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Resumo

Este trabalho consiste em um estudo sobre o uso de desenho a mao livre como entrada
de sistemas de modelagem, i.e., Sketch-based modeling (SBM). Especificamente,
focamos este trabalho nas representacoes matemaética para os sistemas SBM. A
representacao matematica do modelo desempenha um papel central neste problema
sendo desenvolvida especialmente para uso em aplicagoes.

Desenvolvemos um campo de deformacao desenhado a mao livre que satisfaz as
restrigoes exigidas pela aplicacao em deformagao de imagem RGBN. Este problema
“como deformar uma imagem usando esbocos” ¢é reformulado para “como modelar
um campo de deformacao usando linhas”. Desenvolvemos entao ferramentas para
definir campos de deformacao usando fun¢oes de base radial de Hermite-Birkhoff.
Além disso, apresentamos uma aplicacdo que usa essas ferramentas para deformar
imagens RGBN.

A utilizacao de superficies implicitas, que fornecem uma representacao com-
pacta, flexivel e matematicamente precisa, pode beneficiar sistemas SBM para pro-
totipos. Desenvolvemos um conjunto de operadores de modelagem adequados para
criar amostras de Hermite (pontos e normais). Tais amostras sdo interpoladas por
fungdes de base radial de Hermite (HRBF') definindo assim uma superficie implicita.
Os operadores sao implementados em um aplicativo de modelagem de superficie que
tem como entrada desenhos a mao livre, modelando com sucesso superficies impli-
cita variacionais HRBF, interpolando as curvas delineadas e preservando assim a
forma desenhada.

Introduzimos uma nova representacao matemaética para o problema de mode-
lagem baseada em desenho a mao livre, a qual abstrai as qualidades principais de-
sejadas para muitas aplicacoes nas quais o desenho é utilizado como entrada para a
modelagem. Além disso, desenvolvemos um sistema SBM com base na representacgao
matematica, que concretamente implementa uma pipeline adaptada a utilizacao da
teoria desenvolvida.

Palavras-Chave: modelagem a mao livre; representacao de superficies; campo de
deformacao; deformacgao de imagens; superficies implicitas.
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Abstract

We present a study on sketch as input for modeling systems (i.e., sketch-based mod-
eling, or SBM), focusing on mathematical representations for sketch-based modeling
system. The representation of the model plays a fundamental role in this problem,
requiring the underlying representations to be specially tailored for use in SBM
application.

We develop a sketch warping field which satisfies the hard constrains applied
to RGBN images deformation. This problem of “how to deform an image using
sketches” is reformulated as “how to model a warping field”. Therefore we developed
tools for sketch-based modeling to define warping fields using Hermite-Birkhoff Ra-
dial Basis Functions. In addition to this, we also developed an application using
these tools for warping RGBN images.

Prototype free-form SBM systems can also benefit from using implicit surfaces,
which provide a compact, flexible, mathematically precise representation. We de-
velop a set of modeling operators suited to create Hermite samples (points and
normals), which are interpolated by a Hermite Radial Basis Function, defining an
implicit surface. These operators are implemented in a sketch-based surface mod-
eling application, which successfully models Variational HRBF Implicit surfaces by
interpolating the sketched curves (thus preserving the intended shape to be mod-
eled).

We introduce a novel mathematical representation for sketch-based modeling,
abstracting main qualities desired for many SBM applications. We also developed
a SBM system based on the proposed mathematical representation, effectively im-
plementing a pipeline tailored to use the developed theoretical framework.

Keywords: sketch-based modeling; surfaces representation; warping field; image
warping; implicit surface.

Vil
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Chapter 1

Introduction

Sketch-based modeling (SBM) is a solid research area with many exciting prob-
lems on different domains such as: computer vision, human-computer interaction,
and artificial intelligence (Olsen et al. [49]). Sketches are the most direct way to
communicate shapes; humans are able to associate complex shapes with few curves
(Figure 1.1, left). However sketches do not have all shape information and this infor-
mation is often inexact thus ambiguities are natural: “My drawing was not a picture
of a hat. It was a picture of a boa constrictor digesting an elephant.” wrote de
Saint-Exupéry |17, The little prince.| (Figure 1.1, right). On the other hand, to cre-
ate, edit or visualize shapes using computers we need precise information such as a
function formula or a triangle list. The problem of how modeling using sketches can
be formulated: how to fill the missing information about the model, when sketches
are used to define it. There are many approaches for this problem and each of them
uses one or more specific knowledge areas. We focus this work on the study of
mathematical representations for models of sketch-based modeling systems.

Figure 1.1: Sketches and shapes: it is innate for a human to identify the left

drawing as a mug despite much missing information. On the other hand the sketch
on the right can have many interpretations.

The main purpose of this work is to study sketches as input for modeling systems,
focusing on mathematical representations. The mathematical representation of the
model plays a central role in this problem, and therefore the representation should
be developed specially for use in SBM applications. There are common requirements
in many SBM applications that can be abstracted to guide the definition of specific
representation for specific domains.
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1.1 Related Work

In Chapter 2 we present the problem on how to deform image with control, reformu-
lated as: how create a warping field using sketches. Our approach was successfully
implemented to deform RGBN images in Pereira et al. [52|. There are other three
recent works that present similar ideas: Eitz et al. [21], Fang and Hart [22|, and
Weng et al. |71] (Figure 1.2). Eitz et al. [21]| present a method to find the matching
between two given closed sketched curves. They use a quad mesh over the original
image and deform it using a energy minimization to find the matching. After that,
they apply a texture mapping with bilinear interpolation and then they compose
the deformed image with the final target image using Poisson cloning. This ap-
proach seems to result in smooth warping fields. However, it provides little control
and smoothness when trying to define a region of interest (ROI) for deformation.
In our sketch-based interface anything outside the ROI defined by the user is left
unchanged. Our system builds a warping field which is C! even on the desired part
of the border of the ROI (Figure 1.2(a)). Fang and Hart [22] propose an warping
image system by re-synthesizing texture from the source image. The main goal is
to preserve the source image detail and orientation around a new feature curve lo-
cation. The user sketches curves over the original image and deforms these curves
to communicate the desired image warping. To achieve good results using this ap-
proach the user needs to handle many curves that can be awkward. On the contrary
our system defines the warping field with few curves. Another problem is that the
resulting field is C° on the sketches. Weng et al. [71] extended the work of Igarashi
et al. [31] to handle cubic B-splines and all implementation is done in CPU reaching
an interactive system. The user sketches two set of curves: the source and target,
the system use these sets to define a field that satisfy these curve constrains. These
fields are global and do not allow to create a ROI without creating discontinuities,
thus in order to control the deformation the user needs to draw many lines.

(c) Fang and Hart [22] (d) Weng et al. [71]

Figure 1.2: Image deformation systems that use sketches.
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In Chapter 3 we implement a SBM system of implicit surfaces. An important
class of sketch-based interface and modeling (SBIM) systems is known as construc-
tive SBIM systems, which directly map a set of 2D sketched input strokes to a
3D model without any previous knowledge about the model’s geometry or topol-
ogy (Olsen et al. [49]). Constructive SBIM systems can be categorized by the two
fundamental types of geometry being reconstructed: linear (i.e., lines, planes and
polyhedra) or free-form. Linear SBM systems are typically oriented towards CAD
and architecture applications. Two notable works that can be categorized as linear
are Zeleznik et al. [75] and Jorge et al. [33]. Free-form SBM systems are used in
applications requiring modeling of more organic, natural structures. We can cite the
seminal work of Igarashi et al. [30] on the now classical Teddy system and Nealen
et al. [48] (Figure 1.3). In Chapters 3 and 4 we develop tools for Free-form SBM
systems.

N\

NN HO O

(b) Zeleznik et al. [75]

Intt| Undo! Band| Load | Save |[feddy ] }

(c) Igarashi et al. [30] (d) Nealen et al. [4§]

Figure 1.3: Examples of constructive SBIM systems: linear (top row), Free-form
(bottom row).

One important goal and challenge of constructive SBIM systems is to preserve
the original modeling intent expressed by the user’s 2D input sketch (i.e., “What
You Sketch Is What You Get”). These systems aim to provide robust mechanisms
to efficiently and effectively interpret the user’s input strokes and to map them to
quality representations of both the geometry and topology of the intended 3D object.
Aiming to preserve the original modeling intent is particularly important during the
initial stages of conceptual, free-form prototype modeling, where the main goal is to
construct the overall shape of the object for later refinement and augmentation.

Different representation structures have been proposed for free-form SBIM con-
structive systems, including triangle meshes (Igarashi et al. [30], Karpenko and
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Hughes [36], Cordier and Seo [14], Nealen et al. |48]) parametric surfaces (Cherlin
et al. [13]) and implicit surfaces (Karpenko et al. [37|, Aratjo and Jorge |4], Alexe
et al. [2], Schmidt et al. [57], Tai et al. [61], Bernhardt et al. [7]). In particular,
prototype free-form SBIM systems can benefit from using implicit surfaces, which
provide a compact, flexible, mathematically precise representation.

1.2 Contributions

First, in Chapter 2 the problem of how to deform an image using sketches is proposed
as how to modeling a warping field. In this chapter we develop sketch tools to define
warping fields using the Hermite-Birkhoff Radial Basis Functions (HBRBF), these
functions are defined by two types of samples: points, and points and normals. In
addition we present an application that uses these tools to warp RGBN images.

In Chapter 3 the objects to be modeled are implicit surfaces. We develop a set of
modeling operators that are used to create samples which define a Hermite Radial
Basis Functions (HRBF). HRBF representation use point and normals as samples.
The operators are implemented in a sketch-based surface modeling application, this
modeler successfully models Variational HRBF Implicit surfaces by interpolating
the sketched curves, thus preserving the intended shape to be modeled.

While in Chapters 2 and 3 we develop sketch tools and applications guided by
the representation, in Chapter 4 we invert this kind of approach. We conceive the
representation to be tailored to our application. We introduce a novel mathematical
representation for sketch-based modeling problem, this representation abstracts the
principal qualities desired for many applications in which sketch is used as input
for modeling. Besides that, we develop a SBM system based on the mathemati-
cal representation, this system uses a pipeline based on the theoretical framework
developed.

The main contributions of this work are:

i) A sketch-based warping field with region of interest control.
A challenge in image warping using sketches is how to create a field defined
with few strokes. In Chapter 2 we present an approach to create samples using
sketches that defines a warping field which is C! and affect only where is defined
by the user.

ii) A sketch language using lines for implicit modeling.
Prototype free-form SBM systems can benefit from using implicit surfaces,
which provide a compact, flexible, mathematically precise representation. In
Chapter 3 we present a collection of SBM operators inspired by traditional
illustration techniques.

iii) A surface representation tailored to sketch-based modeling.
In Chapter 4 we propose a general mathematical representation for surfaces,
conceived for specific sketch-based surface modeling processes.
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iv) A pipeline for Sketch-Based Modeling.
To implement a modeler that uses the concepts of the surface representation
developed in Chapter 4 we design a pipeline. This pipeline is tailored for SBM
systems and is focused to control different levels of modeling edition.

v) The creation of three applications of Sketch-Based Modeling.
In Chapters 2, 3, and 4 we present concrete implementations of the presented
ideas.

Parts of this work have been published:

e Pereira et al. |52|; Sketch-based warping of RGBN images, in Graphical Models
(Chapter 2).

e Vital Brazil et al. [68]; Sketching Variational Hermite-RBF Implicits, in Pro-
ceedings of SBIM’10: 7th Eurographics Workshop on Sketch-Based Interfaces
and Modeling (Chapter 3).

e Vital Brazil et al. [69|; Shape and Tone Depiction for Implicit Surfaces, in
Computers & Graphics (Chapter 3).

e Vital Brazil et al. |67|; A Few Good Samples: Shape & Tone Depiction for
Hermite RBF Implicits, in Proceedings of NPAR’10: 8th Intl. Symposium on
Non-Photorealistic Animation and Rendering (Chapter 3).
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Chapter 2

Sketching Warping Fields

In this chapter we propose a method to create samples for defining displacement
fields in R? using sketches; we apply this method to create fields for deforming
images.

The problem of controlling image deformation has attracted the attention of re-
searchers for a long time and there are many different solutions. Some approaches
use control points or straight lines, notably the recent work by Igarashi et al. [31]
and Schaefer et al. |56] (Figure 2.1). However, these elements are usually inconve-
nient for specifying curved restrictions, requiring too many points from the user to
achieve a deformation that seems local. Sketching is a more natural way to commu-
nicate deformations in images, since artists typically want to define complex shapes
intuitively and quickly rather than having to specify geometry precisely [75].

(a) Igarashi et al. [31]

Figure 2.1: Controlling image deformation using points and straight lines.

