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ii



Agradecimentos
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Agradeço aos meus afilhados Ju, Negão e Peguega. Obrigado por todo esse tempo de
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cisei me incomodar com documentação, matŕıcula, marcação de provas, enfim, não me in-

comodei com nada. Obrigado por acreditar em mim e por me apoiar sempre que minha

condição sob orientação externa era questionada. Muito obrigado mesmo!

Agradeço ao Leo pela parceria enquanto morei no Rio. Mesmo sob a rotina puxada

do IMPA, sempre arranjávamos tempo para fazer festa! Agradeço à Edilaine e ao Douglas
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Abstract

In this text, we study three algebras: Cuntz-Li, ring and Bost-Connes algebras. The

Cuntz-Li algebras A[R], presented in [12], are C∗-algebras associated to an integral domain

R with finite quotients. We show that A[R] is a partial group algebra of the group K oK×

with suitable relations, where K is the field of fractions of R. We identify the spectrum of

these relations and we show that it is homeomorphic to the profinite completion of R. By

using partial crossed product theory, we reconstruct some results proved by Cuntz and Li.

Among them, we prove that A[R] is simple by showing that the action is topologically free

and minimal. In [33], Li generalized the Cuntz-Li algebras for more general rings and called

it ring C∗-algebras. Here, we propose a new extension for the Cuntz-Li algebras. Unlike ring

C∗-algebras, our construction takes into account the zero-divisors of the ring in definition of

the multiplication operators. In [6], Bost and Connes constructed a C∗-dynamical system

having the Riemann ζ-function as partition function. We conclude this work proving that the

C∗-algebra CQ underlying the Bost-Connes system has a partial crossed product structure.

Keywords: Cuntz-Li algebras, ring C∗-algebras, Bost-Connes algebra, partial group

algebra, partial crossed product.
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Chapter 1

Introduction

Sixteen years ago, motivated by the work of Julia [24], Bost and Connes constructed a C∗-

dynamical system having the Riemann ζ-function as partition function [6]. The C∗-algebra

of the Bost-Connes system, denoted by CQ, is a Hecke C∗-algebra obtained from the inclusion

of the integers into the rational numbers. In [29], Laca and Raeburn showed that CQ can be

realized as a semigroup crossed product and, in [30], they characterized the primitive ideal

space of CQ.

In [2], [9] and [25], by observing that the construction of CQ is based on the inclusion of

the integers into the rational numbers, Arledge, Cohen, Laca and Raeburn generalized the

construction of Bost and Connes. They replaced the field Q by an algebraic number field K

and Z by the ring of integers of K. Many of the results obtained for CQ were generalized to

arbitrary algebraic number fields (at least when the ideal class group of the field is h = 1)

[26], [27].

Recently, a new construction appeared. In [10], Cuntz defined two new C∗-algebras: QN

and QZ. Both algebras are simple and purely infinite and QN can be seen as a C∗-subalgebra

of QZ. These algebras encode the additive and multiplicative structure of the semiring N and

of the ring Z. Cuntz showed that the algebra QN is, essentially, the algebra generated by CQ

and one unitary operator. In [40], Yamashita realized QN as the C∗-algebra of a topological

higher-rank graph.

The next step was given by Cuntz and Li. In [12], they generalized the construction of

QZ by replacing Z by a unital commutative ring R (which is an integral domain with finite

quotients by nonzero principal ideals and which is not a field). This algebra was called A[R].

1



Chapter 1. Introduction 2

Cuntz and Li showed that A[R] is simple and purely infinite and they related a C∗-subalgebra

of its with the generalized Bost-Connes systems (when R is the ring of integers in an algebraic

number field having h = 1 and, at most, one real place). In [33], Li extended the construction

of A[R] to an arbitrary unital ring and called it ring C∗-algebras.

The main aim of this text is to show that the Cuntz-Li algebra A[R] can be seen as

a partial crossed product. We show that A[R] is ∗-isomorphic to a partial group algebra.

By using the relationship between partial group algebras and partial crossed products, we

see that A[R] is a partial crossed product. Our second purpose is to present an alternative

generalization of the Cuntz-Li algebras for more general rings, different from that introduced

by Li in [33]. The last goal of this text is to find a partial crossed product description of the

Bost-Connes algebra CQ. To present these results, we divide this thesis in five chapters.

In Chapter 2, we define the algebras studied here. In the first section, we introduce the

Cuntz-Li algebras following the original [12] and we exhibit the main results proved there by

them. In the second section, we deal with the ring C∗-algebras, which are the extensions of

the Cuntz-Li algebras for arbitrary unital rings proposed by Li in [33]. We finish this chapter

defining the Bost-Connes algebra, following [6].

In Chapter 3, we review the theory used to tackle the mentioned algebras. In the first

section, we define partial actions and partial representations. Following, we construct the

partial crossed product associated to a partial action. In the last two sections, we exhibit the

partial group algebra, a C∗-algebra which is universal with respect to partial representations.

The Chapter 4 is dedicated to study the Cuntz-Li algebras A[R] under a new look. First,

we show that A[R] is ∗-isomorphic to a partial group algebra of the group K o K× with

suitable relations, where K is the field of fractions of the ring R. Following, we see that

A[R] is a partial crossed product by the group K o K×. We characterize the spectrum

of the commutative algebra arising in the crossed product and show that this spectrum is

homeomorphic to R̂ (the profinite completion of R). Furthermore, we show that the partial

action is topologically free and minimal. By using that the group K oK× is amenable, we

conclude that A[R] is simple.

In Chapter 5, we present our definition for the Cuntz-Li algebras in more general cases.

In the first section, we develop elementary algebraic properties about annihilators of ideals.

These properties allow us to define multiplication operators for zero-divisors, which are not
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included in Li’s construction. We deduce some properties of our definition which are closely

related to the original Cuntz-Li algebras.

In the last chapter, we show that the Bost-Connes algebra CQ is ∗-isomorphic to a partial

crossed product. We use the partial crossed product obtained in Chapter 4 in case R = Z as

a starting point for the proof. We show that CQ is a C∗-subalgebra of that partial crossed

product.

Before we start the main content of the text, we standardize certain notations and termi-

nology. For a given set X, the identity function on X will be denoted by IdX . In this thesis,

all groups considered are discrete, unless we say otherwise. In general, we use G to denote a

group and r, s and t to represent its elements. We reserve the letter e to represent the unit

of the group. The next notation, unconventional, will be designed to simplify formulas and

proofs. Given a logical statement P , the symbol [P ] will represent the value 1 if the sentence

P is true and 0 if P is a false sentence. For example, [s = t] = 1 if s = t and [s = t] = 0 if

s 6= t.



Chapter 2

Cuntz-Li, Ring and Bost-Connes

C∗-algebras

In this chapter, we present the C∗-algebras which will be studied in this thesis. First,

we define the Cuntz-Li algebras and exhibit their main properties. Following, we introduce

the ring C∗-algebras, which are a generalization of the Cuntz-Li algebras. The last section is

dedicated to the Bost-Connes algebra.

2.1 Cuntz-Li Algebras

In [10], Cuntz has defined a C∗-algebra, denoted by QZ, which encodes the ring structure

of Z. Such construction has been generalized by Cuntz and Li in [12], where they replace Z

by an integral domain (satisfying certain properties). In this section, following [12], we define

such C∗-algebra and present the main results obtained by Cuntz and Li.

Throughout this section, R will be an integral domain (unital commutative ring without

zero divisors) with the property that the quotient R/(m) is finite, for all m 6= 0 in R. In

addition, we exclude the case where R is a field. We denote by R× the set R\{0} and by R∗

the set of units in R. Examples of such rings are the rings of integers in an algebraic number

field and polynomial rings on a finite field.

Definition 2.1.1. [12, Definition 1] The Cuntz-Li algebra of R, denoted by A[R], is the

universal1 C∗-algebra generated by isometries {sm | m ∈ R×} and unitaries {un | n ∈ R}
1For universal C∗-algebras on sets of generators and relations, see the original [3] or even [4, Apêndice A]
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Chapter 2. Cuntz-Li, Ring and Bost-Connes C∗-algebras 5

subject to the relations

(CL1) smsm′ = smm′ ;

(CL2) unun
′

= un+n′ ;

(CL3) smu
n = umnsm;

(CL4)
∑

l+(m)∈R/(m)

ulsms
∗
mu
−l = 1;

for all m,m′ ∈ R× and n, n′ ∈ R.

We denote by em the range projection of sm, namely em = sms
∗
m. Relations (CL1) and

(CL2) tell us that the operations of R are preserved by s and u. Intuitively, (CL3) encodes

the distributivity of the ring. The relation (CL4) represents the fact that R is the disjoint

union of the cosets for a given m. These facts will be clear after the next definition.

Note that if l + (m) = l′ + (m), say l′ = l + km, then

ul
′
sms

∗
mu
−l′ = ul+kmsms

∗
mu
−l−km (CL2)

= ulukmsms
∗
mu
−kmu−l

(CL3)
=

ulsmu
ku−ks∗mu

−l = ulsms
∗
mu
−l,

which shows that the sum in (CL4) is independent of the choice of l.

As in other similar constructions, there is a reduced version of A[R]. Consider the Hilbert

space `2(R) and let {ξr | r ∈ R} be its canonical basis. For m ∈ R×, define the linear operator

Sm on `2(R) such that Sm(ξr) = ξmr. Clearly, Sm is bounded and

S∗m(ξr) =

 ξr/m, if r ∈ (m),

0, otherwise.

Hence, we have S∗mSm(ξr) = S∗m(ξmr) = ξr, i.e., Sm is an isometry. For n ∈ R, let Un be

the linear operator on `2(R) such that Un(ξr) = ξn+r. It’s easy to see that Un is bounded,

unitary and that (Un)∗ = U−n. Denote by B(`2(R)) the C∗-algebra of the bounded linear

operators on `2(R).

Definition 2.1.2. [12, Section 2] The reduced Cuntz-Li algebra of R, denoted by Ar[R],

is the C∗-subalgebra of B(`2(R)) generated by the operators {Sm |m ∈ R×} and {Un | n ∈ R}.

or [34, Apêndice A].
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We claim that {Sm | m ∈ R×} and {Un | n ∈ R} satisfy (CL1)-(CL4). Indeed, (CL1) and

(CL2) are obvious and SmU
n(ξr) = Sm(ξn+r) = ξmn+mr = Umn(ξmr) = UmnSm(ξr) shows

(CL3). To see (CL4), observe that

UnSmS
∗
mU
−n(ξr) =

 ξr, if r ∈ n+ (m),

0, otherwise,

i.e., UnSmS
∗
mU
−n is the projection onto span{ξr | r ∈ n+(m)}. Since R is the disjoint union

of n+(m) with n ranging over all classes modulo m, then (CL4) is satisfied. It follows from the

universal property of A[R] that there exists a (surjective) ∗-homomorphism A[R] −→ Ar[R].

From now on, we shall exhibit the results about A[R] proved by Cuntz and Li. The first

lemma, which will be used in Chapter 4, will be proved here.

Denote by P the set of projections {unemu−n | m ∈ R×, n ∈ R} in A[R]. The next result

shows that span(P ) is a commutative ∗-algebra.

Lemma 2.1.3. [12, Lemma 1]

(i) For all m,m′ ∈ R×,

em =
∑

l+(m′)∈R/(m′)

umlemm′u
−ml;

(ii) The projections in P commute;

(iii) The product of elements in P are in span(P ).

Proof. Since

em = sm1s∗m
(CL4)

= sm

 ∑
l+(m′)∈R/(m′)

ulsm′s
∗
m′u
−l

 s∗m
(CL1),(CL3)

=
∑

l+(m′)∈R/(m′)

umlemm′u
−ml,

we have (i). By (CL4), we see that uqepu
−q = uq

′
epu
−q′ if q + (p) = q′ + (p), and uqepu

−q

and uq
′
epu
−q′ are orthogonal if q + (p) 6= q′ + (p). To see (ii) and (iii), let unemu

−n and

un
′
em′u

−n′ be in P . We use (i) to write

unemu
−n =

∑
l+(m′)∈R/(m′)

un+mlemm′u
−n−ml

and

un
′
em′u

−n′ =
∑

l′+(m)∈R/(m)

un
′+m′l′emm′u

−n′−m′l′ .

From these equalities, it’s easy to see that unemu
−n and un

′
em′u

−n′ commute and that

unemu
−nun

′
em′u

−n′ are in span(P ).
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By the above lemma, span(P ) is a commutative C∗-subalgebra of A[R], which will be

denoted by D[R]. In the next result, Cuntz and Li exhibit a standard form for the elements

in A[R].

Lemma 2.1.4. [12, Lemma 2] A[R] = span{s∗m′′unsms∗mu−n
′
sm′ | m,m′,m′′ ∈ R×, n, n′ ∈

R}.

This lemma allows us to know a bounded linear operator whose domain is A[R] from its

behavior in the elements of the form s∗m′′u
nsms

∗
mu
−n′sm′ , as in proposition below.

Proposition 2.1.5. [12, Proposition 1] There is a faithful conditional expectation2 Θ :

A[R] −→ D[R] characterized by

Θ(s∗m′′u
nsms

∗
mu
−n′sm′) = [m′ = m′′][n = n′]s∗m′u

nsms
∗
mu
−nsm′ ,

where [T ] represents 1 if the sentence T is true and 0 if T is false.

The next three theorems are the main results proved by Cuntz and Li about A[R].

Theorem 2.1.6. [12, Theorem 1] A[R] is simple and purely infinite.3

As a corollary, we obtain that the canonical ∗-homomorphism A[R] −→ Ar[R] is, in fact,

a ∗-isomorphism.

