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Notation

As usual, we denote the two-torus R2/Z2 by T2, with quotient projection

π : (x, y) 7→ (x, y) + Z2. The integer translations are

T1 : (x, y) 7→ (x+ 1, y) and T2 : (x, y) 7→ (x, y + 1),

and pri : R2 → R, for i = 1, 2 are the projections onto the first and second

coordinate, respectively.

By Homeo(X) we mean the set of homeomorphisms of X to itself, and

by Homeo∗(X) the set of elements of Homeo(X) which are isotopic to the

identity. We remark that a torus homeomorphism is isotopic to the identity

if and only if it is homotopic to the identity [Eps66].

Given F ∈ Homeo(T2), a lift of F to R2 is a map f ∈ Homeo(R2) such

that πf = Fπ. An homeomorphism f : R2 → R2 is a lift of an element of

Homeo∗(T
2) if and only if f commutes with T1 and T2. Any two lifts of a

given homeomorphism of T2 always differ by an integer translation. We will

usually denote maps of T2 to itself by uppercase letters, and lifts of such

maps to R2 by their corresponding lowercase letters.

By Z2
cp we denote the set of pairs of integers (m,n) such that m and

n are coprime. We will say that (x, y) ∈ R2 is an integer point if both x

and y are integer, and a rational point if both x and y are rational. When

we write a rational number as p/q, we assume that it is in reduced form,

i.e. that p and q are coprime, except when we are talking about a rational

point (p1/q, p2/q), in which case we assume that p1, p2 and q are mutually

coprime (i.e. lcd{p1, p2, q} = 1).

The set A will denote the open annulus R × S1 ' R2/〈T2〉. The map

T1 induces a map τ : A 7→ A, defined by (x, v) 7→ (x + 1, v). We denote

by π1 : A → T2 the covering map (x, v) 7→ (x + Z, v), which is the same as

the quotient projection A 7→ A/〈τ〉. Similarly, A denotes the closed annulus

[0, 1] × S1.
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Introduction

The rotation set is one of the most important tools for the study of home-

omorphisms of the torus in the homotopy class of the identity1. Although

not as easily as in the case of circle homeomorphisms, one can obtain useful

a priori information about the dynamics by studying the rotation set. A

central question in this direction is under what conditions a point of rational

coordinates in the rotation set is realized as the rotation vector of a periodic

orbit. It is clear that periodic orbits have rotation vectors with rational

coordinates. Franks proved in [Fra88] that extremal points of the rotation

set are always realized by periodic orbits; but it is generally not true that

every rational point in the rotation set is realized (c.f. Example 0.1). In

this aspect, the case that is best understood is when the rotation set has

non-empty interior. For such homeomorphisms, a theorem by Llibre and

Mackay [LM91] guarantees positive topological entropy. Moreover, Franks

[Fra89] proved that every rational point in the interior of the rotation set is

realized as the rotation vector of a periodic orbit, and this is optimal in the

sense that there are examples (even area-preserving ones) where the rotation

set has nonempty interior and many rational points on the boundary, but

the only ones that are realized by periodic orbits are extremal or interior

rational points (see [MZ91, §3]).
On the other hand, when the rotation set has empty interior the situation

is more delicate. Since the rotation set is compact and convex, if it has no

interior it must be a line segment or a single point. The following simple

1In this work, unless stated otherwise, all homeomorphisms are assumed to be in the
homotopy class of the identity. Note that by [Eps66], this is equivalent to being in the
isotopy class of the identity.
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example shows that one can have homeomorphisms with the rotation set

being a segment with many rational points, but which have no periodic

orbits at all.

Example 0.1. Let P : S1 → S1 be the north pole-south pole map on S1,

e.g. the map lifted by x 7→ x+0.1 sin(2πx). Define f : R2 → R2 by f(x, y) =

(P (x), y + r sin(2πx)) for some small irrational r. Then f is the lift of a

map F : T2 → T2 isotopic to the identity, and ρ(f) = {0} × [−r, r], which

contains many rational points; but F has no periodic points.

This example shows that some additional hypothesis is required to guar-

antee that rational points are realized by periodic orbits. The following

theorem gives a sufficient condition.

Theorem 0.2 (Franks, [Fra95]). If an area-preserving homeomorphism of

the torus has a rotation set with empty interior, then every rational point in

its rotation set is realized as the rotation vector of a periodic orbit.

In the same article, Franks asks whether the area-preserving hypothesis

is really necessary for the conclusion of the theorem. It is natural to expect

that a weaker, more topological hypothesis should suffice to obtain the same

result. This topological substitute for the area-preserving hypothesis turns

out to be, to some extent, the curve intersection property. An essential

simple closed curve is free for F if F (γ) ∩ γ = ∅. We say that F has the

curve intersection property if F has no free curves. In Chapter 1 we prove

the following:

Theorem A. If a homeomorphism of the torus satisfying the curve inter-

section property has a rotation set with empty interior, then every rational

point in its rotation set is realized by a periodic orbit.

Our proof is essentially different of that of Theorem 0.2, since the latter

relies strongly on chain-recurrence properties that are guaranteed by the

area preserving hypothesis but not by the curve intersection property.

Variations of the curve intersection property are already present in some

fixed point theorems. An interesting case is a generalization of the following

classic theorem:
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Poincaré-Birkhoff Theorem (Birkhoff, [Bir25]). Let F : A → A be an

area-preserving homeomorphism of the closed annulus, verifying the bound-

ary twist condition. Then F has at least two fixed points.

The boundary twist condition means that F preserves boundary compo-

nents and there exists a lift f : [0, 1] × R → [0, 1] × R of F such that the

rotation numbers of f |{0}×R and f |{1}×R have opposite signs.

Birkhoff and Kerékjártó already noted that the area preserving hypoth-

esis was not really necessary, and that it could be replaced by a more topo-

logical one, and they obtained the following

Theorem ([Bir25], [Ker29]). If F : A → A is a homeomorphism satisfying

the boundary twist condition and such that F (γ) ∩ γ 6= ∅ for each essential

simple closed curve γ, then F has at least one fixed point in the interior of

the annulus.

An even more topological version of this theorem was proven by Guillou,

who substituted the twist condition by the property that every simple arc

joining the boundary components intersects its image by F :

Theorem (Guillou, [Gui94]). If F : A → A is an orientation-preserving

homeomorphism such that every essential simple closed curve or simple arc

joining boundary components intersects its image by F , then F has a fixed

point.

The hypotheses of the above theorem can be regarded as the curve in-

tersection property in the setting of the closed annulus: they say that every

“interesting” curve intersects its image by F . This led Guillou to ask if a

similar result holds for the torus:

Let F : T2 → T2 be a homeomorphism isotopic to the identity.

Does the curve intersection property imply the existence of a fixed

point for F?

The answer is no, as an example by Bestvina and Handel shows [BH92].

Their example relies in the fact that the existence of a free curve imposes a
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restriction on the “size” of the rotation set (see Lemma 1.4). They construct

a homeomorphism such that any strip bounded by straight lines and con-

taining the rotation set, also contains a point of integer coordinates. By the

previously mentioned lemma, and some simple considerations, this homeo-

morphism cannot have any free curves; but by their construction, there are

no points of integer coordinates inside the rotation set, which implies that

the homeomorphism has no fixed points.

Nevertheless, the existing examples have a rotation set with nonempty

interior, which implies that they have infinitely many periodic points of arbi-

trarily high periods, and positive topological entropy ([LM91], [Fra89]). The

question that arises is whether the presence of this kind of “rich” dynamics

is the only new obstruction to the existence of free curves in T2. In other

words, is the answer to Guillou’s question affirmative if the rotation set has

empty interior? This leads to our next result, which is proved in Chapter

2:

Theorem B. Let F : T2 → T2 be a homeomorphism satisfying the curve

intersection property. Then either F has a fixed point, or its rotation set

has nonempty interior.

Thus, if F has the curve intersection property, then either F has periodic

orbits of arbitrarily high periods or it has a fixed point. In the latter case,

one might expect the existence of a second fixed point (as in the case of the

annulus) but no more than that. Figure 1 shows that one cannot expect more

than two fixed points in the annulus; the time-one map of the flow sketched

there is a homeomorphism with the curve intersection property, which has

two fixed points and no other periodic points. Gluing a symmetric copy of

this homeomorphism through the boundaries of the annulus, one obtains an

example with the same properties in T2.

In Chapter 3 we consider a situation opposite to the curve intersection

property: what can be said if there is a simple closed curve that is “always

free” for F (i.e. such that all iterates of the curve by F are pairwise dis-

joint)? In general we cannot say much, since the existence of an attractor

“wrapping around the torus” (e.g. an attracting homotopically non-trivial
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Figure 1: A curve-intersecting flow with no periodic points of period > 1

closed curve) usually implies the existence of such a curve; and this is a local

property, meaning that we cannot say anything about the dynamics outside

a neighborhood of the attractor. On the other hand, if we assume that this

curve has a dense orbit (which is true, for example, if F is transitive), we

obtain the following:

Theorem C. Let F be a homeomorphism of T2, and suppose there exists

a simple closed curve that is disjoint from all its iterates by F , whose orbit

is dense in T2. Then F is semi-conjugate to an irrational rotation of the

circle.

Moreover, the proof of Theorem C can easily be generalized to homeo-

morphisms possessing an always free continuum with a dense orbit, provided

that the continuum “wraps around the torus” and is disjoint from some es-

sential simple closed curve (see the precise statement in Chapter 4, Theorem

C’)

The above result is related to a question arising from an article of Fathi

and Herman [FH77]. In that classical paper, they prove the existence of

minimal and uniquely ergodic diffeomorphisms in manifolds admitting a

C∞ free action of S1. Their techniques are based on the fast approximation

by conjugations method, introduced by Anosov and Katok in [AK70], com-

bining it with Baire’s theorem in an appropriate space (for a comprehensive

6



overview of these methods and their applications, see [FK04]). In the set-

ting of T2, this space corresponds to O∞
(T2), which is the C∞-closure of

diffeomorphisms which are C∞-conjugate to rigid translations of T2. The

following is a quotation from [FH77]:

Le second auteur montrera ailleurs que la propriété suivante:

“f n’admet pas de feuilletage F (de T2) C0 de codimension

1 invariant (i.e. f envoide chaque feuille de F sur une feuille

de F pas nécessairement la même)”

est vraie sur un ensemble qui contient un Gδ dense de O∞
(T2).

The claim says that generic diffeomorphisms in O∞
(T2) have no invariant

C0 foliation of codimension 1 (i.e. this property holds in a residual set).

However, the proof of this fact never appeared in the subsequent publications

of Herman.

In Chapter 4, we prove some partial results regarding the above claim.

Combining Theorem C and some results of Herman, we obtain a quick proof

that generic diffeomorphisms in O∞
(T2) have no invariant C0 foliation (of

codimension 1) with a compact leaf. In fact, we have something stronger:

generic diffeomorphisms in O∞
(T2) have no always free curves (§4.4).

In addition, we prove that generically in O∞
(T2) there are no invariant

C0 foliations induced by a C0 line field (§4.3). This is obtained as a corollary

of the following more general result (§4.2):

Theorem D. For a generic diffeomorphism f ∈ O∞
(T2), its associated

dynamic cocycle

(x, v) 7→
(
f(x),

Dfxv

‖Dfxv‖

)

is minimal.

A similar result holds if we restrict our attention to O∞
m (T2), the closure

of the set of area-preserving diffeomorphisms which are C∞-conjugated to a

rigid translation. It is worth mentioning that, while one can easily construct

SL(2,R)-cocycles over minimal diffeomorphisms of T2 such that their normal

action on T2 ×S1 is minimal, it is not obvious that one can obtain dynamic
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cocycles with that property. However, Theorem D provides a wide family

of such examples.

Finally, in §4.5 we also show, using the fast approximation method, that

there is a dense subset of O∞
(T2) consisting of minimal diffeomorphisms

which have no invariant C0 foliation of codimension 1 with C1 leaves.

To give a complete proof of Herman’s claim, it remains to show that the

subset of O∞
(T2) consisting of diffeomorphisms which have a C0 foliation

which is conjugated to the foliation induced by a minimal translation of T2,

is a meager set in O∞
(T2). We are not able to prove this at this time. In

fact, even the following question remains open (to our knowledge):

Question 0.3. Is there a minimal homeomorphism of T2 possessing no

invariant C0 foliation?