Weng et al. 71| use only source sketches and adjust a B-spline for control point
manipulation. Our approach is most similar to methods that use sketches for defin-
ing both source and destination points, such as Fang and Hart [22] and Eitz et al.
[21] (Figure 2.2). Igarashi et al. [31] calculate a deformation on a mesh and linearly
interpolate the interior of the triangles. This results in a discontinuous Jacobian,
constant inside each triangle. Fang and Hart |22| interpolate the field from the
sketches using a Laplace equation, resulting in discontinuous derivatives on the
sketches themselves. In most cases the effect desired is to deform a single object in
the image or only a part of one object, as in Figure 2.1(b) the Pisa Tower. To obtain
this local control the usual solution is increase the number of restrictions, particu-



8 CHAPTER 2. SKETCHING WARPING FIELDS

larly in |56, 71, 22| the user creates extra curves, and in some cases the control is not
achieved as we can note in the clouds in Figure 2.1(b) and the sky in Figure 2.2(a).
Another desirable property is the field to be C! this is important for two reasons: to
avoid creating seams and to be applied for warping normal as presented by Pereira
et al. [52].

(a) Weng et al. [71] (b) Eitz et al. [21] (c) Fang and Hart [22]

Figure 2.2: Controlling image deformation using sketches.

The problem to be discussed in this chapter is how to use sketches to create a
warping field with the following properties: (1) to be defined with few strokes; (2)
to be C! on selected boundaries; (3) if a point is out of the region of interest it is not
affected by the field. Part of this chapter was published in Pereira et al. [52|, here
we extended the description of how create samples using sketches (Section 2.2.3).

Our main purpose modeling these fields is to apply them to warping RGBN
images controlling the region of interest (ROI). Our first attempt at creating dis-
placement fields was to use a simple version of moving least squares (MLS) [56] to
approximate the vectors samples. However, as discussed in Section 2.2.3 this ap-
proach does not guarantee the continuity in the boundaries and does not work well
with sparse samples (Figure 2.11). For these two reasons, we developed a method
to create samples inside the regions; this strategy reduces the problems but does
not avoid them. Since to correctly warp normals of a RGBN images the field must
be almost C! we changed our approach by adapting the methods to reconstruct
surfaces and to model surfaces presented by Macédo et al. |43, 44| and Vital Brazil
et al. |68, 67|. Our new method creates warping fields using Hermit-Birkhoff Radial
Basis Functions (HBRBF) [52| that interpolate the samples. The resulting fields are
smooth inside and on the fixed boundary of ROL.

It is beyond the scope of this work to study deeply the methods to create the
field (HBRBF or MLS); our main objective here is to discuss how to use sketches
to create samples that define warping fields (Section 2.2). However, we need to
discuss which properties the specific method requires. In Section 2.3 we discuss
these requirements and we give a brief explanation of the HBRBF method, which
was our final choice. In Section 2.4 we show and discuss some results of applying
this method to define warping fields in RGBN images.



2.1. SKETCH AS INPUT 9
2.1 Sketch as Input

All sketch-based system starts by acquiring the points that will define the sketches
and these points can come via a tablet, a mouse, trackpad (e.g., iPad), among
others. In this work we do not care how these points are obtained, we just consider
as raw data a sequence of 2D points. In almost all cases the raw input comes with
noise and needs to be filtered. Our noise filtering process is done in two steps.
First, we super-sample the input curve with a maximum distance of % pixel between
two consecutive points. Then we run 5 times the reduce-resolution algorithm 2.1
described in Samavati and Bartels [55].

Input: Sequence of points F' = Fy,..., F,
Output: Sequence of points C' = C,...,Cy

1 Cy = Fy;

2 CQI—%Fl—FFQ—i‘%Fg—iFLL;

3 J =23

4 for 1=3toi<n-—5step 2do

5 Ci=-iF+3F 1 +3F - 1F.3;
6 j=7+1

7 end

8 Oj = —leFn_g + %Fn_g + Fn—l - %Fn,

9 Cj+1 = Fn;

Algorithm 2.1: Reduce-resolution (Samavati and Bartels [55]).

Where n > 5 and if F' is an open path then k = |7] + 1 else k = |5]. This
filter provides both good overall approximation of the intended stroke path and dis-
tribution of points along the curve (Figure 2.3). From now on (all chapters), when

we say user input or sketch we are considering the final filtered curve in spite of the

55

Figure 2.3: Input stroke: raw input (left), after filtering (middle) and overlapping

for comparison (right).
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2.2 Creating Samples

In our approach to create samples, the user defines two regions using sketches: the
source region () and the destination region A, then we create vector samples that
start in A and end in Q. The region QUA is the region of interest (ROI), the warped
object is generated by mapping A to © and then calculating the properties (color or
color and normal) in 2 using this map. We define this displacement field that maps
A on € using the vector samples.

To create samples we need the source region 2 and the destination region A.
as mentioned before our samples map A to €2; the names source and destination
are chosen because the new properties of A are calculated using the values in 2.
Therefore, our first step is to create these regions (Section 2.2.1) using two sketching
curves. However, if the user gives more information about the intended deformation,
the applications can produce better results. We allow the user to sketch two internal
curves to communicate better the intended deformation (Section 2.2.2). After all,
we match points on curves in ) with points on curves in A to create the samples
(Section 2.2.3).

2.2.1 Creating Regions

The user begins by drawing the boundary Q°, thus defining the source region €.
Next, she or he sketches a curve L specifying the deformation, i.e., this stroke is
processed for defining the destination region A. If L is closed, we get a well-defined
destination region, i.e., the boundary of the region A is L. However, most often,
the curve L is open, defining a new object silhouette. When L is open, we need
to build the A region combining 2’ and L. To achieve that L, must start and end
on Q° (Figure 2.4(a)), inducing a partition of Q% in two curve segments Q% and
QY (Figure 2.4(b)). The border of region A is defined by joining L and one of
(Figure 2.4c).

(a) (b)

Figure 2.4: Processing of the input curves when L is open: (a) user input; (b)
We project the ends of L on P and break it in two parts Qll’ and Qg; (c) we
connect L with Q% resulting in the region A.

When L is open a fixed boundary is created because (2, and A, are built using
the same curve segment; specifically in Figure 2.4 the fixed boundary of  is Q5.
On this segment the field must be 0. When connecting L to the correct QU care
must be taken to guarantee proper orientation. Indeed we always close the 2’ and
force its orientation to be clockwise; however the curve L has free orientation, i.e.,
the user chooses its orientation. L is connected to the Q° that results in an oriented
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boundary A® of the target region A, particularly in Figure 2.4 L is connected to 3.
Observe that the user defines the region A by the orientation of L (Figure 2.5).

o 'Q/
@ N

Figure 2.5: Defining two different A regions using the same L but with different
orientations.

After obtaining the two regions we divide the boundaries curves into segments
that are related to create the samples. If L is closed we create four curves segments
QIEH 95 Ab, and A’. If L is open, one more curve segment is created, F°. This
fifth segment F* is the fixed boundary, as a result from now Q° = QY — F® and
A = AP — FP if F® is empty these operations are still well defined. If no more
information is given by the user we split Q% and A’ in the half of the arc length
creating %, Q°, A%, and A® (Figure 2.6).

N

Figure 2.6: Dividing the boundaries curves in segments.

2.2.2 Increasing Control

To increase control on resulting field, the user can provide internal curves € and A°
to constrain the deformation (Figure 2.7). If the internal curves touch the bound-
aries, they induce a partition of B’ in two parts B} and B” where B represents
or A. This partition allows the user to influence the sketch correspondence.

Figure 2.7: To increase control, the user can provide internal curves. If these
curves touch the boundary they induce a partition of Q% and A® each one in two
parts Ql_’F and Q% and A’_’H and A? respectively.

The internal curves allow the user to give additional information about the ge-
ometry of the warping. In Figure 2.8, we show the effect of using these curves and
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partitioning the original sketches. When these curves are used, the internal samples
guide the warping towards local rotations. Moreover, the induced partition improves
sketch correspondence. Boundary and internal sketches provide good control. For
example, the user can select between rotation-like and shear-like fields (Figure 2.9).

Figure 2.8: Comparison of two deformations: with and without internal curves.
On the left, arc-length correspondence failed, resulting in extreme compression in
the head; on the right, the partition induced by the internal curves led to a proper

correspondence and warping.

(a) Rotation (b) Shear

Figure 2.9: We can sketch rotation-like or shear-like fields.

In Figure 2.10, we can observe the use of closed skecth L and internal curves
on a reservoir engineering illustration. In this case, content within a ROI is ex-
aggerated by distortion as guided by the skeleton curves. This distortion creates
emphasis for improving the visualization and it is inspired by traditional illustration

techniques [39].
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Figure 2.10: Curvature of reservoir layers is greatly exaggerated to bring em-
phasis in the visualization (Photo: Statoil).

2.2.3 Sampling

To create warping samples, the matching proceeds by pairing uniform samplings
of corresponding curve segments, e.g., Q% with A%. We found that this simple
scheme to create samples by pairing uniform samplings provides a good compromise
between the number of curves and field control; however, more automatic sketch-
correspondence methods could be used such as those presented by Eitz et al. [21] or
Zimmermann et al. [76].

The samples and the reconstruction methods define the field. In fact, when the
final field does not have all properties desired, there are two possible approaches:
improve the samples or substitute the reconstruction method. It is important to
remark that we want fields that are C! and be valued 0 on the fixed boundary.

Like we said before, our first strategy to create the field was a simple method of
MLS (Levin |41]) to approximate the samples. Our tests using MLS and samples
over boundary curves and sketched internal curves, created fields that were almost
constant or null. These results led us to develop a method to create more samples
inside the regions. The method assumes the internal curves are defined; then these
curves are evolved in “time” ¢ until they reach the boundary curve. Thus for each
point in the internal curves there is a curve in ¢ which is it evolved until touching the
boundary. We used these new curves to create the samples. If the internal curves
are not sketched we create these curves connecting the projections points of L on °
(magenta points Figure 2.4(b)), and if L is closed we connect the start and the middle
points of each boundary curve. With this method of evolving the internal curves
we create a large numbers of samples and improve the quality of the reconstructed
field but the desired properties of continuity was not achieved (Figure 2.11).

Our second approach was to change the method to reconstruct the field; we
chose the Hermit-Birkhoff Radial Basis Functions (HBRBF) [44] method which
interpolates the samples (Figure 2.12). This method allows different restrictions
over the samples. For our problem formulation the HBRBF method takes as input
values or values and normals. Since HBRBF works well with sparse data we only use
the sketched curves to create the samples. The points in F? take 0 as displacement
vector; moreover we restrict their gradients to be 0 since we desire a C! field at these
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Figure 2.11: The MLS field applied on a RGBN image. Left to right: input
curves, samples created, and the final image. Note (magenta arrows) the problem
of discontinuity on the fixed boundary (Photo:Princeton Graphics Group RGBN
dataset).

points. The other points of Q take displacement vector A*(u) — Q*(u), u € [0,1],
e.g., 2% (1) — A% (1) relates the point on the end of A% to the point on the end of
QZ In the next section we discuss the HBRBF reconstruction method.

Figure 2.12: The HRBF field applied on a RGBN image. Left to right: input
curves, samples created, and the final image (Photo:Princeton Graphics Group
RGBN dataset).

2.3 Creating Fields

We build a displacement field by sparse interpolation of sketch samples. Our samples
are vectors starting in A and ending in Q (Figure 2.4(c)). In particular, we start
with samples that map boundary to boundary and internal curves to internal curves.
Conceptually, we define a displacement field in the entire image, by restricting the
interpolated field to A and setting zero displacements outside of A. Any C! warping
field in A that interpolates these constraints will result in a continuous warp in the
entire image, except on the new silhouette L. Notice that continuity on F? is a
consequence of the constraints that fix it in place. However, a continuous field is not
enough for applications that warp normals, because a non-smooth warp will result
in discontinuous normals (Figure 2.13).
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Figure 2.13: If the Jacobian is not restricted on the border, the field is not
smooth, resulting in discontinuous normals (left) and shading (middle). On the
right, a continuous derivative was used.

While many interpolation methods can be used to define C! fields inside A,
we impose derivative constraints on the samples of F® that result in continuity of
the derivative there. These more advanced constraints are satisfied using Hermite—
Birkhoff RBF interpolation [70]. In theory, since derivatives are imposed only on the
samples, our field may not be smooth between the samples of QY. Nevertheless, in
practice, we have observed that the resulting field is sufficiently smooth for warping
normals. The smoothness in the ROI is essential for color warping (Figure 2.14).
The zebra’s stripes break abruptly if derivative constraints are not used.

Figure 2.14: Smoothness in the border of the ROI is not useful only for normal
warping. Without derivative constraints the stripes bend abruptly (left). We
generate smooth color transitions (right).