There exists a natural partial order on R× given by the divisibility: we say that m ≤ m′

if there exists r ∈ R such that m′ = mr. Whenever m ≤ m′, we can consider the canonical

projection pm,m′ : R/(m′) −→ R/(m). Since (R×,≤) is a directed set, we can consider the

inverse limit

R̂ = lim
←−
{R/(m), pm,m′},

which is the profinite completion of R. In this text, we shall use the following concrete

description of R̂:

R̂ =

(rm + (m))m ∈
∏

m∈R×
R/(m)

∣∣∣∣ pm,m′(rm′ + (m′)) = rm + (m), if m ≤ m′
 .

Give to R/(m) the discrete topology, to
∏
m∈R× R/(m) the product topology and to R̂ the

induced topology of
∏
m∈R× R/(m). With the operations defined componentwise, R̂ is a

2See [4, Definição B.2.30 and page 191] for faithful conditional expectation.
3See [38, page 86] or [37, Definition 2.3] for purely infinite C∗-algebras.
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compact topological ring. Since R is not a field, there exists a canonical inclusion of R into

R̂ given by r 7−→ (r + (m))m (to see injectivity, take r 6= 0, m non-invertible and note that

r /∈ (rm)).

Theorem 2.1.7. [12, Observation 1] The sprectrum of D[R] is homeomorphic to R̂ and

the corresponding ∗-isomorphism (via Gelfand representation4) D[R] −→ C(R̂) is given by

unemu
−n 7−→ 1(n,m), where 1(n,m) represents the characteristic function of the subset {(rm′ +

(m′))m′ ∈ R̂ | rm + (m) = n+ (m)} of R̂.

Consider the semidirect product R o R×, which is a semigroup under the operation

(n,m)(n′,m′) = (n + mn′,mm′). Cuntz and Li have shown that there exist a action α by

endomorphisms of the semigroup R o R× on C(R̂) given by α(n,m)(1(n′,m′)) = 1(n+mn′,mm′).

By using the theory of crossed products by semigroups developed by Adji, Laca, Nilsen and

Raeburn in [1], Cuntz and Li have constructed the crossed product C∗-algebra C(R̂)oα Ro

R×, which appears in the theorem below.

Theorem 2.1.8. [12, Remark 3] A[R] is ∗-isomorphic to C(R̂) oα RoR×.

We will return to the Cuntz-Li algebras in Chapter 4, in which we will study A[R] under

a new look. Almost all results exhibited here will be proved there by using the partial crossed

products theory.

2.2 Ring C∗-algebras

The Cuntz-Li algebras, presented in the previous section, are C∗-algebras associated to

an integral domain. It’s natural to ask whether it is possible to extend this construction

to a larger class of rings or, even, to all rings. In [33], Li has answered affirmatively this

question, extending this construction to an arbitrary unital ring. He called such algebras

ring C∗-algebras. In this section, we reproduce the main definitions and results obtained by

Li in [33].

A first attempt to extend the construction to more general rings, would be to check if the

definitions of the operators Sm and Un in B(`2(R)) are still valid in case R is an arbitrary

ring. For Un, it’s easy to see that the above definition remains valid. However, if R is not

4See [35, Theorem 2.1.10] or [39, Theorem 3.3.6] for Gelfand representation.
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a domain, Sm may not be a bounded operator. Indeed, if R is an infinite ring where the

product of any two elements are 0, then Sm does not define a bounded operator. To solve this

problem, Li considers operators Sm only in case m is not a zero-divisor. Thus, the algebra

Ar[R] is perfectly well-defined.

However, when we try to define the full algebra A[R], another problem arises. Although

the relations (CL1)-(CL3) in Definition 2.1.1 remain valid in this case, the relation (CL4)

may not make sense in the language of universal C∗-algebras. We allow only finite sums as

relations; situation that will be violated if the quotient R/mR is not finite.

A similar problem occurred while attempting to generalize the Cuntz-Krieger algebras

[11]. In [21], Exel and Laca have extended these algebras to infinite matrices by finding “all”

finite relations that are consequences of the infinite relations. Here, to solve this problem, Li

added new generators to the algebra, as the definitions below.

Let R be a unital ring and denote by R× the set of elements in R which are not zero-

divisors. Let C be a subset of the power set P(R) such that: (i) R ∈ C, (ii) C is closed under

finite unions, finite intersections and complements, (iii) if n ∈ R, m ∈ R× and X ∈ C, then

n+mX ∈ C (we refer to this property by saying that C is closed under affine transformations).

Consider the Hilbert space `2(R) and denote by {ξr | r ∈ R} its canonical basis. We

already saw that, for m ∈ R×, Sm(ξr) = ξmr defines an isometry and, for n ∈ R, Un(ξr) =

ξn+r defines a unitary in B(`2(R)). Furthermore, for each X ∈ C, we can define a projection

EX in B(`2(R)) such that EX(ξr) = [r ∈ X]ξr.

Definition 2.2.1. [33, Definition 3.1] The reduced ring C∗-algebra of R with respect

to C, denoted by Ar[R, C], is the C∗-subalgebra of B(`2(R)) generated by the operators

{Sm | m ∈ R×}, {Un | n ∈ R} and {EX | X ∈ C}.

As before, (CL1)-(CL3) of Definition 2.1.1 are satisfied by Sm and Un. In addition, we

can verify some relations involving the projections EX :

(i) ER(ξr) = [r ∈ R]ξr = ξr = Id`2(R)(ξr);

(ii) EX∩Y (ξr) = [r ∈ X ∩ Y ]ξr = [r ∈ X][r ∈ Y ]ξr = EXEY (ξr);

(iii) If X and Y belong C and are disjoint, then EX∪Y (ξr) = [r ∈ X ∪ Y ](ξr) = ([r ∈ X]+

[r ∈ Y ])ξr = EX(ξr) + EY (ξr).
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(iv) UnSmEXS
∗
mU
−n(ξr) = UnSmEXS

∗
m(ξr−n) = [r − n = mk, k ∈ R]UnSmEX(ξk) =

[r − n = mk, k ∈ R][k ∈ X]UnSm(ξk) = [r − n = mk, k ∈ R][k ∈ X]Un(ξr−n) =

[r − n = mk, k ∈ R][k ∈ X]ξr = [r ∈ n+mX]ξr = En+mX(ξr).

These relations motivate the definition below.

Definition 2.2.2. [33, Definition 3.2] The full ring C∗-algebra of R with respect to

C, denoted by A[R, C], is the universal C∗-algebra generated by isometries {sm | m ∈ R×},

unitaries {un | n ∈ R} and projections {eX | X ∈ C} subject to the relations

(L1) smsm′ = smm′ ;

(L2) unun
′

= un+n′ ;

(L3) smu
n = umnsm;

(L4) unsmeXs
∗
mu
−n = en+mX ;

(L5) eR = 1;

(L6) eX∩Y = eXeY ;

(L7) eX∪̇Y = eX + eY .

The next step is to check that this definition actually extends Definition 2.1.1 in case R is

an integral domain with finite quotients by nonzero principal ideals. First, we note that if R

is an integral domain, then R× = R\{0} as before. Therefore, the operators sm are indexed

by the same set. However, the operators eX are not present in definition 2.1.1. Li justifies

their presence in the next two results.

Proposition 2.2.3. [33, Remark 3.7] Let R be a unital ring and C the smallest family of sub-

sets of R which contains R and is closed under finite unions, finite intersections, complements

and affine transformations. Then

A[R, C] = C∗
(
{sm | m ∈ R×} ∪ {un | n ∈ R}

)
,

i.e., the generators eX don’t add new elements to A[R, C].

Proposition 2.2.4. [33, Lemma 3.8] Let R be an integral domain with finite quotients by

non-zero principal ideals and let F be any family of nontrivial ideals of R. If C is the smallest
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family of subsets of R which contains F ∪ {R} and is closed under finite unions, finite in-

tersections, complements and affine transformations, then the natural map A[R] −→ A[R, C]

sending generators to generators exists and is a ∗-isomorphism.

The first result tell us that the “undesirable” generators eX don’t increase the size of

A[R] when C is the smallest family generated by R. Indeed, these generators only add new

relations to the algebra. The second result confirms that A[R, C] really extends Definition

2.1.1.

In Chapter 5, we propose another generalization to the Cuntz-Li algebras. We have found

a very satisfactory way to include generators Sm when m is a zero-divisor.

2.3 Bost-Connes Algebra

In [6], Bost and Connes constructed a C∗-dynamical system which revealed deep connec-

tions between Operators Algebras and Number Theory. The most remarkable result is the

appearance of the Riemann ζ-function as partition function of the KMS states of the dynam-

ical system. In this section, we introduce the Bost-Connes algebra, namely, the underlying

C∗-algebra of the Bost-Connes dynamical system.

Consider the quotient Q/Z as an additive group.

Definition 2.3.1. [6, Proposition 18] The Bost-Connes algebra, denoted by CQ, is the

universal C∗-algebra generated by isometries {µm | m ∈ N∗} and unitaries {eγ | γ ∈ Q/Z}

subject to the relations

(BC1) µmµm′ = µmm′ ;

(BC2) µmµ
∗
m′ = µ∗m′µm, if (m,m′) = 1;

(BC3) eγeγ′ = eγ+γ′ ;

(BC4) eγµm = µmemγ ;

(BC5) µmeγµ
∗
m = 1

m

∑
eδ, where the sum is taken over all δ ∈ Q/Z such that mδ = γ.

It’s easy to see that if γ = n′

m′ + Z, then the sum in (BC5) is indexed by the set{
n′

mm′ + Z, n′+m′mm′ + Z, . . . , n
′+(m−1)m′

mm′ + Z
}

. From this, one can see that (BC5) is indepen-

dent of the representation of γ in Q/Z (this verification in (BC3) and (BC4) is trivial).
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In Proposition 2.8 of [29], Laca and Raeburn deduced a curious fact: the relations (BC2)

and (BC4) are consequences of the other three relations. In other words, we may remove

these relations without modify the definition.

Originally, Bost and Connes have defined CQ as the C∗-algebra of a certain Hecke pair.

However, this equivalent definition (the equivalence is proved in [6, Proposition 18]) is more

appropriate for our purposes. Again in [29], Laca and Raeburn showed that CQ is the crossed

product of C∗(Q/Z) (the group C∗-algebra5 of Q/Z) by the multiplicative semigroup N∗

with a certain action of endomorphisms. We return to the Bost-Connes algebra in Chapter

6, where a similar result is obtained: we show that CQ is a partial crossed product of (a

C∗-algebra isomorphic to) C∗(Q/Z) by Q∗+.

5See [8] for group C∗-algebra.



Chapter 3

Partial Crossed Products and

Partial Group Algebras

In this chapter, we present the basic definitions and results concerning partial crossed

products and partial group algebras. First, we define partial actions and partial representa-

tions. Hereafter, we construct the partial crossed product and exhibit its equivalent forms. In

the last two sections, we introduce the partial group algebra and we obtain a characterization

of it as a partial crossed product.

These theories are developed in [15], [16], [17], [18] and [22]. For more detailed texts, we

recommend [4] and [34] (only in Portuguese).

3.1 Partial Actions and Partial Representations

Definition 3.1.1. [18, Definition 1.2] A partial action α of a (discrete) group G on a C∗-

algebra A is a collection (Dt)t∈G of ideals of A and ∗-isomorphisms αt : Dt−1 −→ Dt such

that

(PA1) De = A, where e represents the identity element of G;

(PA2) α−1
t (Dt ∩ Ds−1) ⊆ D(st)−1 ;

(PA3) αs ◦ αt(x) = αst(x), ∀ x ∈ α−1
t (Dt ∩ Ds−1).

The triple (A, G, α) is called a partial dynamical system. In the above definition, if

13
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we replace the C∗-algebra A by a locally compact Hausdorff space X, the ideals Dt by open

sets Xt and the ∗-isomorphisms αt by homeomorphisms θt : Xt−1 −→ Xt, we obtain a partial

action θ of the group G on the space X.

Remark 3.1.2. Applying item (iii) with s = t = e and using item (i), we see that αe = IdA.

Also by item (iii), with s = t−1, we conclude that α−1
t = αt−1 . Furthermore, the inclusion in

item (ii) is equivalent to αt(Dt−1 ∩ Ds) = Dt ∩ Dts. To see this, apply item (ii) with (ts)−1

in place s and use the fact that αt is an ∗-isomorphism from Dt−1 to Dt to conclude that

αt(Dt−1 ∩Ds) ⊇ Dt ∩Dts. The reverse inclusion is obtained from (ii) with t−1 in place t, s−1

in place s and using that α−1
t−1 = αt.

Remark 3.1.3. Suppose that α is a partial action such that each ideal Dt is unital with unit

1t. In this case, Dt−1 ∩ Ds and Dt ∩ Dts are unital with units 1t−11s and 1t1ts, respectively.

By previous remark, αt is a ∗-isomorphism from Dt−1 ∩Ds to Dt ∩Dts. Since ∗-isomorphism

take units on units, then αt(1t−11s) = 1t1ts.

Example 3.1.4. Let G be a group, Y a locally compact Hausdorff space, X an open set of

Y and ρ an action of G on Y . If we define, for each t ∈ G, Xt = X ∩ ρt(X) and

θt : Xt−1 −→ Xt

x 7−→ ρt(x),

then θ is a partial action of G on X (see [4, Exemplo 2.1.15]).

Example 3.1.5. Let θ be a partial action of a group G on a locally compact Hausdorff space

X. Define, for each t ∈ G, Dt = C0(Xt) and

αt : Dt−1 −→ Dt

f 7−→ f ◦ θt−1 .

If we identify C0(Xt) with the functions in C0(X) which vanish outside of Xt, then α defines

a partial action of G on C0(X). We say that α is the partial action induced by θ (see [4,

Exemplo 2.1.18]).

