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Abstract

Contiero, A.; . Upper Bounds for the Di-
mension of Moduli Spaces of  Algebraic
Curves with  Prescribed  Weierstrass Semi-
groups. Rio de Janeiro, 2010. 62 p. PhD Thesis

— Instituto Nacional de Matematica Pura e Aplicada.

In this thesis we investigate the dimensions of the moduli spaces of pointed
algebraic curves with prescribed Weierstrass semigroups. We present an imple-
mentable method to obtain upper bounds for the dimension of moduli spaces of
pointed algebraic curves with prescribed symmetric semigroup. In the shown
examples and families of symmetric semigroups the upper bounds produced by
our method are optimal, or we get the exact dimensions of the moduli spaces
or better bounds than those given by Deligne’s Formula or Eisenbud—Harris

expected dimensions.
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Chapter 1

Introduction

We present an implementable method to obtain upper bounds for the di-
mension of moduli spaces of pointed algebraic curves with prescribed symmet-
ric semigroup. In the shown examples and families of symmetric semigroups
the upper bounds produced by our method are optimal, or we get the exact di-
mensions of the moduli spaces or better bounds than those given by Deligne’s
Formula or Eisenbud—Harris expected dimensions.

Let C be an integral projective algebraic curve of genus g > 2 defined
over an algebraically closed field k of characteristic zero. For each smooth
point p € C there is associated a subsemigroup H of the nonnegative integers
N which is formed by pole orders of meromorphic functions of C' which are
holomorphic on C'\ {p}. By the Riemann—-Roch Theorem (see [26] for the
singular and smooth cases) the cardinality of N\ is exactly g. The semigroup
H is called a Weierstrass semigroup if it is different from {0,g+ 1,9+ 2,...}.
The sequence ¢; < ... < {, of elements of N\ X, is the gap sequence.

A numerical semigroup H is realizable if there is a smooth curve possessing
a point whose Weierstrass semigroup is H. The question was posed by Hur-
witz of which numerical semigroups are realizable remains open. As is well
known, there are numerical semigroups which are not realizable. We refer to
[29] for symmetric nonrealizable semigroups. On the other hand, symmetric
semigroups are realized by irreducible, possibly singular, Gorenstein curves;
see [27].



Let .#,, be the moduli space of pointed smooth projective curves of genus
g. Given a numerical subsemigroup H of N, let us consider in .#,; the lo-
cally closed subscheme .#3; parameterizing irreducible curves whose Weier-
strass semigroup is equal to H at the base point.

In the 80’s Eisenbud and Harris considered, among others, the question:
“What are the dimensions of .#%, or when they are reducible, of their com-
ponents?”; see [8]. Gatto and Ponza [10] pointed as a “difficult problem
to study the dimension, when it is nonempty, of the closure of the locus
W(ly, by, ..., Ly)". We recall that W (ly,¢s,...,¢,) is the sublocus of isomor-
phism classes of curves possessing a point with gap sequence ¢, (s, ..., {,.

We are, in fact, especially interested in the dimension of .43, when H is
symmetric. We mention briefly a few relevant results in this direction.

By considering irreducible Gorenstein curves, Stohr [27] constructed a com-
pactification of .#4;, denoted by .#4, when H is symmetric. Its boundary
was built by G,,(k)-orbits of nonsmooth integral Gorenstein curves. He con-
structed the moduli space by deforming curves canonically embedded, analy-
zing their ideals and their syzygies, he made in a rather explicitly way. Thus we
have a promising approach and a rich source of examples. The approach can
also be carried out for quasi-symmetric semigroups by considering reducible
curves, see [19] and [20].

As regard to the dimension of .#4%;, Eisenbud and Harris [9, p. 496] proved
that the weight of a semigroup, w(H) = > ¢; — i, gives an upper bound for
the codimension of any component of .#%. Since dim .Z,; = 3g — 2, it follows
that 3g — 2 — w(H) < dim.#4;, this lower bound being called the expected
dimension of .#4. They also proved that if w(H) < g — 2, then there is a
point (C,p) € #,; such that dim .#3 = 3g — 2 — w(H) in a neighborhood of
(C,p), see [9], Theorem 5.4. On the other hand for certain, in particular, for
certain families of symmetric semigroups the lower bound 3g — 2 — w(H) can
be negative! and then it does not provide any information.

In [4], Thm 2.27, Deligne considered the local ring O at a singular point
of a reduced projective algebraic curve, and F an irreducible component of

the semiuniversal deformation of Spec(Q). Assuming that the fiber of the

ISee for example the families in Sections 4.1 and 4.2 of this thesis.



deformation above the generic point of E is smooth, he gave a formula for
the dimension of E. Taking into account Pinkham’s theorems in [21] we
may see that Deligne’s formula provides an upper bound: dim.#3 < 2¢g+
[End(H) : H] — 2, where End(H) ={n e N|n+heH, Vhe H\{0}}. We
give more details about this in Section 3.1 of this thesis.

Rim and Vitulli, see [23], Section 5, proved that if H is negatively graded
then  is realizable and the dimension of .#% is equal to 2¢g + [End(H) :
H] — 2. A semigroup is negatively graded if the first cohomology module of
the cotangent complex associated to the monomial curve induced by H has no
elements of positive degree.

By studying ideals of codimension three, Waldi, see [30] Korollar 2, de-
scribed the moduli space .#3; when H is generated by at most four elements.
Recently Nakano and Mori, in [16] and [15], constructed explicitly .#% when
the genus is low (2 < g < 5). They are able to compute the dimension of .Z4,
to prove its irreducibility and its rationality if H is generated by at most four
elements.

Our main goal is to use [27] to obtain informations about the dimension
of My, a fortiori about the dimension of .#4, because .#4 is an open set of
M. In order to avoid trivial cases and those already treated we deal with
symmetric semigroups of multiplicity at least six.

The strategy we suggest for achieving such a goal is as follows. Stohr’s
compactification .#, is isomorphic to the quotient of an affine algebraic set X
by a G,,(k)-action. The vertex of X belongs to all of its irreducible compo-
nents; see Proposition 3.6. Thus the dimension of .4, is the local dimension
of X at the vertex minus one. We construct a space, denoted by Qy, which is
given by the zero locus of suitable quadratic forms and contains the quadratic
approximation of X at the vertex. Hence Qy provides, by taking into account
the tangent cone of X at the vertex, an upper bound for the dimension of ./,
a fortiori for the dimension of .#%, see Theorem 3.8.

The thesis is organized as follows. In Chapter 2 we introduce the main
objects and notations. Also we summarize without proofs the construction of
Stohr’s, which is fundamental for this thesis.

Since Deligne’s upper bound plays an important role, Section 1 of Chapter



3 is devoted to recall how to obtain it. To this end, some knowledge on the
theory of deformations of curves will be needed.

In section 3.2 we describe how to construct Oz and we show that it provides
an upper bound for .#5. It is also shown that we do not need to construct
the moduli space .43 to get Qy, implying in a tremendous simplification of
computations.

Section 3.3 is devoted to the examples. We show for four numerical exam-
ples that the upper bound given by Oy is really good. In three examples, two
of genus 8 and one of genus 9, we get the exact dimension of the moduli space
and, in another of genus 9, a better bound than that given by Deligne’s formula.
However we do not know the dimension of the moduli space correspondig to
the latter.

In Chapter 4 we apply our method to one-parameter families of symmetric
semigroups. By considering a minimal system of generators for H, we adapt,
for two families, Stohr’s Theorem to construct the moduli space .#y,. The first
family consists of semigroups of multiplicity five, H :=< 5,2 + 57,3 + 57,4 +
57 >, with 7 > 1. By analyzing two syzygies, we show explicitly that the
moduli space .# is a weighted projective space isomorphic to P(T5~(By))
with dimension 77 + 4; see Corollary 4.4 for the statement and explanations
of notation. As a final illustration of the method, we consider a family of
semigroups of multiplicity six, namely H :=< 6,2+67,3+67,4467,54 67 >,
with 7 > 1. By analyzing five syzygies, we construct explicitly Q4 and we
are able to compute its dimension. In this way, we obtain the upper bound
87 + 5 for .43, improving the upper bound given by Deligne’s Formula which
is 127 + 1; see Theorem 4.8. The main idea of the proof of this theorem
is to view Qy as a closed subset of an affine space over a suitable Artinian
k-algebra. For these two families of symmetric semigroups Eisenbud-Harris

expected dimensions become negative for 7 > 3.



Chapter 2

Moduli Space of Curves with
Symmetric Weierstrass

Semigroups

In this chapter we introduce the main objects and notations. We recall certain
results derived from [27] of a compactification of .#4;, which is a fundamental
tool for this thesis.

A numerical semigroup H is a subsemigroup of the additive semigroup N
of nonnegative integers whose greatest common divisor of its elements is 1.
Thus, in a numerical semigroup H there are only a finite number of elements
of N missing in H. These elements are called gaps of H, denoted by ¢;, and
the elements of H are the nongaps. The number of gaps is the genus of H and
denoted by g = g(#H). We denote by ng < ny < --- < ny_; the first g nongaps.
The least positive integer m := ny in H is the multiplicity of H.

A numerical semigroup H of genus g is called symmetric if the largest gap
{4 is equal to 2g — 1. Equivalently, an integer n belongs to H if and only if
¢y —n does not belong to H, thus:

lj=29—1—-ny4;, forj=1...9. (2.1)

Let us consider a nonsingular point P on an irreducible projective curve C
of genus g. The Weierstrass semigroup of (C, P) is the set of pole orders at
P of all meromorphic functions which are holomorphic on C'\ {P}. By the
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Riemann-Roch Theorem, the Weierstrass semigroup of (C, P) is a numerical
semigroup of genus g.

In [27] Stohr introduced the following curve: Let H be a numerical sym-
metric semigroup of genus g with n,_» = 2g — 3. Take the following curve,

called the canonical monomial curve:
Coy:= {(uﬂg_lv”(’ cyto M uel_lv”gfl) | (u:v) € P1(k)}. (2.2)

Cp is a rational algebraic curve of degree 2¢g — 2 in P9~!(k) and arithmetical
genus ¢. It has a unique singular point at (1 : 0... : 0) of multiplicity m
and singularity degree g. The function field of Cj is generated by z, where
z is defined by (ufs—lvmo : yle-1=lym o ¢ yfi~lyne-1) s y/v. The point
P:=(0:...:0:1) is nonsingular and the differentials 2%~‘dz form a basis of
the space of holomorphic differentials on Cy. We conclude that Cj is a canonical
Gorenstein! curve of arithmetical genus g whose Weierstrass semigroup at P
is H.

Let us fix a symmetric semigroup H of genus g > 4 and denote by .#3, the
following set:

My = set of isomorphism classes of pointed irreducible projective Goren-
stein curves whose Weierstrass semigroup at the base point is H.

Let C be an irreducible projective Gorenstein curve C' of genus g > 4
defined over an algebraically closed field k of characteristic zero. Let P € C
be a smooth point with symmetric Weierstrass semigroup H.

Let N = {ng,n1,...,ny,_1} be the set of the first g nongaps of C' at P,
it is called the canonical system of generators for H. For each n; there is a
meromorphic function x,; with a pole at P of order n; and does not have other
poles. Hence, {ay,, ..., %y, .} is a basis of the vector space H(C, (29 — 2)P).

We assume that [y = 2 i.e. ng_9 = 29 — 3, so the Gorenstein curve C
is nonhyperelliptic and z,, ..., 7,, , induce an embedding in the projective
space P9~1. Then, we can suppose that C C P97! is a canonical Gorenstein
curve and P = (0:...:0:1).

In the light of Petri’s analysis of the canonical ideal we obtain explicitly a
P-Hermitian basis of the space H(C, k(2g — 2)P) with k > 1.

'For more about singular curves, in particular, Gorenstein curves, we refer to [26] or [28]
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Let 7 be the largest integer such that n, = 7n;. Then the following
quadratic functions form a P-hermitian basis of H°(C,2(2g — 2)P).

Lo L, (] =0, g — 1)
Ty Tty tkny (B=1,...,7—1) (2.3)
T, g, (k=29g—mny,...,29g—2, i=1,...,7)
T, T (J=7+1,...,9—1, i=mn4j1—VL;...,n51).
For each s € N 4+ N, we write s = as0 + bso = as1 + 051 = ... = g, + sy,

where ag;, bs; are nongaps satisfying as, < a1 < ... < g, s < bg; and vy is
maximal. For convenience we denote a; = ayo and by = byy. One can see that
{Za,wp,} is the basis in 2.3.

