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Abstract

In this text, we study three algebras: Cuntz-Li, ring and Bost-Connes algebras. The
Cuntz-Li algebras 2([R], presented in [12], are C*-algebras associated to an integral domain
R with finite quotients. We show that A[R] is a partial group algebra of the group K x K*
with suitable relations, where K is the field of fractions of R. We identify the spectrum of
these relations and we show that it is homeomorphic to the profinite completion of R. By
using partial crossed product theory, we reconstruct some results proved by Cuntz and Li.
Among them, we prove that 2([R] is simple by showing that the action is topologically free
and minimal. In [33], Li generalized the Cuntz-Li algebras for more general rings and called
it ring C*-algebras. Here, we propose a new extension for the Cuntz-Li algebras. Unlike ring
(C*-algebras, our construction takes into account the zero-divisors of the ring in definition of
the multiplication operators. In [6], Bost and Connes constructed a C*-dynamical system
having the Riemann (-function as partition function. We conclude this work proving that the

C*-algebra Cg underlying the Bost-Connes system has a partial crossed product structure.

Keywords: Cuntz-Li algebras, ring C*-algebras, Bost-Connes algebra, partial group

algebra, partial crossed product.
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Chapter 1

Introduction

Sixteen years ago, motivated by the work of Julia [24], Bost and Connes constructed a C*-
dynamical system having the Riemann (-function as partition function [6]. The C*-algebra
of the Bost-Connes system, denoted by Cq, is a Hecke C*-algebra obtained from the inclusion
of the integers into the rational numbers. In [29], Laca and Raeburn showed that Cg can be
realized as a semigroup crossed product and, in [30], they characterized the primitive ideal

space of Cp.

In [2], [9] and [25], by observing that the construction of Cg is based on the inclusion of
the integers into the rational numbers, Arledge, Cohen, Laca and Raeburn generalized the
construction of Bost and Connes. They replaced the field Q by an algebraic number field K
and Z by the ring of integers of K. Many of the results obtained for Cp were generalized to
arbitrary algebraic number fields (at least when the ideal class group of the field is h = 1)
[26], [27].

Recently, a new construction appeared. In [10], Cuntz defined two new C*-algebras: QO
and Qz. Both algebras are simple and purely infinite and QO can be seen as a C*-subalgebra
of Qz. These algebras encode the additive and multiplicative structure of the semiring N and
of the ring Z. Cuntz showed that the algebra Oy is, essentially, the algebra generated by Cq
and one unitary operator. In [40], Yamashita realized Qy as the C*-algebra of a topological

higher-rank graph.

The next step was given by Cuntz and Li. In [12], they generalized the construction of
Qz by replacing Z by a unital commutative ring R (which is an integral domain with finite

quotients by nonzero principal ideals and which is not a field). This algebra was called A[R)].

1



CHAPTER 1. INTRODUCTION 2

Cuntz and Li showed that 2A[R] is simple and purely infinite and they related a C*-subalgebra
of its with the generalized Bost-Connes systems (when R is the ring of integers in an algebraic
number field having h = 1 and, at most, one real place). In [33], Li extended the construction

of 2A[R] to an arbitrary unital ring and called it ring C*-algebras.

The main aim of this text is to show that the Cuntz-Li algebra A[R] can be seen as
a partial crossed product. We show that A[R] is *-isomorphic to a partial group algebra.
By using the relationship between partial group algebras and partial crossed products, we
see that 2A[R] is a partial crossed product. Our second purpose is to present an alternative
generalization of the Cuntz-Li algebras for more general rings, different from that introduced
by Li in [33]. The last goal of this text is to find a partial crossed product description of the

Bost-Connes algebra Cg. To present these results, we divide this thesis in five chapters.

In Chapter 2, we define the algebras studied here. In the first section, we introduce the
Cuntz-Li algebras following the original [12] and we exhibit the main results proved there by
them. In the second section, we deal with the ring C*-algebras, which are the extensions of
the Cuntz-Li algebras for arbitrary unital rings proposed by Li in [33]. We finish this chapter

defining the Bost-Connes algebra, following [6].

In Chapter 3, we review the theory used to tackle the mentioned algebras. In the first
section, we define partial actions and partial representations. Following, we construct the
partial crossed product associated to a partial action. In the last two sections, we exhibit the

partial group algebra, a C*-algebra which is universal with respect to partial representations.

The Chapter 4 is dedicated to study the Cuntz-Li algebras 2([R] under a new look. First,
we show that 2A[R] is x-isomorphic to a partial group algebra of the group K x K* with
suitable relations, where K is the field of fractions of the ring R. Following, we see that
A[R] is a partial crossed product by the group K x K*. We characterize the spectrum
of the commutative algebra arising in the crossed product and show that this spectrum is
homeomorphic to R (the profinite completion of R). Furthermore, we show that the partial
action is topologically free and minimal. By using that the group K x K* is amenable, we

conclude that 2[R] is simple.

In Chapter 5, we present our definition for the Cuntz-Li algebras in more general cases.
In the first section, we develop elementary algebraic properties about annihilators of ideals.

These properties allow us to define multiplication operators for zero-divisors, which are not



CHAPTER 1. INTRODUCTION 3

included in Li’s construction. We deduce some properties of our definition which are closely

related to the original Cuntz-Li algebras.

In the last chapter, we show that the Bost-Connes algebra Cg is *-isomorphic to a partial
crossed product. We use the partial crossed product obtained in Chapter 4 in case R = 7Z as
a starting point for the proof. We show that Cgp is a C*-subalgebra of that partial crossed

product.

Before we start the main content of the text, we standardize certain notations and termi-
nology. For a given set X, the identity function on X will be denoted by Idx. In this thesis,
all groups considered are discrete, unless we say otherwise. In general, we use G to denote a
group and 7, s and t to represent its elements. We reserve the letter e to represent the unit
of the group. The next notation, unconventional, will be designed to simplify formulas and
proofs. Given a logical statement P, the symbol [P] will represent the value 1 if the sentence

P is true and 0 if P is a false sentence. For example, [s =¢] =1if s =t and [s =t =0 if

s #t.



Chapter 2

Cuntz-Li, Ring and Bost-Connes

C*-algebras

In this chapter, we present the C*-algebras which will be studied in this thesis. First,
we define the Cuntz-Li algebras and exhibit their main properties. Following, we introduce
the ring C*-algebras, which are a generalization of the Cuntz-Li algebras. The last section is

dedicated to the Bost-Connes algebra.

2.1 Cuntz-Li Algebras

In [10], Cuntz has defined a C*-algebra, denoted by Qy, which encodes the ring structure
of Z. Such construction has been generalized by Cuntz and Li in [12], where they replace Z
by an integral domain (satisfying certain properties). In this section, following [12], we define

such C*-algebra and present the main results obtained by Cuntz and Li.

Throughout this section, R will be an integral domain (unital commutative ring without
zero divisors) with the property that the quotient R/(m) is finite, for all m # 0 in R. In
addition, we exclude the case where R is a field. We denote by R* the set R\{0} and by R*
the set of units in R. Examples of such rings are the rings of integers in an algebraic number

field and polynomial rings on a finite field.

Definition 2.1.1. [12, Definition 1] The Cuntz-Li algebra of R, denoted by 2A[R], is the

universall C*-algebra generated by isometries {s,, | m € R*} and unitaries {u" | n € R}

'For universal C*-algebras on sets of generators and relations, see the original [3] or even [4, Apéndice A]

4



CHAPTER 2. CunTz-L1, RING AND BOST-CONNES C*-ALGEBRAS 5

subject to the relations

(CLl) SmSm! = Smm/»

!

(CL2) vwu™ = u™t";
(CL3) spmu™ = u™"spp;

(CL4) Z uls st u™t = 1;
I+(m)eR/(m)

for all m,m’ € R* and n,n’ € R.

We denote by e, the range projection of s,,, namely e, = sp,s’,. Relations (CL1) and
(CL2) tell us that the operations of R are preserved by s and w. Intuitively, (CL3) encodes
the distributivity of the ring. The relation (CL4) represents the fact that R is the disjoint

union of the cosets for a given m. These facts will be clear after the next definition.
Note that if I + (m) =I' 4+ (m), say I' =1+ km, then

l

’ o 7 CL2
il sl = ylthm I—km (CL2) km

_ _; (CL3
b s, 57w kMg (CL%)

SmSp U

ulspmuFukst ut = uls,, st ul,

which shows that the sum in (CL4) is independent of the choice of [.

As in other similar constructions, there is a reduced version of 2[R]. Consider the Hilbert
space £2(R) and let {&, | r € R} be its canonical basis. For m € R*, define the linear operator
Sm on £2(R) such that S, (&) = &my. Clearly, Sy, is bounded and
i} & yms if 7€ (M),

Sm (‘57") =

0, otherwise.

Hence, we have S} S, (&) = Sk (Emr) = &, 1€, Sy, is an isometry. For n € R, let U™ be
the linear operator on ¢2(R) such that U"(&,) = &4 It’s easy to see that U™ is bounded,
unitary and that (U™)* = U~". Denote by B(¢?(R)) the C*-algebra of the bounded linear

operators on /?(R).

Definition 2.1.2. [12, Section 2] The reduced Cuntz-Li algebra of R, denoted by 2, [R],
is the C*-subalgebra of B(£?(R)) generated by the operators {S,, | m € R*} and {U" | n € R}.

or [34, Apéndice A].



CHAPTER 2. CunTz-L1, RING AND BOST-CONNES C*-ALGEBRAS 6

We claim that {S,, | m € R*} and {U" | n € R} satisfy (CL1)-(CL4). Indeed, (CL1) and
(CL2) are obvious and S,,U™(&,) = Sm(&n+r) = Emntmr = U™ (Emr) = U™ S, (&) shows
(CL3). To see (CL4), observe that

&, ifren+(m),
U'SmSEUT™&) =4 (m)
0, otherwise,
ie., U"Spy Sk U™ is the projection onto span{é, | » € n+(m)}. Since R is the disjoint union

of n+(m) with n ranging over all classes modulo m, then (CL4) is satisfied. It follows from the

universal property of 2[R] that there exists a (surjective) *-homomorphism A[R] — 2, [R].

From now on, we shall exhibit the results about A[R] proved by Cuntz and Li. The first

lemma, which will be used in Chapter 4, will be proved here.

Denote by P the set of projections {u"e,u™" | m € R*, n € R} in A[R]. The next result

shows that span(P) is a commutative *-algebra.

Lemma 2.1.3. [12, Lemma 1]

(i) For all m,m’' € R*,

€m = E u™ Emm/ uim%

I+(m’)eR/(m')

(i) The projections in P commute;

(i1i) The product of elements in P are in span(P).

Proof. Since

(CL4) _ (CL1),(CL3) _
em = Smls,, = Sm Z ulspst ul| st Z U™ e u ™™,

I+(m")eR/(m) I+(m/)eR/(m/)

we have (i). By (CL4), we see that ule,u=9 = u? eyu? if ¢ + (p) = ¢’ + (p), and ude,u1

n

and u?e,u~? are orthogonal if ¢ + (p) # ¢’ + (p). To see (ii) and (iii), let u"eyu™" and

/ o . . .
u™ epyu”™ be in P. We use (1) to write

unemufn _ § : unerlemm/ufnfml
I+(m”)eR/(m')
and
’ _n/ ’ it Y S} 7/
unem/un: E : un+mlemm/un ml.
U+(m)eR/(m)

From these equalities, it’s easy to see that u"e,u™" and u" epu~™ commute and that

_ / _n/ .
uepu”"u" epyu”™ are in span(P). ]
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By the above lemma, Span(P) is a commutative C*-subalgebra of 2[R], which will be
denoted by ®[R]. In the next result, Cuntz and Li exhibit a standard form for the elements

in A[R].