The previous example associates a partial action α on a C∗-algebra from a partial action θ

on a topological space. In this case, we can extract useful informations about α by analysing

θ. The most important for us, which will be seen in the next section, is the fact that we can

use θ to classify the ideals in the crossed product associated to α. For this, we need some

definitions.
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Definition 3.1.6. [22, Definition 2.1] We say that a partial action θ on a space X is topo-

logically free if, for all t ∈ G\{e}, the set Ft = {x ∈ Xt−1 | θt(x) = x} has empty interior.

Definition 3.1.7. [22, Definition 2.7] Let θ be a partial action on a space X. We say that

a subset V of X is invariant under θ if θt(V ∩Xt−1) ⊆ V , for every t ∈ G.

Definition 3.1.8. [22, Definition 2.7] Let α be a partial action on a C∗-algebra A. We say

that an ideal I of A is invariant under α if αt(I ∩ Dt−1) ⊆ I, for every t ∈ G.

It’s easy to see that if V is an open θ-invariant subset of X, then C0(V ) is an α-invariant

ideal of C0(X), where α is the partial action induced by θ.

Definition 3.1.9. [22, Definition 2.8] We say that a partial action θ on a space X is minimal

if there are no invariant open subsets of X other than ∅ and X.

Proposition 3.1.10. A partial action θ is minimal if, and only if, every x ∈ X has dense

orbit, namely Ox = {θt(x) | t ∈ G for which x ∈ Xt−1} is dense in X.

From now on, we change the subject to partial representations. At the end of this section,

we return to talk about partial actions.

Definition 3.1.11. [18, Definition 6.2] A partial representation π of a (discrete) group

G into a unital C∗-algebra B is a map π : G −→ B such that, for all s, t ∈ G,

(PR1) π(e) = 1;

(PR2) π(t−1) = π(t)∗;

(PR3) π(s)π(t)π(t−1) = π(st)π(t−1).

It’s noteworthy that, under (PR2) and (PR3), π(s−1)π(s)π(t) = π(s−1)π(st) is valid too.

Example 3.1.12. Consider the Hilbert space `2(N∗) and denote by {ξn}n∈N∗ its canonical

basis. Let S be the shift operator on `2(N∗), i.e., S(ξn) = ξn+1. Then π : Z −→ B(`2(N∗))

given by

π(n) =

 Sn, if n ≥ 0

(S∗)|n|, if n < 0,

is a partial representation of the additive group Z into B(`2(N∗)) (see [4, Exemplo 3.1.7]).

The next proposition exhibits useful properties about partial representations.
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Proposition 3.1.13. [15, page 15] Let π : G −→ B be a partial representation of a group G

into a unital C∗-algebra B and denote π(t)π(t)∗ by εt. For all s, t ∈ G, we have:

(i) π(t) is a partial isometry, i.e., π(t)π(t)∗π(t) = π(t);

(ii) εt is a projection;

(iii) π(t)εs = εtsπ(t);

(iv) εsεt = εtεs;

(v) π(t)π(s) = εtεtsπ(ts);

(vi) π(t1)π(t2) · · ·π(tn) = εt1εt1t2 · · · εt1t2···tnπ(t1t2 · · · tn), for all t1, . . . , tn ∈ G.

Definition 3.1.14. [4, Definição 4.1.1] Let α be a partial action of a group G on a C∗-algebra

A, π : G −→ B be a partial representation of G into a unital C∗-algebra B and ϕ : A −→ B

be a ∗-homomorphism. We say that the pair (ϕ, π) is α-covariant if:

(COV1) ϕ(αt(x)) = π(t)ϕ(x)π(t−1), for all t ∈ G e x ∈ Dt−1 ;

(COV2) ϕ(x)π(t)π(t−1) = π(t)π(t−1)ϕ(x), for all x ∈ A e t ∈ G.

This definition will be used later as a way to characterize the partial crossed product.

3.2 Partial Crossed Products

Throughout this section, we fix a partial action α of a group G on a C∗-algebra A. Denote

by L the direct sum ⊕t∈GDt. With the operations defined componentwise, L is a vector space.

If we denote by aδt the element of L whose entry t is a and which is 0 in the other entries,

then every element of L can be written as a finite sum
∑

t∈G atδt, where at ∈ Dt. If we require

that at is nonzero, then this representation is unique. We define a multiplication in L by

(asδs)(atδt) = αs(αs−1(as)at)δst. It can be shown that L is an associative algebra with these

operations (see [15, Corollary 3.4]). Furthermore, we can view L as a normed ∗-algebra with

an involution and a norm given by (atδt)
∗ = αt−1(a∗t )δt−1 and ||

∑
t∈G atδt|| =

∑
t∈G ||at||.

Definition 3.2.1. The full partial crossed product (or simply, crossed product) of A

by G through α, denoted by AoαG, is the enveloping C∗-algebra1 of L (see [4, Proposição

2.2.31]).

1See [4, Exemplo A.2.8] for enveloping C∗-algebras.
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It can be shown that there is an injective ∗-homomorphism L −→ AoαG (see [4, Corolário

2.2.32]). In other words, AoαG is the completion of L under a certain C∗-norm. There is

another characterization ofAoαG as the universal C∗-algebra for α-covariant representations,

according to the next proposition.

Proposition 3.2.2. Let α be a partial action of a group G on a C∗-algebra A, π : G −→ B

be a partial representation of G into a unital C∗-algebra B and ϕ : A −→ B be a ∗-homomor-

phism such that the pair (ϕ, π) is α-covariant. Then there exists a unique ∗-homomorphism

ϕ× π : AoαG −→ B such that

(ϕ× π)(atδt) = ϕ(at)π(t), ∀ t ∈ G, ∀ at ∈ Dt

(see [4, Corolário 4.1.5]).

In addition to the full crossed product, there exists the reduced crossed product,

denoted by Aoα,rG. It can also be defined as the completion of L under a certain C∗-norm

(not equal to the previous one, in general). For a formal definition of Aoα,rG see [4, Definição

2.2.36].

There is a natural surjective ∗-homomorphism AoαG −→ Aoα,rG which is the identity

on L. When this ∗-homomorphism is injective, we say that the dynamical system (A, G, α)

is amenable. It’s a fact that if G is an amenable group,2 then (A, G, α) is amenable (see

[17, Theorem 4.7]).

We can identify A as a C∗-subalgebra of Aoα,rG and of AoαG through the injective

∗-homomorphisms A −→ Aoα,rG and A −→ AoαG both given by a 7−→ aδe. There exists

a faithful conditional expectation E : Aoα,r G −→ A given by E(aδt) = a if t = e, and

E(aδt) = 0 if t 6= e. When the dynamical system is amenable, the full and reduced crossed

products are ∗-isomorphic and, in this case, there exists a faithful conditional expectation of

Aoα G onto A.

Henceforth, we consider that A = C0(X) and that α is induced by a partial action θ

on X. The next results are valid for the reduced crossed product only. However, when the

dynamical system is amenable, we can replace the reduced by the full crossed product.

Proposition 3.2.3. [22, Theorem 2.6] Suppose that θ is topologically free. If J is an ideal

in Aoα,rG with J ∩ A = {0}, then J = {0}.
2See [4, Definição B.3.2] for amenable groups.
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Proposition 3.2.4. [22, Corollary 2.9] If θ is topologically free and minimal, then Aoα,rG

is simple.

3.3 Partial Group Algebras

Let G be a discrete group, let G be the set G without the group operations and denote

the elements in G by [t] (namely, G = {[t] | t ∈ G}).

Definition 3.3.1. [18, Definition 6.4 and Theorem 6.5] The partial group algebra of G,

denoted by C∗p(G), is defined to be the universal C∗-algebra generated by the set G subject

to the relations

Rp = {[e] = 1} ∪ {[t−1] = [t]∗}t∈G ∪ {[s][t][t−1] = [st][t−1]}s,t∈G.

Observe that the relations in Rp correspond to the partial representation axioms (PR1),

(PR2) and (PR3). Sometimes, we will refer to a relation inRp by indicating the corresponding

axiom. For example, if we use [t−1] = [t]∗, we refer to it through the axiom (PR2).

Just as the C∗-algebra of G is universal with respect to unitary representations of G, the

partial group algebra of G is universal with respect to partial representations.

Proposition 3.3.2. [18, Definition 6.4 and Theorem 6.5] If π : G −→ B is a partial rep-

resentation of G into a unital C∗-algebra B, then there exists a unique ∗-homomorphism

ψ : C∗p(G) −→ B such that ψ([t]) = π(t) for all t ∈ G.

Now, we will study an important C∗-subalgebra of C∗p(G). For each t ∈ G, denote [t][t−1]

by εt and denote by AG the C∗-subalgebra of C∗p(G) generated by {εt}t∈G. By Proposition

3.1.13, AG is a commutative C∗-algebra generated by projections. Denote by CG the universal

C∗-algebra generated by a set of projections {et}t∈G subject to the relations that es commutes

with et, for all s, t ∈ G. The next result shows that the commuting relations between the

projections in AG are sufficient to characterize it.

Proposition 3.3.3. The map CG −→ AG which sends et on εt is a ∗-isomorphism (see [4,

Proposição 4.4.7 and Corolário 4.4.10]).

There is another way of understanding AG. Since AG is commutative then, by the Gelfand

representation, AG is ∗-isomorphic to C(ÂG), where ÂG denotes the spectrum of AG. Let’s
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characterize ÂG. Consider the natural bijection between P(G) and {0, 1}G, where P(G) is

the power set of G. With the product topology, {0, 1}G is a compact Hausdorff space. Give

to P(G) the topology of {0, 1}G. Denote by XG the subset of P(G) of the subsets ξ of G

such that e ∈ ξ. Clearly, with the induced topology of P(G), XG is a compact space.

Proposition 3.3.4. [18, Proposition 6.6] The spectrum of AG is homeomorphic to XG

through the map ÂG 3 φ 7−→ {t ∈ G | φ(εt) = 1} ∈ XG.

As a corollary, we have AG ∼= C(XG). It’s important for us to explicit the map that

defines the ∗-isomorphism. Indeed, by using the above proposition, it’s not hard to see that

AG 3 εt 7−→ 1t ∈ C(XG), where 1t represents the characteristic function of the subset

{ξ ∈ XG | t ∈ ξ} of XG.

These characterizations of AG enable us to find equivalent formulations for C∗p(G). For

each t ∈ G, εtAG is an ideal of AG and the map

ᾱt : εt−1AG −→ εtAG

x 7−→ [t]x[t−1]

is a ∗-isomorphism; defining a partial action ᾱ on AG (see [4, Corolário 4.1.16]).

Proposition 3.3.5. [18, Definition 6.4 and Theorem 6.5] There is a ∗-isomorphism

C∗p(G) −→ AG oᾱ G given by [t] 7−→ εtδt.

Next, we will find a partial action on XG. For each t ∈ G, denote by Xt the open subset

{ξ ∈ XG | t ∈ ξ} of XG. The map

θt : Xt−1 −→ Xt

ξ 7−→ tξ

is a homeomorphism, where tξ = {ts | s ∈ ξ}. It defines a partial action θ on XG (see [4,

Proposição 4.4.3]). Denote by α the partial action induced by θ on C(XG).

Proposition 3.3.6. [18, Definition 6.4 and Theorem 6.5] There is a ∗-isomorphism

C∗p(G) −→ C(XG) oα G given by [t] 7−→ 1tδt.

We finish this section presenting a useful property about α. Note that the set {1t}t∈G in

C(XG) separates points in XG and that 1e = 1. Hence, by Stone-Weierstrass theorem [39,
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Theorem A.6.9], the C∗-algebra generated by {1t}t∈G is C(XG). Since the ideal Dt of α is

C(Xt) ∼= 1tC(XG), then C(Xt) is generated by {1t1s}s∈G. These informations are used when

we need to prove some property involving C(XG) or C(Xt). In general, to prove a property

on the generators it is enough to ensure that the property is valid on the whole C∗-algebra.

3.4 Partial Group Algebras with Relations

In this section, we define a generalized version of the partial group algebra. Let G, G and

Rp be as in the previous section. Let R be a set of relations on G such that every relation is

of the form ∑
i

λi
∏
j

εtij = 0,

where λi ∈ C and εt = [t][t−1] as before.

Definition 3.4.1. [22, Definition 4.3] The partial group algebra of G with relations R,

denoted by C∗p(G,R), is defined to be the universal C∗-algebra generated by the set G with

the relations Rp ∪R.

Given a partial representation π of G, we can extend π naturally to sums of products of

elements in G. If this extension satisfies the relations R, we say that π is a partial repre-

sentation that satisfies R. The next result presents the universal property of C∗p(G,R).

Proposition 3.4.2. [22, Definition 4.3] If π : G −→ B is a partial representation of G

into a unital C∗-algebra B that satisfies R, then there exists a unique ∗-homomorphism

ψ : C∗p(G,R) −→ B such that ψ([t]) = π(t) for all t ∈ G.

In analogy to the previous section, we will exhibit characterizations of C∗p(G,R) as partial

crossed products. Denote by A(G,R) the (commutative) C∗-subalgebra of C∗p(G,R) generated

by {εt}t∈G. As before, the maps

ᾱt : εt−1A(G,R) −→ εtA(G,R)

x 7−→ [t]x[t−1]

define a partial action ᾱ of G on A(G,R).

Proposition 3.4.3. [22, Theorem 4.4] There is a ∗-isomorphism C∗p(G,R) −→ A(G,R) oᾱG

given by [t] 7−→ εtδt.
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We can use this proposition to define a conditional expectation on C∗p(G,R). If we

transport the natural conditional expectation on A(G,R) oᾱ G to C∗p(G,R), we obtain E :

C∗p(G,R) −→ A(G,R) given by E([t1][t2] · · · [tk]) = [t1][t2] · · · [tk] if t1t2 · · · tk = e and

E([t1][t2] · · · [tk]) = 0 otherwise.

