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Chapter 0

Introduction

Let X be a smooth projective curve of genus g. Associated to X there is the Jacobian variety
J% parameterizing degree-zero divisors on X modulo rational equivalence, or equivalently, degree-
zero line bundles on X modulo isomorphism. The Jacobian variety is smooth, projective and has
dimension g. Moreover, J% has a group structure given by addition of divisors (or tensor product
of line bundles), so J% is an algebraic group. To put it short, J% is an Abelian variety.

For each fixed point P € X, the Abel map
Ap: X — Jg(

relates the curve X to its Jacobian J% by taking a point @ of X to the class of the divisor P — @ in
J%. If X is a genus 1 curve, this map is an isomorphism for every P, thus giving a group structure
on X with identity element P. For higher genus, Ap is a closed embeding, so, in any case, we
can view the curve X as a closed subvariety of the algebraic group J%. This way, we can perform
(extrinsic) group operations on X, by identifying X with its image in J% (although in general the
class of the divisor (P — Q1) + (P — Q2) = 2P — 1 — Q- is not in the image of Ap). This gives
maps X? — J%, where X? is just the d-fold product of X, that is, the product of d copies of
X. Actually, the map X% — J% factors through X(? the d-fold symmetric product of X, that
is, the quotient of X¢ obtained identifying the d-tuples (z1,...,24) and (yi,...,yq) if one is a

permutation of the other. We obtain an induced map
AP x@D 5 Y

called the d-th Abel map. The map Ap is then the first Abel map. If we denote by W, the image



of Ag) for each d, we have W; = X, because Ag) = Ap is a closed embedding. Furthermore
X=2W,CWaC...CWgC...CJ%.

It can be shown that each W, has dimension d, and that W, = J%.

A lot of the properties of the curve X can be recovered from the varieties W; and the morphisms
Asg). For example, it can be shown that Ag) is a closed embedding if and only if X is not
hyperelliptic. In fact, the whole curve can be reconstructed from its Jacobian J% together with
its theta divisor (a translate of W,_1). This is Torelli’s theorem that, more precisely, states that
if X and X' are smooth curves whose Jacobians are isomorphic, with an isomorphism identifying
the theta divisors, then X and X' are isomorphic as well.

In addition, consider the pullback map A% of line bundles on J% to line bundles on X. Since J%
is a smooth projective variety, it has a Picard scheme parameterizing line bundles on J% modulo
isomorphism. If we denote by PicO(Jf,’() the connected component of the Picard scheme containing
the identity, the pullback map A% takes an element of Pic®(J%) to an element of J%. It is a

classical result, known as the autoduality of the Jacobian, that the map
Ay Pic®(JY) = J%

is an isomorphism.

When we consider smooth curves in families, we feel the need to consider singular curves as
well. So we might try to extend the above constructions and results for a larger class of curves.
Thus, let X be a singular curve. Then the map Ap is not defined on the singular points of X,
since these are not Cartier divisors. However, we may view the Abel map of a curve X as taking
a point of X to its ideal sheaf (possibly twisted by some line bundle of X). So, in order to define
an Abel map on the whole X, we must enlarge the target space of Ap to include the ideal sheaves
of singular points of X. In other words, we need a natural compactification of J%.

The problem of compactifying the relative Jacobian of a curve X, or even a family X/S of
curves was first considered by Igusa in [I56] for pencils of integral curves with smooth general
members and nodal special ones. Later on, Mayer and Mumford suggested in [MM64] an intrinsic
characterization of Igusa’s compactification, as a space parameterizing torsion-free rank-1 sheaves.
(Roughly speaking, a torsion-free sheaf of rank 1 on a curve is the product of an ideal sheaf
with an invertible sheaf.) Following that suggestion, D’Souza obtained in his 1974 thesis [D79] a
compactification of the relative Jacobian Jx,g of a family of irreducible curves X/S with nodes

and cusps as singularities, under somewhat restrictive hypothesis.



In 1976 a good solution was found by Altman and Kleiman for a flat, locally projective, finitely
presented family X /S of integral curves. They introduced in [AK76] a compactification 7X/ s for
the relative Jacobian Jx,s as the moduli space parameterizing torsion-free rank-1 sheaves. They
showed that the Abel map taking values in J x /5 is well defined, and is a closed embedding if the
curves of the family have arithmetic genus greater than 0 (see [AK80, Theorem 8.8, p. 108]). Later,
Esteves, Gagné and Kleiman showed in [EGKO02, Theorem 2.1, p. 595] an autoduality theorem for
the compactified Jacobian. More precisely, they showed that, if X is a projective curve with double
points at worst, then the pullback map A% : Pic’ (7())() — J% is an isomorphism, where Pico(jg()
is the connected component of the Picard scheme of 72( containing the identity. (Actually, they
worked with families as well.)

The problem of finding a good relative compactification for the relative Jacobian of a family
of reducible curves is a more difficult one. This problem was considered by Oda and Seshadri
[OST79] in 1979 for a single reduced (possibly reducible) nodal curve. Three years later, Seshadri
treated the case of a general reduced curve in [S82]. As for families, in 1994 Caporaso constructed
in [Cap94] a compactification of the relative Jacobian over the moduli space of Deligne-Mumford
stable curves, considering invertible sheaves on curves derived from stable ones. And one year later,
Pandharipande [P96] produced the same compactification as the space parameterizing torsion-free
rank-1 sheaves. (He also worked with higher-rank bundles.) Both of these relative compactifications
were constructed using Geometric Invariant Theory. Also, the compactifications in [Cap94] and
[P96] are not fine moduli spaces, and thus do not carry a Poincaré sheaf. Furthermore, Caporaso
and Pandharipande constructed their compactifications using the same setup and method that
Gieseker [G] used construct the moduli space of stable curves, and hence, in principle, their method
could not be extended to arbitrary families.

At last, Esteves considered in [E01] the algebraic space J x /s parametrizing torsion-free rank-1
simple sheaves on the fibers of X/S. (A sheaf is simple if its automorphisms are homoteties.) This
space was essentially introduced by Altman and Kleiman in [AK80]. Esteves showed that 7X/ g is
universally closed over S, and hence can be regarded as a compactification of the relative Jacobian
of X/S. Esteves’ compactification is a fine moduli space, and hence does admit a Poincaré sheaf
after an étale base change. However, unlike Caporaso’s and Pandharipande’s compactifications,
Esteves’ is not a scheme, but only an algebraic space. (Although it does become a scheme after an
étale base change.) In addition, 7X/ g is too big, in the sense that it is not separated or of finite
type over S. Thus Esteves considered certain small subspaces of J x /s as well. He showed that, if

the family admits a section, then we may consider open subspaces of J x /s which are proper over



the base. (Esteves’ compactification will be better explained below.)

It is natural to consider for a family of reducible curves Abel maps taking values in the com-
pactifications mentioned above. Esteves and Caporaso considered in [CE06] Abel maps for a pencil
of stable curves taking values in Caporaso’s compactification. They showed that, if the curves in
the pencil are general enough (1-general), then the Abel map is well defined, and, if in addition
the curves do not have disconnecting lines, the map is an injection [CE06, Theorem 5.5, p. 25 and
Theorem 5.9, p. 27]. (A disconnecting line in a curve X is a rational component L of X such that
the number of connected components of the complement L¢ := X — L is equal to the number of
points in L N L¢.)

In this work we consider Abel maps into Esteves’ compactification [E01]. In particular, we do
not need to restrict ourselves to stable curves. Before we present our results, we briefly explain this
compactification. (For a more detailed account, see Section 1.3.) First, we need a polarization. A
polarization on a curve X, in the sense of [E01], is simply a vector bundle E whose rank divides its
degree. Esteves uses polarizations to bound the multidegrees or Euler characteristics of sheaves.
More precisely, let I be a torsion-free rank-1 simple sheaf on X. Then we consider the Euler
characteristic of the product G ® E, for each quotient G of I. As usual, I is stable with respect
to E if x(E ® G) > 0, and is semi-stable if x(E ® G) > 0, for every proper quotient G of I. But
Esteves introduced a new notion, that of quasi-stability, which is intermediate between the notions
of stability and semi-stablity. This notion depends on the choice of a nonsingular point P € X.
A torsion-free rank-1 simple sheaf I is P-quasi-stable with respect to E if I is semi-stable, and
X(E ® G) > 0 whenever P is contained in the support of a proper quotient G of I.

Now, fix a polarization E on a curve X. Consider a family of torsion-free rank-1 simple sheaves
on X over a discrete valuation ring. If these sheaves are semi-stable with respect to E, then we
can always find a limit that is also semi-stable, but this limit doesn’t need to be unique. On the
other hand, if the sheaves are stable, then the family does not necessarily have a stable limit, but if
it does, then the limit is unique. Now, if the sheaves are P-quasi-stable, where P is a nonsingular
point of X, then we can always find a P-quasi-stable limit, and this limit is unique. In other words,
the locus 7; of sheaves that are P-quasi-stable with respect to the polarization E is complete, and
the locus 7SE of sheaves that are stable with respect to E is separated [E0Q1, Theorem A, p. 3047].
These are the open subspaces of Jx we work with.

In Chapter 3 we work with a projective Gorenstein curve X of (arithmetic) genus g without

disconnecting nodes, that is, nodes whose removal disconnects the curve. We then consider the



Abel map

A: X — Jx

Q = mg

taking each point () of the curve to its ideal sheaf mg. The map A is well-defined, that is, m¢ is
simple for each () € X, because X has no disconnecting nodes. Now, since X is Gorenstein, its
dualizing sheaf wx is a line bundle. We then give a polarization E that is a direct sum of copies
of wx and of the structure sheaf Ox, such that the map A has image in 7;. Moreover, we show
that A is a closed embedding in 7} if ¢ > 2, and X satisfy an extra condition which holds, for
instance, if the curve is stable; see Corollary 3.2.2.

Furthermore, for each nonsingular point P € X, we consider also the Abel map

AP:X — jX
Q@ — me(P)

taking each point () of the curve to its ideal sheaf mg twisted by P. Like A, the map Ap is
well-defined because X has no disconnecting nodes. Then we show that the map Ap has image in
7;, where the polarization E is simply the direct sum wx @& Ox. Also, if g > 1, we show that Ap
is a closed embedding in 7;; see Corollary 3.2.3.

To prove that A and Ap are closed embeddings we begin by noting that these maps are proper,
because X is projective, and 7SE and 7; are separated. We then show that the fibers of A and
Ap are projective spaces, so we have only to see that these fibers are either empty or consist of
a single point. This is not hard to show, though we use here again that X has no disconnecting
nodes.

The results mentioned above hold more generally for Abel maps of families of curves without
disconnecting nodes.

Now, suppose X has a disconnecting node N. Then the ideal sheaf of N is not simple (see
Example 2.1.2), and hence the Abel maps A and Ap, having values in Esteves’ compactification,
are not well-defined. Nevertheless, for each smooth point P € X, we manage to define in Chapter 4
an Abel map Ap for X: for each Q € X that is not a disconnecting node Ap(Q) is equal to mg(P)
twisted by a line bundle M. The line bundle M is constructed following [CE06], in a way that
Ap(Q) is P-quasi-stable with respect to the polarization E = wx ® Ox. If Q is a disconnecting
node, we define Ap(Q) to be a suitable P-quasi-stable invertible sheaf; see (4.2.1). This gives a
(set-theoretical) map from X to 72. Then we show, by induction on the number of disconnecting
nodes of X, that Ap is indeed a morphism of schemes.

Furthermore, if the curve X has positive arithmetic genus, and no disconnecting lines, we show



that the map Ap is a closed embedding; see Theorem 4.2.3. We remark that, as in [CE06], the
hypothesis that X does not have disconnecting lines is necessary for the injectivity of Ap. Indeed,
in Subsection 4.2.6 we analyze the image of the disconnecting lines of X under Ap and show that
Ap contracts every tree of disconnecting lines to a point. However, these are the only subcurves of
X where Ap is not injective. Roughly speaking, the fibers of the surjection X — Ap(X) are either
points or maximal trees of disconnecting lines. The curve Ap (X) seems to be a good substitute
for X. In fact, for instance, Ap(X) has the same arithmetic genus as X; see Theorem 4.2.10.

As we said, in Chapters 3 and 4 we give a complete description of the first Abel maps of a
reducible Gorenstein curve. A natural continuation is to understand the d-th Abel maps Ag),
induced from Ap by taking a collection of d points {Q1,...,Qq4} to the product of their ideal
sheaves twisted by P, that is, mg,(P) ® ... ® mg,(P). Like the first Abel map, the maps Agﬁi)
are not well-defined if the curve X has disconnecting nodes. Actually, even when the curve has
no disconnecting nodes, the d-th Abel maps are not necessarily well-defined. In fact, Ag) is not
defined on a collection of d points {Q1,...,Qq} which is the intersection of two complementary
subcurves of X; see Subsection 2.2.1. Nevertheless, we might, in principle, expect to find a map
from X (4 to the compactified Jacobian of X, by imitating the construction of Ap.

Now, the line bundles M we used to modify Ap can be shown to arise naturally from any family
of smooth curves degenerating to X; see Remark 4.2.12. More precisely, let X/S be a smoothing
of X, that is, a local pencil of curves whose generic member is smooth and whose special member
is X. Assume that X is regular. Then the line bundles M used to define fip are the restrictions
to X of line bundles on X. (This is actually the approach used in [CE06].) So, to try to define the
d-th Abel maps, we may first consider a smoothing X' /S of X, and consider the d-th Abel maps of
the family X/S. These are not globally defined either. In addition, the strategy of first defining
the map set-theoretically and then showing it is a morphism of schemes does not, in general, work
for higher d. But on X'?, or rather, on a resolution of it, we might expect to find the line bundles
we need to modify the d-th Abel map.

Here we begin the study of the second Abel map Ag). Actually, we work with X? instead
of X As a first approach to the problem, we prefered to avoid the combinatorics of a general
reducible curve, and focused rather on the geometry of the blowups needed to produce the exact line
bunldes we wanted. So we consider in Chapter 5 a curve X having only two (smooth) irreducible
components meeting at two nodes, the simplest interesting curve for which the second Abel map
is not well-defined. (For any d, the d-th Abel map of a two-component one-node curve can be

treated in a way similar to what is done in Chapter 4. Actually, we believe that the d-th Abel



map of any tree-like curve can be thus defined.) Abel maps for two-component stable curves were
studied by Caporaso and Esteves in [CE06], though they obtained only maps defined away from
the singluarities.

Not only is the two-component two-node curve X the simplest case that is not too simple, but
also this seems to be the key case. Indeed, for any nodal curve X', locally at a pair of points of
X' where the second Abel map is not defined, the product X’ x X' is isomorphic to X x X. We
thus feel that, once we have a thorough treatment of the second Abel map of X, we have only to
tackle the combinatorics of the singular curves to solve the general case. Therefore, in Chapter 5,
we completely describe the (six) blowups and the modifications needed to define a second Abel
map for X. Not only we do manage to define a map Aﬁf) from a blowup of the product X x X
to the compactified Jacobian of X, but also we show that this map factors through 7;, where
E =wx & O0x.

We point out that the polarization E used here is the same used in Chapters 3 and 4 for the

) lies in the same complete space as the image

first Abel map Ap. In other words, the image of Aﬁf
of Ap. Moreover, we expect the same to happen for any nodal curve X'. We could hope to, with a
similar procedure, solve the problem of defining the d-th Abel map for a nodal curve, thus finding
a map figf) whose image lies in the same complete subspace of the compactified Jacobian of the
curve, in our case 72. However, the technical difficulties seem huge.

This work is organized as follows. In Chapters 1 and 2 we recall some facts and definitions
concerning the compactified Jacobian and the Abel maps. In Chapter 3 we study the first Abel
map of a family of curves without disconnecting nodes, and in Chapter 4 we focus on curves having

disconnecting nodes. At last, in Chapter 5, we treat the second Abel map of a two-component

two-node curve.



Chapter 1

The compactified Jacobian

1.1 The compactified Jacobian functor

1.1.1 The Jacobian functor. A curve X is a geometrically reduced and connected projective
scheme of pure dimension 1 over an algebraically closed field k. Let Ox be the structure sheaf of
X. A sheaf I on X is said to be invertible if it is locally free of rank 1. If I is invertible, there
exists another invertible sheaf J such that I ® J = Ox. Indeed, J is the sheaf of homomorphisms
Hom(I,0x), since I ® Hom(I,0Ox) = Hom(I,I) = Ox. The Jacobian functor of X is the
contravariant functor

Jx : (k-schemes)® — (sets),

from the category of k-schemes to the category of sets, that associates to each k-scheme T the set
of invertible sheaves on X7 := X x; T, modulo the equivalence relation that identifies two sheaves
I, and I, if there is an invertible sheaf M on T such that I) = I, ® p;M, where ps : X7 — T
is the projection. The functor Jx is represented by a (formally) smooth k-scheme Jx, called the
Jacobian of X. If X is smooth, then the connected components of Jx are proper over k.

If X is not smooth, then, in general, the connected components of Jx are not proper, that
is, there are invertible sheaves degenerating to noninvertible ones. For example, let X be a nodal
irreducible curve with a single node P. For any ) € X, let mg denote its ideal sheaf. If Q) # P,
then mg is invertible, but mp isn’t. Thus as ) “approaches” P, the invertible sheaves mg “tend”
to the noninvertible sheaf mp. To overcome this problem, we consider a larger class of sheaves,

namely torsion-free simple sheaves of rank 1.

1.1.2 Torsion-free rank-1 sheaves. A coherent sheaf I on X is said to be of rank 1 if it is



invertible on the generic points of X. If X has irreducible components Xi,... ,X,, let 51,...,n,
denote the corresponding generic points. We define the torsion subsheaf T (I) of I as the kernel

of the map
-] I
i

where, for each ¢ € X, I, denotes the sheaf that, on each open subscheme U C X, is equal to the
stalk of I at the point z if z € U, and is zero otherwise. If T (I) = 0, we say that I is torsion-free.

Note that an invertible sheaf is torsion-free and of rank 1.

Lemma 1.1.3 Let I be a coherent sheaf on a curve X and T (I) its torsion subsheaf. Then the
quotient sheaf I/T (I) is torsion-free.

Proof. Denote by G the quotient I/T(I). So there is a short exact sequence
0->TI)—-I—->G—0.

We need to see that the natural map G — [], Gy, is an injection. Indeed, [], Gy, =[], I;; (since
T (I)y, = 0 for every generic point n; of X) and, by definition of the quotient, there is an injection

G = [I; In,- O

1.1.4 Subcurves and simple sheaves. A subcurve Y of X is a reduced subscheme of pure
dimension 1, or, equivalently, a reduced union of irreducible components of X. (Note that a
subcurve Y of X is not necessarily connected.) For convenience, the empty set is considered a
subcurve of every curve. For a subcurve Y of X we let Y¢ = X —Y be the minimum subcurve
containing X — Y.

Let Y C X be a subcurve of X and let I be a torsion-free rank-1 sheaf. We denote by Iy the

quotient of the restriction I|y by its torsion subsheaf, that is,
Iy = Iy /T(ly)-

It follows from the lemma that Iy is a torsion-free rank-1 sheaf on Y and it is easy to see that Iy
is the maximum torsion-free quotient of I|y. We say that I is decomposable if there are proper
subcurves Y, Z C X such that I = Iy @ I;. (Note that the intersection Y N Z is necessarily finite.)
The sheaf I is said to be simple if End(I) = k. An invertible sheaf I is clearly simple, since

End(I) = Hom(I,I) = Hom(Ox,I ® I"') = Hom(Ox, Ox),

and, since X is connected, Hom(Ox,O0x) = k.

10



Lemma 1.1.5 A torsion-free rank-1 sheaf I is simple if and only if I is not decomposable.

Proof. If I is decomposable, then it is obviously not simple. Now assume [ is not simple. Then
there exists an endomorphism A : I — I that is not a multiple of the identity. Let Y be the union
of the irreducible components of X along whose generic points h is zero. Let Z := Y° be the
complementary subcurve. Since h is not zero, Z # (. Furthermore, since by [AK80, Lemma 5.4,
p. 83|, Iwy is simple for every irreducible component W of X, up to subtracting a multiple of the
identity from h, we may assume Z # X. Note that h factors through and injection h' : Iz < I.

Let N be the kernel of the projection I — Iy and consider the exact sequence
0O->N—->I—->1Iy —0.

Since h is zero on Y, it factors through N, thus A’ also factors through N. Let g : Iz < N be
the induced injection. Since the composition f : N — I —» I is injective, composing g with f we
have an isomorphism

f og: IZ i) Iz.
Indeed, f og is clearly injective and, since Iz is a torsion-free sheaf of rank 1, the cokernel of fog

has finite support. On the other hand,

x(Coker(f o g)) = x(Iz) — x(Iz) =0,

showing that Coker(f o g) is zero, and hence, that f o g is an isomorphism. In particular, this
implies that f : N < Iz is an isomorphism as well. Therefore we get a splitting for the sequence
0> N —>1I—> Iy - 0by the projection I —» Iz 2 N. Sol 2y &N =2 Iy &Iz, and I is

decomposable. O

1.1.6 Families of curves. The above definitions generalize to families of curves. A family of
curves is a morphism of schemes p : X — S which is flat and projective and whose geometric fibers
are curves. By a sheaf on the family X/S we mean a S-flat coherent sheaf on X. A sheaf 7 on
X/8 is said to be torsion-free (resp. rank-1, resp. simple) on X/S if Z(s) is torsion-free (resp.
rank-1, resp. simple) on X (s) for every geometric point s of S. The relative compactified Jacobian

functor of the family X/S is the contravariant functor
Jx/s : (S-schemes)® — (sets)

that associates to each S-scheme T' the set of simple torsion-free rank-1 sheaves on X7/T modulo
equivalence, where we say that two sheaves 7; and Z» on X7 /T are equivalent if there exists an

invertible sheaf M on T such that 7; = 7, ® p* M, with p: X xgT — T being the projection.

11



The relative Jacobian functor Jx;s of X/S, which associates to each S-scheme T the set of
invertible sheaves on X7 /T modulo equivalence as above, is a subfunctor of jX/ s- Mumford
showed that J x /g is represented by an S-scheme Jy /s if the irreducible components of each fiber
of X/S are geometrically irreducible, see [BLR, Theorem 2, p. 210] or [FGIKNV, Theorem 9.4.8,
p. 263]. But, as we saw in the case of a single curve, Jx/,g is still not proper if the curves of the
family are not smooth.

The functor jX/ g is in general not representable in the category of schemes, but Altman and
Kleiman showed in [AK80] that its associated sheaf in the étale topology is representable in the
larger category of algebraic spaces. In order to make sense of this sentence, we need to introduce

these concepts.

1.2 Algebraic spaces and the étale topology

In this section we’ll just set the definitions and state some facts about the étale topology and
algebraic spaces. The main references are [BLR] and [FGIKNV, Chapters 1 and 2]. And for the

facts about algebraic spaces, see [Kn].

1.2.1 Grothendieck topologies and representable functors. Let P be a property of mor-
phisms of S-schemes, satisfied by isomorphisms, and stable under composition and base change.
A Grothendieck topology on the category of S-schemes assigns to each S-scheme T a collection of

coverings {V; — T}, that is, of morphisms of S-schemes with the property P, such that
(i) if V — T is an isomorphism, then {V — T'} is a covering;

(ii) if {V; — T} is a covering and T" — T is a morphism of S-schemes, then {V; x¢ T' — T"'} is

a covering;

(iii) if {V; — T} is a covering and, for each i, {W;; — V;} is a covering, then the composition

{W;; = V; - T} is a covering.

The Zariski topology is the Grothendieck topology where the morphisms are open embeddings.
The étale topology is the Grothendieck topology where the morphisms are étale, that is, smooth of
relative dimension 0, and whose images cover T', that is, UIm(V; — T') = T'. Note that the class of
étale morphisms is stable under base change and under composition. So, since an isomorphism is
obviously étale, we have indeed a Grothendieck topology. We remark that, since an open embedding

is étale, the étale topology is finer than the Zariski topology.
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For an S-scheme X, we define the functor of points of X as the contravariant functor
hx : (S-schemes)® — (sets)
such that, for each S-scheme T', hx (T") = Homg(T, X). A contravariant functor
F : (S-schemes)® — (sets)

is representable if there exists a S-scheme X such that F' is isomorphic to hx. In this case we
say that X represents F. Given an S-scheme W, and an isomorphism hx — F', a morphism
W — X is uniquely determined by an object of F(W). A necessary condition for the functor F to
be representable is that F' be a sheaf in the Zariski and the étale topologies, a notion we explain
below.

A contravariant functor F' : (S-schemes)® — (sets) is a sheaf in a Grothendieck topology if it
satisfies the following condition. Let {U; — T'} be a covering and, for each 4, consider a; € F(U;).

Let p, : Uy x7 U; = U; and pa : Uy X7 Uj = U; be the projections on the first and second factors,

U; XTUJ’ L) Uj

n !

U, ——— T

and assume that pi(a;) = p3(a;) € F(U; xr U;) for every i,j. Then F' is a sheaf if, for each such
data, there exists a unique a € F(T') whose pullback to F(U;) is a; for every i.

As we said, if a functor is representable, then it is a sheaf in the Zariski and the étale topologies.
Indeed, for any scheme X, its functor of point hx is a sheaf in the Zariski topology (since morphisms
to X can be defined locally), and also in the étale topology [Kn, Proposition 1, p. 200]. But the
relative compactified Jacobian functor Jx /s (in fact even the relative Jacobian functor) is not in
general a sheaf in the Zariski topology (see [FGIKNV, p. 253] or [BLR)).

In order to expect representability for jx/ g, we need to sheafify it first. We will not describe
here the proccess of sheafification; it is similar to the proccess of sheafification of a pre-sheaf of
modules on a scheme. We say that the sheafification of jX/ s in the étale topology is its associ-

ated sheaf in the étale topology, and we still denote it by J /s, as we’ll only deal with it from now on.

1.2.2 Algebraic spaces. An algebraic space is a contravariant functor A : (S-schemes)® — (sets)

such that:

(i) A is a sheaf in the étale topology;
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(ii) (Local representability) There exists an S-scheme U and a map of sheaves hy — A such
that for every S-scheme V' and map of sheaves hy — A, the (sheaf) fiber product hy X 4 hy
is represented by some S-scheme W and the map hy X4 hy — hy is induced by an étale

surjective map W — V;

(iii) For U as in (ii), the map of schemes inducing the map of sheaves hy X 4 hy = hy Xpg hy is

quasicompact.