For each n > 3 the following meromorphic functions form a P-hermitian
basis of H° (C,n(2g — 2)P).

n—1 .
LTng  Ln; (]—0,...,g—1)
ng?’fll‘nll?g_nl"L‘n972x¢zg,1 (Z =0,...,n— 3) (24)
$Z;27ixa5$b5$2971 (2 =0,...,.n—2 s=2g,... 749 _ 4) )

Since {x,,p, } is a basis of the vector space H°(C,2(2g —2)P), for each z, .
(1 = 1,...,vs) there are constants cg;, € k, after multiplying eventually x,,’s

by suitable constants, such that:

Tq,,Th,; = Ta,To, + Z Csir&a, L, - (2.5)

r<s
Let I(C') be the canonical ideal of the Gorenstein curve C' C P9~1. Thus
I(C) C k[X,,, ..., Xy, ] is a homogeneous ideal, I(C) = @52, I,,(C'), where

I,,(C) denotes the vector space of all n-forms vanishing identically on the

canonical curve C. The following $(g — 2)(g — 3) quadratic forms

Fyi=Xo, Xy, — X0, Xp, = Y carXa, X, (2.6)
r<s
form a basis of the vector space I»(C), because dim 1,(C) = ("*¢~") and the
polynomials Fj; are linearly independent.
Now we invert the above considerations. Let H be a numerical symmetric

semigroup of genus g > 4, such that 3 < ny < g and H #< 4,5 >. With
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these conditions on the symmetric semigroup we may have the existence of
non gaps a and b with ny,_y +n; = a+ b and n; < a < b < ny_1; see
[17, Thm 1.7].
Now we introduce the following quadratic forms
Fo =X, X, = X0, Xp, =Y CirXa, Xy, (s€EN+N, i=1,...,v,) (27)
r<s
where the coefficients belong to k and r ranges over the elements of N + N

smaller than s. We also consider the following quadratics forms
FO =X, Xy, — X0 Xy, (sSEN+N, i=1,...,1,). (2.8)

The ideal of Cj is minimally generated by these quadratic forms, cf. [27] Lemma
2.2.

We define the weight of X,,, to be n;. Thus, the quadratic forms in (2.8)
are 1sobaric, i.e., all monomials have the same weight.

We ask for the conditions on the coefficients c,;, of the forms Fj; for
which the intersection of the 1(g — 2)(g — 3) quadratic hypersurfaces “F,; =
0“ in the projective space P9~! is a canonical Gorenstein curve having at
P=(0:...:0:1) the Weierstrass semigroup #.

A (first) syzygy between the quadratic forms F S(lo ), say Z B F, 5(? ) = 0, is

homogeneous of degree n (respectively, isobaric of weight w) when the poly-
nomials Bj; are homogeneous of degree n — 2 (respectively, isobaric of weight
w — s). The syzygy is called linear when the polynomials By; are linear forms.
A syzygy is trivial when it comes from a trivial relation like BF — FFB = 0.
Now we summarize certain results from [27], culminating with the con-
struction of .#y.
There are (g —2)(g —5) linear isobaric syzygies which are fundamental to

the construction of the moduli space .#%.

Syzygy Lemma (cf. [27] Lemma 2.3 page 199). For each FS(?) different from

F2(2)72+n,1 (n =mng,n1,...,ng_3) there is a linear isobaric syzygy of the form
Xog-oF + bajen X, FY) = 0

where j € {0,1,...,9g—1}, s e N+ N, =1,...,vy, nj+5 =2g—2+s and

n; < 2g — 2 whenever Fs(,?? is different from F2(2)72+n71 (n=mngp,n1,...,M4_3).
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The conditions on the coefficients c;,. of F,; which we are searching are

given by the the following theorem, in particular (b).

Theorem 2.1 (cf. [27] Lemma 2.1, Proposition 2.5 and Theorem 2.6). Let
us assume that the symmetric semigroup satisfies the additional condition?
m+1 < ng <2m —1. Let I be the ideal generated by the %(g —2)(g —3)
quadratic forms Fy;, (s € N+ N,i=1,...,vs). Then the following statements

are equivalent:

a) The quadratic forms Fg cut out a nondegenerate canonical Gorenstein
genus-g curve C' whose ideal I1(C) is equal to I, and P =(0:...:0:1)

1s a nonsingular point of C" whose Weierstrass semigroup is H;

b) The remainders of the %(g— 2)(g—>5) polynomials, induced by the Syzygy
Lemma, Xoy_oFg + > bsijstir Xn,; Foir divided by the Fy; are zero.

We note that canonical curves in P9~! are isomorphic if and only if they
are projectively equivalent. The isomorphisms are induced by linear transfor-
mations of the type X, — Z?;é 2 Xpn, where z;; € k, or equivalently, by a
g %X g matrix (z;;).

Since we fixed a P-hermitian basis of the vector space H°(C,n(2g — 2)P),
the matrix (z;;) is lower triangular, i.e., z;; = 0 whenever ¢ < j. From ¢y, = 1

it follows that z;; = 2" for j = 0,...,g — 1, where 2 is a nonzero constant.

Proposition 2.2 (cf. [27] Proposition 3.1). One can normalize $g(g — 1) co-

efficients cg, to zero.

After this Proposition the only freedom left us is to transform
Csir > 2% "Cgpr, where z belongs to the multiplicative group G,,(k) of the
constant field k.

Stohr’s Construction. The isomorphisms classes of the projective irreducible
pointed Gorenstein curves whose Weierstrass semigroup is H correspond bijec-
tively to the orbits of the equivariant G,,(k)-action (z,csy) v+ 25 "Cgr on the
algebraic set of the vectors of constants cg;, normalized by Proposition 2.2 and

satisfying the polynomial equations of Theorem 2.1 (b).

2This is not a necessary condition and we do it just to simplify the statements, otherwise

we should introduce the exceptional monomials, see [27] Lemma 2.1.



Chapter 3

On the Dimension of .#

3.1 A Formula of Deligne

This section is devoted to recall the upper bound of Deligne’s for the dimension
of A4,. For this purpose we will need some knowledge of theory of deformations
of curves, that we will not develop here. For a complete presentation on
deformation theory we refer to [24] and [25].

Through the Kodaira—Spencer map and relations among three moduli spaces
Deligne generalizes a result by Rim! in the following way.

Let C be a reduced projective algebraic curve and ¢ € C'. Let us write O
for the local ring of C' at ¢ and O for its normalization. Let 6 := dimy O/O the

degree of singularity of C' at g. We denote by D(Q) the module of k-derivations

of O, D(O) that of O and set m; := dimy A,l)(—o)—dimk })(—O)
D(O)N D(0) D(O)N D(O)

Deligne’s Formula (cf. [4], Theorem 2.27). Let E be an irreducible com-
ponent of the semiuniversal deformation of Spec(O). Suppose that the fiber

above the generic point of £ is smooth. Then
dimFE =30 —my . (3.1)

We are interested in a particular case of the above theorem. We shall
make the connection between the semiuniversal deformation of Spec(Q) and

the moduli space .#%. This is done by considering monomial curves.

1See [22], page 268, Thm 2.7.
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By a monomial curve we mean an affine algebraic curve given by a nu-
merical semigroup. In more details, given a numerical semigroup H and
{my,...,m,} aset of generators for H, a parametrization of the affine mono-

mial curve associated to H is:
C={@™,....,t"), tek}.

Let B := By be the subring of the polynomial ring k[t] generated by the
monomials " with h € H, where t is a transcendent over k. The semigroup
algebra B is the coordinate ring of C'.

Observe that on a monomial curve there is a natural G,,(k)-action. For
a more detailed presentation on monomial curves and their deformations we
refer to [3], [21] and [23]. Note that the curve (2.2) is a projectivization of a
monomial curve.

In the remainder of this section we assume H # {0,9+ 1,9 +2,...}. We

will compute the right side of the expression (3.1) when C' is a monomial curve.

Lemma 3.1. Let ‘H be a numerical semigroup of multiplicity m and genus g.
Set B := By then:

1. The integral closure B of B in its total ring of fractions is equal to K|t]
and g = dim B/B;

2. B is smooth over k if and only if H = N. If not, B has an isolated

singularity at 0 and m = e(Byp), where 0 is the mazimal ideal of B
generated by the t", h € H—{0} and e(By) is the multiplicity of the local
TIng.

Proof. The proof is straightforward. ]

If C'is a monomial curve and O is the local ring at its singular point,

then D(O) € D(O) and my = dimy g(g)

rings we can work with the algebra B and its integral closure B = k[t]. We
may see that m; = [D(k[t]) : D(B)], where D(k[t]) = Dery(k[t],k[t]) and
D(B) = Dery(B, B). The module Dery(B, B) is a graded module and the

. Instead of working with the local
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homogeneous part of degree s is described by:

ktstt 2 if s € End(H);
Derk(B,B)S:{ oo ifs € End(H);

0, other wise .

where End(H) = {n e N|n+heH, Vh € H —{0}}. Thus we see that
[D(k[t]) : D(B)] =1+ [N:End(H)] =1+ g — [End(H) : H]
and we are ready to verify:

Lemma 3.2. If C' is a monomial curve associated to a semigroup H. Then
36 —my =2g+ [End(H) : H] — 1.

Now we make the connection between the semiuniversal deformation in
Deligne’s Formula and the moduli space .#%. We denote by .#,, the coarse
moduli space of smooth projective curves of genus g with a base point. For the
precise definition and details about coarse moduli spaces, in particular, about
My, we refer to [11].

Let H be a numerical semigroup of genus g > 1 and fix a minimal system

of generators of H. Let .#3; be the subscheme of .#Z,; defined by:
My = {[C,p] € %g,l‘HC,p = H}

where H¢,, denotes the Weierstrass semigroup of C' at p.

Let us write (S, R) for the semiuniversal deformation? of By,. Pinkham?®
proved that there is an ideal N of R such that by taking R = R/NR and
S" = S/NS, it follows that (S’, R') is an infinitesimal deformation of B and
the set

U = {x € Spec(R')[the fiber above x in S’ is smooth}

is invariant by the G,,(k) action on S’. Using this he proved the following.

Theorem 3.3 (cf. [21] Theorem 13.9). There exists a morphism U — My,
that factors through the quotient U of U by the action of G,,(k), inducing a
bijection between U and .#y,.

2The semiuniversal deformation exists because B = By, has an isolated singularity.
3See [21], chapter I, section 2, for the general case and chapter IV, section 13, for mono-

mials curves.
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By forgetting the condition of smoothness of the generic fiber, Deligne’s
Formula provides dimU < 3g — my, and from Lemma 3.2 and the above

Theorem 3.3 we get
dim Ay < 29+ [End(H) : H] — 2. (3.2)

Definition 3.4. The above upper bound is called Deligne’s upper bound for
the dimension of M.

Remark 3.5. [t is straightforward to verify that H is symmetric if and only
if End(H) = H U {l,}. Thus, if we suppose that H is symmetric, then

dim . < 29— 1. (3.3)

Deligne’s upper bound is sharp. For each monomial curve C, rather, for
each semigroup algebra B = By we consider the first cohomology module
T'(B) = T*(BJk, B) of the cotangent complex. Let n; < --- < n, be a system
of generators of H. We can write B as the quotient of the polynomial ring
P = k[X3,..., X,] by sending X; to t"; denote by Z the kernel of this map.
By the theory of Lichtenbaum and Schlessinger [12] we have:

T'(B) = coker (Derk(P, B) — Homgp <2,3)> :
72
and T1(B) is a graded module. A semigroup H is negatively graded if T'(B),
is zero for every s > 0.

In [23], Rim—Vitulli proved that if H is negatively graded then H is realiz-

able and dim .#% = 2¢g — [End(#) : H] — 2. Also in [23], the semigroups that

are negatively graded are completely listed; [23, Thm 4.7].
There are only two families of symmetric semigroups which are negatively
graded, namely:

{0,9,9+1,...,29g—2,29,29g+1,...} and {0,9 — 1,9+ 1,...,29 —2,29,2g+ 1,...} (3.4)

Thus, if we are concerned with the dimension of .43, when H is symmetric,

then we need not be concerned with the above two families.
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3.2 Description of the method

We are concerned with the dimension of .#%, when H is symmetric. Though
we are out of the range of Eisenbud-Harris Theorem, we can use Stohr’s Con-
struction to obtain information about the dimension of .44, a fortiori about
that of .#3. In this way we proceed as follows.

Let H = {ng,n1,...,n4-1,...} be a numerical semigroup of genus g. We
assume that ¢35 =3, {,_1 > g, {; =29 — 1 and N —H # {1,2,3,6,7,11} i.e.
3<n; <gand H #< 4,5 >. We denote by X the algebraic set formed by the
vectors of constants c,;. normalized according to Proposition 2.2 and satisfying
the polynomial equations induced by Theorem 2.1 (b). From Chapter 2 it
follows:

77-[ - X/Gm(k)

where the G,,(k)-action is defined by (z, cgir) — 25 "¢y

Now we recall some basic terminology on quasi-cones, which are affine
algebraic sets with a G,,(k)-action. For more information we refer to [7].

Let r = (19, ...,m,) be a vector of integer positive numbers whose greatest
common divisor is one. We denote by S, the polynomial algebra k[Ty, ..., T}]
over a field k, graded by the condition weight(7;) = 7.