The results presented in this work, with the exception of Theorem C,

were obtained jointly with Alejandro Kocsard.

8



Chapter 0

Background

0.1 The rotation set

Throughout this section we assume that F ∈ Homeo∗(T
2), and f : R2 → R2

is a lift of F .

Definition 0.4 (Misiurewicz & Ziemian, [MZ89]). The rotation set of f is

defined as

ρ(f) =

∞⋂

m=1

cl

(
∞⋃

n=m

{
fn(x) − x

n
: x ∈ R2

})
⊂ R2

The rotation set of a point x ∈ R2 is defined by

ρ(f, x) =

∞⋂

m=1

cl

{
fn(x) − x

n
: n > m

}
.

If the above set consists of a single point v, we say that v is the rotation

vector of x.

Remark 0.5. ρ(f) is just the set of all limits of convergent sequences of the

form
fnk(xk) − xk

nk

where xk ∈ R2 and nk → ∞.
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Proposition 0.6. For all integers n,m1,m2,

ρ(Tm1

1 Tm2

2 fn) = n ρ(f) + (m1,m2).

Remark 0.7. In particular, the rotation set of any other lift of F is an integer

translate of ρ(f), and we can talk about the “rotation set of F” if we keep

in mind that it is defined modulo integer translations.

Theorem 0.8 ([MZ89]). The rotation set is compact and convex, and every

extremal point of ρ(f) is the rotation vector of some point.

By extremal point in the theorem above, we mean extremal in the usual

sense for convex sets, i.e. a point that is not in the interior of a line segment

contained in ρ(f).

0.1.1 The rotation set and periodic orbits

For a homeomorphism of the circle, if the rotation number is a rational p/q,

then there exists a periodic orbit of period q. This motivates the following

question in the two-dimensional case.

Question 0.9. If (p1/q, p2/q) ∈ ρ(f), when can we find a point x ∈ R2 such

that f q(x) = x+ (p1, p2)?

Whenever f q(x) = x+ (p1, p2), with p1, p2 and q mutually coprime, we

will say that (p1/q, p2/q) is realized as the rotation vector of a periodic orbit

of F . This is because π(x) is a periodic orbit of F of period q, and its

rotation vector is (p1/q, p2/q) (modulo Z2). So the question is when can we

realize rational points of the rotation set by periodic orbits of F .

There are several results in this direction (including the already men-

tioned Theorem 0.2)

Theorem 0.10 (Franks, [Fra88]). If a rational point of ρ(f) is extremal,

then it is realized by a periodic orbit.

Theorem 0.11 (Franks, [Fra89]). If a rational point is in the interior of

ρ(f), then it is realized by a periodic orbit.
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Theorem 0.12 (Jonker & Zhang, [JZ98]). If ρ(f) is a segment with irra-

tional slope, and it contains a point of rational coordinates, then this point

is realized by a periodic orbit.

0.2 Curves, lines

We denote by I the interval [0, 1]. A curve on a manifold M is a continuous

map γ : I → M . As usual, we represent by γ both the map and its image,

as it should be clear from the context which is the case.

We say that the curve γ is closed if γ(0) = γ(1), and simple if the

restriction of the map γ to the interior of I is injective. If γ is a closed

curve, we say it is essential if it is homotopically non-trivial.

Definition 0.13. A curve γ ⊂M is free for F if F (γ)∩ γ = ∅. We say that

F has the curve intersection property (CIP) if there are no free essential

simple closed curves for F .

Remark 0.14. For convenience, from now on by a free curve for F we will

usually mean an essential simple closed curve that is free for F , unless stated

otherwise.

By a line we mean a proper topological embedding ` : R → R2. Again,

we use ` to represent both the function and its image.

Definition 0.15. Given (p, q) ∈ Z2
cp, a (p, q)-line in R2 is a line ` that is

invariant by T p
1 T

q
2 , such that `(s) = T p

1 T
q
2 `(t) implies s > t, and such that

its projection to T2 by π is a simple closed curve. A (p, q)-curve in T2 is

the projection by π of a (p, q)-line. We will say that a simple closed curve is

vertical if it is either a (0, 1)-curve or a (0,−1)-curve. Similarly, a line will

be called vertical if it is a (0, 1)-line or a (0,−1)-line.

Remark 0.16. If ` is a line in R2 that is invariant by T p
1 T

q
2 , then π(`) is a

always a closed curve in T2. We are requiring that this curve be simple to

call ` a (p, q)-line. Conversely, if γ is an essential simple closed curve in T2,

taking a lift γ̃ : I → R2, we have that (p, q) = γ̃(1)− γ̃(0) is an integer point

independent of the choice of the lift. The curve γ̃ can be extended naturally
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to R by γ̃(t + n) = γ̃(t) + n(p, q), if n ∈ Z and t ∈ [0, 1]; in this way we

obtain a (p, q)-line that projects to γ. It is not hard to see that p and q

must be coprime, from the fact that γ is simple and essential. We will say

that a (p, q)-line ` is a lift of π(`).

Remark 0.17. Two disjoint essential simple closed curves must be either

both (p, q)-curves for some (p, q) ∈ Z2
cp, or one a (p, q)−curve and the other

a (−p,−q)-curve. Note that the difference between these two is just orien-

tation; if we only regard the curves as sets, then (p, q)-curves and (−p,−q)-
curves are the same thing.

Remark 0.18. It is easy to see that any (p, q)-line is contained in a strip

bounded by two straight lines of slope q/p. In particular, if ` is a vertical

line, there is M > 0 such that pr1(`) ⊂ [−M,M ].

0.2.1 Ordering lines

A line ` in R2 can be seen as a Jordan curve through ∞ in S2 = R2 ∪ {∞}.
Thus, R2\` has exactly two connected components, both unbounded. Using

the orientation of `, we may define the left and the right components, which

we denote by L` and R`. We also denote by L` and R` their respective

closures, which correspond to L` ∪ ` and R` ∪ `.
There is a natural partial ordering between lines in R2, defined by `1 < `2

if `1 ⊂ L`2 (and `2 ⊂ R`1). With an abuse of notation we will write `1 ≤ `2

when `1 ⊂ L`2, which means that the lines may intersect but only “from one

side”. Naturally, if two lines `1 and `2 do not intersect, then either `1 < `2

or `2 < `1. If `1 < `2, we denote by S(`1, `2) the strip L`2 ∩ R`1, and by

S(`1, `2) its closure.

Remark 0.19. If f ∈ Homeo(R2) preserves orientation, then f preserves

order: if `1 < `2, then f(`1) < f(`2).

0.2.2 Brouwer lines

Definition 0.20. A Brouwer line for h ∈ Homeo(R2) is a line ` in R2 such

that h(`) > `.
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The classic Brouwer Translation Theorem guarantees the existence of a

Brouwer line through any point of R2 for any fixed-point free, orientation-

preserving homeomorphism (see [Bro12, Ker29, Fat87, Fra92, Gui94]; also

see [LC05] for a very useful equivariant version). The following will be much

more useful for our purposes:

Theorem 0.21 (Guillou, [Gui06]). Let f be a lift of F ∈ Homeo∗(T
2), and

suppose f has no fixed points. Then f has a Brouwer (p, q)-line, for some

(p, q) ∈ Z2
cp.

0.3 More about the rotation set

0.3.1 The rotation set and Brouwer lines

The following lemma is particularly useful when there is a Brouwer (p, q)-

line:

Lemma 0.22. Let S be a closed semiplane determined by a straight line

containing the origin, and for y ∈ R2 denote by Sy = {w + y : w ∈ S} its

translate by y. Suppose that x ∈ R2 is such that for some y,

fn(x) ∈ Sy for all n > 0.

Then ρ(f, x) ⊂ S. Moreover, if for all x ∈ R2 there is y such that the above

holds, then ρ(f) ⊂ S.

Proof. Let φ : R2 → R be a linear functional such that

Sy = {w ∈ R2 : φ(w) ≥ φ(y)}.

Given x such that fn(x) ∈ Sy for all n > 0, we have then

φ

(
fn(x) − x

n

)
=
φ(fn(x)) − φ(x)

n
≥ φ(y) − φ(x)

n
→ 0.

Thus, if z is the limit of the sequence (fni(x) − x)/ni, then φ(z) ≥ 0. This

implies that ρ(f, x) ⊂ S. The other claim follows from Theorem 0.8.
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Remark 0.23. If f has a Brouwer (p, q)-line, the above lemma and Remark

0.18 imply that ρ(f) is contained in one of the closed semiplanes determined

by the straight line of slope q/p through the origin.

0.3.2 The rotation set and free curves

Besides the existence of periodic orbits, other practical dynamical infor-

mation that can be obtained from the rotation set is the existence of free

curves. Recall that an interval with rational endpoints [p/q, p′/q′] is a Farey

interval if qp′− pq′ = 1. The following result was proved by Kwapisz for dif-

feomorphisms, and by Beguin, Crovisier, LeRoux and Patou in the general

case.

Theorem 0.24 ([Kwa02], [BCLP04]). Suppose there exists a Farey interval

[p/q, p′/q′] such that

pr1 ρ(f) ⊂
(
p

q
,
p′

q′

)
.

Then there exists a simple closed (0, 1)-curve γ in T2 such that all the curves

γ, F (γ), F 2(γ), . . ., F q+q′−1(γ) are mutually disjoint. In particular, if

pr1 ρ(f) ∩ Z = ∅, then F has a free (0, 1)-curve.

0.3.3 The rotation set and conjugations

Given A ∈ GL(2,Z), we denote by Ã the homeomorphism of T2 lifted by it.

If H ∈ Homeo(T2), there is a unique A ∈ GL(2,Z) such that for every lift h

of H, the map h−A is bounded (in fact, Z2-periodic). From this it follows

that H is isotopic to Ã, and h−1 −A−1 is bounded. In fact, H 7→ A induces

an isomorphism of the isotopy group of T2 to GL(2,Z).

Lemma 0.25. If H,F ∈ Homeo(T2) with H isotopic to A ∈ GL(2,Z) and

F isotopic to the identity, and h, f ∈ Homeo(R2) are their respective lifts,

then ρ(hfh−1) = Aρ(f). In particular, ρ(AfA−1) = Aρ(f).

Proof. We can write ((hfh−1)n(x) − x)/n as

(h−A)(fnh−1(x))

n
+A

(
fn(h−1(x)) − h−1(x)

n

)
+A

(
(h−1 −A−1)(x)

n

)

14



and using the fact that h−A and h−1 −A−1 are bounded, we see that the

leftmost and rightmost terms of the above expression vanish when n → ∞.

Thus if nk → ∞ and xk ∈ R2, we have

lim
k→∞

(hfh−1)nk(xk) − xk

nk
= A

(
lim

k→∞

fnk(h−1(xk)) − h−1(xk)

nk

)

whenever the limits exist. Since h is a homeomorphism, it follows from the

definition that ρ(hfh−1) = Aρ(f).

We will use the above lemma extensively: when trying to prove some

property that is invariant by topological conjugation (like the existence of a

free curve or a periodic point for F ), it allows us to consider just the case

where the rotation set is the image of ρ(f) by some convenient element of

GL(2,Z).

Remark 0.26. A particular case that will often appear is when ρ(f) is a

segment of rational slope. In that case, there exists a map A ∈ GL(2,Z)

such that Aρ(f) is a vertical segment. Indeed, if ρ(f) is a segment of slope

p/q, then given x, y ∈ Z such that px+ qy = 1, and letting

A =

(
p −q
y x

)

we have that det(A) = 1, and A(q, p) = (0, 1), so that Aρ(f) is vertical.

Note that the above A also maps (q, p)-curves to (0, 1)-curves.

15



Chapter 1

Realizing periodic orbits

In this chapter we present some results regarding the curve intersection

property and its relation with the rotation set, which will allow us to prove

Theorem A. Throughout this chapter, F : T2 → T2 will be a homeomorphism

isotopic to the identity and f : R2 → R2 a lift of F .

1.1 Preliminary results

The following result will be essential in the proof of Theorem A.

Theorem 1.1. Suppose Fn has a free (p, q)-curve for some n ≥ 1. Then F

has a free (p, q)-curve.

We will also use the following lemmas, the proofs of which are postponed

to the end of this chapter.

