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Abstract

Given a smooth vector field X on a closed orientable d-manifold M , many ques-

tions about the dynamics of its induced flow can be studied analyzing the following

cohomological equation:

LXu = ξ,

where ξ is a given real function on M , u : M → R is the solution that we look for (in

a certain regularity class) and LX is the Lie derivative in the X direction.

In 1984, Anatole Katok [Hur85, KR01, Kat03] proposed to characterize those

vector fields which are cohomologicaly trivial. More precisely, he conjectured that if

X is so that for all smooth function ξ : M → R, there exist a constant c = c(ξ) ∈ R

and u ∈ C∞(M,R) verifying

LXu = ξ − c,

then X should be smoothly conjugated to a Diophantine (constant) vector field on

Td. In particular, M should be diffeomorphic to Td.

The main goal of this work is to prove the validity of Katok Conjecture for 3-

manifolds.
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Chapter 1

Introduction

The main goal in Differentiable Dynamics consists in understanding the global be-

havior of “most” of the orbits of systems, where the phase space is represented by a

compact differential manifoldM , and the evolution by a diffeomorphism f ∈ Diffr(M)

(discrete time case), or by a Cr flow Φ: M × R →M (continuous time case).

Looking for the unification of the notation, we can assume that the dynamics of

our system is given by a Cr Lie group action on M . More precisely, if (G,+) denotes

any analytic abelian Lie group, we shall suppose that G represents the time and the

evolution of the system is given by a Cr G-action Γ: M ×G →M .

1.1 Cocycles and Coboundaries

When we analyze different questions about the dynamics of Γ, there is a family of

objects that appears repeatedly and in a very natural way (see Section 1.2 for some

examples). These are the real cocycles over Γ:

Definition 1.1. Given a Cr G-action Γ: M × G → M , a real cocycle over Γ (or

simply a cocycle) is a Ck map (usually k ≤ r) Ξ: M ×G → R such that

Ξ(p, g0 + g1) = Ξ(Γ(p, g0), g1) + Ξ(p, g0), ∀p ∈M, ∀g0, g1 ∈ G. (1.1)

1



Within this framework it is natural to consider the following equivalence relation

between cocycles:

Definition 1.2. We shall say that two Ck cocycles Ξ,Θ: M × G → M over Γ are

Cs-cohomologous (with s ≤ k ≤ r) if there exists a Cs map α : M → R verifying

Ξ(p, g) = α(Γ(p, g)) + Θ(p, g)− α(p), ∀p ∈M, ∀g ∈ G.

On the other hand, notice that given any real Ck function ξ : M → R, we can

easily construct a cocycle Ξ over Γ defining

Ξ(p, g)
.
= ξ(Γ(p, g))− ξ(p), ∀p ∈M, ∀g ∈ G. (1.2)

Cocycles constructed as above are very important and deserve a special name: they

are called coboundaries. In other words, we may say that a cocycle is a coboundary

if and only if it is cohomologous to the null cocycle.

These names come from (abstract) Group Cohomology Theory. In fact, if we

suppose that Γ is C∞, then it induces in a natural way a G-action on C∞(M,R),

turning C∞(M,R) into a G-module. So, in a purely algebraic way we can define

the cohomology complex H∗(G,Γ) (see [AW67] for example). In this way, H1(G,Γ)

happens to be canonically isomorphic to the quotient vector space of all smooth

cocycles over Γ by the subspace of all smooth coboundaries. However, since in the

future we shall not make any other reference to higher cohomology groups, the reader

can simply consider this algebraic construction as a justification for the chosen names.

1.2 Cohomological Equations

Since we are mainly interested in the “classical group actions”, from now on we shall

assume that Γ is a differentiable G-action, being G = Z or R.
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As it was already mentioned, cocycles appear naturally in different contexts when

we want to study some dynamical properties of Γ. Among the problems in Differen-

tiable Dynamics that can be reduced to cohomological considerations we can mention:

1. Existence of invariant volume forms (see Section 5.1 in the book of Katok and

Hasselblat [KH95]).

2. Stability of hyperbolic torus automorphisms (see Section 2.6 in [KH95]).

3. Livšic Theory (see Section 19.2 in [KH95], Section 3.4 in the survey of Katok

and Robinson [KR01], or the original work Livšic [Liv71]).

4. KAM Theory (see the survey of R. de la Llave [dlL99]).

5. Constructions of minimal conservative but non uniquely ergodic diffeomorphisms

(see the classical work of H. Furstenberg [Fur61]).

In all the cases listed above the main problem consists in proving that a given cocy-

cle is or is not a coboundary, or more generally, that it is or it is not Cs-cohomologous

to another given cocycle.

This is the reason why it is so important to analyze the existence of solutions

u : M → R (in a certain regularity class) for the following difference equation:

u(Γ(p, g))− u(p) = Ξ(p, g), ∀p ∈M, ∀g ∈ G, (1.3)

where Ξ is a given real cocycle over the G-action Γ. These equations deserve a special

name:

Definition 1.3. A difference equation like (1.3) will be called a cohomological equa-

tion.
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In the particular case that G = Z, the cocycle Ξ is “generated” by the function

ξ(p)
.
= Ξ(p, 1). Indeed, it holds

Ξ(p, n) =


0, if n = 0,∑n−1

i=0 ξ(f
i(p)), if n > 0,

−
∑−1

i=n ξ(f
i(p)), if n < 0,

where f
.
= Γ(·, 1) ∈ Diffr(M). And so, in this case the cohomological equation (1.3)

can be written as

u ◦ f − u = ξ. (1.4)

On the other hand, when G = R the cocycle Ξ has an “infinitesimal generator”

defined by

ξ(p)
.
= ∂tΞ(p, t)

∣∣∣
t=0
, ∀p ∈M.

In this case, Ξ(p, t) =
∫ t

0
ξ(Γ(p, s)) ds, and hence, derivating equation (1.3) with

respect to the time variable, we get the following differential equation:

LXu = ξ, (1.5)

where X ∈ X(M) is the vector field generating Γ, i.e. X(p)
.
= ∂tΓ(p, t)

∣∣
t=0

, and LX

denotes the Lie derivative along X.

1.3 Obstructions

In general it is not an easy task to determine if a particular cohomological equation

admits some solution in a particular regularity class. So, it appears as an important

problem to characterize the “set of obstructions” for the existence of (Lp, Cr, etc.)

solutions for equations like (1.3).
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For example, if Γ is a given R-action, then the very first obstructions that we can

find for the existence of continuous solutions for equation (1.5) are the elements of

M(Γ), the set of Borel finite measures on M which are left invariant by the flow Γ.

More precisely, if u is a continuous solution of equation (1.5), since

1

T

∫ T

0

ξ(Γ(p, t)) dt =
1

T

(
u(Γ(p, t))− u(p)

) T→∞−−−→ 0,

as a straight-forward consequence of Birkhoff ergodic theorem we have that

∫
M

ξ dµ = 0, for every µ ∈ M(Γ).

In Section 2.1 we shall see that the set of Γ-invariant distributions, in the sense of

Schwartz, is the most natural space for looking for obstructions for the existence of

smooth solutions for equation (1.5) (or (1.4)).

Two very classical results which completely characterize this set of obstructions in

two particular, and in some sense, extremal opposite situations, are due to Gottschalk

and Hedlund [GH55] and to Livšic [Liv71].

In the first one, if Γ is a continuous minimal Z-action (i.e. every point in M

has a dense Γ-orbit) generated by a homeomorphism f on M and if ξ ∈ C0(M,R),

Gottschalk and Hedlund proved that equation (1.4) admits a continuous solution u if

and only if the family of functions

{ n−1∑
i=0

ξ ◦ f i

}
n≥1

is uniformly bounded in C0(M,R).

In the second one, Livšic studied the case where Γ is a C2 hyperbolic R-action (i.e.

an Anosov flow) induced by a vector field X ∈ X3(M). Assuming that ξ is Hölder

continuous, he proved that the only obstruction for the existence of a Hölder contin-
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uous solution u for equation (1.5) is given by the set of probabilities concentrated on

the periodic orbits, i.e. there is a Hölder continuous solution u as long as

∫ τ(z)

0

ψ(Γ(z, s)) ds = 0, ∀z ∈ Per(Γ),

and where τ(z)
.
= inf{t > 0 : Γ(z, t) = z}.

It is interesting to remark that both results [GH55] and [Liv71] hold for R-actions

as well as for Z-actions.

There are more recent results that completely characterize the sets of obstruc-

tions in some other cases. For example, cohomological equations associated to area-

preserving flows on higher genus surfaces have been studied by Giovanni Forni [For97,

For01] (the torus case is rather classical); and associated to their “very close rela-

tives”, the interval exchanged maps, by Stefano Marmi, Pierre Moussa and Jean-

Christophe Yoccoz [MMY03, MMY05]. Other very important flows that nowadays

are very well understood from the cohomological point of view are homogeneous ones

on nilmanifolds: this study is due to Livio Flaminio and Giovanni Forni. They started

studying some particular cases (horocycle flows, nilflows on Heisenberg manifolds) in

[FF03, FF06], and the general case was settled in [FF07].

1.4 Cohomology-free Dynamical Systems

As it was already mentioned in Section 1.3, in general it is very difficult to characterize

the set of obstructions for the existence of solutions for a cohomological equation like

(1.5). With the aim of understanding the nature (topological, analytical, etc.) of this

set of obstructions, Anatole Katok, in the early ‘80, proposed the following

Definition 1.4. Given a closed manifold M , we say that a smooth G-action Γ: M ×

G → M is cohomology-free if any smooth real cocycle over Γ is C∞-cohomologous to

a constant one.
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Notice that two different constant cocycles are never smoothly cohomologous, and

so, the first cohomology group of any smooth action always contains a subgroup

isomorphic to R. Therefore, we can say that a smooth action is cohomology-free if

and only if its first cohomology group is as small as possible.

For the sake of clarity of the exposition, from now on we shall mainly concentrate

on smooth R-actions, i.e. flows induced by C∞ vector fields. In this particular case,

Definition 1.4 can be restated in the following way:

We say that X ∈ X(M) is cohomology-free if given any ξ ∈ C∞(M,R), there exist

a constant c(ξ) ∈ R and u ∈ C∞(M,R) verifying

LXu = ξ − c(ξ). (1.6)

Remark 1.5. It is clear that the set of cohomology-free vector fields is closed under

C∞-conjugacy.

To introduce the prototypical example of cohomology-free vector fields, first we

need to state the following

Definition 1.6. We say that α = (α1, . . . , αd) ∈ Rd is a Diophantine vector if there

exist real constants C, τ > 0 satisfying

∣∣∣∣ d∑
i=1

αipi

∣∣∣∣ > C

(
max
1≤i≤d

|pi|
)−τ

, (1.7)

for every p = (p1, . . . , pd) ∈ Zd \ {0}.

A vector field Xα on the d-dimensional torus Td verifying Xα ≡ α will be called a

Diophantine vector field.

Example 1.7. Diophantine vector fields on tori are cohomology-free.

In fact, let α ∈ Rd be a Diophantine vector. The Haar measure on Td is the

only Xα-invariant probability measure and if ξ : Td → R is an arbitrary C∞ function,
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considering its Fourier expansion

ξ(θ) =
∑
k∈Zd

ξ̂ke
2πik·θ,

we can define u, at first just formally, writing

u(θ) =
∑

k∈Zn\{0}

ξ̂k
k · α

e2πik·θ.

