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Resumo

O estudo do comportamento assintótico de um apart́ıcula marcada começa com o trabalho
de Einstein de 1905 sobre o movimento Browniano. No trabalho de Einstein, a part́ıcula
marcada é diferente das outras, e é assumido que ela não influi na evolução das outras
part́ıculas. Esta hipótese corresponde a supor que o sistema está em equiĺıbrio. No caso
em que a part́ıcula marcada é igual às outras part́ıculas, também é possivel provar que o
comportamento assintótico da part́ıcula marcada é dado por um movimento Browniano.
A variância do movimento Browniano limite depende da densidade de part́ıculas, e da
natureza da interação. No processo de exclusão simples na rede infinita, a interação das
part́ıculas é dada pelo prinćıpio de exclusão: a evoluição das part́ıculas é dada por um
passeio aleatório simples, condicionado a não ter mais de uma part́ıcula por śıtio.

No caso especial em dimensão um, no qual os saltos são simétricos e a vizinhos
próximos, a posição relativa das part́ıculas não é alterada pela dinâmica. Em conseqüência,
a variância do movimento Browniano limite para uma part́ıcula marcada neste caso se
anula, independentemente da densidade de part́ıculas. Para obter um comportamento
assintótico não trivial, uma escala sub-difusiva é introduzida. O limite de escala neste
caso é dado por um moviemnto Browniano fracionário.

Este trabalho é composto de duas partes. Na primeira parte, é considerado o modelo
de exclusão simples no caso em que o limite de escala para a part́ıcula marcada é dado por
um movimento Browniano não degenerado. Provaremos que o coeficiente de difusão do
processo em volume infinito pode ser aproximado pelo coeficiente de difusão do processo
de exclusão simples em volume finito, quando o volume é arbitráriamente grande.

Na segunda parte deste trabalho, consideraremos o caso especial em que o limite de
escal sub-difusivo. Obteremos o limite de escala da part́ıcula marcada para o processo
fora de equiĺıbrio. Neste caso, a posição assintótica da part́ıcula marcada é dada pela
equação diferencial de transporte associada á equação do calor, e as flutuações da posição
da part́ıcula marcada são dadas por um movimento Browniano fracionário não-homogêneo
de parâmetros calculados em termos das flutuações da densidade emṕırica de part́ıculas
com respeito ao limite hidrodinâmico do modelo.

v



Chapter 1

Finite approximations of the

diffusion coefficient

In [KV], Kipnis and Varadhan proved an invariance principle for the position of a marked
particle in a symmetric simple exclusion process in equilibrium. Their proof relies on
a central limit theorem for additive functionals of a Markov process. Later, this result
was generalized to mean zero simple exclusion process (see [V]), and asymmetric simple
exclusion process in dimension d ≥ 3 in [SVY].

The diffusion matrix of the limiting Brownian process is a function D(α) of the density
of particles, and is given by a variational formula.

The method of proof used by Kipnis and Varadhan works directly in infinite systems,
and it raises naturally the question about the stability of the diffusion coefficient under
finite-dimensional approximations. More precisely, consider a finite-dimensional version
of the simple exclusion process on the torus {−N, . . . , 0, . . . , N}d. In order to obtain an
ergodic process, fix the total number K of particles. When N is large enough, the motion
of a tagged particle on this finite system has a unique canonical lifting to Zd. We obtain
in this manner a process XN (t) with values in Zd. Let DN,K the variance of the limiting
Brownian motion of the scaled process εXN (t/ε2) when ε → 0. We prove that

lim
N→∞

K/(2N)d→α

DN,K = D(α)

for mean zero simple exclusion process, and for asymmetric simple exclusion process in
dimension d ≥ 3.

This limit was first considered in [LOV2] for symmetric simple exclusion process, and
the proof presented there follows from a variational formula for the diffusion coefficient
that depends on the Sobolev dual norm associated to the generator of the process, and
from a convergence result for the Sobolev dual norms of the finite-dimensional approxima-
tions. Let h, g be local functions with mean zero with respect to all the Bernoulli product
measures µα, that assign density α to each coordinate. Denote by 〈 , 〉α the inner product
in L2(µα). Let µN,K be the uniform measure over the configurations with K particles on
the torus {−N, . . . , 0, . . . , N}d, and 〈 , 〉µN,K

the inner product in L2(µN,K). Let L (resp.
LN) be the generator of the process in Zd (resp. the torus). Suppose for a moment that
(−L)−1g exists and is local. Then,

lim
N→∞

K/(2N)d→α

〈h, (−LN)−1g〉N,K = 〈h, (−L)−1g〉α,

because (−L)−1g is local and the equivalence of ensembles. The desired result will be
consequence of a generalization of this result for a larger class of functions h, g.
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Chapter 1: Finite approximations of the diffusion coefficient 2

1.1 Notation and Results

Consider a probability measure p(·) of finite range on Zd: p(z) = 0 if |z| is large enough.
Suppose that p(0) = 0 and that the random walk with transition rate p(·) is irreducible,
that is, the (finite) set {z; p(z) > 0} generates the group Zd. The simple exclusion process

associated to p(·) corresponds to the Markov process defined on X = {0, 1}Z
d

, whose
generator L0 acting on local functions f is given by

L0f(η) =
∑

x,y∈Zd

p(y − x)η(x)(1 − η(y))[f(σxyη) − f(η)],

Here η ∈ X denotes a configuration of particles in Zd. In particular, η(x) = 1 if there
is a particle at the site x, and η(x) = 0 otherwise, and σxyη is the configuration obtained
from η exchanging the occupation numbers at x and y:

σxyη(z) =











η(y), if z = x

η(x), if z = y

η(z), otherwise.

If p(z) = p(−z) for all z, the process will be called symmetric; if
∑

zp(z) = 0, it will be
called of mean zero, and if

∑

z∈Zd zp(z) = m 6= 0, the process will be called asymmetric.
For each α ∈ [0, 1], let να be the Bernoulli product measure in X , that is, the product

measure such that να[η(x) = 1] = α for each x ∈ Zd. It is not hard to prove that να is an
invariant measure for the process generated by L0.

In this model, particles are indistinguishable. In order to study the time evolution of
a single particle, we proceed in the next way: let η ∈ X be an initial state with a particle
at the origin (that is, η(0) = 1). Tag this particle, and let ηt, resp. Xt, be the time
evolution of the exclusion process starting from η and the tagged particle starting from
x = 0. Let ξt(x) = ηt(x + Xt) be the process as seen by the tagged particle. We call ξt

the environment process.
It is clear that Xt is not a Markov process, due to the interaction between the tagged

particle and the environment, but (ηt, Xt) and ξt are Markov processes, the last one defined

in the state space X∗ = {0, 1}Z
d
∗, where Zd

∗ = Zd\{0}. The generator of the process ξt,
acting on local functions f , is given by L = L0 + Lτ , where

L0f(ξ) =
∑

x,y∈Zd
∗

p(y − x)ξ(x)(1 − ξ(y))[f(σxyξ) − f(ξ)],

Lτf(ξ) =
∑

z∈Zd
∗

p(z)(1 − ξ(z))[f(τzξ) − f(ξ)].

The first part of the generator, L0, takes into account the jumps of the environment
(that is, all the particles but the tagged one), while the second part takes into account the
jumps of the tagged particle.

In this formula, τzξ is the configuration obtained making the tagged particle (at the
origin) jump to site z, and then bringing it back to the origin with a translation:

τzξ(x) =

{

0, if x = −z

ξ(x + z), if x 6= −z.

For the process ξt, we have a one-parameter family of invariant ergodic measures
{µα}α∈[0,1], where µα is the Bernoulli product measure defined in X∗ of density α:

µα[ξ(x) = 1] = α for all x ∈ Zd
∗, independently for each site (see [S]).



3 1.1 Notation and Results

Note that the position of the tagged particle can be calculated in terms of jump pro-
cesses associated to ξt. Define Nz

t as the number of translations by z of ξt, that is,
Nz

t = Nz
t− + 1 ⇐⇒ ξt = τzξt−. Then, Xt =

∑

z zNz
t .

In this context, Kipnis and Varadhan proved a central limit theorem for the position
of the tagged particle when the environment process is in equilibrium, with distribution
µα. They proved that εXt/ε2 converges, when ε goes to zero, to a Brownian motion with
diffusion coefficient D(α), which can be described in terms of the Sobolev norms associated
to the operator L in L(µα).