Lemma 1.2. Suppose fn has a Brouwer (0, 1)-line, for some n ∈ N. Then

f has a Brouwer (0, 1)-line.

Lemma 1.3. Suppose that some lift f of F has a Brouwer (0, 1)-line. Then,

either F has a free (0, 1)-curve, or max(pr1 ρ(f)) ≥ 1.

The next lemma is essentially Lemma 3 of [BH92]; we include it here for

the sake of completeness.
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Lemma 1.4. Suppose F has a free (0, 1)-curve. Then for any lift f of F

there is k ∈ Z such that pr1 ρ(f) ⊂ [k, k + 1].

1.2 Proof of Theorem 1.1

Conjugating the involved maps by an element of GL(2,Z), we may assume

that (p, q) = (0, 1) (see Lemma 0.25 and the remark below it).

Suppose Fn has a free (0, 1)-curve for some n ≥ 2. Any lift to R2 of this

curve is a vertical Brouwer line for fn, so Lemma 1.2 implies that there is a

vertical Brouwer line for f . This holds for any lift f of F .

If pr1 ρ(f) ∩ Z = ∅, then by Theorem 0.24 there is a free (0, 1)-curve for

F , and we are done.

Otherwise, let k ∈ pr1 ρ(f) ∩ Z, and consider the lift f0 = T−k
1 f of F .

By Proposition 0.6, it is clear that 0 ∈ pr1 ρ(f0). On the other hand, as we

already saw, f0 has a vertical Brouwer line `.

Assume ` is a Brouwer (0, 1)-line. Then by Lemma 1.3, either F has a

free (0, 1)-curve, or max(pr1 ρ(f0)) ≥ 1. In the latter case, since we know

that 0 ∈ ρ(f0), it follows from connectedness that pr1 ρ(f0) ⊃ [0, 1]. But this

implies that

pr1 ρ(f
n
0 ) ⊃ [0, n] ⊃ [0, 2],

which contradicts Lemma 1.4 (since Fn has a free (0, 1)-curve). Thus the

only possibility is that F has a free (0, 1)-curve.

If ` is a Brouwer (0,−1)-line, then using the previous argument with

f−1
0 instead of f0, we see that F−1 (and thus F ) has a free (0,−1)-curve

γ; and inverting the orientation of γ we get a free (0, 1)-curve for F . This

completes the proof.

1.3 Proof of Theorem A

Suppose F ∈ Homeo∗(T
2) has the curve intersection property and ρ(f) has

empty interior, where f is a lift of F . We have three cases.

17



ρ(f) is a single point

In this case, the unique point of ρ(f) is extremal; and if it is rational,

Theorem 0.10 implies that it is realized by a periodic orbit of F .

ρ(f) is a segment of irrational slope

In this case ρ(f) contains at most one rational point and, by Theorem 0.12,

this point is realized by a periodic orbit.

Remark 1.5. Theorem 0.21 provides a simple way of proving this as well. In

fact, it suffices to consider the case where the unique rational point in ρ(f)

is the origin, and to show that in this case f has a fixed point. If the origin

is an extremal point, this follows from Theorem 0.10. If the origin is strictly

inside the rotation set, then there is only one straight line through the origin

such that ρ(f) is contained in one of the closed semiplanes determined by

the line. This unique line is the one with the same slope as ρ(f), which

is irrational. If f has no fixed points, then Theorem 0.21 implies that f

has a Brouwer (p, q)-line for some (p, q) ∈ Z2
cp; but then our previous claim

contradicts Lemma 0.22.

ρ(f) is a segment of rational slope

Fix a rational point (p1/q, p2/q) ∈ ρ(f). Recall that this point is realized as

the rotation vector of a periodic orbit of F if and only if g = T−p1

1 T−p2

2 f q

has a fixed point. Note that (0, 0) ∈ ρ(g), and g is a lift of F q. Moreover,

ρ(g) = T−p1

1 T−p2

2 (q · ρ(f)),

which is a segment of rational slope containing the origin. Conjugating all

the involved maps by an element of GL(2,Z), we may assume that ρ(g) is a

vertical segment containing the origin.

We will show by contradiction that g has a fixed point. Suppose this is

not the case. Then, by Theorem 0.21, g has a Brouwer (p, q)-line `, for some

(p, q) ∈ Z2
cp. Moreover, (0, 0) must be strictly inside ρ(g) (i.e. it cannot be

18



extremal, since otherwise g would have a fixed point by Theorem 0.10), and

by Remark 0.23 this implies that ` is a vertical Brouwer line.

Assume ` is a (0, 1)-line (if it is a (0,−1)-line, we may consider g−1

instead of g and use a similar argument). Since diam(pr1 ρ(g)) = 0, Lemma

1.3 implies that F q, the map lifted by g, has a free (0, 1)-curve; but then

by Theorem 1.1, F has a free curve, contradicting the curve intersection

property. This concludes the proof.

1.4 The wedge

We devote the rest of this chapter to the proof of Lemmas 1.2-1.4. But first

we need to introduce an operation between lines, which will be a fundamental

tool in what follows. Recall the definitions of L and R from §0.2.1.

Definition 1.6. Given two (p, q)-lines `1 and `2 in R2, their wedge `1 ∧ `2
is the line defined as the boundary of the unique unbounded connected

component of L`1 ∩ L`2, oriented so that this component corresponds to

L(`1 ∧ `2).

Figure 1.1: The wedge of two lines

This operation is called ‘join’ in [BCLP04] and denoted by ∨.

Recall that a Jordan domain is a topological disk bounded by a sim-

ple closed curve. The following theorem guarantees that the wedge is well

defined.
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Theorem 1.7 (Kerékjártó, [Ker23]). If U1 and U2 are two Jordan domains

in the two-sphere, then each connected component of U1 ∩ U2 is a Jordan

domain.

In fact, identifying R2∪{∞} with the two-sphere S2, we may regard lines

in R2 as simple closed curves in S2 containing ∞. From the fact that `1 and

`2 are (p, q)-lines, it is easy to see that the intersection of L`1 and L`2 has a

unique connected component containing ∞ in its boundary. By the above

theorem, this boundary is a simple closed curve, so that it corresponds to a

line in R2. One can easily see that this new line is also a (p, q)-line.

We denote the wedge of multiple lines `1, . . . , `n by

`1 ∧ `2 ∧ · · · ∧ `n =
n∧

i=1

`i.

This is well defined because the wedge is commutative.

The following proposition resumes the interesting properties of the wedge.

Proposition 1.8. The wedge is commutative, associative and idempotent.

Furthermore,

1. The wedge of (p, q)-lines is a (p, q)-line;

2. If h ∈ Homeo(R2) is a lift of a torus homeomorphism, then h(`1∧`2) =

h(`1) ∧ h(`2);

3. `1 ∧ `2 ≤ `1 and `1 ∧ `2 ≤ `2;

4. If `1 < `2 and ξ1 < ξ2, then `1 ∧ ξ1 < `2 ∧ ξ2;

5. The wedge of Brouwer lines is a Brouwer line.

1.5 Proof of Lemma 1.2

Let ` be a Brouwer (0, 1)-line for fn, for some n > 1. We will show that

there is a Brouwer (0, 1)-line for fn−1; by induction, it follows that there is

a Brouwer (0, 1)-line for f .
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We know that fn(`) > `. Let ξ be a (0, 1)-line such that fn(`) > ξ > `,

and define

`′ = ξ ∧
n−1∧

i=1

f i(`).

By Proposition 1.8, `′ is still a (0, 1)-line. We claim that it is a Brouwer

line for fn−1. In fact,

fn−1(`′) = fn−1(ξ) ∧
n−1∧

i=1

fn−1(f i(`))

= fn−1(ξ) ∧
n−1∧

i=1

f i−1(fn(`))

= fn−1(ξ) ∧ fn(`) ∧
n−1∧

i=2

f i−1(fn(`))

= fn−1(ξ) ∧ fn(`) ∧
n−2∧

i=1

f i(fn(`)).

Using the facts that

fn−1(ξ) > fn−1(`), fn(`) > ξ, and f i(fn(`)) > f i(`),

and Proposition 1.8, we see that

fn−1(`′) > fn−1(`) ∧ ξ ∧
n−2∧

i=1

f i(`) = ξ ∧
n−1∧

i=1

f i(`) = `′,

so that `′ is a Brouwer (0, 1)-line for fn−1. This concludes the proof.

1.6 Proof of Lemma 1.3

Let ` be a Brouwer (0, 1)-line for f . We consider two cases.
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Case 1. For all n > 0, fn(`) ≮ T n
1 (`)

In this case, for each n > 0 we can choose xn ∈ ` such that fn(xn) ∈ R(T n
1 `).

From the fact that ` is a (0, 1)-line we also know that pr1(`) ⊂ [−M,M ] for

some M > 0, and therefore

pr1(T
n
1 (`)) ⊂ [−M + n,M + n].

Hence,

pr1(f
n(xn)) ∈ pr1(R(T n

1 (`))) ⊂ [−M + n,∞).

It then follows that

pr1

(
fn(xn) − xn

n

)
≥ (−M + n) −M

n
= −2

M

n
+ 1

n→∞−−−→ 1,

and by the definition of rotation set this implies that some point (x, y) ∈ ρ(f)

satisfies x ≥ 1; i.e. max pr1(ρ(f)) ≥ 1.

Case 2. fn(`) < T n
1 ` for some n > 0

We will show that in this case F has a free (0, 1)-curve. The idea is similar

to the proof of Lemma 1.2. Let n be the smallest positive integer such that

fn(`) < T n
1 `. If n = 1, we are done, since ` < f(`) < T1` so that ` projects

to a free (0, 1)-curve for F .

Now assume n > 1. We will show how to construct a new Brouwer

(0, 1)-line β for f such that fn−1(β) < T n−1
1 β. Repeating this argument

n− 1 times, we end up with a (0, 1)-line `′ such that `′ < f(`′) < T1(`
′), so

that `′ projects to a free curve, completing the proof.

Let ξ be a (0, 1)-curve such that

fn(`) < ξ < Tn
1 ` (1.1)

We may choose ξ such that f(ξ) > ξ, by taking it close enough to fn(`). This

is possible because f(fn(`)) > fn(`), and these two curves are separated by a

positive distance, since they lift (0, 1)-curves in T2. Thus ξ is also a Brouwer
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(0, 1)-line for f .

Define

β = ξ ∧
n−1∧

i=1

T n−i
1 f i(`).

Let us see that fn−1(β) < T n−1(β). Since T1 commutes with f , we have

fn−1(β) = fn−1(ξ) ∧
n−1∧

i=1

fn−1T n−i
1 f i(`)

= fn−1(ξ) ∧
n−1∧

i=1

f i−1T n−i
1 fn(`)

= fn−1(ξ) ∧ T n−1
1 fn(`) ∧

n−1∧

i=2

f i−1T n−i
1 fn(`)

By (1.1), we also have

• fn−1(ξ) < fn−1(T n
1 `),

• T n−1
1 fn(`) < T n−1

1 ξ, and

• f i−1T n−i
1 fn(`) < f i−1T n−i

1 T n
1 `.

Using these facts and Proposition 1.8 we see that

fn−1(β) < fn−1(T n
1 `) ∧ T n−1

1 ξ ∧
n−1∧

i=2

f i−1T n−i
1 T n

1 (`)

= T n−1
1 (T1f

n−1(`)) ∧ T n−1
1 (ξ)

n−1∧

i=2

T n−1
1 (T

n−(i−1)
1 f i−1(`))

= T n−1
1

(
ξ ∧ T1f

n−1(`) ∧
n−2∧

i=1

T n−i
1 f i(`)

)

= T n−1
1

(
ξ ∧

n−1∧

i=1

T n−i
1 f i(`)

)

= T n−1
1 (β).

Since β is a Brouwer (0, 1)-line, this completes the proof.
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1.7 Proof of Lemma 1.4

Suppose that N ∈ int(pr1 ρ(f)) ∩ Z. We will show that F cannot have any

free (0, 1)-curves. Note that this also implies that F cannot have a free

(0,−1)-curve.

Considering the lift T−N
1 f instead of f , we may assume that N = 0. If

F has a free (0, 1)-curve, then any lift of this curve is a (0, 1)-line ` such that

f(`)∩` = ∅. This means that either f(`) > ` or f(`) < `, and by Lemma 0.22

this implies that ρ(f) is contained in one of the semiplanes {(x, y) : x ≥ 0}
or {(x, y) : x ≤ 0}. Hence 0 is an extremal point of pr1(ρ(f)), contradicting

our assumption that it was an interior point.