Taking into account estimate (1.7), we easily see that u ∈ C∞(Tn,R) and, by con-

struction, it holds

LXαu = ξ − ξ̂0.

As we will see in Theorem 2.5, these are the only cohomology-free vector fields on

tori, of course, modulo C∞-conjugacy.

Considering this example and the previous work of Stephen Greenfield and Nolan

Wallach [GW73] on globally hypoelliptic vector fields (see Section 5.2 for precise def-

initions), Anatole Katok proposed in [Hur85] the following conjecture characterizing

the cohomology-free vector fields:

Conjecture 1.8 (Katok Conjecture [Hur85]). If M is a compact, connected, ori-

entable d-manifold, and X is a cohomology-free vector field on M , then M is diffeo-

morphic to the torus Td, and therefore, X is C∞ conjugated to a Diophantine constant

vector field on Td.

Some results supporting Katok Conjecture have recently appeared. First, Fede-

rico and Jana Rodriguez-Hertz [RHRH06] have proved that a manifold supporting

a cohomology-free vector field must fiber over the torus of dimension equal to the

first Betti number of the manifold (see Theorem 2.7 for the precise statement); and

secondly, Livio Flaminio and Giovanni Forni [FF07] have proved that tori are the only

nilmanifolds supporting cohomology-free homogeneous flows.
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1.5 Main Results and Outline of this Work

The main goal of this work is to present a complete proof of Katok Conjecture in

dimension 3. For this, the rest of the work will be organized as follows:

In Chapter 2 we shall present general properties about cohomology-free vector

fields, some of which are very classical, like strict ergodicity, and the rather new

result due to Federico and Jana Rodŕıguez-Hertz, Theorem 2.7.

In Chapter 3 we shall expose the proof of our first result toward the classification

of cohomology-free vector fields on 3-manifolds:

Theorem A. Let M be a closed and orientable 3-manifold verifying

β1(M) = dimH1(M,Q) ≥ 1,

and suppose that there exists a smooth cohomology-free vector field X ∈ X(M). Then

M is diffeomorphic to T3 and X is C∞-conjugated to a Diophantine constant vector

field.

While this work was in progress, Giovanni Forni [For06] communicated to us that

he had proved the following result1:

Theorem B. If M is a closed orientable 3-manifold with H1(M,Q) = 0 and X ∈

X(M) is a cohomology-free vector field, then there exists a 1-form α on M verifying

α ∧ dα 6= 0, iXα ≡ 1, iXdα ≡ 0.

In other words, α is a contact form and X is its induced Reeb vector field.

On the other hand, Clifford Taubes [Tau] has recently proved Weinstein Conjecture

which asserts that every Reeb vector field on a 3-manifold must exhibit a periodic

1Forni independently got a proof of Theorem A, too.

9



orbit. This clearly contradicts the minimality (see Corollary 2.4) of the flow induced

by a cohomology-free vector field. Therefore, Theorem B lets us affirm that there is

no cohomology-free vector field on 3-manifolds with vanishing first Betti number and

thus we get

Corollary 1.9 (Katok Conjecture in dimension 3). If M is closed and orientable

3-manifold and X ∈ X(M) is a smooth cohomology-free vector field on M , then M is

diffeomorphic to T3 and X is C∞-conjugated to a constant Diophantine vector field.

In Chapter 4 we will sketch very briefly Forni’s proof of Theorem B (that he kindly

communicated to us) and we will present another proof, using completely different

techniques. We hope this can help to get a better comprehension of the whole problem.

For the sake of completeness, in that chapter we will also recall some fundamental

facts about Contact Geometry and we shall precisely state Weinstein Conjecture.

Finally, in Chapter 5 we propose some open problems and consider some final

remarks about the results presented in this work.

1.6 Notation and Conventions

For simplicity, we will mainly work in the C∞ category and the word smooth will be

used as a synonymous of C∞.

We shall say that a manifold is closed if it is compact, connected and its boundary

is empty.

Along this work, M will denote a smooth closed orientable d-dimensional manifold,

and most of the time d = 3.

The linear space of all Cr vector fields on M will be denoted by Xr(M), and to

simplify the notation, we shall just write X(M) for the space of smooth vector fields.

Analogously, Diffr(M) will stand for the set of Cr diffeomorphism of M and we

will simply write Diff(M) for the set of smooth diffeomorphisms.
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The expression Λk(M) will be used for the space of smooth k-forms on M , and

given any X ∈ X(M), iX : Λk(M) → Λk−1(M) shall denote the contraction by X

(also called interior product).

As usual, we shall identify Λ0(M) with C∞(M,R).

Given any X ∈ X(M), {Φt
X}t∈R will denote the flow induced by X.

If T denotes any smooth tensor field on M , the Lie derivative of T along X will

be denoted by LXT and defined by

LXT (x)
.
= lim

t→0

(Φt
X)∗T (x)− T (x)

t
, ∀x ∈M.

The set of all finite signed Borel measures on M (i.e. real continuous linear func-

tionals on C0(M,R)) shall be denoted by M(M), and we will write D′(M) for the

space of all real continuous linear functionals on C∞(M,R).

Given any smooth fibration p : N →M , the fiber over any x ∈M shall be denoted

by Nx, and we will write Γ(N) for the space of smooth sections (i.e. maps s : M → N

verifying p◦s = idM). The only exception for this notational convention is the tangent

bundle over M : in this case π : TM → M will denote the canonical projection and

we will write TxM for π−1(x) and X(M) for Γ(TM).

Similarly, given any foliation F on M , Fx or F (x) will stand for the leaf of F

through x ∈M .

It is very important to remark that, in order to avoid confusions along this work we

shall use the term distribution in the “sense of Schwartz,” i.e. for us a distribution will

be any element of D′(M). This word has a completely different meaning in Differential

Geometry. Indeed, we shall use the expression k-plane field, or line field when k = 1, to

denote the objects that are commonly named distributions in Differential Geometry.

There are some relationships between the linear spaces C∞(M,R), Λd(M), M(M)

and D′(M). First, since the elements of M(M) can be considered as linear continuous
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functionals on C0(M,R), it can be canonically embedded in D′(M). On the other

hand, it is very easy to see that each element of Λd(M) (where d = dimM) naturally

induces a signed measure, i.e. we can assume that Λd(M) ⊂ M(M). And finally, since

M is supposed to be orientable, we can choose a volume form on M and use it to get

a bijection between C∞(M,R) and Λd(M). However, it is important to remark that

in this case this identification is not canonical at all.

Since we have defined the Lie derivative LX on C∞(M,R), we can easily extend

it by duality to D′(M). In fact, we can define LX : D′(M) → D′(M) writing

〈LXT, ψ〉
.
= −〈T,LXψ〉, ∀T ∈ D′(M), ∀ψ ∈ C∞(M,R).

In this way, it is reasonable to define the set of X-invariant distributions and

measures by

D′(X)
.
= {T ∈ D′(M) : LXT = 0},

M(X)
.
= {µ ∈ M(M) : (Φt

X)∗µ = µ, ∀t ∈ R}

= {µ ∈ M(M) : µ ∈ D′(X)}

Finally, the d-dimensional torus will be denoted by Td and the quotient Lie group

Rd/Zd will be our favorite model for it. prZd : Rd → Td will denote the canonical

quotient projection. The Haar probability measure on Td, also called the Lebesgue

measure, will be denoted by Lebd.

In general, an arbitrary point of Td shall be denoted by θ = (θ0, θ1, . . . , θd−1).

It is a very well-known fact that there exists a canonical group isomorphism be-

tween the group of automorphisms of Td and GL(d,Z). Taking this into account,

if A ∈ Diff(Td) is any Lie group automorphism of Td, the corresponding element of

GL(d,Z) will be denoted by Â. Notice that A and Â are related by A◦prZd = prZd ◦Â.
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Chapter 2

General Properties of

Cohomology-free Vector Fields

2.1 Strict Ergodicity

This section is devoted to proving that every cohomology-free vector field is strictly

ergodic, i.e. it is uniquely ergodic and every orbit of its induced flow is dense on

the whole manifold. These results are very classical and, as the reader will see, the

proofs are rather simple. Nevertheless, we decided to include them here for the sake

of completeness and with the purpose of making easier the reading of this work.

As it was already mentioned in Section 1.6, we shall assume that M is a closed

orientable d-manifold.

Proposition 2.1. If X ∈ X(M) is a cohomology-free vector field, then its induced

flow {Φt
X} is uniquely ergodic.

Proof. Let ψ : M → R be any smooth function and let c(ψ) ∈ R and u ∈ C∞(M,R)

be as in equation (1.6). Then we have

1

T

( ∫ T

0

ψ(Φs
X(p)) ds

)
=

1

T

(
u(ΦT

X(p))− u(p)
)

+ c(ψ), (2.1)

13



for every p ∈M and every T > 0.

Then, if µ is an arbitrary X-invariant ergodic probability measure, by the Birkhoff

ergodic theorem we know that the left side of equation (2.1) must converge to
∫
ψ dµ,

for µ-almost every p ∈ M , when T → ∞. On the other hand, since u is bounded,

the right side of (2.1) converges to c. Therefore,
∫
ψ dµ = c(ψ), for every µ ∈ M(X),

and since C∞(M,R) is dense in C0(M,R), we conclude that M(X) contains only one

element.

In fact, we can prove a stronger result:

Proposition 2.2. If X ∈ X(M) is a cohomology-free vector field, then

dimD′(X) = 1.

Proof. Given an arbitrary ψ ∈ C∞(M,R), let u ∈ C∞(M,R) and c(ψ) ∈ R be such

that

LXu = ψ − c(ψ).

Then, for any T ∈ D′(X) we have

〈T, ψ〉 = 〈T,LXu+ c(ψ)〉 = −〈LXT, u〉+ 〈T, c(ψ)〉 = 〈T, c(ψ)〉.

From this we can easily conclude that dimD′(X) = 1.

We can also get the following regularity result for the elements of D′(X):

Proposition 2.3. Let X ∈ X(M) be a cohomology-free vector field. Then there exists

a smooth volume form Ω ∈ Λd(M) such that LXΩ ≡ 0.

Proof. Since we are assuming that M is orientable, let Ω̃ ∈ Λd(M) be an arbitrary

smooth volume form. Let us define divΩ̃X ∈ C∞(M,R) as the only smooth function
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verifying

LXΩ̃ = (divΩ̃X)Ω̃.

Hence there exist a smooth function u : M → R and a real constant c = c(divΩ̃X)

satisfying

LXu = −(divΩ̃X) + c.

Therefore, if we define Ω
.
= exp(u)Ω̃, we obtain

LXΩ = euLXΩ̃ + (euLXu)Ω̃

= eu(divΩ̃X)Ω̃ + eu(−(divΩ̃X) + c)Ω̃

= ceuΩ̃ = cΩ.

Finally, this clearly implies that (Φt
X)∗Ω = (1+tc)Ω, and since the total Ω-volume

of M is invariant, we have c = 0.

As a direct consequence of Propositions 2.1 and 2.3 we get the following

Corollary 2.4. If X ∈ X(M) is a cohomology-free vector field, then the induced flow

{Φt
X}t∈R is minimal, i.e. it holds

cl
{
Φt

X(p) : t ∈ R
}

= M, ∀p ∈M.

