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A existência de um fluxo geodésico parcialmente hiperbólico é o tema desta tese.
Constrúımos um exemplo de fluxo geodésico parcialmente hiperbólico deformando uma
métrica Riemanniana na vizinhança de uma geodésica fechada. Mostramos também que
não há fluxos geodésicos parcialmente hiperbólicos entre os que são gerados por uma
métrica produto.
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1 Introduction

The theory of hyperbolic dynamics has been one of the extremely successful stories in
dynamical systems. Originated by studying dynamical properties of geodesic flows on
manifolds with negative curvature [An] and geometrical properties of homoclinic points
[Sm], hyperbolicity is the cornerstone of uniform and robust chaotic dynamics; it char-
acterizes the structural stable systems; it provides the structure underlying the presence
of homoclinic points; a large category of rich dynamics are hyperbolic (geodesic flows
in negative curvature, billiards with negative curvature, linear automorphisms, some me-
chanical systems, etc.); the hyperbolic theory has been fruitful in developing a geometrical
approach to dynamical systems; and, under the assumption of hyperbolicity one obtains
a satisfactory (complete) description of the dynamics of the system from a topological
and statistical point of view. Moreover, hyperbolicity has provided paradigms or models
of behavior that can be expected to be obtained in specific problems.

Nevertheless, hyperbolicity was soon realized to be a property less universal than it
was initially thought: it was shown that there are open sets in the space of dynamics
which are nonhyperbolic. To overcome these difficulties, the theory moved in different
directions; one being to develop weaker or relaxed forms of hyperbolicity, hoping to
include a larger class of dynamics.

There is an easy way to relax hyperbolicity, called partial hyperbolicity, which allows
the tangent bundle to split into Df -invariant subbundles TM = Es⊕Ec⊕Eu, such that
the behavior of vectors in Es, Eu is similar to the hyperbolic case, but vectors in Ec may
be neutral for the action of the tangent map. This notion arose in a natural way in the
context of time one maps of Anosov flows, frame flows or group extensions. See [BP],
[Sh], [M1], [BD], [BV] for examples of these systems and [HP], [PS] for an overview.

However, and differently to hyperbolic ones, partially hyperbolic systems where un-
known in the context of geodesic flows induced by Riemannian metrics. As far as we know,
the way to produce partially hyperbolic systems in discrete dynamics are the following:
time-one maps of Anosov flows, skew-products over hyperbolic dynamics, products and
derived of Anosov deformations (DA). The two last approaches can be adapted to flows.

Our work shows that one is able to deform a specific metric that provides an Anosov
geodesic flow to get a partially hyperbolic geodesic flow. This is done inspired by the
Mañé’s DA construction of a partially hyperbolic diffeomorphism [M1].

We prove the following theorems:

Theorem 1.1. There is a Riemannian metric such that the induced geodesic flow is
partially hyperbolic but not Anosov.

Theorem 1.2. For every compact Kahler manifold (M,ω, J) of dimension at least 4,
such that its Kahler metric has constant negative holomorphic curvature −1, there is a
metric g∗ in M such that its geodesic flow is partially hyperbolic but not hyperbolic.

The next two corollaries are given by the persistence of quasi-elliptic nondegenerate
periodic orbits.
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Corollary 1.3. There is an open set U of metrics in the set of metrics of (M,ω, J) such
that for g ∈ U , the geodesic flow of g is partially hyperbolic but not Anosov.

Corollary 1.4. There is an open set V of hamiltonians in the set of hamiltonians of
(TM,ωTM), near geodesic hamiltonians, such that for h ∈ U , the hamiltonian flow of h
is partially hyperbolic but not Anosov.

We also show that product metrics of Anosov geodesic flows are not examples with
the partially hyperbolic property:

Proposition 1.5. The geodesic flow of the product metric of a product manifold of two
Riemannian manifolds with Anosov geodesic flows is not partially hyperbolic.

Roughly speaking, the strategy of the construction is done following the next steps:

1. It is chosen a metric whose geodesic flow is Anosov and whose hyperbolic invariant
splitting is of the form T (SM) = Ess ⊕ Es⊕ < X > ⊕Eu ⊕ Euu (section 4);

2. we take a closed geodesic γ0 without self-intersections (section 5.1);

3. we change the metric in a tubular neighborhood of γ0 in M , such that along the
orbit associated with γ0 the strong subbundles (Ess and Euu) remain invariant and
the weak subbundles dissapear, becoming a central subbundle with no hyperbolic
behavior (section 5.1);

3.1. to accomplish the non-hyperbolicity we change the metric in such a way that the
directions of small curvature become directions of zero curvature (section 5.1);

3.2. to accomplish that the strong subbundles remain the same along γ0 we change it in
a way that the directions of larger curvature (Ess and Euu) remain (section 5.1);

4. we verify that for the orbits outside the tubular neighborhood the cone fields associ-
ated to the extremal subbundles (Ess and Euu) are preserved (sections 5.3,5.4,5.5);

4.1. first, we verify that for orbits of the geodesic flow which are close to the orbit
associated with γ0 (good region) the cones associated with the extremal subbundles
are preserved (sections 5.3,5.4);

4.2. second, we verify that for orbits of the geodesic flow which are ’transversal’ to
the geodesic γ0 (bad region) we can control the variation of the angle of the cone
associated with the extremal subbundles with its own axis under the action of the
derivative of the geodesic flow (section 5.5);

4.3. then, we prove that we can control the proportion of time that any geodesic spends
in the bad region compared to the time it spends outside the bad region, so that
the time spent in the bad region is as small as we need in comparison to the time
spent outside it (section 5.5);
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4.4 we prove that for vector in the unstable cones there is expansion, and for vectors
inside the stable cones there is contraction, under the action of the derivative of the
new geodesic flow (section 5.6).

First, a bit of history. Classical examples of Anosov flows are geodesic flows of negative
curvature. They are transitive, ergodic, hyperbolic. A canonical way to show that a
geodesic flow is Anosov is to look for a splitting in two invariant subbundles, together
with the direction of the vector field of the flow, such that each of these subbundles
is a Lagrangian subbundle. It is known that if this splitting is dominated, then it is
Anosov. So, hyperbolicity is equivalent to domination in a Lagrangian splitting invariant
by the geodesic flow [R]. Actually, if one has a dominated Lagragian splitting either for
a symplectic flow (a flow which acts on a symplectic bundle), or for a contact flow, then
the hyperbolicity follows [Co1].

Newhouse was the first to notice that in the conservative setting [Ne], if there is a
dominated splitting, then one can prove hiperbolicity. Mañé then showed that in the
symplectic setting the same happens [M2], domination implies hyperbolicity. Ruggiero
[R] then used the argument to show that persistently expansive geodesic flows are Anosov.
And Contreras [Co1] managed to show that for symplectic flows and contact flows imply
that domination is equivalent to hyperbolicity.

Second, there are partially hyperbolic Σ-geodesic flows [CKO], flows which arise in
the study of the dynamics of free particles in a system with constrains. These flows are
defined in a distribution Σ $ TM . Castro, Kobayashi and Oliva [CKO] showed that under
some conditions they are partially hyperbolic. But if the distribution Σ is involutive, the
conditions imply that the leaves of the distribution are leaves with negative curvature,
and we are again in the Anosov geodesic flows case.

The thesis is organized as follows:
In the second section of the thesis, we introduce basic results about the geodesic flow,

following the book by Parternain [P]. We also introduce partial hyperbolicity and the
equivalent property of the proper invariance of cone fields [HP],[Y].

In the third section we prove that product metrics are not examples of partially
hyperbolic non-Anosov geodesic flows.

In the fourth section we introduce the candidate for the deformation, an example of
Anosov geodesic flow that one can find in Paternain’s article with Dairbekov [DaP], or
in Hasselblatt and Katok’s book [HK], which is the geodesic flow of the Kahler metric of
a Kahler manifold of dimension at least 4 whose holomorphic curvature is −1. We give
basic results of Kahler geometry in this section, following Ballmann [Ba] and Goldman
[G].

In the fifth section we show that the deformed metric has a partial hyperbolic non-
Anosov geodesic flow. We give a proof of the proper invariance of the strong cones
following Wojtkowski’s [W] tecnique for the proof that some generalized magnetic fields
are Anosov, although we do not use quadratic forms, as he does, but we calculate the
variation of the opening of the cones of an appropiate cone field.

In the last section we introduce open questions related to the main result of the thesis.
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2 Preliminary definitions

In this section, we give some preliminary definitions. In the first two subsections, the
definitions are about geodesic flows. In the third subsection, about Jacobi fields and
its relation to the derivative of the geodesic flow. The basic reference for these three
subsections is the book by Paternain [P]. In the fourth and last subsection, we give
the main definitions about partial hyperbolicity and the basic reference is the survey by
Hasselblat and Pesin [HP]. The proof of the equivalence between proper invariance of
cone fields and the existence of invariant subbundles with dominated splitting is based
on the survey by Yoccoz [Y].

2.1 Geodesic flows

A Riemannian manifold (M, g) is a C∞-manifold with an euclidean inner product gx in
each TxM which varies smoothly with respect to x ∈M .

The geodesic flow of the metric g is the flow

φt : TM → TM : (x, v)→ (γ(x,v)(t), γ
′
(x,v)(t)),

such that γ(x,v) is the geodesic for the metric g with initial conditions γ(x,v)(0) = x and
γ′(x,v)(0) = v. Since the speed of the geodesics is constant, we can consider the flow

restricted to SM := {(x, v) ∈ TM : gx(v, v) = 1}.
Another important definition is the splitting of the tangent bundle of TM into two

subbundles, a vertical one and a horizontal one. Let π : TM →M be the tangent bundle
of M and πTM : T (TM)→ TM the double tangent bundle of M . This splitting helps us
to write the derivative of the geodesic flow as a Jacobi field and its first derivative.

Definition 2.1. πV : V (TM)→ TM ,which is called the vertical subbundle, is the bundle
whose fiber at θ ∈ TxM , V (θ), is given by V (θ) = ker(dθπ).

Definition 2.2. K : T (TM)→ TM , which is called the connection map associated to the
metric g, is defined as follows: given ξ ∈ TθTM let z : (−ε, ε) → TM be an adapted
curve to ξ; let α : (−ε, ε) → M : t → πM ◦ z(t), and Z the vector field along α such
that z(t) = (α(t), Z(t)); then Kθ(ξ) := (∇α′Z)(0). πH : H(TM) → TM , the horizontal
subbundle, is given by H(θ) := ker(Kθ).