Denote by JR the smallest (closed) ideal of A(G,R) which contains[t]

∑
i

λi
∏
j

εtij

 [t−1]

∣∣∣∣ ∑
i

λi
∏
j

εtij ∈ R and t ∈ G

 .

It is noteworthy that, by using item (iii) of Proposition 3.1.13,

[t]

∑
i

λi
∏
j

εtij

 [t−1] = εt
∑
i

λi
∏
j

εttij

and, hence, it belongs to A(G,R). There is a natural surjective ∗-homomorphism AG −→

A(G,R), where AG is as in previous section, which sends εt on εt (obviously, the first one

is in AG and the last in A(G,R)). The kernel of this ∗-homomorphism is exactly JR and,

therefore, A(G,R)
∼= AG/JR (see [4, page 111]).

Now, we will find a concrete realization of A(G,R). Let C(XG) and 1t be as in previous

section. By an abuse of notation, we also denote by R the subset of C(XG) given by the

functions
∑

i λi
∏
j 1tij , where

∑
i λi
∏
j etij = 0 is a relation in (the original) R.

Definition 3.4.4. [22, Definition 4.2] The spectrum of the relations R is defined to be

the compact Hausdorff space

ΩR = {ξ ∈ XG | f(t−1ξ) = 0, ∀ f ∈ R, ∀ t ∈ ξ}.

Proposition 3.4.5. There is a ∗-isomorphism A(G,R) −→ C(ΩR) given by εt 7−→ 1t (see [4,

page 113]).

Denote by Ωt the subset {ξ ∈ ΩR | t ∈ ξ} of ΩR. It can be shown that, if we restrict the

domain of the homeomorphism θt : Xt−1 −→ Xt (defined in the section above) to Ωt−1 , we

obtain a homeomorphism from Ωt−1 onto Ωt. Thus we have a partial action (also denoted

by) θ of G on ΩR (see [4, page 108]). Let α be the partial action on C(ΩR) induced by θ.

The theorem below is the most important result concerning partial group algebras.

Proposition 3.4.6. [22, Theorem 4.4] There is a ∗-isomorphism C∗p(G,R) −→ C(ΩR)oαG

given by [t] 7−→ 1tδt, where 1t denotes the characteristic function of Ωt.



Chapter 4

Characterizations of the Cuntz-Li

Algebras

In this chapter, we show that the Cuntz-Li algebras A[R] presented in Section 2.1 can

be seen as partial group algebras with relations. By using Theorem 3.4.6, we obtain a

characterization of A[R] as a partial crossed product. With the theory presented in Chapter

3, we recover many of the results proved by Cuntz and Li in [12]. Among then, we will prove

Proposition 2.1.5, a part of Theorem 2.1.6 and Theorem 2.1.7.

The results of this chapter are in [5].

4.1 Partial Group Algebra Description of A[R]

As in Section 2.1, let R be an integral domain which is not a field and with the property

that the quotient R/(m) is finite, for all m 6= 0 in R. Denote by K the field of fractions of

R and consider the semidirect product K oK×. The elements of K oK× will be denoted

by a pair (u,w), where u ∈ K and w ∈ K×. Recall that (u,w)(u′, w′) = (u + u′w,ww′)

and (u,w)−1 = (−u/w, 1/w). We denote by [u,w] an element of set K o K× without the

group operations (as the set G associated to G in Section 3.3).1 Also as in Section 3.3, denote

[t][t−1] by εt. Consider the sets of relations

R1 =
{
ε(n,1) = 1 | n ∈ R

}
, R2 =

{
ε(0, 1

m) = 1
∣∣ m ∈ R×} ,

1Sometimes, we work with the element (u,w)−1 or the element (u1, w1)(u2, w2). For these elements, our

corresponding notations will be [(u,w)−1] and [(u1, w1)(u2, w2)].

22
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R3 =

 ∑
l+(m)∈R/(m)

ε(l,m) = 1

∣∣∣∣ m ∈ R×


and R = R1 ∪R2 ∪R3. Our goal is to construct the partial group algebra C∗p(K oK×,R).

However, the relations in R3 apparently depend on a choice of l. Observe that, under the

relations R1 and Rp (see Sections 3.3 and 3.4), the sum in R3 is independent of this choice.

Indeed, if l + (m) = l′ + (m), say l′ = l + km,

ε(l′,m) = ε(l+km,m) = [l + km,m][(l + km,m)−1] = [(l,m)(k, 1)][(k, 1)−1(l,m)−1]
R1=

[(l,m)(k, 1)]ε(−k,1)[(k, 1)−1(l,m)−1] = [(l,m)(k, 1)][(k, 1)−1][k, 1][(k, 1)−1(l,m)−1]
(PR3)

=

[l,m][k, 1][(k, 1)−1][k, 1][(k, 1)−1][(l,m)−1] = [l,m]ε(k,1)ε(k,1)[(l,m)−1]
R1= ε(l,m).

Thus, we can consider the partial group algebra C∗p(K o K×,R). We will show that this

algebra is ∗-isomorphic to A[R].

Proposition 4.1.1. There exists a ∗-homomorphism Ψ : A[R] −→ C∗p(K oK×,R) such that

Ψ(un) = [n, 1] and Ψ(sm) = [0,m].

Proof. We need to show that [n, 1] is a unitary (for n ∈ R), that [0,m] is an isometry (for

m ∈ R×) and that the relations (CL1)-(CL4) of Definition 2.1.1 are satisfied. From R1 and

(PR2), we have [n, 1][n, 1]∗
(PR2)

= [n, 1][(n, 1)−1] = ε(n,1)
R1= 1 and [n, 1]∗[n, 1] = e(−n,1) = 1,

i.e., [n, 1] is a unitary. Similarly, from R2 and (PR2) we see that [0,m] is an isometry. By

using this fact,

Ψ(smsm′) = [0,m][0,m′] = [0,m][0,m′][0,m′]∗[0,m′]
(PR3)

=

[(0,m)(0,m′)][0,m′]∗[0,m′] = [0,mm′][0,m′]∗[0,m′] = [0,mm′] = Ψ(smm′),

hence (CL1) is satisfied. We can prove (CL2) in the same way. To show (CL3), note that

Ψ(smu
n) = [0,m][n, 1] = [0,m][n, 1][n, 1]∗[n, 1]

(PR3)
=

[(0,m)(n, 1)][n, 1]∗[n, 1] = [mn,m][n, 1]∗[n, 1] = [mn,m],

because [n, 1] is a unitary. On the other hand,

Ψ(umnsm) = [mn, 1][0,m] = [mn, 1][mn, 1]∗[mn, 1][0,m]
(PR3)

=

[mn, 1][mn, 1]∗[(mn, 1)(0,m)] = [mn, 1][mn, 1]∗[mn,m] = [mn,m].
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Finally, (CL4) follows from R3 and

Ψ(ulsms
∗
mu
−l) = [l, 1][0,m][0,m]∗[−l, 1]

(PR3),(PR2)
= [(l, 1)(0,m)][(0,m)−1][−l, 1] =

[l,m][0, 1/m][−l, 1][−l, 1]∗[−l, 1]
(PR3)

= [l,m][(0, 1/m)(−l, 1)][−l, 1]∗[−l, 1] =

[l,m][(l,m)−1][−l, 1]∗[−l, 1] = [l,m][(l,m)−1] = ε(l,m).

Now, we will construct an inverse for Ψ. For this, we will define a partial representation

of K oK× into A[R] that satisfies R and use the universal property of C∗p(K oK×,R) in

Proposition 3.4.2. In the next claim, note that every element in K o K× can be written

under the form
(
n
m′ ,

m
m′

)
, where n ∈ R and m,m′ ∈ R×.

Claim 4.1.2. The map π : K oK× −→ A[R] given by π
((

n
m′ ,

m
m′

))
= s∗m′u

nsm is indepen-

dent of the representation of
(
n
m′ ,

m
m′

)
.

Proof. Let
(
n
m′ ,

m
m′

)
=
(
q
p′ ,

p
p′

)
, i.e., pm′ = p′m and m′q = p′n. Hence,

s∗p′u
qsp = s∗p′s

∗
m′sm′u

qsp
(CL3)

= s∗p′s
∗
m′u

m′qsm′sp
(CL1)

= s∗p′m′u
m′qsm′p

(CL1)
=

s∗m′s
∗
p′u

p′nsp′sm
(CL3)

= s∗m′s
∗
p′sp′u

nsm = s∗m′u
nsm.

Before showing that π is a partial representation that satisfies R, we observe that s1 = 1

and u0 = 1 in A[R]. Indeed, both are idempotent and have a left inverse.

Proposition 4.1.3. The map π defined above is a partial representation of K o K× that

satisfies R.

Proof. First, we will show that π is a partial representation. Since π((0, 1)) = s∗1u
0s1 = 1,

we have (PR1). Observe that

π

(( n
m′
,
m

m′

)−1
)

= π

((
−n
m
,
m′

m

))
= s∗mu

−nsm′ = π
(( n

m′
,
m

m′

))∗
,

which shows (PR2). To see (PR3), let s =
(
q
p′ ,

p
p′

)
and t =

(
n
m′ ,

m
m′

)
. We have st =(

m′q+pn
p′m′ ,

pm
p′m′

)
and, therefore,

π(st)π(t−1) = π(st)π(t)∗ = (s∗p′m′u
m′q+pnspm)(s∗mu

−nsm′)
(CL1),(CL2)

=



Chapter 4. Characterizations of the Cuntz-Li Algebras 25

s∗p′s
∗
m′u

m′qupnspsms
∗
mu
−nsm′

(CL3)
= s∗p′u

qs∗m′spu
nsms

∗
mu
−nsm′ =

s∗p′u
qs∗m′sp u

nsms
∗
mu
−n︸ ︷︷ ︸

∈P

sm′s
∗
m′︸ ︷︷ ︸

∈P

sm′
Lemma 2.1.3

= s∗p′u
qs∗m′spsm′s

∗
m′u

nsms
∗
mu
−nsm′

(CL1)
=

s∗p′u
qs∗m′sm′sps

∗
m′u

nsms
∗
mu
−nsm′ = (s∗p′u

qsp)(s
∗
m′u

nsm)(s∗mu
−nsm′) = π(s)π(t)π(t−1).

This shows that π is a partial representation. It remains to show that the extension of π

satisfies the relations in R. Since

π(ε(n,1)) = π([n, 1][−n, 1]) = (s∗1u
ns1)(s∗1u

−ns1) = unu−n = u0 = 1,

the relations in R1 are satisfied. For R2, observe that

π(ε(0,1/m)) = π([0, 1/m][0,m]) = (s∗mu
0s1)(s∗1u

0sm) = s∗msm = 1.

As a conclusion,

π

 ∑
l+(m)∈R/(m)

ε(l,m)

 =
∑

l+(m)∈R/(m)

s∗1u
lsms

∗
mu
−ls1 =

∑
l+(m)∈R/(m)

ulsms
∗
mu
−l (CL4)

= 1

shows that R3 is satisfied.

Remark 4.1.4. We can define π for a general representation of a element in K o K× by

π
((

n
m′′ ,

m
m′

))
= s∗m′′u

ns∗m′sm′′sm.

By the universal property of C∗p(K oK×,R) and by the above proposition, there exists

a ∗-homomorphism Φ : C∗p(K oK×,R) −→ A[R] such that Φ
([

n
m′ ,

m
m′

])
= s∗m′u

nsm.

Theorem 4.1.5. Ψ and Φ are inverses of each other.

Proof. It is enough to prove that the two relevant compositions agree with the identity on

the generators. Thus, Φ(Ψ(un)) = Φ([n, 1]) = s∗1u
ns1 = un and Φ(Ψ(sm)) = Φ([0,m]) =

s∗1u
0sm = sm. On the other hand,

Ψ
(

Φ
([ n
m′
,
m

m′

]))
= Ψ(s∗m′u

nsm) =
[
0, 1/m′

]
[n, 1] [0,m] =

[
0, 1/m′

]
[n, 1] [n, 1]∗ [n, 1] [0,m]

(PR3)
=

[
0, 1/m′

]
[n, 1] [n, 1]∗ [n,m]

R1=
[
0, 1/m′

]
[n,m] =[

0, 1/m′
] [

0, 1/m′
]∗ [

0, 1/m′
]

[n,m]
(PR3)

=
[
0, 1/m′

] [
0, 1/m′

]∗ [ n
m′
,
m

m′

]
R2=
[ n
m′
,
m

m′

]
.
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This theorem shows that A[R] is a partial group algebra. We can use it to define a

faithful conditional expectation on A[R]. Since that additive group K and the multiplicative

group Ko are abelian (hence solvable), then K o K× is solvable. In [23], Theorem 1.2.1

asserts that every abelian group is amenable and Theorem 1.2.6 says that if a group G

has a normal subgroup N such that N and G/N are amenable then G is amenable. By

using these results, we see that every solvable group is amenable and, hence so is K oK×.

Therefore, the conditional expectation on C∗p(K oK×,R) defined in Section 3.4 is faithful.

The next proposition shows that, under the ∗-isomorphism Ψ, the conditional expectations

E on C∗p(K oK×,R) and Θ on A[R] (Proposition 2.1.5) are the same.

Proposition 4.1.6. E ◦Ψ = Ψ ◦Θ.