This result has been generalized by Varadhan to the mean zero case (in any dimension),
and by Sethuraman, Varadhan and Yau for the asymmetric case in dimension d ≥ 3, in
which case it is proved that ε[Xt/ε2 −mt(1−α)/ε2] converges to a Brownian motion with
diffusion coefficient D(α), given by

atD(α)a = (1 − α)
∑

z∈Zd
∗

(z · a)2p(z) − 2〈wa, (−L)−1va〉α, (1.1)

where a ∈ Rd, 〈 , 〉α is the inner product in L2(µα), and the functions va, wa are local
functions defined by

va =
∑

z∈Zd

(z · a)p(z)[α − η(z)]

wa =
∑

z∈Zd

(z · a)p(z)[α − η(−z)].

In general, L is not an invertible operator, and the meaning of this expression must be
clarified. This will be done in sections 1.2 and 1.3.

Let N be a positive integer and define T d
N = {−N, ..., 0, ..., N}d, the d-dimensional

discrete torus of (2N)d points, with −N and N identified. Using the same probability
measure p(·), we can define a simple exclusion process evolving in T d

N . The space state

now will be XN = {0, 1}T d
N , and the generator LN acting on any function f will be given

by

LNf(ξ) =
∑

x,y∈T d
N

p(y − x)η(x)(1 − η(y))[f(σxyη) − f(η)].

In the same way, it is possible to define the environment process in the torus T d
N,∗ =

T d
N\{0}. In this case, the environment as seen by the tagged particle is a Markov process

evolving in the space XN,∗ = {0, 1}T d
N,∗ and generated by the operator LN = L0,N +Lτ,N ,

where

L0,Nf(ξ) =
∑

x,y∈T d
N,∗

p(y − x)ξ(x)(1 − ξ(y))[f(σxyξ) − f(ξ)],

Lτ,Nf(ξ) =
∑

z∈T d
N,∗

p(z)(1 − ξ(z))[f(τzξ) − f(ξ)].

It is clear, by conservation of the number of particles, that for 0 < K ≤ (2N)d,
the probability measure µN,K , uniform over the set XN,K = {ξ ∈ XN,∗;

∑

x∈T d
N,∗

ξ(x) =

K − 1} of configurations with K particles, is an invariant ergodic measure for the jprocess
generated by LN .

For N large enough it is possible to lift the motion of the tagged particle to Zd. Let
XN

t the position of the tagged particle in Zd. It is not hard to prove an invariance principle
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for XN
t : ε[xN

t/ε2 − mt(1 − αN,K)/ε2] converges to a Brownian motion of variance DN,K

given by

atDN,Ka = (1 − αN,K)
∑

z∈Zd

(a · z)2p(z)

− 2
〈

wa − 〈wa〉N,K , L−1
N (va − 〈va〉N,K)

〉

N,K
.

(1.2)

In this formula, 〈 , 〉N,K (resp. 〈 〉N,K) stands for the inner product in L(µN,K)
(resp. the mean with respect to µN,K), and

αN,K =
K − 1

(2N)d − 1
.

Note that, for f : XN,K → R with 〈f〉N,K = 0, L−1
N f is well defined. In fact, for f we

have that

DN,K(f) = 〈f,−LNf〉N,K

=
1

4

∑

x,y∈T d
N,∗

(p(y − x) + p(x − y))

∫

[f(σx,yη) − f(η)]2dµN,K .

In particular, LNf = 0 if and only if f is constant, and LN is an invertible operator
in C0,N,K = {f ; 〈f〉N,K = 0}.

For the symmetric simple exclusion process, Landim, Olla and Varadhan [LOV2] proved
that DN,K → D(α) if αN,K → α. We extend this result to the asymmetric case:

Theorem 1.1.1. DN,K → D(α) if αN,K → α, for mean zero simple exclusion process (in
any dimension), and for asymmetric simple exclusion process in dimension d ≥ 3.

1.2 The Sobolev Spaces H1, H−1

In this section we prove the stability of the H−1 norm under finite approximations. We
discuss it in the more general context of functional analysis, since our results can in
principle be applied to a broad range of models of interacting particle systems, and we
will used repeatedly in the sequel.

Let H be a real Hilbert space with inner product 〈 , 〉. An operator (not necessarily
bounded) L : D(L) ⊆ H → H is called positive if 〈g, Lg〉 > 0 for all g ∈ D(L)\{0}.

Given a positive closed operator L, we define, for f ∈ D(L),

||f ||21 =: 〈f, Lf〉.

It is easy to see that || · ||1 defines a norm in D(L) that satisfies the parallelogram rule.
Therefore, || · ||1 can be extended to an inner product in D(L). Define H1 = H1(L), the
Sobolev space associated to the operator L, as the completion of D(L) under || · ||1.

In the same way, we see that

||g||2−1 =: sup
f∈D(L)

{2〈g, f〉 − 〈f, Lf〉}

defines a norm in the set {g ∈ H ; ||g||−1 < ∞}, that can be extended to a inner product.
Define H−1 as the completion of this set under || · ||−1.

In the next proposition, some well known properties of the spaces H1,H−1 are listed:
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Proposition 1.2.1. For f ∈ H ∩ H1, g ∈ H ∩ H−1, we have

i) ||g||−1 = sup
h∈D(L)\{0}

〈h, g〉
||h||1

ii) |〈f, g〉| ≤ ||f ||1||g||−1

iii) ||f ||1 ≤ ||Lf ||−1

Proof. For i):

sup
h∈D(L)

{2〈g, h〉 − 〈h, Lh〉} = sup
||h||1=1

sup
α∈R

{2α〈g, h〉 − α2}

= sup
||h||1=1

〈g, h〉2.

For ii):

||g||−1 = sup
h∈D(L)\{0}

|〈g, h〉|
||h||1

≥ |〈g, f〉|
||f ||1

.

For iii):
||Lf ||2−1 = sup

h∈D(L)

{2〈Lf, h〉 − 〈h, Lh〉} ≥ 〈f, Lf〉.

From property i) can be concluded that H−1 is the dual of H1 with respect to H .
Thanks to property ii), the inner product 〈 , 〉 can be extended to continuous a bilinear
form 〈 , 〉 : H−1 ×H1 → R. Property iii) assures that the operator L−1 : Im(L)∩H−1 →
H1 is bounded, from which it can be continuously extended to an operator defined in the
closure of Im(L) ∩ H−1 under || · ||−1.

If the operator L is symmetric, that is, if 〈f, Lg〉 = 〈Lf, g〉 for f, g ∈ D(L), then the
inequality in iii) becomes equality, and L can be extended to an isometry from H1 to H−1

(not necessarily surjective).
Let {Hn}n be an increasing sequence of finite-dimensional subspaces of H and define

Loc = Loc(H) =: ∪nHn. Suppose that Loc is a kernel for L, that is, the closure of the
operator L restricted to Loc is the operator L itself. Suppose also that Loc is a kernel for
the adjoint L∗ of L. Consider on each subspace Hn an inner product 〈 , 〉n such that for
all f, g ∈ Loc,

lim
n→∞

〈f, g〉n = 〈f, g〉,

where 〈f, g〉n is well defined for n large enough.
A sequence {Ln}n of operators is called a finite approximation of L if:

i)Ln : Hn → Hn

ii)〈f, Lnf〉n > 0 for f ∈ Hn\{0}
iii)For all f ∈ Loc there exist n0 ∈ N such that Lnf = Lf for n ≥ n0.

iv)If L is a symmetric operator, then Ln is also a symmetric operator.
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In Hn, define the || · ||1,n, || · ||−1,n norms associated to Ln, as before:

||f ||21,n = 〈f, Lnf〉n
||f ||2−1,n = sup

g∈Hn

{2〈f, g〉n − 〈g, Lng〉n}.

Observe that Ker(Ln) = {0}, from which Ln is invertible. The purpose of this section
is to establish sufficient conditions to ensure that

lim
n→∞

〈h′, L−1
n h〉n = 〈h′, L−1h〉 (?)

for h, h′ ∈ Loc ∩ H−1 with h in the closure of Im(L) ∩ H−1

While L−1
n h is always well defined, h might not be in the image of L, and the left

side of this equality would not be well defined. However, when h is in the closure of
Im(L)∩H−1 under || · ||−1, the product 〈h′, L−1h〉 can be defined by continuity. Remind

that the product 〈h′, L−1
n h〉n is well defined for n large enough, because h, h′ ∈ Loc, and

each time a limit like the one appearing in (?) is considered, this comment must be taken
into account.

