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Para finalizar, gostaria de dedicar este trabalho a uma pessoa que é para mim muito
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Abstract

This work has to do with the study of two different models. The first is the Asymmetric
Simple Exclusion in Z. In this process, each particle, independently from the others, waits
a mean one exponential time, at the end of which being at x it jumps to x + 1 at rate p or
x− 1 at rate 1− p. If the site is occupied the jump is suppressed to respect the exclusion
rule. The Bernoulli product measures να are invariant for this process.

We prove a Functional Central Limit Theorem for the position of a Tagged Particle in
the one-dimensional setting and in the hyperbolic scaling, for the process starting from a
Bernoulli product measure conditioned to have a particle at the origin. We also show that
the position of the Tagged Particle at time t depends on the initial configuration, by the
number of empty sites in the interval [0, (p − q)αt] divided by α in the hyperbolic and in
a longer time scale, namely N4/3.

In the second part of the work, we study a conservative particle system with degenerate
rates, namely with nearest neighbor exchange rates which vanish for some configurations.
Due to this degeneracy the hyperplanes with a fixed number of particles can be decomposed
into some irreducible sets of configurations plus isolated configurations that do not evolve
under the dynamics.

We show that, for initial profiles smooth enough and bounded away from zero and one,
under the diffusive time scaling, the macroscopic density profile evolves according to the
porous medium equation. Then we prove the same result for more general profiles for a
slightly perturbed microscopic dynamics: we add jumps of the Symmetric Simple Exclusion
which remove the degeneracy of rates and are properly slowed down in order not to change
the macroscopic behavior. The equilibrium fluctuations and the magnitude of the spectral
gap for this perturbed model are also obtained.
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Chapter 1

Central Limit Theorem for a Tagged
Particle in Asymmetric Simple
Exclusion

1.1 Introduction

The Exclusion process on Zd has been extensively studied. In this process, particles evolve
on Zd according to interacting random walks with an exclusion rule which prevents more
than one particle per site. The dynamics can be informally described as follows. Fix a
probability p(·) on Zd. Each particle, independently from the others, waits a mean one
exponential time, at the end of which being at x it jumps to x + y at rate p(y). If the site
is occupied the jump is suppressed to respect the exclusion rule. In both cases, the particle
waits a new exponential time.

The space state of the process is {0, 1}Zd
and we denote the configurations by the Greek

letter η, so that η(x) = 0 if the site x is vacant and η(x) = 1 otherwise. The case in which
p(y) = 0∀|y| > 1 is referred as the Simple Exclusion process and in the Asymmetric Simple
Exclusion process (ASEP) the probability p is such that p(1) = p, p(−1) = 1 − p with
p 6= 1/2 while for the Symmetric Simple Exclusion process (SSEP) p = 1/2.

For 0 ≤ α ≤ 1, denote by να the Bernoulli product measure on {0, 1}Zd
with density

α. It is known that να is an invariant state for the exclusion process and that all invariant
and translation invariant states are convex combinations of να if p(.) is such that pt(x, y)+
pt(y, x) > 0, ∀x, y ∈ Zd and

∑
x p(x, y) = 1, ∀y ∈ Zd [15].

Assume that the origin is occupied at time 0. Tag this particle and denote by Xt its
position at time t. Applying an invariance principle due to Newman and Wright [17], Kip-
nis in [13] proved a C.L.T. for the position of the Tagged Particle in the one-dimensional
Asymmetric Simple Exclusion process (ASEP), provided the initial configuration is dis-
tributed according to ν∗α, the Bernoulli product measure conditioned to have a particle
at the origin. Transforming the exclusion process into a series of queues, an asymmetric
Zero-Range process with constant rate, the position of the Tagged Particle becomes the
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current through the bond [−1, 0]. Kipnis [13], was able to apply Newman and Wright
results to the Zero-Range process and derive the L.L.N. and C.L.T. for the position of the
Tagged Particle.

Few years later, Ferrari and Fontes [10] proved that the position at time t of the Tagged
Particle, Xt, can be approximated by a Poisson Process. More precisely, they proved that
for all t ≥ 0, if the initial distribution is ν∗α and p > q, Xt = Nt − Bt + B0, where Nt is
a Poisson Process with rate (p − q)(1 − α) and Bt is a stationary process with bounded
exponential moments. As a corollary they obtained the weak convergence of

Xtε−1 − (p− q)(1− α)tε−1

√
(p− q)(1− α)tε−1

to a Brownian motion. The argument is divided in two steps. The convergence of the finite-
dimensional distributions [8] is consequence of the fact that in the scale t

1
2 , the position

Xt can be read from the initial configuration: Xt is given (in the L2-norm) by the initial
number of empty sites in the interval [0, (p − q)αt] divided by α. Tightness follows from
the sharp approximation of Xtε−1 by the Poisson Process and the weak convergence of the
Poisson Process to Brownian motion. Using the approximation of Xt by a Poisson Process
and Kipnis results for the Tagged Particle, the same authors prove equilibrium density
fluctuations for the ASEP in [9]. The density fluctuations for the Totally Asymmetric
Simple Exclusion process (the case p = 1) have also been obtained by Rezakhanlou in [20]
in a more general setting than for the process starting from an equilibrium state.

Recently, Jara and Landim [12] showed that the asymptotic behavior of the Tagged
Particle in the one-dimensional nearest neighbor exclusion process, can be recovered from
a joint asymptotic behavior of the empirical measure and the current through a bond.
From this observation they proved a non-equilibrium C.L.T. for the Tagged Particle in the
SSEP, in the diffusive scaling.

In this paper, besides using this general method to reprove Ferrari and Fontes result on
the convergence of the rescaled position of the Tagged Particle to a Brownian motion in
the hyperbolic time scale, we extended this result by showing that in a longer time scale
the position of the Tagged Particle still depends on the initial configuration.

The advantage of our approach is that it relates the C.L.T. for a Tagged Particle to
the C.L.T. for the empirical measure, a problem which is relatively well understood, see
[14]. In particular, we can expect to apply this approach for a one-dimensional system in
contact with reservoirs.

It was shown by Rezakhanlou [19], that in the ASEP the macroscopic particle density
profile in the hyperbolic scaling evolves according to the inviscid Burgers equation, namely:
∂tρ(t, u) + (p − q)∇(ρ(t, u)(1 − ρ(t, u))) = 0. To establish the C.L.T. for the empirical
measure we need to consider the density fluctuation field as defined in (1.2.2) below. We
show that, in this time scale, the limit density fluctuation field is deterministic, in the sense
that at any given time t, the density field is a translation of the initial one. As mentioned
above, this result was previously obtained in [9]. In order to observe fluctuation from the
dynamics one has to change to the diffusive scaling.



The translation or velocity of the system is given by v = (p−q)(1−2α) and for α = 1/2,
the field does not evolve, and one is forced to go beyond the hydrodynamic scaling. We can
consider the density fluctuation field in the longer time scale as defined in (1.2.5), where
we subtract the velocity of a second class particle and any value of α can be considered in
this setting.

It is conjectured that until the time scale N3/2 the density fluctuation field does not
evolve in time, see chap. 5 of [25] and references therein. The result we obtain is a
contribution in this direction, since we can accomplish the result just up to the time scale
N4/3. The main difficulty in proving the C.L.T. for the empirical measure is the Boltzmann-
Gibbs Principle, which we are able to prove for this time scale using a multi-scale argument.

As a consequence of this translation behavior, we show the dependence on the initial
configuration of the current through a bond and the position of the Tagged Particle in the
longer time scale.

This work is organized as follows. In the second section we introduce some notation
and we state the results. The sketch the proof of the C.L.T. for the empirical measure
associated to the ASEP in the hyperbolic scaling is exposed in the third section. In section
four, we use the same strategy as in [12] to obtain L.L.N. for the position of the Tagged
Particle. The convergence of finite-dimensional distributions of the Tagged Particle to those
of Brownian motion, is proved following the same arguments as in [12], while tightness is
proved by means of the Zero-Range representation as Kipnis in [13]. Both are presented
in section five. In this time scale we show that the current and the position of the Tagged
Particle at time t, can be read from the initial configuration, in section six.

In the following sections we study the same problem up to the time scale N1+γ with
γ < 1/3. We start by showing the C.L.T. for the empirical measure associated to this
process, in section seven. Since a Boltzmann-Gibbs Principle is needed, its proof is the
content of the eighth section and in the subsequent section we treat the problem of tight-
ness. In the last section we prove the dependence on the initial configuration for the current
over a bond and the position of the Tagged Particle, in this longer time scale.

1.2 Statement of Results

The one-dimensional asymmetric simple exclusion process is the Markov process ηt ∈
{0, 1}Z with generator given on local functions by

Lf(η) =
∑

x∈Z

∑
y=x±1

c(x, y, η)[f(ηx,y)− f(η)], (1.2.1)

where c(x, y, η) = p(x, y)η(x)(1− η(y)), p(x, x + 1) = p, p(x, x− 1) = q = 1− p and

ηx,y(z) =





η(z), if z 6= x, y
η(y), if z = x
η(x), if z = y

.

Its description is the following. At most one particle is allowed at each site; if there is a



particle at site x, it jumps at rate p to site x + 1 if there is no particle at that site or to
the site x− 1 at rate q, if it is empty.

Initially, place the particles according to a Bernoulli product measure in {0, 1}Z,
of parameter α ∈ (0, 1), denoted by να. This means that the random variables (η(x))x∈Z,
representing the number of particles in each site x, are independent, and for each site
x ∈ Z, η(x) is distributed according to a Bernoulli distribution of parameter α.

For each configuration η, we denote by πN(η, du) the empirical measure, a measure
in R that assigns mass 1

N
to each particle:

πN(η, du) =
1

N

∑

x∈Z
η(x)δ x

N
(du)

and let πN
t (η, du) = πN(ηt, du). First, we state the C.L.T. for the empirical measure, for

which we need to introduce some notation.
For each integer z ≥ 0, let Hz(x) = (−1)zex2 dz

dx
e−x2

be the Hermite polynomial, and

hz(x) = 1
cz

Hz(x)e−x2
the Hermite function, where cz = z!

√
2π . The set {hz, z ≥ 0} is

an orthonormal basis of L2(R). Consider in L2(R) the operator K0 = x2 − ∆. A simple
computation shows that K0hz = γzhz where γz = 2z + 1.

For an integer k ≥ 0, denote by Hk the Hilbert space induced by S(R) (the space of
smooth rapid decrease functions) and the scalar product < ,̇· >k defined by < f, g >k=<
f, Kk

0 g >, where < ·, · > denotes the inner product of L2(R) and denote by H−k the dual
of Hk relatively to this inner product.

Fix an integer k and denote by Y N
. the density fluctuation field, a linear functional

acting on functions H ∈ S(R) as

Y N
t (H) =

1√
N

∑

x∈Z
H

( x

N

)
(ηtN(x)− α). (1.2.2)

Denote by D(R+,H−k) (resp. C(R+,H−k)) the space of H−k-valued functions, right
continuous with left limits (resp. continuous), endowed with the uniform weak topology, by
QN the probability measure on D(R+,H−k) induced by the density fluctuation field Y N

. and
the product measure να. Consider PN

να
= Pνα the probability measure on D(R+, {0, 1}Z)

induced by να and the Markov process ηt speeded up by N and denote by Eνα expectation
with respect to Pνα .

Theorem 1.2.1. Fix an integer k > 2. Let Q be the probability measure on C(R+,H−k)
corresponding to a stationary Gaussian process with mean 0 and covariance given by

EQ[Yt(H)Ys(G)] = χ(α)

∫

R
H(u + v(t− s))G(u)du (1.2.3)

for every 0 ≤ s ≤ t and H, G in Hk. Here χ(α) = Var(να, η(0)) = α(1 − α) and
v = (p− q)χ′(α) = (p− q)(1− 2α). Then, the sequence (QN)N≥1 converges weakly to the
probability measure Q.



We remark that last theorem holds for the ASEP evolving in any Zd, with the appro-
priate changes. In this case, the limit density fluctuation field at time t is a translation of
the initial density field, since for every H ∈ S(R):

Yt(H) = Y0(TtH), (1.2.4)

where TtH(u) = H(u + vt).
Having the density fluctuations, we can obtain the L.L.N. and the C.L.T. for the current

over a bond, as in [12]. For a site x, denote by JN
x,x+1(t) the current over the bond [x, x+1],

which is the total number of jumps from the site x to the site x+1 minus the total number
of jumps from the site x + 1 to the site x in the time interval [0, tN ].

Following the same arguments as Jara and Landim in [12] we show the C.L.T. for the
current over a fixed bond for the ASEP starting from the invariant measure να.

Denote by ν∗α the measure να conditioned to have a particle at the origin. By coupling
the ASEP starting from να with the ASEP starting from ν∗α, in such a way that both
processes differ at most in one site at any given time, the L.L.N. and the C.L.T. for the
empirical measure and for the current over a bond starting from ν∗α, follows from the L.L.N.
and the C.L.T. for the empirical measure and for the current over a bond starting from να.

Assume now that the initial measure is ν∗α, let PN
ν∗α = Pν∗α be the probability measure

on D(R+, {0, 1}Z) induced by ν∗α and the Markov process ηt speeded up by N and denote
by Eν∗α expectation with respect to Pν∗α .

Denote by XtN the position at time tN ≥ 0 of the tagged particle initially at the
origin. We reprove the L.L.N. for the position of the Tagged Particle, which was previously
obtained by Saada in [22]:

Theorem 1.2.2. Fix t ≥ 0. Then,

XtN

N
−−−−→
N→+∞

vt = (p− q)(1− α)t

in Pν∗α-probability.

and the convergence to the Brownian motion, which was already obtained by Ferrari
and Fontes in [10]:

Theorem 1.2.3. Under Pν∗α,

XtN − vtN√
N |p− q|(1− α)

−−−−→
N→+∞

Bt

weakly, where Bt denotes the standard Brownian motion.

Another interesting property is the dependence on the initial configuration for the
position of the Tagged Particle, which was previously obtained by Ferrari in [8]. Suppose
p > q:



Corollary 1.2.4. Fix t ≥ 0. Then for every ε > 0,

lim
N→+∞

Eν∗α

[(XtN√
N
−

∑(p−q)αtN
x=0 (1− η0(x))

α
√

N

)2−ε]
= 0.

In the hyperbolic scaling, we have seen above that for α = 1/2 the limit density
fluctuation field at time t is the same as the initial one, see relation (1.2.4). In order to
observe fluctuations we are forced to consider a longer time scale.

Henceforth, consider the ASEP evolving in the time scale N1+γ, with γ > 0. In
the sequel, we point out the restrictions needed in γ in order to obtain the results. We
note here, that there is no particular reason for taking α = 1/2, since we can consider a
frame of reference moving with velocity vtN1+γ.

Let α ∈ (0, 1) and redefine the density fluctuation field on H ∈ S(R) by:

Y N,γ
t (H) =

1√
N

∑

x∈Z
H

(x− vtN1+γ

N

)
(ηtN1+γ (x)− α). (1.2.5)

We remark here, than one can define in the hyperbolic scaling of time the density
fluctuation field as above. But in that case the current could not be defined through a
fixed bond, instead it would have to be defined through a bond that depends on time (see
section 9). As we we want to show the C.L.T. for the position of a Tagged Particle using
the relation between the density of particles and the current through a fixed bond (1.4.5),
we have the need to defined the density fluctuation field as in (1.2.2).

As above, let Qγ
N be the probability measure on D(R+,H−k) induced by the density

fluctuation field Y N,γ
. and να, let PN,γ

να
= Pγ

να
be the probability measure on D(R+, {0, 1}Z)

induced by να and the Markov process ηt speeded up by N1+γ and denote by Eγ
να

expec-
tation with respect to Pγ

να
. Now, we state Theorem 1.2.1 in this longer scaling:

Theorem 1.2.5. Fix an integer k > 1 and γ < 1/3. Let Q be the probability measure on
C(R+,H−k) corresponding to a stationary Gaussian process with mean 0 and covariance
given by

EQ[Yt(H)Ys(G)] = χ(α)

∫

R
H(u)G(u)du (1.2.6)

for every s, t ≥ 0 and H, G in Hk. Again χ(α) = α(1− α). Then, the sequence (Qγ
N)N≥1

converges weakly to the probability measure Q.

In order to keep notation simple, here and after, for a random variable X we denote by
X̄ the centered random variable X.

As we follow the martingale approach, the main difficulty in proving this theorem is
the Boltzmann-Gibbs Principle, which we can prove for γ < 1/3 and in this case is
stated in the following way:

Theorem 1.2.6. (Boltzmann-Gibbs Principle)



Fix γ < 1/3. For every every t > 0 and H ∈ S(R),

lim
N→∞

Eνα

[( ∫ t

0

Nγ

√
N

∑

x∈Z
H

( x

N

)
η̄s(x)η̄s(x + 1)ds

)2]
= 0.

Let PN,γ
ν∗α = Pγ

ν∗α be the probability measure on D(R+, {0, 1}Z) induced by ν∗α and the
Markov process ηt speeded up by N1+γ.

By the results just stated, in this longer time scale the system translates in time at
a certain velocity v. This allows us to deduce from the previous results the asymptotic
behavior of the Tagged Particle even in the longer scaling:

Corollary 1.2.7. Fix t ≥ 0, γ < 1/3 and suppose that p > q. Then,

XtN1+γ√
N

−
∑(p−q)αtN1+γ

x=0 (1− η0(x))

α
√

N
−−−−→
N→+∞

0

in Pν∗α-probability.

1.3 Density Fluctuations in the Hyperbolic Scaling

The aim of this section is to prove Theorem 1.2.1. Fix a positive integer k and recall
the definition of the density fluctuation field in (1.2.2). The purpose is to show that Y N

.

converges to a process Y. whose time evolution is deterministic.
Denote by A the operator v∇ defined on a domain of L2(R) and by {Tt, t ≥ 0} the

semigroup associated to A, namely for a function H it holds that TtH(u) = H(u + vt).
For t ≥ 0, let Ft be the σ-algebra on D([0, T ],H−k) generated by Ys(H) for s ≤ t and H
in S(R) and set F = σ(

⋃
t≥0Ft).

To prove the theorem we need to verify that (QN)N≥1 is tight and to characterize the
limit field. To check the last assertion, we consider a collection of martingales associated to
the density fluctuation field. Fix a function H ∈ S(R). By lemma A1.5.1 of [14], denoting
by Wx,x+1(η), the instantaneous current between the sites x and x + 1:

Wx,x+1(η) = c(x, x + 1, η)− c(x + 1, x, η)

and

∇NH
( x

N

)
= N

(
H

(x + 1

N

)
−H

( x

N

))
.

then

MN,H
t = Y N

t (H)− Y N
0 (H)−

∫ t

0

1√
N

∑

x∈Z
∇NH

( x

N

)
Wx,x+1(ηs)ds

is a martingale with respect to the filtration F̃t = σ(ηs, s ≤ t), whose quadratic variation
is given by:

∫ t

0

1

N2

∑

x∈Z

(
∇NH

( x

N

))2[
c(x, x + 1, ηs) + c(x + 1, x, ηs)

]
ds.



Using the fact that
∑

x∈Z∇NH( x
N

) = 0, the integral part of the martingale is equal to:

∫ t

0

1√
N

∑

x∈Z
∇NH

( x

N

)[
W̄x,x+1(ηs)

]
ds.

As we need to write the expression inside last integral in terms of the fluctuation field Y N
s ,

we are able to replace the function W̄x,x+1(ηs) by (p − q)χ′(α)[ηs(x) − α], with the use of
the:

Theorem 1.3.1. (Boltzmann-Gibbs Principle)
For every cylinder function g, for every H ∈ S(R) and every t > 0,

lim
N→∞

Eνα

[( ∫ t

0

1√
N

∑

x∈Z
H

( x

N

){
τxg(ηs)− g̃(α)− g̃′(α)[ηs(x)− α]

}
ds

)2]
= 0,

where g̃(α) = Eνα [g(η)].

In spite of considering the ASEP in the hyperbolic scaling, the proof of the last result
is very close to the one presented for the Zero-Range process in the diffusive scaling, see
chap. 11 of [14], and for that reason we have omitted it.

Assume now, that (QN)N≥1 is tight and let Q be one of its limiting points. By the
result just stated and since limN→+∞ Eνα [(MN,H

t )2] = 0, under Q

Yt(H) = Y0(H) +

∫ t

0

Ys(AH)ds. (1.3.1)

So, d
dt

Yt(H) = Yt(AH). Take r < t, and note that d
dr

< Yr, Tt−rH >= 0. As a consequence,
Yt(H) = Y0(TtH) where TtH(u) = H(u + vt).

Recall that F0 is the σ-algebra on D([0, T ],H−k) generated by Y0(H) for H in S(R).
We start by characterizing the restriction of Q to F0 as in chap. 11 of [14].

Lemma 1.3.2. For every H ∈ S(R), and every t > 0,

lim
N→∞

logEνα [exp{iYt(H)}] = −χ(α)

2
< H,H > .

Proof. As να is a product invariant and translation invariant measure, we have that:

logEνα [exp{iYt(H)}] =
∑

x∈Z
log Eνα

[
exp

{ i√
N

H
( x

N

)
[η(0)− α]

}]
.

Using Taylor expansion, the right hand side of the last expression is equal to

∑

x∈Z

(
− 1

2N
H2

( x

N

)
χ(α)

)
+ O(N− 1

2 ),

which converges to −χ(α)
2

< H, H > as N →∞.



Corollary 1.3.3. Restricted to F0, Q is a Gaussian field with covariance given by

EQ(Y0(G)Y0(H)) = χ(α) < G, H > . (1.3.2)

Proof. Fix a positive integer n, θ = (θ1, θ2, .., θn) in Rn and H1, H2, ..., Hn in Hk. Since Y0

is linear, by the weak convergence of QN and by the previous Lemma it holds that

log EQ[exp{i
n∑

j=1

θjY
N
0 (Hj)}] = lim

N→∞
logEνα [exp{iY N

0 (
n∑

j=1

θjHj)}]

= −χ(α)

2
<

n∑
j=1

θjHj,

n∑
j=1

θjHj > .

So, the Q joint distribution of (Y0(H1), Y0(H2), ..., Y0(Hn)) is Gaussian with covariance
given by (1.3.2). This concludes the proof.

Since Yt(H) = Y0(TtH) together with the result just proved, it is immediate that the
limit density field has covariance given by (1.2.3).

To finish the proof, it remains to show that (QN)N≥1 is tight whose proof follows closely
the same arguments as the ones for the Zero-Range process in the diffusive scaling. Lastly,
we note that once the process evolves on Z and the hyperbolic scale is considered, we must
take an integer k > 2 in order have the density fluctuations field well defined in H−k.

1.4 Law of Large Numbers for the Tagged Particle

In this section we prove Theorem 1.2.2 following the same arguments as Jara and Landim
in [12]. Since we are considering the one-dimensional setting, there is an expression that
relates the position of the Tagged Particle with the current through a fixed bond and the
density of particles. As a consequence, the C.L.T. for the Tagged Particle will follow from
the C.L.T. for the empirical measure and the current through a bond. First, we prove
convergence of the finite-dimensional distributions of the current through a fixed bond.