Some properties of H and V are:

1. H(θ) ∩ V (θ) = 0,

2. dθπ and Kθ give identifications of TxM with H(θ) and V (θ),

3. TθTM = H(θ)⊕ V (θ).

The decomposition in horizontal and vertical subbundles allows us to define the Sasaki
metric on TM :
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ĝθ(ξ, η) := gx(dθπ(ξ), dθπ(η)) + gx(Kθ(ξ), Kθ(η))

= gx(ξh, ηh) + gx(ξv, ηv)

for ξ and η ∈ TθTM , with ξ = (ξh, ξv) and η = (ηh, ηv) in the decomposition TθTM =
H(θ)⊕ V (θ), with ξh and ηh ∈ TxM ∼= H(θ), ξv and ηv ∈ TxM ∼= V (θ).

Proposition 2.3. The geodesic vector G : TM → T (TM) in this decomposition H(θ)⊕
V (θ) ≈ TxM ⊕ TxM is given by (v, 0).

Proof.

G(θ)h = dθπG(θ) = dθπ
∂

∂t
|t=0φt(θ) =

∂

∂t
|t=0π ◦ φt(θ) =

∂

∂t
|t=0γθ(t),

G(θ)v = KθG(θ) = Kθ
∂

∂t
|t=0φt(θ) = ∇γ′θ

γ′θ(0) = 0.

2.2 Geodesic flow as a hamiltonian

This decomposition allows us to define a symplectic structure on TM :

Ωθ(ξ, η) := gx(dθπ(ξ), Kθ(η))− gx(Kθ(ξ), dθπ(η))

= gx(ξh, ηv)− gx(ηh, ξv).

Proposition 2.4. The geodesic flow of g is the hamiltonian vector field of the function
H(x, v) = 1

2
gx(v, v)

Proof.

dθH(ξ) =
∂

∂t
|t=0H(z(t)) =

∂

∂t
|t=0

1

2
gα(t)(Z(t), Z(t))

= gx(∇α′Z(0), Z(0)) = gx(Kθ(ξ), v),

Ωθ(G(θ), ξ) = gx(dθπ(G(θ)), Kθ(ξ)) = gx(v,Kθ(ξ)) = dθH(ξ).

So, we have that dH = iGΩ.

The geodesic flow can also be represented by its restriction to the unitary tangent bun-
dle φt : SM → SM : (x, v)→ (γ(x,v)(t), γ

′
(x,v)(t)), SM := {(x, v) : v ∈ TxM, gx(v, v) = 1}.

SM also has a structure that is preserved by the geodesic flow, called a contact form.
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Definition 2.5. A 1-form α on an odd dimensional manifold M2n−1 is a contact form if
the form α∧dαn−1 is a volume form. To this 1-form we can associate a vector field, called
the Reeb vector field of the form α, which is the only vector field such that α(X) = 1
and dα(X) = 0. By Cartan’s formula LXα = d(iXα) + iXdα = d(1) + 0 = 0, so the flow
of X preserves the contact 1-form α.

We can define a 1-form in TM such that its restriction to SM is a contact 1-form.
αθ(ξ) := ĝθ(ξ,G(θ)) = gx(dθπ(ξ), v) = gx(ξh, v). Note that Ω = −dα, which implies that
α is a contact form on SM . Moreover, the geodesic flow coincides with the Reeb flow:

Proposition 2.6. The geodesic vector field G is the Reeb vector field of the contact form
α.

Proof.
αθ(G(θ)) = gx(dθπ(G(θ)), v) = gx(v, v) = 1,

iGdαθ(ξ) = dαθ(G(θ), ξ) = −Ωθ(G(θ), ξ) = −dθH(ξ) = 0.

The contact form restricted to SM allows us to restrict the bundle of the action of the
derivative of the geodesic flow to S(SM) := kerα. For θ = (x, v) ∈ SxM , S(θ)⊕R(v, 0)⊕
R(0, v). The geodesic flow restricted to SM is be partially hyperbolic if it has an invariant
splitting of S(SM) in three invariant subbundles S(SM) = Eu⊕Ec⊕Es with non trivial
central bundle.

2.3 Jacobi fields

An important property of the derivative of the geodesic flow is that it is related to the
Jacobi fields of the metric that generates the flow.

Definition 2.7. A Jacobi field along a geodesic γθ, θ = (x, v) is a vector field obtained by
a variation of the geodesic γθ through geodesics:

ζ(t) :=
∂

∂s
|s=0π ◦ φt(z(s)),

where z(0) = θ, z′(0) = ξ and z(s) = (α(s), Z(s)).
It satisfies the following equation:

ζ ′′ +R(γ′θ, ζ)γ′θ = 0.

And its initial conditions are:

ζ(0) =
∂

∂s
|s=0π ◦ z(s) = dθπξ = ξh,
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ζ ′(0) =
D

dt

∂

∂s
|t=0,s=0π ◦ φt(z(s)) =

D

∂s

∂

∂t
|s=0,t=0π ◦ φt(z(s))

=
D

∂s
|s=0Z(s) = Kθξ = ξv.

Proposition 2.8. The derivative of a geodesic flow is: dθφt(ξ) = (ζξ(t), ζ
′
ξ(t)).

Proof.

ζξ(t) =
∂

∂s
|s=0(π ◦ φt(z(s))) = dθ(π ◦ φt)(ξ) = dφt(θ)π ◦ dθφt(ξ),

ζ ′ξ(t) =
D

dt

∂

∂s
|s=0π ◦ φt(z(s)) =

D

∂s
|s=0

∂

∂t
π ◦ φt(z(s))

=
D

∂s
|s=0φt(z(s)) = Kφt(θ)(dφt(ξ)).

2.4 Partial hyperbolicity

Definition 2.9. A partially hyperbolic flow φt : M →M in the manifold M generated by
the vector field X : M → TM is a flow such that its quotient bundle TM/〈X〉 have an
invariant splitting TM/〈X〉 = Es ⊕ Ec ⊕ Eu such that these subbundles are non trivial
and with the following properties:

dφt(x)(Es(x)) = Es(φt(x)),

dφt(x)(Ec(x)) = Ec(φt(x)),

dφt(x)(Eu(x)) = Eu(φt(x)),

||dφt(x)|Es|| ≤ C exp(tλ),

||dφ−t(x)|Eu|| ≤ C exp(tλ),

C exp(tµ) ≤ ||dφt(x)|Ec || ≤ C exp(−tµ),

for λ < µ < 0 < C.
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Definition 2.10. A splitting E⊕F of the quotient bundle TM/〈X〉 is called a dominated
splitting if:

dφt(x)(E(x)) = E(φt(x)),

dφt(x)(F (x)) = F (φt(x)),

||dφt(x)|E(x)|| · ||dφ−t(φt(x))|F (φt(x))|| < C exp(−tλ)

for some constants C and λ > 0.

There is a criterion useful for verifying partial hyperbolicity, called the cone criterion:
Given θ ∈ SM , a subspace E ⊂ TθSM and a number δ, we define the cone at θ

centered around E with angle δ as

C(θ, E, δ) = {v ∈ TθSM : ∠(v, E) < δ},

where ∠(v, E) is the angle that the vector v ∈ TxM makes with its own projection to the
subspace E ⊂ TxM .

One flow is partially hyperbolic if there are δ > 0, some time T > 0, and two contin-
uous cone families C(θ, E1(θ), δ) and C(θ, E2(θ), δ) such that:

dθφ−t(C(θ, E1(θ), δ)) $ C(θ, E1(φ−t(θ)), δ),

dθφt(C(θ, E2(θ), δ)) $ C(θ, E2(φt(θ)), δ),

‖dθφt|C(θ,E1(θ),δ)‖ < K exp(tλ),

and

‖dθφ−t|C(θ,E2(φt(θ)),δ)‖ < K exp(tλ),

for some constant K > 0 and all t > 0.

Definition 2.11. Γc(P(T (SM))) = {σ : SM → P(T (SM)) continuous function } is the
space of continuous sections of the projective space of the tangent bundle of SM . It is a
Banach space. C(σ0, δ) = {σ ∈ Γc(P(T (SM))) : σ(θ) ∈ C(θ, σ0(θ), δ), v ∈ TθSM}, for a
continuous section σ0 and δ ∈ (0, π

2
).

Definition 2.12. Ft : Γc(P(T (SM)))→ Γc(P(T (SM))) : σ → Ft(σ), such that Ft(σ)(φt(θ)) =
[dθφtσ(θ)], where [v] is the direction of v.

In our case, we deal with one dimensional cones, cones whose axis are one dimensional
linear spaces, so we can use the definition above. For cones of more than one dimension, it
is the same, but the sections are not in a projective bundle but in a grassmanian bundle.
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Proposition 2.13. The proper invariance of the cones by the derivative of the geodesic
flow implies a dominated splitting.

Proof. First, we notice that C(σ0, δ) is a convex compact subset of a Banach space. The
invariance of the cones in this new setting is written as:

F−tC(σ1, δ) $ C(σ1, δ),

FtC(σ2, δ) $ C(σ2, δ).

So, by fixed point theory, since C(σ1, δ) and C(σ2, δ) are compact and convex, there is at
least one fixed point for Ft and one for F−t, for each positive real number t. It must be
one and the same for all t because the derivative is linear, and to have two fixed points is
the same as having a invariant space of dimension at least two, and this contradicts the
proper invariance of the one dimensional cones. So we get two invariant sections σ+ and
σ−, one for positive t and the other for negative t, respectively. The exponential growth
in each other comes from the exponential growth in the family of cones.
For the central direction, we notice that:

FtC(σ1, δ)
c $ C(σ1, δ)

c,

F−tC(σ2, δ)
c $ C(σ2, δ)

c,

for t positive. So, this implies, as in the case of the one dimensional sections, the existence
of two more invariant sections of dimension dim(M)− 2, σ̂+ and σ̂−, such that σ+ ⊂ σ̂+
and σ− ⊂ σ̂−. The central direction is Ec(θ) := σ̂− ∩ σ̂+, which is a invariant subbundle
of dimension one less of the dimension of σ̂− and σ̂+, because they are different since
σ+ ⊂ σ̂+ and σ− ⊂ σ̂−.

For the exponential expansion or contraction in the unstable and stable directions, re-
spectively, we only need to check exponential expansion or contraction inside the unstable
and stable cones, respectively.
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3 Why the geodesic flow of a metric product is not partially
hyperbolic

Now, we are going to show that some simple examples that could be partially hyperbolic
geodesic flows but are not, and we are going to prove that product metrics are not Anosov
or partially hyperbolic.

