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Abstract

The aim of this work is to construct the solution to a nonlinear system of con-

servation laws arising in petroleum engineering for a model that describes the

injection of a mixture of gas and oil, in any proportion, into a porous medium

filled with a similar mixture, at different temperatures. The model allows the

existence of fluids in three thermodynamical configurations, namely: a single

phase gas configuration, a single phase liquid configuration and a two-phase

configuration. The solutions are constructed around two organizing structures.

The first is a singular point, intrinsically associated to most bifurcations in

the Riemann solutions for this class of models. The second is the interface

between the two-phase configuration and the single-phase liquid configuration

in state space; the change of thermodynamical configuration introduces a new

pattern in the Riemann solutions.
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Resumo

O objetivo deste trabalho é construir soluções para um sistema de leis de

conservação proveniente da engenharia de petróleo, para um modelo que de-

screve a injeção de uma mistura de gás e óleo, dados em quaisquer proporções,

em um meio poroso preenchido com outra mistura semelhante. Ele permite

a existência de fluidos em três diferentes configurações termodinâmicas, a

saber: uma configuração monofásica onde há somente gás, uma configuração

monofásica onde há somente ĺıquido e uma configuração bifásica. As soluções

são constrúıdas em torno de duas estruturas de organização. A primeira é

um ponto singular, intrinsecamente associado à maioria das bifurcações nas

soluções de Riemann, nesta classe de modelos. A segunda é a interface entre

a configuração bifásica e a configuração monofásica onde há apenas apenas

ĺıquido; a mudança de configuração termodinâmica nesta interface introduz

um novo tipo de padrão nas soluções de Riemann.
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grantes da banca. Ao Christian que me apresentou ao IMPA: muito obrigado.
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Chapter 1

Introduction

The aim of this work is to construct the solution for a nonlinear system of conservation

laws arising in petroleum engineering. Our interest is two-fold. First, this system models

proposed enhanced heavy oil recovery techniques. Second, it presents a unique combina-

tion of mathematical structures that elegantly determine the solutions. We postpone the

discussion of the mathematical aspects of our work, and we focus on its application now.

Steam drive recovery of oil continues to be an economical way of producing heavy

oil and is used world wide. The main challenges are to improve sweep efficiency and to

improve recovery from the steam swept zone. Our interest focuses on the latter issue.

In the late seventies, Dietz proposed to add small amounts of volatile oil to the steam.

His view was that the volatile oil co-injected with the steam would displace the dead oil

ahead of the steam condensation front leaving no oil behind in the steam swept zone.

The stability of the steam displacement would guarantee an even distribution of volatile

oil along the steam condensation front. Experiments investigating the mechanism are

described in Bruining et al. [5], [6]. Similar ideas were put forward independently by

Farouq Ali and Abad [18].

In this work, we pursue the analysis of the model in Bruining and Marchesin [4]. Their

approach was to simplify the model equations in such a way that the essential elements

are retained while avoiding the complexities of solving the pressure equation. The long

term objective is the full Riemann solution for this model. We will soon enter into the

details of Riemann solutions, for now it is sufficient to know that our interest hinges in its

constructive nature. Once the Riemann solution is given, the full set of possible injection

scenarios can be analyzed in a comprehensive manner.

The problem proposed by Bruining and Marchesin is very difficult in a different way.

It adds thermodynamics and phase transitions to a problem already well known for its

difficulty, namely the immiscible three-phase flow problem in porous media. We have no

1



2 Introduction

hope of obtaining this solution right away: there is too much concurrent dynamics going

on. Instead, in this work we set and solve the following subproblem: volatile oil in the

form of gas is injected in a reservoir containing a mixture of the same volatile oil and dead

oil. This is not only a necessary step, because it introduces thermodynamical behavior,

which has been systematically neglected in the literature of multi-phase flow theory until

very recent works of Bruining, among others.

We provide more details of the background for the theory of conservation laws in the

next section, then proceed with multiphase flow theory. Is is remarkable that one of the

fundamental pieces in the Riemann solution, discontinuous solutions or shocks, were first

understood during the century old struggle to understand gas flow in a tube. The main

tool to settle the issue was Thermodynamics.

1.1 Foundations

An early reference to singular solutions is due to Stokes [47], in 1848. He was the first to

characterize the jump conditions that a discontinuous solution must satisfy to guarantee

conservation of a physical quantity when it flows. Stokes did this in the context of

conservation of mass and momentum, in rectilinear isothermal flow of an ideal gas. His

idea, however, was criticized: his discontinuous solutions failed to conserve mechanical

energy. Convinced that a physical solution must conserve mechanical energy, Stokes

abandoned his theory. The world had to wait the development of Thermodynamics for

almost half a century, when the task of determining the jump conditions that express

energy conservation in the presence of discontinuities was undertaken by Rankine [40] and

Hugoniot [24], independently. Nowdays these jump conditions, which any weak solution

of conservation laws must satisfy, bear their name.

A landmark in the theory of conservation laws was constructed by Riemann [42].

Riemann considered the one-dimensional flow of gas dictated by the Euler equations. He

solved the initial value problem that nowdays bears his name, in which an initial jump in

the state variables is generally resolved into an wave fan with a forward and a backward

wave, either of which are allowed to be a (smooth) rarefaction wave or a (discontinuous)

shock wave. He rediscovered the jump conditions satisfied by discontinuities in mass

and momentum (without any mention to energy) and emphasized that only compressive

shocks should be physically admissible, on the grounds of stability.

The observation that physically admissible discontinuous solutions must satisfy other

restrictions besides the Rankine-Hugoniot jump conditions soon became a major concern.

Both Stokes [47] and Hugoniot [24] were aware that heat conductivity would smear shocks.
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This “vanishing viscosity” result was first formalized by Duhem [17]. Subsequent work,

still in the context of polytropic gases, was done independently by Rayleigh [41] and

Taylor [49], characterizing the structure of shocks.

The Second WorldWar focused the attention of many top scientists on the conservation

laws of gas dynamics. An important issue at time was the behavior of real gases, at high

temperatures and pressure, far beyond the limits of the polytropic gas model. The work of

Bethe [3] pointed out that the conditions used at the time to select physically admissible

shocks were not sufficiently stringent: they may select unstable solutions, especially in the

case of strong shocks. At the same time the work of Weyl [53] extended the aforementioned

work on shock structure, noticing that the existence of a particular shock was related to

a repellor-saddle connection in an underlying system of ordinary differential equations.

The definitive treatment of this problem was provided two years later by Gilbarg [21].

Concurrent work was done independently by Courant and Friedrichs [12] and Gel′fand

[20].

In the fifties, the area of partial differential equations experienced a change of trend:

the qualitative theory and well posedness of the Cauchy problem became a major topic.

The works of Hopf [23] and Cole [9] established the well posedness of weak solutions

in the large for the the Burgers equation. Later, the work of Lax [32] became a new

landmark. He extended the work of Hopf, solving the Cauchy problem for the general

case of scalar conservation laws with convex flux. Convexity was the key point, allowing

one to select admissible shocks on the sole ground of compressibility. With the Euler

equations in mind, Lax crafted the concept of genuine nonlinearity, and showed that for

systems it generalizes convexity for scalar equations. Genuine nonlinearity together with

strict hyperbolicity are the main concepts needed to define what is nowdays known as

the Lax conditions. Lax provided a general construction of shock and rarefaction wave

curves as tools to solve Riemann problems, setting the direction of modern research in

the Riemann solution, using gas dynamics as a prototype. All this work culminated in

the seminal contribution of Glimm [22], who was able to guarantee well posedness in the

large for Cauchy solutions with “small” initial datum, using Riemann solutions as building

blocks. Glimm was able to show that, under certain hypotheses, all wave interactions in

the Cauchy problem for systems can be resolved in terms of Riemann solutions. His work

hinged on the same hypotheses of genuine nonlinearity and strict hyperbolicity, the very

hypotheses that are violated in our model.

These are the early foundations of the theory for hyperbolic conservation laws. Later

more general equations began to be considered, such as flow in porous media. They

failed to fulfill one or both of these hypotheses. The result was chaos: even existence
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and admissibility of solutions raise thorny issues. Wave fans began to display unusual

structures and wave interactions became a major problem: the existence of resonance in

wave speeds led to new amplifications both in the size as in the variation of solutions. As

a result, a fully encompassing theory is not available yet. Instead, one interested in those

phenomena nowdays should focus on specific systems arising from continuum physics.

These systems have showed so far a common feature: they remain solvable, despite of the

oddities. The quest to discover the properties that distinguish solvable from unsolvable

general models is still open.

1.2 Current theory of multiphase flow

The theory of multiphase flow in porous media, as an application of conservation laws

theory, has its roots in the work of Buckley and Leverett [8], in the context of immis-

cible two-phase oil displacement by either gas or water. We will not elaborate on the

implications of this work in the engineering community, but refer the reader to the book

of Lake [27]. Immiscible three-phase flow models were proposed in the works of Stone

[48] and Corey et al. [11]. In three-phase flow systems of conservation laws, both genuine

nonlinearity and strict hyperbolicity fail to such a degree that subtleties of the theory still

require active work today. A comprehensive survey on mathematical theory of Riemann

problems relevant for multi-phase flow in porous media can be found in Marchesin and

Plohr [36].

Genuine nonlinearity is related to monotonicity; its role is to generate separate com-

pression and rarefaction waves. In the former gradients increase in the solution while

in the latter gradients decrease. One of the effects of lack of genuine nonlinearity is the

existence of “middle ground” waves, for example contact waves which are neither compres-

sion nor rarefaction waves. When genuine nonlinearity fails, the compression requirement

alone is typically insufficient to select physically admissible shocks. Models with such

behavior were an early concern to the Russian school. The fact that the “vanishing vis-

cosity” argument can be applied to general systems is due to Gel′fand [20]. Courant and

Friedrichs [12] also mention an analogous result in the context of gas dynamics with re-

actions. Unfortunately the viscous profile criterion, used to select physically admissible

shocks, is too difficult to be used systematically. The work of Olĕınik [39] identified a

simple criterion (which bears her name today) equivalent to the viscous profile criterion

in the restricted scope of scalar equations; this set of ideas was advanced independently

in the Engineering community, giving rise to the “Fractional Flow Theory”, see e.g. Lake

[27]. In the West, Liu [33], [34] was able to extend the work of Olĕınik to systems and
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override some of the difficulties imposed by loss of genuine nonlinearity. The equivalence

of the Liu criterion and the viscous profile criterion was established later in certain cases,

see Conlon [10] and Majda and Pego [35].

Loss of strict hyperbolicity is a more serious problem and history has shown that

the current results tend to be restricted to the particular models in question. An early

sign of difficulty is found in Isaacson et al. [25]. There the existence of transitional (or

undercompressive) waves was established: admissible shock waves in the sense of the

viscous profile that fail to be admissible under any other criterion. Their existence shows

that the Liu criterion may not always be adapted to non-stricly hyperbolic systems of

conservation laws.

The work of Isaacson, Marchesin, Plohr, and Temple [26] presented the Riemann

solution for immiscible three-phase flow, with equal viscosities. This particular case, full

of symmetries, is an insightful example of the complicated bifurcation pattern a Riemann

solution may possesses. This symmetry was broken in the work of de Souza [14], which let

one of the viscosities be slightly different from the others – opening the door to structural

stability of Riemann solutions resulting from changes in the flux function.

Structural stability for Riemann solutions with respect to their initial datum was

established in the beautiful and never-aging monograph by Furtado [19] and extended to

non-degenerate, non-stricly hyperbolic systems in Schecter et al. [44], [45]. The use of

the viscous profile criterion led to the profound observation that unstable dynamics in

the underlying EDOs, used to select admissible (transitional or undercompressive) shocks,

may lead to stable behavior in the PDEs. This work was pursued by Zumbrun and Howard

[54], [55] and others.

Closer to our work are thermal multiphase flow models in porous media. The typical

interest is the transport of hot fluids undergoing mass transfer between phases. The work

of Bruining et al. [7] brought the possibility of phase transitions to conservations laws

modeling multiphase flow. They solved the Riemann problem for water-steam injection

into a reservoir contaning water. This work was extended by Lambert et al. [30] who solved

the complete Riemann problem for the water-steam injection problem. An important part

of the general theory for thermal multiphase flow was established in Lambert [28], [29]

and [31].

Our work intends to address gas injection into a porous medium filled with a mixture

of oil and dissolved gas. Our main objective is the solution of the Riemann problem in the

neighborhood of two particular structures, namely a singular point as well as an interface

between different thermodynamical configurations; the latter differ in the number or type

of phases present. As in the case of previous works in thermal multiphase flow, we allow
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the fluids to be in different physical configurations, in a way that will be soon explained.

Those are the fundamental tools to construct the full Riemann solution in our case.

“Singular point” is a name usually given to points where strict hyperbolicity fails in an

egregious manner, greatly complicating the Riemann solution. Umbilic points [26] are a

known example of such points. Our case, however, is more similar to those found in the

works of de Souza and Marchesin [15], [16], with the remarkable difference that in our

model they are not related to linear degeneracy.

This thesis is structured as follows. In Chapter 2 we give an overview of the general

theory for systems of conservation laws arising in thermal multiphase flow in porous

media. We state the Riemann problem in this class and present definitions and facts

needed to properly describe the basic bifurcations in Riemann solutions. This chapter

is fundamental for understanding the material presented later. Even specialists in three-

phase flow theory should read it quickly to become aware of its subtleties. We warn the

non-specialist that this review is rather concise. Unfortunately, most of this material is

too new to be found in books.

Following [4], in Chapter 3 we present the model that describes the injection of a

mixture of gas and oil (in any proportions) into a porous medium filled with another

such mixture. Here, the oil is composed of two miscible components: a light alkane

(allowed to vaporize) and a dead alkane. This model allows the existence of fluids in

three thermodynamical configurations, namely: a single phase gas configuration, a two-

phase configuration and a single phase liquid configuration. The two-phase configuration

is the most complex and interesting of the three: it contains the singular points and

is intrinsically associated to most bifurcations in the Riemann solutions. The interface

between the two-phase region and the single-phase liquid region is the aforementioned

interface that plays a significant role in the Riemann solutions.

In Chapter 4 we focus on the two-phase region. We set and prove the basic results

needed in the chapters that follow. It includes basic wave structures, bifurcation results

and some remarkable properties of this class of problems. This chapter is crucial for

understanding the Riemann solutions.

In Chapter 5 we solve the Riemann problem in a neighborhood of the singular point

in the two-phase region. The structure responsible for “gas condensation” appears here.

Particularly interesting is the discovery of a very strong degeneracy: the Riemann solution

is given by a unique wave group in a full open set of Riemann data. Another interesting

result is a characterization of wave interactions induced by this singular point: changes

in one variable, namely the temperature, can greatly amplify the variation of the other

variable, namely the saturation.
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In Chapter 6 we state the basic results and definitions needed to describe the Riemann

solutions in the two-phase region together with the single-phase liquid region. Our main

motivation originates from a curious observation: it is not possible to solve the Riemann

problem for any pair of left and right states in the two-phase region using only waves

defined within the two-phase region. Nevertheless, it is still possible to find all Riemann

solutions if one is allowed to use waves from other thermodynamical configurations, in

addition to those defined inside the two-phase region. A similar statement holds for the

single phase liquid region.

We finalize this work in Chapter 7 describing this Riemann solution in a neighborhood

of the interface between the two-phase and the single-phase liquid regions.



Chapter 2

Preliminaries

In this chapter we review the relevant theory for systems that model multiphase flow in

porous media with mass interchange between phases. This theory is less than ten years

old and is far from complete.

2.1 General theory

We are interested in systems of conservation laws of the form:

∂tG(w) + ∂xuF (w) = 0, (2.1)

where (w, u) ∈ Ω × R are functions of one space variable and time, F,G : Ω 7→ Rn+1

are smooth maps and Ω is locally a n-dimensional Euclidean space, called state space.

The variable u is commonly associated to a speed and has a special role since it does not

appear in the accumulation term.

As it is widely known, see Dafermos [13], systems of conservation laws do not, gener-

ically, possess smooth solutions in the large. It is therefore necessary to look for a weak

solution, i.e., a pair (w, u) ∈ L∞(R× R+; Ω× R) that satisfies the integral relationship:

∫ +∞

0

∫ +∞

−∞

[G(w(x, t))∂tφ(x, t) + u(x, t)F (w(x, t))∂xφ(x, t)] dxdt = 0, (2.2)

for any smooth real valued function φ with compact support in R× (0,+∞), ignoring the

initial datum for convenience.

8
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2.1.1 Self-similar solutions

We focus on Equation (2.2). It is invariant under a uniform scaling of coordinates (x, t) 7→

(αx, αt), for any positive α; hence we expect it to admit self-similar solutions. These are

defined in the space-time half-plane and are constant along straight line rays emanating

from the origin.

If
(
w(x, t), u(x, t)

)
is a bounded weak self-similar solution of equation (2.2), it admits

the representation (with a small abuse of notation):

w(x, t) = w
(x
t

)
and u(x, t) = u

(x
t

)
, (2.3)

where now (w, u) is a pair of bounded measurable functions on the real line. In the new

variable ξ = x/t, equation (2.2) can be rewritten as (see Dafermos [13], which we follow):

∫ +∞

0

∫ +∞

−∞

[G(w(ξ)) t ∂tφ(ξt, t) + u(ξ)F (w(ξ)) t ∂xφ(ξt, t)] dξdt = 0. (2.4)

We set

η(ξ) =

∫ +∞

0

φ(ξt, t)dt, (2.5)

and after a little computation we get (the dot on η denotes the derivative of η with respect

to ξ):

∫ +∞

0

t∂xφ(ξt, t)dt = η̇(ξ) and

∫ +∞

0

t∂tφ(ξt, t)dt = −η(ξ)− ξη̇(ξ). (2.6)

Substituting equations (2.6) in equation (2.4) we get:

∫ +∞

−∞

{[u(ξ)F (w(ξ))− ξ G(w(ξ))] η̇(ξ)−G(w(ξ))η(ξ)}dξ = 0. (2.7)

Since equation (2.7) is satisfied by any η with compact support in the real line, it

states that the pair (w, u) must solve the ordinary differential equation

d

dξ
[u(ξ)F (w(ξ))− ξ G(w(ξ))] +G(w(ξ)) = 0, (2.8)

in the weak sense. The boundedness hypothesis on the weak solution gives in particular

that the function

H(ξ) = u(ξ)F (w(ξ))− ξ G(w(ξ)), (2.9)

is Lipschitz continuous.
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We first look at the jump discontinuities of (w, u), i.e., points of discontinuity of (w, u)

for which the lateral limits exist. For a ξ0 at which (w, u) has a jump discontinuity we

write the lateral limits as limξ↓ξ0 w(ξ) = w+, limξ↑ξ0 w(ξ) = w− (and similarly for u) and

use the continuity of H to obtain the Rankine-Hugoniot equation:

u+F (w+)− u−F (w−)− ξ0
(
G(w+)−G(w−)

)
= 0. (2.10)

When ξ is a point of differentiability of (w, u) we can proceed using the chain rule in

equation (2.8). After taking the derivatives we write the (n + 1) × (n + 1) matrix (here

the D stands for the derivative):

J(w, u; ξ) =
(
uDF (w)− ξDG(w), F (w)

)
. (2.11)

The functions DF,DG map the state space Ω into the space of linear transformations

from Rn to Rn+1. Equation (2.8) can finally be rewritten as (the superscript T denotes

matrix transposition):

J(w, u; ξ)
(
ẇ(ξ), u̇(ξ)

)T
= 0, (2.12)

which is a generalized eigenvector problem. The solutions of the generalized eigenvalue

problem:

det
(
J(w, u;λ)

)
= 0, (2.13)

are called characteristic speeds of the system (2.1), which we will suppose to be real

numbers. Notice that if we rewrite an eigenvalue as λ ≡ uλ̃ and substitute into equation

(2.13) we get (for non-zero u):

det
(
DF (w)− λ̃DG(w), F (w)

)
= 0. (2.14)

The Inverse Function Theorem guarantees that in a neighborhood of a point w0 ∈ Ω

where Equation (2.14) has distinct eigenvalues we can write the characteristic speeds, for

i = 1, . . . , n, as:

λi(w0, u) = uλ̃i(w0), (2.15)

and choose smooth fields of right and left eigenvectors ~ri(w, u), ~li(w, u), for i = 1, . . . n:

J(w, u;λi)~ri(w, u) = 0 and ~li(w, u)J(w, u;λi) = 0, (2.16)

where ~ri(w, u) is a column vector and ~li(w, u) is a row vector. In fact, equation (2.11)

together with (2.15) says a bit more about left eigenvectors since we can rewrite (2.16b)
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as:
~li(w, u)

(
uDF (w)− uλ̃i(w0)DG(w), F (w)

)
= 0, (2.17)

where the quantity u factors out and we readily get:

~li(w, u) ≡ ~li(w). (2.18)

A similar computation shows that right eigenvectors are written:

~ri(w, u) ≡
(
r1(w), · · · , rn(w), u rn+1(w)

)
. (2.19)

In classical theory of conservation laws a fundamental observation is that in these

conditions we can solve Equation (2.12) by setting:

(
ẇ(ξ), u̇(ξ)

)T
= ~ri(w(ξ), u(ξ)), (2.20)

for some i = 1, . . . , dim(Ω), if we can find a parametrization ξ for which:

ξ = λi(w(ξ), u(ξ)). (2.21)

A sufficient condition to do this is to look at points in the state space where

∇λi(w, u) · ~ri(w, u) 6= 0, (2.22)

(where ∇ stands for differentiation) which after a suitable normalization of the right

eigenvector reads:

∇λi(w, u) · ~ri(w, u) = 1. (2.23)

Now condition (2.21) can be easily fulfilled: it suffices to combine Equations (2.23)

and (2.20) to get
d

dξ
λi(w(ξ), u(ξ)) = 1, (2.24)

and (2.21) follows by choosing ξ0 = λi(w(ξ0), u(ξ0)). These observations were first made

precise by Lax in his seminal work [32] in the context of isentropic gas dynamics and here

we follow suit.

Definition 2.1 The system (2.1) is said to be strictly hyperbolic at states w ∈ Ω if

the generalized eigenvalue problem

det
(
DF (w)− λ̃DG(w), F (w)

)
= 0.
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has n real distinct eigenvalues.

Remark 2.2 We stress out that the variable u plays no role in concerning hyperbolicity.

This should be expected since it is not an evolutionary quantity.

Definition 2.3 The state w ∈ Ω is said to be a point of genuine nonlinearity for the

ith family of the system (2.1) if

∇λi(w, u) · ~ri(w, u) 6= 0.

Remark 2.4 Genuine nonlinearity express monotonicity across a solution. Intuitively

its role is to generate compression and rarefaction waves. The former renders slopes of

the solution steeper, while the latter renders the slopes of the solutions gentler.

2.2 The Riemann problem

We have so far deduced what would happen if we have a self-similar solution of equation

(2.2). Of course, a very good candidate for self-similar solution is a profile with self-

similar initial datum. In one spatial dimension, this initial profile must consist of distinct

constant states at left and right of a jump discontinuity at the x = 0.

Definition 2.5 The Riemann problem for equation (2.2) is the initial value problem with

self-similar initial data:

w(x, 0) =

{
wL, if x < 0,

wR, if x > 0,

and

u(x, 0) = uL, if x < 0,

where wR,wL ∈ Ω and uL ∈ R+ are constants.

Remark 2.6 A crucial observation is that the Riemann problem for Equation (2.2) is

not an initial value problem in the variable u. We can, indistinguishably, give its left

or right value but not both. We will came back to this issue latter, but refer the reader

to Lambert and Marchesin [29] for an early observation of this fact.