Lemma 2.1.4. [12, Lemma 2] A[R] = span{s;“n,,u”sms;ilu_”/sm/ m,m’,m" € R*, n,n’ €

R}.

This lemma allows us to know a bounded linear operator whose domain is A[R] from its

. . _m/ . o e
vior in men rm S* Ut Sy Sr U Sy in pr ition W,
behavio the elements of the fo U Sy S U S, as oposition belo

Proposition 2.1.5. [12, Proposition 1] There is a faithful conditional expectation® © :
A[R] — D[R] characterized by

O(s5 " smst u™ spy) = [m' = m"|[n = )8 U™ smss u " S

where [T] represents 1 if the sentence T is true and 0 if T' is false.

The next three theorems are the main results proved by Cuntz and Li about A[R)].

Theorem 2.1.6. [12, Theorem 1] A[R] is simple and purely infinite.

As a corollary, we obtain that the canonical x-homomorphism A[R] — 2,[R] is, in fact,

a *-isomorphism.

There exists a natural partial order on R* given by the divisibility: we say that m < m/’
if there exists » € R such that m’ = mr. Whenever m < m/, we can consider the canonical
projection py, s : R/(m') — R/(m). Since (R*,<) is a directed set, we can consider the
inverse limit

R = @{R/(m)v pm,m’}7

which is the profinite completion of R. In this text, we shall use the following concrete

description of R:

R= (T + (m))m € H R/(m) ‘ pm,m’(rm’ + (m/)) =rm,m+ (m), if m < m'

meRX

Give to R/(m) the discrete topology, to [[,,cpx R/(m) the product topology and to R the

induced topology of [],,crx R/(m). With the operations defined componentwise, Ris a

2See [4, Definigao B.2.30 and page 191] for faithful conditional expectation.
3See [38, page 86] or [37, Definition 2.3] for purely infinite C*-algebras.
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compact topological ring. Since R is not a field, there exists a canonical inclusion of R into

R given by r — (r 4 (m))m (to see injectivity, take 7 # 0, m non-invertible and note that

r ¢ (rm)).

Theorem 2.1.7. [12, Observation 1] The sprectrum of D[R] is homeomorphic to R and
the corresponding *-isomorphism (via Gelfand representation*) ®[R] — C(R) is given by
uemu”" = 15, m), where 1(, ) represents the characteristic function of the subset { (7, +

(M) € R | 7 + (m) =0+ (m)} of R.

Consider the semidirect product R x R*, which is a semigroup under the operation
(n,m)(n',m’) = (n +mn/,mm’). Cuntz and Li have shown that there exist a action a by
endomorphisms of the semigroup R x R* on C (R) given by a(y ) (L' m’)) = Lingmnt mm?)-
By using the theory of crossed products by semigroups developed by Adji, Laca, Nilsen and
Raeburn in [1], Cuntz and Li have constructed the crossed product C*-algebra C/(R) x4 R x

R*, which appears in the theorem below.

Theorem 2.1.8. [12, Remark 3] U[R] is *-isomorphic to C(R) X R x R*.

We will return to the Cuntz-Li algebras in Chapter 4, in which we will study 2[R] under
a new look. Almost all results exhibited here will be proved there by using the partial crossed

products theory.

2.2 Ring (C*-algebras

The Cuntz-Li algebras, presented in the previous section, are C*-algebras associated to
an integral domain. It’s natural to ask whether it is possible to extend this construction
to a larger class of rings or, even, to all rings. In [33], Li has answered affirmatively this
question, extending this construction to an arbitrary unital ring. He called such algebras
ring C*-algebras. In this section, we reproduce the main definitions and results obtained by

Li in [33).

A first attempt to extend the construction to more general rings, would be to check if the
definitions of the operators S,,, and U™ in B(¢%(R)) are still valid in case R is an arbitrary

ring. For U", it’s easy to see that the above definition remains valid. However, if R is not

“See [35, Theorem 2.1.10] or [39, Theorem 3.3.6] for Gelfand representation.
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a domain, S, may not be a bounded operator. Indeed, if R is an infinite ring where the
product of any two elements are 0, then S,,, does not define a bounded operator. To solve this
problem, Li considers operators S, only in case m is not a zero-divisor. Thus, the algebra

2A,-[R] is perfectly well-defined.

However, when we try to define the full algebra 2[R}, another problem arises. Although
the relations (CL1)-(CL3) in Definition 2.1.1 remain valid in this case, the relation (CL4)
may not make sense in the language of universal C*-algebras. We allow only finite sums as

relations; situation that will be violated if the quotient R/mR is not finite.

A similar problem occurred while attempting to generalize the Cuntz-Krieger algebras
[11]. In [21], Exel and Laca have extended these algebras to infinite matrices by finding “all”
finite relations that are consequences of the infinite relations. Here, to solve this problem, Li

added new generators to the algebra, as the definitions below.

Let R be a unital ring and denote by R* the set of elements in R which are not zero-
divisors. Let C be a subset of the power set P(R) such that: (i) R € C, (ii) C is closed under
finite unions, finite intersections and complements, (iii) if n € R, m € R* and X € C, then

n+mX € C (we refer to this property by saying that C is closed under affine transformations).

Consider the Hilbert space ¢?(R) and denote by {{. | r € R} its canonical basis. We
already saw that, for m € R*, S,,(&.) = &, defines an isometry and, for n € R, U"(&,) =
&nar defines a unitary in B(£2(R)). Furthermore, for each X € C, we can define a projection

Ex in B(f*(R)) such that Ex (&) = [r € X]&,.

Definition 2.2.1. [33, Definition 3.1] The reduced ring C*-algebra of R with respect
to C, denoted by 2,[R,C], is the C*-subalgebra of B({*(R)) generated by the operators
{Sm | me R*},{U" | ne€ R} and {Ex | X € C}.

As before, (CL1)-(CL3) of Definition 2.1.1 are satisfied by S,, and U". In addition, we
can verify some relations involving the projections Ex:
(i) Er(&) =[re R§ =& = Id£2(R) (&r);
(ii) Exny(&) =[r € XNY =[re X|[r € Y]§ = ExEv(&);

(iii) If X and Y belong C and are disjoint, then Ex_y (&) = [r € X UY](&) = ([r € X]|+

[r e Y& = Ex(§) + By (&)
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(iv) UnSmExS5U(&) = UnSmBEx S (&—n) = [r —n = mk, k € RJU"SmEx (&)

These relations motivate the definition below.

[7" —n =mk, k € R][k‘ S X]U”Sm(gk) = [7“ —n =mk, k € R][k c X]Un(frfn)
[r—n=mk, k€ R]ke X|¢& =[ren+mX]E =

n+mX ('gr) .

Definition 2.2.2. [33, Definition 3.2] The full ring C*-algebra of R with respect to

C, denoted by 2A[R,C], is the universal C*-algebra generated by isometries {s,, | m € R*},

unitaries {u" | n € R} and projections {ex | X € C} subject to the relations

(L1)
(L2)
(L3)
(L4)
(L5)
(L6)

(L7)

SmSm! = Smm/;
n,n' n+n’.
uu" = u ;
St = U™ S
n * - _ .
U SmEX S, U = €n+mX;

er = 1;

€Xny = €x€y;

exuy = ex +ey.

The next step is to check that this definition actually extends Definition 2.1.1 in case R is

an integral domain with finite quotients by nonzero principal ideals. First, we note that if R

is an integral domain, then R* = R\{0} as before. Therefore, the operators s,, are indexed

by the same set. However, the operators ex are not present in definition 2.1.1. Li justifies

their presence in the next two results.

Proposition 2.2.3. [33, Remark 3.7] Let R be a unital ring and C the smallest family of sub-

sets of R which contains R and is closed under finite unions, finite intersections, complements

and affine transformations. Then

i.e., the generators ex don’t add new elements to A[R,C].

AR,C)=C* ({sm | me R*}U{u" | n € R}),

Proposition 2.2.4. [33, Lemma 3.8] Let R be an integral domain with finite quotients by

non-zero principal ideals and let F be any family of nontrivial ideals of R. If C is the smallest
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family of subsets of R which contains F U {R} and is closed under finite unions, finite in-
tersections, complements and affine transformations, then the natural map A[R] — A[R,C]

sending generators to generators exists and is a x-isomorphism.

The first result tell us that the “undesirable” generators ex don’t increase the size of
A[R] when C is the smallest family generated by R. Indeed, these generators only add new
relations to the algebra. The second result confirms that A[R,C] really extends Definition
2.1.1.

In Chapter 5, we propose another generalization to the Cuntz-Li algebras. We have found

a very satisfactory way to include generators S,, when m is a zero-divisor.

2.3 Bost-Connes Algebra

In [6], Bost and Connes constructed a C*-dynamical system which revealed deep connec-
tions between Operators Algebras and Number Theory. The most remarkable result is the
appearance of the Riemann {-function as partition function of the KMS states of the dynam-
ical system. In this section, we introduce the Bost-Connes algebra, namely, the underlying

C*-algebra of the Bost-Connes dynamical system.
Consider the quotient Q/Z as an additive group.

Definition 2.3.1. [6, Proposition 18] The Bost-Connes algebra, denoted by Cjp, is the
universal C*-algebra generated by isometries {i, | m € N*} and unitaries {e, | v € Q/Z}

subject to the relations

(BCL) pmbtims = fonmss

(BC2) pmpiyy = py i if (m,m') =15
(BC3) eyey = eyqrys

(BC4) eypim = fmemny;

(BC5) pimeyps, = =3 es, where the sum is taken over all § € Q/Z such that mé = 1.

It’s easy to see that if v = % + Z, then the sum in (BC5) is indexed by the set

mm/

{m”T:l, +Z,2E 7 nit(m=—ljm’ Z}. From this, one can see that (BC5) is indepen-

dent of the representation of v in Q/Z (this verification in (BC3) and (BC4) is trivial).
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In Proposition 2.8 of [29], Laca and Raeburn deduced a curious fact: the relations (BC2)
and (BC4) are consequences of the other three relations. In other words, we may remove

these relations without modify the definition.

Originally, Bost and Connes have defined Cgp as the C*-algebra of a certain Hecke pair.
However, this equivalent definition (the equivalence is proved in [6, Proposition 18]) is more
appropriate for our purposes. Again in [29], Laca and Raeburn showed that Cyp is the crossed
product of C*(Q/Z) (the group C*-algebra® of Q/Z) by the multiplicative semigroup N*
with a certain action of endomorphisms. We return to the Bost-Connes algebra in Chapter
6, where a similar result is obtained: we show that Cg is a partial crossed product of (a

C*-algebra isomorphic to) C*(Q/Z) by Q7.

®See [8] for group C*-algebra.



Chapter 3

Partial Crossed Products and

Partial Group Algebras

In this chapter, we present the basic definitions and results concerning partial crossed
products and partial group algebras. First, we define partial actions and partial representa-
tions. Hereafter, we construct the partial crossed product and exhibit its equivalent forms. In
the last two sections, we introduce the partial group algebra and we obtain a characterization

of it as a partial crossed product.

These theories are developed in [15], [16], [17], [18] and [22]. For more detailed texts, we

recommend [4] and [34] (only in Portuguese).

3.1 Partial Actions and Partial Representations

Definition 3.1.1. [18, Definition 1.2] A partial action « of a (discrete) group G on a C*-
algebra A is a collection (D) of ideals of A and #-isomorphisms ay : D;—1 — Dy such

that
(PA1) D, = A, where e represents the identity element of G;
(PA2) oy '(DyNDy-1) C Digpy-1;

(PA3) ago0 () = ag(x), Vo€ a (DiNDy).

The triple (A, G, ) is called a partial dynamical system. In the above definition, if

13
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we replace the C*-algebra A by a locally compact Hausdorff space X, the ideals D; by open
sets X; and the x-isomorphisms oy by homeomorphisms 6; : X;,-1 — X, we obtain a partial
action 6 of the group G on the space X.