2.3.1 Interpolant Field - HBRBF

In our system, we used a warping field computed by Hermite-Birkhoff interpolation
based on radial basis functions [70]. Our constraints prescribe displacements at
given points and, at some of them, they also enforce C'-continuity of a restricted
warping field.
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Formally, we are looking for a displacement field F : R? — R? such that F(X\) =
cd, F(x*) = 0, and DF(x*) = 0, where M € AUA*xF € FP¢f = w? — N
and w’ € QY U QF. The restrictions on the Jacobian DF at the boundary points
x¥ enforce C'-continuity of the interpolated field at the boundary of the region of
interest, outside of which the field is supposed to be zero. Notice that the sets {x*}
and {\} are disjoint. These constraints arise naturally in our context and lead
to an instance of (multivariate and unstructured) Hermite—Birkhoff interpolation,
which, unlike Hermite interpolation, does not require all derivative information at
every sample.

Generalized interpolation problem can be computationally solved by means of
radial basis functions techniques. First, notice that these constraints do not require
coupling between the component fields Fy, F; : R? — R? which define F = (F}, F).
This reduces the vector problem to two scalar problems defined by Fj(N) = ¢;,,
Fi(x*) = dj,, and VE(x*) = 0, [ = 1,2. Employing the generalized interpolation
framework [23, 70, 43|, we deduce appropriate forms of linearly-augmented RBF-
based interpolants for both F; and F53:

Fils) = Y- {awtblox = x) = (8%, Vip(x — x") }

k
D= N) + (@) +b
J

where ¢)(x) = ¢(||x||) for a suitable radial basis function ¢ : Ry — R and ay,7;,b €
R and 3% a € R? are the fitting coefficients uniquely determined by the aforemen-
tioned interpolation constraints along with the additional side-conditions:

Z{Ozkxqu,Bk} +Z%‘/\j =0

k J
Zak+27j =0.
k J

Thus, after choosing a suitable ¢, the fitting coefficients can be computed by solving
two symmetric indefinite linear systems which only differ on their right-hand sides.
Our implementation employs an LDLT factorization of the system matrix which is
used to fit both F}. We found that LAPACK’s xSYSV LDL” routines provide a better
balance in performance/memory/stability requirements than the alternative xGESV
and xSPSV (also from LAPACK), which implement a general LU decomposition and a
packed LDLT-factorization respectively.

There are several alternatives for choosing a suitable basis function ¢. As we are
interested in warping fields that are at least C* to correctly propagate normals and
to approximate the smoothness condition on the boundary of the region of interest,
we seek a ¢ inducing a ¢ at least C?, since the interpolant contains first-order
differentials of 1. We employed the globally-supported basis function ¢(r) = r3,
which has interesting variational properties, as studied by Duchon in his seminal
paper [20]. Consequently, our method has no additional interpolation parameters.
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It is noteworthy that, due to the use of Duchon’s basis function, we need the
polynomial part in the interpolant to ensure solvability of the resulting linear system.
Although we could drop this affine term if we used Wendland’s functions [70], we
found that Duchon’s provides better warping fields without noticeable degradation
in performance due to the additional polynomial. In addition, although Wendland’s
functions are compactly-supported, the resulting system would still be dense because
the associated radius parameter would need to be large due to the sparsity of our
samples.

Our vector field interpolation reconstructed a displacement field F. From it, we
obtain a warping W : A — Q, W(x) = x + F(x), which is used for deformation in
the next section.

2.4 One Application: Warping RGBN Images

In Pereira et al. [52] we propose a sketch-based pipeline to deform images having
more than pixel color information. We apply the HRBF displacement map to this
problem because, as discussed in previous sections, it reconstructs a smooth field
that interpolates sparse samples. To test the sketches with ROI control, smoothness
of field, the concept of local free-form in the context of warping RGBN images, we
developed a system with all these pieces together. In the next paragraph we give an
overview of system (Figure 2.15).

(a) Input (e) Local

Relighting

"\
D E . \ (C) Warping - (d) -1
User SketCheS u E

Shaded

Albedo Normals Warping
Sketch

(b) Light and Material

Shaded, Albedo, Estimation

Normals, and Local deformation

user skeiches of albedo and normals
and local light and material

estimations

(f)Final Image

Figure 2.15: RGBN - Sketching Warping Fields: Overview.

In our system, we take as input three different buffers (Figure 2.15(a)): the
shaded buffer, which is an input image containing colors that are influenced by
scene lighting conditions; and diffuse albedo and normal channels, which specify the
object’s texture and geometry. Afterwards, assuming a constant material, we use
light sketches and all three buffers to obtain a local estimate of specular properties,
a single directional light and an ambient illumination term (Figure 2.15(b)), which
are used to relight the final result. Additionally, warping sketches specify a region
of interest (ROT) and a deformation. These are used to build the warping field
(Figure 2.15(c)), which is used to locally deform the albedo and normal buffers
(Figure 2.15(d)). To obtain the final image we relight the warped albedo and normals
in the ROT using the estimated light (Figure 2.15(e)) and compose it with the rest of
the original shaded image (Figure 2.15(f)). The warping field is built using Hermite
Birkhoff radial basis functions (HBRBF), resulting in a smooth field necessary for
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normal manipulation.

Our contribution in that warping application is a sketch-based method to de-
form images that does more than simply transfer colors. Our method generates
results that appear to be photometrically consistent (Figure 2.16). By relighting
the warped image, we can generate new highlights, shading and shadows where nec-
essary. To support relighting, we have developed a method to seamlessly deform
RGBN images. We have shown examples of our method working both locally in
single photographs and globally with photometric-stereo RGBN images. The sketch
language implemented despite being simple is very powerful and the user achieve
complex deformations with good control using few curves.

(a) RGBN (b) Shaded input and (c) Traditional image  (d) RGBN image warping
image sketches warping

Figure 2.16: Our system takes as input albedo and normals (a), and a shaded
image (b). In addition, the user makes two kinds of sketches (b): warping sketches
specify a region of interest and its deformed shape; lighting sketches help the
system estimate lighting and material. We relight the warped result (c¢), obtaining
objects illuminated coherently (d). Simple color warping stretches the original
highlight and misses some shadows. With relighting, we recreate fine highlights
and shadows in the right places. Three sequential deformations were used (Photo:
ICT’s Graphics Lab).

2.5 Conclusion and Future Works

In this chapter we developed sketch tools to create samples that define a warping
field. These tools allows control the field created restricting it to be valued 0 outside
the ROT and be at least C!' where the user defines. We successfully apply the
obtained field to deform simple images and RGBN images. One problem is that the
field interpolation result is very dependent on the field samples. If the arc-length
correspondence fails to capture user intent, it will result in a distorted warping field.
This problem could be avoided by the user if he creates the final deformation using
more than one step, as we show in Figure 2.16.
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In future work, we intend to use our method in other applications, including
warping of vector fields other than gradients. Moreover, by further exploiting the
Hermite-Birkhoff interpolation theory with RBFs, more elaborate derivative restric-
tions can be used for much more than boundary restrictions. For instance, they
could be used to specify local rotations and stretches, thus coupling the scalar fields
which define the warping, especially if integrated in a friendly user interface. Finally,
we would like to extend our method to image-based animation systems having as
input either photographs [28] or drawings from cel animation pipelines as in Lumo
[32] which is a good challenge to the sketch language as the samples in this problem
has one more component: time.
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Chapter 3

Sketching Implicit Surfaces

In this chapter, we introduce a new representation for implicit surfaces and show how
it can be used to support a collection of free-form modeling operations (Figure 3.1).
Our main contributions here is: (1) an energy-minimizing Hermite interpolation
scheme for sketch-based modeling (SBM) of free-form surfaces, and (2) a collection
of SBM operators inspired by traditional illustration techniques to demonstrate the
usefulness of the proposed representation.

Figure 3.1: Modeling a rhinoceros head with our system: the user interactively
sketches construction curves over a silhouette image (left), these curves are trans-
ported to 3D space (center), resulting in implicit model, shown in a stippled ren-
dering (left).

This chapter is a version of the paper Vital Brazil et al. [68]. We extend the de-
scription of the Hermite interpolation scheme for sketch-based modeling (Section 3.2)
as well as the rendering approach (Section 3.5).

3.1 Related Work

Previous and related works concerning the SBM method proposed in this chapter
encompass the following areas: interactive modeling and visualization of implicit
surfaces; sketch based interfaces; and surface reconstruction techniques from points
and normals.

Early approaches for providing interactive implicit modeling and visualization
involved creating a separate polygonization for each model primitive (Desbrun et al.
[18]). Further work explored level-of-detail (LOD) implicit surface representations

21
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(Bloomenthal and Wyvill |11], Barbier et al. [5]). As well as the use of particle
systems for both surface editing and rendering, some of the main references along
this line of research include: Witkin and Heckbert [72], and Hart et al. [27]. Other
modeling techniques resort to a volumetric representation of implicit surfaces, such
as the ones based on discrete volume datasets: Owada et al. [50]; adaptive distance
fields: Ferley et al. [24], Perry and Frisken |53]; and more recently using level set
methods: Museth et al. [46]. A different approach is based on interactively functional
composed models: Barthe et al. [6]. Finally, we should mention the pioneering work
in variational implicit surface modeling proposed by Turk and O'Brien [62].

Regarding sketch-based interfaces, implicit-based SBIM systems have contributed
lately to provide effective and efficient modeling and visualization for implicits. Ma-
jor efforts in this direction target adapting variational implicit surface models such
as the works of Karpenko et al. [37|, Aratijo and Jorge [4], and Alexe et al. |2].
Sketch-based interfaces have also been applied to distance fields combined with mesh
subdivision techniques (Markosian et al. [45], Igarashi and Hughes [29]); as well as
to hierarchical implicit models (Schmidt et al. [57]); and to convolution implicit
surfaces (Tai et al. |61], Bernhardt et al. |7]).

In terms of surface reconstruction methods, most related to our work are tech-
niques presented in [37, 4|, derived from classical interpolation theory by Duchon
[20] and subsequently introduced in graphics by Turk and O’Brien [62]. In these
works, the creation of artificial offset points is required to properly fit an implicit
surface from a given set of points and normals. A recent approach proposed by
Macédo et al. [43, 44| reconstructs implicits from points and normals based on a
generalized interpolation framework, and exhibits increased robustness for coarse
and non-uniform samplings, as well as to close-sheets without the need of artificial
offsets. The key ingredient to this method is the treatment of normals as hard con-
straints on the gradient field of the fitted implicit function. Macédo et al. [43, 44|
introduce a representation suitable for SBM of implicit surfaces built upon the work
of Duchon [20]. This representation combines the advantages of Hermite reconstruc-
tion of surfaces with the variational characteristic of those representations based on
Duchon’s work, most notably, the ability to extrapolate the surfaces well on empty
regions, thus filling unsampled areas.

3.2 Variational HRBF Implicits

Recently introduced by Macédo et al. [43, 44|, Hermite Radial Base Function (HRBF)
Implicits provide a powerful tool to reconstruct implicitly-defined surfaces from
points and normals. These papers present a theoretical framework for generalized
interpolation with radial basis functions. They specialize their results to first-order
Hermite interpolation that are employed to recover implicit surfaces.

We decided to investigate the use of their technique in SBM systems for implic-
its surfaces. We were motivated by the quality reconstructions they obtain from
coarse and nonuniform samplings. This is especially important when compared to
the offset-based methods often employed in sketch-based implicit modeling systems
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[12, 36]. Although we obtained good results in our experiments, the sparsity and
coarseness of the stroke curves rendered pointless the use of compactly-supported
functions and their associated radius parameter. The main advantage of using func-
tions with compact support lies in exploiting sparsity of the corresponding interpo-
lation linear system when dealing with large datasets. This structure could not be
exploited since the radius had to be taken large enough to compensate for the large
areas not covered by the sparse set of strokes.

These shortcomings motivated us to look for alternatives that better exploited
the structure of our application: sparsely-drawn strokes leading to small-to medium-
sized datasets with large void areas. We found an answer to these issues in Duchon’s
seminal paper |20], which contains derivations analogous to those in |44] for a par-
ticular class of function spaces. It is noteworthy that, even though the classical-
interpolation part of Duchon’s work has influenced the offset-based methods used
for variational implicit modeling today, we focus on his Hermite interpolation result
and introduce Variational HRBF Implicits.

In the following, we provide a brief description of the Variational HRBF Implic-
its interpolant and its key properties which motivated its use for SBM of implicit
surfaces.

3.2.1 Description

Macédo et al. [43, 44| posed the problem of reconstructing an implicit surface from
points {x/}}; C R* and normals {n/}}Y| C S as a Hermite interpolation problem,
in which a function f :R?® — R was sought such that f(x/) = 0 and Vf(x/) = n/,
for each 7 = 1,..., N. The authors presented a framework that allowed them to
derive a concrete form for such an interpolant, depending on the specification of a
radial basis function 1 : R® — R, which they named HRBF Implicit.