Proof. First of all, observe that
(
n
m′′ ,

m
m′′

) (−n′
m , m

′

m

)
= (0, 1) if, and only if, m′ = m′′ and

n = n′. By using the Kronecker delta notation, we have

E ◦Ψ(s∗m′′u
nsms

∗
mu
−n′sm′) = E

([ n
m′′

,
m

m′′

] [−n′
m

,
m′

m

])
=

δm′,m′′δn,n′
[ n
m′
,
m

m′

] [−n
m
,
m′

m

]
.

On the other hand

Ψ ◦Θ(s∗m′′u
nsms

∗
mu
−n′sm′) = Ψ(δm′,m′′δn,n′s

∗
m′u

nsms
∗
mu
−nsm′) =

δm′,m′′δn,n′
[ n
m′
,
m

m′

] [−n
m
,
m′

m

]
.

4.2 Partial Crossed Product Description of A[R]

We already know that A[R] is a partial crossed product. Indeed, every partial group

algebra is a partial crossed product (Theorems 3.4.3 and 3.4.6). From now on, our goal is to

study A[R] by this way.

First of all, we will find a concrete realisation of the spectrum of the relationsR (Definition

3.4.4), which will be denoted by Ω. As in Section 2.1, consider the profinite completion R̂

of R. A similar construction can be obtained extending the divisibility order in R× to K×.

For w,w′ ∈ K×, we say that w ≤ w′ if there exists r ∈ R such that w′ = wr. Denote by
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(w) the fractional ideal generated by w, namely (w) = wR ⊆ K. As before, if w ≤ w′, we

can consider the canonical projection2 pw,w′ : (R+ (w′))/(w′) −→ (R+ (w))/(w). Similarly

to R̂, we consider the inverse limit

R̂K = lim
←−
{(R+ (w))/(w), pw,w′} ∼=(uw + (w))w ∈

∏
w∈K×

(R+ (w))/(w)

∣∣∣∣ pw,w′(uw′ + (w′)) = uw + (w), if w ≤ w′
 .

It is a compact topological ring too. In fact, R̂K is naturally isomorphic to R̂ as a topological

ring. We will show that Ω is homeomorphic to R̂K (hence, homeomorphic to R̂). We use R̂K

instead of R̂ because it simplifies our proofs.

Define

ρ : R̂K −→ P(K oK×)

(uw + (w))w 7−→ {(uw + rw,w) | w ∈ K×, r ∈ R}.

Note that the definition is independent of the choice of uw in uw + (w).

Claim 4.2.1. ρ(R̂K) ⊆ Ω.

Proof. Let (uw + (w))w ∈ R̂K . By the definition of R̂K , if w ≤ w′, then uw′ = uw + kw for

some k ∈ R. Denote ρ((uw + (w))w) by ξ. Clearly, (0, 1) ∈ ξ. By Definition 3.4.4, we need to

show that f(t−1ξ) = 0, for all f ∈ R and t ∈ ξ. Fix t = (uw+rw,w) ∈ ξ. Let f = 1(n,1)−1 in

R1 and note that f(t−1ξ) = 0 is equivalent to t(n, 1) ∈ ξ. Since t(n, 1) = (uw+rw,w)(n, 1) =

(uw+(r+n)w,w), we have t(n, 1) ∈ ξ. Now, let f = 1(0,1/m)−1 inR2. Similarly, we must show

that t(0, 1/m) ∈ ξ. Observe that t(0, 1/m) = (uw + rw,w)(0, 1/m) = (uw + rw,w/m). Since

w/m ≤ w, then t(0, 1/m) = (uw/m+k(w/m)+rw,w/m) = (uw/m+(k+rm)(w/m), w/m) ∈ ξ.

To conclude, fix m ∈ R× and let f =
∑

l+(m) 1(l,m)−1 in R3. We must show that there exists

one, and only one class l + (m) such that t(l,m) ∈ ξ. Indeed, t(l,m) = (uw + rw,w)(l,m) =

(uw + (l + r)w,wm) = (uwm + (l + r − k)w,wm) and, for it belongs to ξ, we must have

(l + r − k)w ∈ (wm). Hence, l ≡ k − r mod m, in other words, there exists only one class

l + (m) such that t(l,m) ∈ ξ. Since R = R1 ∪R2 ∪R3, the proof is completed.

Proposition 4.2.2. ρ : R̂K −→ Ω is a homeomorphism.

2By the second isomorphism theorem, it could be pw,w′ : R/(R ∩ (w′)) −→ R/(R ∩ (w)).
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Proof.

Injectivity. Let (uw+(w))w, (vw+(w))w ∈ R̂K such that ρ((uw+(w))w) = ρ(vw+(w))w). By

the definition of ρ, the elements in ρ((uw+(w))w) whose second component equals w are of the

form (uw + rw,w). Since (vw, w) ∈ ρ((vw + (w))w) and, therefore, (vw, w) ∈ ρ((uw + (w))w),

we must have vw = uw + rw for some r ∈ R. This show that (uw + (w))w = (vw + (w))w.

Surjectivity. Let ξ ∈ Ω. The relations in R1 and R2 together implies that if t ∈ ξ, then

t(q/p, 1/p) ∈ ξ for all q ∈ R and p ∈ R× (fix t and apply f(t−1ξ) = 0 for various f). For

each m ∈ R×, let f =
∑

l+(m) 1(l,m) − 1 in R3 and apply f(t−1ξ) = 0 with t = (0, 1) to see

that there exists only one class l + (m) such that (l,m) ∈ ξ. Denote this class by um + (m).

Since t(0, 1/p) ∈ ξ if t ∈ ξ, then pm,mp(ump + (mp)) = (um + (m)). From this, we can define

unambiguously uw + (w) = um+ (w) for w = m/m′ ∈ K×. One can see that the classes uw +

(w) are compatible with the projections pw,w′ by using that t(q/p, 1/p) ∈ ξ if t ∈ ξ. Hence, we

have constructed (uw + (w))w ∈ R̂K . We claim that ρ((uw + (w))w) = ξ. Since (uw, w) ∈ ξ,

(uw, w)(q, 1) = (uw+qw,w) must belongs to ξ. This shows that ρ((uw+(w))w) ⊆ ξ. Suppose,

by contradiction, ρ((uw+(w))w) 6= ξ. Hence, there exists s ∈ ξ such that s /∈ ρ((uw+(w))w).

If we write s = (n′/m′,m/m′), then s /∈ ρ((uw + (w))w) is equivalent to n′ −m′um /∈ (m).

Let t = (um, 1/m
′), s′ = (um,m/m

′) and note that both belong to ρ((uw + (w))w) (hence,

belong to ξ). Since t−1s = (−m′um,m′)(n′/m′,m/m′) = (n′ −m′um,m), t−1s′ = (0,m) and

n′ −m′um /∈ (m), then f(t−1ξ) 6= 0 if f =
∑

l+(m) 1(l,m) − 1, which contradicts the fact that

ξ ∈ Ω. Hence, ρ((uw + (w))w) = ξ.

To conclude the proof, observe that R̂K and Ω are compact Hausdorff, therefore it suffices

to show that ρ (or ρ−1) is continuous to conclude that ρ is a homeomorphism. We will

prove that ρ−1 is continuous by showing that πw ◦ ρ−1 is continuous for all w ∈ K×, where

πw : R̂K −→ (R+ (w))/(w) is the canonical projection. Since (R + (w))/(w) is discrete, it

suffices to show that ρ◦π−1
w ({uw+(w)}) is an open set of Ω, for all uw+(w) ∈ (R+(w))/(w).

To see this, note that

ρ ◦ π−1
w ({uw + (w)}) = {ξ ∈ Ω | (uw, w) ∈ ξ},

which is an open set of Ω (recall that the topology on Ω is induced by the product topology

of {0, 1}KoK×).

According Section 3.4, there exists a partial action of K o K× on Ω. By the above

proposition, we can define this partial action on R̂K . Let R̂t = ρ−1(Ωt), where Ωt = {ξ ∈
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Ω | t ∈ ξ}, and θt be the homeomorphism between R̂t−1 and R̂t. It’s easy to see that

R̂(u,w) = {(uw′ + (w′))w′ ∈ R̂K | uw + (w) = u+ (w)}

and

θ(u,w)((uw′ + (w′))w′) = (u+ wuw′ + (ww′))ww′ = (u+ wuw−1w′ + (w′))w′ ,

i.e., θ(u,w) acts on R̂(u,w)−1 by the affine transformation corresponding to (u,w). The next

proposition, whose proof is trivial, will be useful later.

Proposition 4.2.3. We have that

(i) R̂(u,w) = ∅ ⇐⇒ u /∈ R+ (w);

(ii) R̂(u,w) = R̂K ⇐⇒ R ⊆ u+ (w).

Now, we describe the topology on R̂K . For w ∈ K× and Cw ⊆ (R + (w))/(w), we define

the open set

V Cw
w = {(uw′ + (w′))w′ ∈ R̂K | uw + (w) ∈ Cw}.

Clearly, if w ≤ w′, then V Cw
w = V

Cw′
w′ , where Cw′ = {u+(w′) ∈ (R+(w′))/(w′) | u+(w) ∈ Cw}.

From the product topology, we know that the finite intersections of open sets V Cw
w form a

basis for the topology on R̂K . By taking a common multiple of the w’s in the intersection, we

see that every basic open set is of the form V Cw
w (since V C1

w ∩V C2
w = V C1∩C2

w ). Furthermore, if

Cw 6= ∅, r is a non-invertible element in R (it always exists) and V Cw
w = V Cwr

wr , then Cwr has,

at least, two elements. Indeed, let u+ (w) ∈ Cw and r1, r2 ∈ R such that r1 + (r) 6= r2 + (r).

It’s easy to see that u+wr1 + (wr) and u+wr2 + (wr) are in Cwr and that u+wr1 + (wr) 6=

u+wr2 + (wr). This says that, if V Cw
w is non-empty, we can suppose that Cw has more than

one element.

Proposition 4.2.4. The partial action θ on R̂K is topologically free (Definition 3.1.6).

Proof. We need to show that Ft = {x ∈ R̂t−1 | θt(x) = x} has empty interior, for all

t ∈ K oK×\{(0, 1)}. We shall consider two cases: t = (u, 1) and t = (u,w), w 6= 1.

Case 1. If u /∈ R, then Proposition 4.2.3 says that R̂t−1 = ∅. So, we can suppose u ∈ R. If

Ft 6= ∅, then equation θt(x) = x implies that u ∈ (m) for every m ∈ R×. Since R is not a

field, then u = 0. This show that Ft = ∅ if t = (u, 1) and u 6= 0.

Case 2. Let t = (u,w) such that w 6= 1 and u ∈ R + (w) (if u /∈ R + (w), then R̂t−1 = ∅).
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Let V be a non-empty open set contained in R̂t−1 . We will show that there exists x ∈ V such

that θt(x) 6= x. By shrinking V if necessary, we can suppose that V = V
Cw′
w′ . Furthermore,

we can assume that Cw′ has more than one element. Let u1 + (w′) and u2 + (w′) be distinct

elements of Cw′ which, by definition, can be written such that u1 and u2 are in R. Therefore,

(u1 + (w′′))w′′ and (u1 + (w′′))w′′ belong to R̂K and, since V = V
Cw′
w′ , belong to V . Note that

u1 + (w′) and u2 + (w′) be distinct is equivalent to u1−u2 /∈ (w′). Suppose, by contradiction,

θt(x) = x for all x ∈ V . Since (ui + (w′′))w′′ ∈ V , i = 1, 2, then

θ(u,w)((ui + (w′′))w′′) = (ui + (w′′))w′′ =⇒ (u+ wui + (w′′))w′′ = (ui + (w′′))w′′ .

By choosing w′′ = (w − 1)w′ (note that w 6= 1), we see that u+ (w − 1)ui ∈ ((w − 1)w′), for

i = 1, 2. By subtracting the equations (for different i’s), we have (w−1)(u1−u2) ∈ ((w−1)w′)

and, therefore u1 − u2 ∈ (w′); which is a contradiction! This show that Ft has empty

interior.

Proposition 4.2.5. The partial action θ is minimal (Definition 3.1.9).

Proof. We will prove that every x ∈ R̂K has dense orbit (Proposition 3.1.10) by showing

that if V is a non-empty open set, then there exists t ∈ K o K× such that x ∈ R̂t−1 and

θt(x) ∈ V . Let x = (uw + (w))w ∈ R̂K and V = V
Cw′
w′ be non-empty. Take u′ + (w′) ∈ Cw′

and observe that we can suppose, without loss of generality, u′ ∈ R and uw′ ∈ R. Let

t = (u′ − uw′ , 1). By Proposition 4.2.3, R̂t−1 = R̂K and, hence, x ∈ R̂t−1 . To conclude, note

that θt(x) = θ(u′−uw′ ,1)((uw + (w))w) = (u′ − uw′ + uw + (w))w ∈ V .

Following, we summarize the results of this section.

Theorem 4.2.6. The algebra A[R] is ∗-isomorphic to the partial crossed product C(R̂K)oα

K oK×, where α is the partial action induced by θ. The ∗-isomorphism is given by un 7−→

1δ(n,1) and sm 7−→ 1(0,m)δ(0,m), where 1(0,m) is the characteristic function of R̂(0,m).

The theorem above is a consequence of Theorems 3.4.6 and 4.1.5.

Theorem 4.2.7. A[R] is simple.

Proof. Since KoK× is amenable, then Proposition 3.2.4 is valid for the full crossed product.

Therefore, by Propositions 4.2.4 and 4.2.5, we conclude that C(R̂K) oα K oK× is simple.

The result follows from the previous theorem.
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In Section 2.1 we see that there exists a surjective ∗-homomorphism A[R] −→ Ar[R]. By

using that A[R] is simple, we obtain the following consequence.

Corollary 4.2.8. A[R] ∼= Ar[R].