Remark 3.1.2. Applying item (iii) with s = ¢ = e and using item (i), we see that a, = Id 4.
Also by item (iii), with s = t~!, we conclude that a; ' = a,-1. Furthermore, the inclusion in
item (ii) is equivalent to a;(D;—1 N Ds) = Dy N Dys. To see this, apply item (ii) with (ts)~?
in place s and use the fact that a; is an *-isomorphism from D,;-1 to D; to conclude that
ai(Dy-1 NDy) D Dy NDys. The reverse inclusion is obtained from (ii) with ¢~ in place ¢, s7!
in place s and using that at__ll = 4.

Remark 3.1.3. Suppose that « is a partial action such that each ideal D; is unital with unit
1¢. In this case, D;—1 N Dy and Dy N Dy are unital with units 1,-115 and 1;1;4, respectively.
By previous remark, o is a x-isomorphism from D;-1 NDs to Dy N Dys. Since *-isomorphism

take units on units, then ay(1;-115) = 1414.

Example 3.1.4. Let G be a group, Y a locally compact Hausdorff space, X an open set of
Y and p an action of G on Y. If we define, for each t € G, X; = X N py(X) and

Qt : Xt—l — Xy

. — pi(x),
then 0 is a partial action of G on X (see [4, Exemplo 2.1.15]).

Example 3.1.5. Let 0 be a partial action of a group G on a locally compact Hausdorff space
X. Define, for each t € G, Dy = Co(Xy) and

(6773 thl — Dt

f o— fob, 1.

If we identify Co(Xy) with the functions in Co(X) which vanish outside of Xy, then « defines
a partial action of G on Cy(X). We say that « is the partial action induced by 6 (see [4,
Ezemplo 2.1.18]).

The previous example associates a partial action oo on a C*-algebra from a partial action
on a topological space. In this case, we can extract useful informations about « by analysing
f. The most important for us, which will be seen in the next section, is the fact that we can
use # to classify the ideals in the crossed product associated to «. For this, we need some

definitions.
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Definition 3.1.6. [22, Definition 2.1] We say that a partial action 6 on a space X is topo-

logically free if, for all ¢t € G\{e}, the set F} = {z € X;—1 | 6;(x) = x} has empty interior.

Definition 3.1.7. [22, Definition 2.7] Let  be a partial action on a space X. We say that

a subset V' of X is invariant under 6 if 6,(V N X,—1) C V, for every ¢ € G.
Definition 3.1.8. [22, Definition 2.7] Let o be a partial action on a C*-algebra A. We say
that an ideal Z of A is invariant under « if a;(Z N D;-1) C Z, for every t € G.

It’s easy to see that if V' is an open #-invariant subset of X, then Cy(V) is an a-invariant

ideal of Cy(X), where « is the partial action induced by .

Definition 3.1.9. [22, Definition 2.8] We say that a partial action € on a space X is minimal

if there are no invariant open subsets of X other than () and X.
Proposition 3.1.10. A partial action 0 is minimal if, and only if, every x € X has dense
orbit, namely Oy = {0:(x) | t € G for which x € X;-1} is dense in X.

From now on, we change the subject to partial representations. At the end of this section,

we return to talk about partial actions.

Definition 3.1.11. [18, Definition 6.2] A partial representation 7 of a (discrete) group

G into a unital C*-algebra B is a map 7 : G — B such that, for all s,t € G,

(PR1) 7(e) =1,
(PR2) (") = m(t)";

(PR3) 7w(s)m(t)m(t™1) = n(st)m(t1).

It’s noteworthy that, under (PR2) and (PR3), 7(s™!)n(s)m(t) = m(s~H)7(st) is valid too.

Example 3.1.12. Consider the Hilbert space (>(N*) and denote by {&,}nen+ its canonical
basis. Let S be the shift operator on (*(N*), i.e., S(&,) = &nr1. Then w: 7 — B(£2(N¥))

given by
S ifn>0
m(n) =

(§*)I",if n <0,

is a partial representation of the additive group Z into B((?(N*)) (see [4, Exemplo 3.1.7]).

The next proposition exhibits useful properties about partial representations.



CHAPTER 3. PARTIAL CROSSED PRODUCTS AND PARTIAL GROUP ALGEBRAS 16

Proposition 3.1.13. [15, page 15] Let m : G — B be a partial representation of a group G
into a unital C*-algebra B and denote 7w(t)w(t)* by e¢. For all s,t € G, we have:
(i) w(t) is a partial isometry, i.e., w(t)w(t)* n(t) = w(t);
(ii) € is a projection;
(117) w(t)es = ersm(t);
(v) eser = €165
(v) T(t)m(s) = erersm(ts);

(vi) 7(t1)m(t2) -+ 7(tn) = €4,E11ty * * * Etqtgt, T(t1ta -+ tp), for all ty,... t, € G.

Definition 3.1.14. [4, Definigao 4.1.1] Let a be a partial action of a group G on a C*-algebra
A, m: G — B be a partial representation of G into a unital C*-algebra B and ¢ : A — B

be a x-homomorphism. We say that the pair (¢, 7) is a-covariant if:

(COV1) p(ay(z)) = 7(t)p(x)n(t™1), for all t € G e x € Dy-1;

(COV2) p(z)m(t)m(t™") = a(t)m(t Hp(z), forallz € Aet € G.

This definition will be used later as a way to characterize the partial crossed product.

3.2 Partial Crossed Products

Throughout this section, we fix a partial action « of a group G on a C*-algebra A. Denote
by L the direct sum @sceD;. With the operations defined componentwise, L is a vector space.
If we denote by ad; the element of £ whose entry ¢ is a and which is 0 in the other entries,
then every element of £ can be written as a finite sum ), a;d;, where a; € Dy. If we require
that a; is nonzero, then this representation is unique. We define a multiplication in £ by
(asds)(ards) = as(ag—1(as)ar)ds. It can be shown that £ is an associative algebra with these
operations (see [15, Corollary 3.4]). Furthermore, we can view £ as a normed x-algebra with

an involution and a norm given by (a¢0;)* = ay-1(aj)6,—1 and || Y, cq ade|| = > e llat]-

Definition 3.2.1. The full partial crossed product (or simply, crossed product) of A
by G through «, denoted by Ax,G, is the enveloping C*-algebra! of £ (see [4, Proposicao
2.2.31]).

!See [4, Exemplo A.2.8] for enveloping C*-algebras.
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It can be shown that there is an injective *-homomorphism £ — Ax,G (see [4, Corolério
2.2.32]). In other words, AXx,G is the completion of £ under a certain C*-norm. There is
another characterization of Ax,G as the universal C*-algebra for a-covariant representations,

according to the next proposition.

Proposition 3.2.2. Let « be a partial action of a group G on a C*-algebra A, 7 : G — B
be a partial representation of G into a unital C*-algebra B and ¢ : A — B be a *-homomor-
phism such that the pair (@, ) is a-covariant. Then there exists a unique *-homomorphism

o X7 AxaG — B such that
(QD X ﬂ)(at5t) = QO((Zt)ﬂ'(t), Vte G, Vay € Dy

(see [4, Coroldrio 4.1.5]).

In addition to the full crossed product, there exists the reduced crossed product,
denoted by Ax, ,G. It can also be defined as the completion of £ under a certain C*-norm
(not equal to the previous one, in general). For a formal definition of Ax, ;G see [4, Defini¢ao

2.2.36).

There is a natural surjective *-homomorphism Ax,G — Ax, G which is the identity
on £. When this *-homomorphism is injective, we say that the dynamical system (A, G, a)
is amenable. It’s a fact that if G is an amenable group,? then (A, G, ) is amenable (see

[17, Theorem 4.7]).

We can identify A as a C*-subalgebra of Ax,,G and of Ax,G through the injective
*-homomorphisms A — Ax,,G and A — Ax,G both given by a — ad.. There exists
a faithful conditional expectation E : A X4, G — A given by E(ad;) = a if t = e, and
E(ad;) = 0 if t # e. When the dynamical system is amenable, the full and reduced crossed
products are x-isomorphic and, in this case, there exists a faithful conditional expectation of

A x, G onto A.

Henceforth, we consider that A = Cy(X) and that « is induced by a partial action 6
on X. The next results are valid for the reduced crossed product only. However, when the

dynamical system is amenable, we can replace the reduced by the full crossed product.

Proposition 3.2.3. [22, Theorem 2.6] Suppose that 0 is topologically free. If J is an ideal
in AXq,G with J N A= {0}, then J = {0}.

2See [4, Definigao B.3.2] for amenable groups.
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Proposition 3.2.4. /22, Corollary 2.9] If 0 is topologically free and minimal, then Axq G

18 simple.

3.3 Partial Group Algebras

Let G be a discrete group, let G be the set G without the group operations and denote

the elements in G by [t] (namely, G = {[t] | t € G}).

Definition 3.3.1. [18, Definition 6.4 and Theorem 6.5] The partial group algebra of G,
denoted by Cj;(G), is defined to be the universal C*-algebra generated by the set G subject

to the relations
Rp = {le] = 13U {[t""] = [ }rec U {[s][t][t™"] = [st][t™ "]} vec

Observe that the relations in R, correspond to the partial representation axioms (PR1),
(PR2) and (PR3). Sometimes, we will refer to a relation in R, by indicating the corresponding

axiom. For example, if we use [t71] = [t]*, we refer to it through the axiom (PR2).

Just as the C*-algebra of G is universal with respect to unitary representations of G, the

partial group algebra of GG is universal with respect to partial representations.

Proposition 3.3.2. [18, Definition 6.4 and Theorem 6.5] If m: G — B is a partial rep-
resentation of G into a unital C*-algebra B, then there exists a unique x-homomorphism

Y Cy(G) — B such that ([t]) = n(t) for allt € G.

Now, we will study an important C*-subalgebra of C}5(G). For each ¢ € G, denote [¢t][t™"]
by &¢ and denote by Ag the C*-subalgebra of C;(G) generated by {et}icc. By Proposition
3.1.13, Ag is a commutative C*-algebra generated by projections. Denote by C¢ the universal
C*-algebra generated by a set of projections {e; }1e¢ subject to the relations that e commutes
with e, for all s,t € G. The next result shows that the commuting relations between the

projections in Ag are sufficient to characterize it.
Proposition 3.3.3. The map Cq — Ag which sends e; on & is a x-isomorphism (see [4,

Proposi¢ao 4.4.7 and Coroldrio 4.4.10]).

There is another way of understanding Ag. Since Ag is commutative then, by the Gelfand

representation, Ag is *-isomorphic to C (./Zlc;), where Ag denotes the spectrum of Ag. Let’s
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characterize Ag. Consider the natural bijection between P(G) and {0,1}%, where P(Q) is
the power set of G. With the product topology, {0,1}% is a compact Hausdorff space. Give
to P(G) the topology of {0,1}¢. Denote by X¢ the subset of P(G) of the subsets ¢ of G

such that e € . Clearly, with the induced topology of P(G), X¢ is a compact space.

Proposition 3.3.4. [18, Proposition 6.6] The spectrum of Ag is homeomorphic to X¢

through the map Ag > ¢ — {t € G | ¢(e;) =1} € Xg.

As a corollary, we have Ag = C(X¢g). It’s important for us to explicit the map that
defines the x-isomorphism. Indeed, by using the above proposition, it’s not hard to see that
Ag 2 ¢t — 1; € C(Xg), where 1; represents the characteristic function of the subset

{£ € Xg |te}of Xg.