Ruggiero [R] (see also [Co1] for proofs of it) shows us that if a geodesic flow has a
dominated splitting of lagrangian subbundles, then it is Anosov. But the splitting of
T (SM) in this case has two subbundles of the same dimension, which together span a
symplectic bundle. So, it does not rule out the existence of partially hyperbolic geodesic
flows.

Indeed, if one starts with any symplectic action Φ : R → Sp(E.ω), π : E → B a
symplectic bundle with ω as its symplectic 2-form, one can produce another symplectic
action Φ∗ : R → Sp(E,ω) ⊕ Sp(B × R2, ω0) : t → Φ(t) ⊕ Id. The symplectic flow
associated with this symplectic R-action is partially hyperbolic with a central direction
of dimension 2. But in the case of geodesic flows, things are not that easy.

Suppose we have a Riemannian manifold (M, g) whose geodesic flow is Anosov. Then,
we can say:

Proposition 3.1. The product Riemannian manifold (M × Tn, g + g0) where (Tn, g0) is
Tn with its canonical flat metric, is not partially hyperbolic.

Proof. {x} × Tn is a totally geodesic submanifold of (M × Tn, g + g0). So, its second
fundamental form is identically zero. Since the metric in Tn is flat this implies that:

R(γ′(x,y,0,v), (0, w))γ′(x,y,0,v) = 0.

For a product metric in M1 ×M2 we have the following properties:

i. R(X, Y, Z,W ) = R1(X, Y, Z,W ), for X, Y, Z,W tangent to M1, because of the
Gauss’ equation and the fact that the second fundamental form is zero [Ca];

ii. R(X, Y, Z,N), for X, Y, Z tangent to M1 and N tangent to M2, because of Codazzi’s
equation and the fact that the second fundamental form is zero [Ca];

iii. R(X,N,X, N̂) = 0, for X, Y tangent to M1 and N, N̂ tangent to M2, because
K(X,N) = 0 [Ca].

R is the curvature tensor of the product Riemannian manifold with the product metric,
K its curvature, R1 the curvature tensor of the Riemannian manifold M1.

Then, for a submanifold {x} × Tn with the flat metric:

R(γ′(x,y,0,v), ·)γ′(x,y,0,v) ≡ 0.

So, the derivative of the geodesic flow along geodesics in {x} × Tn does not have any
exponential contration or expansion.
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Now, suppose we have two Riemannian manifolds with Anosov geodesic flows: (M1, g1)
and (M2, g2).

Proposition 3.2. The geodesic flow of the Riemannian manifold (M1 ×M2, g1 + g2) is
not Anosov.

Proof. To see that this geodesic flow is not Anosov is easy. It is a classical result that
(x0, γ(y,v)(t)) and (γ(x,u)(t), y0) are geodesics of the product metric, x0 ∈ M1, y0 ∈ M2,
u ∈ TxM1, v ∈ TyM2, γ(x,u)(0) = x and γ′(x,u)(0) = u, γ(y,v)(0) = y and γ′(y,v)(0) = v.

So, we choose x0 and x1 ∈ M1 close enough, and (x0, γ(y,v)(t)) and (x1, γ(y,v)(t)) are two
geodesics as close to each other as x0 and x1, so the geodesic flow is not expansive, and
this implies it is not Anosov.

Proposition 3.3. The geodesic flow of the product metric of a product manifold of two
Riemannian manifolds with Anosov geodesic flows is not partially hyperbolic.

Proof. Take local coordinates for the geodesic flow of the product metric. x ∈ M1,
y ∈ M2, u ∈ TxM1, v ∈ TyM2 Let γ(x,y,u,v)(t) be the geodesic with initial conditions
γ(x,y,u,v)(0) = (x, y) and γ′(x,y,u,v)(0) = (u, v). Since the product metric is a sum of the
two metrics, we have that πi : M1 ×M2 → Mi, i = 1, 2, the natural projection from the
product manifold to Mi, is a isometric submersion. So γ(x,y,u,v)(t) = (γ(x,u)(t), γ(y,v)(t)).

Let us construct an orthonormal basis of parallel vector fields for γ(x,y,u,v)(t). Suppose
g1x(u, u) = 1 and gy(v, v) = 1. So, to have (x, y, u, v) in the unitary tangent bundle of
M1 ×M2 we take (x, y, αu, βv), and

g(x,y)((αu, βv), (αu, βv)) = α2g1x(u, u) + β2gy(v, v) = α2 + β2 = 1.

Then
γ(x,y,αu,βv)(t) = (γ(x,αu)(t), γ(y,βv)(t))

and
γ′(x,y,αu,βv)(t) = (αγ′(x,u)(t), βγ

′
(y,v)(t)).

Take Ei, i = 2, . . . , dim(M1), an orthogonal frame of parallel vector fields along the
geodesic γ(x,u). Take Fj, j = 2, . . . , dim(M2), an orthogonal frame of parallel vector fields
along the geodesic γ(y,v).

Notice that along the geodesic γ(x,y,αu,βv), since its componentes are γ(x,αu) and γ(y,βv),
the following holds:

g1γ(x,αu)(t)(γ
′
(x,αu)(t), γ

′
(x,αu)(t)) = α2,

and

g2γ(y,βv)(t)(γ
′
(y,βv)(t), γ

′
(y,βv)(t)) = β2,

so the proportion (α, β) is preserved along the geodesic.
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So {(Ei(t), 0), (0, Fj(t))}i,j, together with (αγ′(x,u)(t), βγ
′
(y,v)(t)) and (βγ′(x,u)(t),−αγ′(y,v)(t)),

is an orthonormal frame of parallel vector fields along the geodesic γ(x,y,αu,βv)(t).
The fact that the second fundamental form of the submanifolds {p}×M2 and M1×{q}

is zero, together with Gauss and Codazzi equations, imply that:

R((u1, 0), (u2, 0), (u3, 0), (u4, 0)) = R1(u1, u2, u3, u4),

R((0, v1), (0, v2), (0, v3), (0, v4)) = R2(v1, v2, v3, v4),

R((u1, 0), (u2, 0), (u3, 0), (0, v1)) = 0,

R((0, v1), (0, v2), (0, v3), (u1, 0)) = 0.

Also the fact that the curvature is zero for planes generated by one vector tangent to M1

and another tangent to M2 implies:

R((u1, 0), (0, v1), (u2, 0), (0, v2)) = 0.

All these equations imply that along the geodesic γ(x,y,αu,βv)(t):

R(γ′(x,y,αu,βv), (Ei, 0), γ′(x,y,αu,βv), (Ek, 0)) = α2R1(γ′(x,u), Ei, γ
′
(x,u), Ek),

R(γ′(x,y,αu,βv), (0, Fj), γ
′
(x,y,αu,βv), (0, Fl)) = β2R2(γ′(y,v), Fj, γ

′
(y,v), Fl),

R(γ′(x,y,αu,βv), (Ei, 0), γ′(x,y,αu,βv), (0, Fj)) = 0.

Now, we are going to write the system of Jacobi fields. If we have ζ(t) =
∑

i=2 fiUi, then
ζ ′′(t) =

∑
i=2 f

′′
i Ui and

0 =
∑
j=2

(f ′′j +
∑
i=2

fiR(γ′, Ui, γ
′, Uj))Uj.

So, it can be written as: [
f
f ′

]′
=

[
0 I
−K 0

] [
f
f ′

]
where Kij = R(γ′, Ui, γ

′, Uj).
In the case of the product metric we have:

[
f
f ′

]′
=


0 0 I 0
0 0 0 I

−α2K1 0 0 0
0 −β2K2 0 0

[ff ′
]
.

With a change in the order of the basis of parallel vector fields we have:
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F ′ =


0 I 0 0

−α2K1 0 0 0
0 0 0 I
0 0 −β2K2 0

F.
So the systems decouples and the solutions are given imediately by the solutions for M1

and M2.
Now suppose the geodesic flow of the product metric is partially hyperbolic with

splitting Es ⊕ Ec ⊕ Eu, dimEs = p, dimEu = q. So the geodesic flow of each metric g1
and g2 is partially hyperbolic , each geodesic flow inherits a partially hyperbolic splitting:

Es
1 ⊕ Ec

1 ⊕ Eu
1 ,

along geodesics of in M1 × {y} (β = 0). Es
1 ⊕ Eu

1 ⊂ TxM1 ⊕ {0} ⊂ TxM1 ⊕ TyM2. And

Es
2 ⊕ Ec

2 ⊕ Eu
2 ,

along geodesics of in {x} ×M2 (α = 0). Es
2 ⊕ Eu

2 ⊂ {0} ⊕ TyM2 ⊂ TxM1 ⊕ TyM2.
For geodesics of the product metric which have α 6= 0 6= β, we get a splitting into five

invariant subbundles Es
1 ⊕ Es

2 ⊕ Ec ⊕ Eu
1 ⊕ Eu

2 , without the domination, since α and β
multiply the lyapunov exponents of each subbundle. Since we already have an splitting,
Es and Eu are necessarilly one of a combination of subbundles of Es

1 and Es
2, Eu

1 and Eu
2 ,

respectively.

Es ∈ {E ⊕ F : E ⊂ Es
1, F ⊂ Es

2, dimE + dimF = p},

Eu ∈ {E ⊕ F : E ⊂ Eu
1 , F ⊂ Eu

2 , dimE + dimF = q}.

So there is no way to go from the case α = 0 to β = 0 without breaking the continuity
of the splitting, because one cannot go from the case dim E = 0, when β = 0, to dim
F = 0, when α = 0 continuously.

The proof actually works if the metrics do not have geodesic flows of Anosov type.
And it works also for products of more than two manifolds.
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4 Candidate for the deformation

In the previous section we proved that a product metric is never hyperbolic or partially
hyperbolic. So we need to look for examples of partially hyperbolic geodesic flows through
deformations of a initial metric. This metric should be hyperbolic and have an invariant
splitting in more than two subbundles. It should have an invariant splitting of the tan-
gent bundle of SM in a strong stable, weak stable, weak unstable and strong unstable
subbundles, together with the direction of the geodesic vector field G.

So we are going to introduce the candidate for the deformation, an example explored
by Dairbekov and Paternain [DaP], which can be also found in Hasselblatt and Katok’s
book [HK]. It is a Kahler metric of a compact Kahler manifold with constant holomorphic
curvature −1 and dimension at least 4. It has a splitting into five subbundles S(θ) =
Euu(θ) ⊕ Eu(θ)⊕ < G(θ) > ⊕Es(θ) ⊕ Ess(θ), for θ ∈ SM . And we are going to break
the Anosov condition without destroying the strong unstable and strong stable splitting.
But we need some definitions. In the first subsection we define what is a Kahler manifold
and what is holomorphic curvature (following [Ba],[G],[KN]). In subsections 4.2 and 4.3
we show how to construct an example of a compact Kahler manifold of constant negative
holomorphic curvature [G]. In subsection 4.4 we show that the tangent bundle of SM
splits into five invariant subbundles [KN].