2.2 Cohomology-free Vector Fields on Tori

The aim of this section consists in proving that the Diophantine vector fields are the

only cohomology-free ones on tori, modulo C∞-conjugacy. More precisely, we shall

prove the following

Theorem 2.5. If X ∈ X(Td) is a cohomology-free vector field on Td, then there exist

a Diophantine vector α ∈ R (see Definition 1.6) and f ∈ Diff(Td) homotopic to the
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identity such that

Df(X(θ)) ≡ α.

This result is essentially due to Richard Luz and Nathan dos Santos. In fact, in

[LdS98] they proved that the only cohomology-free diffeomorphisms on Td homotopic

to the identity are those C∞-conjugated to Diophantine translations. The proof of

Theorem 2.5 is just a slight modification of their proof.

Proof of Theorem 2.5. Let X(θ) = (X1(θ), X2(θ), . . . , Xd(θ)) be the coordinates of

X in the canonical trivialization of TTd and let Ω ∈ Λd(Td) be the only normalized

X-invariant volume form given by Proposition 2.3. Let us define

αi
.
=

∫
Td

XiΩ ∈ R, for i = 1, . . . , d.

So there exist smooth functions ui such that LXui = −Xi + αi. Then we can define

a smooth map f : Td → Td writing

f(θ)
.
= θ + (u1(θ), u2(θ), . . . , ud(θ)) mod 1, ∀θ ∈ Td.

And then we have

Df(X) = (Xi + LXui)
d
i=1 = (α1, α2, . . . , αd). (2.2)

From equation (2.2) we can easily see that f(Td) must be a coset of a closed

connected subgroup of Td. By construction, f is isotopic to the identity and so f

must be surjective. On the other hand, the set of critical points for f is ΦX-invariant,

and by Sard’s theorem, it is not the whole torus. Therefore, every point of Td is

regular and f is a diffeomorphism, since tori do not admit any non-injective self-

covering maps homotopic to the identity.
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As we already observed in Remark 1.5, the set of cohomology-free vector fields is

invariant by C∞-conjugacy. Hence, Xα = (α1, α2, . . . , αd) must be cohomology-free

too. Finally, it is rather easy to verify that then, Xα must be a Diophantine vector

field (see §3.2.2 in [KR01]).

2.3 Topological Restrictions

As it was already proved in Section 2.1, the flow {Φt
X} induced by a cohomology-free

vector field X ∈ X(M) is minimal and uniquely ergodic. In particular, X cannot

exhibit any singularity, and so, the Euler characteristic of M must vanish.

For a very long time this was the only known topological restriction for manifolds

supporting cohomology-free vector fields, until Federico and Jana Rodŕıguez-Hertz

produced a breakthrough in [RHRH06], finding additional restrictions on the first

Betti number of the manifold.

For simplifying the exposition, let us first present a definition that will be used all

along this work:

Definition 2.6. Given a closed d-manifold M and a smooth vector field Y ∈ X(M),

we say that a p : M → Tn (where n ≤ d) is a good fibration for Y if it is a smooth

submersion and there exists a Diophantine vector α ∈ Rn verifying Dp(Y ) ≡ α.

Now we can state the main result of this section:

Theorem 2.7 (F. & J. Rodŕıguez-Hertz [RHRH06]). Let X ∈ X(M) be a cohomology-

free vector field on the closed manifold M and let us write β1
.
= dimH1(M,Q). Then

there exists a good fibration p : M → Tβ1 for X, where Dp(X) ≡ Xα ∈ X(Tβ1) and α

is a Diophantine vector. In particular, it holds β1(M) ≤ dimM .

This fundamental result gives non-trivial information on the topology of M in all

but one case: when M has trivial first rational homology group.
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This is the main reason why it is necessary to attack Katok Conjecture with

different techniques, depending on the vanishing or not of the first Betti number of

the manifold.
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Chapter 3

The case β1(M) ≥ 1

In this chapter we present the proof of Theorem A.

We continue assuming that M is a closed orientable manifold and from now on,

we shall assume that dimM = 3 and

β1(M)
.
= dimH1(M,Q) ≥ 1.

For a better organization, we shall base the proof of Theorem A on the following

two propositions:

Proposition 3.1. Let us suppose that there exists X ∈ X(M) verifying:

1. The flow {Φt
X}t∈R induced by X does not have any periodic orbit;

2. and there is a good fibration q : M → T1 for X.

Then β1(M) ≥ 2.

Proposition 3.2. Let X be a smooth vector field on M and suppose that the induced

flow {Φt
X} preserves a smooth volume form Ω, i.e. LXΩ ≡ 0. Besides, assume that

there exists a good fibration p : M → T2 for X verifying Dp(X) = Xα.

Then, if M is not diffeomorphic to T3, D′(X) has infinite dimension.
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3.1 Proof of Theorem A

This short section is devoted to prove Theorem A, assuming Propositions 3.1 and 3.2.

We are supposing that M is a closed orientable 3-manifold, with β1(M) ≥ 1 and

X ∈ X(M) is a cohomology-free vector field. By Proposition 2.4 we know that the

induced flow {Φt
X} is minimal, so in particular, it does not exhibit any periodic orbit.

On the other hand, by Theorem 2.7, we know that there exists a good fibration

q : M → T1 for X, with Dq(X) verifying a Diophantine condition. Notice that in

the one-dimensional case, being Diophantine is equivalent to be different from zero.

Hence, we can apply Proposition 3.1 for concluding that β1(M) ≥ 2.

Therefore, we can apply Theorem 2.7 once again for getting a good fibration

p : M → T2 for X such that Dp(X) is a Diophantine vector in R2. On the other

hand, by Proposition 2.3 we know that there exists a smooth X-invariant volume

form Ω. And by Proposition 2.2, we can assure that dimD′(X) = 1. So, if we apply

Proposition 3.2, we conclude that M is diffeomorphic to T3.

Finally, by Theorem 2.5, X is C∞-conjugated to a constant vector field on T3,

which satisfies a Diophantine condition like estimate (1.7), and we finish the proof of

Theorem A.

3.2 Proof of Proposition 3.1

Let Xα ∈ X(T1) be the Diophantine vector field given by Xα ≡ Dq(X). We know

that α 6= 0 and there is no loss of generality supposing that α > 0.

Notice that for any θ ∈ T1, the fiber q−1(θ) is a global transverse section for the

flow {Φt
X}t∈R. So, it makes sense to define the Poincaré return map to q−1(θ) and

this will be denoted by Pθ. Observe that Pθ = ΦX
α−1

∣∣∣
q−1(θ)

.

Since the flow {Φt
X} does not have any periodic orbit, the Poincaré return map

Pθ does not have any periodic point. Hence, the Euler characteristic of the fiber
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q−1(θ) must vanish. Taking into account that the fiber is an orientable (maybe non-

connected) surface, we can affirm that it is diffeomorphic to a disjoint union of k

2-torus. Our next step consists in proving that we can modify our good fibration q

for getting another one with connected fiber. This is the contents of our next

Lemma 3.3. If the fibration q : M → T1 is such that q−1(θ) has exactly k connected

components for some (and hence for any) θ ∈ T1, then there exists another smooth

good fibration q̃ : M → T1 satisfying:

1. q̃−1(θ) is diffeomorphic to the 2-torus;

2. Dq̃(X) ≡ Xk−1α;

3. and the diagram

M
q //

q̃   A
AA

AA
AA

A T1

T1

Ek

>>}}}}}}}}

,

is commutative, where Ek : θ 7→ kθ is the canonical k-fold covering of the circle.

Proof. Let θ0 be an arbitrary point of T1 and let us write M0 for denoting a connected

component of q−1(θ0). Since our manifold M is connected, the Poincaré return map

Pθ0 must cyclically interchange all the connected components of q−1(θ0). Then, if we

define

Mt
.
= ΦX

tα−1

(M0), for every t ∈ R,

it holds

Mt = Mt+k, for every t ∈ R;

M =
⋃
t∈R

Mt.
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Therefore, if we define q̃ : M → T1 by

q̃(x)
.
= k−1t+ Z ∈ R/Z, if x ∈Mt,

we easily see that q̃ is a good fibration for X, and it clearly satisfies properties (1),

(2) and (3).

With the purpose of simplifying our notation, we shall make the assumption that

our original good fibration q : M → T1 was such that its fibers q−1(θ) were connected,

and hence, diffeomorphic to T2.

Now, let us fix a point θ0 ∈ T1 and let f : q−1(θ0) → T2 denote any diffeomorphism.

Hence, we can use the diffeomorphism f to write the Poincaré return map Pθ0 as

a diffeomorphism of T2, i.e. we have f ◦Pθ0 ◦ f−1 ∈ Diff(T2). Then we can choose

an appropriate matrix Â ∈ SL(2,Z) such that its induced linear automorphism A ∈

Diff(T2) is isotopic to f ◦Pθ0 ◦ f−1.

By Lefschetz fixed point theorem, and since Pθ0 is fixed-point free, we know that

0 = L(Pθ0) = det(Â− idR2). (3.1)

In this way, since Â ∈ SL(2,Z), equation (3.1) implies that 1 is the only element

in the spectrum of Â. Therefore, Â must be SL(2,Z)-conjugated to a matrix of the

following form:  1 0

n0 1

 , (3.2)

commonly named the Jordan form of Â.

Then, post-composing f with an appropriate element of SL(2,Z) if necessary, we

can assume that Â equals to matrix (3.2).

On the other hand, notice that since Pθ0 is the time-α−1 map of the flow {Φt
X},
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matrix Â (in fact, the conjugacy class of Â in SL(2,Z)) determines the topology of

M . More precisely, we know that M is a T2-bundle over T1, and so there exists

a matrix B̂ ∈ SL(2,Z) such that M is smoothly diffeomorphic to T2 × R
/
(B, 1),

where (B, 1) ∈ Diff(T2 × R) is defined by (B, 1) : (x, t) 7→ (Bx, t − 1). Furthermore,

it is well-known that, given B̂1, B̂2 ∈ SL(2,Z), T2 × R
/
(B1, 1) is homeomorphic to

T2×R
/
(B2, 1) if and only if B̂1 and B̂2 are SL(2,Z)-conjugated (see for instance [Hat],

Theorem 2.6, p. 36). Taking this into account, it is not difficult to verify that Â, the

only matrix which induces an automorphism in the isotopy class of f ◦Pθ0 ◦f−1, and

B̂ must be conjugated in SL(2,Z).

Therefore, there exists a smooth diffeomorphism Γ: T2 × R
/
(A, 1) →M .

Having gotten this nice topological characterization of M , our next aim consists

in studying the algebraic properties of the fundamental group π1(M). For this, we

define diffeomorphisms τ0, τ1, τ2 : R3 → R3 by

τ0 : (x0, x1, x2) 7→ (x0 − 1, x1, x2); (3.3)

τ1 : (x0, x1, x2) 7→ (x0, x1 − 1, x2); (3.4)

τ2 : (x0, x1, x2) 7→ (x0, x1 + n0x
0, x2 − 1). (3.5)

If G(τi) denotes the subgroup of Diff(R3) generated by {τ0, τ1, τ2}, we easily see

that

R3
/
G(τi) = T2 × R

/
(Â, 1),

an therefore, we have that G(τi) is (algebraically) isomorphic to π1(M). As a conse-

quence of this, we have that H1(M,Q) is isomorphic to

(
G(τi)

/
[G(τi), G(τi)]

)
⊗Q,

where [G(τi), G(τi)] denotes the commutator subgroup of G(τi).
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Hence, we finish the proof of Proposition 3.1 with the following

Lemma 3.4. It holds

rank
(
G(τi)

/
[G(τi), G(τi)]

)
≥ 2.