A polynomial f € S, is called isobaric if all its monomials have the same
weight. An ideal Z of S, is quasi-homogeneous if it is generated by isobaric
polynomials. Any polynomial F' has a unique expression F' = Fj, + ...+ F,,
where each Fj is isobaric of weight 7. As in the homogeneous case, it is simple
to verify that if Z is quasi-homogeneous and F' = Fj + ...+ F, € Z, then each
F; belongs to 7.

The multiplicative group G,, (k) acts on A" = Spec(S,) in the following
way:

(To, ..., Tn) — (2"°Ty, ..., 2" T,), z € G, (k).

A closed subset V' of A" is a quasi-cone if its ideal is quasi-homogeneous.
If V is a quasi-cone, then the action of G,,(k) on V is effective. The point
0=(0,...,0) € A" is the vertez of V. Note that the vertex belongs to the
closure of each orbit of V.

The space P(r) = Proj(S,) is called the weighted projective space of type r.
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If ro =... =7, =1 then P(r) is the usual projective space P". In this way,

My, is a weighted projective algebraic set, where the weight of each ¢, is s —7.

Proposition 3.6. Suppose that V' is a quasi-cone. Then the vertex belongs to

all of its 1rreducible components.

Proof. The basic idea of the proof is that each irreducible component of V' is
also a quasi-cone, because it is invariant with respect the G,,(k)-action on V.

It is similar to the case of cones. O

The algebraic set X is a quasi-cone and the vertex 0 corresponds to the
canonical monomial curve Cy defined in (2.2).
By Proposition 3.6 and since the dimension of an irreducible algebraic set

is its local dimension at any point (cf. [2, Theorem 11.25]), we may see that:

The quasi-cone X is the zero locus of isobaric polynomials, say Hi,..., H,.
Each H; can be taken without linear terms, because we can always eliminate
them. The vertex 0 can be a singular point, see examples in the next two
sections. Thus, the linear approximation of X near 0, which is, the Zariski
tangent space, is somewhat coarse and does not provide refined information
about the local dimension.

An important part of the local intrinsic study at a singular point of an
algebraic set X can be done by applying the global extrinsic theory of the
tangent cone to X at this point.

Let X C AN be an affine algebraic set and p € X. For each f € Z(X), we
denote by f, the Taylor expansion of f around p and f;]”” the leading term
of f,. Here we use the usual degree. The tangent cone to X at p is the affine
algebraic set C,(X) defined by all f7*" for f € Z(X).

The algebra of regular functions of C;,(X) is isomorphic to @2, mj, /m,"*,
where m,, is the maximal ideal in the local ring Ox,. The graded ring
@, mi,/m, T is generated by its first graded part mj,/m,*. The algebra of
regular functions of the Zariski tangent space T,,(X) is @;2, Symm'(m,/m?,).

Therefore the tangent cone can be considered a subvariety of 7,(X).



3.2 Description of the method 21

A very classical result tells us that the local dimension of X at p is the
global dimension of C,(X). For a proof we refer to [13, Theorem 13.9]. In our

particular case we get:
dim Ay =dimX — 1 =dimCo(X) — 1. (3.6)

As regard to tangent cone computations, F. Mora [14] presents an algorithm
to compute the equations of the tangent cone of any variety. The algorithm
computes a standard basis of a given ideal. It is a variant of the Buchberger
algorithm to compute Grobner basis with suitable modifications. The com-
plexity of the algorithm is unknown, but in certain cases it has the same
complexity as Buchberger’s.

Since X is the zero locus of Hy, ..., Hy, it follows that Z(X) = \/(H;, ..., H}),

and asking for the dimension, we could say that:
dim X = dim Co(X) < dim V ((H™™, ..., H™™)). (3.7)

Here we will make a suitable simplification. We will consider a very simple
algebraic set instead of V(H" ... H™"). So we introduce the following
quadratic forms:

i

H(Z)— H;nin ,lf degH;nm:2,
0 , otherwise.

Then:
dim X < dim V ((HP™, .. Hp®)) < dimV ((H7,. BP)). (38)

We will see in numerical examples in the next section and also with families
of semigroups in Chapter 4, that this simplification allows for a tremendous

simplification of computations.

Notation 3.7. We denote by Qu the quasi-cone defined by the zero locus of

all quadratic forms HZ.(Q).

Note that Qg is given by isobaric quadratic forms, i.e, isobaric and ho-
mogeneous polynomials of degree two. Moreover, Q3 contains the quadratic
approximation of X', which is the zero locus of all quadratic forms that vanish
on X, which contains the tangent cone.

If we put together the three previous formulas (3.5), (3.6) and (3.8) we get:
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Theorem 3.8. Let H be a symmetric semigroup of genus g > 4 such that
3<n <gandH#<4,5>. Then

dim .4y < dim Qy — 1. (3.9)

So we also have the same upper bound for the dimension of the moduli
space My, i.e., dim Ay < dim Qy — 1.

Now, we describe how to obtain Qy without constructing the moduli space

My

As in Chapter 2, we fix a symmetric semigroup H of genus ¢ such that
3<m<gand H #<4,5>.

We fix a Hermitian basis of the vector space H°(Cy,n(2g — 2)P) formed
by monomials, as in (2.3) and (2.4). We denote by I, the vector space in
k[Xo, ..., X,_1] generated by the lifting of this basis, and I' = @I,.

Let N be the set of first ¢ nongaps and we take the quadratic forms

Fyi=Xu0, X, — X0, Xp, =Y cirXo, Xy, (sEN+N, i=1,...,1,)
r<s
where the coefficients belongs to k, r ranges over the elements of N+ /N smaller
than s, the integers ag, bs, as; and by; are defined by s = a5 + by = as + bs =
... = Qgy, + bsy, With ag, bs; nongaps satisfying as < ag < ... < ag,, and v; is
maximal. Also we consider the quadratic forms that generate the ideal of the

canonical monomial curve Cj
FO'=X, X, — X, X, (s€e N+N,i=1,...,v,).

To apply the division algorithm we equip the additive semigroup NY of the
exponents of the monomials in X, ..., X,,_, with the following total ordering:

(Joy - -+ Jg—1) = (d0,...,i4-1) if and only if the first nonzero entry of the vector

g—1 g—1
(ij — U, an(jk — 1), 00 — Jo,Gg—1 — Jg—1s-- -, 01 — j1> (3.10)
k=0 =0

is positive.
The first entry of the previous vector tells us about the total degree, the
second entry tells us about the weight and the others about the partial degrees.

Note that the monomials of the forms F}; appear in decreasing order.
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From Proposition 2.2 we normalize to zero % g(g — 1) coefficients cy;,. of the
the quadratic forms F;.
We take the syzygies given by the Syzygy Lemma. Thus for each F 5(? )

different from Féglzm’l (n =ng,n1,...,ny_3) we have
XQg 2F(O) + stzjs’z’X F 0) =0

where j € {0,1,...,9—1}, s e N+ N, =1,...,vy,n;+5 =29g—2+s and
n; < 2g—2 whenever FSF,OZ? is different from FQ(S)_QJW1 with n = ng,n1,...,ng_3.

We consider the quadratic forms:
Xog_oFyi + Z bsijstir Xn,; Forir - (3.11)

Let us take the homomorphism k[X,,,,..., X

ng_1] — k[t] induced by X, > "
(i=0,...,9 —1). For each quadratic form in (3.11) we take its image. Then
we ask for the linear conditions on the constants cg, that make this image
identically zero. We have the linearizations of all the quadratic forms (3.11).

The weight of cg;,. is defined by s — r. Thus, for each weight we solve a
linear system, writing certain coefficients as a linear combination of other of
the same weight. If we take the k-algebra k|cy;,| given by the linearizations,
then Spec(k|cg;,|) is the ambient space where the algebraic set X and Qy are.
In fact, the vector space generated by the linearizations is in bijection with
T~ (By); see [27], page 212.

We are only interested in the quadratic relations of the linearizations. Then

we take a form induced by the Syzygy Lemma, say:
Ssi = X29—2Fsi+z bsijs’i’anFs’i’ = X2g 2 Fsz F +Z bszjs z’X s i F )

We will work with increasing weights on the coefficients cg;.. Starting with
weight one, we take a monomial of Sy; whose weight is s — 1. It is equivalent
to say that its coefficient has weight one. If this monomial belongs to the basis
of I's we do not have any division to do. Otherwise there is a form F,; whose
initial form divides this monomial, we take the form with the largest exponent.

We do it for each monomial whose weight is s — 1. We set

S;z = Ty (Ssz — ZOJST),JF )
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where the coefficients a;,; depend on certain coefficients cg;, such that s —r =
1, and 79 is the projection map on the polynomials in cg;,- that annihilates the
terms of degree bigger than 2. Then we work with SS ) instead of S and apply
the same procedure successively for increasing weights. We do this for all Sj;,

at the end we will have polynomials S i;vSi), where wy; is the weight of S.;.

Remark 3.9. The quasi-cone Qy s set of the vectors of constants cg, nor-

malized by Proposition 2.2 and satisfying the polynomial equations Si;u‘”) = 0.

3.3 Numerical Examples

In this section we apply our method to four symmetric semigroups, two in
genus eight and two more in genus nine. Although the moduli space .44 can
be constructed, we show that our method works very well when compared
with Deligne’s bound (2¢g — 1), with the expected dimension by Eisenbud—
Harris (39 —2 —w(H)), or even with the exact dimension of the moduli space,
when we know it.

Even for the computer these examples can be heavy. We used the Maple
software to compute the isobaric equations of X and Oy, following their con-

structions presented in this thesis above.

3.3.1 Two examples in genus 8
Let us consider the symmetric semigroup of genus 8
Hy,:={0,6,8,10,11,12,13,14,16,17,18,... }.

The canonical system of generators for H; is {0,6,8,10,11,12,13,14}, the
sequence of gaps is 1,2,3,4,5,7,9,15 and the Cy curve is:

Co = {(u : u®0® 1 uf0® o' ot w0 wn®® o) | (u:t) € P}

We fix the P-hermitian basis {xg, z¢, Ts, T10, T11, T12, T13, 14}  Of
H°(Cy,14P), where P = (0 : ... : 0 : 1) € P” and the order of pole of

each z; is 1.
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We draw a table of the sums n; + n;, where 0 < ¢ < j < g — 1. For each
sum n; +n; there is a meromorphic function, namely ,,z,;, on Cy whose pole

order at P is exactly n; + n; and does not have other poles.

0+0 0+6 0+8 0+10 | 0411 0+12 | 0+13

6+4-6
0+14 | 6+10 | 6+11 | 6+12 | 6+13 | 6+14 | 8+13
6+8 8+8 8+10 | 8+11 8+12 10+11
10+10

8+14 10+13 | 10+14 | 11414 | 12414 | 13+14 | 14414
10+12 | 11+12 | 11413 | 12+13 | 13413
11+11 12412

The P-hermitian basis for H%(Cy, 28 P) is given by the functions

2
To~, ToTe, Toxsg, Tox1io, LoLil, LoTi2, LoT13, Lox14,
TeT10, TeL11, TeL12, TeX13, TeL14,
Tgx13, TgTl14, T10T13,
2
1014, L1114, L1214, L1314, T14" -
These functions are precisely the x,,z,, where n; + n; appears on top of the

entry that corresponds to the order of pole n; + n;.
The P-hermitian basis for H%(Cp,42P) is:

2 .
T5Tn,, (1=0,...,7)
TeL10T13,

T0Ta, To,, Ta,Tp,T14 (8 =16,...,28)

with each as + bs on the top of each entry of the previous table.
Using the table we see the generators of the ideal of Cj and the fifteen
quadratic forms F; ;. Though write lony two quadratic forms, it is very simple

to write the others using the table:

L 2
F12,1 = X" — Xo X2 — C12,1,11X0X11 - 01271,10X0X10 - 012,1,8X0X8 -

2.
—012,1,6X0X6 - C12,1,0X0 )

o 2 2
Fooo = X10" — X Xia — 202,19 X6X13 — C20,2,18X6X12 — ... — C20,2,0X0" -
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From Proposition 2.2 we can normalize to zero 28 coefficients of the quadratic
forms F§ ;. Thus, all the coefficients of Fio; and Fi4; are normalized to zero.

To see this we just take the following change of variables:

Xig— Xy — 012,1,11X11 .. 012,1,0X0 ;

Xy — Xy — C14,1,13X13 — ... 014,1,0X0 .

And then, we ask for all Ilinear transformations of the type

X, — Zn4<n- a,.X,. that maintain the normalizations Fj1 = X2 — XoX12
K j i J J ’

and Fiy1 = X6 Xg — XoXi4. In this way we can normalize 16 more coefficients

as follows:

e from F16,13 C16,1,14 = C16,1,12 = C16,1,10 = C16,1,8 = C16,1,6 — 0;

o from Figq: ci81,16 = 0;

o from F19,13 C19,1,18 = C19,1,17 = C19,1,16 = C19,1,14 = C19,1,12 = C19,18 —

c19,1,6 = 0;
e from F22,23 C22221 = C22219 = C22217 — 0.