If we start with a configuration η with a finite number of particles, we have the following
formula

JN
−1,0(t) =

∑
x≥0

(
ηt(x)− η0(x)

)
. (1.4.1)

It is easy to see that such current can be written in terms of the density fluctuation field
(see 1.2.2) as

1√
N

{
JN
−1,0(t)− Eνα [JN

−1,0(t)]
}

= Y N
t (H0)− Y N

0 (H0),

where H0 is the Heaviside function, H0(u) = 1[0,∞)(u). In the general case, the formula
(1.4.1) does not makes sense, and the fluctuation field Y N

t (H0) is not well defined, but
approximating the function H0 by a sequence (Gn)n, defined for each u ∈ R by

Gn(u) = (1− u

n
)+1[0,∞)(u), (1.4.2)



we obtain:

Proposition 1.4.1. For every t ≥ 0,

lim
n→+∞

Eνα

[( J̄N
−1,0(t)√

N
− (Y N

t (Gn)− Y N
0 (Gn))

)2]
= 0

uniformly in N .

Proof. For a site x, consider the martingale Mx,x+1(t) equal to

Mx,x+1(t) = JN
x,x+1(t)−N

∫ t

0

Wx,x+1(ηs)ds, (1.4.3)

whose quadratic variation is given by

< Mx,x+1 >t= N

∫ t

0

c(x, x + 1, ηs) + c(x + 1, x, ηs)ds.

Since the number of particles is preserved, it holds that:

JN
x−1,x(t)− JN

x,x+1(t) = ηt(x)− η0(x)

for all x ∈ Z, t ≥ 0, and we have that

Y N
t (Gn)− Y N

0 (Gn) =
1√
N

∑

x∈Z
Gn

( x

N

){
J̄N

x−1,x(t)− J̄N
x,x+1(t)

}
.

Making a summation by parts and using the explicit knowledge of Gn, the right hand side
of the last expression is equal to

J̄N
−1,0(t)√

N
− 1√

N

Nn∑
x=1

1

Nn
J̄N

x−1,x(t).

So far,

J̄N
−1,0(t)√

N
−

[
Y N

t (Gn)− Y N
0 (Gn)

]
=

1√
N

Nn∑
x=1

1

Nn
J̄N

x−1,x(t).

Representing the current JN
x−1,x(t) in terms of the martingales Mx−1,x(t), the right hand

side of the last expression becomes equal to

1√
N

Nn∑
x=1

1

Nn
Mx−1,x(t) +

1√
N

∫ t

0

1

n

Nn∑
x=1

[Wx−1,x(ηs)− (p− q)χ(α)]ds. (1.4.4)

First we are going to prove that the martingale term converges to 0 in L2(Pνα) as n → +∞.
Estimating their quadratic variation by Nt and using the fact that they are orthogonal,
we obtain that

Eνα

[( 1√
N

Nn∑
x=1

1

Nn
Mx−1,x(t)

)2]
≤ tC

Nn
.



To prove that the integral term converges to 0 in L2(Pνα), we make an elementary compu-
tation to obtain

Eνα

[( 1√
N

∫ t

0

1

n

Nn∑
x=1

[Wx−1,x(ηs)− (p− q)χ(α)]ds
)2]

≤ t2χ(α)(2p2 + 2q2 − 4pq)

n
.

Taking the limit as n →∞, our proof is concluded.

Putting together last result and the C.L.T. for the empirical measure, it holds:

Theorem 1.4.2. (Central Limit Theorem for the current over a bond)
Fix x ∈ Z and let

ZN
t =

1√
N

{
JN

x,x+1(t)− Eνα [JN
x,x+1(t)]

}
.

Then, for every k ≥ 1 and every 0 ≤ t1 < t2 < .. < tk, (ZN
t1

, .., ZN
tk

) converges in law to a
Gaussian vector (Zt1 , .., Ztk) with covariance given by

EQ[ZtZs] = χ(α)|v|s
provided s ≤ t.

Proof. We take x = 0, but the same argument provides the same result for any x ∈ Z. Fix
t ≥ 0 and n ≥ 1. Approximating Gn in L2(R) by a sequence (Hn,k)k≥1 of smooth functions
with compact support we have that:

Eνα [Y N
t (Hn,k)− Y N

t (Gn)]2 ≤ χ(α)||Hn,k −Gn||2.
So, Y N

t (Hn,k) converges in L2(Pνα) to Y N
t (Gn). By Theorem 1.2.1, Y N

t (Hn,k) converges in
law to Yt(Hn,k). On the other hand since Yt is linear and by (1.2.3), (Yt(Hn,k))k≥1 converges
to Yt(Gn), in L2(Q). Then, we conclude that Y N

t (Gn) converges in law to Yt(Gn).
By Proposition 1.4.1, Y N

t (Gn)− Y N
0 (Gn) is a Cauchy sequence in L2(Pνα) uniformly in

N . In particular, Yt(Gn)−Y0(Gn) is a Cauchy sequence and converges to a Gaussian limit
denoted by Yt(H0)− Y0(H0).

So,
J̄N
−1,0(t)√

N
converges in law to Yt(H0)− Y0(H0).

Using the same argument, we show that (
J̄N
−1,0(t1)√

N
, ...,

J̄N
−1,0(tk)√

N
) converges in law to

(Yt1(H0)− Y0(H0), ..., Ytk(H0)− Y0(H0)).
To compute the variances we do the following:

EQ[{Yt(H0)− Y0(H0)}{Ys(H0)− Y0(H0)}]
= lim

n→+∞
EQ[{Yt(Gn)− Y0(Gn)}{Ys(Gn)− Y0(Gn)}]

= χ(α) lim
n→+∞

∫

R

(
Tt−sGnGn − TtGnGn − TsGnGn + G2

n

)
du

Using that Tt(Gn)(u) = Gn(u + vt) and the form of Gn we get the result stated in the
theorem.



Using the coupling argument described in section two, the L.L.N. and the C.L.T. for
the empirical measure and for the current through a fixed bond hold for the ASEP starting
from ν∗α.

Assume now, the initial measure to be ν∗α. Let XtN be the position of the Tagged
Particle at time tN ≥ 0 initially at the origin. Fix a positive integer n. Since we are
considering the one-dimensional setting, particles cannot jumps over other particles, and
therefore for a positive integer n the following relation holds:

{XtN ≥ n} = {JN
−1,0(t) ≥

n−1∑
x=0

ηt(x)} (1.4.5)

which allows, together with the previous results, to obtain L.L.N. and the C.L.T. for the
position of the Tagged Particle.

Our attention is now focused in proving L.L.N. for the Tagged Particle.

Proof of Theorem 1.2.2.
Denote by dae the smallest integer larger or equal to a. Fix u > 0 and take n = duNe in
the last expression, to obtain

{XtN ≥ uN} = {JN
−1,0(t) ≥

duNe−1∑
x=0

ηt(x)}.

Using the expression for the empirical measure we have that:

{XtN ≥ uN} =
{JN

−1,0(t)

N
≥ < πN

t , 1[0,u] > +O(N−1)
}

.

First we prove the L.L.N. for the current. By the martingale decomposition of the current
(see expression (1.4.3)), it holds that:

Eνα

[JN
−1,0(t)

N

]
= Eνα

[M−1,0(t)

N

]
+ Eνα

[ ∫ t

0

W−1,0(ηs)ds
]
.

The first expectation is 0 because M−1,0(t) is a martingale and the second is equal to
(p− q)χ(α)t. As a consequence together with Theorem 1.4.2 we have that

JN
−1,0(t)

N
−−−−→
N→+∞

(p− q)χ(α)t

in Pνα-probability.
On the other hand, < πN

t , 1[0,u] > converges in probability to αu, since:

Eνα

[(
< πN

t , 1[0,u] > −αu
)2]

= Eνα

[( 1

N

Nu∑
x=0

(ηt(x)− α)
)2]

,



and the right hand side of the last expression is equal to 1
N2 (Nu + 1)χ(α), which vanishes

as N →∞. So, we obtain that:

lim
N→+∞

Pν∗α

[XtN

N
≥ u

]
=

{
0, if (p− q)χ(α)t < αu
1, if (p− q)χ(α)t ≥ αu

For u < 0 we obtain a similar result. tu

1.5 Convergence to Brownian motion

In this section, we prove the convergence of the Tagged Particle process, properly centered
and rescaled, to the standard Brownian motion.

Let WtN = 1√
N

(XtN − vtN). The result follows from showing the convergence of finite
dimensional distributions of WtN to those of Brownian motion together with tightness.

1.5.1 Convergence of finite-dimensional distributions

First, we prove that under Pν∗α , for every k ≥ 1 and every 0 ≤ t1 < ... < tk, (Wt1N , ..., WtkN)
converges in law to a Gaussian vector (Wt1 , ..., Wtk) with mean zero and covariance given
by

EQ

[
WtWs

]
= |p− q|(1− α)s,

for 0 ≤ s ≤ t.
For that, fix a > 0 and let p > q. By equation (1.4.5)

{XtN ≥ vtN + a
√

N} =

{
J̄N
−1,0(t) ≥

vtN∑
x=0

η̄t(x) +
a
√

N−1∑
x=1

ηt(x + vtN)−
{
Eνα [JN

−1,0(t)]− α(vtN + 1)
}}

.

We now observe that:

Eνα

[(∑a
√

N−1
x=1 ηt(x + vtN)√

N

)2]
=

aα√
N

. (1.5.1)

So, its variance is bounded by aα√
N

, which implies that 1√
N

∑a
√

N−1
x=1 ηt(x + vtN) converges

in L2(Pνα) to its expectation, which is equal to aα.
Using again the martingale decomposition of the current we obtain that

Eνα

[JN
−1,0(t)√

N

]
= (p− q)χ(α)t

√
N,

so, Eνα

[
JN
−1,0(t)√

N

]
− α(vtN+1)√

N
converges to 0, taking the limit in N .



Finally, by Proposition 1.4.1, for fixed t, 1√
N

{
J̄N
−1,0(t)−

∑vtN
x=0 η̄t(x)

}
behaves as Y N

t (Gn)−
Y N

0 (Gn) − Y N
t (1[0,vt]), as N → +∞ and n → +∞. Using the same arguments as in the

C.L.T. for the current, we show that Y N
t (Gn)− Y N

0 (Gn)− Y N
t (1[0,vt]) converges in law to

a centered Gaussian variable, denoted by Wt. So far we have that

lim
N→+∞

Pν∗α

[XtN − vtN√
N

≥ a
]

= Pν∗α [Wt ≥ aα]

provided that p > q. By the symmetry around the origin, we can get the other case: p < q
and a < 0. So, for each fixed t, WtN converges in law to a Gaussian random variable
Wt

α
=

Yt(Hvt )−Y0(H0)

α
, where Hvt(u) = 1[vt,+∞)(u). By the same argument, it follows that

(Wt1N , ..., WtkN) converges in law to (
Wt1

α
, ...,

Wtk

α
).

To compute the variances, do the following:

EQ[{Yt(Hvt)− Y0(H0)}{Ys(Hvs)− Y0(H0)}]
= lim

n→+∞
EQ[{Yt(Fn,t)− Y0(Gn)}{Ys(Fn,s)− Y0(Gn)}]

= χ(α) lim
n→+∞

∫

R

(
Tt−s(Fn,t)Gn − Tt(Fn,t)Gn − Ts(Fn,s)Gn + G2

n

)
du

where Fn,t(x) = Gn(x− vt). Using that Tt(Gn)(u) = Gn(u+ vt) and the form of Gn we get
the result.

1.5.2 Tightness

To end the proof of the theorem it remains to prove tightness. For that we use a relation
between the ASEP and a Zero-Range process, as Kipnis in [13]. For the latter, the
product measures µα with marginals given by µα{η(x) = k} = α(1 − α)k are extremal
invariant. This process has space state NZ and generator defined on local functions by

Ωf(η) =
∑

x∈Z
1{η(x)≥1}[pf(ηx,x−1) + qf(ηx,x+1)− f(η)],

where p + q = 1 and

ηx,y(z) =





η(z), if z 6= x, y
η(x)− 1, if z = x
η(y) + 1, if z = y

.

The process can also be reversed with respect to any µα, and the reversed process is denoted
by η̂, whose generator Ω̂ is the same as Ω, except that p is replaced by q and vise-versa.

The position of the Tagged Particle in the Zero-Range representation becomes the
current through the bond [−1, 0]:

Xt = −N+
t + N−

t



where N+
t (resp. N−

t ) is the number of particles that jumped from site −1 to site 0 during
the time interval [0, t] (resp. from site 0 to −1). As a consequence, the proof ends if we

show tightness of the distributions of v1(tN)√
N

and v2(tN)√
N

, where v1(t) = N+
t − qt(1− α) and

v2(t) = N−
t − pt(1− α).

With this purpose, we use Theorem 2.1 of [23], with a slightly different definition for
weakly positive associated increments given in [24], namely:

Definition 1.5.1. A process {v(t) : t ≥ 0} has weakly positive associated increments
if for all coordinatewise increasing functions f : R→ R, g : Rn → R

Eµα [f(v(t + s)− v(s))g(v(s1), .., v(sn))] ≥ Eµα [f(v(t))]Eµα [g(v(s1), .., v(sn))],

for all s, t ≥ 0 and 0 ≤ s1 < .. < sn = s, (weakly negative associated in the sense of the
reversed inequality).

Following the same arguments as in Theorem 2 of [13] we note that the processes N+
t

and N−
t , have weakly positive associated increments. For the sake of completeness, we give

a sketch of the proof of this result for the process N+
t .

Let s, t ≥ 0 and 0 ≤ s1 < ... < sn = s, and f, g coordinatewise increasing functions
f : R→ R, g : Rn → R. We have to show that

Eµα [f(N+
t+s −N+

s )g(N+
s1

, .., N+
sn

)] ≥ Eµα(f(N+
t ))Eµα(g(N+

s1
, .., N+

sn
)).

Using the Markov property and by reverting the process ηs with respect to µα into η̂s, we
have

Eµα [f(N+
t+s −N+

s )g(N+
s1

, .., N+
sn

)] =

∫
Eη(f(N+

t ))Êη(g(N−
s1

, .., N−
sn

))dµα.

Denote by ϕ(η), ψ(η) the functions Eη(f(N+
t )) and Êη(g(N−

s1
, .., N−

sn
)), respectively. Each

one of this functions is increasing in each coordinate η(x), because if we add one particle
at site x, it can only increase the number of jumps from −1 to 0 (or from 0 to −1). Using
Lemma 3 of [13], the right hand side of last expression is bigger than

∫
Eη(f(N+

t ))dµα

∫
Êη(g(N−

s1
, ..., N−

sn
))dµα.

And reversing the process again we obtain the result. For N−
t we can use the same argu-

ment.
Moreover, both processes have zero-mean and satisfy:

lim
t→+∞

1

t
Eµα [(vi(t))

2] = σ2
i

for i = 1, 2 with σ2
i < ∞, see Theorem 3 of [13]. In particular, the distributions of the

processes v1(tN)√
N

and v2(tN)√
N

are tight. The proof, see [23] relies on a maximal inequality

[16], which applies to demimartingales. As the processes have weakly positively associated
increments and zero-mean, the demimartingale property follows.



1.6 Dependence on the initial configuration

The first result we state concerns the dependence, of the current through a fixed bond,
on the initial configuration. Here we suppose that v > 0 but for the other case a similar
statement holds.

Proposition 1.6.1. Fix t ≥ 0 and a site x. Then,

lim
N→+∞

Eνα

[( J̄N
x−1,x(t)√

N
−

∑x−1
y=x−vtN η̄0(y)√

N

)2]
= 0.

In the case α = 1/2, the normalized current converges to 0 in the L2(Pνα)-norm. This
result was also obtained before by Ferrari and Fontes in [9].

Proof. Here we consider x = 0, but the same argument applied to any site x provides the
corresponding result.

By Proposition (4.1),
J̄N
−1,0(t)√

N
− (Y N

t (Gn) − Y N
0 (Gn)) converges to zero in L2(Pνα), as

n → +∞, uniformly over N .
On the other hand, Y N

t (Gn) − Y N
0 (TtGn) converges to 0 in the L2(Pνα)-norm, where

TtH(u) = H(u + vt), taking the limit in N .
The idea is the following: define the density fluctuation field as

Ỹ N
t (H) =

1√
N

∑

x∈Z
H

(x− vtN

N

)
[ηtN(x)− α].

As before, we have that

MN,H
t = Ỹ N

t (H)− Ỹ N
0 (H)−

∫ t

0

Γ1(s)ds,

where for UtH(u) = H(u− vt)

Γ1(s) =
1√
N

∑

x∈Z
∇NUsH

( x

N

)
Wx,x+1(ηs)− 1√

N

∑

x∈Z
∂uUsH

( x

N

)
v[ηs(x)− α],

and

(MN,H
t )2 −

∫ t

0

1

N2

∑

x∈Z

(
∇NUsH

( x

N

))2

[c(x, x + 1, ηs) + c(x + 1, x, ηs)]ds

are martingales with respect to the natural filtration.
Since Eνα [(MN,H

t )2] vanishes as N → +∞ and by the Boltzmann-Gibbs Principle (see
Theorem 1.3.1), we have that

lim
N→+∞

Eνα

[(
Ỹ N

t (H)− Ỹ N
0 (H)

)2]
= 0.



But this corresponds to Y N
t (H)−Y N

0 (TtH) converging to 0 in the L2(Pνα)-norm, for every
H ∈ S(R). The result is accomplished for Gn, by approximating them by functions for
which the result holds, just like in the proof of Theorem 1.4.2.

In order to finish the proof it remains to show that

lim
n→+∞

Eνα

[(
Y N

0 (TtGn)− Y N
0 (Gn)− 1√

N

−1∑
x=−vtN

η̄0(x)
)2]

= 0,

uniformly over N .
Using the explicit knowledge of Gn and since να is a product measure, the expectation

can be bounded by:

Eνα

[( 1√
N

−1∑
x=−vtN

(x + vtN

Nn

)
η̄0(x)

)2]
+ Eνα

[( vt

n
√

N

−vtN+Nn∑
x=0

η̄0(x)
)2]

+ Eνα

[( 1√
N

Nn∑
x=−vtN+nN+1

(
1− x

Nn

)
η0(x)

)2]
.

It is easily seen that this is of order O(1/n), which concludes the proof.

Since both, the current over a bond and the density fluctuation field at time t, can
be written in terms of the initial configuration, and since (1.4.5) holds, it is natural that
the position of the Tagged Particle also enjoys this property. That is the content of the
Corollary 1.2.4, whose proof we start to present.

Proof of Corollary 1.2.4.
We are going to show the convergence in Pν∗α-probability to 0 of the random variable
appearing in the statement of the Corollary, and then we show that its L2(Pν∗α)-norm is
finite, which allows to conclude the convergence to 0 in L2−ε(Pν∗α), for any ε > 0.

With that purpose, start by summing and subtracting the expectation of XtN , namely
vtN , in the expression that appears in the statement of the Corollary, and it becomes as:

X̄tN√
N

+

∑(p−q)αtN
x=1 η̄0(x)

α
√

N
.

We start by showing that last expression converges to zero in Pν∗α-probability as N → +∞.
At first note that by the rigid transport of the system it holds that:

lim
N→+∞

Eνα

[(∑vtN
x=1+vtN η̄t(x)

α
√

N
−

∑(p−q)αtN
x=1 η̄0(x)

α
√

N

)2]
= 0.

As a consequence we have to show that:

X̄tN√
N

+

∑vtN
x=1+vtN η̄t(x)

α
√

N
,



converges to zero in Pν∗α-probability as N → +∞.
In order to keep notation simple we denote by ZN

t the random variable:

ZN
t = −

vtN∑
x=1+vtN

η̄t(x)/α.

Notice that vtN + ZN
t is a positive random variable since it corresponds to the number

of holes in the interval [1 + vtN, vtN ].
Fix a > 0, take n = a

√
N + vtN + ZN

t in the expression that relates the position of the
Tagged Particle with the current through the bond [−1, 0] and the density of particles, see
(1.4.5):

{XtN ≥ vtN + a
√

N + ZN
t } =

{
JN
−1,0(t) ≥

vtN∑
x=0

ηt(x) +

a
√

N−1+vtN+ZN
t∑

x=1+vtN

ηt(x)
}

.

Introducing the mean of the current, last expression becomes as

{XtN ≥ vtN + a
√

N + ZN
t } =

{
J̄N
−1,0(t) ≥

vtN∑
x=0

η̄t(x) +

a
√

N−1+vtN+ZN
t∑

x=1+vtN

ηt(x)
}

.

Now, we can divide all the terms by
√

N and then, subtract the mean of the random
variable on the right hand side of last inequality to obtain:

{X̄tN√
N
− ZN

t√
N
≥ a} =

{ J̄N
−1,0(t)√

N
≥

∑vtN
x=0 η̄t(x)√

N
+

∑a
√

N−1+vtN+ZN
t

x=1+vtN
η̄t(x)√

N
+ αa +

αZN
t√
N

}
.

By Proposition 1.6.1, TN
t converges to zero in L2(Pνα) where

TN
t =

J̄N
−1,0(t)√

N
− 1√

N

−1∑
x=−vtN

η̄0(x),

which together with the Boltzmann-Gibbs Principle gives us that:

Pν∗α

{X̄tN√
N

+

∑vtN
x=1+vtN η̄t(x)

α
√

N
≥ a

}
=

Pν∗α

{∑−1+vtN
x=0 η̄t(x)√

N
≥

∑vtN
x=0 η̄t(x)√

N
+

∑a
√

N−1+vtN+ZN
t

x=1+vtN
η̄t(x)√

N
+ αa +

αZN
t√
N

}



Now observe that:

Eνα

[( 1√
N

a
√

N−1+vtN+ZN
t∑

x=1+vtN

η̄t(x)
)2]

= O(N−1/2),

whose proof is presented at the end in order to simplify the exposition. Therefore, for N
sufficiently big we have that

Pν∗α{
X̄tN√

N
+

∑vtN
x=1+vtN η̄t(x)

α
√

N
≥ a} = Pν∗α

{
0 ≥

∑vtN
x=vtN η̄t(x)√

N
+ αa−

∑vtN
x=1+vtN η̄t(x)√

N

}

which concludes the first step of the proof.
For the L2−ε(Pν∗α) convergence, it remains to show that:

sup
N
Eν∗α

[(X̄tN√
N

+

∑(p−q)αtN
x=1 η̄0(x)

α
√

N

)2]
< +∞.

Last result is a consequence of να being a product measure, which implies that:

Eν∗α

[(∑(p−q)αtN
x=1 η0(x)√

N

)2]
≤ (p− q)(1− α)t;

together with a result due to De Masi and Ferrari in [5]:

lim
N→+∞

Eν∗α

[(X̄tN√
N

)2]
= (p− q)(1− α)t.

In order to finish the proof it is enough to show that:

Eνα

[( 1√
N

a
√

N−1+vtN+ZN
t∑

x=1+vtN

η̄t(x)
)2]

= O(N−1/2).