These characterizations of A enable us to find equivalent formulations for Cj(G). For

each t € G, gt Ag is an ideal of Ag and the map

a1 Aa — etAg
r — [t]z[t™Y]
is a #-isomorphism; defining a partial action & on Ag (see [4, Coroldrio 4.1.16]).
Proposition 3.3.5. [18, Definition 6.4 and Theorem 6.5] There is a x-isomorphism

Co(G) — Ag xa G given by [t] — &40,

Next, we will find a partial action on Xg. For each ¢ € G, denote by X; the open subset
{£ € X |t €&} of Xg. The map

Gt : Xt—l — Xt

§ — 1§

is a homeomorphism, where t£ = {ts | s € {}. It defines a partial action 6 on Xg (see [4,

Proposigao 4.4.3]). Denote by « the partial action induced by 6 on C'(X¢).
Proposition 3.3.6. [18, Definition 6.4 and Theorem 6.5] There is a x-isomorphism

Cp(G) — C(Xg) xa G given by [t] — 146

We finish this section presenting a useful property about «. Note that the set {1;};cq in

C(X¢) separates points in X¢ and that 1, = 1. Hence, by Stone-Weierstrass theorem [39,
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Theorem A.6.9], the C*-algebra generated by {1;};cq is C(X¢). Since the ideal D; of « is
C(Xy) 2 1,C(Xg), then C(Xy) is generated by {1;15}sec. These informations are used when
we need to prove some property involving C(X¢) or C(X;). In general, to prove a property

on the generators it is enough to ensure that the property is valid on the whole C*-algebra.

3.4 Partial Group Algebras with Relations

In this section, we define a generalized version of the partial group algebra. Let G, G and
Ry, be as in the previous section. Let R be a set of relations on G such that every relation is

of the form
> A []e, =0
i J
where \; € C and &; = [t][t 7] as before.

Definition 3.4.1. [22, Definition 4.3] The partial group algebra of G with relations R,
denoted by Cj;(G,R), is defined to be the universal C*-algebra generated by the set G with

the relations R, UR.

Given a partial representation m of G, we can extend m naturally to sums of products of
elements in G. If this extension satisfies the relations R, we say that 7 is a partial repre-

sentation that satisfies R. The next result presents the universal property of C’;(G, R).

Proposition 3.4.2. [22, Definition 4.3] If m: G — B is a partial representation of G
into a unital C*-algebra B that satisfies R, then there exists a unique x-homomorphism

Y Cy(G,R) — B such that ¢([t]) = n(t) for allt € G.

In analogy to the previous section, we will exhibit characterizations of C5(G, R) as partial
crossed products. Denote by A ) the (commutative) C*-subalgebra of C};(G, R) generated
by {et}tcq. As before, the maps

Qy @ Ep—1 A(G,R) — Et-A(G,R)

r o [t]z[t™]
define a partial action @ of G on A R).

Proposition 3.4.3. [22, Theorem 4.4] There is a x-isomorphism C;(G,R) — Agr) XaG

given by [t] — €40¢.
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We can use this proposition to define a conditional expectation on C}(G,R). If we
transport the natural conditional expectation on Agr) Xa G to C}(G,R), we obtain E :
Co(G,R) — Awr) given by E([ti][tz]---[tx]) = [ta][ta) -~ [tx] if t1ta- -t = e and
E([t1][t2] - - - [tk]) = 0 otherwise.

Denote by Jx the smallest (closed) ideal of A(g z) which contains

[t] Z Ai H €t;; [t_l]

It is noteworthy that, by using item (iii) of Proposition 3.1.13,

1) Z Ai H e, | =& Z Ai H Etty,

and, hence, it belongs to A(g ). There is a natural surjective *-homomorphism Ag —

> Xi]]ew; eRandteq
i J

A(GR), where A¢ is as in previous section, which sends €; on ¢; (obviously, the first one
is in A¢g and the last in A(G,R))- The kernel of this *-homomorphism is exactly Jx and,

therefore, Ay = Ag/Tr (see [4, page 111]).

Now, we will find a concrete realization of Ag r). Let C(X¢) and 1; be as in previous
section. By an abuse of notation, we also denote by R the subset of C'(X¢) given by the

functions 3, A; [, 1¢,;, where >, Ai []; er;; = 0 is a relation in (the original) R.

Definition 3.4.4. [22, Definition 4.2] The spectrum of the relations R is defined to be

the compact Hausdorff space
Qr={(ecXa|f(t7'€)=0,VfER, VL)

Proposition 3.4.5. There is a *-isomorphism Agry — C(Qr) given by e, — 1; (see [4,

page 113]).

Denote by €2 the subset {€ € Qg | t € £} of Qr. It can be shown that, if we restrict the
domain of the homeomorphism 6; : X;-1 — X, (defined in the section above) to €;-1, we
obtain a homeomorphism from €2,-1 onto ;. Thus we have a partial action (also denoted
by) 6 of G on Qg (see [4, page 108]). Let a be the partial action on C(2g) induced by 6.

The theorem below is the most important result concerning partial group algebras.

Proposition 3.4.6. [22, Theorem 4.4] There is a *-isomorphism C;(G,R) — C(Qr) Xa G

given by [t] — 1.0;, where 14 denotes the characteristic function of €.



Chapter 4

Characterizations of the Cuntz-Li

Algebras

In this chapter, we show that the Cuntz-Li algebras 2A[R] presented in Section 2.1 can
be seen as partial group algebras with relations. By using Theorem 3.4.6, we obtain a
characterization of 2[R] as a partial crossed product. With the theory presented in Chapter
3, we recover many of the results proved by Cuntz and Li in [12]. Among then, we will prove

Proposition 2.1.5, a part of Theorem 2.1.6 and Theorem 2.1.7.

The results of this chapter are in [5].

4.1 Partial Group Algebra Description of [R]

As in Section 2.1, let R be an integral domain which is not a field and with the property
that the quotient R/(m) is finite, for all m # 0 in R. Denote by K the field of fractions of
R and consider the semidirect product K x K*. The elements of K x K* will be denoted
by a pair (u,w), where u € K and w € K*. Recall that (u,w)(v,w’) = (u + v'w, ww’)
and (u,w)”! = (—u/w,1/w). We denote by [u,w] an element of set K x K* without the
group operations (as the set G associated to G in Section 3.3).! Also as in Section 3.3, denote

[t][t™1] by &;. Consider the sets of relations

Rlz{e(n71):1|n€R}, RQZ{E(Q%):l}mERX},

!Sometimes, we work with the element (u,w)™* or the element (u1,w:)(us2,w2). For these elements, our

corresponding notations will be [(u,w) '] and [(u1,w1)(uz, w2)].

22
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Rs = Z E(ljm):1’m€RX
I+(m)EeR/(m)

and R = R1 U Rz UR3. Our goal is to construct the partial group algebra Cj(K x K*,R).
However, the relations in R3 apparently depend on a choice of . Observe that, under the
relations Ry and R, (see Sections 3.3 and 3.4), the sum in R3 is independent of this choice.

Indeed, if I + (m) =1+ (m), say l' =1 + km,

EWm) = E(l+km,m) = [l + km, m][(l + km, m)_l} = [(l, m)(kv 1)][(k7 1)_1(17 m)_l} 72

(1, m) Ok, D))oy [y 1) (0 m) ™Y = (1 ) (e, 1)][(R, 1) [k 1[0k, 1) 7 (2, m) 1] 2

0, m] [k, 1][(k, 1)k, 1]k, )7 m) 7Y = [ mlegnegn[@m) ™ = egm).

Thus, we can consider the partial group algebra Cj(K x K*,R). We will show that this

algebra is *-isomorphic to 2A[R].

Proposition 4.1.1. There exists a x-homomorphism ¥ : A[R] — C}(K x K*,R) such that
U(u") = [n,1] and ¥(s,,) = [0, m].

Proof. We need to show that [n,1] is a unitary (for n € R), that [0,m] is an isometry (for
m € R*) and that the relations (CL1)-(CL4) of Definition 2.1.1 are satisfied. From R; and
(PR2), we have [n,1][n, 1]* "2 [, 1][(,1)71] = e(uy) = 1 and [0, 1]*[n,1] = () = 1,

i.e., [n,1] is a unitary. Similarly, from Ry and (PR2) we see that [0,m] is an isometry. By

using this fact,

U($msmr) = [0,m][0, '] = [0,m][0, m'][0, m/]*[0, m"] =

[(Ovm)(ovm/)][o’m/]*[ovm/] = [O7mml] [Ovm/]*[o’m/] = [Ovmm/] = \Ij(smm’),

hence (CL1) is satisfied. We can prove (CL2) in the same way. To show (CL3), note that

U(smu™) = [0,m][n, 1] = [0, m][n, 1][n, 1]*[n, 1] "=
[(0,m)(n, 1)][n, 1]*[n, 1] = [mn, m|[n, 1]*[n, 1] = [mn, m],
because [n, 1] is a unitary. On the other hand,
U™ s,,) = [mn, 1][0,m] = [mn, 1[mn, 1]*[mn, 1][0,m] "=

[mn, 1][mn, 1]*[(mn, 1)(0,m)] = [mn, 1][mn, 1]*[mn, m] = [mn, m].
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Finally, (CL4) follows from R3 and

U (usstyu™) = (1, 1]0,m][0, m]*[~1, 1] T (0 1) 0,m)][(0,m) [0, 1) =

m)[0,1/m) 1, 1=, 12,1 "2 [, m][(0, 1/m) (=1, V][4, 171, 1] =

[l7 m][(lv m)il][_lv 1]*[_17 1] = [l7 m][(l, m)il] = E(l,m)-

O]

Now, we will construct an inverse for W. For this, we will define a partial representation
of K x K* into 2[R] that satisfies R and use the universal property of C;(K x K*,R) in
Proposition 3.4.2. In the next claim, note that every element in K x K* can be written

under the form (%, ), where n € R and m, m’ € R*.

Claim 4.1.2. The map 7 : K x K* — [R] given by 7 ((:%, 2%)) = s&,u"sm is indepen-

dent of the representation of (

ﬂﬂ)
m'om' )"

Proof. Let (2, 2) = (1%’ 5)’ i.e., pm’ = p'm and m/q = p'n. Hence,

* * % (CL3) , m’ (CLL) m’ (CL1)
Spyulsy = sy spsmulsy =" sy spu™ tspsy =" s Ismy, =
* % 'n (CL3) .+ &« n * .n
Sy Sy U Sy Sm T = Sy Sy Sy U Sm = Spu” S

O]

Before showing that 7 is a partial representation that satisfies R, we observe that s; =1

and u® = 1 in 2A[R]. Indeed, both are idempotent and have a left inverse.

Proposition 4.1.3. The map 7 defined above is a partial representation of K x K* that
satisfies R.

Proof. First, we will show that 7 is a partial representation. Since 7((0,1)) = sjus; = 1,

we have (PR1). Observe that

() () R ()
which shows (PR2). To see (PR3), let s = (%,ﬂ/) and t = (%, ). We have st =

m/q+pn  pm
( s>y ) and, therefore,

m(st)m(t™h) = w(st)m(t)" = (k™ TP spm ) (sipu " spr) =
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m'q, pn * N (CE?’) * Q¥ n * . —n _
u U™ SpSmSmU  Sm/ = Sy S, Splh SmSp, U Sm/ =

s j

;/ S:n/

* Lemma 2.1.3 4

* n * —n * * * n * —n i
soulsy 1Sy U Sy Sy U Sy Sy St = Soulsy  SpSumt Sy U S Sy U Sy =
———

p P m’
epr epP

* * * n *  —
SIS S SpS U Sm Sy U

*

" = (Spulsp) (spt sm) (s3,u " s ) = w(s)m(E)m(t7).

This shows that 7w is a partial representation. It remains to show that the extension of 7

satisfies the relations in R. Since
71'(6(,,1’1)) =7([n,1][-n,1]) = (sju"s1)(sju""s1) =u"u " =u =

the relations in R are satisfied. For Rs, observe that

0

(e(o,1/my) = ([0, 1/m][0,m]) = (s, u"s1)(s7u"5m) = s3,8m = 1.

