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Caminha, Luquésio Jorge, Levi Lima, Fábio Montenegro, Francisco Pimentel and Romildo Silva.

In 2007, I began my graduate studies at IMPA, supported by one of my two advisors, Carlos

Gustavo Moreira - Gugu - and Marcelo Viana. Some months later I met my other advisor,

Enrique Pujals. A huge acknowledgement is devoted to them, for their valuable mathematical

support, covering of conference expenses and advices in life. Yet more special thanks are given

to my advisors, who (Lebesgue almost-every occasion) patiently heard my doubts and explained

in the simplest way; who gave me insights to the development of this thesis. I have learned a

lot from them, from the happiness of Gugu to the optimism of Enrique; from the social ideas of

Gugu to the political ones of Enrique. Their flaws are that Enrique does not play football and

Gugu does terribly bad.

In the middle of my stay at IMPA I had the opportunity of doing a semester internship at

The Ohio State University, under the supervision of Vitaly Bergelson. I would like to thank

him for such guidance, enormous encouragement and also to the suggestion of research topic,

which result is Chapter 5 of the present work. I made many friends in Columbus, of which I

highlight Naomi Adaniya, Fabian Benitez, Darcey Hull, Kathrin Levine, Daniel Munoz, Sanjna

Shah, Sylvia Silveira and Laura Tompkins.

Carlos Matheus has been an alma mater to me. He teaches me a lot, specially in topics I

don’t have any knowledge. In addition, he shared his blog for posts about my research. He have

had many discussions, together with Aline Cerqueira - hearing everything, telling stories about

“the dark side of Rio” and supporting us with her special care. I thank Alejandro Kocsard, for

ii



his patience and availability in my latest project and Jacob Palis for his influence and global

perspectives.

I have many considerations to IMPA employees. As they are too many, I represent each de-

partment by one person: Guilherme Brondi, Nelly Carvajal, Fernando Codá, Alexandre Maria,
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“Ora (direis) ouvir estrelas! Certo

Perdeste o senso!” E eu vos direi, no entanto,

Que, para ouvi-las, muita vez desperto

E abro as janelas, pálido de espanto. . .

E conversamos toda a noite, enquanto

A via láctea, como um pálio aberto,

Cintila. E, ao vir do sol, saudoso e em pranto,

Inda as procuro pelo céu deserto.

Direis agora: “Tresloucado amigo!

Que conversas com elas? Que sentido

Tem o que dizem, quando estão contigo?”

E eu vos direi: “Amai para entendê-las!

Pois só quem ama pode ter ouvido

Capaz de ouvir e de entender estrelas”.

Via Láctea, de Olavo Bilac.



Abstract
This thesis is devoted to the study of sets of zero density, both continuous - inside R - and

discrete - inside Z. Most of the arguments are combinatorial in nature.

The interests are twofold. The first investigates arithmetic sums: given two subsets E,F of

R or Z, what can be said about E+λF for most of the parameters λ ∈ R? The continuous case

dates back to Marstrand. We give an alternative combinatorial proof of his theorem for the

particular case of products of regular Cantor sets and, in the sequel, extend these techniques to

give the proof of the general case.

We also discuss Marstrand’s theorem in discrete spaces. More specifically, we propose a frac-

tal dimension for subsets of the integers and establish a Marstrand type theorem in this context.

The second interest is ergodic theoretical. It contains constructions of Z
d-actions with

prescribed topological and ergodic properties, such as total minimality, total ergodicity and

total strict ergodicity. These examples prove that Bourgain’s polynomial pointwise ergodic

theorem has not a topological version.
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Resumo
O presente trabalho estuda conjuntos de densidade zero, tanto cont́ınuos - subconjuntos de

R - quanto discretos - subconjuntos de Z. Os argumentos são, em sua maioria, de natureza

combinatória.

Os interesses são divididos em duas partes. O primeira investiga somas aritméticas: dados

subconjuntos E,F de R ou Z, o que se pode inferir a respeito do conjunto E+λF para a maioria

dos parâmetros λ ∈ R? O caso cont́ınuo tem origem nos trabalhos de Marstrand. Aqui, é dada

uma prova alternativa desse teorema no caso em que o conjunto é produto de dois conjuntos

de Cantor regulares e, posteriormente, as técnicas aplicadas são estendidas para a obtenção de

uma prova do caso geral.

Ainda na primeira parte, discutimos o Teorema de Marstrand em espaços discretos. Mais

especificamente, propomos uma dimensão fractal para subconjuntos de inteiros e provamos um

resultado do tipo Marstrand nesse contexto. Uma grande quantidade de exemplos é discutida,

além de contraexemplos para posśıveis extensões do resultado.

O segundo interesse é ergódico. Constrúımos Zd-ações com propriedades ergódicas e topológi-

cas prescritas, como totalmente minimal, totalmente ergódico e totalmente estritamente ergódico.

Tais exemplos provam que não existe uma versão topológica para o teorema de Bourgain sobre

a convergência pontual de médias ergódicas polinomiais.
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Chapter 1

Brief description

This thesis is devoted to the study of sets of zero density, both continuous - inside R - and

discrete - inside Z. Most of the arguments are combinatorial in nature.

The interests are twofold. The first investigates arithmetic sums: given two subsets E,F of

R or Z, what can be said about E+λF for most of the parameters λ ∈ R? The continuous case

dates back to Marstrand, as we will describe in the next section. The discrete case is new [24].

The second interest is ergodic theoretical. Specifically, it is shown that Bourgain’s polynomial

pointwise ergodic theorem has not a topological version.

Each chapter originated an article and for this reason is self-contained. Chapters 2, 3, 4 were

written together with one of my Ph.D. advisors, Carlos Gustavo Moreira (Gugu), and Chapter

5 by myself as I was a visiting scholar at The Ohio State University under the supervision of

Vitaly Bergelson.

The present chapter describes the main goals of this work and gives a brief description of

each of the next chapters.

1.1 Goals

Consider the following table.

Continuous Discrete

Positive density X X

Zero density X ?

For each box with the checkmark X, we represent a situation for which there is an active

research and a solid theory has been developed, as we will describe in the sequel. The only

1
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unchecked box concerns discrete sets of zero density. These objects are of great importance, not

only for intrisic reasons, but also because many of them are natural arithmetic sets that appear

in diverse areas of Mathematics, from which we mention

• the prime numbers: even having zero density, B. Green and T. Tao [16] proved that the prime

numbers are combinatorially rich in the sense that they contain infinitely long arithmetic

progressions;

• J. Bourgain [6] has proved almost sure pointwise convergence of ergodic averages along poly-

nomials.

The above results strongly rely on the particular combinatorial and analytical structure of

each set. In this thesis, we obtain results in a more general point of view. Yet concerning the

table above, let us contrast the continuous and discrete situations.

1.1.1 Largeness in R and Z

Let m denote the Lebesgue measure of R. We ask the following question: if K ⊂ R is large in

the sense of m, does it inherit some structure from R? A satisfactory answer is given by

Theorem 1.1.1 (Lebesgue differentiation). If K ⊂ R is a Borel set with m(K) > 0, then

lim
ε→0+

m(K ∩ (x− ε, x+ ε))

2ε
= 1

for m-almost every x ∈ K.

In other words, copies of intervals of the real line “almost” appear in large sets of R. Sur-

prisingly, the same phenomenon holds for subsets of Z. Given a subset E ⊂ Z, let d∗(E) denote

the upper-Banach density of E, defined as

d∗(E) = lim sup
N−M→∞

|E ∩ {M + 1, . . . , N}|

N −M
·

We thus have a discrete version of Theorem 1.1.1.

Theorem 1.1.2 (Szemerédi [45]). If E ⊂ Z has positive upper Banach density, then E contains

arbitrarily long arithmetic progressions.

One can interpret this result by saying that density represents the correct notion of largeness

needed to preserve finite configurations of Z. These two situations just described are examples

of Ramsey’s principle which, roughly speaking, asserts that

If a substructure occupies a positive portion of a structure, then it must contain “copies” of

the structure.
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1.1.2 Zero density in R and Z

However, theorems 1.1.1 and 1.1.2 can not infer anything if the density is zero, but these sets

might posses rich combinatorial properties as well. For example, the ternary Cantor set

K =







∑

n≥1

ai · 3
−i ; ai = 0 or 2







satisfies K + K = [0, 2] and naturally appears in the theory of homoclonic bifurcations on

surfaces. Regarding the continuous case, one can investigate largeness of a set of zero density

via its Hausdorff dimension. It is a classical result in Geometric Measure Theory the following

Theorem 1.1.3 (Marstrand [27]). If K ⊂ R
2 is a Borel set with Hausdorff dimension greater

than one, then the projection of K into R in the direction of λ has positive Lebesgue measure

for m-almost every λ ∈ R.

Informally speaking, this means that sets of Hausdorff dimension greater than one are “fat”

in almost every direction. In particular, if K = K1 × K2 is a cartesian product of two one-

dimensional subsets of R, Marstrand’s theorem translates to “m(K1 + λK2) > 0 for m-almost

every λ ∈ R”.

Up to now, a theory of fractal sets in Z has not been developed. This constitutes the main

goal of this thesis. We will investigate these sets from geometrical and ergodic points of view,

according to the diagram below.

PART 1: GEOMETRY

Marstrand’s theorem for subsets of Z

↑

Marstrand’s theorem in R: new proof

PART 2: ERGODIC

Ergodic theorems along sets of zero density

↑

Z
d-actions with prescribed topological and ergodic properties
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Part 1 is the content of chapters 2, 3 and 4 and Part 2 of chapter 5. In order to obtain a

Marstrand’s theorem for subsets of Z, we first establish a new proof of the classical Marstrand’s

theorem that can be adapted to the discrete case. Regarding Part 2, we prove that Bourgain’s

polynomial pointwise ergodic theorem has not a topological version by constructing Z
d-actions

with prescribed tolopogical and ergodic properties. In the next sections of this chapter, we will

give a brief description of the ideas involved.

1.2 Chapter 2

Let m denote the Lebesgue measure of R. It is a classical result in Geometric Measure Theory

the following

Theorem 1.2.1 (Marstrand [27]). If K ⊂ R
2 is a Borel set with Hausdorff dimension greater

than one, then the projection of K into R in the direction of λ has positive Lebesgue measure

for m-almost every λ ∈ R.

In particular, if K = K1 × K2 is a cartesian product of two one-dimensional subsets of

R, Marstrand’s theorem translates to “m(K1 + λK2) > 0 for m-almost every λ ∈ R”. The

investigation of such arithmetic sums K1 + λK2 has been an active area of Mathematics, in

special when K1 and K2 are dynamically defined Cantor sets. Remarkably, M. Hall [18] proved,

in 1947, that the Lagrange spectrum1 contains a whole half line, by showing that the arithmetic

sum K(4) +K(4) of a certain Cantor set K(4) ⊂ R with itself contains [6,∞).

Marstrand’s Theorem for product of Cantor sets is also fundamental in certain results of

dynamical bifurcations, namely homoclinic bifurcations in surfaces. For instance, in [38] it is

used to prove that hyperbolicity holds for most small positive values of parameter in homoclinic

bifurcations associated to horseshoes with Hausdorff dimension smaller than one; in [39] it

is used to show that hyperbolicity is not prevalent in homoclinic bifurcations associated to

horseshoes with Hausdorff dimension larger than one.

Looking for some kind of converse to Marstrand’s theorem, J. Palis conjectured in [36] that

for generic pairs of regular Cantor sets (K1,K2) of the real line either K1+K2 has zero measure

or else it contains an interval. Observe that the first part is a consequence of Marstrand’s

theorem. In [33], it is proved that stable intersections of regular Cantor sets are dense in the

region where the sum of their Hausdorff dimensions is larger than one, thus establishing the

remaining of Palis conjecture. It is remarkable to point out that Marstrand’s theorem is used

in the proof.

1The Lagrange spectrum is the set of best constants of rational approximations of irrational numbers. See [9]

for the specific description.
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In the connection of these two applications, I would like to point out that a formula for the

Hausdorff dimension of K1+K2, under mild assumptions of non-linear Cantor sets K1 and K2,

has been obtained by Gugu [31] and applied in [32] to prove that the Hausdorff dimension of

the Lagrange spectrum increases continuously. In parallel to this non-linear setup, Y. Peres and

P. Shmerkin proved the same phenomena happen to self-similar Cantor sets without algebraic

resonance [41]. Finally, M. Hochman and P. Shmerkin extended and unified many results

concerning projections of products of self-similar measures on regular Cantor sets [19].

The techniques used in [31] were based on estimates obtained in [33]. With these tools, Gugu

and myself were able to develop in [25] a purely combinatorial proof of Marstrand’s theorem for

products of regular dynamically defined Cantor sets. Denoting by HD the Hausdorff dimension,

the main theorem is

Theorem 1.2.2 (Lima-Moreira [25]). If K1,K2 are regular dynamically defined Cantor sets of

class C1+α, α > 0, such that d = HD(K1)+HD(K2) > 1, then m (K1 + λK2) > 0 for m-almost

every λ ∈ R.

Let md denote the Hausdorff d-measure on R. The idea of the proof relies on the fact that

a regular Cantor set of Hausdorff dimension d is regular in the sense that the md-measure of

arbitrarily small portions of it can be uniformly controlled. Once this is true, a double counting

argument proves that the arithmetic sum has Lebesgue measure bounded away from zero at

advanced stages of the construction of the Cantor sets, except for a small set of parameters.

The good feature of the proof is that this discretization idea may be applied to the discrete

context, as we shall see in Chapter 4.

The same idea of homogeneity is applied in [26] to prove the general case of Marstrand’s

theorem. Namely, once some upper regularity on the md-measure of K is assumed, it is possible

to apply a weighted version of [25] (the covers of K may be composed of subsets with different

diameter scales) to conclude the result.

1.3 Chapter 3

Chapter 3 extends the techniques developed in Chapter 2 and encloses a combinatorial proof

of Marstrand’s Theorem without any restrictions on K. The proof makes a study on the one-

dimensional fibers of K in every direction and relies on two facts:

(I) Transversality condition: given two squares on the plane, the Lebesgue measure of the set

of angles θ ∈ R for which their projections in the direction of θ have nonempty intersection has

an upper bound.

(II) After a regularization of K, (I) enables us to conclude that, except for a small set of angles

θ ∈ R, the fibers in the direction of θ are not concentrated in a thin region. As a consequence,
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K projects into a set of positive Lebesgue measure.

The idea of (II) is based on [31] and was employed in [26] to develop a combinatorial proof

of Marstrand’s Theorem when K is the product of two regular Cantor sets (which is the content

of Chapter 2).

Compared to other proofs of Marstrand’s Theorem, the new ideas here are the discretization

of the argument and the use of dyadic covers, which allow the simplification of the method

employed.

1.4 Chapter 4

Given a subset E ⊂ Z, let d∗(E) denote the upper-Banach density of E, defined as

d∗(E) = lim sup
N−M→∞

|E ∩ {M + 1, . . . , N}|

N −M
·

Szemerédi’s theorem asserts that if d∗(E) > 0, then E contains arbitrarily long arithmetic

progressions. One can interpret this result by saying that density represents the correct notion of

largeness needed to preserve finite configurations of Z. On the other hand, Szemerédi’s theorem

cannot infer any property about subsets of zero density, and many of these are important.

A class of examples are the integer polynomial sequences. The prime numbers are another

example. These sets may, as well, contain combinatorially rich patterns.

A set E ⊂ Z of zero upper-Banach density is characterized as occupying portions in intervals

of Z that grow in a sublinear fashion as the length of the intervals grow. On the other hand,

there still may exist some kind of growth speed. For example, the number of perfect squares

on an interval of length n is about n0.5. This exponent means, in some sense, a dimension of

{n2 ; n ∈ Z} inside Z. In general, define the counting dimension of E ⊂ Z as

D(E) = lim sup
|I|→∞

log |E ∩ I|

log |I|
,

where I runs over the intervals of Z.

In [24], Gugu and myself investigated this dimension when one considers arithmetic sums

of the form E + ⌊λF ⌋, λ ∈ R, for a class of subsets E,F ⊂ Z. At first sight, by an ingenuous

application of the multiplicative principle, one should expect that E + ⌊λF ⌋ has dimension at

least D(E) +D(F ). This is not true at all, due to two reasons:

(1) E and F may be very irregular as subsets of Z.

(2) E and F may exhibit growth speed inside intervals of very different lengths.
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This led to the definition of regular compatible sets: E is regular if

|E ∩ I|

|I|D(E)
. 1,

where I runs over all intervals of Z, and there exists a sequence of intervals (In)n≥1 such that

|In| → ∞ and
|E ∩ In|

|In|D(E)
& 1. (1.4.1)

Two regular subsets E,F ⊂ Z are compatible if there exist two sequences (In)n≥1, (Jn)n≥1

of intervals with increasing lengths satisfying (1.4.1) and such that In ∼ Jn (above, we used

asymptotic Vinogradov notations . and ∼). The main theorem of [24] is

Theorem 1.4.1 (Lima-Moreira [24]). Let E,F ⊂ Z be two regular compatible sets. Then

D(E + ⌊λF ⌋) ≥ min{1,D(E) +D(F )}

for Lebesgue almost every λ ∈ R. If in addition D(E) +D(F ) > 1, then E + ⌊λF ⌋ has positive

upper-Banach density for Lebesgue almost every λ ∈ R.

The above theorem has direct consequences when applied to integer polynomial sequences.

For any p(x) ∈ Z[x] of degree d, the set E = {p(n) ; n ∈ Z} is regular and has dimension 1/d.

Also, it is compatible with any other regular set. These observations imply the second result of

the chapter.

Theorem 1.4.2 (Lima-Moreira [24]). Let pi ∈ Z[x] with degree di and let Ei = {pi(n) ; n ∈ Z},

i = 0, . . . , k. If
1

d0
+

1

d1
+ · · ·+

1

dk
> 1,

then the arithmetic sum E0 + ⌊λ1E1⌋ + · · · + ⌊λkEk⌋ has positive upper-Banach density for

Lebesgue almost every (λ1, . . . , λk) ∈ R
k.

1.5 Chapter 5

Let T be a mesure-preserving transformation on the probability space (X,B, µ) and f : X → R a

measurable function. A successful area in ergodic theory deals with the convergence of averages

n−1 ·
∑n

k=1 f
(

T kx
)

, x ∈ X, when n converges to infinity. The well known Birkhoff’s Theorem

states that such limit exists for almost every x ∈ X whenever f is an L1-function. Several

results have been (and still are being) proved when, instead of {1, 2, . . . , n}, average is made

along other sequences of natural numbers. A remarkable result on this direction was given by J.

Bourgain [6], where he proved that if p(x) is a polynomial with integer coefficients and f is an



8

Lp-function, for some p > 1, then the averages n−1 ·
∑n

k=1 f
(

T p(k)x
)

converge for almost every

x ∈ X. In other words, convergence fails to hold for a negligible set with respect to the measure

µ. We mention this result is not true for L1-functions, as recently proved by Z. Buczolich and

D. Mauldin [7].

In [3], V. Bergelson asked if this set is also negligible from the topological point of view.

It turned out, by a result of R. Pavlov [40], that this is not true. He proved that, for every

sequence (pn)n≥1 ⊂ Z of zero upper-Banach density, there exist a totally minimal, totally

uniquely ergodic and topologically mixing transformation (X,T ) and a continuous function

f : X → R such that n−1 ·
∑n

k=1 f (T
pkx) fails to converge for a residual set of x ∈ X. The

conditions of minimality, unique ergodicity, although they seem artificial, are natural for the

question posed by Bergelson, in order to avoid pathological counterexamples. The construction

of Pavlov was inspired in results of Hahn and Katznelson [17].

In [23], I extended the results of Pavlov [40] to the setting of Z
d-actions. The method

consisted of constructing (totally) minimal and (totally) uniquely ergodic Z
d-actions. The

program was carried out by constructing closed shift invariant subsets of a sequence space.

More specifically, a sequence of finite configurations (Ck)k≥1 of {0, 1}Z
d
was built, where Ck+1

is essentially formed by the concatenation of elements in Ck such that each of them occurs

statistically well-behaved in each element of Ck+1. Finally, the set of limits of shifted Ck-

configurations as k → ∞ constitutes the shift invariant subset. The main results on [23] is

Theorem 1.5.1 (Lima [23]). Given a set P ⊂ Z
d of zero upper-Banach density, there exist a

totally strictly ergodic Z
d-action (X,A, µ, T ) and a continuous function f : X → R such that

the ergodic averages
1

|P ∩ (−n, n)d|

∑

g∈P∩(−n,n)d

f (T gx)

fail to converge for a residual set of x ∈ X.

Yet in the arithmetic setup, let p1, . . . , pd ∈ Z[x]. Bergelson and Leibman proved in

[4] that if T is a minimal Z
d-action, then there is a residual set Y ⊂ X for which x ∈

{T (p1(n),...,pd(n))x ; n ∈ Z}, for every x ∈ Y . The same method employed in Theorem 1.5.1

also gives the best topological result one can expect in this context.