A morphism of algebraic spaces is a morphism of functors and, with this, the algebraic spaces form
a category.

An S-scheme X is clearly an algebraic space in the sense that its functor of points hx satisfies
the above definition with U = X . Therefore, the category of S-schemes is embedded in the category
of algebraic spaces.

Although it seems, by the definition, that an algebraic space is mere formalism, Proposition 1.2.3
shows that algebraic spaces arise naturally when one considers equivalence relations on a scheme.

An equivalence relation on an S-scheme U can be defined as a subscheme R C U xg U such

that the following three conditions are satisfied.
(i) (Reflexivity) The diagonal A is a subscheme of R;
(ii) (Symmetry) If ¢ : U xg U — U xg U is the morphism defined by taking a pair of T-points
(u,v) to (v,u), then ¢|g is an isomorphism onto R;
(i) (Transitivity) Consider the square diagram

RxyR—25 R

o |»

R—2 U

where ¢; : R xy R — R and p; : R — U are projections on the i-th factor, for ¢ = 1,2. Note
that R xy R is, set-theoretically, the set of pairs of pairs ((u,v), (v',w)) such that v = o',
where u,v,v',w € U. The compositions of projections p;oq; : Rxy R— U, i=1,2, give a
morphism ¢ : R xy R — U xg U (so that ¥((u,v), (v',w)) = (u,w)). The third condition is
that the image of ¢ lies in R.

We say that R C U xg U is an étale equivalence relation if it is an equivalence relation and the
projection maps py,ps : R — U are étale. Likewise, R is flat (resp. proper) if the projection maps

are flat (resp. proper).
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Proposition 1.2.3 (Kn, Proposition 1.3, p. 93) Let U be an S-scheme and let R C U xg U
be an étale equivalence relation. Assume that the inclusion map R — U xg U is quasicompact.
Then there exist an algebraic space A, unigque up to isomorphism, and o map of sheaves hy — A

satisfying the local representability condition, with hy X 4 hy = hg.

Altman and Kleiman showed in [AK80, Corollary 2.10, p. 72] that if the equivalence relation R
is also proper and U is a locally projective S-scheme, then the algebraic space A of the proposition

is an S-scheme.

1.3 Representability of Jx/g
As we mentioned in the end of Section 1.1, Jx /s is represented by an algebraic space:

Theorem 1.3.1 (AK80, Theorem 7.4, p. 99) Let f : X — S be a family of curves. Then

jX/S is represented by an algebraic space jX/S-

We say that 7X/S is the relative compactified Jacobian or simply the compactified Jacobian
of X/S. (In fact, Altman and Kleiman proved that the sheaf associated to the functor Spl in the
étale topology is represented by an algebraic space, where Spl is the functor associating to each
S-scheme T the set of T-simple Ox,.-modules modulo an equivalence relation. The sheaf J x /s is
an open subsheaf of Spl.)

Moreover, Altman and Kleiman also showed that if the geometric fibers of the family are
integral, then each connected component of 7X/ s is a proper scheme over S [AK76, Theorem 3,
p. 948].

On the other hand, assume there are sections o1,...,0, through the smooth locus of X/S
such that, for every s € S, every irreducible component of the fiber X (s) contains ¢;(s) for some 4.
Then every irreducible component of each fiber of X/S is geometrically integral. Indeed, assume
by contradiction that a component Y of some fiber X, of X/S is not geometrically integral. Let o
be the section of X /S passing through Y, and let P = o(s). Then the point P is not geometrically
connected. But by [EGA, IV,, Corollary 4.5.14, p. 65] a rational point is always geometrically
connected. Thus Esteves showed [E01, Theorem B, p. 3048] that Jx /5 is a scheme. In particular,
since we can always make an étale base change to obtain enough sections [E01, Lemma 18, p.
3061], this says that after a suitable étale base change, 7X/ s becomes a scheme.

Anyhow, the algebraic space (or scheme) 7X/5 has a drawback: on one hand, 7X/5 is big

enough, in the sense that a “sequence” of torsion-free rank-1 simple sheaves does have a limit; but
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on the other, 7X/ 5 is too big, in the sense that the limit doesn’t need to be unique.

More precisely, let X/S be a local one-parameter family of curves, that is, assume S is the
spectrum of a valuation ring with special point o and generic point 7. Let X, be the generic fiber
of the family, and I, a sheaf on X,,. We say that a sheaf 7 on X is an extension of I, if Z|x, = I,
and, in this case, I, := Z|x, is the limit sheaf on the special fiber X,,.

Now, assume that I, is a rank-1 torsion-free sheaf on X;,. Then, there is an integer m such
that Hom(I,, Ox,)(m) is generated by global sections. So, since Hom/(I,;, Ox,) is nonzero at the
generic points of X, there is a morphism u,, : I;, = Ox, (m) that is injective at these points. Now,
I, is rank-1 and torsion-free, so u, is injective, since otherwise the kernel of u; would be a torsion
subsheaf of I,. Let C,, be the cokernel of u,. By [EGA, IV, Proposition 2.8.1, p. 33], there exists
a (unique) flat extension C of Cy, and a canonical map ¢ : Ox — C. Let Z be the kernel of g.
Then the restriction of Z to X, is equal to I,,. In addition, since C is S-flat, also Z is S-flat, and
I, = TI|x, is contained in Ox, (m). So I, is torsion-free and on rank 1, and thus it is a torsion-free
rank-1 limit of I,,.

In the next example we consider a local one-parameter family of curves with reducible special

fiber and show that there are infinitely many limits of the trivial sheaf Ox, .

Example 1.3.2 Again, let X/S be a family of curves over the spectrum S of a discrete valuation
ring, with special point o and generic point 7. Assume that the generic fiber of the family is smooth
and that the special fiber is the (reduced) reducible curve X, with two irreducible components Y’
and Z meeting at a single simple node P. In addition, assume that X is regular. This situation is
achieved by considering a deformation of X, along a general direction.

Consider the structure sheaf OX,, of X;. Then OX,, has the obvious extension Ox. Now,
since X is regular, any irreducible subscheme of codimension 1 of X is a Cartier divisor. In
particular, Z is a Cartier divisor and, for any n € Z, the sheaf Ox(nZ) is invertible. Moreover,
Ox(nZ)|x, = Ox,, that is, Ox(nZ) is an extension of Ox, for every n. Note that the sheaves
Ox(nZ)|x, are all different.

Indeed, to see that these sheaves are diferent, recall that the degree of a torsion-free rank-1 sheaf
I on a curve X is deg(I) = x(I) — x(Ox), where x(-) is the Euler characteristic. So considering
the coherent sheaf I'™) := Ox(nZ)|x, on X, and computing its degree degy (1) := deg(I(™|y)

on the subcurve Y,
degy (I™) = deg(Ox (nZ)|y) = deg(Oy (nP)) = n.

This shows that all the limit sheaves are diferent, as they have diferent degrees on Y. O
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1.3.3 Polarizations on a curve. To decompose the compactified Jacobian into smaller (and
better behaved) pieces, we use polarizations. Polarizations were introduced by Seshadri in [S82]
to construct the moduli space of vector bundles of given degree and rank on a fixed curve X.
His polarizations were numerical; precisely, a polarization in the sense of [S82] is just a n-tuple
of positive rational numbers adding up to 1, where n is the number of irreducible components of
X. Since we are going to work with families of curves, we shall use polarizations in the sense of
Esteves [E01]. Thus, a polarization on a curve X is a vector bundle E on X such that the slope
of FE is an integer; that is, rk(E) divides deg(FE). (For the connection between the two types of
polarizations see [E01, Observation 57, p. 3092].)

A torsion-free rank-1 sheaf I on a curve X is stable (resp. semi-stable) with respect to E if
X(E®I)=0and x(E®Iy) > 0 (resp. x(E® Iy) > 0) for all proper subcurves Y of X. Also, let
W be an irreducible component of X and P a nonsingular point of X. We say that a torsion-free
rank-1 sheaf I is W-quasi-stable (resp. P-quasi-stable) with respect to E if I is semi-stable and in
addition x(E ® Iy) > 0 for every subcurve Y of X containing W (resp. containing P).

For a subcurve Y of X let
Bi(Y) = x(ty) + B2
Then, as x(E ® Iy) = rk(E)x(Iy) + degy (E), the sheaf I is stable (resp. semi-stable) if and only
if B1(Y) > 0 (resp. Br(Y) > 0) for every proper subcurve Y of X. Moreover, if P is a nonsingular
point of X and W is an irreducible component of X, then I is P-quasi-stable (resp. W-quasi-
stable) if and only if it is semi-stable and 8;(Y’) > 0 for every subcurve Y such that P € Y (resp.
W CY).

The semi-stability condition gives bounds for the degree of the sheaf I on the subcurves of X.
To see this we need to compare the Euler characterictic of a torsion-free rank-1 sheaf I on X with

the ones of Iy and Iy., for each subcurve Y of X.

Lemma 1.3.4 Let I be a torsion-free sheaf of rank 1 on a curve X. Let v : X' — X be the

normalization of X, and § := x(v«Ox:/Ox). Then for every subcurve Y of X we have
x(Iy) + x(Iye) < x(I) + 4.

Proof. First note that the disjoint union Y [[Y° is a partial normalization of X along the points
in the intersection Y NY°. Hence v factors through the natural map p : Y[[Y® — X. Now,
pxp*I = I|y ® I|ye, so the maximum torsion-free quotient of p,p*I is the sheaf Iy @ Iy.. Let I

be the maximum torsion-free quotient of v,v*I (that is, I' = v,w*I /T (v4,v*I).) Then we have

I Iy ®lye—T
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and therefore
x(Coker(I = I')) > x(Coker(I — Iy & Iyc)) = x(Iy) + x(Iy<) — x(I).

So we need only show that x(Coker(I — I')) < 4.

Now, since v is a finite morphism, the sheaf C := Coker(I < I') has finite support. In fact, it
has support on the singular points of X. Thus let P be a singular point of X, and let Op := Ox p
denote the local ring of X at P. Let Op be the completion of Op. Since Op is a regular semilocal
ring, it is a principal ideal domain.

Let Ip (resp. I}) denote the stalk of I (resp. I') at P. Then I, = IpOp. So I} is a fractional
ideal of Op. Hence there is a function f € Ip such that IpOp = fOp. Thus we have

fOP CclIpC Ip@p = f@p

o (5) (42) ()

where £(-) denotes length as Op-module. Now, since f is a nonzero-divisor, we have

o0\ _, (Op
(for) =*(ar)
Let 0p := £(Op/Op). Then

(1) 513 -5

PeX PeX

and hence

(Note that ¢ is clearly nonnegative and finite, since dp > 0 for every point P of X, and dp = 0 if

P is nonsingular.) Then

X(€) =) UCp)< Y dp=4.

Pex PeXx

Now, let I be a sheaf on X, and assume that I is semi-stable with respect to a polarization E.
First, note that the degree of I is determined by the polarization E. Indeed, since x(E ® I) = 0,

we have
_ deg(E)
rk(E)

where g is the arithmetic genus of X, that is, g is the dimension of H'(X,Ox). Now, let Y C X

deg(I) =

g_]-a

be a proper subcurve and let

degy (1) := deg(Iy).
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Then

0 < B1(Y) = degy (1) + x(Oy) + 2r )
so that
deg (1) > ~x(0y) ~ BV

On the other hand, by Lemma 1.3.4, x(Iy) + x(Iv<) < x(I) + €. Also, by the exact sequence
0= O0x = Oy © Oy = Oyny: = 0,
we have x(Oy) + x(Oy<) = x(Ox) + x(Oyny-). Hence,
degy (I) + degy.(I) < deg(I) + & — x(Oynye).

Thus, from 8;(Y°) > 0 we get

deg(E)
— rk(E) +g—1+c¢ —X(Omec)
degy-(E)

rk(E)

degy (I) <

So the degrees of a semi-stable sheaf on the subcurves of X are bounded.

Lemma 1.3.5 Let I be a torsion-free rank-1 sheaf on a curve X. Let E be a polarization on X,

and fix o smooth point P € X. If I is P-quasi-stable with respect to E, then I is simple.

Proof. Suppose that I is P-quasi-stable with respect to E, and assume that I is not simple. By
Lemma, 1.1.5, there are subcurves Y and Z of X such that I = Iy & I;. Now, since I has support
on X, we have Y U Z = X. Hence, since P must be contained in either Y or Z, and since I is

P-quasi-stable, we have
0=x(E®)=x(ExIy)+x(E®Iz) >0,

an absurdity. O

1.3.6 Polarizations on families of curves. Let X/S be a family of curves and consider £ a
vector bundle on X. We say & is a polarization if rk(£) divides the relative degree deg(£/S), which
is defined to be simply degyx,(det(€|x(s))) for any s € S, where X(s) is the fiber of X/S over
s. (Note that since the family X/S is flat, also £ is S-flat, and thus the numbers x(Ox ) and
x(det(&|x(s))) do not depend on s.)
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A torsion-free rank-1 sheaf 7 on X/S is said to be stable (resp. semi-stable) with respect to
€ if Z(s) is stable (resp. semi-stable) with respect to £(s) for every geometric point s of S. Let
o: S — X be a section through the smooth locus of X; a torsion-free rank-1 sheaf 7 on X/S is
o-quasi-stable with respect to £ if Z(s) is o(s)-quasi-stable with respect to £(s) for every geometric
point s of S. It follows from the previous lemma that a o-quasi-stable sheaf is simple on X/S.

Denote by Jg (resp. Jg ) the subspaces of Jx/s parametrizing the torsion-free rank-1 simple
sheaves 7 on X /S that are stable (resp. semi-stable) with respect to £. Moreover, if 0 : S — X is
a section through the smooth locus of X, let 72 denote the subspace of 7X/ s parametrizing the
torsion-free rank-1 sheaves 7 on X/S that are o-quasi-stable with respect to £.

It is easy to see that

Je CTe CTg CUxys.
Moreover, it is shown in [E01] that all these subspaces are open and their formation commutes

with base change. Furthermore:

Theorem 1.3.7 (E01, Theorem A, p. 3047) The algebraic space 7?;8 is of finite type over
S. Also

(1) Tz is universally closed over S;
(2) Te is a separated scheme over S;
(8) Tz is proper over S.

(That Jz is a scheme is actually [E01, Corollary 50, p. 3086].)
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Chapter 2

The Abel maps

2.1 The first Abel map

The degree of a coherent sheaf on a curve X is invariant under automorphisms, since the Euler
characteristic is. Using the degree, we get stratifications of the Jacobian and the compactified

Jacobian of X:

Ix =[[7% and Tx=][7%
d d

where J% (resp. 7}'2) is the subset of Jx (resp. Jx) parameterizing invertible sheaves (resp. simple
torsion-free rank-1 sheaves) of degree d on X.

If X/S is a family of curves and Z is a sheaf on X/S, define Z(s) to be the restriction of Z to the
fiber X(s) of X/S over s € S. We say that 7 has degree d if for every s in S, d = x(Z(s)) —x(Ox(s))-
(Recall that 7 is coherent and S-flat, so the degree is well-defined.) Let f : X — S be the stucture
morphism of the family X/S, and let M be an invertible sheaf on S. Then f*M has degree zero,
since (f*M)|x(s) =2 M; ® Ox ) is trivial. Thus we may write

- —=d
JX/S:HJ%/S and JX/SZHJX/S-
d d

Set-theoretically, the (first) Abel map of a curve X associates to each closed point @ of X its
ideal sheaf mg. As we see in the following lemma, if () is a singular point of X, then mg is not
invertible. Nevertheless, mq is a torsion-free sheaf of rank 1, and so we must consider the Abel

map having image on the compactified Jacobian of X.

Lemma 2.1.1 The ideal sheaf mqg of a closed point () on a curve X is a torsion-free rank-1 sheaf

of degree —1. Furthermore, mq s invertible if and only if Q) is a smooth point of X.
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Proof. Since mg is a subsheaf of Ox which is isomorphic to Ox away from the point @, it is

torsion-free of rank 1. From the exact sequence
0—=mg—=0x =0 —0,

we get that deg(mg) = x(mg) — x(Ox) = —x(Oq), but x(Og) = h°(Og) = 1.
For the last assertion, note that the stalk of mg at @, that is, mg /m2Q, is isomorphic to the

cotangent space of X at (), so it has dimension 1 if and only if @ is a smooth point of X. O

As we mentioned, the lemma shows that the Abel map has image in the Jacobian J)}l if and
only if X is smooth. If X is not a smooth curve, we take the map to have image in its compactified
Jacobian 7)_(1. But this map may not be well defined, since the ideal sheaf of a singular point

doesn’t need to be simple.

Example 2.1.2 Let X be a curve. Assume first that there are subcurves Y and Z of X whose
union YU Z is X and whose intersection Y NZ is a reduced point P of X. Then mp is a torsion-free

rank-1 sheaf, but is not simple. Indeed, consider the following diagram
0 > mp s Ox s Op > 0

! ! !

0 — (mp)y & (mp), — Oy ®Oz — Op®Op — 0

whose horizontal sequences are exact. Since P is the intersection Y N Z, the cokernels of the second
and third vertical maps are isomorphic to Op. Then, by the snake lemma, the cokernel of the first
vertical map must be zero, and therefore, mp = (mp)y @ (mp),, showing that mp is not simple.

Now, on the other hand, let P be a point of X such that mp is not simple. By Lemma 1.1.5
there are subcurves Y and Z of X such that YUZ = X and mp = (mp), @ (mp),. Now, we have

a diagram

0 — mp — Ox — Op — 0

! ! !

0 —— (mp)y ® (mp);, —— Oy @ Oz —— Opny ® Opnz —— 0

where the first vertical arrow is an isomorphism, and Opnz and Opny are either Op or 0, depending

on whether P is contained in the subcurve in question or not. We want to show the intersection
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Y N Z is the point P with multiplicity 1. By the diagram we have

X(Oyﬁz) X COkeI‘(OX - 0Oy ® Oz))

=x(
=x(Coker(Op = Opny @ Opnz))
=x(Opny ® Opnz) — x(Op)

=x(

X(Opny) + x(Opnz) — x(Op).

Now, x(Op) = 1, and x(Opny) and x(Opnz) are either 0 or 1. But since the curve X is connected,
we have x(Oynz) > 1, thus forcing x(Opny) = x(Opnz) = 1. This means that P € Y N Z and
also that x(Ovnz) =1, hence Y N Z = {P} (scheme-theoretically). O

The above example shows that mp is not simple if and only if there is a subcurve Y of X
such that {P} = Y NY*°, where this intersection is to be understood scheme-theoretically, that is,
with multiplicities. When this is the case we say that P is a disconnecting node. We remark that,
if X is a Gorenstein curve, then the disconnecting nodes are indeed nodes of X, due to [Cat82,
Proposition 1.10, p. 59].

Now we define the first Abel map scheme-theoretically as a morphism from a family of curves
to its relative compactified Jacobian. Let X/S be a family of curves and assume that every
geometric fiber of the family has no disconnecting nodes. Recall from Section 1.2 that a S-
morphism X — 7)(/ s can be determined by a simple torsion-free rank-1 sheaf on X xg X/X.
For the Abel map, such a sheaf is the ideal sheaf Ia of the diagonal subscheme A C X xg X.
Considering X xg X as a family of curves over X, let () be a geometric point of X. We have
(Ia)(Q) = mg, so the map defined by Ia is indeed the Abel map. By Lemma 2.1.1, the image of
the Abel map lies in 7}} s, that is, the first Abel map is the S-morphism

A:X_)j)_(}s.

(Sometimes the word first is ommited and we say simply that A is the Abel map of X/S.)

We remark that the map A is not well defined if some of the curves in the family have a
disconnecting node. We’ll see in Chapter 4 a way of overcoming this problem, that is, of defining
an Abel map from a curve X to Jx even if the curve X has a disconnecting node, following the
construction in [CE06]. Note that if the curves of the family are irreducible, then there is no
disconnecting node and the map is well defined. Moreover, Altman and Kleiman showed in [AK80,
Theorem 8.8, p. 108] that in this case, assuming that g > 0, where g is the arithmetic genus of
the fibers of X/S, the map A is a closed embedding. We will recall the proof of this result in

Theorem 2.1.6, but before we need two lemmas.
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Lemma 2.1.3 Let X be a curve, and I be a simple torsion-free rank-1 sheaf of degree —1 on
X. Assume that every nonzero morphism I — Ox is injective. Let Spec(k) — 7;(1 be the
morphism induced by I. Then A=Y(I) := X Xyt Spec(k) is isomorphic to the projective space
P(Hom(I,Ox)V).

Proof. We will construct morphisms
& : P(Hom(I,Ox)V) — A™()

and

T : A~'(I) — P(Hom(I, Ox)),

using the functorial property of P(Hom(I,Ox)V) (see [H, Proposition 7.12, p. 162]) and the functor
of points of A~1(I), such that ® o ¥ and ¥ o ® are identities. Let g : T — Spec(k) be a morphism

of schemes and consider the Cartesian diagram

XxT 2 s X

b

T —2— Spec(k).

where p; and p, are the projections on the first and second factors, respectively.
A T-point of P(Hom(I, Ox)V) corresponds to an isomorphism class of pairs (M, ¢) where M is
an invertible sheaf on T and

q: HOm(I,Ox)V O0r » M

is a surjective morphism. Dualizing ¢ and pulling back to X x T', we get the morphism
psMY — Hom(I,Ox) @ Ox xr-
Now, tensoring with piI we get
piI ®psMY — piI @ Hom(I,Ox) ® Oxxr = pi(I ® Hom(I, Ox)),
and thus composing with the evaluation map I ® Hom(I, Ox) = Ox, we get
uw:pil @ psMY — Oxxr.

Note that the restriction of u to each fiber of p is nonzero, since ¢ is surjective.
Moreover, u is injective with T-flat cokernel. Indeed, by hypothesis, for each t € T the morphism

u(t) is injective, because M is invertible and u(¢) is nonzero. Hence, w is injective and its cokernel
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is T-flat, by the local criterion of flatness [AK, Theorem 3.2, p. 91]. Therefore, p{I ® ps MV is

isomorphic to the ideal sheaf of a T-flat subscheme ¥ of X x T'. Moreover, since for each t € T'
x(@PiT @ ps MY)(t)) = x(1),
we have that X(t) = N (X x {t}) is a point of X x {t}. Thus ¥ = T', which gives a section of pa,
o: T X xT.

Now, projecting to X, that is, composing ¢ with p;, we get a T-point of X, that is, a morphism

p:T — X. In addition, for each ¢ € T, the image of p(t) is a point € X such that
m, = In(t) = (pi1 ® psMY)(t) = p(M" (1) ® 1.
Hence, by the equivalence relation on Jx, we have a morphism
& : P(Hom(I, Ox)Y) — A™'(I).

On the other hand, a T-point of A=!(I) is morphism T — A~!(I). Composing with the
inclusion A=1(I) <= X we get a morphism p : T — X, such that for each ¢ € T, the image of p(t)
is a point z € X having ideal sheaf

m, = 1.

So p induces a section o : T — X X T of py, whose image ¥ = ¢(T) is a subscheme of X x T, flat
over T, and with ideal sheaf

for some invertible sheaf NV on T'. Thus consider the injective morphism
uw:piI @ psN — Iy — Ox -

Then v induces a morphism

Py N — Hom(piI, Ox xT).

Now, since p; is a flat morphism, we have
Hom(piI,O0xx1) = ptHom(I,Ox).

And since

p2,.piHom(I,0x) = Hom(I,Ox) x Or,
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by adjunction formula we have an induced morphism
N — Hom(I,0x) ® Or.
Finally, dualizing we get a morphism
q:Hom(I,0x)¥ ® O — NV.

The map ¢ is surjective by Nakayama’s lemma, because for each ¢t € T, ¢(t) is nonzero, since so is

u(t). This gives the morphism
U : A™Y(T) — P(Hom(I, Ox)Y).

By construction, ¥ is the inverse of ®. O

Remark 2.1.4 Actually, Altman and Kleiman have proved in [AK80, Theorem 4.2, p. 78] a
stronger statement which, in particular, implies the following. Let X/S be a family of curves, and
consider the Abel map of the family 4 : X — 7}} s- Then there is a sheaf H over 7)_(} s such
that X = P7}}S(H)' Moreover, the Abel map A is the induced morphism IF’j;}S('H) — 7}} 5

In the case of a single curve X, the sheaf H is such that, for each torsion-free rank-1 sheaf

on X, the stalk of # at the point defined by I at 7}1 is isomorphic to Hom (I, Ox)V.

Let X be a curve, and let Y be a subcurve of X. Let
dy = x(Oynye).

Then X has a disconnecting node P € Y NY ¢ if and only if )y = 1. Indeed, dy is the number of

points (with multiplicities) of the intersection Y NY*°.

Lemma 2.1.5 Let X be a curve and Q) a point of X. Assume that X has no disconnecting nodes.

Then every nonzero morphism u : mg — Ox is injective.

Proof. Since X has no disconnecting nodes, either X is irreducible or dy > 2 for every subcurve

Y of X. If X is irreducible, the assertion is obvious, since mg is a torsion-free rank-1 sheaf and

the kernel of a noninjective nonzero morphism mg — Ox would be a torsion subsheaf of mg.
Assume X is not irreducible, and let Y be the subcurve of X given by the union of all compo-

nents of X along whose generic points u is zero. Assume, by contradiction, that Y is not empty.
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Let Z = Y° be the complementary subcurve of Y. Since u is nonzero, Z is not empty. Then
uz : (mg)z — O is injective.

Now, uz factors through the ideal sheaf Iynzz of Y N Z in Z, because the composition
mg — Ox — Oy is zero. Since dy > 2, the sheaf Iynz,z has degree at most —2. On the
other hand, if Q) ¢ Z then (mg)z equals O, and hence has degree 0; and if Q € Z, then (mg)z
is the ideal sheaf of @) at Z, and hence has degree —1. In any case, it has degree at least —1.

Let M be the cokernel of uz. Then M has finite support, and thus, positive Euler characteristic.

On the other hand, from the exact sequence 0 = (mg)z = Iznv,z = M — 0 we have

x(Izny,z) = x((mgQ)z) + x(M).