As a conclusion,
i Z Em) | = Z Sfulsmsfnuflﬂ = Z ulsms;‘nu*l (024) 1
I+(m)eR/(m) I+(m)eR/(m) I+(m)ER/(m)

shows that Rg3 is satisfied. O
Remark 4.1.4. We can define 7 for a general representation of a element in K x K* by
7 (s 22)) = S5t

By the universal property of C’;(K x K*,R) and by the above proposition, there exists

s ) ) = S Sme

a *-homomorphism ® : C%(K x K*,R) — 2[R] such that & (]

Theorem 4.1.5. ¥V and ® are inverses of each other.

Proof. Tt is enough to prove that the two relevant compositions agree with the identity on
the generators. Thus, ®(U(u™)) = ®([n,1]) = sjus; = u" and ®(V(s,,)) = ®([0,m]) =

sfuosm = Sm,. On the other hand,

¥ (@ ([, 1)) = lsiu ) = [0,1/m] [n,1)[0,m] =

[0, 1/m’] [n, 1] [, 1]* [, 1] [0, m] "= [0, 1/m] [, 1] [, 1)" [y m] =2 [0, 1/m0] [y m] =
0.1/m'] [0.1/m']" 0.1/ o) "2 0.1/ [0, 1] [, 2] B2 [ 2 T
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This theorem shows that 2A[R] is a partial group algebra. We can use it to define a
faithful conditional expectation on 2A[R]. Since that additive group K and the multiplicative
group K™ are abelian (hence solvable), then K x K* is solvable. In [23], Theorem 1.2.1
asserts that every abelian group is amenable and Theorem 1.2.6 says that if a group G
has a normal subgroup N such that N and G/N are amenable then G is amenable. By
using these results, we see that every solvable group is amenable and, hence so is K x K*.
Therefore, the conditional expectation on Cj(K x K*,R) defined in Section 3.4 is faithful.
The next proposition shows that, under the *-isomorphism W, the conditional expectations

E on C5(K x K*,R) and © on [R] (Proposition 2.1.5) are the same.
Proposition 4.1.6. FoV¥ =V o00O.

/ ’

Proof. First of all, observe that (27, ) (‘” ﬂ) = (0,1) if, and only if, m’ = m” and

m'’r m!’ m > m

n = n’. By using the Kronecker delta notation, we have

! !
- n mil-n m
Fo \I/(S;knuunsms;knu " Sm’) =K |: " //:| ’ -

m'"’ m m ' m

n mi[l-n m

5m/ m”(s'n, n |—— - .
5 ) 17 / )
m'’m m’ m

On the other hand

— / —
U o O(sy,nt" Smspmu " Spmr) = W(Oms m/ Onn/ Syt S Sy " Spt) =

n mi[-n m
5m’,m”5n,n’ 5 R
m

m m o m

4.2 Partial Crossed Product Description of [R]

We already know that 2A[R] is a partial crossed product. Indeed, every partial group
algebra is a partial crossed product (Theorems 3.4.3 and 3.4.6). From now on, our goal is to

study A[R] by this way.

First of all, we will find a concrete realisation of the spectrum of the relations R (Definition
3.4.4), which will be denoted by Q. As in Section 2.1, consider the profinite completion R
of R. A similar construction can be obtained extending the divisibility order in R* to K*.

For w,w’ € K*, we say that w < w’ if there exists » € R such that w’ = wr. Denote by
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(w) the fractional ideal generated by w, namely (w) = wR C K. As before, if w < w', we
can consider the canonical projection? py, @ (R + (w'))/(w') — (R + (w))/(w). Similarly

to R, we consider the inverse limit

Ric = I {(R + ())/(w), pur} =

(o + (W) € ] (R4 (w)/ (@) | P (wr + (') =ty + (w), if w < '
weKX

It is a compact topological ring too. In fact, Ry is naturally isomorphic to Rasa topological
ring. We will show that 2 is homeomorphic to Ry (hence, homeomorphic to R) We use R

instead of R because it simplifies our proofs.

Define

,OZI%K — P(KNKX)

(U + (W) — {(uy +rw,w) | we KX, r € R}
Note that the definition is independent of the choice of u,, in u,, + (w).

Claim 4.2.1. p(Rg) C Q.

Proof. Let (uy + (w))w € Rk. By the definition of Ry, if w < w’, then wy = uy + kw for
some k € R. Denote p((uy + (w))y) by €. Clearly, (0,1) € £. By Definition 3.4.4, we need to
show that f(t71¢) =0, forall f € Rand t € €. Fixt = (uyp+rw,w) € . Let f = Liny—1in
R1 and note that f(¢t~1€) = 0 is equivalent to t(n, 1) € €. Since t(n, 1) = (uy +rw,w)(n,1) =
(uw+(r+n)w, w), we have t(n, 1) € £. Now, let f = 1(g 1/m)—11in R2. Similarly, we must show
that t(0,1/m) € . Observe that ¢(0,1/m) = (uy + rw,w)(0,1/m) = (uy + rw, w/m). Since
w/m < w, then (0, 1/m) = (U /m+k(w/m)+rw, w/m) = (wy /pm+(k+rm)(w/m), w/m) € &.
To conclude, fix m € R* and let f = Zl—i—(m) L(1m)—1 in R3. We must show that there exists
one, and only one class [ + (m) such that t(I,m) € £. Indeed, t(I,m) = (uy + rw,w)(l,m) =
(uy + (I 4+ m)w,wm) = (wwm + (I +r — k)w,wm) and, for it belongs to &, we must have
(l4+7r—Fk)w € (wm). Hence, ] = k —r mod m, in other words, there exists only one class

[ 4 (m) such that ¢(I,m) € . Since R = R; U R2 U Rs3, the proof is completed. O

Proposition 4.2.2. p: Rx —» Q is a homeomorphism.

*By the second isomorphism theorem, it could be p,, ./ : R/(RN (w')) — R/(RN (w)).
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Proof.

Injectivity. Let (ty+(w))w, (vw+(w))w € Ri such that p((uy+(w))w) = p(vw+(w))w). By
the definition of p, the elements in p((uy,+(w))y) Wwhose second component equals w are of the
form (u,, + 7w, w). Since (vy, w) € p((vy + (w))w) and, therefore, (v, w) € p((uy + (W))w),
we must have v, = uy, + rw for some r € R. This show that (uy + (w))w = (Ve + (W) ).
Surjectivity. Let £ € Q). The relations in Ry and Ro together implies that if ¢ € &, then
t(q/p,1/p) € & for all ¢ € R and p € R* (fix t and apply f(t~'¢) = 0 for various f). For
each m € R*, let [ = Zl—i—(m) Lgm) — 1 in R3 and apply f(t71¢) = 0 with t = (0,1) to see
that there exists only one class [ + (m) such that (I,m) € . Denote this class by wu,, + (m).
Since t(0,1/p) € £ if t € &, then P mp(ump + (Mmp)) = (y, + (m)). From this, we can define
unambiguously uy, + (w) = uy, + (w) for w = m/m’ € K*. One can see that the classes u,, +
(w) are compatible with the projections p,, v by using that t(¢/p,1/p) € £ if t € £. Hence, we
have constructed (uy, + (w))w € Ri. We claim that p((ty + (w))w) = €. Since (g, w) € £,
(U, w)(q,1) = (uy+qw,w) must belongs to &. This shows that p((uyw+(w))y) € €. Suppose,
by contradiction, p((uw + (w))yw) # &. Hence, there exists s € € such that s ¢ p((uy + (w))w)-
If we write s = (n//m/,m/m’), then s ¢ p((uy + (w))w) is equivalent to n' — m'u,, ¢ (m).
Let t = (um,1/m’), s’ = (um, m/m’) and note that both belong to p((uy + (w))w) (hence,
belong to &). Since t1s = (—m/upy,, m’)(n'/m’,;m/m’) = (0 — m'up, m), t~1s' = (0,m) and
n' —m'uy, ¢ (m), then f(t71¢) # 0 if f = 2i+(m) Lam) — 1, which contradicts the fact that
€ € Q. Hence, p((uy + (w))w) = &.

To conclude the proof, observe that Ry and Q are compact Hausdorff, therefore it suffices

to show that p (or p~!) is continuous to conclude that p is a homeomorphism. We will

1 1

prove that p~" is continuous by showing that m, o p~" is continuous for all w € K*, where
Tw : R — (R+ (w))/(w) is the canonical projection. Since (R + (w))/(w) is discrete, it
suffices to show that pomy!({u, + (w)}) is an open set of 2, for all u,, + (w) € (R+(w))/(w).

To see this, note that

pomy ({uw + (w)}) = {€ € Q| (uw,w) € £},

which is an open set of ) (recall that the topology on {2 is induced by the product topology
of {0, 1}EK™), O

According Section 3.4, there exists a partial action of K x K* on ). By the above

proposition, we can define this partial action on Rg. Let R, = p~ (), where Q, = {€ €
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Q| te}, and 0, be the homeomorphism between R;-1 and Ry. It’s easy to see that

N

Ry = {(wwr + (W) € Ric |y + (w) = u+ (w)}

and

0u,w) (Uar + (W))wr) = (U4 Wty 4+ (W) = (U + W14y + (W)t

Le., 0(y,u) acts on R(uﬂu)—l by the affine transformation corresponding to (u,w). The next

proposition, whose proof is trivial, will be useful later.

Proposition 4.2.3. We have that

(i) Ry =0 <= ud¢ R+ (w);

(i) Riw) =Rrx <= RCu+ (w).

Now, we describe the topology on Rg. For w € K* and Cy, C (R + (w))/(w), we define
the open set

VO = {(ty + (W))wr € Rk | tw + (w) € Cy}.

Clearly, if w < w/, then V0w = Vﬁw', where Cy = {u+(w') € (R+(w"))/(w') | u+(w) € Cy}.
From the product topology, we know that the finite intersections of open sets Vwa form a
basis for the topology on Ry. By taking a common multiple of the w’s in the intersection, we
see that every basic open set is of the form V.S (since VS NV, = V.¢17C2) " Furthermore, if
Cyw # 0, 7 is a non-invertible element in R (it always exists) and V.S = V.Cwr | then Cy, has,
at least, two elements. Indeed, let u+ (w) € Cy, and r1,72 € R such that r + () # ro + (7).
It’s easy to see that u+wry + (wr) and u 4 wry 4+ (wr) are in Cy,, and that u+wrq + (wr) #
u~+wrg + (wr). This says that, if Vwa is non-empty, we can suppose that C,, has more than

one element.

Proposition 4.2.4. The partial action 6 on Ry is topologically free (Definition 3.1.6).

Proof. We need to show that F; = {z € R,~1 | 6;(x) = z} has empty interior, for all
te K x K*\{(0,1)}. We shall consider two cases: t = (u,1) and t = (u,w), w # 1.

Case 1. If u ¢ R, then Proposition 4.2.3 says that Rfl = (). So, we can suppose u € R. If
F; # 0, then equation 6,(z) = x implies that u € (m) for every m € R*. Since R is not a
field, then w = 0. This show that F} = 0 if t = (u,1) and u # 0.

Case 2. Let t = (u,w) such that w # 1 and v € R+ (w) (if u ¢ R + (w), then R,—1 = ).
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Let V be a non-empty open set contained in Rt_1. We will show that there exists € V such
that 0;(x) # z. By shrinking V if necessary, we can suppose that V = VE“". Furthermore,
we can assume that C,, has more than one element. Let u; 4+ (w’) and ug + (w’) be distinct
elements of C,» which, by definition, can be written such that u; and ue are in R. Therefore,
(u1 + (")) and (ug + (w"))w belong to Ry and, since V = VE’”', belong to V. Note that
u1 + (w') and ug + (w’) be distinct is equivalent to ug —us2 ¢ (w'). Suppose, by contradiction,

0, (z) = x for all x € V. Since (u; + (w"))yr € V, i = 1,2, then
Oy (i + (")) = (i + (W))wr = (ut+ wui + (W) = (w5 + (") ).