Theorem 1.5.2 (Lima [23]). Given a set P ⊂ Z
d of zero upper-Banach density, there exists

a totally strictly ergodic Z
d-action (X,A, µ, T ) and an uncountable set Y ⊂ X for which x 6∈

{T px ; p ∈ P}, for every x ∈ Y .



Chapter 2

A combinatorial proof of

Marstrand’s Theorem for products

of regular Cantor sets

In a paper from 1954 Marstrand proved that if K ⊂ R
2 has Hausdorff dimension greater than

1, then its one-dimensional projection has positive Lebesgue measure for almost-all directions.

In this chapter, we give a combinatorial proof of this theorem when K is the product of regular

Cantor sets of class C1+α, α > 0, for which the sum of their Hausdorff dimension is greater

than 1.

2.1 Introduction

If U is a subset of Rn, the diameter of U is |U | = sup{|x− y|;x, y ∈ U} and, if U is a family of

subsets of Rn, the diameter of U is defined as

‖U‖ = sup
U∈U

|U | .

Given d > 0, the Hausdorff d-measure of a set K ⊆ R
n is

md(K) = lim
ε→0

(

inf
U covers K

‖U‖<ε

∑

U∈U

|U |d

)

.

In particular, when n = 1, m = m1 is the Lebesgue measure of Lebesgue measurable sets

on R. It is not difficult to show that there exists a unique d0 ≥ 0 for which md(K) = ∞ if

d < d0 and md(K) = 0 if d > d0. We define the Hausdorff dimension of K as HD(K) = d0.

Also, for each θ ∈ R, let vθ = (cos θ, sin θ), Lθ the line in R
2 through the origin containing vθ

9
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and projθ : R2 → Lθ the orthogonal projection. From now on, we’ll restrict θ to the interval

[−π/2, π/2], because Lθ = Lθ+π.

In 1954, J. M. Marstrand [27] proved the following result on the fractal dimension of plane

sets.

Theorem. If K ⊆ R
2 is a Borel set such that HD(K) > 1, then m(projθ(K)) > 0 for m-almost

every θ ∈ R.

The proof is based on a qualitative characterization of the “bad” angles θ for which the

result is not true. Specifically, Marstrand exhibits a Borel measurable function f(x, θ), (x, θ) ∈

R
2 × [−π/2, π/2], such that f(x, θ) = ∞ for md-almost every x ∈ K, for every “bad” angle. In

particular,
∫

K
f(x, θ)dmd(x) = ∞. (2.1.1)

On the other hand, using a version of Fubini’s Theorem, he proves that

∫ π/2

−π/2
dθ

∫

K
f(x, θ)dmd(x) = 0

which, in view of (2.1.1), implies that

m ({θ ∈ [−π/2, π/2] ; m(projθ(K)) = 0}) = 0.

These results are based on the analysis of rectangular densities of points.

Many generalizations and simpler proofs have appeared since. One of them appeared in

1968 by R. Kaufman who gave a very short proof of Marstrand’s theorem using methods of

potential theory. See [21] for his original proof and [29], [37] for further discussion.

In this chapter, we prove a particular case of Marstrand’s Theorem.

Theorem 2.1.1. If K1,K2 are regular Cantor sets of class C1+α, α > 0, such that d =

HD(K1) + HD(K2) > 1, then m (projθ(K1 ×K2)) > 0 for m-almost every θ ∈ R.

The argument also works to show that the push-forward measure of the restriction of md to

K1 ×K2, defined as µθ = (projθ)∗(md|K1×K2), is absolutely continuous with respect to m, for

m-almost every θ ∈ R. Denoting its Radon-Nykodim derivative by χθ = dµθ/dm, we also give

yet another proof of the following result.

Theorem 2.1.2. χθ is an L2 function for m-almost every θ ∈ R.

Our proof makes a study on the fibers projθ
−1(v) ∩ (K1 ×K2), (θ, v) ∈ R × Lθ, and relies

on two facts:

(I) A regular Cantor set of Hausdorff dimension d is regular in the sense that the md-measure

of small portions of it has the same exponential behavior.
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(II) This enables us to conclude that, except for a small set of angles θ ∈ R, the fibers

projθ
−1(v) ∩ (K1 × K2) are not concentrated in a thin region. As a consequence, K1 × K2

projects into a set of positive Lebesgue measure.

The idea of (II) is based on [31]. It proves that, if K1 and K2 are regular Cantor sets of class

C1+α, α > 0, and at least one of them is non-essentially affine (a technical condition), then the

arithmetic sum K1 +K2 = {x1 + x2;x1 ∈ K1, x2 ∈ K2} has the expected Hausdorff dimension:

HD(K1 +K2) = min{1,HD(K1) + HD(K2)}.

Marstrand’s Theorem for products of Cantor sets is a source of very relevant applications

in dynamical systems, as pointed out in Chapter 1. It is of fundamental importance in certain

results of dynamical bifurcations, namely homoclinic bifurcations. For instance, in [38] it is

used to prove that hyperbolicity holds for most small positive values of parameter in homoclinic

bifurcations associated to horseshoes with Hausdorff dimension smaller than one; in [39] it is used

to show that hyperbolicity is not prevalent in homoclinic bifurcations associated to horseshoes

with Hausdorff dimension larger than one; in [33] it is used to prove that stable intersections

of regular Cantor sets are dense in the region where the sum of their Hausdorff dimensions is

larger than one; in [34] to show that, for homoclinic bifurcations associated to horseshoes with

Hausdorff dimension larger than one, typically there are open sets of parameters with positive

Lebesgue density at the initial bifurcation parameter corresponding to persistent homoclinic

tangencies.

2.2 Regular Cantor sets of class C1+α

We say that K ⊂ R is a regular Cantor set of class C1+α, α > 0, if:

(i) there are disjoint compact intervals I1, I2, . . . , Ir ⊆ [0, 1] such that K ⊂ I1 ∪ · · · ∪ Ir and

the boundary of each Ii is contained in K;

(ii) there is a C1+α expanding map ψ defined in a neighbourhood of I1 ∪ I2 ∪ · · · ∪ Ir such

that ψ(Ii) is the convex hull of a finite union of some intervals Ij , satisfying:

(ii.1) for each i ∈ {1, 2, . . . , r} and n sufficiently big, ψn(K ∩ Ii) = K;

(ii.2) K =
⋂

n∈N
ψ−n(I1 ∪ I2 ∪ · · · ∪ Ir).

The set {I1, . . . , Ir} is called a Markov partition of K. It defines an r × r matrix B = (bij)

by

bij = 1, if ψ(Ii) ⊇ Ij

= 0, if ψ(Ii) ∩ Ij = ∅,



Chapter 2. Marstrand’s Theorem for products of Cantor sets 12

which encodes the combinatorial properties of K. Given such matrix, consider the set ΣB =
{

θ = (θ1, θ2, . . .) ∈ {1, . . . , r}N ; bθiθi+1
= 1,∀ i ≥ 1

}

and the shift transformation σ : ΣB → ΣB

given by σ(θ1, θ2, . . .) = (θ2, θ3, . . .).

There is a natural homeomorphism between the pairs (K,ψ) and (ΣB , σ). For each finite

word a = (a1, . . . , an) such that baiai+1 = 1, i = 1, . . . , n− 1, the intersection

Ia = Ia1 ∩ ψ
−1(Ia2) ∩ · · · ∩ ψ−(n−1)(Ian)

is a non-empty interval with diameter |Ia| = |Ian |/|(ψ
n−1)′(x)| for some x ∈ Ia, which is

exponentially small if n is large. Then, {h(θ)} =
⋂

n≥1 I(θ1,...,θn) defines a homeomorphism

h : ΣB → K that commutes the diagram

ΣB
σ

//

h
��

ΣB

h
��

K
ψ

// K

If λ = sup{|ψ′(x)|;x ∈ I1 ∪ · · · ∪ Ir} ∈ (1,∞), then
∣

∣I(θ1,...,θn+1)

∣

∣ ≥ λ−1 ·
∣

∣I(θ1,...,θn)
∣

∣ and so, for

ρ > 0 small and θ ∈ ΣB, there is a positive integer n = n(ρ, θ) such that

ρ ≤
∣

∣I(θ1,...,θn)
∣

∣ ≤ λρ.

Definition 2.2.1. A ρ-decomposition of K is any finite set (K)ρ = {I1, I2, . . . , Ir} of disjoint

closed intervals of R, each one of them intersecting K, whose union covers K and such that

ρ ≤ |Ii| ≤ λρ , i = 1, 2, . . . , r.

Remark 2.2.2. Although ρ-decompositions are not unique, we use, for simplicity, the notation

(K)ρ to denote any of them. We also use the same notation (K)ρ to denote the set
⋃

I∈(K)ρ
I ⊂ R

and the distinction between these two situations will be clear throughout the text.

Every regular Cantor set of class C1+α has a ρ-decomposition for ρ > 0 small: by the

compactness of K, the family
{

I(θ1,...,θn(ρ,θ))

}

θ∈ΣB

has a finite cover (in fact, it is only necessary

for ψ to be of class C1). Also, one can define ρ-decomposition for the product of two Cantor

sets K1 and K2, denoted by (K1 × K2)ρ. Given ρ 6= ρ′ and two decompositions (K1 × K2)ρ′

and (K1 ×K2)ρ, consider the partial order

(K1 ×K2)ρ′ ≺ (K1 ×K2)ρ ⇐⇒ ρ′ < ρ and
⋃

Q′∈(K1×K2)ρ′

Q′ ⊆
⋃

Q∈(K1×K2)ρ

Q.

In this case, projθ((K1 ×K2)ρ′) ⊆ projθ((K1 ×K2)ρ) for any θ.

A remarkable property of regular Cantor sets of class C1+α, α > 0, is bounded distortion.
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Lemma 2.2.3. Let (K,ψ) be a regular Cantor set of class C1+α, α > 0, and {I1, . . . , Ir} a

Markov partition. Given δ > 0, there exists a constant C(δ) > 0, decreasing on δ, with the

following property: if x, y ∈ K satisfy

(i) |ψn(x)− ψn(y)| < δ;

(ii) The interval [ψi(x), ψi(y)] is contained in I1 ∪ · · · ∪ Ir, for i = 0, . . . , n− 1,

then

e−C(δ) ≤
|(ψn)′(x)|

|(ψn)′(y)|
≤ eC(δ) .

In addition, C(δ) → 0 as δ → 0.

A direct consequence of bounded distortion is the required regularity of K, contained in the

next result.

Lemma 2.2.4. Let K be a regular Cantor set of class C1+α, α > 0, and let d = HD(K). Then

0 < md(K) <∞. Moreover, there is c > 0 such that, for any x ∈ K and 0 ≤ r ≤ 1,

c−1 · rd ≤ md(K ∩Br(x)) ≤ c · rd.

The same happens for productsK1×K2 of Cantor sets (without loss of generality, considered

with the box norm).

Lemma 2.2.5. Let K1,K2 be regular Cantor sets of class C1+α, α > 0, and let d = HD(K1)+

HD(K2). Then 0 < md(K1×K2) <∞. Moreover, there is c1 > 0 such that, for any x ∈ K1×K2

and 0 ≤ r ≤ 1,

c1
−1 · rd ≤ md ((K1 ×K2) ∩Br(x)) ≤ c1 · r

d.

See chapter 4 of [37] for the proofs of these lemmas. In particular, if Q ∈ (K1 ×K2)ρ, there

is x ∈ (K1 ∪K2) ∩Q such that Bλ−1ρ(x) ⊆ Q ⊆ Bλρ(x) and so

(

c1λ
d
)−1

· ρd ≤ md((K1 ×K2) ∩Q) ≤ c1λ
d · ρd.

Changing c1 by c1λ
d, we may also assume that

c1
−1 · ρd ≤ md ((K1 ×K2) ∩Q) ≤ c1 · ρ

d,

which allows us to obtain estimates on the cardinality of ρ-decompositions.

Lemma 2.2.6. Let K1,K2 be regular Cantor sets of class C1+α, α > 0, and let d = HD(K1)+

HD(K2). Then there is c2 > 0 such that, for any ρ-decomposition (K1 × K2)ρ, x ∈ K1 × K2

and 0 ≤ r ≤ 1,

# {Q ∈ (K1 ×K2)ρ;Q ⊆ Br(x)} ≤ c2 ·

(

r

ρ

)d

·

In addition, c2
−1 · ρ−d ≤ #(K1 ×K2)ρ ≤ c2 · ρ

−d.
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Proof. We have

c1 · r
d ≥ md ((K1 ×K2) ∩Br(x))

≥
∑

Q⊆Br(x)

md ((K1 ×K2) ∩Q)

≥
∑

Q⊆Br(x)

c1
−1 · ρd

= # {Q ∈ (K1 ×K2)ρ;Q ⊆ Br(x)} · c1
−1 · ρd

and then

# {Q ∈ (K1 ×K2)ρ;Q ⊆ Br(x)} ≤ c1
2 ·

(

r

ρ

)d

·

On the other hand,

md(K1 ×K2) =
∑

Q∈(K1×K2)ρ

md ((K1 ×K2) ∩Q) ≤
∑

Q∈(K1×K2)ρ

c1 · ρ
d,

implying that

#(K1 ×K2)ρ ≥ c1
−1 ·md(K1 ×K2) · ρ

−d.

Taking c2 = max{c1
2 , c1/md(K1 ×K2)}, we conclude the proof.

2.3 Proof of Theorem 2.1.1

Given rectangles Q and Q̃, let

ΘQ,Q̃ =
{

θ ∈ [−π/2, π/2]; projθ(Q) ∩ projθ(Q̃) 6= ∅
}

.

Lemma 2.3.1. If Q, Q̃ ∈ (K1 ×K2)ρ and x ∈ (K1 ×K2) ∩Q, x̃ ∈ (K1 ×K2) ∩ Q̃, then

m
(

ΘQ,Q̃

)

≤ 2πλ ·
ρ

d(x, x̃)
·

Proof. Consider the figure.

x

x̃

projθ(x)

projθ(x̃)

Lθ

θ
|θ − ϕ0|

θ
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Since projθ(Q) has diameter at most λρ, d(projθ(x),projθ(x̃)) ≤ 2λρ and then, by elementary

geometry,

sin(|θ − ϕ0|) =
d(projθ(x),projθ(x̃))

d(x, x̃)

≤ 2λ ·
ρ

d(x, x̃)

=⇒ |θ − ϕ0| ≤ πλ ·
ρ

d(x, x̃)
,

because sin−1 y ≤ πy/2. As ϕ0 is fixed, the lemma is proved.

We point out that, although simple, Lemma 2.3.1 expresses the crucial property of transver-

sality that makes the proof work, and all results related to Marstrand’s theorem use a similar

idea in one way or another. See [43] where this tranversality condition is also exploited.

Fixed a ρ-decomposition (K1 ×K2)ρ, let

N(K1×K2)ρ(θ) = #
{

(Q, Q̃) ∈ (K1 ×K2)ρ × (K1 ×K2)ρ; projθ(Q) ∩ projθ(Q̃) 6= ∅
}

for each θ ∈ [−π/2, π/2] and

E((K1 ×K2)ρ) =

∫ π/2

−π/2
N(K1×K2)ρ(θ)dθ.

Proposition 2.3.2. Let K1,K2 be regular Cantor sets of class C1+α, α > 0, and let d =

HD(K1) + HD(K2). Then there is c3 > 0 such that, for any ρ-decomposition (K1 ×K2)ρ,

E((K1 ×K2)ρ) ≤ c3 · ρ
1−2d.

Proof. Let s0 =
⌈

log2 ρ
−1
⌉

and choose, for each Q ∈ (K1 ×K2)ρ, a point x ∈ (K1 ×K2) ∩ Q.

By a double counting and using Lemmas 2.2.6 and 2.3.1, we have

E((K1 ×K2)ρ) =
∑

Q,Q̃∈(K1×K2)ρ

m
(

ΘQ,Q̃

)

=

s0
∑

s=1

∑

Q,Q̃∈(K1×K2)ρ

2−s<d(x,x̃)≤2−s+1

m
(

ΘQ,Q̃

)

≤
s0
∑

s=1

c2 · ρ
−d

[

c2 ·

(

2−s+1

ρ

)d
]

·
(

2πλ ·
ρ

2−s

)

= 2d+1πλc2
2 ·

(

s0
∑

s=1

2s(1−d)

)

· ρ1−2d.

Because d > 1, c3 = 2d+1πλc2
2 ·
∑

s≥1 2
s(1−d) < +∞ satisfies the required inequality.
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This implies that, for each ε > 0, the upper bound

N(K1×K2)ρ(θ) ≤
c3 · ρ

1−2d

ε
(2.3.1)

holds for every θ except for a set of measure at most ε. Letting c4 = c2
−2 · c3

−1, we will show

that

m (projθ ((K1 ×K2)ρ)) ≥ c4 · ε (2.3.2)

for every θ satisfying (2.3.1). For this, divide [−2, 2] ⊆ Lθ in ⌊4/ρ⌋ intervals Jρ1 , . . . , J
ρ
⌊4/ρ⌋ of

equal lenght (at least ρ) and define

sρ,i = # {Q ∈ (K1 ×K2)ρ ; projθ(x) ∈ Jρi } , i = 1, . . . , ⌊4/ρ⌋ .

Then
∑⌊4/ρ⌋

i=1 sρ,i = #(K1 ×K2)ρ and

⌊4/ρ⌋
∑

i=1

sρ,i
2 ≤ N(K1×K2)ρ(θ) ≤ c3 · ρ

1−2d · ε−1.

Let Sρ = {1 ≤ i ≤ ⌊4/ρ⌋ ; sρ,i > 0}. By Cauchy-Schwarz inequality,

#Sρ ≥





∑

i∈Sρ

sρ,i





2

∑

i∈Sρ

sρ,i
2

≥
c2

−2 · ρ−2d

c3 · ρ1−2d · ε−1
=
c4 · ε

ρ
·

For each i ∈ Sρ, the interval Jρi is contained in projθ((K1 ×K2)ρ) and then

m (projθ((K1 ×K2)ρ)) ≥ c4 · ε,

which proves (2.3.2).

Proof of Theorem 2.1.1. Fix a decreasing sequence

(K1 ×K2)ρ1 ≻ (K1 ×K2)ρ2 ≻ · · · (2.3.3)

of decompositions such that ρn → 0 and, for each ε > 0, consider the sets

Gnε =
{

θ ∈ [−π/2, π/2] ; N(K1×K2)ρn
(θ) ≤ c3 · ρn

1−2d · ε−1
}

, n ≥ 1.

Then m ([−π/2, π/2]\Gnε ) ≤ ε, and the same holds for the set

Gε =
⋂

n≥1

∞
⋃

l=n

Glε .

If θ ∈ Gε, then

m (projθ((K1 ×K2)ρn)) ≥ c4 · ε , for infinitely many n,

which implies that m (projθ(K1 ×K2)) ≥ c4 · ε. Finally, the set G =
⋃

n≥1G1/n satisfies

m([−π/2, π/2]\G) = 0 and m (projθ(K1 ×K2)) > 0, for any θ ∈ G.
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2.4 Proof of Theorem 2.1.2

Given any X ⊂ K1×K2, let (X)ρ be the restriction of the ρ-decomposition (K1×K2)ρ to those

rectangles which intersect X. As done in Section 2.3, we’ll obtain estimates on the cardinality

of (X)ρ. Being a subset of K1 × K2, the upper estimates from Lemma 2.2.6 also hold for X.

The lower estimate is given by

Lemma 2.4.1. Let X be a subset of K1×K2 such that md(X) > 0. Then there is c6 = c6(X) > 0

such that, for any ρ-decomposition (K1 ×K2)ρ and 0 ≤ r ≤ 1,

c6 · ρ
−d ≤ #(X)ρ ≤ c2 · ρ

−d.

Proof. As md(X) <∞, there exists c5 = c5(X) > 0 (see Theorem 5.6 of [11]) such that

md (X ∩Br(x)) ≤ c5 · r
d , for all x ∈ X and 0 ≤ r ≤ 1,

and then

md(X) =
∑

Q∈(X)ρ

md (X ∩Q) ≤
∑

Q∈(X)ρ

c5 · (λρ)
d =

(

c5 · λ
d
)

· ρd ·#(X)ρ .

Just take c6 = c5
−1 · λ−d ·md(X).

Proposition 2.4.2. The measure µθ = (projθ)∗(md|K1×K2) is absolutely continuous with respect

to m, for m-almost every θ ∈ R.

Proof. Note that the implication

X ⊂ K1 ×K2 , md(X) > 0 =⇒ m(projθ(X)) > 0 (2.4.1)

is sufficient for the required absolute continuity. In fact, if Y ⊂ Lθ satisfies m(Y ) = 0, then

µθ(Y ) = md(X) = 0 ,

where X = projθ
−1(Y ). Otherwise, by (2.4.1) we would have m(Y ) = m(projθ(X)) > 0,

contradicting the assumption.

We prove that (2.4.1) holds for every θ ∈ G, where G is the set defined in the proof of

Theorem 2.1.1. The argument is the same made after Proposition 2.3.2: as, by the previous

lemma, #(X)ρ has lower and upper estimates depending only on X and ρ, we obtain that

m (projθ((X)ρn )) ≥ c3
−1 · c6

2 · ε , for infinitely many n,

and then m(projθ(X)) > 0.
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Let χθ = dµθ/dm. In principle, this is a L1 function. We prove that it is a L2 function, for

every θ ∈ G.