Following our discussion above we shall seek a solution of the Riemann problem in the

form (2.3), where (w, u) satisfies the ordinary differential equation (2.8) in the parameter
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ξ ∈ R, together with the boundary values:

lim
ξ→−∞

w(ξ) = wL, lim
ξ→+∞

w(ξ) = wR, and lim
ξ→−∞

u(ξ) = uL. (2.25)

Such solutions, called Riemann solutions, play a privileged role among the full set of

solutions for general Cauchy problems. The fundamental result in this direction is due to

Glimm [22] who showed how one can use the Riemann solution to construct the Cauchy

solution in the large (for a genuinely nonlinear system of conservation laws) when the

initial data have small variation. The same question posed in the case of more general

systems remains open today. The Riemann solution is also very important as a tool to

validate numerical algorithms. Due to its constructive character, the Riemann solution is

a very useful tool to validate complex numerical simulators.

A Riemann solution is a concatenation of constant states and elementary waves, i.e.,

centered rarefaction waves and centered shock waves (discontinuous solutions).

2.2.1 Shock waves

In the previous section it was shown that only certain discontinuous solutions can satisfy

the self-similarity hypothesis. These are called the centered shock waves.

Definition 2.7 A centered shock wave of speed σ connecting the pairs (w+, u+), (w−, u−)

is a jump discontinuity that satisfies the Rankine-Hugoniot Equation (2.10):

u+F (w+)− u−F (w−)− σ
(
G(w+)−G(w−)

)
= 0.

Remark 2.8 Notice that the Rankine-Hugoniot Equation (2.10) expresses that the vectors

F (w+), F (w−), and
(
G(w+)−G(w−)

)
,

are linearly dependent. If we require the non-degeneracy hypothesis that they are not

collinear then any pair (w+,w−) that solves equation (2.10) for a triple (u+, u−, σ) will

actually solve it for a one parameter family of triples. Once u− is given, the pair (u+, σ)

can be written as:

u+ = u− u+
1 and σ = u− σ1, (2.26)

where u+
1 and σ1 are reference values when u− = 1.

Typically, our interest is to fix an initial state (w−, u−) and ask which is the locus of

states (w+, u+) that satisfy the Rankine-Hugoniot equation. To this end we define the
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Hugoniot function, Hw− : Ω× R+ × R → Rn+1, as:

Hw−(w+, u+, σ) = u+F (w+)− F (w−)− σ
(
G(w+)−G(w−)

)
, (2.27)

and by Remark 2.8 it is sufficient to consider the case u− = 1, since u+ = u− · u+
1 for any

u− > 0. The Hugoniot locus of state w− is the projection of the zero set:

{
(w+, u+, σ) ∈ Ω× R+× R | Hw−(w+, u+, σ) = 0

}
, (2.28)

into Ω×R+ and we will write it as H(w−), recall that u− = 1 (nevertheless, there will be

a couple of occasions where we will write H(w−, u−) to select the exact Hugoniot locus

passing through u−). Very often it will be convenient to use the projection into state

space Ω, which we will still call Hugoniot locus. In fact, it can be shown that both sets

are in correspondence.

Away from the base point w−, the Hugoniot locus is typically a smooth curve. If the

base point is a point of strict hyperbolicity the Hugoniot locus bifurcates into n branches

(where we recall that n is the dimension of the state space Ω), see Dafermos [13] and

Lambert [28]. If strict hyperbolicity fails this may not hold.

When verifying wave admissibility, it is necessary to calculate both the shock speed

and the Darcy speed u+ explicitly. Using Equation (2.10) this can be done by any two of

the following equations:





u+
(
F+
k [Gj]− F+

j [Gk]
)

= u−
(
F−
k [Gj ]− F−

j [Gk]
)
,

σ
(
[Gk]F

+
j − [Gj ]F

+
k

)
= u−

(
F−
j F+

k − F−
k F+

j

)
,

σ
(
[Gk]F

−
j − [Gj ]F

−
k

)
= u+

(
F−
j F+

k − F−
k F+

j

)
,

(2.29)

where 1 ≤ j, k ≤ n, j 6= k, G = (G1, · · · , Gk, · · · , Gn+1), [Gk] = G+
k −G−

k and w+ is given.

According to the situation, it may be more useful to make the shock speed an explicit

function of u− or u+. To shorten the notation, we will write sometimes P− = (w−, u−),

P+ = (w+, u+) and define:

σ(P−;P+) ≡ σ(w−, u−;w+, u+). (2.30)

Wherever an Equation such as (2.30) is written it is implicit that the pairs (w−, u−) and

(w+, u+) satisfy the Rankine-Hugoniot relationship (2.10).
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Remark 2.9 Equation (2.29) shows explicitly that when calculating the shock speed the

Darcy speed can only be given at one side of the discontinuity. Also, if we only need to

draw the Hugoniot locus in Ω we may ignore u− and u+.

2.2.2 Rarefaction waves

We now focus on smooth self-similar solutions.

Definition 2.10 A centered rarefaction curve of the ith family emanating from (w0, u0)

is the maximal subset in the image of the solution of the Ordinary Differential Equation

(2.20):

{ (
ẇ(ξ), u̇(ξ)

)T
= ~ri(w(ξ), u(ξ)),

(w(ξ0), u(ξ0)) = (w0, u0),

such that the parametrization:

ξ 7→ λi(w(ξ), u(ξ)), ξ ≥ ξ0,

is monotonically increasing.

In the previous Section we constructed this parametrization in the classical case of

genuine non-linearity. A more general approach where genuine nonlinearity may fail in a

special co-dimension one manifold can be found in Azevedo et al. [1] 1and more references

in book Dafermos [13].

Equation (2.19) allows us to compute u explicitly in terms of w in a rarefaction as:

u(ξ) = u0 exp

{∫ ξ

ξ0

rn+1(w(s))ds

}
, (2.31)

so that, as was seen for shocks, rarefactions can also be completely described in terms of

a reference velocity u0 = 1.

2.2.3 Admissibility criteria

The most basic principle when constructing a Riemann solution is that the wave speeds

increase from left to right so that all wave interaction are resolved at the initial time,

a fact we will call the monotonicity principle. However, discontinuous solutions pose

1On reference [1], the sentence below Equation (10): [Upon replacing η by x/t...] should read [Upon
replacing η by η(x/t)...].
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an extra difficulty since they can give rise to multiple Riemann solutions. The problem

of admissibility ultimately imposes that the solution candidates satisfy a more accurate

physical relation than the one described by first order hyperbolic equations of conservation

laws themselves.

One early criterion is the Lax criterion. It was introduced to deal with weak shocks

in genuinely nonlinear, strictly hyperbolic systems – particularly Euler equations for gas

dynamics, from which much of the common nomenclature in use in mathematics today

was borrowed. The Lax criterion states that from the point of view of the shock (traveling

with a certain speed), the characteristics ahead of it are slower while the characteristics

behind it are faster. In our case, it states that there is an index i, 1 ≤ i ≤ n such that

the speed of a shock from point P− = (w−, u−) to point P+ = (w+, u+) (both in Ω×R+)

satisfies:

λi(P
−) > σ(P−;P+) > λi(P

+), (2.32)

as well as other inequalities. The Lax criterion was later extended allowing one of the

inequalities in Equation (2.32) to be an equality.

Lax criterion lets us use the characteristic speeds to name some socks. We are led to

the very useful concept of wave family.

Definition 2.11 (Wave family). Let P−, P+ ∈ Ω × R+ be such that there exists an

elementary wave, i.e., a centered rarefaction wave or a centered shock wave, joining then.

Rarefaction: This elementary wave is said to be a rarefaction of the ith family if there

exists i, 1 ≤ i ≤ n such that Definition 2.10 is satisfied.

Shock: This elementary wave is said to be a shock of the ith family if Definition 2.7 is

satisfied together with the relation:

λi(P
−) ≥ σ(P−;P+) ≥ λi(P

+),

where only one of the inequalities is allowed to become an equality.

Remark 2.12 We will often refer to a wave of the ith characteristic family as an i-wave.

Usually families are defined by placing their characteristic speeds in increasing order,

so that when constructing the Riemann solution that involve only Lax shocks, the mono-

tonicity principle is trivially satisfied. In our class of problems this is not possible: the

relative order of the characteristic speeds may change when w wanders around in state

space Ω. Nevertheless, the concept of fast and slow wave still makes sense and is still

needed to satisfy the monotonicity principle.
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In this work we will have n ≤ 2 so that we can follow the particular nomenclature:

Definition 2.13 Let P−, P+ ∈ Ω × R+, dim(Ω) = 2, be a pair of points joined by a

centered shock wave of the ith family. Call the other family “k”. It is a:

• Slow Lax shock, if:

λk(P
−) ≥ σ(P−;P+), and λk(P

+) ≥ σ(P−;P+).

• Fast Lax shock, if:

λk(P
−) ≤ σ(P−;P+), and λk(P

+) ≤ σ(P−;P+).

In each case only one of the inequalities is allowed to become an equality.

This is still not sufficient to ensure uniqueness in the Riemann solution: sometimes the

Lax criterion becomes so stringent that it disallows any solution, other times it becomes

insufficient. A way to extend the Lax criterion is to observe that Equation (2.1) is a first

order approximation and often a better approximation to a model would look like:

∂tG(w) + ∂xuF (w) = ǫ∂x (D∂xw) , (2.33)

where the matrix D is typically positive definite and ǫ is small. A traveling wave solution,

with speed σ, is a bounded solution (w(η), u(η)), η = x − σt, of System (2.33). When

we let ǫ go to zero we should recover an admissible shock for system (2.1), so that the

problem of finding if the shock between a pair of points P−, P+ ∈ Ω × R+ is admissible

can be transformed into the problem of finding a traveling wave satisfying:





ǫD
d

dη
w = uF (w)− σG(w)−

(
u−F (w−)− σG(w−)

)
,

(w(−∞), u(−∞)) = P− and (w(+∞), u(+∞)) = P+.

(2.34)

An admissible shock found in this way is said to possess a viscous profile, see Gel′fand

[20], and the processes of finding the admissible shocks by looking for traveling wave

solutions of Equation (2.33) is called the viscous profile criterion. One can see that

the original Lax slow and fast shocks lead to repellor to saddle and saddle to attractor

solutions, when the hypotheses of the Lax criterion hold.

Unfortunately the viscous profile criterion is very difficult to be applied thoroughly.

In the scalar case Olĕınik [39] showed that the viscous profile criterion is equivalent to a
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simpler criterion, which bears her name. Later, Liu [34] extended the Olĕınik criterion to

certain systems. To properly state the Liu criterion we recall that for a pair P−, P+ ∈

Ω × R+, P+ ∈ H(P−) the Hugoniot locus is typically a smooth curve. It is well known

that we can find a neighborhood of P− such that the ith branch of the Hugoniot locus

can be parametrized:

ζ 7→ P ζ = (w(ζ), u(ζ)) ∈ H(P−), ζ ∈ [0, ζ0], (2.35)

in a way that σ(P−;P ζ) is monotone decreasing.

Definition 2.14 (Liu criterion). Let P−, P+ ∈ Ω × R+ be such that P+ ∈ H(P−) and

the parametrization (2.35) satisfies P 0 = P− and P ζ0 = P+. The centered shock wave

from P− to P+ satisfies the Liu criterion if:

σ(P−;P+) ≤ σ(P−;P ζ), ∀ζ ∈ [0, ζ0]. (2.36)

Remark 2.15 By its very design, the Liu criterion makes sense only in the context of

shocks joining states in the same connected component of the Hugoniot locus. In this work

this is always the case.

The Liu and the viscous profile admissibility criteria are strongly interrelated but not

quite equivalent and a comprehensive discussion can be found in Dafermos [13]. However,

if we confine ourselves to shocks of moderate strength in systems where any pair of points

satisfying (2.10) can be connected by a local branch of the Hugoniot locus we may use

Liu’s criterion. For certain cases, equivalence of the Liu and the viscous profile criteria is

discussed in Conlon [10]. See also the work of Majda and Pego [35]. For strong shocks

or general non strictly hyperbolic systems of conservation laws each case must be treated

individually. In our class, the Liu criterion turns out to be an excellent compromise.

2.2.4 Wave groups and nomenclature

Throughout this section we will assume that there are exactly two distinct families. We

introduce the notation (wl, ul)
w
−→ (wr, ur) to express the fact that (wl, ul) is connected

to (wr, ur) (on the right) by an elementary wave of type w. The elementary wave types,

are denoted as follows:

• Rp
i : p rarefaction of the i-family;

• Sp
i : p shock of the i-family.
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In this work, “p” will typically refer to fast (Sf
i , Rf

i ) and slow (Ss
i , Rs

i ) i-waves.

Concrete examples are the Buckley-Leverett or Evaporation family waves, to be defined in

the two-phase region, see Chapter 4. However, there will be times when both inequalities

in Definition 2.13 will become equalities: this shock will be called a double-contact of the

i-family and the elementary wave will be denoted as Sd
i . Elementary Riemann solutions

for which the i-characteristic field satisfies:

∇λi(w, u) · ~ri(w, u) = 0, (2.37)

identically, are usually called genuine contact discontinuities of the i-family and will be

denoted as Ci.

Remark 2.16 Of course, the purpose of the nomenclature “fast and a slow rarefaction”

is to remind that the relative size of characteristic speeds change.

Elementary waves can get away from each other creating constant states or move

together as a single entity.

Definition 2.17 (Wave group). A wave group is a self-similar solution of the Riemann

problem 2.5, with no embedded sectors of constant states. The number, type and arrange-

ment of the elementary waves in the wave group determine the wave group type.

Since in our class of systems strict hyperbolicity typically does not hold, it is not

possible to associate to all wave groups a well defined characteristic family. However,

most wave groups can still be distinguished by their relative speed, for example as a fast

wave group or as a slow wave group.

Definition 2.18 (p-wave group). We define the succession of elementary waves:

(wl, ul) → · · · → (wr, ur), (2.38)

to be a p-wave group if it is a wave group and all waves satisfy the same property “p”:

they are fast, slow or belong to the i-family.

Definition 2.19 Denote by (w, u) a p-wave group. We define, for ξ = x/t:

• Its initial state as:

(wl, ul) = lim
ξ↓−∞

(w(ξ), u(ξ)).
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• Its final state as:

(wr, ur) = lim
ξ↑+∞

(w(ξ), u(ξ)).

Definition 2.20 (Forward p-wave curve). We define the forward p-wave curve based on(
wl, ul

)
∈ Ω×R+, denoted Wp

+

(
wl, ul

)
, to be the projection into state space of the p-wave

group that has a fixed initial state (wl, ul).

Definition 2.21 (Backward p-wave curve). We define the backward p-wave curve based

on (wr, ur) ∈ Ω × R+, denoted Wp
−(w

r, ur), to be the projection into state space of the

p-wave group that has a fixed final state (wr, ur).

Genuine constant states will be denoted by capital, bold, roman letters, like M. In-

termediate states in wave groups, which do not appear as regions in the wave profile, will

additionally possess a hat, like M̂.

2.3 Bifurcation manifolds

In the general situation there are sets in state space that play a fundamental role in the

construction of Riemann solutions. We will describe them briefly, just to motivate their

definitions. More details can be found in Furtado [19]. Many of them can be written as

the zero sets of certain functions so that it is commonplace to call them manifolds.

Remark 2.22 The boundary of the state space is a potential source of trouble: the main

tool to characterize the bifurcation loci is the inverse function theorem, the usefulness of

which may diminish if we only have a lateral derivative defined. We write:

Ω = Ω̊ ∪ ∂Ω, (2.39)

where Ω̊ is the interior and ∂Ω is the boundary of the state space. When needed, the

boundary will be treated individually.

2.3.1 Coincidence locus

The coincidence locus is the set where strict hyperbolicity is lost. It is, typically, respon-

sible for bifurcations in the behavior of both shock and rarefaction curves.

We recall Definition 2.1 before writing:

Definition 2.23 The coincidence locus between two families is the set:

Ci,j = { w ∈ Ω̊ | λ̃i(w) = λ̃j(w), 1 ≤ i, j ≤ n and i 6= j }.
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Remark 2.24 In this work there will be only one coincidence locus (which possesses two

connected components in our case).

2.3.2 Inflection locus

Points in the inflection locus are those where genuine nonlinearity is lost. Generically,

the eigenvalue does not vary monotonically along a corresponding integral curve near an

inflection point. Thus rarefaction curves stop at this locus.

From Definition 2.3 and recalling Equations (2.15) and (2.19) we find:

Definition 2.25 The inflection locus of the ith family is the set:

Ii =

{
w ∈ Ω̊

∣∣∣
∑

1≤k≤n

∂kλ̃i(w)rki (w) + λ̃i(w)rn+1
i (w) = 0

}
.

Here we used rki , 1 ≤ k ≤ n+1, for the kth component of the ith family eigenvector ~ri.

2.3.3 Self-intersection and secondary bifurcation loci

The Hugoniot locus based in w− ∈ Ω is generically a smooth curve, away from w−. If

we can find a state w+ 6= w−, such that w+ ∈ H(w−) and the Hugoniot locus is not

a smooth curve in any neighborhood of w+ then the Jacobian of the Hugoniot function

(2.27) cannot have maximal rank at this point. We write its differential:

dHw−(w+, u+, σ) =
(
u+DF (w+)− σDG(w+)

)
dw+ + F (w+) du+

−
(
G(w+)−G(w−)

)
dσ,

(2.40)

and, by recalling Equations (2.13) and (2.18), we can see that dHw−(w+, u+, σ) will not

have maximal rank if the following identities hold:

σ = λi(w
+, u+) and ~li(w

+)(G(w+)−G(w−)) = 0, 1 ≤ i ≤ n. (2.41)

Commonly, the Hugoniot locus fails to be a smooth curve at points where it self-

intersects, which is our case. Before defining the self-intersection locus we need some

preparation. First we will rewrite the Hugoniot function to make explicit its dependence

on the state w−:

H(w−,w+, u+, σ) = u+F (w+)− F (w−)− σ
(
G(w+)−G(w−)

)
. (2.42)
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We define the set:

∆ = {(w−,w+, u+) ∈ Ω̊× Ω̊× R+ | w− = w+}, (2.43)

and write:

D = Ω̊× Ω̊× R \∆. (2.44)

We want to define the self-intersection locus as the zero set of a smooth function; to

this end we fix a family 1 ≤ i ≤ n and motivated by (2.41) we write:

F(i) : D → Rn+2, (w−,w+, u+) 7→
(
H(w−,w+, u+, λi(w

+, u+)), ~li(w
+)[G]

)
, (2.45)

where [G] = G(w+)−G(w−).

Definition 2.26 The self-intersection locus of the ith family is the set:

Ai =
{
(w−,w+, u+) ∈ D | F(i)(w

−,w+, u+) = 0
}
.

A related and very important locus is the one that encodes the change in the topology

of the shock curves. It is called the secondary bifurcation locus, since in the three-phase

flow models where it was observed first (see Isaacson et al. [26]), it happens to be exactly

the same as the set where the Hugoniot locus has a second self-intersection (the primary

self-intersection always occur at the base state w−). We call it the secondary bifurcation

of the ith family as Bi. In our class it satisfies:

Bi ( Ai, (2.46)

where the symbol ( means proper inclusion and Ai is the closure of the self-intersection

locus of the ith family.

Remark 2.27 We will see that in the particular case of the secondary bifurcation we need

to consider the boundary of Ω, because otherwise, it would be empty.

2.3.4 Double contact locus

We define a two-sided (or double) contact discontinuity to be a solution (w−, u−;w+, u+)

of the Rankine-Hugoniot relation (2.10) such that a characteristic speed for (w−, u−) co-

incides with the shock speed σ(w−, u−;w+, u+), as well as with the another characteristic

speed for (w+, u+). By Remark 2.8 we only need to consider the reference speed u− = 1.
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Definition 2.28 The double contact locus between the jth and kth families is the set:

Dj,k =
{
(w−,w+, u+) ∈ D | (w+, u+) ∈ H(w−) and λ+

k = σ = λ−
j

}
,

where

λ+
k = λk(w

+, u+), σ = σ(w−, u−;w+, u+) and λ−
j = λj(w

−, 1).

2.3.5 Extension locus

We can concatenate elementary waves together wherever the shock speed equals a charac-

teristic speed of the base state. This is particularly useful and, after fixing the notation:

λ+
i = λi(w

+, u+), σ = σ(w−, u−;w+, u+), and λ−
i = λi(w

−, u−), (2.47)

leads to the definition:

Definition 2.29 (Extension locus of a point.) We write the right extension locus of the

point (w−, u−) in the ith family as:

E+
i (w

−, u−) =
{
(w+, u+) ∈ Ω̊× R+ | (w+, u+) ∈ H(w−, u−) and σ = λ+

i

}
,

and the left extension locus of the point (w−, u−) in the ith family as:

E−
i (w

−, u−) =
{
(w+, u+) ∈ Ω̊× R+ | (w+, u+) ∈ H(w−, u−) and σ = λ−

i

}
.

Remark 2.30 Often the extension of a point consists of several points.

A natural “extension” of the previous definition is:

Definition 2.31 (Extension locus of a curve.) Let γ be a curve in Ω̊ × R+. Its right

extension locus in the ith family is:

E+
i (γ) =

{
(w+, u+) ∈ Ω̊× R+ | ∃(w−, u−) ∈ γ; (w+, u+) ∈ H(w−, u−) and σ = λ+

i

}
,

and its left extension locus in the ith family is:

E−
i (γ) =

{
(w+, u+) ∈ Ω̊× R+ | ∃(w−, u−) ∈ γ; (w+, u+) ∈ H(w−, u−) and σ = λ−

i

}
.
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2.4 On notation

Following Smoller [46] we will use four derivative notations along this work: D, ∇, ′ and

a superimposed dot ( ˙ ). In what follows the respective functions are smooth and U is an

open set.

If we have a function F : U ⊂ Rn → Rm where n,m > 1 then we will write its

derivative (Jacobian) as:

w 7→ DF (w) ∈ Rnm, n,m > 1.

If we have a real valued function f : U ⊂ Rn → R with n > 1 then we will write its

derivative (gradient) as:

w 7→ ∇f(w) ∈ Rn, n > 1.

If we have a real valued function of the real line f : U ⊂ R → R then we will write its

derivative as:

ξ 7→ f ′(ξ) ∈ R.

Finally, if the derivative is with respect to “time” or if we have a parametrization

(function) from the real line to some Rm with m > 1, x : U ⊂ R → Rm, then we will

write the derivative of this parametrization as:

ξ 7→ ẋ(ξ) ∈ Rm, m > 1.



Chapter 3

Physical model

In this chapter we motivate the equations of our model following broadly the work of

Bruining and Marchesin [4].

3.1 Flow of fluids and qualitative behavior

We consider the injection of gaseous volatile oil into a cylindrical horizontal core with

constant porosity and absolute permeability. The core is originally filled with oil. The oil

consists of a mixture of dead oil and volatile oil.

Physical quantities are evaluated at a representative pressure throughout the core; we

assume that pressure variations are negligible compared to the prevailing pressure. Ther-

mal expansion of the liquid will be disregarded. All fluids are considered incompressible.

We assume Darcy’s law for two-phase flow. The tube diameter is considered sufficiently

small so that gravity segregation does not occur and temperature is homogeneous radially.

3.2 Thermodynamic fundamentals

Let us describe the phase behavior. We always assume that there is local thermodynamic

equilibrium. Our interest is confined to situations where we have: (1) two phases, i.e.

oleic (or liquid) (o) and gaseous (g) and (2) one phase, i.e. oleic or gaseous. There are

two components viz. volatile oil (v) and dead oil (d). We define dead oil as an oil with

zero vapor pressure, which can only exist in liquid form, and volatile oil as an oil with

nonzero vapor pressure.

We use the following convention for subscripts: the first subscript (o, g) refers to the

phase, the second subscript (v, d) refers to the component. With these conventions the
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concentration [kg/m3] of (dead) volatile oil in the oleic phase is denoted as (ρod) ρov. The

pure phase densities of liquid volatile oil and liquid dead oil are denoted as ρV and ρD

respectively. The pure phase densities of volatile oil vapor is denoted by ρgV .