Proof. Let H
.
= span{τ0, τ2} be the subgroup of G(τi) generated by τ0 and τ2. Let

us write pri : R3 → R for the canonical projection on the i-th coordinate, where

i = 0, 1, 2.

First, notice that for any g ∈ [G(τi), G(τi)], we have

pri ◦ g − pri ≡ 0, for i = 0, 2. (3.6)

Secondly, observe that H is isomorphic to Z⊕ Z, being a possible group isomor-

phism defined by

h 7→ (pr0 ◦ h− pr0, pr2 ◦ h− pr2). (3.7)

Finally, taking into account (3.6) and (3.7), we easily conclude that the restriction

to H of the canonical projection of G(τi) on its abelianization is injective. In other

words, G(τi)
/
[G(τi), G(τi)] contains a subgroup isomorphic to Z⊕ Z.

3.3 Proof of Proposition 3.2

This is the last section of the current chapter and it is devoted to proving Proposi-

tion 3.2.

By hypothesis, there exists a good fibration p : M → T2 for X. Since M is a closed

3-manifold fibering over T2, the fibers of p must be diffeomorphic to the union of k

copies of T1. If k > 1, then the idea is that we can apply Lemma 3.3 “twice” to get a

new good fibration with connected fibers. This is what we are going to do first:
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Lemma 3.5. There exists another good fibration p̃ : M → T2 for X verifying the

following conditions:

1. p̃−1(θ) is connected (and then, diffeomorphic to T1), for every θ ∈ T2.

2. There exists k0, k1 ∈ N, such that Dp̃(X) ≡ Xα̃, where α̃
.
= (k−1

0 α0, k
−1
1 α1).

Remark 3.6. A very simple but fundamental observation for the future is that the

new vector α̃ continues to be Diophantine. This can be simply proved observing that

∣∣∣r(k−1
0 α0) + s(k−1

1 α1)
∣∣∣ ≥ C

(max{|rk−1
0 |, |sk−1

1 |})τ
≥ C(min{k0, k1})τ

(max{|r|, |s|})τ

Proof of Lemma 3.5. Heuristically, we could apply twice the method used in the proof

of Lemma 3.3 to“unfold”the good fibration p along each direction of T2. Nevertheless,

here we shall develop a different technique that makes the proof a little clearer.

Let us start noticing that the fibration p : M → T2 induces a smooth foliation F

on M which leaves are the connected components of the fibers of p. Since F is a

foliation with all its leaves compact, the space of leaves of F , which will be denoted

by M/F , is a Hausdorff surface.

Moreover, p : M → T2 clearly factors through M/F , i.e. if p̃0 : M → M/F

denotes the canonical quotient map, then there exists a continuous map p′ : M/F →

T2 making the following diagram commutative:

M
p //

p̃0 ""F
FFFFFFF T2

M/F
p′

<<xxxxxxxx

Then, we can easily see that p′ : M/F → T2 is a k-fold covering map (k is the

number of connected components of any fiber of p) and therefore, M/F must be

homeomorphic to T2. So, we can find two integers k0, k1 ∈ N, with k = k0k1, and a
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homeomorphism h : M/F → T2 expanding the previous diagram and getting

M
p //

p̃0

��

T2

M/F h //

p′
77ooooooooooooo

T2

Ek0,k1

OO (3.8)

where Ek0,k1 : (θ0, θ1) 7→ (k0θ
0, k1θ

1) is a k-fold covering. In this way, the map

p̃
.
= h ◦ p̃0 is a smooth fibration satisfying Dp̃(X) ≡ (k−1

0 α0, k
−1
1 α1) as desired.

Having proved that we can find a good fibration with connected fibers satisfying

all the hypotheses of Proposition 3.2, to simplify the notation, we shall assume that

our original good fibration p : M → T2 has connected fibers.

So, writing q0
.
= pr0 ◦ p : M → T1, we get a good fibration for X over T1, having

connected fibers diffeomorphic to T2. On the other hand, since Dp(X) ≡ Xα, being

α a Diophantine vector of R2, we know that {Φt
X} cannot exhibit any periodic orbit.

Hence, we are within the same context of Proposition 3.1. Repeating the same argu-

ments exposed there, we may ensure that our manifold M is smoothly diffeomorphic

to T2 × R
/
(A, 1), where

Â
.
=

 1 0

n0 1

 , (3.9)

and (A, 1) ∈ Diff(T2 × R) is defined by (A, 1) : (x, t) 7→ (Ax, t− 1).

In this way we can reformulate the conclusion of Proposition 3.2 saying that D′(X)

has infinite dimension, provided that n0 6= 0.

Continuing with the notation introduced in Section 3.2, the Poincaré return map

to the fiber q−1
0 (θ) shall be denoted by Pθ, i.e. Pθ = Φ

α−1
0

X

∣∣∣
q−1
0 (θ)

.

Observe that all the things that we have done so far had the purpose of returning

to the setting of Proposition 3.1. Nevertheless, in this context we have additional

geometric information about the Poincaré return map Pθ. First, it preserves a smooth

foliation where all the leaves are circles (see (3.11) for the definition of the invariant
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foliation). As we will see in paragraph 3.3.1, this will let us get a fine system of

coordinates for Pθ. Secondly, since {Φt
x} preserves a smooth volume form, we easily

see that Pθ also preserves a smooth volume form. We shall use this in paragraph 3.3.2

to improve our system of coordinates proving that, in fact, Pθ is linearizable, i.e. it

is smoothly conjugated to an affine map in T2.

Finally, using the fact that Pθ is C∞-conjugated to an affine map and apply-

ing a classical construction, attributed to Anatole Katok [KR01], we shall prove in

paragraph 3.3.3 that there exist infinitely many linear independent X-invariant dis-

tributions, provided Pθ is not isotopic to the identity.

3.3.1 The Invariant Foliation

In this paragraph we shall use the fact that Pθ ∈ Diff(q−1
0 (θ)) preserves a smooth

foliation for proving that Pθ is smoothly conjugated to a skew-product over a rigid

rotation of T1.

For this, first notice that the flow {Φt
X} preserves the codimension-two foliation

in M induced by the fibers of p. In fact it holds

Φt
X(p−1(θ0, θ1)) = p−1(θ0 + tα0, θ

1 + tα1), ∀(θ0, θ1) ∈ T2, ∀t ∈ R. (3.10)

Moreover, by definition, each fiber of p is contained in a fiber of q0. In other words,

the fibration p is inducing a codimension-one foliation on each fiber q−1
0 (θ), and this

foliation happens to be Pθ-invariant.

Then, let us fix some point θ ∈ T1 and consider any smooth diffeomorphism

f0 : T2 → q−1
0 (θ). To simplify forthcoming notation, let us define

P1
.
= f−1

0 ◦Pθ ◦ f0 ∈ Diff(T2).
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Let F be the codimension-one foliation on T2 defined by

F(x)
.
= f−1

0 (p−1(p(f0(x)))), ∀x ∈ T2, (3.11)

where F(x) denotes the leaf of F passing through x.

On the other hand, if we define the vertical foliation V in T2 by

V(θ0, θ1)
.
= {θ0} × T1, (3.12)

and since all the leaves of F are diffeomorphic to T1, it is a very well-known fact that

there exists f1 ∈ Diff(T2) verifying

f1(V(x)) = F(f1(x)), ∀x ∈ T2. (3.13)

Once again, for the sake of simplicity, let us define

P2
.
= f−1

1 ◦P1 ◦ f1.

From (3.11) and (3.13) we easily see that there exists g1 ∈ Diff(T1) satisfying

pr0(P2(θ
0, θ1)) = g1(θ

0), ∀(θ0, θ1) ∈ T2. (3.14)

Then we have the following

Lemma 3.7. g1 is smoothly linearizable, i.e. there exists an orientation-preserving

smooth diffeomorphism h1 : T1 → T1 such that h−1
1 ◦ g1 ◦ h1 is an irrational rigid

rotation on T1.

Proof. First observe g1 preserves orientation on T1, and hence it makes sense to

consider its rotation number ρ(g1) ∈ T1. Since P2 is a minimal diffeomorphism on
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T2, we have that g1 does not exhibit any periodic point, and therefore, the rotation

number ρ(g1) is irrational and hence, it is completely determined by the order of the

points of any orbit.

Then, notice that the order of the points of {gn
1 (x)}n∈Z in T1, for any x in T1, is

the same that the order of the leaves {F(Pn
θ (z))}n∈Z in T2, for any z ∈ T2. On the

other hand, we know the order of the leaves {F(Pn
θ (z))}n∈Z is given by the Poincaré

return map to the global section {θ0} × T1 ⊂ T2 of the flow on T2 induced by the

constant vector field (α0, α1). We can easily see that the dynamics of this return

map is given by the rigid rotation x 7→ x + α1/α0. Therefore, we can affirm that

ρ(g1) = α1/α0 mod Z.

Besides, we know that, by hypothesis, there exist real positive constants C and τ

verifying

|mα0 + nα1| ≥
C

(max{|m|, |n|})τ
, ∀(m,n) ∈ Z2 \ {(0, 0)},

and thus, elementary computations show that, indeed, it holds

∣∣∣m+ n
α1

α0

∣∣∣ ≥ C ′

|n|τ
∀n ∈ Z \ {0}, (3.15)

for some other real constant C ′ > 0.

Finally, taking into account (3.15), we can apply Yoccoz linearization theorem

[Yoc84] to guarantee that g1 is smoothly conjugated to the rigid rotation Rα1/α0 .

This diffeomorphism h1 can be used for defining f2 ∈ Diff(T2) by f2 : (θ0, θ1) 7→

(h1(θ
0), θ1), getting as result

f−1
2 (P2(f2((θ

0, θ1)) =

(
θ0 +

α1

α0

, θ1 + n0θ
0 + η(θ0, θ1)

)
, (3.16)

for some η ∈ C∞(T2,R) and for every (θ0, θ1) ∈ T2.
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Once again let us write

P3
.
= f−1

2 ◦P2 ◦ f2. (3.17)

3.3.2 The invariant Volume Form

In this paragraph we show that there exists a smooth Pθ-invariant volume form and

analyze the consequences of this.

By hypothesis we know that there exists a smooth X-invariant volume form Ω ∈

Λ3(M). So, if we write

ω
.
= iXΩ, (3.18)

we get an X-invariant 2-form. And since X is transverse to kerDq0, we easily see

that ω
∣∣
q−1
0 (θ)

is a Pθ-invariant area form on q−1
0 (θ).