The next theorem is a perturbative result that asserts that if (?) is satisfied for an
operator S0 (and a suitable finite approximation {S0,n}n of S0), then it is also satisfied
for a class of perturbations of S0:

Theorem 1.2.2. Let L be a positive closed operator. Let S0 : D(S0) ⊆ H → H be a
symmetric positive operator such that Loc is a kernel for S0 and 〈g, S0g〉 ≤ 〈g, Lg〉. Let
{S0,n}n be a finite approximation of S0 such that 〈f, S0,nf〉n ≤ 〈f, Lnf〉n for all f ∈ Hn.
Define the norms || · ||0,1, || · ||0,−1 (|| · ||0,1,n, || · ||0,−1,n resp.) associated to S0 (S0,n resp.)
as before. Consider h, h′ ∈ Loc ∩ H−1, with h in the closure of Im(L) ∩ H−1.

Assume that

A) For each ε > 0 exists gε ∈ Loc such that

||h − Lgε||0,−1 < ε.

B)
lim

n→∞
||h′||0,−1,n = ||h′||0,−1,

and for uε = h − Lgε,
lim

n→∞
||uε||0,−1,n = ||uε||0,−1.

Then,
lim

n→∞
〈h′, L−1

n h〉n = 〈h′, L−1h〉.

Proof. First, we observe that the operator S0 (S0,n resp.) is dominated by L0 (L0,n resp.),
from which we have, for all f , the inequalities

||f ||−1 ≤ ||f ||0,−1

||f ||0,1 ≤ ||f ||1
||f ||−1,n ≤ ||f ||0,−1,n

||f ||0,1,n ≤ ||f ||1,n.

Fix ε > 0, and let uε = h − Lgε be chosen according to Assumption A. Then,
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Lgε = Lngε for n large enough, from which Lgε belongs to Hn and

〈h′, L−1
n h〉n = 〈h′, L−1

n (uε + Lgε)〉n
= 〈h′, gε〉n + 〈h′, L−1

n uε〉n.

Since h′ and gε are in Loc,

〈h′, gε〉n −−−−→
n→∞

〈h′, gε〉.

We also have that

|〈h′, L−1
n uε〉n| ≤ ||h′||0,−1,n · ||L−1

n uε||0,1,n

≤ ||h′||0,−1,n · ||L−1
n uε||1,n

≤ ||h′||0,−1,n · ||uε||−1,n

≤ ||h′||0,−1,n · ||uε||0,−1,n.

Therefore,

lim sup
n→∞

|〈h′, L−1
n uε〉n| ≤ ||h′||0,−1 · ||uε||0,−1 ≤ ε · ||h′||0,−1.

In the other hand, 〈h′, L−1h〉 = 〈h′, L−1uε〉 + 〈h′, gε〉 and

|〈h′, L−1uε〉| ≤ ||h′||0,−1 · ||L−1uε||0,1 ≤ ε · ||h′||0,−1.

In consequence,

lim sup
n→∞

|〈h′, L−1h〉 − 〈h′, L−1
n h〉n| ≤ 2ε||h′||0,−1.

1.3 Proof of Theorem 1.1.1

This section is organized as follows. First, we show in which sense the sequence {LN}N is
a finite approximation of the operator L. Once this has been done, the proof of Theorem
1.1.1 is reduced to the verification of the hypothesis of Theorem 1.2.2, as we will see. Then,
we verify these hypothesis separately for symmetric, mean zero and asymmetric simple
exclusion process.

1.3.1 Finite Approximations for the generator L

Let α ∈ [0, 1] be fixed. Let {KN}N a sequence such that, as N goes to infinity, αN,KN
→ α,

KN → ∞ and (2N)d −KN → ∞. From now on, we drop out the index KN if there is no
risk of confusion. Let f, g be in L2(µα). First, we take care of irrelevant constants. We
say that f ∼ g if

∫

(f − g)dµα = 0. Define H = L2(µα)/ ∼. It is easy to see that H is
isomorphic to the set of functions with mean zero in L2(µα). Let Loc = Loc(H) be the
set of local functions in H . We define HN

∼= C0,N,KN
as follows: consider the canonical

projection πN : X∗ → XN,∗. For f ∈ C0,N,KN
, define π−1

N f ∈ Loc by

π−1
N f(η) =

{

f(πNη), if πNη ∈ XN,KN

0, if πNη /∈ XN,KN
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Then, HN = π−1
N (C0,N,KN

)/ ∼. It is not hard to see that Loc = ∪NHN . In fact,
for a local function f , denote by supp(f) the support of f . Then, if supp(f) ⊆ T d

N,∗,

# supp(f) < min{KN , (2N)d − KN}, then f ∈ HN , and clearly HN ⊆ Loc. In HN we
define the inner product 〈 , 〉N induced by the measure µN,KN

.
It is clear that for f, g ∈ Loc and N large enough (note that f, g are not in C0,N,KN

necessarily),

〈f, g〉N =

∫

(

f −
∫

fdµN,KN

)(

g −
∫

gdµN,KN

)

dµN,KN

=

∫

fgdµN,KN
−

∫

fdµN,KN

∫

gdµN,KN
,

We have already seen that the operator−LN is positive, and it is clear that −LNf = Lf
for f ∈ Loc and N large enough. From the ergodicity of µα with respect the process
generated by L and the fact that L is a generator of a Markov process, we deduce that
Dα(f) = 〈f,−Lf〉α > 0 if f 6= 0, from which we see that −L is a positive operator.
In consequence, {LN}N is a finite approximation of −L, if it were not for the fact that
HN ( HN+1, because KN , (2N)d−KN are not necessarily increasing sequences. However,
what is true is that HN ⊆ HM for M large enough, depending both in the range of
the transition probability p(·) and in the sequence KN (here we use that KN → ∞
and (2N)d − KN → ∞). Of course, Theorem 1.1.1 applies in this situation, by taking
subsequences or slightly modifying it to fit this case. Anyway, we will say that {LN}N is
a finite approximation of L.

Observe that the inner product 〈 , 〉N is exactly the product appearing in the equation
1.2. Comparing equations 1.1 and 1.2, it is clear that Theorem 1.1.1 follows from Theorem
1.2.2 applied to the operators −L and −LN . So, it only rest to find suitable operators S0,
{S0,N} to compare with L and {LN} and to check the hypothesis of Theorem 1.2.2 for
them.

1.3.2 Symmetric case

Suppose that the transition probability p(·) is symmetric, that is, p(x) = p(−x) for all
x ∈ Zd. This case has been considered in [LOV2], but in order to make the exposition
clear, we outline here the proof in our setting.

Choose S0 = −L0 and S0,N = −L0,N , the part of the generator corresponding to
jumps of the environment. It is clear that {S0,N} is a finite approximation of S0, and that
〈f, S0f〉α ≤ 〈f,−Lf〉α, 〈g, S0,Ng〉N ≤ 〈g,−LNg〉N . Conditions A and B of Theorem 1.2.2
are consequence, on this case, of the next results, that we state as lemmas:

Lemma 1.3.1. wa, va ∈ H0,−1, and for all g ∈ Loc, Lg ∈ H0,−1.

Proof. For a criteria of Sethuraman and Xu ( [SX]), a sufficient condition for a local
function v to be in H0,−1 is that 〈v〉α = 0 for all α ∈ [0, 1]. Therefore, it is enough to
observe that for all α ∈ [0, 1], 〈wa〉α = 〈va〉α = 〈Lg〉α = 0.

Lemma 1.3.2. If g ∈ Loc and 〈g〉α = 0 for all α ∈ [0, 1], then

lim
N→∞

||g||0,−1,N = ||g||0,−1.

Proof. This is just a consequence of Corollaries 2.2 and 2.4 of [LOV2], that are based in
the so called Liouville D property of the lattice Zd

∗

The following lemma is just Theorem 4.2 of [LOV2]:
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Lemma 1.3.3. If v ∈ Loc and 〈v〉α = 0 for all α ∈ [0, 1], then for all ε > 0 there exists
gε ∈ Loc such that

||v − Lgε||0,−1 < ε.