Subtracting x(Oz) from both sides of the equality, we get

deg(Izny,z) = deg((mq)z) + x(M)

and thus x(M) < —1, an absurdity. O

Note that the proof of Lemma 2.1.5 in the case where X is irreducible is much simpler. Although
we now apply this lemma only for an irreducible curve, later on it will be used in the proof of

Theorem 3.2.1, for a (possibly) reducible curve without disconnecting nodes.

Theorem 2.1.6 (AK80, Theorem 8.8, p.108) Let X/S be a family of irreducible curves with
arithmetic genus g > 0. Then the Abel map A : X — 7}}5 is a closed embedding.

Proof. Since 7X/5 is separated and X/S is projective, the map A is proper. Thus [EGA, IVj,
8.11.5], A is a closed embedding if each of its geometric fibers is either empty or consists of a single
reduced point. We may thus assume that S is the spectrum of an algebraically closed field. Now,
by Lemmas 2.1.3 and 2.1.5, the fibers are projective spaces. Since X is a curve, this means that
the fibers are empty, a single point or P'. But since X is irreducible and g > 0, the fibers must be

empty or consist of a single point. O

2.2 Variations on the Abel map

2.2.1 Hilbert schemes and d-th Abel maps. The first Abel map of the previous section was
constructed as the map taking a point of the curve to its ideal sheaf. One can try to generalize this
map by considering a map taking a fixed number d of points of the curve to the tensor product of

their ideal sheaves. In order to formalize this we introduce the Hilbert schemes Hilb?(X).
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For an integer d > 1, the d-th Hilbert functor of a family of curves X/S is the contravariant
functor

Hilb? : (S-schemes)® —» (sets)

taking an S-scheme T to the set of relative length-d subschemes of X4 flat over T'. This functor
is represented by a projective S-scheme Hilb?(X/S); see [FGIKNV, Chapter 5]. Let U be the
universal subscheme of X x g Hilb*(X/S) and let M be its ideal sheaf. Then M is a torsion-free
rank-1 sheaf on the family X x s Hilb?(X/S)/Hilb%(X/S) having degree —d. The d-th Abel map
of X/S is the rational map

AW L Hilb?(X/S) — Tx)s

associated to M, where A() is defined only on the points over which M is simple. Note that A1)
is the first Abel map A defined in Section 1.1, because Hilb!(X/S) = X.

Even for a single curve X, the map A(? is usually not defined everywhere if X is reducible. In
fact, suppose there is a subcurve Y of X such that dy < d. Let ¥ =Y NY*° and let Iy be its ideal
sheaf. Since ¥ =Y NY°, the diagram

0 )IE ‘OX )02 )

! ! !

0 —— (In)y ®(Zg)ye — Oy @ Oye —— Oy @O0 —— 0

has exact lines. Also, the cokernels of the second and third vertical maps are isomorphic to Osx.
Then, by the snake lemma, the cokernel of the first vertical map must be zero, and therefore
Iy 2 (Iv)y @ (Ix)y-, showing that Iy is not simple.

On the other hand, suppose there exists a length-d subscheme ¥ of X whose ideal sheaf Iy is
not simple. By Lemma 1.1.5 there is a subcurve Y of X such that I = (In)y & (In)y.. We have
a diagram

0 y Iy y Ox > Oy

! ! !

0—— (IE)Y D (Ig)yc —— Oy ® Oyc —— Osay ® Ogaye —— 0

o

with exact lines, and whose first vertical map is an isomorphism. Thus, by the snake lemma, the
cokernels of the second and third vertical maps are isomorphic. Then Oyny: = Oynyens, and so
Y¥OoYnYe. Thus dy <d.

To summarize, we showed that the d-th Abel map A of a family X/S is well-defined if and
only if the fibers of the family have no subcurve Y with dy < d.
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2.2.2 Bigraded Abel maps. We can also consider a slight generalization of the d-th Abel
maps defined above, the bigraded Abel maps of bidegree (d,n). Those are rational maps from
Hilb?(X/S) xs J%/s to 7;7; defined by taking a pair of T-points (¥, M) to the sheaf Iy, ® M,
where Iy is the ideal sheaf of a relative length-d subscheme ¥ of Xy flat over 7', and M is an
invertible sheaf of degree n on X7 /T. To define these maps, we can also use the multiplication
map of bidegree (r, s)

—=r s —=r+s
Hr,s - JX/S Xg JX/S — Jx/s

defined naturally as a morphism of algebraic spaces, that is, a morphism of functors, as follows:
If T is an S-scheme, F is a simple torsion-free sheaf of rank 1 and degree r on X7 /T and L is an

invertible sheaf of degree s on X7 /T, set
pr,s(T)(F, M) =F @ M
which is simple, torsion-free and of rank 1 on X7/T.
The bigraded Abel map is the rational map given by the composition

@ _ dm e
AD S HlbY(X/S) x5 T2 5~ Tis x5 T8 2220 T/

of the d-th Abel map of X/S with the multiplication map p_gq,,. Note that, like A the map
A(nd) is usually just rational. More precisely, A%d) is well-defined if and only if the fibers of the
family X /S have no subcurve Y with dy < d.

Now let M be an invertible sheaf of degree n on X/S. Then, for any S-scheme T', the sheaf
M is invertible of degree n on X7 /T, where My is the pullback of M by X7 — X. So, fixing
M on X, we may define yet another Abel map

A HIbY(X/S) — T g0
given by the composition of the map S — J¥% /s induced by M with A%d).

Example 2.2.3 (E01, Example 39, p. 3074) Let X be a curve of genus 1 without disconnect-
ing nodes. For any integer n, Esteves found a proper subscheme of 77;( which is isomorphic to the
curve X. More precisely, for any smooth point P on X and any invertible sheaf M of degree n + 1

on X, set E:= M~ ® Ox(P). Then E is a polarization on X such that
(i) T4 is an open subscheme of Ty ;

— —P
(ii) Ag&l) : X — Jx is an isomorphism onto J . |
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2.2.4 Abel maps of families of pointed curves. At last, we define the first Abel map of a
family of pointed curves. A family of pointed curves is a family of curves f : X — S with a section
o : S — X through the smooth locus of f. (The composition f o ¢ is the identity on S, and for
every s € S, o(s) is a smooth point of X (s).) Then the Abel map A, of (X/S,0) is the map that
takes a point () of X(s) to the sheaf mg(P) = mg ® Ox(4)(P), where P = o(s). Since mg(P) has
degree 0, this map has image in 72( /s- More precisely, if ¥ := ¢(S) then Ox(X) is an invertible

sheaf of degree 1 on X/S and 4, := AL

Ox(5)" We say that

AO-IX_)jg(/S

is the first Abel map of (X/S,0). In Chapter 3 we consider the first Abel maps A and A, for
families of (pointed) curves without disconnecting nodes.

More generally, let Mg := Ox(dX). The (rational) map
AD HIbY(X/S) — Ty /s

defined as Agd) = As\’ft)d is the d-th Abel map of the pointed curve (X/S,0).

The second Abel map Ag) of a pointed curve (X, P) is well defined if there are no subcurves
Y of X with dy < 2. In Chapter 5 we consider the map Ag) for a two-component nodal curve
X = Xi1 U X> such that dx, = dx, = 2. We'll deform the curve X to a family X'/S and define a
morphism from a blowup of X xg X to 7?\_, whose image for a pair of smooth points of X is the

image under Ag) twisted by a degree zero sheaf on X.
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Chapter 3

On the first Abel map

Let X/S be a family of Gorenstein curves without disconnecting nodes, and consider the associated
(first) Abel map A, or A, if X/S is pointed. (The case of curves with disconnecting nodes will be
dealt with in the next chapter.) We already know that the first Abel maps are well-defined, but
we still have the disadvantage of the nonseparatedness of J x /s- In this chapter we find separated
subspaces Jo of 7X/ s through which the Abel map A (or A,) factors. Furthermore, we show in
Theorem 3.2.1 that the map A (or 4,) is a closed embedding in J,.

Each of the subpaces Jo above will be given as Jy or Jg for some polarization £ on X/S. By
Theorem 1.3.7, if Jz = J¢ and Jo = Jg, then this space is in fact S-proper. Now, fix a geometric
point s of S, let Y be a proper subcurve of X (s), and set E := £(s). For a torsion-free rank-1
sheaf T on X (s), we have §;(Y) = 0 if and only if x(Iy) = — degy (E)/rk(E). So stability will be
the same as semi-stability with respect to £ if and only if

Sy 7
for every geometric s in S and every proper subcurve Y of X (s). This will allow us to show that,
in some cases, the subspace Jy is a proper S-scheme. (This will not be necessary for the Abel map

A, of a pointed family (X/S,0).)

3.1 First Abel maps of a family of curves

In this section we define the subschemes Jg of J x/s for the Abel maps A of X /S (Proposition 3.1.2)
and A, of (X/S,0) (Proposition 3.1.5). For the Abel map A, we need an extra condition on the

fibers of the family X/S. This condition, as we will see, is not a major drawback since it holds
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for families of stable curves. Alternatively, in Section 3.3 we consider the case of a single curve,

without disconnecting nodes, and this condition is not needed.

Lemma 3.1.1 Let X be a Gorenstein curve of arithmetic genus g, and let Y be a nonempty

connected subcurve of X of arithmetic genus gy. Then degy (wx) = 2gy — 2 + dy.

Proof. (See [Cat82, Lemma 1.12, p. 61].) Let K be the kernel of the projection wx —» wx|ye.
We claim that K is the dualizing sheaf for Y. First, since wx is the dualizing sheaf on X, there is

a trace morphism ¢ : H'(X,wx) — k. Now, consider the exact sequence
(3.1) 0 — K — wx — wx|ye — 0.
Composing ¢ with the induced morphism H!(Y,K) - H!(X,wx), we get a trace morphism for K
ty : HY(Y,K) — k.
Let F be a coherent sheaf on Y. We must show that the natural pairing
Hom(F,K) x H (Y, F) — HY(Y,K)

followed by ty gives an isomorphism Hom(F,K) — H(Y,F)V. Let i : Y < X be the inclusion,
and consider the coherent sheaf i, on X. Then, since wx is the dualizing sheaf of X, we have an
isomorphism

Hom (i F,wx) — HY(X,i.F)" = H (Y, F)¥

induced by t.

Also, from (3.1), we get an induced exact sequence
0 — Hom(F,K) — Hom (i, F,wx) — Hom(i.JF,wx|ye).

We claim that Hom(i.F,wx|ye) = 0. Indeed, f : i.F — wx|ye be a morphism. Note that the
image of f has support on Y NY¢, because i.F has support on Y, and wx|y- has support on Y°.
So the image of f is a torsion subsheaf of wx|yc. But wx|ye is a torsion-free sheaf, since wx is

invertible. Hence Hom(i,F,wx|y<) = 0. Therefore, there is an isomorphism
Hom(F,K) = H (Y, F)¥

induced by ty.
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Since K is the dualizing sheaf of Y, we have deg(K) = 2gy — 2. Now, consider the following
natural diagram

0 » K > Wx y wx|lye —— 0

‘| d |

0—— UJX|Y  — wX|y69wX|yc E— w)(|yc — 0

where the horizontal sequences are exact. By the snake lemma, the cokernel of ¢ is equal to the

cokernel of ¢. But the cokernel of 9 is wx|ynye, SO
x(Coker(¢)) = x(wx |ynye)-
Now, since ¢ is an injection, we have
x(Coker(¢)) = x(wx|y) — x(K) = degy (wx) — deg(K).
On the other hand, since wx is invertible, and the intersection Y NY ¢ is finite, we have
Xx(wx|yaye) = x(Oynye) = dy
But deg(K) = 29y — 2, so
degy (wx) — (29y —2) = x(Coker(¢)) = dy,
and we are done. O

Proposition 3.1.2 Let X/S be a family of Gorenstein curves of genus g > 2, and assume that

the geometric fibers of the family have no disconnecting nodes. Let
&= wg?’?s ® O??(g—z)‘

Then & is a polarization on X/S such that A factors through 7;8.
Moreover if, for every geometric point s of S, X (s) contains no rational subcurveY with éy = 2,

then A actually factors through 72.

Proof. To see £ is a polarization, note that deg(£) = g(2g — 2) and rk(£) = 29 — 2, so the slope
of £is g€ Z.

Now, to show A factors trough 725, we must show that for any geometric s in S, and any point
Q € X (s), the sheaf mg is semi-stable with respect to E := £(s). Since the degree of mg is —1 we
have x(mg) = —g, and hence

x(mg & E) = rk(E)x(mgq) + deg(E) = (29 — 2)(—9) + 9(29 — 2) = 0.
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Fix a connected subcurve Y of X (s) and let gy be its arithmetic genus. Then the degree of mg
on Y is either —1if Q € Y or 0 otherwise. In any case, degy (mg) > —1. Thus x((mg)y) > —gv.
So x(mg @ Ely) > (29 — 2)(—gv) + gdegy (wx). By Lemma 3.1.1, degy (wx) = 29y — 2 + Jy, so

(3.2) x(mg ® Ely) > —gv(29 — 2) + g(29v — 2+ dy) = 29y + g(0y — 2).

Now, since by hypothesis X (s) has no disconnecting node, we have dy > 2, showing that (3.2) is
positive. This already shows that A factors through 725.
Moreover, by (3.2), if x(mg ® E|y) = 0 then gy = 0 and dy = 2, thus showing the last

statement. O

Remark 3.1.3 Let X/S be a family of Gorenstein curves of genus g. Note that stability is the
same as semi-stability for any given polarization £ on X /S if and only if, for every geometric point
s of S and every proper subcurve Y of X(s), the rank of £ does not divide its degree on Y.
Assume that, for every geometric s € S, the curve X (s) contains no rational subcurve Y with
dy < 2. Let s be a geometric point of S, and Y a proper subcurve of X(s). We state that

degy (wx(s)) > 0. Indeed, assume first that Y is connected. Then by Lemma 3.1.1, we have
degy(wx(s)) =2gy — 2+ dy.
If gy = 0 then, by hypothesis, dy > 2, and thus degy (wx(s)) > 0. If gy > 1 then
degy (wx(s)) > 6y >0,

since X (s) is connected. Now, assume that Y is not connected, and let Yi,...,Y} be the con-
nected components of Y. Then each Y; is a nonempty connected subcurve of X, and thus

degy, (Wx(s)) > 0. But wx(s)|y = wx(s)lvy ® ... ©wx(s)ly, and hence,
degy (wx(s)) = degy, (Wx(s)) + - - - + degy, (wx(s)) > 0.
On the other hand, since X is Gorenstein, wx is invertible, and thus
deg(wx(s)) = degy (wx(s)) + degy.(wx(s)) > degy (wx(s))-
So we showed that
(3.3) 0 < degy (wx(s)) < deg(wx(s)) =29 — 2

for each proper nonempty subcurve Y C X (s).
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?2(9 ~2) of the previous proposition.

Now, assume g > 2. Consider the polarization &£ := w% s®0
Then 755 = 7;5 if and only if for every geometric s € S and every proper subcurve Y of X(s) we

have
degy (E) _ gdng(WX(s))
rk(E) (g—1)2

where E = £(s). By (3.3), the only way this number can be an integer is when g is divisible by 2

¢z,

and degy (wx(s)) = g — 1.
We showed that if X/S is a family of curves of odd genus g > 3 such that, for every geometric
point s of S, X(s) contains no rational subcurve ¥ with dy < 2, then Jg = J5 , and hence, not

only is this space separated, but also a proper S-scheme, by Theorem 1.3.7.

Remark 3.1.4 Notice that if X/S is a family of stable curves, then the condition that X (s)

doesn’t contain any rational subcurve Y with dy < 2 is satisfied.

Proposition 3.1.5 Let (X/S,0) be a family of pointed curves, and assume the geometric fibers

of the family have no disconnecting nodes. Let
£ = wx/s © Ox.
Then & is a polarization on X/S such that A, factors through 7;.

Proof. The vector bundle £ is indeed a polarization on X/, since deg(£) = 2g—2 and rk(€) = 2,
where g is the arithmetic genus of the curves of the family.

As in Proposition 3.1.2, we fix a geometric point s in S and a closed point @ in X (s). Also let
E = £(s) and let P be the image of o(s). Recall that P is a smooth point of X (s). Since mg(P)
has degree 0, x(mgo(P) ® E) =2(0+1—g) +29—2=0.

Now, fix a connected proper subcurve Y of X of arithmetic genus gy. Then

—t

. fPeYandQgY;
degy (mg(P)) = 0, fP,QeYorP,Q&Y;
1, fP¢YandQeY.

So degy (mg(P)) > —1, with degy(mg(P)) > 0if P € Y. Thus x(mg(P)y) > —gy, with
x(mg(P)y) > —gy if P € Y, and hence

(3.4) x(me(P)y ® Ely) > 2(—gyv) + 29y — 2+ dy) =y — 2.

Now, since X (s) has no disconnecting nodes, we have dy > 2, so (3.4) is positive. Furthermore,

the first inequality is strict if P € Y, showing that mg(P) is P-quasi-stable with respect to E. O

35



3.2 Closed embeddedness

Consider the Abel map A or A,, and assume it factors through a separated open subspace Jo of
J. Then we show that A or A, is a closed embedding in Jo. To prove this, since the Abel map is
proper and its fibers are projective spaces by Lemmas 2.1.3 and 2.1.5, we must only show that its

fibers can’t contain two distinct closed points.

Theorem 3.2.1 Let X/S be a family of curves of arithmetic genus g > 0, and whose geometric
fibers have no disconnecting nodes. Let A be either the Abel map of X/S or the Abel map of
(X/S,0), where o is a section of X/S. Assume there is a separated subspace Jo of 7X/5 such that

A factors through it. Then A : X — Jy is a closed embedding.

Proof. Since X is projective over S, and Jy is separated, the map A is proper by [H, Corol-
lary 4.8 (e), p. 102]. Hence, by [EGA, IV3, Proposition 8.11.5, p. 42], A is a closed embedding if
and only if for each point v € Jy, the fiber A~!(v) is either empty or a point. Now, note that the
fibers of A are projective spaces by Lemmas 2.1.3 and 2.1.5, so it is enough to show that A=1(v)
has at most a single closed point. Since A commutes with base change, we may assume S is the
spectrum of an algebraically closed field.

Assume that there are distinct points Q1,2 € X such that there is an isomorphism between
their ideal sheaves mg, — mg,. (Notice that if A is the Abel map of the pointed family
(X/S,0), we should consider an isomorphism mg, (P) — mg,(P), where P = ¢(S). But such
an isomorphism yields an isomorphism between mg, and mg,, by tensoring with Ox (—P).)

If Q4 is a singular point of X then we have )1 = )2, since otherwise mg, would be invertible
at Q1 and hence, by the isomorphism, mg, would be invertible at ();. Hence we may assume that
@1 and @2 are smooth points of X, so mg, and mg, are both invertible. Let Y be the irreducible
component of X to which ()1 belongs. Then the degree of mg, on Y is —1, and thus the degree of
mg, on Y must also be —1. Hence ()2 is also on Y. By Theorem 2.1.6, ()1 = @2 or Y is isomorphic
to PL. Since by hypothesis Q1 # @2, we have Y = P'. Note that Y is a proper subcurve of X,
because g # 0.

Let f be the rational function that gives the isomorphism mg, — mg,. Then f is constant
on every irreducible component of X other than Y. Let Z be a connected component of Y¢. Then
f is constant on Z, because f has no zeroes on Z. Now, f|y is a function of degree 1 on Y, hence
injective. Then the intersection Y N Z consists of a single point, since f must have the same value
on every point of YN Z. Moreover, the intersection Y N Z is transversal, since otherwise f|y would

be infinitesimally constant at Y N Z, because it is so on Z. But since f is of degree 1, this would
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mean that f is constant on Y. Hence the point of intersection between Y and Z is a node of X.
Therefore, every point of Y NY ¢ is a node and, since X has no disconnecting nodes, Y°¢ is
connected. Also, as dy > 2 there are at least two points on Y NY°, and f has the same value on
them. So f is constant also on Y, contradicting the fact that f|y is a function of degree 1. Hence
@1 = @2, proving that the nonempty fibers of A consist of a single point, and hence that A is

indeed a closed embedding. O

Now we apply the theorem to the subspaces of 7X/ s defined in the previous section.

Corollary 3.2.2 Let X/S be a family of curves of genus g > 2. Assume the geometric fibers of the
family have no disconnecting nodes, and do not contain rational subcurves Y with dy = 2. Then
there exists an open separated subspace Jo of 7}}5 such that A : X = Jo is a closed embedding.

Moreover, if g is odd then Jq is a proper S-scheme.

Proof. Let £ be as in Proposition 3.1.2 and take Jo to be Jg, so that A factors trough Jo. By
Theorem 1.3.7, Jy is separated and thus, by Theorem 3.2.1, A : X — J; is a closed embedding.

The last claim follows from Remark 3.1.3. O

Corollary 3.2.3 Let (X/S,0) be a family of pointed curves of arithmetic genus g > 0, and whose
geometric fibers have no disconnecting nodes. Then there is an S-proper open subspace Jo of 72(/5

such that Ay : X — Jg is a closed embedding.

Proof. Let £ be as in Proposition 3.1.5, and let Jo = Jg, so that A, factors trough Jo. By
Theorem 1.3.7, Jg is proper and thus, by Theorem 3.2.1, A, : X — Jj is a closed embedding. O

3.3 Other target spaces

For a curve X without disconnecting nodes, we will find complete open subschemes J ;.3 of 7)_(1
such that the Abel map A of X has image in 7{1);} and thus, by Theorem 3.2.1, is a closed
embedding in it. This improves Corollary 3.2.2, but the construction cannot usually be carried out
for families.

Let Xi,..., Xy be the irreducible components of X. For each collection of positive integers
Pi,--- Pk, let g := Ele pi, and define a subset 7{1,1.} of 7}1 as the set of those simple rank-1

torsion-free sheaves I of degree —1 such that



for every proper nonempty connected subcurve Y of X. The following proposition shows that
7{pi} is a separated open subscheme of 7;(1, which is also complete if ¢ is odd. To show this, we

will find a polarization E on X such that Jy,,} = Jp.

Proposition 3.3.1 Let X be a curve of arithmetic genus g > 0, and assume X has no discon-
necting nodes. Let X1,..., Xy be the irreducible components of X, and p1,... ,pr be a collection
of positive integers. Then 7{1)1.} is a separated open subscheme of 7)_(1 that contains the image of
the Abel map A, and A : X — 7{,,1.} is a closed embedding. Furthermore, if the sum p1 + ...+ pg
is odd, then Jyp,y is complete.

Proof. Let P;,..., P, be smooth points of X such that P; € X;, and let ¢ := p; + ...+ pr. We
state that
E:=wl'2p P + ... + 2p ) @ 0977V

is a polarization for X such that Jp, = Jp,.3-

First we see that F is indeed a polarization. Let g be the arithmetic genus of X. Then
deg(E) = q(29 — 2) + 2p1 + ... + 2pr = 2q9

and rk(E) = 1+ 2q — 1 = 2q, so the slope of E is g.
Now, let Y be a proper connected subcurve of X. Let €(Y) := ), x;cy Pi» and note that
€(Y) > 0. Then we have
degy (E) = gdegy (wx) + 2¢(Y).

By Lemma 3.1.1 we have degy (wx) = 29y — 2 + dy, and thus
(3.5) degy (E) = q(2g9y — 2+ dy) + 2¢(Y),

where gy is the arithmetic genus of Y.

Let I be a torsion-free rank-1 sheaf on X of degree —1. First notice that x(I ® E) = 0. Now,
by definition, S;(Y) > 0 if and only if x(Iy) > — degy (E)/rk(E). By (3.5), this happens if and
only if

by €Y)

thus showing that Jg = J{,,}. Therefore Jy,,y is indeed a separated scheme.

Now, we must show that A factors through Jy,;. (Since we showed that this scheme is
separated, from Theorem 3.2.1 it will follow that A : X — 7{“ } is a closed embedding.) Let I be
in the image of the Abel map A, that is, I is the ideal sheaf of a point on X. Then x(I) = —g and

deg(E)

wE

Br(X)=—g+
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Also, for each proper connected subcurve Y of X, we have deg, (I) > —1, and hence

Br(Y)> (—1+1—gy)+ deg%q(E) = gy + deg;q(E)_

Since X has no disconnecting nodes, dy > 2, and hence degy (E) > 2qgy + 2¢(Y"), which implies
that

(3.6) Br(Y) >

showing that I is stable with respect to E.
In order for Jy,,} to be complete it is enough that J5 = J, that is, it is enough to show that
the rank of E does not divide its degree on any proper subcurve Y of X. By (3.5), the latter is

equivalent to saying

(3.7) %" + )

¢7

for every proper subcurve Y. If Jy is even, then (3.7) is never an integer, because ¢(Y) < ¢. If
dy is odd, then (3.7) is an integer if and only if 1/2 + €(Y")/q is an integer, that is, if and only if
g + 2¢(Y) is a multiple of 2¢. But, since €(Y) < ¢, this implies 2¢(Y) = ¢. So, if we choose the
pi’s so that ¢ = py + ... + pr is 0odd, we get T, = J 5, and thus Jip:} is complete. (For instance,
if the number & of irreducible components of X is odd, choose p; = 1 for every i; and if k is even,

choose p1 =2 and p; =1 fori #1.) O

Remark 3.3.2 Let (X, P) be a pointed curve of arithmetic genus g without disconnecting nodes.
Let X1,...,X} be the irreducible components of X, and assume P € X;. Fixpy =1 and p; =0
for i # 1. The polarization of the previous proposition becomes E = wx (2P)® Ox. Defining Jy,.}
as before, we still have Jy,,; = J3. Moreover, by (3.6), we see that A actually factors through 7;
and, by Theorem 3.2.1, A: X — 7; is a closed embedding if g > 0.

More generally, for a family of pointed curves (X/S, o) of arithmetic genus g, we may let
£ = wx;5(28) ® Ox, where X is the image of 0. Then £ is a polarization. Also, the Abel
map A of X/S factors through the proper S-space 7; and thus, by Theorem 3.2.1, it is a closed
embedding in 7;, if ¢ > 0. Note that there is no hypothesis on the genus of the curves, so this

improves Corollary 3.2.2 in the case of pointed families.
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Chapter 4

On the first Abel map - Il

In this chapter we focus on curves X having disconnecting nodes. As we saw in Example 2.1.2, in
this case the Abel map is not well defined. Indeed, we showed that if @) is a disconnecting node
of X, then its ideal sheaf mg is not simple. For each fixed point P, we will define a map Ap from
the curve X to its compactified Jacobian, so that Ap is a modification of Ap. More precisely, for
each point @ of X that is not a disconnecting node, the image of Q under Ap will be defined as
mg(P) ® M, for certain invertible sheaf M = M(Q) of degree zero on X. If Q is a disconnecting
node, then the image of @) under Ap will be a suitable invertible sheaf; see Proposition 4.2.2.
Furthermore, the map Ap defined in this way factors through the locus of P-quasi-stable sheaves
of X, and is in fact a closed embedding in it, if X has no rational component L such that every

point on L N L€ is a disconnecting node. We call such a component L a disconnecting line.