The variational Hermite interpolant deduced by Duchon in [20] has essentially
the same form of a HRBF Implicit with ¢(x) = ||x||?, differing only by an additional
low-degree polynomial term which comes accompanied by additional conditions to
ensure well-posedness of the interpolation problem. It should be noted that this RBF
does not satisfy the sufficient conditions required by the framework presented in [44].
However, Duchon’s results ascertain the solvability of the interpolation system. For
this reason, we named this representation a Variational HRBF Implicit.

The concrete form of the Variational HRBF Implicit that we shall use is

f(x) = Z {a(x —x7) — (87, Vp(x — X))} + (a,x) +D. (3.1)

with coefficients a4, ...,an,b € R and B8, ...,8",a € R3. These coefficients can
be uniquely determined by enforcing the Hermite interpolation conditions above
(f(x?) =0 and Vf(x?) = n?) along with

N

N
aj=0, D> {ax +8}=0
j=1

J=1
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as long as the sample points x’ are pairwise-distinct (a mild and natural assump-
tion). This implies that we can find an implicitly-defined surface passing through
given points with prescribed normals at all points (Figure 3.2) just by solving a sym-
metric indefinite system of linear equations for the coefficients of Variational HRBF
Implicit’s. We provide below all the formulas needed to assemble the interpolation
system and to evaluate the implicit function as well as its gradient.

SR I
L J
‘e

(a) Given data: points and normals. (b) Implicit surface reconstructed.

Figure 3.2: Interpolating points and Normals.

In order to assemble the interpolation system, we employ a direct implementation
of the block matrix defined by a samplewise grouping of the conditions f(x') = 0
and V f(x') = n’, where f is given in (3.1), and by the side-conditions for degree-one
polynomials. This results in the following set of equations

=3[ S ]+l S

SEORIE

. N . .
where the unknowns {aj, 3’ }j=1’ a, and b are computed after an LD LT -factorization

of the resulting symmetric (indefinite) matrix and subsequent forward- and backward-
substitutions, as implemented in the DSYSV routine from the LAPACK library [1|. The
concrete formulas for the functions used in the subblocks above are

v(x) = Ix[°, Vix) = 3x|x[l, Hi(x) = Tl (||X||213x3+XXT)

Next, we discuss some computational aspects of the numerical solution of our
interpolation systems. In the following, we discuss the salient properties of this
representation which are relevant for sketch-based implicit modeling.

3.2.2 Variational HRBF for Sketch-Based Modeling

The Variational HRBF Implicits representation has a number of interesting proper-
ties for the application in sketch-based modeling, either verifiable through theoretical
arguments or indicated by experimentation, most notably:

e Energy-minimizing Hermite interpolation. Duchon’s deductions, which
resulted in the variational Hermite interpolant, sought a function minimizing
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an energy measure on its derivatives under the pointwise Hermite interpolation
constraints. This energy-minimizing property on the function’s derivatives
induces an interpolant that penalizes spurious oscillations, thus producing well-
behaved surfaces obeying both point and normal constraints from the strokes.

Invariance under geometric similarities. The implicit surface recovered
as a Variational HRBF Implicit is invariant to geometric similarity transfor-
mations under the input samples. Intuitively this means that the shape of the
reconstructed surface is the same, no matter how we consistently move, rotate,
reflect, or uniformly scale the input samples.

Parameter-free. The Variational HRBF Implicit interpolant does not de-
pend on any kind of support-radius or normal-offset parameters usually re-
quired by current RBF-based representations (Carr et al. [12], Karpenko et al.
[37]).

Smoothness. It is guaranteed that the implicit function computed is globally
C', is C* in the whole domain but the sample positions, and has bounded
Hessian near the interpolated points. This property allows suitable estimation
of differential quantities such as normals, curvatures, and principal directions
at regular points.

Robustness under sparse samplings. Since the recovered implicit func-
tion’s gradient interpolates the unit normals provided along with the input
points, Variational HRBF Implicit behaves robustly in their vicinity even un-
der nonuniform and coarse samplings, while extrapolating the reconstructed
surface well over large unsampled regions. This property is one of the main
reasons Variational HRBF Implicits provide a powerful representation for SBM
of implicit surfaces.

Well-behavior near close-sheets. By directly interpolating normals with
the implicit function’s gradient, the HRBF surface reconstruction can deal with
close-sheets, which usually pose a difficulty for offset-based schemes [12, 37].

Linear fitting. To fit a Variational HRBF Implicit from given points and
normals, all that is required is to solve a symmetric indefinite linear system
on 4N + 4 unknowns. As we discussed before, this can be accomplished by
employing off-the-shelf linear algebra packages.

General data. To ensure well-posedness of the Hermite interpolation process
and the invertibility of the associated linear system, the only and mild require-
ment on the dataset is that the input points need to be pairwise distinct.

Linear reproduction. If the data is sampled from an affine function (defining
a hyperplane), the recovery is exact. Intuitively, the interpolant approximates
the data as well as it can by an affine function, and then corrects the errors
with the HRBF-expansion.
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After describing our basic surface representation, we now proceed with its actual
use in our sketch-based implicit surface modeling system.

3.3 Modeling Pipeline

Our pipeline is divided in two main steps. First, as preprocessing step, we handle
the user input strokes and process them to create samples (points and normals)
in R®. Then, we use a Hermite RBF fitter to obtain our final implicit surface
(Figure 3.3). In the following subsections, we discuss these issues, as well as the
sketch preprocessing and the fitter used in our system.
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Figure 3.3: Pipeline: (a) user input sketches, (b) samples (points and normals),
(¢) preview rendering during a prototype modeling session, computed after prepro-
cessing 4K primitives in about 5 seconds, (d) final rendering with 100K primitives
processed in about 5 minutes. Green curve is the external contour, magenta is the
internal contour, the blue are the cross editing curves and the grey are curves not
used after the oversketching operations.

3.3.1 Sketch Preprocessing

The process starts from a blank canvas, where the user sketches the curves for
defining the final model. These curves are labeled as one of our sketch-based op-
erators (Section 3.4). Next, all curves are processed on the plane (to filter noise,
Section 2.1), and transported to model space. Normals are then created for each
curve point while observing the specific rules of the associated operator. We assume
all curves are parametrized in the interval [0, 1].

The next step is to create the 3D samples (points and normals) which will be
interpolated by our implicit surface. A set of SBM operators was created for testing
our implicit representation. These operators are grouped into two classes for creat-
ing contour and inflation curves. Contour curves have the semantics of an object
silhouette; inflation curves control how the surface is outside the drawing plane. In
contrast to inflation curves, which are immersed in R3 but not necessarily lie in a
plane, we are assuming that contours are planar curves. All strokes are sketched on
one same plane; in particular we use the plane Il; : (z = 0).

Since the contour curves are directly transported by an affine transformation to
the final position in space, we can consider the contour points as in II;. We also
use this plane as a reference frame for the inflation curves. We treat two different
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types of contour curves: incomplete and complete contours (Section 3.4.1). To assign
normals to contour samples, we compute the cross-product between the normal of
the drawing plane N, and the unit tangent vector t at the given sample point on
the curve, and assign to that point the normal n = N, x t (Figure 3.4).

Nd%
n

n:Ndxt

Figure 3.4: Assigning normals to contour samples. Left to right the input curve
and its normals, the curve and normals transported to space, depiction of the
process of assigning normals.

Inflation curves are used to create samples outside the drawing plane. We have
two operators to create them: kneading and cross-editing (Section 3.4.2). A knead-
ing curve K is transported to a user-defined plane, whose normal is assigned to each
sample (Figure 3.5). We define this plane using a point py and a normalized vector
n defined by the user. To determine p, we use the barycentric p, of the input curve
K plus a height h in the direction of Ny, i.e., pg = pp + hINy.

HEK

Figure 3.5: Kneading curves: Left curves in 2D, right kneading curves and its
normals in model space using different user-defined planes.

For each cross-editing curve C(t) drawn, we associate two plane curves 7y, o :
[0,1] — [0, 1] x [0, 1], i.e., for each cross-path C(t) drawn in II; we create two profiles
71(t) and ~5(t) defined in another plane. With x! and y being the coordinates of
v; at t, we define two 3D curves [;(t) = C(xi) + yi - Ny for each i = 1,2. The
normal assigned to [;(t) is the normal of v;(¢) transported to the plane II, defined
by the tangent of C'(z;) and Ny. The curves 7; can be defined either automatically,
as fixed functions of the arc-length of the curve C, as example a semi-circle, or
by input sketches. In Figure 3.6 we show the process to create samples using the
cross-editing curve C(t) and sketched vy, 7o.

3.4 Sketch-Based Modeling Operators

In this section, we present a set of SBM operators to create and test a variety of
implicit objects modeled using our Variational HRBF scheme. The design of these
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(a) (b)
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Figure 3.6: Creating samples using the cross-editing curve C. (a) The associate
plane curves 7, and 42 drawn and points (xf,y}) and (22, y?) and its normals. (b)
The plane II; created using N, and t; and points and normals in [;(¢) and I(t).
(¢) The local coordinates in plane II; of points and normals in I;(t) and I2(t).

SBM operators were inspired in traditional techniques and tools used by artists and
illustrators (Andrews [3]).

3.4.1 Contouring

To outline the external and internal contours of a model, the user has two options:
incomplete and complete contours (Figure 3.7). Incomplete contours are used to
suggest the contour of the model using a few number of open curves [3]. Complete
contours are used to define the entire contour of the model using closed curves.
In both operators, the drawing direction in the drawing plane defines the sample
normals. This allows the user to define either exterior or interior contours (i.e., holes)
by drawing clockwise or counterclockwise, respectively.

oiék

VERVAZ

Figure 3.7: Contouring operator: open and closed curves defined by incomplete
(top row) and complete (bottom row) contours. Left to right: input strokes,
normals and final stippled model. Red triangles depict curve orientation.
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3.4.2 Inflation

There are many ambiguities in how to inflate a model with only coplanar sam-
ples [36]. After the user delimits the overall shape contour, its inflation can be
controlled by using two classes of curves: kneading and cross-editing.

Kneading curves allows to freely mold regions across the model. This operator is
inspired by traditional kneaded erasers made of pliable material that can be shaped
by hand. By using this operator the user has additional control on the inflation of
the model (Figure 3.8).

Figure 3.8: Using kneading to control the inflation: (a) Input strokes of the
external contour of the model (green) and the free-form curves (red) defining the
regions to be kneaded; (a), (b), and (c) the resulting 3D model with different
user-defined planes, red arrows indicating the kneading orientation.

Cross-editing curves define the profiles of the final model. These curves are built
in two steps: first the user draws a path over II; and then defines the profiles of the
curves. Each path is associated with two curves defining the top and bottom regions
in relation to the drawing plane. These paths represent the projection of the final
3D curve on the drawing plane. Our system provides the users two options to define
these profiles. The first option automatically creates two semicircles; the second one
allows the user to define a profile by sketching it on an auxiliary canvas. Cross-
editing curves can be used to define either linear (Figure 3.9(a)) or free-form cross-
sections (Figure 3.9(b)), most notably when combined with the kneading operator
(Figure 3.10).

(a) (b)
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Figure 3.9: Using the cross-editing curves to define the inflation: (a) cross-section

paths, with left and right curves for the default and free-form profiles, respectively;
(b) free-form paths, both curves using free-form sketched profiles.
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Figure 3.10: Combining different kinds of inflation: (a) sketched curves defining
the external contour (green), cross-editing (blue) and kneading (red); (b), (¢) and
(d) final models with different levels of kneading.

3.4.3 Oversketching

The oversketching operator is applied over contour curves and is organized in two
classes. The first class corresponds to a correction or augmentation to a single curve
(Figure 3.11(a)). The user draws a new curve S near an existing curve C' to be
modified; S(0) and S(1) are then projected onto the line C' to define two pieces of
C between these two projected points, one of which will be replaced by S. The
ambiguity on which piece will be replaced is solved by simply enforcing coherence
on the orientation of the final curve. The second class of oversketching operator
allows to merge two existing curves (Figure 3.11(b)). The user first selects these
two curves, C; and C5, to be merged and then draw two paths, P, and P,. Next,
P;(0) and P»(0) are both projected onto Cy, while P;(1) and P»(1) onto Cy. The
curve segments between those points are eliminated and the new curve is built by
‘eluing’ C', Py, Cs and, P». For this class of operator, the ambiguities are solved by
both the orientation criterion used for the first class of oversketching operator and
the order in which the paths are drawn.