Therefore, defining

ω3
.
= (f0 ◦ f1 ◦ f2)

∗ω ∈ Λ2(T),

we get a P3-invariant area form. Making some abuse of notation we can consider ω3

as an element of M(P3) ⊂ M(T2), identifying the area form with the Borel finite

measure that it induces on T2. Then, by (3.16), we know that it holds

(pr0)∗ω3 = KLeb1, (3.19)

where K
.
=

∫
T2 ω3 is a positive real constant and Leb1 denotes the Haar measure on

T1.

At this point it would be desirable to know that the invariant measure ω3 is a

constant multiple of Leb2, the Haar measure of T2. We could easily achieve our

goal applying the classical Moser’s isotopy theorem [Mos65], but a priori we could

not continue to have the skew-product structure of our diffeomorphism. This is the

reason why it is necessary to get a “foliated version” of Moser’s isotopy theorem. The
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following can be considered a two-dimensional reformulation of a more general result

due to Richard Luz and Nathan dos Santos [LdS98]:

Theorem 3.8. Let Ω1,Ω2 ∈ Λ2(T2) be two volume forms and suppose they satisfy:

∫
T2

Ω1 =

∫
T2

Ω2, and Ω1(pr−1
0 (C)) = Ω2(pr−1

0 (C)),

for every Borel measurable set C ⊂ T1, where we are considering Ω1 and Ω2 as

elements of M(T2). Then there exists H ∈ Diff(T2) isotopic to the identity verifying

H∗Ω1 = Ω2, and H(V(x)) = V(H(x)), ∀x ∈ T2,

where V is the vertical foliation in T2 defined in (3.12).

Proof. See the proof of Theorem 6.1 in [LdS98].

Therefore, if we take into account (3.19), Theorem 3.8 lets us affirm that there

exists a skew product map f3 ∈ Diff(T2) verifying

f3
∗(K(dθ0 ∧ dθ1)

)
= ω3,

From this we see that the diffeomorphism P4
.
= f−1

3 ◦P3 ◦f3 ∈ Diff(T2) preserves

the Haar measure and therefore, we can conclude that

P4(θ
0, θ1) =

(
θ0 +

α1

α0

, θ1 + n0θ
0 + χ(θ0)

)
,

for some real function χ ∈ C∞(T1,R).

Since α1

α0
satisfies Diophantine condition (3.15), arguments analogous to those used

in Example 1.7 let us prove that the rigid rotation x 7→ x+ α1

α0
on T1 is cohomology-
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free, and hence, we can find a function ζ ∈ C∞(T1,R) verifying

ζ(x+ α1α
−1
0 )− ζ(x) = χ(x)−

∫
T1

χ d(Leb1), ∀x ∈ T1.

This function ζ can be used for linearizing P4. More precisely, if we define f4 :

(θ0, θ1) 7→ (θ0, θ1 + ζ(θ0)), we get

f−1
4

(
P4

(
f4(θ

0, θ1)
))

=

(
θ0 +

α1

α0

, θ1 + n0θ
0 +

∫
T1

χ d(Leb1)

)
. (3.20)

3.3.3 Invariant Distributions

Summarizing what we have done in previous paragraphs, we can simply say that there

exists a diffeomorphism F : T2 → q−1
0 (θ) verifying

F−1 ◦Pθ ◦ F = A+ (α1α
−1
0 , β), (3.21)

where A is the automorphism of T2 induced by matrix Â defined in (3.9) and β =∫
T1 χ d(Leb1) is obtained in (3.20).

By (3.9), we know that if n0 = 0, then M is diffeomorphic to T3. Hence, we shall

assume that n0 6= 0 and applying a construction due to Katok [KR01], we will get

infinitely many linearly independent Pθ-invariant distributions on T2.

For this, let us start defining Tm ∈ D′(T2), for each m ∈ Z \ {0}, writing

〈Tm, ψ〉
.
=

∑
k∈Z

ψ̂(kn0m,m)e−2πikm(β+ k−1
2

n0α1α−1
0 ), (3.22)

for each ψ ∈ C∞(T2,R) and where ψ̂ : Z2 → C denotes, as usual, the Fourier transform

of ψ. Clearly, the set {Tm : m ∈ Z \ {0}} is linearly independent. Furthermore, we

can make the following
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Claim 1. If we define B
.
= A+ (α1α

−1
0 , β) ∈ Diff(T2), it holds

〈Tm, ψ ◦B〉 = 〈Tm, ψ〉, ∀m ∈ Z \ {0}, ∀ψ ∈ C∞(T2,R), (3.23)

In fact, we have

ψ̂ ◦B(k, `) = ψ̂ ◦ A(k, `) exp(2πi(kα1α
−1
0 + `β))

= ψ̂((A∗)−1(k, `)) exp(2πi(kα1α
−1
0 + `β))

= ψ̂(k − n0`, `) exp(2πi(kα1α
−1
0 + `β)).

And hence, it holds

〈Tm, ψ ◦B〉 =
∑
k∈Z

ψ̂ ◦B(kn0m,m)e−2πikm(β+ k−1
2

n0α1α−1
0 )

=
∑
k∈Z

ψ̂((k − 1)n0m,m)e2πi(kn0α1α−1
0 +β)me−2πikm(β+ k−1

2
n0α1α−1

0 )

=
∑
k∈Z

ψ̂((k − 1)n0m,m)e−2πi(k−1)m(β+ k−2
2

n0α1α−1
0 )

= 〈Tm, ψ〉,

for every ψ ∈ C∞(T2,R).

Then, taking into account equation (3.21), we see that we may push-forward each

Tm by F for getting infinitely many linearly independent Pθ-invariant distributions

on q−1
0 (θ).

Finally, if we define T̃m ∈ D′(M), for m ∈ Z \ {0}, writing

〈T̃m, ψ〉
.
=

∫
T1

〈
F∗Tm, (ψ ◦ Φ−t

X )
∣∣
q−1
0 (θ+t)

〉
dt, (3.24)

for every ψ ∈ C∞(M,R), we easily see that each T̃m ∈ D′(X)\M(X) and they clearly

form a linearly independent set.
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Chapter 4

The case β1(M) = 0

This chapter aims to prove that there is no cohomology-free vector field on closed

orientable 3-manifolds with vanishing first Betti number.

First of all, notice that by Poincaré duality, a closed 3-manifold with trivial first

rational cohomology group must also have trivial second cohomology group. So, from

now on and until the end of the current chapter, M will denote a rational homological

3-sphere and we shall suppose that there exists a cohomology-free X ∈ X(M).

The general strategy for getting a contradiction from our assumptions consists in

proving first that there exists an X-invariant one-form with no singularity. Then,

we shall analyze the integrability of its kernel, getting two possible cases: either the

kernel of the invariant form is everywhere integrable, or it is a contact structure, being

X collinear with the induced Reeb vector field (see Section 4.2 for more details). The

rest of the proof consists in proving that both cases lead to a contradiction.

4.1 The Invariant 1-form

The main purpose of this section is to prove that the derivative of the flow {Φt
X}

preserves a smooth two-dimensional plane field.

At this point the author would like to thank Giovanni Forni who kindly commu-
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nicated the following result to us:

Theorem 4.1. Let M be a closed 3-manifold such that H1(M,Q) = H2(M,Q) = 0

and let X ∈ X(M) be a cohomology-free vector field. Then there exists λ ∈ Λ1(M)

verifying

LXλ ≡ 0 and λ(p) 6= 0,

for every p ∈M .

Proof. By Proposition 2.3, we know that there exists an X-invariant volume form

Ω ∈ Λ3(M). Hence, if we write ω
.
= iXΩ, Cartan’s formula lets us affirm

0 = LXΩ = d(iXΩ) + iX(dΩ) = dω,

i.e. ω ∈ Λ2(M) is a closed form. On the other hand, by the Universal Coefficient

Theorem we know that H2(M,R) = 0, and thus, there exists a 1-form λ̃ such that

ω = dλ̃. Applying Cartan’s formula once again we obtain

LX λ̃ = d(iX λ̃) + iX(dλ̃) = d(iX λ̃) + iX(iXΩ) = d(iX λ̃).

Notice that iX λ̃ is an element of C∞(M,R), so there exists a smooth function

u : M → R verifying

LXu = −iX λ̃+

∫
M

(iX λ̃)Ω. (4.1)

Therefore, if we define λ
.
= λ̃+ du, it still holds dλ = ω and besides,

LXλ = LX λ̃+ LXdu = d(iX λ̃) + d(iXdu)

= d
(
iX λ̃+ LXu

)
= d

( ∫
M

(iX λ̃)Ω

)
= 0,

i.e. λ is an X-invariant 1-form.

Then, taking into account the minimality of {Φt
X}, we easily see that λ exhibits
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a singularity if and only if λ ≡ 0. On the other hand, since dλ = iXΩ 6= 0, we know

that λ 6≡ 0, and therefore, λ does not have any singularity.

So, we have proved the existence of a singularity-free 1-form λ on M which is

invariant under the flow {Φt
X}. This lets us define an invariant two-dimensional

plane field

Σ
.
= kerλ ⊂ TM.

Now, it seems to be natural to ask ourselves about the integrability of the plane

field Σ. For this, it is interesting to notice that the minimality of {Φt
X} implies that

Σ is either a contact structure or it is everywhere integrable.

These cases will be analyzed in the following two sections.

4.2 The Contact Structure Case

Let us start this section recalling some fundamental facts about Contact Geometry.

Given a (2n + 1)-manifold N , we say that α ∈ Λ1(N) is a contact form if α ∧

(dα)∧2n is a volume form on N . This clearly implies that kerα ⊕ ker dα = TM , and

consequently, there exists a unique vector field Y ∈ X(N), called the Reeb vector field

induced by α, verifying

iY α ≡ 1, and iY dα ≡ 0.

As the completely opposite case we know by Froebenius theorem that the kernel of

a singularity-free 1-form β is completely integrable (i.e. there exists a smooth foliation

F verifying TF = ker β) if and only if β ∧ dβ ≡ 0.

As it was already mentioned at the end of Section 4.1, we have a strict dichotomy:

either λ is a contact form, or Σ is completely integrable. In this section we shall

analyze the first case, i.e. we shall assume that λ is a contact form.

We know that dλ = ω = iXΩ, and therefore, ker dλ = RX. This implies that
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X 6∈ Σ and consequently, by equation (4.1), we have

λ(X) ≡
∫

M

(iX λ̃)Ω 6= 0.

All this implies that X is a constant multiple of the Reeb vector field of λ, and in

particular, they have the same orbits.

A very important problem in Contact Geometry that has received a lot of attention

and has led much of the research in this area during the last decades is the following

conjecture proposed by Alan Weinstein in [Wei79]:

Conjecture 4.2 (Weinstein’s Conjecture). Let N be a closed 3-manifold, α ∈ Λ1(N)

be a smooth contact form and Y ∈ X(N) be its Reeb vector field. Then Y exhibits a

periodic orbit.

Clifford Taubes has recently proved the validity of this conjecture in [Tau], and in

our setting, this leads us to a contradiction: since {Φt
X} is minimal, it cannot have

any periodic orbit.

4.3 The Completely Integrable Case

In this section we shall analyze the situation where Σ is a completely integrable plane

field. As it was already mentioned in Section 1.5, while this work was in progress,

Giovanni Forni communicated to the author that he had been able to exclude this

case using the foliation tangent to Σ to prove that M should be diffeomorphic to a

nilmanifold and {Φt
X} smoothly conjugated to a homogeneous flow. On the other

hand, Stephen Greenfield and Nolan Wallach had already proved in [GW73] that T3

was the only 3-dimensional nilmanifold that supported cohomology-free homogeneous

vector fields1 (see [FF07] for higher dimensional nilmanifolds).