Proof of Theorem 2. Let θ ∈ G1/m, for some m ∈ N. Then

N(K1×K2)ρn
(θ) ≤ c3 · ρn

1−2d ·m, for infinitely many n. (2.4.2)

For each of these n, consider the partition Pn = {Jρn1 , . . . , Jρn⌊4/ρn⌋} of [−2, 2] ⊂ Lθ into intervals

of equal length and let χθ,n be the expectation of χθ with respect to Pn. As ρn → 0, the

sequence of functions (χθ,n)n∈N converges pointwise to χθ. By Fatou’s Lemma, we’re done if we

prove that each χθ,n is L2 and its L2-norm ‖χθ,n‖2 is bounded above by a constant independent

of n.

By definition,

µθ(J
ρn
i ) = md

(

(projθ)
−1 (Jρni )

)

≤ sρn,i · c1 · ρn
d, i = 1, 2, . . . , ⌊4/ρn⌋,

and then

χθ,n(x) =
µθ(J

ρn
i )

|Jρni |
≤
c1 · sρn,i · ρn

d

|Jρni |
, ∀x ∈ Jρni ,

implying that

‖χθ,n‖
2
2 =

∫

Lθ

|χθ,n|
2 dm

=

⌊4/ρn⌋
∑

i=1

∫

Jρn
i

|χθ,n|
2 dm

≤

⌊4/ρn⌋
∑

i=1

|Jρni | ·

(

c1 · sρn,i · ρn
d

|Jρni |

)2

≤ c1
2 · ρn

2d−1 ·

⌊4/ρn⌋
∑

i=1

sρn,i
2

≤ c1
2 · ρn

2d−1 ·N(K1×K2)ρn
(θ).

In view of (2.4.2), this last expression is bounded above by

(

c1
2 · ρn

2d−1
)

·
(

c3 · ρn
1−2d ·m

)

= c1
2 · c3 ·m,

which is a constant independent of n.
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2.5 Concluding remarks

The proofs of Theorems 2.1.1 and 2.1.2 work not just for the case of products of regular Cantor

sets, but in greater generality, whenever K ⊂ R
2 is a Borel set for which there is a constant

c > 0 such that, for any x ∈ K and 0 ≤ r ≤ 1,

c−1 · rd ≤ md(K ∩Br(x)) ≤ c · rd,

since this alone implies the existence of ρ-decompositions for K.
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Chapter 3

Yet another proof of Marstrand’s

Theorem

In a paper from 1954 Marstrand proved that if K ⊂ R
2 is a Borel set with Hausdorff dimension

greater than 1, then its one-dimensional projection has positive Lebesgue measure for almost-all

directions. In the present chapter, we give a combinatorial proof of this theorem, extending the

techniques developed in Chapter 2. It corresponds to a joint paper with C.G. Moreira [26] to

appear in Bulletin of the Brazilian Mathematical Society.

3.1 Introduction

If U is a subset of Rn, the diameter of U is |U | = sup{|x− y|;x, y ∈ U} and, if U is a family of

subsets of Rn, the diameter of U is defined as

‖U‖ = sup
U∈U

|U |.

Given s > 0, the Hausdorff s-measure of a set K ⊂ R
n is

ms(K) = lim
ε→0

(

inf
U covers K

‖U‖<ε

∑

U∈U

|U |s

)

.

In particular, when n = 1, m = m1 is the Lebesgue measure of Lebesgue measurable sets

on R. It is not difficult to show that there exists a unique s0 ≥ 0 for which ms(K) = ∞ if

s < s0 and ms(K) = 0 if s > s0. We define the Hausdorff dimension of K as HD(K) = s0.

Also, for each θ ∈ R, let vθ = (cos θ, sin θ), Lθ the line in R
2 through the origin containing vθ

and projθ : R2 → Lθ the orthogonal projection. From now on, we’ll restrict θ to the interval

[−π/2, π/2], because Lθ = Lθ+π.

21
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In 1954, J. M. Marstrand [27] proved the following result on the fractal dimension of plane

sets.

Theorem 3.1.1. If K ⊂ R
2 is a Borel set such that HD(K) > 1, then m(projθ(K)) > 0 for

m-almost every θ ∈ R.

The proof is based on a qualitative characterization of the “bad” angles θ for which the

result is not true. Specifically, Marstrand exhibits a Borel measurable function f(x, θ), (x, θ) ∈

R
2 × [−π/2, π/2], such that f(x, θ) = ∞ for ms-almost every x ∈ K, for every “bad” angle. In

particular,
∫

K
f(x, θ)dms(x) = ∞. (3.1.1)

On the other hand, using a version of Fubini’s Theorem, he proves that

∫ π/2

−π/2
dθ

∫

K
f(x, θ)dms(x) = 0

which, in view of (3.1.1), implies that

m ({θ ∈ [−π/2, π/2] ; m(projθ(K)) = 0}) = 0.

These results are based on the analysis of rectangular densities of points.

Many generalizations and simpler proofs have appeared since. One of them came in 1968 by

R. Kaufman who gave a very short proof of Marstrand’s Theorem using methods of potential

theory. See [21] for his original proof and [29], [37] for further discussion.

In this chapter, we give a new proof of Theorem 3.1.1. Our proof makes a study on the

fibers K ∩ projθ
−1(v), (θ, v) ∈ R× Lθ, and relies on two facts:

(I) Transversality condition: given two squares on the plane, the Lebesgue measure of the set

of angles for which their projections have nonempty intersection has an upper bound. See

Subsection 3.3.2.

(II) After a regularization of K, (I) enables us to conclude that, except for a small set of angles

θ ∈ R, the fibers K ∩ projθ
−1(v) are not concentrated in a thin region. As a consequence, K

projects into a set of positive Lebesgue measure.

The idea of (II) is based on [31] used in [25] to develop a combinatorial proof of Theorem

3.1.1 when K is the product of two regular Cantor sets. In the present chapter, we give a

combinatorial proof of Theorem 3.1.1 without any restrictions on K. Compared to other proofs

of Marstrand’s Theorem, the new ideas here are the discretization of the argument and the use

of dyadic covers, which allow the simplification of the method employed. These covers may be

composed of sets with rather different scales and so a weighted sum is necessary to capture the

Hausdorff s-measure of K.
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The theory developed in [26] works whenever K is an Ahlfors-David regular set, namely

when there are constants a, b > 0 such that

a · rd ≤ ms(K ∩Br(x)) ≤ b · rd , for any x ∈ K and 0 < r ≤ 1.

Unfortunately, the general situation can not be reduced to this one, as proved by P. Mattila

and P. Saaranen: in [30], they constructed a compact set of R with positive Lebesgue measure

such that it contains no nonempty Ahlfors-David subset.

We also give yet another proof that the push-forward measure of the restriction of ms to K,

defined as µθ = (projθ)∗(ms|K), is absolutely continuous with respect to m, for m-almost every

θ ∈ R, and its Radon-Nykodim derivative is square-integrable.

Theorem 3.1.2. The measure µθ is absolutely continuous with respect to m and its Radon-

Nykodim derivative is an L2 function, for m-almost every θ ∈ R.

Marstrand’s Theorem is a classical result in Geometric Measure Theory. In particular,

if K = K1 × K2 is a cartesian product of two one-dimensional subsets of R, Marstrand’s

theorem translates to “m(K1 +λK2) > 0 for m-almost every λ ∈ R”. The investigation of such

arithmetic sums K1 + λK2 has been an active area of Mathematics, in special when K1 and

K2 are dynamically defined Cantor sets. Remarkably, M. Hall [18] proved, in 1947, that the

Lagrange spectrum1 contains a whole half line, by showing that the arithmetic sum K(4)+K(4)

of a certain Cantor set K(4) ⊂ R with itself contains [6,∞).

In the connection of these two applications, we point out that a formula for the Hausdorff

dimension of K1 +K2, under mild assumptions of non-linear Cantor sets K1 and K2, has been

obtained by the second author in [31] and applied in [32] to prove that the Hausdorff dimension of

the Lagrange spectrum increases continuously. In parallel to this non-linear setup, Y. Peres and

P. Shmerkin proved the same phenomena happen to self-similar Cantor sets without algebraic

resonance [41]. Finally, M. Hochman and P. Shmerkin extended and unified many results

concerning projections of products of self-similar measures on regular Cantor sets [19].

The content of this chapter is organized as follows. In Section 3.2 we introduce the ba-

sic notations and definitions. Section 3.3 is devoted to the main calculations, including the

transversality condition in Subsection 3.3.2 and the proof of existence of good dyadic covers in

Subsection 3.3.3. Finally, in Section 3.4 we prove Theorems 3.1.1 and 3.1.2. We also collect

final remarks in Section 3.5.

1The Lagrange spectrum is the set of best constants of rational approximations of irrational numbers. See [9]

for the specific description.
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3.2 Preliminaries

3.2.1 Notation

The distance in R
2 will be denoted by | · |. Let Br(x) denote the open ball of R2 centered in x

with radius r. As in Section 3.1, the diameter of U ⊂ R
2 is |U | = sup{|x− y|;x, y ∈ U} and, if

U is a family of subsets of R2, the diameter of U is defined as

‖U‖ = sup
U∈U

|U |.

Given s > 0, the Hausdorff s-measure of a set K ⊂ R
2 is ms(K) and its Hausdorff dimension is

HD(K). In this work, we assume K is contained in [0, 1)2.

Definition 3.2.1. A Borel set K ⊂ R
2 is an s-set if HD(K) = s and 0 < ms(K) <∞.

Let m be the Lebesgue measure of Lebesgue measurable sets on R. For each θ ∈ R, let

vθ = (cos θ, sin θ), Lθ the line in R
2 through the origin containing vθ and projθ : R2 → Lθ the

orthogonal projection onto Lθ.

A square [a, a+ l)× [b, b+ l) ⊂ R
2 will be denoted by Q and its center, the point (a+ l/2, b+

l/2), by x.

Let X be a set. We use the following notation to compare the asymptotic of functions.

Definition 3.2.2. Let f, g : X → R be two real-valued functions. We say f . g if there is a

constant C > 0 such that

|f(x)| ≤ C · |g(x)| , ∀x ∈ X.

If f . g and g . f , we write f ∼ g.

3.2.2 Dyadic squares

Let D0 be the family of unity squares of R2 congruent to [0, 1)2 and with vertices in the lattice

Z
2. Dilating this family by a factor of 2−i, we obtain the family Di, i ∈ Z.

Definition 3.2.3. Let D denote the union of Di, i ∈ Z. A dyadic square is any element Q ∈ D.

The dyadic squares possess the following properties:

(1) Every x ∈ R
2 belongs to exactly one element of each family Di.

(2) Two dyadic squares are either disjoint or one is contained in the other.

(3) A dyadic square of Di is contained in exactly one dyadic square of Di−1 and contains exactly

four dyadic squares of Di+1.
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(4) Given any subset U ⊂ R
2, there are four dyadic squares, each with side length at most

2 · |U |, whose union contains U .

(1) to (3) are direct. To prove (4), let R be smallest rectangle of R2 with sides parallel

to the axis that contains U . The sides of R have length at most |U |. Let i ∈ Z such that

2−i−1 < |U | ≤ 2−i and choose a dyadic square Q ∈ Di that intersects R. If Q contains U , we’re

done. If not, Q and three of its neighbors cover U .

Q

R

U

Definition 3.2.4. A dyadic cover of K is a finite subset C ⊂ D of disjoint dyadic squares such

that

K ⊂
⋃

Q∈C

Q.

First used by A.S. Besicovitch in his demonstration that closed sets of infinite ms-measure

contain subsets of positive but finite measure [5], dyadic covers were later employed by Marstrand

to investigate the Hausdorff measure of cartesian products of sets [28].

Due to (4), for any family U of subsets of R2, there is a dyadic family C such that

⋃

Q∈C

Q ⊃
⋃

U∈U

U and
∑

Q∈C

|Q|s < 64 ·
∑

U∈U

|U |s

and so, if K is an s-set, there exists a sequence (Ci)i≥1 of dyadic covers of K with diameters

converging to zero such that
∑

Q∈Ci

|Q|s ∼ 1 . (3.2.1)

3.3 Calculations

Let K ⊂ R
2 be a Borel set with Hausdorff dimension greater than one. From now on, we

assume every cover of K is composed of dyadic squares of sides at most one. Before going into

the calculations, we make the following reduction.
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Lemma 3.3.1. Let K be a Borel subset of R2. Given s < HD(K), there exists a compact s-set

K ′ ⊂ K such that

ms(K
′ ∩Br(x)) . r

d , x ∈ R
2 and 0 ≤ r ≤ 1.

In other words, there exists a constant b > 0 such that

ms(K
′ ∩Br(x)) ≤ b · rd , for any x ∈ R

2 and 0 ≤ r ≤ 1. (3.3.1)

See Theorem 5.4 of [11] for a proof of the above lemma when K is closed and [10] for the

general case. From now on, we assume K is a compact s-set, with s > 1, that satisfies (3.3.1).

Given a dyadic cover C of K, let, for each θ ∈ [−π/2, π/2], fCθ : Lθ → R be the function

defined by

fCθ (x) =
∑

Q∈C

χprojθ(Q)(x) · |Q|s−1 ,

where χprojθ(Q) denotes the characteristic function of the set projθ(Q). The reason we consider

this function is that it captures the Hausdorff s-measure of K in the sense that

∫

Lθ

fCθ (x)dm(x) =
∑

Q∈C

|Q|s−1 ·

∫

Lθ

χprojθ(Q)(x)dm(x)

=
∑

Q∈C

|Q|s−1 ·m(projθ(Q))

which, as |Q|/2 ≤ m(projθ(Q)) ≤ |Q|, satisfies

∫

Lθ

fCθ (x)dm(x) ∼
∑

Q∈C

|Q|s.

If in addition C satisfies (3.2.1), then

∫

Lθ

fCθ (x)dm(x) ∼ 1 , ∀ θ ∈ [−π/2, π/2]. (3.3.2)

Denoting the union
⋃

Q∈C Q by C as well, an application of the Cauchy-Schwarz inequality gives

that

m(projθ(C)) ·

(

∫

projθ(C)

(

fCθ
)2
dm

)

≥

(

∫

projθ(C)
fCθ dm

)2

∼ 1.

The above inequality implies that if (Ci)i≥1 is a sequence of dyadic covers of K satisfying (3.2.1)

with diameters converging to zero and the L2-norm of fCiθ is uniformly bounded, that is

∫

projθ(Ci)

(

fCiθ

)2
dm . 1, (3.3.3)
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then

m(projθ(K)) = lim
i→∞

m(projθ(Ci)) & 1

and so projθ(K) has positive Lebesgue measure, as wished. This conclusion will be obtained

for m-almost every θ ∈ [−π/2, π/2] by showing that

Ii
.
=

∫ π/2

−π/2
dθ

∫

Lθ

(

fCiθ

)2
dm . 1. (3.3.4)

3.3.1 Rewriting the integral Ii

For simplicity, let f denote fCiθ . Then the interior integral of (3.3.4) becomes

∫

Lθ

f2dm =

∫

Lθ





∑

Q∈Ci

χprojθ(Q) · |Q|s−1



 ·





∑

Q̃∈Ci

χprojθ(Q̃) · |Q̃|s−1



 dm

=
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·

∫

Lθ

χprojθ(Q)∩projθ(Q̃)dm

=
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·m(projθ(Q) ∩ projθ(Q̃))

and, using the inequalities

m(projθ(Q) ∩ projθ(Q̃)) ≤ min{m(projθ(Q)),m(projθ(Q̃)} ≤ min{|Q|, |Q̃|} ,

it follows that
∫

Lθ

f2dm .
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·min{|Q|, |Q̃|}. (3.3.5)

We now proceed to prove (3.3.4) by a double-counting argument. To this matter, consider, for

each pair of squares (Q, Q̃) ∈ Ci × Ci, the set

ΘQ,Q̃ =
{

θ ∈ [−π/2, π/2]; projθ(Q) ∩ projθ(Q̃) 6= ∅
}

.

Then

Ii .
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·min{|Q|, |Q̃|} ·

∫ π/2

−π/2
χΘQ,Q̃

(θ)dθ

=
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·min{|Q|, |Q̃|} ·m(ΘQ,Q̃) . (3.3.6)
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3.3.2 Transversality condition

This subsection estimates the Lebesgue measure of ΘQ,Q̃.

Lemma 3.3.2. If Q, Q̃ are squares of R2 and x, x̃ ∈ R
2 are its centers, respectively, then

m
(

ΘQ,Q̃

)

≤ 2π ·
max{|Q|, |Q̃|}

|x− x̃|
·

Proof. Let θ ∈ ΘQ,Q̃ and consider the figure.

x

x̃

projθ(x)

projθ(x̃)

Lθ

θ
|θ − ϕ0|

θ

Since projθ(Q) has diameter at most |Q| (and the same happens to Q̃), we have |projθ(x) −

projθ(x̃)| ≤ 2 ·max{|Q|, |Q̃|} and then, by elementary geometry,

sin(|θ − ϕ0|) =
|projθ(x)− projθ(x̃)|

|x− x̃|

≤ 2 ·
max{|Q|, |Q̃|}

|x− x̃|

=⇒ |θ − ϕ0| ≤ π ·
max{|Q|, |Q̃|}

|x− x̃|
,

because sin−1 y ≤ πy/2. As ϕ0 is fixed, the lemma is proved.

We point out that, although ingenuous, Lemma 3.3.2 expresses the crucial property of

transversality that makes the proof work, and all results related to Marstrand’s Theorem use a

similar idea in one way or another. See [43] where this tranversality condition is also exploited.

By Lemma 3.3.2 and (3.3.6), we obtain

Ii .
∑

Q,Q̃∈Ci

|x− x̃|−1 · |Q|s · |Q̃|s. (3.3.7)
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3.3.3 Good covers

The last summand will be estimated by choosing appropriate dyadic covers Ci. Let C be an

arbitrary dyadic cover of K. Remember K is an s-set satisfying (3.3.1).

Definition 3.3.3. The dyadic cover C is good if

∑

Q̃∈C

Q̃⊂Q

|Q̃|s < max{128b, 1} · |Q|s , ∀Q ∈ D. (3.3.8)

Any other constant depending only on K would work for the definition. The reason we chose

this specific constant will become clear below, where we provide the existence of good dyadic

covers.

Proposition 3.3.4. Let K ⊂ R
2 be a compact s-set satisfying (3.3.1). Then, for any δ > 0,

there exists a good dyadic cover of K with diameter less than δ.

Proof. Let i0 ≥ 1 such that 2−i0−1 < δ ≤ 2−i0 . Begin with a finite cover U of K with diameter

less than δ/4 such that
∑

U∈U
U⊂Q

|U |s < 2 ·ms(K ∩Q) , ∀Q ∈ Di0 .

Now, change U by a dyadic cover C according to property (4) of Subsection 3.2.1. C has diameter

at most δ and satisfies

∑

Q̃∈C

Q̃⊂Q

|Q̃|s < 64 ·
∑

U∈U
U⊂Q

|U |s < 128 ·ms(K ∩Q) , ∀Q ∈ Di0 .

By additivity, the same inequality happens for any Q ∈
⋃

0≤i≤i0
Di and so, as ms(K ∩ Q) ≤

b · |Q|s, it follows that
∑

Q̃∈C

Q̃⊂Q

|Q̃|s < 128b · |Q|s , ∀Q ∈
⋃

0≤i≤i0

Di , (3.3.9)

that is, (3.3.8) holds for large scales. To control the small ones, apply the following operation:

whenever Q ∈
⋃

i>i0
Di is such that

∑

Q̃∈C

Q̃⊂Q

|Q̃|s > |Q|s,

we change C by C∪{Q}\{Q̃ ∈ C ; Q̃ ⊂ Q}. It is clear that such operation preserves the inequality

(3.3.9) and so, after a finite number of steps, we end up with a good dyadic cover.
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As the constant in (3.3.8) does not depend on δ, there is a sequence (Ci)i≥1 of good dyadic

covers of K with diameters converging to zero such that
∑

Q̃∈Ci
Q̃⊂Q

|Q̃|s . |Q|s , Q ∈ D and i ≥ 1. (3.3.10)

3.4 Proof of Theorems 3.1.1 and 3.1.2

Proof of Theorem 3.1.1. Let (Ci)i≥1 be a sequence of good dyadic covers satisfying (3.3.10) such

that ‖Ci‖ → 0. By (3.3.7),

Ii .
∑

Q,Q̃∈Ci

|x− x̃|−1 · |Q|s · |Q̃|s

=
∑

Q∈Ci

∞
∑

j=0

∑

Q̃∈Ci
2−j−1<|x−x̃|≤2−j

|x− x̃|−1 · |Q|s · |Q̃|s

≤
∑

Q∈Ci

∞
∑

j=0

∑

Q̃∈Ci
Q̃⊂B

3·2−j (x)

|x− x̃|−1 · |Q|s · |Q̃|s

.
∑

Q∈Ci

|Q|s
∞
∑

j=0

2j ·
(

2−j
)s

=
∑

Q∈Ci

|Q|s
∞
∑

j=0

(

2j
)1−s

.
∑

Q∈Ci

|Q|s

. 1,

establishing (3.3.4). Define, for each ε > 0, the sets

Giε =

{

θ ∈ [−π/2, π/2] ;

∫

Lθ

(

fCiθ

)2
dm < ε−1

}

, i ≥ 1.