—
»
N5

Figure 3.11: Oversketching (grey curves): (a) editing a single contour, (b) blend-
ing two contours.
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3.5 Rendering Approach

How to visualize the model is an important issue in modeling applications that use
implicit surfaces. Graphical hardware has polygon rendering engines, therefore to
visualize the model usually the surface is triangulated using a method for polygo-
nization of implicit surfaces. Additionally the problem of approximating implicit
surfaces by polygons is well studied and different methods have been developed,
e.g., Bloomental |9] and Velho |63]. However these methods depend on parameters
to capture the correct topology of the model. This strategy of triangulating implicit
surfaces can be observed in Schmidt et al. [57], where they provide control over the
polygonizer resolution, allowing the user to determine the trade-off between accu-
racy and interactivity (Figure 3.12 left). Bernhardt et al. [7] also use this strategy
but their polygonizer resolution is defined automatically by a intrinsic value of their
system (Figure 3.12 right).

Figure 3.12: Typical render style of systems that use implicit surface polygonizer.
Left, a heart model from Schmidt et al. [57] and right, a star from Bernhardt et al.

ki

In contrast, our application uses a simplified version of the point-based technique
presented by Vital Brazil et al. [67, 69] to render the resulting implicit models. This
method was designed to depict shape and tone for implicit surfaces by satisfying
on a few basic geometric operations to place and modulate the tone of stippling
primitives. Next we present the basic ideas of this technique, which we use to
visualize the results of this chapter.

3.5.1 Overview of the Rendering Pipeline for Implicits

In the first step of the rendering algorithm we place points onto the surface which
will later be used as seeds to create more points over the surface. In [69, Sec. 4] Vital
Brazil et al. developed a variety of tools to place seeds; in fact the seed placement is
a very important step to define the final rendering quality. Since our main purpose
is modeling we use the simplest technique to place seeds: we fill with points the
model’s bounding box and project these points on the surface. Vital Brazil et al.
[69] discuss the issue of bad placement of seeds using this simple approach; however
for our application the bounding box strategy is satisfactory.
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After the seeds have been placed on the surface, their positions are ready to
be used to generate render points. Vital Brazil et al. [69] divide the points in
three groups: stippling, principal directions of curvature, and combing directions.
Stippling points are placed in a scattered fashion, focusing on covering the surface
uniformly, while the two other groups provide linear mark depictions by clustering
points along a directional field. We use only stippling points because they provide
a good shape depiction with few points. All three groups share the same recursion
idea. We use the actual seed position to place a new point near the surface, located
in space at a distance p from its seed. After that, we project the new points onto
the surface. In the next step, all the recently generated points become seeds, and
divide p by 3 (Figure 3.13). The process goes on until the desired visual effect is
achieved. It is important to notice that, by using this 1/3 rule, the distance between
a seed and all its descendants is limited; in fact, after k steps, the distance between
the original seed and any descendant will be less than 1.5p, and two points with the
same original seed will be at most 1/3%p, apart.
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Figure 3.13: Multi-Level Sample Refinement. left to right, levels of refinement:
one, two, and three.

At this stage, we are ready to use the render points already placed over the
surface to visualize the implicit model in different styles. The render points are
classified in three sets: front, back, and silhouette. After that, they are assigned a
point size and an alpha value and are subsequently sent to the standard graphics
pipeline. We calculate v = n - v, where n is the normal at the point and v is the
viewing vector. Using a small threshold § > 0, we identify front points when v < —4,
back points when v > ¢, and silhouette points otherwise. After classifying all points,
different rendering effects can be created, as described in |69, Sec. 6]. We use in
this modeling pipeline two render effects: lighting and silhouette enhancement. The
silhouette points are always displayed, back points are plotted using the background
color (white) and front points are drawn in black.

In order to enhance the silhouettes the user has the option to draw a thicker line
in the tangent direction of the silhouette, i.e., a line with direction nxv. Figure 3.14
illustrates this effect.

In our approach, lighting effect is depicted by removing front-points from the
surface. The front points are removed randomly, using different probability density
functions. Lighting effects are achieved by calculating the tone 7 € [0, 1] at the
point using 7 = (n -1)?, where 1 is the unit light vector. Taking a random variable
u ~ U[0,1]. A front point is displayed only if u > 7. Figure 3.15 illustrates this
effect.

To keep the modeling sessions interactive, we use coarse samplings to feed our
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Figure 3.14: Elephant model. Left without and right with silhouette enhance-
ment.

Figure 3.15: Elephant model. Left without lighting effect and right with lighting
effect.

stippling renderer to achieve fast visualization previews of the implicit surfaces. Fig-
ure 3.16 (left) shows a typical model preview computed after a 2s-long preprocessing
to place 4K points. If higher quality depiction of the modeled surface is desired, the
user can incrementally refine the stippling. A very useful feature of this technique is
its ability to depict hidden structures in the surface, providing the user a good per-
ception of occluded regions of the model as well as the spatial relations between the
final shape of the model and the strokes being sketched. Figure 3.16 (right) shows
a frame from a simple final rendering computed after preprocessing 100K primitives
for about 5min.

By
s

Figure 3.16: Elephant model. Left typical model preview and right the final
rendering quality.

3.6 Results and Discussion

Our SBM techniques successfully model Variational HRBF Implicit surfaces by in-
terpolating the sketched curves, thus preserving the intended shape to be modeled.
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All the results were generated on a 2.66 GHz Intel Xeon W3520, with 4 gigabytes of
RAM and an OpenGL/nVIDIA Quadro FX 3800 graphics card. The user sketches
directly on a Wacom Cintiq interactive pen display. All input strokes preprocessing,
Variational HRBF surface fitting, and run-time rendering were computed on the
CPU only.

Results were generated for a variety of shapes and objects, sketched by users
with different drawing abilities. We observed that the overall modeling time (from
the initial input strokes to the finished model) took around 15 minutes. As expected
more samples result in more complex Variational HRBF computations. However, we
observed that these computations took less than 5 seconds. Our approach produces
promising results requiring few strokes from the user to construct a model while
preserving the intended shape. We evaluated our results by observing the timings
for the overall modeling stages and the quality of the final model.

Figures 3.7 to 3.11 show examples of each of our sketch-based modeling operators.
Figure 3.3 shows the result of modeling a simple mug. The user sketched 17 strokes
(including cross-editing and oversketching curves), resulting in 720 samples, fitted
in less than 2 seconds. The overall modeling (from initial strokes to finished model)
took 12 minutes. Figures 3.1 and 3.17 show the result of sketching directly over a
reference image to reconstruct its 3D shape. For the rhinocerus head (Figure 3.1),
11 strokes were sketched, resulting in 490 samples, fitted in less than 1 second. The
overall modeling took 9 minutes. For the rubber duck model (Figure 3.17), the
user sketched 19 strokes, resulting in 989 samples, fitted in less than 3 seconds. The
overall modeling took around 14 minutes. Figure 3.18 shows the result of modeling a
terrain in 22 strokes, 838 samples, fitted in less than 3 seconds. The overall modeling
took about 16 minutes.
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Figure 3.17: Modeling a rubber duck: (a) reference photograph, (b) input strokes
sketched directly over the photograph, (¢) 3D construction curves with normals
and (d) stipple rendering of the final model.

3.7 Conclusion and Future Work

In this chapter, we introduced a representation for variational implicit surfaces suit-
able for sketch-based modeling. This representation retains the good properties of
the currently used techniques for variational implicits while additionally being more
robust to the sparse and coarse samplings resulting from sketch modeling sessions
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Figure 3.18: Modeling a terrain: construction curves, silhouettes and stippling.

even in the presence of close-sheets. Moreover, the representation does not depend
on artificial parameters commonly found in other RBF-based methods, e.g. offsets
and support radii.

We employ this representation as the basis for sketch-based modeling system for
which we introduce a small, albeit powerful, set of simple modeling operators for
contouring, cross-editing, kneading, oversketching and also merging different parts
of a model.

There are still many avenues for improvement and further investigation. On
the modeling side, we plan to extend the language and operators to support more
complex edition tasks as well as specific application-domains. Also, there is the need
for a systematic usability evaluation in order to assess the language and operators
and point directions to enhance them as well as our system’s user interface.
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Chapter 4

A Surface Representation for
Sketch-Based Surface Modeling

In this chapter we present a novel way to think the sketch-based surface modeling
framework. Until now we have a specific mathematical representation for our final
object and we suit the modeling process to this representation. Specifically, in
Chapter 2 the representation consisted of samples interpolated with an Hermite-
Birkhoff RBF, while the object being modeled was warping fields; in Chapter 3 we
use the Hermite RBF interpolant to model implicit surfaces. Now we propose a more
general mathematical representation for surfaces, conceived for specific sketch-based
surface modeling processes. We conceived this representation with two main goals in
mind: good control for global and local transformations and flexibility to be applied
in different kinds of sketch-based modeling systems. We also desire two secondary
qualities: the ability to save and edit modeling stages, and allowing templates.
There are many ways to represent surfaces in R?, the most common and gen-
eral are implicit and parametric representations. However, to be used in computer
graphics applications, these representations should be more specific and have prac-
tical qualities. As examples we can cite the: BlobTree (Wyvill et al. [74]), piece-
wise algebraic surface patches (Sederberg |58]), convolution surfaces (Bloomenthal
and Shoemake [10]), generalized cylinders, polygonal meshes, subdivision surfaces,
among others. Different representations for sketch-based modeling have been ex-
plored since the seminal work of Tgarashi et al. [30]. Notably polygonal mesh repre-
sentation was used by Igarashi et al. [30] and Nealen et al. [48], implicit RBF used
by Karpenko et al. [37] and Vital Brazil et al. [68], Bernhardt et al. |7] use convolu-
tion surface, Schmidt et al. [57| create a system to model BlobTrees, Gingold et al.
[26] use generalized cylinders, among others (Figure 4.1). One natural question is
“Which is the best surface representation for the problem of SBM?”. This is cer-
tainly an open question, and probably does not have only one answer. We believe
that a good surface representation for sketch-based modeling should be tailored to
each specific application. Take the case of modeling terrains where we want organic
forms, and symmetry and perfect sharp edges probably are not desired. On the other
hand, when modeling a chair we desire the opposite. It is a hard problem to find
a surface representation that has all these different properties. However, there are

37
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Figure 4.1: Different sketch-based modeling systems uses different representa-
tions. Polygonal mesh representation (a) and (b), implicit RBF (c), convolution
surface (d), BlobTrees (e), and generalized cylinders (f).

general aspects that are desired in all sketch-based surface modeling applications.
Therefore we will discuss these properties and present an abstract representation
that is suitable for different applications.

In the next section we present our abstract representation and discuss its proper-
ties. In Section 4.2 we show a practical example of application of this representation
with a simple implementation that exploits its main characteristics.

4.1 A Composite Surface Representation

The main idea that we are proposing is to separate the surface representation into
levels of detail and properties. This is not a new notion in computer graphics; many
works have developed this concept for specific domains and applications. Blinn
[8] introduces the idea of bump-mapping that stores geometric information at two
levels, the base geometry and a displacement map that is used to create rendering
effects. The same concept is found in Krishnamurthy and Levoy [38] and Lee et al.
[40]; however, in these two works the authors suggest other applications besides
rendering, such as animation and compression. Inspired in these works, Pereira |51,
Chapter 4| presents a representation that uses a smooth base geometry and a map
of normals to handle details over the surface. All these works have two different
types of data, the first one defines the smooth geometry and the second which maps
the first one in a parametric space that stores details, similar to a texture mapping.

The main goal of our study is to be able to control local editing without changing
parts of the model out of the region of interest, and when big deformations are
introduced, details are kept coherently. Hence, we believe that decomposing the
model representation into a base surface that supports different types of properties is
a powerful tool for sketch-based surface modeling. Now we will describe an abstract
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representation and introduce some notation.

Let the model S be a manifold S C R? and a set of properties P C R*, i.e.,
SCR¥xP,and let D : S — R% x P be a transformation map of S. We define our
new model as:

S=8aD(S). (4.1)

Typically d = 3, S is the low frequency information of surface S, while, D(S)
performs local changes. The properties P can be geometric, such as the normal at
a point, or general, such as color, or many attributes together. The binary operator
® : (R? x 73)2 — R? x P defines how to compose S and D(S).

A simple example of how to translate this representation for a concrete use is
bump-mapping [8]. In this case, S is a smooth surface with P C S? xR, for instance
P, = (Np, hy), thus S C R* x S? xR, D(p) = (h, - N,,0,0) where N, is the normal
at point p and, h, is the hight of its displacement in the normal direction. Finally
@ is the usual vector sum in R3™* then § = S + D(S). Another example is
the RGBN image used in the Chapter 2, where S is the image support, P is color,
normals, and warping field, and finally D applies the warping field. If we have an
alpha-channel then & is the composite operator of images using alpha-channel.