4.1 Tails

Let X be a curve, and assume X has a disconnecting node N. Then, by definition, there is a
subcurve Z of X such that Z N Z°¢ = {N} with multiplicity 1. In this case we say that Z and Z°
are the tails associated to N. Thus, a subcurve Z of X is a tail if and only if §; = 1. A tail is
connected, because otherwise the curve X itself would be disconnected.

For Y and Z subcurves of X, we denote by Y A Z the maximum subcurve contained in Y N Z.

Lemma 4.1.1 Let Z; and Z> be distinct tails of a curve X. Then exactly one of the following

alternatives hold:

(l) Z1UZy=X;

40



(’H,) Z1NZy = @,‘
(iii) Z1 C Zs;
(Z’U) Z2 C Zl-

Proof. Let N; and N> be the disconnecting nodes of Z; and Z» respectively. If Zy = Zf then
Z1 U Zz = X and we have (i). Assume Z; U Zs is not the whole curve X, so Zy # Z§.

Let ¥ = Z1NZs. If ¥ = () we have (ii). Note that (i) and (ii) cannot hold simultaneously, since
otherwise the curve X would be disconnected. Now, assume that ¥ is nonempty. If ¥ is finite,
then Z, contains no component of Z; and thus Zy C Z5. So ¥ consists of the separating node Ny
of Z;. Hence N; = Na, and so Zs = Zf. Since we assumed the union Z; U Z, is not the whole
X, we have that ¥ is not finite. Therefore Z; A Z5 is not empty. We must show that in this case
either (iil) or (iv) happen.

If Z1 C Z5 we have (iii). Now assume Zy ¢ Zs. Then Z1 AZs # Z1, and so Z1 A Z§ is nonempty
as well. Now, since Z; is connected, Z; A Z> and Z; A Z§ must meet at the node N». So Ny € Z;.

If Zo ¢ Zy, then Z§ ¢ Z§. So, as above, Z{ A Z§ and Z{ A Z5 meet at the node N, implying
N> € Z£. Since Z is a tail associated to Ny, and Ny € Z; N Zf, we have that Ny = Nj. Therefore

Zy = Zy or Zy = Z§, a contradiction. So Z; C Z; and we have (iv). O
Lemma 4.1.2 Let Z be a tail of a curve X. There is a morphism
I:JzxJze — Jx,

such that the image of a pair (Ly, L) of sheaves on Z and Z° respectively is a sheaf L on X such
that L|Z = L1 and LlZC = Lo.

Proof. We’ll construct the map I' as a map of functors. Let T be a scheme. The T-points of J 2
(resp. Jze) correspond to torsion-free rank-1 sheaves on Z x T/T (resp. Z¢ x T/T). Let £; and
L2 be torsion-free rank-1 sheaves on Z x T and Z°¢ x T respectively. We’'ll show that there is a
unique (up to isomorphism) torsion-free rank-1 sheaf £ on X x T that is invertible at (ZNZ°¢) x T,
and such that £|zxr = £1 and L|zexr = Lo.

Consider the following Cartesian diagram

XxT -2 Xx

'] !

T —— Spec(k)
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where p and ¢ are the projections on the first and second factors, respectively. Let N be the
separating node associated to the tail Z.

We may assume that £i|;nyxr and La|fnyx7 are trivial. Indeed, the sheaf £i|{n}xr (resp.
LalinyxT) is invertible, because £y (resp. L) is torsion-free and rank-1 on Z x T/T (resp.
Z¢xT/T), and N is a simple point of Z (resp. Z¢). Now, by the equivalence relation on J 7 (resp.
Jz¢), the sheaf £; (resp. L») is equivalent to

1= L1® ¢ (Lilvyxr) L (resp. L= Lo @ ¢*(Lalgnyxr) L),

where {N} x T is identified with T by the projection q. Clearly, £}| nyx1 = Or.

Since both L1 |{n}x7 and La|{n}x7 are isomorphic to O, there is an isomorphism
v: Lolinyxr — Lil{nyxT-

Note that any two such isomorphisms differ by multiplication by a (unique) nonzero scalar. Let £

be the kernel of the composition

1,—v
Yy L1 © Ly — Li|(nyxT © La|{N}xT SUSUN Li|¢nyx-

Then L is a torsion-free rank-1 sheaf on X x T', invertible at {N} x T, such that £|zx1r = £1 and
LlzexT = Lo

If ' : Lo|(nyxT — L1]{n}x7 is another isomorphism, then v = av’ for some scalar a. Thus
the map (1,a) : L1 ® L2 — L1 ® Lo takes the kernel of 1), isomorphically to the kernel of 1,.

Conversely, let Z be a torsion-free rank-1 sheaf on X x T, invertible at {N} x T'. Assume there
are isomorphisms A\ : Z|zx71 = £, and X5 : T\ zexT — L5. Then T is the kernel of v,, where
v = Mlnpxr © AL Ny xT

Moreover, if the sheaves £1 and L2 are simple (over T'), then the sheaf £ is also simple (over
T). Indeed, assume by contradiction that £ is not simple, so for some t € T', £(t) is not simple.
We may thus assume that X7 = X so £(t) = £. Then, by Lemma 1.1.5, there is a subcurve Y of
X such that £ = Ly & Ly-. Thus, restricting to Z we get

L1=L|7=Ly|z® Lye|z

and, since £; is simple and torsion-free, either Y A Z = 0, or Y° A Z = (). On the other hand,
restricting £ to Z¢ we get either Y A Z¢ = ) or Y° A Z¢ = (). Therefore, Z must be either Y or
Y. Without loss of generality assume ¥ = Z and Y = Z¢. Then

LE2L; DLz =L1DLs
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and, restricting to the separating node N, we get L|ny = L1|n © L2|n, showing that £ is not

invertible at NV, an absurd. |
Remark 4.1.3 It can be shown that I' is an isomorphism, with the inverse
r-t :7X — jZ X ch

given by the restrictions to Z and Z€. Since every simple torsion-free rank-1 sheaf on X must be
invertible at the disconnecting nodes of X, the map I'"! is well-defined; see [E01, Example 37,
p. 3073].

Let P be a simple point on a Gorenstein curve X, and take () € X. In Proposition 3.1.5
we showed that mg(P) is P-quasi-stable with respect to the polarization E := wx & Ox if the
curve has no disconnecting nodes. Now, assume the curve X has a disconnecting node. Then, by
(3.4), if P € Y, the condition x(mg(P) ® E|y) > 0 is still satisfied, and if P ¢ Y the condition
x(mg(P)®E|y) > 0holds unless Q € Y and dy = 1. So we see that the P-quasi-stability condition
fails exactly when @Q € Y, dy =1 and P ¢ Y, that is, when Y is a tail containing ) but not the
fixed point P. Thus, to achieve P-quasi-stability we need only modify mg(P) for @) belonging to

tails not containing P.
Proposition 4.1.4 Let P be a simple point of a curve X. Let Q € X.

(i) There is a (possibly empty) sequence of tails Zy C ... C Z, such that Z is a tail containing
Q and not containing P if and only if Z = Z; for some t;

(i) Let Ny ..., N, be the disconnecting nodes associated to the tails Z1,... ,Z,. of (i). For each
t=2,...,r define Zy := Z; — Zy_1. Then there are invertible sheaves M and M' on X such
that

M|Z1 :OZ1(N1)7 MI|Z1 = OZlJ
M|z =M'|; = Oz (Ny — Ny—1) for eacht=2,...,r,
M|ze =M'|ze = Oz:(=N,).

The sheaf M (resp. M') has degree 0 (resp. degree —1) on X, and degree 1 (resp. degree 0)

on Zy for eacht =1,... 7.

Proof. Let Z; and Z, be two tails of X containg ) and not containing P. Since () € Z; N Z3 and
P ¢ 7, U Zy, by Lemma 4.1.1, we have either Z; C Zs or Zy C Z;. Thus (i) is proved.
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To construct M and M’ in (ii) we apply Lemma 4.1.2 to Z; and its tail Z; 1 foreacht=2,...,r,
and then to X and the tail Z,.. It follows from the definition of M (resp. M') that it has degree 0

(resp. degree —1) on the whole X and degree 1 (resp. degree 0) on each Z;. m|

Note that if @) is a simple point of X, then the sheaves M and M’ depend only on the irreducible

component to which the point belongs.

Remark 4.1.5 Let P be a simple point of a Gorenstein curve X, and let @) € X. Here we use the
notation introduced in Proposition 4.1.4. Let Z,,; := Z¢. For each t, denote by W; (resp. W)
the irreducible component of Z; containing N; (resp. N¢_1). In addition, let W] := W, := 0.
(Then both M and M' have degree 0 on W] and W,;1.) It follows that, for each t =2,... ,r, we
have
degyy, (M) = degy,(M') =1 and degy; (M) = degy(M') = —1.

In addition

degy, (M) =1, degw;+1(M) =-1

degy, (M') =0, degW;H(M’) =-1.
Note that, for each irreducible component W of X, if we have degy, (M) # 0 (resp. degy, (M') # 0)
then either W = Wy or W = W/ for some ¢.

Now, let Y be a connected subcurve of X. If Y does not contain any of the points Ny,... , N,
then clearly
degy (M) = degy (M') = 0.

Now assume Y contains some of the points Ny,... ,N,. Let j (resp. k) be the minimum (resp.
maximum) integer in {1,...,7} such that N; (resp. Ni) belongs to Y. Then Y contains also IV;

if j <t <k, because otherwise Y would not be a connected curve. It follows that Y contains all

the irreducible components of Zj+1, e I containing the nodes IV, ... , IVy.
Furthermore, since M is invertible, and Y contains exactly the separating nodes Nj,... , Ny,
we have
r+1
(4.1) degy (M) = Z(deth/\Y(M) + degwr ay (M))
i=1

:deng/\Y(M) + degWJf+1/\Y(M) + degWHl/\Y(M) +o-
+ degy; ay (M) + degp, ny (M) + degy; vy (M)
=degw,ay(M) —1+1—---—1+1 +degW’;+l/\Y(M)

=degyy, Ay (M) + degW,’H_l/\Y (M).
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Likewise, since M' is invertible,

(4.2) degy (M) = degy, oy (M) + degW,;+1/\Y(MI)-

In particular we have

—1 < degy (M), degy (M') < 1.

4.2 The Abel map

We use the line bundles M and M’ of the previous section to define a map from the curve X to

its compactified Jacobian.

4.2.1 The P-twist. Let P be a simple point on a Gorenstein curve X. For each Q € X we now
define a sheaf I(Q) which will be the image of Q under the map Ap. (In the following proposition
we show that Ap factors through 7;, where E := wx ® Ox.) Let @ be a point of X, and let M
and M’ be the sheaves defined in Proposition 4.1.4 (ii).

o If ) is not a disconnecting node, set I(Q) := mg(P) ® M.
o If @ is a disconnecting node, set I(Q) := M'(P).

We call the sheaf I(Q) the P-twist of @ in X.

Note that, in any case, I(Q) has degree 0 on X. In addition, if @) is not a disconnecting node
of X, then I(Q) is simple, torsion-free, and has rank 1, because mg(P) is simple, torsion-free and
of rank 1, and M is invertible. Also, if @) is a disconnecting node of X, then I(Q) is invertible,

whence simple.

Proposition 4.2.2 Let P be a simple point on a Gorenstein curve X, and let E := wx & Ox.

Then there is a well-defined map of sets
AP X — jg
sending a point Q of X to I(Q), where I(Q) is the P-twist of Q in X.

Proof. Let @ be a point of X, and let I(Q) be the P-twist of @ in X. We have to verify that
I(Q) is P-quasi-stable with respect to E.
First, since I(Q) has rank 1 and degree 0 on X we have

x(I(Q) ® E) = x(E) = deg(E) +rk(E)(1 - g) = 0.
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Now, let Y be a connected proper subcurve of X of arithmetic genus gy. Then

Bro(Y) = x(I(@Q)]y) + degy (E)/rk(E)
= (degy (I(Q)) + 1 —gv) + (9y — 1+ 0y /2)
- degy (I(Q)) + 0y /2,

where the second equality follows from Lemma 3.1.1. We have to show that 3;(g)(Y") > 0 for all
Y, with By (Y) > 0if P€ Y.

Assume first that @ is not a disconnecting node of X. Then I(Q) = mg(P) ® M, where M is
as in Proposition 4.1.4 (ii). Then

degy (1(Q)) = degy (mq(P)) + degy (M).

Let Z; C ... C Z, and Ny,...,N, be as in Proposition 4.1.4 (i). Here we use the notation

introduced in Remark 4.1.5. There are four cases to consider:

eIf PecY and  ¢Y, then degy (mg(P)) = 1. Also, by Remark 4.1.5, we have degy (M) > —1,
showing that Brq)(Y) >1—146y/2>0.

o If P,Q €Y, then degy (mg(P)) = 0. Also, since Y is connected, Y contains all disconnecting
nodes Ny, ..., N,. Moreover, since P and () are not disconnecting nodes and both belong to Y, Y
contains all the irreducible components of X containing Ny, ... , N,.. Hence, by (4.1), deg, (M) =0
and Br)(Y) =0+0+46y/2 > 0.

o If PQ ¢ Y then degy(mg(P)) = 0. If 6y = 1, then Y is a tail, and since Q ¢ Y, we see
that Y is not any of the Z;. We state that degy (M) > 0. Indeed, assume by contradiction that
degy (M) = —1. (Recall from Remark 4.1.5 that —1 < degy (M) < 1.) Then Y must contain some
Ny. Let j (resp. k) be as in Remark 4.1.5. Then, by (4.1), Wy, CY and W; ¢ Y. Therefore
the node N; is contained in Y NY“. Since Y is a tail, N; is the disconnecting node associated to
Y. SoY = Zj and thus Q € Y, or Y = Zf and thus P € Y. As none of this is possible, we see
that degy (M) > 0. We showed that, if dy = 1, then Bg)(Y) >0+ 0+ 1/2 > 0. In addition, if
dy > 2, then B;()(Y) >0—1+1=0, and we are done.

e If P¢ZY and Q €Y, then degy (mg(P)) = —1. First assume Y = Z; for some ¢. Then by
Proposition 4.1.4, degy (M) = 1 so that f(Y) = -1+ 146y /2 > 0. If Y is not any of the Z,
then dy > 2, since otherwise Y would be a tail containing ) and not containing P. We claim that
degy (M) > 0. Indeed, assume by contradiction that degy (M) = —1. Let Nj,..., N} be as in
Remark 4.1.5. Since degy (M) = —1, we have by (4.1) that W} ; C Y and W; ¢ Y. In particu-

lar, Y does not contain Wj. Since Wj is the irreducible component of Z; containing Np, and YV
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is connected, Y cannot contain @, an absurd. So degy (M) > 0 and thus () (Y) > —14+0+1=0.

Now, assume that () is a disconnecting node of X. Then I(Q) = M'(P), where M’ is as in
Proposition 4.1.4 (ii). Let Z; C ... C Z, and Ny,..., N, be as in Proposition 4.1.4 (i). Note that,
since () is a disconnecting node, and Z; is the smallest tail containing ) and not P, then Q = Nj.

As before, we use the notation introduced in Remark 4.1.5. There are two cases to consider:

o If P €Y, then degy (I(Q)) = degy (M') + 1. Now, since by Remark 4.1.5, degy (M') > —1, we
have degy (I(Q)) > 0. Thus B;(g)(Y) > 0.

o If P ¢ Y then degy(I(Q)) = degy(M'). Since degy (M') > —1, if we have dy > 2, then
Br@)(Y) > 0. Now, assume dy = 1. Then Y is a tail of X. If Y = Z; for some ¢, then, by
Proposition 4.1.4 (ii), we have degy (M') = 0, and thus Br(g)(Y) > 0. So, assume Y is not any
of the Z;. Note that in this case, @ = N1 ¢ Y. We state that degy (M') > 0. Indeed, assume
by contradiction that degy (M') = —1. Let j and k be as in Remark 4.1.5. Then, since N; ¢ Y,
we have j > 2. Thus by (4.2), we have W; ¢ Y and W[, C Y. In particular, the node Nj is
contained in Y NY°. Now, since Y is a tail, IV; is the node associated to Y. So Y = Z; and thus
N1 € Y,orY = Z§ and thus P € Y. As none of this is possible, we get that deg, (M') > 0.
Therefore B1(g)(Y') > 0 and we are done. O

Theorem 4.2.3 Let P be a simple point on a Gorenstein curve X of arithmetic genus g. Then,
the map Ap defined in Proposition 4.2.2 is a morphism of schemes. In addition, if X contains no

disconnecting lines and g > 0, then Ap is a closed embedding.

Proof. By Proposition 4.2.2 the map Ap exists as a map of sets. Now we proceed by induction
on the number of disconnecting nodes of X to prove this map is indeed a morphism of schemes.

If X has no disconnecting nodes, then X has no tails, and thus the map Ap is the pointed Abel
map Ap of (X, P) which, by Corollary 3.2.3, is a closed embedding.

Now assume X has a disconnecting node IV, and let Z, Z¢ be the tails associated to it. Then
Z and Z° have fewer disconnecting nodes than X. Indeed the disconnecting nodes of X are the
disconnecting nodes of Z, the ones of Z¢, and N. Assume without loss of generality that P € Z°¢.
Let

fl]ZV 17— Jgz

be the map taking a point @ of Z to the N-twist of @ in Z. And let

A]Z; 1 7 — ch
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be the map taking a point @) of Z¢ to the P-twist of () in Z¢. By induction hypothesis, both Aﬁ
and AIZ; are morphims of schemes. (Note that N is a simple point of Z.)

We'll define, using A% and A%°, morphisms of schemes By : Z — Jx and By : Z¢ — Jx
such that By (N) = By(N). Since Z and Z¢ intersect transversally, B; and Bs induce a morphism
B: X — Jx. Then we show that B coincides with Ap on every point of X.

Consider the morphism I' : Jz x Jz- — Jx of Remark 4.1.3. Define

(Ax,Ap (N)), —

(4.3) B :7 Tz x Tze —— Jx,

where the first morphism takes a point @ € Z to the pair (4% (Q), A%°(N)). In addition, define

-
(4'4) By : Z° M 7Z X 7ZC L) 7)(,

where the first morphism takes a point @ € Z¢ to the pair (Oz, A% (Q)). First we note that
Bi(N) = By(N), so B : X — Jx is well-defined. Indeed, we clearly have A% (N) = Oz, because
the N-twist of N in Z is the trivial sheaf Oz. (Since there are no tails in Z containing N and not
N, the sequence of tails in Proposition 4.1.4 (i) is empty.)

Now we prove that B = Ap set-theoretically. We must show that:

(i) Ap(N) satisfies
Ap(N)|z = Oz and Ap(N)|z- = AZ(N);

(ii) if Q € Z — {N}, then Ap(Q) satisfies

~ ~ r7e

Ap(Q)|z = AR(Q) and Ap(Q)|z- = AF (N);
(i) if Q € Z¢ — {N}, then Ap(Q) satisfies

Ap(Q)|z =0z and Ap(Q)|z- = AZ°(Q).

(Note that, in each case, there is a unique sheaf satisfying the conditions, by Lemma 4.1.2.) Now,
let @ be a point of X and let Z; C ... C Z, be as in Proposition 4.1.4 (ii).

First we show (i), so assume that Q = N. In this case, since Z is a tail associated to the
disconnecting node N and not containing P, and Z; is the smallest tail containing N but not
P, we have Z = Z;. Let I(N) be the P-twist of N in X. By definition, see (4.2.1), we have
I(N) = M'(P), where M' is as in Proposition 4.1.4 (ii). Therefore, since P ¢ Z, we have
I(N)|z, = Og,.
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On the other hand, Zs — Z1,... , Z, — Z; are the tails of Z¢ containing NV but not P. Let Mz
be the sheaf on Z¢ defined in Proposition 4.1.4 (ii) associated to the tails Zo — Z1,... ,Z,. — Z; of
Z¢. Then A% (N) = my z-(P) @ M?°, where my, z- is the ideal sheaf of N in Z¢. (Note that N

is not a disconnecting node of Z°¢.) Since N is a simple point of Z¢, we have
AZ(N) =0z (P - N)® M? = M? (P - N).

Let Zy := Z; — Zy_1 for t = 1,...,r and set Z,,q := Z¢. Since Ap(N) = M'(P), we need only
see that M’ and M?°(—N) coincide on Z; for each t = 2,...,r + 1. But this follows from the
definition of M’ and M%°. Therefore, Ap(N)|z- = A%’ (N), thus proving (i).

Now we show (ii), so assume @ is in Z and @ # N. Since P ¢ Z, we have Z = Z; for some t.
Thus Zi, ... ,Z;—1 are the tails of Z containing ) but not N, and Zyy1 — Z4,... ,Z, — Z; are the

tails of Z¢ containing N but not P. By the definition of the maps Ap, A% and AZ" (see (4.2.1)),
this shows that Ap(Q)|z = A%(Q) and Ap(Q)|z- = AL (N).

At last we show (iii), so assume @ € Z° and ) # N. Since P does not belong to Z or to
Zy, the union Z U Z; is not the whole curve X. By definition of Z;, we have @) € Z; for every t.
Also, since Q # N, we have Q € Z. Hence, Z; € Z for all t. So, by Lemma 4.1.1, we have either
ZNZy=0or Z ; Zy. In any case, Z; := Z° A\ Z; is a tail of Z¢ containing @) but not P. Moreover,
Z, C...C Z' are exactly the tails of Z¢ containing Q and not P. Therefore Ap(Q)|z- = A%°(Q).

On the other hand, Z does not contain any of the disconnecting nodes Ny, ... , N, associated
to the tails Z1,... , Z,. Indeed, we saw that either ZNZ; =0 or Z ; Zy, for each t. So, if Ny € Z,
then Z N Z; # 0 and hence Z g Zy. In particular, N; € Z N Z¢, showing that Z = Z;, an absurd.
Therefore AP(Q)|Z = Og.

As for the last assertion of the theorem, assume that X contains no disconnecting lines. Then
Z and Z° contain no disconnecting lines. Indeed, first note that a disconnecting node of Z is a

disconnecting node of X. Now, if L. C Z is a rational component, then
LN(X-LycLn(Z-L)U{N}.

So if L were a disconnecting line of Z, then the points in the intersection L N (Z — L) would be
disconnecting nodes of Z, hence of X, and L would be a disconnecting line of X.

Thus, by induction hypothesis, A]ZV and /LZ; are closed embeddings. By the definition of B,
this implies that A| 7z = B; and fl| ze = By are closed embeddings. Note first that Ap is injective.
Indeed, recall that T is injective (see Remark 4.1.3). Therefore, it’s enough to see that, if Q1 € Z
and Q, € Z¢ are such that Ap(Qy) = Ap(Q2), then Q; = Q2 = N. Now, by the definition of B,
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and Bs, we have A%(Q1) = Oz and AZ"(Q2) = A% (N). The latter clearly implies that Qs = N,
because AZ" is injective. In addition, since A%(N) = Oy, we also have Q; = N, because A% is
injective. Therefore fip is injective.

Moreover, since fl% and AIZ,C are embeddings, Ap is an embedding except possibly at N. So we
need only see that Ap separates tangent vectors at N. Now, by Remark 4.1.3, Jz x Jz- = Jx, and
Ap takes the tangent spaces of Z and Z¢ at N to the subspaces T3, iz(ny®0and 00Ty . zz¢(n)
of Ty, Ap(N)> respectively. Therefore Ap separates tangent vectors also at N. At last, since X is
complete and Ap has image in the separated scheme 75, it follows that Ap is a closed embedding.

O

Remark 4.2.4 Let X be a Gorenstein curve, and consider the map Ap defined in Proposi-
tion 4.2.2. Let Z be a tail of X with disconnecting node N. In the proof of the Theorem 4.2.3, we
showed that the restriction of Ap to Z is essentially the Abel map taking each point QQ € Z to its
P-twist in Z, if P € Z; or to the N-twist of Q in Z,if P ¢ Z.

Moreover, let Y C X be a subcurve such that the points in the intersection Y N Y° are
disconnecting nodes. Then each connected component of Y is a tail associated to its point of
intersection with Y. If P € Y, let N be the node associated to the tail containing the point P.
We state that Ap|y is essentially the Abel map taking each point Q € Y to its P-twist in Y, if
P eY;ortothe N-twist of Q in Z,if P&€ Y.

We prove our statement by induction on dy. Indeed, if jy = 1, then Y is a tail and the
statement holds. Now, assume Jy > 1. Let Z be a tail containing Y associated to a point in
Y NYe Note that if P ¢ Z, then the point N defined in above paragraph is the disconnecting
node associated to Z. Then A p|z is essentially the Abel map taking each point of Z to its P-twist
in Z,if P € Z; or to the N-twist of Q in Z, if P ¢ Z. Now, Y is a subcurve of Z that meets Z — Y
in 8y — 1 points, and the points in Y N (Z — Y) are disconnecting nodes of X, thus also of Z. By
induction hypothesis, (Ap|z)|y is essentially the Abel map taking each point of Y to its P-twist
inY,if P€Y; ortothe N-twist of Q in Y, if P ¢ Y, as stated.

We now analyze the restriction of Ap to an irreducible component W of X. We show that the
restriction Ap|p is either the first Abel map of the curve W or that of the pointed curve (W, N),
for some point N in W. In other words, for every Q € W, the restriction Ap(Q)|w is either the
sheaf mg w or the sheaf mg w (IV), where mg w is the ideal sheaf of @ in W.