4.1 Definitions

Definition 4.1. A symplectic form ω on the smooth manifold M is a closed 2-form on M
such that ωx is non-degenerate for each x ∈M .

Definition 4.2. An almost complex structure J on the smooth manifold M is an auto-
morphism J : TM → TM such that J2 = −Id.

Definition 4.3. An almost complex structure J is ω-compatible if gx : TxM ×TxM → R :
(X, Y )→ ωx(X, JxY ) is a Riemannian metric.

Definition 4.4. An almost complex structure J is integrable if there is an atlas {Uα, ϕα}
such that the local charts ϕα : Uα → Vα ⊂ Cn satisfy dϕα ◦ J = idϕα.

Definition 4.5. A Kahler manifold is a triple (M,ω, J) such that M is a smooth manifold,
ω is a symplectic form on M , and J is a integrable complex structure compatible with ω.

Definition 4.6. A Kahler structure (M,ω, J) can be defined in the following way:

1. A complex structure J ,

2. ω is a close 2-form (dω = 0),

3. ω is positive (ω(JX,X) for all non zero real tangent vectors X),

4. ω is a (1, 1)-form with respect to J (ω(JX, JY ) = ω(X, Y )).

Proposition 4.7. Let M be a complex manifold with a compatible Riemannian metric g
and Levi-Civita connection ∇. Then dω = 0 implies ∇J = 0.



20

Proof. Since M is a complex manifold we suppose X, Y, Z, JY, JZ commute. Then,

dω(X, Y, Z) = Xω(Y, Z) + Y ω(Z,X) + Zω(X, Y ),

and
dω(X, JY, JZ) = Xω(JY, JZ) + JY ω(JZ,X) + JZω(X, JY ).

g((∇XJ)Y, Z) = g(∇X(JY ), Z)− g(J(∇XY ), Z)

= g(∇X(JY ), Z) + g(∇XY, JZ).

By the Koszul formula:

2g(∇X(JY ), Z) = Xg(JY, Z) + JY g(X,Z)− Zg(X, JY )

= Xω(Y, Z)− JY ω(JY, Z) + Zω(X, Y ),

and

2g(∇XY, JZ) = −Xω(JY, JZ) + Y ω(Z,X)− JZω(X, JY ).

Then

2g((∇XJ)Y, Z) = dω(X, Y, Z)− dω(X, JY, JZ).

Proposition 4.8. In a Kahler manifold M , if X(t) is a parallel vector field along c(t)
then JX(t) is a parallel vector field along c(t).

Proof. This is easy. Since ∇J = 0 and (∇XJ)Y + J∇XY = ∇XJY , we have that if
∇c′(t)X(t) = 0, then ∇c′(t)JX(t) = (∇c′(t)J)X(t)+J∇c′(t)X(t) = 0+0, since ∇J = 0.

4.2 Ball model

Let Cn,1 be the (n+ 1)-dimensional complex vector space

Cn+1 =

{
Z =

[
Z ′

Zn+1

]
: Z ′ ∈ Cn, Zn+1 ∈ C

}
with the hermitian pairing

〈Z,W 〉 = 〈〈Z ′,W ′〉〉 − Zn+1W n+1

= Z1W 1 + . . .+ ZnW n − Zn+1W n+1,

〈〈Z ′,W ′〉〉 = Z1W 1 + . . .+ ZnW n.
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Definition 4.9. A vector is negative, null or positive if and only if 〈Z,Z〉 is negative, null
or positive, respectively. The complex hyperbolic space with dimension n, Hn

C, is the
subset of negative lines of P(Cn,1). The boundary of Hn

C, ∂Hn
C, is the set of null lines of

P(Cn,1), lines such that 〈Z,Z〉 = 0.

We can identify Hn
C with the unit ball Bn = {z ∈ Cn|〈〈z, z〉〉 < 1} of the n-dimensional

complex vector space, by the following biholomorphic map:

A : Cn → P(Cn,1),

z′ →
[
z′

1

]
.

This biholomorphic embedding of Cn onto P(Cn,1)− {Zn+1 = 0}. Zn+1 = 0 implies Z is
positive, so Hn

C ⊂ A(Cn) and A identifies Bn with Hn
C, and ∂Bn with ∂Hn

C.
Consider the unitary group U(n, 1) that preserves the hermitian inner product of Cn,1.

The image of U(n, 1) in PGL(Cn,1), which we are going to call PU(n, 1) is the group of
biholomorphisms of Hn

C.

Proposition 4.10. PU(n, 1) acts transitively on Hn
C and on the unit tangent bundle of

Hn
C. Hn

C is a homogeneous space.

Proof. First, PU(n, 1) acts transitively on Hn
C:

We can represent two negative lines by two negative vectors X, Y ∈ Cn,1 such that:

〈X,X〉 = 〈Y, Y 〉 = −1, 〈X, Y 〉 < 0.

Notice that 〈X, Y 〉 is not a real number, but we can choose X and Y such that 〈X, Y 〉 is
a negative real number.

Define M := X + Y , then:

〈M,M〉 = −2 + 2Re〈X, Y 〉 < 0.

So M is a negative line. Define the map:

ρ : Z → −Z + 2
〈Z,M〉
〈M,M〉

M.

So ρ ∈ U(n, 1), and ρ(X) = Y , ρ(Y ) = X. This implies U(n, 1) acts transitively on the
set of negative lines.

Now we notice that the stabilizer of the origin 0′ =

[
0
1

]
is isomorphic to the unitary

group U(n) of Cn:

A ∈ Stab(0′)⇔ A(0′) = 0′.
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Write A ∈ Stab(0′) ⊂ PU(n, 1) as A =

[
A′ b
c d

]
. A ∈ Stab(0′) ⇒

[
b
d

]
=

[
0
1

]
⇒

b = 0, d = 1. A ∈ PU(n, 1) ⇒ 〈AZ,AZ〉 =

〈[
A′ b
c d

] [
z′

1

]
,

[
A′ b
c d

] [
z′

1

]〉
〈Z,Z〉 =〈[

z′

1

]
,

[
z′

1

]〉
⇒ c = 0, A′ ∈ U(n).

Since U(n) acts transitively in S2n−1 ⊂ Cn and U(n, 1) acts transitively on the set of
negative lines, we conclude that PU(n, 1) acts transitively on the unit tangent bundle of
Hn

C. Then, Hn
C is the homogeneous space PU(n, 1)/U(n).

Transitivity holds because, if we take X, Y ∈ Hn
C, u ∈ TXHn

C and v ∈ TYHn
C, and

A ∈ PU(n, 1) which sends X to Y , then the derivative of A sends u to v0 ∈ TYHn
C. If

v0 = v, then it is okay. If not, take B1, B2 ∈ PU(n, 1), such that B1 sends 0′ to X,
its derivative sends u1 ∈ T0′Hn

C to u ∈ TXHn
C, B2 sends 0′ to Y , its derivative sends

v1 ∈ T0′Hn
C to v ∈ TYHn

C. Take B3 ∈ U(n) = Stab(0′) which sends u1 to v1. Then
B2 ◦B3 ◦B−11 sends X to Y , and its derivative sends u to v.

4.3 Symplectic reduction

The construction of Hn
C as a Kahler quotient is similar to the construction of the Fubini-

Study Kahler structure.
The symplectic structure on Hn

C comes from the symplectic structure of Cn,1 by a
symplectic quocient construction. The following 2-form gives a symplectic structure to
Cn,1:

ω(X, Y ) = Im〈X, Y 〉.

The hamiltonian f : Cn,1 → R : X → −1
2
〈X,X〉 has as his flow Z → e−itZ. The orbits

of this flow are periodic of period 4π. For κ ∈ R, the symplectic quotient f−1(κ)/S1

inherits a symplectic structure Φk. It is of type (1, 1):

Φk(Jv1, Jv2) = Φk(v1, v2),

v1, v2 tangent vectors to f−1(κ)/S1.
Then Hn

C identifies with each level set f−1(κ)/S1.
If Z ∈ f−1(κ), T[Z]f

−1(κ)/S1 naturally identifies with the orthogonal complement Z⊥

with respect to the hermitian metric 〈, 〉. Z⊥ is a positive definite subspace of TZC(n,1) ∼=
C(n,1), because Z is negative and the hermitian metric 〈, 〉 has signature 1. Hence Φk

is a positive 2-form, closed because it is the restriction of a closed symplectic form in
C(n,1). So, together with the complex structure J , which remais a complex structure to
f−1(κ)/S1 because this is a submanifold of the C(n,1), they define a Kahler structure on
Hn

C.
Now we are going to give an explicit form of the pull-back of Φk by the map A : Bn →

Hn
C. The map A does not map Bn to a level set of f . So we have to modify the symplectic
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form. We have to replace it by Φ′ = 2i∂∂ log f . This symplectic form is invariant under
scalar multiplication, because f(λZ) = |λ|2f(Z), and is a constant scalar multiple of Φk

on f−1(κ).

Φ = 2i∂∂f,

∂∂ log f = f−1∂∂f − (f−1∂f) ∧ (f−1∂f).

The fact that df = ∂f + ∂f implies that the restrictions of ∂f and ∂f are linearly
dependent. So (f−1∂f) ∧ (f−1∂f) restricted to f−1(κ) is zero. So the symplectic form
induced on Bn is equal to 2ik∂∂ log f :

Φk = 2ki∂∂ log(f ◦ A)

= 2ki∂∂ log(1− 〈〈z, z〉〉)
= 2ki∂{(1− 〈〈z, z〉〉)−1(−〈〈z, dz〉〉)}

=
−2ki

(1− 〈〈z, z〉〉)2

(
〈〈z, dz〉〉 ∧ 〈〈dz, z〉〉 − (1− 〈〈z, z〉〉)(

n∑
j=1

dzj ∧ dzj)

)

=
2ki

(1− 〈〈z, z〉〉)2

(
(
n∑
j=1

zjdzj) ∧ (
n∑
j=1

zkdzk) + (1− 〈〈z, z〉〉)
n∑
j=1

dzj ∧ dzj

)
.

The metric, g(, ) = Φk(, J.) is equal to:

2k(1− 〈〈z, z〉〉)−2{〈〈z, dz〉〉〈〈dz, z〉〉+ (1− 〈〈z, z〉〉)〈〈dz, dz〉〉}.