To simplify the computations we take p = 1, nevertheless the case p 6= 1 follows the same
lines. Since να is an invariant measure, last expectation can be written as:

∫
1

N

a
√

N−1+vtN+ZN∑
x,y=1+vtN

η̄(x)η̄(y)να(dη) = 0, (1.6.1)

where ZN is equal to:

ZN = −
vtN∑

x=1+vtN

η̄(x)/α.

Notice that ZN depends on the variables η(x) for x depending on the sites from 1 + vtN
to vtN , while the sum depends on the random variables η(x) for x runing through 1+ vtN



to a
√

N − 1 + vtN + ZN . So, we can separate the sum in (1.6.1) into the sites where the
random variables appearing in the sum and ZN are independent from the sites where they
correlate and it becomes as:

∫

{a√N−1+vtN+ZN≥1+vtN}

1

N

a
√

N−1+vtN+ZN∑
x,y=1+vtN

η̄(x)η̄(y)να(dη) = 0

+

∫

{a√N−1+vtN+ZN<1+vtN}

1

N

a
√

N−1+vtN+ZN∑
x,y=1+vtN

η̄(x)η̄(y)να(dη) = 0.

By independence the first integral is non zero as long as x = y and it equals:

α2

N

∫

{a√N+ZN≥2}

(
a
√

N + ZN − 1
)
να(dη), (1.6.2)

while the second can be written as:

1

N

∫

{a√N+ZN<2}

1+vtN∑

x,y=a
√

N−1+vtN+ZN

η(x)η(y)να(dη) (1.6.3)

−2α

N

∫

{a√N+ZN<2}

1+vtN∑

x,y=a
√

N−1+vtN+ZN

η(x)να(dη) (1.6.4)

+
α2

N

∫

{a√N+ZN<2}

1+vtN∑

x,y=a
√

N−1+vtN+ZN

να(dη). (1.6.5)

Now, we give the route to proceed in the computations. For j = 1, 2, let ZN,j be the
random variable:

ZN,j = −
vtN−j∑

x=1+vtN

η̄(x)/α.

Estimate (1.6.3) by separating the case x = y from the case x 6= y. In the first one the
integral becomes as:

α

N

∫

{a√N+ZN,1<2+(1−α)/α}

(
2 +

(1− α)

α
− a

√
N − ZN,1

)
να(dη),

while in the case x 6= y it becomes as:

α2

N

∫

{a√N+ZN,2<2+2(1−α)/α}

(
2 +

2(1− α)

α
− a

√
N − ZN,2

)(
3− a

√
N − ZN,2

)
να(dη).

On the other hand, (1.6.4) can be written as

−α

N

∫

{a√N+ZN,1<2+(1−α)/α}

(
2 +

(1− α)

α
− a

√
N − ZN,1

)2

να(dη),



while (1.6.5) is equal to

α2

N

∫

{a√N+ZN<2}

(
2− a

√
N − ZN

)2

να(dη). (1.6.6)

Now, it remains to write all the integrals with respect to the random variable ZN,2. Since
the Bernoulli product measure is homogenous we condition on η(x) = 0 and η(x) = 1 for
some site x ∈ [1 + vtN, vtN ], to write the integrals (1.6.2) and (1.6.6) in terms of ZN,1.
Them we repeat the same procedure to write the remaining integrals in terms of ZN,2.
Organizing them all, the result follows. tu

1.7 Density Fluctuations in a longer time scale

Here we are focused in proving Theorem 1.2.5. Fix a positive integer k and recall the
definition of the density fluctuation field in (1.2.5), namely, the linear functional acting on
functions H ∈ S(R) as:

Y N
t (H) =

1√
N

∑

x∈Z
H

(x− vtN1+γ

N

)
(ηtN1+γ (x)− α).

In order to keep notation simple we use UN
t H(u) = H(u− vtNγ).

Recall that Qγ
N is the probability measure on D(R+,H−k) induced by the density fluc-

tuation field Y N,γ
. and να; and Pγ

να
is the probability measure on D(R+, {0, 1}Z) induced

by να and the Markov process ηt speeded up by N1+γ.
As before, we need to prove that the sequence of probability measures (Qγ

N)N is tight
and to characterize the limit field. We start by the latter, while the former is refereed to
the ninth section.

Fix a function H ∈ S(R). By Lemma A1.5.1 of [14]

MN,H
t = Y N

t (H)− Y N
0 (H)−

∫ t

0

ΓH
1 (s)ds, (1.7.1)

is a martingale with respect to F̃t = σ(ηs, s ≤ t), where ΓH
1 (s) is equal to

Nγ

√
N

∑

x∈Z
∇NUN

s H
( x

N

)
Wx,x+1(ηs)− Nγ

√
N

∑

x∈Z
∂uU

N
s H

( x

N

)
v[ηs(x)− α], (1.7.2)

and whose quadratic variation is given by
∫ t

0

Nγ

N2

∑

x∈Z

(
∇NUN

s H
( x

N

))2[
c(x, x + 1, ηs) + c(x + 1, x, ηs)

]
ds. (1.7.3)

Easily one shows that the L2(Pγ
να

)-norm of MN,H
t vanishes as N → +∞ as long as

γ < 1. Then, under a sub-diffusive time scale regime, the only term contributing to the



limit density fluctuation field is its integral part, since its quadratic variation vanishes.
The characterization of the limit of the integral part of the martingale is known as the
Boltzmann-Gibbs Principle and is the main difficulty when showing the equilibrium fluc-
tuations. In that scaling regime the time evolution of the limit density fluctuation field is
given in a similar way to (1.3.1). But when one takes the diffusive scaling a new contribu-
tion arises, since the quadratic variation of the martingale does not vanishes, which agrees
with the fact that in order to observe fluctuations from the dynamics one has to take this
time scale.

Now, we proceed by proving that the integral part of the martingale MN,H
t vanishes

in L2(Pγ
να

) as N → +∞. Since
∑

x∈Z∇NUN
s H

(
x
N

)
= 0, we can introduce it times

Eνα [Wx,x+1(ηs)], in the integral part of the martingale MN,H
t . Using the decomposition

of the instantaneous current

W̄0,1(η) = −(p− q)η̄(0)η̄(1)− (q(1− α) + pα)[η̄(1)− η̄(0)] + v[η(0)− α], (1.7.4)

it becomes as: ∫ t

0

Nγ

√
N

∑

x∈Z
∇NUN

s H
( x

N

)
(q − p)η̄s(x)η̄s(x + 1)ds (1.7.5)

+

∫ t

0

Nγ

√
N

∑

x∈Z
∇NUN

s H
( x

N

)
(q(1− α) + pα)[η̄s(x + 1)− η̄s(x)]ds

+

∫ t

0

Nγ

√
N

∑

x∈Z

{
∇NUN

s H
( x

N

)
− ∂uU

N
s H

( x

N

)}
v[ηs(x)− α]ds.

By a summation by parts, we write the second integral as
∫ t

0

Nγ

N3/2

∑

x∈Z
∆NUN

s H
( x

N

)
Cη̄s(x)ds,

where

∆NH
( x

N

)
= N2

(
H

(x + 1

N

)
+ H

(x− 1

N

)
− 2H

( x

N

))
.

By Schwarz inequality and since να is a product invariant measure, this expression
vanishes in the L2(Pγ

να
)-norm as N → +∞, while by a Taylor expansion last integral

vanishes as N → +∞. Once more, last results hold as long as γ < 1.
It remains to show that the L2(Pγ

να
)-norm of the first integral vanishes as N → +∞.

For that, we use the Botzmann-Gibbs Principle, which is proved in the next section. This
result is accomplished for γ < 1/3, but it should hold for γ < 1/2 as conjectured. We also
remark, that almost all the subsequent results rely on the Boltzmann-Gibbs Principle and
if one shows that it holds for γ < 1/2, one can establish the same results up to the time
scale N3/2.

Assuming that (Qγ
N)N is tight, it has convergent subsequences. Let Q be one of its

limiting points. By the results proved so far, under Q, the density fluctuation field satisfies
Yt(H) = Y0(H).



As above, for t ≥ 0 let Ft be the σ-algebra on D([0, T ],H−k) generated by Ys(H)
for s ≤ t and H in S(R). It is not hard to show as in chap. 11 of [14], that up to
this longer time scale N4/3, Q restricted to F0 is a Gaussian field with covariance given
by EQ(Y0(G)Y0(H)) = χ(α) < G, H > and it is trivial to see that the density field has
covariance given by (1.2.6). This concludes the proof of Theorem 1.2.5.

1.8 Boltzmann-Gibbs Principle

In this section we prove Theorem 1.2.6.
Fix H ∈ S(R) and an integer K. We divide Z in non overlapping intervals of length

K, denoted by {Ij, j ≥ 1}. Then, the expectation that appears in the statement of the
Theorem, can be written as:

Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j≥1

∑
x∈Ij

H
( x

N

)
η̄s(x)η̄s(x + 1)ds

)2]
.

In order to have independence of η̄(x)η̄(x + 1) and η̄(y)η̄(y + 1) for x and y in different
Ij’s, we separate the sum over the intervals Ij for j odd, and j even. Let O denote the set
of odd numbers while E denote the set of even numbers. So, in fact it remains to bound

Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j∈O

∑
x∈Ij

H
( x

N

)
η̄s(x)η̄s(x + 1)ds

)2]
. (1.8.1)

The case j ∈ E follows from the same argument.
Notice that, in this setting, every x ∈ Ij and y ∈ Il, for j 6= l, are at least at a distance

K.
Now, sum and subtract H

(
yj

N

)
, where yj is one point of the interval Ij, inside the

summation over x. Since (x + y)2 ≤ 2x2 + 2y2, expression (1.8.1) can be bounded by

2Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j∈O

∑
x∈Ij

[
H

( x

N

)
−H

(yj

N

)]
η̄s(x)η̄s(x + 1)ds

)2]

+2Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j∈O

H
(yj

N

) ∑
x∈Ij

η̄s(x)η̄s(x + 1)ds
)2]

. (1.8.2)

We are going to estimate each term separately and divide the proof in several lemmas, to
make the exposition clearer. We start by the former.

Lemma 1.8.1. For every H ∈ S(R) and every t > 0, if KNγ−1 → 0 as N → +∞, then

lim
N→∞

Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j∈O

∑
x∈Ij

[
H

( x

N

)
−H

(yj

N

)]
η̄s(x)η̄s(x + 1)ds

)2]
= 0.



Proof. By Schwarz inequality and since να is an invariant product measure, the expectation

is bounded by Ct2 N2γ

N

∑
j

∑
x∈Ij

(
H ′

(
yj

N

))2( |x−yj |
N

)2

. Since x and yj are in the Ij intervals,

that has size K, we can bound last expression by Ct2N2γ||H ′||22(K
N

)2 that vanishes as long
as KNγ−1 → 0 when N → +∞.

Now, we bound expression (1.8.2). We sum and subtract the expectation of
∑

x∈Ij
η̄s(x)η̄s(x+

1) conditioned on the hyperplanes Mj = σ
( ∑

x∈I∗j
η(x)

)
, where I∗j = Ij

⋃{xj+1}, if

Ij = {x0, x1, .., xj}.
Using again the elementary inequality (x + y)2 ≤ 2x2 + 2y2, the expectation in (1.8.2)

is bounded by

2Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j∈O

H
(yj

N

)
Vj(ηs)ds

)2]
(1.8.3)

+2Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j∈O

H
(yj

N

)
E

( ∑
x∈Ij

η̄s(x)η̄s(x + 1)
∣∣∣Mj

)
ds

)2]
(1.8.4)

where
Vj(η) =

∑
x∈Ij

η̄(x)η̄(x + 1)− E
( ∑

x∈Ij

η̄(x)η̄(x + 1)
∣∣∣Mj

)
.

Once more, we bound the integrals separately. We start by bounding (1.8.3).

Lemma 1.8.2. For every H ∈ S(R) and every t > 0, if K2Nγ−1 → 0 as N → +∞, then

lim
N→∞

Eγ
να

[( ∫ t

0

Nγ

√
N

∑
j∈O

H
(yj

N

)
Vj(ηs)ds

)2]
= 0.

Proof. For f, g ∈ L2(να) define the inner product < f,−Lg >να . Let H1 be the Hilbert
space generated by L2(να) and this inner product. Denote by || · ||1 the norm induced by
this inner product and let || · ||−1 be its dual norm with respect to L2(να):

||f ||−1 = sup
g∈L2(να)

{
2 < f, g >να −||g||1

}
. (1.8.5)

By definition for every f ∈ H−1, g ∈ L2(να) and A > 0 it holds that:

2 < f, g >να≤
1

A
||f ||−1 + A||g||1. (1.8.6)

By proposition A1.6.1 of [14], the expectation in the statement of the Lemma is bounded
by

Ct
∣∣∣
∣∣∣ Nγ

√
N

∑
j∈O

H
(yj

N

)
Vj

∣∣∣
∣∣∣
2

−1
,



where C is a constant. By the variational formula for the H−1-norm (1.8.5), last expression
is equal to

Ct sup
h∈L2(να)

{
2

∫
Nγ

√
N

∑
j∈O

H
(yj

N

)
Vj(η)h(η)να(dη)−N1+γ < h,−LS

Nh >α

}
,

and is bounded by

Ct
∑
j∈O

sup
h∈L2(να)

{
2

∫
Nγ

√
N

H
(yj

N

)
Vj(η)h(η)να(dη)−N1+γ < h,−LS

I∗j
h >α

}
,

where LS
I∗j

denotes the restriction of the generator of the one-dimensional Symmetric Simple

Exclusion process (SSEP) that we denote by LS
N , to the set I∗j , namely:

LS
I∗j

f(η) =
∑

x,y∈I∗j
|x−y|=1

1

2
η(x)(1− η(y))[f(ηx,y)− f(η)].

Since E(Vj|Mj) = 0, Vj belongs to the image of the generator LS
I∗j

. Therefore, by (1.8.6)

for each j and Aj a positive constant it holds that

∫
Vj(η)h(η)να(dη) ≤ 1

2Aj

< Vj, (−LS
I∗j

)−1Vj >α +
Aj

2
< h,−LS

I∗j
h >α.

Taking for each j, Aj = N3/2

|H(
yj
N

)| , the expectation becomes bounded by

Ct
∑
j∈O

Nγ

N2
H2

(yj

N

)
< Vj, (−LS

I∗j
)−1Vj >α,

since the other term cancels with the H1-norm of h. By the spectral gap inequality for the
SSEP, see [18], the last expression can be bounded by

Ct
∑
j∈O

Nγ

N2
H2

(yj

N

)
(K + 1)2V ar(Vj, να).

Now we observe that, since we are considering the extended interval I∗j , it holds that

E
(
η̄(x)η̄(x + 1)

∣∣∣Mj

)
= (ηK+1 − α)2 − 1

K
ηK+1(1− ηK+1),

where ηK+1 = 1
K+1

∑
x∈I∗j

η(x). By a simple computation it is not hard to show that

V ar(Vj, να) ≤ KC. Then, the integral becomes bounded by CtNγ

N
(K + 1)2||H||22, which

vanishes as long as K2Nγ−1 → 0 when N → +∞.



To conclude the proof of the theorem it remains to bound (1.8.4). The idea we use
to proceed consists in doing the following. Fix an integer L and consider bigger disjoint
intervals of length M = LK, denoted by {Ĩl, l ≥ 1}. In this setting, we consider L sets of
size K together and we are able to write the expectation appearing in (1.8.4) as:

Eγ
να

[( ∫ t

0

Nγ

√
N

∑

l≥1

∑

j∈Ĩl

H
(yj

N

)
E

( ∑
x∈Ij

η̄s(x)η̄s(x + 1)
∣∣∣Mj

)
ds

)2]
. (1.8.7)

As before, sum and subtract H
(

zl

N

)
, where zl denotes one point of the interval Ĩl, inside

the summation over j. Since (x+ y)2 ≤ 2x2 + 2y2, the expectation (1.8.7) can be bounded
by

2Eγ
να

[( ∫ t

0

Nγ

√
N

∑

l≥1

∑

j∈Ĩl

[
H

(yj

N

)
−H

( zl

N

)]
E

( ∑
x∈Ij

η̄s(x)η̄s(x + 1)
∣∣∣Mj

)
ds

)2]

+2Eγ
να

[( ∫ t

0

Nγ

√
N

∑

l≥1

H
( zl

N

) ∑

j∈Ĩl

E
( ∑

x∈Ij

η̄s(x)η̄s(x + 1)
∣∣∣Mj

)
ds

)2]
. (1.8.8)

The first expectation can be treated in the way as in the proof of Lemma 1.8.1, and it
vanishes if L2KN2γ−2 → 0 as N → +∞.

For the other expectation (1.8.8), inside the sum over l, we sum and subtract E
( ∑

x∈Ĩl
η̄(x)η̄(x+

1)
∣∣∣M̃l

)
where M̃l = σ

( ∑
x∈Ĩ∗l

η(x)
)

and Ĩ∗l denotes the extended interval Ĩl. Then, the

expectation in (1.8.8) can be bounded by

2Eγ
να

[( ∫ t

0

Nγ

√
N

∑

l≥1

H
( zl

N

)
Ṽl(ηs)ds

)2]
(1.8.9)

+2Eγ
να

[( ∫ t

0

Nγ

√
N

∑

l≥1

H
( zl

N

)
E

( ∑

x∈Ĩl

η̄s(x)η̄s(x + 1)
∣∣∣M̃l

)
ds

)2]
, (1.8.10)

where
Ṽl(η) =

∑

j∈Ĩl

E
( ∑

x∈Ij

η̄(x)η̄(x + 1)
∣∣∣Mj

)
− E

( ∑

x∈Ĩl

η̄(x)η̄(x + 1)
∣∣∣M̃l

)
.

We proceed by estimating (1.8.9):

Lemma 1.8.3. For every H ∈ S(R) and every t > 0, if L2KNγ−1 → 0 as N → +∞, then

lim
N→∞

Eγ
να

[( ∫ t

0

Nγ

√
N

∑

l≥1

H
( zl

N

)
Ṽl(ηs)ds

)2]
= 0.



Proof. Using the same arguments as in the proof of Lemma 1.8.2, the expectation becomes
bounded by

Ct
∑

l≥1

sup
h∈L2(να)

{
2

Nγ

√
N

H
( zl

N

)∫
Ṽl(η)h(η)να(dη)−N1+γ < h,−LS

Ĩ∗l
h >α

}
.

Using an appropriate Al and the spectral gap inequality, we can bound last expression by

Ct
∑

l≥1

Nγ

N2
H2

( zl

N

)
(M + 1)2V ar(Vl, να).

Since V ar(Vl, να) ≤ LC, last expression vanishes as long as L2KNγ−1 → 0, when N →
+∞.

To treat the remaining expectation (1.8.10) we continue applying the same steps.

The proof of Boltzmann-Gibbs Principle

The idea of the proof was to take intervals of growing size in each step, in a way that
the expectation vanishes for certain restrictions on this size. The size of the first intervals
taken, was K and the biggest restriction in this size comes from Lemma 1.8.2, namely that
K is such that K2N1−γ → 0 as N → +∞. Therefore, we can take K = N

1−γ
2
−ε.

In the second step we had intervals of bigger size, namely M , where M = LK and the
parameter L has to satisfy L2KNγ−1 → 0 as N → +∞. Since in the first step K = N

1−γ
2
−ε,

we can take L = N
1−γ

4 , and as a consequence M = N
1−γ

2
+ 1−γ

4
−ε.

Continuing the proof applying the same arguments, in the nth step we have intervals,
denoted by {In

p , p ≥ 1 ≥} of length Kn = Nan , where an = (1− γ)(1
2

+ 1
22 + ... + 1

2n )− ε.
Supposing that we stop this induction procedure in the nth step, it remains to bound

the following expectation:

Eγ
να

[( ∫ t

0

Nγ

√
N

∑
p≥1

H
(zp

N

)
E

( ∑
x∈In

p

η̄s(x)η̄s(x + 1)
∣∣∣Mn

p

)
ds

)2]
,

where for each p, In
p is an interval of size Kn, zp is one point of it and the hyperplanes are

Mn
p = σ

( ∑
x∈(In

p )∗ η(x)
)
, where (In

p )∗ is taken as above.

Since να is an invariant product measure, last expectation can be bounded by

t2
N2γ

N

∑
p≥1

(
H

(zp

N

))2

Eνα

[(
E

( ∑
x∈In

p

η̄(x)η̄(x + 1)
∣∣∣Mn

p

))2]
.

Now, it is not hard to show that Eνα

[(
E

( ∑
x∈In

p
η̄(x)η̄(x + 1)

∣∣∣Mn
p

))2]
= O(1). Then the

integral becomes bounded by N2γ

Kn
, and for n sufficiently big, since Kn ∼ N1−γ and γ < 1/3

this expression vanishes as N → +∞. Here is the point in the proof where we need to
impose the restriction on the parameter γ < 1/3.



Remark 1.8.4. Here we give an application of the Boltzmann-Gibbs Principle for the
quadratic density fluctuation field associated to the one-dimensional SSEP, in the diffusive
scaling.

Consider a Markov process ηsym
t with generator given by (1.2.1), with p(x, y) = 1/2 un-

der the diffusive time scale. Consider PN
να

= Pνα the probability measure on D(R+, {0, 1}Z)
induced by the invariant measure να and the Markov process ηsym

t speeded up by N2 and
denote by Eνα the expectation with respect to Pνα.

Define the quadratic density fluctuation field on H ∈ S(R) by:

YN
t (H) =

1√
N

∑

x∈Z
H

( x

N

)
[ηsym

tN2 (x)− α][ηsym
tN2 (x + 1)− α].

Following the same steps as in the proof of the Boltzmann-Gibbs Principle it is easy to
show that:

Corollary 1.8.5. Fix t > 0 and β < 1/2, then

lim
N→∞

Eνα

[(
Nβ

∫ t

0

1√
N

∑

x∈Z
H

( x

N

)
[ηsym

tN2 (x)− α][ηsym
tN2 (x + 1)− α]ds

)2]
= 0.

Therefore, in order to observe fluctuations for the quadratic density fluctuation field,
we need to consider β ≥ 1/2. In fact, in [1] it is shown that

N1/2

∫ t

0

1√
N

∑

x∈Z
H

( x

N

)
[ηsym

tN2 (x)− α][ηsym
tN2 (x + 1)− α]ds

converges in law to a non-Gaussian singular functional of an infinite Ornstein-Uhlenbeck
process.

1.9 Tightness

Now we prove that the sequence of probability measures (Qγ
N)N is tight, following chapter

11 of [14].

Definition 1.9.1. For δ > 0 and a path Y in D([0, T ],H−k), the uniform modulus of
continuity of Y , is defined by

ωδ(Y ) = sup
|s−t|<δ
0≤s,t≤T

‖Yt − Ys‖−k.

The first result gives sufficient conditions for a subset to be weakly relatively compact.

Lemma 1.9.2. A subset A of D([0, T ],H−k) is relatively compact for the uniform weak
topology if

sup
Y ∈A

sup
0≤t≤T

‖Yt‖−k < ∞



lim
δ→0

sup
Y ∈A

ωδ(Y ) = 0.