Then m
(

[−π/2, π/2]\Giε
)

. ε, and the same holds for the set

Gε =
⋂

i≥1

∞
⋃

j=i

Gjε .

If θ ∈ Gε, then

m (projθ(Ci)) & ε , for infinitely many n,

which implies thatm (projθ(K)) > 0. Finally, the setG =
⋃

i≥1G1/i satisfiesm([−π/2, π/2]\G) =

0 and m (projθ(K)) > 0, for any θ ∈ G.



Chapter 3. Yet another proof of Marstrand’s Theorem 31

A direct consequence is the

Corollary 3.4.1. The measure µθ = (projθ)∗(ms|K) is absolutely continuous with respect to

m, for m-almost every θ ∈ R.

Proof. By Theorem 3.1.1, we have the implication

X ⊂ K , ms(X) > 0 =⇒ m(projθ(X)) > 0, m-almost every θ ∈ R, (3.4.1)

which is sufficient for the required absolute continuity. Indeed, if Y ⊂ Lθ satisfies m(Y ) = 0,

then

µθ(Y ) = ms(X) = 0 ,

where X = projθ
−1(Y ). Otherwise, by (3.4.1) we would have m(Y ) = m(projθ(X)) > 0,

contradicting the assumption.

Let fθ = dµθ/dm. By the proof of Theorem 3.1.1, we have

∥

∥

∥
fCiθ

∥

∥

∥

L2
. 1, m-a.e. θ ∈ R. (3.4.2)

Proof of Theorem 3.1.2. Define, for each ε > 0, the function fθ,ε : Lθ → R by

fθ,ε(x) =
1

2ε

∫ x+ε

x−ε
fθ(y)dm(y), x ∈ Lθ.

As fθ is an L1-function, the Lebesgue differentiation theorem gives that fθ(x) = limε→0 fθ,ε(x)

for m-almost every x ∈ Lθ. If we manage to show that2

‖fθ,ε‖L2 . 1, m-a.e. θ ∈ R, (3.4.3)

then Fatou’s lemma establishes the theorem. To this matter, first observe that

fθ,ε(x) =
1

2ε

∫ x+ε

x−ε
fθ(y)dm(y)

=
1

2ε
· µθ([x− ε, x+ ε])

=
1

2ε
·ms

(

(projθ)
−1([x− ε, x+ ε]) ∩K

)

.

2We consider ‖fθ,ε‖L2 as a function of ε > 0.
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In order to estimate this last term, fix ε > 0 and let i > 0 such that C = Ci has diameter less

than ε. Then

ms

(

(projθ)
−1([x− ε, x+ ε]) ∩K

)

≤
∑

Q∈C
projθ(Q)⊂[x−2ε,x+2ε]

ms(Q ∩K)

.
∑

Q∈C
projθ(Q)⊂[x−2ε,x+2ε]

|Q|s

∼
∑

Q∈C
projθ(Q)⊂[x−2ε,x+2ε]

|Q|s−1 ·m(projθ(Q))

≤

∫ x+2ε

x−2ε
fCθ (y)dm(y),

where in the second inequality we used (3.3.1). By the Cauchy-Schwarz inequality,

|fθ,ε(x)|
2 .

1

2ε

∫ x+2ε

x−2ε

∣

∣fCθ (y)
∣

∣

2
dm(y)

and so

‖fθ,ε‖
2
L2 .

∫

Lθ

1

2ε

∫ x+2ε

x−2ε

∣

∣fCθ (y)
∣

∣

2
dm(y)dm(x)

∼

∫

Lθ

∣

∣fCθ
∣

∣

2
dm

=
∥

∥fCθ
∥

∥

2

L2

which, by (3.4.2), establishes (3.4.3).

3.5 Concluding remarks

The good feature of the proof is that the discretization idea may be applied to other contexts.

For example, we prove in [24] a Marstrand type theorem in an arithmetical context.



Chapter 4

A Marstrand theorem for subsets of

integers

We prove a Marstrand type theorem for a class of subsets of the integers. More specifically,

after defining the counting dimension D(E) of E ⊂ Z and the concepts of regularity and

compatibility, we show that if E,F ⊂ Z are two regular compatible sets, then D(E + ⌊λF ⌋) ≥

min{1,D(E) +D(F )} for Lebesgue almost every λ ∈ R. If in addition D(E) +D(F ) > 1, it is

also shown that E + ⌊λF ⌋ has positive upper Banach density for Lebesgue almost every λ ∈ R.

The result has direct consequences when applied to arithmetic sets, such as the integer values

of a polynomial with integer coefficients.

4.1 Introduction

The purpose of this chapter is to prove a Marstrand type theorem for a class of subsets of the

integers.

The well-known theorem of Marstrand [27] states the following: if K ⊂ R
2 is a Borel set such

that its Hausdorff dimension is greater than one then, for almost every direction, its projection

to R in the respective direction has positive Lebesgue measure. In other words, this means K is

“fat” in almost every direction. When K is the product of two real subsets K1,K2, Marstrand’s

theorem can be stated in a more analytical form as: for Lebesgue almost every λ ∈ R, the

arithmetic sum K1+λK2 has positive Lebesgue measure. Much research has been done around

this topic, specially because the analysis of such arithmetic sums has applications in the theory

of homoclinic birfurcations and also in diophantine approximations.

Given a subset E ⊂ Z, let d∗(E) denote its upper Banach density1. A remarkable result in

1See Subsection 4.2.2 for the proper definitions.

33
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additive combinatorics is Szemerédi’s theorem [45]. It asserts that if d∗(E) > 0, then E contains

arbitrarily long arithmetic progressions. One can interpret this result by saying that density

represents the correct notion of largeness needed to preserve finite configurations of Z. On the

other hand, Szemerédi’s theorem cannot infer any property about subsets of zero upper Banach

density, and many of these sets are of interest. A class of examples are the integer values of a

polynomial with integer coefficients and the prime numbers. These sets may, as well, contain

combinatorially rich patterns. See, for example, [4] and [16].

A set E ⊂ Z of zero upper Banach density is characterized as occupying portions in intervals

of Z that grow in a sublinear fashion as the length of the intervals grow. On the other hand,

there still may exist some kind of growth speed. For example, the number of perfect squares on

an initial interval of length n is about n0.5. This exponent means, in some sense, a dimension

of {n2 ; n ∈ Z} inside Z. In the present chapter, we suggest a counting dimension D(E) for E

and establish the following Marstrand type result on the counting dimension of most arithmetic

sums E + ⌊λF ⌋ for a class of subsets E,F ⊂ Z.

Theorem 4.1.1. Let E,F ⊂ Z be two regular compatible sets. Then

D(E + ⌊λF ⌋) ≥ min{1,D(E) +D(F )}

for Lebesgue almost every λ ∈ R. If in addition D(E) +D(F ) > 1, then E + ⌊λF ⌋ has positive

upper Banach density for Lebesgue almost every λ ∈ R.

An immediate consequence of Theorem 4.1.1 is that the same result holds for subsets of the

natural numbers.

Corollary 4.1.2. Let E,F ⊂ N be two regular compatible sets. Then

D(E + ⌊λF ⌋) ≥ min{1,D(E) +D(F )}

for Lebesgue almost every λ > 0. If in addition D(E) +D(F ) > 1, then E + ⌊λF ⌋ has positive

upper Banach density for Lebesgue almost every λ > 0.

The reader should make a parallel between the quantities d∗(E) and D(E) of subsets E ⊂ Z

and Lebesgue measure and Hausdorff dimension of subsets of R. It is exactly this association

that allows us to call Theorem 4.1.1 a Marstrand theorem for subsets of integers.

The notions of regularity and compatibility are defined in Subsections 4.4.1 and 4.4.2, re-

spectively. Both are fulfilled for many arithmetic subsets of Z, such as the integer values of a

polynomial with integer coefficients and, more generally, for the universal sets (see Definition

4.4.5). These are the sets that exhibit the expected growth rate along intervals of arbitrary

length. The second result of this work is
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Theorem 4.1.3. Let E0, . . . , Ek be universal subsets of Z. Then

D(E0 + ⌊λ1E1⌋+ · · ·+ ⌊λkEk⌋) ≥ min {1,D(E0) +D(E1) + · · ·+D(Ek)}

for Lebesgue almost every λ = (λ1, . . . , λk) ∈ R
k. If in addition

∑k
i=0D(Ei) > 1, then the

arithmetic sum E0 + ⌊λ1E1⌋ + · · · + ⌊λkEk⌋ has positive upper Banach density for Lebesgue

almost every λ = (λ1, . . . , λk) ∈ R
k.

The integer values of a polynomial with integer coefficients have special interest in ergodic

theory and its connections with combinatorics, due to ergodic theorems along these subsets [6],

as well as its combinatorial implications. See [4] for the remarkable work of V. Bergelson and

A. Leibman on the polynomial extension of Szemerédi’s theorem. Theorem 4.1.3 has a direct

consequence when applied to this setting.

Corollary 4.1.4. Let pi ∈ Z[x] with degree di > 0 and let Ei = (pi(n))n∈Z, i = 0, . . . , k. Then

D(E0 + ⌊λ1E1⌋+ · · ·+ ⌊λkEk⌋) ≥ min

{

1,
1

d0
+

1

d1
+ · · ·+

1

dk

}

for Lebesgue almost every λ = (λ1, . . . , λk) ∈ R
k. If in addition

∑k
i=0 di

−1 > 1, then the

arithmetic sum E0 + ⌊λ1E1⌋ + · · · + ⌊λkEk⌋ has positive upper Banach density for Lebesgue

almost every λ = (λ1, . . . , λk) ∈ R
k.

The proof of Theorem 4.1.1 is based on the ideas developed in [24] and [26]. It relies on

the fact that the cardinality of a regular subset of Z along an increasing sequence of intervals

exhibits an exponential behavior ruled out by its counting dimension. As this holds for two

regular subsets E,F ⊂ Z, the compatibility assumption allows to estimate the cardinality of

the arithmetic sum E + ⌊λF ⌋ along the respective arithmetic sums of intervals and, finally, a

double-counting argument estimates the size of the “bad” parameters for which such cardinality

is small. Theorem 4.1.3 follows from Theorem 4.1.1 by a fairly simple induction.

This chapter is organized as follows. In Section 4.2 we introduce the basic notations and

definitions. Section 4.3 is devoted to the discussion of examples. In particular, the sets given by

integer values of a polynomial with integer coefficients are investigated in Subsection 4.3.1. In

Section 4.4 we introduce the notions of regularity and compatibility. Subsection 4.4.3 provides a

counterexample to Theorem 4.1.1 when the sets are no longer compatible and Subsection 4.4.4

a counterexample to the same theorem when the space of parameters is Z. Finally, in Section

4.5 we prove Theorems 4.1.1 and 4.1.3. We also collect final remarks and further questions in

Section 4.6.
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4.2 Preliminaries

4.2.1 General notation

Given a set X, |X| denotes the cardinality of X. Z denotes the set of integers and N the set of

positive integers. We use the following notation to compare the asymptotic of functions.

Definition 4.2.1. Let f, g : Z or N → R be two real-valued functions. We say f . g if there is

a constant C > 0 such that

|f(n)| ≤ C · |g(n)| , ∀n ∈ Z or N.

If f . g and g . f , we write f ∼ g. We say f ≈ g if

lim
|n|→∞

f(n)

g(n)
= 1.

For each x ∈ R, ⌊x⌋ denotes the integer part of x. For each k ≥ 1, mk denotes the Lebesgue

measure of Rk. For k = 1, let m = m1. The letter I will always denote an interval of Z:

I = (M,N ] = {M + 1, . . . , N}.

The length of I is equal to its cardinality, |I| = N −M .

For E ⊂ Z and λ ∈ R, λE denotes the set {λn ; n ∈ E} ⊂ R and ⌊λE⌋ the set {⌊λn⌋ ; n ∈

E} ⊂ Z.

4.2.2 Counting dimension

Definition 4.2.2. The upper Banach density of E ⊂ Z is equal to

d∗(E) = lim sup
|I|→∞

|E ∩ I|

|I|
,

where I runs over all intervals of Z.

Definition 4.2.3. The counting dimension or simply dimension of a set E ⊂ Z is equal to

D(E) = lim sup
|I|→∞

log |E ∩ I|

log |I|
,

where I runs over all intervals of Z.

Obviously, D(E) ∈ [0, 1] and D(E) = 1 whenever d∗(E) > 0. The counting dimension allows

us to distinguish largeness between two sets of zero upper Banach density. Similar definitions to

D(E) have appeared in [2] and [13]. We now give another characterization to it that is similar

in spirit to the Hausdorff dimension of subsets of R. Let α be a nonnegative real number.
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Definition 4.2.4. The counting α-measure of E ⊂ Z is equal to

Hα(E) = lim sup
|I|→∞

|E ∩ I|

|I|α
,

where I runs over all intervals of Z.

Clearly, Hα(E) ∈ [0,∞]. For a fixed E ⊂ Z, the numbers Hα(E) are decreasing in α and

one easily checks that

α < D(E) =⇒ Hα(E) = ∞ and α > D(E) =⇒ Hα(E) = 0 ,

which in turn implies the existence and uniqueness of α ≥ 0 such that

Hβ(E) = ∞ , if 0 ≤ β < α,

= 0 , if β > α.

The above equalities imply that D(E) = α, that is, the counting dimension is exactly the

parameter α where Hα(E) decreases from infinity to zero. Also, if β > D(E), then

|E ∩ I| . |I|β, (4.2.1)

where I runs over all intervals of Z and, conversely, if (4.2.1) holds, then D(E) ≤ β.

Below, we collect basic properties of the counting dimension and α-measure.

(i) E ⊂ F =⇒ D(E) ≤ D(F ).

(ii) D(E ∪ F ) = max{D(E),D(F )}.

(iii) For any λ > 0,

Hα(⌊λE⌋) = λ−α ·Hα(E). (4.2.2)

The first two are direct. Let’s prove (iii). For any interval I ⊂ Z, we have |E ∩ I| ≈

|⌊λE⌋ ∩ ⌊λI⌋| and so

|E ∩ I|

|I|α
≈ λα ·

|⌊λE⌋ ∩ ⌊λI⌋|

|⌊λI⌋|α

=⇒ Hα(E) = λα ·Hα(⌊λE⌋) .

Remark 4.2.5. As ⌊−x⌋ = −⌊x⌋ or ⌊−x⌋ = −⌊x⌋ − 1, the sets ⌊−λE⌋ and ⌊λE⌋ have the

same counting dimension. Also, 0 < Hα(⌊−λE⌋) < ∞ if and only if 0 < Hα(⌊λE⌋) < ∞. For

these reasons, we assume from now on that λ > 0.
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4.3 Examples

Example 1. Let α ∈ (0, 1] and

Eα =
{⌊

n1/α
⌋

; n ∈ N

}

. (4.3.1)

We infer that Hα(Eα) = 1. To prove this, we make use of the inequality2

(x+ y)α ≤ xα + yα , x, y ≥ 0 ,

to conclude that
|Eα ∩ (M,N ]|

(N −M)α
≤

(N + 1)α − (M + 1)α

(N −M)α
≤ 1.

This proves that Hα(Eα) ≤ 1. On the other hand,

|Eα ∩ (0, N ]|

Nα
≥
Nα − 1

Nα

and so Hα(Eα) ≥ 1. Then Hα(Eα) = 1 and, in particular, D(Eα) = α.

Example 2. The set

E =
⋃

n∈N

(nn, (n + 1)n] ∩ E1−1/n

has zero upper Banach density and D(E) = 1.

Example 3. The prime numbers have dimension one. This follows from the prime number

theorem:

lim
n→∞

log |{1 ≤ p ≤ n ; p is prime}|

log n
= lim

n→∞

log n− log log n

log n
= 1 .

Example 4. Sets of zero upper Banach density appear naturally in infinite ergodic theory. Let

(X,A, µ, T ) be a sigma-finite measure-preserving system, with µ(X) = ∞, and let A ∈ A have

finite measure. Fixed x ∈ A, let E = {n ≥ 1 ; T nx ∈ A}. By Hopf’s Ratio Ergodic Theorem,

E has zero upper Banach density almost surely. In many specific cases, its dimension can be

calculated or at least estimated. See [1] for further details.

4.3.1 Polynomial subsets of Z

Definition 4.3.1. A polynomial subset of Z is a set E = {p(n) ; n ∈ Z}, where p(x) is a

non-constant polynomial with integer coefficients.

2For each t ≥ 0, the function x 7→ xα + (t − x)α, 0 ≤ x ≤ t, is concave and so attains its minimum in x = 0

and x = t. Then xα + (t− x)α ≥ tα for any x ∈ [0, t].
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These are the sets we consider in Theorem 4.1.3. Their counting dimension is easily calcu-

lated as follows. Given E,F ⊂ Z, let E and F be asymptotic if E = {· · · < a−1 < a0 < a1 < · · · },

F = {· · · < b−1 < b0 < b1 < · · · } and there is i ≥ 0 such that

an−i ≤ bn ≤ an+i , for every n ∈ Z. (4.3.2)

Denote this by E ≈ F .

Lemma 4.3.2. If E,F ⊂ Z are asymptotic then Hα(E) = Hα(F ), for any α ≥ 0. In particular,

D(E) = D(F ).

Proof. Let I = (M,N ] be an interval and assume E ∩ I = {am+1, am+2, . . . , an}. By relation

(4.3.2),

bm−i ≤ am ≤M < am+1 ≤ bm+i+1 and bn−i ≤ an ≤ N < an+1 ≤ bn+i+1,

which imply the inclusions

{bm+i+1, . . . , bn−i} ⊂ F ∩ I ⊂ {bm−i, . . . , bn+i+1}.

Then |E ∩ I| ≈ |F ∩ I| and so

Hα(E) = lim sup
|I|→∞

|E ∩ I|

|I|α
= lim sup

|I|→∞

|F ∩ I|

|I|α
= Hα(F ) .

Let E = {p(n) ; n ∈ Z}, where p(x) ∈ Z[x] has degree d. Assuming p has leading coefficient

a > 0, there is i ≥ 0 such that a · (n − i)d < p(n) < a · (n + i)d for every n ∈ Z and then

E ≈ aE1/d, where E1/d is defined as in (4.3.1). By Lemma 4.3.2, we get

D(E) =
1

d
and H1/d(E) = 1.

4.3.2 Cantor sets in Z

The famous ternary Cantor set of R is formed by the real numbers of [0, 1] with only 0’s and

2’s on their base 3 expansion. In analogy to this, let E ⊂ Z be defined as

E =

{

n
∑

i=0

ai · 3
i ; n ∈ N and ai = 0 or 2

}

. (4.3.3)

The set E has been slightly investigated in [11]. There, A. Fisher proved that

Hlog 2/ log 3(E) > 0 .
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We prove below that Hlog 2/ log 3(E) ≤ 2, which in particular gives that D(E) = log 2/ log 3,

as expected. Let I = (M,N ] be an interval of Z. We can assume M + 1, N ∈ E. Indeed, if

Ĩ = (M̃, Ñ ], where M̃ + 1 and Ñ are the smallest and largest elements of E ∩ I, respectively,

then
|E ∩ I|

|I|α
≤

|E ∩ Ĩ|

|Ĩ|α
·

Let M + 1, N ∈ E, say

M + 1 = a0 · 3
0 + a1 · 3

1 + · · · + am−1 · 3
m + 2 · 3m

N = b0 · 3
0 + b1 · 3

1 + · · · + bn−1 · 3
n + 2 · 3n.

We can also assume that m < n. If this is not the case, the quotient |E ∩ I|/|I|α does not

decrease if we change I by (M − 2 · 3n, N − 2 · 3n]. With these assumptions,

N −M ≥ 2 · 3n − (3m+1 − 2) ≥ 3n

and then
|E ∩ I|

|I|log 2/ log 3
≤

|E ∩ (0, N ]|

|I|log 2/ log 3
≤

2n+1

(3n)log 2/ log 3
= 2.

Because I is arbitrary, this gives that Hlog 2/ log 3(E) ≤ 2.

Observe that the renormalization of E ∩ (0, 3n) via the linear map x 7→ x/3n generates

a subset of the unit interval (0, 1) that is equal to the set of left endpoints of the remaining

intervals of the n-th step of the construction of the ternary Cantor set of R. In other words,

if K =
⋃

n∈E[n, n + 1], then K/3n is exactly the n-th step of the construction of the ternary

Cantor set of R.

More generally, let us define a class of Cantor sets in Z. Fix a basis a ∈ N and a binary

matrix A = (aij)0≤i,j≤a−1. Let

Σn(A) =
{

(d0d1 · · · dn−1dn) ; adi−1di = 1, 1 ≤ i ≤ n
}

, n ≥ 0 ,

denote the set of admissible words of length n+1 and Σ∗(A) =
⋃

n≥0Σn(A) the set of all finite

admissible words.