1In fact, in [GW73] they proved this for globally hypoelliptic vector fields.
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Nevertheless, in this work we propose a completely different proof that does not

use the integrability condition in a direct form. In fact, the only information we need

for our proof is that our vector field is contained in the plane field Σ. This approach

has the advantage that seems to be more “usable” for solving the contact structure

case independently of Taubes’ proof of Weinstein’s conjecture, which would be very

desirable (see Section 5.1 for a more detailed discussion about this point).

Our general strategy consists in proving that, under our assumptions about the

topology of M , {Φt
X} must be a positively expansive flow (see Definition 4.13).

For getting this, we will have to carefully study the dynamics of the derivative of

the flow {Φt
X} on TM . This analysis starts in paragraph 4.3.3, where we get our first

result about the angular behavior of DΦX : TM × R → TM , studying the dynamics

of the projective flow (see paragraph 4.3.1 for definitions). Then, in paragraph 4.3.2,

we shall get some results about the radial behavior of flow {DΦt
X} analyzing the

dynamics of the normal flow and proving that it exhibits a parabolic behavior. And

in paragraph 4.3.6, we will prove that our flow {Φt
X} is indeed positively expansive.

On the other hand, using a nice result due to Miguel Paternain [Pat93] about ex-

pansive flows on 3-manifolds, we shall prove in paragraph 4.3.6 that there is no closed

3-manifold supporting positively expansive flows, getting our desired contradiction.

4.3.1 The Normal and Projective Flows

This short paragraph is devoted to introduce some terminology that we shall repeat-

edly use in subsequent paragraphs.

Let us start defining the relation ∼ on TM by

v ∼ w ⇐⇒ π(v) = π(w) and v − w ∈ span(X),

where π : TM →M stands for the canonical vector bundle projection. This is clearly
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an equivalence relation and thus, we can define NX to be the quotient of TM by this

relation. This set NX can be naturally endowed with a unique C∞ vector bundle

structure πN : NX → M such that the quotient map prX : TM → NX given by

prX : v 7→ v̂
.
= {w ∈ TM : v ∼ w} is a smooth vector bundle map. This shall be

called the normal vector bundle induced by X.

Observe that since DΦt
X(X(p)) = X(Φt

X(p)), we easily see the derivative of {Φt
X}

induces a vector bundle flow NΦX : NX × R → NX over {Φt
X}, i.e. it makes sense

to define

NΦt
X(v̂)

.
= prX(DΦt

X(v)), for any v ∈ pr−1
X (v̂),

and any t ∈ R. This flow {NΦt
X}, which will be called the normal flow induced by

{Φt
X}, clearly verifies πN ◦NΦt

X = Φt
X ◦ πN , being NΦt

X : NXp → NXΦt
X(p) a linear

isomorphism.

Then, since {NΦt
X} is a vector bundle flow, it induces a new flow on πP : P(NX) →

M , the projectivization of the normal bundle πN : NX →M . This will be called the

projective flow induced by {Φt
X} and it shall be denoted by PΦX : P(NX) × R →

P(NX). We will write prP : NX\{0} → P(NX)2 for the canonical quotient projection

given by prP : v̂ 7→ (R \ {0})v̂.

4.3.2 Dynamics of the Normal Flow I

In this paragraph we start the analysis of the dynamics of the normal flow {NΦt
X}.

Let us start introducing any smooth Riemannian structure 〈·, ·〉 on TM . This

naturally induces another Riemannian structure 〈·, ·〉NX on NX defining, for each

p ∈M ,

〈v1, v2〉NX
.
= 〈v′1, v′2〉, ∀v1, v2 ∈ NXp,

where v′i is defined as the only element of TpM verifying simultaneously 〈X(p), v′i(p)〉 =

2In this context {0} means the zero section of NX.
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0 and prX(v′i) = vi. The Finsler structures induced by 〈·, ·〉 and 〈·, ·〉NX will be de-

noted by ‖ · ‖ and ‖ · ‖NX , respectively. As usual, we shall also use the Riemannian

structures 〈·, ·〉 and 〈·, ·〉NX for measuring angles between non-null vectors of the same

fiber. Making some abuse of notation, we shall use the symbol ^(·, ·) for both.

Before we state our first result about the radial behavior of vectors in NX, we

need to recall some notions of hyperbolic dynamics:

Given a closed d-manifold B, a vector bundle π : E → B and a non-singular vector

field Y ∈ Xr(B) (r ≥ 2), we say that A : E × R → E is a linear cocycle over {Φt
Y } if

it holds Φt
X ◦ π = π ◦A(·, t), for any t, being the maps A(·, t) : π−1(p) → π−1(Φt

X(p))

linear isomorphisms that verify

A(p, t0 + t1) = A(Φt0
X(p), t1)A(p, t0), ∀p ∈ B, ∀t0, t1 ∈ R.

We shall say that cocycle A is Anosov if there exist two sub-bundles Es, Eu ⊂ E

and real constants C > 0 and ρ ∈ (0, 1) verifying

• Es ⊕ Eu = E,

• A(Eσ
p , t) = Eσ

Φt
Y (p)

, for every p ∈M , every t ∈ R and σ = s, u.

•
∥∥A(·, t)

∣∣
Es

∥∥ ≤ Cρt, and
∥∥A(·,−t)

∣∣
Eu

∥∥ ≤ Cρt, for any t > 0,

where ‖ · ‖ is any Finsler structure on π : E → B.

We shall say that cocycle A is quasi Anosov if, given any v ∈ E, it holds

sup
t∈R

‖A(v, t)‖ <∞⇒ v = 0. (4.2)

The following result appears in different forms, and in fact with different hypothe-

sis, in the works of Ricardo Mañé [Mn77], Robert Sacker and George Sell [SS74], and

James Selgrade [Sel75, Sel76]:
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Proposition 4.3. If the flow {Φt
Y } does not have wandering points, then a cocycle

A is quasi Anosov if and only if it is Anosov.

On the other hand, we shall say that a vector field Y ∈ Xr(B) is Anosov if there

exists a codimension-one DΦY -invariant sub-bundle F ⊂ TB verifying F⊕RX = TB

and such that DΦY |F : F × R → F is an Anosov linear cocycle.

Then, we can state the following result due to Claus Doering:

Proposition 4.4 (Doering [Doe87]). Let suppose that {Φt
Y } does not have any wan-

dering point. Then, Y is an Anosov vector field if and only if its normal flow {NΦt
Y }

is an Anosov linear cocycle (over {Φt
Y }).

Now, we can present our first result about the dynamics of our normal flow

{NΦt
X}:

Lemma 4.5. There exists v̂0 ∈ NX such that v̂0 6= 0 and

sup
t∈R

‖NΦt
X(v̂0)‖NX <∞. (4.3)

Proof. Let us suppose that estimate (4.3) is not satisfied by any non-vanishing vector

in NX. In other words, let suppose that NΦX : NX → R → NX is quasi Anosov.

By Proposition 4.3, {NΦt
X} is an Anosov cocycle. Then, Proposition 4.4 lets us affirm

that X is indeed Anosov.

Finally, it is a very well-known fact that any Anosov flow exhibits (infinitely many)

periodic orbits, which clearly contradicts the minimality of {Φt
X}.

Our second result about the dynamics of the normal flow is the following

Lemma 4.6. The normal flow {NΦt
X} is conservative. More precisely, there exists a

symplectic form κ on the vector bundle πN : NX → M which is invariant under the

action of {NΦt
X}.
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Proof. Notice that ω = iXΩ = dλ is a 2-form on TM verifying iXω ≡ 0. This implies

that we may push-forward this form by prX on NX, i.e. we can find a smooth 2-form

κ on NX such that

κ(prX(v), prX(w)) = ω(v, w), ∀v, w ∈ TpM, ∀p ∈M.

It is very easy to verify that κ is symplectic on NX and that it is NΦX-invariant.

4.3.3 Dynamics of the Projective Flow

This paragraph aims to prove that the dynamics of the projective flow is very simple.

In fact, we shall get that the limit set of {PΦt
X} is a smooth submanifold of P(NX)

which happens to be a graph over M , being the dynamics on this set smoothly

conjugated to {Φt
X}.

For this, first we will need the following result due to Hiromichi Nakayama and

Takeo Noda about the geometry and amount of minimal sets for the projective flow:

Theorem 4.7 (Nakayama & Noda [NN05]). Let V be a closed 3-manifold and let

Y ∈ X(V ) be such that its induced flow ΦY : V × R → V is minimal.

Let PΦY : P(NY )× R → P(NY ) be the projective flow induced by {Φt
Y }. Hence,

we have:

1. If {PΦt
Y } exhibits more than two minimal sets, then V is diffeomorphic to T3

and {Φt
X} is continuously conjugate to an irrational translation.

2. If {PΦt
Y } exhibits exactly two minimal sets M1,M2 ⊂ P(NY ) and {Φt

X} is not

C0-conjugate to an irrational translation on T3, then for any z ∈ V it holds:

M1 ∩ π−1
P (z) or M2 ∩ π−1

P (z) consists of a single point. Moreover, there exists a

residual subset B ⊂ V such that both sets M1∩π−1
P (z) and M2∩π−1

P (z) contain

just a point, for every z ∈ B.
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Since we are assuming that H1(M,Q) = 0, Theorem 4.7 lets us affirm that the

flow {PΦt
X} exhibits at most two minimal sets.

One is given by the plane field Σ. In fact, we have X(p) ∈ Σp for each p ∈ M ,

and hence,

EΣ
.
= prX(Σ) ⊂ NX, (4.4)

is a smooth one-dimensional vector sub-bundle of NX. In this way, EΣ determines

exactly one point on each fiber of πP : P(NX) → M . More precisely, we may define

the point θp ∈ π−1
P (p) by θp

.
= prP(EΣp \ {0}).

Notice that since the plane field Σ is invariant under the action of {DΦt
X}, we have

the flow {NΦt
X} leaves invariant the line field EΣ, and therefore, it holds PΦt

X(θp) =

θΦt
X(p), for any p ∈M and any t ∈ R. So, summarizing we have that

KΣ
.
= {θp : p ∈M} ⊂ P(NX) (4.5)

is a minimal set for {PΦt
X}.

Finally, as it was mentioned above, we shall prove that KΣ is indeed the only

minimal set, and consequently, it is the α- and ω-limit of any point in P(NX):

Theorem 4.8. KΣ ⊂ P(NX) defined in (4.5) is the only minimal set for {PΦt
X}.

For proving Theorem 4.8, we shall suppose that there exists another PΦX-invariant

minimal set K0 ⊂ P(NX) (i.e. different from KΣ), and for the sake of clarity of the

exposition, we will separate the proof in several lemmas:

Lemma 4.9. Sub-bundle EΣ ⊂ NX defined in (4.4) is orientable, and therefore, it

admits a non-vanishing section Ŷ0 ∈ Γ(EΣ).