Once these three lemmas are stated, by Theorem 1.2.2 we have the following result:

Theorem 1.3.4. For all v ∈ Loc such that 〈v〉α = 0 for all α ∈ [0, 1],

lim
N→∞

||v||−1,N = ||v||−1.

1.3.3 Mean zero case

Now suppose that the transition probability has mean zero, that is,
∑

z zp(z) = 0. Define
S = −(L + L∗)/2, SN = −(LN + L∗

N)/2, the symmetric part of the generator. A simple
computation shows that

Sf(ξ) =
∑

x,y∈Zd
∗

s(y − x)ξ(x)(1 − ξ(y))[f(σxyξ) − f(ξ)]

+
∑

z∈Zd
∗

s(z)(1 − ξ(z))[f(τzξ) − f(ξ)],

SNf(ξ) =
∑

x,y∈T d
N,∗

s(y − x)ξ(x)(1 − ξ(y))[f(σxyξ) − f(ξ)]

+
∑

z∈T d
N,∗

s(z)(1 − ξ(z))[f(τzξ) − f(ξ)],

where s(x) = (p(x) + p(−x))/2, the symmetrization of p(·). It is clear that s(·) is a
symmetric, finite range, irreducible transition probability, from which S (resp. SN ) is the
generator of a symmetric exclusion process in Zd

∗ (resp. T d
N,∗). We choose S0 = S and

S0,N = SN . Like in the symmetric case, S0,N N is a finite approximation of S0, and by
definition, 〈f, S0f〉 = 〈f,−Lf〉 and 〈f, S0,Nf〉N = 〈f,−LNf〉N . Observe that in this case,
S0 and −L generates the same Sobolev norms.

Like in the symmetric case, we need to verify Assumptions A and B of Theorem 1.2.2.
First, we need to prove that wa, va ∈ H−1 and for g ∈ Loc, Lg ∈ H−1. But this is true
because 〈va〉α = 〈wa〉α = 〈Lg〉α = 0 for all α ∈ [0, 1], H−1 ⊆ H0,−1 (in the notation of the
previous subsection) and by the criteria of [SX], va, wa, Lg ∈ H0,−1.

After this, Assumption B of Theorem 1.2.2 follows from Theorem 1.3.4. Therefore, in
order to apply Theorem 1.2.2 to prove Theorem 1.1.1, it only remains to prove Assumption
A. We state it as a lemma:

Lemma 1.3.5. For all v ∈ Loc such that 〈v〉α = 0 for all α ∈ [0, 1] and for all ε > 0,
there exists gε ∈ Loc such that

||v − Lgε||−1 < ε.

Proof. In [V], Varadhan proved a sector condition for the mean zero exclusion process,
which roughly states that the asymmetric part of the operator can be bounded by the
symmetric part. More precisely, there exists a constant C = C(p(·)) such that for all
f, g ∈ Loc,

〈f, Lg〉2α ≤ C〈f,−Lf〉α〈g,−Lg〉α.

In particular, ||Lg||2−1 ≤ C||g||21, from which L is a bounded and densely defined
operator from H1 to H−1. So, it is enough to prove that v ∈ L(H1). To this end, we use
the resolvent method. Let h be in H−1 ∩ Loc. For each λ > 0, let uλ be the solution of
the resolvent equation

λuλ − Luλ = h.
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This is always possible because L is a negative operator in L2(µα), and uλ ∈ D(L),
from which uλ ∈ H1. The idea is to prove that uλ (or at least a subsequence) converges
in some sense to a certain u, that satisfies Lu = −h. In fact, in [LOV1] it is proven that
there exists such u ∈ H1 such that uλ → u strongly in H1 and Luλ → −h weakly in H−1.
Since L is a continuous operator, by unicity of the limit, −Lu = h. Approximating u by
local functions, the lemma follows.

1.3.4 Asymmetric case for d ≥ 3

In dimension d ≥ 3, a necessary and sufficient condition for a local function v to be in
H0,−1, is 〈v〉α = 0 [SX]. In particular, wa, va ∈ H0,−1 and for g ∈ Loc, Lg ∈ H0,−1. As for
the mean zero case, we choose S0 = −(L + L∗)/2, S0,N = −(LN + L∗

N )/2, and we apply
Theorem 1.2.2. The difference here is that for α′ 6= α, 〈va〉α′ 6= 0, and we can not invoke
Theorem 1.3.4 in order to prove Assumption B. The next lemma says that condition B
is true for this case. The proof of this lemma will be presented in the next section.

Lemma 1.3.6. In dimension d ≥ 3, for a local function h with 〈h〉α = 0,

lim
N→∞

||h −
∫

hdµN,K ||−1,N = ||h||−1.

A proof of Assumption A for this case can be found in [SVY]. Once Assumptions A
and B are verified, Theorem 1.1.1 follows from Theorem 1.2.2.

1.4 Proof of Lemma 1.3.6

First note that Lemma 1.3.6 is just the generalization, in dimension d ≥ 3, of Theorem
1.3.4 to the case in which 〈v〉α = 0 just for the fixed α ∈ [0, 1]. In consequence, in
order to prove Lemma 1.3.6 it is enough to prove the corresponding generalizations of
Lemmas 1.3.1, 1.3.2 and 1.3.3 to this case. Note that the || · ||−1 norm depends only on
the symmetric part S of the generator L. Define the operators S0 = (L0 + L∗

0)/2 and
S0,N = (L0,N + L∗

0,N )/2, the symmetric part of the jumps of the environment:

S0f(ξ) =
∑

x,y∈Zd
∗

s(y − x)ξ(x)(1 − ξ(y))[f(σxyξ) − f(ξ)]

S0,Nf(ξ) =
∑

x,y∈T d
N,∗

s(y − x)ξ(x)(1 − ξ(y))[f(σxyξ) − f(ξ)].

The generalizations of Lemmas 1.3.1 and 1.3.3 are proven in [SX] and [LOV2]:

Lemma 1.4.1. In dimension d ≥ 3, if v ∈ Loc satisfies 〈v〉α = 0, then v ∈ H0,−1.

Lemma 1.4.2. In dimension d ≥ 3, if v ∈ Loc and 〈v〉α = 0, then for all ε > 0 there
exists gε ∈ Loc such that

||v − Sgε||0,−1 < ε.

So, it only rests to prove the generalization of Lemma 1.3.2 to this case:

Lemma 1.4.3. Let v be a local function such that 〈v〉α = 0. Define 〈v〉N =
∫

vdµN,KN
.

In dimension d ≥ 3,
lim

N→∞
||v − 〈v〉N ||0,−1,N = ||v||0,−1.
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Proof. Using the variational formula for ||v||0,−1, it is not hard to prove that

lim inf
N→∞

||v − 〈v〉N ||0,−1,N ≥ ||v||0,−1.

In fact, by definition, for all ε > 0 there exists a local function fε such that

||v||20,−1 ≤ 2〈v, fε〉α − 〈fε,−S0fε〉α + ε

= lim
N→∞

{2〈v − 〈v〉N , fε〉N − 〈fε,−S0,Nfε〉N} + ε

≤ lim inf
N→∞

sup
f
{2〈v − 〈v〉N , f〉N − 〈f,−S0,Nf〉N} + ε

= lim inf
N→∞

||v − 〈v〉N ||20,−1,N + ε.

The converse inequality is harder to prove. The idea is to approximate v in H0,−1 by
local functions with mean zero for all densities α ∈ [0, 1]. The proof requires two auxiliary
lemmas. The first one is just a version of Lemma 3.6 of [LOV2]:

Lemma 1.4.4. Let w be a local function with 〈w〉α = 0 for all α ∈ [0, 1]. Let {fN}N be
a sequence of functions defined in H0,1,N such that

〈fN ,−S0,NfN 〉N ≤ 1,

lim
N→∞

〈w, fN 〉N = A.

Then, there exist f ∈ H0,1 and subsequence N ′ such that 〈w, f〉α = A, 〈f,−S0f〉α ≤ 1,
and for all local functions h with 〈h〉α = 0 for each α ∈ [0, 1],

lim
N ′→∞

〈fN ′ , h〉N = 〈f, h〉α.