Thus we know that pr1(ρ(f)) has no integer points in its interior. But

pr1(ρ(f)) is an interval, so that it must be contained in [k, k + 1] for some

integer k.
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Chapter 2

Free curves and fixed points

As before, we assume throughout this chapter that F is a homeomorphism

of T2 isotopic to the identity and f is a lift of F .

To prove Theorem B, we have two main cases. The first one is when the

rotation set is either a segment of rational slope or a single point; this is

dealt with Theorem A and the results stated in Chapter 0. The second case

is when the rotation set is a segment of irrational slope. In that case, the

main idea is to find A ∈ GL(2,R) such that Aρ(f) has no integers in the

first or second coordinate, so that we may apply directly Theorem 0.24 to

AfA−1 (c.f. §0.3.3). In fact, using this argument, we obtain the following

more general result:

Theorem 2.1. Suppose ρ(f) is a segment of irrational slope with no rational

points. Then for each n > 0 there is an essential simple closed curve γ such

that γ, F (γ), . . . , Fn(γ) are pairwise disjoint.

The problem of finding the map A previously mentioned is mainly an

arithmetic one, and we consider it first. In the next section, we briefly

discuss a few facts about continued fractions that will be needed in the

proof; in §2.2 we prove the two arithmetic lemmas that allow us to find the

map A; in §2.3 we prove Theorem 2.1; finally, in §2.4 we complete the proof

of Theorem B.
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2.1 Continued fractions

Given an integer a0 and positive integers a1, . . . , an, we define

[a0; a1, . . . , an] = a0 +
1

a1 +
1

. . .
+

1

an

.

Given α ∈ R, define {αn} and {an} recursively by a0 = bαc, α0 = α−a0,

and

an+1 =
⌊
α−1

n

⌋
, αn+1 = α−1

n − an+1,

whenever αn 6= 0. This gives the continued fractions representation of α: If

α is rational, we get a finite sequence a0, . . . , an, and

α = [a0; a1, . . . , an].

If α is irrational, then the sequence is infinite and

α = [a0; a1, a2, . . . ]
.
= lim

n→∞
[a0; a1, . . . , an].

The rational number pn/qn = [a0; a1 . . . , an] is called the n-th convergent

to α. Convergents may be regarded as the “best rational approximations”

to α, in view of the following properties (see, for instance, [HW90])

Proposition 2.2. If pn/qn are the convergents to α, then

1. {qn} is an increasing sequence of positive integers, and

1

qn + qn+1
< (−1)n(αqn − pn) <

1

qn+1
.

2. p2n

q2n
< p2n+2

q2n+2
< α < p2n+3

q2n+3
< p2n+1

q2n+1
.

3. pn+1qn − pnqn+1 = (−1)n
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A Farey interval is a closed interval with rational endpoints [p/q, p′/q′]

such that p′q − q′p = 1. Note that two consecutive convergents give Farey

intervals.

Proposition 2.3. Let [p/q, p′/q′] be a Farey interval. Then

[
p+ p′

q + q′
,
p′

q′

]
and

[
p

q
,
p+ p′

q + q′

]

are Farey intervals, and if p′′/q′′ ∈ (p/q, p′/q′), then q′′ > q + q′.

2.2 Arithmetic lemmas

Define the vertical and horizontal inverse Dehn twists by

D1 : (x, y) 7→ (x− y, y), D2 : (x, y) 7→ (x, y − x).

Let Q be the set of vectors of R2 with positive coordinates; for u = (x, y) ∈
Q, we denote by slo(u) = y/x the slope of u. Let Q1 and Q2 be the sets of

elements of Q having slope smaller than one, and greater than one, respec-

tively.

Remark 2.4. Note the following simple properties

1. for i = 1, 2, DiQi = Q; and if u ∈ Q, then D−k
i u ∈ Qi for all k > 0;

2. for i = 1, 2, ‖Diu‖ < ‖u‖ if u ∈ Qi;

3. slo(Dk
2u) = slo(u) − k and slo(Dk

1u)
−1 = slo(u)−1 − k.

Lemma 2.5. Let u and v be elements of Q with different slopes. Then there

is A ∈ GL(2,Z) such that

1. ‖Au‖ ≤ ‖u‖;

2. ‖Av‖ ≤ ‖v‖;

3. Both Au and Av are in Q, and either one of these points is on the

diagonal and the other in Q1, or one is in Q1 and the other in Q2.
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Proof. We first note that it suffices to consider the case where both u and

v are in Q1. Indeed, if one of the vectors is in Qi and the other is not (for

i = 1 or 2), there is nothing to do; and if both u and v are in Q2 then we

may use Su and Sv instead, where S is the isometry (x, y) 7→ (y, x).

Given u ∈ Q1, we define a sequence of matrices An ∈ SL(2,Z) and

integers an by A0 = I, a0 = 0, and recursively (see Figure 2.1)

• If slo(Anu) = 1 stop the construction.

• an+1 is the smallest integer such that D
an+1

i Anu /∈ Qi, where i = 2 if

n is odd, 1 if n is even;

• An+1 = D
an+1

i An.

In this way we get either an infinite sequence, or a finite sequence

A1, . . . AN such that ANu lies on the diagonal and has positive coordinates.

Furthermore, given 0 ≤ n < N if the sequence is finite, or n ≥ 0 if it is

infinite, we have

• Anu ∈ Qi where i = 2 if n is odd, 1 if n is even;

• If αn = slo(Anu)
(−1)n

, then αn = α−1
n−1 − an

• ‖A0u‖ , ‖A1u‖ , . . . is a decreasing sequence;

The first property is a consequence of the definition. The second follows

from Remark 2.4, since for odd n, we have

αn = slo(Dan

1 An−1u)
−1 = slo(An−1u)

−1 − an = α−1
n−1 − an

while for even n,

αn = slo(Dan

2 An−1u) = slo(An−1u) − an = α−1
n−1 − an.

The last property also follows from the construction, since if Anu = Dan

i An−1u

then Dk
i An−1u ∈ Qi for all 0 ≤ k < an, so that Remark 2.4 implies that

‖Anu‖ < ‖An−1u‖.

28



u

D1D1

A1u

D2

A2u

D1D1

Figure 2.1: The sequence Aiu

If n is odd, an is the smallest integer such that Dan

1 An−1u /∈ Q1, or

equivalently (assuming that n < N if the sequence an is finite), the smallest

integer such that

slo(Dan

1 An−1u) = (slo(An−1u)
−1 − an)−1 = (α−1

n−1 − an)−1 ≥ 1.

Since An−1u ∈ Q1, slo(An−1u) < 1 so that α−1
n−1 > 1, and an > 0. Note that

α−1
n cannot be an integer, since otherwise slo(Anu) = 1, which contradicts

the fact that Anu ∈ Q2; thus

an =
⌊
α−1

n−1

⌋
.

If n is even, the above equation holds by a similar argument. One easily

sees from these facts that αn coincides with the sequence obtained in the

definition of the continued fractions expression of α0 = slo(u), and thus an

coincides with the continued fractions coefficients of slo(u).

Now given v ∈ Q1 with slo(v) 6= slo(u), define in the same way as above

sequences of positive integers bn and of matrices Bn ∈ SL(2,Z) such that

B0 = I, bn is given by the continued fractions expression of slo(v), and

Bn+1 = D
bn+1

i Bn where i = 2 if n is odd, 1 if n is even. As before, we have
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that ‖Bnv‖ is a (finite or infinite) decreasing sequence, and if it is finite of

length N then slo(BNv) = 1. Also Bnv ∈ Qi where i = 2 if n is odd, 1 if n

is even (given that n < N if the sequence is finite).

uD2

1
u

D2D
2

1
u

vD2

1
v

D2D
2

1
v

Figure 2.2: Example

Since u and v have different slopes, their continued fractions expression

cannot coincide. Thus there exists m ≥ 0 such that a0 = b0, . . . , am = bm

but bm+1 6= am+1. We may further assume that am+1 < bm+1, by swapping

u and v if necessary. This means that Ak = Bk for 0 ≤ k ≤ m; so that if m

is even, Amu ∈ Q1 and Amv ∈ Q1, but since am+1 < bm+1, it holds that

Am+1u = D
am+1

1 Amu /∈ Q1 but Am+1v = D
am+1

1 Bmv ∈ Q1;

that is, D
am+1

1 “pushes” Amu out of Q1, while leaving Amv in Q1 (see Figure

2.2).

Moreover, since am+1 is minimal with that property, either slo(Am+1u) =

1 or Am+1u ∈ Q2; and in either case Am+1u has positive coordinates. By

construction, it also holds that ‖Am+1v‖ ≤ ‖v‖ and ‖Am+1u‖ ≤ ‖u‖.
If m is odd, a similar argument holds, and we see that Am+1u ∈ Q2

while Am+1v is either on the diagonal or in Q1.

Starting from u and v in Q1 we obtained A = Am+1 ∈ GL(2,Z) such

that Au and Av have positive coordinates and either one of them is on the
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diagonal or one is in Q1 and the other in Q2; furthermore, ‖Au‖ ≤ ‖u‖ and

‖Av‖ ≤ ‖v‖. This completes the proof.

Lemma 2.6. Let w = (x, y) be a vector with irrational slope. Then, for any

ε > 0 there exists A ∈ SL(2,Z) such that ‖Aw‖ < ε.

Proof. Let pi/qi be the convergents to y/x, and define

Ak =

(
(−1)kpk (−1)k+1qk

pk+1 −qk+1

)
.

By Proposition 2.2 we have that detA = 1, the sequence q1, q2, . . . is in-

creasing, and ∣∣∣pi −
y

x
qi

∣∣∣ <
1

qi+1

for all i ≥ 1. Hence,

|pr1Akw| =
∣∣∣x
(
pk −

y

x
qk

)∣∣∣ <
|x|
qk+1

,

and similarly

|pr2Akw| =
∣∣∣x
(
pk+1 −

y

x
qk+1

)∣∣∣ <
|x|
qk+2

;

Choosing k large enough so that qk+1 >
√

2 |x| ε−1, we have ‖Akw‖ < ε.

2.3 Proof of Theorem 2.1

2.3.1 The case n = 1

We first assume n = 1, i.e. we prove that F has a free curve, assuming that

ρ(f) is a segment of irrational slope containing no rational points. The prob-

lem is reduced, by Lemma 0.25 and Theorem 0.24, to finding A ∈ GL(2,Z)

such that the projection of Aρ(f) to the first or the second coordinate con-

tains no integers. Note that Lemma 2.6 allows us to assume that

diam(ρ(f)) < ε <
1

2
√

5
.
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We may also assume that there are m1 ∈ pr1(ρ(f))∩Z and m2 ∈ pr2(ρ(f))∩
Z, for otherwise there is nothing to do.

Then using T−m1

1 T−m2

2 f (which also lifts F ) instead of f , we have that

the extremal points of ρ(f) are in opposite quadrants. By conjugating f

with a rotation by π/2, we may assume that ρ(f) is the segment joining

u = (−u1,−u2) and v = (v1, v2) where vi ≥ 0 and ui ≥ 0, i = 1, 2. From

this, and the fact that diam(ρ(f)) < ε, it follows that

‖u‖ < ε, and ‖v‖ < ε.

Case 1. One of the points has a zero coordinate

It is clear that neither u nor v can have both coordinates equal to 0. Conju-

gating by an appropriate isometry in GL(2,Z), we may assume the generic

case that u = (−u1, 0), with u1 > 0. Then v2 > 0: in fact if v2 = 0 then

ρ(f) contains the origin, which is not possible. Let k > 0 be the greatest

integer such that pr1D
k
1v > −u1, i.e.

k =

⌊
u1 + v1
v2

⌋
.

Note that Dk
1u = u, so that Dk

1 ρ(f) is the segment joining u to Dk
1v (see

Figure 2.3).

Moreover, Dk+1
1 v = (v′1, v2) where v′1 = v1 − (k + 1)v2 < −u1. Thus

maxpr1(D
k+1
1 ρ(f)) = −u1 < 0.

