enough close to f2 then it is also dominated

by f1|Λ. Now we may repeat the prove of Theorem A for F0 = f1 × f̂2. Note that all

the perturbations had been done by some Hamiltonians. Then we obtain a family of

Hamiltonians Hµ for each of which the time one map Fµ of the corresponding flow
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satisfies the properties (1) and (2) in Theorem A. Fix Nc ⊂⊂ N and ν > 0. As in

Theorem A, there exists a neighborhood Wc,ν of the constructed family {Hµ : µ > 0}

such that if H ∈ Wc,ν and G is its corresponding time one map, then one of the

following possibilities hold, either R̃c ⊂ Ω(G) or not. Here Rc,ν is a compact set no

exceptional point (see the definition in Section 4.5) and R̃c,ν is its continuation w.r.t.

G. If R̃c ⊂ Ω(G) then we may follow the final part of the proof of Theorem A to show

that R̃c,ν is topologically mixing. Otherwise, if R̃c * Ω(G) then we use the results

of Section 5.1. In this case, for a residual subset of R̃c ∩ Ω(f){ all points converge to

infinity, both in past and in the future. This completes the proof.

Proof of Corollary D. Let M = Rn × Tn and N = R× T1. First we perturb the

hamiltonian h1 on M to obtain a transversal homoclinic intersection. Since h1 has

a non hyperbolic periodic point, by a small perturbation we make it quasi-elliptic.

Theorem 5.3 yields that for any Cr generic perturbation h̃1 of h1, this orbit is accumu-

lated by hyperbolic periodic points with homoclinic transversal intersections. Note

that h2 is dominated by the restriction of h̃1 on the hyperbolic basic set obtained

from the homoclinic transversal intersection.

Now, we take another small (generic) perturbation h̃2 of the integrable Hamilto-

nian h2 on N to create a weak hyperbolic periodic point.

Since r ≥ 5, N is of dimension two and the integrable hamiltonian h2 is non-

degenerate, then KAM Theorem implies that the non-wandering set robustly contains

the manifold N . In other word, the time one map f2 of the flow generated by h2

satisfies the hypothesis (b) of Theorem A. In particular all the hypotheses of Theo-

rems A and C hold for h̃1 and h̃2 (and their associated time on maps). Now we use

Theorems A and C, and it completes the proof.

Remark 5.4. If the dimension of N is two, then either any point in N0 belongs to some

compact invariant region limited by two invariant curves or there is an unbounded

Birkhoff region of instability. In the former case we obtain transitivity since the
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hypothesis (b) of Theorem A holds. In the latter case the instability region contains

orbits starting near to one boundary and converge to infinity (this is a classical result

of Birkhoff). As in the Corollary C, if the integrable system on N is non-degenerate

and r ≥ 5, then using KAM Theorem the hypothesis (b) holds and the second case

does not occur. In the lower regularity or in the degenerate case the hypothesis (b)

does not hold in general. In this case the union of the images of the non-wandering

set in N0 under all the su-holonomy maps, contains the boundary of the Birkhoff

instability region. It implies that the orbit of any open set intersecting the non-

wandering set in N0 , is unbounded and its closure contains the non-wandering set in

N0 .
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Chapter 6

Some remarks and open problems

The main results of this paper arise several natural questions. Here we mention some

of them. The first remark is concerned with a possible alternative approach to prove

transitivity.

Remark 6.1. In the context of Theorem A, the accessibility with the density of recur-

rent point implies transitivity (but not mixing). Without the global hyperbolicity it

is difficult to obtain “stable” accessibility. First, it seems essential to suppose that the

Hausdorff dimension of the hyperbolic set Λ to be large enough. Second, for stability

of accessibility one needs the continuity of Hausdorff dimension of the projections of

the (hyperbolic) Cantor set along the invariant foliations. Unfortunately, the stable

and unstable foliations are not smooth, and so the Hausdorff dimension of the pro-

jections do not vary continuously. A similar difficulty occurs in the persistence of

homoclinic tangencies in higher dimensions.

1. Transitivity and partial hyperbolicity

The first question concerns the genericity of the robustly mixing partially hyperbolic

sets. Theorem A suggests that the answer of the following problem would be positive.

See also [N].
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Problem 6.2. Does there exist a residual set R ⊂ Diffr
ω(M), 1 ≤ r ≤ ∞, such that if

f ∈ R, then any normally hyperbolic invariant submanifold N for f with transversal

intersection between its stable and unstable manifolds is topologically mixing, provided

that N ⊂ int(Ω(f))?

In contrast, as in the case of C1 topology (see [DPU], [BDP] and [HT]), we believe

that the partial hyperbolicity condition is necessary for robustness of mixing in any

Cr topology. This problem is also related to the Cr stability conjecture which is still

open.

Problem 6.3. Let (M,ω) be a symplectic manifold. Suppose that Γ is robustly topo-

logical mixing invariant set for f in Diffr
ω(M). Is it a partially hyperbolic set?

2. Ergodicity and stable ergodicity

Let f1 and f2 as in Theorem A. Suppose that N is compact. Then the topologically

mixing invariant set obtained in Theorem A is laminated by central manifolds dif-

feomirphic to N . This lamination is normally hyperbolic. See H-1–H-4, S-1 and S-2,

in Section 4.4. As a matter of fact, this implies that for all symplectic diffeomorphism

G near to f1 × f2, there is an invariant measure ρ
G

supported the continuation of

Λ×N . Moreover, the measure ρ
G

is a skew product of the Lebesgue measure on the

fibers (i.e. the volume form obtained by the restriction the symplectic 2-form on the

fibers) over the Bernoulli measure of the shift on Λ = {1, . . . , d}Z.

As was mentioned in the introduction, Theorem A can be seen as a local and

topological version of the example Shub and Wilkinson [SW], where they proved that

the product of “Anosov × Standard map” on T4 is C∞ approximation by (symplectic)

stably ergodic systems. A natural problem arises:

Problem 6.4. Is it possible to C∞ approximate the product f1× f2 of Theorem A by

symplectic diffeomorphisms G for which the invariant ρ
G

supported the continuation

of Λ×N is ergodic or stably ergodic? Is the compactness assumption on N necessary?
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3. Other contexts.

The other problems concern natural extensions and applications of our results and

method in similar contexts. For instance,

1. analytic symplectic and Hamiltonian systems,

2. geodesic flows on manifolds of dimensions larger that two,

3. perturbations of geodesic flows on surfaces by periodic potentials,

4. the dynamics near the (quasi) elliptic periodic points in dimensions ≥ 4,

5. generic energy levels of time independent Hamiltonian systems,

6. specific mechanical problems such as restricted 3-body problem.

4. On the abundance of instability

Let the Hamiltonian H0 is written as the sum of two functions which depend to

different variables. In this paper we have proved that, if H0 is integrable or has a

partially hyperbolic invariant set, then H0 + h exhibits instability (Arnold diffusion)

and large topological mixing set, where h = h̃0 + ε1h̃1 + ε2h̃2, the Cr-norm of h̃i’s are

one, and h0 is generic (open dense), h1 is not generic, but h2 isarbitrary. Moreover,

0 < εi < εi(h1, h0).
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[D] R. Duady, Stabilité ou instabilité des points fixes elliptiques, Ann. Sci. École
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