Before state the second auxiliary lemma, we need to introduce some notation. Let
ΛN = {−N + 1, ..., N}d \ {0} be the cube of radius N . Note that ΛN 6= T d

N,∗, because

ΛN has no periodic conditions. For each x ∈ Zd
∗, define θx(ξ) =: ξ(x), and for each l > 0,

define ϕl(ξ) =
∑

x∈Λl
ξ(x). Let FΛN

be the σ-algebra generated by ϕl and {θx; x ∈ Λc
N}.

For l > 0 such that supp(v) ⊆ Λl, define vl = E[v|FΛl
]. Note that there is a natural way

to define vl that does not depend on the particular value of α. The next lemma is an easy
consequence of the equivalence of ensembles:

Lemma 1.4.5. Fix positive integers l, q such that supp(v) ⊆ Λl and q > 2. Define
gn = vlqn . There is a finite constant κ such that

i) 〈(gn − gn−1)
2〉α ≤ κ(lqn)−d

ii) 〈(gn − gn−1)
2〉N ≤ κ(lqn)−d.

The proof follows in the next way: for each N there exist a function fN ∈ H1,N

such that 〈fN ,−S0,NfN 〉N ≤ 1 and ||v − 〈v〉N ||0,−1,N = 〈fN , v − 〈v〉N 〉N . Consider a

subsequence Ñ such that

lim
Ñ→∞

||v − 〈v〉Ñ ||0,−1,Ñ = lim sup
N→∞

||v − 〈v〉N ||0,−1,N =: A.

By Lemma 1.4.4, there are function f ∈ H1 and sub-subsequence N ′ such that
〈fN ′ , h〉N ′ → 〈f, h〉α for all local functions h with mean zero for each µα. In particu-
lar,

lim
N ′→∞

〈fN ′ , v − vl〉N ′ = 〈f, v − vl〉α.

Let l, q > 2 be fixed. Define, as in Lemma 1.4.4, gn = vlqn . Just to make notation
simpler, suppose that N ′ = lqn, and denote N ′ simply by N . The changes needed if it is
not the case are straightforward. Then, we have that
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〈fN , v − 〈v〉N 〉N = 〈fN , v − vl〉N + 〈fN , vl − 〈v〉N 〉N

=

n
∑

k=1

〈fN , gk−1 − gk〉N + 〈fN , v − vl〉N

Define Lk as the generator of a exclusion process in Λlqk . Notice that, due to the boundary
effects, Llqk 6= S0,lqk . We see that 〈v−vl〉α = 0, 〈gk−1−gk〉α = 0 for all α ∈ [0, 1]. By linear

algebra, there exists a local function Gk defined in {0, 1}Λ
lqk such that gk−1 − gk = LkGk.

Therefore,

n
∑

k=1

〈fN , gk−1 − gk〉N =

n
∑

k=1

〈fN ,LkGk〉N =

n
∑

k=1

∑

b∈Γk

〈∇bfN ,∇bGk〉N ,

where
∑

b∈Γk
means sum over all bonds b = 〈xy〉 such that x, y ∈ Λlqk and ∇bg =

s(y − x)1/2[g(σxyη) − g(η)].
Choose ak = ε2k. By Cauchy’s inequality with weights ak, we have

|
n

∑

k=1

〈fN ,gk−1 − gk〉N | ≤
n

∑

k=1

∑

b∈Γk

1

ak
〈(∇bfN )2〉N + ak〈(∇bGk)2〉N

≤
∑

b∈Γn

∑

k:b∈Γk

1

ak
〈(∇bfN)2〉N +

n
∑

k=1

∑

b∈Γk

ak〈(∇bGk)2〉N

≤ 1

ε

∑

b∈Γn

〈(∇bfN)2〉N +

n
∑

k=1

ak〈gk − gk−1,−L−1
k (gk − gk−1)〉N

≤ 1

ε
〈fN ,−LnfN 〉N + ε

n
∑

k=1

2k〈gk − gk−1,−L−1
k (gk − gk−1)〉N

≤ 1

ε
〈fN ,−S0,lqnfN 〉N + ε

n
∑

k=1

2kC · 2k(lqk)2〈(gk−1 − gk)2〉N ,

where in the last line we have used the spectral gap inequality for the exclusion process [Q].
Using Lemma 1.4.5 and minimizing in ε,

|
n

∑

k=1

〈fN , gk−1 − gk〉N | ≤ 1

ε
+ ε

n
∑

k=1

Cκ · 2k(lqk)2−d

≤ 1

ε
+ ε

[ Cκl2−d

1 − 2q2−d

]

≤ 2

√

Cκl2−d

1 − 2q2−d
≤ C1l

2−d
2 .

By the law of large numbers, as l → ∞, vl → 0 µα − a.s. and in L2(µα). We also have
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that

||gk − gk−1||20,−1 = 〈gk − gk−1, (−S0)
−1(gk − gk−1)〉α

≤ 〈gk − gk−1, (−Lk+1)
−1(gk − gk−1)〉α

≤ C(lqk+1)2〈(gk − gk−1)
2〉α

≤ Cκq2(lqk)2−d.

Therefore, the sequence {gk − gk−1}k is absolutely summable, and there exists g ∈ H0,−1

such that

lim
n→∞

(vl − vlqn) =

∞
∑

k=1

gk − gk−1 = g.

In the other hand, we know that vlqn → 0 in L2(µα), from which 〈F, vlqn 〉α goes to
zero for all F ∈ L2(µα), and vlqn → vl − g in H0,−1, from which 〈F, vlqn 〉α → 〈F, vl − g〉α
for all F ∈ H0,1. Since D(S0) ⊆ L2(µα) ∩ H0,−1 and D(S0) is dense in H0,−1, we have
g = vl.

As before, by using part i) of Lemma 1.4.5, we can prove that there exists a constant
C2 such that

|〈f, vl〉α| ≤ C2 · l
2−d
2 .

Combining both inequalities, we see that

lim sup
N→∞

||v − 〈v〉N ||0,−1,N = lim sup
N→∞

〈fN , v − 〈v〉N 〉N

= lim sup
N→∞

{

〈fN , v − vl〉N + 〈fN , vl − 〈v〉N 〉N
}

≤ 〈f, v − vl〉α + C1 · l
2−d
2

≤ (C1 + C2)l
2−d
2 + 〈f, v〉α.

Since d ≥ 3 and l is arbitrary,

lim sup
N→∞

||v − 〈v〉N ||0,−1,N ≤ 〈f, v〉α ≤ ||f ||0,1 · ||v||0,−1 ≤ ||v||0,−1.



Chapter 2

The sub-diffusive CLT for the

tagged particle

Consider the one-dimensional nearest neighbor symmetric situation. In this context, as
already observed by Arratia [A] and differently from the previous sections, the scaling
changes dramatically since to displace the tagged particle from the origin to a site N > 0,
all particles between the origin and N need to move to the right of N . This observation
relates the asymptotic behavior of the tagged particle to the hydrodynamic behavior of
the system. The correct scaling for the law of large numbers should therefore be XtN2/N
and we expect (XtN2 − E[XtN2 ])/

√
N to converge to a Gaussian variable.

The central limit theorem in equilibrium was obtained by Rost and Vares [RV] for a
slightly different model. They proved that for each fixed t > 0, XtN2/

√
N converges to a

fractional Brownian motion Wt with variance given by E[W 2
t ] = αt1/2. We extend their

result to the nonequilibrium case.
The idea of the proof is to relate the position of the tagged particle to the well known

hydrodynamic behavior of the symmetric exclusion process. Since particles cannot jump
over other particles, the position of the tagged particle is determined by the current over
one bond and the density profile of particles. Therefore, a nonequilibrium central limit
theorem for the position of the tagged particle follows from a joint central limit theorem
for the current and the density profile. Since the current over a bond can itself, at least
formally, be written as the difference between the mass at the right of the bond at time
t and the mass at time 0, a central limit theorem for the position of the tagged particle
should follow from a nonequilibrium central limit theorem for the density field. This is
the content of the article.

There are three main ingredients in the proof. In Section 2.2 we present a nonequi-
librium central limit theorem for the current over a bond and show how it relates to
the fluctuations of the density field. In section 2.4 we obtain a formula which relates
the position of the tagged particle to the current over one bond and the density field.
Finally, in Section 2.5 we present a sharp estimate on the difference of the solution of
the hydrodynamic equation and the solution of a discretized version of the hydrodynamic
equation.