On the other hand,

min pr1(D
k+1
1 ρ(f)) ≥ −u1 − v1 > −2ε > −1,

so that taking A = Dk+1
1 we have pr1(ρ(AfA

−1)) ⊂ (−1, 0). By Theorem

0.24, it follows that ÃF Ã−1 has a free (0, 1) curve. Thus F has a free curve.
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−ε εu = D2

1
u

v

ρ(f)

D2

1
v D1v

Figure 2.3: Avoiding integers in the first coordinate

Case 2. None of the points has a zero coordinate

In this case, u ∈ −Q and v ∈ Q. Since the segment joining u to v cannot

contain the origin, −u and v are elements of Q with different slopes; thus

Lemma 2.5 implies that there is A ∈ GL(2,Z) such that ‖Au‖ ≤ ‖u‖,
‖Av‖ ≤ ‖v‖, both −Au and Av are in Q, and either one of them lies on the

diagonal, or they are in opposite sides of the diagonal. This means that Au

and Av are both contained in one of the closed semiplanes determined by

the diagonal. By using −A instead of A if necessary, we may assume that

both are in the closed semiplane above the diagonal, which is mapped by

D2 to the upper semiplane H = {(x, y) : y ≥ 0}. Note that

‖D2Au‖ ≤ ‖D2‖ ‖Au‖ ≤
√

5 ‖u‖ ,

and similarly ‖D2Av‖ ≤
√

5 ‖v‖. If pr2(D2Av) > 0 and pr2(D2Au) > 0,

then (see Figure 2.4) we have that

pr2 ρ(f) ⊂ (0,
√

5ε) ⊂ (0, 1),

and by Theorem 0.24 (as in Case 1) it follows that F has a free curve. On

the other hand, if either of D2Av or D2Au has zero second coordinate, the

argument in Case 1 implies that F has a free curve.

This completes the proof when ρ(f) has irrational slope and n = 1.
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(0, 0)

(0,
√

5ε)

−Au

Av

Au

D2Av

D2Au

Figure 2.4: Avoiding integers in the second coordinate

2.3.2 The case n > 1

Note that when ρ(f) has irrational slope, ρ(fn) = n ρ(f) has irrational slope

for all n.

Let N = n!. As we saw in the previous case, conjugating our maps by

some A ∈ GL(2,Z), we may assume pr1 ρ(f
N ) ∩ Z = ∅; thus

pr1 ρ(f
N ) ⊂ (K,K + 1) for some K ∈ Z,

and by Theorem 0.8,

pr1 ρ(f) ⊂
(
K

N
,
K + 1

N

)
.

Let [p/q, p′/q′] be the smallest Farey interval containing pr1(ρ(f)). We claim

that q + q′ > n. In fact, if q + q′ ≤ n, then [K/N, (K + 1)/N ] must be

contained in one of the smaller Farey intervals (see Proposition 2.3)

[
p

q
,
p+ p′

q + q′

]
or

[
p+ p′

q + q′
,
p′

q′

]
.
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This is because N(p + p′)/(q + q′) is an integer, so that it cannot be in the

interior of [K,K+1]. But we chose our Farey interval to be the smallest, so

[p/q, p′/q′] must as well be contained in one of these two intervals, which is

a contradiction. Thus q + q′ > n, and Theorem 0.24 guarantees that there

is an essential simple closed curve γ such that its first n iterates by F are

pairwise disjoint. This completes the proof.

2.4 Proof of Theorem B

Assume that ρ(f) has empty interior. We will show that either F has a fixed

point, or it has a free curve. There are several cases:

• ρ(f) is a segment of irrational slope which contains no rational points.

Then there is a free curve, by Theorem 2.1.

• ρ(f) is a segment of irrational slope containing a rational non-integer

point (p1/q, p2/q). By Lemma 2.6 there exists A ∈ GL(2,Z) such

that diam(Aρ(f)) < 1/q. One of the two coordinates of A(p1/q, p2/q)

must be non-integer. We assume p′/q′ = pr1A(p1/q, p2/q) /∈ Z (oth-

erwise, we can conjugate f with a rotation by π/2, as usual). Since

A(p1, p2) is an integer point, it follows that q′ ≤ q (if we assume p′/q′

is irreducible). Thus,

pr1
(
ρ(AfA−1)

)
= pr1(Aρ(f)) ⊂ pr1

(
p′

q′
− 1

q
,
p′

q′
+

1

q

)
.

It is clear that the interval above contains no integers, so that ÃF Ã−1

(and, consequently, F ) has a free curve by Theorem 0.24.

• ρ(f) is a segment of irrational slope with an integer point. Then F

has a fixed point by Theorem 0.12 (see also Remark 1.5).

• ρ(f) is a single point. Then either this point is integer, and F has a

fixed point by Theorem 0.10 or it is not integer, and F has a free curve

by Theorem 0.24.
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• ρ(f) is a segment of rational slope. Conjugating all the maps by an

element of GL(2,Z) we may assume it is a vertical segment; and with

this assumption, if both pr1(ρ(f)) and pr2(ρ(f)) contain an integer,

it follows that ρ(f) contains an integer point, and by Theorem A, F

has either a fixed point or a free curve. On the other hand, if either

of the two projections contains no integer, Theorem 0.24 implies the

existence of a free curve for F as before.

This concludes the proof.
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Chapter 3

Always free curves

Given a homeomorphism F : T2 → T2 (not necessarily in the homotopy class

of the identity), we say that a simple closed curve γ is always free if

Fn(γ) ∩ γ = ∅ for all n ∈ Z, n 6= 0.

In this chapter we prove Theorem C, which says that if F has an always

free curve with a dense orbit, then F is semi-conjugate to an irrational

rotation of the circle; i.e. there exists a continuous surjection h : T2 → S1

such that hF = Rh, where R is some irrational rotation of S1.

The natural idea for proving the theorem is defining the map h on the

orbit of γ by F , mapping it to the orbit of some point x0 in S1 by some

appropriately chosen map (which eventually turns out to be conjugated to

an irrational rotation), and then extending h to T2. We follow this idea

in a slightly indirect way: we explicitly construct a partition of T2 which

will correspond to {h−1(x) : x ∈ S1} and then we show that by collapsing

elements of this partition, the map induced by F on the quotient space is

conjugated to an irrational rotation of S1.

With minor modifications, the proof presented here also works if γ is an

essential continuum (i.e. a continuum such that π−1(γ) has an unbounded

connected component), with the additional hypothesis that there is some es-

sential simple closed curve disjoint from γ. The latter condition is necessary

37



to ensure that F has a lift to the annulus. Thus we have

Theorem C’. Let F ∈ Homeo(T2), and let γ ⊂ T2 be an essential contin-

uum with a dense orbit, such that all its iterates by F are pairwise disjoint.

Assume further that γ is disjoint from some essential simple closed curve.

Then f is semi-conjugated to an irrational rotation of the circle.

Homeomorphisms in the homotopy class of the identity satisfying the

hypothesis of Theorem C are “almost” fibered, in the sense that they are

similar to skew-products of the form (x, y) 7→ (f(x), gx(y)) where f : S1 →
S1 has an irrational rotation number. The partition found in Theorem

C resembles the foliation by vertical circles in skew-products of this kind,

except that it could consist of general continua instead of curves.

In [Her83], Herman proved that skew-products always have a rotation

set consisting of a single point (i.e. they are pseudo-rotations). Thus, the

previous discussion motivates the following

Question 3.1. If F ∈ Homeo∗(T
2) has an always free curve with a dense

orbit, must its rotation set consist of a single point?

3.1 Proof of theorem C

Let γ0 be an always free curve for F with a dense orbit.

Proposition 3.2. γ0 is homotopically non-trivial.

Proof. Suppose γ0 is homotopic to a point, and let D be the topological disk

bounded by it in T2. We know that γ0 has a dense orbit, so that it must

hold Fn(γ0) ∩D 6= ∅ for some n which we may assume positive (otherwise

consider F−1). Moreover, we assume n to be the smallest positive integer

with that property. Since γ0 is always free, we must have Fn(D) ⊂ D and

F k(D) ∩ D = ∅ when 0 < k < n. If A = D − cl(Fn(D)), then it follows

easily that F k(γ0)∩A = ∅ for all k ∈ Z. But since A is open and nonempty,

this contradicts the fact that the orbit of γ0 is dense.
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By the above proposition, γ0 is not homotopic to a point. This means

that γ0 is a (p, q)-curve for some (p, q) ∈ Z2. Moreover, since γ0 is simple, p

and q are coprime; hence we can find A ∈ GL(2,Z) such that A(p, q) = (0, 1)

(see Remark 0.26). Such A induces a homeomorphism Ã of T2, such that

Ãγ0 is an always free (0, 1)-curve for ÃF Ã−1; hence, it suffices to prove the

theorem when γ0 is a (0, 1)-curve, which we will assume from now on.

Since F (γ0) is a simple closed curve which is disjoint from γ0, it must

be either a (0, 1)-curve or a (0,−1) curve (see Remark 0.17). This easily

implies (by the lifting theorem) that F can be lifted to f : A 7→ A by the

covering π1, and γ0 (and any iterate of it by F) is lifted to a simple closed

curve γ on A.

Recall that τ is the translation (x, v) 7→ (x+ 1, v) in A. Let

Γ = {τmfn(γ) : (n,m) ∈ Z × Z}.

Note that the elements of Γ are pairwise disjoint simple closed curves, and

∪Γ is dense in A.

For any ω ∈ Γ, there are exactly two connected components in A \ ω,

both unbounded. We write Lω for the one “on the left”, and Rω for the

remaining one. We also write Lω and Rω for their respective closures. Since

all elements of Γ are disjoint, the relation defined by ω < ω′ if ω ⊂ Lω′

(which is the same as Lω ⊂ Lω′) is a linear ordering of Γ.

Proposition 3.3. For any ω0 and ω1 in Γ,

1. f(Lω0) = Lf(ω0), f(Rω0) = Rf(ω0), and similarly for τ ;

2. If ω0 < ω1 then f(ω0) < f(ω1) and τ(ω0) < τ(ω1);

3. ∂Lω0 = ω0 = ∂Rω0;

4. τ(ω0) > ω0. In particular, there is no maximum or minimum element

of Γ;

5. If ω0 < ω1, then there exists ω ∈ Γ such that ω0 < ω < ω1.
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Proof. (1) The assertion for τ is obvious since Lω0 and Rω0 are left and

right unbounded, respectively, and τ is just a translation.

As it is easy to see, either f(Lω) = Lf(ω) and f(Rω) = Rf(ω) for all

ω ∈ Γ, or f(Lω) = Rf(ω) and f(Rω) = Lf(ω) for all ω ∈ Γ; thus it suffices

to prove the property for the original curve ω0 = γ. We may also assume

that f is such that γ < f(γ) < τ(γ), by choosing an appropriate m and

using τmf , which is also a lift of F , instead of f . Suppose that f(Rγ) =

Lf(γ). Then, letting U = Rγ ∩ Lf(γ), we have f(U) ⊂ U , and π1(U) ⊂
π1(Rγ ∩Lτ(γ)) which is a proper open subset of T2, whose complement has

nonempty interior. Since F (π1(U)) ⊂ π1(U), this contradicts the fact that

γ has a dense orbit.

(2) By item 1, Lf(ω0) = f(Lω0) ⊂ f(Lω1) = Lf(ω1), and a similar

argument for τ .

(3) Follows from the fact that ω0 is simple.

(4) Suppose τ(ω0) < ω0; then, by item 2, τn(ω0) < ω0 for all n > 0. But

it is clear that if x ∈ ω0, then for n large enough, τn(x) ∈ Rω0, which is a

contradiction. Thus τ(ω0) > ω0.

(5) Since U = Lω1 ∩ Rω0 is open and ∪Γ is dense, there exists ω ∈ Γ

such that ω ∩ U 6= ∅. But then ω must be entirely contained in U .

For ω1, ω2 ∈ Γ, we define the open strip S(ω1, ω2) = Rω1 ∩Lω2, and the

closed strip S(ω1, ω2) = Rω1 ∩ Lω2 = S(ω1, ω2) ∪ ω1 ∪ ω2.

Remark 3.4. Note that if ω1 < ω2, then S(ω1, ω2) is homeomorphic to A.

Also note that finite intersections of open (resp. closed) strips are open

(resp. closed) strips.