Proposition 4.11. The metric above has constant holomorphic curvature − 2
k
.

Proof. If L is a negative complex line, the restriction of this metric to L has constant
curvature − 2

k
. Because the space is homogeneous, one only has to check the case L = L0,

L0 = {Z2 = . . . = Zn = 0}. If we define the coordinate z := Z1

Zn+1
, then

gk|L0 = 2k(1− |z|2)−2dzdz,

which is the Poincaré metric of curvature − 2
k
.

A result of Borel [B] ensures that there are always lattices Γ ⊂ PU(n, 1)/U(n) such
that M := Hn

C/Γ is a smooth compact manifold. So there are compact Kahler manifolds
with constant negative holomorphic curvature.
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4.4 The splitting of the geodesic flow in this Kahler manifold

According to Kobayashi and Nomizu, the curvature tensor in this Kahler manifold of
constant holomorphic curvature is:

R(X, Y, Z,W ) = − 1

4
(g(X,Z)g(Y,W )− g(X,W )g(Y, Z)

+ g(X, JZ)g(Y, JW )− g(X, JW )g(Y, JZ)

+ 2g(X, JY )g(Z, JW )),

which implies:

R(X, Y )X = −1

4
(g(X,X)Y − g(X, Y )X + 3g(JX, Y )JX),

From this we get that

R(X, JX,X, JX) = −g(X,X)2,

and

R(X, Y,X, Y ) = −1

4
g(X,X)g(Y, Y ),

if Y is orthogonal to both X and JX.
Now we are able to write the splitting of this geodesic flow. If W is a parallell vector

field along a geodesic γ, suppose ζ = fW . If W = Jγ′, then the Jacobi equation
ζ ′′ + R(γ′, ζ)γ′ = 0 gives us f ′′W + g(γ′, γ′)fW = 0. If g(γ′, γ′) = 1 then f ′′ = f . So if
ζ(0) = ζ ′(0) then ζ(t) = ζ(0)et and if ζ(0) = −ζ ′(0) then ζ(t) = ζ(0)e−t. So, if W = Jγ′

we have ζ(t) = 1
2
(ζ(0) + ζ ′(0))et + 1

2
(ζ(0) − ζ ′(0))e−t. The same calculation for W a

parallel vector field orthogonal to γ′ and Jγ′ implies that ζ(t) = 1
2
(ζ(0) + 2ζ ′(0))e

t
2 +

1
2
(ζ(0)− 2ζ ′(0))e−

t
2 .

So the invariant subbundles are:

Euu =< ζ(0) = ζ ′(0) = Jγ′ >,

Eu =< ζ(0) = 2ζ ′(0) = W,W ⊥ γ′and ⊥ Jγ′ >,

Ess =< ζ(0) = −ζ ′(0) = Jγ′ >,

Es =< ζ(0) = −2ζ ′(0) = W,W ⊥ γ′and ⊥ Jγ′ > .

The geodesic flow of a Kahler manifold with constant negative holomorphic curvature is
not only Anosov but its derivative splits the unitary tangent bundle into five invariant
subbundles.
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5 Deformation and its tangent bundle properties

In this section we change the metric described in the previous section. It will be a DA-like
deformation [M1]. We turn the geodesic flow into a partially hyperbolic one, not Anosov,
making it partially hyperbolic along a closed geodesic, and preserving the strong unstable
and strong stable cones along the other geodesics.

In the first subsection we change the metric so that the curvature along this geodesic
is zero for some vector fields orthogonal to the geodesic. This implies that the geodesic
flow is not Anosov anymore, by Corollary 3.4 of Eberlein [E]:

Corollary 5.1. [E] If the geodesic flow is Anosov, then the following holds: Let any γ
be a unit speed geodesic, and E(t) any non-zero perpendicular parallel vector field along
γ, then the sectional curvature K(γ′, E)(t) < 0 for some real number t.

For the geodesic flow of the new metric g∗, E(t) is a non-zero perpendicular parallel
vector field along γ, and K(γ′, E)(t) = 0, then the geodesic flow of the metric g∗ is not
Anosov.

In the subsections 5.2 to 5.5 we show that the new geodesic flow preserves the strong
stable and strong unstable cone fields. We first show that along the closed geodesic γ the
strong stable and strong unstable cones are properly invariant under the action of the
derivative of the geodesic flow (next section). Then, we show that for geodesics which are
close to (v0, 0, 0, . . . , 0) the strong stable and strong unstable cones are properly invariant
too (sections 5.3 and 5.4). Then we show that for geodesics that cross the neighborhood
of the deformation of the Kahler metric the strong stable and strong unsable cones are
not properly invariant, but we manage to control the lack of this property in such a way
that, after crossing the neighborhood, and inside the region where the metric remains
the same, where it is equal to the original Kahler metric, proper invariance is obtained
(section 5.5). Then we prove that there is expansion for the vectors in the strong unstable
cones, and contraction for the vectors in the strong stable cones (section 5.6).

We only need to show the strong unstable cone is properly invariant, because this
garantees that we have one unstable subbundle Eu invariant under the flow. For the
same reasons there is a properly invariant subbundle under the inverse of the flow, which
is the stable subbundle.

5.1 Closed geodesic

First, to make the deformation of the metric, we choose a closed geodesic without self
intersections. There is always a geodesic with these properties in a compact Riemannian
manifold [HK]. In a first version the deformation was done using Fermi’s coordinates but
by suggestion done bv R. Ruggiero we are going to work in normal coordinates. Fermi’s
coordinates are not defined along all the closed geodesic, but normal coordinates are.

Let us call this geodesic γ : [0, T ] → M2n. Now we introduce normal coordinates
along this geodesic. Take an orthonormal basis of vector fields {e0(t) := γ′(t), e1(t) :=
Jγ′(t), e2(t), e3(t), . . . , e2n−2(t), e2n−1(t)} in Tγ(t)M . This is possible because the parallel
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transport preserves orientation and M is orientable. Ψ : [0, T ] × (−ε0, ε0)2n−1 → M :
(t, x) → expγ(t)(x1e1(t) + x2e2(t) + . . . + x2n−1e2n−1(t)) with ε0 less than the injectivity

radius, so Ψ|U is a diffeomorphism, with U = [0, T ]× (−ε0, ε0)2n−1.
The vector fields e0(t) and e1(t) generate a plane with sectional curvature −1. Each

vector field ei(t), i = 2, . . . , 2n − 1 together with e0(t) generate a plane with sectional
curvature −1

4
. The line bundle generated by e1(t) along the geodesic is invariant by

parallel transport. The same holds for the vector bundle generated by ei(t), i = 2, . . . , 2n−
1 along the geodesic γ: the parallel transport along γ leaves it invariant.

Let gij(t, x) denote the components of the metric in this neighborhood. We define a
new Riemannian metric g∗ as:

g∗00(t, x) := g00(t, x) +
2n−1∑
i,j=1

Φij(t, x)xixj,

g∗ij(t, x) := gij(t, x), (i, j) 6= (0, 0),

with Φij : [0, T ]× (−ε0, ε0)2n−1 → R.
Each Φij is a bump function. This kind of deformation allows us to change the

curvature (change the second derivative), as γ and the parallel transport along γ (the
metric up to its first derivative) remain the same. This becomes clear if we look to
the formulas of the metric, the parallel transport and the curvature with respect to a
coordinate system.

For this new metric g∗, the coordinates along γ are:

g∗ij(t, 0) = gij(t, 0), 0 ≤ i, j ≤ 2n− 1,

g∗ij(t, 0) = gij(t, 0), 0 ≤ i, j ≤ 2n− 1,

∂kg
∗ij(t, 0) = ∂kg

ij(t, 0), 0 ≤ i, j, k ≤ 2n− 1,

∂kg
∗
ij(t, 0) = ∂kgij(t, 0), 0 ≤ i, j, k ≤ 2n− 1.

These equalities imply that the closed geodesic γ still is a closed geodesic for g∗. We are
going to use the following deformation:

g∗00(t, x) := g00(t, x) + α(t, x),

α(t, x) =
2n−1∑
k=2

x2kΦk(x),

g∗ij(t, x) := gij(t, x), (i, j) 6= (0, 0).
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The coordinates of the curvature tensor in this neighborhood are:

Rijkl = −1

2
(∂2ikgjl + ∂2jlgik − ∂2ilgjk − ∂2jkgil)− ΓTikg

−1Γjl + ΓTilg
−1Γjk, (1)

Γik := [Γj,ik]j,

and

Γj,ik :=
1

2
(∂igjk + ∂kgij − ∂jgik).

So, at γ, the curvature tensor is:

R∗ijkl(t, 0) = Rijkl(t, 0) − 1

2
(δj+l,0∂

2
ikα(t, 0) + δi+k,0∂

2
jlα(t, 0)

− δj+k,0∂
2
ilα(t, 0)− δi+l,0∂2jkα(t, 0)),

and

R∗0j0l(t, 0) = R0j0l(t, 0)− 1

2
(∂2jlα(t, 0)).

Then, along γ:

R∗0i0j(t, 0) = R0i0j(t, 0), i 6= j, i, j = 2, . . . , 2n− 1,

R∗0k0k(t, 0) = R0k0k(t, 0)− 1

2
(∂2kkα(t, 0))

= R0k0k)(t, 0)− Φk(t, 0).

For the initial metric and k = 2, . . . , 2n− 1:

R0k0k(t, 0) = g00(t, 0)gkk(t, 0)K(γ′(t), ek(t)) = −1

4
.

So, if we choose the bump function Φk such that Φk(t, 0) = −1
4
, then R∗0k0k(t, 0) = 0.

Then, Eberlein’s corollary applies, and the geodesic flow of g∗ is not Anosov. Is it partially
hyperbolic?

The new metric g∗ has the same coordinates as g along the closed geodesic γ, and not
only that, it has the same Christoffel symbols along γ. This implies that g∗ has the same
parallel transport as g along γ. So, if {E0(t) = γ′(t), E1(t) = Jγ′(t), . . . , E2n−1(t)} is a or-
thonormal basis of parallel vector fields in Tγ(t)M , the Jacobi fields ζ(t) =

∑2n−1
i=0 fi(t)Ei(t)

along γ are the solutions of the following equation:
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0 = ζ ′′(t) +R∗(γ′(t), ζ(t))γ′(t)

=
2n−1∑
i,j=0

(f ′′i (t) +R∗(E0, Ej, E0, Ei)(t)fj(t))Ei(t)

⇒ 0 = f ′′i (t) +
2n−1∑
j=1

R∗(E0, Ej, E0, Ei)(t)fi(t), i = 0, 2n− 1

⇒
[
f(t)
f ′(t)

]′
=

[
0 I

−K(t) 0

] [
f(t)
f ′(t)

]
,

K∗ij(t) := R∗(E0, Ej, E0, Ei)(t).