Assume first that P € W. Then the restriction of Ap to W is the first Abel map of the pointed
curve (W, P). Indeed, let @ be a point in W. Note that, if Q is a disconnecting node of X, then
W is contained in a tail Z of X such that @Q is a simple point of Z. (In fact, @ is the disconnecting
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node associated to Z.) Thus, restricting first to Z, we may assume that @ is not a disconnecting
node of X. So, since @ is not a disconnecting node of X, we have Ap(Q) = mg(P) ® M, where
M is as in Proposition 4.1.4 (ii). But both P and @ are in the same irreducible component W, so
there is no tail of X containing @ and not P. Hence M = Ox and Ap(Q)|w = mg w(P).

Now, assume P ¢ W. Let () be a point of W, and let Z1,... , Z, be the ascending sequence of
tails of X, defined in Proposition 4.1.4 (i), containing @ but not P. (Note that this sequence of tails
depend only on the irreducible component W to which @) belongs.) Let N; be the disconnecting
node associated to Z;. If Ny ¢ W, then the restriction of Ap to W is simply the first Abel map
of the curve W. Indeed, we may again assume that () is not a disconnecting node of X. So
Ap(Q) = mg(P) ® M, where M is as in Proposition 4.1.4 (ii). Since W C Z; and Ny ¢ W, we
have M|w = Oy . Therefore, since P ¢ W, we have Ap(Q)|w = mgw. On the other hand, if
N, € W, we have M|w =2 Ow (1), and hence AP(Q)|W =mg,w(N1). Thus if N; € W, then the
restriction of Ap to W is the first Abel map of the pointed curve (W, Ny).

Remark 4.2.5 The hypothesis that X does not contain a disconnecting line is not just technical.
Indeed, assume L C X is a disconnecting line, and let Zy, ... , Z; be the connected components of
L°. Note that Zy,... , Z are tails of X. Then, by Remark 4.1.3, Jx & Jz, x...x Jz, x Jr. Also,
as it can be derived from the proof of Theorem 4.2.3, Ap sends essentially each Z; to the factor
7%1. of 7())(, and sends L to 7(;4 But, since L is rational, 7% is a point, as all invertible sheaves of
degree 0 on L are isomorphic. Therefore Ap cannot be injective, as it contracts the disconnecting

line L to a point in Jx.

4.2.6 Trees of disconnecting lines. A tree of disconnecting lines in a curve X is a connected
subcurve L of X having arithmetic genus 0 and such that every point of L N L€ is a disconnecting
node of X. As we will see, the removal of a tree of disconnecting lines from a Gorenstein curve
doesn’t change the genus of the curve. In addition, the map Ap contracts every tree of disconnecting
lines to a point. We show in Theorem 4.2.10 that the image X of Ap is a curve in Jx obtained
from X by contracting every tree of disconnecting lines in X to a point and contracting nothing

else. Furthermore, X has the same arithmetic genus as X.

Lemma 4.2.7 Let L be a tree of disconnecting lines in a Gorenstein curve X of arithmetic genus
g. Let Zy,...,Z; be the connected components of L°. Then g = g1 + ... + gr, where g; is the

arithmetic genus of Z;.

Proof. We proceed by induction on the number of connected components of L¢ = X — L.
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First we note that, since X is Gorenstein, wx is invertible. Hence

deg(wx) = degz, (wx) + degz: (wx)-

Assume first that £ = 1. Then X = Z; U L. Therefore, since d;, = dz, = 1, by Lemma 3.1.1, we
have

20-2=291—-2+1)+(0—-2+1) =291 — 2,

showing that ¢ = g1. Now, assume k > 1. Let g be the arithmetic genus of Z{. Again, by
Lemma, 3.1.1 we have,

20—2=(291 —2+1)+ (29; —2+1),

because dz, = 0z¢ = 1. Then g = g; +g]. But Z{ — L has less connected components than X — L,

so by induction hypothesis, g; = g2 + ... + gx. (Note that the connected components of Z{ — L
are Za, ... ,Zy.) Hence g = g1 + ... + gk- O

Lemma 4.2.8 Let X be a Gorenstein curve, and L a tree of disconnecting lines in X. Then the
irreducible components of L are indeed disconnecting lines. (In particular, for each simple point

P e X, the map Ap of Proposition 4.2.2 contracts L to a point of Jx.)

Proof. We proceed by induction on the number of irreducible components of L. If L is irreducible,
then L is clearly a disconnecting line. Assume L is not irreducible.

First we show that there is an irreducible component W of L, such that W meets L — W at a
point with multiplicity 1. In other words, let éw,z := X(Oyy~z=mw))- Then we state that dw,r =1
for some W. Assume by contradiction that dw,r, > 2 for every component W C L. Note that since

X is Gorenstein, and L intersects L¢ transversally, also L is Gorenstein. Since dw,r > 2, we have
0 < degy (wr) < deg(wr) = -2,

an absurd. Thus dw,r, = 1 for some W.

Now we show that the irreducible components of L are disconnecting lines. Let W be an
irreducible component of L such that dw,, = 1. Let Z = L —W. Since O0w, = 1, the curve Z is
connected. Now, since L is Gorenstein, wy, is invertible, thus deg(wr) = degy (wr) + degz(wr).

Then, by Lemma 3.1.1, we have
—2=deg(wr) = (29w =2+ 1) + (297 —2+1),

where gy (resp. gz) is the arithmetic genus of W (resp. Z). Hence gw + gz = 0. Thus, since gw

and gz are nonnegative integers, we have gy = gz = 0. Therefore, W is a rational smooth curve.
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Also, W is a disconnecting line. Indeed, if N is the point in the intersection W N (L — W),
then N is a disconnecting node of X. Moreover, we have W N (X —W) Cc LN (X — L) U {N},
and hence every point in W N (X — W) is a disconnecting node of X. Now note that Z has less
irreducible components than L, and Z is also a tree of disconnecting lines. Hence, by the induction

hypothesis, the irreducible components of Z are disconnecting lines. O

Lemma 4.2.9 Let P be a simple point on a Gorenstein curve X. LetY be a subcurve of X such
that Y NY° consists of disconnecting nodes. Assume that Y contains no disconnecting lines. Let

Q be a point of Y —{Y NY*}, and R := Ap(Q). Then Ap(Y®) does not contain R.

Proof. First recall that flp|y is essentially an Abel map. Indeed, by Remark 4.2.4, fip|y is
essentially either the Abel map sending each point to its P-twist in Y, if P € Y, or to its N-twist
inY,if P¢Y. Thus, by Theorem 4.2.3, A ply is a closed embedding, since Y does not contain a
disconnecting line.

Let Z1,...,Z} be the connected components of Y¢, and Ny, ..., Nj their intersections with Y.
Note that Z;,... ,Z; are tails of X. Let Q' € Y¢. Then Q' € Z; for some i. We have to show that
Ap(Q') # R. Recall the proof of Theorem 4.2.3, and in particular, the argument around (4.3) and
(4.4).

Assume first that P ¢ Y. Without loss of generality, assume P € Z;. Then AP(Q’ Ny =
AN Y (N;). Since Q # Nj, the injectivity of /1%1 = Ap|y shows that Ap(Q') # Ap(N;). Finally,
assume that P € Y. Then Ap(Q')|ly = A% (N;). Since Q # Nj, the injectivity of A%, = Ap|y
shows that Ap(Q') # Ap(Q) as well. O

We say that a tree of disconnecting lines L is mazimal if, for every tree of disconnecting lines

L' containing L, we have L' = L.

Theorem 4.2.10 Let X be a Gorenstein curve of arithmetic genus g > 0, and consider the Abel
map Ap constructed in Proposition 4.2.2. Let L be a mazimal tree of disconnecting lines, and set
R = Ap(L). Then X = Ap(X) is a curve of arithmetic genus g, having an ordinary singularity
of multiplicity ér. at R, with linearly independent tangent lines.

Furthermore, let X be the union of the disconnecting lines of X. Let X4,... ,X, be the connected

components of X — X, and X; = AP(X,') fori=1,... ,n. Then Ap x; 15 an isomorphism onto X;.

In addition, we have AP(Ql) = AP(QQ) if and only if Q1 and Q2 belong to the same mazimal tree

of disconecting lines.
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Proof. First note that L is a proper subcurve of X, because g > 0. Since X is connected, and L
is neither empty nor equal to X, we have é;, > 0. Let k = 6.

Let Ny,...,N; € X be the disconnecting nodes of L, that is, the points in the intersection
LNL° Let Zy,...,Z be the connected components of L¢, so that each Z; is a tail associated
to the disconnecting node N;. Let g; be the arithmetic genus of Z;, for i = 1,... k. Note that
if g; = 0 then Z; is a tree of disconnecting lines, because Z; N Z{ = Z; N L, and L is a tree of
disconnecting lines. Therefore, since L is maximal, we have g; > 0 for every i, since otherwise
Z; U L would be a tree of disconnecting lines properly containing L.

Now, by Lemma, 4.2.8, the irreducible components of L are disconnecting lines. Thus, since

every point of L N L€ is a disconnecting node, we have by Remark 4.1.3 that
7X Ejzl X ... ijk.

Note that, since Ni, ..., Ny are points of L, their images by Ap are equal to R. Moreover, by
Remark 4.2.4, Ap sends essentially each Z; to the factor Jz,. Thus the tangent space of X at R
is generated by the tangent spaces of Ap(Z;) at R, for i = 1,... , k. But these tangent spaces are
linearly independent. Thus the tangent space of X at R is actually the direct sum of the tangent
spaces of Ap(Z;) at Rfori=1,... k.

Let Y; be the maximal connected subcurve of Z; containing N;, and not containing a discon-
necting line. (It is easy to see that such a maximal subcurve exists. Indeed, let U be the union
of the disconnecting lines of Z;. By the maximality of L, we have that N; ¢ U, since otherwise
the union of L and the connected component of U containing N; would be a tree of disconnecting
lines properly containing L. Then Y; is the connected component of Z; — U containing N;.) Note

that Y; N (Z; — Y)i) consists of disconencting nodes, because
Yin(Z;-Y;) cUN(Z;-U)

and Z; is a tail. Then, Ap
Abel map. Thus, by Theorem 4.2.3, Ap

y, is a closed embedding. Indeed, by Remark 4.2.4, Ap|y, is an

y; is a closed embedding, since Y; does not contain a
disconnecting line.

Let Y; be the image of Y; by Ap, so Y; is isomorphic to Y; and contains the point R. Thus
R is the intersection of Yi,...,Y). By Lemma 4.2.9, Ap(Z; — Y;) does not contain R. Thus the
tangent space of A p(Z;) at R is the tangent space of Y; at R. Now, the tangent space of Y; at

N; is isomorphic to the tangent space of Y; at R, because Ap y; is a closed embedding, and Y; is

the image of zziph/i. (Note that this tangent space has dimension 1, since N; is a simple point of

Y;.) So the tangent space of X at R is isomorphic to the direct sum of the tangent spaces of ¥; at

54



N;. Thus the tangent space of X at R has dimension %, and R is a point of X with multiplicity &
having k linearly independent tangent lines, each corresponding to a tail Z;.

Now we show that the connected components Xi,...,X, of X — ¥ are isomorphic to their
images under Ap. First we note that X; is a subcurve of X such that the intersection X; N Xf

consists of disconnecting nodes. Indeed,
XiﬂXiCZXiﬂECECﬂE,

and the points in ¥°NY are disconnecting nodes. In addition, by the definition of X, the curve X;

x; is an Abel map (see Remark 4.2.4), it is a closed

contains no disconnecting lines. So, since Ap
embedding by Theorem 4.2.3. Hence Ap takes X; isomorphically to X;.

Moreover, let Q1 and Q> be distinct points of X such that flp(Ql) = pr(Qz). First assume
that @1 ¢ X. Then @1 € X; — (X; N Xf) for some i. Since Aplxi is a closed embedding, we have
that Q2 & X;. Thus Q> € X§. But then, by Lemma 4.2.9, Ap(Q1) # Ap(Q-2), an absurd.

Now assume that (); € ¥. By the same token, we may assume )2 € ¥ as well. Let L; and L, be
the maximal trees of disconnecting lines to which ()1 and )2 belong, respectively. We need to show
that Ly = Ly. Assume by contradiction that L; # Ls. Since X is connected, there is a connected
component W of m meeting L; and Lo. Let Ny € W N Ly and Ny € W N Ly. Note
that the points in W N W€ are disconnecting nodes, because L; and Ly are trees of disconnecting
lines. So /IP|W is essentially an Abel map. Now, since Ap contracts trees of disconnecting lines,

we have

Ap(N1) = Ap(Q1) = Ap(Q2) = Ap(NV).

Moreover, by the maximality of L; and Lo, both N; and N belong to components of W which
are not disconnecting lines. But this is an absurd, by the first case applied to W. We thus showed
that if Q; and Q, are distinct points such that Ap(Q1) = Ap(Q2) then Q; and Q, must belong
to the same maximal tree of disconnecting lines. On the other hand, by Lemma 4.2.8, if ¢); and
Q- are in the same tree of disconnecting lines, then Ap(Q1) = Ap(Q>).

At last, we show that the arithmetic genus § of X is equal to g. Again we proceed by induction
on the number of maximal trees of disconnecting lines in X. If X has no disconnecting line then,
by Theorem 4.2.3, X is isomorphic to X, so g = g. Now let L be a maximal tree of disconnecting

lines of X, and let Z1,... , Z) be the connected components of L¢. By Lemma 4.2.7, we have
g:g1+---+gk7

where g; is the arithmetic genus of Z;.
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On the other hand, Z; has less maximal trees of disconnecting lines than X. So, by induction
hypothesis, the genus of Z; := flp(Zi) is g;. Furthermore, § is the sum of the genera of the Z;.
Indeed, since the subcurves Zi, ..., Zy of X intersect completely transversally at R, we have the
exact sequences

0— OZI(_R) - 0% = OZQU...UZ,c -0

0— 022(—R) — 02

2U...Uzk - OZgU...UZk - O

0— Ozk_l(—R) — Ozk_1U2k — Ozk — 0.

Let g;,... r be the arithmetic genus of Z;U...U Z,. Since the genus of Z; is g;, taking Euler

characteristics of the above sequences, we get

1-g = 1-g1—-14+1-G2,.. k=1—91—92,... &

1-G2,..0 = 1—-9g2—14+1-93.. . 1 =1—92—03,... &

1=Gk—1 = 1=gr—1—1+1-gpr=1-gk—1— g
Hence1—-g=1—g1 —g2 — ... — gr = 1 — g, showing that § = g. O

Remark 4.2.11 Let X be a tree-like curve, that is, a curve such that every point of intersection of
two components of X is a disconnecting node. Assume X has double points at worst. Recall that,
for every scheme Z, Pic(Z) parametrizes invertible sheaves on Z. Let Pic’(Z) be the connected
component of Pic(Z) containing the trivial sheaf Oz. So Pic(X) = Jx, and Pic’(X) parameterizes
the invertible sheaves on X whose degree on every irreducible component of X is zero. Fix a simple

point P € X. Then the Abel map Ap defined in Proposition 4.2.2 induces an isomorphism
A% Pic®(Th) = Pic®(X).

This is a simple corollary of the autoduality theorem by Esteves, Gagné and Kleiman [EGKO02].
Indeed, let Wy,... , W} be the irreducible components of X. Since, for every ¢, the points in
the intersection W; N W are disconnecting nodes we have, applying Remark 4.1.3 repeatedly,

Tx = [[Jw; and Jx = [[Jw,. In particular, Pic®(X) = [] Pic’(W;). (Note that, since W; is
irreducible, Jy, = Pic’(W;).) By [EGK02, Theorem 2.1, p. 595], for each degree-1 invertible sheaf
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L; on W; we have an isomorphism Pic(jOWi) — Jjy. induced by the Abel map A(Lli) of W;. (Recall
from Subsection 2.2.2 that A(Lli) (Q) =mg ® L; for each Q € W;.)

Assume P € W;. Since X is a tree-like curve, the connected components of W are tails
associated to the points in the intersection W; N W¢. For ¢ = 2,... , k, denote by N; the point in
W; N W¢ associated to the connected component of W containing the point P. Set N; := P. By
Remark 4.2.4, the restriction of Ap to W; is the Abel map of the pointed curve (W, N;), that is,
the map W; — 7?%, taking a point @ € W; to the sheaf mg(N;). Taking L; := Ow, (NN;) for each

1, we have an isomorphism induced by Ap
[ Pic(Ty,) = J] Pic® (W) = Pic®(X).

It remains only to show that [] Pic’ (7?%) = Pic®(T%).
But since each W; is irreducible and has double points at worst, by [AIK76, Theorem 9, p. 8],
70W,- is integral and complete. So we can apply the theorem of the cube [M, Theorem, p. 91] to

the product [] Pic’ (jOWl) and thus conclude that [] Pic’ (7?4,1,) = Pic’(]] 7?%).

Remark 4.2.12 The P-twists used to define the Abel map Ap can also be obtained in a way
similar to what will be done in the next chapter. The procedure consists of considering a smoothing
of the pointed curve (X, P), that is, alocal 1-parameter family of curves X' /S whose general member
is smooth and special member is X, together with a section through the smooth locus of the family
that restricts to P on the special fiber. The Abel map of the pointed family is still not defined
on the whole X. To correct this, we modify the sheaf giving the Abel map by certain Cartier
divisors. The P-twists are the restrictions to X of the modification imposed by the invertible
sheaves associated to these Cartier divisors.

More precisely, let () be a nonsingular point of X, and let Z; C ... C Z, be the sequence of tails
described in Proposition 4.1.4 (i), and Ny, ..., N, their respective disconnecting nodes. Assume

that X is regular, so each tail Z; is a Cartier divisor of X. Then the P-twist of () satisfies
I(Q) = mQ(P) ® (9,’\((—21 — .. — Zr)|X-
Indeed, set Z; := Z; — Zy_1, for t =2,...,r. Then

Ox(=Z1~...=Zy)lz, = Ox(=Z1)|z, = Ox(Zi)|z, = Oz (M),
Ox(=Z1—...=Zo)lz, = Ox(=Zi—Zi_1)z, = Ox(Zf — Zya)l3,
= 0z (Nt — Ny_1), foreach t =2,... 7,

OX(—Z]_ ... ZT')lZﬁ = OX(—ZT)|Z$ = OZS(_NT)
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So Ox(—Z1—...— Z,)|x = M, where M is the sheaf defined in Proposition 4.1.4.

Notice that Ox(—Z1 — ... — Z,) restricts to the trivial sheaf on the generic curve X, of the
family X' /S. Therefore, the modification Ox(—Z1 — ... — Z,) is simply a limit of the trivial sheaf
Ox,, of the generic curve X,.

The sheaves I(Q) over X can be put together in a larger family, a sheaf on X xg X, where X
is the smooth locus of X'/S. For a reasoning along these lines, and to see how to deal with the

case where () is singular, see [CE06].
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Chapter 5

On the second Abel map of the

two-component two-node curve

Let Ag) : Hilb*(X) — 7())( be the second Abel map of a pointed curve (X, P) (see Section 2.2).
As we observed in Chapter 2, Ag) is in general just a rational map. The usual approach to the
problem of resolving this map would be to blow up the locus of points on Hilb?(X) where the
map is not defined. Here, before we perform a blowup, we consider the curve X as the special
member of a one-parameter family of curves with smooth general member. We’ll treat only the
example of the “banana” curve, and thus focus more on the geometry of the blowups than on the
combinatorics of a singular curve.

The banana curve is the two-component nodal curve X given by two smooth curves X; and
X, joined together at two points R and S, as in Figure 5.1. Fix P € X; a smooth point, that is,
Pisnot Ror S.

Figure 5.1: The banana curve
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The image of a point of Hilb?(X) corresponding to smooth points @1 and Q2 of X by the map
A s the sheaf Ox(2P) ® mg, ® mg, = Ox (2P — Q1 — Q3). Let Ey := wx ® Ox. Then the

P-quasi-stability condition for a sheaf I on X with respect to the polarization Ej is that

B1(X;) =degx,(I) +1 — g; + degx, (Eo)/rk(Eo)
=degy,(I)+1—gi+9: —1+0x,/2

= degXi (I) + 5Xi /27

should be nonnegative for ¢ = 2 and positive for ¢ = 1, where g; is the genus of X;. Since dx, = 2

for i = 1,2, and since P € X, this condition for I = Ox (2P — Q1 — Q2) becomes

degx, (Ox(=Q1 — Q2)) > =3 and degx, (Ox(-=Q1 - Q2)) > —1.

Since at worst, degx, (Ox(—Q1 — Q2)) = —2, the P-quasi-stability condition fails if and only if
degx, (Ox (—Q1 — Q2)) = —2, that is, if and only if Q1,Q2 € X5. Thus, to achieve quasi-stability
we have to modify the map Ag) on the points of Hilb?(X) corresponding to a pair of points
belonging to Xs.

Furthermore, if at most one of the points @); is a node of X then the sheaf Ox (2P)®@mg, @mg,
is simple, as seen in Section 2.2. Thus, the nonsimple sheaves appear when both (); and @2 are

(distinct) nodes and in any case we have to resolve the nodes by a blowup.

5.1 Owur main result

Let (X/S,0) be a smoothing of (X, P), that is, a local one-parameter family of curves with smooth
generic fiber and special fiber X, carrying a section o through the smooth locus of X/S which
restricts to P on the special fiber. Denote by 7 the generic point of S and o the special point. We
assume the total space X is regular. Let X® := X x5 X xg X and X2 := X xg X. The projection
pr2 : X% — X2 on the product of the first and second factors is a family of curves. Denote by
1 : X — S the morphism of the smoothing. The fiber of p;2 over a point (P, P,) of X? is just the
fiber of X /S over (P1) = ¢(P). Note that p1s : X — X? is obtained from ¢ by the base change
X% - S.

Let A1z := pra (A) and Ass := poy (A), where A C A? is the diagonal subscheme, and the
map p;; : X3 = X? is the projection on the product of the i-th and j-th factors. Consider the

Abel map defined as the rational map from X? to 7?\_» /s associated to the sheaf
1 :=1In,5 ® Inss ®p§[£2
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on X3, where ¥ = 0(9) and p3 : X* — X is the projection on the third factor. There is a natural
rational map from X2 to Hilb?(X) taking a pair of points on X over the same point s € S to the
corresponding length-2 subscheme of the fiber 1)~!(s), and the Abel map defined above factors
through the second Abel map AP of (X/S,0).

Note that X2 is not regular exactly at points (N, N') with N and N’ nodes of X; and A3 is
not regular at points (Q1, @2, Q2) where at least two of the @;’s are nodes of X. We resolve these

singularities as follows:

(i) First, resolve the basis X2 of the family p;» by first blowing up along A, and then blowing
up along the strict transform of X5 x X5. Call the resulting scheme X2 and consider a base
change of the family pio by X2, that is, X2 x y2 X3 = X2 x5 X — X2. Note this base change
does not affect the fibers of the family X3/X? given by pis.

(ii) Second, we modify the fibers by blowing up X2 xg X along the strict transform of the
diagonals As3 and Aq3, and then along the strict transforms of X x X x X5 and X5 x X x Xa.

Notice that, at each step, we blow up along the strict transform of the subscheme in question with
regard to the morphism to X2 or X3, that being done to assure that at each explosion we consider
a pure codimension-1 subscheme.

We obtain a 4-fold X3 with a (birational) morphism
b: .)’83 — /’?2 Xg X,

which is the composition of the blowup maps of (ii). Composing with the projection, we get a
family of curves:
ﬁ]_g : /‘?3 — )22.

We show in Lemmas 5.2.1 and 5.2.4 (see Remark 5.2.5) that both X2 and X® are regular. For
each 1,7,k € {0,1,2}, denote by ijk the strict transform of X; x X; x X} under the birational
morphism X3 — X3, where X; := X. Then X, is obviously a Cartier divisor of X2, since it is a
codimension-1 subscheme of the regular scheme X3. Note that, as Cartier divisors,

XOjk = lek + wa

Xiow = Xirk + Xion,

Xijo = Xij1 + Xijo
Also, for each 7, j € {0,1,2}, denote by X'ij the strict transform of X; x X; under the composition
of blowups in (i),

X% 5 a2,
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Note that the X;; are Cartier divisors of A2
The section o of X/S extends, by base change, to a section gq of p1a : X* — X2. Thus, since
o is a section through the smooth locus of X/S, ¢ lifts to a section & of pro : X3 = x2 through

the smooth locus of pys. Let ¥ = 5(X?). Then

I = IA13 ® IA23 ® IE_Z

is an invertible sheaf on X 3, where A1s and A,s are the strict transforms of the diagonals A3 and
Ays by the birational morphism X3 — X3,

Theorem 5.1.1 The sheaf

j = j(—XQQQ).

is simple and G-quasi-stable with respect to & = Wps g2 O O%s. In addition, b.J induces a
morphism
fig) : /\? 2 — jJE,

where E = wx /s ® Ox.

5.2 The family A3/x?

In order to prove the theorem, we must understand the curves of the family pip : X3 — X2 in
terms of the original family ¢ : X — S. Consider the structure morphism X3 — S. Then X3 is
isomorphic to X3 off the inverse image of 0 € S. So, to show the theorem, we need only examine
the fibers of p1 over points s € X2 over the special point o of S. The first lemma gives us a local

description of X2.

Lemma 5.2.1 (Description of the base) Let f : X2 — X2 be the composition of the blowups in
(i). Then

(a) f is an isomorphism away from (R, R), (S,9), (R,S) and (S, R);

() If E=f~Y(R,R) or E= f~1(S,S), then E is a smooth rational curve which is a subscheme

of Xlz and le. Moreover, EE crosses X'u and Xzz transversally at distinct points;

(c) IfE= fYR,S) or E= f1(S,R), then E is a smooth rational curve which is subscheme

of X1 and Xos. Moreover, E crosses X190 and Xo transversally at distinct points.

In addition, X? is regular, and the composition h; : X2 — X of f and the i-th projection X2 — X
is flat, for each i =1,2.
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Proof. Since both the diagonal A and X x X5 are Cartier divisors on X 2 everywhere but at
(R, R), (5,8), (R,S) and (S, R), we have (a).

Denote by fi : B — X2 and f, : X2 — B the first and second explosions described in (i), so
that f = f; o fo. So f; is the blowup along the diagonal A and f; is the blowup along the strict
transform of Xy x Xs.