3.1.1 Construction of an invariant partition

Given x ∈ A, we will say that a strip S0 = S(ω1, ω2) is good for x if x belongs

to some closed strip which is contained in S0. Define

Px = ∩{S0 : S0 is good for x }

and let P = {Px : x ∈ A}. This will be our partition.
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Remark 3.5. By proposition 3.3, for any x we can find ω′
1, ω

′
2 such that x ∈

Rω′
1 ⊂ Rω′

2. Thus, if we have ω1 < ω2 such that x ∈ Lω1, then necessarily

Px ⊂ Lω2; moreover, since there exists some ω such that ω1 < ω < ω2, we

have Px ⊂ Lω2. An analogous property holds in the other direction. As a

consequence, we may take the intersection of open strips instead of closed

ones in the definition of Px.

Proposition 3.6. The following properties hold:

1. P is a partition;

2. Each element of the partition is compact, connected, has empty inte-

rior, and splits A into exactly two connected components.

3. P is f -invariant, i.e. f(Px) = Pf(x) for all x ∈ A;

4. P is τ -invariant, and consequently {π1(P ) : P ∈ P} is an F -invariant

partition of T2;

5. For any x, y ∈ A, if Px 6= Py then there exists ω ∈ Γ that separates Px

and Py, so that Px ⊂ Lω and Py ⊂ Rω or vice-versa;

6. For each x ∈ A, at most one element of Γ intersects Px, and when it

does it is contained in Px.

Proof. (1): It is clear that x ∈ P for all x ∈ A; thus it suffices to show that

whenever Px 6= Py, it holds that Px ∩ Py = ∅. Fix x, y ∈ A, and suppose

there are ω1 < ω2 such that x ∈ Lω1 and y ∈ Rω2. Then by Proposition

3.3 we may find ω such that ω1 < ω < ω2, so that x ∈ Lω1 ⊂ Lω and

y ∈ Rω2 ⊂ Rω. By Remark 3.5, Px ⊂ Lω and Py ⊂ Rω; thus, Px ∩ Py = ∅
and ω separates Px from Py.

Now suppose that no element of Γ separates Px from Py. Then whenever

ω1 < ω2 and x ∈ Lω1, we must have y ∈ Lω2; by a symmetric argument,

also if ω1 < ω2 and x ∈ Rω2, we have y ∈ Rω1. This implies that y belongs

to every good strip of x, so that x ∈ Py. Analogously, y ∈ Px. We will

show that every good strip for x is a good strip for y; that will imply that

Px ⊂ Py, and by symmetry that Py ⊂ Px finishing the proof of this item.
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Let S0 = S(ω′
1, ω

′
2) be a good strip for x. By definition, there is a closed

strip S1 = S(ω1, ω2) such that x ∈ S1 ⊂ S0. We know that y ⊂ Px, so

that y ∈ S0. If y ∈ S1, then S0 is a good strip for y and we are done.

Assume that y /∈ S1. Then either y ∈ Lω1 or y ∈ Rω2. Suppose without

loss of generality that y ∈ Lω1. By Proposition 3.3 there is ω ∈ Γ such that

ω′
1 < ω < ω1, and we must have y ∈ Rω. In fact if this is not the case,

y ∈ Lω and x ∈ Rω1, which by the argument in the beginning of the proof

implies that Px and Py are disjoint, contradicting our assumption. Hence,

y ∈ S(ω, ω1) ⊂ S0 which means that S0 is a good strip for y, as we wanted.

(3 and 4): This is clear since Proposition 3.3 implies that the image by f

(resp. f−1,τ ,τ−1) of a good strip for x is a good strip for f(x) (resp. f−1(x),

τ(x),τ−1(x)).

(5) Follows from the proof of item 1.

(6) Let ω ∈ Γ, x ∈ ω. Then it is clear that any good strip for x contains

ω, so ω ⊂ Px. Given ω′ 6= ω, suppose without loss of generality that ω′ > ω.

Then x ∈ Lω ⊂ Lω′, so Px ⊂ Lω′ by remark 3.5. Hence Px does not

intersect ω′.

(2) Since ∪Γ is dense and is a union of simple closed curves, any open

set intersects infinitely many elements of Γ; by part 6, Px intersects at most

one such element, so it has empty interior.

It is clear that x ∈ Px for all x ∈ A, and it is easy to see that finite

intersections of good strips for x are good strips for x. Any family of compact

connected nonempty sets which is closed under finite intersections has a

compact, connected intersection; thus Px is compact and connected.

It remains to show that A − Px has exactly two connected components.

Suppose first that A−Px is connected. Since it is open, it is arc-connected.

Take ω1 < ω2 such that Px ⊂ S(ω1, ω2), let N be large enough so that

both ω1 and ω2 are contained in [−N,N ] × S1, and let σ be a compact

arc joining (−N − 1, 0) to (N + 1, 0), contained in A − Px. Then any ω

such that ω1 < ω < ω2 intersects σ, so that any good strip for x intersects

σ. Hence, the family {good strips for x} ∪ {σ} has the finite intersection

property, and therefore its intersection is nonempty. This means that Px

intersects σ, which contradicts our choice of σ. Thus A−Px has more than
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one connected component.

Now suppose A − Px has more than two components. Then, since Px is

bounded, there is some connected component U of A− Px that is bounded.

Since U is open, infinitely many elements of Γ intersect it; each one of these

elements must then be contained in U , or intersect ∂U ⊂ Px. Since we

already saw that at most one element of Γ intersects Px, there must exist

ω ∈ Γ such that ω ⊂ U . Since Px is connected, either Px ⊂ Lω or Px ⊂ Rω.

But U intersects both Lω and Rω, so that it has boundary points on both

sets, which is a contradiction. This shows that A − Px has exactly two

connected components.

3.1.2 Defining order in P

Define an order in P by P < Q if there is ω ∈ Γ such that P ⊂ Lω and

Q ⊂ Rω. In view of the previous propositions, it is clear that this defines a

total order. For P ∈ P, we will denote by L(P ) and R(P ) the two connected

components of A − P , being L(P ) the one “on the left”; and we will endow

P with the topology induced by this order. Note that for P,Q ∈ P, P < Q

means that P ⊂ L(Q) and Q ⊂ R(P ).

Proposition 3.7. (P, <) is separable and has the property of the supremum.

Proof. From Propositions 3.3 and 3.6 it easily follows that

D = {P ∈ P : P contains some element of Γ}

is dense; and it is countable because Γ is countable.

Now let P0 ∈ P and let S ⊂ P be such that P < P0 for all P ∈ S. Let

L =
⋃

P∈S

L(P ).

Then L is open and L ⊂ L(P0). Since A − L 6= ∅, we may choose x ∈ ∂L.

We claim that L ∩ Px is empty. In fact, if y ∈ L ∩ Px then y ∈ L(P ) for

some P ∈ S, so that Px = Py < P , which implies that x ∈ L(P ) ⊂ L

and this contradicts the choice of x. Thus we have P < Px for all P ∈ S.
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Furthermore, if Q ∈ P is such that P < Q for all P ∈ S, then L ⊂ L(Q),

so that ∂L ⊂ cl(L(Q)). Since Px contains a boundary point of L, we have

Px∩cl(L(Q)) 6= ∅, which implies that Px ≤ Q. Hence Px is the lowest upper

bound of S.

Let p : A → P be the quotient projection that maps x ∈ A to the unique

element of P that contains x. The quotient topology on P is given by

{
A ⊂ P : p−1(A) is open in A

}
.

Note that p−1(A) = ∪A.

Proposition 3.8. The order topology of P coincides with the quotient topol-

ogy induced by p.

Proof. We use the interval notation (P1, P2) = {P ∈ P : P1 < P < P2}.
Such intervals form a basis of open sets for the order topology. Given I =

(P1, P2), we see that p−1(I) = L(P2) ∩R(P1) which is open in A, so that I

is open in the quotient topology.

Now let A ⊂ P be such that U = p−1(A) is open in A. We will find, for

every P ∈ A, an interval I = (P1, P2) such that P ∈ I ⊂ A, thus showing

that A is open in the order topology. Suppose that this is not the case for

some P ∈ A. Since ∂L(P ) ⊂ P and ∂R(P ) ⊂ P , we can choose x, y ∈ P

such that any neighborhood of x intersects L(P ) and any neighborhood of y

intersects R(P ). Since U is open and contains P , we may find ε small enough

so that Bε(x) ⊂ U and Bε(y) ⊂ U . Let x′ ∈ Bε(x)∩L(P ), y′ ∈ Bε(y)∩R(P ),

and let σ be an arc contained in U and joining x to x′. Then any Q ∈ P
such that Px′ < Q < Px must intersect σ, because σ connects L(Q) and

R(Q), and Q separates those sets. Since σ ⊂ U and U = ∪A, every element

of P that intersects U must be contained in U ; thus Q ⊂ U . This shows

that (Px′ , Px) ⊂ A. An analogous argument with y and y′ shows that

(Py, Py′) ⊂ A. Since Py = Px = P , it follows that (Px′ , Py′) ⊂ A as we

wanted.
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3.1.3 Construction of the semi-conjugation

We now know that the order topology in (P, <) coincides with the quotient

topology induced by p. Moreover, (P, <) is a separable totally ordered space

which has no maximum or minimum element (i.e. it is unbounded), and has

the property of the supremum (i.e. it is complete). It is well known that

any such space is homeomorphic to R by an order-isomorphism (see, for

example, [Ros82, §4.2]).
By Proposition 3.6, the maps f and τ induce homeomorphisms f̃ and τ̃

of P which commute. Moreover, {τ̃n : n ∈ Z} is a properly discontinuous

action of Z on P. Thus, S .
= P/〈τ̃ 〉 is homeomorphic to R/Z ' S1. The

quotient projection p also induces a projection p̃ : T2 → S, and since f̃

commutes with τ̃ , it induces a map F̃ : S → S such that the following

diagrams commute:

A
f−−−−→ A

p

y p

y

P f̃−−−−→ P

T2 F−−−−→ T2

p̃

y p̃

y

S F̃−−−−→ S
It is clear that F is semi-conjugated to F̃ (by means of p̃). We show that

F̃ is transitive. If I, J are nonempty intervals in P, then U = p−1(I) and

V = p−1(J) are open subsets of A, and both U and V must contain an

element of Γ. If τm1fn1γ ∈ U and τm2fn2γ ∈ V , then

τm2−m1fn2−n1(U) ∩ V 6= ∅.

This implies that τ̃m2−m1 f̃n2−n1(I)∩ J 6= ∅. Since this holds for any pair of

intervals I, J in P, it follows easily that F̃ is transitive.

By the theory of Poincaré, any transitive homeomorphism of S1 is conju-

gated to an irrational rotation. Since F is semi-conjugated to F̃ , we conclude

that F is semi-conjugated to an irrational rotation of S1. This completes

the proof of Theorem C.
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Chapter 4

Invariant foliations and

minimal diffeomorphisms

In this chapter, we study the diffeomorphisms in the closure of the conjugacy

class of the set of rigid translations of T2. This is motivated by the work of

Fathi and Herman [FH77], where they prove the existence of strictly ergodic

(i.e. uniquely ergodic and minimal) diffeomorphisms on any manifold M

admitting a free C∞ action Γ of S1. In their article, they prove that the set

of such diffeomorphisms is residual in the space O∞
(Γ), the C∞-closure of

the set of diffeomorphisms C∞-conjugated to elements of the action.

We denote by R(λ1,λ2) either the translation (x, y) 7→ (x+λ1, y+λ2), or

the diffeomorphism of T2 lifted by it (with a slight abuse of notation). Let

O(T2) =
{
hRαh

−1 : h ∈ Diff∞(T2), α ∈ T2
}
.

If Γ is the action t 7→ R(0,t) of S1 on T2, it is easy to see that O∞
(Γ) =

O∞
(T2), where the closure is taken in the C∞-topology.

Recall that Diff∞(T2) with the C∞-topology is a Polish space, so that

any closed subset of it (in particular, O∞
(T2)) is a Baire space. A property

is said to be generic in a Baire space if it holds in a residual subset (i.e. a

dense Gδ) of the space.

A homeomorphism f : X → X of the compact metric space X is minimal
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if the f -orbit of every point is dense inX or, equivalently, if the only compact

f -invariant sets are the whole space X and the empty set.