For many cases we will need a more structured function D. The natural way to
construct D is by using an atlas A of S and an auxiliary parametric space P’ for
properties, and two auxiliary functions to define D:

U:S—>AxP
J (4.2)
P: AxP - R*xP
so that
D=>%®o. (4.3)

We will call ¥ the parametrizer of S and ® the deformation function.

It is important to note that we do not restrict S to any particular kind of sur-
face. Generally the application only requires some properties of S, e.g., smoothness,
normals, curvatures, or how to project a point onto S. These attributes should be
defined for each specific use.

This formulation allows us to define a composition process that we can define
using different notations. The first one is a simple idea of function composition; we
replace equation (4.1) by:

§:S@1D1@2D2"'@nDnu

where D; = D; (gj_1>, Sl =8 @1 Dy ®j1 Dj_y and SY = S. In particular
all D; and @; have the same behavior of D and & of equation (4.1). If we suppose
that S has the same properties of S, i.e., S is a manifold, we can consider Sas S
and have the sequence: S™" = 8™ @,, D,,(S™). This sequence has the semantics
of modeling stages: after n modeling stages our final surface is S”. The concept
of layers can be applied together with the equation (4.3) and parameter space of
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(4.2), creating a local composition, i.e., the deformation function ®; of D; with a
composition operator ®; that affects each chart of A separately. Writing

(= gl X9 62 ®3 c Qp fn, (44)

where ¢; : A x P — A x P'. We see {; as layers over the atlas A, for each chart
in A they can have the same concepts of image layer composition. Introducing the

notation D*(S) =S ® £(¥(S)), where ® : S x {A x P’} — R? x P we have:
S =8 D(S). (4.5)

These definitions have many advantages which we will discuss in the next para-
graphs, but an issue should be observed. It is very hard to constrain S and D to §
be a manifold without restrict too much them, indeed, if you try to force S to be
a manifold; probably the system will be very limited. But it is not a real problem
because this representation will be used in sketch-based modeling, and the user can
decide if the result is desired or not. One simple example of restriction is inspired
in the example of bump-mapping [8|; if we in fact displaced the points using h, it is
easy to find a height that results in a non-manifold object, however if we constrain
h to be less than the radius of the tubular neighborhood we do have a manifold
(do Carmo [19]).

Control: Local x Global. In many modeling pipelines the difference between
global and local modeling stages appears naturally. Take the case of clay potter as
described by Woody [73]: the artist starts by creating an overall pottery shape using
a wheel; that is an example of global modeling. Later the artist refines and clarifies a
form, rather than totally change it, paddling the clay with a slightly absorbent tool,
such as a wood spoon, that means the potter desires local editing tools. Keeping
this example in mind, from now on, the base surface S° is interpreted as the first
approximation of our final surface, to put it in another way, the coarse shape with
the basic attributes. Equally important, D will handle the detail information. Hence
we can group the tools that manipulate our model in two sets, one that work globally
which creates and edits S° and another that works locally which creates and edits D.
In short, this representation will be natural for control global and local deformations.

Modeling Stages and Templates. When artists draw complex models they
always start with simple lines and then pass to the next level of detail, they add
more and more detail and often save old lines to use as reference or to come back to
a specific step (Ryder [54]). Hence, it is natural that some applications should save
the steps of modeling, i.e., the system allows the user to recover an early modeling
stage and edit it. We can interpret template-based modeling as “recover early stage”,
where the user chooses a predefined object and edits its properties or creates new
features based on the existing attributes. To illustrate, in sketch-based modeling
the works of Kara and Shimada [34, 35| and Nealen et al. [47| apply templates in
different ways (Figure 4.2). The first one [34] uses the template shapes to help
the user to sketch the first lines of the model. With a more specific application
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(car industry) in [35] a basic mesh is adapted to a car sketch and then the user
can edit the model using the adapted mesh as template. On the other hand, the
work [47] starts its modeling pipeline with a triangle mesh and regions of interest
over this mesh, and by using sketches the user reshapes the model. To Translate
these template concepts to our representation is simple; the template is Sy and the
subsequent modeling stages define D’s. We can cite two examples of sketch-based
modeling system that approximate the semantic of modeling stages, Nealen et al.
[48] and Vital Brazil et al. [68]. Both keep the constructions curves and allow the
user to edit them, which has a similar semantics of drawing stages however there is
not a hierarchic sequence of stages. This hierarchy can be created saving the stages
in groups of separate layers Dj.

(a) Kara and Shimada [34] (b) Kara and Shimada [35] (c) Nealen et al. [47]

Figure 4.2: Examples of sketch-based modeling systems that use templates.

4.2 A Sketch-Based Modeling Application

We implemented a modeler that uses the concepts discussed in the previous section
in a pipeline tailored to use this representation. Although we advocate that SBSM
should be created for specific domains, to test how far a simple sketch-based system
goes using our pipeline we implemented a system that does not have a definite
domain. The main focus of our system is to guarantee the control over global and
local changes in the model, i.e., when the user adds detail over the model, the base
surface should not change and when the base model is changed all details should
change consistently with the global transformation done. In the next sections we
present the pipeline and its parts.

4.2.1 Pipeline

We propose a pipeline divided into four parts; each part plays a fundamental role in
our system and is strongly linked with the representation proposed in Section 4.1. We
start with the coarse form defined by an implicit surface (Chapter 3); after that we
build a base mesh (Section 4.2.2) that has the same topology and approximately the
same geometry of the implicit surface. The base mesh induces an atlas (Section 4.2.3)
and provides a 4-8 base mesh (Section 4.2.4). The atlas is built using a partition
of the set of faces of the mesh, and we use it to edit the model locally. The 4-8
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mesh has two roles in the pipeline: to build a map between surface and atlas and
to visualize the final surface. After we have all parts the 4-8 mesh is used to edit
details that are saved in the atlas, and the atlas maps details onto the 4-8 mesh. In
Figure 4.3 we depict our pipeline.

Atlas '

4-8 Mesh

Implicit Surface Base Mesh

(d)

Figure 4.3: The pipeline of our Sketch-based surface system. The arrows depict
the information flow.

The first pipeline step is to obtain a coarse shape of the final model (Fig-
ure 4.3(a)). As discussed in Chapter 3, implicit models provide a compact, flexible,
mathematically precise representation. We use the same implementation described
in Chapter 3, the implicit representation (HRBF) used fits well with our pipeline
because it has good projection properties as well as being simple and compact. In
the terminology of Section 4.1 this implicit model and its normals are the Sy of our
representation.

After we obtained Sy we need to create the D* functions. We adopt equation (4.5)
for our system, i.e., we use a parametric space to handle details. However, we have
an implicit surface without information about atlas. There are many approaches to
parametrize implicit surfaces, e.g., Bloomenthal [9], Velho [63|, Stander and Hart
|60], but to find the correct topology of the model, these approaches depend on
parameters [9, 63] or require differential properties of the surface [60]. Besides the
topology problem such methods neither guarantee the mesh quality nor have a direct
way to build an atlas structure. As a result, we opted to develop a method that is
based on our problem and desired surface characteristics. First of all, observe that
we have two different scales of detail to be represented: Sy, which is coarse, and D*,
which is finer. The naive approach is to use the finest scale of detail to define the
mesh resolution. However, there are two problems: we do not know this finest scale
a priori and if the details appear in a small area of the model we will waste memory
and time with a heavily refined mesh.

To avoid these problems, we adopted a dynamic adaptive mesh, the semi-regular
4-8 mesh (Velho [65]): using it we can control where the mesh is fine and coarse
using a simple error function. Going back to the problem of parametrization of our
implicit surface, now we want more than just a mesh: we need an adaptive mesh.
The framework presented by de Goes et al. |[16] starts with a semi-regular 4-8 mesh
and refines it to approximate surfaces using simple projection and error functions.
From now on we say 4-8 mesh in place of semi-regular 4-8 mesh. To obtain a good
approximation of the final surface, the 4-8-base-mesh should have the same topology
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and should approximate the geometry of the final surface. Thereupon we exchange
the problem of parametrization for how to find a good 4-8 base mesh (Section 4.2.2)
and how to construct a good error function (Section 4.2.4).

The parametrization of the implicit surface is built in three parts: base mesh
(Figure 4.3(b)), atlas (Figure 4.3(c)), and semi-regular 4-8 mesh (Figure 4.3(d)). In
Section 4.2.2 we present, a base mesh which has two roles in our system, to induce an
atlas for the surface and to create a 4-8 mesh. We develop a method in Section 4.2.3
to create an atlas for adaptive meshes based on stellar operators. In Section 4.2.4
we discuss how build an error function for the 4-8 mesh that is sensitive to levels of
detail.

’

4.2.2 Base Mesh

The base mesh is the first step to parametrize our surface. This is a very important
piece of our pipeline because three important aspects of the final model depend
on the base mesh: the topology of the final model, the atlas, and the 4-8 mesh
quality. Finding good base mesh only using information from the implicit model is
a very hard problem in geometric modeling, but since we are proposing sketch-based
modeling, it is natural that we use the user input to get more information about the
model and to create the base-mesh.

The user works with a simple unit of tessellation element (tesel) which can have
the topology of a cube or torus. This tesel is projected onto the drawing plane
(Chapter 3) and the user edits it to get a better approximation of the model (geo-
metric and topological). The user can move tesel vertices in the plane, divide a tesel
or change its topology. Afterwards the system creates a tessellation in the space
by moving each tesel vertex along the draw plane’s normal direction. In Figure 4.4
we show the typical steps to create the base mesh. The user starts with a bound-
ing box of the sketched lines, then divides tesels, moves vertices and changes tesel
topology to build a better approximation of the intended shape. Our system defines
the vertices heights seeking along the draw plane’s normal direction for a root of
the implicit surface. Each face defines a chart and after that, it is triangulated to
be the 4-8 base mesh.

Figure 4.4: Creating a base-mesh for an implicit surface created using the con-
struct lines described in Chapter 3. Left to right, the first approximate, after
the user correct the topology and better approximate the geometry, and the final
result en R3.
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4.2.3 Atlas

The second step to obtain a manifold structure for our model is to construct an atlas,
i.e., a collection of charts ¢; that are open sets Q; C R2, and functions ¢; : ; — S
that are homeomorphisms (do Carmo [19]). Besides that, in our system the atlas
A is associated with a parametric space that helps to define D, the P’ in (4.2).
Specifically for this application, each chart of A is associated with a height-map.
This height-map is used to define a displacement along the normal direction, and
in Section 4.2.4 we use that height-map to define an error function that locates
where the 4-8 mesh need be more refined. We create two types of height-map layers:
pre-loaded gray images and height-maps directly sketched on the surface.

In Figure 4.5 we depict the steps to create an atlas for a 4-8 mesh M. After the
base mesh is obtained and each of its faces is triangulated, one refinement step is
done and then each base mesh face is associated with a chart (Figure 4.5(a)). When
the mesh is refined to better approximate the geometry, the atlas is updated and the
user can draw a curve over the M which is transported to the charts and then this
curve creates/edits the height-maps (Figure 4.5(b)). If the mesh resolution is not
enough to represent the details, M need be refined; usually that happens when the
user creates/edits the height-maps (Figure 4.5(c)). Next we describe our method to
build this atlas and the sketched height-maps.
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Figure 4.5: Atlas steps: (a) The atlas is defined after one refinement step of M.
(b) M is refined and the user defines an augmentation sketching over the surface,
and the sketches are transported to A to built a height-map. (¢) M is refined to
represent details of the final surface with height-map.
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Vertex-Map

In this section and in the next we construct the theoretical framework to build an
atlas using a label function over the vertices of a mesh. We work with a general
description of adaptive surfaces, based on stellar subdivision grammars (Velho [64]).
Our choice for parametric representation, the 4-8 mesh developed by Velho [65], is
an example of application of this grammar. The atlas defined using vertices of the
mesh has the following advantages: it is compact and simple; it naturally classifies
edges as inner and boundary; and it is suitable for work with dynamic adaptive
meshes.

As discussed before we need an adaptive mesh to represent the high-frequency
details. However, when we do one step of refinement in a mesh, new elements
(vertices, edges, faces) are created, hence we need to update the atlas. The problem
that we propose here is how to construct and update an atlas using the natural
structure of adaptive surfaces.

First of all we formalize the concept of the reqular labeled mesh. After that we
use these definitions to build an atlas with guarantees for adaptive surfaces that
uses Stellar subdivision operators.

Definition 4.1. A mesh M = (V, E,| F) is k-labeled if each vertex v € V has a label
L(v) € {0,1,2... k}, ie., if thereis L : V — {0,1,2...,k}. L is called k-label
function. If L(v) =i # 0, then v is an inner-vertex of the chart ¢;; if 1 =0, v is a
boundary-vertez.