Proof. Since Σ was defined as the kernel of a non-singular 1-form and by hypothesis,

M is orientable, we have that Σ → M is orientable. On the other hand, our vector

field X can be considered as a non-singular element of X ∈ Γ(Σ).
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This lets us affirm that Σ → M is a globally trivial vector bundle, and therefore,

we can find a smooth section Y0 ∈ Γ(Σ) verifying Σp = span{X(p), Y0(p)}, for every

p ∈M .

Finally, defining Ŷ0
.
= prX(Y0) we get our desired section of EΣ →M .

Lemma 4.10. Assuming that there exists another minimal set K0 ⊂ P(NX), we can

find a non-vanishing Ŷ ∈ Γ(EΣ) verifying

NΦt
X

(
Ŷ (p)

)
= Ŷ (Φt

X(p)), ∀p ∈M, ∀t ∈ R. (4.6)

Proof. Let LΣ ∈ C∞(M,R) be defined by

LΣ(p)Ŷ0(p) = lim
t→0

NΦ−t
X (Ŷ0(Φ

t
X(p)))− Ŷ0(p)

t
, ∀p ∈M.

Using the fact that X is cohomology-free, we get a function u ∈ C∞(M,R) veri-

fying

LXu = −LΣ +

∫
M

LΣΩ. (4.7)

Then, if we define Ŷ
.
= euŶ0, applying equation (4.7) we clearly get

lim
t→0

NΦ−t
X (Ŷ (Φt

X(p)))− Ŷ (p)

t
=

(∫
M

LΣΩ

)
Ŷ (p), ∀p ∈M,

and therefore, it holds

NΦt
X(Ŷ (p)) = exp

(
t

∫
M

LΣΩ

)
Ŷ (Φt

X(p)), (4.8)

for every p ∈M and every t ∈ R.

Notice that by equation (4.8),
∫

M
LΣΩ is a Lyapunov exponent of the linear cocycle

{NΦt
X}. So, let us suppose that

∫
M
LΣΩ 6= 0. In this case, the one-dimensional sub-

bundle EΣ ⊂ NX is uniformly hyperbolic.
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On the other hand, by Theorem 4.7, we know thatK0 andKΣ are the only minimal

sets on P(NX), and moreover, we can find a point p0 ∈ M such that θ′ ∈ P(NX) is

the only point in K0 ∩ π−1
P (p0).

Observe that, since K0 and KΣ are disjoint closed sets, we have that there exists

a real constant C > 0 such that

distP
(
PΦt

X(θp0), PΦt
X(θ′)

)
> C, ∀t ∈ R, (4.9)

where distP denotes the distance function on P(NX) induced by the Riemannian

structure 〈·, ·〉NX .

Then, taking into account conservativeness proved in Lemma 4.6, estimate (4.9)

and equation (4.8), we have that any vector v̂ ∈ NXp0 whose prX-projection is equal

to θ′ ∈ K0 ∩ π−1
P (p0) will satisfies the following estimate:

∥∥NΦt
x(v̂)

∥∥
NX

≤ C ′ exp

(
− t

∫
M

LΣΩ

)
‖v̂‖NX , ∀t ∈ R, (4.10)

and for some real constant C ′ > 0, that just depends on constant C of estimate (4.9).

From equation (4.8) and estimate (4.10) (and supposing that
∫

M
LΣΩ 6= 0), we

clearly conclude that Oseldets splitting (see [Ose68]) of the linear cocycle {NΦt
X}

is not just measurable, but continuous and uniformly hyperbolic. This implies that

{NΦt
X} is an Anosov cocycle, and by Proposition 4.4, we know that X must be

Anosov, which is clearly impossible, since {Φt
X} does not have any periodic orbit.

Therefore, the absurd comes from our supposition that
∫

M
LΣΩ could be non-null.

Finally, equation (4.8) let us assure that Ŷ is a NΦX-invariant section, as desired.

Now, we are ready for proving the theorem:

Proof of Theorem 4.8. Let K0 ⊂ P(NX), p0 ∈ M and θ′ ∈ K0 ∩ π−1
P (p0) ∈ P(NX)

as above. Let v̂ ∈ NXp0 verifying prP(v̂) = θ′.

45



We can rewrite estimate (4.9) as

inf
t∈R

^
(
Y (Φt

X(p)), NΦt
X(v̂)

)
> 0. (4.11)

Putting together equation (4.6), estimate (4.11) and Lemma 4.6, we get that there

exists a real constant C ′′ > 1 verifying

1

C ′′ <
∥∥NΦt

X(v̂)
∥∥

NX
< C ′′, ∀t ∈ R. (4.12)

Now, consider another vector ŵ ∈ NXp0 \ {0} such that prP(ŵ) 6∈ KΣ ∪K0. Since

KΣ and K0 are the only minimal sets for {PΦt
X}, we know that the ω-limit of prP(ŵ)

must be either K0 or KΣ. Let us suppose that the positive semi-orbit of prP(ŵ)

accumulates on KΣ. This implies that

lim
t→+∞

^
(
Ŷ

(
Φt

X(p0)
)
, NΦt

X(ŵ)
)

= 0. (4.13)

Once again, taking into account that {NΦt
X} preserves the symplectic form κ and

section Ŷ ∈ Γ(NX), we see that equation (4.13) implies that

∥∥NΦt
x(ŵ)

∥∥ −→∞, as t→ +∞. (4.14)

Finally, we clearly see that estimates (4.11), (4.12) and (4.14) violate conserva-

tiveness.

We can analogously get a contradiction supposing that the ω-limit of prP(ŵ) is

K0, and the we conclude that KΣ is the only minimal set for {PΦt
X}.
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4.3.4 Dynamics of the Normal Flow II

In paragraph 4.3.2 we begun the analysis of the dynamics of the normal flow {NΦt
x}.

After what we have just done in paragraph 4.3.3, here we shall see that some of the

results previously gotten can be considerably improved. In fact, we will completely

characterize the dynamics of {NΦt
X}, showing that it exhibits a parabolic behavior.

In Lemma 4.5 we showed that there was some non-null vector in NX such that

its whole NΦX-orbit was bounded. On the other hand, in Lemma 4.10, under the

assumption that there were two different minimal sets for {PΦt
X}, we proved that

there existed Ŷ ∈ Γ(EΣ) which was invariant under the action of {NΦt
X}. Our first

result of this paragraph consists in proving that we can get the same invariant section

assuming in this case that KΣ is the only minimal set:

Lemma 4.11. There exists a non-vanishing section Ŷ ∈ Γ(EΣ) verifying

NΦt
X

(
Ŷ (p)

)
= Ŷ (Φt

X(p)), ∀p ∈M, ∀t ∈ R. (4.15)

Proof. Let Ŷ0, Ŷ ∈ Γ(EΣ) and LΣ ∈ C∞(M,R) be as in Lemma 4.10.

Recalling equation (4.8), we have

NΦt
X(Ŷ (p)) = exp

(
t

∫
M

LΣΩ

)
Ŷ (Φt

X(p)), ∀t ∈ R.

On the other hand, by Lemma 4.5, we know that there exists v̂0 ∈ NX \{0} which

NΦX-orbit is bounded, and applying Theorem 4.8 we get

lim
t→±∞

distP

(
prP

(
Ŷ

(
Φt

X

(
πN(v̂0)

)))
, prP

(
NΦt

x(v̂0)
))

= 0. (4.16)

This clearly implies that ‖NΦt
X(Ŷ )‖NX cannot exhibit exponential growth, and

therefore,
∫

M
LΣΩ = 0, getting the desired invariance of Ŷ .
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Next, notice that πN : NX →M is an orientable vector bundle with 2-dimensional

fibers and Ŷ is non-singular section of this bundle. This clearly implies that πN : NX →

M is globally trivial, in particular, we can find a smooth section Ẑ0 ∈ Γ(NX) verifying

κ
(
Ŷ (p), Ẑ0(p)

)
= 1, ∀p ∈M, (4.17)

and in particular, it holds span{Ŷ , Ẑ0} = NX.

Theorem 4.8 let us affirm that there exists σ ∈ {−1, 1} satisfying

lim
t→+∞

^
(
NΦt

X

(
Ẑ0(p)

)
, σŶ

(
Φt

X(p)
))

= 0,

lim
t→−∞

^
(
NΦt

X

(
Ẑ0(p)

)
,−σŶ

(
Φt

X(p)
))

= 0.

(4.18)

There is no lost of generality if we suppose that σ = 1 in (4.18).

Using {Ŷ , Ẑ0} as an ordered basis for NX, NΦt
X : NXp → NXΦt

X(p) can be rep-

resented as an element of SL(2,R), and indeed, it will have the following form:

NΦt
X(p) =

1 â(p, t)

0 1

 , (4.19)

where â : M × R → R is a smooth function satisfying â(·, 0) = 0.

Then, if we define Â ∈ C∞(M,R) by Â(p)
.
= ∂tâ(p, t)

∣∣
t=0

, we can find a smooth

real function B̂ verifying

LXB̂ = −Â+

∫
M

ÂΩ. (4.20)

Function B̂ can be used for defining a new section

Ẑ
.
= Ẑ0 + B̂Ŷ ∈ Γ(NX),

48



and in this way we clearly have

NΦt
X(Ẑ(p)) = Ẑ

(
Φt

X(p)
)

+ t

(∫
M

ÂΩ

)
Ŷ

(
Φt

X(p)
)
. (4.21)

for any t ∈ R and p ∈M .

From (4.18) and (4.21) we easily see that
∫

M
ÂΩ > 0, proving that in fact, {NΦt

X}

exhibits a parabolic behavior as desired.

4.3.5 Dynamics on Σ

In this short paragraph we shall analyze the dynamics of the flow DΦX : TM ×R →

TM restricted to the invariant sub-bundle Σ →M .

Our main result consists in proving that {DΦt
X} on Σ ⊂ TM , as {NΦt

X} on NX,

has a parabolic behavior. In fact, the techniques used in here are very similar to

those used in paragraph 4.3.2. The only novelty is that a priori we do not have any

information about the projective flow induced by DΦX : Σ× R → Σ.

In this case we know that, for each p and t, DΦt
X(X(p)) = X(Φt

X(p)) and therefore,

we should prove that all the vectors non-collinear with X have polynomial growth

and their directions converge to the direction of X.

Let us start considering any smooth vector field Y0 ∈ Γ(Σ) ⊂ X(M) verifying

prX(Y0(p)) = Ŷ (p), ∀p ∈M. (4.22)

Then, notice that putting together equations (4.6) and (4.22) we can affirm that

there exists a smooth function A ∈ C∞(M,R) verifying

LXY0 = AX. (4.23)
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Once again, since X is cohomology-free, there exists B ∈ C∞(M,R) satisfying

LXB = −A+

∫
M

AΩ. (4.24)

We use this function B for defining a new vector field

Y
.
= Y0 +BX ∈ Γ(Σ) ⊂ X(M). (4.25)

Notice that it continues to hold span{X, Y } = Σ ⊂ TM and, additionally, we get

LXY ≡
(∫

M

AΩ

)
X. (4.26)

Thus, we have the following

Lemma 4.12. Function A ∈ C∞(M,R) given by equation (4.23) satisfies

∫
M

AΩ 6= 0.

Proof. Contrarily, let us suppose that
∫

M
AΩ = 0.

Then, equation (4.26) is equivalent to say that [X, Y ] ≡ 0, i.e. X and Y commute.