In [10], Cuntz defined two C∗-algebras: QZ and QN. The algebra QN is a C∗-subalgebra

of QZ, which is nothing but A[R] when R = Z. In [31] and [7], Brownlowe, an Huef, Laca

and Raeburn showed that QN is a partial crossed product by using a boundary quotient of

the Toeplitz (or Wiener-Hopf) algebra of the quasi-lattice ordered group (Q o Q×+,N o N×)

(see [36] and [28] for Toeplitz algebras of quasi-lattice ordered groups). We observe that our

techniques are different from theirs. We don’t use Nica’s construction [36] (indeed, our group

K oK× is not a quasi-lattice, in general). From our results, in the particular case R = Z,

we see that QZ is a partial crossed product by the group QoQ×. From this, it’s immediate

that QN is a partial crossed product by QoQ×+ (as in [7]).



Chapter 5

Generalized Cuntz-Li Algebras

In Section 2.1, we introduced the Cuntz-Li algebras and, in Section 2.2, we exhibited the

ring C∗-algebras, which are the generalization proposed by Li for that. In this chapter, we

propose a new generalization for the Cuntz-Li algebras which, in our view, better encodes

the multiplicative structure of the ring.

We begin with some algebraic preliminaries in the first section, where we develop basic

properties about the annihilator of an ideal. Next, we present our generalization of the

Cuntz-Li algebras.

5.1 Algebraic Preliminaries

In this section, we fix R a unital commutative ring.

Definition 5.1.1. The annihilator of an ideal I in R, denoted by Ann(I) or I⊥, is defined

to be the ideal {r ∈ R | ry = 0, ∀ y ∈ I}.

Definition 5.1.2. We say that an ideal I is non-degenerate if I ∩ I⊥ = {0}. We say that

I is essential if I⊥ = {0}.

We show some elementary properties involving ideals and annihilators which will be useful

later.

Proposition 5.1.3. Let I and J be ideals of R. Then:

(i) II⊥ = {0};

32
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(ii) I⊥ is the maximal ideal K such that IK = {0};

(iii) (I ∩ I⊥)2 = {0};

(iv) IJ = I ∩ J if I + J = R;

(v) I ⊆ J =⇒ J⊥ ⊆ I⊥;

(vi) I ⊆ J =⇒ I⊥⊥ ⊆ J⊥⊥;

(vii) I ⊆ I⊥⊥;

(viii) I⊥ = I⊥⊥⊥.

Proof.

(i) Trivial.

(ii) Let K be an ideal such that IK = {0}. Thus, for all k ∈ K, ky = 0 for all y ∈ I. It

follows from definition of I⊥ that k ∈ I⊥.

(iii) It is a consequence of (i).

(iv) IJ ⊆ I ∩ J = (I ∩ J)R = (I ∩ J)(I + J) ⊆ IJ + IJ = IJ .

(v) It is clear from definition of annihilator.

(vi) Apply the previous item twice.

(vii) If r ∈ I then, by definition of I⊥, ry = 0 for all y ∈ I⊥. It says that r ∈ I⊥⊥.

(viii) The inclusion “⊆” follows from the previous item. On the other hand, let r ∈ I⊥⊥⊥.

We need to show that ry = 0 for all y ∈ I. But this is a consequence from definition of

I⊥⊥⊥ and from the fact that I ⊆ I⊥⊥.

Let m ∈ R and consider the linear map pm : R −→ R given by multiplication by m, i.e.,

pm(r) = mr. If m is a zero divisor, then pm is not injective. We look for a (good) ideal I of

R such that pm : I −→ R is injective. The next two propositions give the right choice in case

(m)⊥ is non-degenerate.
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Proposition 5.1.4. If pm : I −→ R is injective, then I ⊆ (m)⊥⊥.

Proof. Let r ∈ I and y ∈ (m)⊥. We will show that ry = 0. By definition of (m)⊥, ym = 0

and therefore, rym = 0. Since I is an ideal and pm : I −→ R is injective, then rym = 0

implies ry = 0.

Proposition 5.1.5. pm : (m)⊥⊥ −→ R is injective if, and only if, (m)⊥ is non-degenerate,

i.e., (m)⊥ ∩ (m)⊥⊥ = {0}.

Proof. (⇒) Let r ∈ (m)⊥∩ (m)⊥⊥. By definition of (m)⊥, we have rm = 0. Since r ∈ (m)⊥⊥

and pm : (m)⊥⊥ −→ R is injective, then rm = 0 implies r = 0.

(⇐) Let r ∈ (m)⊥⊥ such that rm = 0. Thus, r ∈ (m)⊥ and, hence, r ∈ (m)⊥ ∩ (m)⊥⊥. It

follows from the hypothesis that r = 0, i.e., pm : (m)⊥⊥ −→ R is injective.

Our concern with the injectivity of pm will become clear in next section. For now, let’s

see some sufficient conditions for pm to be injective. First, we obtain conditions on each m

and, afterwards, we derive conditions on the ring R such that pm is injective for all m.

Proposition 5.1.6. If any of the following situations occur, then pm : (m)⊥⊥ −→ R is in-

jective.

(i) (m)⊥ is non-degenerate;

(ii) (m)⊥ + (m)⊥⊥ = R;

(iii) (m)⊥ ∩ (m)⊥⊥ is idempotent.

Proof. Item (i) has already been shown and (ii) and (iii) are consequence of (i), (iii) and

(iv) of the Proposition 5.1.3.

Definition 5.1.7. We say that the ring R is semiprime if {0} is the only nilpotent ideal of

R.

Proposition 5.1.8. The following are equivalent:

(i) Every non-zero ideal of R is non-degenerate;

(ii) Every non-zero ideal of R is either idempotent or non-degenerate;
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(iii) R is semiprime;

(iv) For all ideal I of R such that I2 = 0, we have I = 0;

(v) R has no nilpotent elements other than 0;

(vi) The nilradical of R is {0}.

In this case, pm : (m)⊥⊥ −→ R is injective for all m ∈ R.

Proof. The equivalence among (iv), (v) and (vi) is clear and, for the equivalence among (i),

(ii) and (iii), see [15, Proposition 2.6] or [4, Proposição 2.2.17]. Furthermore, the implications

(iii)⇒ (iv)⇒ (i) are trivial. It follows from the previous proposition that pm : (m)⊥⊥ −→ R

is injective for all m ∈ R.

We finish this section with a proposition which will be used later.

Proposition 5.1.9. Let m,m′ ∈ R and suppose R semiprime.

(i) If r ∈ (m′)⊥⊥ and m′r ∈ (m)⊥⊥, then r ∈ (m)⊥⊥;

(ii) (m)⊥⊥ ∩ (m′)⊥⊥ = (mm′)⊥⊥.

Proof. Since R is semiprime, pm : (m)⊥⊥ −→ R and pm′ : (m′)⊥⊥ −→ R are injective.

(i) If y ∈ (m)⊥, then

ym = 0 =⇒ rymm′ = 0
rym′∈(m)⊥⊥

=⇒ rym′ = 0
ry∈(m′)⊥⊥

=⇒

ry = 0
y∈(m)⊥ arbitrary

=⇒ r ∈ (m)⊥⊥.

(ii) The inclusion “⊇” follows from Proposition 5.1.3(vi) since (m) ⊇ (mm′) and (m′) ⊇

(mm′). Let r ∈ (m)⊥⊥ ∩ (m′)⊥⊥ and y ∈ (mm′)⊥. Hence,

ymm′ = 0 =⇒ rymm′ = 0
rym∈(m′)⊥⊥

=⇒ rym = 0
ry∈(m)⊥⊥

=⇒

ry = 0
y∈(mm′)⊥ arbitrary

=⇒ r ∈ (mm′)⊥⊥.
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5.2 Definition of the Algebra

In this section, we introduce our generalization for the Cuntz-Li algebras of more general

rings than those considered by Cuntz and Li in [12]. We extend the definition for unital

commutative semiprime rings. Although our extension does not cover the entire category of

the unital rings as done by Li in [33], we believe that our approach is more consistent in the

cases covered by the two approaches.

Throughout this section, let R be a unital commutative semiprime ring. As before,

consider the Hilbert space `2(R) and let {ξr | r ∈ R} be its canonical basis. Again, consider

the unitary operator Un in B(`2(R)) given by Un(ξr) = ξn+r. In the original Cuntz-Li

algebras, the operators Sm are defined for each nonzero m ∈ R and, in the extension of Li in

[33], we have operators Sm if m is not a zero-divisor; here we will define an operator Sm for

all m ∈ R. For m ∈ R, define the linear operator Sm on `2(R) by Sm(ξr) = [r ∈ (m)⊥⊥]ξmr,

where [T ] represents 1 if the sentence T is true and 0 if T is false. Since pm is injective on

(m)⊥⊥ by Proposition 5.1.8, we obtain that Sm is bounded. We claim that S∗m(ξr) = [r ∈

m(m)⊥⊥]ξm−1r, where m−1r denotes the unique element k in (m)⊥⊥ such that mk = r.1

Indeed,

〈Sm(ξr), ξr′〉 = [r ∈ (m)⊥⊥][mr = r′] = [m−1r′ ∈ (m)⊥⊥][m−1r′ = r] =

[r′ ∈ m(m)⊥⊥][m−1r′ = r] = 〈ξr, S∗m(ξr′)〉.

Furthermore, we have that Sm is a partial isometry since

SmS
∗
mSm(ξr) = [r ∈ (m)⊥⊥]SmS

∗
m(ξmr) = [r ∈ (m)⊥⊥]Sm(ξr) = [r ∈ (m)⊥⊥]ξmr = Sm(ξr).

So far, everything is working fine. But the crucial question is whether the operators Sm

encode the multiplicative structure of the ring, i.e., whether SmSm′ = Smm′ is valid. The

answer is affirmative and is shown below.

Claim 5.2.1. For all m,m′ ∈ R, SmSm′ = Sm′Sm = Smm′.

Proof. Observe that SmSm′(ξr) = [r ∈ (m′)⊥⊥]Sm(ξm′r) = [r ∈ (m′)⊥⊥][m′r ∈ (m)⊥⊥]ξmm′r.

On the other hand, Smm′(ξr) = [r ∈ (mm′)⊥⊥]ξmm′r. The result follows from both items of

Proposition 5.1.9.

1Note that the expression m−1r does not make sense when r /∈ m(m)⊥⊥. However, in this case, the boolean

expression [r ∈ m(m)⊥⊥] has value 0. Thus, we adopt the convention that when the boolean value is 0, the

rest of the expression is ignored.
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Before introducing our definition for the Cuntz-Li algebra of R, we need to remember

some basic facts. Given a Hilbert space H, we have in B(H) the ideal K(H) of the compact

operators, which can be obtained from the closure in B(H) of the set of finite-rank operators.

These facts can be found in [35, Section 2.4]. Furthermore, the lemma below will be useful.

Lemma 5.2.2. Let H a Hilbert space with orthonormal basis {ξi}i∈I . For each i, j ∈ I,

consider the rank-one operator ξi⊗ ξj on H given by ξi⊗ ξj(ξk) = 〈ξk, ξj〉ξi = [k = j]ξi. Then

the C∗-algebra generated by the set {ξi ⊗ ξj}i,j∈I is K(H).

Proof. For each finite subset F of I let pF the orthogonal projection onto the subspace of

H generated by {ξi}i∈F . Let N ∈ K(H) and consider the net {pFNpF }F⊂I . Since pF =∑
i∈F ξi⊗ ξi and ξi⊗ ξiNξj⊗ ξj = 〈N(ξj), ξi〉ξi⊗ ξj , then pFNpF is in span{ξi⊗ ξj | i, j ∈ I}.

The proof will be complete if we show that {pFNpF }F⊂I converges to N . Without loss

of generality, we can suppose N self-adjoint and ||N || ≤ 1. Denote by B the unit ball

in H and fix ε > 0. By compacity of N , we can choose χ1, . . . , χn ∈ H such that, for

all χ ∈ N(B), ||χ − χk|| < ε2/9 for some k. Choose a finite subset F of I such that,

for all k, ||χk − pF (χk)|| < ε2/9. We claim that, for all T ∈ B(H) such that ||T || ≤ 1,

||(1 − pF )NT || ≤ ε2/3. Indeed, for ξ ∈ B choose k such that ||NT (ξ) − χk|| < ε2/9 (such k

exists because T (ξ) ∈ B) and observe that

||(1− pF )NT (ξ)|| ≤ ||NT (ξ)− χk||+ ||χk − pF (χk)||+ ||pF (χk)− pFNT (ξ)|| < ε2/3.

This shows that ||(1− pF )NT || ≤ ε2/3. Finally, note that

||N − pFNpF ||2 = ||(N − pFNpF )(N − pFNpF )∗|| =

||N2 − pFNpFN −NpFNpF + pFNpFNpF || ≤

||(1− pF )N2||+ ||pFN(1− pF )N ||+ ||(1− pF )NpFNpF || ≤ ε2.

Consider the operator S0. Since (0)⊥⊥ = {0}, then

UnS0U
−n′(ξr) = UnS0(ξr−n′) = [r − n′ = 0]Un(ξ0) = [r = n′]ξn = ξn ⊗ ξn′(ξr).

By the lemma above, the C∗-algebra in B(`2(R)) generated by the set {UnS0U
−n′}n,n′∈R is

K(`2(R)). Now, we are ready to define the Cuntz-Li algebra of R.



Chapter 5. Generalized Cuntz-Li Algebras 38

Definition 5.2.3. The reduced Toeplitz-Cuntz-Li algebra of R, denoted by T A′r[R], is

the C∗-subalgebra of B(`2(R)) generated by the operators {Sm | m ∈ R} and {Un | n ∈ R}.