Definition 4.3.3. The integer Cantor set EA ⊂ Z associated to the matrix A is the set

EA = {d0 · a
0 + · · ·+ dn · a

n ; (d0d1 · · · dn) ∈ Σ∗(A)}.

Our definition was inspired on the fact that dynamically defined topologically mixing Cantor

sets of the real line are homeomorphic to subshifts of finite type, which is exactly what we did

above, after truncating the numbers. See [24] for more details. The dimension of EA, as in the
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inspiring case, depends on the Perron-Frobenius eigenvalue of A. Remember that the Perron-

Frobenius eigenvalue is the largest eigenvalue λ+(A) of A. It has multiplicity one and maximizes

the absolute value of the eigenvalues of A. Also, there is a constant c = c(A) > 0 such that

c−1 · λ+(A)
n ≤ |Σn(A)| ≤ c · λ+(A)

n , for every n ≥ 0, (4.3.4)

whose proof may be found in [22].

Lemma 4.3.4. If A is a binary a× a matrix, then

D(EA) =
log λ+(A)

log a
and 0 < H logλ+(A)

log a

(EA) <∞ .

Proof. Let I = (M,N ]. Again, we may assume M + 1, N ∈ EA, say

M + 1 = x0 · a
0 + · · · + xn · a

n

N = y0 · a
0 + · · ·+ yn · a

n,

with yn > xn. If yn ≥ xn + 2, then
{

M + 1 ≤ (xn + 1) · an

N ≥ (xn + 2) · an
=⇒ |I| ≥ an

and, as I ⊂ (0, an+1), we have

|EA ∩ I|

|I|
log λ+(A)

log a

≤
|Σn(A)|

a
n log λ+(A)

log a

≤
c · λ+(A)

n

λ+(A)
n = c . (4.3.5)

If yn = xn + 1, let i, j ∈ {0, 1, . . . , n− 1} be the indices for which

(i) xi < a− 1 and xi+1 = · · · = xn−1 = a− 1,

(ii) yj > 0 and yj+1 = · · · = yn−1 = 0.

Then
{

M + 1 ≤ (xn + 1) · an − ai

N ≥ (xn + 1) · an + aj
=⇒ |I| ≥ ai + aj ≥ amax{i,j}.

In order to
∑n

k=0 zk · a
k belong to I, one must have zn = xn or zn = xn + 1. In the first case

zi+1 = · · · = zn−1 = a− 1 and in the second zj+1 = · · · = zn−1 = 0. Then

|EA ∩ I| ≤ |Σi(A)| + |Σj(A)| ≤ 2c · λ+(A)
max{i,j}

and so
|EA ∩ I|

|I|
log λ+(A)

log a

≤
2c · λ+(A)

max{i,j}

a
max{i,j} log λ+(A)

log a

= 2c . (4.3.6)
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Estimates (4.3.5) and (4.3.6) give Hlog λ+(A)/ log a <∞. On the other hand,

|EA ∩ (0, an]|

a
n log λ+(A)

log a

≥
c−1 · λ+(A)

n−1

λ+(A)
n = c−1 · λ+(A)

−1 =⇒ Hlogλ+(A)/ log a > 0 ,

which concludes the proof.

By the above lemma, if X ⊂ {0, . . . , a − 1} and A = (aij) is defined by aij = 1 iff i, j ∈ X,

then D(EA) = log |X|/ log a, which extends the results about the ternary Cantor set defined in

(4.3.3).

In general, if E,F are subsets of Z such that D(E)+D(F ) > 1, it is not true that d∗(E+F ) >

0, because the elements of E + F may have many representations as the sum of one element of

E and other of F . This resonance phenomenon decreases the dimension of E+F . Lemma 4.3.4

provides a simple example to this situation: if E = EA and F = EB, where A = (aij)0≤i,j≤11,

B = (bij)0≤i,j≤11 are defined by

aij = 1 ⇐⇒ 0 ≤ i, j ≤ 3 and bij = 1 ⇐⇒ 4 ≤ i, j ≤ 7,

then D(E) +D(F ) = 2 log 4/ log 12, while E + F = EC for C = (cij)0≤i,j≤11 given by

cij = 1 ⇐⇒ 4 ≤ i, j ≤ 10.

E+F has counting dimension equal to log 7/ log 12 and so d∗(E+F ) = 0. What Theorem 4.1.1

proves is that resonance is avoided if one is allowed to change the scales of the sets, multiplying

one of them by a factor λ ∈ R.

4.3.3 Generalized IP-sets

This class of sets was suggested to us by Simon Griffiths and Rob Morris.

Definition 4.3.5. The generalized IP-set associated to the sequences of positive integers (kn)n≥1,

(dn)n≥1 is the set

E =

{

n
∑

i=1

xi · di ; n ∈ N and 0 ≤ xi < ki

}

.

We assume dn >
∑n−1

i=1 ki ·di, in which case the map
∑n

i=1 xi ·di 7→ (x1, . . . , xn) is a bijection

between E and the set of finite sequences

Σ∗ = {(x1, . . . , xn) ; n ∈ N, xn > 0 and 0 ≤ xi < ki} .

Also, if Σ∗ is lexicographically ordered3, then the map is order-preserving.

3The sequence (x1, . . . , xn) is smaller than (y1, . . . , ym) if n < m or if there is i ∈ {1, . . . , n} such that xi < yi

and xj = yj for j = i+ 1, . . . , n.
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Lemma 4.3.6. Let E be the generalized IP-set associated to (kn)n≥1, (dn)n≥1 and let pn =

k1 · · · kn. Then

lim sup
n→∞

log pn
log kndn

≤ D(E) ≤ lim sup
n→∞

log pn
log dn

· (4.3.7)

In particular, if log kn/ log pn → 0, then D(E) = lim supn→∞ log pn/ log dn.

Proof. The calculations are similar to those of Lemma 4.3.4. Let I = (M,N ], say

M + 1 = x1 · d1 + · · ·+ xn · dn

N = y1 · d1 + · · ·+ yn · dn ,

with yn > xn. If yn ≥ xn + 2, then

{

M + 1 ≤ (xn + 1) · dn

N ≥ (xn + 2) · dn
=⇒ |I| ≥ dn

and |E ∩ I| ≤ pn, thus giving
log |E ∩ I|

log |I|
≤

log pn
log dn

· (4.3.8)

If yn = xn + 1, let i, j ∈ {1, . . . , n− 1} be the indices for which

(i) xi < ki − 1 and xj = kj − 1, j = i+ 1, . . . , n − 1,

(ii) yj > 0 and yj+1 = · · · = yn−1 = 0.

Then

M + 1 ≤ xn · dn + xi · di +
n−1
∑

l=1
l 6=i

kl · dl < xn · dn − di +

n−1
∑

l=1

kl · dl < (xn + 1) · dn − di

and

N ≥ yj · dj + yn · dn ≥ (xn + 1) · dn + dj ,

implying that |I| ≥ di+ dj ≥ dmax{i,j}. Now, in order to
∑n

l=1 zl · dl belong to I, one must have

zn = xn or zn = xn+1. In the first case zi+1 = ki+1 − 1, . . . , zn−1 = kn−1 − 1 and in the second

zj+1 = · · · = zn−1 = 0. Then |E ∩ I| ≤ pi + pj ≤ 2pmax{i,j} and so

log |E ∩ I|

log |I|
≤

log 2pmax{i,j}

log dmax{i,j}
· (4.3.9)

Relations (4.3.8) and (4.3.9) prove the right hand inequality of (4.3.7). The other follows by

considering the intervals (0,
∑n

i=1 ki · di].
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4.4 Regularity and compatibility

4.4.1 Regular sets

Definition 4.4.1. A subset E ⊂ Z is called regular or D(E)-set if 0 < HD(E)(E) <∞.

By Lemmas 4.3.2 and 4.3.4, polynomial sets and Cantor sets are regular.

Definition 4.4.2. Given two subsets E = {· · · < x−1 < x0 < x1 < · · · } and F of Z, let E ∗ F

denote the set

E ∗ F = {xn ; n ∈ F}.

This is a subset of E whose counting dimension is at most D(E)D(F ). To see this, consider

an arbitrary interval I ⊂ Z. If E ∩ I = {xi+1, . . . , xj}, then

(E ∗ F ) ∩ I = {xn ;n ∈ F ∩ (i, j]} .

Given α > D(E) and β > D(F ), relation (4.2.1) guarantees that

|(E ∗ F ) ∩ I| = |F ∩ (i, j]| . (j − i)β = |E ∩ I|β . |I|αβ

and so D(E ∗ F ) ≤ αβ. Choosing α, β arbitrarily close to D(E), D(F ), respectively, it follows

that D(E ∗ F ) ≤ D(E)D(F ).

If E is regular, it is possible to choose F with arbitrary dimension in such a way that E ∗F

is also regular and has dimension equal to D(E)D(F ). To this matter, choose disjoint intervals

In = (an, bn], n ≥ 1, with lengths going to infinity such that

|E ∩ In|

|In|D(E)
& 1

and let E ∩ In = {xin+1 < xin+2 < · · · < xjn}, where in < jn. Given α ∈ [0, 1], let

F =
⋃

n≥1

(Eα + in) ∩ (in, jn] ,

where Eα is defined as in (4.3.1). Then D(F ) = D(Eα) = α and

|(E ∗ F ) ∩ In| ≥ |F ∩ (in, jn]|

= |Eα ∩ (0, jn − in]|

& (jn − in)
D(F )

= |E ∩ In|
D(F )

& |In|
D(E)D(F ),
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implying that

|(E ∗ F ) ∩ In| & |In|
D(E)D(F ). (4.4.1)

This proves the reverse inequality D(E ∗F ) ≥ D(E)D(F ). We thus obtain that, given a regular

subset E ⊂ Z and 0 ≤ α ≤ D(E), there exists a regular subset E′ ⊂ E such that D(E′) = α. It

is a harder task to prove that this holds even when E is not regular.

Proposition 4.4.3. Let E ⊂ Z and 0 ≤ α ≤ 1. If Hα(E) > 0, then there exists a regular subset

E′ ⊂ E such that D(E′) = α. In particular, for any 0 ≤ α < D(E), there is E′ ⊂ E regular

such that D(E′) = α.

Proof. The idea is to apply a dyadic argument in E to decrease Hα(E) in a controlled way.

Given an interval I ⊂ Z and a subset F ⊂ Z, define

sF (I)
.
= sup

J⊂I
J interval

|F ∩ J |

|J |α
·

If F = {a1, a2, . . . , ak} ⊂ I, the dyadic operation of alternately discard the elements a2, a4, . . . ,

a2⌊(k−1)/2⌋ of the set {a2, a3, . . . , ak−1},

F = {a1, a2, . . . , ak} F ′ = {a1, a3, a5, . . . , a2⌈(k−1)/2⌉−1, ak},

decreases sF (I) to approximately sF (I)/2. More specifically, if sF (I) > 2, then sF ′(I) > 1/2.

Indeed, for every interval J ⊂ I

|F ′ ∩ J |

|J |α
≤

1

2
·
|F ∩ J |+ 1

|J |α
≤
sF (I)

2
+

1

2
< sF (I)−

1

2

and, for J maximizing sF (I),

|F ′ ∩ J |

|J |α
≥

1

2
·
|F ∩ J | − 1

|J |α
> 1−

1

2 · |J |α
≥

1

2
·

After a finite number of these dyadic operations, one obtains a subset F ′ ⊂ F such that

1

2
< sF ′(I) ≤ 2.

If Hα(E) < ∞, there is nothing to do. Assume that Hα(E) = ∞. We proceed inductively

by constructing a sequence F1 ⊂ F2 ⊂ · · · of finite subsets of E contained in a sequence of

intervals In = (an, bn] with increasing lengths such that

(i) 1/2 < sFn(In) ≤ 3;

(ii) there is an interval Jn ⊂ In such that |Jn| ≥ n and

|Fn ∩ Jn|

|Jn|α
>

1

2
·



Chapter 4. Marstrand theorem for subsets of integers 46

Once these properties are fulfilled, the set E′ =
⋃

n≥1 Fn will satisfy the required conditions.

Take any a ∈ E and I1 = {a}. Assume In, Fn and Jn have been defined satisfying (i) and

(ii). As Hα(E) = ∞, there exists an interval Jn+1 disjoint from (an − |In|
1/α, bn + |In|

1/α] for

which
|E ∩ Jn+1|

|Jn+1|α
≥ (n+ 1)1−α .

This inequality allows to restrict Jn+1 to a smaller interval of size at least n + 1, also denoted

Jn+1, such that

sE(Jn+1) =
|E ∩ Jn+1|

|Jn+1|α
· (4.4.2)

Consider F ′
n+1 = E ∩ Jn+1 and apply the dyadic operation to F ′

n+1 until

1

2
< sF ′

n+1
(Jn+1) =

|F ′
n+1 ∩ Jn+1|

|Jn+1|α
≤ 2. (4.4.3)

Let In+1 = In∪Kn∪Jn+1 be the convex hull4 of In and Jn+1 and Fn+1 = Fn∪F
′
n+1. Condition

(ii) is satisfied because of (4.4.3). To prove (i), let I be a subinterval of In+1. We have three

cases to consider.

• I ⊂ In ∪Kn: by condition (i) of the inductive hypothesis,

|Fn+1 ∩ I|

|I|α
≤

|Fn ∩ (I ∩ In)|

|I ∩ In|α
≤ 3.

• I ⊂ Kn ∪ Jn+1: by (4.4.3),

|Fn+1 ∩ I|

|I|α
≤

|F ′
n+1 ∩ (I ∩ Jn+1)|

|I ∩ Jn+1|α
≤ 2.

• I ⊃ Kn: as |Kn| ≥ |In|
1/α,

|Fn+1 ∩ I|

|I|α
=

|Fn ∩ (I ∩ In)|+ |F ′
n+1 ∩ (I ∩ Jn+1)|

(|I ∩ In|+ |Kn|+ |I ∩ Jn+1|)α

≤
|Fn ∩ (I ∩ In)|

(|I ∩ In|+ |Kn|)α
+

|F ′
n+1 ∩ (I ∩ Jn+1)|

(|I ∩ Jn+1|)α

≤
|In|

|Kn|α
+ sF ′

n+1
(Jn+1)

≤ 3.

This proves condition (i) and completes the inductive step.

By the above proposition and equation (4.2.2), for any α ∈ [0, 1] and h ∈ (0,∞), there exists

an α-set E ⊂ Z such that Hα(E) = h. We’ll use this fact in Subsection 4.4.3.

4Observe that |Kn| ≥ |In|
1/α.
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4.4.2 Compatible sets

Definition 4.4.4. Two regular subsets E,F ⊂ Z are compatible if there exist two sequences

(In)n≥1, (Jn)n≥1 of intervals with increasing lengths such that

1. |In| ∼ |Jn|,

2. |E ∩ In| & |In|
D(E) and |F ∩ Jn| & |Jn|

D(F ).

The notion of compatibility means that E and F have comparable intervals on which the

respective intersections obey the correct growth speed of cardinality. Some sets have these

intervals in all scales.

Definition 4.4.5. A regular subset E ⊂ Z is universal if there exists a sequence (In)n≥1 of

intervals such that |In| ∼ n and |E ∩ In| & |In|
D(E).

It is clear that E and F are compatible whenever one of them is universal and the other

is regular. Every Eα is universal and the same happens to polynomial subsets E, due to the

asymptotic relation E ≈ aE1/d, where d is the degree of the polynomial that defines E (see

Subsection 4.3.1). In particular, any two polynomial subsets are compatible.

4.4.3 A counterexample of Theorem 4.1.1 for regular non-compatible sets

In this subsection, we construct regular sets E,F ⊂ Z such that D(E)+D(F ) > 1 and E+⌊λF ⌋

has zero upper Banach density for every λ ∈ R. The idea is, in the contrast to compatibility,

construct E and F such that the intervals I, J ⊂ Z for which
|E ∩ I|

|I|D(E)
and

|F ∩ J |

|J |D(F )
are bounded

away from zero have totally different sizes.

Let α ∈ (1/2, 1). We will define

E =
⋃

i=1,3,...

(Ei ∩ Ii) and F =
⋃

i=2,4,...

(Ei ∩ Ii)

such that the following conditions hold:

(i) Ei = ⌊µi⌊µi
−1E0⌋⌋, i ≥ 1, where E0 ⊂ N is an α-set with Hα(E0) = 1/2.

(ii) Ii = (ai, bi], i ≥ 1, is a disjoint sequence of intervals of increasing length such that

lim
i→∞

|Ei ∩ Ii|

|Ii|α
=

1

2
·

(iii) µi > bi−1

2
1−α for every i ≥ 1.



Chapter 4. Marstrand theorem for subsets of integers 48

It is clear that we can inductively construct the sequences (µi)i≥1, (Ei)i≥1 and (Ii)i≥1 in such

a way that 0 < bi < ai+1 for every i ≥ 1. Before going into the calculations, let us explain the

above conditions. The dilations in (i) guarantee that consecutive elements of Ei differ at least by

(the order of) µi; (ii) ensures that E,F are α-sets; (iii) ensures that the referred incompatibility

between E and F holds and, also, that the left endpoint of Ii is much bigger than the right

endpoint of Ii−1.

Lemma 4.4.6. Let E,F ⊂ Z with D(E),D(F ) < 1, A,B ⊂ Z finite and E′ = E ∪ A,

F ′ = F ∪B. Then

d∗(E′ + ⌊λF ′⌋) = d∗(E + ⌊λF ⌋) , ∀λ ∈ R.

Proof. We have

E′ + ⌊λF ′⌋ = (E + ⌊λF ⌋) ∪ (A+ ⌊λF ⌋) ∪ (E + ⌊λB⌋) ∪ (A+ ⌊λB⌋)

and each of the sets A+ ⌊λF ⌋, E + ⌊λB⌋, A+ ⌊λB⌋ has dimension smaller than one.

Fix λ > 0. By removing, if necessary, finitely many intervals Ii, we may also assume that

(iv) ⌊λIi⌋ ∩ ⌊λIj⌋ = ∅ for all i 6= j.

(v) bi > max{4λ−1, 4λ}
1−α
1+α for all i ≥ 1.

By the previous lemma, this does not affect the value of d∗(E+⌊λF ⌋). With these assumptions,

(Ii + ⌊λIj⌋) ∩ (Ik + ⌊λIl⌋) 6= ∅ ⇐⇒ i = k and j, l < i or j = l and i, k < j

and then
(E + ⌊λF ⌋) ∩ (ai, ai+1] =

⊔

a∈Ii
j=2,4,...,i−1

(a+ ⌊λIj⌋) , if i is odd

=
⊔

b∈Ii
j=1,3,...,i−1

(Ij + ⌊λb⌋) , if i is even

In addition, (v) implies that, if i is odd, a, a′ ∈ Ii are distinct and j, k < i are even, then the

gap between a+ ⌊λIj⌋ and a′ + ⌊λIk⌋ is at least |a− a′|/2; if i is even, b, b′ ∈ Ii are distinct and

j, k < i are odd, then the gap between Ij + ⌊λb⌋ and Ik + ⌊λb′⌋ is at least |b− b′|/4λ.

By the above fractal-like structure, it is expected that E + ⌊λF ⌋ has zero upper Banach

density. Let us formally prove this. Consider an interval I = (M,N ] ⊂ Z and, as usual, assume

that M + 1, N ∈ E + ⌊λF ⌋, say

M + 1 = a′ + ⌊λb′⌋ ∈ Ik + ⌊λIl⌋

N = a+ ⌊λb⌋ ∈ Ii + ⌊λIj⌋ .
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The largest index among i, j, k, l is either i or j. We may assume that i > j. In fact, the

reverse case is symmetric, because E + ⌊λF ⌋ is basically ⌊λ(F + ⌊λ−1E⌋)⌋ and, with this inter-

pretation, the roles of Ii and Ij are interchanged. In this situation, we have two cases to consider:

• a = a′: an element r + ⌊λs⌋ belongs to (E + ⌊λF ⌋) ∩ I iff r = a and s ∈ F ∩ [b′, b] and then

|(E + ⌊λF ⌋) ∩ I|

|I|
≤

|b− b′ + 1|α

|⌊λb⌋ − ⌊λb′⌋|
∼

|b− b′|α

λ · |b− b′|
=

1

λ · |b− b′|1−α
· (4.4.4)

• a > a′: for r + ⌊λs⌋ belong to (E + ⌊λF ⌋) ∩ I, we necessarily have r ∈ E ∩ [a′, a] and

s ∈ I2 ∪ I4 ∪ · · · ∪ Ii−1 and so

|(E + ⌊λF ⌋) ∩ I|

|I|
≤

|E ∩ [a′, a]| · bi−1

|a− a′|/2
∼

|a− a′|α · bi−1

|a− a′|
≤

bi−1

µi1−α
≤

1

bi−1
, (4.4.5)

where in the last inequality we used (ii).

Estimates (4.4.4) and (4.4.5) establish that E + ⌊λF ⌋ has zero upper Banach density.