Gibbs’ phase rule

f = c− p+ 2, (3.1)

dictates the number of degrees of freedom (f) for the thermodynamic variables given the

number of phases (p) and the number of components (c). In the two phase zone we have

two phases (p = 2) and two components (c = 2), which gives f = 2, so we have the two

concentrations as functions of the temperature and the pressure. As in this model the

pressure at which the displacement is conducted is fixed, we have that all concentrations

are functions of the temperature only.

In the single phase liquid zone we have one phase and two components, which gives

three degrees of freedom: the temperature, the pressure (fixed) and the concentration of

dead oil in the liquid. By assumption, the single phase gas zone has only one chemical

component: again the main variable is the temperature.

We disregard any heat of mixing between volatile oil and dead oil. Moreover we

disregard any volume contraction effects resulting from mixing. For ideal fluids we can

write
ρov
ρV

+
ρod
ρD

= 1. (3.2)

The pure liquid densities ρV , ρD [kg/m3] are considered to be independent of temperature,

and the pure vapor density is considered to obey the ideal gas law, i.e., ρgV = MV P/RT ,

where MV denote the molar weight of volatile oil. P is (the fixed) pressure and the gas

constant is R = 8.31[J/mol/K].

3.2.1 Two-phase behavior

Since the concentrations are functions of the temperature in the two-phase region we need

to equate this dependence. We will use a simple model derived from basic principles (in

opposition to a model which fits experimental data). From the engineering point of view,

the model is sufficiently accurate in the regimes for which we propose its use.

We assume that the volatile oil vapor pressure Pv is determined by the Clausius-

Clapeyron law together with Raoult’s law (see Moore [37]), which states that the vapor

pressure of volatile oil is equal to its pure vapor pressure times the equilibrium mole
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fraction xeq
ov of volatile oil in the liquid oleic phase. Therefore we obtain:

Pv (T ) = xeq
ovP

ref exp

(
−MVΛV

(
T V
b

)

R

(
1

T
−

1

T V
b

))
, (3.3)

where T V
b is the normal boiling temperature of volatile oil at P ref , a reference pressure;

ΛV

(
T V
b

)
is the evaporation heat of pure volatile oil at the normal boiling temperature T V

b

of volatile oil and MV is the molar weight of volatile oil. Furthermore we assume that the

total pressure is the volatile oil vapor pressure, i.e. P tot = Pv. All these thermodynamical

constants are given in Table A.1.

Finally we need to derive an equation that relates the oleic phase densities to the mole

fractions. From the definition of the mole fraction (moles volatile oil / total moles):

xov =
ρov/MV

ρov/MV + ρod/MD

, (3.4)

where MD is the molar weight of the dead oil. The light oil mole fraction and the dead

oil mole fraction, in the oil, must add to one:

xov + xod = 1, (3.5)

so combining equation (3.4) with the first ideal mixing rule (3.2) we find after some

algebraic manipulations:

ρov =
xovρDρV MV

xovρDMV + xodρV MD

, ρod =
xodρDρVMD

xovρDMV + xodρVMD

. (3.6)

The pure phase densities (ρV , ρD) and molar weights (MV ,MD) are given in Table A.1.

Temperature dependent quantities such as the evaporation heat of volatile oil (ΛV

(
T V
b

)
)

are given in Appendix A.1.

Remark 3.1 Equations (3.6) express that the set of molar fractions are mapped in a

one to one way onto the set of concentrations, i.e., xoα 7→ ρoα(xoα), α ∈ {v, d} is a

diffeomorphism. Since the concentrations (ρov, ρod) are the quantities that appear naturally

in the conservation laws, they are best suited to be used as variables to solve the Riemann

problem. However, to represent the state space and draw pictures it is more convenient to

use the molar concentrations (xov, xod) as they always take values between 0 and 1.
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3.3 Darcy’s law for two-phase flow

When dealing with multi-phase flow in porous media it is commom place to use the concept

of saturation: the fraction of one of the fluids in the pores averaged over a representative

elementary volume. We write sg for the gas saturation and so for the oil saturation. The

rock is filled with a mixture of oil and gas, i.e.:

sg + so = 1. (3.7)

Following the Corey model [11], we take very particular gas and oil relative perme-

abilities (which we denote by krg and kro respectively), which are quadratic functions of

the saturations alone:

krg = s2g, and kro = s2o. (3.8)

The capillary pressure between the phases is also a function of the saturations: it is

assumed (see Aziz [2]) that the gas-oil capillary pressure pg − po = pc,go(sg) depends on

the gas saturation.

In the absence of gravity terms Darcy’s law for multiphase flow reads:





uo =
kkro
µo

∂po
∂x

= λo

∂po
∂x

,

ug =
kkrg
µg

∂pg
∂x

= λg

∂pg
∂x

,

(3.9)

where the viscosities µα, α ∈ {o, g} are functions of the temperature and the composition,

see Appendix A.1, the porous rock permeability is given in Table A.1 and λα, α ∈ {o, g}

stands for mobilities. It is possible to express all phase velocities uα in terms of the total

velocity u:

u = ug + uo, (3.10)

and the capillary pressure:





uo = ufo + λgfo
∂pc,go
∂x

,

ug = ufg − λofg
∂pc,go
∂x

,

(3.11)
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where the fractional flow functions fα are defined as:

fα =
λα

λo + λg

, for α ∈ {g, o}, (3.12)

and, of course, λgfo = λofg.

Remark 3.2 The fractional flow function is smooth (in all variables), non-negative,

monotonically increasing function of the saturations with range in the [0, 1] interval. Its

derivative vanishes for states at pure oil saturation or at pure gas saturation and has a

single, non-degenerate, global maximum.

The expression for pc,go will not be used (directly) in this work, but we remark that

after using the chain rule, we can write:

Dgo = λofg
dpc,go
dsg

, (3.13)

where Dgo is non-negative (the subscript stands as a reminder of its functional depen-

dence). The final form of equations (3.11) is:





uo = ufo −Dgo

∂so
∂x

,

ug = ufg −Dgo

∂sg
∂x

.

(3.14)

Notice the change of sign in equation (3.14a) relative to (3.11a), which is due to the use

of equation (3.7).

3.4 Balance equations

Systems of form (2.1) are a prototype for multiphase flow in porous media with mass

transfer between different phases. In this thesis we are only concerned with physical

mechanisms of mass transfer: evaporation and condensation, both “reversible” in nature

(in opposition to chemical mechanisms like combustion).

Our main interest is not the balance laws themselves but the conservation laws which

we can derive from them when we allow the source terms to relax towards their equilibria.

In the approach we follow we do not need the precise form of the source terms: only its

qualitative behavior in the thermodynamical equilibrium.
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Typically, conservation laws arise as first order approximations to more complicate

dynamics. Very often they do not suffice to select a physically meaningful solution, indeed.

The mathematical selection criterion is called entropy condition and a very sensible one

is to consider a better approximation (of the complicated dynamics), which here is a

convection-diffusion equation – and finally look for the solutions of the conservation laws

that can be realized as traveling waves of the convection-diffusion system. This reasoning

is part of the motivation of our adoption of the Liu entropy criterion, see discussion in

Subsection 2.2.3. In what follows we will derive the convection-diffusion model for the

sake of completeness, however they will not be used in the current work.

3.4.1 Mass balance equations

The balance of mass of each component in each phase is given by the following equations,

which express volatile oil mass balance in the gaseous phase, volatile oil mass balance in

the liquid phase and the dead oil mass conservation in the liquid phase (remember that

by assumption there is no dead oil in the vapor phase):





∂

∂t
(ϕρovso) +

∂

∂x
(ρovuo) = +qg→o,v,

∂

∂t
(ϕρgV sg) +

∂

∂x
(ρgV ug) = −qg→o,v,

∂

∂t
(ϕρodso) +

∂

∂x
(ρoduo) = 0.

(3.15)

The concentrations of dead and volatile oil in the liquid are related by equation (3.2),

which states the ideal mixing rule. The gaseous phase is pure volatile alkane vapor, thus

the gas density is ρgV in equation (3.15b). The source term qg→o,v is the volatile vapor

condensation rate: it denotes the mass transfer of volatile oil from the gaseous to the

liquid phase. Of course the rock porosity is denoted by ϕ and is assumed constant.

Combining equations (3.11) with the system (3.15) we can write the mass balance

equations in terms of the total Darcy speed and the fractional flow functions:
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ϕ
∂

∂t
(ρovso) +

∂

∂x
(ρovufo) = +qg→o,v +

∂

∂x

(
ρovDgo

∂so
∂x

)
,

ϕ
∂

∂t
(ρgV sg) +

∂

∂x
(ρgV ufg) = −qg→o,v +

∂

∂x

(
ρgV Dgo

∂sg
∂x

)
,

ϕ
∂

∂t
(ρodso) +

∂

∂x
(ρodufo) =

∂

∂x

(
ρodDgo

∂so
∂x

)
.

(3.16)

3.4.2 Energy balance equations

The conservation of energy in terms of enthalpy is given as:

∂

∂t

(
Hr + ϕ(soHo + sgHg)

)
+

∂

∂x

(
uoHo + ugHg

)
=

∂

∂x

(
κ
∂

∂x
T

)
, (3.17)

where capital H is used as a nomenclature for enthalpies per unit volume, κ is the effec-

tive coefficient of the heat conductivity term and T is temperature. Mixing effects are

disregarded. The oleic and gaseous enthalpies are given as:

Ho = ρovhoV + ρodhoD, Hg = ρgV hgV . (3.18)

The enthalpies h are all per unit mass and depend on temperature (see Appendix A.1).

The enthalpy of volatile oil in the gaseous phase is hgV . Furthermore hoV and hoD are the

enthalpies of liquid volatile oil and dead oil. Rock enthalpy Hr is a function of temperature

only. Following Bruining and Marchesin [4] we make the simplifying assumption that the

heat capacities with respect to volume of volatile and dead oil are equal so that Ho is

independent of composition. This simplification is very useful and more than adequate

for our purposes. Plugging equation (3.14) into equation (3.17) we get, with Ĥr = Hr/ϕ:

ϕ
∂

∂t

(
Ĥr + soHo + sgHg

)
+

∂

∂x

[
u
(
foHo + fgHg

)]
=

∂

∂x

(
κ
∂

∂x
T

)

+
∂

∂x

[
Dgo

(
Ho

∂so
∂x

+Hg

∂sg
∂x

)]
.

(3.19)

3.4.3 The main state space and state variables

Systems (3.16) and (3.19) together describe the two-phase flow of a two component mix-

ture in which only one of the components is allowed to exist in the gas. Once we use
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equations (3.2) and (3.6) to write ρov = ρov(xod), we can define the main state space as:

Ω = {(so, T, ρod) | 0 ≤ so ≤ 1, T > T0 and 0 ≤ xod ≤ 1}, (3.20)

and, here, we remind the reader of Remark 3.1.

Any solution of this model can be fully described by a quartet:

(so, T, ρod, u) ∈ Ω× R+, (3.21)

which from now on will be called the state variables. Of course, the set Ω × R+ will be

called the state space. Since we have four unknowns and four equations we hope that the

problem is well determined and we may proceed.

On the right-hand side of Equations (3.15) we can see the source term, the volatile

vapor condensation rate. In our class of problems the main feature of this type of source

term is to select an equilibrium set in state space and to force the solution to converge

towards this set, or relax to this set. Relaxation is a very active topic of research (see the

1999 survey by Natalini [38]) and a crucial question is to measure the effective time the

solution of balance laws needs to approach the equilibrium set.

This is a difficult topic that will not be pursued here, but motivates the following: it

is commonly accepted, for our class of models, that the effective time of relaxation is far

smaller than the effective time of the displacement (the ratio of a characteristic length

in the porous rock by the maximum speed of the displacement), so we will assume local

thermodynamical equilibrium. This makes the problem tractable and, as far as we know,

it is a good approximation.

3.5 Configurations in thermodynamical equilibrium

In this section we describe the configurations in thermodynamical equilibrium that are

relevant to our work.

3.5.1 Single phase gaseous region (SPG)

In the SPG there is only light alkane gas (so = 0 and xod = 0) thus the light alkane vapor

pressure must equal the total pressure. A simple observation is that these constraints
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together with equation (3.3) give:

1 = exp

(
−MV ΛV

(
T V
b

)

R

(
1

T
−

1

T V
b

))
, (3.22)

so T = TbV is the minimum temperature where pure light alkane gas can exist in thermo-

dynamical equilibrium.

We have one component and one phase so by Gibbs’ phase rule, equation (3.1), there

is only one thermodynamical degree of freedom. We can write the state space as:

ΩSPG = { (so, T, xod) | so = 0, T ≥ TbV and xod = 0 }. (3.23)

The single phase gas state space is a one dimensional manifold in main state space

parametrized by the temperature. In these conditions the model equations (3.16) and

(3.19) reduce to:





ϕ
∂

∂t
ρgV +

∂

∂x
(uρgV ) = 0,

ϕ
∂

∂t

(
Ĥr +Hg

)
+

∂

∂x
(uHg) =

∂

∂x

(
κ
∂

∂x
T

)
,

(3.24)

where we recall Remark 3.2.

The natural parametrization of the single phase gas state space (3.23) will be called

SPG and, with a small abuse of notation, write this as the set:

SPG = { T | T ≥ TbV }, (3.25)

with the topology induced from the real line. Solutions of system (3.24) can be completely

determined in terms of the variables

(T, u) ∈ SPG× R+. (3.26)

Remark 3.3 Lambert [28], [29] used the name primary variables to represent the vari-

ables that parametrize the state space, in this case they are the temperature. The other

state variables, the values of which were inferred from the equilibrium equations were called

trivial variables, in this case the oil saturation and the dead oil mole fraction. The name

secondary variable was reserved to the variable u.
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3.5.2 Single phase liquid region (SPL)

The single phase liquid region has two components in liquid form (so = 1). Combining

equation (3.3) with equation (3.5) we can calculate, for each temperature, the maximum

amount of dead oil which can exists in a single phase liquid in thermodynamical equilib-

rium with light alkane and we call this quantity xeq
od(T ). So, a single phase liquid can only

exist if:

xeq
od(T ) ≤ xod. (3.27)

We can write the state space for the single phase liquid region as:

ΩSPL = { (so, T, ρod) | so = 1, T > TbV and xeq
od(T ) ≤ xod ≤ 1 }, (3.28)

see Remark 3.1.

Gibbs’ phase rule gives three degrees of freedom, see Section 3.2, and since the oleic

saturation is fixed, the one phase liquid state space is a two dimensional manifold in the

main state space parametrized by the temperature and by the dead oil concentration. In

these conditions the model equations (3.16) and (3.19) reduce to:





ϕ
∂

∂t
ρov +

∂

∂x
(uρov) = 0,

ϕ
∂

∂t
ρod +

∂

∂x
(uρod) = 0,

ϕ
∂

∂t

(
Ĥr +Ho

)
+

∂

∂x
uHo =

∂

∂x

(
κ
∂

∂x
T

)
,

(3.29)

see Remark 3.2 for the fractional flow functions properties.

Multiplying equation (3.29a) by 1/ρV , equation (3.29b) by 1/ρD, adding the results

and using the ideal mixture law (3.2) we get ∂xu = 0, so u is constant in space. Since

we are interested in conservation laws we ignore heat conduction, so that system (3.29)

simplifies further to: 



ϕ
∂

∂t
ρod + u

∂

∂x
ρod = 0,

ϕ
∂

∂t

(
Ĥr +Ho

)
+ u

∂

∂x
Ho = 0,

∂xu = 0.

(3.30)

The parametrization of the single phase liquid state space (3.28) will be called SPL
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and, with a small abuse of notation, we write the set:

SPL = { (T, ρod) | T ≥ TbV and xeq
od(T ) ≤ xod ≤ 1}. (3.31)

Solutions of system (3.30) can be completely determined in terms of the variables:

(T, ρod, u) ∈ SPL× R+. (3.32)

3.5.3 Two-phase region (TP)

In the two-phase region the two components can coexist in liquid form (consisting of

light and dead alkanes) and gas form (with only light alkane vapor), with concentrations

derived by equation (3.3) as functions of the temperature (for any temperature greater

than the boiling temperature of the light alkane). Of course this model is unreliable for

very high temperatures.

As in the previous cases, we can combine equation (3.3) with equation (3.5) to calcu-

late, for each temperature, the amount of dead oil in thermodynamical equilibrium with

light alkane vapor and we call this quantity xeq
od(T ). To sum up, a two-phase mixture

exists if:

xod = xeq
od(T ). (3.33)

We can write the state space for the single phase liquid region as:

ΩTP = { (so, T, ρod(T )) | 0 ≤ so ≤ 1, T > TbV and xod = xeq
od(T ) }, (3.34)

Gibbs’ phase rule gives two degrees of freedom, and since the pressure is fixed (see

Section 3.2), we have the temperature as a free thermodynamical degree of freedom.

However in the two-phase region the oleic saturation must be another degree of freedom

in the model so the two-phase state space is a two dimensional manifold in the main state

space parametrized by the temperature and by the oleic saturation. In these conditions

the model equations (3.16) and (3.19) reduces to:
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ϕ
∂

∂t
(ρgV sg + ρovso) +

∂

∂x
u (ρgV fg + ρovfo) =

∂

∂x

[
Dgo

(
ρov

∂so
∂x

+ρgV
∂sg
∂x

)]
,

ϕ
∂

∂t
(ρodso) +

∂

∂x
u(ρodfo) =

∂

∂x

(
ρodDgo

∂so
∂x

)
,

ϕ
∂

∂t

(
Ĥr+soHo+sgHg

)
+

∂

∂x
u (foHo+fgHg) =

∂

∂x

(
κ
∂

∂x
T

)

+
∂

∂x

[
Dgo

(
Ho

∂so
∂x

+Hg

∂sg
∂x

)]
.

(3.35)

System (3.35) is the prototype of convection-diffusion equations we need to motivate

the entropy criterion in the two-phase region, i.e., admissible shock-waves of the two-phase

region are meant to be very close to asymptotic solutions of system (3.35).

Now we focus in the convective flow part and neglect the right-hand sides. Multiplying

equation (3.35a) by 1/ρV , equation (3.35b) by 1/ρD, adding the results and using the ideal

mixture law (3.2) we get the first equation in:





ϕ
∂

∂t
(ρgV sg + ρV so) +

∂

∂x
u (ρgV fg + ρV fo) = 0,

ϕ
∂

∂t
(ρodso) +

∂

∂x
u(ρodfo) = 0,

ϕ
∂

∂t

(
Ĥr + soHo + sgHg

)
+

∂

∂x
u (foHo + fgHg) = 0.

(3.36)

Notice that we have removed the dependence on ρov in the first equation.

We will call the parametrization of the two-phase state space (3.34) by TP and, with

a small abuse of notation, write the set:

TP = { (so, T ) | 0 ≤ so ≤ 1, T > TbV }, (3.37)

Solutions of system (3.30) can be completely determined in terms of the variables

(so, T, u) ∈ TP× R+. (3.38)
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3.5.4 On notation

For brevity we will typically use bold, roman, lower-case characters to denote points in

some state space. For exemple, points in the TP will be written as:

w ∈ TP,

and similarly for the SPL. The reason for this is that both sets have dimension greater

than one. We will make only one exception: we will write all variables explicitly if one of

them needs to be identified. For example, if we need to identify a saturation for a point

in TP we will write:

(s∗o, T ) ∈ TP,

and say something about s∗o.

The SPG is one dimensional so we will just write the name of the physical variable it

parametrizes, namely the temperature:

T ∈ SPG.



Chapter 4

Basic facts on the two phase region

Riemann solutions in the two phase region (TP) are fundamental. The TP is a source

of genuine nonlinearity in our model, and is directly responsible for all of the bifurcations

in the solution. In this chapter we will focus on the elementary waves and bifurcation

structures inside TP.

4.1 Characteristic speeds and eigenvectors

We will recall some basic facts. In Section 3.5.3 we derived the system of conservation

laws: 



ϕ
∂

∂t
(ρgV sg + ρV so) +

∂

∂x
u (ρgV fg + ρV fo) = 0,

ϕ
∂

∂t
(ρodso) +

∂

∂x
u(ρodfo) = 0,

ϕ
∂

∂t

(
Ĥr + soHo + sgHg

)
+

∂

∂x
u (foHo + fgHg) = 0,

(4.1)

and introduced a natural parametrization of the two phase state space:

TP = { (so, T ) | 0 ≤ so ≤ 1, T > TbV }. (4.2)

A solution of the Riemann problem for system (4.1) is a convenient parametrization of

the real line onto TP×R+, which we will write as ξ 7→ (so(ξ), T (ξ), u(ξ)), where ξ = x/t.

In this chapter we will reserve the bold, lower-case, roman characters to denote arbitrary

points in the two phase region. Quite often we will write (so, T ) ≡ w ∈ TP, for a given

point.

38
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System (4.1) can be written in compact form as:

∂tG(w) + ∂xuF (w) = 0, (4.3)

where:

G(so, T ) = ϕ




ρgV sg + ρV so

ρodso

Ĥr + soHo + sgHg


 and F (so, T ) =




ρgV fg + ρV fo

ρodfo

foHo + fgHg


 . (4.4)

As it was discussed in Chapter 2, smooth solutions of the conservation laws are related

to a generalized eigenvalue problem, which we call the characteristic equation of the

system. Recalling Section 2.1, the matrix of this equation is written as:

J(w, u;λ) =
(
uDF (w)− λDG(w), F (w)

)
, (4.5)

where the D denotes differentiation relative to w.

Let (w(ξ), u(ξ)) be a smooth self-similar solution of (4.1) conveniently parametrized

by ξ and ~ri a right eigenvector of matrix (4.5). They must satisfy together the ordinary

differential equation: (
ẇ(ξ), u̇(ξ)

)
= ~ri(w(ξ), u(ξ)), (4.6)

for all points in the domain of the parametrization and a suitable initial datum. The

eigenvector ~ri(w, u) solves the equation:

J(w, u;λi)~ri(w, u) = 0, (4.7)

for some family i, since TP is a two dimensional manifold – see Equation (4.2). Further

details in the derivation of the model can be found in Chapter 3, particularly in Section

3.5.3 where we derive the system of conservation laws in two phase equilibrium, together

with its state space. A review of the basic theory of conservation laws can be found in

Chapter 2.

4.1.1 Calculations

To calculate the characteristic equation for system (4.1), we define the temperature-

dependent quantities:

α = ρV − ρgV , β = ρod and γ = Ho −Hg, (4.8)
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to get from Equations (4.4) and (4.5):

J =




α(u∂sofo − ϕλ) u∂T (αfo + ρgV )− ϕλ∂T (αso + ρgV ) αfo + ρgV

β(u∂sofo − ϕλ) u∂T (βfo)− ϕλ∂T (βso) βfo

γ(u∂sofo − ϕλ) u∂T (γfo +Hg)− ϕλ∂T (γsoHo +Hg + Ĥr) γfo +Hg




.

(4.9)

Gaussian elimination in (4.9) on the second and third elements of the first column

yields:

J̃ =




α(u∂sofo − ϕλ) u∂T (αfo + ρgV )− ϕλ∂T (αso + ρgV ) αfo + ρgV

0 u (a1fo + b1)− ϕλ (a1so + b1) −βρgV

0 u (a2fo + b2)− ϕλ
(
a2so + b2 + αĤ ′

r

)
−γρgV +Hg




, (4.10)

where a1, a2, b1, b2 are functions of the temperature given by:





a1 = α∂Tβ − β∂Tα,

b1 = −β∂TρgV ,

a2 = α∂Tγ − γ∂Tα,

b2 = α∂THg − γ∂TρgV .