By choosing w” = (w — 1)w’ (note that w # 1), we see that u + (w — 1)u; € ((w — 1)w’), for
i = 1,2. By subtracting the equations (for different i’s), we have (w—1)(u1 —u2) € ((w—1)w’)
and, therefore u; — us € (w'); which is a contradiction! This show that F; has empty

interior. O

Proposition 4.2.5. The partial action 0 is minimal (Definition 3.1.9).

Proof. We will prove that every x &€ Rk has dense orbit (Proposition 3.1.10) by showing
that if V is a non-empty open set, then there exists t € K x K* such that z € Rt—1 and
0:(x) € V. Let 2 = (uy + (0))w € Rg and V = VE‘”' be non-empty. Take u' + (w') € Cy
and observe that we can suppose, without loss of generality, ' € R and u,, € R. Let
t = (v — uy,1). By Proposition 4.2.3, R;-1 = Ri and, hence, z € R,—1. To conclude, note

that 0¢(2) = O(u—u,, 1) ((tw + (0))w) = (U — Uy +wy + (W) € V. O

Following, we summarize the results of this section.

Theorem 4.2.6. The algebra A[R] is *-isomorphic to the partial crossed product C(Rg) X
K x K*, where « is the partial action induced by 0. The x-isomorphism is given by u" —

1(n,1) and sm — 1(0m)0(0,m), where 1(q ) is the characteristic function of R(O,m)'

The theorem above is a consequence of Theorems 3.4.6 and 4.1.5.
Theorem 4.2.7. A[R] is simple.
Proof. Since K x K* is amenable, then Proposition 3.2.4 is valid for the full crossed product.

Therefore, by Propositions 4.2.4 and 4.2.5, we conclude that C’(RK) X K X K* is simple.

The result follows from the previous theorem. O
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In Section 2.1 we see that there exists a surjective x-homomorphism 2A[R] — 2,.[R]. By

using that A[R] is simple, we obtain the following consequence.

Corollary 4.2.8. 2A[R] = 2, [R].

In [10], Cuntz defined two C*-algebras: Qz and Q. The algebra Qp is a C*-subalgebra
of Qz, which is nothing but A[R] when R = Z. In [31] and [7], Brownlowe, an Huef, Laca
and Raeburn showed that Qp is a partial crossed product by using a boundary quotient of
the Toeplitz (or Wiener-Hopf) algebra of the quasi-lattice ordered group (Q x QF,N x N¥)
(see [36] and [28] for Toeplitz algebras of quasi-lattice ordered groups). We observe that our
techniques are different from theirs. We don’t use Nica’s construction [36] (indeed, our group
K x K* is not a quasi-lattice, in general). From our results, in the particular case R = Z,
we see that Qy is a partial crossed product by the group Q x Q*. From this, it’s immediate

that Qu is a partial crossed product by Q x QX (as in [7]).



Chapter 5

Generalized Cuntz-Li Algebras

In Section 2.1, we introduced the Cuntz-Li algebras and, in Section 2.2, we exhibited the
ring C*-algebras, which are the generalization proposed by Li for that. In this chapter, we
propose a new generalization for the Cuntz-Li algebras which, in our view, better encodes

the multiplicative structure of the ring.

We begin with some algebraic preliminaries in the first section, where we develop basic
properties about the annihilator of an ideal. Next, we present our generalization of the

Cuntz-Li algebras.

5.1 Algebraic Preliminaries

In this section, we fix R a unital commutative ring.

Definition 5.1.1. The annihilator of an ideal I in R, denoted by Ann(I) or I+, is defined

to be the ideal {r € R | ry =0, Vy € I}.
Definition 5.1.2. We say that an ideal I is non-degenerate if 7 NI+ = {0}. We say that
I is essential if I+ = {0}.

We show some elementary properties involving ideals and annihilators which will be useful
later.
Proposition 5.1.3. Let I and J be ideals of R. Then:

(i) 1T+ = {0};

32
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(i1) I+ is the mazimal ideal K such that [K = {0};
(iii) (I NI+)%={0};
(w) IJ=1INJ if I +J=R;
() ICT] = J+-CI*;
(vi) I CJ = I+t cjtt;
(vii) T C I+,

(viii) I+ = I+
Proof.

(i) Trivial.
(i) Let K be an ideal such that /K = {0}. Thus, forall k € K, ky =0forall y € I. It
follows from definition of I that k € I+,
(iii) It is a consequence of (7).
(w) IJCINJ=(INJ)R=INJ)I+J)CIJ+1J=1J.
(v) Tt is clear from definition of annihilator.
(vi) Apply the previous item twice.

(vii) If r € I then, by definition of I+, ry = 0 for all y € I+. It says that r € I++.

(viii) The inclusion “C” follows from the previous item. On the other hand, let r € I+++,

We need to show that ry = 0 for all y € I. But this is a consequence from definition of

I+ and from the fact that I C I++.

Let m € R and consider the linear map p,, : R — R given by multiplication by m, i.e.,
pm(r) = mr. If m is a zero divisor, then p,, is not injective. We look for a (good) ideal I of
R such that p,, : I — R is injective. The next two propositions give the right choice in case

(m)* is non-degenerate.
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Proposition 5.1.4. If p,, : I — R is injective, then I C (m)*++.

Proof. Let r € I and y € (m)*. We will show that ry = 0. By definition of (m)*, ym = 0
and therefore, rym = 0. Since [ is an ideal and p,, : I — R is injective, then rym = 0

implies ry = 0. O
Proposition 5.1.5. p,, : (m)*+ — R is injective if, and only if, (m)* is non-degenerate,

i.e., (m)* N (m)*++ = {0}.

Proof. (=) Let 7 € (m)* N (m)*++. By definition of (m)~*, we have rm = 0. Since r € (m)*++

11

and py, : (m)—— — R is injective, then rm = 0 implies r = 0.

(<) Let r € (m)*+ such that 7m = 0. Thus, r € (m)* and, hence, r € (m)* N (m)++. Tt

follows from the hypothesis that 7 = 0, i.e., p,, : (m)*+ — R is injective. O

Our concern with the injectivity of p,, will become clear in next section. For now, let’s
see some sufficient conditions for p,, to be injective. First, we obtain conditions on each m

and, afterwards, we derive conditions on the ring R such that p,, is injective for all m.

Proposition 5.1.6. If any of the following situations occur, then p,, : (m)*+ — R is in-

jective.

(i) (m)* is non-degenerate;

(ii) (m)* + (m)*+ = R;

(i4i) (m)*+ N (m)*+ is idempotent.
Proof. Ttem (i) has already been shown and (ii) and (7ii) are consequence of (i), (iii) and
(iv) of the Proposition 5.1.3. O

Definition 5.1.7. We say that the ring R is semiprime if {0} is the only nilpotent ideal of
R.

Proposition 5.1.8. The following are equivalent:

(i) Every non-zero ideal of R is non-degenerate;

(i) Every non-zero ideal of R is either idempotent or non-degenerate;
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(i1i) R is semiprime;
(iv) For all ideal I of R such that I* = 0, we have I = 0;
(v) R has no nilpotent elements other than 0;

(vi) The nilradical of R is {0}.
In this case, pm, : (m)*+ — R is injective for all m € R.

Proof. The equivalence among (iv), (v) and (vi) is clear and, for the equivalence among (7),
(71) and (iii), see [15, Proposition 2.6] or [4, Proposigao 2.2.17]. Furthermore, the implications
(iii) = (iv) = (i) are trivial. It follows from the previous proposition that py, : (m)*+ — R

is injective for all m € R. O

We finish this section with a proposition which will be used later.

Proposition 5.1.9. Let m,m’ € R and suppose R semiprime.

(i) If r € (m" )+ and m'r € (m)*L, then r € (m)*++;

(ii) (m)lL N (m/)LL — (mm’)LL.
Proof. Since R is semiprime, p,, : (m)*+ — R and p,, : (m')*+ — R are injective.

(i) If y € (m)*, then

L
rym’ =0 Tyeg

yE€(m)L arbitrary

r € (m)

(i1) The inclusion “D” follows from Proposition 5.1.3(vi) since (m) 2 (mm’) and (m’) D

(mm/). Let r € (m)*+ N (m')*+ and y € (mm/)*+. Hence,

c AR c 11
ymm' =0 = rymm' =0 Tymg) rym =0 rvelm)
€ "L arbit
ry =0 yE(mm’)~* arbitrary c (mm,)J_L
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5.2 Definition of the Algebra

In this section, we introduce our generalization for the Cuntz-Li algebras of more general
rings than those considered by Cuntz and Li in [12]. We extend the definition for unital
commutative semiprime rings. Although our extension does not cover the entire category of
the unital rings as done by Li in [33], we believe that our approach is more consistent in the

cases covered by the two approaches.

Throughout this section, let R be a unital commutative semiprime ring. As before,
consider the Hilbert space ¢2(R) and let {¢. | r € R} be its canonical basis. Again, consider
the unitary operator U™ in B(¢*(R)) given by U™(&.) = &,4p. In the original Cuntz-Li
algebras, the operators S, are defined for each nonzero m € R and, in the extension of Li in
[33], we have operators S, if m is not a zero-divisor; here we will define an operator Sy, for
all m € R. For m € R, define the linear operator S,,, on £?(R) by S,,(&) = [r € (m)*1]&mr,
where [T'] represents 1 if the sentence T is true and 0 if T is false. Since p,, is injective on
(m)*+ by Proposition 5.1.8, we obtain that S,, is bounded. We claim that S, (&) = [r €
m(m)*++]€,,-1,, where m~'r denotes the unique element k in (m)*+ such that mk = r.!

Indeed,
(Sm (&), &) = [r € (m)™Hmr =] = [m™r" € (m)*H[m ™' = 1] =
[ € m(m)*H][m~ " =] = (&, Sy, ()
Furthermore, we have that S,, is a partial isometry since
SmSmSm(&r) = [r € (M) ]SSy (bmr) = [r € (M)=H1Sm (&) = [r € (M) émr = Sm (&)

So far, everything is working fine. But the crucial question is whether the operators S,
encode the multiplicative structure of the ring, i.e., whether S,,S,, = S is valid. The

answer is affirmative and is shown below.

Claim 5.2.1. For all m,m’ € R, Sy, Sy = SpvSm = Spumy -

Proof. Observe that S, Sy (&) = [r € (M) Sm(Emrr) = [r € (M) [m'r € (M) )€
On the other hand, S, (&) = [r € (mm/) )€ mr. The result follows from both items of

Proposition 5.1.9. O

!Note that the expression m~'7 does not make sense when r ¢ m(m)**. However, in this case, the boolean
expression [r € m(m)**] has value 0. Thus, we adopt the convention that when the boolean value is 0, the

rest of the expression is ignored.
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Before introducing our definition for the Cuntz-Li algebra of R, we need to remember
some basic facts. Given a Hilbert space H, we have in B(H) the ideal K(H) of the compact
operators, which can be obtained from the closure in B(H) of the set of finite-rank operators.

These facts can be found in [35, Section 2.4]. Furthermore, the lemma below will be useful.

Lemma 5.2.2. Let H a Hilbert space with orthonormal basis {&;}icr. For each i,j € I,
consider the rank-one operator & ®&; on H given by & ®&;(&k) = (&k. &5)&i = [k = j]&. Then

the C*-algebra generated by the set {& ® &;}i jer is K(H).