4.4.4 Another counterexample of Theorem 4.1.1

We now prove that one can not expect that the set of parameters given by Theorem 4.1.1 contains

integers. More specifically, we construct a regular set E ⊂ Z such that D(E) = D(E + λE) for

every λ ∈ Z. In particular, if D(E) ∈ (1/2, 1), E + λE has zero upper Banach density and so

every parameter λ ∈ R for which d∗(E + ⌊λE⌋) > 0 is not an integer.

Fixed α ∈ (1/2, 1) and c ∈ Z, consider the generalized IP-set associated to the sequences

kn = c · 2n and dn =
⌊

2n
2/2α

⌋

, n ≥ 1.

Observe that

n−1
∑

i=1

ki · di ≤ c ·
n−1
∑

i=1

2
i2

2α
+i ≤ c ·

(n−1)2

2α
+n−1

∑

j=1

2j < c · 2
(n−1)2

2α
+n < dn

for large n. Also, by Lemma 4.3.6, this set has counting dimension α. Then, if E is the

generalized IP-set associated to

kn = 2n and dn =
⌊

2n
2/2α

⌋

,

the arithmetic sum E+λE is also a generalized IP-set, associated to the sequences k̃n = (λ+1)·kn

and dn, which also has counting dimension equal to α. By Proposition 4.4.3, E contains a regular

subset with dimension greater than 1/2. This subset gives the required counterexample.
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4.5 Proofs of the Theorems

Let E,F be two regular compatible subsets of Z. Throughout the rest of the proof, fix a compact

interval Λ of positive real numbers. Given distinct points z = (a, b) and z′ = (a′, b′) of E × F ,

let

Λz,z′ =
{

λ ∈ Λ ; a+ ⌊λb⌋ = a′ + ⌊λb′⌋
}

.

Clearly, Λz,z′ is empty if b = b′. For b 6= b′, it is possible to estimate its Lebesgue measure.

Lemma 4.5.1. Let z = (a, b) and z′ = (a′, b′) be distinct points of Z2. If Λz,z′ 6= ∅, then

(a) m(Λz,z′) . |b− b′|−1.

(b) minΛ · |b− b′| − 1 ≤ |a− a′| ≤ maxΛ · |b− b′|+ 1.

Proof. Assume b > b′ and let λ ∈ Λz,z′ , say a+ ⌊λb⌋ = n = a′ + ⌊λb′⌋. Then

{

n− a ≤ λb < n− a+ 1

n− a′ ≤ λb′ < n− a′ + 1
=⇒ a′ − a− 1 < λ(b− b′) < a′ − a+ 1

and so

Λz,z′ ⊂

(

a′ − a− 1

b− b′
,
a′ − a+ 1

b− b′

)

,

which proves (a). The second part also follows from the above inclusion, as

a′ − a− 1

b− b′
≤ minΛz,z′ ≤ maxΛ =⇒ a′ − a ≤ maxΛ · (b− b′) + 1

and
a′ − a+ 1

b− b′
≥ maxΛz,z′ ≥ minΛ =⇒ a′ − a ≥ minΛ · (b− b′)− 1.

By item (b) of the above lemma, |a− a′| ∼ |b− b′| whenever Λz,z′ 6= ∅. We point out that,

although naive, Lemma 4.5.1 expresses the crucial property of transversality that makes the

proof work, and all results related to Marstrand’s theorem use a similar idea in one way or

another.

Let (In)n≥1 and (Jn)n≥1 be sequences of intervals satisfying the compatibility conditions of

Definition 4.4.4. Associated to these intervals, consider, for each pair (n, λ) ∈ N× Λ, the set

Nn(λ) =
{

((a, b), (a′, b′)) ∈ ((E ∩ In)× (F ∩ Jn))
2 ; a+ ⌊λb⌋ = a′ + ⌊λb′⌋

}

and, for each n ≥ 1, the integral

∆n =

∫

Λ
|Nn(λ)|dm(λ) .
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By a double counting, one has the equality

∆n =
∑

z,z′∈(E∩In)×(F×Jn)

m(Λz,z′) . (4.5.1)

Lemma 4.5.2. Let D(E) = α and D(F ) = β as above.

(a) If α+ β < 1, then ∆n . |In|
α+β .

(b) If α+ β > 1, then ∆n . |In|
2α+2β−1.

Proof. Using (4.5.1),

∆n =
∑

z,z′∈(E∩In)×(F×Jn)

m(Λz,z′)

=
∑

a∈E∩In
b∈F∩Jn

log |In|
∑

s=1

∑

a′∈E∩In
|a−a′|∼es

∑

b′∈F∩Jn
|b−b′|∼es

m(Λz,z′)

.
∑

a∈E∩In
b∈F∩Jn

log |In|
∑

s=1

e−s · (es)α · (es)β

=
∑

a∈E∩In
b∈F∩Jn

log |In|
∑

s=1

(es)α+β−1

. |In|
α+β ·

log |In|
∑

s=1

(

eα+β−1
)s

and then
∆n . |In|

α+β · |In|
α+β−1 = |In|

2α+2β−1 , if α+ β > 1,

. |In|
α+β · 1 = |In|

α+β , if α+ β < 1.

Proof of Theorem 4.1.1. The proof is divided in three parts.

Part 1. α+ β < 1: fix ε > 0. By Lemma 4.5.2, the set of parameters λ ∈ Λ for which

|Nn(λ)| .
|In|

α+β

ε
(4.5.2)

has Lebesgue measure at least m(Λ)− ε. We will prove that

|(E + ⌊λF ⌋) ∩ (In + ⌊λJn⌋)|

|In + ⌊λJn⌋|α+β
& ε (4.5.3)
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whenever λ ∈ Λ satisfies (4.5.2). For each (m,n, λ) ∈ Z× Z× Λ, let

s(m,n, λ) = | {(a, b) ∈ (E ∩ In)× (F ∩ Jn) ; a+ ⌊λb⌋ = m} | .

Then
∑

m∈Z

s(m,n, λ) = |E ∩ In| · |F ∩ Jn| ∼ |In|
α+β (4.5.4)

and
∑

m∈Z

s(m,n, λ)2 = |Nn(λ)| .
|In|

α+β

ε
· (4.5.5)

The numerator in (4.5.3) is at least the cardinality of the set S(n, λ) = {m ∈ Z ; s(m,n, λ) > 0},

because (E + ⌊λF ⌋) ∩ (In + ⌊λJn⌋) contains S(n, λ). By the Cauchy-Schwarz inequality and

relations (4.5.4) and (4.5.5),

|S(n, λ)| ≥

(

∑

m∈Z

s(m,n, λ)

)2

∑

m∈Z

s(m,n, λ)2

&

(

|In|
α+β

)2

|In|
α+β

ε

= ε · |In|
α+β

and so, as |In + ⌊λJn⌋| ∼ |In|,

|(E + ⌊λF ⌋) ∩ (In + ⌊λJn⌋)|

|In + ⌊λJn⌋|α+β
&

|S(n, λ)|

|In|α+β
& ε ,

establishing (4.5.3).

For each n ≥ 1, let Gnε = {λ ∈ Λ ; (4.5.3) holds}. Then m (Λ\Gnε ) ≤ ε, and the same holds

for the set

Gε =
⋂

n≥1

∞
⋃

l=n

Glε .

For each λ ∈ Gε,

Dα+β(E + ⌊λF ⌋) ≥ ε =⇒ D(E + ⌊λF ⌋) ≥ α+ β

and then, as the set G =
⋃

n≥1G1/n ⊂ Λ has Lebesgue measure m(Λ), Part 1 is completed.

Part 2. α+β > 1: for a fixed ε > 0, Lemma 4.5.2 implies that the set of parameters λ ∈ Λ for

which

|Nn(λ)| .
|In|

2α+2β−1

ε
(4.5.6)
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has Lebesgue measure at least m(Λ)− ε. In this case,

|S(n, λ)| ≥

(

∑

m∈Z

s(m,n, λ)

)2

∑

m∈Z

s(m,n, λ)2

&

(

|In|
α+β

)2

|In|
2α+2β−1

ε
= ε · |In|

and then
|(E + ⌊λF ⌋) ∩ (In + ⌊λJn⌋)|

|In + ⌊λJn⌋|
&

|S(n, λ)|

|In|
& ε.

The Borel-Cantelli argument is analogous to Part 1.

Part 3. α+ β = 1: let n ≥ 1. Being regular, E has a regular subset En ⊂ E, also compatible5

with F , such that D(E)− 1/n < D(En) < D(E). Then

1−
1

n
< D(En) +D(F ) < 1

and so, by Part 1, there is a full Lebesgue measure set Λn such that

D(En + ⌊λF ⌋) ≥ 1−
1

n
, ∀λ ∈ Λn.

The set Λ =
⋂

n≥1Λn has full Lebesgue measure as well and

D(E + ⌊λF ⌋) ≥ 1, ∀λ ∈ Λ.

Proof of Theorem 4.1.3. We also divide it in parts.

Part 1.
∑k

i=0D(Ei) ≤ 1: by Theorem 4.1.1,

D(E0 + ⌊λ1E1⌋) ≥ D(E0) +D(E1) , m− a.e. λ1 ∈ R.

To each of these parameters, apply Proposition 4.4.3 to obtain a regular subset Fλ1 ⊂ E0 +

⌊λ1E1⌋ such that

D(Fλ1) = D(E0) +D(E1) .

5This may be assumed because of relation (4.4.1).



Chapter 4. Marstrand theorem for subsets of integers 54

As E2 is universal, another application of Theorem 4.1.1 guarantees that

D(Fλ1 + ⌊λ2E2⌋) ≥ D(E0) +D(E1) +D(E2) , m− a.e. λ2 ∈ R

and them, by Fubini’s theorem,

D(E0 + ⌊λ1E1⌋+ ⌊λ2E2⌋) ≥ D(E0) +D(E1) +D(E2) , m2 − a.e. (λ1, λ2) ∈ R
2.

Iterating the above arguments, it follows that

D(E0 + ⌊λ1E1⌋+ · · · + ⌊λkEk⌋) ≥ D(E0) + · · ·+D(Ek) , mk − a.e. (λ1, . . . , λk) ∈ R
k.

Part 2.
∑k

i=0D(Ei) > 1: without loss of generality, we can assume

D(E0) + · · ·+D(Ek−1) ≤ 1 < D(E0) + · · ·+D(Ek−1) +D(Ek) .

By Part 1,

D(E0 + ⌊λ1E1⌋+ · · · + ⌊λk−1Ek−1⌋) ≥ D(E0) + · · ·+D(Ek−1)

for mk−1−a.e. (λ1, . . . , λk−1) ∈ R
k−1. To each of these (k−1)-tuples, consider a regular subset

F(λ1,...,λk−1) of E0 + · · ·+ ⌊λk−1Ek−1⌋ such that

D
(

F(λ1,...,λk−1)

)

= D(E0) + · · ·+D(Ek−1) .

Finally, because D(F(λ1,...,λk−1)) +D(Ek) > 1, Theorem 4.1.1 guarantees that

d∗
(

F(λ1,...,λk−1) + ⌊λkEk⌋
)

> 0 , m− a.e. λk ∈ R ,

which, after another application of Fubini’s theorem, concludes the proof.

4.6 Concluding remarks

We think there is a more specific way of defining the counting dimension that encodes the

conditions of regularity and compatibility. A natural candidate would be a prototype of a

Hausdorff dimension, where one looks to all covers, properly renormalized in the unit interval,

and takes a lim inf. An alternative definition has appeared in [35]. It would be a natural

program to prove Marstrand type results in this context.

Another interesting question is to consider arithmetic sums E+λF , where λ ∈ Z. These are

genuine arithmetic sums and, as we saw in Subsection 4.4.4, their dimension may not increase.

We think very strong conditions on the sets E,F are needed to prove analogous results about

E + λF for λ ∈ Z.
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We also think the results obtained in this chapter work to subsets of Zk. Given E ⊂ Z
k, the

upper Banach density of E is equal to

d∗(E) = lim sup
|I1|,...,|Ik|→∞

|E ∩ (I1 × · · · × Ik)|

|I1 × · · · × Ik|
,

where I1, . . . , Ik run over all intervals of Z, the counting dimension of E is

D(E) = lim sup
|I1|,...,|Ik|→∞

log |E ∩ (I1 × · · · × Ik)|

log |I1 × · · · × Ik|
,

where I1, . . . , Ik run over all intervals of Z and, for α ≥ 0, the counting α-measure of E is

Hα(E) = lim sup
|I1|,...,|Ik|→∞

|E ∩ (I1 × · · · × Ik)|

|I1 × · · · × Ik|α
,

where I1, . . . , Ik run over all intervals of Z. These quantities satisfy similar properties to those in

Subsection 4.2.2. The notion of regularity is defined in an analogous manner. For compatibility,

we have to take into account the geometry of Zk. Two regular subsets E,F ⊂ Z
k are compatible

if there exist sequences of rectangles Rn = In1 × · · · × Ink and Sn = Jn1 × · · · × Jnk , n ≥ 1, such

that

(i) |Ini | ∼ |Jni | for every i = 1, 2, . . . , k, and

(ii) |E ∩Rn| & |Rn|
D(E) and |F ∩ Sn| & |Sn|

D(F ).

We think the theory of this chapter may be extended to prove that if E,F ⊂ Z
k are two regular

compatible subsets, then

D(E + ⌊λF ⌋) ≥ min{1,D(E) +D(F )}

for Lebesgue almost every λ ∈ R and, if in addition D(E) + D(F ) > 1, then E + ⌊λF ⌋ has

positive upper Banach density for Lebesgue almost every λ ∈ R.
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Chapter 5

Z
d-actions with prescribed

topological and ergodic properties

We extend constructions of Hahn-Katznelson [17] and Pavlov [40] to Z
d-actions on symbolic

dynamical spaces with prescribed topological and ergodic properties. More specifically, we

describe a method to build Z
d-actions which are (totally) minimal, (totally) strictly ergodic

and have positive topological entropy.

5.1 Introduction

Ergodic theory studies statistical and recurrence properties of measurable transformations T

acting in a probability space (X,B, µ), where µ is a measure invariant by T , that is, µ(T−1A) =

µ(A), for all A ∈ B. It investigates a wide class of notions, such as ergodicity, mixing and entropy.

These properties, in some way, give qualitative and quantitative aspects of the randomness of T .

For example, ergodicity means that T is indecomposable in the metric sense with respect to µ

and entropy is a concept that counts the exponential growth rate for the number of statistically

significant distinguishable orbit segments.

In most cases, the object of study has topological structures: X is a compact metric space,

B is the Borel σ-algebra of X, µ is a Borel measure probability and T is a homeomorphism of X.

In this case, concepts such as minimality and topological mixing give topological aspects of the

randomness of T . For example, minimality means that T is indecomposable in the topological

sense, that is, the orbit of every point is dense in X.

A natural question arises: how do ergodic and topological concepts relate to each other?

How do ergodic properties forbid topological phenomena and vice-versa? Are metric and topo-

logical indecomposability equivalent? This last question was answered negatively in [15] via

57
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the construction of a minimal diffeomorphism of the torus T
2 which preserves area but is not

ergodic.

Another question was raised byW. Parry: suppose T has a unique Borel probability invariant

measure and that (X,T ) is a minimal transformation. Can (X,T ) have positive entropy? The

difficulty in answering this at the time was the scarcity of a wide class of minimal and uniquely

ergodic transformations. This was solved affirmatively in [17], where F. Hahn and Y. Katznelson

developed an inductive method of constructing symbolic dynamical systems with the required

properties. The principal idea of the paper was the weak law of large numbers.

Later, works of Jewett and Krieger (see [42]) proved that every ergodic measure-preserving

system (X,B, µ, T ) is metrically isomorphic to a minimal and uniquely ergodic homeomor-

phism on a Cantor set and this gives many examples to Parry’s question: if an ergodic system

(X,B, µ, T ) has positive metric entropy and Φ : (X,B, µ, T ) → (Y, C, ν, S) is the metric isomor-

phism obtained by Jewett-Krieger’s theorem, then (Y, S) has positive topological entropy, by

the variational principle.

It is worth mentioning that the situation is quite different in smooth ergodic theory, once

some regularity on the transformation is assumed. A. Katok showed in [21] that every C1+α

diffeomorphism of a compact surface can not be minimal and simultaneously have positive

topological entropy. More specifically, he proved that the topological entropy can be written in

terms of the exponential growth of periodic points of a fixed order.

Suppose that T is a mesure-preserving transformation on the probability space (X,B, µ)

and f : X → R is a measurable function. A successful area in ergodic theory deals with

the convergence of averages n−1 ·
∑n

k=1 f
(

T kx
)

, x ∈ X, when n converges to infinity. The well

known Birkhoff’s Theorem states that such limit exists for almost every x ∈ X whenever f is an

L1-function. Several results have been (and still are being) proved when, instead of {1, 2, . . . , n},

average is made along other sequences of natural numbers. A remarkable result on this direction

was given by J. Bourgain [6], where he proved that if p(x) is a polynomial with integer coefficients

and f is an Lp-function, for some p > 1, then the averages n−1 ·
∑n

k=1 f
(

T p(k)x
)

converge for

almost every x ∈ X. In other words, convergence fails to hold for a negligible set with respect

to the measure µ. We mention this result is not true for L1-functions, as recently proved by Z.

Buczolich and D. Mauldin [7].

In [3], V. Bergelson asked if this set is also negligible from the topological point of view. It

turned out, by a result of R. Pavlov [40], that this is not true. He proved that, for every sequence

(pn)n≥1 ⊂ Z of zero upper-Banach density, there exist a totally minimal, totally uniquely ergodic

and topologically mixing transformation (X,T ) and a continuous function f : X → R such that

n−1 ·
∑n

k=1 f (T
pkx) fails to converge for a residual set of x ∈ X.

Suppose now that (X,T ) is totally minimal, that is, (X,T n) is minimal for every positive
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integer n. Pavlov also proved that, for every sequence (pn)n≥1 ⊂ Z of zero upper-Banach density,

there exists a totally minimal, totally uniquely ergodic and topologically mixing continuous

transformation (X,T ) such that x 6∈ {T pnx ; n ≥ 1} for an uncountable number of x ∈ X.

In this work, we extend the results of Hahn-Katznelson and Pavlov, giving a method of con-

structing (totally) minimal and (totally) uniquely ergodic Z
d-actions with positive topological

entropy. We carry out our program by constructing closed shift invariant subsets of a sequence

space. More specifically, we build a sequence of finite configurations (Ck)k≥1 of {0, 1}Z
d
, Ck+1

being essentially formed by the concatenation of elements in Ck such that each of them oc-

curs statistically well-behaved in each element of Ck+1, and consider the set of limits of shifted

Ck-configurations as k → ∞. The main results are

Theorem 5.1.1. There exist totally strictly ergodic Zd-actions (X,B, µ, T ) with arbitrarily large

positive topological entropy.

We should mention that this result is not new, because Jewett-Krieger’s Theorem is true for

Z
d-actions [46]. This formulation emphasizes to the reader that the constructions, which may

be used in other settings, have the additional advantage of controlling the topological entropy.

Theorem 5.1.2. Given a set P ⊂ Z
d of zero upper-Banach density, there exist a totally strictly

ergodic Z
d-action (X,B, µ, T ) and a continuous function f : X → R such that the ergodic

averages
1

|P ∩ (−n, n)d|

∑

g∈P∩(−n,n)d

f (T gx)

fail to converge for a residual set of x ∈ X. In addition, (X,B, µ, T ) can have arbitrarily large

topological entropy.

The above theorem has a special interest when P is an arithmetic set for which classical

ergodic theory and Fourier analysis have established almost-sure convergence. This is the case

(also proved in [6]) when

P = {(p1(n), . . . , pd(n)) ; n ∈ Z},

where p1, . . . , pd are polynomials with integer coefficients: for any f ∈ Lp, p > 1, the limit

lim
n→∞

1

n

n
∑

k=1

f
(

T (p1(k),...,pd(k))x
)

exists almost-surely. Note that P has zero upper-Banach density whenever one of the polyno-

mials has degree greater than 1.

Theorem 5.1.3. Given a set P ⊂ Z
d of zero upper-Banach density, there exists a totally strictly

ergodic Z
d-action (X,B, µ, T ) and an uncountable set X0 ⊂ X for which x 6∈ {T px ; p ∈ P}, for

every x ∈ X0. In addition, (X,B, µ, T ) can have arbitrarily large topological entropy.
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Yet in the arithmetic setup, Theorem 5.1.3 is the best topological result one can expect.

Indeed, Bergelson and Leibman proved in [4] that if T is a minimal Zd-action, then there is a

residual set Y ⊂ X for which x ∈ {T (p1(n),...,pd(n))x ; n ∈ Z}, for every x ∈ Y .

5.2 Preliminaries

We begin with some notation. Consider a metric space X, B its Borel σ-algebra and a G group

with identity e. Throughout this work, G will denote Z
d, d > 1, or one of its subgroups.

5.2.1 Group actions

Definition 5.2.1. A G-action on X is a measurable transformation T : G×X → X, denoted

by (X,T ), such that

(i) T (g1, T (g2, x)) = T (g1g2, x), for every g1, g2 ∈ G and x ∈ X.