(4.11)

The Buckley-Leverett characteristic speed appears very clearly from (4.10) as:

λb =
u

ϕ
∂sofo. (4.12)

The (right) eigenvector associated to the Buckley-Leverett eigenvalue is also very easily

obtained as (a multiple of):

~rb = (1, 0, 0)T . (4.13)

It will became clear that the Buckley-Leverett waves, which will often be indicated by

the subscript b, represent solely fluid transport with no temperature changes. This can be

readily seen for the rarefactions. To complete the description of b waves let us focus on left

eigenvectors. Notice that the left eigenvector associated to λb spans the annihilator of the

second and third columns of J , Equation (4.9). Wherever strict hyperbolicity holds, the

annihilator is a one dimensional space and ~lb(w) is a scalar multiple of the cross product
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of the second and third columns of J , Equation (4.9).

Remark 4.1 Notice that the left b-eigenvector is independent of the Darcy speed u. This

is a typical property in this class of models, satisfied by all wave families, see section 2.1.

The other eigenvalue is associated to temperature variations and mass transfer between

the two phases, for example, evaporation. Due to this fact we write its characteristic speed

as λe. Regarding the latter eigenvalue we can state the very useful:

Proposition 4.2 As long as λe(w) 6= λb(w) for a state w = (so, T ) in TP the left

e-eigenvector can be written as a function of the temperature alone: ~le = ~le(T ).

Proof. Since we are examining states where the system is strictly hyperbolic, the first

column of (4.9) does not vanish. We write the cross product of the first and the third

columns and cancel out the vanishing terms to obtain (the cross product is indicated

by ×):
~le = (α, β, γ)× (ρgV , 0, Hg). (4.14)

This vector is clearly a function of temperature only and is orthogonal to the first

and the third columns of J . We proceed to show that this vector is non zero. Writing it

explicitly we get:

~le = (βHg, γρgV − αHg,−βρgV )

= (ρodHg, (Ho −Hg)ρgV − (ρV − ρgV )Hg,−ρodρgV )

= (ρodHg, ρV ρgV (ho − hg),−ρodρgV ).

By Equations (3.3), (3.5) and (3.6) the dead oil concentration can only vanish at

TbV , where the gas and liquid alkane enthalpies cannot cancel out because of their very

definitions (see Appendix A.1). The proof is complete. �

We proceed to calculate the e-characteristic speed. To calculate the eigenvalue λe we

only need to compute the determinant of the 2 × 2 right lower block of equation (4.10).

This yields:

λe(w, u) =
u

ϕ

Afo +B1

Aso +B2
. (4.15)

where: 



A(T ) = ρV (hg − ho)∂Tρod + ρod(∂THo − ρgV ∂Thg),

B1(T ) = ρodρgV h
′
g,

B2(T ) = ρod(ρgV h
′
g +H ′

r),

(4.16)

and the reader should keep in mind that ′ stands for differentiation.
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Remark 4.3 The quantities A, B1 and B2 are positive for any T ≥ TbV . This can be

readily seen for B1 and B2 since they are the product of densities by heat capacities. To see

that A is positive, first notice that ρod is a strictly increasing function of the temperature

in TP so its derivative must be positive. The gas enthalpy is strictly greater than the

oil enthalpy at the boiling temperature due to the vaporization latent heat (see A.4) so

that ρV (hg − ho)∂Tρod is positive near TbV . As the heat capacity of the oil is greater than

the heat capacity of the gas one can see that the term ρod(∂THo − ρgV ∂Thg) is always

positive, at least for our specific values of oil and vapor parameters. This is sufficient

for our purposes. The reader may verify that these quantities remains positive for high

temperatures, by noticing that the first term of (4.16a) is O(T−1) while the second one is

O(1) so that a computation shows that A(T ) remains positive.

Remark 4.4 Notice that the eigenvalues have the form: λi(w, u) = uλ̃i(w), the reader

should recall Section 2.1.

To calculate the right e-eigenvector we rewrite (4.10) replacing λ by uλ̃e as:

J̃ =




u l11(λ̃e;w) u l12(λ̃e;w) l13(w)

0 u d11(λ̃e;w) d12(w)

0 u d21(λ̃e;w) d22(w)




. (4.17)

Notice that we have just changed the nomenclature. For example, the element in the first

row and first column in Equation (4.10) is written in Equation (4.17) as:

l11(λ̃e,w) = α(∂sofo − ϕλ̃e). (4.18)

Returning to the calculation of the eigenvector we have:

l13 = ρV fo + ρgV fg, (4.19)

which never vanishes. Using the notation ~re ≡ (r1, r2, r3)
T , we can solve the first equation

of the system J̃~re = 0 as:

r3 = −
u

l13
(l11r1 + l12r2) ; (4.20)

substituting r3 into the second equation in J̃~re = 0, see (4.17), we obtain:

m(w)r2 = l11d12r1, (4.21)
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where we have introduced the notation

m(w) = l13d11 − l12d12, (4.22)

Now we can write down the eigenvector associated with λe:

~re(w, u) =

(
m, l11d12, − u

l11
l13

(m+ l12)

)
. (4.23)

This choice can only vanish at points w for which m(w) = 0 and l11(w) = 0 simultane-

ously. Noticing that l11(w) = 0 implies (∂sofo − ϕλ̂e) = 0, we are led to the following:

Definition 4.5 The singular set in the TP region is the set:

S = {w ∈ TP | m(w) = 0 and λ̃b(w) = λ̃e(w)}.

We will study a range of temperatures in which S consists of the single point shown in

Figure 4.1. The singular point will play a crucial role in the Riemann solution. Of course,

an eigenvector is defined up to a multiplicative factor and we may ask, for example, if the

singular point is a removable zero of this formula for ~re. This is not the case and in the

Subsection 4.5.1 we will tackle this issue and, in particular, show that the singular set

corresponds to the place where the geometric multiplicity of the Jacobian (4.5) changes.

In our case the eigenvectors form a vector field. Figure 4.1 shows an orbit of the flow

induced in TP by the smooth function on the right hand side of Equation (4.23).

4.2 Elementary wave curves

A Riemann solution is a concatenation of constant states and elementary waves, i.e.,

rarefaction waves and shock waves (discontinuous solutions). Elementary wave curves

are the projection of certain parametrizations of admissible elementary waves into state

space. In our case, rarefaction wave curves are determined by the integral curves of the

vector fields given by the right eigenvectors given in (4.13) and (4.23). Shock wave curves

are determined by the Hugoniot locus, see Equations (4.28), (2.28).

4.2.1 Rarefaction curves

A rarefaction curve of the ith family emanating from (w∗, u∗) is the maximal subset in

the image of the solution of the Ordinary Differential Equation:
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Figure 4.1: A spiraling orbit of the flux induced in TP by the vector field (4.23) near the
singular point S; in our case the eigenvectors form a vector field. The singular point S
lies on the coincidence curve C.

{ (
ẇ(ξ), u̇(ξ)

)T
= ~ri(w(ξ), u(ξ)),

(w(ξ∗), u(ξ∗)) = (w∗, u∗),
(4.24)

such that the parametrization:

ξ 7→ λi(w(ξ), u(ξ)), ξ ≥ ξ∗, (4.25)

is monotonically increasing and the right eigenvector (~ri) is given by (4.13) or (4.23).

Since we can compute u explicitly in terms of w, we will only show their projections into

the state space TP. More information can be found in Chapter 2.

The Buckley-Leverett rarefaction curves are horizontal lines, as can be seen from

Equation (4.13).

The e-rarefaction curves possess a more sophisticated behavior. Beginning from a

singular point, see Definition 4.5, there is no preferential direction to leave (or reach) it

with a rarefaction curve. We will return to this issue in Proposition 4.18. Singular points

that arise in this work are the zeros of the smooth function on the right hand side of

Equation (4.23). The image of this function is a vector field. In our case, generically the

singular points are attractors or repellors, according to the orientation given to ~re(w, u).

In a sufficiently small neighborhood of a singular point, the orbits of:

(
ẇ(ξ), u̇(ξ)

)T
= ~re(w(ξ), u(ξ)), (4.26)
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must cross the inflection locus Ie (see Subsection 4.5.2): it is not difficult to see that the

rarefaction curves go around the singular point. This is illustrated in Figure 4.2.

Figure 4.2: Some e-rarefaction curves in TP. Left: rarefaction curves begin at the
inflection curve C ⊂ Ie, below the singular point S, and end at the same inflection curve,
above the singular point. Right: e-rarefaction curves far away from the singular point.

4.2.2 Shock curves

A shock wave of speed σ connecting the pairs (w+, u+), (w−, u−) is a jump discontinuity

that satisfies the Rankine-Hugoniot Equation (2.10), which we repeat:

u+F (w+)− u−F (w−)− σ
(
G(w+)−G(w−)

)
= 0. (4.27)

Typically, our interest is to fix an initial state (w−, u−) and ask which is the locus of

states (w+, u+) that satisfy Equation (4.27). To this end we define the Hugoniot function,

Hw− : Ω× R+ × R → R3, as:

Hw−(w+, u+, σ) = u+F (w+)− F (w−)− σ
(
G(w+)−G(w−)

)
, (4.28)

and by Remark 2.8 it is sufficient to consider the case u− = 1. The Hugoniot locus, or

shock curve, of state w− is the projection of the zero set:

{
(w+, u+, σ) ∈ Ω× R+× R | Hw−(w+, u+, σ) = 0

}
, (4.29)

into Ω × R+ and we will write it as H(w−), recall that u− = 1 (nevertheless, there will

be a couple of occasions where we will write H(w−, u−) to select exactly the Hugoniot

locus passing through (w−, u−)). Very often it will be convenient to use the projection
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into state space Ω, which we will still call Hugoniot locus. In fact, it can be shown that

both sets are in one to one correspondence.

Away from the base point w−, typically the Hugoniot locus is a smooth curve. Locally,

if the base point is a point of strict hyperbolicity the Hugoniot locus bifurcates into 2

branches (the dimension of the state space TP), see Lax [32] or the more recent reference

Dafermos [13]. If strict hyperbolicity fails this may not hold, e.g., at the umbilic point in

[26].

Now we will give a global description for the TP branches of the Hugoniot locus. To

this end, we rewrite the Rankine-Hugoniot Equation (4.27) in matrix form:

(
F (w+); F (w−); [G]

)
·
(
u+,−u−,−σ

)T
= 0, (4.30)

where [G] = (G(w+)−G(w−)) and point out that if Equation (4.30) holds then:

H(w−) =
{
w+ ∈ TP

∣∣ det
(
F (w+); F (w−); [G]

)
= 0
}
. (4.31)

Proposition 4.6 (Buckley-Leverett branch of the Hugoniot locus). The locus H(w−)

always contains an isothermal branch in TP. In this branch, the following equalities hold:

u+ = u− and σ = u+f
+
o − f−

o

s+o − s−o
. (4.32)

Proof. Choose (w−, u−), (w+, u+), with w = (so, T ), such that T− = T+ = T . From

Equations (4.4) and (4.8) we have:

[G] =




α

β

γ


 (s+o − s−o ) and F± =




α

β

γ


 f±

o +




ρgV

0

Hg


 , (4.33)

where α = α(T ), β = β(T ), γ = γ(T ) and f±
o = fo(s

±
o , T ). From Equation (4.33) we can

readily see that Equation (4.31) is satisfied.

Clearly, Equations (4.32) and (4.33) satisfy Equation (4.30). To see that these are

the sole solutions for u− fixed, notice that the matrix
(
F (w+);F (w−); [G]

)
has a one

dimensional kernel (see the proof of Proposition 4.2). �

Remark 4.7 Of course, admissible shocks in the Buckley-Leverett branch are b-shocks.

Proposition 4.6 motivates calling this isothermal branch as Hb, where the subscript
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stands for Buckley-Leverett. We therefore have for a state w− = (s−o , T
−):

Hb(w
−) =

{
w+ = (s+o , T

+) ∈ TP
∣∣ T+ − T− = 0

}
. (4.34)

Motivated by Proposition 4.6 we write the function:

he(w
−;w+) =





det
(
F (w+); F (w−); [G]

)

T+ − T−
, when T+ 6= T−,

lim
T+→T−

det
(
F (w+); F (w−); [G]

)

T+ − T−
, otherwise.

(4.35)

It is a simple but long computation to show that the limit in Equation (4.35b) is well

defined and he a smooth function. We define:

He(w
−) =

{
w+ ∈ TP

∣∣ he(w
−;w+) = 0

}
, (4.36)

which we call the evaporation branch of the Hugoniot locus with base state w−.

Remark 4.8 Admissible shock waves in the He branches are e-shocks.

Remark 4.9 Of course: H(w−) = Hb(w
−)
⋃
He(w

−).

Figure 4.3: Some e-branches in TP. The black dot identifies the base state. Horizontal
saturation b-branches are omitted.

In our case, away from the singular points the topology of the e-branch changes, but

it is always a smooth curve. Beginning from a singular point, see Definition 4.5, we have
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that if w0 ∈ S then He(w0) = {w0}. In the neighborhood of a singular point the e branch

of the Hugoniot locus is diffeomorphic to a circle, resembling an oval. A proof of this fact

could be given through Morse Lemma, however, we will not do this: we will just rely on

numerical evidence. Away from the singular points the He is a closed unbounded curve.

We will return to this change of topology issue in Section 4.5.3. Some branches are shown

in Figure 4.3.

To conclude this section we recall that when verifying wave admissibility, it is necessary

to calculate both the shock speed and the Darcy speed u+ explicitly. Since the e-branch

does not have simple formulas, as those in Equation (4.32), we need to fall back to the full

set of Equations (4.27). The calculation can be done by any two of the three equations:





u+
(
F+
k [Gj]− F+

j [Gk]
)

= u−
(
F−
k [Gj ]− F−

j [Gk]
)
,

σ
(
[Gk]F

+
j − [Gj ]F

+
k

)
= u−

(
F−
j F+

k − F−
k F+

j

)
,

σ
(
[Gk]F

−
j − [Gj ]F

−
k

)
= u+

(
F−
j F+

k − F−
k F+

j

)
,

(4.37)

where 1 ≤ j, k ≤ 3, j 6= k, [Gk] = G+
k − G−

k and w−, w+ are given. According to the

situation, it could be more useful to make the shock speed an explicit function of u− or

u+.

4.3 Triple Shock Rule and properties of the Darcy

speed

The Triple Shock Rule is among the simplest and most useful results in hyperbolic con-

servation laws. It allows one to characterize shocks that differ in state space but give rise

to the same physical profile. In our particular problem, it will be a very useful tool to

characterize the bifurcations in the Riemann solution.

Theorem 4.10 (Triple Shock Rule). Let three points P a = (wa, ua), P b = (wb, ub) and

P c = (wc, uc) be such that all pairs among them satisfy the Rankine-Hugoniot relation

(4.27). Denote the corresponding shock speeds by σ1 = σ(a; b), σ2 = σ(b; c) and σ3 =

σ(c; a).

If Ga = G(wa), Gb = G(wb) and Gc = G(wc) are linearly independent then:

σ1 = σ2 = σ3.
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Proof. After writing the Rankine-Hugoniot relation (4.27) for points P a = (wa, ua), P b =

(wb, ub) and P c = (wc, uc):





σ1

(
Gb −Ga

)
= ubF b − uaF a,

σ2

(
Gc −Gb

)
= ucF c − ubF b,

σ3 (G
a −Gc) = uaF a − ucF c;

by adding the equations above we find:

(σ3 − σ1)G
a + (σ1 − σ2)G

b + (σ2 − σ3)G
c = 0, (4.38)

and the Theorem is proved. �

A small peculiarity emerges in this class of problems: we need to deal with the Darcy

speed u. In Theorem 4.10, using Equation (4.37a) and assuming that the denominators

are nonzero we see that the Darcy speed uc is given by two different expressions:

uc = ua
F a
k [G

c
j −Ga

j ]− F a
j [G

c
k −Ga

k]

F c
k [G

c
j −Ga

j ]− F c
j [G

c
k −Ga

k]
, (4.39)

and

uc = ua
F b
k [G

c
j −Gb

j ]− F b
j [G

c
k −Gb

k]

F c
k [G

c
j −Gb

j ]− F c
j [G

c
k −Gb

k]

F a
k [G

b
j −Ga

j ]− F a
j [G

b
k −Ga

k]

F b
k [G

b
j −Ga

j ]− F b
j [G

b
k −Ga

k]
, (4.40)

for a fixed pair of indices 1 ≤ j 6= k ≤ 3. To make the computations clearer, for a pair of

states w+, w− let us introduce the rescaled speed:

U(w−,w+) =
F−
k [G+

j −G−
j ]− F−

j [G+
k −G−

k ]

F+
k [G+

j −G−
j ]− F+

j [G+
k −G−

k ]
, 1 ≤ j 6= k ≤ 3, (4.41)

which makes sense wherever the denominator is nonzero and is smooth. In the limitw+ →

w−, U(w−,w+) → 1 (see the characterization of the Hugoniot locus in a neighborhood

where strict hyperbolicity holds, [28]). Proposition 4.6 yields that if w− = (s−o , T
−),

w+ = (s+o , T
+) satisfy T− = T+ then U(w−,w+) = 1 for s−o 6= s+o . Equations (4.39) and

(4.40) express the property for the Darcy speed summarized as:

U(wa,wc) = U(wa,wb) ·U(wb,wc). (4.42)
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For w− fixed, an important property of the rescaled speed (4.41) is that it is only a

function of the temperature T+. To see this, let us write the Rankine-Hugoniot Equation

(4.27) for system (4.1):





σ
[
α+s+o + ρ+gV − F−

1

]
− u+(α+f+

o + ρ+gV ) + u−F−
1 = 0,

σ
[
β+s+o − F−

2

]
− u+β+f+

o + u−F−
2 = 0,

σ
[
γ+s+o +H+

g +H+
r − F−

3

]
− u+(γ+f+

o +H+
g ) + u−F−

3 = 0,

(4.43)

where we used the nomenclature defined in Equations (4.4) and (4.8). In our case β =

ρod never vanishes: see Equations (3.3), (3.5), (3.6) and recall the definition of the two

phase state space (4.2). Thus, we can recast Equations (4.43b) and (4.43c) without the

dependence in s+o :





σ
(
α+F−

2 − β+F−
1 + β+ρ+gV

)
− u+β+ρ+gV + u−

(
β+F−

1 − α+F−
2

)
= 0,

σ
[
γ+F−

2 − β+F−
3 + β+(H+

g +H+
r )
]
− u+β+H+

g + u−
(
β+F−

3 − γ+F−
2

)
= 0.

(4.44)

Eliminating σ in Equations (4.44) we obtain u+ as a function of u−, w− and T+. If

we require that for any w+ ∈ H(w−) the Hugoniot matrix (4.30) has a one dimensional

kernel, then the value u+ obtained from Equation (4.44) with the choice u− = 1 must

agree with U(w−,w+) given in Equation (4.41). We have proved:

Proposition 4.11 Let (s+o , T
+) = w+ ∈ H(w−) be such that the rows of the matrix in

the Rankine-Hugoniot relation (4.30) for w−, w+ are not parallel. Then the rescaled speed

U(w−,w+) is a function of w− and T+.

Despite Proposition 4.11, Equation (4.41) is very useful in applications, since it is

simpler than the formula obtained from Equations (4.44). A similar result holds for the

shock speed.

Proposition 4.12 Assume that wb = (sbo, T
b), wc = (sco, T

c) satisfy wb,wc ∈ H(wa)

and T b = T c = T . We use the notation ub = U(wa,wb) and uc = U(wa,wc) for Darcy

speeds and P a = (wa, ua), P b = (wb, ub) and P c = (wc, uc) for points. If the conditions

of Proposition 4.11 and Theorem 4.10 are satisfied then:

1. U(wa,wb) = U(wa,wc),
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2.
(
wc, uc

)
∈ H(wb, ub),

3. σ(P a;P b) = σ(P b;P c) = σ(P c;P a).

Proof. The equality in (1) follows from Proposition 4.11. Proposition 4.6 together with

(1) implies (2). By (1) and (2) the points P a, P b and P c satisfy the hypotheses of the

Triple Shock Rules 4.10, which yields (3). �

4.4 The Bethe-Wendroff Theorem

In our case, away from the singular points, the Hugoniot branches are smooth curves

and can be parametrized by a single variable. Let a superimposed dot denote differen-

tiation with respect to this variable. Fix a branch Hi(w
−), i ∈ {b, e}, and consider the

parametrization:

ζ 7→ P ζ = (w(ζ), u(ζ)) ∈ Hi(w
−), ζ ∈ [0, ζ0), (4.45)

such that P 0 = (w−, 1). The shock speed between P 0 and P ζ, given by Equation (4.37b),

will be written as σ(ζ) = σ(P 0;P ζ).

Theorem 4.13 (Bethe-Wendroff). Consider the Hugoniot locus through a state w−. As-

sume that for w(ζ) ∈ H(w−):

~li(w(ζ))
(
G(w(ζ))−G(w−)

)
6= 0.

Then the following are equivalent: (a) σ̇(ζ) = 0, (b) λi(w(ζ), u(ζ)) = σ(ζ), for a family

i ∈ {b, e}. In this case, λi(w(ζ), u(ζ))− σ(ζ) and σ̇(ζ) vanish to the same order and the

locus is tangent to an integral curve of the ith-family, with the same order of tangency.

A proof of this theorem, adapted to our class of problems, can be found in Lambert

[28]. A stronger version for classical systems can be found in Furtado [19]. Roughly, the

Bethe-Wendroff Theorem relates the monotonicity of the shock speed along the Hugoniot

locus with the admissibility of shock waves, see the Liu criterion 2.14. Moreover, by giving

a geometric characterization of admissibility it is fundamental tool in the construction of

the Riemann solution.
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4.5 Bifurcation manifolds in TP

These are sets in state space that play a fundamental role in the construction of Riemann

solutions. More details can be found in Section 2.3, in the monograph by Furtado [19]

and in the monograph by Lambert [28].

4.5.1 Coincidence locus

Among the loci that are relevant for the behavior of the solution, the coincidence locus

is perhaps the most easily defined one. As it is known, even a single, isolated point

of coincidence of characteristic speeds can greatly complicate the solution, see Isaacson,

Marchesin, Plohr, and Temple [26].

In this work the coincidence locus is the set of points where strict hyperbolicity fails,

see Definition 2.1.

Definition 4.14 The coincidence locus in TP is the set:

C = {w ∈ TP | λ̃b(w) = λ̃e(w)},

see Equations (4.12), (4.15) and Remark 4.4.

The coincidence locus is well behaved in our class of problems. It is the union of

two smooth curves in the TP region. It also has an elegant graphical interpretation, see

Figure 4.4.

Fix T ≥ TbV . Notice that from Equation (4.15), λ̃e(·, T ) can be visualized as the slope

of a secant to the graph of fo(·, T ) from the point (−B2/A,−B1/A). Since λ̃b(s
∗
o, T ) is

the slope of the line tangent to the graph of fo(s
∗
o, T ) for any 0 ≤ s∗o ≤ 1, as can be seen

by equation (4.12), it is not difficult to see that the slope of this secant must equal the

tangent of fo at two points: the first one at a minimum and the second one at a maximum

of λ̃e.

This reasoning can easily be made analytical. First notice that:

Proposition 4.15 Fix T ≥ TbV . If s
∗ is maximizer for λ̃b(·, T ) then λ̃b(s

∗, T )>λ̃e(s
∗, T ).