2.1 Notation and Results

The nearest neighbor one-dimensional symmetric exclusion process is the simple exclusion
process defined on {0, 1}Z for which p(1) = p(−1) = 1/2 and p(z) = 0 if z 6= −1, 1.

In order to make the exposition clear, we slightly modify the notation of the previous

14
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section. Denote byLN the generator of the process speeded up by N 2:

(LNf)(η) = N2
∑

x∈Z

[f(σx,x+1η) − f(η)].

For each configuration η, denote by π(η) the positive measure on R obtained by as-
signing mass N−1 to each particle:

π(η) = N−1
∑

x∈Z

η(x)δx/N

and let πt = π(ηt).
Fix a profile ρ0 : R → [0, 1] with the first four derivatives bounded. Denote by νN

ρ0(·)
the product measure on X associated to ρ0:

νN
ρ0(·){η, η(x) = 1} = ρ0(x/N)

for x in Z. For each Ngε1 and each measure µ on X , denote by Pµ the probability on the
path space D(R+,X ) induced by the measure µ and the exclusion process with generator
LN . Expectation with respect to Pµ is denoted by Eµ. Note that we have omitted the
dependence of the probability Pµ on N to keep notation simple. This convention is adopted
below for several other quantities which also depend on N . The hydrodynamic behavior
of the symmetric simple exclusion process is trivial and described by the heat equation.

Theorem 2.1.1. Fix a profile ρ0 : R → [0, 1]. Then, for all time t ≥ 0, under PνN
ρ0(·)

the sequence of random measures πt converges in probability to the absolutely continuous
measure ρ(t, u)du whose density ρ is the solution of the heat equation with initial condition
ρ0:

{

∂tρ = ∆ρ
ρ(0, ·) = ρ0(·). (2.1)

Here and below, ∆ stands for the Laplacian.

This theorem establishes a law of large numbers for the empirical measure. To state
the central limit theorem some notation is required. For kgε0, denote by Hk the Hilbert
space induced by smooth rapidly decreasing functions and the scalar product < ·, · >k

defined by
< f, g >k = < f, (x2 − ∆)kg > ,

where < ·, · > stands for the usual scalar product in Rd. Notice that H0 = L2(Rd) and
denote by H−k the dual of Hk.

Let ρN
t (x) = EνN

ρ0(·)
[ηt(x)]. A trivial computation shows that ρN

t (x) is the solution of

the discrete heat equation:

{

∂tρ
N
t (x) = ∆NρN

t (x) ,
ρN
0 (x) = ρ0(x/N) ,

(2.2)

where (∆Nh)(x) = N2
∑

y,|y−x|=1[h(y) − h(x)].

Fix kgε4 and denote by {Y N
t , tgε0} the so called density field, a H−k-valued process

given by

Y N
t (G) =

1√
N

∑

x∈Z

G(x/N){ηt(x) − ρN
t (x)}

for G in Hk. Denote by QN the probability measure on the path space D(R+,H−k)
induced by the process Y N

t and the measure νN
ρ0(·). Next result is due to Galves, Kipnis

and Spohn in dimension d = 1 and to Ravishankar [R1] in dimension dgε2.
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Theorem 2.1.2. The sequence QN converges to Q, the probability measure concentrated
on C(R+,H−k) corresponding to the Orsntein-Uhlenbeck process Yt with mean zero and
covariance given by

E[Yt(H)Ys(G)] =

∫

R

(Tt−sH) G χs −
∫ s

0

dr

∫

R

(Tt−rH) (Ts−rG) {∂rχr − ∆χr}

for 0 ≤ s < t and G, H ∈ Hk. In this formula, {Tt : tgε0} stands for the semigroup
associated to the Laplacian and χs for the function χ(s, u) = ρ(s, u)[1 − ρ(s, u)].

Note that in the case of the heat equation, ∂rχr − ∆χr = 2(∂xρ)2. Also, in the
equilibrium case, χ is constant in space and time so that the second term vanishes and
we recover the equilibrium covariances. Finally, integrating by parts twice the expression
with ∆χr, we rewrite the limiting covariances as

E[Yt(H)Ys(G)] =

∫

R

(TtH) (TsG) χ0 + 2

∫ s

0

dr

∫

R

(∇Tt−rH) (∇Ts−rG) χr , (2.3)

where ∇f is the space derivative of f .

We will examine nonequilibrium central limit theorems for the current through a bond
and the position of a tagged particle. For a bond (x, x+1), denote by Jx,x+1(t) the current
over this bond. This is the total number of jumps from site x to site x + 1 in the time
interval [0, t] minus the total number of jumps from site x + 1 to site x in the same time
interval.

Theorem 2.1.3. Fix u in R and let

ZN
t =

1√
N

{

JxN ,xN+1(t) − EνN
ρ0(·)

[JxN ,xN+1(t)]
}

,

where xN = [uN ]. Then, for every kgε1 and every 0 ≤ t1 < · · · < tk, (ZN
t1 , . . . , ZN

tk
)

converges in law to a Gaussian vector (Zt1 , . . . , Ztk
) with covariance given by

E[ZsZt] =

∫ 0

−∞
dx P [Bs ≤ x] P [Bt ≤ x] χ0(x)

+

∫ ∞

0

dx P [Bsgεx] P [Btgεx] χ0(x)

+ 2

∫ s

0

dr

∫ ∞

−∞
dx pt−r(0, x) ps−r(0, x) χr(x)

provided s ≤ t and u = 0. In this formula, Bt is a standard Brownian motion starting
from the origin and pt(x, y) is the Gaussian kernel.

By translation invariance, in the case u 6= 0, we just need to translate χ by −u in the
covariance.

Let H0 = 1{[0,∞)}. The covariance appearing in the previous theorem is easy to
understand. Formally the current N−1/2J−1,0(t) centered by its mean corresponds to
Y N

t (H0) −Y N
0 (H0) since both processes increase (resp. decrease) by N−1/2 whenever a

particle jumps from −1 to 0 (resp. 0 to −1). The limiting covariance E[ZsZt] corresponds
to the formal covariance

E
[

{

Yt(H0) − Y0(H0)
}{

Ys(H0) − Y0(H0)
}

]

.

Denote by νN,∗
ρ0(·) the measure νN

ρ0(·) conditioned to have a particle at the origin.

Remark 2.1.4. The law of large numbers and the central limit theorem for the empirical
measure and for the current starting from νN,∗

ρ0(·) follow from the law of large numbers



17 2.2 Nonequilibrium fluctuations of the current

and the central limit theorem for the empirical measure and the current starting from the
measure νN

ρ0(·) since we may couple both processes in such a way that they differ at most
at one site at any given time.

Fix a profile ρ0 with the first four derivatives limited, and consider the product measure
νN,∗

ρ0(·). Denote by Xt the position at time tgε0 of the particle initially at the origin. A law

of large numbers for Xt follows from the hydrodynamic behavior of the process:

Theorem 2.1.5. Fix tgε0. Xt/N converges in PνN,∗

ρ0(·)
-probability to ut, the solution of

u̇t = − (∂uρ)(t, ut)

ρ(t, ut)
·

Note that the solution of the previous equation is given by

∫ ut

0

du ρ(t, u) = −
∫ t

0

ds (∂uρ)(s, 0) .

Theorem 2.1.6. Assume that ρ0 has a bounded fourth derivative. Let Wt = N−1/2

(Xt − Nut). Under PνN,∗

ρ0(·)
, For every kgε1 and every 0 ≤ t1 < · · · < tk, (W N

t1 , . . . , W N
tk

)

converges in law to a Gaussian vector (Wt1 , . . . , Wtk
) with covariance given by

ρ(s, us)ρ(t, ut)E[WsWt] =

∫ 0

−∞
dx Pus

[Bs ≤ x] Put
[Bt ≤ x] χ0(x)

+

∫ ∞

0

dx Pus
[Bsgεx] Put

[Btgεx] χ0(x)

+ 2

∫ s

0

dr

∫ ∞

−∞
dx pt−r(ut, x) ps−r(us, x) χr(x) .

In this formula, Pu stands for the probability corresponding to a standard Brownian motion
starting from u.