Now we write the nine cubic forms induced by the Syzygy Lemma.

S = XuFiag — XioFia1 + XeFha
Sy = X14Fie1 — X10Foo1 + XsFoo
Sy = XuuFis1 — X12Fo01 + XsFoyo
Sy = XyuFi91 — Xi3Fo1 + XsFosa
Ss = X4l — XiaFo1 — XioFoeq + XioFha2
Se = XuaFo11 — X13Foo1 + X10Fos1
Sz = XuFao — X14Foo1 — X12Fou1 + X11Fosa
Ss := XyaFoz1 — X13Fou1 + X11F% 1
So := XiaFoyo — X1aFog1 — XioFoe1 + X13Fos1

For each S; we solve the equation S;(t°,¢5 8 ¢19 ¢ ¢12 413 #14) = (. This
means that we solve 26 linear systems, choosing the coefficients cg;,. that we
want to deal with.

One can solve these linear systems in a way that the coefficients cy;,. of the

solutions depend on the following 18 coefficients:
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C16,1,13 , C16,1,11 »
C18,1,17 » C18,1,14 ; C181,12 , C18,1,11 ; C181,10 » C18,1,8 ; C18,1,6 5
€19,1,10 »

C222920 , €22218 , C22216 , 22214 , C22212 , C22210 , C2228 , C2226-

We already know that the equations of Qy,, and also the equations of the
quasi-cone X, involve these 18 coefficients, so Qy,, X C A'®. We also deduce
that dim TV (By, ) = 18.

Now we will apply the division algorithm to obtain the equations that will
define Q3. We have to organize our divisions. We organize them by increasing
weights on the cy;,, for each form S; and for each weight, starting with 1, we
take the monomial of .S; that corresponds to this weight and divide by one or
more Fj;, if necessary, to obtain a monomial that belongs to the base I's.

We just deal with the first three cubic forms 57, S5 and S3, and we do not
explore completely S3. We want to illustrate the method, how to construct
Qy;, and then compute its dimension.

e Starting with S;: We already have that Fiy; = X2 — X X5 and
Fiy1 = XX — XoXi4. Thus, need not do any division, getting

Sl =0 and so FQOJ = X8X12 — X6X14.

e Sy: From S; = 0 we have Fyy; = XgXi9 — XgX14. We readily see that
all monomials of Xi4(Fig1 — ng’}l) belong to I's. So we need take care of the
monomials of Xg(Foe 1 — FQ(g)l) We need not take care of the monomials whose
coefficients have weights one on two. Since they are the only ones with this
weight, it follows that the coefficients cg9121 and 2190 Will be zero. In fact,

we need only deal with weights 3, 5 and 16. Thus
Sy + (221,10 X13 + Cca2.1.17X11 + €2216X0)Fra1 =0
which implies, respecting the linearization,

Fy 1 = Xq0X12 — XgXia + c16,1,13X6X13 + 161,11 X6 X11 + C16,1,0X0X6-

o S3: We already know that Fyy; = F2(87)1, thus

Sy = X1a(Fisq — F1(§,)1) + Xs(Faa2 — F2(2,)2)'
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weight 1: The monomial c¢;g17X14X6X11 belongs to I's, whence
Sél) = S3 + co4223(X13F181 + X6 Fos1) -

Here we needed to divide twice. With a simple division it is not possible

that the remainder, in weight one, belong to I's.

weight 2: We work with Sél) instead of S3. The monomials that not belong

to Fg are precisely —02472’2301871717X13X6X11, and —62472’22X82X14. Thus
S =y (S + XoFor1 + X4 F
3 = T3(9O3 C24,2,23C18,1,17<%464724,1 T €242 224141716,1
and we can write:
(2) _ o) (0)
537 =537 + 242.23¢18117 X6 oy 1 + Coa2220X14F 161 -

Here we see the simplification. Now we work with S:gZ), and continue

with this procedure which ends when we reach the weight 30.

Exploring all the syzygies, we have that Qy, is the intersection of five quadrics

in A'® given by the zeros of the isobaric quadratic polynomials:

€16,1,11C18,1,8 — C16,1,13C18,1,6 T+ 2018,1,11018,1710 )
€16,1,13C22,2,8 T €16,1,11€22,2,10 — 2019,1,10018,1,10 )
€18,1,11C22,2,10 1 €19,1,10C18,1,8 — €16,1,13C22,2,6
C18,1,11C22,2.8 — C16,1,11C22,2,6 + €19,1,10C18,1,6 »

€18,1,6C22,2,10 + C18,1,8C22,2,8 — 2018,1,10022,2,6-

Now computations using the Maple software show that dim Q4, = 15, and so
dim ./, < dim Qy, — 1 = 14.

On the other hand, Deligne’s upper bound gives dim .44, < 2g — 1 = 15.
The weight of H; is w(H;) = 10, whence 3g — 2 — w(H;1) = 12. One can verify
that the dimension of .45, is 14. This symmetric semigroup is realizable; see
in [18] the family of symmetric semigroups Nj.

By using the Maple software, we see that the moduli variety ./, is given

by 38 isobaric equations and the number of terms on each equation is at least
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15, so we have at least 570 terms to deal. My computer* takes 14.19 seconds
and uses 7.31 Mb of RAM memory to produce all 38 isobaric equations. With
the same computer and applying the above method, the five equations of Qy
take 3.48 seconds and use 5.68 Mb of RAM.

For the second example, set
Ho ={0,7,9,10,11,12,13,14,16,17,18, ... }.

This symmetric semigroup is negatively graded, it is of the type {0, — 1,9 +
1,...,29g —2,2g + 1,...} with ¢ = 8 Then we already know which it is
realizable and dim .#%, = 2g — 1 = 15. The weight of H is w(Hz) = 8, thus
the Eisenbud—-Harris lower bound gives 3g — 2 —w(Hy) = 14. We will compute
the upper bound for .#, given by Qy.

The canonical system of generators for H, is {0,7,9,10,11,12,13,14} and
then we draw the table of all n; +n; (0 <i<j <7)

0+0 0+7 0+9 0+10 | 0411 | 0+12 | 0+13
0+14 | 749 74+10 | 7T+11 T+12 | T+13 | T+14
T+7 9+9 9+10 | 9+11 | 9+12
10+10 | 10411
9+13 | 9+14 | 10+14 | 11414 | 12414 | 13+14 | 14+14
10+12 | 10+13 | 11413 | 12+13 | 13+13
11+11 | 11+12 | 12412

We fix the P-hermitian basis {zg,z7, X9, T10, 11, T12, 13, T14} Of
HY(Cy,14P), where P = (0 : ... : 0 : 1) € P". The basis for the vector
space HY(Cy, 28P) is:

ToZo, Lox7, ToXy, LoL10, LoL11, LoL12, LoL13, LoL14,
T7ly, 710, T7Tx11, T7X12, T7X13, X7L14, T9X13,

T9T14, L10T14, L11T14, T12T14, T13T14, L1414
and the P-hermitian basis for H°(Cp, 42P) is
20 (=09 1)
xoxnja J=Y...,9

T7T9T13,

0T, Tp,, Ta,Tp,T14 (s =16,...,28)

4My computer is a AMD Athlon X2 dual Core, with 2 Gb RAM
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with each as + bs on top of each entry of the above table.

Thus, we have 15 quadratic forms F;; given by the above table. Again,
by Proposition 2.2, we can normalize to zero 28 coefficients of the quadratic

forms Fj;, so we get:
V2 .
o My = X7 — XX
e On F18,13 C18,1,17 = C18,1,16 — 0;

e On F19,13 C19,1,18 = C19,1,17 = C19,1,16 = C19,1,14 = C19,1,9 = C19,1,7 = 0;

e On F20,13 C20,1,19 = €20,1,18 = C20,1,17 = C20,1,16 = €20,1,14 = €20,1,13 =

C20,1,11 = C20,1,9 = C20,1,7 — 0;

e On F20,21 C20,2,19 = €20,2,18 = €20,2,17 = €20,2,16 = 0.

The nine cubic forms induced by the Syzygy Lemma are:

S1i= XulFigr — XuFoig + Xolbs o

So 1= X1 Fi91 — X12Fo1 0 + X1oFa32

Sy = X14F1 — X13Fo11 + XoFos1

Sy = X14F52 — X13Fo10 + X10Fb41

S5 = XiaFo o — XiaFo11 — XioFoz + Xiolos
Se = X14Fp1 — X13Fo31 + X10Fhe1

Sz = X14Fo 0 — Xi3Fs30 + X11Fo51

Sg 1= XqaFhg o — X14Fo31 — XusFosn + X11Fo1
Sg 1= X14Fo42 — X1aFoa1 — XuzFos1 + Xi2Fa6 1

From the previous nine cubic forms we deduce that dim 7T~ (H,) = 23 and

T~ (Hs) is isomorphic to the vector space generated by:

C18,1,14, €C18,1,13, €18,1,12, C18,1,10;, C18,1,9, C18,1,7
€19,1,12; C19,1,11, €19,1,10;

€20,1,10,

C20,2,14, €20,2,12; €20,2,10, €20,2,9, €20,2,7,

C21,1,20, €21,1,19, €21,1,18, C21,1,17, C21,1,16, C21,1,14, C21,1,9, C21,1,7-
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The quasi-cone Qy, is in A? and is given by 14 quadratic forms. To symplify

displaying then, we make a simple change of variables:
Ci8,1,i F @18—is C19,1,i = bio—i, €014+ Coo—iy €202 F doo—i,  Co114 F €21—;-
Thus the 14 quadratic forms that define Qy, are:

asdyy + asds — b3 + digag — 2b7bg + brag
agag + brcig — bgag — erzas — 2agbg — diyag + bsby
age1z — bsdig — aghg — dscig + bscig + 205 + brdyy
bray — aghy — asdyz — asdig + brdiy + age1r — bscio + ascio + b,
agdyy — bgdyy + aseiy + agcro — bgcro — bgany ,
dizag — dgair — bgcro — breia + 2bgdyy + bgain — agdyy — dgdy
ase1z + 2d11bg — agdyy + 2bgary — agayy — agers + iy
ageiz + crodip — di1bg — bgera
boe1a — dizbg — ciod11 + brens,
dipar1 + diodi1 + boerz + agdyz — disbs,
dirayy + cioe12 + agers — bgers + diy
dge1y — bgery — 2bgdiz — cipe12 — dfl + agdy3 + dipeis,
dire1p — crodiz + bgery + agrers,
€1y + di1dis — dipers -
Then, we verify using Maple that dim Qy, = 16 and so dim .4, < 15 =
dim A3y, .
By computations using Maple, we may see that the moduli variety .43, is
given by 81 isobaric equations. My computer takes approximately 1 hour and
28 minutes and uses 87,92 Mb of RAM memory to produce them. With the

same computer and applying the above method the fourteen equations of Oy
take 8.30 seconds and use 5.99 Mb of RAM.

3.3.2 Two examples in genus 9
Let us consider the symmetric semigroup
s = {0,6,8,10,12,13, 14, 15, 16, 18, 19,20, ...} .

The canonical system of generators is {0,6,8,10,12,13,14,15,16}. We draw
the table of all n; +n; (0 <7< j <8).
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0+0 0+6 0+8 0+10 | 0+12 | 0+13 | O+14 | O+15
6+6 6+8

0+16 | 6+12 | 6+13 | 6+14 | 6+15 | 6+16 | 8+15 | 8416

6+10 | 8+10 8+12 | 8+13 | 8+14 | 10+13 | 10+14
8+8 10+10 10+12 12+12
10+15 | 10416 | 12+15 | 12416 | 13416 | 14416 | 15+16 | 16+16
12413 | 12+14 | 13414 | 13415 | 14415 | 15415
13413 14+14

We fix the P-hermitian basis {xg, ¢, Ts, T10, T12, 13, T14, T15, T16} Of
H°(Cy,16P), where P = (0 : ... : 0 : 1) € P% The basis for the vector
space H°(Cy,32P) is

ToZo, LoLe, - - -, LoL16,
TeT12, TeL13, LeL14, L6L15, L6L16,
XTgl15, TgT16, L10L15, L10L16, L12T15, L1216,

T13%16, L14T16, L15T16, L16L16
and the basis for H°(Cj, 48P) is

Tin, (J=0,...,9—1)

TeL12T15,

0T, Tp,, Ta,Tp,T1s (s =18,...,32)
with each as + by on top of each entry of the previous table.