Proof. The Buckley-Leverett speed is smooth, non-negative, it vanishes for states at pure

oil saturation or at pure gas saturation and it has a single global maximum (which is

therefore a critical point), see Section 3.3 and, particularly, Remark 3.2. Since fo(0, T ) =

0, fo(1, T ) = 1 and fo(·, T ) is quadratic near 0 then its slope must be greater than 1 at

its maximum, i.e., λ̃b(s
∗, T ) > 1.
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so

fo

-A-1(B2,B1)

Figure 4.4: Fix some T ≥ TbV . Notice that λ̃e(·, T ), Equation (4.15), can be visualized

as a secant to the graph of fo(·, T ) from the point (−B2/A,−B1/A). Since λ̃b(s
∗
o, T ) is

the slope of the line tangent to the graph of fo(s
∗
o, T ) for any 0 ≤ s∗o ≤ 1, as can be seen

by equation (4.12), it is not difficult to see that the slope of this secant must equal the

tangent of fo at two points: first at a minimum and then at a maximum of λ̃e.

Assume that we have λ̃b(s
∗, T ) ≤ λ̃e(s

∗, T ). The line throught (s∗, fo(s
∗, T )) with slope

λ̃b(s
∗, T ) is:

s 7→ λ̃b(s
∗, T )s+ fo(s

∗, T )− λ̃b(s
∗, T )s∗,

and the pair (−B2/A,−B1/A) in the hatched region in Figure 4.5 must satisfy :

−
B1

A
≤ −λ̃b(s

∗, T )
B2

A
+ fo(s

∗, T )− λ̃b(s
∗, T )s∗.

Since A > 0, this gives:

B1 ≥ λ̃b(s
∗, T )B2 + A

(
λ̃b(s

∗, T )s∗ − fo(s
∗, T )

)
≥ B2.

Since B2 > B1, see Remark 4.3, we have a contradiction. The proof is complete. �

This simple observation yields at once:

Proposition 4.16 The coincidence locus is the union of two smooth disconnected curves

in the TP region.

Proof. Let us define g : w 7→ g(w) = λ̃b(w) − λ̃e(w), see Equations (4.12) and (4.15).

The coincidence locus is clearly the zero set of g. The derivative of g with respect to the
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so

fo

y

s*

Figure 4.5: Bold curve: begin with the Buckley-Leverett flux function and it is drawn at
left of its inflection s∗ a straight line with slope ∂sofo(s

∗, T ).

oil saturation so in w = (so, T ) is:

∂sog(w) = ∂soλ̃b(w)−
λ̃b(w)− λ̃e(w)

Aso +B2

.

Proposition 4.15 says that for any w∗ = (s∗o, T
∗), T > TbV on the coincidence locus we

have:

∂sog(w
∗) = ∂soλ̃b(w

∗) 6= 0,

so C is locally a curve parametrized by the temperature in TP.

Now we will count the number of connected components that form the coincidence

locus. Fix T ≥ TbV . Since λ̃b = ∂sofo vanishes at pure oil saturation and pure gas

saturation (see Remark 3.2) and λ̃e is positive (see Remark 4.3), we have that λ̃b(0, T )−

λ̃e(0, T ) < 0 and λ̃b(1, T )− λ̃e(1, T ) < 0 and by Proposition 4.15 there is a s∗ between 0

and 1 where λ̃b(s
∗, T )− λ̃e(s

∗, T ) > 0 so that f(·, T ) has at least two roots, say (s1, s2).

One can see that it has at most two roots by noticing that λ̃e(·, T ) is monotone

increasing at (s1, s2). Clearly s1 must be minimum and s2 a maximum of λ̃e(·, T ). �

Remark 4.17 Notice that any point w = (s∗o, T ) ∈ C must be an isolated global maximum

or minimum point for λ̃e as a function of so and fixed T .

Besides the identification of points in state space for which the algebraic multiplicity

of the Jacobian (4.5) is greater than one, it is also very important to know when the

geometric multiplicity of J is greater than one. Points in state space that are isolated

coincidence points and for which the characteristic matrix of the system vanishes are
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called umbilic points. A great deal is already known about them: they are the primary

source of difficulty in the study of three-phase flow and a constant headache for anyone

interested in understanding the properties of solutions of conservation laws. Proposition

4.16 says that such umbilic points do not occur in this model but singular points do occur.

Definition 4.5 says that the singular points are the intersection of the zero sets of two

smooth maps. We point out that it asserts change in the geometric multiplicity of the

Jacobian (4.5).

Proposition 4.18 The singular set S is exactly the subset of the coincidence locus where

the geometric multiplicity equals the algebraic multiplicity.

Proof. In fact, let w be a point on the coincidence. As long as the quantity (4.22) satisfies

m(w) 6= 0 we have that ~re ‖ ~rb: while the algebraic multiplicity is two, the geometric

multiplicity is only one. If we set m(w) = 0 we are saying that the second and third

columns of J are indeed linearly dependent. Since the first column vanishes under such

conditions and the third column never vanishes, J has a two dimensional kernel. �

Remark 4.19 Recall that we have a generalized eigenvalue problem: the standard Jordan

normal form is not available for it.

This is the closest the Jacobian of this system can become to a multiple of the identity

matrix. Of course, such loci cannot be isolated as points on the coincidence locus but

the singular points form a discrete set. Notice that the zero set of m is a smooth one

dimensional manifold, transverse to the coincidence locus, see Figure 4.6.

This let us state:

Proposition 4.20 The singular set S is discrete in TP: if w0 ∈ S then there is an open

neighborhood W of w0 in TP such that W
⋂
S = w0.

4.5.2 Inflection locus

Points on the inflection locus are those where genuine nonlinearity is lost, see the discus-

sion in Chapter 2. Generically, the characteristic speed does not vary monotonically along

a corresponding integral curve near an inflection point. Thus rarefaction curves stop at

this locus.

We recall Definition 2.25 and Equation (4.13) to write the b inflection locus as:

Ib =
{
w ∈ TP

∣∣ ∂soλ̃b(w) = 0
}
. (4.46)
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fo

so

T

S

Figure 4.6: Singular point as the intersection of the coincidence locus (solid) and the zero
set of m (dashed).

Remark 4.21 Notice that from Equation (4.12) and Remark 3.2 we can readily see that

the b inflection locus is a smooth curve.

We now focus on the e-inflection locus. Definition 2.25 gives:

Ie =
{
w ∈ TP

∣∣∣ ∂soλ̃2(w)r1e(w) + ∂T λ̃e(w)r2e(w) + λ̃e(w)r3e(w) = 0
}
. (4.47)

where ~re(w, u) = (r1e(w), r2e(w), ur3e(w))
T
. Using Equations (4.15), (4.16), (4.18), (4.19),

(4.22) and (4.23) we can rewrite the inflection locus (4.47) as:

Ie =
{
w ∈ TP

∣∣∣
(
λ̃b − λ̃e

)
(w) = 0 or G(w) = 0

}
, (4.48)

where:

G =
m

Aso +B2
+ αd12 −

α

l13
(m+ l12). (4.49)

The reader should recall Equation (4.22) and the nomenclature (4.17), relative to Equation

(4.10). Let us define the exceptional locus:

E = G−1(0). (4.50)

Proposition 4.22 The exceptional locus E is a smooth curve that satisfies:

E =
{
(so, T ) ∈ T̊P

∣∣∣ λ̃e(so, T ) = λ̃e(0, T )
}
. (4.51)

The proof of equality (4.51) is long and will be omitted. However, since Equation
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(4.51) is estabilished, it is very easy to see that E is a smooth curve: one just need to

explore the properties of the critical points of ∂soλ̃e(so, T ) as in the proof of Proposition

4.16. Figure 4.4 provides a good illustration of what is happening.

Remark 4.23 Later we will show that the curve E is a genuine e-contact: the e-integral

curve emanating from any of its points coincides with the e-branch of the shock curve

emanating from the same point. This behavior is an example of the result established in

Temple [50].

Remark 4.24 For convenience we will list, in advance, the main properties of the curve

E : it is a genuine contact, a secondary bifurcation and both right and left extension of

the boundary line {(so, T ) ∈ TP | so = 0}. The reader should keep in mind the curve E

as meaning exceptional. A part of its influence on Riemann solutions will be clarified in

Chapter 6.

4.5.3 The self-intersection set

These are points w+ 6= w−, w+ ∈ H(w−), where the Hugoniot locus self-intersects.

Following the discusion on Section 2.3.3 such behavior can only occur at points where the

Jacobian DHw−(w+, u+, σ) does not have maximal rank. In this situation the following

identities must hold:

σ = λi(w
+, u+) and ~li(w

+)(G(w+)−G(w−)) = 0, 1 ≤ i ≤ n, (4.52)

for the family i. We will present the notation used throughout this section. We define

the diagonal:

∆ = {(w−,w+, u+) ∈ Ω̊× Ω̊× R+ | w− = w+}, (4.53)

and write:

D =
{
Ω̊× Ω̊× R

}
\∆. (4.54)

We want to define the self-intersection locus as the zero set of a smooth function; to

this end we fix a family 1 ≤ i ≤ n and motivated by (4.52) we write:

F(i) : D → R4, (w−,w+, u+) 7→
(
H(w−,w+, u+, λi(w

+, u+)), ~li(w
+)[G]

)
, (4.55)

where [G] = G(w+)−G(w−) and the function H is given in Equation (2.42). Finally we

can write the self-intersection set of the ith family as:

Ai =
{
(w−,w+, u+) ∈ D | F(i)(w

−,w+, u+) = 0
}
. (4.56)
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Since our interest is the locus, it is sufficient to only consider the reference value u− = 1

for the Darcy speed, see Remark 2.8. However, some results of this Section will be needed

later, in a context where the admissibility of waves will be important. For this reason,

we will write explicitly the dependence on the Darcy speed u− in a few Lemmas. Most of

the time we will work with points of type P− = (w−, u−), P+ = (w+, u+) in TP × R+.

We will often write:

σ(P−;P+) = σ(w−, u−;w+, u+), (4.57)

with the implicit assumption that (w+, u+) ∈ H(w−, u−).

We only need to consider the self-intersection locus Ae. In what follows it will be

shown that the projection map of Ae into TP is an open map. The first step is:

Lemma 4.25 Let (w−, u−) 6=(w+, u+) be points at the same temperature. If σ(P−;P+) =

λe(w
+, u+) holds then σ(P−;P+) = λe(w

−, u−).

Proof. Here w = (so, T ) and we set σ ≡ σ(P−;P+). Notice that the isothermal shocks

are the Buckley-Leverett shocks such that u+ = u− = u. These shocks have speed:

σ =
u

ϕ

f+
o − f−

o

s+o − s−o
.

The eigenvalue from Equation (4.15) is written as:

λe(w
+, u+) =

u

ϕ

A(T )f+
o +B1(T )

A(T )s+o +B2(T )
.

These equalities can be read as:

u(f+
o − f−

o ) = ϕσ(s+o − s−o ), and u[A(T )f+
o +B1(T )] = ϕσ[A(T )s+o +B2(T )]. (4.58)

Multiplying (4.58a) by −A(T ) and adding to (4.58b) we get:

u[A(T )f−
o +B1(T )] = ϕσ[A(T )s−o +B2(T )].

Since [A(T )s−o +B2(T )] never vanishes the result follows. �

Remark 4.26 Of course the lemma remains true switching the role of the minus and the

plus superscripts.

Next we show that, among other facts, the previous lemma is not vacuous.
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Lemma 4.27 There are pairs w−, w+ (at the same temperature) in a neighborhood of

the coincidence locus C in TP such that:

λ̃e(w
−) = λ̃e(w

+) and ~le(w
+)(G+ −G−) = 0. (4.59)

Proof. First we choose some state (s−o , T ), T > TbV sufficiently near the coincidence locus,

in a sense that will be clear a posteriori. Let’s say it is at left of the leftmost coincidence.

Since the point (s∗, T ) on the coincidence locus is a global minimum for

λ̃e(so, T ) =
A(T )fo +B1(T )

A(T )so +B2(T )
,

as a function of so, we can choose s− sufficiently near s∗ so that the level set for the value

λ̃e(s
−
o , T ) has (at least) two points, say {s−o , s

+
o }. We have so far:

λ̃e(s
−
o , T ) = λ̃e(s

+
o , T ) =

A(T )f+
o +B1(T )− A(T )f−

o − B1(T )

A(T )s+o +B2(T )− A(T )s−o −B2(T )
= σ(s+o , T ; s

−
o , T )/u

−,

where the last equality comes from the isothermal branch of the Hugoniot locus.

To finish the proof notice that:

~le(s
+
o , T )(G

+ −G−) = (l1e (ρV − ρgV ) + l2e ρod + l3e (Ho −Hg)) (s
+
o − s−o )

= (l1e α+ l2e β + l3e γ) (s
+
o − s−o )

= 0,

by the very definition of ~le, in Equation (4.14). �

Corollary 4.28 (Of the proof) No point on the coincidence locus can lie in Ae.

Proof. By Equations (4.55) and (4.56) any pair w−,w+ in Ae satisfies Equation (4.59).

Fix a T ∗ > TbV . If w∗ = (s∗o, T
∗) is a point on the coincidence locus then it must be a

global maximum or a global minimum of λe(·, T
∗), therefore, its corresponding pair does

not exist. �

Remark 4.29 Corollary 4.28 says that Ae cannot contain points where strictly hyperbol-

icity fails.

We now have the basic tools needed to characterize the Hugoniot self-intersection

locus. We will restrict our attention to self-intersections due to crossing: the two different

branches of the Hugoniot locus intersect. In our particular problem, one can use the
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regularity of the two branches of the Hugoniot locus to show that this is the sole source

of self-intersection, if the two base points belong to the TP. Of course, such behavior is

not general.

Theorem 4.30 Assume that the Hugoniot locus in TP only ceases to be a curve at

intersections of the b-branch, Equation (4.34), with the e-branch, Equation (4.36). Then

Ae is a two dimensional manifold.

Proof. The map F(e), Equation (4.55), is smooth and we have Ae = F−1
(e) (0), which is not

empty because of Lemma 4.27. We now examine the Jacobian of F(e). The differential of

H(w−,w+, u+, λe(w
+, u+))

is written (recall: λe(w
+, u+) = u+λ̃e(w

+)):

dH =
(
DF (w−)− λe(w

+, u+)DG(w−)
)
dw− +

(
λ̃e(w

+)[G]− F (w+)
)
du+

+ ∂w+Hdw+,
(4.60)

where the term ∂w+H is:

∂w+H = −
(
DF (w+)− λe(w

+, u+)DG(w+)
)
+ [G] · u+∇λ̃e(w

+)T , (4.61)

and clearly satisfies ~le(w
+)∂w+H = 0 by the definitions of ~le (Equation (4.14)) and Ae

(see the discussion in the beginning of this subsection). This shows that the columns of

∂w+H lie in the orthogonal space to ~le(w
+), which has dimension two. Next we will show

that all columns of DH are spanned by a basis of the orthogonal space to ~le(w
+).

Since w+, w− lie on an isotherm, using Proposition 4.6, we see that λ̃e(w
+)[G] −

F (w+) = −F (w−). Plugging this into (4.60) we see that the first 4 × 3 block DF(e)

(containig derivatives with respect to w− and u+) evaluated at a point in Ae reads (set

λ+
e ≡ λe(w

+, u+)):




∂soF1(w
−)− λ+

e ∂soG1(w
−) ∂TF1(w

−)− λ+
e ∂TG1(w

−) −F1(w
−)

∂soF2(w
−)− λ+

e ∂soG2(w
−) ∂TF1(w

−)− λ+
e ∂TG2(w

−) −F2(w
−)

∂soF3(w
−)− λ+

e ∂soG3(w
−) ∂TF1(w

−)− λ+
e ∂TG3(w

−) −F3(w
−)

−~le(w
+)∂soG(w−) −~le(w

+)∂TG(w−) 0




, (4.62)
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and then by Lemma 4.25 the upper 3 × 3 matrix has rank at most two. From Corollary

4.28 the algebraic multiplicity of the eigenvalue is one and so the rank must equal two.

Proposition 4.2 implies that the column space of DF(e) is spanned by the column space

of (4.62) and that the rank of DF(e) is three, so that by the Rank Theorem (see Rudin

[43]), we have that Ae is a smooth manifold of dimension dim(D)− 3 = 2. �

Corollary 4.31 The projection:

π : Ae → TP, π(w−,w+, u+) = w+; (4.63)

is an open mapping.

Proof. Since the matrix (∂w−F(e), ∂u+F(e)), given in Equation (4.62), is injective, Ae is

locally the graph of a smooth function defined in TP. �

Remark 4.32 Notice that by Lemma 4.25 and Propositions 4.6 and 4.2, the self-inter-

section locus Ae is invariant under interchange of w− and w+, in our case.

Let us write the projection of the self-intersection locus Ae into state space as:

Oe = π(Ae). (4.64)

By Corollary 4.31, Oe is an open set and by the proof of Lemma 4.27, it is the union

of four disjoint open sets that contain a neighborhood of the coincidence locus C. Its

boundary is:

∂Oe = C
⋃

{so = 0}
⋃

E−
(
{so = 0}

) ⋃
{so = 1}

⋃
E−
(
{so = 1}

)
, (4.65)

where E−({so = 0}) is the left extension of the boundary line {(so, T ) ∈ TP | so = 0}

and E−({so = 1}) is the left extension of the boundary line {(so, T ) ∈ TP | so = 1}, see

Subsection 2.3.5. Recall that by Corollary 4.28 the intersection of Oe with the coincidence

locus C is empty. The open set Oe is shown as the gray regions in Figure 4.7.

We will characterize the extension of the line so = 0, which is special.

Proposition 4.33 Let w− = (0, T−), for any T− > TbV . Both the exceptional locus,

Equation (4.50), and the boundary line {(so, T ) ∈ TP | so = 0} are contained in H(w−).

The shock speed between w− and any w+ lying either on the exceptional locus E or on the

boundary {(so, T ) ∈ TP | so = 0} is both left-characteristic and right-characteristic with

respect to the e-speed.
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so=1

T

S

C

0

CE-{so=1}E-{so=0}

Figure 4.7: The gray regions are the projection of the self-intersection set Ae into TP.
Both the rightmost part of the coincidence locus and the extension E−({so = 1}) are
drawn out of scale.

Proof. Let w+ = (s+o , T
+). First assume that s+o 6= 0. Writing the Rankine-Hugoniot

relation (4.27) for Equation (4.1b) we have:

σρ+ods
+
o = u+ρ+odf

+
o , (4.66)

since s−o = 0. Using that ρod(T
+) > 0, see Equations (3.3), (3.5) and (3.6), we substitute

Equation (4.66) into the Rankine-Hugoniot relation for Equations (4.1a) and (4.1c) to

obtain, after a computation:





σ
(
ρ+gV − ρ−gV

)
= u+ρ+gV − u−ρ−gV ,

σ
(
H+

r −H−
r +H+

g −H−
g

)
= u+H+

g − u−H−
g .

(4.67)

Eliminating u− in Equation (4.67) we obtain:

σ = u+
ρ−gVH

+
g − ρ+gVH

−
g

ρ−gVH
+
g − ρ+gVH

−
g + ρ−gV (H+

r −H−
r )

= λe((0, T
+), u+), (4.68)

where the last equality arises from Equations (3.18), (4.15) and (4.16). Using Equations

(4.66) and (4.68), the same argument used in the proof of Lemma 4.25 yields:

σ = λe(w
+, u+), (4.69)

and using Proposition 4.22 we obtain w+ ∈ E . Eliminating u+ in Equation (4.67) we
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write, similarly:

σ = λe(w
−, u−), (4.70)

so that the shock is left-characteristic and right-characteristic with respect to the e-speed.

If s+o = 0, Equation (4.67) still holds while Equation (4.66) vanishes identically, leading

to the following result: �

Corollary 4.34 The exceptional locus is an e-branch of the Hugoniot locus which lies on

an e-integral curve, thus it is a genuine contact, see Temple [50].

Proof. The preceding proposition together with the symmetry of the Rankine-Hugoniot

Equation (4.27) implies that if w− ∈ E then E ⊂ H(w−). Since the exceptional locus is

contained in the set Ie, Equation (4.47), the result follows. �

Remark 4.35 The exceptional locus is an example of an unbounded Hugoniot e-branch.

See discussion in Subsection 4.2.2.

4.5.4 Double contact locus

We define a two-sided (or double) contact discontinuity to be a solution (w−, u−;w+, u+)

of the Rankine-Hugoniot relation (4.27) such that a characteristic speed for (w−, u−) co-

incides with the shock speed σ(w−, u−;w+, u+), as well as with the another characteristic

speed for (w+, u+), see discussion in Chapter 2. As a consequence of Theorem 4.30 and

Lemma 4.25 we have that the double contact locus De ≡ De,e contains Ae.

The double contact locus Db ≡ Db,b is a smooth curve. Its projection into state space

is shown in Figure 4.8.

fo

so

T

S

C

Db

Figure 4.8: Projection on TP of Db (solid) and of the coincidence locus (dashed).



Chapter 5

Riemann problem I in TP

Here we solve the Riemann problem in a neighborhood of the singular point in the two

phase region.

We point out that the material in this Chapter depends on definitions and results

of Chapter 4. Familiarity with the basic concepts of Riemann solutions is assumed,

see Section 2.2. The Triple Shock Rule 4.10 and the Bethe-Wendroff Theorem 4.13 are

fundamental tools that the reader must bear in mind.

5.1 Bifurcations in the Riemann solution

As discussed on Chapter 2, the Riemann solution can be constructed by concatenating

constant regions and fundamental waves: shocks and rarefactions. The projection of these

elementary waves into state space are sufficient to construct the solution, as the Darcy

speed u can be computed from its “initial” value and these projections. Taking advantage

of this fact we will illustrate in figures the projection of the Riemann solutions in state

space TP only.

Riemann solutions bifurcate when an elementary wave ceases to be admissible. The

construction of the Riemann solution must proceed with another admissible elementary

wave, respecting the monotonicity principle. We recall our choice of the Liu criterion to

select admissible shocks, see Subsection 2.2.3. First, we will focus on the bifurcations in

backward Riemann solutions that appears when the wL is allowed to change but the wR

is fixed.

Definition 5.1 (Backward L-region). Fix a pair wL, wR in state space. The back-

ward L-region L−(wR) corresponding to the selected pair wL, wR is the maximal subset

of state space such that wL ∈ L−(wR) and the Riemann solutions for any initial data

64
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w∗ ∈ L−(wR), u∗ > 0,

w(x, 0) =

{
w∗, if x < 0,

wR, if x > 0,

and

u(x, 0) = u∗, if x < 0,

are constructed through wave fans consisting of the same type of concatenations of constant

states and of the same fundamental wave types and families as in the solution for the pair

wL, wR.

Remark 5.2 Typically there is a finite number of backward L-regions for a given wR.

We will follow the usual habit and number them.

When the right state wR wanders in state space, the solutions may change topology,

i.e., the backward L-region diagram changes qualitatively. When such a change happens

the Riemann solution bifurcates. Bifurcations often happens when wR crosses certain

codimension one manifolds in state space.

Definition 5.3 (Backward R-region). Fix a wR in state space. The backward R-Region

R−(wR), containing wR, is the maximal subset of state space such that for any w∗ ∈

R−(wR) the subdivision of state space into backward L-regions L−(w∗) is the same as the

subdvision in L−(wR).

Remark 5.4 We will use the lexicographic order of the plane to state the relative position

of objects. For example, w1 = (s1o, T
1) and w2 = (s2o, T

2): state w2 is above w1 if T 2 > T 1.

Accordingly, state w2 is at the right of w1 if s2o > s1o.

The backward R-regions for R and L in a neighborhood of the singular point S =

(sSo , T
S) are as follows, see Figure 5.1. The region A is bounded by the horizontal straight

line that begins at S and lies on the right side of the coincidence curve C. It extends

clockwise down to the portion of the double contact locus Db below the singular point S.

Still in the clockwise sense, the region A′ lies between the double contact locus Db and

the coincidence locus C below the singular point S. The region B lies above region A, at

the right of the coincidence locus C, above the horizontal straight line that begins at S.

The region C lies at the left of the coincidence locus.