(ii) T (e, x) = x, for every x ∈ X.

In other words, for each g ∈ G, the restriction

T g : X −→ X

x 7−→ T (g, x)

is a bimeasurable transformation on X such that T g1g2 = T g1T g2 , for every g1, g2 ∈ G. When

G is abelian, (T g)g∈G forms a commutative group of bimeasurable transformations on X. For

each x ∈ X, the orbit of X with respect to T is the set

OT (x)
.
= {T gx ; g ∈ G}.

If F is a subgroup of G, the restriction T |F : F ×X → X is clearly a F -action on X.

Definition 5.2.2. We say that (X,T ) is minimal if OT (x) is dense in X, for every x ∈ X, and

totally minimal if OT |F (x) is dense in X, for every x ∈ X and every subgroup F < G of finite

index.

Remind that the index of a subgroup F , denoted by (G : F ), is the number of cosets of F in

G. The above definition extends the notion of total minimality of Z-actions. In fact, a Z-action

(X,T ) is totally minimal if and only if T n : X → X is a minimal transformation, for every

n ∈ Z.

Consider the set M(X) of all Borel probability measures in X. A probability µ ∈ M(X) is

invariant under T or simply T -invariant if

µ (T gA) = µ(A), ∀ g ∈ G, ∀A ∈ B.
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Let MT (X) ⊂ M(X) denote the set of all T -invariant probability measures. Such set is

non-empty whenever G is amenable, by a Krylov-Bogolubov argument applied to any Fφlner

sequence1 of G.

Definition 5.2.3. A G measure-preserving system or simply G-mps is a quadruple (X,B, µ, T ),

where T is a G-action on X and µ ∈ MT (X).

We say that A ∈ B is T -invariant if T gA = A, for all g ∈ G.

Definition 5.2.4. The G-mps (X,B, µ, T ) is ergodic if it has only trivial invariant sets, that is,

if µ(A) = 0 or 1 whenever A is a measurable set invariant under T .

Definition 5.2.5. The G-action (X,T ) is uniquely ergodic if MT (X) is unitary, and totally

uniquely ergodic if, for every subgroup F < G of finite index, the restricted F -action (X,T |F )

is uniquely ergodic.

Definition 5.2.6. We say that (X,T ) is strictly ergodic if it is minimal and uniquely ergodic,

and totally strictly ergodic if, for every subgroup F < G of finite index, the restricted F -action

(X,T |F ) is strictly ergodic.

The result below was proved in [47] and states the pointwise ergodic theorem for Zd-actions.

Theorem 5.2.7. Let (X,B, µ, T ) be a Z
d-mps. Then, for every f ∈ L1(µ), there is a T -

invariant function f̃ ∈ L1(µ) such that

lim
n→∞

1

nd

∑

g∈[0,n)d

f (T gx) = f̃(x)

for µ-almost every x ∈ X. In particular, if the action is ergodic, f̃ is constant and equal to
∫

fdµ.

Above, [0, n) denotes the set {0, 1, . . . , n−1}, [0, n)d the d-dimensional cube [0, n)×· · ·×[0, n)

of Zd and by a T -invariant function we mean that f ◦ T g = f , for every g ∈ G. These aver-

ages allow the characterization of unique ergodicity. Let C(X) denote the space of continuous

functions from X to R.

Proposition 5.2.8. Let (X,T ) be a Z
d-action on the compact metric space X. The following

items are equivalent.

(a) (X,T ) is uniquely ergodic.

1(An)n≥1 is a Fφlner sequence of G if limn→∞ |An∆gAn|/|An| = 0 for every g ∈ G.
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(b) For every f ∈ C(X) and x ∈ X, the limit

lim
n→∞

1

nd

∑

g∈[0,n)d

f (T gx)

exists and is independent of x.

(c) For every f ∈ C(X), the sequence of functions

fn =
1

nd

∑

g∈[0,n)d

f ◦ T g

converges uniformly in X to a constant function.

Proof. The implications (c)⇒(b)⇒(a) are obvious. It remains to prove (a)⇒(c). Let MT (X) =

{µ}. We’ll show that fn converges uniformly to f̃ =
∫

fdµ. By contradiction, suppose this is

not the case for some f ∈ C(X). This means that there exist ε > 0, ni → ∞ and xi ∈ X such

that
∣

∣

∣

∣

fni(xi)−

∫

fdµ

∣

∣

∣

∣

≥ ε.

For each i, let νi ∈ M(X) be the probability measure associated to the linear functional

Θi : C(X) → R defined by

Θi(ϕ) =
1

nid

∑

g∈[0,ni)d

ϕ(T gxi) , ϕ ∈ C(X).

Restricting to a subsequence, if necessary, we assume that νi → ν in the weak-star topology.

Because the cubes Ai = [0, ni)
d form a Fφlner sequence in Z

d, ν ∈ MT (X). In fact, for each

h ∈ Z
d,

∣

∣

∣

∣

∫

(

ϕ ◦ T h
)

dν −

∫

ϕdν

∣

∣

∣

∣

= lim
i→∞

1

nid

∣

∣

∣

∣

∣

∣

∑

g∈Ai+h

ϕ(T gxi)−
∑

g∈Ai

ϕ(T gxi)

∣

∣

∣

∣

∣

∣

≤ max
x∈X

|ϕ(x)| · lim
i→∞

#Ai∆(Ai + h)

#Ai
= 0.

But
∣

∣

∣

∣

∫

fdν −

∫

fdµ

∣

∣

∣

∣

= lim
i→∞

∣

∣

∣

∣

∫

fdνi −

∫

fdµ

∣

∣

∣

∣

= lim
i→∞

∣

∣

∣

∣

fni(xi)−

∫

fdµ

∣

∣

∣

∣

≥ ε

and so ν 6= µ, contradicting the unique ergodicity of (X,T ).
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5.2.2 Subgroups of Zd

Let F be the set of all subgroups of Zd of finite index. This set is countable, because each

element of F is generated by d linearly independent vectors of Zd. Consider, then, a subset

(Fk)k∈N of F such that, for each F ∈ F , there exists k0 > 0 such that Fk < F , for every

k ≥ k0. For this, just consider an enumeration of F and define Fk as the intersection of the

first k elements. Such intersections belong to F because

(Zd : F ∩ F ′) ≤ (Zd : F ) · (Zd : F ′), ∀F,F ′ < Z
d.

Restricting them, if necessary, we assume that Fk = mk · Z
d, where (mk)k≥1 is an increasing

sequence of positive integers. Observe that (Zd : Fk) = mk
d. Such sequence will be fixed

throughout the rest of the chapter.

Definition 5.2.9. Given a subgroup F < Z
d, we say that two elements g1, g2 ∈ Z

d are congruent

modulo F if g1 − g2 ∈ F and denote it by g1 ≡F g2. The set F̄ ⊂ Z
d is a complete residue set

modulo F if, for every g ∈ Z
d, there exists a unique h ∈ F̄ such that g ≡F h.

Every complete residue set modulo F is canonically identified to the quocient Z
d/F and has

exactly (Zd : F ) elements.

5.2.3 Symbolic spaces

Let C be a finite alphabet and consider the set Ω(C) = CZ
d
of all functions x : Zd → C. We endow

C with the discrete topology and Ω(C) with the product topology. By Tychonoff’s theorem, Ω(C)

is a compact metric space. We are not interested in a particular metric in Ω(C). Instead, we

consider a basis of topology B0 to be defined below.

Consider the family R of all finite d-dimensional cubes A = [r1, r1 + n)× · · · × [rd, rd + n)

of Zd, n ≥ 0. We say that A has length n and is centered at g = (r1, . . . , rd) ∈ Z
d.

Definition 5.2.10. A configuration or pattern is a pair bA = (A, b), where A ∈ R and b is a

function from A to C. We say that bA is supported in A with encoding function b.

Let ΩA(C) denote the space of configurations supported in A and Ω∗(C) the space of all

configurations in Z
d:

Ω∗(C)
.
= {bA ; bA is a configuration}.

Given A ∈ R, consider the map ΠA : Ω(C) → ΩA(C) defined by the restriction

ΠA(x) : A −→ C

g 7−→ x(g)

In particular, Π{g}(x) = x(g). We use the simpler notation x|A to denote ΠA(x).
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Definition 5.2.11. If A ∈ R is centered at g, we say that x|A is a configuration of x centered

at g or that x|A occurs in x centered at g.

For A1, A2 ∈ R such that A1 ⊂ A2, let π
A2
A1

: ΩA2 → ΩA1 be the restriction

πA2
A1

(b) : A1 −→ C

g 7−→ b(g)

As above, when there is no ambiguity, we denote πA2
A1

(b) simply by b|A1 . It is clear that the

diagram below commutes.

Ω(C)
ΠA2

//

ΠA1 $$I

I

I

I

I

I

I

I

I

ΩA2(C)

π
A2
A1

��

ΩA1(C)

These maps will help us to control the patterns to appear in the constructions of Section 5.3.

By a cylinder in Ω(C) we mean the set of elements of Ω(C) with some fixed configuration.

More specifically, given bA ∈ Ω∗(C), the cylinder generated by bA is the set

Cyl(bA)
.
= {x ∈ Ω(C) ; x|A = bA}.

The family B0 := {Cyl(bA) | bA ∈ Ω∗(C)} forms a clopen set of cylinders generating B. Hence

the set C0 = {χB ; B ∈ B0} of cylinder characteristic functions generates a dense subspace in

C(Ω(C)). Let µ be the probability measure defined by

µ(Cyl(bA)) = |C|−|A|, ∀ bA ∈ Ω∗(C) ,

and extended to B by Caratheódory’s Theorem. Above, | · | denotes the number of elements of

a set.

Consider the Z
d-action T : Zd × Ω(C) → Ω(C) defined by

T g(x) = (x(g + h))h∈Zd ,

also called the shift action. Given B = Cyl(bA) and g ∈ Z
d, let B + g denote the cylinder

associated to bA+g = (b̃, A + g), where b̃ : A + g → {0, 1} is defined by b̃(h) = b(h − g),

∀h ∈ A+ g. With this notation,

χB ◦ T g = χB+g . (5.2.1)
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In fact,

χB(T
gx) = 1

⇐⇒ T gx ∈ B

⇐⇒ x(g + h) = b(h), ∀h ∈ A

⇐⇒ x(h) = b̃(h), ∀h ∈ A+ g

⇐⇒ x ∈ B + g.

Definition 5.2.12. A subshift of (Ω(C), T ) is a Z
d-action (X,T ), where X is a closed subset of

Ω(C) invariant under T .

5.2.4 Topological entropy

For each subset X of Ω(C) and A ∈ R, let

ΩA(C,X) = {x|A ; x ∈ X}

denote the set of configurations supported in A which occur in elements of X and Ω∗(C,X) the

space of all configurations in Z
d occuring in elements of X,

Ω∗(C,X) =
⋃

A∈R

ΩA(C,X).

Definition 5.2.13. The topological entropy of the subshift (X,T ) is the limit

h(X,T ) = lim
n→∞

log |Ω[0,n)d(C,X)|

nd
, (5.2.2)

which always exists and is equal to infn∈N
1
nd · log |Ω[0,n)d(C,X)|.

5.2.5 Frequencies and unique ergodicity

Definition 5.2.14. Given configurations bA1 ∈ ΩA1(C) and bA2 ∈ ΩA2(C), the set of ocurrences

of bA1 in bA2 is

S(bA1 , bA2)
.
= {g ∈ Z

d ; A1 + g ⊂ A2 and πA2
A1+g

(bA2) = bA1+g}.

The frequency of bA1 in bA2 is defined as

fr(bA1 , bA2)
.
=

|S(bA1 , bA2)|

|A2|
·

Given F ∈ F and h ∈ Z
d, the set of ocurrences of bA1 in bA2 centered at h modulo F is

S(bA1 , bA2 , h, F )
.
= {g ∈ S(bA1 , bA2) ; A1 + g is centered at a vertex ≡F h}
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and the frequency of bA1 in bA2 centered at h modulo F is the quocient

fr(bA1 , bA2 , h, F )
.
=

|S(bA1 , bA2 , h, F )|

|A2|
·

Observe that if F̄ ⊂ Z
d is a complete residue set modulo F , then

fr(bA1 , bA2) =
∑

g∈F̄

fr(bA1 , bA2 , g, F ).

To our purposes, we rewrite Proposition 5.2.8 in a different manner.

Proposition 5.2.15. A subshift (X,T ) is uniquely ergodic if and only if, for every bA ∈ Ω∗(C)

and x ∈ X,

fr(bA, x)
.
= lim

n→∞
fr
(

bA, x|[0,n)d
)

exists and is independent of x.

Proof. By approximation, condition (b) of Proposition 5.2.8 holds for C(X) if and only if it

holds for C0 = {χB ; B ∈ B0}. If f = χCyl(bA), (5.2.1) implies that

lim
n→∞

fn(x) = lim
n→∞

1

nd

∑

g∈[0,n)d

f (T gx)

= lim
n→∞

1

nd

∑

g∈[0,n)d

χCyl(bA+g)(x)

= lim
n→∞

1

nd

∑

g∈[0,n)d

A+g⊂[0,n)d

χCyl(bA+g)(x)

= lim
n→∞

fr
(

bA, x|[0,n)d
)

= fr(bA, x),

where in the third equality we used that, for a fixed A ∈ R,

lim
n→∞

|{g ∈ [0, n)d ; A+ g 6⊂ [0, n)d}|

nd
= 0.

Corollary 5.2.16. A subshift (X,T ) is totally uniquely ergodic if and only if, for every bA ∈

Ω∗(C), x ∈ X and F ∈ F ,

fr(bA, x, F )
.
= lim

n→∞
fr
(

bA, x|[0,n)d , 0, F
)

exists and is independent of x.

So, unique ergodicity is all about constant frequencies. We’ll obtain this via the Law of Large

Numbers, equidistributing ocurrences of configurations along residue classes of subgroups.
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5.2.6 Law of Large Numbers

Intuitively, if A is a subset of Zd, each letter of C appears in x|A with frequency approximately

1/|C|, for almost every x ∈ Ω(C). This is what the Law of Large Number says. For our purposes,

we state this result in a slightly different way. Let (X,B, µ) be a probability space and A ⊂ Z
d

infinite. For each g ∈ A, let Xg : X → R be a random variable.

Theorem 5.2.17. (Law of Large Numbers) If (Xg)g∈A is a family of independent and identically

distributed random variables such that E[Xg] = m, for every g ∈ A, then the sequence
(

Xn

)

n≥1

defined by

Xn =

∑

g∈A∩[0,n)d Xg

|A ∩ [0, n)d|

converges in probability to m, that is, for any ε > 0,

lim
n→∞

µ
(∣

∣Xn −m
∣

∣ < ε
)

= 1.

Consider the probability measure space (X,B, µ) defined in Subsection 5.2.3. Fixed w ∈ C,

let Xg : Ω(C) → R be defined as

Xg(x) = 1 , if x(g) = w

= 0 , if x(g) 6= w.
(5.2.3)

It is clear that (Xg)g∈Zd are independent, identically distributed and satisfy

E[Xg] =

∫

X
Xg(x)dµ(x) =

1

|C|
, ∀ g ∈ Z

d.

In addition,

Xn(x) =

∑

g∈[0,n)d Xg(x)

nd
=

∣

∣

∣S
(

w, x|[0,n)d
)∣

∣

∣

nd
= fr

(

w, x|[0,n)d
)

,

which implies the

Corollary 5.2.18. Let w ∈ C, g ∈ Z
d, F ∈ F and ε > 0.

(a) The number of elements b ∈ Ω[0,n)d(C) such that
∣

∣

∣

∣

fr(w, b) −
1

|C|

∣

∣

∣

∣

< ε

is asymptotic to |C|n
d
as n→ ∞.

(b) The number of elements b ∈ Ω[0,n)d(C) such that
∣

∣

∣

∣

fr(w, b, g, F ) −
1

|C| · (Zd : F )

∣

∣

∣

∣

< ε

is asymptotic to |C|n
d
as n→ ∞.
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(c) The number of elements b ∈ Ω[0,n)d(C) such that

∣

∣

∣

∣

fr(w, b, g, F ) −
1

|C| · (Zd : F )

∣

∣

∣

∣

< ε

for every w ∈ C and g ∈ Z
d is asymptotic to |C|n

d
as n→ ∞.

Proof. (a) The required number is equal to

|C|n
d
· µ
(

{x ∈ Ω(C) ;
∣

∣

∣fr
(

w, x|[0,n)d
)

− |C|−1
∣

∣

∣ < ε}
)

and is asymptotic to |C|n
d
, as the above µ-measure converges to 1.

(b) Take A = F + g and (Xh)h∈A as in (5.2.3). For any x ∈ Ω(C),

Xn(x) =

∣

∣

∣
S
(

w, x|[0,n)d , g, F
)∣

∣

∣

|A ∩ [0, n)d|

= fr
(

w, x|[0,n)d , g, F
)

· (Zd : F ) + o(1) ,

because
∣

∣A ∩ [0, n)d
∣

∣ is asymptotic to nd/(Zd : F ). This implies that for n large

∣

∣

∣

∣

fr
(

w, x|[0,n)d , g, F
)

−
1

|C| · (Zd : F )

∣

∣

∣

∣

< ε ⇐⇒

∣

∣

∣

∣

Xn(x)−
1

|C|

∣

∣

∣

∣

< ε · (Zd : F )

and then Theorem 5.2.17 guarantees the conclusion.

(c) As the events are independent, this follows from (b).

5.3 Main Constructions

Let C = {0, 1}. In this section, we construct subshifts (X,T ) with topological and ergodic pre-

scribed properties. To this matter, we build a sequence of finite non-empty sets of configurations

Ck ⊂ ΩAk
(C), k ≥ 1, such that:

(i) Ak = [0, nk)
d, where (nk)k≥1 is an increasing sequence of positive integers.

(ii) n1 = 1 and C1 = ΩA1(C)
∼= {0, 1}.

(iii) Ck is the concatenation of elements of Ck−1, possibly with the insertion of few additional

blocks of zeroes and ones.

Given such sequence (Ck)k≥1, we consider X ⊂ Ω(C) as the set of limits of shifted Ck-patterns

as k → ∞, that is, x ∈ X if there exist sequences (wk)k≥1, wk ∈ Ck, and (gk)k≥1 ⊂ Z
d such that

x = lim
k→∞

T gkwk.
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The above limit has an abuse of notation, because T acts in Ω(C) and wk 6∈ Ω(C). Formally

speaking, this means that, for each g ∈ Z
d, there exists k0 ≥ 1 such that

x(g) = wk(g + gk), ∀ k ≥ k0.

By definition, X is invariant under T and, for any k, every x ∈ X is an infinite concatenation

of elements of Ck and additional blocks of zeroes and ones.

If Ck ⊂ ΩAk
({0, 1}) and A ∈ R, ΩA(Ck) is identified in a natural way to a subset of

ΩnkA({0, 1}). In some situations, to distinguish this association, we use small letters for ΩA(Ck)

and capital letters for ΩnkA({0, 1})
2. In this situation, if w ∈ ΩA(Ck) and g ∈ A, the pattern

w(g) ∈ Ck occurs in W ∈ ΩnkA({0, 1}) centered at nkg. In other words, if wk ∈ Ck, then

S(wk,W, nkg, F ) = nk · S(wk, w, g, F ). (5.3.1)

In each of the next subsections, (Ck)k≥1 is constructed with specific combinatorial and

statistical properties.

5.3.1 Minimality

The action (X,T ) is minimal if and only if, for each x, y ∈ X, every configuration of x is also a

configuration of y. For this, suppose Ck ⊂ ΩAk
({0, 1}) is defined and non-empty.

By the Law of Large Numbers, if lk is large, every element of Ck occurs in almost every

element of Ω[0,lk)d
(Ck) (in fact, by Corollary 5.2.18, each of them occurs approximately with

frequency 1/|Ck| > 0). Take any subset Ck+1 of Ω[0,lk)d
(Ck) with this property and consider it

as a subset of Ω[0,nk+1)d
({0, 1}), where nk+1 = lknk.

Let us prove that (X,T ) is minimal. Consider x, y ∈ X and x|A a finite configuration of x.

For large k, x|A is a subconfiguration of some wk ∈ Ck. As y is formed by the concatenation of

elements of Ck+1, every element of Ck is a configuration of y. In particular, wk (and then x|A)

is a configuration of y.

5.3.2 Total minimality

The action (X,T ) is totally minimal if and only if, for each x, y ∈ X and F ∈ F , every

configuration x|A of x centered3 at 0 also occurs in y centered at some g ∈ F . To guarantee this

for every F ∈ F , we inductively control the ocurrence of subconfigurations centered in finitely

many subgroups of Zd.

2For example, w ∈ ΩA(Ck) and W ∈ ΩnkA({0, 1}) denote the “same” element.
3Because of the T -invariance of X, we can suppose that x|A is centered in 0 ∈ Z

d. In fact, instead of x, y, we

consider T gx, T gy.
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Consider the sequence (Fk) ⊂ F defined in Subsection 5.2.2. By induction, suppose Ck ⊂

ΩAk
({0, 1}) is non-empty satisfying (i), (ii), (iii) and the additional assumption

(iv) gcd(nk,mk) = 1 (observe that this holds for k = 1).