By a Cr foliation of codimension 1 of T2, we mean a partition F of the

space into 1-dimensional, connected topological sub-manifolds (the leaves)

such that there is a Cr atlas of T2 formed by charts (φi, Ui) such that φiφ
−1
j

has the form (u(x), v(x, y)) on its domain, and if S is a vertical segment in

the domain of φi, then φ−1
i (S) ⊂ Fφ−1(p) for any p ∈ S (where Fx denotes

the unique leaf of the partition that contains x).

The foliation F is said to be invariant for a homeomorphism f : T2 → T2

if f(Fx) = Ff(x) for each x ∈ T2. A foliation of T2 always has a lift to R2,

i.e. a foliation F ′ such that π(F ′
z) = Fπ(z) for any z ∈ R2. This foliation is

invariant for any lift of f to R2 if F is invariant for f .

We say that a C0 foliation is induced by a C0 line field if its leaves are

C1, and if the tangent spaces to the leaves form a continuous sub-bundle

of the tangent space of T2. Note that this is weaker than saying that the

foliation is of class C1, but stronger than just saying that the leaves are of

class C1.

4.1 Dynamic cocycles

Since the tangent space of T2 is parallelizable, we identify it with T2 × R2.

Definition 4.1. Given f ∈ Diff(T2), we define its associated dynamic co-

cycle by

f̂ : T2 × S1 → T2 × S1, (x, v) 7→
(
f(x),

Dfxv

‖Dfxv‖

)
,

which is of class C∞ if f is C∞.

It is useful to note that f̂ g = f̂ ĝ. This is true because

D(fg)xv

‖D(fg)xv‖
=

Dfg(x)Dgxv∥∥Dfg(x)Dgxv
∥∥ =

Dfg(x)

(
Dgxv

‖Dgxv‖

)

∥∥∥Dfg(x)

(
Dgxv

‖Dgxv‖

)∥∥∥
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Hence, if g = hfh−1, where h ∈ Diff∞(T2), then ĝ = ĥf̂ ĥ−1.

We will denote by d2 the flat metric on T2, by d1 the one on S1, and we

endow T2 × S1 with the metric

d ((x, v), (y,w)) = max {d2(x, y), d1(v,w)} .

4.2 Generic minimality of the dynamic cocycle

To prove Theorem D, we define an appropriate family Un of open subsets

of O∞
(T2) such that every element of ∩nUn satisfies the required property.

Then, following the ideas of [FH77], we prove that R(0,p/q) is in the closure of

Un, for each p/q ∈ Q and each n. Using this fact, we show that hR(0,p/q)h
−1

is also in the closure of Un for all h ∈ Diff∞(T2). Since such diffeomorphisms

are dense in O∞
(T2), we conclude that Un is dense in O∞

(T2) for each n.

It then follows that ∩nUn is a residual set with the required properties.

Remark 4.2. With almost no modifications, the proof we present below is

valid if we restrict it to the space O∞
m (T2) of elements of O∞

(T2) preserving

Lebesgue measure. This is because the conjugations used in the proof are

measure preserving.

If (X, ρ) is a compact metric space, we say that a map f : (X, ρ) → (X, ρ)

is ε-minimal if every point has an ε-dense orbit, i.e. for each x, y ∈ X there

is n ∈ Z such that ρ(fn(x), y) < ε.

Remark 4.3. By compactness, if f is ε-minimal then there is N ∈ N, de-

pending only on f , such that {fk(x) : |k| < N} is ε-dense.

Let

Un =

{
f ∈ O∞

(T2) : f̂ is
1

n
-minimal

}
.

Note that by the previous remark, and by continuity of f 7→ fk in the

C0-topology, Un is C0-open for each n ∈ N.

Claim 1. Let α = (0, p/q). Then for each N > 0, there exists h ∈ Diff∞(T2)

such that hRα = Rαh, and for each integer k with 0 ≤ k ≤ 2πN there is

an open 1/N -dense set Uk ⊂ T2 such that Dfz is a rigid rotation with angle
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k/N for each z ∈ Uk. Moreover, h is 1/N -close to the identity in the C0

topology.

Proof. Let us briefly sketch the idea of the construction. We will define

h̃ : R2 → R2 with the desired properties, which commutes with Rα (i.e. with

(x, y) 7→ (x, y + p/q)) and with the translations T1, T2 (so that it lifts a

map of T2); then the map h lifted by h̃ is the map we are looking for. We

construct h̃ as follows: first we choose a disjoint family of 1/N -dense sets

Sk, 0 ≤ k < 2πN , each consisting of equally spaced points and such that

each Sk is invarant by Rα (and by integer translations). Then we define h̃

in a way that it coincides with a rigid rotation by angle k/N in a small disk

around each point z ∈ Sk, and with the identity outside a neighborhood of

∪kSk. Essentially, the action of h near any point of Sk is a “copy” of its

action near any other such point, which guarantees that h̃ commutes with

Rα. We now proceed to the explicit construction.

Let ψ : R2 × R → R2 be defined by

ψ(x, y, t) = (x cos(t) + y sin(t), x sin(t) − y cos(t)),

i.e. ψ(·, ·, t) is a rotation with angle t around the origin. Let b : R → R be a

C∞ bump function such that:

• b(t) = 1 if |t| ≤ 1/6;

• b(t) = 0 if |t| ≥ 1/2;

• |b(t)| ≤ 1 for all t ∈ R.

Define Φt : R2 → R2 by Φt(x, y) = ψ(x, y, tb(
√
x2 + y2)). It is clear that

Φt is a C∞ map. Moreover, it is a diffeomorphism: in fact it has an inverse

given by

(x, y) 7→ ψ
(
x, y,−tb

(√
x2 + y2

))
,

which is also C∞. Also note that DΦt(z) is a rigid rotation with angle t

when ‖z‖ < 1/6, and the support of Φt is contained in the disk of radius

1/2 centered at the origin.
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Now let M ∈ Z be large enough so that 1/(qM) < 1/N , let K = 7qMN ,

and for 0 ≤ k < 2πN , define

Sk =

{(
iN + k

K
,
jN + k

K

)
: (i, j) ∈ Z2

}
.

Note that each Sk is an 1/N -dense subset of R2, and RαSk = Sk because

K is a multiple of qN . Moreover, the sets Sk, 0 ≤ k < 2π8N are pairwise

disjoint, and any pair of different points in ∪kSk are at least a distance of

1/K apart. Define

h̃k,z(x, y) = Rz

(
1

2K
Φk/N

(
2KR−z(x, y)

))
,

i.e. h̃k,z(x, y) is a diffeomorphism with support in the disk of radius 1/(2K)

around z, and which is a rotation with angle k/N in a small disk around z.

Note that if z ∈ Sk and z′ ∈ Sk′ , with z 6= z′, then the supports of h̃k,z and

h̃k′,z′ are disjoint; thus they commute. Moreover, if z ∈ Sk, then

h̃k,zRα = Rαh̃k,R−αz. (4.1)

Let

h̃k = ©
z∈Sk

h̃k,z,

i.e. the composition of all h̃k,z with z ∈ Sk. The order does not matter

because any pair of such diffeomorphisms commute. From the fact that

R−αSk = Sk and from (4.1), it easily follows that h̃kRα = Rαh̃k. Also, the

supports of h̃i and h̃j are disjoint if i 6= j, so that h̃ih̃j = h̃j h̃i.

h̃ = ©
0≤k<2πN

h̃k.

Since each h̃k commutes with Rα, so does h̃. By a similar argument, h̃

commutes with any integer translation, so that it is a lift of a torus diffeo-

morphism. If z ∈ Sk, then h̃ coincides with a rotation by k/N around z

in a small disk (of radius 1/(12K)) around z. Thus if Ũk is an 1/(12K)-
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neighborhood of Sk we have that Dh̃z is a rotation with angle k/N around

the origin for each z ∈ Ũk. Since Ũk is 1/N -dense (because Sk is 1/N -dense),

Uk = π(Ũk) gives an 1/N -dense family of open sets with the required prop-

erties for the map h ∈ Diff∞(T2) lifted by h̃. The fact that h is 1/N -close

to the identity in the C0 topology follows from the fact that this is true for

each h̃k,z and their supports are disjoint. This completes the proof of the

claim.

Claim 2. Rα ∈ U∞
n for every n ∈ N and α = (0, p/q).

Proof. Fix n ∈ N and α = (0, p/q) with p/q ∈ Q in reduced form, and let h

be as in the previous claim with N = 4n. If αk is a sequence of rationally

independent pairs (so that Rαk
is minimal) such that αk → α, then

hRαk
h−1 C∞

−−−→
k→∞

hRαh
−1 = Rα.

Thus, it suffices to show that hRαk
h−1 ∈ Un for each k. This is possible due

to the minimality of Rαk
.

Let {Ui : 0 < i < 2πN} be the open sets given by the previous claim for

h, and fix (z, v) ∈ T2×S1. If (z′, v′) ∈ T2×S1, then ĥ−1(z′, v′) = (h−1(z′), w)

for some w ∈ S1. If the angle (measured in [0, 2π)) between w and v is θ,

we can find m such that

|θ −m/N | < 1/N < 1/n,

and there is z0 ∈ Um such that d2(z0, h
−1(z)) < 1/N . By the properties of

Um, there is a small neighborhood U of z0 such that Dhz1
is a rotation with

angle m/N for each z1 ∈ U , and we may assume that d2(z1, z0) < 1/N for

each z1 ∈ U by taking a smaller neighborhood, if necessary. Since Rαk
is

minimal, there exists j such that Rj
αk

(h−1(z′)) ∈ U . Since DRαk
= Id, it

follows that

R̂j
αk
ĥ−1(z′, v′) = (Rj

αk
h−1(z′), w).
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Hence, letting z1 = Rj
αk
h−1(z′), we have z1 ∈ U and

ĥR̂j
αk
ĥ−1(z′, v′) = (h(z1),Dhz1

w) = ĥ(z1, w).

But since d2(z1, z0) < 1/N and d2(z0, h
−1(z)) < 1/N , and since h is 1/N -

close to the identity, it follows that d(h(z1), z) < 4/N = 1/n. We also

know that d1(Dhz1
w, v) < 1/n (because Dhz1

is a rotation by m/N and

|θ −m/N | < 1/N < 1/n); thus

d
(
(ĥRαk

h−1)j(z′, v′), (z, v)
)

= d(ĥ(z1, w), (z, v)) < 1/n.

Since (z, v) and k were arbitrary, this shows that hRαk
h−1 ∈ Un for each k.

This completes the proof of the claim.

Claim 3. O∞
(T2) = U∞

n .

Proof. First note that {hR(0,p/q)h
−1 : p/q ∈ Q, h ∈ Diff∞(T2)} is C∞-dense

in O∞
(T2). In fact, it suffices to show that every element of O(T2) is the

limit of a sequence in that set. If hRλh
−1 ∈ O(T2), we can choose a sequence

λn ∈ Q2 such that λn → λ; by Remark 0.26, there is An ∈ GL(2,Z) and

pn/qn ∈ Q such that ÃnRλn
Ã−1

n = R(0,pn/qn), so that

(hÃn)R(0,pn/qn)(hÃn)−1 = hRλn
h−1 C∞

−−−→
n→∞

hRλh
−1.

From this fact, to prove the claim it suffices to show that hR(0,p/q)h
−1 ∈

U∞
n for each n and p/q ∈ Q.

Fix n ∈ N, p/q ∈ Q, and let δ > 0 be such that d(x̂, ŷ) < δ implies

d(ĥ−1(x̂), ĥ−1(ŷ)) < 1/n. Let k > δ−1. Given f ∈ Uk, and x̂, ŷ ∈ T2 × S1,

we know from the 1/k-minimality that there is i ∈ Z such that

d
(
f̂ i(ĥ−1(x̂)), ĥ−1(ŷ)

)
< 1/k < δ.

Hence,

d
(
(ĥf̂ ĥ−1)i(x̂), ŷ

)
= d

(
ĥf̂ iĥ−1(x̂), ĥ(ĥ−1(ŷ))

)
<

1

n
.

Since x̂ and ŷ are arbitrary, it follows that ĥf̂ ĥ−1 is 1/n-minimal, i.e.
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hfh−1 ∈ Un. Since this is true for any f ∈ Uk, and by the previous claim

we can choose a sequence fi ∈ Uk such that fi → R(0,p/q), we have a se-

quence hfih
−1 of elements of Un which converges to hR(0,p/q)h

−1. Thus

hR(0,p/q)h
−1 ∈ U∞

n .