Since X and Y generate Σ, in particular we have that they are everywhere linearly

independent, and so, these vector fields induce a locally free R2-action on M .

Finally, a classical result due to Harold Rosenberg, Robert Roussarie and David

Weil [RRW70] affirms that the only orientable closed 3-manifolds admitting locally

free R2-actions are 2-torus bundles over a circle, and our manifold M clearly does not

satisfies this property since we are assuming that H1(M,Q) = 0.

As a corollary of this lemma we easily see that, given any p ∈ M , it holds
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‖DΦt
X(Y (p))‖ → ∞, uniformly as t→ ±∞, and

lim
t→+∞

^
(
DΦt

X(Y (p)), σ0X(Φt
X(p))

)
= 0,

lim
t→−∞

^
(
DΦt

X(Y (p)),−σ0X(Φt
X(p))

)
= 0,

(4.27)

where σ0
.
= sign

(∫
M
AΩ

)
∈ {1,−1} and ^(·, ·) stands for the angle (measured with

respect to the Riemannian structure 〈·, ·〉) between two non-null tangent vectors.

For the sake of simplicity, and since we do not loose any generality, we shall assume

that
∫
AΩ > 0, and thus, σ0 = 1.

Summarizing what we have just proved, DΦt
X : Σp → ΣΦt

X(p) is a parabolic linear

map, and taking the ordered set {X, Y } as basis of Σ ⊂ TM , we can represent it by

DΦt
X

∣∣∣
Σ

=

1 t
(∫

M
AΩ

)
0 1

 . (4.28)

4.3.6 Expansiveness

Let us start this paragraph recalling the definition of expansive flow due to Rufus

Bowen and Peter Walters [BW72]:

Definition 4.13. Given a compact metric space (K, d), a continuous flow Ψ: K×R →

K is called expansive if it satisfies the following property:

For every ε > 0, there is a δ > 0 such that if there exists a pair of points x, y ∈ K

and a homeomorphism h : R → R with h(0) = 0 verifying

d(Ψt(x),Ψh(t)(y)) < δ, ∀t ∈ R, (4.29)

then y = Ψτ (x), for some τ ∈ (−ε, ε).

Moreover, we shall say that Ψ is positively expansive (respec. negatively expan-

sive) if above condition is satisfied replacing R by (0,+∞) (respec. (−∞, 0)) in
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equation (4.29). More precisely, if it holds y = Ψτ (x), for some τ ∈ (−ε, ε), whenever

d(Ψt(x),Ψh(t)(y)) < δ, ∀t ∈ (0,+∞) (∀t ∈ (−∞, 0)).

Our main goal now consists in proving that our flow {Φt
X} is positively (and in

fact also negatively) expansive.

For this, let us start observing that in paragraph 4.3.4 we have constructed a

smooth section Ẑ ∈ Γ(NX) that verifies equation (4.21), where
∫

M
ÂΩ 6= 0 (in fact,

we have supposed that this constant is positive). Then, if Z ∈ X(M) is any smooth

vector field verifying prX(Z) = Ẑ, we will clearly have that for every p ∈M ,

∥∥DΦt
X(Z(p))

∥∥ →∞, when t→ ±∞, (4.30)

being the convergence uniform.

On the other hand, equations (4.18) and (4.27) let us affirm that (modulo our sign

assumptions made there) for every p it holds

^
(
DΦt

X

(
Z(p)

)
, X

(
Φt

X(p)
))
→ 0, when t→ +∞, (4.31)

being this convergence uniform, too.

Then, taking into account that {X, Y, Z} is a global basis for TM , jointly with

equations (4.12), (4.27), (4.30) and (4.31), we easily get

Proposition 4.14. The flow {Φt
X} is positively expansive.

And then we are very close to the end of our proof. In fact, as we will shortly

see, there is no closed 3-manifold supporting positively expansive flows. The essential

tool for getting this is the work due to Miguel Paternain [Pat93] about the existence

of stable and unstable foliations for expansive flows on 3-manifolds.

Let us briefly recall Paternain’s results. For this we need to introduce some ad-
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ditional notation. Let K be any closed manifold, dist : K ×K → R be any distance

compatible with the topology of K and Ψ: K × R → K be a continuous expansive

flow.

As usual, given any x ∈ K, we can define its stable and unstable sets writing

W s(x,Ψ)
.
=

{
y ∈ K : d

(
Ψt(x),Ψt(y)

)
→ 0, as t→ +∞

}
,

W u(x,Ψ)
.
=

{
y ∈ K : d

(
Ψ−t(x),Ψ−t(y)

)
→ 0, as t→ +∞

}
,

respectively.

Thus, we can precisely state

Theorem 4.15 (Paternain [Pat93]). If K is a closed 3-manifold and Ψ is an expansive

flow on K, then there exists a finite set (maybe empty) of periodic orbits γ1, γ2, . . . , γn

of Ψ such that the partitions

F σ =

{
W σ(x,Ψ) : x ∈M \

n⋃
i=1

γi

}
, for σ = s, u,

are C0 codimension-two foliations on M \
⋃
γi.

In our particular case the flow {Φt
X} has no periodic orbit, and hence, since we

have proved that it is positively expansive, in particular, it is expansive and then, this

theorem lets us affirm that, given any point p ∈ M , the set W s(p,ΦX) does not just

reduce to {p}. This clearly contradicts the fact that {Φt
X} is positively expansive,

and we finish our proof.
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Chapter 5

Final Remarks and Problems

5.1 On Manifolds with β1(M) = 0

5.1.1 3-manifolds and Weinstein Conjecture

As it was already explained in the introduction of this work, the main goal behind Ka-

tok Conjecture is to understand all possible (topological and analytical) obstructions

than can appear when we look for smooth solutions of cohomological equations.

In Chapter 3 we analyzed the existence of cohomology-free vector fields on 3-

manifolds with non-zero first Betti number. In all the stages of the proof of Theorem A

it was rather clear how the topology of the manifold imposed different obstructions

for the existence of cohomology-free vector fields, and all those obstructions let us

completely characterize the supporting manifold.

Unfortunately, the situation is not that clear when we have to prove that there

is no rational homological 3-sphere supporting cohomology-free vector fields. First,

in Section 4.1, we proved that a hypothetical cohomology-free vector field on such a

manifold had to preserve a non-singular 1-form and the analysis of the existence of

obstructions was very satisfactory in the case that the kernel of the invariant 1-form

was integrable (Section 4.3): solving some cohomological equations we completely
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characterized the dynamics of the derivative of the flow and we saw that there was

no flow with that behavior on the tangent bundle.

Nevertheless, when we had to analyze the case where the kernel of the invariant

1-form determined a contact structure, we just proved that our hypothetical vector

field was collinear with the Reeb vector field induced by the invariant 1-form, and

then we finished our proof invoking Taubes’ work on Weinstein Conjecture. From

a purely formal point of view, this is a correct and complete proof, but if we take

into account the real goal behind Katok Conjecture, we cannot affirm that this is

a satisfactory one, because we are not understanding the nature of the obstructions

that appear in this case. This is mainly due to the fact that Taubes’ techniques used

in [Tau] are extremely different to those used in the rest of this work.

Hence, it would be very desirable to complete the analysis that we started in

Section 4.2 not invoking Taubes’ proof of Weinstein Conjecture, getting a more “co-

homological” proof.

5.1.2 Higher Dimensional Manifolds

As the reader could see in Chapter 3, Theorem 2.7 due to Federico and Jana Rodŕıguez-

Hertz had a very important role in the proof of Theorem A.

Nevertheless, if the first Betti number of our supporting manifold is zero, then

this result does not supply any non-trivial information.

Therefore, it seems reasonable to propose the following

Problem 5.1. Let M be a closed d-manifold, with d ≥ 5. Let us assume that there

exists X ∈ X(M) cohomology-free. Then, does there exist a good fibration for X

p : M → T1? In particular, must it hold β1(M) ≥ 1?

Another problem that seems to be very helpful (but difficult) for understanding

the dynamics of cohomology-free diffeomorphisms on higher dimensional manifolds,

is the following one proposed by Richard Luz and Nathan dos Santos [LdS98]:
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Problem 5.2. If M is a closed manifold, f ∈ Diff(M) is cohomology-free and n ∈

Z \ {0}, is it true that fn is cohomology-free?

Motivated by this problem, we propose the following one for vector fields:

Problem 5.3. If M is a closed manifold, p : M̃ →M a k-fold covering with k ≥ 2 and

X ∈ X(M) cohomology-free, is the p-lift vector field X̃
.
= p∗(X) ∈ X(M) cohomology-

free?

5.2 Globally Hypoelliptic Vector Fields

In the theory of Partial Differential Equations there is a family of smooth vector fields

that has been extensively studied and that, a priori, strictly contains the family of

cohomology-free vector fields. These are the globally hypoelliptic vector fields :

Definition 5.4. Let M be a closed orientable manifold and X ∈ X(M). We say that

X is globally hypoelliptic if given any T ∈ D′(M), it holds

LXT ∈ C∞(M,R) ⊂ D′(M) ⇒ T ∈ C∞(M,R).

It is very easy to see that every cohomology-free vector field is indeed globally

hypoelliptic, but a priori these two concepts are not equivalent.

The first result concerning the classification of globally hypoelliptic vector fields

is due to Stephen Greenfield and Nolan Wallach who proved in [GW73] that, modulo

C∞ conjugacy, the constant vector fields on T2 verifying a Diophantine condition

like (1.7) are the only examples on closed surfaces. This led them to propose the

following

Conjecture 5.5 (Greenfield-Wallach Conjecture [GW73]). Tori are the only closed

manifolds that support globally hypoelliptic vector fields.
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It is interesting to remark that this implies Katok Conjecture. In fact, Chen

Wenyi and M. Y. Chi have proved in [CC00] that the only globally hypoelliptic vector

fields on tori are those smoothly conjugated to constant vector fields satisfying a

Diophantine condition like (1.7).

However, one of the main results in [CC00] is Theorem 2.2 which asserts that any

globally hypoelliptic vector field on Td is cohomology-free. As Federico Rodŕıguez-

Hertz has recently observed, the proof of this result, presented by Chen and Chi in

[CC00], continues to hold on any closed manifold, and consequently, both families

of vector fields coincide. Therefore, we have that Greenfield-Wallach Conjecture and

Katok Conjecture are indeed equivalent.

5.3 Positively Expansive Flows

Given a compact metric space (K, d) and a homeomorphism h : K → K, we say that

h is expansive if there exists ε > 0 such that, for any pair of distinct points x, y ∈ K,

it holds

sup
n∈Z

d (fn(x), fn(y)) > ε,

and we say that h is positively expansive if it holds

sup
n∈N0

d (fn(x), fn(y)) > ε,

It is a very well known fact that h : K → K is positively expansive if and only if

K is a finite set.

On the other hand, in Section 4.3.6, invoking a result due to Miguel Pater-

nain [Pat93], we easily proved that there does not exist any positively expansive flow

on closed 3-manifolds. However, we do not have any knowledge about the existence

of positively expansive flows on higher dimensional manifolds. In fact, taking into
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account the simple classification of positively expansive homeomorphisms, it seems

natural to ask:

Problem 5.6. If Ψ: K × R → K is a fixed-point free positively expansive flow, is it

true that K is homeomorphic to a finite disjoint union of copies of T1?
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