Now, let ¢ be a local parameter of S at the special point o, so that (;)5’0 = K[[t]]. Let N and N’

be nodes of X, not necessarily distinct. Since X is regular, we have

A k 9, t R k o 1
O = MLty 6, o Bl ]
(z122 — 1) (y1y2 — 1)

where z; (resp. z2) is a local equation of X, (resp. X1) at N, and y; (resp. y2) is a local equation
of Xy (resp. X1) at N'. (If N = N’ we assume x; = y; for ¢ = 1,2.) Then, the restriction of x;
(resp. y;) to X; is a local parameter for X; at N (resp. N'). We shall denote by z; and y; also the

compositions of z; and y; with the first and second projections X? — X respectively, so that

O ~ Kllz1, 22, y1,92,t]]  K[[z1, 22, 41, 92]]
&2,(N,N') (ml-'L'Q — t,yly2 — t) (.’1:1%2 - y1y2) -

We prove (b) first. The diagonal A contains both points (R, R) and (S5,S). Let N be either
R or S. Locally at the point (N, N), the ideal of the diagonal is (z; — y1,22 — y2). So B is the
subscheme of X2 x P! given locally over (N, N) by

alzy —y1) + o' (z2 —y2) =0,

where o, o' are homogeneous coordinates of P!. Assuming o/ = 1, the equations ;x> = 3192 and
a(r1 —y1) + (x2 —y2) =0 give

N

(5.1) z2 =ay; and y» = azr1, and thus Op = k[[z1,y1,a — a]]
at (a:1) € B. Likewise, assuming a = 1, we get
(5.2) y1 = 'z, and 1 = o'y,, and thus Op = k[[za, 2,0 — a']]

at (1:ad') € B.

The ideal of X; x X5 at the point (N, N) is (z2,y1). If @' # 0 we may assume o' = 1 and,
locally at (N, N, (a: 1)) € B, we have that X5 is given by y; = 0. Also, if @ # 0 we may assume
a =1 and, locally at (N, N, (1 : a')) € B, we have that X, is given by 25 = 0. Since E is given
by the equations 1 = z2 = y1 = y2 = 0, we get £ C Xi9. By an analogous reasoning we get

E C Xo.
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In addition, the ideal of X1 x X7 at (N, N) is (z2,y2). Locally at (N, N, (a: 1)) € B, the strict
transform X, is given by a = 0. Thus, Xy intersects E transversally at (N, N, (0 : 1)). (Note
that X1, does not intersect E in any other point since, locally at (N, N, (1 : a')), the equations
22 = 0 and y2 = 0 cut out a codimension-2 subscheme of B.) Again, by an analogous reasoning,
we get that X, intersects E transversally at (N, N, (1 : 0)), and does not meet E is any other
point. Note that the second explosion f, is an isomorphism on (a neighborhood of) f; ' (N, N),
since B is already regular on f; '(N, N).

For (c), we note that both points (R, S) and (S, R) are not in the diagonal A, and therefore f;
is an isomorphism on a neighborhood of them. Let (N, N') be either (R, S) or (S, R). Since B is
locally isomorphic to X2 at (N, N'), we have

@B,(N,N’) = @X2,(N,N’)-

Since the ideal of X3 x X3 locally at (N, N') is (z1,y1), the blowup X2 of B along X» x X is the
subscheme of B x P! given locally over (N, N') by

i
ary = a Yy,

where o, o are homogeneous coordinates of P!. Assuming o/ = 1, the equations z;z2 = 3192 and

Y1 = axy give

(5.3) y1 = azrp1 and z2 = ays, and thus @22 = k[[z1,y2, @ — a]]
at (a:1) € X2. Likewise, assuming o = 1 we get

(5.4) z1 = a'y; and ys = a'ze, and thus @A‘?g = k[[z2,y1,a" — a']]

at (1:a') € X2

The ideal of X; x X; at the point (N, N') is (z2,y2). Again, if o' # 0 we may assume o' =1
and, locally at (N,N',(a : 1)) € X2, we have that X;; is given by the equation y, = 0. Also,
locally at (N, N',(1:a')) € X? we get that X;; is given by the equation 2, = 0. Since E is given
byzi=22=9y1 =y, =0, we get £ C X'n. By an analogous reasoning, we get £ C X’zz.

Now, the ideal of X; x X5 at (N, N') is (z2,41). So, locally at (N,N',(a : 1)) € X2 we have
that X1, is given by the equation o = 0, showing that X, intersects E transversally at the point
(N,N',(0:1)). Moreover, X1, does not meet E in any other point since, locally at (N, N', (1 : a')),
the equations 3 = 0 and y; = 0 cut out a codimension-2 subscheme of X2. By the same reasoning,

X, intersects E transversally at (N, N, (1:0)), and does not meet E in any other point.
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At last, we show that h; is flat for i = 1,2. Consider the induced map of rings
ht O - O3, ..
i - Y X,hi(s) X2,s

We need to show that, for each s € X 2 the map hf is flat. Note that the projection X2 —+ X on
the ¢-th factor is flat. Thus, since f is an isomorphism away from (R, R), (S,5), (R, S) and (S, R),
we need only verify that h;# is flat for points s belonging to the smooth rational curves described
in (b) and (c).
First let s € E = f~}(N, N), where N is a node of X. By (5.1), locally at (a : 1) € B, the map
hf& is given by
kllz, 2]l — Kllz1, 91,0 —a]]

1 - I

T2 oy
By the local criterion of flatness, this map is flat if the map k[[z2]] — k[[y1, @ — a]] taking z2 to
ay; is so. Now, k[[z2]] is a principal ideal domain, and ay; is a nonzero-divisor in k[[y1, @ — a]].
Therefore k[[y;,a — a]] is flat over k[[z2]]. Hence h; is flat, locally at (a : 1). By an analogous
reasoning, hy is flat locally at (1 : a').

Now, by (5.1), locally at (a : 1) € B, the map h¥ is given by

Elly1,92ll — Kllz1, 91,0 - a]
Y1 =N

Y2 = ari.

Again, by the local criterion of flatness, this map is flat if the map k[[y2]] — k[[z1, @ — a]] taking
y2 to azx; is so. Now, since k[[y2]] is a principal ideal domain, and az; is a nonzero-divisor in
k[[z1,a — a]], then k[[z1,a — a]] is flat over k[[y2]]. Thus hs is flat locally at (a : 1). By an
analogous reasoning, h is flat locally at (1 : a').

Finally, let s € E = f~!(N,N'), where N and N’ are distinct nodes of X. By (5.3), locally at
(a:1) € X2, the map h¥ is given by

kllz1,z2]] — kl[z1,y2,0 — a]]
1 = 1

pp) = Qys.

As before, this map is flat if the map k[[z2]] — k[[y2, a — a]] taking 2 to ays is so. But k[[z2]] is a
principal ideal domain, and ays is a nonzero-divisor in k[[y2, @ — al], thus k[[y1, @ — a]] is flat over

k[[z2]]- Hence h; is flat locally at (a : 1). By an analogous reasoning, h; is flat locally at (1 : a’).
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In addition, by (5.3), locally at (a : 1) € B, the map h¥ is given by

Ellys,p2ll — Kllz1, 92,0 — af]
Y2 = Y2

Y1 = ari.

Again, this map is flat if the map k[[y1]] — k[[z1, @ — a]] taking y; to az; is so. But k[[z1,a—a]] is
flat over k[[y2]], since k[[y2]] is a principal ideal domain, and az; is a nonzero-divisor in k[[z;, a—a]].

Thus h is flat locally at (a : 1). By an analogous reasoning, h» is flat locally at (1 : a). O

Denote by 5 : X2 — S the morphism induced by ¢ : X — S. In Figure 5.2 we represent on
the left a neighborhood of E = f~1(IN, N), and on the right a neighborhood of E = f~1(N, N')
in the surface X2(0) := 1), ! (0), for N and N’ distinct nodes of X.

= X = ~
~ X5 2 X1 X X,
X12 N 2
— =~ X =~ — N’
X 1 X
X11 21 1 X21 Xl
X1 N X2 X1 N X2

Figure 5.2: The basis types

For each s € X2, denote by X, the fiber of jjs : X3 — X2 over s, that is, X, = f;5 (s). The
following three lemmas give a full description of the fibers X,. But first, we set some notation.
Recall that f : X2 — X? is the composition of the blowups in (i). Denote by Abs, Als, X§ss and
Xlgs the strict transforms of Ags, Ay, X x Xz x X5 and Xy x X x X5 under fxId: X2xgX — X3,

Also, recall that b: X* — X2 xg X is the composition of the blowups in (ii). Let

bn : Bn — Bn—l
be the n-th blowup map in (ii), for n € {1,2,3,4}, with By = X2 x5 X and By := X3, so that
b:é4£}ég£}ég£}éli)ég.

Set
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to be the composition of by o. ..o b, with the projection X2 xg X — X2. Note that §" is a family
of curves. Let X, := ((jo)*l(s) for each s € X2.
Let gij : X2 x5 X — X2 be the composition of f x Id : X2 xg X — A with the projection

pij 1 X3 — X? on the product of the i-th and j-th factors. More generaly, set
4 B, — A2
to be ¢} == gij obyo...oby, for n € {1,2,3,4}, and ¢f; = ¢;;. Note that, for i = 1,2, the map gf,
is flat. Indeed, we have a Cartesian diagram
X2 xgX —— X2

q?SJ, J,hi

XxgX — X,

where X2 xg X — X2 is the projection on the first factor, and X xg X — X is the projection
on the i-th factor. Thus, ¢f5 is obtained by base change from the map h; defined in Lemma 5.2.1.

Since h; is flat, ¢% is also flat.

Lemma 5.2.2 (Description of the fibers) Let s € X2. Then the fiber X, of pra : X3 — X2 over

the point s is as follows:
(a) If o(s) is not the special point o of S, then Xy = ' (a(s));

(b) If o(s) = 0 and f(s) = (Q1,Q2) with Q1, Q2 smooth points of X, then the fiber is isomorphic
to X (see Figure 5.3 (1));

(¢) If ¥o(s) = o and s is in the intersection of exactly two divisors Xij on X2, then X, is the
four-component curve described in Figure 5.3 (2), with two components isomorphic to X1 and
Xo, not intersecting each other, and two rational components E(R) and E(S) intersecting

both X1 and Xs transversally at R and S and not intersecting each other;

(d) If Pa(s) = o and s is in the intersection of three divisors X;; on X2, then X, is the siz-
component curve described in Figure 5.3 (3), with two components isomorphic to X1 and X,
not crossing each other, and two trees of rational curves E(R) and E(S), of two components

each, intersecting both X, and X, transversally at R and S and not crossing each other.

Proof. If gZz(s) # o then the curve X, is smooth, so b is an isomorphism over X, and thus

X, = X,, showing (a). If f(s) = (Q1,Q2) with Q1, Qs smooth points of X, then all of Abs, Al
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E(R)
E(R)

1) (2 ©)

Figure 5.3: The fiber types

X}y and Xb, intersect X5 = X at smooth points, and hence b is an isomorphism over X, as well,
showing (b).

Under the hypothesis of (c) we have actually two different cases: one if s belongs to Xun Xz'j
or ij ﬁf(z-j, and the other if s belongs to Xij ﬁf(ﬁ or Xz’ianjy withi #j. Let p,g: X xX - X
be the first and second projections, respectively.

We first assume that s € X; N X;; (the case where s € X;; N X;; is analogous). Then
f(s) € (X; x X;) N (X; x X;) and po f(s) € X;. Since by hypothesis s belongs to exactly two
components of X2(0), we have po f(s) € X;. Thus the point po f(s) is a smooth point of X. Also,
go f(s) € X; N X; is a node (either R or S). Therefore f(s) = (Q,N) where @ is a smooth point
of X belonging to X; and N is either R or S.

Let N' be a node of X; & X, not necessarily distinct from N. We claim that the first of the
blowups in (ii) that is not an isomorphism at N’ can be realized as the base change of a blowup of

X? under the map g¢75 ! or the map a5 v

bn ~
—— B,

By
X x

Indeed, suppose the blowup b, is along a subscheme Z of B,,_1 which is the strict transform under
bio...ob, 1 of asubscheme Z of By. Since by hypothesis b,, is the first blowup to affect the node
N' € X,, then by o...0b,_1 is an isomorphism over N’ and, in particular, an isomorphism over
a neighborhood of Z, around N'. Now, Al,, Al;, X{,, and X}, are inverse images under ¢%,
for i =1 or i = 2, of subschemes of X2. In addition, since B,_; is locally isomorphic to By over
(s,N'), and ¢¥; (resp. ¢3;) is flat, then ¢};! (resp. g5 ') is locally flat at (Q, N') (resp. (N, N')).

The flatness guarantees that the blowup of X2 along a subscheme base-changes under qi":;l to the
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blowup of B,, 1 along the inverse image of this subscheme. Our claim follows.

This way, it is easy to see that the fiber over s of the blowup of By = X2 x g X along Al C By is
the inverse image by ¢9; = ga3 of the fiber over go f(s) = N of the blowup of X? along the diagonal
A, which produces the rational component E(N) described in (c). Moreover, since po f(s) = @ is
a smooth point, by is an isomorphism over by ' (X}).

Now, let N be the other node of X. Away from E(N), the fiber of Bs over s is isomorphic to
the inverse image by ¢35 of the fiber over N of the blowup of X2 along X5 x X, which produces
the rational component E(N') described in (¢). (Note that the strict transform of X x X5 x X5 is
a Cartier divisor on By away from (s, N').) Also, since po f(s) = Q is a smooth point, the strict
transform of X5 x X x X, in Bs crosses (173)_1(5) at a smooth point, so by is an isomorphism on

(@)~ (s).

Now, assume s € X;; N X;;. Then s is on the “exceptional” component E of X2(0) over (N, N),

where N is either R or S. We will use the same notation used in the proof of Lemma 5.2.1, so that

~

Oi—g’

coordinates @ and o' defined in the proof of Lemma 5.2.1 are both nonzero, and hence we may

s = k[[z1,y1,a — a]]; see (5.1). (Note that, since s is not on X;; or on Xj;, the homogeneous
assume o' = 1).

Recall that Bo = X2 x s X. Let 21,29 be the composition of the functions defining X, X
locally at N, respectively, with the projection X2 xg X — X. Then

0= ~ Kllz1,y1,0 = a, 21, 22]]
Bo,(s,N) — (2122 _ 015!311/1) .

(Note that the local parameter ¢ of S at o chosen in Lemma 5.2.1, satisfying ¢ = x122, becomes
t = ax1y; by (5.1).) The first explosion in (i), by, is along the diagonal A, C By, whose ideal,
locally at (s,N), is (y1 — z1,ax1 — 22), since ya = axy by (5.1). This way, B, is, locally over
(s, N) € By, the subscheme of By x P! given by

Blyr — z1) + f'(axy — 22) =0
where 3, 3" are homogeneous coordinates of P'. If 3’ # 0 we may assume 3’ = 1, and hence the
equations S(y1 — 2z1) + (ax1 — 22) = 0 and 2122 = az1y; give

(5.5) ary = Bz and 2o = fy1, and thus (’jgl = k[[xl’y(l(;;_—a/;’:;ﬂ =

at (s, N,(b:1)). Since a # 0, the above ring is regular (as we may write x; in terms of 3, 2; and

a~1). On the other hand, where 8 # 0 we may assume 3 = 1 and we get

(5.6) 21 =af'z; and y, = f'2;, and thus @Bl = k[[z1,a — a, 22, 8" = b']]
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locally at (s, N, (1:d")). Once again we obtain a regular ring.

Now, note that the homogeneous coordinates 3, 8’ indeed describe a rational component E(N)
of X, because 131_21(5, N) is given by the equations z; = y; = 2; =0, for i = 1,2, and « = a. Thus,
modding out the rings in (5.5) and (5.6) by the equations defining iy (s, N), we get on the one
hand k[[8 — b]], and on the other hand k[[3’ — b']]. Since B; is regular along E(N), the composition
by 0 bg 0 by is an isomorphism over E(N), so there is only one rational component E(N) over N in
X,.

The second explosion b2, along the strict transform of Af; in By, is an isomorphism over
(G1)71(s), because A}; does not contain (s, N') for N’ # N and is a Cartier divisor on E(N), since
B is regular along E(N).

The third explosion, bz, along the strict transform of X(,, of X x X3 x X5 in 32, produces
the rational component E(N') described in (c¢). Indeed, note that b; and by are isomorphisms
over (s,N'). Now, we let 21,22 be the compositions of functions defining X5, Xy locally at N’,
respectively, with the projection X? xg X > X. Then

k[[whyl:a —a, Z1,22]]
(Z122 - Ckwlyl)

1

OBO,(S,N’)

The ideal of the strict transform of X x X5 x X5 in By is (y1, 21), locally at (s, N), so the blowup
Bs is the subscheme of By x P! given by

By = B'z1,

where again 3, 3 are homogeneous coordinates of PL. If 3’ # 0 we may assume 3’ = 1, and hence

the equations z129 = az1y1 and By = 21 give

(5.7) Bze = axy and z; = By;, and thus (’533 = k[[wl’y(lb’,z__z;fiﬂ il

locally at (s, N',(b: 1)) € Bs. Since a # 0, the above ring is regular. On the other hand, if 3 # 0

we may assume [ = 1, and we get
(5.8) 2o = f'ax; and y; = f'z;, and thus @Bs = kl[lz1,a — a, 21,8 —b']]

locally at (s, N',(1:b')). Once again this ring is regular. Again, (s, N') is given by the equations
T =y; =2 =0, for i = 1,2, and @ = a, so py5 (s, N') contains a rational component E(N')
described above, with homogeneous coordinates 3, 8, as we can see modding out the rings (5.7)
and (5.8) by the equations defining py; (s, N'). We showed that there is only one rational compo-
nent E(N') over N’ on X,, since Bj is regular at E(N"). Therefore the last explosion by does not
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produce any rational component, that is, by is an isomorphism over (%) !(s).

The case where s € X;; N Xj; is settled with a similar analysis, only noting that this time s
lies on an “exceptional” component E C X?(o) such that f(E) = (N,N'), where N and N’ are
either R or S but N # N’ (see Figure 5.2). Thus the first two explosions will produce the rational
components E(N) and E(N') and b3 o by will be an isomorphism on (§%)~!(s).

Indeed, if s € X;; N Xj; and s is not in either X;; or X; then (’A));m’s = k[[x1,y2, 0 — a]] (see
(5.3) in the proof of Lemma 5.2.1). Now, since f(s) = (IV, N'), the diagonal A}; does not contain
(s,N) € X2 x5 X = By, hence B; is isomorphic to By over a neighborhood of N € X, C By. On
the other hand, using the notation of the proof of Lemma 5.2.1, we have at N’

k[[$17y27a —a, 21,22]]
(2122 - 041'13/2)

IR

OBO,(S,N’)
where 21, 2o are functions defining X5, X; locally at N', respectively, composed with the projection
A2 xsX = X.

The ideal of Abj locally at (s, N') is (21 — az1, 22 — y2), since y1 = az1 (see (5.3) in the proof

of Lemma, 5.2.1). Therefore B; is the subscheme of By x P! given locally over (s, N') € By by

B(z1 — amy) + B'(22 — y2) = 0,

where 3, 3" are homogeneous coordinates of P'. If 3’ # 0 we may assume 3’ = 1, and hence the

equations (21 — az1) + (22 — y2) = 0 and 2122 = ax1ys give
(5.9) ya = fz1 and 22 = Baxy, and thus @Bl = kl[z1,0 — a, 21,8 — b]]

at (s, N',(b:1)). This ring is clearly regular. On the other hand, if 8 # 0 we may assume 5 =1,

and we get

A kl[z1,y2, @ — a, 22, 8" = V']
1 = By> and azy = §' dthus O o= FlTLY20 02,
(5.10) 2 =Fy> and azy =fz, and thus Op, (azy — B'22)

at (s, N',(1:b"). As a # 0, this ring is regular (since we can write z; in terms of 8', 25 and

a~1). This shows there is at most one rational component over N’ on X, since By is regular on
the rational component E(N') defined above, which implies that the composition by o b3 o by is an
isomorphism over E(N'). Again, since (s,N') € X2 xg X is given by ; = y; = 2z; = 0, for i = 1,2,
and a = a, the homogeneous coordinates 3, 8’ defined above describe indeed a rational component
E(N') of X,.

Now, since b, is an isomorphism over (s, N), we have

@.. ~ k[[x17y27a_a721,2'2]]
B1,(s,N) — (2122 — az1y2)
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where 21, 2o are functions defining X», X; locally at IV, respectively, composed with the projection
X?xgX — X. The ideal of the strict transform of A}, in By is (z1 — 21, ays — 22), locally at (s, N),
since £y = ays (see (5.3) in the proof of Lemma, 5.2.1). Then B, is the subscheme of By x P! given
locally over (s, N) by

Blz1 — 21) + B'(ays — 22) = 0,

where 3,/ are homogeneous coordinates of P'. If ' # 0 we may assume 3 = 1, and so the

equations S(z1 — z1) + (ay2 — 22) = 0 and 2122 = az1ys give

(5.11) zo = fx1 and Bz1 = ays, and thus (532 = k[[xl’yzé? — a(;;;ﬂ — bl
1 — 0y

at (s, N,(b:1)). As a # 0, this ring is regular. Also, if § # 0 we may assume 3 = 1, and we get
(5.12) 1 = f'29 and z; = B'ays, and thus @BQ = k[[y2, @ — a, 29, 8" — b']]

at (s, N, (1:0')). This ring is clearly regular. Therefore b3 o b, is an isomorphism over (§2)!(s)
and X, is as stated. As before, the homogeneous coordinates 3,3’ describe indeed a rational
component E(N) of X,, because Prs (s, N) is given by the equations ; = y; = 2z; = 0, for i = 1,2,
and @ = a. Thus, modding out the rings in (5.11) and (5.12) by these equations, we get on the
one hand k[[8 — b]], and on the other hand k[[3" — ']].

As for (d), we note that these are the cases where either a or o' are zero, so the rings @El
and @ga of the first case of (c¢) (more precisely, (5.5) and (5.7)), and @Bl and @Ez of the second
case (more precisely, (5.10) and (5.11)), are not regular and the remaining explosions produce the
second rational component on each node N and N'. (These blowups will be analyzed in the proof

of Lemma 5.2.4.) m|

Let s € X%(0) be in the intersection of at least two divisors X;; of X2, see Figure 5.2. Let N
be either R or S and let E(N) be the rational chain on X, associated to N. By Lemma 5.2.2,
E(N) either consists of a single rational component, which we henceforth denote E;(N), or is the
union of two rational components, one attached to X; and the other attached to X5, and the
composition b = by o by o bz 0 by contracts both of them. In this case, we denote by E5 (V) the first
to be contracted, and by E;(NN) the second. In any case, E;(N) is the exceptional component on

the fiber over s that appears in the first blowup to affect (s, N) € By (see Figure 5.4).

Lemma 5.2.3 (The configuration of rational components, I) Let s € X2 and N be a node of X.

(a) If E1(N) is not contracted by bs o bz o by then E1(N) is a subscheme of both Xo12 and Xoo1;
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Figure 5.4: The definition of E; and E,

(b) If E1(N) is not contracted by bz oby but is contracted by byobzoby then E1(N) is a subscheme
Of both X102 and Xz()l,'

(¢) If E1(N) is not contracted by by but is contracted by bs o by then E1(N) is a subscheme of
both X()u and XOQQ;

(d) If E1(N) is contracted by by, then E1(N) is a subscheme of both X101 and Xsgs.

Proof. Let E = E;{(N). Since E is the smooth rational curve that appears in the first blowup to
affect (s, N) € By, we may apply the reasoning used in the proof of the previous lemma.

If E is not contracted by bs o b3 0 by then it is contracted by by, since it is obviously contracted
by b. (Here we identify E with its image by o b3 o by(E).) The blowup by can be realized as the
base change of f1 : B — X? (see proof of Lemma 5.2.1) under the map ¢J;. (Recall that b, is the
blowup along Ab, C By, and f; is the blowup along A C X2.) So we have the folowing diagram

E C Bl A} BO
~L ~L‘123
Ec B 14 X2,

where E is the “exceptional” line over ¢i;(E) = ¢33 o b1 (E) = (N, N). In addition, the diagram
is Cartesian, because ¢J; is flat. By Lemma 5.2.1, E is a subscheme of both X1 and X9 C B.

Thus, E is a subscheme of both X2 and X1, showing (a).
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Now assume E is not contracted by bs o bs, but is by by o b3 o by. We identify E with its image
b3 o by(E) and consider the diagram

EC B, 2 B
{ dals
Ec B 4 xa2
where, once again, the map f; is the blowup along the diagonal and E is the “exceptional” line
over gi5(E) = ql; 0by(E) = (N, N). (Recall that by is the blowup of B; along the strict transform
of Al under by, and, by hypothesis, b; is an isomorphism over (s, N).) Moreover, the diagram
is Cartesian, because ¢¥; is flat, and B, is locally isomorphic to By over (s, N). Then, since
E C X2 N X2, we have E C X192 N Xo01, showing (b).
If E is not contracted by b, but is contracted by b o by, we identify E with its image bs(E)
and consider the diagram
Ec By » B
l dazs
Ec X — a2
where the map X 5 X2 is the blowup along X, x X5, and E is the “exceptional” line over
@33 = ¢33 0 b3(E) = (N',N), where N’ is the other node of X. Again, the diagram is Cartesian
because ¢35 is flat, and B, is locally isomorphic to By over (s, N). By Lemma 5.2.1, E is a
subscheme of both X'u and X’gg. Thus, F is a subscheme of both X'OH and X'Ozz, proving (c).
At last, assume FE is contracted by by and consider the diagram

EC B4 &33

~L iqfs

Ec ¥ — a2

where again the map X7 5 X2 is the blowup along Xs x X, and E is the exceptional component
over gl (E) = ¢}3 0by(E) = (N',N). Then E C X1; N Xa. Now, since ¢¥, is flat, and Bs is locally
isomorphic to By over (s, N), the diagram is Cartesian. Therefore, we have E C X101 N X202,

proving (d). O

Lemma 5.2.4 (The configuration of rational components, IT) Let s € X2 be in the intersection of

three divisors X;; of X>. Let N be either R or S.
(a) If s € XN )Z',-j n X'j,- and E1(N) C X,i1 then E;i(N) meets X1 and Ey(N) meets Xo;

(b) If s € XN )Z',-j m)”(j,- and E1(N) C X0 then E;i(N) meets Xo and Ey(N) meets Xy ;
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(¢) If s € Xi; N Xi; N Xj; and Ey(N) C X;j1 then Ei(N) meets X1 and Es(N) meets Xo;
(d) If s € X;j N X;i N Xj; and E1(N) C Xijo then Ei(N) meets Xo and Ex(N) meets X;.