Proof. For each finite subset F of I let pr the orthogonal projection onto the subspace of

H generated by {&}icp. Let N € K(H) and consider the net {ppNpp}rcr. Since pp =
Yoier&i®& and EREGNE @& = (N (&), &)& @&, then ppNpp is in span{&; ®¢&; | 4,5 € 1}.
The proof will be complete if we show that {prNpr}rcr converges to N. Without loss
of generality, we can suppose N self-adjoint and [|[N|| < 1. Denote by B the unit ball
in H and fix € > 0. By compacity of N, we can choose x1,...,xn € H such that, for
all x € N(B), ||x — xx|| < €%/9 for some k. Choose a finite subset F' of I such that,
for all k, ||xx — pr(xx)|| < €2/9. We claim that, for all T € B(H) such that ||T|| < 1,
[|(1 = pr)NT|| < €2/3. Indeed, for £ € B choose k such that |[NT(&) — xx|| < €2/9 (such k

exists because T'(£) € B) and observe that
(1= pr)NT ()| < [INT(€) = xxll + [Ixx — pr )|l + [[pF (i) — prNT ()| < €/3.
This shows that ||(1 — pr)NT|| < €2/3. Finally, note that
IN —prNpr||* = ||(N — prNpr)(N — prNpr)*|| =

IN? — ppNppN — NppNpr + prNprNpp|| <

11 = pr)N?|| + llprN (1 = pp)N|| + [|(1 = pr) NprNpp|| < €.

Consider the operator Sp. Since (0)*+ = {0}, then
U™SoU ™" (&) = U"So(&r—r) = [r =1’ = 0]U" (§0) = [r = n'Jén = & @ & (&)

By the lemma above, the C*-algebra in B(¢*(R)) generated by the set {U"SoU ™™}, ner is

K(£?(R)). Now, we are ready to define the Cuntz-Li algebra of R.
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Definition 5.2.3. The reduced Toeplitz-Cuntz-Li algebra of R, denoted by 7T2(/.[R], is
the C*-subalgebra of B(¢2(R)) generated by the operators {S,, | m € R} and {U" | n € R}.
We define the reduced Cuntz-Li algebra of R to be the quotient T2,[R]/K((*(R)) and
we denote it by A/ [R].

By the comments above, K((*(R)) is contained in 7TR.[R]. Thus, the quotient
TA[R]/K(£?(R)) makes sense. Now, we will show that our definition actually extends that

in 2.1.2.

Proposition 5.2.4. Suppose that R is an integral domain with finite quotients which is not

a field, as in Section 2.1. Then A.[R] is x-isomorphic to A, [R].

Proof. Since R is not a field, then card(R) = oo (indeed, the elements a, a?, a3, ..., are
different if a is nonzero and non-invertible). Thus, 1 € B(¢2(R)) is not a compact operator
and, hence, 2, [R] Z K(¢*(R)). By simplicity of 2,.[R] (Theorem 2.1.6), we must have 2(.[R]N
K(*(R)) = {0}. Furthermore, we have T2(.[R] = ,[R] + K(¢?(R)) because the generators
of TUL[R] are the generators of 2,[R] together Sy and any operator generated from Sy is

compact. Finally, by using the second isomorphism theorem,
A [R] = TAL[R]/K(((R)) = (A:[R] + K(€*(R)))/K(P*(R)) =
2% [R]/ (A [R] N K((R))) = Ar[R]/{0} = A [R].
O
The next proposition exhibits some properties of the operators S, and U™ in T2l [R].
Obviously, the equalities between operators are valid in 2.[R] too.

Proposition 5.2.5.

(i) SSE, is the projection onto spani{&, | r € m(m)*+};

(i) US, S, U™ is the projection onto span{¢, | r € n + m(m)++};

(iii) U"SpmSEU™™ and U™ S, 85U~ are equal if n —n' € m(m)+ and orthogonal other-

wise;

(iv) In the strong operator topology, we have Z UlS’mS:;ZU_l = S; Sm, where the sum is

taken over all cosets | +m(m)=+ in (m)+t/m(m)+t;
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(v) SE S is the projection onto span{&, | r € (m)*+};
(vi) U™S, S,,U™™ is the projection onto span{&, | r € n+ (m)*+};
(vii) U™SE,SpU™" and U™ S%,.S,,U~"" are equal if n—n' € (m)** and orthogonal otherwise;

(viii) In the strong operator topology, we have Z UZS;SmU_l =1;
I+(m)+LteR/(m)++

(iz) SpU™ = U™S,, if n € (m)*++;

() SSmS, Sy = 8% Sy

mm

Proof.
(i) SmSm(&) = [r € mm)]Su(n1,) = [r € mim)yH]m™"r € (m)*Hg =
[r € m(m)*g.

(Z'Z') UnSmS;mU_n(gr): UnSmS;m(grfn): [T_n € m(m)LL]Un(grfn) = [T‘—TL € m(m)LL]gr

= [r € n+m(m)*+t,.

(iii) Tt follows from (%) and from the fact that n+m(m)*++ = n/+m(m)*+ if n—n' € m(m)*++

and (n +m(m)*H) N (0’ + m(m)*+t) = 0 otherwise.
(iv) Since (m)*+ is the disjoint union of its cosets modulo m(m)*+, the result follows from
(71) and (7ii).

(v) 83, 8m(&) = [r € (M) ]S}, (&mr) = [r € (M) H][mr € m(m)* 1, = [r € (m)+]¢,

(vi), (vii), (viii) Similar to (i), (i1i) and (iv).

(w:) Let n € (m)lj_' ThU.S, SmUn(fr) = Sm(£r+n) = [T +n € (m)lL](ngern) =
[r € (M) (&mrimn). On the other hand, U™S,,(&.) = [r € (m)* U™ (&) =

[T € (m) LL] (fmr-i—mn) :

(x) By (v), SiSmS’,Sm is the projection onto span{¢, | r € (m)tt N (m/)+L} and
S* Sy is the projection onto span{¢, | r € (mm/)*+}. The result follows from

Proposition 5.1.9 (7).
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The relations (iv) and (iz) above generalize (CL3) and (CL4) in Definition 2.1.1 in a
very satisfactory way. This together with Proposition 5.2.4 credits our definition as a good

candidate for extension of the Cuntz-Li algebras.

We finish this chapter talking about the next steps to be taken in this project. First,
we need to find the correct definition for the full version of this algebra. There are many
new relations involving the generators (as seen in the above proposition); to find which of
them should appear in the full version and to know whether the set of relations is complete
probably will be a difficult task. Furthermore, we need to solve the problem of relations with
infinite sums, as in (iv) and (viii). The second step is to find a tool to study the algebra. It
is unlikely that the theory of partial group algebras applies to this case. Indeed, the group
K x K* (see Chapter 4) does not make sense if R is not an integral domain. We conjecture
that the theory of tight representations (see [19] and [20]) applies to this case. The last step
is to extend the construction for noncommutative rings. Apparently, slight modifications in
the ideals (considering left ideals and left annihilators) could solve the problem. To finish,

we do not see a way to extend the definition for non-semiprime rings.



Chapter 6

Bost-Connes Algebra as Partial

Crossed Product

In this chapter, we show that the Bost-Connes algebra Cq (Definition 2.3.1) is *-isomor-
phic to a partial crossed product. In the first section, we present the partial action from
which we construct the crossed product and we develop some properties which are used in

the proofs. In the last section, we exhibit the *-isomorphism.

6.1 Preliminaries

In Chapter 4, for each integral domain R with finite quotients, we constructed a partial
action 6 of the group K x K* on Ry, where K is the field of fractions of R and Ry is
(homeomorphic to) the profinite completion of R. When we take R = Z, we obtain a partial
action of Q x Q* on ZQ. There is a natural embedding of the multiplicative group Q% in
Q x Q* which sends w to (0, w). If we restrict § to the subgroup {0} x Q7 and if we identify
it with Q7% , then we get a partial action 6 of Q% on ZQ. From now on, fix such 6 and the
induced partial action a of Q% on C(ZQ). At the end of this chapter, we show that Cg is

k-isomorphic to C(Z@) Mo QF .

Let’s analyse the action 6. Although 6 is an action of Q% , we need to remember that an

element of w € Q% acts as (0,w). Hence, according to Chapter 4,

Z@ = < (U + (W))w € H (Z+ (w))/(w) | Pww (U + (W) = uy + (w), if w<w' 3,
weQ*

41
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Ty = {(utar + () € Ly |ty + () = 0+ (w)}
and

A~

911) : Zl/’w — Zw

(Uw/ + (w,))w’ — (wuw—lw’ + (w/))w’~

We will need some properties about « too. According to Sections 3.3 and 3.4, C(Z@) is
generated by {1(u7w)}(u7w)e<@x@*, where 1, ., is the characteristic function of the set Z(uvw) =
{(ty + (W) € Zg | U + (w) = u+ (w)}. Furthermore, the ideals C(Z,,) = 1(0,w)C(ZQ)
are generated by {1(.w)1(u,w)}(uuw)coxg+- The functions 1(, ) play an important role in

the construction of the isomorphism. Let’s see some of their properties.

Proposition 6.1.1. Let u,v’ € Q, w € Q*, n,n’ € Z and m,m’ € Z*.

(P1) 1yuwy=1 <= ZCu+(w);

(P2) 1wy =0 <=  udZ+ (w);

(P3) Linm) L ngmmy = Lnmi) s

(P4) Ynm/m) = Lonmy if (m,m') = 1;
(P5) V) = L) i u+ (w) = 0/ + (w);
(P6) 1wyl w) =0 if u+ (w) # v’ + (w);

(P7) 1(n,m) = Z 1(n+lm,mm’);
I+(m"ez/(m’)

(P8) If 1(yw) # 0, then there exists n € Z and m € Z* such that 1, ) = L(nm)-

Proof. There are two ways to show these properties: we can use the definition of Z@ or we
can use the %-isomorphism 2[Z] & C(Zg) x4 Q x Q* and check them in A[Z]. We have chosen

the first one.
(P1), (P2) Follows from Proposition 4.2.3.

(P3) We need to show that Z(n’mm/) - Z(mm). Indeed, if (uy + (w), (w))w € Z(n’mm/), then
Uy + (M) = n4 (mm'). By using the definition of Zg, we have u, + (m) = n+ (m)

and, hence, (uy + (w), (w))w € Z(n,m)-
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Z+27 7 Z | Z+mE
(P4) If (m,m') = 1, then Z N 57 = mZ. Thus, %% :ZQ%Z:mZ: T

which says that Z(mm/m/) = Z(nm)-

(P5), (P6) Trivial.

(P7) We need to show that the union U Z(nﬂmmm/) is disjoint and equal to Z(n,m)-
I+(m")eZ/(m')
The previous item shows that the union is disjoint. It’s clear that Z ;4 im.mm’) € Zn,m)-

Conversely, if (uy + (w), (w))w € Z(mm), i.e., Uy, + (m) =n+ (m), then we must have

Uy + (mm) = n +Im + (mm’) for some .

(P8) If 1(,) # 0, by item (P2) there exist n,k € Z such that u = n + kw. By item (P5),
Lww) = Lnw) and, writing w = m/m’ with (m,m’) = 1, follows from item (P4) that

Luw) = Lnm)-

Now, let’s see elementary properties of the partial crossed product C (ZQ) Xo Q.

Proposition 6.1.2.

(P9) (1(0,111)511))>i< = 1(0,1/w)61/w and, for f € C(ZQ)’ (for)* = f*o1;

(P]O) (1(0,w)5w)(1(0,w’)5w’) = 1(0,w)1(0,ww’)5ww’ and, fOT f S C(ZQ) and g < C(Zw),
(f61)(96w) = [g0w.

Proof. Both items follows from definitions in Section 3.2 and from Remark 3.1.3. O

We recall that the the Bost-Connes algebra Cg is generated by isometries { i fmen+ and
unitaries {e,},cq/z. Here, we use e(v) instead of e, and for v = n/m + Z, we write simply

v = n/m. Below, we present some useful properties about Cg.

Proposition 6.1.3.