From this lemma we can transform the concept of tightness by replacing for compactness
its Arzel̈ı¿1

2
Ascoli characterization. So we get a criterium for tightness of a sequence of

probability measures defined on D([0, T ],H−k).

Lemma 1.9.3. A sequence {PN , N ≥ 1} of probability measures defined on D([0, T ],H−k)
is tight if this two conditions hold:

a) lim
A→∞

lim sup
N→∞

PN

[
sup

0≤t≤T
‖Yt‖−k > A

]
= 0

b) lim
δ→0

lim sup
N→∞

PN

[
ωδ(Y ) ≥ ε

]
= 0

for every ε > 0.

In order to show that (Qγ
N)N is tight, we must prove that:

(1) lim
A→+∞

lim sup
N→+∞

Pγ
να

(
sup

0≤t≤T
||Yt||2−k

)
< ∞

(2)∀ε > 0, lim
δ→0

lim sup
N→+∞

Pγ
να

[
ωδ(Y ) ≥ ε

]
= 0.

We start by showing condition (1). For each integer z ≥ 0, recall that hz denotes
the Hermite function defined at the beginning of the second section. Denote by MN,z

t the
martingale MN,hz

t as defined in expression (1.7.1), namely:

MN,z
t = Y N

t (hz)− Y N
0 (hz)−

∫ t

0

Γz
1(s)ds

where Γz
1(s) is equal to:

Nγ

√
N

∑

x∈Z
∇NUN

s hz

( x

N

)[
W̄x,x+1(ηs)

]
− Nγ

√
N

∑

x∈Z
∂uU

N
s hz

( x

N

)
v[ηs(x)− α].

Lemma 1.9.4. There exists a finite constant C(α, T ) such that for every z ≥ 0,

lim sup
N→+∞

Eγ
να

(
sup

0≤t≤T
| < Yt, hz > |2

)
≤ C(α, T ) < hz, hz >.

In this expression < Yt, hz > denotes the inner product of Yt ∈ H−k and hz ∈ Hk.



Proof. By definition, we have that

< Y N
t , hz >= MN,z

t + < Y N
0 , hz > +

∫ t

0

Γz
1(s)ds.

To prove the Lemma, we estimate separately the L2(Pνα)-norm of the terms on the
right hand side of last equality. A simple computation shows that

lim
N→+∞

Eγ
να

[(∣∣∣ < Y N
0 , hz >

∣∣∣
)2]

= χ(α) < hz, hz > .

The L2(Pνα)-norm for the martingale term vanishes, combining Doob inequality:

Eγ
να

(
sup

0≤t≤T
|MN,z

t |2
)
≤ 4Eγ

να

(
|MN,z

T |2
)
,

with the fact that Eγ
να

[(MN,z
T )2] vanishes as N → +∞. This last result is a consequence of

estimates in the quadratic variation of the martingale, see (1.7.3).
To end, it remains to bound the other term, namely:

Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Γz
1(s)ds

)2]
.

The idea to estimate last integral is the same as we used when analyzing the integral part
of the martingale, see the expression (1.7.5). By doing so, we have to bound

Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

N3/2

∑

x∈Z
∆NUN

s hz

( x

N

)
η̄s(x)ds

)2]
,

Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

√
N

∑

x∈Z

{
∇NUshz

( x

N

)
− ∂uUshz

( x

N

)}
v[ηs(x)− α]ds

)2]
,

and

Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

√
N

∑

x∈Z
∇Nhz

( x

N

)
η̄s(x)η̄s(x + 1)ds

)2]
. (1.9.1)

By Schwarz inequality and since να is an invariant product measure, the first integral is

bounded by T 2N2γ−2 1
4N

∑
x∈Z

(
∆NUN

s hz

(
x
N

))2

α(1− α), which vanishes as N → +∞.

By Taylor expansion, the second expectation vanishes.
In order to bound the last integral, we use the same idea as in the Boltzmann-Gibbs

Principle. Then, we can bound the expectation (1.9.1) by

Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

√
N

∑
j∈O

∑
x∈Ij

∇Nhz

( x

N

)
η̄s(x)η̄s(x + 1)ds

)2]
,

where the Ij’s are taken as in the proof of Theorem 1.2.6, with j odd for example.



By summing and subtracting hz

(
yj

N

)
, where yj is one point of the interval Ij, we bound

last expectation by

2Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

√
N

∑
j∈O

∑
x∈Ij

(
∇Nhz

( x

N

)
−∇Nhz

(yj

N

))
η̄s(x)η̄s(x + 1)ds

)2]

+2Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

√
N

∑
j∈O

∇Nhz

(yj

N

) ∑
x∈Ij

η̄s(x)η̄s(x + 1)ds
)2]

. (1.9.2)

By Schwarz inequality and since να is an invariant product measure, the first integral
vanishes if K is such that KNγ−1 → 0 as N → +∞, see Lemma 1.8.1.

To bound (1.9.2), we sum and subtract inside the sum over j, the expectation of∑
x∈Ij

η̄s(x)η̄s(x+1) conditioned on the hyperplanes Mj = σ(
∑

x∈I∗j
η(x)), where I∗j denotes

the extended interval Ij. Then, we need to bound

Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

√
N

∑
j∈O

∇Nhz

(yj

N

)
Vj(ηs)ds

)2]

and

Eγ
να

[
sup

0≤t≤T

( ∫ t

0

Nγ

√
N

∑
j∈O

∇Nhz

(yj

N

)
E

( ∑
x∈Ij

η̄s(x)η̄s(x + 1)|Mj

)
ds

)2]
.

where
Vj(η) =

∑
x∈Ij

η̄s(x)η̄s(x + 1)− E
( ∑

x∈Ij

η̄s(x)η̄s(x + 1)|Mj

)
.

By Lemma 4.3 of [4], the first integral is bounded by

C0

∫ T

0

∣∣∣
∣∣∣ Nγ

√
N

∑
j∈O

∇Nhz

(yj

N

)
Vj

∣∣∣
∣∣∣
2

−1
ds,

where C0 is a constant. To bound this H−1-norm we follow the same computations as in
Lemma (1.8.2), and it is not hard to show that it vanishes for K, such that K2Nγ−1 → 0 as
N → +∞. To bound the other integral, we proceed in the same lines as in the Boltzmann-
Gibbs Principle.

Corollary 1.9.5. For each k > 1

(a) lim sup
N→+∞

Eγ
να

(
sup

0≤t≤T
||Yt||2−k

)
< ∞

(b) lim
n→+∞

lim sup
N→+∞

Eγ
να

[
sup

0≤t≤T

∑

|z|≥n

(< Yt, hz >)2γ−k
z

]
= 0.



Proof. Recall the definition of Hk and the inner product <,>k at the beginning of the
second section. Since < f, g >k=

∑
z∈Z < f, hz >< g, hz > γ−k

z , then

lim sup
N→+∞

Eγ
να

(
sup

0≤t≤T
||Yt||2−k

)
≤ lim sup

N→+∞

∑

z∈Z
γ−k

z Eγ
να

(
sup

0≤t≤T
< Yt, hz >2

)
.

and by the previous Lemma it is bounded by C(α, T )
∑

z∈Z γ−k
z , which is finite as long as

k > 1. The assertion (b) follows by the same argument.

We note that this is the place where we need the restriction k > 1 in order to have the
density fluctuation field well defined in H−k.

The first assertion of the previous corollary shows that the condition (1) holds. So, in
order to prove that the sequence (Qγ

N)N is tight we only have to show (2). In view of (b)
of the previous corollary, this follows from the next Lemma:

Lemma 1.9.6. For every n ∈ N and every ε > 0,

lim
δ→0

lim sup
N→+∞

Pγ
να

[
sup
|s−t|<δ
0≤s,t≤T

∑

|z|≤n

(< Yt − Ys, hz >)2γ−k
z > ε

]
= 0.

Proof. To prove this Lemma it is enough to show that

lim
δ→0

lim sup
N→+∞

Pγ
να

[
sup
|s−t|<δ
0≤s,t≤T

(< Yt − Ys, hz >)2 > ε
]

= 0.

for every z ∈ Z and ε > 0.
Fix z ∈ Z and recall that M z

t =< Yt, hz > − < Y0, hz > +
∫ t

0
Γz

1(s)ds. The Lemma
follows from the next two results.

Lemma 1.9.7. Fix a function H ∈ S(R). For every ε > 0

lim
δ→0

lim sup
N→+∞

Pγ
να

[
sup
|s−t|<δ
0≤s,t≤T

|MN,H
t −MN,H

s | > ε
]

= 0.

Proof. Denote by ω′δ(M
N,H) the modified modulus of continuity defined as

ω′δ(M
N,H) = inf

{ti}
max
0≤i≤r

sup
ti≤s<t≤ti+1

|MN,H
t −MN,H

s |

where the infimum is taken over all partitions of [0, T ] such that 0 ≤ i ≤ r 0 = t0 < t1 <
... < tr = T with ti+1 − ti > δ.

Since

sup
t
|MN,H

t −MN,H
t− | = sup

t
| < Y N

t , H > − < Y N
t− , H > | ≤ ||∇H||∞

N1+ 1
2



and
ωδ(M

N,H) ≤ 2ω′δ(M
N,H) + sup

t
|MN,H

t −MN,H
t− |

so, the proof ends if we show that

lim
δ→0

lim sup
N→+∞

Pγ
να

[
ω′δ(M

N,H) > ε
]

= 0

for every ε > 0.
By the Aldous criterium, see for example Proposition 4.1.6 of [14], it is enough to show

that:
lim
δ→0

lim sup
N→+∞

sup
τ∈Tτ
0≤θ≤δ

Pγ
να

[
|MN,H

τ+θ −MN,H
τ | > ε

]
= 0

for every ε > 0. Here Tτ denotes the family of all stopping times, with respect to the
canonical filtration, bounded by T . Using Chebychevs inequality together with the Op-
tional Sampling Theorem, we have that

Pγ
να

[
|MN,H

τ+θ −MN,H
τ | > ε

]
≤ Eγ

να
[(MN,H

τ+θ )2 − (MN,H
τ )2]

ε2
.

By expression (1.7.3), last expression is bounded by

1

ε2
Eγ

να

[ ∫ τ

0

Nγ

N2

∑

x∈Z

(
∇NUN

s H
( x

N

))2[
c(x, x + 1, ηs) + c(x + 1, x, ηs)

]
ds

]

which vanishes as N → +∞.

Lemma 1.9.8. Fix H ∈ S(R). For every ε > 0

lim
δ→0

lim sup
N→+∞

Pγ
να

[
sup
|s−t|<δ
0≤s,t≤T

∣∣∣
∫ t

s

ΓH
1 (r)dr

∣∣∣ > ε
]

= 0

Proof. By using the explicit knowledge of ΓH
1 (r) (see 1.7.2), the decomposition of the in-

stantaneous current (1.7.4) and similar computations as the ones performed when analyzing
the integral part of the martingale MN,H

t , we just need to bound:

Pγ
να

[
sup
|s−t|<δ
0≤s,t≤T

∣∣∣
∫ t

s

Nγ

√
N

∑

x∈Z
∇NUN

r H
( x

N

)
η̄r(x)η̄r(x + 1)dr

∣∣∣ > ε
]
.

Dividing the interval [0, T ] in small intervals of length δ, last probability is bounded by

T

δ
Pνα

[
sup

0≤t≤δ

∣∣∣
∫ t

0

Nγ

√
N

∑

x∈Z
∇NUN

r H
( x

N

)
η̄s(x)η̄s(x + 1)dr

∣∣∣ >
ε

2

]
.

Using Chebychev inequality, the last probability is bounded by an expectation analogous
to the one that appeared at the end of the proof of Lemma (1.9.4) which we showed to
vanish as N → +∞



1.10 Dependence on the initial configuration for the

longer time scale

We start by considering the case α = 1/2 which implies that v = 0. In this case, we can
define ( as in the hyperbolic scaling) for a site x, the current over the fixed bond [x, x + 1]
denoted by JN,γ

x,x+1(t), as the total number of jumps from the site x to the site x+1 minus the
total number of jumps from the site x + 1 to the site x during the time interval [0, tN1+γ].

In this particular case, the density fluctuation field at time t is the same as at time 0.
As a consequence, the current through [x, x + 1] converges to 0 in the L2(Pγ

να
)-norm:

Proposition 1.10.1. Fix t ≥ 0, a site x ∈ Z and γ < 1/3. Then,

lim
N→+∞

Eγ
να

[( J̄N,γ
x−1,x(t)√

N

)2]
= 0.

The idea of the proof is the same as the one used in the hyperbolic scaling, and it relies
on the following result:

Proposition 1.10.2. For every t ≥ 0 and γ < 1/3:

lim
n→+∞

Eγ
να

[( J̄N,γ
x−1,x(t)√

N
− (Y N,γ

t (Gn)− Y N,γ
0 (Gn))

)2]
= 0,

uniformly over N , where Gn was defined in (1.4.2).

Proof. Recall the proof of Proposition 1.4.1. There is only a slight difference that we need
to remark. The expression (1.4.4) in the proof of that Proposition, now becomes:

1√
N

Nn∑
x=1

1

Nn
MN,γ

x−1,x(t) +
Nγ

√
N

∫ t

0

1

n

Nn∑
x=1

[Wx,x+1(ηs)− (p− q)χ(α)]ds.

It is not hard to prove that the martingale term converges to 0 in L2(Pγ
να

), since we can
estimate their quadratic variation by N1+γt to obtain

Eγ
να

[( 1√
N

Nn∑
x=1

1

Nn
MN,γ

x−1,x(t)
)2]

≤ tNγ−1

n
,

which vanishes as n → +∞.
Now, we need to bound the integral term, namely:

Eγ
να

[( Nγ

√
N

∫ t

0

1

n

Nn−1∑
x=0

W̄x,x+1(ηs)ds
)2]

.



Using the decomposition of the instantaneous current, see (1.7.4), it is enough to bound

Eγ
να

[( Nγ

√
N

∫ t

0

1

n

Nn−1∑
x=0

η̄s(x)η̄s(x + 1)ds
)2]

.

Using the inequality (x + y)2 ≤ 2x2 + 2y2, last expectation is bounded by

2Eγ
να

[((Nn)γ

√
nN

∫ t

0

Nn∑
x=0

η̄s(x)η̄s(x + 1)ds
)2]

+ 2Eγ
να

[( Nγ

√
N

∫ t

0

1

n
η̄s(Nn− 1)η̄s(Nn)ds

)2]
.

Recall the proof of the Boltzmann-Gibbs Principle (Theorem 1.2.6) when applied to
the function H(u) = 1[0,1](u), which gives us that the expectation on the left hand side of
last expression vanishes as n → +∞, uniformly over N .

By Schwarz inequality and since να is an invariant product measure, the other term
vanishes as n → +∞, which concludes the proof.

Last result is stated for the bond [−1, 0] but for [x, x + 1] a similar statement holds.
Consider now the case α 6= 1/2. In this case, by the definition of the density fluctuation

field (see (1.2.5)), as time is going by the position of the particles start to change. So, if
there is initially a particle at site x and if it does not move, then at time t, its position is
the site x+ [vtN1+γ], that we denote by yx

t . By this reason, we cannot consider any longer
the current through a fixed bound, but we must consider the current through a bond that
depends on time.

Let JN,γ
yx

t
(t) be the current trough the bond [yx

t , yx
t +1], defined as the number of particles

that jump from yx
t to yx

t + 1, minus the number of particles that jump from yx
t + 1 to yx

t ,
from time 0 to tN1+γ. Formally we have that:

JN,γ
yx

t
(t) =

∑
y≥1

(
ηt(y + yx

t )− η0(y + x)
)
.

As a consequence, it holds that:

Proposition 1.10.3. Fix t ≥ 0, a site x ∈ Z and γ < 1/3. Then,

lim
N→+∞

Eγ
να

[ J̄N,γ
yx

t
(t)√

N

]2

= 0.

As in the hyperbolic scaling, this last results is a consequence of the following:

Proposition 1.10.4. For every t ≥ 0 and γ < 1/3:

lim
n→+∞

Eγ
να

[( J̄N,γ
yx

t
(t)√

N
− (Y N,γ

t (Gn)− Y N,γ
0 (Gn))

)2]
= 0,

uniformly over N .



Proof. Recall the proof of Proposition 1.10.2. The martingale associated to JN,γ
yx

t
(t) is now

given by

MN,γ
x (t) = JN,γ

yx
t

(t)−
∫ t

0

{
N1+γWyx

s
(ηs) + ∂sJ

N,γ
yx

s
(s)

}
ds,

where Wyx
s
(η) denotes the instantaneous current through the bond [yx

t , yx
t + 1]. Since

∂sJ
N,γ
yx

t
(s) = −vN1+γηs(y

x
s ) and repeating the same arguments as in the proof of Proposition

1.10.2, the result follows.

Proof of Corollary 1.2.7
In this case there is a relation between the position of the Tagged particle and the current
through the bond [y−1

t , y−1
t + 1] and the density of particles, which is given by:

{
XtN1+γ ≥ a

}
=

{
JN,γ

y−1
t

(t) ≥
a−1∑

x=vtN1+γ

ηt(x)
}

.

Repeating the same computations as in the proof of Corollary 1.2.4, using the fact that

Eγ
να

[JN,γ

y−1
t

(t)] = (p− q)α2tN1+γ; that
J̄N,γ

y−1
t

(t)

√
N

converges to 0 in the L2(Pγ
να

)-norm; that

lim
N→+∞

Eγ
να

[(
Y N,γ

t (H)− Y N,γ
0 (H)

)2]
= 0

for every H ∈ S(R) and also that

Eγ
να

[( 1√
N

a
√

N−1+vtN1+γ+ZN,γ
t∑

x=1+vtN1+γ

η̄t(x)
)2]

= O(N−1/2),

where ZN,γ
t

ZN,γ
t = −

vtN1+γ∑

x=1+vtN1+γ

η̄t(x)/α

the result follows. tu



Chapter 2

Hydrodynamic Limit for a Particle
System with degenerate rates

2.1 Introduction

The purpose of this work is to define a conservative interacting particle system whose
macroscopic density profile evolves according to the porous medium equation, namely
the partial differential equation given by

{
∂tρ(t, u) = ∆ρm(t, u)

ρ(0, ·) = ρ0(·)
(2.1.1)

where ∆ =
∑

1≤j≤d ∂2
uj

and m ∈ N \ {1}. This can be rewritten in the divergence form

as ∂tρ(t, u) = ∇(D(ρ(t, u))∇(ρ(t, u))) with diffusion coefficient D(ρ(t, u)) = mρm−1(t, u),
which goes to zero as ρ → 0 and thus the equation looses its parabolic character.

One of the most important properties of the porous medium equation is that its solu-
tions can be compactly supported at each fixed time or, in physical terms, to have a finite
speed of propagation. This is in strong contrast with the solutions of the classical heat
equation. A nonnegative solution of the heat equation is always positive on its domain. A
second observation is that the solutions of the equation (2.1.1) can be continuous on the
domain of definition without being smooth at the boundary. The existence of this kind of
solutions is a direct consequence of the degeneracy of D(ρ) as ρ → 0. For a reference on
the mathematical properties of this equation we refer to [26] and references therein. We
also recall that such equation is relevant in different contexts in physical literature beyond
the description of the density of an ideal gas flowing isothermally through an homogeneous
porous medium (corresponding to the choice m = 2).

A microscopic derivation of the porous medium equation has been already obtained in
[6] and [7], by considering a model in which the occupation number is a continuous variable.
Here we consider instead a model with discrete occupation variables: our microscopic
dynamics is given by stochastic lattice gases with hard core exclusion, namely systems of
interacting particles on the d-dimensional discrete torus Td

N with the constraint that on
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each site there can be at most one particle. A configuration is therefore defined by giving
for each site x ∈ Td

N the occupation number η(x) ∈ {0, 1}, which stands for empty or
occupied sites, respectively. Evolution is then given by a continuous time Markov process
during which the jump of a particle from a site x to a nearest neighbor site y occurs at rate
c(x, y, η). The choice c(x, y, η) = 1 corresponds to the Symmetric Simple Exclusion Process
(SSEP) and, as is very well known, leads to the heat equation under diffusive re-scaling,
namely D(ρ) = 1. In order to slow down the low density dynamics and obtain a diffusion
coefficient which degenerates for ρ → 0, we impose at the level of rates a local constraint
(in addition to hard core exclusion) that must be satisfied in order for a particle jump to
be allowed. This constraint requires a minimal number of occupied sites in a proper local
neighborhood of the jumping particle so that, since the typical number of particles in a
given region decreases as ρ → 0, D(ρ) will also decrease. At the same time the rates are
chosen in order to satisfy the detailed balance condition with respect to Bernoulli product
measure at any density, as for SSEP, namely the constraints do not introduce additional
interactions beyond hard core exclusion.

The models we introduce belong to the class of kinetically constrained lattice gases
(KCLG), which have been introduced and analyzed in physical literature since the late
1980’s to model liquid/glass and more general jamming transitions (see for a review [21, 3]
and references therein). For most KCLG a diffusion degenerate coefficient is expected when
ρ → 0 but, for very restrictive choices of the constraints, the degeneracy could even occur
at non trivial critical density 1. Here we provide the first derivation of the hydrodynamic
limit for the simplest KCLG, namely those that belong to the class of non cooperative
KCLG. This means that the rates are such that: it is possible to construct a proper finite
group of particles that can be moved all over the lattice by a deterministic path (namely
one which has strictly positive rates for any configuration); any jump of a particle to a
neighboring site can be performed when the special groups of particles is brought in its
vicinity. A configuration containing this special group of particles can thus be connected
to any other one with the same property by an allowed path. Therefore, very loosely
speaking, it is expected that cooperative KCLG behave like a re-scaled SSEP with special
groups of particles playing the role of single particles (which are always mobile for SSEP)
and their diffusion coefficient should degenerate only when D(ρ) → 0. As we will see the
diffusion coefficient indeed degenerates only when ρ → 0 and in order to prove this result
the non cooperative property will play a key role since we will use it to provide paths which
allow to perform particle exchanges. The use of similar path arguments for KCLG had
already been exploited in [2], were the scaling with size of the spectral gap and log Sobolev
constant for non cooperative models in contact with particle reservoirs at the boundary
were derived. A similar case in which the diffusion coefficient does not vanish has already
been studied in [25]. Finally, we stress that all along our proofs of hydrodynamics (both
for the Entropy and Relative Entropy method) we use an additional property of the rates:

1Note that the role of particles and vacancy is usually exchanged in physical literature with respect to
our convention: vacancies rather then particles are needed to facilitate motion. With this notation the
diffusion coefficient degenerates at high rather than low density.



the fact that they are of gradient type. A natural development of the present work would
be to generalize the present results to non cooperative KCLG with non gradient rates.

Here is an outline of the paper. In the second section we introduce the notation and state
the main results. The proof of the hydrodynamic limit by the Relative Entropy method
for the original process is presented in the third section. Perturbing slightly the dynamics
by adding jumps of the Symmetric simple Exclusion process, we derive the hydrodynamic
limit for this perturbed process following the Entropy Method. This is described in section
four. In the fifth section, we sketch some inequalities that are used through the sequel. As
a Replacement Lemma is needed its proof is refereed to section six. In the last section we
treat the problem of the spectral gap.