Definition 4.2. A face f € M, is reqular k-labeled or rk-face if there is v € f
with L(v) # 0 and V vy,v9 € f such that L(vy) # 0 # L(ve) = L(v1) = L(vg).
A mesh is reqular k-labeled (or rk-mesh) when all their faces are rk-faces. The
function L : V' — {0,1,2...,k} that produces a rk-mesh is called a regular k-label
or rk-label.

Observe that an edge in a regular k-labeled mesh has vertices with the same
label or one of them has label 0. If the edge has at least one vertex v such that
L(v) =i # 0; we call it an inner-edge of the chart ¢; or L(e) = i; if it has the two
vertices labeled as zero it is a boundary-edge or L(e) = 0.

Proposition 4.3. A reqular k-label function induces a partition on the set of faces.

Proof. Let M = (V,E,F) be a rk-mesh. Define the set F; = {f € F| v €
f such that L(v) =i}, i € {1,2,...,k}. By definition 4.2 every f € F has at least
one v with L(v) # 0 then:

and if there is more than one v € f such that L(v) # 0 then all such vertices will
have the same value of L, i.e., the face belongs to only one Fj, so we conclude:

FNF=2 if i ]
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This proposition allows us to define a collection of charts over a rk-meshes. We
say that a face f is in the chart ¢; (L(f) = 4) if there is at least one v € f such that
L(v) = i. However for our application it is not enough to have a static map because
our mesh is adaptive. Hence we need rules to assign a L value to the new vertices
created by the refinement step of the mesh.

We develop our techniques based on the two works by Velho |64, 65| on stellar
operators and dynamic adaptive meshes. We are working with 4-8 mesh which is
a multi-resolution triangle-mesh for manifold surfaces. The 4-8 mesh uses to refine
and simplify the mesh the stellar operators that come from the theory of the stellar
subdivision [42]. Hence we study how to update the atlas after we apply one of these
operators: edge split, face split, and their inverse edge weld and face weld (Fig. 4.6).
We use the concepts of sequence of meshes (Mg, My, ..., M) and level of a mesh
element exactly as presented by Velho [64].

— Tace split
adge weld —

Figure 4.6: Stellar subdivision operators and inverses. (Illustration inspired in
Velho [64])

When we apply one of these two subdivision operators (split), it adds only one
vertex. As a result, to update the atlas we only need rules to label the new vertex
v, created for these two operators over a rk-mesh.

e Face Split — when the face f is split we define:
L(vn) = L(f) (4.6)
e Edge Split — when the edge e is split we define:

L(v,) = L(e) (4.7)

Proposition 4.4. A stellar subdivision step using the previous rules on a rk-
mesh M produces M’ that is a rk-mesh too.

Proof. Case we split a face f we create 3 news faces (f1, fa, f3), since M is a rk-mesh
the equation 4.6 is well defined. Moreover v,, € fiN foN f3 then they have at least v,
with L(v,) =i # 0. Since f is a rk-face all v € f, L(v) is 0 or 4, and for j = {1, 2, 3},
ve fjev=u,o0rveE f, weconclude if v € f; = L(v) =0o0r L(v) =1, i.e, f;isa
rk-face.

The edge split create four new faces f;, 7 = 1,2, 3,4. Note that the operator edge
split subdivides two faces; lets name these faces west-face (f*) and east-face (f€);
and their opposite vertex as v, and v,, respectively. i.e., v, € f* and v, & e.
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If e is an inner-edge then for at least one of its vertices L(v) = ¢ # 0. Since
e is in f* and f¢ we have L(f") = L(f¢) = ¢ it implies that if v € f* U f¢ then
L(v) =i or L(v) = 0. As a result when we split a inner-edge we have L(v,) =i and
vn €[, fjand v € fj = v € f¥U f€ or v = v,, then f; is a rk-face.

The fact of e being a boundary-edge and f* and f¢ be rk-faces imply L(v.) # 0
and L(v,) # 0. Since v, € f; or v. € f; we have at most one v € f; such that
L(v) # 0 and L(v,) = 0, then we conclude that f; is rk-face. O

The simplification step of an adaptive mesh is very important for our application,
because when the user changes the sketches the mesh is dynamically updated that
implies that the two steps (refinement and simplification) are done. If we start
with a rk-mesh (level 0) and perform n refinement steps for any m < n steps of
simplification we yet have a rk-mesh. This fact is easy to see because when we do a
refinement step we do not change the value of the vertices of the current level j, thus
when we do the inverse operator to simplify only vertices of level j + 1 are deleted
so then the L function over faces is well defined in level j.

To create a rk-mesh using our base-mesh, i.e., to create the M,, we label all
vertices of the base-mesh as boundary (L(v) = 0) and split each face, the new
vertex added is labeled with a new value not 0. After that each face of the base-
mesh generates a new chart into the atlas, i.e., if the base mesh had k faces the atlas
has k charts. In Figure 4.7 we illustrate the process of creating a mesh M, that is
a r2-mesh and three refinement steps.

Figure 4.7: Creating a r2-mesh and refinements. Left to right: the base-mesh,
My which is r2-mesh, and after 3 refinement steps: M;s. Black elements are
boundary (L(-) = 0), blue elements are into chart ¢; (L(-) = 1), and red elements
are into chart ¢y (L(-) = 2).

Creating a Manifold Structure

Now we have a partition over the surface and we know how to refine and simplify the
mesh respecting this partition. However we do not have yet all elements of an atlas
for the surface S, is missing to define open set 2; 2 ¢; and homeomorphisms ¢;.
First of all let us built ¢;. We define the functions ¢; : Q7’|c — S based on the
structure of adaptive levels of the 4-8 mesh M. We define ¢; = [0, 1] x [0, 1], then we
set the four vertices of the base-mesh face f; = {vy,vq,v3,v4} to be the boundary
of ¢;, i.e., the local coordinates in €2; of these vertices are: v} = (0,0), vi = (1,0),
vi = (1,1), vi = (0,1). We overload the notation for chart, when we refer a chart
of our atlas, ¢; € A, that has two meanings, the first is a set of faces, edges and
vertices, used in previous section. The second is the parametric space [0,1]? C Q;,
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more precisely when we say a point of M belongs to a chart ¢; it means if we can
write this points in Q; coordinates then its coordinates is in [0,1]%. At this point
all vertices v of M have at least two geometrical information its coordinates in R3
and its coordinates in at least one €2;. We will use the notation v’ to be clear when
we are using v in coordinates of €2;, how to recover this information we will discuss
later.

Since M is an adaptive mesh and now it has two geometrical aspects, its coor-
dinates in R? and in A, we need rules to update this information. When we split
an edge e = {vy,v9} we get its middle point v, and project it on S and if e € ¢;
then v’ = (v} + vi)/2. Despite the rules to be simple they achieve goods results,
in Section 4.2.4 we discuss more about that rules. Now we suppose that the ap-
proximation of the adaptive mesh is less than ¢ > 0, i.e., for all points p on M
imply |p — IIg(p)| < € where IIg(p) is the projection of p on the surface S. We are
assuming that IIg is well defined for V. = (J .4 B(p,€), where B is the open ball
with center p and radius . That is true when V. C V the tubular neighborhood
of S (Velho and Gomes [66]). Particularly, the vertices of the base mesh start close
to .S then their projection is well defined, therefore we replace their start position v
by IIs(v). We will also use the II,/(p), the projection of p € S on M, and again we
are supposing that the mesh approximates well the surface. We say the chart ¢; is
well defined after one refinement step (Figure 4.7), thereupon if a point p’ € ¢; then
there is a face f* = {v!,vi, vi} such that p’ is a convex combination of its vertices.
More precisely p' = 327 apvl with a; >0, 320 _ a; = 1. So then we define:

3
¢i(p') = Tlg (Z akﬁbi(vli)) :
k=1
Specifically when we split an edge e, which belongs to ¢;, ¢' = {v}, v} we have:

@@4»—n5<¢%%>;¢x@>>'

(4.8)

Proposition 4.5. For all i,j and v € V such that v € ¢; and v € ¢; holds ¢;(v') =
(7).

Proof. We proof that proposition by induction for all levels of refinement of M.
When we start the charts ¢; and ¢; all edges that are in their boundary come di-
rectly of the base mesh, if v € ¢; and v € ¢; then ¢;(v') = Ilg(v) = ¢;(v?), by
construction. Now suppose the Proposition 4.5 is true for v with level less or equal
the current. Observe that by (4.6) and (4.7) a boundary-vertex v is created only
when a boundary-edge is split, consequently by (4.8) and induction hypothesis holds:

¢m@:m<@ww¢m@>:m<@ww¢m@>:@wy

2 2
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To define the inverse of ¢; we use the projection Il,;, the idea is to project the
point on the mesh, identify which face it laid and use the barycentric coordinates
to define it coordinates in ;. More precisely, let ITy/(p) = Ei:l U, With ag > 0,
S Lo =1and f = {v1,vy,v3} where L(f) =i, then we have:

6 (p) =) . (4.9)

Since we are supposing that M is close to S we have ¢ and ¢! well defined, i.e.,
¢; 0 ¢;  (p) = p and ¢; ' o ¢;(p') = p' for all p € SN ¢i(c;) and p' € ¢;.

To build and to glue the height-maps consistently we need to know how to write
a inner-points of ¢; in {2; coordinates when ¢; and ¢; are neighbors, i.e., we need be
able to write a point p’ € ¢; in (; coordinates when ¢; and ¢; have common vertices.
Since we started our chart with quadrangle domains we use the approach develop
by Stam [59] to convert p’ to p’. Stam [59] recover the relative affine coordinates
of €; to 25, he achieve that by matching commons edges of ¢; and ¢;. Case ¢; and
c¢; do not share edges we recursively propagate the coordinate information in the
connected components by the neighbors.

Sketching over the Surface

To allow the user add an augmentation we freeze the camera and she or he draws
polygonal curves over the surface. These strokes are transported to atlas A where
they are used to define height-maps, we name these projected curves as height-
curves. To transport the curves to A we use the Equation (4.9) in their points, i.e.
we project the curve points directly on M, identifying which face they was project,
and use their barycentric coordinates to transport them to the correspondent ¢;. If
the line segment pq starts in the chart ¢; and ends in the chart ¢; then to guarantee
continuity we write p’q® and find the point of this segment that is in the boundary
of ¢ and add this point to the height-curve. We do the same thing to the segment
p’¢’. In Figure 4.8 we show the result of this process in two charts.

Figure 4.8: Sketch over surface and transported curve to A. The two solid arrows
show points on M that are transported to A, the dashed arrow shows points that
are created in the chart boundaries to guarantee hight-curve continuity.
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To define the height map we use the distance of a point in ¢; to the height-
curve. We create this field using the approach presented by Frisken [25]. In this
work she uses a vector distance field which represent the distance at any point as a
vector value. That field is used for fitting on-the-fly an analytic curve to a sequence
of digitized points. For simplicity we define a height A for all points of one same
height-curve ), and we tested as height function fy(p') = hexp(—25d*/4r") where
d is the distance of p’ to A and r is the radius of influence of .

After all, we have a height-map h! for each chart ¢; that was sketched by the
user. Using the Equation (4.4) we can compose this height-map with another, such
as a gray depth image h’, for example to obtain a final height at p € M adding the
heights, h, = h4(p’) + hi(p'). Then we have D*(p) = h,N, where N, is it normal
at p. Thus we complete the formulation of the final surface: S = & + D*(S) or
specifically for all p € M we have p = p + h,N,,.

4.2.4 4-8 Mesh

The 4-8 mesh M has two main roles in our system, the first one was described in
the last section, we use the mesh to transport points to the atlas. Besides that we
use M to visualize the approximate final surface. We use the library developed by
Velho |65]. This library implements the 4-8 mesh with a good level of abstraction
that means with little implementation effort we use this library as black box that
provide a 4-8 mesh refined. We start the mesh with the base mesh triangulated, i.e.,
a face f = {vy,v9,v3, 04} is split in two faces f1 = {v1,ve,v3} and fo = {vy,v3,v4},
and then we apply one refinement step to define the atlas this is the mesh level 0
(Figure 4.5(a)). In addition we need provide a function that samples a edge returning
a new vertex, and two error functions. One to classify the edges for the refinement
step and one to classify the vertices for simplification step.

To define a new vertex we adopt the naive approach that takes the middle point
of an edge and project it on surface, i.e., to split a edge e = {vy,v2}, we create a
new vertex v, = Ilg ((v; + v2)/2) and as described in the last section if v, € ¢; it
saves its local coordinates too. In spite of this approach being simple it achieves
good results for our application.