(P11) oo o frry = Hom? By B a5

(P12) i, €y = €xfim s
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1 Im/
(P13) pompir, = — Z e<m>, for allm’ € Z* such that (m,m’') = 1. In particular,
m m

I+(m)eZ/(m)

m!
% Z 6(2) P = pm if (M, m/) =1

I+(m)€Z/(m)
Proof. From (BC5) taking v = 0, we see

o= B o)

I+(m)eZ/(m)
from which (P11) and (P12) follows. Since lm’ + (m) take all values in Z/(m) when [ + (m)

varies in Z/(m) in case (m,m’) = 1, then we have (P13). O

At a certain stage, we will need a *-homomorphism whose domain is C' (ZQ) Since it’s a
hard work to get it directly, we will exhibit a new look for C' (Z@) In [29, page 336], Laca and
Raeburn showed that the dual (@/\Z of the group Q/Z is homeomorphic to ZQ. Thus, from
group C*-algebras theory!, the group C*-algebra C*(Q/Z) is *-isomorphic to C (ZQ) through
the Fourier transform. Since that C*(Q/Z) is universal with respect to unitary representations
of Q/Z, now we have a good way to construct x-homomorphisms from C (Z@) We summarize

it in proposition below. For x € C, we denote e” by exp(z) since the letter e is overloaded.

Proposition 6.1.4. There is a %-isomorphism C*(Q/Z) — C(Zg) given by

. In .
i(y) — Z exp(—m . 27m> Ltm)

I+(m)ez/(m)

where i(7y) represents the unitary canonical image of v in C*(Q/Z). It’s inverse is given by

1 nl A\ [Im'
Lin/m! mjmry ¥ o Z exp(m . 2m> Z(m) .

I+(m)€Z/(m)
To complete our list of properties, we present two elementary facts.

Proposition 6.1.5.

(P14) For m,m’ € Z*, the map

Z)(m) x Z/(m") — Z/(mm')

I+ (m),I'+(m") — I+1Im+ (mm)

s a bijection;

See [8] for group C*-algebras.
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(P15) For m € Z* and k € Z,

Z exp(kl : 2772') =
m

I+(m)eZ/(m)

m, if k € (m),

0, otherwise.

Now, we are ready to begin the proof that Cg and C’(Z@) Xq Q7 are *-isomorphic.

6.2 The *-isomorphism between Cp and C(ZQ) Xo QN

First, we will construct a *-homomorphism @ : Cg — C(ZQ) Mo Q. For this, we will
find a representation of i, and e(y) in C’(ZQ) Xo QF that satisfies the relations (BC1)-
(BC5) in definition 2.3.1 and we will use the universal property of Cg. For m € N*, define
®(pm) = L(0,m)0m and for v = > € Q/Z, set

set) = S exp(—2 2 ) 1w
7)) = P\ =2 ) 1 m)or-
I+(m)€Z/ (m)

By Proposition 6.1.4, ® is well-defined on e(7).

Proposition 6.2.1. ®(u,,) is an isometry, ®(v) is a unitary and ® satisfies the relations

(BC1)-(BC5) in Definition 2.5.1.

Proof. Since

. . (P9) (P10)
(I)(:um) q)(lu’m) = (1(0,m)5m) (1(0,m)6m) = (1(0,1/m)51/m)(1(0,m)5m) =

P1
Lo,1/m)L0,1/m)01 = L(0,1/m)01 (B 161,

we see that ®(u,,) is an isometry. By Proposition 6.1.4, we obtain that ®(v) is a unitary
and that (BC3) is satisfied. In Proposition 2.8 of [29], Laca and Raeburn showed that the
relations (BC2) and (BC4) are unnecessary and, hence, it remains to show that (BC1) and
(BC5) are satisfied. Since

(P10) (P3)

@(Nm)(p(lu’m’) = (1(0,m)5m)(1(0,m/)5m’) = 1(0,m)1(0,mm’)5mm’ = 1(O,mm/)5mm’ = (I)(Mmm’)v

we have (BC1). Handling the left side of (BC5), we have

n P9)

(i) 8 (e( ) B(pr) =

In . P1),(P3),(P5),(P10
(L0, 0 >, e <_m ' 27”) L1 | (o) TP
I+(m)€Z/(m)
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l
Z exp<—7;L . 27ri) Lm’ mm?)01-

I+(m)eZ/(m)

In developing the right side below, the sets on which the sums are computed are understood.

For example, a sum on k + (m) means k + (m) € Z/(m). Thus,

Y e = X e(e( MR -

m/d=n/m k+(m’)
1 E'(n+ km) . (P14)
W Z eXp<—Tnm/ . 27T'L> l(k/’mm/)él =

k+(m’) k'+(mm’)

U+1m')(n+km _
E exp <—( i 7 ) : 27”) 1(l’+lm’,mm’)61 =
mm

k+(m’) I+(m) I'4+(m/)

1 In , I'n .
7 l;)exp <_m . 277@) Z exp <_mm’ . 2m>

U'+(m)

3| -
™

!/

kU ,
eXp<_7n/ . 27‘["L> 1(l’+lm’,mm’)51'
k4+(m’)

By (P15), the sum on k—+ (m’) is nonzero except when I’ € (m/). In this case, taking I’ = pm/,

we have
1 1 In ) pn N
i Z d(e(0)) = i Z expl ——— - 2mi exp(fﬁ . 2m) ML (o im mm?) 61 =
m/d=n/m lI4+(m)
I+pn , In .
Z exp<—(m) . 2772) L((14-p)ym’ mm?)01 = Z exp<—m . 271'1) Lm? ymm?)01-
I+(m) I+(m)€eZ/(m)

O]

This proposition ensures the existence of the desired *-homomorphism ® : Cop —
C(ZQ) Xo Q. Now, we will present an inverse for ®. A natural way to construct a *-
homomorphism whose domain is a partial crossed product is to use Proposition 3.2.2, i.e., is
to find a covariant pair. In our case, we need a partial representation 7 : Q} — Cg and a

+-homomorphism ¢ : C(Zg) — Cg such that (p,7) is a-covariant (Definition 3.1.14).

Define 7 : Q% — Cg by W(%) = py im. We claim that 7 is well-defined. Indeed

BC1

T () = it gbtma = Wbt = Wbt = T ().

Proposition 6.2.2. 7 is a partial representation.
Proof.
(PR1) 7(1) = pipm = 1.

(PR2) 7T((%)_l) = W(%) =ttt = (i itm)* = 7 (7).
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(PR3) Let s = 5 and t = 7. Thus,

—1 * * (BCl) * ok * * ok * *
T(S)T(E") = Myt HrmpHop by~ = Hpt Fryr FopPar Fop ! =yt s Fop g o oyt Fo?

(PIJ) * ok * * (BCl) * ok * *
= My B Bp e Bt B e e = Hopr oy o Hep Py o e o =

1 L s o i gy = T (8)m ()70 (E7 ).

O]

Now, our goal is to find a *-homomorphism from C(Zg) to Cp. Since that the natural
map Q/Z > v +— e(y) € Cq is obviously a unitary representation of Q/Z, there is a *-
homomorphism from C*(Q/Z) to Cgp which sends i(v) to e(y). By Proposition 6.1.4, there
is a *-homomorphism ¢ : C' (ZQ) — Cg such that

O(Ln/mt m/m?y) = % Z exp(Zi . 27ri> e(l:) .
I+(m)€Z/(m)

Proposition 6.2.3. The pair (p, ) is a-covariant.

Proof. Let t = % € Q%. Without loss of generality, we can assume (m,m’) = 1. Thus,
T(OTEY) = Wk i, o (BS2) P s o Py = o fly, - Hence, follows from (P12) that
(COV2) is satisfied. By (P§) and since the set {1(0,m’/m)L(uw)} (u,w)c0xq+ generates the ideal
C(Zt—l) as seen in section 6.1, it suffices to prove (COV1) with x = 1(gm/ /m)1(n,m»), Where
n € Z and m" € Z*. Whereas ai(1(0,m /m)Ltnm”)) = Lmn/m’;mm /m’)L(0,m/mn) by Remark
3.1.3, then

(p(at(x)) = (p(l(mn/m’,mm”/m’)1(0,m/m’)) =

1 nl _ Im/ 1 Im/ (P13)
peopee Z exp(m// .2m> e(mm”) - Z e<m> =

I+(m)

1 nl , Im/ . (BC4)
S R E e A

1 n(l” _,’_llm//) ) (l//_,’_llm//)m/ .
M, 7mm” Z Z exp(m” ‘2w ) e —m” My =

ll+(m) l//+(m//)

l// l//m/
Z Z exp( 27Ti> <m”> T
//)

+(m) 1+
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1 nl// ] l//m/ .
po\ o 2 eX?(w‘m)e(mf/) fm:
l/l+(m//)

On the other hand,

_1, (BC2) N 1 nl . [ 1 U'm .
0l i | 1 S e 2m)e(5) | oy S e(7) Jm
I+(m”) I'+(m’)
(P13) . 1 nl . l . (BC4)
= Hmfbhyy WZJF(Z://)GXP(W'%”)G(W Mo/ oy, =
m
1 nl _ Im/ .
pi mnH(Z,,pr(mff ' 27”) <>) i
which shows (COV1). Hence, (¢, ) is a-covariant. O

By Proposition 3.2.2, there exists a *-homomorphism ¢ X 7 : C’(ZQ) Xo Q7 — Cg such

that ¢ x w(xd;) = @(x)m(t). The next theorem is the main goal of this chapter.

Theorem 6.2.4. The x-homomorphisms ® and @ X 7 are inverses of each other. In partic-

ular, Cq = C(Zg) xa QF.

Proof. 1t’s enough to verify that (¢ x 7)o ® = Id¢, and ® o (p x 7) = IdC(ZQ)x g+ on the
ally

generators. By Proposition 6.1.4, we have (¢ x m) o ®(e(y)) = e(y) and since

1 l P13
(9 x M) 0 ®(pm) = @ X 7(Lio,m)0m) = P(Lgm)m(m) = | — >~ e<m) T T
L+(m)eZ/(m)

one side is complete. On the other hand, it suffices to show that ® o (p x 7) = Idc(z@)x Q*
alet
on 141;0;, where t € Q% and s € Q x Q*. Let t = m/m’ and s = (n,m”), where n € Z and

m,m’,m"” € Z* with (m,m’) =1 (we can choose such s because of (P8)). Thus,

1 nl . l 1 Im . (P13),(BC2)
P W Z eXP(qn// 27TZ> €<W> E Z 6(m> Mot Hm =

1 nl .
W exp W - 274
m 14

()

l,l . P4),(P10
Z exp(—m” . 27TZ> 1(ll’ml1)61) 1(07m)6m1(0,1/m’)51/m’ ( :( )
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n— l )1
” Z Z exp( -2 ) l(llym//) 1(U,m/m’)6m/m/'

V(m) 1+(m

As before, by (P15) we must have n — I’ € (m”). Taking I’ = n + km”, we have

n— l l
do (QO X 7T)(1 1 (St // Z Z exp( ) - 21 ) 1(l’,m”) 1(0,m/m’)5m/m’ =

l/_;’_(m//) l+(m//

(P5)
1(n+km”,m”)1(0,m/m’)5m/m’ - 1(n,m”)1(0,m/m’)5m/m’ - 151t6t.

O]

A continuation of this project involves to prove that the generalized Bost-Connes algebras
(see [2]) are partial crossed products too. Furthermore, we hope the available tools in the
partial crossed products theory can recover, in a natural way, the connections between these
algebras and the Number Theory. To conclude, the procedure presented in this chapter gives
rise to many new algebras. Indeed, we obtain Cg by restricting the group Q x Q* to Q% in
the partial crossed product C(Zg) %o Q x Q* 22 A[Z]. If we replace Z by an integral domain
(as in Chapter 4) and Q% for an arbitrary subgroup of K x K*, we obtain new algebras,

which may be interesting to study.
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