We have 21 quadratic forms Fj; and, by Proposition 2.2, we can normalize

to zero 36 coefficients. Thus we can make the following normalizations:
o Fion = X§ — XoXuo;
o Flyy = XeXg — XoXu4;
o Fig1 = XeXi0 — XoXi6;
e in F16,23 C16,2,14 = 0;

e In F21,13 C21,1,20 = C21,1,19 = C21,1,18 = C21,1,16 — C21,1,15 — C21,1,14 =

C21,1,13 = C21,1,12 = C21,1,8 = C21,1,7 = 0;
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¢ 11 F26,22 C26,2,25 — (26,224 — (26,223 — (26,222 — 262,21 = (262,19 =

262,16 = 0.
The fourteen cubic forms induced by the Syzygy Lemma are:

S = Xi6F121 + Xelho — X125

Sy 1= XieFia1 + XsFoo1 — X14Fi62

Ss = X16F162 — X16F161 — X10Fo21 + XsFoua
Sy = Xi6F181 — X19F0 + X19Fos0

S5 := Xi16F0.1 + X12Fou1 — X1aFoao

Se 1= Xi6F20,2 + X10F6,1 — X1aF2 0

S7 1= XigFo11 — XisFo 1 + XsgFog

Sg = XieFno — XigFo21 — XiaFoso + Xi2Fhs 1
S := X16Fa31 — X15Foa1 + X10F291

S10 = Xi16Foa2 — X16Foa1 — X1aFos1 + Xi2Fog o
Si1 = X1 — XisFas1 + XiaFog o

Sig = X16Fss2 — X16Fo61 — X1aFos1 + X13Fo1
Sig = Xi6For1 — XisFasa + XisFs01

S1a = Xi6Fas 2 + XqaF301 — XisFag1 — XieFhsa

By considering the linearization, we deduce that the vector space T~ (By)

has dimension 19 and depends on:

C16,2,15, C16,2,13, C16,2,12, C16,2,8, C16,2,65
C18,1,165 C18,1,14, €18,1,13, C18,1,12;, C18,1,8, C18,1,65
C€21,1,10,

€26,2,20; €26,2,18, €26,2,14; €26,2,12, €262,10, €26,2,8; €26,2,6-

For typographical reasons we make the following chance of variables:
Ci6,1,i M Q16—is €182 F bis—iy Co114 F> Co1—iy €262 F dog—i-

Exploring all the fourteen cubic forms S; the quasi-cone Qy, is in A and

induced by the following five isobaric quadratic polynomials:

bipas — arbi2 + agaip — bsas ,

asgciy + asdig + ardssg,
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bsdis + aiocin + biocin — aidsg ,
bsdig — c11b12 + asdy ,

a1odig + biadig + biodis + agdyg .

Using Maple it follows that dim Qz, = 16 and so dim///—;q3 < 15.

Deligne’s bound gives 2g —1 = 17. The weight of Hj is equal to 14, whence
the Eisenbud-OHarris lower bound is 3g — 2 — w(#H3) = 11.

Using Maple, we may see that the moduli variety .45, is given by 99
isobaric equations and my computer takes approximately 48 minutes and 28
seconds and uses 66.11 Mb of RAM memory to compute them. The number
of terms of the biggest equation is 44940. With the same computer, the five
equations of Q4 take 9.95 seconds, and employing 5.87 Mb of RAM.

For the last numerical example let us take the symmetric semigroup
H, :={0,6,9,10,12,13,14, 15,16, 18,19, 20, .. .}.

The canonical system of generators of H, is {0,6,9,10,12,13,14,15,16}. The
table of all n; +n; (0 <i<j<8)is:

0+0 0+6 0+9 0+10 | 0+12 | 0+13 | O+14 | O+15
6+6 6+9
0+16 | 6412 | 6+13 | 6+14 | 6+15 | 6+16 | 9414 | 9+15
6+10 | 949 9+10 | 10410 | 9+12 | 9413 10+13 | 10414
10+12 12+12
9416 12414 | 12+15 | 12416 | 13+16 | 14416 | 15416 | 16+16
10+15 | 10416 | 13+14 | 13415 | 14+15 | 15415
12+13 | 13413 14+14

We fix the P-hermitian basis {zo, zs, 9, T10, T12, T13, T14, T15, T16} Of
HY(Cy,16P), where P = (0 : ... : 0 : 1) € P® The basis of the vector
space H°(Cy, 32P) is

ToZo, LoLe, - - -, LoL16,
Tel12, Tel13, Lel14, Lel15, LeL16,
T9T14, 915, T9T16, L12L14, T12X15, L1216,

13216, L£14T16, L15L16, L16L16
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and the basis of HY(Cy, 48P) is

2 .
T, (1=0,...,9—1)
TeL12215,

T0Ta, To,, Ta,Tp,T1e (S =18,...,32)
with each as + bs on top of each entry of the previous table.

The normalizations are:

° F12,1 = X62 — Xo X2

° F15,1 = X6Xg — XoX15;

o [g1 = XeXi0 — XoXig;

L F19,1 = Xo X9 — XeXi3 — 019,1,14X0X14 - 019,1,10X0X10 - 019,1,0X§;
o in Figi: cig1,15 = Cig19 = 0;

e In on,li C20,1,19 = €20,1,18 = €20,1,16 = €20,1,15 = €20,1,12 = €20,1,6 — 0;

in Foy1: Caan23 = Coa120 = 0.
The fourteen cubic forms induced by the Syzygy Lemma are:

S = X621 — X12F161 + Xe oo

Sy := X16F151 — Xi5Fi61 + XeFasa

S3 1= X16F181 — XiaFo21 + XoFs

Sy = Xi16F101 — X13Foo1 + XoFiso

Sy = X16F201 — X14Fo22 + X10F261

Se 1= XieFo11 — XisFao1 + XoFhs

S7 = X622 — XieFa21 — Xi3Fas1 + XioFas
Ss = Xi6Fp31 — X14Fo51 + X10Fh91

Sy 1= XieFoa1 — XisFos1 + Xi0F501

Sio = XiglFoa2 — XisFoso + Xi2Fos

S = Xi6Foso — Xi6Fos1 — XisFasq + X1aFbo1
Sy 1= Xi6Fo62 — Xi6Fos,1 — XiaFog 1 + XisFag s
Sig = Xi6For1 — XusFasa + XisFs01

35
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Sia = XigFas o — XieFog1 — XisFag 1 + XiaFs01

By considering the linearization we deduce that the vector space T~ (By) has

dimension equal to 19 and depends on:

C18,1,16, C18,1,14, €C18,1,13, C18,1,12, C18,1,10, €18,1,6;
€20,1,13; €20,1,10, €20,1,9, €201,
C24,122, €24,1,21, €241,19, C24,1,18, €24,1,16, €C24,1,15,

C24,1,12, C24,1,10, €2419, C24,16

We make the following change of variables:
C18,1i F Qig—i, €201, = bao—i, Coa1i > Coai.

Thus, exploring all the fourteen cubic forms we have that Qy, is in A and

given by the following five isobaric quadratic polynomials:

asbio + asbiy + bras,

bra1a — asciq — ci5a4,
Cc14a8 + ascig + bipasz,
agcis — asCig + a2y,

c14b11 — brcig — biocas

Then we may see, using Maple software, that dim Qy, = 16, and so dim///—;.[4 <
15.

Deligne’s upper bound gives us 2g — 1 = 17. The weight of H, is equal to
13, hence Eisenbud-Harris lower bound is 12. The dimension of the moduli
space ///—?.[4 can be computed: 15.

By using the Maple software, we verify that the moduli variety .43, is
given by 82 isobaric equations. My computer takes approximately 14 seconds
and uses 6,06 Mb of RAM memory to compute them. The number of terms
of the biggst equation is 325. With the same computer, the five equations of
Q4 takes 8.31 seconds and uses 5.68 Mb of RAM.



Chapter 4

Working Explicitly with

Families of Semigroups

Many studies involving Weierstrass points have been done by investigating
families of semigroups; see for example [1], [5], [6], [10], [18]. We will illustrate
that our method works very satisfactorily with two one-parameter families of
symmetric semigroups.

By considering the Apéry sequence, a symmetric semigroup H of multi-
plicity m can be generated by m — 1 elements as follows. Set ay = 0. If
ap < ... < a; have been chosen and ¢ < m — 1, let a;,; be the least integer
in ‘H having m-residue distinct from those of aq, ..., a;. Since H is symmet-
ric, it follows that a,,—1 = l; +m = 29 — 1 +m. Then H is generated by
m,ai ..., a2, H=_]a; + mN. Rim—Vitulli considered in [23] the system of
m generators, m,ay, ..., 0,2, and they called it a standard basis for H. By
contrast, Stohr taked into account in [27] the canonical system of generators
for H, namely ng,...,ng_1.

We deal with two families of symmetric semigroups where the genus is larger
than 6 and depends linearly on the parameter of the family. The first family
consists of semigroups of multiplicity five, namely H =< 5,2 + 57,3 + 57,4 +
57 >, and the corresponding moduli varieties are described by linear equations;
see Corollary 4.4. We can construct the moduli space explicitly and compute

its dimension. The second family consists of semigroups of multiplicity six,
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namely H =< 6,2 + 67,3 + 67,4 + 67,5 + 67 >; so the theorems in [16]
and [30] can not be applied. We construct explicitly Oz and we are able
to compute its dimension. We obtain the upper bound 87 + 5, improving the
upper bound given by Deligne’s Formula which is 127+ 1. For the two families

the Eisenbud-Harris lower bound becomes negative for large genus.

4.1 A family with multiplicity five

Let us consider the one-parameter family of symmetric semigroups with mul-

tiplicity m = 5 given by:
H=<52+571,3+57,4+57 >, with 7> 1. (4.1)

The genus of H is g = 1 + 57 and the canonical system of generators is

0,5,...,107,24+57,...,2+ 527 — 1),

34+57,...,34+5(2r —1),4457,...,44+ 527 —1).
Suppose that C'is an integral projective Gorenstein curve of arithmetical genus
g and P € (' is a nonsingular point such that the Weierstrass semigroup
of (C,P) is H. By the definition of Weierstrass semigroup, for each n €
{5,2+ 57,3+ 57,4+ 57} there is a meromorphic function x, € H°(C,107 P)
whose pole order at P is exactly n and does not have other poles. We introduce

the following notations for typographical reasons:
T=Ts, Y= Tivsr (1=2,3,4).

More generally, for each n € H there is a meromorphic function z,, whose pole
order at P is exactly n and does not have other poles. We can normalize them
in a way that zo = 1, .5 = x57, and Tgr10r = YoUs-

The divisor 10 7P is canonical and since /5 = 2, i.e. H is nonhyperelliptic,

we can identify C' with its image under the canonical embedding
(o :...:210.) : C = P,
Thus, we can assume that C' is a canonical curve in P°7 of arithmetical genus
gand P=(0:...:0:1).
Searching for a monomial basis of the vector space H°(C,10n7P) with

n > 1 we obtain the following:
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Proposition 4.1. The following functions form a P-hermitian basis for
H°(C,10n1P), withn > 1.

lx,..., 2%
. H°(C,107P)
yhxyi?"'?lﬂ— Yi
o2t H°(C,207P)
Ty, ., 3Ty
2T7—-2 0
Y2Ya, TY2Yds - - -5 T "Y2Ys | H°(C,10nTP)
:L.4‘r+17 o 7CCZTLT
$3Tyi7 o 7x‘r(2nfl)flyi
e VY TR i e VAN |
for i =2,3,4.
2nt

Proof. The pole orders at P of the functions 1,x,...,2°"" are congruous to

0 modulo 5 and range from 0 to 10n 7. The pole orders at P of the func-

2n=1)=1y. are congruous to 2,3 and 4 and range from 2 + 57 to

$7(2n72)7

tions v, - . . a7

2
Y2Ya
are congruous to 1 modulo 5 and range from 6 + 57 to —4 + 10n 7. These

10n 7 — 1. And the pole orders at P of the functions yoyy, ...,

functions belong to H°(C,10n 1) and are linearly independent because their
pole orders at P are pairwise different. Their number is 10n 7 — 57. From the
Riemann-Roch theorem it follows that dim H°(C,10n7P) =10n7 —57. [

The curve C is nontrigonal and not isomorphic to a plane quintic (see [17]).
So, by Petri’s analysis, the ideal of C' is generated by quadratic relations. In
particular, we can ask for quadratic relations between the functions ys, y3 and
y4. Note that the five functions y2, yoys, y2, ysya, y5 belong to H°(C,207P)
and are not basis elements. Thus we can write each one of them as a linear
combination of the basis elements of Proposition 4.1.