Along γ we have:

K∗ij(t) =


−1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

 .
So there is a central direction spanned by the Jacobi fields related to the curvature
K(γ′(t), Ek(t)), Ek(t) and tEk(t), for k = 2, . . . , 2n − 1. This implies we have a cen-
tral bundle Ec along the geodesic γ. Notice that {ek(t)}2n−1k=2 and {Ek(t)}2n−1k=2 gener-
ate the same subspace of Tγ(t)M , invariant by parallel transport because it is orthogo-
nal to γ′(t) and Jγ′(t).The others subbundles are Euu, spanned by (ete1(t), e

te1(t)) =
(etJγ′(t), etJγ′(t)) and Ess, spanned by (e−te1(t),−e−te1(t)) = (e−tJγ′(t),−e−tJγ′(t)).

5.2 The bump function and its properties

So far we have one only property of the function α : U → R, that α(t, x) =
∑2n−1

k=2 x2kΦk(t, x)
and Φk(t, 0) = −1

4
. Now we are going to state other properties that are going to help us

prove the proper invariance of the cones under the action of the derivative of the geodesic
flow.

First, to simplify the problem, we try to perturb the curvature only in the direction
of the subspace generated by ∂

∂xk
, k = 2, . . . , 2n − 1, at least for some geodesics. This is

impossible, but we can construct a bump function such that, as ε → 0, only the term
∂2xkxk , k = 2, . . . , 2n− 1 perturbs the curvature. How can we do it?

First let us construct

Φk(t, x) =
1

4
φk,1(x1)φk,2(x2)φk,3(x3) . . . φk,2n−1(x2n−1),
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φi bump functions themselves. So, the second property is that Φk does not depend on t.
Third, let us define φk,1, . . . φk,2n−1, except φk,k, with support on [−ε, ε], such that

φk,i(0) = 1, φk,i(±ε) = 0, with ε < ε0, and φk,k with support on [−ε2, ε2], φk,k(0) = −1
and φk,k(±ε2) = 0. This ensures that the only second order partial derivative of α that
does not goes to 0 as ε→ 0 is ∂2k,kα. Moreover, α is C1-close to the constant zero function.

Since x2k is of order ε4, we can say that α is of order ε4, dα is of order ε2 and d2α is of
order 1, so that d2α is limited, with limitation independent of ε.

Lema 5.2. For α : U → R : (t, x)→ x22n−1Φ(t, x), the following inequalities are satisfied:

i. |α(t, x)| ≤M0ε
4,

ii. |∂xjα(t, x)| ≤M0ε
2,

iii. |∂2xixjα(t, x)| ≤M0ε, if i 6= j,

iv. |∂2xkxkα(t, x)| ≤M0, M0 independent of ε.

Proof. Item i. |α(x)| ≤ 1
4
ε4. Item ii.: |∂xjα(x)| ≤ 1

4
ε42ε−2. Item iii.: |∂2xjxiα(x)| ≤ n

4
ε44ε−2

if j 6= i. Item iv.: |∂2xkxkα| ≤
1
4
ε43ε−4 ≤ 1.

Lema 5.3. For every δ > 0 there is a bump function φ, such that its minimum value is
at x = 0, φ(±ε2) = 0, and F (φ)(x) := x2φ′′(x)+4xφ′(x)+2φ(x) ∈ [(−2−δ)F (φ)(0), (2+
δ)F (φ)(0)].

Proof. To prove the lemma, first we construct a C2 function φ such that the property
stated in the lemma holds for δ

2
. Then, there will be a C∞ function φ such that it holds for

δ. To construct this C2 function is easy. We define the following function ϕτ , continuous
and piecewise-C1 in (0, 1

2
) and (1

2
, 1) (See Figure 1):

. ϕτ (0) = ϕτ (1) = ϕ(1
2
) = 0,

. ϕ′τ (x) = hτ
τ

, if x ∈ (0, τ) ∪ (1− τ, 1),

. ϕ′τ (x) = −hτ
τ

, if x ∈ (1
2
− τ, 1

2
+ τ),

. ϕτ (x) = hτ for x ∈ (τ, 1
2
− τ), ϕτ (x) = −hτ , for x ∈ (1

2
− τ, 1− τ).

Then we define φτ such that φτ (1) = 0, φ′τ (0) = φ′τ (1) = 0 and φ′′τ = ϕτ . Then φτ is
C2 and φτ (0) = −hτ

4
(1− 2τ). We use the fact that it holds for τ = 0 and then show that

it holds for τ small enough.
For τ = 0, φ0 is not C2 but this is not a problem. For φ0, we have that F (φ0)(x) =

(−1
2

+ 6x2)h0 for x ∈ (0, 1
2
) and F (φ0)(x) = (−1 + 6x + 6x2)h0 for x ∈ (1

2
, 1). Then it

is simple to see that F (φ)(0) = −h0
2

and F (φ0)(x) ∈ [−h0, h0] (See Figure 2). Then, for
φ0 we have that F (φ0)(x) ∈ [−2F (φ)(0), 2F (φ)(0)]. So, why does it holds for φτ , with τ
small enough?
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Figure 1: φ0 and φτ

Figure 2: x2φ0 and x2φτ

First, we notice that the first term of F (φτ ) is the only one that does not varies
continuosly as τ varies. The other two do vary continuosly because φτ is C1-close
to φ0. So we have to analyse only x2φ′′τ (x). But φ′′τ (x) ∈ [−hτ , hτ ], which implies
φ′′τ (x) ∈ [− 1

1−2τ h0,
1

1−2τ h0]. Then x2φ′′τ (x) ∈ [− 1
1−2τ x

2h0,
1

1−2τ x
2h0]. This, in turn, im-

plies that F (φτ )(x) ∈ [− 2
1−2τF (φ0)(0) − δ′(τ), 2

1−2τF (φ)(0) + δ′(τ)] = [−2F (φτ )(0) −
δ′(τ), 2F (φτ )(0) + δ′(τ)]. Then, for τ small enough, the lemma holds for a C2 φ (See
Figure 3). This implies it holds for a C∞ φ.

Our bump functions are defined in an interval of lenght ε2, so let us notice that if the
lemma holds for φ with support in [0, 1], then it holds for φλ such that φλ(x) := φ(λx).
It holds also if φ is multiplied by a constant.

Remark 5.4. This is an important lemma because it amounts to say that if the curvature
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Figure 3: F (ϕ0) and F (ϕτ )

is changed by 1
4

along the closed geodesic γ, then the curvature is deformed by ±1
2

in
the weak directions of the splitting of the geodesic flow, so the curvature for the strong
directions is still greater than in the other directions. This explains in a rough way why
the geodesic flow still preserves the strong directions.

5.3 Extension of the cone property for some vectors

First, we calculate the preservation of the cones in the initial case, the case of the original
geodesic flow, the geodesic flow of the Kahler Riemannian manifold of constant and
negative holomorphic curvature.

We use the following family of trajectories for the system:

q(t, u) = π ◦ φt(z(u)),

q(t, u), |u| < ε.
The Jacobi field is given by

ξ =
dq

du
|u=0, η =

Dv

du
|u=0 =

D

du
|u=0

dq

dt
.

So the following equations hold:

Dξ

dt
= η,

Dη

dt
= −R(v, ξ)v.

The quantity

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η.η)

indicates twice the cosine of the angle between the vector (ξ, η) ∈ TθSM and (Jv, Jv) ∈
TθSM , θ = (x, v). So, it is the same to prove that the cone fields are properly invariant
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or to prove that the cosine of this angle increases under the action of the derivative of the
geodesic flow, for vector in the boundary of the cone fields, or (ξ, η) ∈ TθSM such that

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η.η)
= C ∈ (1, 2).

Remember that if g is a Kahler metric then:

d

dt
g(u, v) = g

(
Du

dt
, v

)
+ g

(
u,
Dv

dt

)
,

D

dt
Jv = 0.

Then, for

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η.η)
= C ∈ (1, 2),

the following holds:

d

dt

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η.η)
= 2

(g(ξ, Jv) + g(η, Jv))

g(ξ, ξ) + g(η.η)
(g(η, Jv)−R(v, ξ, v, Jv))

− 2
(g(ξ, Jv) + g(η, Jv))2

(g(ξ, ξ) + g(η.η))2
(g(ξ, η)−R(v, ξ, v, η)).

But for the Kahler metric of constant holomorphic curvature, the curvature tensor is
[KN]:

R(v, ξ, v, η) = −1

4
g(ξ, η)− 3

4
g(ξ, Jv)g(η, Jv).

So, we have:

d

dt

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η.η)
= 2

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η.η)
− 2

(g(ξ, Jv) + g(η, Jv))2

(g(ξ, ξ) + g(η.η))2

(
5

4
g(ξ, η) +

3

4
g(ξ, Jv)g(η, Jv)) = 2

(g(ξ, Jv) + g(η, Jv))2

(g(ξ, ξ) + g(η.η))2
(g(ξ, ξ) + g(η, η)−

5

4
g(ξ, η) +

3

4
g(ξ, Jv)g(η, Jv)) = 2

(g(ξ, Jv) + g(η, Jv))2

(g(ξ, ξ) + g(η.η))2
(
5

8
g(ξ − η, ξ − η) +

3

8
g(ξ, ξ)− 3

4
g(ξ, Jv)g(η, Jv)− 3

8
g(η, η)).

Since |g(ξ, Jv)| ≤ g(ξ, ξ) and |g(η, Jv)| ≤ g(η, η), with equality only if (ξ, η) is a multiple
of (Jv, Jv), the derivative above is positive, and this means that the cones are properly
invariant under the action of the derivative of the geodesic flow.
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The value of the derivative is the same if (ξ, η) is multiplied by a scalar. Suppose
g(ξ, ξ) + g(η, η) = 1, then the derivative is:

d

dt

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η.η)
≥ 2C(

3

8
g(ξ, ξ)− 3

4
g(ξ, Jv)g(η, Jv) +

3

8
g(η, η))

≥ 3

8
C(2− C).

To get the exponential growth, we need to calculate:

d

dt
(g(ξ, Jv) + g(η, Jv))2 = 2(g(ξ, Jv) + g(η, Jv))(g(η, Jv)−R(v, ξ, v, Jv))

= 2(g(ξ, Jv) + g(η, Jv))2.

This implies that the vectors inside the cone grow at the rate of et.
Now we do the same to the new metric g∗, first for vectors v = (v0, 0, . . . , 0) ∈ S∗M .