To describe the Riemann solution in this chapter we will use the R-construction: we

will exhibit the Riemann solution in each appropriate L-region when the right state wR
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so

T

S

C

Db

E

Figure 5.1: Backward R-regions in a neighborhood of the singular point S.

varies in the backward R-region diagram. Of course, all regions lie above the isotherm

T = TbV since they are in TP.

Given the physical variables (wM , uM) ∈ TP × R+ we will use the notation M =

(wM , uM) for brevity. To improve legibility in figures we display only the superscripts of

the states. For example, we will write R in place of wR.

5.2 Region A

Here the right state wR lies in Region A, in Figure 5.1. In the discussion that follows

we will present the subdivision of a neighborhood of the singular point into backward

L-regions for wR, see Figure 5.2.

In a sufficiently small neighborhood of any wR state in Region A, e-waves are slow and

b-waves are fast, see discussion in Subsection 4.5.1 and Proposition 4.16 (this behavior

can changes out of region A, producing bifurcations in the solution). Generically, a fast

wave is needed to reach wR. In a sufficiently small neighborhood within this region the

backward fast-wave curve that reaches wR must represent (fast) b-waves, which lie on

an isotherm. Therefore the isotherm T = TR must be reached by slow waves in the

construction of the Riemann solution, see Proposition 4.6. A slow wave that reaches the

isotherm T = TR at the right of wR must be followed by a fast b-shock, since the wL and



Region A 67

so

T

S

C so

T

S

C

Db

Figure 5.2: Left: backward L-regions for wR in region A. Right: boundaries.

wR states lie on the left side of the b inflection. We have exhausted slow waves; now we

will focus on fast (characteristic) waves reaching this line.

The e-branch of the Hugoniot locus based on any point of this neighborhood of the

singular point S is a smooth, compact curve, with an oval shape, see Subsection 4.2.2. At

a statewL at the left of the coincidence locus C the e-waves are fast. For the time being we

will focus on wL states above wR, below the singular point S. Along the e-branch of the

Hugoniot locus, the temperature decreases along Liu admissible shocks. The oval must

have two points with horizontal tangents. Each shock reaching such points is a candidate

to be characteristic with b-speed at the point of tangency due to the Bethe-Wendroff

Theorem 4.13. In fact, the e-shocks are the main tool to “decrease the temperature” near

the singular point.

Notice that the b double contact Db crosses the isotherm T = TR at one point, see

Figure 4.8, which we will call wD. We write wQ for the state on the coincidence locus

with the same temperature as wR. We denote by E−
b (QD) the left extension locus of

the rarefaction segment between points wQ and wD, i.e., by construction from any point

in E−
b (QD) there is a shock reaching the segment QD, which is characteristic with the

b-speed at this segment. The connected branch of the locus E−
b (QD) we are interested in

is a curve, bounded by the points wQ and wD′

∈ E−
b (D). Fast right characteristic shocks

connect states at temperatures lying between TR and TD′

in this branch to the segment

QD. This construction is sufficient to guarantee the monotonicity principle if the wave

preceding this fast right characteristic shock is a rarefaction. However, we need another
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bifurcation curve to guarantee that this fast right characteristic shock and a preceding

b-shock satisfy the monotonicity principle. To this end we will define a new left extension

according to the conditions we will need.

Definition 5.5 (Double left extension locus.) Let γ be a curve in TP × R+ and denote

by E−
i (γ) its left extension locus with respect to the ith family. The double left extension

locus of curve γ with respect to the ith family is:

E−
i (γ)

2 =
{
P+ = (w+, u+) ∈ TP× R+

∣∣ ∃P 0 ∈ γ and P 1 ∈ E−
b (P

0);

P+ ∈ Hi(P
1) and σ(P 1;P+) = σ(P 0;P 1) = λi(P

0)
}
.

The b-shocks joining states on the right side of locus E−
b (QD) to the locus E−

b (QD)

satisfy the monotonicity principle if their base state is on the left side of E−
b (QD)2. We

still need to define the right extension locus of the segment between wD and generic states

wG, which lie at the right of wR and satisfy TG = TR. The extension:

E+
b (DG), (5.1)

has the property that from any of its points an e-shock emanates that reaches the segment

DG and is left characteristic with respect to b-waves, i.e. characteristic at E+
b (DG).

Remark 5.6 Notice that we have defined Region A such that any fast e-shock that reaches

the isotherm T = TR can be followed by a fast b-rarefaction. The crucial fact is that the

wR state is at the right of the intersection of the isotherm T = TR with the double contact

locus Db.

5.2.1 Riemann solutions with increasing temperatures

Here we describe the Riemann solutions in the backward L-regions below the isotherm

T = TR, see Figure (5.2b). The relevant part of the backward slow wave curve Ws
−

(
R
)

from R contains a slow b-rarefaction followed by a slow e-rarefaction:

Rs
b −→ Rs

e, for T ≤ TR. (5.2)

The wave curve Ws
−

(
R
)
and the coincidence locus are some of the bifurcation loci for

the L-regions in this Riemann solution, see Figure (5.2a).
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Riemann solution for L−
1

The wL state lies below the isotherm T = TR on the right side of both the coincidence

locus C and the wave curve Ws
−

(
R
)
, Equation (5.2). In L−

1 the e-waves are slow and

the b-waves are fast, see Subsection 4.5.1, which means that a slow rarefaction emanating

from wL will reach the isotherm T = TR in the constant state M at the right of wR.

Thus, the admissible fast waves are b-shocks, and the solution is:

L
Rs

e−−→ M
S
f

b−−→ R. (5.3)

Remark 5.7 This Riemann solution is just the Lax construction. Most of times we will

suppress the description of the constant state for this type of construction.

Riemann solution for L−
2

The L-region L−
2 is bounded by the wave curve Ws

−(R) and by the coincidence locus C,

see Figure 5.2a. In the transition from L−
1 to L−

2 we crossed the coincidence locus so that,

now, in a neighborhood of state wL the b-waves are slow. The forward slow wave curve

Ws
+(L) emanating from L contains a slow b-rarefaction followed by a slow e-rarefaction,

i.e.:

Rs
b −→ Rs

e. (5.4)

The wave curve Ws
+(L) crosses the coincidence locus at an intermediate state M̂1 and

reaches the isotherm T = TR at a (constant) state M2. The solution is written as:

L
Rs

b−−→ M̂1

Rs
e−−→ M2

S
f

b−−→ R. (5.5)

Riemann solution for L−
3

The L-region L−
3 lies at the left of the wave curve Ws

−

(
R
)
, Equation (5.2), bounded by the

isotherm T = T P and by the coincidence locus C. Slow e-waves that reach the isotherm

T = TR (in the constant state M) must be followed by a b-rarefaction wave. The solution

is:

L
Rs

e−−→ M
R

f

b−−→ R. (5.6)

Riemann solution for L−
4

Now wL is at the left of the coincidence locus and above the wave curve Ws
−

(
R
)
. The

b-waves are slow. The forward slow wave curve emanating from L, Ws
+(L) is given in
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Equation (5.4). It crosses the coincidence locus at a intermediate state M̂1 and reaches

the isotherm T = TR at a constant state M2. The Riemann solution is:

L
Rs

b−−→ M̂1

Rs
e−−→ M2

R
f

b−−→ R. (5.7)

5.2.2 Riemann solutions with decreasing temperature

Now we focus on the backward L-regions above the isotherm T = TR. In comparison to

the previous subsection, the bifurcation structure will be complicated by the presence of

the singular point.

The relevant part of Ws
−

(
R
)
, backward slow wave curve from R, contains a slow

b-rarefaction followed by a left-characteristic e-shock:

Rs
b −→ Ss

e , for T ≥ TR. (5.8)

Wave curve Ws
−

(
R
)
originates the first remarkable bifurcation boundary for the back-

ward L-regions. At its left side, the fast waves reaching relevant R are b-rarefactions while

at its right side the fast waves are b-shocks. As previously discussed at the beginning of

this section, e-shocks are the temperature decreasing waves and must be used in Riemann

solutions; the admissibility of these shocks will dictate other relevant bifurcations in the

backward L-regions.

We mention for later use the portion of Wf
−

(
R
)
, the backward fast wave curve from

R, that contains a right-characteristic fast e-shock, followed by a fast b-rarefaction:

Sf
e −→ Rf

b . (5.9)

Remark 5.8 A particularly interesting elementary wave is the e shock, which is respon-

sible for decrease the temperature in the backward L-regions L−
7 – L−

10. Physically it is a

classical condensation shock, a fundamental wave in the Riemann solutions arising from

oil recovery by gas injection.

Riemann solution for L−
5

Here the wL state lies above the isotherm T = TR, on the right side of He(w
R)∪E+

b (DG),

see Figure 5.2 and the discussion preceding Equation (5.1). In this region e-waves are

slow. The solution is given just by the Lax construction, the constant state M lies in the

isotherm T = TR:
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L
Ss
e−−→ M

S
f
b−−→ R. (5.10)

Riemann solution for L−
6

The L-region L−
6 is bounded by the e branch of the Hugoniot locus emanating from wR,

by the extension E+
b (DR), by the double extension E−

b (QD)2 and by the isotherm T = TR.

Again, the e-waves are slow. This is the last case in the Region A to benefit from the Lax

construction, again the constant state M lies in the isotherm T = T r:

L
Ss
e−−→ M

R
f

b−−→ R. (5.11)

Riemann solution for L−
7

This backward L-region contains the coincidence locus C so that the relative order between

families is not fixed: on the left side of the coincidence locus, the b-waves are slow, while

on its right side the e-waves are slow.

The boundary of this region consists of two branches in the loci E−
b (QD) and E−

b (QD)2,

such that:

E−
b (QD) ∩ E−

b (QD)2 = {Q,D′}, (5.12)

see Figure 5.2a. The e waves emanating from states wR ∈ L−
7 do not reach the segment

QD, so they cannot be used as a first wave in the Riemann solution. This is so because

such a shock must be followed by a b wave, along which temperature is fixed. However,

inside region L−
7 we have that the b-shocks are slow.

Proposition 5.9 The b-shock waves from wL ∈ L−
7 reaching curve E−

b (QD) are slow.

Proof. Fix a wL = (sLo , T
L) in wL ∈ L−

7 and denote by w∗ = (s∗o, T
L) the point in E−

b (QD)

that intersects the isotherm T = TL and by w∗∗ the point in E−
b (QD)2 that intersects the

same isotherm. By Proposition 4.6, the Darcy speed u is constant in the Hb branch, so it

plays no role in wave admissibility here. We can thus make u = 1, see Remark 2.8.

The standard Buckley-Leverett theory implies that the speed of the b-shock based on

w∗ is an increasing function in s∗o, up to the right-characteristic extension of w∗, E+
b (w

∗).

By choosing R close enough to the singular point, we can make the whole region L−
7 lie

at the left of the b inflection. We have:

σ(wL;w∗) < σ ≡ σ(w∗;w∗∗). (5.13)
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Notice that the fast e-shock from w∗ to the segment QD has speed σ because of the

definition of the double extension, see Definition 5.5, and:

σ(wL;w∗) < σ < λ̃e(w
∗), (5.14)

because it is an e-shock.

Now we proceed to show that:

σ(wL;w∗) < λ̃e(w
L). (5.15)

If wL is at the left of the coincidence locus the e-shocks are fast, so that Equation (5.15)

is trivially satisfied. Since we already discarded the existence of a b characteristic shock,

Equation (5.15) must hold until wL reaches the self-intersection of H(w∗). Using an

argument to the one in the proof of Lemma 4.27, one can see that the self-intersection

must lie at the right of E−
b (w

∗) and, in particular, of wL. �

Remark 5.10 The proof in Proposition 5.9 implies that the shocks from E−
b (QD)2 to the

segment QD have the property that all characteristics impinges in the shock, i.e., they are

over-compressive.

The Riemann solution is now clear: after the slow b-shock there is a constant state

M1 ∈ E−
b (QD), followed by the fast waves in Wf

−

(
wR
)
. We denote by M̂2 ∈ {T = TR}

the intermediate state between the fast waves. The solution is written:

L
Ss
b−−→ M1

S
f
e−−→ M̂2

R
f

b−−→ R. (5.16)

Notice that we cannot use the slow b-rarefaction: it would not satisfy the monotonicity

principle with the triple-shock that follows the b-rarefaction.

Remark 5.11 The proof of Proposition 5.9 says that the region where a slow b-shock

exists extends to L−
6 . However, the type of construction shown for L−

7 does not apply: this

b-shock is faster than the right-characteristic e-shock which reaches the segment QD.

Riemann solution for L−
8

In the transition from L−
7 to L−

8 we crossed the extension E−
b (QD). This backward L-

region is bounded above by the isotherm T = TD′

and below by the isotherm T = TQ so

that the Riemann solution must use a fast e-shock. Beginning with a slow b-rarefaction

we reach a constant state that we denote by M1 ∈ E−
b (QD). We denote the intermediate

state between the fast waves in Wf
−

(
wR
)
by M̂2. Thus the solution reads.
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L
Rs

b−−→ M̂1

S
f
e−−→ M̂2

R
f
b−−→ R. (5.17)

Riemann solution for L−
9

In this backward L-region, we are on the left side of the right extension of the isotherm

T = TR, Equation (5.1), and above the backward slow wave curve emanating from R,

see Equation (5.8) and the adjacent discussion. The b-waves are slow. The Riemann

solution encompasses a slow b-rarefaction, joined to a slow left-characteristic e-shock at

the intermediate state M̂1 ∈ E+
b (DG). This slow shock reaches the isotherm T = TR at

the constant state M2, at the right of state wR (in the segment from wR to wG), and is

followed by a fast b-shock.

L
Rs

b−−→ M̂1

Ss
e−−→ M2

S
f
b−−→ R. (5.18)

Riemann solution for L−
10

In the transition from L−
9 to L−

10 we crossed the backward slow wave curve emanating

from R, Equation (5.8). Now the forward slow wave curve emanating from L reaches the

isotherm T = TR at the left of wR, and thus must be followed by a fast b-rarefaction.

We write the intermediate state as M̂1 ∈ E+
b (DG), and the constant state as M2. The

solution is written:

L
Rs

b−−→ M̂1

Ss
e−−→ M2

R
f
b−−→ R. (5.19)

5.3 Region A′

Here the right state wR lies in Region A′. The subdivision of a neighborhood of the

singular point in the backward L-regions of wR, shown in Figure 5.3, is essentially the

same as that of region A, see previous section. We will just highlight the difference.

In this region we set the wR state at the left of the intersection of the isotherm

T = TR with the b double contact locus. We again, denote this intersection by wD. The

intersection of the isotherm T = TR with the coincidence locus will be denoted by wQ as

in the previous section. As can be expected, see Remark 5.6, we no longer can concatenate

a fast b-wave after a temperature decreasing fast e-shock.

When state wR reaches wD, the e branch (He(w
R)) of the Hugoniot locus based on

wR intersects the extension E−
b (QD) in wD′

. After letting state wR get at the right of
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Figure 5.3: Left: backward L-regions for wR in region A′. Right: boundaries.

wD, the fast e-shocks emanating from points in E−
b (RD) can no longer be used in the

Riemann solution: these shocks can only be followed by fast b-shocks which would violate

the monotonicity principle. Therefore we can only use fast right-characteristic e-shocks to

reach the segment QR. To this end both loci: E−
b (RD) and E−

b (QR)2, see Definition 5.5.

are useful as in Region A. For temperatures higher than the temperature of state E−
b (R)

we need to use the e-branch of the Hugoniot locus He(w
R) emanating from wR. Since it

is an oval, it must end with a left-characteristic b-shock at a state in E+
b (R). From E+

b (R)

to higher temperatures, we use the left-characteristic b-shocks, as was done in Region A.

The temperature increasing Riemann solutions in regions L−
1 through L−

4 are the same

as in Region A.

5.3.1 Riemann solutions with decreasing temperature

Here, the Riemann solutions for left states in regions L−
5 ,L

−
6 , · · · ,L

−
9 are the same as

those for wR in Region A. In regions L−
6 , L

−
7 , L

−
8 the boundaries of the backward L-

regions differ from the case when wR lies in Region A. In the following we will describe

these differences and give the Riemann solutions for wL states in regions L−
10 and L−

11.

Riemann solution for L−
6

Th backward L-region L−
6 is bounded on the left side by locus E−

b (QR)2 and on the right

side by locus He(w
R). These loci intersects at E−

b (R)2.
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Riemann solution for L−
7

The backward L-region L−
7 is bounded on its left side by locus E−

b (QR) and on its right

side by locus E−
b (QR)2. It lies below the isotherm that contains E−

b (R).

Riemann solution for L−
8

The backward L-region L−
8 is bounded on its right side by locus E−

b (QR). It is below the

isotherm that contains E−
b (R).

Riemann solution for L−
10

Region L−
10 contains the coincidence locus so that in states at the right of the coincidence

locus the e-waves are slow and in states at the left of the coincidence locus the b-waves

are slow.

It can be shown that (with the help of the Triple Shock Rule the same argument given

in Proposition 5.9 works) the b-shocks are slow. The Riemann solution is made with a

slow b-shock to He(w
R), where we write the constant state as M ∈ He(w

R). A fast

e-shock follows. The Riemann solution is:

L
Ss
b−−→ M

S
f
e−−→ R. (5.20)

Riemann solution for L−
11

Region L−
11 is at the left of the e-branch of the Hugoniot locus emanating from wR. In

this backward L-region the b-waves are slow. The Riemann solution encompasses a slow

b-rarefaction until the constant state M in He(w
R). It is followed by the fast e-shock.

The Riemann solution is:

L
Rs

b−−→ M
S
f
e−−→ R. (5.21)

5.4 Region B

Here the right state wR lies in Region B. In the discussion that follows we will present

the subdivision of a neighborhood of the singular point in the backward L-regions of wR,

shown in Figure 5.4.

As in the case of the preceding regions, in a sufficiently small neighborhood of any

wR state in Region B, e waves are slow and b waves are fast (this behavior can change
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so

T

S

so

T

S

C

Figure 5.4: Left: backward L-regions for wR in region B. Right: boundaries.

out of region B, accounting for bifurcations in the solution). Generically, a fast wave is

needed to reach wR. In a sufficiently small neighborhood of this region the backward

fast-wave curve that reaches wR must represent (fast) b-waves, which lie on an isotherm.

Therefore the isotherm T = TR must be reached through slow waves in order to construct

the Riemann solution, see Proposition 4.6. A slow wave that reaches the isotherm T = TR

at the right of wR must be followed by a fast b-shock. Of course, if the slow wave reaches

the isotherm T = TR at the left of wR it must be followed by a fast b-rarefaction. We

have exhausted slow waves; now we will focus on fast waves reaching this line.

Along an e-rarefaction temperature increases. On the left side of the coincidence they

are fast and on the right side of the coincidence they are slow. Any slow e-rarefaction

that reaches the isotherm T = TR can be followed by a fast b elementary wave.

Since the e-rarefactions are fast on the left side of the coincidence locus they must be

chosen so that satisfies the monotonicity principle with respect to the b-rarefaction that

follows. To this end we name the point wO which is the point of the coincidence locus

with temperature T = TR. The fast e-rarefaction wave that reaches wO is the sole one

that satisfy the monotonicity requirement. We call wP the point where this rarefaction

begins and denote this rarefaction curve as γPO.

To summarize we have that the fast backward wave curve that reaches wR has a

fast e-rarefaction that remains entirely on the left side of the coincidence locus C, begins

at state wP and ends at state wO. This rarefaction is followed by a fast b-rarefaction

beginning in wO. To further reference we write the relevant part of wave curve Wf
−

(
R
)
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as:

Rf
e −→ Rf

b . (5.22)

At the left of Wf
−

(
R
)
the slow waves are b-rarefactions. On the right side of Wf

−

(
R
)
,

the slow waves are b-shocks. These shocks cease to be slow when their base state crosses

the left extension E−
e (γPO) of the e-rarefaction γPO. For states on the right side of

E−
e (γPO), the b-shocks become fast, thus they cannot be used in this Riemann solution.

For states above the isotherm T = TR, the temperature decreasing waves are the

e-shocks. In order to satisfy the monotonicity principle we only allow the slow e-shocks

based at the right extension of the line OG with respect to the b family, which we denote

as:

E+
b (OG). (5.23)

5.4.1 Riemann solutions with decreasing temperatures

Here we will give the Riemann solutions for the backward L-regions above the isotherm

T = TR. The segment of the slow backward wave curve Ws
−

(
R
)
from R:

Rs
b −→ Ss

e , (5.24)

and the right extension E+
e (OG) are the bifurcation loci for the backward L-regions in

this Riemann solution, see Figure 5.4.

Riemann solution for L−
1

In the region L−
1 the e family is slow and its admissible elementary waves are the shocks.

Since we are on the right side of the slow backward wave curve Ws
−

(
R
)
, a slow wave

emanating from wL will reach the isotherm T = TR at the right of wR, in a constant

state which we call by M. The admissible fast waves are thus b-shocks. The solution is:

L
Ss
e−−→ M

S
f
b−−→ R. (5.25)

Riemann solution for L−
2

In the transition from L−
1 to L−

2 we crossed the extension E+
b (RG) so that, now, in a

neighborhood of state wL the b-waves are slow. A slow b-rarefaction emanating from wL

crosses the extension E+
b (RG) at an intermediate state M̂; is followed by a left character-

istic e-shock. This shock reaches the isotherm T = TR on the constant state M2 and is
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followed by a fast b-shock. The solution is:

L
Rs

b−−→ M̂1

Ss
e−−→ M2

S
f
b−−→ R. (5.26)

Riemann solution for L−
3

Here the slow waves are the e-shocks. Now the state wL is on the left side of the wave

curve Ws
−

(
R
)
, see Equation (5.24). We call M the point where the slow shock wave

emanating from wL reaches the isotherm T = TR. It must be followed by a b-rarefaction

wave. The solution is:

L
Ss
e−−→ M

R
f
b−−→ R. (5.27)

Riemann solution for L−
4

Again, we are at the left of the extension E+
b (PO). Slow waves are the b-shocks and

b-rarefactions. The forward slow wave curve Ws
+(L) emanating from wL:

Rs
b −→ Rs

e, (5.28)

crosses the extension E+
b (PO) at a intermediate state M̂1 and reaches the isotherm T =

TR at a constant state M2.

L
Rs

b−−→ M̂1

Ss
e−−→ M2

R
f

b−−→ R. (5.29)

5.4.2 Riemann solutions with increasing temperatures

Now we focus on the backward L-regions below the isotherm T = TR. In comparison

to the previous cases in Region B, the bifurcation structure will be complicated by the

presence of the singular point.

The backward slow wave curve Ws
−

(
R
)
emanating from wR:

Rs
b −→ Rs

e, (5.30)

is the first remarkable bifurcation in this backward L-regions. At its left side, the fast

waves reaching R are the b-rarefactions while at its right side the fast waves are b-shocks.

As was previously discussed, in the beginning of this section, temperature increases along

e-waves.
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We record for later use Ws
−(O), the backward slow wave curve emanating from wO:

Rs
b −→ Rs

e. (5.31)

Riemann solution for L−
5

In this region the slow waves are e-waves. The Riemann solution is just the Lax construc-

tion, where the constant state M lies on the isotherm T = TR. The Riemann solution is

written as:

L
Rs

e−−→ M
S
f
b−−→ R. (5.32)

Riemann solution for L−
6

In this region we are on the left side of the coincidence locus. A slow b-rarefaction wave

emanating from L reaches the coincidence locus in an intermediate state M̂1. It is followed

by a slow e-rarefaction which reaches the isotherm T = TR in the constant state M2.