Proof. Here we use the notation introduced in the proof of the previous lemmas.

First note that if s € X;; N X;; N X; then f(s) = (N, N) where N is a node of X, either R or
S; see Figure 5.2. Moreover, E; (N) is a rational component not contracted by bs o bz o by, that is,
E;(N) is produced by the first blowup in (ii). So, by Lemma 5.2.3, E;(N) C Xoi; N Xoji- Now,
since E1(N) C pyy(s) and s € Xy;, we have E;(N) C Xiio. Thus Ei(N) C X0 N X'o,-j = Xiij. So
we must show that E; (V) is attached to X;.

Now, s is in the rational line E of X2(0) with homogeneous coordinates (o : o) and, moreover,
s is of the form (0: 1) or (1:0). From (5.1) and (5.2) in the proof of Lemma 5.2.1 we see that,
locally at (0 : 1) € E we have O, = k[[x1,y1,a]] with a a local parameter for E at (0 : 1), and
locally at (1:0) € E we have O 5, = k[[2, y2,']] with o’ a local parameter for E at (1 : 0). So, if
i=2and j=1thens=(1:0),andifi =1 and j = 2 then s = (0 : 1). Without loss of generality

we may assume i = 1 and j = 2 so that, locally at s = (0: 1),

~

@/?2,5 = k[[wl’ylaa]]'
Thus we have to show that E; (V) intersects Xo.
From (5.5) and (5.6) in the proof of Lemma 5.2.2 we have, locally at (s, N, (b: 1)),

(’j- o~ k[[xl’ylaa;zlgﬂ—b]]
BT (amy — Bar)

and locally at (s, N, (1:b")),
Og, 2 k[[z1, 0,20, 8" = b']].

Recall that 3, 3" are the homogeneous coordinates of b; ! (s, N) = E;(N).
Consider first Ajz := (by)"'(A};). Then the ideal of A;3 locally at (s,N,(0 : 1)) € By is
(1 — 21,091 — By1), since 2 = ay; by (5.1) and 22 = By1 by (5.5). Now,

(z1 — 21,091 — By1) = (1 — 21, — B) N (21 — 21, 01)

and the ideal of the strict transform of Af, in B; locally at (s, N, (0 : 1)) is (z1 — z1,a — ). (Note
that (z; — 21,41) cuts out a codimension-2 subscheme of B;.) Thus, locally at (s, N, (0 : 1)), the
blowup Bs is the subscheme of B; x P! given by

(@1 —21) + 7' (@=B) =0

75



where 7,7 are homogeneous coordinates of P! = Ey(N).
If v # 0, we may assume ' = 1, and the equations y(z; — z1) + (o — 8) = 0 and az; = 82

give
(5.13) a=+vz and B =+vr;, and thus (932 = k[z1,y1, 21,7 — ]

at (s,N,(0:1),(c: 1)) € By. Notice that this ring is regular. On the other hand, if  # 0 we may

assume vy = 1, and we get
(5.14) 21 =7'a and z; =+'B, and thus @32 = k[y1,, 8,y — ]

at (s, N,(0:1),(1:¢")). Again we obtain a regular ring.

Therefore, the curve (§%)~!(s) has two components isomorphic to X; and X» (and which we
also denote by X; and X3) plus the components E;(N) (described in Lemma 5.2.2) and Ex(N).
Indeed, the point (s, N) € X xg X is given by equations z; = y; = z; = 0, for i = 1,2, and
a = 0. Thus, modding out the rings in (5.13) and (5.14) by these equations, we get on the one
hand k[[y — c]], and on the other hand k[[y' — ¢']], which shows the homogeneous coordinates 7,7’
define indeed a rational component FEx(N).

Now, observe that -« is a local parameter for E2(N) at (0 : 1) and 2; is a local parameter for
X1 at N. Thus the equation @ = yz; in (5.13) shows that E»(NN) intersects X; at the points
(0:1) € E5(N) and N € X;. Also, since 7' is a local parameter for E2(N) at (1:0), and 8 is a
local parameter for E1(N) at (0 : 1), the equation z; = '8 in (5.14) shows that FE5(N) intersects
Ey(N) at the points (1 : 0) € Ey(N) and (0 : 1) € Ey(N). Moreover, at (s, N, (1:0)) € By, we
have y; = 'z (see (5.6) in the proof of Lemma 5.2.2). Since 2 is a local parameter for X, at N,
and 8’ is a local parameter for E;(N) at (1 : 0), we see that X, intersects E; (V) at the points
N € X5 and (1:0) € E1(N). So we showed that E;(N) meets X, as stated.

Now we examine F; (N') over s € X;;1X;;NXji. Recall that f(s) = (N,N), and N’ # N. The
first two explosions, by and be, are isomorphisms over (s, N'), so E1(N') is a rational component
contracted by bz o by but not by bs. Then, by Lemma 5.2.3, Fy(N') C Xoi N Xoj;. Now, since
E (N C 151_21(3) and s € X’ii, we have Ej(N) C X;io. Hence Ei(N) C Xiio N Xoii = Xiii
Therefore, we must show that E;(N') intersects X;.

Again, we may assume i = 1 and j = 2. So, from (5.7) and (5.8) in the proof of Lemma 5.2.2,
we have locally at (s, N, (b: 1)) € Ba:

(’j- ~ k[[xl’ylaa;z%ﬂ - b]]
Ba (Bz2 — az1)
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and, locally at (s, N',(1:V')):
Op, = Mz, 0,21, 6 = V],

where (8 : 8') are the homogeneous coordinates of E; (N').
Consider (by o by 0 b3)~(X5gs). This subscheme of Bs is given locally at (s, N’,(0 : 1)) by the
equations 1 = 0 and By; = 0, since z; = By; (see (5.7) in the proof of Lemma 5.2.2). Now,

(xhﬂyl) = (xlaﬂ) n (371,1/1);

and the strict transform of X}, in Bs has ideal (z1,3). (Note that (21, 1) cuts out a codimension-2

subscheme of Bs.) So, the blowup By is the subscheme of Bz x P! given by
o1 =7'8

where 7,7’ are homogeneous coordinates of P! = Ey(N').

If v/ # 0 we may assume 4’ = 1, and the equations yz; = 8 and Szy = az; give
(5.15) a=r~zy and B =yxy, and thus 054 = k[[z1,y2, 22,7 — (]

locally at (s, N’,(0:1),(c: 1)) € By. Notice that this ring is regular. On the other hand, if v # 0

we may assume v = 1, and we get
(5.16) 2o =ay and z; = 7', and thus @34 = ky1,a, B,y — ]

locally at (s, N',(0:1),(1:¢)). Once again, this ring is regular.

Then the curve X, has two components isomorphic to X; and X, (and which we also denote
by X; and X5), plus the components Ey(N') and Ey(N'). Indeed, the point (s, N') € X xg X is
given by the equations z; = y; = 2z; = 0, for ¢ = 1,2, and @ = 0. Thus, modding out the rings
in (5.15) and (5.16) by these equations, we get on the one hand k[[y — ¢]], and on the other hand
k[[y' — ¢']], which shows the homogeneous coordinates define indeed a rational component E5(N').

Now, since 2 is a local parameter for X» at N', and + is a local parameter for E2(N') at (0 : 1),
we see from the equation a = 7z, in (5.15) that X, intersects Eo(N') at the points N’ € X, and
(0:1) € E5(N'). Also, since +' is a local parameter for E5(N') at (1 : 0), and 3 is a local parameter
for E1(N') at (0: 1), we see from the equation z; = 87" in (5.16) that E;(N') intersects Ey(N')
at the points (0: 1) € E;(N') and (1 :0) € Ex(N').

In addition, at (s, N', (1: 0)) € Bs we have y; = 'z (see (5.8) in the proof of Lemma 5.2.2).
Since z; is a local parameter for X; at N’ and ' is a local parameter for E1(N') at (1 : 0) we see

that X7 intersects E1(N') transversally at the points N' € X; and (1 : 0) € E;(N'). This proves
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both (a) and (b). (The curve X, is described in Figure 5.5 (I).)

If s € X;; N X;;N Xj; then f(s) = (N, N') where N and N are distinct nodes of X. Moreover,
E;(N') is a rational component contracted by b; and not by by o bz 0 by, that is, E1(N') is produced
by the first blowup of (ii). Then, by Lemma 5.2.3, E1(N') C Xm'j ﬂf(oji. On the other hand, since
Ei(N') C pr5 (s) and s € X;;, we have E1 (N') C Xijo. In particular, Ey (N') C Xi0NXoj: = Xiji-
So, we must show that E; (N') intersects X;.

Recall that s is on the “exceptional” line E C A2(o), which has homogeneous coordinates
(o : @'). From (5.3) and (5.4) in the proof of Lemma 5.2.1 we get that, locally at (0:1) € E, we
have @22 = k[[z1,y2,a]], and a is a local parameter for E at (0 : 1), whereas locally at (1:0) € E
we have @/@2 & k[[z2,y1,0']], and o' is a local parameter for (1: 0) € E. So,if i =1 and j =2
then s = (0:1), and if i =2 and j = 1 then s = (1 : 0). Without loss of generality we may assume
i=1andj=2.

From (5.9) and (5.10) in the proof of Lemma 5.2.2 we have that, locally at (s, N', (b: 1)),

@Bl = k‘[[xlaa;zlaﬂ - b]]

whereas locally at (s, N, (1: b))

0. = El[z1, a, ya, 22, 8" — b']]
BT (am = Bz)

where (§ : 8') are the homogeneous coordinates of E; (N').

The second blowup of (i), along the strict transform of A}, in By, is an isomorphism over
Ey(N') since f(s) = (N, N'). Thus B, is isomorphic to B, along F;(N').

Consider (by o by) ' (X}s,). This subscheme of B, is given locally at (s, N, (1 : 0)) by the
equations 'zo = 0 and B'y, = 0, since y; = axy and z; = B'y» (see (5.3) and (5.10) in the proofs
of Lemmas 5.2.1 and 5.2.2). Now, the strict transform is given by 8’ = 0, and hence is a Cartier
divisor at (s, N’,(1: 0)). Thus Bjs is isomorphic to B> along E;(N').

Now, (b1 0bg 0 b3) ™' (Xbgs) is a subscheme of B given locally at (s, N', (1 : 0)) by the equations
z1 =0 and By, = 0, since z; = B'y2 (see (5.10) in the proof of Lemma 5.2.2). Note that

(B'y2, 1) = (B',21) N (y2,21)

and that (y2,1) defines a codimension-2 subscheme of Bs. The strict transform of Xlgo in Bj is

then given by the equations 8’ = 0 and z; = 0. So B, is the subscheme of Bs x P! given by
o1 ='p'
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where «,7' are homogeneous coordinates of P! = E,(N').

If 4/ # 0, we may assume v’ = 1 and the equations yz; = ' and 8’22 = ax; give
(5.17) a =7z and B =~x;, and thus (934 = kl[x1,Y2, 22,7 — c]]

locally at (s, N',(1 : 0),(c : 1)) € By. Notice that this ring is regular. Also, if ¥ # 0 we may

assume v = 1, and we get
(5.18) zo=ay and z =+'8, and thus (534 = kly2, @, 8,7 = ¢']]

locally at (s, N',(1:0),(1:¢')). Once again, this ring is regular. Modding out the rings above by
the equations defining p, (s, N'), we see that the homogeneous coordinates v, define indeed a
rational component Es(N').

The equation @ = 7yza in (5.17) shows that E,(N') intersects X» transversally at the point
(0:1) € Eo(N') and N’ € X5. Moreover, the equation z; = +'8’ in (5.18) shows that E; (N') and
E5(N') intersect transversally at (1:0) € Ey(N') and (1:0) € E2(N'). Also, from (5.9), we have
ya = Bz1, which shows that E;(N') intersects X; transversally at N’ € X; and (0:1) € E{(N').
So we showed that E;(N') meets X1, as stated.

Now, E; (V) is produced by the second blowup of (ii), that is, E; (V) is contracted by by 0bsoby
but not by bs o by. Thus, by Lemma 5.2.3, E;(N) C X',-O]- N X'jo,-. Also, since s € X’i]-, we have
Ei(N) C p5 (s) C Xijo- So, in particular F;(N) C Xio; N X;jo = X;j;. Hence, we must show that
E;(N) intersects X;. As before, we assume ¢ =1 and j = 2.

From (5.11) and (5.12) in the proof of Lemma 5.2.2 we have that, at (s, N, (b: 1)) € By,

9. = k092,21, 6 — b]]
B (Bz1 — ay2)

7

and at (s, N,(1:0)) € By,
@Bg = k[[a7y27z2718, - bl]]

Recall that (3 : 8') are homogeneous coordinates of E;(N). Consider (by o ba) ™1 (X{s,). This is a
subscheme of By given locally at (s, N, (0: 1)) by az; = 0 and z; = 0, because y; = az;; see (5.3)

in the proof of Lemma 5.2.1. Now,
(aw1,21) = (a, 21) N (21, 21),

and (z1,21) cuts out a codimension-2 subscheme of B,. The strict transform of X}, in By is thus

given by @ = 0 and z; = 0. Then Bj is the subscheme of By x P! given by
Yo =19'2
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where 7,7 are homogeneous coordinates of P! = Ey(N).

If v' # 0 we may assume ' = 1, and thus we get
(5.19) z1 = vya and y» =B, and thus @Bs = k[[z1, 0, 8,7 — (]

locally at (s, N, (0: 1), (c: 1)) € Bs. Notice that this ring is regular. Also, if v # 0 we may assume
v =1, and we get

(5.20) a=7'2y and B =y»y', and thus @Bs = kl[z1,y2,21,7 — ']

locally at (s, N,(0:1),(1:¢')). Once again, this ring is regular. Again, modding out these rings
by the equations defining py;' (s, N), we see that the homogeneous coordinates v, define indeed
a rational component E;(N).

In addition, the equation yo = 8 in (5.19) shows that E; (N) intersects Ey(N) transversally
at the points (0: 1) € E1(N) and (0: 1) € E5(N). Also, the equation a = v'2; in (5.20) shows
that Fo(N) intersects X; transversally at N € X; and (1 : 0) € E2(N). This proves (¢) and (d).
(The curve X, is described in Figure 5.5 (I).)

Furthermore, note that, at each fiber X, of p12, each blowup b; contracts a single rational

component of X, among Ei(R), E2(R), E1(S) and Es(S). O
In Figure 5.5 we represent the curves X, for points s € X2 in the intersection of three divisors
)2',-]-. Let s € X;; N X,’j N )2']-,- or s € )Z',-j N XN )Z'jj. We observe that, although the second figure

did not appear in the proof of Lemma 5.2.4 (where we considered the case i = 1 and j = 2), it is

obtained when ¢ = 2 and j = 1.

0) (m

Figure 5.5: X, for s in the intersection of three divisors Xz'j

Remark 5.2.5 Note that in the proof of Lemma 5.2.4 we showed that X3 is regular.
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If D is a divisor of X3 and W C X is a curve, we denote by D - W the intersection number

between D and W, that is, D - W := degy, (O 35(D)).
Lemma 5.2.6 (Intersection numbers) Let s € X2(0), and denote by X, 1 and X, » the components
of X, isomorphic to X1 and X, respectively.

(a) If f(s) = (Q1,Q2) with Q1 and Q2 smooth points of X then, for i,j € {1,2}, we have

. fQ x 2, ile,Q2€X2 andg:l
3 , Qi€ X; 3

Rt { 0 fQZ &’XJ and Xopp - Xy 5 =4 =2, ifQ1,Q2€ X5 and j =2
. ifQ; .

Y 0, ifQ1¢&Xs or Qs & Xo.

(b) If s € Xi; N Xy; but s € XU X, with i # j, then f(s) = (Q, N) where Q is a smooth point
of X;, and N is a node of X. Let N' be the other node of X. Then the following intersection

table holds.

Xsi | Xs5 | E(N) | E(N')
Az 1 0 0 0
Ay 1 1 —1 0
Xiui || -1 1 1 —1
X1l 0 0 0 0

(c) If s € Xi; N Xj; but s & X33 U X, with i # §, then f(s) = (N, N) where N is a node of X.
Let N' be the other node of X. Then the following intersection table holds.

Xs1 | Xs2 | E(N) | E(N')
A || 0 0 1 0
Ays 1 1 -1 0
Xozo 0 0 0 0

(d) If s € Xi; N X5 but s & Xi; U Xji, with i # j, then f(s) = (N,N') where N and N' are
distinct nodes of X. Then the following intersection table holds.

Xs1 | Xs2 | E(N) | E(N')
Ays 1 1 -1 0
Ao 1 1 0 -1
Xo99 0 -2 1 1
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(e) If s € X;i N X;; N Xj; then f(s) = (N,N) with N a node of X. Let N' be the other node of
X. Then the following intersection table holds.

Xsi | Xsj | Ex(N) | Ex(N) | Ei(N') | Ex(N')
Ais 1 0 1 -1 0 0
Ass 1 1 -1 0 0 0
Xii | =1 1 0 1 0 -1
X | o0 0 0 0 0 0

(f) If s € X;; N X;; N Xj; then f(s) = (N,N') with N and N' distinct nodes of X. Then the

following intersection table holds.

Xs;i | Xsj | Ex(N) | Ba(N) | Ei(N") | Es(N')
Aqs 1 1 -1 0 0 0
Ays 1 1 0 0 -1 0
Xui || -1 ] © 1 -1 1 0
X | 0 | -1 1 0 1 -1

We observe that the situation for a point s € X;; N X}, such that s € X;; U Xj;, is analogous
to the situation in (b), and hence doesn’t need to be dealt with.

Proof. (a) Assume first that f(s) = (Q1,Q2), with @1 and Q2 smooth points of X. By
Lemma 5.2.2, X, is as in Figure 5.3 (1), and b is an isomorphism around X,. Recall that X, C
X? x g X is the fiber over s of the projection to X2, thus X, = {s} x X. And, since f(s) is a pair of

smooth points, f is an isomorphism around s, that is, f x Id is an isomorphism around X,. Thus
AsnX, = b H(ANX,)
= b x1d) "M (Aiz N (Q1,Q2) x X)
= b_l(f X Id)_l(QlaQ2aQi) = b_l(sa QZ);

for i = 1,2, showing the first part of (a).
Let X}, be the strict transform of X5 x X5 X X5 by f x Id, then

XowNX, = b_l(Xézz N Xs)
b_l(f X Id)_l(X2 X X2 X XQ) n ((Ql,Qz) X X)

Thus the intersection is clearly empty if (); or Q2 does not belong to X2. Assume that (); and
@2 belong to X,. Identifying X, with X, the intersection X0, N X, is simply X,,2. This shows
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that Xoss N Xs1 ={R,S} and thus X0 - X1 = 2. To see that X0 - X2 = —2, we recall that,
as divisors of ;?3, we have X222 -+ X221 = XQQ(). NOW, X220 = ﬁ;; (XQQ), and hence this divisor
is numerically equivalent to zero on X's. Thus, since the intersection X'ggl n X'S is X1, we have

Xogp - Xyo = —Xogy - Xep = —2.

(b) Now assume s € X;; N X;;, but s € X;; U Xj;, for some i # j. Then f(s) = (Q, N) where
Q is a smooth point in X; and N is a node of X. Let N’ be the other node of X. Without loss of
generality, assume ¢ = 1 and j = 2. Thus the point s is given by the equations zo = y1 =y =a =0
and x; equals to a nonzero constant, where x1,22,y1,y2 are as in Lemma 5.2.1. Modding out the
rings in (5.5) or (5.9) by these equations, we get k[[z1, 8 — b]]/(2183). On the other hand, modding
out the rings in (5.6) or (5.10) by the same equations, we get k[[22, 8 — b']]/(2208").

First we note that, since (f x Id) o b(Aa3) = Ass, and (f x Id) o bJ(E(N")) = (Q, N, N'), which
does not belong to Ass, we get

Ay - E(N') =0.

Moreover, the ideal of Al is (y; —21,y2—22). But, at (s, N, (b: 1)) we have zo = fy; and yo = 821,
by (5.5) and (5.9). Thus, at this point, the Cartier divisor Ags is given by y; — 21 = 0. Hence,
the restriction of Ays to X, is given by 2z; = 0, locally at the point (s, N, (b : 1)). Analogously,
at (s,N,(1:b"), we have y; = 8’22 and z; = B'y2, by (5.6) and (5.10). Thus, at this point, the
Cartier divisor 523 is given by y2 — 2o = 0. Then the restriction of 523 to XS is given by 29 = 0,
locally at the point (s, N, (1 :b')). So, since z; (resp. 22) is a local parameter for X, ; (resp. X;,2),
we see that Ass intercects X1 (resp. X, 2) transversally at the points where X, ; (resp. X, 2)
meets E(N), showing that
Aoz - Xs1 = Doz X0 =1.

At last, by (a), Ay has degree 1 on the fibers of 1, over the open set of X2 of points whose
images by f are pairs of smooth points. Thus, since Ay is flat over X2, it is a divisor of degree 1
on X3/X2. So

Ays - E(N) = -1,
giving the second line of the table in (b). Also, Ajs meets X, exactly at the point b~ !(s,Q),
showing the first line.

By Lemma 5.2.3, we have E(N) C X112 and E(N'") C Xi11. In addition, we have X1 C X1
and X, C X112. Now, since X111 + X112 = ;51_21()2'11), and s € X1, we have that the union of

X111 and X112 contains the curve X,;. Moreover, X111 and X;;5 intersect transversally (because
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so do the components X; and X, of X). Thus, since X1 is numerically equivalent to —X'ng, we
have the third line of the table. At last, since Q ¢ X, its clear that X290 does not intersect Xj,

and we have the last line, thus proving (b).

(c) Now assume that s € X;; N X;;, but s ¢ X;; U X;;, with i # j. Then f(s) = (N, N), where
N is a node of X. Let N’ be the other node of X. The point s is on the line E C X2(0) over
(N,N). So s is given by the equations 1 = 2 = y1 = y» = 0 and a = a, where x1,%2,y1,¥2
and « are as in (5.1). Thus, modding out the rings in (5.5) and (5.6) by these equations we have
k[[z1, 8 — b]]/(Bz1) on the one hand, and k[[z2, ' — b']]/(8'22) on the other.

First we note that

Ay - E(N') =0,

because (f x Id) o b(E(N')) = (N, N, N') does not belong to Ags = (f x Id) 0 b(As3). Now, the
ideal of Als is (y1 — 21,y2 — 22). Thus, as in (b), the restriction of Ass to X, is given by z; =0
locally at the point (s, N, (b: 1)), and 25 = 0 locally at the point (s, N, (1:%')). Then A,z crosses

both X, and X » transversally at the points where these components meet E(N), showing that
Aoz Xo1 = Doz X0 =1.

At last, Ay is a divisor of degree 1 on X3/X2, so

A23 . E(N) = _]-a
giving the second line of the table in (c).

Now, since (f x Id) o b(E(N")) = (N, N, N') does not belong to Az = (f x Id) o b(A3), we get

that

A]_g . E(N’) =0.
Also, the restriction of the diagonal A3 to X, is given, locally around E(N), by the equation
B = a. Indeed, the ideal of A5 is (z1 — 21,22 — 22), where 23 = ay; (see (5.1)) and 2z, = By; (see
(5.5)). Now,

(21 = 21,091 = By1) = (21 = 21, = B) N (1 = 21,41),

and since (21 — 21,y1) defines a codimension-2 subscheme of B;, we have that the strict transform
of Al in By is given by (z; — 21,a — f3). Since at the point s we have o # 0, from (5.5) we have
z1 = o~ 1Bz, and thus the restriction of Aqs to X, is given by 8 = a. Therefore, A3 intersects

X, transversally at the point of E(N) where 8 = a, and thus

A]_g E(N) =1.
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Moreover, the above reasoning shows that 513 does not intersect either X, 1 or X; 2, so
Az - Xg1=A13- X5 =0,

showing the first line of the table. As for the last line, it is enough to note that b(X'QQQ) = Xo9 X X
and s ¢ XQQ.

(d) Assume that s € X;; N X;;, but s ¢ X;; U Xj; , with i # j. So f(s) = (N, N'), where N
and N' are distinct nodes of X. Then s is given by the equations ;1 = 2 = y1 = y2 = 0 and
a = a, where 1, 22,y1,y2 and a are as in (5.3). Modding out the rings in (5.11) and (5.12) by
these equations, we get k[[z1, 8 — b]]/(210) on the one hand, and k[[z2, ' — b']]/(228") on the other.

Now, A3 - E(N') = 0, because

(f X 1d) 0 b(B(N")) = (N, N, N') & Ayg = (f x 1d) 0 b(A ).

In addition, the ideal of Al; is (x1 — 21,22 — 22), so the restriction of Aqs to X, is given by z;1 =0
locally at (s, N, (b: 1)), and by 2 = 0 locally at (s, N, (1:b')). Thus A5 intersects X1 and X0

transversally at the points where these components meet E(N), showing that
Az Xs1 =013 X0 =1.

Then, since A;3 is a degree-1 divisor on X3/X?, we have A3 - E(N) = —1, proving the first line
of the table in (d). The second line is analogous.

At last, by Lemma 5.2.3 we have E(N), E(N') C Xy3;. Clearly, we also have X1 C X591 and
Xs2 C X'zzz. Now, the union of X222 and X'zzl contains the curve X's, and moreover Xzzz and
X221 intersect transversally. Thus, since Xzzz is numerically equivalent to —Xzzl, we have the last

line of the table in (d).

(e) Let s € X;3NX;;NX;. Then f(s) = (N, N) with N anode of X. Let N’ be the other node
of X. The point s belongs to the line E C X2(o) over (N, N), and moreover s is either (0: 1) or
(1:0). Let’s first describe X,. By Lemma 5.2.2, the curve X, is as in Figure 5.3 (3). Now, E; (N)
is not contracted by by o b3 0 by, and E;(N') is contracted by bz o by but not by bs. Therefore, by
Lemmas 5.2.3 and 5.2.4, the curve X, is as in Figure 6.5 (I) if s € X11 N X1o N Xo, and (IT) for
5 € Xa2 N X12 N Xo1.