Take lk large and C̃k+1 ⊂ Ω[0,lkmk+1)d
(Ck) non-empty such that

(v) S(wk, w|[0,lkmk+1−1)d , g, Fk) 6= ∅, for every triple (wk, w, g) ∈ Ck × C̃k+1 × Z
d.

Considering w|[0,lkmk+1−1)d as an element of Ω[0,lkmk+1nk−nk)d
({0, 1}), (5.3.1) implies that

S(wk,W |[0,lkmk+1nk−nk)d
, nkg, Fk) 6= ∅, ∀ (wk, w, g) ∈ Ck × C̃k+1 × Z

d.

As gcd(nk,mk) = 1, the set nkZ
d runs over all residue classes modulo Fk and so (the restriction

to [0, lkmk+1nk − nk)
d of) every element of C̃k+1 contains every element of Ck centered at every

residue class modulo Fk.

Obviously, Ck+1 must not be equal to C̃k+1, because mk+1 divides lkmk+1nk. Instead, we

take nk+1 = lkmk+1nk + 1 and insert positions Bi, i = 1, 2, . . . , d, next to faces of the cube

[0, lkmk+1nk)
d. These are given by

Bi = {(r1, . . . , rd) ∈ Ak+1 ; ri = lkmk+1nk − nk}.

There is a natural surjection Φ : ΩAk+1
({0, 1}) → Ω[0,nk+1−1)d({0, 1}) obtained removing the

positions B1, . . . , Bd. More specifically, if

δ(r) = 0 , if r < lkmk+1nk − nk ,

= 1 , otherwise

and

∆(r1, . . . , rd) = (δ(r1), . . . , δ(rd)), (5.3.2)

the map Φ is given by

Φ(W )(g) =W (g +∆(g)) , ∀ (r1, . . . , rd) ∈ [0, nk+1 − 1)d.

We conclude the induction step taking Ck+1 = Φ−1(C̃k+1).
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Φ(wk+1) ∈ C̃k+1 wk+1 ∈ Ck+1

Φ

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Figure: example of Φ when d = 2.

By definition, wk+1 and Φ(wk+1) coincide in [0, nk+1−nk−1)d, for every wk+1 ∈ Ck+1. This

implies that every element of Ck appears in every element of Ck+1 centered at every residue class

modulo Fk.

Let us prove that (X,T ) is totally minimal. Fix elements x, y ∈ X, a subgroup F ∈ F and

a pattern x|A of x centered in 0 ∈ Z
d. By the definition of X, x|A is a subconfiguration of

some wk ∈ Ck, for k large enough such that Fk < F . As y is built concatenating elements of

Ck+1, wk occurs in y centered in every residue class modulo F and the same happens to x|A. In

particular, x|A occurs in y centered in some g ∈ F , which is exactly the required condition.

5.3.3 Total strict ergodicity

In addition to the occurrence of configurations in every residue class of subgroups of Zd, we

also control their frequency. Consider a sequence (dk)k≥1 of positive real numbers such that
∑

k≥1 dk < ∞. Assume that C1, . . . , Ck−1, Ck are non-empty sets satisfying (i), (ii), (iii), (iv)

and

(vi) For every (wk−1, wk, g) ∈ Ck−1 × Ck × Z
d,

fr(wk−1, wk, g, Fk−1) ∈

(

1− dk−1

mk−1
d · |Ck−1|

,
1 + dk−1

mk−1
d · |Ck−1|

)

·

Before going to the inductive step, let us make an observation. Condition (vi) also controls the

frequency on subgroups F such that Fk−1 < F . In fact, if F̄k−1 is a complete residue set modulo

Fk−1,

fr(wk−1, wk, g, F ) =
∑

h∈F̄k−1
h≡F g

fr(wk−1, wk, h, Fk−1) (5.3.3)

and, as
∣

∣{h ∈ F̄k−1 ; h ≡F g}
∣

∣ = (F : Fk−1),

fr(wk−1, wk, g, F ) ∈

(

1− dk−1

(Zd : F ) · |Ck−1|
,

1 + dk−1

(Zd : F ) · |Ck−1|

)

· (5.3.4)
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We proceed the same way as in the previous subsection: take lk large and C̃k+1 ⊂ Ω[0,lkmk+1)d
(Ck)

non-empty such that

fr(wk, w̃k+1, g, Fk) ∈

(

1− dk
mk

d · |Ck|
,

1 + dk
mk

d · |Ck|

)

(5.3.5)

for every (wk, w̃k+1, g) ∈ Ck× C̃k+1×Z
d. Note that the non-emptyness of C̃k+1 is guaranteed by

Corollary 5.2.18. Also, let nk+1 = lkmk+1nk + 1 and Ck+1 = Φ−1(C̃k+1).

Fix bA ∈ Ω∗(C). Using the big-O notation, we have

fr(bA,Wk+1, g, F ) − fr(bA,Wk+1|[0,nk+1−nk−1)d , g, F ) = O(1/lk) , (5.3.6)

because these two frequencies differ by the frequency of bA in [nk+1 − nk − 1, nk+1)
d and

(nk + 1)d

nk+1
d

=

(

nk + 1

lkmk+1nk + 1

)d

= O(1/lk).

The same happens to fr(wk, wk+1, g, F ) and fr(wk,Φ(wk+1), g, F ), because ∆(g) = 0 for all

g ∈ [0, nk+1 − nk − 1)d. To simplify citation in the future, we write it down:

fr(wk, wk+1, g, F ) − fr(wk,Φ(wk+1), g, F ) = O(1/lk). (5.3.7)

These estimates imply we can assume, taking lk large enough, that

fr(wk, wk+1, g, Fk) ∈

(

1− dk
mk

d · |Ck|
,

1 + dk
mk

d · |Ck|

)

, ∀ (wk, wk+1, g) ∈ Ck × Ck+1 × Z
d.

We make a calculation to be used in the next proposition. Fix bA ∈ Ω∗(C) and F ∈ F .

The main (and simple) observation is: if bA occurs in Wk ∈ Ck centered at g and wk occurs

in Φ(wk+1) ∈ C̃k+1 centered at h ∈ [0, lkmk+1 − 1)d, then bA occurs in Wk+1 ∈ Ck+1 centered

at g + nkh. This implies that, if F̄ is a complete residue set modulo F , the cardinality of

S(bA,Wk+1|[0,nk+1−nk−1)d , g, F ) is equal to
∑

h∈F̄
wk∈Ck

∑

wk occurring in

wk+1|[0,lkmk+1−1)d

at a vertex ≡F h

|S(bA,Wk, g − nkh, F )| + T

=
∑

h∈F̄
wk∈Ck

∣

∣

∣S(wk, wk+1|[0,lkmk+1−1)d , h, F )
∣

∣

∣ · |S(bA,Wk, g − nkh, F )| + T,

where T denotes the number of occurrences of bA in Wk+1|[0,nk+1−nk−1)d not entirely contained

in a concatenated element of Ck. Observe that4

0 ≤ T ≤ d · lkmk+1 · n
d−1 · nk+1 < dnd−1 ·

nk+1
2

nk
,

4For each line parallel to a coordinate axis eiZ between two elements of Ck in Wk+1 or containing a line of

ones, there is a rectangle of dimensions n× · · · × n× nk+1 × n× · · · × n in which bA is not entirely contained in

a concatenated element of Ck.
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where n is the length of bA. Dividing
∣

∣

∣
S(bA,Wk+1|[0,nk+1−nk−1)d , g, F )

∣

∣

∣
by nk+1

d and using

(5.3.6), (5.3.7), we get

fr(bA,Wk+1, g, F ) =

(

nk+1 − 1

nk+1

)d
∑

h∈F̄
wk∈Ck

fr(wk, wk+1, h, F )fr(bA,Wk, g − nkh, F )

+O(1/lk−1) . (5.3.8)

We wish to show that fr(bA, x, F ) does not depend on x ∈ X. For this, define

αk(bA, F ) = min
{

fr(bA,Wk, g, F ) ; Wk ∈ Ck, g ∈ Z
d
}

βk(bA, F ) = max
{

fr(bA,Wk, g, F ) ; Wk ∈ Ck, g ∈ Z
d
}

.

The required property is a direct consequence5 of the next result.

Proposition 5.3.1. If bA ∈ Ω∗(C) and F ∈ F , then

lim
k→∞

αk(bA, F ) = lim
k→∞

βk(bA, F ).

Proof. By (5.3.3), if l is large such that Fl < F , then

(F : Fl) · αk(bA, Fl) ≤ αk(bA, F ) ≤ βk(bA, F ) ≤ (F : Fl) · βk(bA, Fl).

This means that we can assume F = Fl. We estimate αk+1(bA, F ) and βk+1(bA, F ) in terms of

αk(bA, F ) and βk(bA, F ), for k ≥ l. As bA and F are fixed, denote the above quantities by αk

and βk. Take Wk+1 ∈ Ck+1. By (5.3.8),

fr(bA,Wk+1, g, F ) ≥

(

nk+1 − 1

nk+1

)d

· αk ·
∑

h∈F̄
wk∈Ck

fr(wk, wk+1, h, F ) +O(1/lk−1)

=

(

nk+1 − 1

nk+1

)d

· αk +O(1/lk−1)

and, as Wk+1 and g are arbitrary, we get

αk+1 ≥

(

nk+1 − 1

nk+1

)d

· αk +O(1/lk−1) . (5.3.9)

Equality (5.3.8) also implies the upper bound

fr(bA,Wk+1, g, F ) ≤

(

nk+1 − 1

nk+1

)d

· βk ·
∑

h∈F̄
wk∈Ck

fr(wk, wk+1, h, F ) +O(1/lk−1)

=

(

nk+1 − 1

nk+1

)d

· βk +O(1/lk−1)

=⇒ βk+1 ≤

(

nk+1 − 1

nk+1

)d

· βk +O(1/lk−1) . (5.3.10)

5In fact, just take the limit in the inequality αk(bA, F ) ≤ fr(bA, x|Ak
, 0, F ) ≤ βk(bA, F ).
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Inequalities (5.3.9) and (5.3.10) show that αk+1 and βk+1 do not differ very much from αk

and βk. The same happens to their difference. Consider w1, w2 ∈ Ck+1 and g1, g2 ∈ Z
d.

Renaming g−nkh by h in (5.3.8) and considering n−k the inverse of nk moduloml, the difference

fr(bA,W1, g1, F )− fr(bA,W2, g2, F ) is at most

∑

h∈F̄
wk∈Ck

fr(bA,Wk, h, F ) |fr(wk, w1, n−k(g1 − h), F )− fr(wk, w2, n−k(g2 − h), F )|

+O(1/lk−1) .

From (5.3.5),

fr(bA,W1, g1, F )− fr(bA,W2, g2, F ) ≤
2dk

ml
d · |Ck|

∑

h∈F̄
wk∈Ck

fr(bA,Wk, h, F )

+O(1/lk−1)

≤ 2dk +O(1/lk−1) ,

implying that

0 ≤ βk+1 − αk+1 ≤ 2dk +O(1/lk−1) . (5.3.11)

In particular, βk − αk converges to zero as k → +∞. The proposition will be proved if βk

converges. Let us estimate |βk+1 − βk|. On one side, (5.3.10) gives

βk+1 − βk ≤ O(1/lk−1) . (5.3.12)

On the other, by (5.3.9) and (5.3.11),

βk+1 − βk ≥ αk+1 − βk

≥

(

nk+1 − 1

nk+1

)d

· αk − βk +O(1/lk−1)

≥

(

nk+1 − 1

nk+1

)d

· [βk − 2dk−1 −O(1/lk−2)]− βk +O(1/lk−1)

which, together with (5.3.12), implies that

|βk+1 − βk| ≤ 2dk−1 + βk ·

[

1−

(

nk+1 − 1

nk+1

)d
]

+O(1/lk−2)

= 2dk−1 +O(1/lk−2) .

As
∑

dk and
∑

1/lk both converge, (βk)k≥1 is a Cauchy sequence, which concludes the proof.
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From now on, we consider (X,T ) as the dynamical system constructed as above. Note that

we have total freedom to choose Ck with few or many elements. This is what controls the

entropy of the system.

5.3.4 Proof of Theorem 5.1.1

By (5.2.2), the topological entropy of the Z
d-action (X,T ) satisfies

h(X,T ) ≥ lim
k→∞

log |Ck|

nkd
·

Consider a sequence (νk)k≥1 of positive real numbers. In the construction of Ck+1 from Ck, take

lk large enough such that

(vii) νk · nk+1 ≥ 1.

(viii) |C̃k+1| ≥ |Ck|
(lkmk+1)

d·(1−νk).

These inequalities imply

log |Ck+1|

nk+1
d

≥
log |C̃k+1|

nk+1
d

≥
(lkmk+1)

d · (1− νk) · log |Ck|

nk+1
d

≥ (1− νk)
d+1 ·

log |Ck|

nkd

and then

log |Ck|

nkd
≥

k−1
∏

i=1

(1− νi)
d+1 ·

log |C1|

n1d
=

k−1
∏

i=1

(1− νi)
d+1 · log 2 .

If ν ∈ (0, 1) is given and (νk)k≥1 are chosen also satisfying

lim
k→∞

k
∏

i=1

(1− νi)
d+1 = 1− ν ,

we obtain that h(X,T ) ≥ (1− ν) log 2 > 0. If, instead of {0, 1}, we take C with more elements

and apply the construction verifying (i) to (viii), the topological entropy of the Z
d-action is at

least (1− ν) log |C|. We have thus proved Theorem 5.1.1.
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5.4 Proof of Theorems 5.1.2 and 5.1.3

Given a finite alphabet C, consider a configuration bA1 : A1 → C and any A2 ⊂ A1 such that

|A2| ≤ ε|A1|. If bA2 : A2 → C, the element w ∈ ΩA1(C) defined by

w(g) = bA1(g) , if g ∈ A1\A2 ,

= bA2(g) , if g ∈ A2

has frequencies not too different from bA1 , depending on how small ε is. In fact, for any c ∈ C,

|S(c, bA1 , g, F )| − |A2| ≤ |S(c, w, g, F )| ≤ |S(c, bA1 , g, F )| + |A2|

and then |fr(c, bA1 , g, F ) − fr(c, w, g, F )| ≤ ε.

Definition 5.4.1. The upper-Banach density of a set P ⊂ Z
d is equal to

d∗(P ) = lim sup
n1,...,nd→∞

|P ∩ [r1, r1 + n1)× · · · × [rd, rd + nd)|

n1 · · ·nd
·

Consider a set P ⊂ Z
d of zero upper-Banach density. We will make lk grow quickly such

that any pattern of P ∩(Ak+g) appears as a subconfiguration in an element of Ck. Let’s explain

this better. Consider the d-dimensional cubes (Ak)k≥1 that define (X,T ). For each k ≥ 1, let

Ãk ⊂ Ak be the region containing concatenated elements of Ck−1. Inductively, they are defined

as Ã1 = {0} and

Ãk+1 =
⋃

g∈[0,lkmk+1)d

(

Ãk + nkg +∆(nkg)
)

, ∀ k ≥ 1,

where ∆ is the function defined in (5.3.2).

Lemma 5.4.2. If P ⊂ Z
d has zero upper-Banach density, there exists a totally strictly ergodic

Z
d-action (X,T ) with the following property: for any k ≥ 1, g ∈ Z

d and b : P∩(Ak+g) → {0, 1},

there exists wk ∈ Ck such that

wk(h− g) = b(h) , ∀h ∈ P ∩ (Ak + g).

Proof. We proceed by induction on k. The case k = 1 is obvious, since C1 ∼= {0, 1}. Suppose

the result is true for some k ≥ 1 and consider b : P ∩ (Ak+1 + g0) → {0, 1}. By definition, any

0,1 configuration on Ak+1\Ãk+1 is admissible, so that we only have to worry about positions

belonging to Ãk+1. For each g ∈ [0, lkmk+1)
d, let

bg : P ∩
(

Ãk + nkg +∆(nkg) + g0

)

→ {0, 1}
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be the restriction of b to P ∩
(

Ãk + nkg +∆(nkg) + g0

)

. If ε > 0 is given and lk is large enough,

∣

∣

∣P ∩
(

Ãk+1 + g0

)∣

∣

∣

∣

∣

∣Ãk+1 + g0

∣

∣

∣

<
ε

(2nk)d

=⇒
∣

∣

∣
P ∩

(

Ãk+1 + g0

)∣

∣

∣
< ε · (lkmk+1)

d ,

for any g0 ∈ Z
d. This implies that P ∩

(

Ãk + nkg +∆(nkg) + g0

)

is non-empty for at most

ε · (lkmk+1)
d values of g ∈ [0, lkmk+1)

d. For each of these, the inductive hypothesis guarantees

the existence of wg ∈ Ck such that

wg(h− nkg −∆(nkg)− g0) = bg(h) , ∀h ∈ P ∩
(

Ãk + nkg +∆(nkg) + g0

)

.

Take any element z ∈ Ck+1 and define z̃ ∈ ΩAk+1
({0, 1}) by

z̃(h) = wg (h− nkg −∆(nkg)) , if h ∈ Ãk + nkg +∆(nkg)

= b(h) , if h ∈ Ak+1\Ãk+1

= z(h) , otherwise.

If ε > 0 is sufficiently small, z̃ ∈ Ck+1. By its own definition, z̃ satisfies the required conditions.

The above lemma is the main property of our construction. It proves the following stronger

statement.

Corollary 5.4.3. Let (X,T ) be the Z
d-action obtained by the previous lemma. For any b : P →

{0, 1}, there is x ∈ X such that x|P = b. Also, given x ∈ X, A ∈ R and b : P → {0, 1}, there

are x̃ ∈ X and n ∈ N such that x̃|A = x|A and x̃(g) = b(g) for all g ∈ P\(−n, n)d.

Proof. The first statement is a direct consequence of Lemma 5.4.2 and a diagonal argument.

For the second, remember that x is the concatenation of elements of Ck and lines of zeroes and

ones, for every k ≥ 1. Consider k ≥ 1 sufficiently large and zk ∈ Ck such that x|A occurs in

zk. For any z ∈ Ck+1, there is g ∈ Z
d such that z|Ak+g = zk. Constructing z̃ from z making

all substitutions described in Lemma 5.4.2, except in the pattern z|Ak+g, we still have that

z̃ ∈ Ck+1.

5.4.1 Proof of Theorem 5.1.2

Consider f : X → R given by f(x) = x(0). Then

1

|P ∩ (−n, n)d|

∑

g∈P∩(−n,n)d

f (T gx) = fr
(

1, x|P∩(−n,n)d

)

.



Chapter 5. Zd-actions with prescribed topological and ergodic properties 78

For each n ≥ 1, consider the sets

Λn =
⋃

k≥n

{

x ∈ X ; fr
(

1, x|P∩(−k,k)d

)

< 1/n
}

Λn =
⋃

k≥n

{

x ∈ X ; fr
(

1, x|P∩(−k,k)d

)

> 1− 1/n
}

.

Fixed k and n, the sets
{

x ∈ X ; fr(1, x|P∩(−k,k)d) < 1/n
}

and is clearly open, so that the same

happens to Λn. It is also dense in X, as we will now prove. Fix x ∈ X and ε > 0. Let

k0 ∈ N be large enough so that d(x, y) < ε whenever x|(−k0,k0)d = y|(−k0,k0)d . Take y ∈ X

such that y|(−k0,k0)d = x|(−k0,k0)d and y(g) = 0 for all g ∈ P\(−n, n)d as in Corollary 5.4.3. As

fr(1, y|(−k,k)d) approaches to zero as k approaches to infinity, y ∈ Λn, proving that Λn is dense

in X. The same argument show that Λn is a dense open set. Then

X0 =
⋂

n≥1

(Λn ∩ Λn)

is a countable intersection of dense open sets, thus residual. For each x ∈ X0,

lim inf
n→∞

1

|P ∩ (−n, n)d|

∑

g∈P∩(−n,n)d

f (T gx) = 0

lim sup
n→∞

1

|P ∩ (−n, n)d|

∑

g∈P∩(−n,n)d

f (T gx) = 1 ,

which concludes the proof of Theorem 5.1.2.

5.4.2 Proof of Theorem 5.1.3

Choose an infinite set G = {gi}i≥1 in Z
d disjoint from P such that P ′ = G ∪ P ∪ {0} also has

zero upper-Banach density and let (X,T ) be the Z
d-action given by Lemma 5.4.2 with respect

to P ′, that is: for every b : P ′ → {0, 1}, there exists xb ∈ X such that xb|P ′ = b. Consider

X0 =
{

xb ∈ X ; b(0) = 0 and b(g) = 1, ∀ g ∈ P
}

.

This is an uncountable set (it has the same cardinality of 2G = 2N) and, for every xb ∈ X0 and

g ∈ P , the elements T gxb and xb differ at 0 ∈ Z
d, implying that xb 6∈ {T gxb ; g ∈ P}. This

concludes the proof.
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