2.2 Statement of results

The models we consider are continuous time Markov processes ηt with space state χN
d =

{0, 1}Td
N , where Td

N = {0, 1, .., N − 1}d is the discrete d-dimensional torus. Let η denote
a configuration in χN

d , x be a site in Td
N and η(x) = 1 if there is a particle at site x,

otherwise η(x) = 0. The models we consider have elementary moves corresponding to
jump of particles among nearest neighbor sites, x and y, occurring at a rate c(x, y, η)
which depends on both x, y and on the value of the configuration η in a finite range
neighborhood of x and y. Furthermore these rates are symmetric with respect of an x-y
exchange c(x, y, η) = c(y, x, η) and are translation invariant. More precisely the dynamics
is defined by means of an infinitesimal generator, given on local functions f : χN

d → R by

(LP f)(η) =
∑

x,y∈Td
N

|x−y|=1

c(x, y, η)η(x)(1− η(y))(f(ηx,y)− f(η)), (2.2.1)

where |x− y| = ∑
1≤i≤d |xi − yi| is the sum norm in Rd and

ηx,y(z) =





η(z), if z 6= x, y
η(y), if z = x
η(x), if z = y

. (2.2.2)

In the sequel we consider

c(x, x + ej, η) = η(x− ej) + η(x + 2ej) (2.2.3)

where {ej, j = 1, .., d} denotes the canonical basis of Rd, which in the hydrodynamic limits
leads to the porous medium equation (2.1.1) for m = 2 and we prove all the theorems for
this choice of the rates. But we can provide for any m a proper choice of the rates such
that all proofs can be readily extended leading in the diffusive re-scaling to the porous
medium equation with the correspondent m. For instance in the case m = 3, the rates are
given by

c(x, x + ej, η) = η(x− ej)η(x + 2ej) + η(x− 2ej)η(x− ej) + η(x + 2ej)η(x + 3ej).



Note that both the choices of the jump rates taken above have the property of defining
a gradient system, namely one for which the instantaneous current between the sites 0
and ej:

W0,ej
(η) = c(0, ej, η){η(0)(1− η(ej))− η(ej)(1− η(0))}

can be rewritten as a function minus its translation. This property will be a key ingredient
when deriving the hydrodynamic limit. Also, both the models are non cooperative in any
dimension according to the definition given in introduction.

Consider for example the rates (2.2.3) in one dimension. A possible choice for the mobile
cluster is given by two particles at distance at most two. Let us describe the deterministic
sequence of allowed moves (i.e. with strictly positive exchange rate) which we should
perform to shift of one step to the right the mobile cluster when η(x) = η(x + e1) = 1, i.e.
to transform η into η′ with η′(x+e1) = η′(x+2e1) = 1, η′(x) = η(x+2e1) and η′(z) = η(z)
for z 6∈ (x, x + e1, x + 2e1). First we make the move η → ηx+e1,x+2e1 , which is allowed since
c(x+e1, x+2e1, η) ≥ η(x) = 1. Then we perform the move ηx+e1,x+2e1 → (ηx+e1,x+2e1)x,x+e1

which is also allowed, since c(x, x + e1, η
x+e1,x+2e1) ≥ ηx+e1,x+2e1(x + 2e1) = η(x + e1) = 1.

The case in which we have instead the particles at distance two, η(x) = η(x+2e1) = 1, can
be treated analogously. The second property which characterizes non cooperative models
can also be readily checked: if we are given any two neighboring sites y, y+e1, the exchange
of their occupation variables can be performed if we bring the mobile group of two particles
in y− 2e1, y− e1 since c(y, y + e1, η) ≥ η(y− e1). It is then possible to verify that any two
configurations η and η′ with the same number of particles,

∑
η(x) =

∑
η′(x) and both

containing at least two particles at distance at most two can be connected one to another
via a sequence of allowed jumps.

Let να be the Bernoulli product measure in χN
d , with α ∈ (0, 1). Since c(x, y, η) =

c(y, x, η) ∀x, y ∈ Td
N , the measures να are reversible for this process ∀α, as for the SSEP.

By the degeneracy of the rates, other invariant measures arise naturally. For example in the
one dimensional setting, any configuration η such that the distance between the position of
two consecutive occupied sites is bigger than two has all the exchange rates which vanish.
Therefore it is a blocked configuration and a Dirac measure supported on it is an invariant
measure for this process.

Let ΣN,k denote the hyperplane of configurations with k particles, namely

ΣN,k = {η ∈ χN
d :

∑

x∈Td
N

η(x) = k}, (2.2.4)

which is invariant under the dynamics. We say that O is an irreducible component of ΣN,k

if for every η, ξ ∈ O it is possible to go from η to ξ by a sequence of allowed jumps. For
SSEP, the hyperplanes ΣN,K are irreducible components for any choice of k and N . In the
presence of constraints, a more complicated decomposition in general arises. For example
in d = 1 with the rates (2.2.3), the above observation on blocked configurations and on the
non cooperative character of the model, leads to the following irreducible decomposition
for the hyperplanes. If k > N/3, ΣN,K is irreducible. Instead, if k ≤ N/3, ΣN,k is reducible
and decomposable into the irreducible component which contains all configurations with



at least one couple of particles at distance at most two plus many irreducible sets each
containing only a blocked configuration

The irreducible decomposition in dimension d > 1 is more complicated. In this case
the model is still non cooperative and a possible mobile cluster is given by a d-dimensional
hypercube of particles of linear size 2. For any choice of the spatial dimension d, it is
possible to identify a constant C(d) < ∞ such that the hyperplane ΣN,k is irreducible for
k > C(d)(N/3)d, while it is reducible in several components for k ≤ C(d)(N/3)d. In this
case we have: (i)the irreducible component which contain configurations with at least one
d-dimensional hypercube of particles of linear size two plus all configurations that can be
connected to these; (ii) irreducible components which contain single (blocked) configura-
tion; (iii) other irreducible components which contain neither blocked configurations nor
any configuration belonging to (i). An example of irreducible set of the third kind for the
rates (2.2.3) in d = 2 is for example the one that contains all configurations which have
two particles at distance smaller or equal to two on a given line, for x = (x1, x2) such that
η(x + ei) = η(x) = 1 or η(x + 2ei) = η(x) = 1 and are completely empty ∀ y = (y1, y2)
which do not belong to the same line, namely y2 6= x2.

In order to investigate the hydrodynamic limit, we need to settle some notation. Define
the empirical measure by:

πN
t (du) = πN(ηt, du) =

1

Nd

∑

x∈Td
N

ηt(x)δ x
N

(du) (2.2.5)

where δu denotes the Dirac measure at u.
Let Td denote the d-dimensional torus. Fix now, a initial profile ρ0 : Td → [0, 1] and

denote by (µN)N≥1 a sequence of probability measures on χN
d .

Definition 2.2.1. A sequence (µN)N≥1 is associated to ρ0, if for every continuous
function H : Td → R and for every δ > 0

lim
N→+∞

µN
[
η :

∣∣∣ 1

N

∑

x∈Td
N

H
( x

N

)
η(x)−

∫

Td

H(u)ρ0(u)du
∣∣∣ > δ

]
= 0. (2.2.6)

Our goal consists in showing that if at time t = 0 the empirical measures are associated
to some initial profile ρ0, then at the macroscopic time t they are associated to a profile
ρt, where ρt is the solution of the hydrodynamic equation (2.1.1).

There are at least two methods available in the literature in order to prove the hydro-
dynamic limit of an interacting particle system. One is known as the Relative Entropy
Method and it was first introduced by Yau in [27], when proving the hydrodynamic limit
for Ginzburg-Landau models. This method requires the existence of smooth solutions of
the hydrodynamic equation. The second one is known as the Entropy Method and it is due
to Guo, Papanicolau and Varadhan [11]. In contrast with the first method, this requires
the uniqueness of weak solutions of the hydrodynamic equation.

In order to be able to apply the Relative Entropy Method, since it requires the
existence of a smooth solution of the hydrodynamic equation, fix ε > 0 and let ρ0 : Td →



[0, 1] be a profile of class C2+ε(Td). By Theorem A2.4.1 of [14], equation (2.1.1) admits a
solution that we denote by ρ(t, ·) which is of class C1+ε,2+ε(R+ × Td).

Here we also have to impose a bound condition on the initial profile, as the existence
of a strictly positive constant δ0 such that

∀u ∈ Td, δ0 ≤ ρ0(u) ≤ 1− δ0. (2.2.7)

Let νN
ρ0(·) be the product measure in χN

d such that:

νN
ρ0(·){η, η(x) = 1} = ρ0(x/N).

This means that the random variables (η(x))x∈Td
N

are independent and each η(x) has

Bernoulli distribution of parameter ρ0(x/N).
For two measures µ and ν in χN

d denote by H(µ/ν) the relative entropy of µ with
respect to ν, defined by:

H(µ/ν) = sup
f

{ ∫
fdµ− log

∫
efdν

}
, (2.2.8)

where the supremum is carried over all continuous functions. In sake of completeness we
state two results that concern the relative entropy that will be used in the sequel. For two
measures µ, ν in χN

d and γ > 0:

∫
f(η)µ(dη) ≤ 1

γ
H(µ/ν) +

1

γ
log

∫
exp{γf(η)}ν(dη) (2.2.9)

µ(A) ≤ log(2) + H(µ/ν)

log(1 + 1/ν(A))
. (2.2.10)

The first result stated is known as the Entropy inequality. The second is an easy
consequence of the first, for a proof see Proposition A1.8.2 of [14].

Theorem 2.2.2. Let ρ0 : Td → [0, 1] be a initial profile of class C2+ε(Td) that satisfies the
bound condition (2.2.7). Let (µN)N≥1 be a sequence of probability measures on χN

d such
that:

H(µN/νN
ρ0(·)) = o(Nd). (2.2.11)

Then, for each t ≥ 0
πN

t (du) −−−−→
N→+∞

ρ(t, u)du

in probability, where ρ(t, u) is a smooth solution of equation (2.1.1).

In last result, we made two assumptions on the initial profile in order to obtain the
result: the bound condition (2.2.7) and the restriction of taking class C2+ε(Td). This is too
restrictive, since we would like to analyze, for instance profiles that are indicator functions
over a certain set, and for that reason we would like to consider profiles in which there
is a region of their domain in which they vanish. The use of this method does not fulfill



our needs in this sense. Another restriction comes from the initial measures: by inequality
(2.2.10) it is not hard to show that if µN satisfies (2.2.11), then µN is associated to the
profile ρ0 as defined in (2.2.6).

On the other hand, the Entropy Method relies on the full irreducibility of the Markov
process when restricted to a hyperplane. For the Markov process ηt with generator given by
(2.2.1), we have seen above, that when restricted to a hyperplane it is not fully irreducible.
For example, if one takes an hyperplane with a small density of particles, there exists several
irreducible components but also several isolated components - the frozen states. One way of
getting over this problem is to perturb slightly the dynamics in such a way that the frozen
states are destroyed and the macroscopic hydrodynamic behavior still evolves according
to (2.1.1) but in which we can take initial profiles that are not taken into account in the
previous Theorem.

With that purpose, consider a Markov process with generator given by

LN
θ = LP + N θ−2LS (2.2.12)

where θ > 0, LP was introduced in (2.2.1) and LS is the generator of the SSEP, which acts
on local functions f : χN

d → R as

(LSf)(η) =
∑

x,y∈Td
N

|x−y|=1

1

2d
η(x)(1− η(y))(f(ηx,y)− f(η)),

where ηx,y was defined in (2.2.2). Since the Bernoulli product measures as defined above
are invariant measures for each of the processes LP and LS they are also invariant for the
perturbed process LN

θ .
Notice that LS is multiplied by a factor N θ−2 and since we want to observe the same

macroscopic density behavior, we have to restrict ourselves to the case θ < 2. So, consid-
ering by one side the Markov process with generator LP and by the other, another with
generator LN

θ , the hydrodynamic equation is the same and given by (2.1.1). However,
while the former has for k small, each hyperplane decomposed into several pieces, which
is a consequence of the existence of the frozen states, the latter has each hyperplane as a
unique irreducible piece. The addition of the jumps of the SSEP destroy the frozen states:
the Markov process with generator LN

θ inherits the irreducible properties of LS. This al-
lows us to apply the Entropy Method to derive the hydrodynamic limit for this process.
Henceforth, we consider a Markov process ηt with generator given by LN

θ .
For a probability measure µ on χN

d , denote by Pθ,N
µ = Pµ the probability measure on

the space D([0, T ], χN
d ), induced by the Markov process with generator LN

θ , speeded up by
N2 and with initial measure µ, and by Eµ the expectation with respect to Pµ.

We start by introducing the definition of weak solutions of equation (2.1.1).

Definition 2.2.3. Fix a bounded profile ρ0 : Td → R. A bounded function ρ : [0, T ]×Td →
R is a weak solution of equation (2.1.1) if for every function H : [0, T ] × Td → R of
class C1,2([0, T ]× Td)



∫ T

0

dt

∫

Td

du
{

ρ(t, u)∂tH(t, u) + (ρ(t, u))2
∑

1≤i≤d

∂2
ui

H(t, u)
}

+

∫

Td

ρ0(u)H(0, u)du =

∫

Td

ρ(T, u)H(T, u)du. (2.2.13)

The Entropy method requires the uniqueness of the weak solution of the hydrodynamic
equation. This is a consequence of Theorem A2.4.4 of [14] together with the fact that there
is no more than a particle per site.

Theorem 2.2.4. Let ρ0 : Td → [0, 1] and (µN)N≥1 be a sequence of probability measures on
χN

d associated to the profile ρ0. Then, for every 0 ≤ t ≤ T , for every continuous function
H : Td → R and for every δ > 0,

lim
N→+∞

Pθ
µN

[∣∣∣ 1

Nd

∑

x∈Td
N

H
( x

N

)
ηt(x)−

∫

Td

H(u)ρ(t, u)du
∣∣∣ > δ

]
= 0,

where ρ(t, u) is the unique weak solution of equation (2.1.1).

In the last theorem we were able to consider a larger kind of initial profiles since the
condition on the smoothness and (2.2.7) were not needed, but also in position of taking
initial measures (µN)N≥1 that do not need to satisfy (2.2.11).

Once we have established the Law of Large Numbers for the empirical measure for
the process with generator LN

θ , the next step is to obtain the Central Limit Theorem
starting from the invariant measure νρ, which we proceed to present. For that we need to
introduce some notation.

For each z > 0 (resp. z < 0) define hz : Td → R by hz(u) =
√

2 cos(2πz · u) (resp.
hz(u) =

√
2 sin(2πz · u) and let h0 = 1. Here · denotes the inner product of Rd. It is

well known that the set {hz, z ∈ Zd} is an orthonormal basis of L2(Td). In this space
consider the operator Ω = 1 − ∆. A simple computation shows that Ωhz = γzhz where
γz = 1 + 4π2||z||2.

For a positive integer k, denote by Hk the space obtained as the completion of C∞(Td)
endowed with the inner product defined by < f, g >k=< f, Ωkg >. Let H−k denote the
dual of Hk with respect to the inner product of L2(Td).

As we want to investigate the fluctuations of the empirical measure, fix ρ > 0 and
denote by YN

. the density fluctuation field that acts on smooth functions H as

YN
t (H) =

1

Nd/2

∑

x∈Td
N

H
( x

N

)
(ηtN2(x)− ρ). (2.2.14)

Fix a positive integer k and denote by D([0, T ],H−k) (resp. C([0, T ],H−k)) the space
of H−k functions, that are right continuous with left limits (resp. continuous), endowed
with the uniform weak topology. Denote by QN the probability measure on D([0, T ],H−k)
induced by YN

. and νρ.



Theorem 2.2.5. Fix an integer k ≥ 3. Denote by Q be the probability measure on
C([0, T ],H−k) corresponding to the stationary generalized Ornstein-Uhlenbeck process with
mean 0 and covariance given by

EQ[Yt(H)Ys(G)] =
Var(νρ, η(0))√

8πρ(t− s)

∫

Rd

du

∫

Rd

dvH̄(u)Ḡ(v) exp
{
− (u− v)2

8(t− s)ρ

}

for every 0 ≤ s ≤ t and H, G in Hk. Here H̄ and Ḡ are periodic functions equal to H, G
in Td.

Then, (QN)N≥1 converges weakly to the probability measure Q.

The proof of this theorem is very close to the one presented for the Zero-Range process
in [14] and for this reason we have omitted it. We note that, since the proof of the
Boltzmann-Gibbs in [14] relies on the ergodicity of the Markov process, we can use the
ergodic properties of the generator LS to obtain the result. We also remark if one considers
the process ηt with generator LP , we obtain in the limit the same Ornstein-Uhlenbeck
process as described above. We only stress that, in this case, we derive the Boltzmann-
Gibbs Priciple in a similar way as we do in the proof of the One Block estimate via the
Relative Entropy method.

Finally, in section 2.7 we investigate the spectral gap for the process in finite volume
for d = 1. Our aim is to study the dependence on the size of the system of the spectral
gap of the process. This, as is very well known, scales as 1/N2 for SSEP on all hyperplanes
ΣN,k, uniformly in k. For our models, due to presence of constraints, the uniformity in k
is certainly lost, see remark 2.7.4.

We remark that none of the results stated above need the estimate on the spectral
gap. However, if one wants to show the hydrodynamic limit for the non-gradient system: a
Markov process in the same space state whose jump rates are given in the one-dimensional
setting by c′(x, x + 1, η) = 1{η:η(x−1)+η(x+2)=1}, the proof of the hydrodynamic limit relies
heavily on the sharp estimate of the spectral gap as of having order N2.

In order to illustrate our results we need to introduce a few additional notations. Fix
an integer N and denote by ΛN the box of size N , ΛN = {1, 2 . . . N} and by χN the
configuration space χN = {0, 1}N . In order to define the generator on χN we could use
definition 2.2.1 with the sum restricted to x, y ∈ ΛN . However, some care should be
put when defining the jump rate for sites close to the boundary of ΛN , since c(x, y, η)
as defined in (2.2.3) depend not only on the configuration on x and y but also on their
neighbouring sites which can be outside ΛN . We denote by ∂ΛN the boundary set including
all sites which do not belong to ΛN and are nearest neighbour to at least one site in
ΛN , ∂ΛN = {x ∈ Z : x 6∈ ΛN , d(x, ΛN) = 1}, where as usual the distance between
a point x and the set ΛN is the infimum of the distances between y ∈ ΛN and x. A
possible way to define the finite volume generator is to imagine that the configuration in
the boundary set is frozen to a reference configuration, σ, and to define the finite volume
rates as cσ(x, y, η) = c(x, y, η ·σ) where c are the rates in (2.2.3) and η ·σ ∈ {0, 1}|ΛN |+|∂ΛN |

is the configuration equal to η(x) on sites x ∈ ΛN and to σ(x) on x ∈ ∂ΛN . In the following
we make the choice σ(x) = 0 in x ∈ ∂ΛN and we denote by LP,ΛN

and LN
θ,ΛN

the Markov



processes with this choice corresponding to (2.2.1) and (2.2.12). For sake of clarity, we
explicitly write the second one

(LN
θ,ΛN

f)(η) =
∑

x∈ΛN\{1,N−1}

(
c(x, x + 1, η) + N θ−2

)
η(x)(1− η(x + 1))(f(ηx,x+1)− f(η))

(2.2.15)

+
∑

x∈ΛN\{2,N}

(
c(x, x− 1, η) + N θ−2

)
η(x)(1− η(x− 1))(f(ηx,x−1)− f(η))

+
(
η(3) + N θ−2

)(
η(1)− η(2)

)(
f(η1,2)− f(η)

)

+
(
η(N − 1) + N θ−2

)(
η(N − 1)− η(N)

)(
f(ηN−1,N)− f(η)

)

where c(x, y, η) and ηx,y was defined in (2.2.3) and (2.2.2), respectively.
Let, with a slight abuse of notation, ΣN,k denote again the hyperplanes with k particles,

namely those in (2.2.4) but with the sum running over ΛN . For each k, the Markov process
generated by LN

θ,ΛN
is irreducible on ΣN,k. The same holds for the process generated by

LP,ΛN
but only for k > N/3. This can be again proved by using the fact that the model

is non cooperative with two particles at distance at most two being a mobile cluster. In
both cases the unique invariant measure is the uniform measure, νN,k.

For a generator L with invariant measure µ, denote by λN(L) its spectral gap, defined
by

λN(L) = inf
f∈L2(µ)

DL(f, µ)

Var(f, µ)
,

where DL(f, µ) denotes the Dirichlet form defined by

DL(f, µ) =

∫

χN
d

−f(η)Lf(η)µ(dη). (2.2.16)

In the following we will also use the shortened notation DP (f, µ) and Dθ(f, µ) to denote
the Dirichlet form with generator LP,ΛN

and LN
θ,ΛN

, respectively. Let ρ = k/N . We obtain
that:

Proposition 2.2.6. Fix k > N/3. For the Markov process with generator LP,ΛN
, there

exists a constant C that does not depend on N nor k such that

λN(LN
θ,ΛN

) ≥ λN(LP,ΛN
) ≥ C

(ρ− 1/3)

ρN2
.

Proposition 2.2.7. Fix k ≤ N/3. For the Markov process with generator LN
θ,ΛN

, there
exists a constant C that does not depend on N nor k such that:

λN(LN
θ,ΛN

) ≥ C
ρ3

ρθk1−θN2
.



2.3 The Relative Entropy Method

In this section, we prove Theorem 2.2.2. Let ρ0 : Td → [0, 1] be a profile of class C2+ε(Td)
that satisfies the bound condition (2.2.7) and let (µN)N≥1 be a sequence of probability
measures on χN

d that satisfies (2.2.11).
Fix a time t ≥ 0. Denote by SN,P

t , the semigroup associated to the generator LP

speeded up by N2 and by µN
t the distribution of the process at time t: µN

t = µNSN,P
t .

In order to prove the Theorem, we must verify that for δ > 0, t > 0 and H ∈ C(Td):

lim
N→+∞

µN
t (At,δ) = 0,

where

At,δ =
{

η :
∣∣∣ 1

N

∑

x∈Td
N

H
( x

N

)
η(x)−

∫

Td

H(u)ρ(t, u)du
∣∣∣ > δ

}

and ρ(t, u) is a smooth solution of (2.1.1).
Denote by νN

ρ(t,·) the product measure with slowly varying parameter associated to the

profile ρ(t, ·). This means that under the measure νN
ρ(t,·) the random variables

(
η(x)

)
x∈Td

N

are independent and each η(x) has Bernoulli distribution of parameter ρ(t, x/N):

νN
ρ(t,·)

{
η, η(x) = 1

}
= ρ(t, x/N).

By inequality (2.2.10):

µN
t (At,δ) ≤

log 2 + H(µN
t /νN

ρ(t,·))

log(1 + 1/νN
ρ(t,·)(At,δ))

.