First note that, since (f x Id) o b(Ey(N')) = (N, N, N') does not belong to either A1z or Aag,
for k =1,2, we get that



Now, let’s examine F;(N) and E>(N). The point s is given by z1 = z2 = y1 = y» = 0 and
either « = 0 or o = 0. From (5.1) and (5.2) we see that if i = 1 and j = 2 then a = 0, and if
1 =2and j =1 then o' = 0. Without loss of generality, assume & =0, so i =1 and j = 2.

Let A3 be the strict transform of Al in Bj. Then Ay is a Cartier divisor on Bl, and so Ays

is the pullback of As under the composition by o b o by. Therefore, by the projection formula,
Asgg - W = Ay - (by 0 bg 0 by) (W)

for every irreducible component W C X,. Now, modding out the rings in (5.5) and (5.6) by the
equations defining byobzobs(X,) we get k[[21, 8—b]]/(218) on the one hand, and k[[22, 8’ —b']]/(228")
on the other.

The ideal of Aj; locally at (s,N) is (y1 — z1,y2 — 22). Hence the restriction of the Cartier
divisor Ags to by 0 bg 0 by(X,) is given by 2 = 0, locally at the point (s, N, (b: 1)), and by 2, = 0
locally at the point (s, N, (1 :b")). Let Xs; = by 0 b 0 by(Xs,) for I = 1,2. So, since z; and 2o
are local parameters for X, ; and X, o, respectively, we have that Ay intersects X, 1 and X, o

transversally at the points where these components meet by o bz o by(E1 (N)), showing that
Aoz - Xo1=Ao3- X0 =1.
Moreover, Eo(N) is contracted by be o b o by, thus (b1 o by 0 b3)(E(N)) is a point, and so
Ay - By(N) = 0.

At last, since Ays is a degree-1 divisor on 2?3/2?2, we have Ay - Ey(N) = —1, giving the second
line of the table on (e).

Now we check the first line. Modding out the rings in (5.13) and (5.14) by the equations defining
X, we get k[[z1,7 — ]}/ (217) on the one hand, and k[[8,~' — ¢']]/(87') on the other. The ideal of
Al; locally at (s, N) is (1 — 21, %2 — 22), where 2 = ay; and 2o = By; (see (5.1) and (5.5)). Now,

(1 — z1,ay1 — By1) = (z1 — 21, — B) N (21 — 21,91),

and since (1 — 21, y1) defines a codimension-2 subscheme, we have that, around E»(NV), the ideal of
Ai3is (1 —21,a — 3). Then the restriction of A3 to X, is given by z; = 0 locally at (s, N, (c : 1)),
and by 8 = 0 locally at (s, N, (1 : ¢')). Therefore, since z; and § are local parameters for X ;
and E; (N), respectively, we have that A3 intersects X,; and F;(N) transversally at the points

where these components meet E(N), showing that



Moreover, the above reasoning shows that 513 does not intersect X; 2, and thus
Aiz- X, =0.
At last, since Ay is a degree-1 divisor on X3 /X2, we have
Az - Ex(N) = —1,

proving the first line of (e).

Since s ¢ Xs9, we have the last line of the table. (Recall that we assumed i = 1 and j = 2.)
At last, by Lemma 5.2.3, we have E;(N) C X112 and E,(N") C Xi11. Also, Xs1 C X111 and
Xs2 C X112. Let’s show that E>(N) C X112 and E>(N') C X111

Locally at (s, N), we have that X7, is given by the equations z2 = y2 = 21 = 0. Now, recall
that z2 = ayy and yo = az; (see (5.1)), and that a = vz; (see (5.13)), so X110 is given by 23 =0,
locally around E;(N). Also, by (5.13), we see that FE2(N) is given by 1 = y3 = z; = 0, showing
that Ey(N) C X119

Similarly, locally at (s, N'), we have that X];; is given by the equations zs = y2 = 2o = 0.
Recall from (5.1) that , = ay; and y, = az;, and from (5.15) that a = yz,. Thus X;q; is given
by ze = 0, around E2(N'). On the other hand, from (5.15) we get that Ex(N') is given by the
equations x1 = y2 = 2o = 0, thus showing that E;(N') C Xi11.

Now, the union of the divisors X111 and X112 contains the curve X’s, and moreover X117 and
X112 intersect transversally. Thus, since X1, is numerically equivalent to —X'ng, we have the

third line of the table in (e).

(f) Let s € Xi; N Xi; N Xj;. Then f(s) = (N,N') with N and N’ distinct nodes of X. The
point s belongs to the line E C X2(0) over (N, N’), and moreover either s = (0: 1) or s = (1:0).
Let’s describe the curve X,. By Lemma 5.2.2, X, is as in Figure 6.3 (3). Now, E;(N') is not
contracted by by o bg 0 by, and E;(N) is not contracted by bz o bs, but is by by o bz o by. Therefore,
by Lemmas 5.2.3 and 5.2.4, the curve X, is as in Figure 6.5 (I) if s € X12N X171 N Xa, and (I1) if
5 € Xo1 N X11 N Xoo.

The point s is given by the equations ;1 = y; = 2 = y» = 0 and either & = 0 or o = 0, where
Z1,Y1,L2,Y2,a and o are as in (5.3) and (5.4). Now, from (5.3) and (5.4) we see that if s = (0: 1),
then a =0and i =1 and j =2; and if s = (1:0), then o/ =0 and ¢ = 2 and j = 1. Without loss
of generality, we assume s = (0:1),s0¢=1 and j = 2.

First we note that, since bo (f x Id)(E(N')) = (N, N', N') € A3, we have

Az -Ei(N') = A3 - E;(N') = 0.
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Now let A3 be the strict transform of Al; in By. Then A;z is a Cartier divisor on By, and so

Aq3 is the pullback of A;3 under the composition bs o by. By the projection formula,
Az - W =213 - bs 0 by(W)

for every irreducible component W C X,.

Now, modding out the rings in (5.11) and (5.12) by the equations defining bz o by(X,) we get
k[[z1,8 — b]]/(218) on the one hand, and k[[z2, 3’ — b']]/(22/3") on the other. The restriction of A3
to bs o by(X,) is given by z; = 0 locally at the point (s, N, (b : 1)), and by 25 = 0 locally at the
point (s, N, (1:¥")). Let X,; = bg 0by(X,,), for I = 1,2. So, since 2; and 2 are local parameters
for X1 and X, respectively, we have that A;3 intersects Xs; and X, transversally at the

points where these components meet bs o by(E7(N)), showing that
Az Xsn =013 X0 =1.
In addition, E2(NN) is contracted by bz o byg, so
Ais - Ey(N) = 0.

At last, since A;3 is a degree-1 divisor on X3 /X2, we have

giving the first line of the table in (f). The verification of the second line is analogous.

We now check the two remaining lines. By Lemma 5.2.3, we have E; (N), E1(N') C X112NXo91.
In addition, clearly we have X;; C X’ul n X’zgl and X;o C X112 N Xzzz. Let’s show that
E3(N) € X111 N Xog and Ey(N') € X112 N Xog.

Locally at (s, N), we have that X7{,; is given by z3 = y» = 22 = 0. Recall that, from (5.3)
we have z2 = ays, from (5.11) we have 22 = Sz, and from (5.19) we have yo = v3. Hence
X111 is given by the equation 3 = 0, locally around E5(N). Since by (5.19), F5(N) is given by
z; =a = =0, we get F5(N) C X11;. In addition, locally at (s, N), Xb,, is given by the
equations z; = y; = 22 = 0. From (5.3) we have y; = ax1, and from (5.11) we have zo = Sx;.
Thus Xao1 is given by the equation x; = 0. Since E»(N) is given by z; = a = 8 = 0, we get
E3(N) C Xoo1.

Now, locally at (s, N'), we have that X}, (resp. Xb,,) is given by 25 = yo = 21 = 0 (resp.
21 =y1 = 21 = 0). Recall that, from (5.3) we have o = ays and y; = az;, from (5.10) we have

z1 = f'y2, and from (5.17) we have 8’ = yr; and a = y22. So X119 is given by the equation
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ya = 0 (resp. Xaoo is given by the equation x; = 0), locally around E»(N'). Since by (5.17) the
line E2(N') is given by 1 = y2 = 20 = 0, we get Ex(N') C X112 N Xoos.

At last, let [ be either 1 or 2. The union of the divisors X1 and X contains the curve X's,
and moreover X;;; and X5 intersect transversally. Hence, since Xy is numerically equivalent to

— X2, we obtain the two remaining lines of the table in (f) from the above analysis. O

5.3 Proof of the theorem

In order to prove the theorem, we must first show that, for each s € X2, the sheaf b, (s) is
torsion-free and of rank 1. For this, we need yet two more lemmas.

Let Y be a curve, and E C Y an irreducible component of Y. We say that E is an exceptional
component of Y if E is a rational component such that the intersection E N E° is a pair of distinct
nodes Ny, Na. A chain of exceptional components is a connected subcurve of Y whose components

are exceptional components of Y.

Let E be a chain of exceptional components Fi,... , Ey, in no particular order. Contracting
the components Fj,... , Ey to nodes, one at a time, we obtain a sequence of curves and birational
maps

h h h
Y 5V 35 ... 5Y.

Then let Y’ := Y}, the curve obtained from Y by contracting all the exceptional components in E,
and let h : Y — Y’ be the composition hy o ... o h;. Note that the intersection E N E° is a pair
of points Ny, N5, and that h is an isomorphism on E¢ — {Ny,N;}. Let N € Y’ be the image of
E under h. We say that the node N is obtained from Y by contracting the chain of exceptional

components F.

Lemma 5.3.1 Let Y be a curve, and E C Y be a chain of exceptional components of Y. Let
h:Y — Y' be the morphism contracting E to a node N € Y'. Let L be an invertible sheaf
on Y having degree 1 on at most one irreducible component of E and degree zero on the others.
Then hyL is a torsion-free rank-1 sheaf on'Y'. Furthermore, h.L is invertible at N if and only if
degg (L) =0.

Proof. We proceed by induction on the number of components of E. Assume first that E is
irreducible.

Consider the complement £° C Y. Denote by Ny, Ny the points of Y in the intersection EN E*.
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We have the following exact sequences
0— L|E(—N1 - Nz) — L — L|Ec — 0,

0 — L|ge(=Ny = Ny) — L — L| —> 0.

Let i = degy(L). Then, since E = P!, we have L|g = Og(i), and so L|g(—N1 — N2) = Og(i — 2).

Taking the direct image by h of the first sequence we get the exact sequence
(5.21) 0 — he(Op(i —2)) — hoeL — hy(L|g<) — R'1.Og(i — 2).

Now, as 7 is either 0 or 1, the direct image h.(Og(i — 2)) is zero, and thus h.L is a subsheaf of
h«(L|g<), which is torsion-free since h is an isomorphism on E¢ — {Ny, N2} and L is invertible.
Therefore, h.L is torsion-free. In addition, taking direct image of the second sequence yields the
exact sequence

0 — h«(L|ge(—=N1 — N2))—h L — hOg(i) — 0,

because R'h.L|ge = 0, since h|ge is finite. If i = 1, then h.Og(1) is a rank-2 quotient of h.L
supported at the node N, so h.L is not invertible at N.

Now, assume i = 0. We have that h,L is a subsheaf of h,(L|ge) of colength 1 containing the
sheaf h,(L|ge(—Ny — N)). We claim that if h,L is a subsheaf of h,(L|gc(—N;)) for some [ = 1,2,
then it is equal to h.(L|ge(—N1 — N3)). Indeed, if h.L is a subsheaf of h.(L|ge(—N;)), then the
local sections of h.L are direct images of sections of L that are zero on N;. Thus, restricting to
E, we get a section of L|g that is zero on N;. But since i = 0, we have L|g = Op, and hence the
section must be zero on E. Therefore, the section vanishes on both Ny and N,. So h,L is actually
a subsheaf of h.(L|ge(—N1 — N2)). Now, since hy(L|ge(—N1 — N3)) is a subsheaf of h.L, we have
h«L = ho(L|g:(—N1 — N»)). Thus, from the exact sequence

00— h*(L|Ec(—N1 — NQ)) ;) h*L — ]’L*OE — 0,

we get that h.OF is zero, an absurd since h,Op = On. We showed our claim, that h.L cannot
be a subsheaf of h.(L|g-(—N;)) for | = 1,2. But these are the only noninvertible subsheaves of
colength 1 of h.(L|g<) containing h.L. Therefore, h.(L|ge(—N1 — N>)) is invertible.

Now assume that E has irreducible components FEj,... , E. Since by hypothesis the degree of
L is 1 on at most one component of F, we may assume that the degree of Lis O on Ey,... , Ey_1.
Let b’ : Y — Yj_1 be the birational morphism obtained by contracting F1, ... , Ex_1. By induction
hypothesis, L' := hl L is invertible on Yj;_;. Note that the degree of L' on E}, is equal to the degree
of L on Ey. (Here we identify Ej with its image under h'.)
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Finally, let hy : Y31 — Y be the birational morphism contracting Ey. Thus, by the first case,
his (L") = h,L is torsion-free of rank 1, and is invertible at N = h(E) = hy(E}) if and only if
degg, (L) = 0. m|

Lemma 5.3.2 Let Y/S and Y'/S be two families of curves over the same base. Let h : Y — )’
be a morphism of families. Assume that, for each s € S, f(s) : Y(s) = YV'(s) is obtained by
contracting exceptional components. Let L be an invertible sheaf on Y such that 0 < degg(L) <1
for every chain of exceptional components of each fiber Y(s). Then h.L is a torsion-free sheaf of
rank 1 on Y'/S, and its formation commutes with base change. Furthermore, h.L is invertible at

each node obtained by contracting a chain of exceptional components E such that degg (L) = 0.

Proof. By Lemma 5.3.1, it is enough to show that h.L is flat over S, and that its formation

commutes with base change, that is, the induced morphism
(heL)(s) — h(s)+L(s)

is an isomorphism for every s € S.

First, we show that h.L is S-flat. Denote by p : ) — S (resp. p' : Y' — S) the structure
morphism of the family )/S (resp. }'/S). Then p = p' o h. Let Oy (1) be a relatively very ample
sheaf on )'/S. The sheaf h.L is flat over S if and only if p,((h.L)(m)) is locally free for every

sufficiently large integer m. By the projection formula,

Pi((hL)(m)) = ps (L ® B Oyr (m)).

Since £ ® h*Oy:(m) is flat over S, we may use [H, Theorem 12.11, p. 290] to show that the sheaf
P«(L ® h*Oyr(m)) is locally free. For that it is enough to show that

(5.22) HY((L ® h* Oy (m))(s)) = 0

for each s € S, for a sufficiently large m.

So fix s € S. Then, by hypothesis, h(s) is a morphism contracting chains of exceptional
components of Y(s). Suppose X is the union of all chains of exceptional components of Y(s)
contracted by h(s). Then h(s) is an isomorphism away from 3. Therefore (h*Oyr(m))(s) is a
sheaf having high multidegree on 3¢, and degree 0 on each irreducible component of ¥. Let
F = (L ® h*Oy(m))(s). Thus, F has high muiltidegree on X¢, and degree 0 or 1 on each
component F of X.

Now, consider the exact sequence

0—)F|Ec(—N1—N2)—)F—)F|E—)0,
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where N; and N, are the points of intersection of E with its complement in Y(s). Then, since E

is rational, and F has degree 0 or 1 on E, we have H'(E, F|g) = 0. Thus, we have a surjection
HY(E®, F|ge(—=Ni — Na)) = H'(Y(s), F).

So it’s enough to show that H'(E¢, F|g-(—Ny — N2)) = 0. Repeating the proceedure for the sheaf
F|ge(—N1 — N2) in place of F, and another component of ¥ in place of E, and thus successively,

we get that it’s enough to show that

HY (2% Flge(—=N1 — No — ... — Ny,)) =0,
where Ny, ..., Ny are the points in the intersection of ¥ with its complement. Now, for m >> 0,
the sheaf F|se(—N; — N2 — ... — Ni) has high multidegree, and thus the first cohomology group

of this sheaf vanishes. So we get (5.22). By [H, Theorem 12.11, p. 290], F' = p.(£L ® h*Oy: (m)) is
locally free, and hence h. [ is flat over S.

Now, we show that the formation of h,£ commutes with base change. We must show that, for
each point s € S, we have a natural isomorphism (h.£L)(s) — h(s).L(s). Since )'(s) is projective,
it is enough to show that, for each s € S, and for every m >> 0, the direct images under p'(s) of

(he £ ® Oy (m))(s) and h(s)«L(s) ® Oyr(s)(m) are equal. Now, by the projection formula,
P'(8)x(h(8)+L(5) ® Oyr(s5)(m)) = p(8)«(L(5) ® h(5)" Oyr(s)(m)) = p(s)«((£L ® h* Oy (m))(s))
on the one hand, and, since h. L is S-flat and m >> 0,
P'(8)((he £ ® Oyr(m))(s)) = Pl (he £ ® Oyr(m))(s) = p«(L ® h*Oyr (m))(s)
on the other. Finally, since (5.22) holds, we have by [H, Theorem 12.11, p. 290]
p(s)«((£ ® ™ Oy (m))(s)) = p«(£ ® h* Oy (m))(s),

and the result follows. O

Under the hypothesis of Lemma 5.3.2, we say that £ contracts to a torsion-free rank-1 sheaf
h«L on Y'. Moreover, for each s € S, we say that £(s) contracts to a torsion-free rank-1 sheaf

h(s)«L(s) on Y'(s).

Proof of Theorem 5.1.1. Consider the families of curves p1o : X3 — X2 and §® : X2 xs X — X2

(So, for each s € X2, the curve X, = (§°)~!(s) is isomorphic to X.) The blowup b : X3 — X2
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is thus a morphism of families of curves such that b(s) is obtained by contracting exceptional
components, for each s € X2. Now, the sheaf b,.7 induces a morphism from X2 to Jy /s if b T is
a torsion-free rank-1 simple sheaf on X2 xg X / X?. Thus, by Lemma 5.3.2, we have only to show
that, for each s € X2(0), we have 0 < degy(J) < 1 for every chain of exceptional components of
each fiber p;, (s) = X,. Moreover, the morphism induced by b,.J factors through 7; if, for each
s € X2(0), the restriction J(s) of J to X, is also &(s)-quasi-stable with respect to £(s).

Thus, we must show that

0 <degp(J) <1

for each exceptional component E C X, of the chains of rational components over the nodes of
X, with equality degp(J) = 1 holding for at most one E, for each node. Furthermore, since

7(s) € X1, we must show that

Br(s)(Xs1) >0 and Bg)(Xs2) >0,

where, as in Lemma 5.2.6, we denote by X ; and X » the components of X, isomorphic to X; and
X>, respectively. This will imply that J(s) contracts to a torsion-free rank-1 sheaf J := b, (s)

on X. Moreover, we get that J is P-quasi-stable with respect to wx @ Ox, because

By (Xi) = Bg(s)(Xs,i)

fori=1,2.
Let s € X%(0). As in Lemma 5.2.6, there are six cases to consider. First, if f(s) is a pair of

smooth points of X, then s belongs to only one divisor )?ij of X2 and we have:
(a) s € Xjj.

Second, if s is in the intersection of exactly two divisors, we have three cases:
(b) s € Xii ﬂX'z-j or s € XN ~ji, with 7 # 7,
(c) s € Xy N Xji, with i # j,
(d) s € XN Xjj, with i # j.

Finally, if s is in the intersection of three divisors, we have two more cases:
(e) s € Xy N Xy N X, with i # 5,

(f) se Xij ﬂX,’i ﬂX]’j, with 7 # j.
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Recall from the definition of 7 that, for each s € X2(0), and each irreducible component W of

X, we have

where P = G(s). Since we fixed P € X1, we have degy , (Ox,,(P)) = 1, whereas degy (Ox, , (P))

degy J(s) =

0if W # X, 1. Also,

degyy (O p2(—Au3)) + degy (O g2(—Ass))
+ degyy (O 52 (—X222)) + 2degyy (O 5:(2))

—A13 -W - AQ3 -W - X222 -W + 2degW((’)W(P))

Br(s)(Xs,i) = degx, (T (s)) + 1,

because dx, ; = dx;, = 2 for i = 1,2.

(a) Assume first that f(s) = (Q1, Q2), with Q1, Q2 smooth points of X. By Lemma 5.2.2 the

curve X, is isomorphic to X. By the intersection numbers calculated in Lemma 5.2.6, we have

and

B(s)(Xs,1) = <

Brs)(Xs2) =

(

\

4

—1-1-0+2+1=1,
—1-0-0+2+1=2,
—0-1-0+2+1=2,
—0-0-2+2+1=1,

—0-0-0+0+1=1,
—0-1-04+0+1=0,
—1-0-0+0+1=0,

if Q1,02 € Xy
if @1 € X1, and Q2 € Xo
if Q1 € X2, and @2 € X3
if Q1,Q2 € X

if Q1,02 € X3
if Q1 € X1, and Q2 € Xo
if Q1 € Xo, and Q2 € X,
if Q1,Q2 € Xs

| —1-1+2+40+1=1,
and thus J(s) is the P-quasi-stable.

(b) If s € X OX}J-, with ¢ # j, then f(s) = (@, N), where ) is a smooth point of X in X;,
and N is a node of X. (The case where s € X;; ﬂin is analogous.) By Lemma 5.2.2, X, has only
one exceptional component over each node N and N’ (where N’ is the other node of X), denoted
by E(N) and E(N’), connecting the components X, ; and X, o (see Figure 5.3 (2)).

First, we show that J(s) contracts to a torsion-free sheaf on X. By the intersection numbers

calculated in Lemma 5.2.6, we have

—0+1-0=1,
—0+1-1=0,

ifi=1,j=2

degE(N)(j(s)) = o9 i1
e=2,7=
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and
0 R L A
—0-0+1=1, ifi=2 j=1
Hence, by Lemma 5.3.1, the sheaf J(s) contracts to a torsion-free rank-1 sheaf on X, which we
denote by J. Moreover, J is not invertible at N, but is invertible at N, if i =1 and j = 2; and J
is not invertible at N’, but is invertible at N, if i = 2 and j = 1.

Now we have only to show that J is P-quasi-stable. By Lemma 5.2.6, we have

—1-1-0+42+1=1, ifi=1,j=2

Brs)(Xs,1) = o _
—0-1-1+2+1=1, ifi=2 j=1

and

0-1-04041=0, ifi=1,j=2
Br(s)(Xs,2) = . .
“1-1+41404+1=0, ifi=2, j=1.

So J is P-quasi-stable on X.

(c) If s € X;; N X5, with i # j, then f(s) = (N,N) with N a node of X. By Lemma 5.2.2,
the curve X, has only one exceptional component over each node, denoted by E(N) and E(N'),
where N' is the other node of X (see Figure 5.3 (2)).

As in (b), we show first that J(s) contracts to a torsion-free rank-1 sheaf J on X. By

Lemma 5.2.6 (c) we have
degpny)(J(s) ==1+1-0=0 and degy(J(s)=—0-0-0=0.

Therefore, J(s) contracts to an invertible sheaf J on X. Moreover, J is P-quasi-stable. Indeed,

by Lemma 5.2.6, we have
BJ(S)(XS71)=_O_]‘_0+2+]‘=2 and IBJ(S)(XS,Q)=_0_1_0+0+1=0,
finishing (c).
(d) If s € X4 N Xj; with i # j, then f(s) = (N, N'), where N and N’ are distinct nodes of X.
By Lemma 5.2.2, the curve X, has only one exceptional component over each node, denoted by
E(N) and E(N'), where N’ is the other node of X (see Figure 5.3 (2)).

As in (b) and (c), we first show that 7 (s) contracts to a torsion-free rank-1 sheaf J on X. By
Lemma 5.2.6 (d) we have
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Therefore, [ (s) contracts to an invertible sheaf J on X. Moreover, by Lemma 5.2.6, we have
Brs)(Xe1) ==1-1-04+24+1=1 and ByH(Xs2)=-1-14+24+0+1=1,

and so J is P-quasi-stable on X.

(e) If s € X;;NXi;NXj; with i # 7, then f(s) = (N, N), where N is anode of X. Let N’ be the
other node. By Lemma 5.2.2, the curve X, is as in Figure 5.3 (3) and, to show that 7 (s) contracts
to a torsion-free rank 1 sheaf on X, we must examine the degrees of J on Ey(N), E5(N), E1(N')
and E5(N').

By Lemma 5.2.6 (e) we have, for any i # j

degp,(vy(J(8)) =-1+1-0=0 and degg,ny(J(s))=-0-0-0=0.

Also,
+1-0-0=1, ifi=1,57=2
degEZ(N)(j(s)): p - .
+1-0-1=0, ifi=2,5=1

and
—-0-0-0=0, ifi=1,5=2
degEg(N’)(J(s)) = o )
—0-0+4+1=1, ifi=25=1
showing that J(s) contracts to a torsion-free rank-1 sheaf J on X. Moreover, J is not invertible
at N but is at N, if ¢ =1 and 5 = 2; and J is not invertible at N’ but is at N, if i =2 and j = 1.

In addition, by Lemma, 5.2.6 (e), we have

—1-1-0+42+1=1, ifi=1j=2
0—-1-1+2+41=1, ifi=2 j=1

B(s)(Xs1) = {

and
—0-1-0+0+1=0, ifi=1,j=2

ﬂ](s)(Xs,Q)z
1-14+140+1=0, ifi=2,j=1.

So J is P-quasi-stable.

(f) If s € X;; N Xy N Xj; with i # §, then f(s) = (N, N') where N and N’ are distinct nodes
of X. By Lemma 5.2.2, the curve X, is as in Figure 5.3 (3).
By Lemma 5.2.6 (f), we have, for any i # j

degp, (n)(J(s)) =+1-0-1=0, and degg,n)(J(s))=-0+1-1=0.
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Also

—-0-0-0=0, ifi=1j5=2

degEg(N)(j(S))z o )
—-0-0+1=1, ifi=2 j=1

and
—-0-0+1=1, ifi=1,45=2

degEg(N’)(j(S)): o )
—-0-0-0=0, ifi=25=1

showing that J(s) contracts to a torsion-free rank-1 sheaf J on X. In addition, J is not invertible
at N' butis at N, if i =1 and j = 2; and J is not invertible at N but is at N', if i = 2 and j = 1.
Furthermore, by Lemma, 5.2.6 (f), for any ¢ # j we have

Brs)(Xe1) ==1-1-04+24+1=1 and By(Xs2)=-1-14+14+0+1=0,

and hence J is P-quasi-stable. O
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