By the formula of the bump function Φk we have that, as ε goes to zero, the partial
derivatives of second order of α which do not involve the direction of ∂

∂xk
go to zero. The

only one that does not shrink is ∂2k,kΦk.
So, the following holds:

R∗010k ≈ R010k, k = 2, . . . , 2n− 1,

R∗0k0k ≈ R0k0k −
1

2
∂2k,kα

If v = (v0, 0, . . . , 0) then:

R∗vξvη ≈ Rvξvη −
1

2
∂2ξηαv

2
0

≈ Rvξvη −
1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk.

When we use the symbol ≈ we mean that the difference between the left side and the
right side is of order ε. It depends on the size of |α|, |∂α|, |∂2ijα|, i 6= j, and the size of
supp(Φi), i = 1, . . . , 2n−1. To calculate the derivative of the closing of the cone precisely:
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d

dt

(g∗(ξ, Jv) + g∗(η, Jv))2

g∗(ξ, ξ) + g∗(η.η)
− 2

(g∗(ξ, Jv) + g∗(η, Jv))2

(g∗(ξ, ξ) + g∗(η.η))2

(
5

8
g∗(ξ − η, ξ − η)

+
3

8
g∗(ξ, ξ)− 3

4
g∗(ξ, Jv)g∗(η, Jv) +

1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk +

3

8
g∗(η, η)

)

= 2
(g∗(ξ, Jv) + g∗(η, Jv))2

(g∗(ξ, ξ) + g∗(η, η))2

((
g∗(η, Jv)−R∗(v, ξ, v, Jv)

g∗(ξ, Jv) + g∗(η, Jv)

)
(g∗(ξ, ξ)

+g∗(η, η)) +

(
g∗(ξ, D

∗

dt
Jv) + g∗(η, D

∗

dt
Jv)

g∗(ξ, Jv) + g∗(η, Jv)

)
(g∗(ξ, ξ) + g∗(η, η))

−g∗(ξ, η) +R∗(v, ξ, v, η)− 5

8
g∗(ξ − η, ξ − η)− 3

8
g∗(ξ, ξ)− 3

8
g∗(η, η)

+
3

4
g∗(ξ, Jv)g∗(η, Jv)− 1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk

)

= 2
(g∗(ξ, Jv) + g∗(η, Jv))2

(g∗(ξ, ξ) + g∗(η.η))2

((
g∗(ξ, D

∗

dt
Jv) + g∗(η, D

∗

dt
Jv)

g∗(ξ, Jv) + g∗(η, Jv)

)
(g∗(ξ, ξ)

+g∗(η.η))−
(
g∗(ξ, Jv) +R∗(v, ξ, v, Jv)

g∗(ξ, Jv) + g∗(η, Jv)

)
(g∗(ξ, ξ) + g∗(η.η)) +

1

4
g∗(ξ, η)

+
3

4
g∗(ξ, Jv)g∗(η, Jv)− 1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk +R∗(v, ξ, v, η)

)
.

If C is the opening of the cone and g∗(ξ, ξ) + g∗(η, η) = 1, because the derivative does
not depend on the norm of the (ξ, η), the equation above is:

= 2C(C−
1
2 (g∗

(
ξ,
D∗

dt
Jv

)
+ g∗

(
η,
D∗

dt
Jv

)
)− C−

1
2 (g∗(ξ, Jv) +R∗(v, ξ, v, Jv))

+
1

4
g∗(ξ, η) +

3

4
g∗(ξ, Jv)g∗(η, Jv)− 1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk +R∗(v, ξ, v, η)).

Then:

|g∗(ξ, Jv) +R∗(v, ξ, v, Jv)| ≤ |R∗(v, ξ, v, Jv)−R(v, ξ, v, Jv)|+ |g∗(ξ, Jv)− g(ξ, Jv)| .

Since |g∗(ξ, Jv)− g(ξ, Jv)| is dependent on |α|, and |R∗(v, ξ, v, Jv)−R(v, ξ, v, Jv)| +
|g∗(ξ, Jv)− g(ξ, Jv)| is dependent on |α|, |∂α|, and |∂21ξα|, and these terms are limited
by Mε, we can say that, for some big enough M1 independent of ε:
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|g∗(ξ, Jv) +R∗(v, ξ, v, Jv)| ≤ |R∗(v, ξ, v, Jv)−R(v, ξ, v, Jv)|+
|g∗(ξ, Jv)− g(ξ, Jv)| ≤M1ε.

For the same reasons:∣∣∣∣g∗(ξ, D∗dt Jv
)

+ g∗
(
η,
D∗

dt
Jv

)∣∣∣∣ ≤M0 ‖g∗ − g‖C1 (|ξ|∗ + |η|∗) ≤M1ε.

∣∣∣∣∣14g∗(ξ, η) +
3

4
g∗(ξ, Jv)g∗(η, Jv)− 1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk +R∗(v, ξ, v, η)

∣∣∣∣∣ ≤M1ε.

Suppose M1 sufficiently big to be the same in the three inequalities above. So we have:

∣∣∣∣ ddt (g∗(ξ, Jv) + g∗(η, Jv))2

g∗(ξ, ξ) + g∗(η.η)
− 2

(g∗(ξ, Jv) + g∗(η, Jv))2

(g∗(ξ, ξ) + g∗(η.η))2

(
5

8
g∗(ξ − η, ξ − η)+

3

8
g∗(ξ, ξ)− 3

4
g∗(ξ, Jv)g∗(η, Jv) +

1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk +

3

8
g∗(η, η)

)∣∣∣∣∣
≤ 2C(2C−

1
2M1 +M1)ε = M2ε.

Let us analyse the following expression over the initial closed geodesic:(
3

8
g∗(ξ, ξ)− 3

4
g∗(ξ, Jv)g∗(η, Jv) +

1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk +

3

8
g∗(η, η)

)
=

3

8
(ξ21 + ξ22 + ξ23 + η21 + η22 + η23 − 2ξ1η1 +

4

3

2n−1∑
k=2

∂2kkαv
2
0ξkηk).

The expression ξ21 + η21 + ξ22 + η22 + . . .+ ξ22n−1 + η22n−1− 2ξ1η1 + 4
3

∑2n−1
k=2 ∂2kkαv

2
0ξkηk equals

(ξ1 − η1)
2 + ξ22 − 2

3
ξ2η2 + η22 + . . . + ξ22n−1 − 2

3
ξ2n−1η2n−1 + η22n−1 = (ξ1 − η1)

2 + (ξ2 −
1
3
η2)

2 + 8
9
η22 + . . .+ (ξ2n−1− 1

3
η2n−1)

2 + 8
9
η22n−1, which is positive in the border of the cone

with opening C. This implies that along the closed geodesic γ the cone is preserved, but
that we already knew. We need to prove the positivity of the derivative along the other
geodesics of the flow. So, we need the following:

infa∈[−1− δ
2
,1+ δ

2
]inf{ξ

2
2 + η22 + . . . ξ22n−1 −

4a

3

2n−1∑
k=2

ξkηk + η22n−1} ≥ L(A,B) > 0,

for any (ξ, η) in the boundary of the cone with opening C ∈ [A,B] ⊂ (1, 2).
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Because g∗ is a C∞ metric, and its coordinates along γ are δij, if the neighborhood of
γ is sufficiently small, if ε is small enough, we can conclude:

infx∈supp(α)inf{(g∗(ξ, ξ)− 2g∗(ξ, Jv)g∗(η, Jv) +

4

3

2n−1∑
k=2

∂2kkαv
2
0ξkηk + g∗(η, η))} ≥ 1

2
L(A,B) > 0.

So:

infx∈supp(α)inf{
3

8
g∗(ξ, ξ)− 3

4
g∗(ξ, Jv)g∗(η, Jv) +

1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk

+
3

8
g∗(η, η)} ≥ L′(A,B) =

3

16
L(A,B) > 0.

This implies that, if ε < 1
2M2

L′(A,B), for (ξ, η) in the boundary of the cone with opening

C ∈ [A,B] ⊂ (1, 2), and for v = (v0, 0, . . . , 0), then the derivative is positive.

5.4 Extension of the cone property to a band

Now we are going to show that this derivative is positive not only for vectors of the type
v = (v0, 0, . . . , 0), but for vectors which are close to (1, 0, 0, . . . , 0).

We are going to consider v ∈ S∗M such that |vi| < θ, i = 1, 2, . . . , 2n − 1. For this
vectors we have:

R∗(v, ξ, v, η)−R(v, ξ, v, η) ≈ −1

2

2n−1∑
k=2

∂2kkα(v2kξ0η0 + v20ξkηk − v0vk(ξ0ηk + ξkη0)).

This is so because (1) implies the following relation:

R∗ijkl −Rijkl ≈ −
1

2
(∂2ik∆gjl + ∂2jl∆gik − ∂2il∆gjk − ∂2jk∆gil), (2)

where ≈ means that the rest of the equation depends on α and ∂α, and ∆gij := g∗ij − gij.
So we can say that:

∣∣∣∣∣R∗(v, ξ, v, η)−R(v, ξ, v, η) +
1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk

∣∣∣∣∣ ≤M1ε+M0|θ|(‖ξ‖∗‖η‖∗).

So, for the derivative we have:
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∣∣∣∣ ddt (g∗(ξ, Jv) + g∗(η, Jv))2

g∗(ξ, ξ) + g∗(η.η)
− 2

(g∗(ξ, Jv) + g∗(η, Jv))2

(g∗(ξ, ξ) + g∗(η.η))2

(
5

8
g∗(ξ − η, ξ − η)

+
3

8
g∗(ξ, ξ)− 3

4
g∗(ξ, Jv)g∗(η, Jv) +

1

2

2n−1∑
k=2

∂2kkαv
2
0ξkηk +

3

8
g∗(η, η)

)∣∣∣∣∣
≤M2ε+M0|θ|(‖ξ‖∗‖η‖∗).

So, if we calculate for (ξ, η) in g∗(ξ, ξ) + g∗(η, η) = 1, we have that if |θ| < 1
4M0

L′(A,B)

and ε < 1
2M2

L′(A,B), then:

d

dt

(g∗(ξ, Jv) + g∗(η, Jv))2

g∗(ξ, ξ) + g∗(η.η)
≥ 1

2
L′(A,B) > 0

Then we conclude that, in the band {v ∈ S∗M : v θ-close to (1, 0, . . . , 0)} the cones are
properly invariant for the geodesic flow.