This wave is followed by a fast b-shock:

L
Rs

b−−→ M̂1

Rs
e−−→ M2

S
f
b−−→ R. (5.33)

Riemann solution for L−
7

Again, the slow waves are e-shocks or e-rarefactions. This is the last case in the Region

B to benefits from the Lax construction, where the constant state lies on the isotherm

T = TR. The solution is:

L
Rs

e−−→ M
R

f

b−−→ R. (5.34)

Riemann solution for L−
8

In the transition from L−
7 to L−

8 we crossed the coincidence locus. This backward L-region

is bounded above by wave curve Ws
−(O), Equation (5.31), and below by the wave curve

Ws
−

(
wR
)
, Equation (5.24). Beginning with a slow b-rarefaction we reach an intermediate

state in the coincidence locus, which we denote by M̂1. This wave is followed by a slow

e-rarefaction that reaches the isotherm T = TR at the constant state M2. This wave is

followed by a b-rarefaction.

L
Rs

b−−→ M̂1

Rs
e−−→ M2

R
f
b−−→ R. (5.35)
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Riemann solution for L−
9

In this region the state wL is on the left side of the wave curve Ws
−(PO) that reaches wO.

The slow e-rarefaction emanating from the wL state reaches the extension E−
e (PO) at an

intermediate state, which we call M̂1. Lemma 4.25 shows that the b-shock emanating

from M̂1 reaches the fast e-rarefaction curve γPO (see Figure 5.4) at the intermediate

state M̂2. This b-shock is a double contact shock, thus it it can be followed by the fast

e-rarefaction emanating from M̂2. This rarefaction reaches the isotherm T = TR in Ô,

from where a fast b-rarefaction reaches R. The Riemann solution reads:

L
Rs

e−−→ M̂1

Sd
b−−→ M̂2

R
f
e−−→ Ô

R
f
b−−→ R. (5.36)

Remark 5.12 In this L-region the Riemann solution is given by a single wave group,

without embedded constant states. This is a direct consequence of the fact that slow e-

rarefaction generically can be concatenated to fast e-rarefaction through b double contact

(that joins a slow to a fast wave), near the coincidence locus C. See Lemma 4.25 and

Theorem 4.30. This type of behavior was theoretically predicted for double sonic transi-

tional waves in Schecter et al. [44]. To the authors’ knowledge, this is the first practical

example.

Riemann solution for L−
10

In the transition from L−
9 to L−

10 we crossed the coincidence locus. The slow waves in the

previous region are preceded by a slow b-rarefaction from wL to M̂0 on the coincidence

locus. The solution is:

L
Rs

b−−→ M̂0

Rs
e−−→ M̂1

Sd
b−−→ M̂2

R
f
e−−→ Ô

R
f

b−−→ R. (5.37)

Riemann solution for L−
11

In this region we are on the right side of the Wf
−

(
R
)
. The slow wave is a b-shock, which

reaches the fast backward wave curve emanating from wR at a constant state M1 ∈ γPO.

The solution is:

L
Ss
b−−→ M1

R
f
e−−→ Ô

R
f
b−−→ R. (5.38)
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Riemann solution for L−
12

Now we are on the left side of Wf
−

(
R
)
. The slow b-rarefaction emanating from wL reaches

the fast backward wave curve emanating from wR at a constant state M1. The Riemann

solution is:

L
Rs

b−−→ M1

R
f
e−−→ Ô

R
f
b−−→ R. (5.39)

5.5 Region C

The last case occurs for states wR in Region C. In the discussion that follows we will

present the subdivision of a neighborhood of the singular point into backward L-regions

of wR see Figure 5.5.

so

T

S

so

T

S

C

Figure 5.5: Left: backward L-regions for wR in region C. Right: boundaries.

In a small neighborhood of the R state the fast waves are the e elementary waves. The

backward fast wave curve with decreasing temperature is the Hugoniot locus of R. Away

from R, this curve intersects the isotherm T = TR at the state O. The right extension

E+
b (OG) intersects the locus He(w

R) at point wS, since wR, wO and wS form a triple

shock, see Proposition 4.12. As in the case for Region B, the rarefactions that reach points

wR and wO will play a fundamental role in the Riemann solution. The last relevant locus

is E−
e (γPR), the left extension of the rarefaction orbit γPR.
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5.5.1 Riemann solutions

Region C exhibits most of the bifurcation mechanisms appearing in the previously de-

scribed backward L-regions.

Riemann solution for region L−
1

This L-region lies above the isotherm T = TR and on the left side of the Hugoniot locus

He(w
R). In the first four regions the classical Lax construction holds. The Riemann

solution is:

L
Rs

b−−→ M
S
f
e−−→ R. (5.40)

In this L-region we have M ∈ T = TR, however we recall the reader that we will

suppress the description of constant states given by the Lax construction in the spirit of

Remark 5.7 .

Riemann solution for region L−
2

This region lies above the isotherm T = TR and inside the e branch He(w
R) of the

Hugoniot locus based onwR. The Riemann solution is:

L
Ss
b−−→ M

S
f
e−−→ R. (5.41)

Riemann solution for region L−
3

This region lies below the isotherm T = TR and on the left side of the rarefaction curve

γPR. The Riemann solution is:

L
Rs

b−−→ M
R

f
e−−→ R. (5.42)

Riemann solution for region L−
4

This region lies below the isotherm T = TR and between the rarefaction curve γPR and

its extension E−
e (γPR). The solution is:

L
Ss
b−−→ M

R
f
e−−→ R. (5.43)
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Riemann solution for L−
5

This L-region lies below the isotherm T = TR and is bounded by the coincidence locus,

the extension E−
e (γPR) and the rarefaction curve that emanates from wQ.

In this region the solution is similar to the case of L−
9 in region B, in the sense that

the b double contact joins a slow e-rarefaction with a fast e-rarefaction. The solution is:

L
Rs

e−−→ M̂1

Sd
b−−→ M̂2

R
f
e−−→ R, (5.44)

where M̂1 ∈ E−
e (γPR) and M̂2 ∈ γPR.

Riemann solution for L−
6

This region is bounded by the isotherms T P and TQ and by the coincidence locus. In

the transition from L−
5 to L−

6 the wL states crossed the coincidence locus. The Riemann

solution is a b-rarefaction which ends at M̂0 ∈ C, is followed by the a construction similar

to the previous one:

L
Rs

b−−→ M̂0

Rs
e−−→ M̂1

Sd
b−−→ M̂2

R
f
e−−→ R. (5.45)

Riemann solution for L−
7

This region lies below the isotherm T = TR, on the right side of the rarefaction curve

emanating from wQ, on the right side of the coincidence locus, The Riemann solution is

a slow e-rarefaction that ends at the constant state M with {T = TR}, followed by a fast

b-shock:

L
Rs

e−−→ M
S
f
b−−→ R. (5.46)

Riemann solution for L−
8

This region lies on the left side of the coincidence locus C, below the isotherm T = TQ.

Again, the solution is a slow b-rarefaction followed by a construction of the same type of

the preceding Riemann solution:

L
Rs

b−−→ M̂0

Rs
e−−→ M

S
f

b−−→ R, (5.47)

where M̂0 ∈ C.
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Riemann solution for L−
9

This region lies above the isotherm T = TR, as well as and on the right side of the e branch

of the Hugoniot locus based onwR, He(w
R). The solution is a slow e-shock ending at the

constant state M ∈ {T = TR}, followed by a fast b-shock:

L
Ss
e−−→ M

S
f
b−−→ R. (5.48)



Chapter 6

Intermezzo

In this chapter we state the basic results and definitions needed to find the complete

solution of the Riemann problem with data in the two phase region or in the single

phase liquid region, a representative set of which will be given in Chapter 7. Also, in this

chapter we elaborate on the mechanisms that provide the transition between the Riemann

solutions in Chapter 5 and in Chapter 7. This chapter will build on definitions and results

of all previous chapters.

Our motivation originates from the observation that it is impossible to solve the Rie-

mann problem for all pairs of left and right states in the two phase region using only waves

defined within the two phase region. Nevertheless, it is still possible to find all Riemann

solutions if one is allowed to use waves from other thermodynamical configurations, in

addition to those defined inside the two phase region. Similar statements hold for the

single phase liquid region: it is impossible to solve the Riemann problem for all pairs of

left and right states in the single phase region using only waves defined within this region,

one needs to use waves from other thermodynamical configurations.

6.1 Riemann solutions in TP

As was seen in Chapter 5, the Riemann solution possesses a very rich bifurcation structure

in a neighborhood of the singular point. Nevertheless, there are other structures in the

two phase region with great impact on the Riemann solutions.

As discussed on Chapter 2, the Riemann solution is constructed by concatenating

constant regions and fundamental waves: shocks and rarefactions. As in Chapter 5, when

making figures we take advantage of the fact that the projection of elementary waves onto

state space is sufficient to construct the solutions.

Riemann solutions bifurcate when an elementary wave ceases to be admissible: the

85
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construction of the Riemann solution must proceed with another admissible elementary

wave. First, we will focus on the bifurcations in forward constructions of Riemann solu-

tions that appear when wR is allowed to vary but wL is fixed.

Definition 6.1 (Forward R-region). Fix a pair wL, wR in state space. The forward

R-region R+(wL), corresponding to the selected pair wL, wR, is the maximal subset

of state space such that wR ∈ R+(wL) and the Riemann solutions for any initial data

w∗ ∈ R+(wL), u∗ > 0,

w(x, 0) =

{
wL, if x < 0,

w∗, if x > 0,

and

u(x, 0) = u∗, if x < 0,

are constructed through a wave fan consisting of the same concatenations of constant

states and the same fundamental wave types and families as for the solution associated to

the pair wL, wR.

Remark 6.2 Typically there is a finite number of forward R-regions for a given wL. We

will follow the usual habit and number them.

When the left state wL wanders in state space, the solutions may change topology,

i.e., the forward R-region diagram changes qualitatively. When such a change happens

the Riemann solution bifurcates. Bifurcations generically happen when wL crosses certain

codimension one manifolds in state space.

Definition 6.3 (Forward L-region). Fix wL in state space. The forward L-Region

L+(wL), containing wL, is the maximal subset of state space such that for any w∗ ∈ L+

the subdivision of state space into forward R-regions R+(w∗) is the same as the subdvision

in R+(wL).

Remark 6.4 The reader should pay attention to the differences between the R-construc-

tion described by Definitions 5.1, 5.3 and the L-construction described by Definitions 6.1,

6.3.

Remark 6.5 Again we will use the lexicographic order of the plane to indicate relative

position of objects. For example, w1 = (s1o, T
1) and w2 = (s2o, T

2): state w2 is above w1

if T 2 > T 1. Accordingly, state w2 is at the right of w1 if s2o > s1o.
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6.1.1 The influence of the exceptional locus on Riemann solu-

tions

The exceptional locus E is a genuine contact of the e family, see Propositions 4.22 and

4.33. In a suitable neighborhood of the exceptional locus, elementary wave curves must

be close to it. This is so because E coincides with both an e-integral curve and with the

Hugoniot e-branch of w− for any w− ∈ E ; this fact is illustrated in Figure 6.1.

Figure 6.1: Elementary waves near the exceptional locus E . Left: rarefaction curves.
Right: shock curves, with the base state represented by a bold dot.

Since this neighborhood can be disjoint from the coincidence locus C, the two families

are transversal in such a neighborhood, b-waves are fast and Lax construction holds,

i.e., the Riemann solution is given by a slow e-wave, followed by a fast b-wave. Since

b-waves lie along isotherms, see Proposition 4.6, Riemann solutions along isotherms can

be obtained by the standard fractional flow theory, in other words, Olĕınik construction

[39]. The bifurcations generated in the Riemann solutions by the b inflection, Equation

(4.46), can also be described by the fractional flow theory, i.e., Olĕınik construction. In

our particular case, these bifurcations complicate the description of Riemann solutions

without adding any essential novelty.

Remark 6.6 We will disregard bifurcations in Riemann solutions that arise from the b

inflection in order to focus on the organizing structures that characterize our particular

case: the singular point and the boundary between the single phase liquid region and the

two phase region.

Let us return to the Riemann solution near the exceptional locus E . On its left side,

along an e-rarefaction wave the temperature increases. The Riemann solution in this

neighborhood of the exceptional locus is given by cases L−
1 and L−

5 for wR in Regions A
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and B, see Sections 5.2, 5.4. In our case, the Riemann solution given in Chapter 5 can be

extended down to the exceptional locus E without change.

Remark 6.7 In fact, by Propositions 4.22 and 4.33 the boundary line {so = 0} must

also be a contact discontinuity, with the same properties as the exceptional locus E . For

Riemann data near any of the two loci, the same kind of influence is felt in the solutions.

In the particular case when both wL,wR belong to E , the solution is a genuine contact

discontinuity with speed σ = λe(w
L, u) = λe(w

R, u).

Temperature decreases along an e-rarefaction wave with wL states on the right side

of the exceptional locus. For pairs of states wL = (sLo , T
L) and wR = (sRo , T

R) in a

neighborhood on the right side of the exceptional locus the Riemann solution is given by

the Lax construction, written as:

R+
1 : for TR > TL and sRo > sLo ,

L
Ss
e−−→ M

S
f
b−−→ R. (6.1)

R+
2 : for TR > TL and sRo < sLo ,

L
Ss
e−−→ M

R
f

b−−→ R. (6.2)

R+
3 : for TR < TL and sRo < sLo ,

L
Rs

e−−→ M
R

f
b−−→ R. (6.3)

R+
4 : for TR < TL and sRo > sLo ,

L
Rs

e−−→ M
S
f
b−−→ R. (6.4)

This construction can be extended as follows: let us denote by γ the rarefaction curve

that intersects the right-hand side branch of the coincidence locus in the boundary of

the TP, {T = TbV }. For any wL state in the region between the exceptional locus and

γ, the two families are genuinely nonlinear and System (4.1) is strictly hyperbolic. The

preceding Lax construction holds for any wR state in state space on the left side of the b

inflection. For wR states on the right side of the b inflection the b waves change according

to the fractional flow theory.

6.1.2 Riemann solutions near the pure oil boundary

We will focus on wL states on the right side of the exceptional locus E between the b

inflection locus (Equation (4.46)) and the extension of the boundary {so = 1}. The

subdivision of state space into forward R-regions is shown in Figure 6.2.
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Of course, the Lax construction near such wL states differs from the construction in

(6.1)–(6.4) in the admissible of b-waves: saturation increases when reaching wR states on

the right side of wL with a b-shock, while saturation decreases when reaching wR states

on the left side of wL with a b-rarefaction.

T

so

Figure 6.2: Subdivision of state space near the boundary {so = 1} into forward R-regions.

States wR above wL are reached through a slow e-shock, followed by a fast b-wave.

This construction holds for high temperatures. The e-rarefaction is the wave responsible

for reaching states wR below but nearby wL.

The rarefaction curve emanating from wL crosses the extension of the boundary:

E∂TP = E−
e ({so = 1}), (6.5)

at a point wP and ends at a point wQ, where it intersects the coincidence locus C (which

is also an inflection for the e-rarefaction). We will denote by γPQ the portion of the

rarefaction curve emanating from wL between points wP and wQ, with which we can

define the extension E−
e (γPQ). This extension determines the locus where fast b-shocks

emanating from γPQ become slow, by Lemma 4.25. We denote by wO the intersection

point of the isotherm {T = T P} with the boundary {so = 1}. The segment of the

fast forward wave curve Wf
+

(
wO
)
emanating from wO is an e-rarefaction followed by a

b-rarefaction, which we write for later use:

Rf
e −→ Rf

b . (6.6)
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Riemann solution for R+
1

The region R+
1 lies on the right side of He(w

L), which is the e-branch of the Hugoniot

locus emanating from wL, above {T = TL}. The Lax construction gives the solution:

L
Ss
e−−→ M

S
f
b−−→ R, (6.7)

where M ∈ He(w
L) ∩ {T = TR}. In what follows we will not write down the definition

of constant states given by the Lax construction, as it is obvious.

Riemann solution for R+
2

The region R+
2 lies on the left side of He(w

L), which is the e-branch of the Hugoniot locus

emanating from wL, above {T = TL}. The solution is:

L
Ss
e−−→ M

R
f
b−−→ R. (6.8)

Riemann solution for R+
3

The region R+
3 lies on the left side of the e-rarefaction emanating from wL, between the

isotherms {T = TL} and {T = TQ}. The solution is:

L
Rs

e−−→ M
R

f

b−−→ R. (6.9)

Riemann solution for R+
4

The region R+
4 lies on the right side of the e-rarefaction emanating from wL. It is

bounded by the aforementioned rarefaction, by the extension E−
e (γPQ), by the boundary

{(so, T ) ∈ TP | so = 1, TO ≤ T ≤ TL} and by the isotherm T = TL. This is the last

region to benefit from the Lax construction:

L
Rs

e−−→ M
S
f
b−−→ R. (6.10)

Riemann solution for R+
5

The region R+
5 is bounded by extension E−

e (γPQ), by the coincidence locus C and by

γPQ, a segment of the rarefaction emanating from wL. The construction of extension

E−
e (γPQ), Lemma 4.25 and Corollary 4.31 allow us to continue the Riemann solution for

the preceding R-region with a fast e-rarefaction, characteristic with the b-shock. The

solution is:
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L
Rs

e−−→ M̂1

S
f
b−−→ M̂2

R
f
e−−→ R, (6.11)

where M̂1 ∈ γPQ and M̂2 ∈ E−
e (γPQ).

Riemann solution for R+
6

In the transition from the forward R-region R+
5 to the forward R-region R+

6 we crossed

the coincidence locus C. Furthermore, this region is bounded by the isotherms {T = TQ}

and {T = T P}. The Riemann solution is a concatenation of the same type of Riemann

solution found for wL in region R+
5 with a fast b-wave. The solution is:

L
Rs

e−−→ M̂1

S
f
b−−→ M̂2

R
f
e−−→ M̂3

R
f
b−−→ R. (6.12)

where M̂3 ∈ C.

Further Riemann solutions

The subdivision into forward R-regions illustrated in Figure 6.2 suggests that it is not

possible to extend the construction of Riemann solutions for wR states below wave curve

Wf
+

(
wO
)
using only waves defined within TP.

This key observation leads us to consider the use of waves from other thermodynamical

configurations (the single phase liquid region in our case), in addition to those defined

inside the two phase region, in order to obtain the complete Riemann solution.

6.2 Elementary waves in the SPL

In Subsection 3.5.2 we derived the system of conservation laws:





ϕ
∂

∂t
ρov +

∂

∂x
(uρov) = 0,

ϕ
∂

∂t
ρod +

∂

∂x
(uρod) = 0,

ϕ
∂

∂t

(
Ĥr +Ho

)
+

∂

∂x
(uHo) = 0,

(6.13)

and introduced the natural parametrization of the single phase liquid state space:

SPL = { (T, ρod) | T ≥ TbV and xeq
od(T ) ≤ xod ≤ 1}. (6.14)
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System (6.13) can be written in compact form as:

∂tG(w) + ∂xuF (w) = 0, (6.15)

where:

G(T, ρod) =




ρV

ρod

Ĥr +Ho


 and F (T, ρod) =




ρV

ρod

Ho


 . (6.16)

Multiplying Equation (6.13a) by 1/ρV , Equation (6.13b) by 1/ρD, adding the results

and using the ideal mixture law (3.2) we get ∂xu = 0, so u is constant in space. Therefore,

the system (6.13) simplifies further to:





ϕ
∂

∂t
ρod + u

∂

∂x
ρod = 0,

ϕ
∂

∂t

(
Ĥr +Ho

)
+ u

∂

∂x
Ho = 0,

∂xu = 0.

(6.17)

We get immediately the (compositional) characteristic speed and its eigenvector:

λc =
u

ϕ
and ~rc = (0, 1)T , (6.18)

and because of the affine linear dependence of the enthalpies on the temperature, see

Table A.1 and Equations (3.18), (A.1), (A.2), (A.3), the (thermal) eigenpair is:

λt =
u

ϕ

∂THo

∂THo + ∂THr

=
u

ϕ

ρV coV
ρV coV + Cr

and ~rt = (1, 0)T . (6.19)

Since both the flux and the accumulation functions in (6.17) are linear, in the SPL

the Riemann solution is trivial. It is a genuine thermal contact Ct followed by a genuine

compositional contact Cc, since λt < λc.

Since light and dead oils can only form a liquid if the amount of dead oil in the mixture

satisfies xeq
od(T ) ≤ xod, see Equation 6.14, it is clear that if we fix a wL = (TL, xL

od) state

we can only construct Riemann solutions fully contained within SPL for wR = (TR, xR
od)

states that satisfy: {
TR ≤ T ∗ | T ∗ defined by xL

od = xeq
od(T

∗)
}
. (6.20)

This is completely analogous to the situation in the previous subsection.
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6.3 Shock waves between regions

In this section we consider discontinuous waves between the single phase liquid region and

the two phase region. Familiarity with Sections 3.2.1 and 3.5 is assumed.

We define the extended accumulation function:

G∗ =

{
GTP, for w ∈ TP,

GSPL, for w ∈ SPL,
(6.21)

where GTP is given by Equation (4.4a) and GSPL is given by Equation (6.16a), as well as

the extended flux function:

F ∗ =

{
FTP, for w ∈ TP,

FSPL, for w ∈ SPL,
(6.22)

where FTP is given by Equation (4.4b) and FSPL is given by Equation (6.16b). Since the

single phase liquid region and the two phase region share the same boundary:

ΩTP ∩ ΩSPL =
{
(so, T, ρod)

∣∣ (so = 1, T ≥ TbV , ρod = ρod(T )
}
, (6.23)

see Equations (3.28), (3.34), (3.3) and (3.5), the extended flux and accumulation functions

(6.21), (6.22) are continuous up to the boundary (6.23) (they are smooth inside TP and

SPL). The interplay between the two phase and the single phase liquid situations is

illustrated in Figure 6.3.

The Rankine Hugoniot condition, Equation (2.10), is written as:

u+F ∗(w+)− u−F ∗(w−)− σ
(
G∗(w+)−G∗(w−)

)
= 0, (6.24)

were w−,w+ are allowed to be either in TP or in SPL.

Both the extended accumulation and the extended flux are smooth in a neighbor-

hood of any point in the interior of TP. For any base state of the Hugoniot locus

between L-regions or R-regions that lie in the interior of TP we can provide a smooth

parametrization of the shock curve. Thus, the Bethe-Wendroff Theorem 4.13 holds in

such neighborhoods. If this parametrization crosses the boundary defined in Equation

(6.23), the Bethe-Wendroff Theorem may not hold.
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so

T

od

T

T

so xod

Figure 6.3: Top: relative positions of the two phase and single phase liquid physical
configurations. Their parameterizations are shown at the bottom.

6.3.1 Shock waves from TP to SPL

Here we consider the case where w− lies in TP and w+ = (T+, x+
od) is allowed to vary in

SPL. We rewrite Equation 6.24 explicitly as:





σ
[
ρV −G−

1

]
− u+ρV + u−F−

1 = 0,

σ
[
ρ+od −G−

2

]
− u+ρ+od + u−F−

2 = 0,

σ
[
H+

o +H+
r −G−

3

]
− u+H+

o + u−F−
3 = 0,

(6.25)

where G−, F− are given by Equation (4.4) and the subscripts i ∈ {1, 2, 3} denote their

components.

We will show that the Hugoniot locus inside the SPL for a fixed w− state inside TP is
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generically a hyperbola. It degenerates in the cases w− ∈ {so = 1} and w− ∈ E−
e (so = 1),

as shown in Figure 6.4 and in the proposition that follows.

T T

so xod

T T

so xod

T T

so xod

Figure 6.4: Change in the TP → SPL branch of the Hugoniot locus when wL ∈ TP
crosses the extension of the boundary E−

e (so = 1).