We denote, provisonally, the basis elements of H°(C,107P) by z,, .,
where s is the pole order at P. Then, for each one of the five quadratic
functions in H(C,207P), namely y2, yoy3, y2, ysys, Y3, there are constants

Citjk € k such that

Yiy; = E CitjklasTh, ,
0<s<i4+j+107
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where k+ s =i+ j + 107. After eventually multiplying the functions z,, by
suitable constants, we may assume that c¢;;0 = 1.
Thus in the polynomial k-algebra k[X, Y3, Y3, Y,] we consider the following

five polynomials given by the lifting of our functions v;y; — > CitjxTa,Tp,:

Fy =Y - X"Y,— Fr =YYy — X™HY, — ¢7,1Y5Y)
—C41 X Y3 — ... —Ca145:Y3 —Cr o X — = Crai502011)
—C42 X Yy — ... — Ca245: Y0 —Cr3 XYy — .. —Cr345:Y)
—cya X% — .= Caat107 —C7aXTY3 — ... — Craq5:Y3
—Cys X7 Yy — . — a5 Y —Crs XYy — .. — Cr5i5. Yo

Fy =YoY; — X*H Fy=Y7 — X"MY; — VoY —
=51 XYy — .. —C5145: Y] —cs 1 XTYo — . = cg1g5(r4) Yo
—C52X"Y3 — ... — C5245:Y3 —cg 3 X — L — s 3452r41)
—c53X7Yy — ... — Cs345: Y0 —Cgu X Yy — ... — CRay5: Yy
—c55 X% — ... — Cs5410r —gs X Y3 — ... — C3515: Y3

Fo =Y —Y,Y,—

—Ce1 X — L = Ceet10r

—C2X Yy — ... — Co245: Y

—C63X7Y3 — ... — Ce345r Y3

—Ca XYy — ... — CouysrYo

Now we invert the above considerations. We consider the polynomial ring
k[X, Y5, Y3, Yy] where the weight of X is 5 and that of Y; is i + 57 (i = 2, 3,4).
We take the five polynomials F for s = 4,5,6,7, 8, displayed above, where the
coefficients ¢, belong to k.

We ask for the conditions on the coefficients ¢, j for the polynomials F to be
induced by a Gorenstein curve of arithmetic genus ¢ such that the Weierstrass
semigroup of (C, P) is H, where P=(0:...:0:1).

We also introduce the following five polynomials:

F4(0):Y22—XTY4, F5(0):Y2YB_X2T+17 Féo):Yf—Yﬁﬁ,

4.2
F7(0) =Yy, — XT+1}/2’ Féo) _ Y;E _ XTJFIY}). ( )

Note that the zero locus, say Dy, of our five isobaric polynomials FS(O) is a
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monomial curve on A? whose ring of regular functions is the semigroup algebra
By = ®nenkt”. The curve Dy can be obtained by projecting in A* the affine
curve given by the canonical monomial curve Cy on the local chart “u = 17.
Therefore, the projectivization of Dy is isomorphic to Cy. Because the rings of
regular functions of Dy and of the affine curve given by Cj on the local chart
“u = 1"are By. To complete these affine curves we just include, on each curve,
a nonsingular point at infinity.

Since a P-hermitian basis was fixed in Proposition 4.1, it follows that we

have the freedom to transform:

T = T + Qs

Yo = Boy2 + Box” + ... + Poysr

Ys = Yoys + 1Yz + 32T + ...+ Yagsr

Ya > Ooys + 01y3 + Oayz + 042" + ... + 0415,

where «;, B, 7, 0; € k and ag, 5o, 70,00 € k*.

Lemma 4.2. By linear changes of variables we can assume that the coefficients
of the polynomials F; (i = 4,5,6,7,8) satisfy:

C41 =Cr1 = Cg2 = Crp5 = 0

C52 = ... = C5245r =0

B (4.4)

Cr3=...=Cr345r =0

Cra=...=Craysr =0

Proof. We use the above transformations (4.3) with ag = 5y = 70 = 6y = 1. By
exploring the two freedom in weight one, namely ~; and 6, we can normalize
to zero ¢4 and c7;. By using the freedoms of weight two of y, and of weight
five of , we can suppose that cg» = ¢75 = 0. Finally we use the freedom of y,
of weights from 2 to 2 4+ 57, y3 of weights from 3 to 3 + 57 and y, of weights
from 4 to 4 + 57. O

We pick up the following two important syzygies between the generators
of the ideal of Dy:

X RO —viRY + v,FY =0

4.5
XT+1FéO) _ Y;LF7(0) + Y?)FB(O) =0 ( )
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They are induced by the Syzygy Lemma; see the proof of Theorem 4.3 below.

Moreover, we introduce the following two polynomials:

XTHF, = YiFs + Yo Iy

o (4.6)
X kg — Y, Iy + YaFy

Theorem 4.3. Let H be the semigroup generated by 5,2 + 57,3 + 57,4 + 57
with 7 > 1. Then, the moduli space .My corresponds bijectively to the orbits
of the equivariant G,,(k)-action (z,cs;) — z'cs; on the algebraic set of the
vectors of constants cs; normalized by (4.4) and satisfying the following two

polynomial equations:

X™F =Y, Fs + Ya Fr = Z X7 (es145iFs — C15151F)
i1

Xy — Y, Fr 4+ Ysly = — Z X7 (cgarsiFy + cg5i5iFs) —
i=0

T+1

- Z XT+1_iCS,1+5iF5
i=0
Proof. We need to prove that all relations between the coefficients cs; are
induced only by the two syzygies in (4.5). It is simple to see it is a necessary
condition. In the light of the Syzygy Lemma, it is sufficient to prove that all the
%(g — 2)(g — b) syzygies boil down to the only two in (4.5). First, we note
that each basis element of H°(207P) in Proposition 4.1 can be expressed as a

product of two basis elements of H°(107P). Set zo := 1, then we write:

2T 2T 27 .21
ToLog, ToLy..., Tox™" , T ,..., T T,

Yoy, Yo(xya), ..., (@7 tya) (a7 tya),
Toyi, To(xys), ..., xo(x™1y), w(x™ Yy, ..., 2P (2T ), (i =2,3,4).

There are five kinds of quadratic relations, separated by congruence modulo
five on their degrees (= 0,1,2,3,4). In this way, each one of the g—2 = 57 —1

quadratic relations F2(2)_2+n71 (n =0,...,n4_3) of the Syzygy Lemma can be
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written as:

XXl - XixX2 = (i=0,...,271—2);
(X7 1Y,) (X7 1Y) — X2 -1X2 = X2T—2F5(0) ;

(XTV3)(X77LYY) — (XiYa) X2 = X~+-1p©@  (j=0,...,7-1);
(XY (XT7Y)) — (XY3) X2 = X~H-1RO (=0, 7-1);
(XY, X2 1 — (XY,) X2 =0 (i=0,...,7—2).

As in previous computations, all %(g —2)(g — 3) “quadratic”relations are up
to powers of X equal to F4(0), F5(0)7 FG(O) , F7(0) , Fgo) or identically zero. For

example, the forms of degree congruous to 4 modulo 5 are:

XF(XY) - XI(XYy) =0, (0<i,l<7-1,0<kj<2r, k+l=i+j);
(XFYR) (X)) — XI(X7 1Y) = X 1FO (0<ki<r—1, 1<i<2r
k+l=i+7-1)

while those of degree congruous to 1 modulo 5 are:
(XMY5)(X'Y3) — (XVa) (X)) = X Fy (0< i jhl<7—1,
i+j=k+1=0,...,21 —2).

Thus, the Syzygy Lemma says that we need to find syzygies starting with
X7 F and X F”. Thus we have

X27F4(0) _ Xr—lmFéO) + XT—ly*2F7(0) =0
X27F6(0) - XT—lYZlF’;O) + XT—l)/SFS(O) =0

and diving by X7~ we find the two syzygies in (4.5).

Now, the two polynomial equations of the statement are induced by taking
the two forms in (4.6) and dividing by the forms Fj, in the sense that all the
monomials of the remainders belong to the lift of the basis of H°(307P) in
Proposition 4.1. O

To explore completely the two equations of Theorem 4.3 we introduce a

suitable notation.
fi = Fy(t7°, 472757 7375 =40t c k] (i =4,5,6,7,8).

By reordering and grouping the monomials of f; whose degrees have the same

residue modulo 5, the polynomial f; is a sum of at most four polynomials.
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Thus we can write:
fo= 10+ 12+ 10+ 1Y
fs =AY+ £+ 1Y
fo= 1"+ £+ 7 + 167
fr=12+ P
fs= £+ 150+ (0 + 1

We call each fj(z) a partial polynomial. The two polynomial equations of The-

orem 4.3 are:

fo—fs+ o= 0 fs — 12 fu;
fo— frt fs= 10— 10 fs — 1V fs

For each equation in (4.7) there are associated five equations separated by

(4.7)

congruence modulo five. So we get the following ten equations in the partial

polynomials:

1 1 1 5 5 1
V=B =RV - 1Y
D1 =BV - 1Y

3 =0

S N Y

e R (b R

“+&—=ﬁ“9—ﬁ“9—ﬁ”9
o =1 = =R - RV
(3)+f8 = —f5§5) ég)

3+ f =R B - R
7(5)_f8 =0

The above system provides the equations between the coefficients ¢, ; that will
describe the moduli space .#%. We will solve it by making eliminations, as

follows:

e From the last equation we have fg ) = f7 , then by substituting this in
the first one we get (f4 — f51))( — f7 ) — 0 and so f(l) # M _ .

e From f(3) =0, fs = 7(5) and the ninth equatlon it follows that f(4)
fS ( —f7 ):0, whence f6 +f8
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e Taking the sum of the second and the seventh equations, we obtain that
the seventh equation can be replaced by (fi + f(Q))(l — f7(2)) =0, and
therefore f(z) + f6(2)

e The eighth says that fég): f(?’)( f7(1)— 1). Entering this in the fourth equa-
" ¢ O] £ ©)(£6)_1)  whence £V — {1V £ Z
ion we get f{"(1— f1”) = = iV iV (A7 = 1), whence f{" — £V £ :

e From the fifth equation it follows that fé5) = fi5)(1+f7(5))+f7(5) — él)f§4)
and from the second f7(2) = f5(1) él) — P+ f7(5)). Substituting in the
sixth equation we get (f§5)+1)(fé”+f§”) = (DR =1 1)
then /i + £ = S0 - 100

Thus the moduli variety .#3 corresponds to the orbits of the equivariant
G, (k)-action on the algebraic set of the vectors of constants cy; normalized by

(4.4) and satisfying the following polynomial equations:

7 g

7= 1R 1P+ 1)

fi) =0

7O~ 105

B =100+ 7+ 77+ 10 f

) = =00+ 1) = 01

fs = =17

K= =10+ 1Y)

==

1 =1
In each of the above equations the formal degree of the left side is not smaller
than the degree of the right side. The partial polynomials involved in the

solution are fil), (2) fG ; (4),f£5) and f7(5). Summarizing, we have:

Corollary 4.4. Let H be the symmetric semigroup generated by 5,2 + 57,
34 57,4+ 57 with T > 1. The moduli space M3 is isomorphic to the weighted
projective space P(TH(By)) and its dimension is 7T + 4.

Note that Deligne’s bound 2g — 1 = 107 + 1 is reached only for 7 = 1, and
in this case H =< 5,7,8,9 > is negatively graded. For other all values of 7

the semigroup is not negatively graded.
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With a simple computation we see that the weight of the semigroup H is
equal to 7(57+1). Thus, the lower bound 3¢ —2—w(H) = 157+1—7(57+1)

is negative for 7 > 3, and for 7 = 1, 2 it provides the values 10, 9, respectively.

4.2 A family with multiplicity six

We consider the one-parameter family of symmetric semigroups of multiplicity

m = 6 given by:
H=1(6,2467,3467,4467,5+67), T>1. (4.8)
The genus of H is g = 1 + 67 and the canonical system of generators is:

0,6,12,...,127,2467,...,24+6(27 — 1),3+67,...,3+6(27 — 1),
4467,...,44+6(27—1),5+67,...,5+6(27 —1).

Suppose that C'is an integral projective Gorenstein curve of arithmetic genus g
and P € C'is a nonsingular point such that the Weierstrass semigroup of (C, P)
is H. By the definition of Weierstrass semigroup, for each
n € {6,2 4 67,3 + 67,4 + 67,5 + 67} there is a meromorphic function z,, €
H°(C,(127)P), whose pole order at P is exactly n and does not have other

poles. We introduce the following notation for typographical reasons:
T = Te, Yi ‘= Tit+e6r (Z = 2, 3, 4, 5)

More generally, for each n € H there is a meromorphic function x,, whose pole
order at P is exactly n and does not have other poles. We can normalize them
in a way that xg = 1, x,16 = v¢x, and x7119, = YoUs.

The divisor 12 7P is canonical and since ¢, = 2, i.e. ‘H is nonhyperelliptic,

we can identify C' with its image under the canonical embedding
(o :...:219,): C = P,

Thus, we can assume that C is a canonical curve in P57 and the Weierstrass
pointis P=(0:...:0:1).
Searching for a monomial basis of the vector space H°(C,12n7P) with

n > 1 we have the following:
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Proposition 4.5. The following functions form a P-Hermitian basis for
H°(C,12n7P) withn > 1.

l,z,...,2% ] |
. H°(C,127P)
Yiy TYis -, 7Y
AR H°(C,247P)
Y, ..., 2Ty,
YoUs, TY2Ys, - - -, BT 2Yols ] HY(C,12n7P)
x4fr+17 o 7xQnT
x?ﬂ'yi’ o ,ZL’T(Zn_l)_lyi
¥ Yyoys, ., 2T D20y |

for 1 =2,3,4,5.