5.5 The cone property outside the band

For vectors that are not θ-close to (1, 0, . . . , 0), for θ as defined in the previous subsection,
which we are going to call ’transversal’ to γ′, we do not have preservation of the cones.
But this is not at all a problem if we choose an ε small enough such that the cone with
openning B stays inside the cone with opening A. This is possible because α is C1 close
to zero, the second derivative of α is limited and this limitation does not depend on ε.
So:

d

dt

(g∗(ξ, Jv) + g∗(η, Jv))2

g∗(ξ, ξ) + g∗(η.η)
≥M

As ε goes to 0, the support of the deformation of the metric shrinks. As it shrinks, the
time that the geodesics take to cross this neighborhood of the geodesic γ goes to zero.
So, as we can control the time which these geodesics spend inside the neighborhood, we
choose an ε such that the cone with opening B stays inside the cone of openning A.

Let us be more precise:

Proposition 5.5. The time which transversal geodesics cross the neighborhood of the
deformation of the metric g is comparable to ε.

Proof. To see that the time spent is comparable to ε we need to express the geodesic
vector field in Fermi coordinates of the neighborhood. We can use Fermi coordinates now
because we don’t need the coordinates in the whole neighborhood of the closed geodesic
γ in this case. The maps dπ and K are:

dπξ = (ξ0, ξ1, . . . , ξ2n−1),
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Kξ =

(
ξ2n+k +

2n−1∑
i,j=0

Γ∗kij viξj

)2n−1

k=0

.

So, the pre-image of (v, 0) by the map (dπ,K) is:(
v0, v1, . . . , v2n−1,−

2n−1∑
i,j=0

Γ∗0ij vivj,−
2n−1∑
i,j=0

Γ∗1ij vivj, . . . ,−
2n−1∑
i,j=0

Γ∗2n−1ij vivj

)
.

Since g∗ is C∞ and along the geodesic γ, Γ∗kij = 0, then, if ε is sufficiently small, the
geodesic vector field is approximately (v0, v1, . . . , v2n−1, 0, 0, . . . , 0).

Since the second part of the geodesic vector field is small as ε is small, we can say
that geodesics such that |vi| ≥ θ for some i = 1, . . . , 2n− 1 cross the neighborhood in at
most ε

θ
, and they leave the neighborhood at least θ

2
far from (1, 0, . . . , 0), or, better said,

outside the set {v ∈ S∗M : |vi| < θ
2
, i = 1, 2, . . . , 2n− 1}.

After these orbits leave the neighborhood, they spent some time outside it. As the set
of these orbits is a compact set, the infimum is positive. Let us say they spend at least
Tε outside the neighborhood. As ε goes to zero, Tε does not goes to zero. If it did, we
could get a sequence of geodesics outside {v ∈ S∗M : |vi| < θ

2
, i = 1, 2, . . . , 2n− 1} which

would spend very little time outside the neighborhood of γ before enter it again. So, in
the limit, there would be a contradiction with the unicity of the solutions of the ordinary
differential equations of the geodesic flow. So the time spent outside the neighborhood
of γ is bounded from below - let us say it’s bounded from below by T . This means that
we can choose ε so that the quotient between the time spent inside and the time spent
outside of the neighborhood of γ is as small as we want. As small as it is necessary for
the preservation of the strong unstable and strong stable cones.

Outside the neighborhood of the deformation the following holds:

d

dt

(g∗(ξ, Jv) + g∗(η, Jv))2

g∗(ξ, ξ) + g∗(η, η)
=

d

dt

(g(ξ, Jv) + g(η, Jv))2

g(ξ, ξ) + g(η, η)
≥ 3

8
C(2− C),

for (ξ, η) in the boundary of the cone of openning C. So, for cones with border in [A,B],
we have:

d

dt

(g∗(ξ, Jv) + g∗(η, Jv))2

g∗(ξ, ξ) + g∗(η, η)∗
≥ 3

8
B(2−B).

So we choose A′ such that |A′ − B| < 3
16
B(2 − B)T . This ensures that outside the

neighborhood the geodesic flow sends the cone with opening A′ inside the cone with
opening B in time T

2
. For ε sufficiently small, with the inferior limit of the derivative not

depending on ε, the cone with opening B is not sent outside the cone with opening A′.
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So, we do not have exactly the proper invariance of the cones, it fails in an interval of
length as small as we want for each geodesic of length T . But this is enough. It is enough
because after that it takes an interval of length T

2
for the cones to be properly contained,

or, for the map F εt , it takes an interval of length T
2

for the cone in the projective to be

properly invariant. So we get an fixed section for an interval of lenght at least T
3
, and, by

the same reasoning of the proposition 2.12, the invariant section is unique and invariant
for all t positive. The same happens for the stable invariant direction, because for a
geodesic flow the ’past’ of the orbit of v ∈ S(SM) is the future of the orbit of −v.

5.6 Exponential growth of the Jacobi fields

So, the strong unstable cone is preserved by the new geodesic flow. By simmetry, or by the
reversibility of geodesic flows, the strong stable cone is preserved too. But preservation
of these cones only proves that there are invariant subbundles with domination. We have
to show that there is exponential growth along these strong directions.

Outside the neighborhood of γ where we deform the metric, the following holds:

d

dt
(g∗(ξ, Jv) + g∗(η, Jv))2 =

d

dt
(g(ξ, Jv) + g(η, Jv))2

= 2(g(ξ, Jv) + g(η, Jv))(g(η, Jv)−R(v, ξ, v, Jv))

= 2(g(ξ, Jv) + g(η, Jv))2 = 2(g∗(ξ, Jv) + g∗(η, Jv))2.

For vectors v ∈ {v ∈ S∗M : v θ-close to (1, 0, . . . , 0)}:

d

dt
(g∗(ξ, Jv) + g∗(η, Jv))2 = 2(g∗(ξ, Jv) + g∗(η, Jv))

(g∗(η, Jv) + g∗
(
ξ,
D∗

dt
Jv

)
+ g∗

(
η,
D∗

dt
Jv

)
−R∗(v, ξ, v, Jv))

≥ 2(g∗(ξ, Jv) + g∗(η, Jv))(g∗(ξ, Jv) + g∗(η, Jv)− Lε(|ξ|∗ + |η|∗))
≥ 2(1− 2Lε)(g∗(ξ, Jv) + g∗(η, Jv))2.

So for ε sufficiently small we have exponential growth in this case. Now, in the case of v
’transversal’ to γ:

d

dt
(g∗(ξ, Jv) + g∗(η, Jv))2 = 2(g∗(ξ, Jv) + g∗(η, Jv))(g∗(η, Jv) +

g∗
(
ξ,
D∗

dt
Jv

)
+ g∗

(
η,
D∗

dt
Jv

)
−R∗(v, ξ, v, Jv))

≈ K(g∗(ξ, Jv) + g∗(η, Jv))2,

for some K ∈ R which does not depend on ε.
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So, if we take any geodesic c : [0, T ] → M , we have that it takes only ε inside the
neighborhood, and ’transversal’ to γ′. So, if we call f(t) := (g∗(ξ, Jv) + g∗(η, Jv))2, we
have that f ′(t) ≈ 2f(t) for time T−ε and f ′(t) ≥ Kf(t) for time ε, at most. This implies:

∫ T

0

(logf)′(s)ds ≥ 2(T − ε) +Kε = 2T + (K − 2)ε⇒

logf(T )− logf(0) ≥ 2T + (K − 2)ε⇒ f(T ) ≥ f(0)e(2T+(K−2)ε).

So for ε sufficiently small, we have that f grows exponentially for the (ξ, η) inside the
unstable cone we have exponential growth.

5.7 Conclusion

So, we proved the proper invariance of the unstable and stable cones. And we proved the
exponential expansion or contraction respectively, in the previous subsection. Then we
conclude:

Theorem 5.6. For every compact Kahler manifold (M,ω, J) of dimension at least 4,
such that its Kahler metric has constant negative holomorphic curvature −1, there is a
metric g∗ in M such that its geodesic flow is partially hyperbolic but not hyperbolic.

Corollary 5.7. There is an open set U of metrics in the set of metrics of (M,ω, J) such
that for g ∈ U , the geodesic flow of g is partially hyperbolic but not Anosov.

Proof. We can make the closed geodesic γ, which is a geodesic for both metrics g and g∗,
a quasi-elliptic nondegenerate closed geodesic. The linearized Poincare map of a quasi-
elliptic nondegenerate orbit has eigenvalues on the unit circle but they are different than
one. We only need to multiply the bump function by a constant greater but sufficiently
close to 1 such that the geodesic flow remains partially hyperbolic. Since quasi-elliptic
nondegenerate closed geodesics are persistent, there is an open neighborhood of g∗ in the
set of metrics of M such that all metrics in this open set are partially hyperbolic, and
are far away from the set of Anosov metrics.

Corollary 5.8. There is an open set V of hamiltonians in the set of hamiltonians of
(TM,ω), near geodesic hamiltonians, such that for h ∈ U , the hamiltonian flow of h is
partially hyperbolic but not Anosov.

Proof. For the same reasons of the previous corollary there is an open set of hamiltonians
with the same property, near geodesic hamiltonians.



41

6 Further considerations

6.1 Open problems

We should look for more properties of this example. Two natural questions are:

Problem 1. Is this example transitive? Is it robustly transitive?

Statistical properties are as important as topological ones, so we could ask too:

Problem 2. Is this example of geodesic flow ergodic?

We could think of this deformation as an one parameter family of deformations:

Definition 6.1. gs is a one parameter family such that outside the neighborhood of the
closed geodesic γ of g, gs and g coincide. As we defined above, in the ball of radius ε0
around γ, with the injectivity radius of (M, g) bigger than ε0, and {Ei} an orthornormal
frame of parallel vector fields along γ:

Ψ : [0, T ]× (−ε0, ε0)2n−1 →M : (t, x)→ expγ(t)(
2n−1∑
i=1

xiEi(t))

is a coordinate system where g has the following coordinates:

gij = δij, ∂kgij = 0,

g∗ was defined as:

g∗00 = g00 + x22n−1Φ(t, x), g∗ij = gij, (i, j) 6= (0, 0).

For s ∈ [0, 1] we define gs as:

(gs)00 = g00 + sx22n−1Φ(t, x), (gs)ij = gij, (i, j) 6= (0, 0).

For this one parameter family, the geodesic flow of gs is hyperbolic for s ∈ [0, s0). The
geodesic flow of the metric gs0 is partially hyperbolic, for the same reason as for g∗, and
it is not hyperbolic. So, we could ask:

Problem 3. Is the geodesic flow of the metric gs0 transitive? Is it ergodic? Is it robustly
transitive? Is it conjugate to the geodesic flow of gs for s < s0?
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