Proposition 6.8 (Characterization of shock curves TP → SPL). The shock curve inside

SPL for a left state in TP is a hyperbola. Its asymptotes are parallel to the axis of the

parametrization of the single phase liquid state space, (T, xod). This locus bifurcates for

w− ∈ {s−o = 1} and w− ∈ E−
e ({s

−
o = 1}).
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Proof. The explicit formulae for enthalpies Hr and Ho are given in equations (3.18), (A.1),

(A.2) and (A.3). Using these equations and defining T̃ = T − T̄ , we rewrite Equation

(6.25) as: 


[
ρV −G−

1

]
−ρV F−

1

[
ρ+od −G−

2

]
−ρ+od F−

2

[
(ζ + Cr)T̃

+ −G−
3

]
−ζT̃+ F−

3







σ

u+

u−


 = 0, (6.26)

where ζ = ρV coV . The pairs (T̃+, ρ+od) for which the matrix in Equation (6.26) has a

non-trivial kernel satisfy:

Aρ+odT̃
+ +Bρ+od + CT̃+ +D = 0, (6.27)

where: 



A = CrF
−
1 ,

B = G−
1 F

−
3 − F−

1 G−
3 ,

C = ζ(G−
2 F

−
1 − F−

2 G−
1 )− ρVCrF

−
2 ,

D = ρV (G
−
3 F

−
2 − F−

3 G−
2 ).

(6.28)

Under the change of variables ρ+od = Y + Z, T̃+ = Y − Z, Equation (6.27) becomes:

(
AY +

B + C

2

)2

−

(
AZ +

C − B

2

)2

+ AD − BC = 0, (6.29)

which is generically a hyperbola (since A > 0) with asymptotes parallel to the axes

{T = TbV } and {ρod = 0}. A computation shows that AD − BC in (6.29) vanishes for

w− ∈ {so = 1}, making the Hugoniot locus defined in (6.27) bifurcate. The bifurcation

in the Hugoniot locus (6.27) for w− ∈ E−
e ({so = 1}) follows from the Triple Shock Rule

4.10, Proposition 4.6 and continuity of the extended accumulations and fluxes. �
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6.3.2 Shock waves from SPL to TP

Here we consider the case where w− lies in SPL and w+ = (s+o , T
+) is allowed to vary in

TP. We rewrite Equation 6.24 explicitly as:





σ
[
α+s+o + ρ+gV −G−

1

]
− u+(α+f+

o + ρ+gV ) + u−F−
1 = 0,

σ
[
β+s+o −G−

2

]
− u+β+f+

o + u−F−
2 = 0,

σ
[
γ+s+o +H+

g +H+
r −G−

3

]
− u+(γ+f+

o +H+
g ) + u−F−

3 = 0.

(6.30)

Notice that G− and F− are given by evaluating Equation (6.16) at w−. The subscripts

i ∈ {1, 2, 3} denote their components. An illustration of this locus is given in Figure 6.5.

T T

so xod

Figure 6.5: TP extension of the Hugoniot locus for an wL state in SPL.

The remarkable similarity between Equations (6.30) and (4.43) yields the propositions:

Proposition 6.9 Let (s+o , T
+) = w+ ∈ TP, w− ∈ SPL and w+ ∈ H(w−) be such

that the rows of the matrix in the Rankine-Hugoniot relation (6.30) for w−, w+ are not

parallel. Then the rescaled speed U(w−,w+), defined in Equation 4.41, is a function of

w− and T+.

Proposition 6.10 Assume that wb = (sbo, T
b), wc = (sco, T

c) satisfy wb,wc ∈ H(wa),

wa ∈ SPL and T b = T c = T . Let us use the notation ub = U(wa,wb) and uc = U(wa,wc)

for Darcy speeds and P a = (wa, ua), P b = (wb, ub) and P c = (wc, uc) for points. If the

conditions of Proposition 6.9 and Theorem 4.10 are satisfied, then:
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1. U(wa,wb) = U(wa,wc),

2.
(
wc, uc

)
∈ H(wb),

3. σ(P a;P b) = σ(P b;P c) = σ(P c;P a).

The proofs are similar to those of Proposition 4.11 and Proposition 4.12, so they will

be omitted.



Chapter 7

Riemann Problem II between TP

and SPL

In this chapter we give two representative sets of Riemann solutions for wL and wR states

chosen near the boundary between SPL, the single phase liquid region and TP, the two

phase liquid region. Indeed, we solved the Riemann problem for all cases.

7.1 Riemann solutions for L in SPL

The state L = (TL, xL
od) lies in SPL, see Figure 7.1. We denote the isotherm {(T, ρod) | T =

TL} as γTL. The slow forward wave curve Wf
+

(
wL
)
emanating from wL is written as:

Ct −→ Ss
SPL→TP

−→ Rs
b −→ Ss

e , (7.1)

shown in Figure 7.1 as the concatenation of the segments γTL, HSPL→TP(w
L), γGQ and

E−
b (QG). The wave curve Wf

+

(
wL
)
is necessary to solve the Riemann problem for wR

states the temperatures of which satisfy the relationship:

{
TR ≥ T ∗ | T ∗ defined by xL

od = xeq
od(T

∗)
}
, (7.2)

see Subsections 3.5.2 and 6.2.

We denote the state between the Ss
SPL→TP

and Rb
s waves as wG. Let us denote as

wP the intersection of the wave curve Wf
+

(
wL
)
with the boundary so = 1, as wQ the

intersection of Wf
+

(
wL
)
with the coincidence locus C; similarly, let wO be the intersection

99
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T T

so xod

T T

so xod

Figure 7.1: Up: forward R-regions for L in SPL. Down: boundaries. Left: regions and
boundaries inside TP. Right: regions and boundaries inside SPL. The single phase liquid
region is shaded.

of the wave curve Wf
+

(
wL
)
with the extension of the boundary:

E∂TP = E−
e ({so = 1}). (7.3)

The double extension E−
b (QO)2, see Definition 5.5, will delimit the set of admissible

fast b-shocks that reach the right side of the coincidence locus.

The R-regions induced by fast waves reaching TP are bounded by the right exten-

sions E+
b (γTL) and E+

e (γTL). We record for later use the fast forward wave curve Wf
+(P)

emanating from point wP :

Rf
e −→ Rf

b . (7.4)
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Riemann solution for R+
1

Near the state wL in SPL the Riemann solution is:

L
Ct−−→ M

Cc−−→ R, (7.5)

where M ∈ γTL.

Riemann solution for R+
2

In the region R+
2 the states wR lie in TP. This region is bounded by the right extensions

E+
b (γTL), E

+
e (γTL), as well as by the boundary of the TP region. The Riemann solution

is:

L
Ct−−→ M

S
f
SPL→TP−−−−−−→ R, (7.6)

where M ∈ γTL.

Riemann solution for R+
3

The region R+
3 is bounded by the coincidence locus, by the right extension E+

e (γTL) and

by the wave curve Wf
+(P). The Riemann solution is given by:

L
Ct−−→ M1

S
f
SPL→TP−−−−−−→ M̂2

R
f
e−−→ R, (7.7)

where the constant state M1 lies on γTL and the intermediate state M̂2 lies on the

intersection of extension E+
e (γTL) with the slow branch of the Hugoniot locus from SPL

to TP emanating from M1.

Riemann solution for R+
4

In the transition from region R+
3 to region R+

4 the wR state crossed the coincidence locus.

The fast waves in the preceding region are succeeded by a b-rarefaction. The Riemann

solution is:

L
Ct−−→ M1

S
f
SPL→TP−−−−−−→ M̂2

R
f
e−−→ M̂3

R
f
b−−→ R, (7.8)

where the state M̂3 lies on the coincidence locus C. The descriptions of M1 and M̂2 is

similar to the one given in R-region R+
3 .
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Riemann solution for R+
5

The region R+
5 lies below the region R+

4 , on the right side of extension E+
b (γTL). Notice

that the region R+
5 is adjacent to the region R+

2 . The waves in region R+
2 are succeeded

by a fast b-rarefaction. The Riemann solution is given by:

L
Ct−−→ M1

S
f
SPL→TP−−−−−−→ M̂2

R
f
b−−→ R, (7.9)

where M̂2 lies on E+
b (γTL).

Riemann solution for R+
6

The region R+
6 is bounded by the wave curves Ws

+

(
wL
)
, Wf

+(P) and by the coincidence

locus. The solution is:

L
Ss
SPL→TP−−−−−−→ M1

R
f
e−−→ R, (7.10)

where M1 ∈ Ws
+

(
wL
)
.

Riemann solution for R+
7

In the transition from region R+
6 to region R+

7 the state wR crossed the coincidence locus.

The waves in region R+
6 are succeeded by a fast b-rarefaction. The Riemann solution is:

L
Ss
SPL→TP−−−−−−→ M1

R
f
e−−→ M̂2

R
f
b−−→ R, (7.11)

where M̂2 lies on the coincidence locus C.

Riemann solution for R+
8

The region R+
8 is bounded by the wave curve Ws

+

(
wR
)
, by the e-branch of the Hugoniot

locus emanating from wG and by the boundary {so = 1}. The Riemann solution in this

region is given as:

L
Ss
SPL→TP−−−−−−→ M1

S
f
e−−→ R, (7.12)

where M1 lies on HSPL→TP(w
L).

Riemann solution for R+
9

The region R+
9 is bounded by the branch He(w

G), the segment of rarefaction γGQ and by

the double extension E−
b (QO)2. The solution is:
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L
Ss
SPL→TP−−−−−−→ M̂1

Rs
b−−→ M2

S
f
e−−→ R, (7.13)

where M̂1 coincides with state wG in Figure 7.1 and M2 lies on the segment of rarefaction

γGQ.

Riemann solution for R+
10

The region R+
10 lies on the right side of the extension E−

b (γQG), above the double extension

E−
b (QO)2, on the left side of the boundary {so = 1}. The solution is:

L
Ss
SPL→TP−−−−−−→ M̂1

Rs
b−−→ M̂2

Ss
e−−→ M3

S
f
b−−→ R, (7.14)

where M̂1 coincides with state wG in Figure 7.1, M2 lies on the segment of rarefaction

γGQ and M3 lies on the extension E−
b (γQG).

Riemann solution for R+
11

The region R+
11 lies on the left side of extension E−

b (γQG), above the isotherm T = TQ.

The solution is:

L
Ss
SPL→TP−−−−−−→ M̂1

Rs
b−−→ M̂2

Ss
e−−→ M3

R
f

b−−→ R, (7.15)

where M̂1 coincides with state wG in Figure 7.1, M2 lies on the segment of rarefaction

γGQ and M3 lies on the extension E−
b (γQG).

Riemann solution for R+
12

The region R+
12 lies between the isotherm T = T P and the isotherm TG′

in SPL. The

region R+
12 is adjacent to the region R+

8 , see Figure 6.3. The waves in region R+
8 are

followed by a compositional contact discontinuity. The Riemann solution is given by:

L
Ss
SPL→TP−−−−−−→ M1

S
f
e−−→ M2

Cc−−→ R, (7.16)

where M2 lies on the boundary {(so, T ) ∈ TP | so = 1, T P ≤ T ≤ TG′

}.

Riemann solution for R+
13

The region R+
13 is bounded by the isotherm T = TO and by the isotherm T = TG′

in

SPL. Region R+
13 is adjacent to region R+

9 . The waves in region R+
9 are followed by a

compositional contact discontinuity. The Riemann solution is:
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L
Ss
SPL→TP−−−−−−→ M̂1

Rs
b−−→ M2

S
f
e−−→ M3

Cc−−→ R, (7.17)

where M3 lies on the boundary {(so, T ) ∈ TP | so = 1, TG′

≤ T ≤ TO}.

Riemann solution for R+
14

The region R+
14 is bounded by the isotherm T = TO and by the isotherm T = TZ . State

wZ ∈ E is such that the shock speed from wZ to state wZ′

∈ {so = 1}∩{T = TZ} has the

same characteristic speed as the compositional speed, defined in Equation (6.18). Region

R+
14 is adjacent to the region R+

10. The Riemann solution is:

L
Ss
SPL→TP−−−−−−→ M̂1

Rs
b−−→ M̂2

Ss
e−−→ M3

S
f
b−−→ M4

Cc−−→ R, (7.18)

where M4 lies on the boundary {(so, T ) ∈ TP | so = 1, TO ≤ T ≤ TZ}.

Riemann solution for R+
15

The region R+
15 lies above the isotherm T = TZ in SPL and is adjacent to the region R+

10

in physical space. The Riemann solution is given by:

L
Ss
SPL→TP−−−−−−→ M̂1

Rs
b−−→ M̂2

Ss
e−−→ M3

S
f
TP→SPL−−−−−−→ R, (7.19)

where M̂1 coincides with state wG in Figure 7.1, M2 lies on the segment of rarefaction

γGQ and M3 lies on the extension E−
b (γQG).

7.2 Riemann solutions for L in TP

In this section we will complete the Riemann solution given in Subsection 6.1.2, repeating

the details for readability. We will focus on wL states on the right side of the exceptional

locus E between the b inflection locus (Equation (4.46)) and the extension of the boundary

{so = 1}. The subdivision of state space into forward R-regions is shown in Figure 7.2.

States wR above wL are reached through a slow e-shock, followed by a fast b-wave.

This construction holds for high temperatures. The wave responsible for reaching states

wR below but nearby wL is the e-rarefaction.

The rarefaction curve emanating from wL crosses the extension of the boundary:

E∂TP = E−
e ({so = 1}), (7.20)
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T T

so xod

T T

so xod

Figure 7.2: Up: forward R-regions for L in TP, between the Buckley-Leverett inflection
locus and the extension of the boundary E−

e (∂TP). Down: boundaries. Left: regions
and boundaries inside TP. Right: regions and boundaries inside SPL. The single phase
liquid region is shaded.

at point wP and ends at point wQ when it intersects the coincidence locus C, which is also

an inflection for the e-rarefaction. We will denote by γPQ the portion of the rarefaction

curve emanating from wL between points wP and wQ, with which we can define the

extension E−
e (γPQ). This extension determines the locus in which fast b-shocks emanating

from γPQ become slow, by Lemma 4.25. We denote by wO the intersection point of the

isotherm {T = T P} with the boundary {so = 1}. The segment of the fast forward wave

curve Wf
+

(
wO
)
emanating from wO is an e-rarefaction followed by a b-rarefaction, which

we write for later use:

Rf
e −→ Rf

b . (7.21)

Inside SPL, the left extension locus of the rarefaction curve γLQ is denoted as E−
e (γLQ).
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This extension will be used to construct Riemann solutions for wR = (TR, xR
od) states (in

SPL) such that TR ≤ TO.

The fast branch of the Hugoniot locus from SPL to TP together with the right

extensions of E−
e (γLQ) inside TP, i.e., E+

b (E
−
e (γLQ)) and E+

e (E
−
e (γLQ)) will be used to

construct Riemann solutions for wR = (sRo , T
R) states (in TP) such that TR ≤ TO, filling

the gap left in Subsection 6.1.2.

Riemann solution for R+
1

The region R+
1 lies on the right side of He(w

L), the e-branch of the Hugoniot locus

emanating from wL, above {T = TL}. The solution is given by the Lax construction:

L
Ss
e−−→ M

S
f

b−−→ R, (7.22)

where M ∈ He(w
L) ∩ {T = TR}. In the text that follows we will omit the definition of

constant states given by the Lax construction.

Riemann solution for R+
2

The region R+
2 lies on the left side of He(w

L), the e-branch of the Hugoniot locus ema-

nating from wL, above {T = TL}. The solution is:

L
Ss
e−−→ M

R
f
b−−→ R. (7.23)

Riemann solution for R+
3

The region R+
3 lies on the left side of the e-rarefaction emanating from wL, between the

isotherms {T = TL} and {T = TQ}. The solution is:

L
Rs

e−−→ M
R

f

b−−→ R. (7.24)

Riemann solution for R+
4

The region R+
4 lies on the right side of the e-rarefaction emanating from wL. It is

bounded by the aforementioned rarefaction, by the extension E−
e (γPQ), by the boundary

{(so, T ) ∈ TP | so = 1, TO ≤ T ≤ TL} and by the isotherm T = TL. This is the last

region in our description to benefit from the Lax construction:

L
Rs

e−−→ M
S
f
b−−→ R. (7.25)
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Riemann solution for R+
5

The region R+
5 is bounded by the extension E−

e (γPQ), by the coincidence locus C and

by γPQ, a segment of the rarefaction emanating from wL. The construction of extension

E−
e (γPQ), (see Lemma 4.25 and Corollary 4.31) allows us to continue the Riemann solution

in the preceding R-region with a fast e-rarefaction, characteristic with the b-shock. The

solution is:

L
Rs

e−−→ M̂1

S
f

b−−→ M̂2

R
f
e−−→ R, (7.26)

where M̂1 ∈ γPQ and M̂2 ∈ E−
e (γPQ).

Riemann solution for R+
6

In the transition from the forward R-region R+
5 to the forward R-region R+

6 the co-

incidence locus C was crossed. Furthermore, this region is bounded by the isotherms

{T = TQ} and {T = T P}. The Riemann solution is a concatenation of the same type of

Riemann solution found for wL in region R+
5 with a fast b-wave. The solution is:

L
Rs

e−−→ M̂1

S
f
b−−→ M̂2

R
f
e−−→ M̂3

R
f
b−−→ R, (7.27)

where M̂3 ∈ C.

Riemann solution for R+
7

The region R+
7 lies inside SPL, below the isotherm T = TO. The Riemann solution is:

L
Rs

e−−→ M̂1

Ss
TP→SPL−−−−−−→ M2

Cc−−→ R, (7.28)

where M̂1 ∈ γLP and M2 ∈ E−
e (γLP ).

Riemann solution for R+
8

The region R+
8 lies in TP; it is adjacent to regionR+

7 . It is bounded by the two extensions

E+
b (E

−
e (γLQ)) and E+

e (E
−
e (γLQ)). The Riemann solution is:

L
Rs

e−−→ M̂1

Ss
TP→SPL−−−−−−→ M2

S
f
SPL→TP−−−−−−→ R, (7.29)

where M̂1 ∈ γLP and M2 ∈ E−
e (γLP ).
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Riemann solution for R+
9

The region R+
9 is bounded by the coincidence locus C, the rarefaction γOO′ emanating

from wO and by the extension E+
e (E

−
e (γLQ)). The Riemann solution is a concatenation of

the same type of solution for region R+
8 followed by a fast e-rarefaction:

L
Rs

e−−→ M̂1

Ss
TP→SPL−−−−−−→ M2

S
f
SPL→TP−−−−−−→ M̂3

R
f
e−−→ R, (7.30)

where M̂3 lies on the intersection of the fast branch of the Hugoniot locus from SPL to

TP emanating from M2 with extension E+
e (E

−
e (γLQ)).

Riemann solution for R+
10

In the transition from region R+
9 to region R+

10 the coincidence locus was crossed. The

Riemann solution is:

L
Rs

e−−→ M̂1

Ss
TP→SPL−−−−−−→ M2

S
f
SPL→TP−−−−−−→ M̂3

R
f
e−−→ M̂4

R
f
b−−→ R, (7.31)

where M̂4 lies on the coincidence locus C.

Riemann solution for R+
11

The region R+
11 is adjacent to region R+

8 in TP. It lies on the right side of extension

E+
b (E

−
e (γLQ)), below isotherm T = TO′′

. The solution is:

L
Rs

e−−→ M̂1

Ss
TP→SPL−−−−−−→ M2

S
f
SPL→TP−−−−−−→ M̂3

R
f
b−−→ R, (7.32)

where M̂3 lies on E+
b (E

−
e (γLQ)).

Riemann solution for R+
12

The region R+
12 lies in the SPL, it is adjacent to regions R+

4 and R+
7 . It is bounded by

the isotherms T = TO and T = TZ . The Riemann solution is:

L
Rs

e−−→ M1

S
f
b−−→ M2

Cc−−→ R, (7.33)

where M2 ∈ {(so, T ) ∈ TP | so = 1, TO ≤ T ≤ TL}.

Riemann solution for R+
13

The region R+
13 is adjacent to region R+

4 and lies below HSPL→TP(w
L), the fast branch

of the Hugoniot locus from TP to SPL emanating from wL, and above the isotherm
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T = TZ . The shock speed between the pair wZ ,wZ′

(shown in Figure 7.2) equals the

compositional characteristic speed in SPL, defined in Equation (6.18). The Riemann

solution is:

L
Rs

e−−→ M
S
f
TP→SPL−−−−−−→ R, (7.34)

where M lies at the e-rarefaction emanating from wL.

Riemann solution for R+
14

The region R+
14 is adjacent to region R+

1 and lies above HTP→SPL(w
L), which is the fast

branch of the Hugoniot locus from TP to SPL emanating from wL. The solution is:

L
Ss
e−−→ M

S
f
TP→SPL−−−−−−→ R, (7.35)

where M lies at He(w
L).
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Appendix A

Physical quantities

A.1 Physical quantities, symbols and values

In this appendix we describe the quantities used in the computation and empirical expres-

sions for the various functions parameter values and units. For convenience we express

the heat capacity of the rock Cr in terms of energy per unit volume of porous medium

per unit temperature, i.e., the factor 1 − ϕ is already included in the rock density. All

other densities and concentrations are expressed in terms of mass per unit volume of the

phase. All enthalpies per unit mass are with respect to the enthalpies at the reference

temperature of the components in their standard form. All heat capacities are at constant

pressure. All enthalpies in their standard form are zero at the reference temperature.

Table A.1. Summary of physical input parameters and variables

Physical quantity Symbol Value Unit

Absolute porous rock permeability k 1.0× 10−12 [m2]

Volatile, dead oil molar weights MV , MD 0.10021, 0.4 [kg/mole]

Total pressure ptot 1.0135× 105 [Pa]

Reservoir, injection temperature T ref , T inj 350, 440 [K]

Boiling point of volatile, dead oil T V
b , T d

b 371.57, ∞ [K]

Volatile, dead oil heat capacities coV , coD 2121, coV ρV /ρD [J/kg/K]

Log of volatile oil viscosity µov −11.145 + 981.25
T

[Pa s]

Log of dead oil viscosity µod −13.80 + 3780
T

[Pa s]

Universal gas constant R 8.31 [J/mole/K]

Pure volatile, dead oil densities ρV , ρD 683, 800 [kg/m3]

Rock porosity ϕ 0.38 [m3/m3]
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A.1.1 Temperature dependent variables.

We use references Tortike and Farouq Ali [51] and Weast [52] to obtain all the temperature

dependent properties below.

The rock enthalpy Cr can be expressed as

Hr = Cr

(
T − T̄

)
,

Cr = (1− ϕ)× 3.274× 106 = 2.03× 106 J/m3/K. (A.1)

A conventional choice for the reference temperature is T̄ = 298.15K. The volatile oil

enthalpy hoV [J/kg] and the dead oil enthalpy hoD[J/kg] as a function of temperature are

approximated by

hoV (T ) = coV
(
T − T̄

)
, (A.2)

hoD (T ) = coD
(
T − T̄

)
. (A.3)

where coV and coD can be found in Table A.1. The enthalpies are chosen so that the

enthalpy of oil per unit volume is independent of composition. Therefore the heat capacity

of the oleic phase per unit volume can also be defined independently of composition.

The volatile oil vapor enthalpy hgV [J/kg] as a function of temperature is approximated

by

hgV (T ) = cgV
(
T − T̄

)
+ ΛV (T̄ ). (A.4)

The enthalpies hoV (T ) , hoD (T ) vanish at the reference temperature T̄ = 298.15K.

For the evaporation heat ΛV (T )[J/kg] we use Trouton’s rule [52]:

ΛV (T ) = 88.0× T V
b /MV − (coV − cgV )

(
T − T V

b

)
. (A.5)

The viscosities of liquid volatile oil µov and liquid dead oil µod can be found from Table

A.1. For simplicity, the viscosity of the oil mixture is approximated by:

µmix =
ρov
ρV

µov +
ρod
ρD

µod. (A.6)

We assume that that the viscosity of the gas is independent of composition

µg = 1. 826 4× 10−5

(
T

300

)0.6

. (A.7)