Since νN
ρ(t,·) is a product measure and by large deviation estimates, it holds that

lim
N→+∞

1

Nd
log νN

ρ(t,·)(At,δ) = −C(δ).

This means that the denominator of the right hand side of last inequality is of order
O(Nd). So, the proof is concluded if one can show that H(µN

t /νN
ρ(t,·)) is of order o(Nd). In

fact, this estimate is the main result when applying the Relative Entropy Method, and as
so, we state it as a Theorem:

Theorem 2.3.1. Let ρ0 : Td → R be an initial profile of class C2+ε(Td) that satisfies the
bound condition (2.2.7) and (µN)N≥1 a sequence of probability measures in χN

d that satisfies
the condition (2.2.11). Then, for every t ≥ 0

H
(
µN

t /νN
ρ(t,·)

)
= o(Nd),

where ρ(t, u) is a smooth solution of (2.1.1).



Proof. Fix α ∈ (0, 1) and an invariant measure να. Let

ψN
t =

dνN
ρ(t,·)

dνα

, fN(t) =
dµN

t

dνα

, HN(t) = H
(
µN

t /νN
ρ(t,·)

)
.

Since the measures νN
ρ(t,·) and να are product, it is very simple to obtain an expression for

ψN
t :

ψN
t (η) =

1

ZN
t

exp
{ ∑

x∈Td
N

η(x)λ(t, x/N)
}

,

where

λ(t, u) = log
(ρ(t, u)(1− α)

α(1− ρ(t, u))

)
,

and ZN
t is a renormalizing constant. Note that λ(t, u) is well defined because the profile

ρ(t, ·) is bounded away from 0 and 1. This is a consequence of (2.2.7) together with the
Maximum Principle, see for example Theorem A2.4.1 of [14].

In order to prove the result, we are going to show that

HN(t) ≤ o(Nd) +
1

γ

∫ t

0

HN(s)ds

for some γ > 0, and apply Gronwall inequality to conclude.
There is a celebrated estimate for the entropy production due to Yau [27]:

∂tHN(t) ≤
∫ {N2L∗P ψN

t (η)

ψN
t (η)

− ∂t log ψN
t (η)

}
fN(t)(η)να(dη), (2.3.1)

where L∗P is the adjoint operator of LP in L2(να). Now, we compute the right hand side
of last inequality.

2.3.1 Computation of N 2L∗PψN
t (η)/ψN

t (η)

Since the operator LP is self-adjoint in L2(να), we have that

1

ψN
t (η)

N2L∗P ψN
t (η) = N2

∑

x,y∈Td
N

|x−y|=1

c(x, y, η)η(x)(1− η(y))
{ψN

t (ηx,y)

ψN
t (η)

− 1
}

= N2
∑

x,y∈Td
N

|x−y|=1

c(x, y, η)η(x)(1− η(y))
{

exp{λ(t, y/N)− λ(t, x/N)} − 1
}

.

Expanding the exponential up to the second order, last expression can be written as:

N2
∑

x,y∈Td
N

|x−y|=1

c(x, y, η)η(x)(1− η(y))[λ(t, y/N)− λ(t, x/N)]



+
1

2

∑

x,y∈Td
N

|x−y|=1

c(x, y, η)η(x)(1− η(y))[N(λ(t, y/N)− λ(t, x/N))]2

plus a term of order O(N2).
The term of order one is equal to:

N2
∑

x∈Td
N

d∑
j=1

c(x, x + ej, η)(η(x)− η(x + ej))[λ(t, x + ej/N)− λ(t, x/N)].

By a Taylor expansion and two summations by parts it is not hard to show that last
expression can be written as

∑

x∈Td
N

d∑
j=1

τxhj(η)∂2
uj

λ(t, x/N),

plus a term of order o(1), where

hj(η) = η(0)η(ej) + η(0)η(−ej)− η(−ej)η(ej). (2.3.2)

By a Taylor expansion, the second order term equals

∑

x∈Td
N

d∑
j=1

τxgj(η)(∂uj
λ(t, x/N))2,

where
gj(η) = c(0, ej, η)(η(0)− η(ej))

2. (2.3.3)

So far we have that N2L∗P ψN
t (η)/ψN

t (η) equals to

∑

x∈Td
N

d∑
j=1

τxhj(η)∂2
uj

λ(t, x/N) +
∑

x∈Td
N

d∑
j=1

τxgj(η)(∂uj
λ(t, x/N))2.

2.3.2 Computation of ∂t log ψN
t (η)

Using the expression for ψN
t , we have that

∂t log ψN
t (η) =

∑

x∈Td
N

η(x)∂tλ(t, x/N)− EψN
t

( ∑

x∈Td
N

η(x)∂tλ(t, x/N)
)
.

The first term on the right hand side of last expression is equal to

∑

x∈Td
N

η(x)
∂tρ(t, x/N)

ρ(t, x/N)(1− ρ(t, x/N))
,



while the second equals ∑

x∈Td
N

∂tρ(t, x/N)

(1− ρ(t, x/N))
.

Using the fact that ρ(t, ·) is a solution of (2.1.1) with m = 2, it holds that

∂t log ψN
t (η) =

∑

x∈Td
N

∑

1≤j≤d

∂2
uj

ρ2(t, x/N)

ρ(t, x/N)(1− ρ(t, x/N))

[
η(x)− ρ(t, x/N)

]
.

Here is the point in the proof where we have used the fact that ρ(t, .) is a classical solution
of the hydrodynamic equation.

Here and after, for a local function f , denote f̃(ρ) = Eνρ [f(η)]. A straightforward
computation shows that

{
h̃′(ρ(t, x/N))∂2

uj
λ(t, x/N) + g̃′(ρ(t, x/N))(∂uj

λ(t, x/N))2
}

=
∂2

uj
ρ2(t, x/N)

ρ(t, x/N)(1− ρ(t, x/N))
.

Then, ∂t log ψN
t (η) equals to

∑

x∈Td
N

d∑
j=1

h̃′(ρ(t, x/N))∂2
uj

λ(t, x/N)
[
η(x)− ρ(t, x/N)

]

+
∑

x∈Td
N

d∑
j=1

g̃′(ρ(t, x/N))(∂uj
λ(t, x/N))2

[
η(x)− ρ(t, x/N)

]
.

By the computations just made, the expression inside braces of inequality (2.3.1) is equal
to

∑

x∈Td
N

d∑
j=1

∂2
uj

λ(t, x/N)
{

τxhj(η)− h̃′(ρ(t, x/N))
[
η(x)− ρ(t, x/N)

]}

+
∑

x∈Td
N

d∑
j=1

(∂uj
λ(t, x/N))2

{
τxgj(η)− g̃′(ρ(t, x/N))

[
η(x)− ρ(t, x/N)

]}
,

plus a term of order o(Nd). An integration by parts shows that

∫

Td

d∑
j=1

{
h̃(ρ(t, u))∂2

uj
λ(t, u) + g̃(ρ(t, u))(∂uj

λ(t, u))2
}

du = 0,

so, we can write last expression as

∑

x∈Td
N

d∑
j=1

∂2
uj

λ
(
t,

x

N

){
τxhj(η)− h̃

(
ρ
(
t,

x

N

))
− h̃′

(
ρ
(
t,

x

N

))[
η(x)− ρ

(
t,

x

N

)]}



+
∑

x∈TN

d∑
j=1

(
∂uj

λ
(
t,

x

N

))2{
τxgj(η)− g̃

(
ρ
(
t,

x

N

))
− g̃′

(
ρ
(
t,

x

N

))[
η(x)− ρ

(
t,

x

N

)]}

plus a term of order o(Nd).
Now, we replace the local functions τxhj(η) and τxgj(η) by their expectation with

respect to the invariant measure να, where the parameter α is taken equal to the empirical
average of particle in a box of size l, namely: h̃(ηl

s(x)) and g̃(ηl
s(x)), respectively, with the

use of the One-Block estimate, see Lemma (2.3.2). It’s proof is postponed to the end of
this section.

On the other hand, by the continuity of ∂2
uj

λ(t, ·)h̃′(ρ(t, ·)) and (∂uj
λ(t, ·))2g̃′(ρ(t, ·)), a

summation by parts permits to replace η(x) by ηl(x), since:

∑

x∈Td
N

d∑
j=1

∂2
uj

λ(t, x/N)h̃′(ρ(t, x/N))[η(x)− ηl(x)] = o(Nd)

and
∑

x∈Td
N

d∑
j=1

(∂uj
λ(t, x/N))2g̃′(ρ(t, x/N))[η(x)− ηl(x)] = o(Nd).

After all this considerations, we can rewrite (ψN
t (η))−1{N2LP ψN

t (η)− ∂tψ
N
t (η)} as

∑

x∈Td
N

d∑
j=1

∂2
uj

λ
(
t,

x

N

){
h̃(ηl(x))− h̃

(
ρ
(
t,

x

N

))
− h̃′

(
ρ
(
t,

x

N

))[
ηl(x)− ρ

(
t,

x

N

)]}

plus the term

∑

x∈Td
N

d∑
j=1

(∂uj
λ
(
t,

x

N

))2{
g̃(ηl(x))− g̃

(
ρ
(
t,

x

N

))
− g̃′

(
ρ
(
t,

x

N

))[
ηl(x)− ρ

(
t,

x

N

)]}
.

Repeating standard arguments of the relative entropy method, the result follows. We
refer the reader to chapter 6 of [14] for details.

2.3.3 One-Block estimate

The main difficulty in the derivation of the One-Block estimate is the fact that we are not in
a erdogic setting. In order to overcome this problem, we separate the set of configurations
into two sets: the big irreducible component (the set of all configurations that contain at
least one block of particles at distance at most two) and the remaining ones. In the first
case the standard proof is easily adapted, while in the remaining set of configurations the
important ingredient is the fact that it has small measure with respect to νN

ρ(t,·).
Now, we introduce some notation. Denote the also called Dirichlet form associated to

a generator Ω and a measure µ in χN
d , by DΩ(f, µ) which is defined on positive functions

by DΩ(f, µ) = DΩ(
√

f, µ) and DΩ(f, µ) was defined in (2.2.16). Let fN,P
t denote the

Radon-Nikodym density of µN,P (t) = 1
t

∫ t

0
µNSN,P

s ds with respect to να.



Lemma 2.3.2. (One-block Estimate)
For every local function ψ

lim sup
l→+∞

lim sup
N→+∞

∫
1

Nd

∑

x∈Td
N

τxVl,ψ(η)fN,P
t (η)να(dη) ≤ 1

γNd

∫ t

0

HN(s)ds,

where

Vl,ψ(η) =
∣∣∣ 1

(2l + 1)d

∑

|y|≤l

τyψ(η)− ψ̃(ηl(0))
∣∣∣, (2.3.4)

and

ηl(0) =
1

(2l + 1)d

∑

|y|≤l

η(y). (2.3.5)

Proof. Fix x ∈ Td
N and denote by Qx,l the set of configurations in the box of center x and

radius l containing at least one d-dimensional hypercube of linear size 2 which is completely
filled:

Qx,l =
{

η :
∑
y∈Cy

∏
z∈Qy

η(z) ≥ 1
}

.

where Qy = {z : |zi − yi| ∈ {0, 1} ∀i ∈ {1, . . . , d}} and Cy = {y : |y − x| ≤ l, Qy ⊂ Td
N}.

We denote by Ex,l the irreducible set which contains Qx,l (and all configurations that can
be connected via an allowed path to one in Ex,l). We can split the integral that appears in
the statement of the Lemma into∫

1

Nd

∑

x∈Td
N

τxVl,ψ(η)1{Ex,l}(η)fN,P
t (η)να(dη) (2.3.6)

+

∫
1

Nd

∑

x∈Td
N

τxVl,ψ(η)1{Ec
x,l}(η)fN,P

t (η)να(dη). (2.3.7)

At first note that since H(µN/να) = O(Nd) and the entropy decreases with time, it holds
that H(fN,P

t ) = O(Nd). This implies that the Dirichlet form of fN,P
t , namely DP (fN,P

t , να)
is bounded above by CNd−2, see the fifth section for details. Repeating the standard
arguments of the One-block estimate, when restricted to the irreducible configurations a
stronger result than (2.3.6) holds:

lim sup
l→+∞

lim sup
N→+∞

sup
DP (f,να)≤CNd−2

∫
1

Nd

∑

x∈Td
N

τxVl,ψ(η)1{Ex,l}(η)f(η)να(dη) = 0.

The plan to accomplish this result is the following: first, put the dependence in N that
appears in the integrand function, at the density f , by considering the space average of all
translations of f that we denote by f̄ :

f̄(η) =
1

Nd

∑

x∈Td
N

τxf(η). (2.3.8)



The integral now becomes:

∫
Vl,ψ(η)1{E0,l}(η)f̄(η)να(dη).

Since Vl,ψ depends on the configuration η through the variables at the box of center 0 and
radius l, we can project the density over this box, and denote it by f̄l. Define the Dirichlet
form of f̄l restricted to the set E0,l by Dl

0(f̄l, να). Using the translation invariance property
of f̄ together with the bound on the Dirichlet form of f , we obtain that Dl

0(f̄l, να) ≤ CN−2.
Taking the limit as N → +∞ along a subsequence, we can restrict last integral to densities
f such that Dl

0(f, να) = 0. Since we defined this Dirichlet form restricted to the set E0,l,
this density has to be constant on each hyperplane. To end the proof, it is enough to apply
a simple argument of the equivalence of ensembles, which allows to recover the expectation
with respect to the grand canonical measure as the limit of the expectation with respect
to the canonical measure and then use the L.L.N. to conclude. For details we refer the
reader to chap. 5 of [14].

For the remaining integral (2.3.7), write it as:

1

t

∫ t

0

∫
1

Nd

∑

x∈Td
N

τxVl,ψ(η)1{Ec
x,l}(η)φs(η)νN

ρ(s,·)(dη)ds,

where φs = dµN
s

dνN
ρ(s,·)

. To keep notation simple, we drop the integral with respect to time.

The entropy inequality (2.2.9) allows to bound the integral with respect to νN
ρ(s,·) by

H
(
µN

s /νN
ρ(s,·)

)

γNd
+

1

γNd
log

∫
exp

{
γ

∑

x∈Td
N

τxVl,ψ(η)1{Ec
x,l}(η)

}
νN

ρ(s,·)(dη),

for every γ > 0.
The first term is HN(s)/γNd. On the other hand, since Vl,ψ is bounded and by Hölder

inequality, the term on the right hand side of last expression can be bounded by

1

γ(2l + 1)dNd
log

∫
exp

{
γ(2l + 1)d

∑

x∈Td
N

C1{Ec
x,l}(η)

}
νN

ρ(s,·)(dη).

Since νN
ρ(t,·) is a product measure, last expression can be written as:

1

Nγ(2l + 1)d

∑

x∈Td
N

log

∫
exp

{
γ(2l + 1)dC1{Ec

x,l}(η)
}

νN
ρ(s,·)(dη)

=
1

Nγ(2l + 1)d

∑

x∈Td
N

log
(
νN

ρ(s,·)(Ec
x,l)(exp{γ(2l + 1)dC} − 1) + 1

)
.



Once the initial profile is bounded away from zero (see (2.2.7)), this implies that
∀u ∈ Td, ρ(s, u) ≥ δ0 and as a consequence νN

ρ(s,·)(Ec
x,l) ≤ (1 − δ0)

(2l+1)d
. On the other

hand, ∀x ∈ Td
N log(x + 1) ≤ x which implies that last expression is bounded by

1

γ(2l + 1)d
(exp{γ(2l + 1)dC} − 1)(1− δ0)

(2l+1)d

,

and vanishes as l → +∞ for γ small.

2.4 The Entropy Method

Now, we prove Theorem 2.2.4. The strategy of the proof is the same as given for the
Zero-Range process in [14]. The main step is the derivation of the One-Block and the
Two-Blocks estimate, which are presented in section six.

Fix a time T > 0. Let M+ be the space of finite positive measures on Td endowed with
the weak topology. Consider a sequence of probability measures (QN)N on D([0, T ],M+)
corresponding to the Markov process πN

t as defined in (2.2.5), speeded up by N2 and
starting from µN .

First we prove that (QN)N is a tight sequence. Then we prove the uniqueness of a
limit point, by showing that the limit points of (QN)N are concentrated on trajectories of
measures absolutely continuous with respect to the Lebesgue measure, equal to ρ0(u)du at
the initial time and whose density is concentrated on weak solutions of the hydrodynamic
equation (2.1.1). By the uniqueness of these solutions we conclude that πN

t has a unique
limit point, concentrated on the trajectory with density ρ(t, u), where ρ(t, u) is the weak
solution of equation (2.1.1).

We divide the proof in several steps, to make the exposition clearer. Fix a smooth
function H : Td → R. Recall the definition of the empirical measure in (2.2.5) and let

< πN
t , H >=

1

Nd

∑

x∈Td
N

H
( x

N

)
ηt(x).

By lemma A1.5.1 of [14]

MN,H
t =< πN

t , H > − < πN
0 , H > −

∫ t

0

N2Lθ < πN
s , H > ds

is a martingale with respect to the filtration F̃t = σ(ηs, s ≤ t), whose quadratic variation
is given by ∫ t

0

1

N2d

∑

x∈Td
N

d∑
j=1

(
∂N

uj
H

( x

N

))2

τxg
N
j (ηs)ds, (2.4.1)

where ∂N
uj

H
(

x
N

)
= N

[
H

(
x+ej

N

)
−H

(
x
N

)]
, gN

j (η) = gj(η) + (η(0)− η(ej))
2N θ−2 and gj(η)

as defined in (2.3.3).



By definition,

LN
θ η(x) =

∑

1≤j≤d

Wx−ej ,x(η)−Wx,x+ej
(η),

and W0,ej
(η) = hN

j (η) − τej
hN

j (η) with hN
j (η) = hj(η) + N θ−2η(0) and hj(η) as defined in

(2.3.2). This allows us to perform a double summations by parts and rewrite the integral
part of the martingale as

∫ t

0

1

Nd

∑

x∈Td
N

d∑
j=1

∂2
uj

H
( x

N

)
τxh

N
j (ηs)ds, (2.4.2)

where ∂2
uj

H
(

x
N

)
= N2

[
H

(
x+ej

N

)
+ H

(
x−ej

N

)
− 2H

(
x
N

)]
.

2.4.1 Relative Compactness

In this section we prove that (QN)N is tight. Recall Aldous criterium:

Lemma 2.4.1. A sequence (PN)N of probability measures defined on D([0, T ],M+) is
relatively compact if this two conditions hold:

a. For every t ∈ [0, T ] and every ε > 0, there exists Kt
ε ⊂M+ compact, such that

sup
N

PN [πt /∈ Kt
ε ] ≤ ε,

b. For every ε > 0
lim
γ→0

lim sup
N→∞

sup
τ∈TT
θ≤γ

PN [d(πτ+θ, πτ ) > ε] = 0,

where TT denotes the set of stopping times with respect to the canonical filtration, bounded
by T and d is the metric in the space M+.

By Proposition 1.7 of chapter 4 in [14] it is enough to show that for every H ∈ C2(Td),
the sequence of measures that corresponds to the real processes < πN

t , H > is relatively
compact.

Since the number of particles per site is at most one, we only have to show condition
b, which can be written in this context as

lim
γ→0

lim sup
N→∞

sup
τ∈TT
θ≤γ

PµN

[∣∣∣ 1

Nd

∑

x∈Td
N

H
( x

N

)
ητ+θ(x)− 1

Nd

∑

x∈Td
N

H
( x

N

)
ητ (x)

∣∣∣ > ε
]

= 0,

for every H ∈ C2(Td) and for every ε > 0. By the definition of the martingale MN,H
t in

order to prove last inequality, we have to show that:

lim
γ→0

lim sup
N→∞

sup
τ∈TT
θ≤γ

PµN

[∣∣∣MN,H
τ+θ −MN,H

τ

∣∣∣ > ε
]

= 0,



and

lim
γ→0

lim sup
N→∞

sup
τ∈TT
θ≤γ

PµN

[∣∣∣
∫ τ+θ

τ

1

Nd

∑

x∈Td
N

d∑
j=1

∂2
uj

H
( x

N

)
τxh

N
j (ηs)ds

∣∣∣ > ε
]

= 0.

We start by the latter. Since H ∈ C2(Td), θ ≤ γ and h is bounded, last integral is bounded
by C(H)γ and vanishes as γ → 0.

By Chebyshev inequality and expression (2.4.1), the former term can be bounded by

1

ε2
EµN

[ ∫ τ+θ

τ

1

N2d

∑

x∈Td
N

d∑
j=1

(
∂N

uj
H

( x

N

))2

τxg
N
j (ηs)ds

]
≤ C(H)γ

Nd
,

which vanishes as N →∞.
So far we have seen that (QN)N is tight, which implies that it has convergent subse-

quences. In the next section, we show the uniqueness of a limit point.

2.4.2 Uniqueness of Limit Points

Here, we prove at first that all limit points Q of (QN)N are concentrated on absolutely
continuous measures with respect to the Lebesgue measure, that are equal to ρ0(u)du at
the initial time and finally that they are concentrated on weak solutions of equation (2.1.1).
Let Q be a limit point of (QN)N .

Fix a continuous function H : Td → R. Since

sup
t∈[0,T ]

| < πN
t , H > | ≤ 1

Nd

∑

x∈Td
N

∣∣∣H
( x

N

)∣∣∣,

which is a consequence of the fact that of having at most one particle per site, the function
that associates to each trajectory π., supt∈[0,T ] | < πt, H > | is continuous. As a consequence
all limit points are concentrated in trajectories πt such that

| < πt, H > | ≤
∫

Td

|H(u)|du.

In order to show that the measure is absolutely continuous with respect to the Lebesgue
measure, that we denote by Leb, we have to show that for each set A such that Leb(A) = 0,
then πt(A) = 0, for that use last result for a sequence of continuous functions that converge
to the indicator function over the set A.

Now we prove that Q is concentrated on a dirac measure equal to ρ0(u)du at time 0.
Fix ε > 0. By the weak convergence over a subsequence and Portmanteau’s Theorem, it
holds that:

Q
[∣∣∣ 1

Nd

∑

x∈Td
N

H
( x

N

)
η0(x)−

∫

Td

H(u)ρ0(u)du
∣∣∣ > ε

]



≤ lim inf
K→+∞

QNk

[∣∣∣ 1

Nd

∑

x∈Td
N

H
( x

N

)
η0(x)−

∫

Td

H(u)ρ0(u)du
∣∣∣ > ε

]

= lim inf
K→+∞

µNk

[∣∣∣ 1

Nd

∑

x∈Td
N

H
( x

N

)
η(x)−

∫

Td

H(u)ρ0(u)du
∣∣∣ > ε

]
.

This last line is equal to zero, by the hypothesis of µN being associated to the profile ρ0,
see (2.2.6).