The assumption made on the smoothness of ρ0 appears because in the proof of Theorem
2.1.6 we need a sharp estimate on the difference of the discrete approximation of the heat
equation (2.2) and the heat equation (2.1). In section 2.5 we show that there exists a finite
constant C0 for which |ρN

t (x) − ρ(t, x/N)| ≤ C0tN
−2 for all Ngε1, x in Z and tgε0 under

the assumption that ρ0 has a bounded fourth derivative.

2.2 Nonequilibrium fluctuations of the current

Suppose for a moment that the profile ρ0 has a compact support. Then, η0 is almost
surely a configuration with a finite number of particles, and it is easy to see that we have
a simple formula for the current J−1,0(t):

J−1,0(t) =
∑

x≥0

ηt(x) − η0(x) . (2.4)

In particular, we can write J−1,0(t) in terms of the fluctuation field:

1√
N

{

J−1,0(t) − EνN
ρ0(·)

[J−1,0(t)]
}

= Y N
t (H0) − Y N

0 (H0 ),

where Ha is the indicator function of the interval [a,∞):

Ha(u) = 1{[a,∞)}(u) .
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Since the profile has compact support, it is possible to define Yt(H0) as the limit Yt(Gn)
for some sequence Gn of compact supported function converging to H0 on compact subsets
of R and to prove that Y N

t (H0), defined in a similar way, converges to Yt(H0).
In the general case, however, when ρ0 is an arbitrary profile, neither formula (2.4)

makes sense, nor the fluctuation field Y N
t (H0) is well defined. Nevertheless, there is a way

to calculate the fluctuations of the current by appropriated approximations of the function
G, as made by Rost and Vares [RV] in the equilibrium case.

Define the sequence {Gn : ngε1} of approximating functions of H0 by

Gn(u) = {1− (u/n)}+1{ugε0} .

From here we use the next convention: if X is a random variable, we denote by X the
centered variable X − EνN

ρ0(·)
[X ].

Proposition 2.2.1. For every tgε0,

lim
n→∞

EνN
ρ0(·)

[

N−1/2J−1,0(t) − Y N
t (Gn) + Y N

0 (Gn)
]2

= 0

uniformly in N.

Proof. Clearly,

Mx,x+1(t) := Jx,x+1(t) − N2

∫ t

0

ds {ηs(x) − ηs(x + 1)}

is a martingale with quadratic variation given by

< Mx,x+1 >t = N2

∫ t

0

ds {ηs(x) − ηs(x + 1)}2 .

The goal is to express the difference Y N
t (Gn) − Y N

0 (Gn) in terms of the martingales
Mx,x+1(t) and to notice that these martingales are orthogonal, since they have no common
jumps.

Since
Jx−1,x(t) − Jx,x+1(t) = ηt(x) − η0(x)

for all x in Zd, tgε0,

Y N
t (Gn) − Y N

0 (Gn) = N−1/2
∑

x∈Z

Gn(x/N){Jx−1,x(t) − Jx,x+1(t)} .

A summation by parts and the explicit form of Gn permits to rewrite this expression as

N−1/2J−1,0(t) − N−1/2
nN
∑

x=1

1

nN
Jx−1,x(t) .

Representing the currents Jx,x+1(t) in terms of the martingales Mx,x+1(t), we obtain that

N−1/2J0(t) −
[

Y N
t (Gn) − Y N

0 (Gn)
]

=
1√
N

nN
∑

x=1

1

nN
Mx−1,x(t) +

1√
N

∫ t

0

ds
N

n
[ηs(0) − ηs(nN)] .

We claim that the martingale and the integral term converge to 0 in L2(PνN
ρ0(·)

). In

fact, since the martingales are orthogonal, estimating their quadratic variations by tN 2,
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an elementary computation shows that

EνN
ρ0(·)

[ 1√
N

nN
∑

x=1

1

nN
Mx−1,x(t)

]2

≤ t

n
.

The integral term is more demanding, because in non-equilibrium the two-point cor-
relations are not easy to estimate. Expanding the square we have that

EνN
ρ0(·)

[ 1√
N

∫ t

0

ds
N

n
[ηs(0) − ηs(nN)]ds

]2

=
2N

n2

∫ t

0

ds

∫ s

0

dr EνN
ρ0(·)

[

(

ηs(0) − ηs(nN)
)(

ηr(0) − ηr(nN)
)

]

.

By Lemma 2.2.2 the previous expression is less than or equal to C0t
5/2n−2 for some finite

constant C0 depending only on ρ0. This concludes the proof of the proposition.

A central limit theorem for the current J−1,0(t) is a consequence of this proposition.
Proof of Theorem 2.1.3. Fix tgε0 and ngε1. By approximating Gn in L2(R)∩L1(R) by
a sequence {Hn,k : kgε1} of smooth functions with compact support, recalling Theorem
2.1.2, we show that Y N

t (Gn) converges in law to a Gaussian variable denoted by Yt(Gn).
By Proposition 2.2.1, {Y N

t (Gn) − Y N
0 (Gn) : ngε1} is a Cauchy sequence uniformly in

N . In particular, Yt(Gn)−Y0(Gn) is a Cauchy sequence and converges to a Gaussian limit
denoted by Yt(H0) − Y0(H0). Therefore, by Proposition 2.2.1, J−1,0(t) converges in law
to Yt(H0) − Y0(H0).

The same argument show that any vector (J−1,0(t1), . . . , J−1,0(tk)) converges in law
to (Yt1(H0) − Y0(H0), . . . , Ytk

(H0) − Y0(H0)). The covariances can be computed since by
(2.3)

E
[

{

Yt(H0) − Y0(H0)
}{

Ys(H0) − Y0(H0)
}

]

= lim
n→∞

E
[

{

Yt(Gn) − Y0(Gn)
}{

Ys(Gn) − Y0(Gn)
}

]

= lim
n→∞

{

∫

R

{

(TtGn)(TsGn) + G2
n − (TtGn)Gn − (TsGn)Gn

}

χ0

+ 2

∫ s

0

dr

∫

R

(∇Tt−rGn) (∇Ts−rGn)χr

}

.

A long but elementary computation permits to recover the expression presented in the
statement of the theorem. This concludes the proof.

We conclude this section with some elementary estimates on two points correlation
functions. For 0 ≤ s ≤ t and x 6= y in Z, let

ϕ(t; x, y) = EνN
ρ0(·)

[ηt(x); ηt(y)] , ϕ(s, t; x, y) = EνN
ρ0(·)

[ηs(x); ηt(y)] .

In this formula and below, Eµ[f ; g] stands for the covariance of f and g with respect to µ.

Lemma 2.2.2. There exists a finite constant C0 = C0(ρ0) depending only on the initial
profile ρ0 such that

sup
x,y∈Z

|ϕ(t; x, y)| ≤ C0

√
t

N
, sup

x,y∈Z

|ϕ(s, t; x, y)| ≤ C0

N

{√
s +

1√
t − s

}

.

The first statement is a particular case of an estimate proved in [FPSV]. In sake of
completeness, we present an elementary proof of this lemma.
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Proof. Let L2 be the generator of 2 nearest-neighbor symmetric simple exclusion processes
on Z. An elementary computation shows that ϕ(t; x, y) satisfies the difference equation

{

(∂tϕ)(t; x, y) = N2(L2ϕ)(t; x, y) − 1{|x − y| = 1}N2[ρN (t, x) − ρN (t, y)]2 ,
ϕ(0; x, y) = 0 .

This equation has an explicit solution which is (negative and) absolutely bounded by

C0(ρ0)

∫ t

0

ds Px,y

[

|Xs − Ys| = 1
]

for C0 = ‖∂ρ0‖2
∞. In this formula, (Xs, Ys) represent the position of the symmetric

exclusion process speeded up by N 2 and starting from {x, y}. A coupling argument shows
that Px,y[|Xs − Ys| = 1] ≤ P0

x,y[|Xs − Ys| = 1] where in the second probability particles

are evolving independently. Since P0
x,y[|Xs − Ys| = 1] ≤ C(sN2)−1/2, the first part of the

lemma is proved.
To prove the second statement, recall that we denote by ∆N the discrete Laplacian in

Z. ϕ(t; y) = ϕ(s, t; x, y) satisfies the difference equation







(∂tϕ)(t; y) = (∆Nϕ)(t; y)
ϕ(s; y) = ϕ(s; x, y) if y 6= x,
ϕ(s; y) = ρN (s, x)[1 − ρN (s, x)] for y = x.