Proof. By the Riemann—Roch Theorem it follows that dim H°(12n7) = 67(2n—
1), which is the number of the above functions. These functions are linearly

independent, because their pole orders at P are pairwise different. O]

The curve C' is nontrigonal and not isomorphic to a plane quintic (cf. [17]).
So, by Petri’s analysis, the ideal of C' is generated by quadratic relations. In
particular, we can ask for the quadratic relations between the nine functions
given by the products y;y; (2 <1i < j < 5) except y2ys because it is a basis ele-
ment of H°(C, 247 P). Note that these nine functions belong to H(C, 247 P)
and are not basis elements. Thus we can write each one of them as a linear
combination of the basis elements of Proposition 4.5. We denote, provisionally,
the basis elements of H(C,127P) by z,,xs,, where s is the pole order at P.
Then, for each one of our nine functions y;y; there are constants c,,. . € k
such that

YiY; = Z Cyiy;,kLasLbs
0<s<it+j+127
where k +s = 1 4+ j + 127. After eventually multiplying the functions z,,
by suitable constants, we can assume that c,,,. 0 = 1. In the polynomial k-
algebra k[ X, Ys, Y3, Yy, Ys] there are nine polynomials given by the lifting of our

functions vy, — > Cyiy; kTasTh,- We also introduce a more appropriate notation
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for the constants ¢, » as follows.

Gi:=Y} - X"Y;—

—g41X"Y3 — ... — Gga146rY3—
—942X7Yo — ... — g4216r Y2
—024X%T — ... — Gadr12:—

—gas X7 Y5 — . — gusie(r—1)Ys—
—ga6XT Yy — .. — ga6r Vs

Fy = YaY; — X2+ -

—f61X7Y5 — ... — fo 1460 Y5—
—f62XTYy — ... — foov6rYa—
—f6,3X7Y3 — ... — f6346rY3—
—f6,4X7Ys — ... — foay6rYo—
—f6.6 X% — ... = fo6r127

G7 = an - Y2Y5—

—gr 1 X2 — L — g1 b)) —
—g72X"Y5 — ... — g7216rY5—
—973X Yy — ... — gr346rYa—
—974X7Y3 — .. — grat6rY3—
—g75X Yo — ... — g7516rY2

Gs ==Y/ — X"MY5 — g3 1YoY5—

—gg 2 X ¥ — . — ggar6(2ri1)—
—983X7Y5 — ... — g8 316rY5—
—984X Yy — ... — gg416rYa—
—985X7Y3 — ... — gg546rY3—
—g8,6X Yo — ... — g86+6rY2

Fio:=Y2 - XY — fio3YaY5—

—f100 XY — . = fio146(r+1)Y3—
—f102 XY — .. = fio046(r+1) Y2—
—f104X¥ T — . — floate@rin)—

—f105X7Y5 — ... — flo546rY5—
—f10,6X"Ys — ... — fi0,6+6rYa

48
Gs :=YoY; — X7Y5—
951X Yy — ... — g5 1167 Ya—
—952X7Y3 — ... — g52+6rY3—
—953X"Yy — ... — g5316rY2—
—955X% — ... — g554127—
—g56XT Y5 — ... — g56: Y5
Go = Y2 — X2+
—961 X" Y5 — ... — 96,1467 Y5—
—96,2X" Y4 — ... — g6 2+6rYa—
—963X7Y3 — ... — g6316rY3—
—964X Yy — ... — g6 4167 Y2—
—966X°T — ... — goori2r
Fy :=Y3Ys — XTHY, — f3 1Yo Y5—
—f32 X2 — = fyoy62ri1)—
—f83X"Ys — ... — fg346rY5—
—f3a4 XYy — ... — fsaterYa—
—fs5X Y3 — ... — fa5i6rY3—
—fe6 XYoo — ... — fs616rY2
Fy :=Y1Ys — XT3 — fooYoV5—
—fo 1 XTHYs — ... — fo 1611y Yo
—fo,3 X2 — . — fosi62r41)—
—f94X7Ys — ... — foarerY5—
—fos X Yy — ... — fost6rYa—
—fo,6X7Y3 — ... — fo6+6rY3
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Now we invert the above considerations. We consider the polynomial ring
k[X, Y5, Y3, Yy, Ys] where the weight of X is 6 and that of Y is i + 67 (i =
2,3,4,5). We also take nine polynomials F; and G for s =4,5,6,7,8,9,10 as
before, where the coefficients g;;, fs; belong to k.

We ask for the conditions on the coefficients gs; and f,; in a way that the
polynomials F, and G are induced by a Gorenstein curve of arithmetic genus g
such that the Weierstrass semigroup of (C, P) is H, where P = (0:...:0:1).

Also we introduce the following nine polynomials:

GV =vz-xvy, AP =vYs- XY, F” =Yy, X¥L,
GO —vz—x21 GV =vvi-vYs, FY =YY - XY, (49)
Géo) — Y42 o XT—HYQ, Féo) — Y4}/5 _ XT+1YE$7 Fl([())) — Y52 o XT+1}/4 .

Note that the zero locus, say Dy, of our nine isobaric polynomials FO is a
monomial curve in A® whose ring of regular functions is the semigroup algebra
By, = @penkt”. The curve D, can be obtained by projecting in A® the affine
curve given by the canonical monomial curve Cy on the local chart “u = 1”.
Therefore, the projectivization of Dy is isomorphic to Cj. Because the rings of
regular functions of Dy and of the affine curve given by Cy on the local chart
“u = 1"are By. To complete these affine curves we just include, on each curve,
a nonsingular point at infinity.

Since a P-Hermitian basis was fixed in Proposition 4.5, it follows that we

have the freedom to transform:

T — QT + Qg

Y2 = Boyz + Bax™ + ... + Bater

Y3 = Yoys + 1Yz + V30T A+ Yaqer

Yg = OoYa + 013 + doy2 + 0427 + ... + daqer

Ys — Ooys + 0194 + Oayz + O3yo + 0507 + ... + 0516

where «;, 5;, 7;, 0;, 0; € k and «y, 5o, Y0, 0o, 0o € k*. By exploring these freedom

we obtain:
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Lemma 4.6. By linear changes of variables we may assume that:

fs1 =981 = fo2 = flo3=0
f6,2+6i = f8,3+6i = f9,4+6i = f9,5+6i =0, (Z =0,1,... 77'); (4~1O)
f1o,1 = f1o,2 = f9,6 =0.

In order to simplify the presentation we introduce the following polynomials

in k[t]:
i = Gi(t0, 472707, 307 -0 p5-or )i ()

fi = Fy(475, 472707 867 pdbr p=56r)pwcight(F) (4.11)

for all polynomials GG; and F;. By reordering and grouping the monomials of f;
and g; whose degrees have the same residue modulo 6, the polynomials f; and
g; are a sum of at most six polynomials. By using the normalizations (4.10)

we write:

5 6
g1= 0" + g2 + g + g0 4 ¥

2 6
%zﬁtw“+¢*w?+é)

fo= I+ 1+ 10+ 19
(1) (2) (3) (4)

(2)

(6)

96 =09¢ T 9s T 9¢ T Y5 + s
97—g§)+g(2)+g§)+g(4)+g§5)
f8 fs ‘I’fs +f8 ‘|'f8

g5 =9 + 6 + o8V + g8 + g

fo= &+ 18+ 159
Fo=fO+ @4 O 4 O 4 1O
() f(j)

The polynomials g; ;7 are called partial polynomials of g;, f;.
We pick up five important syzygies between the generators of the ideal of

the monomial curve Dy, namely:

x1GY v, FO + 6 =0
XG0 _ v, RO 1y, RO g
XT+1G XT—i—lF( ) _ Y4F(0) + Y},Fg(o) —0 (4.12)
X G — v B9 4 v FY =0

XT+1G8 o XT+1F8( ) _ }/5F9( ) —|—}/4F1(0) —

They are induced by the Syzygy Lemma; see the proof of Theorem 4.7 below.

Futhermore we consider the associated syzygies with respect the polynomials
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F; and G;:
X™Gy = Y Fs + YaGg — Z X7 (forv6iFo + fonr6iGr + foureiFs)+
=0
+ Z X" (gsar6iF6 + 9s,546:G5 + gs,646:G1) = 0
=0

X™Gy — YsFs + YaFy — ZXT?i(f&lJrﬁiFlO + fo.346iF8)+

i=0
1 ;
+ Z for+6: X TGy + Z foer6iX 'G5 =0
= =
X™Gs — XTHFs — YiFs + Y3Fo+ Z for16: X T G+ Z fosr6: X 'Gs
=1 i—1
- Z X7 (fsar6:Gs + fs546iGr + fsoreiFs) =0
o
X Gy — YsFg + YaFyo + Z XT(f10146:G6 + fro2+6:Gs)+
=1

+ Z X7 = fsareiFo + (fro5+6i — fs546i)Fs + f1064+6:Gr) = 0
=0

T+1
X™Gy — XTHFy = YsFy + YiFio+ Y X7 (foo,6:F5 + fro146iGr)+

i=1
+ Z X7~ fosr6iFs + frosr6iFo + fr06+6iGs) = 0
i=0
Note that the monomials of each polynomial on the left hand side of the above
equations belong to the lift of the basis of Proposition 4.5. Therefore, we
have a linear combination of basis elements and then each equation must be

identically zero.

Theorem 4.7. Let H be the semigroup generated by 6,2 + 67,3 + 67,
4 4 67,5 + 67, with 7 > 1. The moduli space .My corresponds bijectively
to the orbits of the equivariant G,,(k)-action (z, gs;) = 2'gsi, (2, fsi) — 2" fsi
on the algebraic set of the vectors of constant g, fs; normalized by (4.10) and

satisfying the following five polynomial equations:
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gs— Jo6 + 938 = f6 f9+f(3)97+ff(;4)f6—9§4)f6—9é5)95 gs(s )9
f6+f9_f6 f1o+f6 f8 fé”gr é6)95
—fo—fs+ fo= 8+f8 7+f§6)f f9(1)95_ ()96
g7_f8+f10—f(4)f9+f8 fs — flO)gﬁ_fl((Q))ng fl(ng_flog7
f8—f9+f10—f9 f8—f1097 ff§f6—f1o)f9—f1(g)gs

Proof. We need to prove that all relations between the coefficients g, ; and f;;
are induced only by the five syzygies in (4.12). It is clear it is a necessary
condition. We use the Syzygy Lemma to prove that all £(g—2)(g—5) syzygies
boil down to only five. First of all, we write each basis element of H°(247P) in
Proposition 4.5 as a product of two basis elements of H°(127P). Set o := 1,
then:

2T 2T 2T .21
ToXo, oL, ...,Tox" , 2T ,..., T T,

Y2Ys, y2($y5)7 ceey (mTflyQ)(ﬁTfl%),
Toyi, To(xys), - - - xo(x™ y), (2™ ), 2P (2T ), (1= 2,3,4,5)

There are six kinds of quadratic relations, separated by congruence modulo six
on their degrees (= 0,1,2,3,4,5). In this way, each one of the g — 2 =67 — 1

quadratic relations F2(2)72+n’1 (n=0,...,n4_3), of the Syzygy Lemma can be
written as:
Xt X2l XX — ) (i=0,..,2r—2)
(XT 1y, )(XT*IY) _ o xrr-lyer erszéO)
(XiY3)(X7T1Y5) — (XY) X2 = X~ HHEO (i=0,... 7—1)
(XY (X7T1Ys) — (XY3) X2 = X HEY (=0, 7-1)
(XY)(X7T1Y5) — (XY) X2 = X~ HEO (=0, -1
(XY X7 — (X'Y5)X* =0 (i=0,...,7—2)

Like in previous computations, all %(g 2)(g — 3) “quadratic’relations are up
to powers of X equal to E(O)’S, GEO) s or identically zero. Writing only the

GEO)’S we have:

(XFYR)(XYs) — Xi(X71Y,) = X+ 160, (0<ki<r—1 1<i<2r
k+l=i+7—-1)
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(XFYR)(X1Y3) — XI(X71Ys) = X160 (0<ki<r-1, 1<i<2r
E+l=i+7-1)

(XFY3)(X'Y3) = XOX» = X716y, (1<j<7-1L0<kl<7T-L
k+l=3j—-1)

(XFY3) (X)) — (XYa)(X9)Ys = XHGPY . (0<i,jkl<T—1,
0<i+j<2r—2,k+l=1i+7)