Finally, we show that all limit points of (QN)N are concentrated on weak solutions of
(2.1.1). Fix a smooth function H : [0, T ]× Td → R of class C1,2,

MN,H
t =

1

Nd

∑

x∈Td
N

H
(
t,

x

N

)
ηt(x)− 1

Nd

∑

x∈Td
N

H
(
t,

x

N

)
η(x) (2.4.3)

−
∫ t

0

1

Nd

∑

x∈Td
N

{
∂sH

(
s,

x

N

)
+

d∑
j=1

∂2
uj

H
(
s,

x

N

)
τxh

N
j (ηs)

}
ds

is an F̃t-martingale, whose quadratic variation is given by

∫ t

0

1

N2d

∑

x∈Td
N

d∑
j=1

(
∂uj

H
(
s,

x

N

))2

τxg
N
j (ηs)ds,

where gN
j (η) = gj(η) + (η(0) − η(ej))

2N θ−2 with gj(η) as defined in (2.3.3), and hN
j (η) =

hj(η) + N θ−2η(0) with hj(η) as defined in (2.3.2).
Using at first Chebyshev and then Doob inequalitities, we have that

lim
N→+∞

PµN

[
sup

0≤t≤T

∣∣∣ < πN
t , Ht > − < πN

0 , H0 > −
∫ t

0

< πN
s , ∂sHs > ds

−
∫ t

0

1

Nd

∑

x∈Td
N

d∑
j=1

∂2
uj

H
(
s,

x

N

)
τxh

N
j (ηs)ds

∣∣∣ > δ
]

≤ 1

δ2
EµN

[(
sup

0≤t≤T

∣∣∣ < πN
t , Ht > − < πN

0 , H0 > −
∫ t

0

< πN
s , ∂sHs > ds

−
∫ t

0

1

Nd

∑

x∈Td
N

d∑
j=1

∂2
uj

H
(
s,

x

N

)
τxh

N
j (ηs)ds

∣∣∣
)2]

≤ 4

δ2
EµN

[(
MT

)2]

which vanishes as N → +∞.
But, in order to prove that the limit points are concentrated on weak solutions of

equation (2.1.1), we need to write the integral part of the martingale (2.4.3) as a function
of the empirical measure. This is the main difficulty in the proof of an hydrodynamical
limit for a gradient system and we state it as a lemma:



Lemma 2.4.2. (Replacement Lemma)
For every δ > 0 and every local function ψ

lim sup
ε→0

lim sup
N→+∞

PµN

[ ∫ T

0

1

Nd

∑

x∈Td
N

τxVεN,ψ(ηs)ds ≥ δ
]

= 0,

where VεN,ψ was defined in (2.3.4).

We postpone it’s proof to other section in order to make the exposition more clear. To
keep notation simple, in the previous statement and hereafter we write εN for [εN ], it’s
integer part.

This Lemma states that

∫ t

0

1

Nd

∑

x∈Td
N

d∑
j=1

H
(
s,

x

N

){
τxhj(ηs)− h̃(ηεN

s (x))
}

ds

vanishes in probability as N → +∞ and then as ε → 0, for every continuous function H.
This replacement permits to close the integral part of the martingale in terms of the

empirical measure, see (2.4.3). For that we need to show that h̃(ηεN
s (x)) = (ηεN

s (x))2 is a
function of the empirical measure. For each ε > 0, denote by ιε, the approximation of the
identity

ιε(u) =
1

2εd
1[−ε,ε]d(u).

It is easy to see that

ηεN(x) = CN,ε(π
N ∗ ι)

( x

N

)
,

where CN,ε = 1 + O( 1
N

). This lead us to replace ηεN(x) by (πN ∗ ιε)(
x
N

). Since |α2 − β2| ≤
2|α− β|, we can also replace the discrete Laplacian by the continuous one. So far, we have
that

lim sup
ε→0

lim sup
N→+∞

QN
[∣∣∣ < πT , HT > − < π0, H0 > −

∫ T

0

< πs, ∂sHs > ds

−
∫ T

0

1

Nd

∑

x∈Td
N

∆H
(
s,

x

N

)(
πN

s ∗ ιε

( x

N

))2

ds
∣∣∣ ≥ δ

]
= 0.

Since H is of class C1,2, we may replace

1

Nd

∑

x∈Td
N

∆H
(
s,

x

N

)(
πN

s ∗ ιε

( x

N

))2

by the integral ∫

Td

∆H(s, u)(πN ∗ ιε(u))2du.



For each ε > 0, consider the function that associates to a trajectory π the number

< πT , HT > − < π0, H0 > −
∫ T

0

< πs, ∂sHs > ds

−
∫ T

0

ds

∫

Td

∆H(s, u)(πs ∗ ιε(u))2du.

By the dominated convergence theorem this function is continuous, which implies that
every limit point Q of (QN)N is such that

lim sup
ε→0

Q
[∣∣∣ < πT , HT > − < π0, H0 > −

∫ T

0

< πs, ∂sHs > ds

−
∫ T

0

ds

∫

Td

4H(s, u)(πs ∗ ιε(u))2du
∣∣∣ ≥ δ

]
= 0.

To end the proof it remains to show that:

lim sup
ε→0

Q
[∣∣∣

∫ T

0

ds

∫

Td

∆G(s, u){(πs ∗ ιε(u))2 − π(s, u)2}du
∣∣∣ ≥ δ

]
= 0.

We have already seen that πs has a density with respect to the Lebesgue measure, then

(πs ∗ ιε)(u) =
1

2ε

∫

[u−ε,u+ε]

π(s, r)dr

for all 0 ≤ s ≤ T . On the other hand, for each integrable function f : Td → R,

f ∗ ιε −−→
ε→0

f (2.4.4)

in the L1(Td)-norm. Then, we have that

Q
[∣∣∣

∫ T

0

ds

∫

Td

∆H(s, u){(πs ∗ ιε(u))2 − π(s, u)2}du
∣∣∣ ≥ δ

]

≤ 1

δ
EQ

[ ∫ T

0

ds

∫

Td

∆H(s, u)|(πs ∗ ιε)(u)2 − (π(s, u))2|du
]

≤ 2

δ

∫ T

0

EQ

[ ∫

Td

∆H(s, u)|πs ∗ ιε(u)− π(s, u)|du
]
ds,

which vanishes as ε → 0, since πN is integrable and by (2.4.4). Then, we have that

Q
[∣∣∣ < πT , HT > − < π0, H0 > −

∫ T

0

< πs, ∂sHs > ds

−
∫ T

0

ds

∫

Td

4H(s, u)π(s, u)2du
∣∣∣ = 0

]
= 1,

for every H : [0, T ] × Td → R of class C1,2. This is the weak form of the hydrodynamic
equation (2.1.1) with m = 2, see expression (2.2.13). Since it has at most one weak solution,
then π(t, u) = ρ(t, u) Q− a.s., which ends the proof of Theorem 2.2.4.



2.5 Entropy and Dirichlet form

Fix a density α and an invariant measure να as reference. Let µN be a sequence of prob-
ability measures on χN

d and denote by SN
t the semigroup associated to the generator LN

θ

accelerated by N2. Denote by fN
t the density of µNSN

t with respect to να.
Since the process evolves on a torus, for each N , µN is a convex combination of dirac

measures. By the convexity of the entropy, it holds that

H(µN/να) ≤ max
η

H(δη/να(η)).

By the definition of the entropy and the explicitly knowledge of να

H(δη/να(η)) = − log(να(η)) = Nd log
( 1

1− α

)
−

∑

x∈Td
N

η(x) log
( α

1− α

)
,

which is bounded by C(α)Nd. On the other hand, since the entropy decreases with time,
it holds that H(µNSN

t /νN
α ) ≤ C(α)Nd, see Proposition A1.9.2 of [14]. Denote by (LN

θ )∗

the adjoint operator of LN
θ in L2(να). Since the process is reversible with respect to να,

fN
t satisfies the following equality:

∂tf
N
t = N2(LN

θ )∗fN
t = N2LN

θ fN
t

with initial condition fN
0 = dµN

dνN
α

.

For f : χN
d → R+, recall the definition of the Dirichlet form D(f, να) = D(

√
f, να) and

D(f, να) defined in (2.2.16). Since there exists a constant C, such that HN(fN
0 ) ≤ CNd,

it can be proved for all t > 0 (see [14], section 5.2), that

HN

(1

t

∫ t

0

fN
s ds

)
≤ CNd, Dθ

(1

t

∫ t

0

fN
s ds, να

)
≤ CNd−2

2t
. (2.5.1)

2.6 Proof of Replacement Lemma

The proof relies on the well-known One-block and Two-blocks estimates. At first we reduce
the dynamical problem, since the function depends on a trajectory, to a static one using
the estimates of the previous section. For that, we need to introduce some notation.

Let µN(T ) be the Cesaro mean of µNSN
t , namely:

µN(T ) =
1

T

∫ T

0

µNSN
t dt

and f̄N
T the Radon-Nikodym density of µN(T ) with respect to να. In the last section, we

have obtained estimates for the entropy and the Dirichlet form of f̄N
T . To prove replacement

it is enough to show that

lim sup
ε→0

lim sup
N→+∞

sup
Dθ(f,να)≤CNd−2

∫
1

Nd

∑

x∈Td
N

τxVεN,ψ(η)f(η)να(dη) = 0, (2.6.1)



for every C < ∞. Indeed, by the Markov inequality,

PµN

[ 1

Nd

∫ T

0

∑

x∈Td
N

τxVεN,ψ(ηs)ds ≥ δ
]
≤ 1

δ
EµN

[ 1

Nd

∫ T

0

∑

x∈Td
N

τxVεN,ψ(ηs)ds
]

which is equal to
1

δ
T

∫
1

Nd

∑

x∈Td
N

τxVεN,ψ(η)f̄N
T να(dη).

In view of (2.5.1) having established (2.6.1), Replacement Lemma follows. The proof of
(2.6.1) is divided in two steps, the first is known as the One-block estimate and it allows
to replace the empirical average of a local function ψ by ψ̃(ηl(·)), over boxes of length l.
While, the second is know as the Two-blocks estimate and it allows to substitute ψ̃(ηl(·))
by ψ̃(ηεN(·)).
Lemma 2.6.1. (One-block Estimate)
For every finite constant C,

lim sup
l→+∞

lim sup
N→+∞

sup
Dθ(f,να)≤CNd−2

∫
1

Nd

∑

x∈Td
N

τxVl,ψ(η)f(η)νN
α (dη) = 0,

where Vl,ψ was defined in (2.3.4).

Lemma 2.6.2. (Two-blocks Estimate)
For every finite constant C,

lim sup
l→+∞

lim sup
ε→0

lim sup
N→+∞

sup
Dθ(f,να)≤CNd−2

sup
|y|≤εN

∫
1

Nd

∑

x∈Td
N

∣∣∣ηl(x + y)− ηεN(x)
∣∣∣f(η)να(dη) = 0.

Before proceeding, we make a small stop in order to see that Replacement Lemma is a
consequence of this two last results. With that purpose, add and subtract the expression

1

(2εN + 1)d

∑

|y|≤εN

{ 1

(2l + 1)d

∑

|z−y|≤l

τzψ(η)− ψ̃(ηl(y))
}

inside the absolute value that appears in the definition of VεN,ψ. The first term is equal to

∫
1

Nd

∑

x∈Td
N

τx

∣∣∣ 1

(2εN + 1)d

∑

|y|≤εN

{
τyψ(η)− 1

(2l + 1)d

∑

|z−y|≤l

τzψ(η)
}∣∣∣f(η)να(dη).



It is not hard to show that this term is bounded above by:

C(d)
l

εN

∫
1

Nd

∑

x∈Td
N

τxψ(η)f(η)να(dη),

and vanishes as N → +∞, for details see [14].
The second term is bounded by

∫
1

Nd

∑

x∈Td
N

τx

∣∣∣ 1

(2l + 1)d

∑

|y|≤l

τyψ(η)− ψ̃(ηl(0))
∣∣∣f(η)να(dη)

and by Lemma (2.6.1) vanishes as N → +∞ and l → +∞.
The third term is bounded by

sup
|y|≤εN

∫
1

N

∑

x∈TN

|ψ̃(ηl(x + y))− ψ̃(ηεN(x))|f(η)νN
α (dη)

≤ 2 sup
|y|≤εN

∫
1

N

∑

x∈TN

|ηl(x + y)− ηεN(x)|f(η)νN
α (dη)

which vanishes as N → +∞, ε → 0 and l → +∞, by Lemma (2.6.2).

2.6.1 One-Block Estimate

At first, we note that when applying the Relative Entropy method, we derived the One-
Block estimate for the process with generator LP by using strongly the assumption that
the density f had entropy of order o(Nd). Instead of examining the evolution of entropy
of the process with respect to the measure νN

ρ(t,·), the entropy method analyzes the entropy
of the process with respect to a fixed invariant measure, namely να. This implies that the
entropy of f is no longer of o(Nd) but of order O(Nd). For that reason another proof has
to be accomplished.

Since in this case we are considering the perturbed process LN
θ , we can use the One-

Block estimate for the SSEP speeded up by N θ, which is enough to conclude the One-Block
estimate for the perturbed process, the idea to proceed is the following: by the definition
of the Dirichlet form (2.2.16) and the generator LN

θ , it holds that

Dθ(f, να) = DP (f, να) + N θ−2DS(f, να), (2.6.2)

where Dθ, (resp. DP and DS) denotes the Dirichlet form as defined in (2.2.16). Since the
Dirichlet form is always positive, and we are restricted to densities f for which Dθ(f, να) ≤
CNd−2, we have that:

DS(f, να) ≤ N2−θDθ(f, να) ≤ CNd−θ.



Following the same arguments as for the Zero-Range in section 5 of [14], it is not hard to
show that the modified One-Block estimate

lim sup
l→+∞

lim sup
N→+∞

sup
DS(f,να)≤CNd−θ

∫
1

Nd

∑

x∈Td
N

τxVl,ψ(η)f(η)να(dη) = 0,

holds for the SSEP. The main difference between the proofs, comes from the bounds
on the Dirichlet forms. Having the bound DS(f, να) ≤ CNd−2 it provides the estimate
Dl

S(fl, να) ≤ C/N2, where fl is the conditional expectation of f with respect to σ-algebra
generated by {η(x), |x| ≤ l}, while the bound DS(f, να) ≤ CNd−θ, provides the estimate
Dl

S(fl, να) ≤ C/N θ, which is enough to conclude the standard proof of the One-block
estimate, since θ > 0.

2.6.2 Two-Blocks Estimate

Now we are focused in showing that

lim sup
l→+∞

lim sup
ε→0

lim sup
N→+∞

sup
Dθ(f,να)≤CNd−2

sup
|y|≤εN

∫
1

Nd

∑

x∈Td
N

|ηl(x + y)− ηεN(x)|f(η)να(dη) = 0.

This last integral is bounded above by

∫
1

Nd

∑

x∈Td
N

1

(2εN + 1)d

∑

|z|≤εN
|z−y|>2l

|ηl(x + y)− ηl(x + z)|f(η)να(dη)

+C(d)
l

εN

∫
1

Nd

∑

x∈Td
N

η(x)f(η)να(dη).

The second integral in the last expression vanishes as N → +∞. So, it is enough to prove
that

lim sup
l→+∞

lim sup
ε→+∞

lim sup
N→+∞

sup
Dθ(f,να)≤CNd−2

sup
2l≤|y|≤εN

∫
1

Nd

∑

x∈Td
N

|ηl(x)− ηl(x + y)|f(η)να(dη) = 0.

We can write this integral as

∫
|ηl(0)− ηl(y)|f̄(η)να(dη), (2.6.3)

where f̄ denotes the average of all space translations of f (see 2.3.8).



In this case, we are able to separate the integral over configurations with small density
of particles from the ones with high density. The first case is easily treated. For remaining,
since we are taking configurations with high density of particles, we are able to construct
a coupled process, in which each marginal evolves according to the SSEP and they are
connected by jumps of LP . The main difference between the proof for the Zero-Range
process in [14] comes from the estimate in the Dirichlet form of this process, which in this
case we are able to show that is bounded by C(d, l)εθ and is enough to conclude. We divide
the proof in several steps, in order to make the exposition clearer.

1. Cut off of small densities

At first we note that if we restrict the integral (2.6.3) to the set

Ω0,y = {η :
∑

|x|≤l

η(x) ≤ 2d} ∩ {η :
∑

|x−y|≤l

η(x) ≤ 2d},

it is bounded above by C(d)
(2l+1)d , which vanishes as l → +∞. So, in fact we just have to

consider the integral over the set Ωc
0,y.

2. Reduction to microscopic cubes

Here we need to introduce some notation. Fix a positive integer l, denote by ∧l(0) the box
centered at 0 with radius l. Let χ2,l denote the configuration space {0, 1}∧l(0)×{0, 1}∧l(0),
ξ = (ξ1, ξ2) the configurations of χ2,l and by ν2,l

α the product measure να restricted to χ2,l.
Denote by fy,l the conditional expectation of f with respect to the σ-algebra generated by
{η(z), z ∈ ∧l(0, y)}, where

∧l(0, y) = ∧l(0) ∪ ∧l(y).

Since, ηl(0) and ηl(y) depend on η(x), for x ∈ ∧l(0, y), we are able to replace f̄ by f̄y,l and
rewrite our desired limit as

lim sup
l→+∞

lim sup
ε→0

lim sup
N→+∞

sup
Dθ(f,να)≤CNd−2

sup
2l<|y|≤2εN

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|f̄y,l(ξ)ν
2,l
α (dξ) = 0.

3.Estimates on the Dirichlet form

At first we need to introduce some notation since we are working in the space Ωc
0,y. Recall

from (2.2.16) the definition of the Dirichlet form of f . Since the Bernoulli product measures
are homogeneous, we can define the Dirichlet form of f as:

Dθ(f, να) =
∑

x,z∈Td
N

|x−z|=1

Ix,z(f, να),



where
Iθ
x,z(f, να) = IP

x,z(f, να) + N θ−2IS
x,z(f, να), (2.6.4)

IP
x,z(f, να) =

∫

Ωc
0,y

c(x, z, η)
[√

f(ηx,z)−
√

f(η)
]2

να(dη)

and

IS
x,z(f) =

∫

Ωc
0,y

[√
f(ηx,z)−

√
f(η)

]2

να(dη).

By the definition of f̄ , see (2.3.8) and since the Dirichlet form is convex, it implies that
Dθ(f̄ , να) ≤ Dθ(f, να).

The main step in the proof, consists in obtaining an upper bound for the Dirichlet form
of f̄y,l from the upper bound of the Dirichlet form of f̄ , in such a way that we can use
the ergodic properties of the Markov process. The idea is to obtain a limit density with
Dirichlet form in ∧l(0, y) equal to 0, and then by using the irreducibility we can decompose
that density along the hyperplanes. As the boxes ∧l(0) and ∧l(y) have no communication,
we cannot define the Dirichlet form in ∧l(0, y) as the sum of the Dirichlet forms in ∧l(0)
and in ∧l(y), we must add a term that connects both boxes. Define on positive densities
f : χ2,l → R+:

D2,l
θ (f, ν2,l

α ) = I l
0,0(f, ν2,l

α ) +
∑

x,z∈∧l(0)
|x−z|=1

I1,l
x,z(f, ν2,l

α ) +
∑

x,z∈∧l(0)
|x−z|=1

I2,l
x,z(f, ν2,l

α ), (2.6.5)

where

I1,l
x,z(f, ν2,l

α ) =

∫

Ωc
0,y

[√
f(ξx,z

1 , ξ2)−
√

f(ξ1, ξ2)
]2

ν2,l
α (dξ1, dξ2),

I2,l
x,z(f, ν2,l

α ) =

∫

Ωc
0,y

[√
f(ξ1, ξ

x,z
2 )−

√
f(ξ1, ξ2)

]2

ν2,l
α (dξ1, dξ2).

We have to define the term that connects both boxes, namely I l
0,0(f, ν2,l

α ). Note that Ωc
0,y =

Ω0 ∪ Ωy, where Ω0 = {η :
∑

x∈∧l(0) η(x) ≥ 2d + 1} and Ωy = {η :
∑

x∈∧l(y) η(x) ≥ 2d + 1}.
Then we define

I l
0,0(f, ν2,l

α ) =

∫

Ω0

d∑
j=1

c(0, ej, ξ1)
[√

f(ξ0,−
1 , ξ0,+

2 )−
√

f(ξ)
]2

ν2,l
α (dξ1, dξ2)

+

∫

Ωy

d∑
j=1

c(0, ej, ξ2)
[√

f(ξ0,+
1 , ξ0,−

2 )−
√

f(ξ)
]2

ν2,l
α (dξ1, dξ2),

where ξ0,±
i = ξi ± ∂0 and ∂0 is the configuration with one particle at site 0 and in the rest

empty.
This Dirichlet form corresponds to a particle system on ∧l(0)×∧l(0), where the marginal

processes evolve as SSEP and where particles can jump from the origin of one marginal



process to the origin of the other and vice-versa, according to the jumps of the generator
LP . Using Schwarz inequality and the definition of f̄y,l, we have that:

I1,l
x,z(f̄y,l, ν

2,l
α ) ≤ IS

x,z(f̄ , ν2,l
α ) and I2,l

x,z(f̄y,l, ν
2,l
α ) ≤ IS

x,z(f̄ , ν2,l
α )

Then, by equality (2.6.4) and the estimate on the Dirichlet form of f , it holds that
DS(f̄ , να) ≤ CNd−θ which together with l/N < ε, implies that:

∑

x,z∈∧l(0)
|x−z|=1

I1,l
x,z(f, ν2,l

α ) +
∑

x,z∈∧l(0)
|x−z|=1

I2,l
x,z(f, ν2,l

α ) ≤ 2(2l + 1)d−12lDS(f̄ , να)

Nd

≤ C(d, l)εθ (2.6.6)

In last expression C(d, l) is a constant that depends on d and l. In what follows it may
vary from line to line. It remains to obtain an upper bound for I l

0,0(f̄y,l). By using Schwarz
inequality and the definition of f̄y,l, we can bound I l

0,0(f̄y,l, ν
2,l
α ) by

∫

Ω0

d∑
j=1

c(0, ej, η)
[√

f̄(η0,y)−
√

f̄(η)
]2

να(dη)

+

∫

Ωy

d∑
j=1

c(y, y + ej, η)
[√

f̄(η0,y)−
√

f̄(η)
]2

να(dη).

Let El,j
0,y(f̄ , να) j = 1, 2 denote, respectively, the first and the second expectation above. In

order to keep the proof clear we are going to estimate El,1
0,y(f, να) and state it as a lemma.

We note that a similar argument provides the same bound for El,2
0,y(f, να).

Lemma 2.6.3. Let f be a density such that Dθ(f, να) ≤ CNd−2 and let y ∈ Td
N : 2l <

|y| ≤ 2εN . Then,
El,1

0,y(f, να) ≤ C(d, l)εθ.

Proof. The idea consists in expressing the exchange η0,y by means of allowed nearest neigh-
bor exchanges ηx,x+1 of the generator LN

θ . Since the integral is restricted to Ωc
0 we have for

certain 2d + 1 particles in ∧l(0). We discuss for definiteness the path in the case η(x) = 1,
η(y) = 0, the other possibility can be treated analogously. In order to bring the particle
from 0 to y we first move 2d of the particles in ∧l(0) close to 0 by means of the jumps that
corresponds to LS. Then we arrange them in order to form a d-dimensional hypercube
of linear size 2, which is a mobile cluster. Now we can shift this cluster plus the particle
originally in 0 in each of the d directions by using only the jumps in LP and we bring them
close to y. In figure 2.1 and 2.2 we show as an example the path which allows to shift in
the e1 and e2 direction the mobile 2× 2 square of particles (black circles) plus the particle
originally in 0 (grey circle).