To complete the adaptive process of 4-8 mesh we need to choose which edges will
be split, in order to refine the mesh and which vertices will be removed to simplify
the mesh. In our implementation, this classification is done providing two error
functions and one parameter. To define our error function we need to describe how
we measure the distance between a point and the surface. First, observe that Ilg is
the projection on S # S, thereupon the Ilg is not enough to define the distance. To
project a point p on S, first we project p on S then we apply D, more precisely,

I5(p) = Is(p) ® D(s(p)), (4.10)
thus the distance between p to S is the usual

dg(p) = Ip — Uz(p)|- (4.11)
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Now we can determine the error functions using the stochastic approach pre-
sented by de Goes et al. [16]. Let us define the error on faces, we randomly take
n points on the face and calculate the distance of the point to the surface then we
sum all distance and divide by n. Therefore the error function for edge is the error
average of its faces, and the vertex error function is the error average of its star
neighborhood. To control the mesh adaptation we define an error threshold £ > 0,
if the edge error is above that threshold the edge is refined. Observe that, the € con-
trols the size of our final mesh. If the ¢ is small we have a good approximation of the
surface though the mesh will have too many vertices which will be computationally
expensive to execute simple operations such as project a line (Figure 4.9(c)). On
the other hand, if the ¢ is big the mesh will be computationally cheap however the
mesh will not represent the final surface details (Figure 4.9(b)).

(a) Detail sketch, ¢ = 1073, (b) Simple error function, ¢ = 1073.

(¢) Simple error function, e = 107 (d) Local error function, e = 1073.

Figure 4.9: Local error control.

It is natural to have an approximation for S geometry coarser than for S geometry
because we are assuming that S is only the coarse information in contrast to S
that has also details (Figure 4.9(a) and (c)). However, since generally details are
restricted to small surface areas if we use S to choose £ we will have a expensive
mesh that do not bring real benefits. Since our application works with two different
levels of details so then is natural use that structure to define the error functions
that depend on the detail level of a surface point. In fact, we are adding one more
parameter in P’ (4.2): the detail level E(p). In our representation the details are
encoded in D however not all parameters of S will influence the final mesh, thus
we introduce the notation D, for these parameters that affect the refinement. As a
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result we define our level of detail at a point p as

E(p) = n(Dy(p)), (4.12)

where 1 : R? — R,. We implement that using the height maps since they are
our details over the surface, specifically the Equation (4.12) is rewritten as F(p) =
max{2|Vh,|, 1}, where V is the gradient.

Now we have all elements to define an error function that is not blind to level
of detail at a point over the surface. We define the local error function using Equa-
tion (4.11) and (4.12) so then we have A(p) = dg(p)E(p). Now we apply this new
definition in the face error calculation and as result we reformulate the edge error
and the vertex error functions. In Figure 4.9 we can observe the difference between
to use the simple error function and to use the local error function. The mesh in
Figure 4.9(b) has 460 vertices however we lost the details of the final surface, if we
decrease the ¢ (Figure 4.9(c)) we reveal the details though the mesh grows ten times
with 4.8k vertices, when we use the local error function (Figure 4.9(d)) we reveal
the detail and the mesh size does not grow too much, 1.3k vertices.

4.2.5 Work-flow and Results

In this section we present all peaces of our pipeline working together. Our work-
flows are based on the framework presented by de Goes et al. [16] to adapt dynamic
meshes. There are three different work-flows in the pipeline: (1) the user starts the
modeling system with a blank page or changes the actual model topology, (2) the
geometry of the implicit surface changes, and (3) we need change the mesh resolution.
The (3) usually happens when the height-maps are changed. The overview of the
work-flow is depicted in figure 4.10.

MPliCt — | MOVE
Base Surface Vertices
¥ &)  Adapt

Base Mesh B Atlas B Augmentation a4n_g_I;:e:the

Figure 4.10: Overview of system work-flows: green arrows are the startup and
topological change step sequence, blue arrow are stepped when the implicit surface
is edited, and the red arrow is done when the mesh resolution changes.

The user starts the model with construct lines, using the system described in
Chapter 3, these lines create samples that define an implicit surface (Figure 4.11(a)).
After that the user creates a planar version of the base mesh that approximates the
geometry and has the same topology of the final model (Figure 4.11(b)). Thus, the
base mesh is transported to space (Figure 4.11(c)). Now the base mesh is used to
creates an atlas structure (Figure 4.11(d)) for a 4-8 mesh. This mesh is adapted and
refined creating the first approximation of the final model (Figure 4.11(e)). These
steps described up to now are the common steps for all modeling sessions. They
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are represented by the green arrows in Figure 4.10. In addition, these steps are
illustrated in Figures 4.12(a) and (b), 4.13(a), and 4.14(a). Note that when we
change the topology we need change the base mesh, then the process starts again, in
particular in Figure 4.12(a) and (b). If there is a predefined height-map, the model
ends this stage with one or more layer of details. Specifically in Figure 4.14(a) we
start the model with a height-map encoded as a gray image.

Figure 4.11: Steps to model a head.

After the first approximation for the final surface the user can edit the implicit
surface and create/edit a height-map. When details are added on the surface imply
in almost all cases that the resolution of the mesh is not fine enough to represent the
new augmentation, then we ought adapt and refine the mesh. In Figures 4.11(f),
4.12(c), 4.13(b), and 4.14(b): the user sketches a height map over the surface and
the mesh is refined to represent the geometry of the augmentation correctly. At
any stage the user can change the implicit surface and if the topology continues the
same to obtain a fast approximation the system allows to move the vertices without
adapt and refine. Since detail are codified separately when we move the vertices
the details are moved consistently. We illustrate that in Figures 4.11(g), 4.14(c),
and 4.13(c), (e) and (f). Specifically in Figure 4.13(e) and (f) we can compare the
good final result preserving the details despite the big change of the implicit surface.
Some times, when only the implicit surface is changed, to move the vertices is not
enough to reach the quality desired then the user can adapt and refine the mesh
decreasing the error threshold, as shown in Figure 4.13(d), where the user starts the
e = 107 and after some modeling steps the user chooses a new threshold 10~

The four models presented in this section took around 20 minutes each to be
modeled, we are considering the time that starting from the blank page up to the
final mesh generation. All the results were generated on an 2.66 GHz Intel Xeon
W3520, 12 gigabyte of RAM and OpenGL/nVIDIA GForce GTX 470 graphics. The
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Figure 4.12: Steps to model a space car.

most expensive step was to create the implicit surface, after that to create the base
mesh, to augment, and small adjusts in the implicit surface do not take too much
time. The system bottle neck is the mesh update if the mesh has too many vertices
(about 10k) a step of refinement after an augmentation takes about 10 seconds,
for example the Head models has 11k vertices and to adapt the mesh after an
augmentation takes about 10 seconds. The final models of space car, terrain, and
party balloon have 14k, 11k, and 13k vertices respectively.

Figure 4.13: Steps to model a terrain.
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(a)

VISGRAF

Figure 4.14: Steps to model a party balloon.

4.3 Conclusion and Future Work

In this chapter we discussed the problem of what is a good surface representation
for sketch-based modeling. We focused in developing a representation that allows us
to control the model edition in two scales: global and local. Therefore we proposed
a general mathematical representation for surfaces tailored to SBM problem. The
main idea of this abstract representation is to split the object between base and de-
tail using the semantics of function composition and binary operations. In addition
we developed a Sketch-based Surface Modeling system using a pipeline based on
the theory developed for the mathematical representation. The pipeline proposed
has four main elements: implicit surface, base mesh, atlas and 4-8 mesh. For each
element there are several issues and possible approaches. Since we desired to in-
vestigate whether that representation is powerful enough to build the SBM system,
for each pipeline element we give a off-the-shelf solution or we created simple, and
some times naive, approach for each element problems. In spite of these simple
approaches, our system allows us to model different shapes controlling the local and
global changes. The advantages of these simple approaches are: we are sure that
representation is doable and powerful for SBIM problem and we have found avenues
for further research.

Our chose for base surface was to use ours previous work about implicit although
this modeling system be very powerful we would like to test our abstract formulation
in others system with others smooth surfaces. As example the Matisse system
(Bernhardt et al. [7]) that uses a convolution surface or Fibermesh (Nealen et al.
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One important example of element that demand more research is the base mesh.
We implement a semi-automatic approach that the user place the vertices to ap-
proximate the geometry and topology, after that the base mesh is created in the
space. this approach achieves good results however we only can work in one plain.
Since the base mesh is the responsible for the topology of the final model, we are
restricted in models that topology can be handle in one plain. Thereupon we plan
research two approaches for the base mesh problem. The first one is to transport
the actual semi-automatic solution to 3D, in this case the user handles box directly
in the space, the main challenge is to develop an interface that the user do not waste
too much time and effort creating the base mesh. The other approach is use a mesh
simplification as example the method presented by Daniels et al. [15], although this
approach be automatic it starts with a dense mesh, then we are changing the prob-
lem of how to find a base mesh for the problem of create a mesh with the same
topology.

We developed a theory to construct atlas which is responsible to control the local
edition of the model. The label theory developed gives a constructive algorithm with
guarantees to create a partition over the set of faces of a stellar adaptive mesh. We
use this partition to build the atlas structure. However there are much more to be
done in this problem, we aim to develop: tools (mathematical and computational)
to handle with the scale of the atlas, an interface to control predefined height-maps,
and algorithms that split the atlas if it has a high level of deformation in relation of
the surface.

Although we use the 4-8 mesh library as a black box, there is some work to be
done about the error function. In our current implementation the final mesh quality
depends on the base meshes. If we have a base mesh in which each face looks like
a square and approximates well the local geometry, we will have good triangles.
However, if some initial base-mesh faces are not squares we may have very skinny
triangles. We plan to research methods to improve the mesh quality independently
of the base mesh. To achieve that we have two approaches: the first one is using
filters for mesh smoothing, the other one is to improve our error function.

Finally we want to apply this pipeline for SBM system in specific domains. We
believe that the potential of our representation and pipeline will be better exploited
if we apply those in a specific domain, e.g., figure modeling or geological modeling.



Chapter 5

Final Remarks

We presented a study on sketch as input for modeling systems (i.e. sketch-based
modeling, or SBM), focusing on mathematical representations for sketch-based mod-
eling system. We advocated that the representation of the model plays a fundamen-
tal role in this problem, requiring the underlying representations to be specially tai-
lored for use in SBM application and commons requirements can be abstracted, to
guide the definition of a specific representation for a specific domain. In Chapters 2
and 3 the sketch tools were developed to satisfy the restriction of specific representa-
tions: Hermit-Birkhoff Radial Basis Functions (HBRBF) and Hermit Radial Basis
Functions (HRBF), respectively. As it was observed in those chapters these repre-
sentations are powerful and well suitable for the problem of sketch-based modeling.
However, they do not provide any good answer to one of the basic questions in SBM:
“Which is the best representation for modeling using sketches for a specific domain?”.
We are looking for a more general answer, a more abstract mathematical structure
that gives us a starting point whenever we are seeking for a concrete representation
for a sketch-based modeling pipeline to be applied for a specific domain. In Chap-
ter 4 we started to answer this question. We chose some common desired properties
for sketch-based modeling and based on that we created an abstract mathematical
framework to define representations to SBM systems. However, there is still much
work to be done.

In Chapter 2 we developed sketch tools for modeling warping fields. These fields
were successfully applied to deform RGBN images. This problem demands specific
properties on the sketch tools and representation. We had to develop tools to create
C! fields with boundary restrictions. Now we would like to study the same problem
using the pipeline proposed in Chapter 4 in addition, we plan to apply this techniques
to create animations.

In Chapter 3 we approached the problem of modeling implicit surfaces. The
modeler operators created in this chapter reach good results despite using only one
drawing plane to be defined. One directly extension is use more drawing planes
to allow more complex shapes, by the same token, we would like to create tools
to design and edit curves directly in 3D. Regarding the representation we plan to
implement the HBRBF tools in our system. One drawback in our system was the
restriction that all samples have to Hermite samples. Thus, the HBRBF will yield

o7
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a more flexible and intuitive way to define the samples.

In Chapter 4 we proposed a novel approach to the problem of SBM, we developed
an abstract mathematical representation to be suitable for SBM in specific domains.
We focused on this abstract representation to give a concrete pipeline that allows
to control levels of detail. We implemented this pipeline using the implicit modeler
developed in Chapter 3 as base surface and we created tools to parametrize the
surface and edit details. This pipeline was split in four parts: implicit surface, base
mesh, atlas and 4-8 mesh. In all these elements there are still many avenues to be
exploit. Finally, the next main step is to apply that abstract representation to a
specific domain.

In conclusion, the mathematical representation of the model plays a central role
in the problem of using sketches to create and edit the model itself. We use the ex-
perience acquired in the earlier developed SBM applications to abstract and propose
a novel representation applying that to create a SBM system with more control.

O
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