We define the reduced Cuntz-Li algebra of R to be the quotient T A′r[R]/K(`2(R)) and

we denote it by A′r[R].

By the comments above, K(`2(R)) is contained in T A′r[R]. Thus, the quotient

T A′r[R]/K(`2(R)) makes sense. Now, we will show that our definition actually extends that

in 2.1.2.

Proposition 5.2.4. Suppose that R is an integral domain with finite quotients which is not

a field, as in Section 2.1. Then A′r[R] is ∗-isomorphic to Ar[R].

Proof. Since R is not a field, then card(R) = ∞ (indeed, the elements a, a2, a3, . . . , are

different if a is nonzero and non-invertible). Thus, 1 ∈ B(`2(R)) is not a compact operator

and, hence, Ar[R] 6⊆ K(`2(R)). By simplicity of Ar[R] (Theorem 2.1.6), we must have Ar[R]∩

K(`2(R)) = {0}. Furthermore, we have T A′r[R] = Ar[R] + K(`2(R)) because the generators

of T A′r[R] are the generators of Ar[R] together S0 and any operator generated from S0 is

compact. Finally, by using the second isomorphism theorem,

A′r[R] = T A′r[R]/K(`2(R)) = (Ar[R] +K(`2(R)))/K(`2(R)) ∼=

Ar[R]/(Ar[R] ∩ K(`2(R))) = Ar[R]/{0} ∼= Ar[R].

The next proposition exhibits some properties of the operators Sm and Un in T A′r[R].

Obviously, the equalities between operators are valid in A′r[R] too.

Proposition 5.2.5.

(i) SmS
∗
m is the projection onto span{ξr | r ∈ m(m)⊥⊥};

(ii) UnSmS
∗
mU
−n is the projection onto span{ξr | r ∈ n+m(m)⊥⊥};

(iii) UnSmS
∗
mU
−n and Un

′
SmS

∗
mU
−n′ are equal if n − n′ ∈ m(m)⊥⊥ and orthogonal other-

wise;

(iv) In the strong operator topology, we have
∑

U lSmS
∗
mU
−l = S∗mSm, where the sum is

taken over all cosets l +m(m)⊥⊥ in (m)⊥⊥/m(m)⊥⊥;
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(v) S∗mSm is the projection onto span{ξr | r ∈ (m)⊥⊥};

(vi) UnS∗mSmU
−n is the projection onto span{ξr | r ∈ n+ (m)⊥⊥};

(vii) UnS∗mSmU
−n and Un

′
S∗mSmU

−n′ are equal if n−n′ ∈ (m)⊥⊥ and orthogonal otherwise;

(viii) In the strong operator topology, we have
∑

l+(m)⊥⊥∈R/(m)⊥⊥

U lS∗mSmU
−l = 1;

(ix) SmU
n = UmnSm if n ∈ (m)⊥⊥;

(x) S∗mSmS
∗
m′Sm′ = S∗mm′Smm′.

Proof.

(i) SmS
∗
m(ξr) = [r ∈ m(m)⊥⊥]Sm(ξm−1r) = [r ∈ m(m)⊥⊥][m−1r ∈ (m)⊥⊥]ξr =

[r ∈ m(m)⊥⊥]ξr.

(ii) UnSmS
∗
mU
−n(ξr)= UnSmS

∗
m(ξr−n)= [r−n ∈ m(m)⊥⊥]Un(ξr−n) = [r−n ∈ m(m)⊥⊥]ξr

= [r ∈ n+m(m)⊥⊥]ξr.

(iii) It follows from (ii) and from the fact that n+m(m)⊥⊥ = n′+m(m)⊥⊥ if n−n′ ∈ m(m)⊥⊥

and (n+m(m)⊥⊥) ∩ (n′ +m(m)⊥⊥) = ∅ otherwise.

(iv) Since (m)⊥⊥ is the disjoint union of its cosets modulo m(m)⊥⊥, the result follows from

(ii) and (iii).

(v) S∗mSm(ξr) = [r ∈ (m)⊥⊥]S∗m(ξmr) = [r ∈ (m)⊥⊥][mr ∈ m(m)⊥⊥]ξr = [r ∈ (m)⊥⊥]ξr.

(vi), (vii), (viii) Similar to (ii), (iii) and (iv).

(ix) Let n ∈ (m)⊥⊥. Thus, SmU
n(ξr) = Sm(ξr+n) = [r + n ∈ (m)⊥⊥](ξmr+mn) =

[r ∈ (m)⊥⊥](ξmr+mn). On the other hand, UmnSm(ξr) = [r ∈ (m)⊥⊥]Umn(ξmr) =

[r ∈ (m)⊥⊥](ξmr+mn).

(x) By (v), S∗mSmS
∗
m′Sm′ is the projection onto span{ξr | r ∈ (m)⊥⊥ ∩ (m′)⊥⊥} and

S∗mm′Smm′ is the projection onto span{ξr | r ∈ (mm′)⊥⊥}. The result follows from

Proposition 5.1.9(ii).
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The relations (iv) and (ix) above generalize (CL3) and (CL4) in Definition 2.1.1 in a

very satisfactory way. This together with Proposition 5.2.4 credits our definition as a good

candidate for extension of the Cuntz-Li algebras.

We finish this chapter talking about the next steps to be taken in this project. First,

we need to find the correct definition for the full version of this algebra. There are many

new relations involving the generators (as seen in the above proposition); to find which of

them should appear in the full version and to know whether the set of relations is complete

probably will be a difficult task. Furthermore, we need to solve the problem of relations with

infinite sums, as in (iv) and (viii). The second step is to find a tool to study the algebra. It

is unlikely that the theory of partial group algebras applies to this case. Indeed, the group

K oK× (see Chapter 4) does not make sense if R is not an integral domain. We conjecture

that the theory of tight representations (see [19] and [20]) applies to this case. The last step

is to extend the construction for noncommutative rings. Apparently, slight modifications in

the ideals (considering left ideals and left annihilators) could solve the problem. To finish,

we do not see a way to extend the definition for non-semiprime rings.



Chapter 6

Bost-Connes Algebra as Partial

Crossed Product

In this chapter, we show that the Bost-Connes algebra CQ (Definition 2.3.1) is ∗-isomor-

phic to a partial crossed product. In the first section, we present the partial action from

which we construct the crossed product and we develop some properties which are used in

the proofs. In the last section, we exhibit the ∗-isomorphism.

6.1 Preliminaries

In Chapter 4, for each integral domain R with finite quotients, we constructed a partial

action θ of the group K o K× on R̂K , where K is the field of fractions of R and R̂K is

(homeomorphic to) the profinite completion of R. When we take R = Z, we obtain a partial

action of Q o Q∗ on ẐQ. There is a natural embedding of the multiplicative group Q∗+ in

QoQ∗ which sends w to (0, w). If we restrict θ to the subgroup {0}oQ∗+ and if we identify

it with Q∗+, then we get a partial action θ of Q∗+ on ẐQ. From now on, fix such θ and the

induced partial action α of Q∗+ on C(ẐQ). At the end of this chapter, we show that CQ is

∗-isomorphic to C(ẐQ) oα Q∗+.

Let’s analyse the action θ. Although θ is an action of Q∗+, we need to remember that an

element of w ∈ Q∗+ acts as (0, w). Hence, according to Chapter 4,

ẐQ =

(uw + (w))w ∈
∏
w∈Q∗

(Z + (w))/(w)

∣∣∣∣ pw,w′(uw′ + (w′)) = uw + (w), if w ≤ w′
 ,

41
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Ẑw = {(uw′ + (w′))w′ ∈ ẐQ | uw + (w) = 0 + (w)}

and

θw : Ẑ1/w −→ Ẑw

(uw′ + (w′))w′ 7−→ (wuw−1w′ + (w′))w′ .

We will need some properties about α too. According to Sections 3.3 and 3.4, C(ẐQ) is

generated by {1(u,w)}(u,w)∈QoQ∗ , where 1(u,w) is the characteristic function of the set Ẑ(u,w) =

{(uw′ + (w′))w′ ∈ ẐQ | uw + (w) = u + (w)}. Furthermore, the ideals C(Ẑw) ∼= 1(0,w)C(ẐQ)

are generated by {1(0,w)1(u,w′)}(u,w′)∈QoQ∗ . The functions 1(u,w) play an important role in

the construction of the isomorphism. Let’s see some of their properties.

Proposition 6.1.1. Let u, u′ ∈ Q, w ∈ Q∗, n, n′ ∈ Z and m,m′ ∈ Z∗.

(P1) 1(u,w) = 1 ⇐⇒ Z ⊆ u+ (w);

(P2) 1(u,w) = 0 ⇐⇒ u /∈ Z + (w);

(P3) 1(n,m)1(n,mm′) = 1(n,mm′);

(P4) 1(n,m/m′) = 1(n,m) if (m,m′) = 1;

(P5) 1(u,w) = 1(u′,w) if u+ (w) = u′ + (w);

(P6) 1(u,w)1(u′,w) = 0 if u+ (w) 6= u′ + (w);

(P7) 1(n,m) =
∑

l+(m′)∈Z/(m′)

1(n+lm,mm′);

(P8) If 1(u,w) 6= 0, then there exists n ∈ Z and m ∈ Z∗ such that 1(u,w) = 1(n,m).

Proof. There are two ways to show these properties: we can use the definition of ẐQ or we

can use the ∗-isomorphism A[Z] ∼= C(ẐQ)oαQoQ∗ and check them in A[Z]. We have chosen

the first one.

(P1), (P2) Follows from Proposition 4.2.3.

(P3) We need to show that Ẑ(n,mm′) ⊆ Ẑ(n,m). Indeed, if (uw + (w), (w))w ∈ Ẑ(n,mm′), then

umm′+(mm′) = n+(mm′). By using the definition of ẐQ, we have um+(m) = n+(m)

and, hence, (uw + (w), (w))w ∈ Ẑ(n,m).
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(P4) If (m,m′) = 1, then Z ∩ m
m′Z = mZ. Thus,

Z + m
m′Z

m
m′Z

∼=
Z

Z ∩ m
m′Z

=
Z
mZ

∼=
Z +mZ
mZ

,

which says that Ẑ(n,m/m′) = Ẑ(n,m).

(P5), (P6) Trivial.

(P7) We need to show that the union
⋃

l+(m′)∈Z/(m′)

Ẑ(n+lm,mm′) is disjoint and equal to Ẑ(n,m).

The previous item shows that the union is disjoint. It’s clear that Ẑ(n+lm,mm′) ⊆ Ẑ(n,m).

Conversely, if (uw + (w), (w))w ∈ Ẑ(n,m), i.e., um + (m) = n+ (m), then we must have

umm′ + (mm′) = n+ lm+ (mm′) for some l.

(P8) If 1(u,w) 6= 0, by item (P2) there exist n, k ∈ Z such that u = n + kw. By item (P5),

1(u,w) = 1(n,w) and, writing w = m/m′ with (m,m′) = 1, follows from item (P4) that

1(u,w) = 1(n,m).

Now, let’s see elementary properties of the partial crossed product C(ẐQ) oα Q∗+.

Proposition 6.1.2.

(P9) (1(0,w)δw)∗ = 1(0,1/w)δ1/w and, for f ∈ C(ẐQ), (fδ1)∗ = f∗δ1;

(P10) (1(0,w)δw)(1(0,w′)δw′) = 1(0,w)1(0,ww′)δww′ and, for f ∈ C(ẐQ) and g ∈ C(Ẑw),

(fδ1)(gδw) = fgδw.

Proof. Both items follows from definitions in Section 3.2 and from Remark 3.1.3.

We recall that the the Bost-Connes algebra CQ is generated by isometries {µm}m∈N∗ and

unitaries {eγ}γ∈Q/Z. Here, we use e(γ) instead of eγ and for γ = n/m + Z, we write simply

γ = n/m. Below, we present some useful properties about CQ.

Proposition 6.1.3.

(P11) µmµ
∗
mµm′µ

∗
m′ = µm′µ

∗
m′µmµ

∗
m;

(P12) µmµ
∗
meγ = eγµmµ

∗
m;
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(P13) µmµ
∗
m =

1

m

∑
l+(m)∈Z/(m)

e

(
lm′

m

)
, for all m′ ∈ Z∗ such that (m,m′) = 1. In particular, 1

m

∑
l+(m)∈Z/(m)

e

(
lm′

m

)µm = µm if (m,m′) = 1.

Proof. From (BC5) taking γ = 0, we see

µmµ
∗
m =

1

m

∑
l+(m)∈Z/(m)

e

(
l

m

)
,

from which (P11) and (P12) follows. Since lm′ + (m) take all values in Z/(m) when l+ (m)

varies in Z/(m) in case (m,m′) = 1, then we have (P13).

At a certain stage, we will need a ∗-homomorphism whose domain is C(ẐQ). Since it’s a

hard work to get it directly, we will exhibit a new look for C(ẐQ). In [29, page 336], Laca and

Raeburn showed that the dual Q̂/Z of the group Q/Z is homeomorphic to ẐQ. Thus, from

group C∗-algebras theory1, the group C∗-algebra C∗(Q/Z) is ∗-isomorphic to C(ẐQ) through

the Fourier transform. Since that C∗(Q/Z) is universal with respect to unitary representations

of Q/Z, now we have a good way to construct ∗-homomorphisms from C(ẐQ). We summarize

it in proposition below. For x ∈ C, we denote ex by exp(x) since the letter e is overloaded.

Proposition 6.1.4. There is a ∗-isomorphism C∗(Q/Z) −→ C(ẐQ) given by

i(γ) 7−→
∑

l+(m)∈Z/(m)

exp

(
− ln
m
· 2πi

)
1(l,m),

where i(γ) represents the unitary canonical image of γ in C∗(Q/Z). It’s inverse is given by

1(n/m′,m/m′) 7−→
1

m

∑
l+(m)∈Z/(m)

exp

(
nl

m
· 2πi

)
i

(
lm′

m

)
.