Figure 2.1: Moving in the direction e1

Figure 2.2: Moving in the direction e2

Then we drop particle that was originally in 0 in site y and bring back the mobile
cluster alone to ∧l(0) again using moves in LP . Finally, using the jumps of LS, we put
them in their initial positions.

Note that the above path is uniquely defined only after choosing the 2d particles in the
box ∧l(0) which are used to form the mobile cluster and whose existence in guaranteed
by the fact that the integral is restricted to Ωc

0. This will bring an entropy factor which
corresponds to the number of possible initial positions for the 2d particles, which is bounded
by ld2d

.
Once for a given η the initial position of the 2d particles which will be used to form

the mobile cluster is fixed, namely x1, .., x2d , we let τγ0,yτγ0,y−1...τ1(η) be the sequence of
nearest neighboring exchanges that represents the above described path. We can therefore
rewrite, for any function g, the square difference (g(η0,y)− ḡ(η))

2
as a telescopic sum:

[
g(η0,y)− g(η)

]2

=
[ γ0,y∑

k=1

g
(
τk

k−1∏
i=1

τi(η)
)
− g

( k−1∏
i=1

τi(η)
)]2

where γ0,y denotes the number of steps of the path which is less than C(d)(l + εN). Now
we separate the part of the path in which the moves are performed via jumps in LS

from the one that can be performed by using LP and, by using the elementary inequality
(x + y)2 ≤ 2x2 + 2y2, we bound last expression by

[ C(d)l∑

k=1

g
(
τk

k−1∏
i=1

τi(η)
)
− g

( k−1∏
i=1

τi(η)
)]2

+
[ C(d)Nε∑

k=C(d)l+1

g
(
τk

k−1∏
i=1

τi(η)
)
− g

( k−1∏
i=1

τi(η)
)]2

Note that in the previous expression we had to take into account the number of steps in
the paths, which is order l for the terms involving moves of LS and of order Nε for those
using LP , thanks to our choice of the path.



We now apply the above inequality with the choice g =
√

f̄ and use again the Cauchy-
Schwarz inequality on each single term and the fact that the rates of LP (2.2.3) are bounded
from below by 1 thanks to our choice of the path for all the terms in the second telescopic
sum. This leads to the bound

El,1
0,y(f, να) ≤ C(d)l

∑

a1∈∧l(0)
..

a
2d∈∧l(0)

∫

Ωc
0

1{a1=x1,..,a
2d=x

2d}
∑
ei

[√
f̄(ηei)−

√
f̄(η)

]2

να(dη)

+C(d)Nε
∑

a1∈∧l(0)
..

a
2d∈∧l(0)

∫

Ωc
0

1{a1=x1,..,a
2d=x

2d}
∑
ẽi

c(i, i + 1, η)
[√

f̄(ηẽi)−
√

f̄(η)
]2

να(dη),

where {ei}i denotes the bonds that we use inside ∧l(0) when taking the 2d particles whose
initial positions are x1, ..x2d , close to the particle at the site 0, by the jumps of the exclusion
process, while ẽi = {i, i + 1} corresponds to the bonds used by the generator LP when
performing the rest of the path. Since there are ld2d

chances for the initial positions
x1, . . . x2d , we can bound last expression by:

ld2d

C(d)l
∑

x,x+1∈∧l(0)

IS
x,x+1(f, να) + ld2d

C(d)εN
∑

x,x+1∈∧l(0)

IP
x,x+1(f, να).

By the equality (2.6.4) and the bound on the Dirichlet form of f , it holds that:

∀x ∈ Td
N : IS

x,x+1(f, να) ≤ C

N θ
, IP

x,x+1(f, να) ≤ C

N2
,

which together with l ≤ εN , ends the proof.

By the definition of the Dirichlet form D2,l
θ (f, ν2,l

α ) in (2.6.5), together with (2.6.6) and
the previous Lemma, we can be restricted to densities f that satisfy

D2,l
θ (f, ν2,l

α ) ≤ C(d, l)εθ.

So, to conclude the proof of the Two-blocks estimate it is enough to show that

lim sup
l→+∞

lim sup
ε→0

sup
D2,l

θ (f,ν2,l
α )≤C(d,l)εθ

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|f(ξ)ν2,l
α (dξ) = 0,

where the supremum is carried over densities with respect to ν2,l
α . Note that the parameter

ε is appearing only on the bound of the Dirichlet form.
Now, we proceed by bounding this last expression by another in which the supremum

is carried over densities with Dirichlet form equal to 0. For each ε > 0, there exists a



density fε with Dirichlet form bounded by C(d, l)εθ, such that the supremum is attained.
By compactness, there exits a subsequence fεk

such that

lim
k→+∞

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|fεk
(ξ)ν2,l

α (dξ) = lim sup
ε→0

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|fε(ξ)ν
2,l
α (dξ).

We can extract a subsequence fεkm
of fεk

, converging to f∞ with D2,l
θ (f∞, ν2,l

α ) = 0 and

lim
m→+∞

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|fεkm
(ξ)ν2,l

α (dξ) =

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|f∞(ξ)ν2,l
α (dξ).

So, in order to conclude the proof we need to show that

lim sup
l→+∞

sup
D2,l

θ (f,ν2,l
α )=0

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|f(ξ)ν2,l
α (dξ) = 0.

4. Decomposition of the Dirichlet form on hyperplanes

Now is the point in the proof in which we shall use the ergodic properties of the system.
Let f be a density with D2,l

θ (f, ν2,l
α ) = 0. Since we add a term to the Dirichlet form that

relates both boxes, we have that f is constant along the hyperplanes having a fixed total
number of particles in ∧l(0, y) = ∧l(0) ∪ ∧l(y). For each integer j, denote by ν2,l,j

α the
measure ν2,l

α , conditioned to the hyperplane Σj = {ξ :
∑

x∈∧l(0,y) ξ(x) = j}. Then, we have
that

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|f(ξ)ν2,l
α (dξ) =

2(2l+1)d∑
j=0

cj(f)

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|ν2,l,j
α (dξ)

where for each j,

cj(f) =

∫
1Σj

f(ξ)ν2,l
α (dξ).

Since
∑2(2l+1)d

j=0 cj(f) = 1, it remains to show that

lim sup
l→+∞

sup
j≤2(2l+1)d

∫

Ωc
0,y

|ξl
1(0)− ξl

2(0)|ν2,l,j
α (dξ) = 0. (2.6.7)

5. The Equivalence of Ensembles

The proof follows from a simple application of the equivalence of ensembles. Fix an integer
K, that shall increase to ∞ after l. Now, decompose the sets ∧l(0) and ∧l(y) in cubes of
length 2K + 1, which are denoted by {Ai, i = 1, .., M} and {Bi, i = 1, .., M}, respectively,
where M = [ 2l+1

2K+1
]. By construction there exists two sets A0 and B0 such that |A0| ≤

CKld−1 and |B0| ≤ CKld−1. With this notation the integral (2.6.7) is bounded by

M∑
i=1

(
(2K + 1)d

(2l + 1)d

∫ ∣∣∣ 1

(2K + 1)d

∑
x∈Ai

ξ1(x)− 1

(2K + 1)d

∑
x∈Bi

ξ2(x)
∣∣∣ν2,l,j

α (dξ),



plus a term of O
(

K
l

)
. Since the distribution of the variables {ξ(x), x ∈ Ai} and {ξ(x), x ∈

Bi} does not depend on i and by Corollary A2.1.7 of [14], we can approximate this integral
with respect to the canonical measure, namely ν2,l,j

α , by the integral with respect to the
grand canonical measure, να. Then as l →∞ and j/2(2l+1)d → α, last integral converges
to ∫ ∣∣∣ 1

(2K + 1)d

∑

|x|≤K

ξ1(x)− 1

(2K + 1)d

∑

|x|≤K

ξ2(x)
∣∣∣να(dξ),

and by the Law of Large Numbers vanishes as K →∞.

2.7 Spectral Gap

In this section we analyze the magnitude of the spectral gap for the one dimensional
generators on finite boxes, LP,ΛN

and LN
θ,ΛN

, which have been defined in section 2. Note
that the results below on the scaling of the spectral gap with the lattice size have not been
used in the previous sections to derive the hydrodynamic limit. This was possible thanks
to the fact that we were considering a gradient choice of the rates. The following analysis
of the spectral gap can be regarded as a first step towards the analysis of the non gradient
version of our models, e.g. for the choice

c′(x, x + ej, η) =

{
1 if η(x− ej) + η(x + 2ej) ≥ 1
0 otherwise

.

which is a non gradient version with the same kinetic constraints as our original choice
(2.2.3), namely c′(x, x + ei, η) = 0 if and only if c(x, x + ei, η) = 0.

For simplicity in the following we drop ΛN from our notation. The main ingredient of
our proofs will be a comparison with the spectral gap λ(LLR) for the long range exclusion
process and the use of path arguments. Let us start by recalling the definition of LLR and
the result in [18] for its spectral gap. The action of LLR on local functions f : ΣN,k → R
is given by

(LLRf)(η) =
∑

x,y∈ΛN

1

N
η(x)(1− η(y))(f(ηx,y)− f(η)), (2.7.1)

where ηx,y as defined in (2.2.2).
Consider the Dirichlet form DLR associated to LLR, with respect to the uniform measure

νN,k, given explicitly by:

DLR(f, νN,k) =
1

N

∑
x,y∈ΛN

∫

ΣN,k

(f(ηx,y)− f(η))2νN,k(dη). (2.7.2)

Quastel in [18], obtained that

Var(f, νN,k) ≤ DLR(f, νN,k), (2.7.3)



by computing precisely the eigenvalues of the generator LLR. In order to prove our results
(Proposition 2.2.6 and 2.2.7) for the spectral gap of the process with generator LN

θ ∀k and
with generator LP for k > 1/3, we proceed in two steps.

Fix an integer k such that the density is restricted to ρ = k
N

> 1
3
. With this restriction,

for each η ∈ ΣN,k, there exists a couple of particles whose distance is smaller or equal to
two and ΣN,k is irreducible. Furthermore we will show that there exists a constant C that
does not depend on N nor k such that

DLR(f, νN,k) ≤ Cρ

ρ− 1/3
N2DP (f, νN,k), (2.7.4)

where DP (f, νN,k) is the Dirichlet that corresponds to LP .
Last result together with (2.7.3) allows to conclude the following Poincaré inequality:

Proposition 2.7.1. Fix k > N/3. For the Markov process with generator LP,N and for
every f ∈ L2(νN,k), there exists a constant C not depending on N nor k such that:

Var(f, νN,k) ≤ Cρ

ρ− 1/3
N2DP (f, νN,k).

The second inequality in the result of Proposition 2.2.6 is an immediate consequence of
last result. The first inequality follows from the fact that for any function f it holds that
DP (f, νN,k) ≤ Dθ(f, νN,k).

The case in which ρ = k
N
≤ 1

3
is more demanding. Since the hyperplanes ΣN,k are

no longer irreducible for LP , the corresponding spectral gap is zero. A natural issue is
determining the magnitude of the spectral gap for LP on the restricted irreducible set of
configurations with k particles and at least one couple of particles at distance at most two.
In this case the invariant measure is no longer the same one as for the long range jumps and
the comparison with the latter process is no more useful. Instead, we will here consider for
k/N ≤ 1/3 the spectral gap for the modified generator LN

θ which, thanks to the addition of
the exclusion part, is ergodic on the hyperplanes ΣN,k for any k and reversible with respect
to νN,k. By comparing the Dirichlet form of LN

θ with the one of LLR, we show that:

Proposition 2.7.2. Fix k ≤ N/3. For the Markov process with generator given by LN
θ

and for every f ∈ L2(νN,k), there exists a constant C not depending on N nor k such that::

Var(f, νN,k) ≤ Cρθk1−θ

ρ3
N θDS(f, νN,k) +

C

ρ
N2DP (f, νN,k).

Proposition 2.2.7 is an immediate consequence of Proposition 2.7.2.

2.7.1 Proof of Proposition 2.7.1

Fix an integer k and suppose that ρ = k
N

> 1
3
. The Dirichlet form associated to LP is

given explicitly by

DP (f, νN,k) =
1

2

∑
x,y∈ΛN
|x−y|=1

∫

ΣN,k

c(x, y, η)(f(ηx,y)− f(η))2νN,k(dη)



where c(x, y, η) and ηx,y were defined on (2.2.3) and (2.2.2), respectively. We have seen
above that it is enough to show (2.7.4).

The idea consists in expressing the exchange ηx,y, for each x, y ∈ ΛN by means of a
sequence of allowed jumps of LP . Consider for example the case x < y and η(x) = 1, η(y) =
0. The restriction ρ > 1

3
guarantees that there exists a couple of sites (a, b) both in ΛN such

that η(a) = η(b) = 1 and |a− b| ≤ 2. Once the couple has been chosen we shift it close to
sites x−2, x−1. We have thus reached a configuration with η(x−2) = η(x−1) = η(x) = 1,
and we now shift the three particles to (y−3, y−2, y−1). The allowed path which performs
the shift of one step to the right is the composition of the following three basic steps:
η → η1 = ηx,x+1, η1 → η2 = ηx−1,x

1 and η2 → η3 = ηx−2,x−1
2 . When after a proper number

of one step shifts we reach the configuration ηn with η(y−3) = η(y−2) = η(y−1) = 1, we
can perform the exchange ηn → ηn+1 = ηy−1,y

n which corresponds to dropping the particle
at y. Then we make a similar backward path, this time shifting the two particles plus the
vacancy untill bringing the vacancy in x and finally we bring back the two particles to
their original position (a, b).

As we did for Lemma 2.6.3, we have to take into account the entropic term correspond-
ing to the possible initial positions of the couple of particles (a, b). Some care is required
at this point, since using the rough bound N for this original position would lead to an
additional factor N in the inequality 2.7.4. Let us start by presenting a lower bound for
the number of couples of particles at distance at most two

Lower bound for the number of couples for k > N/3

Fix a configuration η ∈ ΣN,k. Let B be the set of sites which are occupied and such
that for each of them there is a particle at distance at most two, B = {x : η(x) =
1, η(x+1)+ η(x−1)+ η(x+2)+ η(x−2) ≥ 1}. Let also A denote the remaining occupied
sites A = {x : η(x) = 1, x ∈ ΛN \ B}. The following holds:

k = |A|+ |B|

N ≥ 3(|A| − 1) + 1 + |B|,
where for a set S, |S| denotes its cardinality.

The first equality is obvious. In order to establish the second property we use the fact
that, if x and y belong to A, then |x− y| ≥ 3. The inequality follows by organizing the k
particles in the closest configuration which does not change the value of |A| and |B|. The
minimum number of couples of particles at distance at most two and such that there are
not common sites among different couples is |B|/2, see e.g. the figure below in which there



are 8 neighboring particles but just 4 couples. This, together with the above established
relations among k, N, |B|, gives the following lower bound for the number of couples

∑
z∈ΛN

η(z)η(z + 1) + η(z)η(z + 2) ≥ |B|/2 ≥ 3

4
(k −N/3− 2/3).

Introducing this term in the Dirichlet form of the long range exclusion (2.7.2) we bound
it by:

2

N |B|
∑

x,y∈ΛN

∑
η∈ΣN,k

∑
z∈ΛN

2∑

l=1

η(z)η(z + l)(f(ηx,y)− f(η))2νN,k(η). (2.7.5)

Let us now consider a term in the sum above

η(z)η(z + l)
(
f(ηx,y)− f(η)

)2

and let x − (z + 1) = n and y − x = m. By using the construction sketched above
for a the possible path which connects η to ηx,y via allowed elementary exchanges, it is
possible to define a sequence ηi for 1 ≤ i ≤ γx,y

z with γx,y
z = 6(m − 1) + 4(n − 1) + 2

with the following properties: η1 = η, ηγx,y
z

= ηx,y and ∀i there exists xi ∈ ΛN such that

ηi = η
x(i),x(i)+1
i−1 and c(x(i), x(i) + 1, ηi−1) > 0, namely the exchanges are permitted for the

generator LP . Therefore we can rewrite each η(z)η(z + l)(f(ηx,y)− f(η)) as the telescopic
sum:

η(z)η(z + l)
(
f(ηx,y)− f(η)

)2

=
( γx,y

z −1∑
i=1

f(ηn)− f(ηn−1)
)2

By using this equality together with c(x(i), x(i)+1, ηi−1) > 0 and applying Cauchy-Schwarz
inequality we can finally bound (2.7.5) from above by:

CN

N |B|
∑

x,y∈ΛN

∑
η∈ΣN,k

∑
z∈ΛN

2∑

l=1

η(z)η(z + l)
∑
ẽi

c(i, i + 1, η)(f(ηẽi)− f(η))2νN,k(η),

where ẽi = {i, i + 1} denotes one bond that we have used when performing the path that
takes the particle from x to y using the couple at the sites z and z + 1 and C is a constant
independent on N and k. Last expression is bounded above by

CN3

N |B|
∑

η∈ΣN,k

∑
z∈ΛN

η(z)
∑

x

c(x, x + 1, η)(f(ηx,x+1)− f(η))2νN,k(η),

and since the number of particles is k, it is equal to

Cρ

ρ− 1/3
N2DP (f, νN,k).



2.7.2 Proof of Proposition 2.7.2

Now, fix an integer k such that ρ = k
N
≤ 1

3
. In this case, we are going to show that

DLR(f, νN,k) ≤ Cρθk1−θ

ρ3
N θDS(f, νN,k) +

C

ρ
N2DP (f, νN,k), (2.7.6)

which is enough to conclude. As before, the idea consists in expressing a path from x to y
using the admissible jumps of LN

θ .
For this choice of k we are no more guaranteed that there exist two particles at distance

at most two, which was a key ingredient to construct the path in the high density regime.
The idea will be to make use of the simple exclusion jumps to construct such mobile clusters
and then proceed as before in a similar way as we did in in the proof of Lemma 2.6.3.

Fix a distance j and denote by Bj the set of particles at distance at most j, Bj = {x :
η(x) = 1,∃l ∈ (−j,−1)∪ (1, j) s.t. η(x+ l) = 1} and by Aj the remaining particles. Then,
the following holds:

k = |Aj|+ |Bj|
N ≥ (j + 1)(|Aj| − 1) + 1 + |Bj|

This inequality is obtained in the same manner as before considering that now the minimum
distance that the Aj-particles have to be is j + 1.

As before, the minimum number of couples that one can have is |Bj|/2. By simple
computations we obtain the lower bound

∑
z∈ΛN

j∑

l=1

η(z)η(z + l) ≥ |Bj|
2

≥ j + 1

2j

(
k − N

j + 1
− j

j + 1

)
. (2.7.7)

Introducing this inequality in the Dirichlet form of the long range exclusion (2.7.2), we
bound it from above by:

C

N |Bj|
∑

x,y∈ΛN

∑
η∈ΣN,k

∑
z∈ΛN

j∑

l=1

η(z)η(z + l)(f(ηx,y)− f(η))2νN,k(η).

For each configuration η and each choice x, y, z and l, we can now construct a path
which first bring together the two particles in z and z + l by using the jumps of the simple
exclusion and then uses this mobile cluster to perform the exchange of occupation variables
in x and y, as in the proof of Lemma 2.6.3. Here LS, also denotes the generator of the
Symmetric Simple Exclusion process restricted to the box ΛN , given on local functions by

(LSf)(η) =
∑

x,y∈ΛN
|x−y|=1

1

2
η(x)(1− η(y))(f(ηx,y)− f(η)).

Since the jumps of the exclusion are used just to put the neighboring particles at a
distance equal to two, the size of the path for this process is O(j). With this purpose,



write f(ηx,y)−f(η) as a telescopic sum, use the elementary inequality (x+y)2 ≤ 2x2 + 2y2

and then the Cauchy-Schwarz inequality to bound last expression by:

Cj

N |Bj|
∑

x,y∈ΛN

∑
η∈ΣN,k

∑
z∈ΛN

j∑

l=1

η(z)η(z + l)
∑
ei

(f(ηei)− f(η))2νN,k(η) (2.7.8)

+
CN

N |Bj|
∑

x,y∈ΛN

∑
η∈ΣN,k

∑
z∈ΛN

j∑

l=1

η(z)η(z + l)
∑
ẽi

c(i, i + 1, η)(f(ηẽi)− f(η))2νN,k(η), (2.7.9)

where ei denotes the bonds that we have used when bringing the neighboring particles
at a distance equal to two, while ẽi = {i, i + 1} denotes the bonds we have used when
performing the remaining part of the path that takes the particle from x to y. Note, that
there is a factor j multiplying the first expression which comes from the size of the path
for the jumps of the exclusion, while for the other process the size of the path is of O(N).

First we deal with the jumps that concerns LP . As before, we bound (2.7.9) from above
by

CjN3

N |Bj|
∑

η∈ΣN,k

∑
z∈ΛN

η(z)
∑

x

c(x, x + 1, η)(f(ηx,x+1)− f(η))2νN,k(η),

and since η ∈ ΣN,k, we obtain the bound:

Cjρ

ρ− 1/j
N2DP (f, νN,k).

Now, we bound (2.7.8), by

CjN2

N |Bj|
∑

η∈ΣN,k

∑
z∈ΛN

j∑

l=1

η(z)
∑

x

(f(ηx,x+1)− f(η))2νN,k(η).

Since the number of particles is k, we can bound last expression by:

Cj2k

(ρ− 1/j)N θ
N θDS(f, νN,k).

Reorganizing this facts together we obtain that:

DLR(f, νN,k) ≤ Cj2k

(ρ− 1/j)N θ
N θDS(f, νN,k) +

Cjρ

ρ− 1/j
N2DP (f, νN,k).

Optimizing over j, (2.7.6) follows.

Remark 2.7.3. For sake of simplicity we have presented the spectral gap results only
in the one dimensional setting. By a proper modification of the path arguments and an
accurate estimate on the minimal number of mobile clusters it is possible to obtain for
d > 1 an analogous result as the one in Proposition 2.2.6 if the density ρ = k/N is such
that k > C(d)(N/3)d.



Remark 2.7.4. Taking for instance the density fluctuations field as defined in (2.2.14)
and the reference measure the Bernoulli product measure νρ, by simple computations we
obtain that

Var(YN
t (H), νρ) = ρ(1− ρ)||H||22,

while the Dirichlet form corresponding to LP equals to:

DP (YN
t (H), νρ) =

1

N2
ρ2(1− ρ)||H ′||22.

So, if we consider H, such that ||H||22 = ||H ′||22, then:

Var(YN
t (H), νρ) =

N2

ρ
DP (YN

t (H), νρ),

which implies that the spectral gap λN(LP,ΛN
) ≤ ρ

N2 . This is in agreement with the bound
that we have obtained in (2.7.6), when considering the spectral gap with respect to the
uniform measure.
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