(XRY)(XY)) — XI(X™ 1Y) = X160 (0<kl<r—1,1<i<2r
k+l=i+7-1)
Thus, the Syzygy Lemma says that we need to find syzygies starting with
X>G\Y (i = 4,5,6,7,8). Then, after dividing by X7, we get the five syzygies
of (4.12). The five polynomial equations of the statement are induced by taking
the five syzygies between the forms F; and G; of the previous page and writing

them in terms of partial polynomials. O

We need to explore the five polynomial equations of Theorem 4.7 in order
to find the equations that will define Q. To this end we will take the thirty
equations induced by these five, organizing their degrees by residue modulo

six. Among these thirty there are five very simple equations:

1 1 3 3 4 5 6 6
D=0 = =0, 50 =0, # = 0

Entering with these five equations into the remaining ones, we obtain the

following twenty five equations:

o= 0 = AR+ F00 0 04— 0
g - +fé”—fé1 “”)+f6 f84) 13! gff”) 7"
((s f61)+f9 f6 +f6 fs fg (6) f9 ((5)
g+ £V = (1Y “) ~ 109 = Y = 106
g§)+9§)— (1)f9(1)+f(3) —gé 198 — g9

o = 1Y fg(”g4 fg

@ _ ém _ (4)g§> e fg

fé)_g7 flo —f9 96 +f1095 +f8 97

(2 (3 6) (2
é(s f8)+f10_f9 —f9 97 f10f6 1of)—fé§)gz(3)
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R AR A & +&fg — Mg — (gl
ﬁt—@+£ _ 0G0 1 100 — g 0

3 2 5 4 6 3
¥ = — 1My ﬁ@5 — FO Y = fOg
f§0 = 9 = @ g + f fm-+ﬁ@ﬂ“

3 4 6
91(1) f()+98 f6 f9)+f6 97 )f6 (5) 9&(3)94(1)
gi = f50 = f0 g @ g — £t

1 3 2 2 6 4

g g—wkzg R AR o U S

6 1 3 6 4
49— 19 110 = 10— 00— Ol
g§)+g(5) Bgl gé) (M g9l — gé ) go)

4 4

é f6 1(0)+f6 fs _fg gz(;)—fg

5 4 (1 1) (4 2 6 6) (5

919 = HO~ 0~ 1D — (R0 (O
5 5 1) (4 2) +(3 6 6
)+f1(0):_f£§)g§)_fl(0) ()_fl(o é)_fs 98)

6 5 1 6 6
— [ 4 gl = 97 —gé)gé)—gé)gi)

9
g fg+@ = fVR — g0 fsY ﬁ“@

95" = I = B+ 1 = 108+ 1ORY — 15  — 17
é f86) f9(6)+fz§6):fé6)f9 _f91)97 _flo 9 —fs 98

We note that we can eliminate gé ), (2) f10 and fé ) from the equations

10, 12, 18, 22 and 28 respectively, belng left with 20 equations instead of 25.

We do not do this now, because we are concerned with the equations of Q.
To compute the linearization, that corresponds bijectively to the vector

space TV~ (By), we replace in these 25 equations the quadratic terms on the

right sides by zeros.

1 1 1 1 1 1 (1 1 1
()_g() m_ @ m_ @®_ (1) fg) (1)

96 = 95 97" =95 —Y4 — U5
g =0 g =—g? S =g 9 = —951 :
fl((Q)) =g¢ + g
g =0 9" =0 g =0 1Y = 15"
gff) —gtY £ =g g =gt o =—0t" + "
g =0 ¢ = gff) @) = gff) o =gt
926) =gy 10 =049 9 = g0+ £ £ =g

Entering with the linearization into the right sides of the twenty five equations

of the previous page, we get the equations that will define Qy;, namely:
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1
—fi =0
1 1 6 6 1 6
gé) 150 =gV EO + £ g +gi)9§) 995" — g gt)

— 0+ fg =g £+ 100 + g0l — Vgl — i gtV

Do f§0 = g0 4+ g8 — g0 — g9 gl

gi "+ = gff) — 0798 — 1§79 — g9

g =0

9 - f( ) = gé )g§4) + g7 = g gl _ {0

3D — [P+ 1) = 9§1)2 — 05798 — g9 — gV g + 10 g

9"~ (2) 1) = 29&”95(, : : gff)z - 939" gs(f)gf) 95" 95" -
fﬁ 94 + f

g = [+ 1) = gVa? + feg)f 97 gs)

g fGS) + 157 = 11D — g6 g

g = =g g — 9P gl — gV g

1= 1 = gPd8 + gV + 10 Y

g+ o) = £ — gl

g — £ =0

g = [0+ 1) = 98a — 16t

é f84) + flo = 9((3 )gs(; ) — (6)9$4)

5 6 3 4 6) (5
a7 + 9 =000 — 1097 — gVl — o g

1
gé)—gi)gﬁ +f6 'gi? — gtV glh

97 + f1(8) =
5 4 4 1 3 2 5
VY = 95 Jgih) — giV gt — — P8 = 98P + g0 1P
O 14 gl = g0 gl — g )gff)
O — [+ 1Y = gPgs) — g g
6 6 6 6 6 4 6
[ R AR AR A Rl
6) _ 16 _ g
gs 9 =

Here we see a significant simplification of computations in order that we can

solve these systems. The solution is:
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1 6 1
F§ = gf — gl — g gt 4 g f O
) 0 _ 0 4 00 0

26

(4)+g()() (6) (1)

Uy 2 95 — s 9s

(5) (2)

97 =95 —9s t93°05 — G4 — 94 Ye
2
g5 =0
2 2
g =—g{¥ .

2 1 6 1 1 5
gé)— gi“rgi) — Vgt - g()gz” g

4
=98 + g% — g gt — g8 + gfV gt
2 6 2 2
o =02 + 00 + 9007 — a9t — g9 — g9 + £
3
g5 =0
g = gf)gé) 9208 — g8" g
1 2 6

1 =10+ 9008 + gV g? + 10 R
9 = gff)gé) aPgs" — gt g?
4 4
Y =g
4 4
g§)=9§)
4 1 4 6
g =gV + Vg8 — gVl
4 4 4)
ffo)zgé)—g§)+gé Lol — fOgY
9 = gi5)+g§5)g§) g§6)g4 Dl — gtV gt

(5) (1) (4) (1)

95 —94 96 +f6 96 — 9795
o = — a0 + gt gl —

g = —gff) + 970 — gVl + f
f9 = 98

g = g

1 =g + g - gff’)gé "+ g4
9 =g + £ — gV — g

(2) (5) féﬁ)

6
_gi) (6)

o

We notice that in these equations the formal degree of each of the five partial

2 (3

10 > 96 798 andf

polynomials fél),

is smaller than the formal degree of the

corresponding left hand side. Thus the remaining eleven partial polynomials

satisfy the following five conditions:
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6 3 1 6 1
mrvor (081 = 97 + 1P 0" + 600" — olPgl) =0

4 6 6 2
msror (0895 — 950 gt — P9 — g0l +fs)§>—0

2 4) (5
Tover (9595 + 94 )gé '+ 06795 )> =0

4 5 6
Tsror (0898 + 157 94 gt — gi g ))20

mior (91008 — o7 = 109 + o 117) = 0
where 7; denotes the projection operator on the polynomials in ¢ that anni-
hilates the terms of degree smaller than ¢« + 1. We introduce the following
notations: féﬁ) = 556) - giﬁ) and gé = gé& giﬁ). Then, the above conditions

are rewritten as follows:

mreor (98 R + 100" — aglV) =0
T8+67 géﬁ)gé - gt(i )97 + f86)94(12 ) =0
mvor (0408 + 970 + i g”) =0 (4.13)
meor (08008 + 109 + o1 VglV) = 0
w0 (0708 = 19 + gi) =0

Note that the above solution depends only on the ten partial polynomials:
1 (1) (2 (2 £B) (4 (4 h b £ coeffici
91’y 95 91 s 9 5 Je 96 s 97 ,g4 ,gs ,f8 The number of coefficients of
these partial polynomials is 117 4 6.
The goal is to compute the dimension of Q. To simplify the arguments
we will make some suitable changes of variables. First we call the ten partials

polynomials.

gil) = gaat+ gart’ + ...+ ga1re 0T

1 T
gé ) = gsat +gsrt” + ...+ g5 g6t TO

2 T
94(1 ) = Gaot? + gust® + ... + gaorert?TO

9((;2) = goat® + gost® + ... + go2r6-t> 0T
6@ = fo3t> + foot? + ...+ fozre-t>T0T

4 T
9((; ) = Go.at* + 9610t + ... + goatertt e

4 T
9§ ) = grat* + gr10t™ + ..+ graserttC

gf) = g4,5t5 + ...+ g4,5+6(7——1)t5+6(T_1)
O = §o6t® + Fa1ot'2 + . .. + fagrortTO

6 T
Qé ) = Os6t° + 9512t + ... + Os646-t°0°
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We introduce the following changes and notations:

Pz'(j) _ f'(j)(%)t6+67" Q(j) _ gZ(j)< )¢6+67

1
i % T
6 6 . 6 6 -
Pé ) _ fé )(%)t6+6 7 Qé) _ gg )(%)t6+6
and we transform the index ¢ of the coefficients g, and f;; of the polynomials
Pi(j) and Ql(j) by i+ 6(1 +7) —i. Let us denote ¢ = t%; with a simple change

of notation on the coefficients g,; and f,;, we write:

Y =t(as + ... +asier (), QY =1

4(12) =tHes+ ..+ cayerCT), éQ) =t4(ds + ... + dar:(7),
P = e+ ...+ eserCT), Q) =13

O = 2hy + .+ harer(T), QP =17
P9 =ro+ .. 4 re(, g =580+ ...+ 56:(".

Finally, we introduce the following polynomials, and note that we adjust, again,

the index of the above polynomials.

a:=apg+...+a (", b:=by+...+0,
c=co+...+c.(", d:=dy+...+d (",
e=ey+...+e (7, L:=l+...+1:(, (4.14)
=ho+...+hC, mi=mo+...+m._ (7L
re=ro+...+7r.¢(", s:=59+...+s.(".

Theorem 4.8. Let H be the symmetric semigroup generated by 6,2 + 67,
34 67,44 67,5+ 67. Then the quasi-cone Q4 is given by the coefficients of
the polynomials in (4.14) such that b, = a,, d; = —c;, s, = 0 and satisfying

the following five congruences:

ar+el—sb= 0 mod (7
sd—Ilh+rc= 0 mod ("
ad+cb+Im= 0 mod (" (4.15)
sm+ec+ha= 0 mod ("
hb —ed+mr = 0 mod ("

The codimension of Qy in A6 is 37. Hence, we can conclude:

dim .#3; < 87 + 5.
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Proof. First we note that the five equations (4.15) induce the same algebraic
set in A6 as the equations (4.13). We just consider the previous changes

and write the equations (4.13) in terms of the polynomials P and ng ). As
k[d]

regard to the codimension, we consider the Artinian k-algebra A = —=.
By considering the polynomials ¢ = ar + el — sb, ¢o = sd — lh + rc, q3 =
—ad —cb—1Im, g4 = —sm — ec — ha and g5 = hb — ed + mr in A, we take the

following affine algebraic set

Q = V(Qlu 42, 93, 44, Q5) C AGBIO .

In the open set ag # 0 of A% @ is invertible in A and then
r= (el —sb)a™, b= (cb+Im)a™', h=(sm+ec)a’

with ¢o and g3 identically zero. In a completely analogous way we reason when
one of the constant terms of the ten polynomials is different from zero. Now,
if all the constant terms are zero, we can proceed by induction, just making a
shift on the index of the constants, by making equal to zero the index of the

constants terms. O

We see that Deligne’s upper bound is 2g — 1 = 127 + 1. It is equal to the
upper bound of the above Theorem only for 7 = 1, and in this case
H =<6,8,9,10, 11 > is negatively graded. Thus, for 7 = 1 we have dim .43, =
2g—1 =13 =dim Qy —1, i.e., for 7 = 1 the method provides the exact dimen-
sion. For all other values of 7 the semigroup is not negatively graded. With
a simple computation we see that the weight of the semigroup H is equal to
7(67 4+ 1). Thus the lower bound 3g — 2 — w(H) = 187+ 1 — 7(67 + 1) is
negative for 7 > 3, and for 7 = 1,2 it is 12 and 11, respectively.

Below, we summarize the results obtained in this thesis:

H E-H dim .4 | dim Q3 — 1 | Deligne
<6,8,10,11,13 > 12 14 14 15
<17,9,10,11,13 > 14 15 15 15
<6,8,10,13,15 > 11 ? 15 17
<6,9,10,13,15 > 12 15 15 17
<5,2+57,3+57,4+57 > —572 4 147 + 1 7T+ 4 7T+ 4 107+ 1
<6,24+67,3+67,4+67,5+67> | —672+177+1 ? 8T+ 5 127 +1
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where E-H means Eisenbud-Harris expected dimensions, and Deligne means

Deligne’s upper bound.
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