To complete our list of properties, we present two elementary facts.

Proposition 6.1.5.

(P14) For m,m′ ∈ Z∗, the map

Z/(m)× Z/(m′) −→ Z/(mm′)

(l + (m), l′ + (m′)) 7−→ l + l′m+ (mm′)

is a bijection;

1See [8] for group C∗-algebras.
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(P15) For m ∈ Z∗ and k ∈ Z,

∑
l+(m)∈Z/(m)

exp

(
kl

m
· 2πi

)
=

 m, if k ∈ (m),

0, otherwise.

Now, we are ready to begin the proof that CQ and C(ẐQ) oα Q∗+ are ∗-isomorphic.

6.2 The ∗-isomorphism between CQ and C(ẐQ)oα Q∗+

First, we will construct a ∗-homomorphism Φ : CQ −→ C(ẐQ) oα Q∗+. For this, we will

find a representation of µm and e(γ) in C(ẐQ) oα Q∗+ that satisfies the relations (BC1)-

(BC5) in definition 2.3.1 and we will use the universal property of CQ. For m ∈ N∗, define

Φ(µm) = 1(0,m)δm and for γ = n
m ∈ Q/Z, set

Φ(e(γ)) =
∑

l+(m)∈Z/(m)

exp

(
− ln
m
· 2πi

)
1(l,m)δ1.

By Proposition 6.1.4, Φ is well-defined on e(γ).

Proposition 6.2.1. Φ(µm) is an isometry, Φ(γ) is a unitary and Φ satisfies the relations

(BC1)-(BC5) in Definition 2.3.1.

Proof. Since

Φ(µm)∗Φ(µm) = (1(0,m)δm)∗(1(0,m)δm)
(P9 )
= (1(0,1/m)δ1/m)(1(0,m)δm)

(P10 )
=

1(0,1/m)1(0,1/m)δ1 = 1(0,1/m)δ1
(P1 )
= 1δ1,

we see that Φ(µm) is an isometry. By Proposition 6.1.4, we obtain that Φ(γ) is a unitary

and that (BC3) is satisfied. In Proposition 2.8 of [29], Laca and Raeburn showed that the

relations (BC2) and (BC4) are unnecessary and, hence, it remains to show that (BC1) and

(BC5) are satisfied. Since

Φ(µm)Φ(µm′) = (1(0,m)δm)(1(0,m′)δm′)
(P10 )

= 1(0,m)1(0,mm′)δmm′
(P3 )
= 1(0,mm′)δmm′ = Φ(µmm′),

we have (BC1). Handling the left side of (BC5), we have

Φ(µm′)Φ
(
e
( n
m

))
Φ(µm′)

∗ (P9 )
=

(1(0,m′)δm′)

 ∑
l+(m)∈Z/(m)

exp

(
− ln
m
· 2πi

)
1(l,m)δ1

 (1(0,1/m′)δ1/m′)
(P1 ),(P3 ),(P5 ),(P10 )

=
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∑
l+(m)∈Z/(m)

exp

(
− ln
m
· 2πi

)
1(lm′,mm′)δ1.

In developing the right side below, the sets on which the sums are computed are understood.

For example, a sum on k + (m) means k + (m) ∈ Z/(m). Thus,

1

m′

∑
m′δ=n/m

Φ(e(δ)) =
1

m′

∑
k+(m′)

Φ

(
e

(
n+ km

mm′

))
=

1

m′

∑
k+(m′)

∑
k′+(mm′)

exp

(
−k
′(n+ km)

mm′
· 2πi

)
1(k′,mm′)δ1

(P14 )
=

1

m′

∑
k+(m′)

∑
l+(m)

∑
l′+(m′)

exp

(
−(l′ + lm′)(n+ km)

mm′
· 2πi

)
1(l′+lm′,mm′)δ1 =

1

m′

∑
l+(m)

exp

(
− ln
m
· 2πi

) ∑
l′+(m′)

exp

(
− l′n

mm′
· 2πi

) ∑
k+(m′)

exp

(
−kl

′

m′
· 2πi

)
1(l′+lm′,mm′)δ1.

By (P15), the sum on k+(m′) is nonzero except when l′ ∈ (m′). In this case, taking l′ = pm′,

we have

1

m′

∑
m′δ=n/m

Φ(e(δ)) =
1

m′

∑
l+(m)

exp

(
− ln
m
· 2πi

)
exp
(
−pn
m
· 2πi

)
m′1(pm′+lm′,mm′)δ1 =

∑
l+(m)

exp

(
−(l + p)n

m
· 2πi

)
1((l+p)m′,mm′)δ1 =

∑
l+(m)∈Z/(m)

exp

(
− ln
m
· 2πi

)
1(lm′,mm′)δ1.

This proposition ensures the existence of the desired ∗-homomorphism Φ : CQ −→

C(ẐQ) oα Q∗+. Now, we will present an inverse for Φ. A natural way to construct a ∗-

homomorphism whose domain is a partial crossed product is to use Proposition 3.2.2, i.e., is

to find a covariant pair. In our case, we need a partial representation π : Q∗+ −→ CQ and a

∗-homomorphism ϕ : C(ẐQ) −→ CQ such that (ϕ, π) is α-covariant (Definition 3.1.14).

Define π : Q∗+ −→ CQ by π
(
m
m′

)
= µ∗m′µm. We claim that π is well-defined. Indeed

π
(
md
m′d

)
= µ∗m′dµmd

(BC1)
= µ∗m′µ

∗
dµdµm = µ∗m′µm = π

(
m
m′

)
.

Proposition 6.2.2. π is a partial representation.

Proof.

(PR1) π(1) = µ∗1µ1 = 1.

(PR2) π
((

m
m′

)−1
)

= π
(
m′

m

)
= µ∗mµm′ = (µ∗m′µm)∗ = π

(
m
m′

)∗
.
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(PR3) Let s = p
p′ and t = m

m′ . Thus,

π(st)π(t−1) = µ∗m′p′µmpµ
∗
mµm′

(BC1)
= µ∗p′µ

∗
m′µpµmµ

∗
mµm′ = µ∗p′µ

∗
m′µpµmµ

∗
mµm′µ

∗
m′µm′

(P11 )
= µ∗p′µ

∗
m′µpµm′µ

∗
m′µmµ

∗
mµm′

(BC1)
= µ∗p′µ

∗
m′µm′µpµ

∗
m′µmµ

∗
mµm′ =

µ∗p′µpµ
∗
m′µmµ

∗
mµm′ = π(s)π(t)π(t−1).

Now, our goal is to find a ∗-homomorphism from C(ẐQ) to CQ. Since that the natural

map Q/Z 3 γ 7−→ e(γ) ∈ CQ is obviously a unitary representation of Q/Z, there is a ∗-

homomorphism from C∗(Q/Z) to CQ which sends i(γ) to e(γ). By Proposition 6.1.4, there

is a ∗-homomorphism ϕ : C(ẐQ) −→ CQ such that

ϕ(1(n/m′,m/m′)) =
1

m

∑
l+(m)∈Z/(m)

exp

(
nl

m
· 2πi

)
e

(
lm′

m

)
.

Proposition 6.2.3. The pair (ϕ, π) is α-covariant.

Proof. Let t = m
m′ ∈ Q∗+. Without loss of generality, we can assume (m,m′) = 1. Thus,

π(t)π(t−1) = µ∗m′µmµ
∗
mµm′

(BC2)
= µmµ

∗
m′µm′µ

∗
m = µmµ

∗
m. Hence, follows from (P12) that

(COV2) is satisfied. By (P8) and since the set {1(0,m′/m)1(u,w)}(u,w)∈QoQ∗ generates the ideal

C(Ẑt−1) as seen in section 6.1, it suffices to prove (COV1) with x = 1(0,m′/m)1(n,m′′), where

n ∈ Z and m′′ ∈ Z∗. Whereas αt(1(0,m′/m)1(n,m′′)) = 1(mn/m′,mm′′/m′)1(0,m/m′) by Remark

3.1.3, then

ϕ(αt(x)) = ϕ(1(mn/m′,mm′′/m′)1(0,m/m′)) = 1

mm′′

∑
l+(mm′′)

exp

(
nl

m′′
· 2πi

)
e

(
lm′

mm′′

) 1

m

∑
l+(m)

e

(
lm′

m

) (P13 )
=

 1

mm′′

∑
l+(mm′′)

exp

(
nl

m′′
· 2πi

)
e

(
lm′

mm′′

)µmµ
∗
m

(BC4)
=

µm

 1

mm′′

∑
l+(mm′′)

exp

(
nl

m′′
· 2πi

)
e

(
lm′

m′′

)µ∗m
(P14 )

=

µm

 1

mm′′

∑
l′+(m)

∑
l′′+(m′′)

exp

(
n(l′′ + l′m′′)

m′′
· 2πi

)
e

(
(l′′ + l′m′′)m′

m′′

)µ∗m =

µm

 1

mm′′

∑
l′+(m)

∑
l′′+(m′′)

exp

(
nl′′

m′′
· 2πi

)
e

(
l′′m′

m′′

)µ∗m =
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µm

 1

m′′

∑
l′′+(m′′)

exp

(
nl′′

m′′
· 2πi

)
e

(
l′′m′

m′′

)µ∗m.

On the other hand,

π(t)ϕ(x)π(t−1)
(BC2)

= µmµ
∗
m′

 1

m′′

∑
l+(m′′)

exp

(
nl

m′′
· 2πi

)
e

(
l

m′′

) 1

m′

∑
l′+(m′)

e

(
l′m

m′

)µm′µ∗m
(P13 )

= µmµ
∗
m′

 1

m′′

∑
l+(m′′)

exp

(
nl

m′′
· 2πi

)
e

(
l

m′′

)µm′µ
∗
m

(BC4)
=

µm

 1

m′′

∑
l+(m′′)

exp

(
nl

m′′
· 2πi

)
e

(
lm′

m′′

)µ∗m,

which shows (COV1). Hence, (ϕ, π) is α-covariant.

By Proposition 3.2.2, there exists a ∗-homomorphism ϕ× π : C(ẐQ) oα Q∗+ −→ CQ such

that ϕ× π(xδt) = ϕ(x)π(t). The next theorem is the main goal of this chapter.

Theorem 6.2.4. The ∗-homomorphisms Φ and ϕ× π are inverses of each other. In partic-

ular, CQ ∼= C(ẐQ) oα Q∗+.

Proof. It’s enough to verify that (ϕ × π) ◦ Φ = IdCQ and Φ ◦ (ϕ × π) = IdC(ẐQ)oαQ∗+
on the

generators. By Proposition 6.1.4, we have (ϕ× π) ◦ Φ(e(γ)) = e(γ) and since

(ϕ×π)◦Φ(µm) = ϕ×π(1(0,m)δm) = ϕ(1(0,m))π(m) =

 1

m

∑
l+(m)∈Z/(m)

e

(
l

m

)µm
(P13 )

= µm,

one side is complete. On the other hand, it suffices to show that Φ ◦ (ϕ× π) = IdC(ẐQ)oαQ∗+

on 1s1tδt, where t ∈ Q∗+ and s ∈ Q o Q∗. Let t = m/m′ and s = (n,m′′), where n ∈ Z and

m,m′,m′′ ∈ Z∗ with (m,m′) = 1 (we can choose such s because of (P8)). Thus,

Φ ◦ (ϕ× π)(1s1tδt) = Φ(ϕ(1s)ϕ(1t)π(t)) =

Φ

 1

m′′

∑
l+(m′′)

exp

(
nl

m′′
· 2πi

)
e

(
l

m′′

) 1

m

∑
l+(m)

e

(
lm′

m

)µ∗m′µm

 (P13 ),(BC2)
=

Φ

 1

m′′

∑
l+(m′′)

exp

(
nl

m′′
· 2πi

)
e

(
l

m′′

)µmµ
∗
m′

 =

 1

m′′

∑
l+(m′′)

exp

(
nl

m′′
· 2πi

) ∑
l′+(m′′)

exp

(
− l′l

m′′
· 2πi

)
1(l′,m′′)δ1

 1(0,m)δm1(0,1/m′)δ1/m′
(P4 ),(P10 )

=
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 1

m′′

∑
l′+(m′′)

∑
l+(m′′)

exp

(
(n− l′)l
m′′

· 2πi
)

1(l′,m′′)

 1(0,m/m′)δm/m′ .

As before, by (P15) we must have n− l′ ∈ (m′′). Taking l′ = n+ km′′, we have

Φ ◦ (ϕ× π)(1s1tδt) =

 1

m′′

∑
l′+(m′′)

∑
l+(m′′)

exp

(
(n− l′)l
m′′

· 2πi
)

1(l′,m′′)

 1(0,m/m′)δm/m′ =

1(n+km′′,m′′)1(0,m/m′)δm/m′
(P5 )
= 1(n,m′′)1(0,m/m′)δm/m′ = 1s1tδt.

A continuation of this project involves to prove that the generalized Bost-Connes algebras

(see [2]) are partial crossed products too. Furthermore, we hope the available tools in the

partial crossed products theory can recover, in a natural way, the connections between these

algebras and the Number Theory. To conclude, the procedure presented in this chapter gives

rise to many new algebras. Indeed, we obtain CQ by restricting the group QoQ∗ to Q∗+ in

the partial crossed product C(ẐQ) oα QoQ∗ ∼= A[Z]. If we replace Z by an integral domain

(as in Chapter 4) and Q∗+ for an arbitrary subgroup of K o K×, we obtain new algebras,

which may be interesting to study.
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