This equation has an explicit solution

ϕ(s; y) =
∑

z 6=x

pt−s(y, z)ϕ(s; x, z) + pt−s(y, x)ρN (s, x)[1 − ρN (s, x)] ,

where ps(x, y) stands for the transition probability of a nearest neighbor symmetric random
walk speeded up by N2. The first part of the lemma together with well known estimates
on ps permit to conclude.

2.3 Law of Large Numbers for the Tagged Particle

In this section we assume the initial measure to be νN,∗
ρ0(·), the product measure νN

ρ0(·)
conditioned to have a particle at the origin. Keep in mind Remark 2.1.4.

Fix a positive integer n. The tagged particle is at the right of n at time t if and only
if the total number of particles in the interval {0, . . . , n − 1} is less than or equal to the
current J−1,0(t):

{Xt ≥ n} = {J−1,0(t) ≥
n−1
∑

x=0

ηt(x)} . (2.5)

This equation indicates that a law of large numbers and a central limit theorem for the
position of the tagged particle are intimately connected to the joint asymptotic behavior of
the current and the empirical measure. We prove in this section the law of large numbers.

Denote by dae the smallest integer larger than or equal to a. Fix u > 0 and set
n = duNe in (2.5) to obtain that

{Xt ≥ uN} =
{

N−1J−1,0(t) ≥ < πN
t ,1{[0, u]} > + O(N−1)

}

. (2.6)

By Theorem 2.1.1, < πN
t ,1{[0, u]} > converges in probability to

∫ u

0
ρ(t, w)dw, where

ρ is the solution of the heat equation (2.1).
On the other hand, the law of large numbers for J−1,0(t) under PνN

ρ0(·)
is an elementary

consequence of the central limit theorem proved in the last section and the convergence of
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the expectation of N−1J−1,0(t). By the martingale decomposition of the current and by
Theorem 2.5.1,

EνN
ρ0(·)

[

N−1J−1,0(t)
]

=

∫ t

0

ds N
[

ρN
s (−1) − ρN

s (0)
]

= −
∫ t

0

∂uρ(s, 0)ds + O(N−1) .

Hence, N−1J−1,0(t) converges in probability to −
∫ t

0 ∂uρ(s, 0)ds.
In view of (2.6) and the law of large numbers for the current and the empirical measure,

lim
N→∞

PνN,∗

ρ0(·)

[

N−1Xtgεu
]

=

{

0 if −
∫ t

0 ∂uρ(s, 0)ds <
∫ u

0 ρ(t, w)dw ,

1 if −
∫ t

0
∂uρ(s, 0)ds >

∫ u

0
ρ(t, w)dw .

By symmetry around the origin, a similar statement holds for u < 0. Thus, XN
t /N

converges to ut in probability, where ut is the solution of the implicit equation

∫ ut

0

ρ(t, w)dw = −
∫ t

0

∂uρs(0)ds .

2.4 Central Limit Theorem for the Tagged Particle

In this section we prove Theorem 2.1.6 developing the ideas of the previous section. Assume
first that ut > 0 and fix a in R. By equation (2.5), the set {XtgεNut + a

√
N} is equal to

the set in which

J−1,0(t) ≥
Nut
∑

x=0

ηt(x) +
a
√

N−1
∑

x=1

ηt(x + Nut) −
{

EνN
ρ0(·)

[J−1,0(t)] −
Nut
∑

x=0

ρN
t (x)]

}

, (2.7)

where ρN
t (x) is the solution of the discrete heat equation (2.2).

We claim that second term on the right hand side of (2.7) divided by
√

N converges
to its mean in L2. Indeed, by Lemma 2.2.2, its variance is bounded by C0a

2N−1 for some
finite constant C0. Since by Theorem 2.5.1,

1√
N

a
√

N−1
∑

x=1

ρN
t (x + Nut)

converges to aρ(t, ut), the second term on the right hand side of (2.7) converges in proba-
bility to aρ(t, ut).

An elementary computation based on the definition of ut and on Theorem 2.5.1 shows
that the third term on the right hand side of (2.7) divided by

√
N vanishes as N ↑ ∞.

Finally, by Proposition 2.2.1, for fixed t, N−1/2{J−1,0(t) −
∑Nut

x=0 ηt(x)} behaves as
Y N

t (Gn)−Y N
0 (Gn)−Y N

t (1{[0, ut]}), as N ↑ ∞, n ↑ ∞. Repeating the arguments presented
at the beginning of the proof of Theorem 2.1.3, we show that this latter variable converges
in law to a centered Gaussian variable, denoted by Wt, and which is formally equal to
Yt(Hut

) − Y0(H0).
Up to this point we proved that

lim
N→∞

PνN
ρ0(·)

[Xt − utN√
N

gεa
]

= P [Wtgεaρ(t, ut)]

provided ut > 0. The same arguments permit to prove the same statement in the case
ut = 0, a > 0. By symmetry around the origin, we can recover the other cases: ut < 0
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and a in R, ut = 0 and a < 0.
Putting all these facts together, we conclude that for each fixed t, (Xt−Nut)/

√
N con-

verges in distribution to the Gaussian Wt/ρ(t, ut) = [Yt(Hut
)−Y0(H0)]/ρ(t, ut). The same

arguments show that any vector (N−1/2[Xt1 − Nut1 ], . . . , N
−1/2[Xtk

− Nutk
]) converges

to the corresponding centered Gaussian vector.
It remains to compute the covariances, which is long but elementary.

2.5 Finite approximations for the heat equation

In sake of completeness, we present in this section a result on the approximation of the
heat equation by solutions of discrete heat equations.

Fix a profile ρ0 : R → R with a bounded fourth derivative. Let ρ : R+ ×R → R be the
solution of the heat equation with initial profile ρ0:

{

∂tρ(t, x) = ∂2
xρ(t, x)

ρ(0, x) = ρ0(x) .

Recall that we denote by ∆N the discrete Laplacian. For each N ∈ N, define ρN
t (x) as

the solution of the system of ordinary differential equations

{

(d/dt)ρN
t (x) = (∆NρN

t )(x)
ρN
0 (x) = ρ0(x/N) .

(2.8)

The main result of this section asserts that ρN approximates ρ up to order N−2:

Theorem 2.5.1. Assume that ρ0 : R → [0, 1] is a function with a bounded fourth deriva-
tive. There exists a finite constant C0 such that

∣

∣

∣
ρN

t (x) − ρ(t,
x

N
)
∣

∣

∣
≤ C0t

N2

for all Ngε1, t ≥ 0, x ∈ Z.

An easy way to prove this statement is to introduce a time discrete approximation of
the heat equation. For each N in N and each δ > 0, we define ρδ,N

l (k), k in Z, l ≥ 0 by
the recurrence formula

{

ρδ,N
l+1(k) = ρδ,N

l (k) + δN2[ρδ,N
l (k + 1) + ρδ,N

l (k − 1) − 2ρδ,N
l (k)]

ρδ,N
0 (k) = ρ0(k/N) .

(2.9)

We now recall two well known propositions whose combination leads to the proof of
Theorem 2.5.1. The first one states that the solution of (2.9) converges as δ ↓ 0 to the
solution of (2.8) uniformly on compact sets. The second one furnishes a bound on the
distance between the solution of the discrete equation (2.9) and the solution of the heat
equation.

For a in R, denote by bac the largest integer smaller or equal to a.

Proposition 2.5.2. For each Ngε1,

lim
δ→0

ρN,δ
bt/δc(k) = ρN

t (k)

uniformly on compacts of R+ × Z.

Proposition 2.5.3. Suppose that δN 2 < 1/2. Then, there exist a finite constant C0 =
C0(ρ0) such that

∣

∣

∣
ρδ,N

l (k) − ρ
(

δl, k/N
) ∣

∣

∣
≤ C0

{

δ2l +
δl

N2

}
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for all l ≥ 0, k ∈ Z.

Clearly, Theorem 2.5.1 is an immediate consequence of Propositions 2.5.2 and 2.5.3.
Proposition 2.5.2 is a consequence of Proposition 2.5.3 and the Cauchy-Peano existance
theorem for ordinary differential equations. Proposition 2.5.3 is a standard result on
numerical analysis (see [T] for instance).
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