This completes the proof of the claim.

We proved that each Un is C0-open (thus C∞-open) and C∞-dense in

O∞
(T2). Thus,

R =
⋂

n∈N

Un

is a residual subset of O∞
(T2). The fact f̂ is minimal for each f ∈ R is

obvious from our definition of the sets Un. This proves Theorem D.

4.3 Generic non-existence of invariant foliations

The following is an easy consequence of Theorem D:

Corollary 4.4. If R is the residual set from Theorem D, and f ∈ R, there

is no Df -invariant continuous sub-bundle of T (T2) of codimension 1. In

particular, f has no invariant foliation induced by a C0 line field.

Proof. If z 7→ Ez is a continuous map assigning to each z ∈ T2 a 1-

dimensional subspace of R2, then whenever fn(z) is close to z, it must be the

case that Dfn(z)Ez = Efn(z) is close to Ez. But if v ∈ Ez is a unit vector,

and w /∈ Ez is another, by minimality of f̂ we can find a sequence nk → ∞
such that f̂nk(z, v) → (z,w). This clearly implies that Efnk (z) → Rw 6= Ez,

which is a contradiction.

4.4 Generic non-existence of always-free curves

Combining Theorem C and a result of Herman, we have:

Corollary 4.5. There is a residual set in O∞
(T2) such that given any f

in the set and any simple closed curve γ in T2, there is n 6= 0 such that
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fn(γ) ∩ γ 6= ∅. In particular, f cannot have an invariant C0 foliation with

a compact leaf.

Proof. By [Her92, §9.8], there exists a residual set GP8
⊂ O∞

(T2) such

that if f ∈ GP8
, then f is not semi-conjugated (not even metrically semi-

conjugated) to a translation on a compact Abelian group. This follows from

the fact that all elements of GP8
are minimal and uniquely ergodic, and they

are weak-mixing with respect to its unique invariant measure.

Let f ∈ GP8
and let γ be a simple closed curve. Suppose γ is always

free. Then, by the minimality of f , the orbit of γ is dense. Thus, Theorem

C implies that f is semi-conjugated to an irrational rotation of S1. But this

contradicts the aforementioned property of GP8
. Hence there exists n 6= 0

such that fn(γ) ∩ γ 6= ∅.
If f has an invariant foliation with a compact leaf γ, then γ is a simple

closed curve, so that by the previous argument there exists n 6= 0 such that

fn(γ) ∩ γ 6= ∅. But since γ is the leaf of an invariant foliation, this implies

that fn(γ) = γ, so that γ is a periodic curve for f . In particular, the orbit

of γ is a proper compact f -invariant subset of T2. This contradicts the

minimality of f ; hence there is no such foliation.

4.5 C0 foliations with non-differentiable leaves

We will now show how to construct diffeomorphisms in O∞
(T2) such that

any invariant foliation has a leaf which is not C1.

For simplicity, we will work in the spaces H0 of all homeomorphisms

h : R2 → R2 which are lifts of torus homeomorphisms in the isotopy class

of the identity, and H∞ of all C∞ diffeomorphisms which are lifts of torus

diffeomorphisms in the isotopy class of the identity. We endow H0 with the

C0-metric

d0(f, g) = max

{
sup
z∈R2

‖f(z) − g(z)‖ , sup
z∈R2

∥∥f−1(z) − g−1(z)
∥∥
}
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and H∞ with the C∞-metric

d∞(f, g) = min

{
1, sup

z∈R2, k≥0

∥∥∥Dk
z (f − g)

∥∥∥
}
.

These metrics make both spaces complete, and if a sequence fn ∈ H0 (resp.

H∞) converges to F , then the corresponding sequence Fn of maps lifted by

fn converges in the C0 (resp. C∞) topology to F (the map lifted by F ).

Theorem 4.6. There is a dense subset S of O∞
(T2) such that every f ∈ S

is conjugated to a minimal translation but has no invariant foliation with

C1 leaves.

To prove this theorem, it suffices to show that any translation Rγ is

C∞-approximated by elements of S. In fact, since the property of having

no invariant foliation with C1 leaves is invariant by C∞ conjugation, this

automatically implies that S∞
= O∞

(T2).

Let Φπ/2 be as in the proof of Theorem D (Claim 1). That is, Φπ/2 is

a rotation by π/2 in the disk of radius 1/6 centered at the origin, and the

identity outside the disk of radius 1/2. Note that d0(Φ, Id) ≤ 1.

Now let φ0 : R2 → R2 be defined by requiring that φ0 = φ on [−1/2, 1/2]2

and that φ0(x+m, y+n) = φ0(x, y)+(m,n) for all (m,n) ∈ Z2, (x, y) ∈ R2.

That is the same as

φ0 = ©
(m,n)∈Z2

Φπ/2(x−m, y − n) + (m,n).

Finally, define φn by φn(x, y) = 3−nφ0(3
nx, 3ny). The following properties

are easily verified:

• φn ∈ H∞ and it preserves Lebesgue measure;

• if p = 3−n(i, j) for some (i, j) ∈ Z2, φn is a rotation by π/2 around p

on B(p, 3−(n+1)/2) and the identity on ∂B(p, 3−n/2);

• φn commutes with Rλ whenever λ = 3−n(i, j) for some (i, j) ∈ Z2;

• d0(φn, id) ≤ 3−n.
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Fix γ ∈ R2 and δ > 0. We now show how to find f ∈ H∞ which is the

lift of a map with the required properties, and such that d∞(f,Rγ) < δ.

Let α0 = (p0/3
n0 , r0/3

m0) be such that |γ−α0| < δ/2, wherem0, n0, p0, r0

are nonzero integers with m0 > n0 > 0, and let h0 = H0 = id. We define re-

cursively sequences {pi/3
ni}n∈N and {ri/3mi}i∈N of rational numbers (pi 6= 0

(mod 3), ri 6= 0 (mod 3)) and {ui}i∈N of natural numbers such that for i ≥ 1,

if hi = φui
, αi = (pi/3

ni , ri/3
mi), Hi = h0 · · ·hi, and fi = HiRαi

H−1
i , then

1. Rαi−1
hi = hiRαi−1

;

2. αi = αi−1 + (3−ni , 3−mi);

3. d0(Hi−1,Hi) < 1/2i;

4. d∞(fi−1, fi) < δ/2i+1;

5. mi − 2i > ni > mi−1 + i;

6. ui ≥ ui−1 + 3.

Assume that we have constructed such sequences up to step i = k. Since

d0(φn, id) → 0 as n → ∞, there is N such that d0(Hkφn,Hk) < 2−(k+1) for

all n ≥ N . Letting uk+1 = max{mk, uk + 3, N}, properties (1), (3) and (6)

hold.

Now note that for any β ∈ R2,

Hk+1Rαk+βH
−1
k+1 = Hkhk+1RβRαk

h−1
k+1H

−1
k = Hk(hk+1Rβh

−1
k+1)Rαk

H−1
k

so that there is ε > 0 such that if |β| < ε, then

d∞(Hk+1Rαk+βH
−1
k+1, fk) < δ/2k+1.

Let M be such that 3−M < ε, and define

nk+1 = max{mk + (k + 1),M, uk} + 1,

mk+1 = nk+1 + i, and αk+1 as in (2). It is easy to see that the remaining

properties hold, and the recursion step is complete.
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Claim 1. There exist f ∈ H∞, h ∈ H0 and α ∈ R2 such that fi → f in

the C∞ topology, Hi → h in the C0 topology, and αi → α. Moreover, Rα is

minimal, f = hRαh
−1, and d∞(f,Rγ) < δ.

Proof. The existence of f , h and α follows by completeness of the respec-

tive spaces, since the corresponding sequences are Cauchy by construc-

tion. By continuity of composition in the C0 topology, f = hRαh
−1.

Since d∞(f0, fi) ≤ δ
∑∞

i=1 2−(i+1) = δ/2 and d∞(f0, Rγ) < δ/2, we have

d∞(Rγ , f) < δ. Finally, Rα is minimal because, by the conditions we re-

quired on the sequences mi and ni, Lemma 4.7 implies that the two coordi-

nates of α are rationally independent.

Image of a vertical line by H1 Image of the vertical foliation by h

Figure 4.1: The conjugation h

Claim 2. Let F ∈ O∞
(T2) be the map lifted by f . Then, any F -invariant

codimension 1 foliation of T2 has leaves which are not C1.

Proof. We first note the simple fact that any Rα-invariant codimension 1

foliation of T2 lifts to a foliation of the plane by straight lines. Thus, in

order to prove the claim, it suffices to show that there is a point p such

that any straight line containing p is mapped by h to a curve which is not

differentiable. We will see that this is the case for p = (0, 0).
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Since the origin is fixed by φn for all n, it is fixed by h as well. Let

rk = 3−(ui+1)/2 and Bi = B(0, rk), and let L ⊂ R2 be a straight line

containing the origin. We will find two sequences of points in L, {xk}k∈N

and {yk}k∈N, both converging to the origin, such that ∠(h(xk), h(yk)) is

uniformly away from 0 or π. This will imply that h(L) does not have a well-

defined tangent direction at the origin. Let L′ be one of the components of

L− {(0, 0)}.
Note that H−1

k h = limi→∞H−1
k Hi = limi→∞ hk+1hk+2 · · ·hi, so that

d0(H
−1
k h, id) = lim

i→∞
d0(H

−1
k Hi, id) ≤

∞∑

j=k+1

d0(hj , id) ≤
∞∑

j=k+1

3−uj

≤ 3−(uk+1−1)

2
≤ 3−(uk+2)

2
= rk/3.

Thus, if zk = L′∩∂Bk, we have that
∥∥H−1

k h(zk) − zk
∥∥ ≤ rk/3. This implies

that ∠(H−1
k h(zk), zk) ≤ 1/3. For 1 ≤ i ≤ k, hi is a rotation by π/2 on

Bi ⊃ Bk, so that Hk is a rotation by kπ/2 on Bk; thus when k = 1 (mod

4), we have

|∠(h(zk), zk) − π/2| < 1/3.

By the same argument, if k = 0 (mod 4),

|∠(h(zk), zk)| ≤ 1/3.

Letting xi = z4i+1 and yi = z4i, observing that |∠(xi, yi)| = 0, we have two

sequences of points of L converging to the origin, such that

|∠(h(xi), h(yi)) − π/2| ≤ 2/3 < π/2.

This means that the above angle is uniformly away from 0 or π. If h(L)

were differentiable, we would have |∠(h(xi), h(xi))| → 0 (or π). Thus, we

just showed that h(L) is not differentiable. This completes the proof of the

theorem.
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Lemma 4.7. Let {mi}i∈N and {ni}i∈N be sequences of natural numbers such

that ni < mi < ni+1 for all i and

lim
i→∞

mi − ni = lim
i→∞

ni+1 −mi = ∞.

Then, for any integer q > 1, the numbers α =
∑∞

i=0 q
−ni and β =

∑∞
i=0 q

−mi

are rationally independent.

Proof. Suppose xα + yβ = z for integers x, y, z. Let αk =
∑k

i=0 q
−ni and

βk =
∑k

i=0 q
−mi . Note that αk = pk/q

nk for some pk relatively prime to

q and similarly βk = rk/q
mk . We may write y = qby′/a for some natural

numbers b, a and some integer y′ coprime with q. Then,

aqmk−b(xαk + yβk − z) = qmk−nk−b(axpk − aqnkz) + y′rk.

If k is large enough we have mk − nk > b, and since y′rk is coprime with q,

it follows from the above that aqmk−b(xαk + yβk − z) is an integer coprime

with q, so that

a|xαk + yβk − z| ≥ q−mk+b.

On the other hand,

|xαk + yβk − z| = |x(αk − α) + y(βk − β)|

≤ |x|
∞∑

i=k+1

q−ni + |y|
∞∑

i=k+1

q−mi

≤ |x|q
−nk+1+1

q − 1
+ |y|q

−mk+1+1

q − 1
≤ 2(|x| + |y|)q−nk+1.

Thus if k is large enough we have

2a(|x| + |y|)q−nk+1 ≥ a|xαk + yβk − z| ≥ q−mk+b,

so that

qnk+1−mk ≤ 2a(|x| + |y|)q−b

which is a contradiction.
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[Gui94] L. Guillou, Théorème de translation plane de Brouwer et
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