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1 Introduction

In the 60s and 70s a good statistical and topological description was given of hyper-
bolic dynamics, giving examples of structurally stable chaotic systems. The defintion
of hyperbolicity involves contracting and expanding directions in the tangent space.
Relaxing the definition gives rise to partial hyperbolicity and systems with dominated
decomposition. Conversely, robust dynamical phenomena lead to conditions on the tan-
gent space, aumenting the importance of studying such systems [12]. However, many
questions remain in the open regarding how do the known theorems for hyperbolic dy-
namics adapt to the case of partial hyperbolicity. For example, hyperbolic dynamical
systems can be broken down into a finite number of dynamically indecomposable sets
(spectral decomposition), but it is uknown if this holds at least in a dense subset of
partially hyperbolic systems.

Probably the simplest way to create a partially hyperbolic system out of a hyper-
bolic one is to form a direct product of a hyperbolic one with the identity map. That
is a map of the form F × IdN on the manifold M × N where F has a hyperbolic
set in M . It is a natural question to ask what are the dynamics for diffeomorphisms
nearby. This question was adressed in many works from the topological and ergodic
perspectives, see for example [6], [1], [5], [14], [11].

In [1] it was shown that nearby F × IdN there exist robustly transitive non-
hyperbolic diffeomorphisms. For the proof the notion of a blender was used. Blenders
are hyperbolic sets with the extra property that a projection of the stable set of the
blender has a larger topological dimension then that of the stable sub-bundle. Blenders
appear in a variety of settings such as in producing robust heterodimensional cycles [2],
robustly transitivite sets in symplectic dynamics [9] and as criteria for stable ergodicity
[13].

The main property of the blender can be related to the study of iterated function
systems [3]. An iterated function system (IFS) with respect to a set of diffeomorphisms
on a manifold is the set of all their finite forward compositions. Important notions in
dynamics like minimality, transitivity, and spectral decomposition can be extended to
IFS (see the next section).

By the theorems of [6], diffeomorphisms nearby F × IdN are conjugated to skew-
products of the form (x, y) → (F (x), Gx(y)) where F is again the hyperbolic map.
As dynamics on hyperbolic sets are conjugated to a shift map on a symbolic space, it
makes sense to work with symbolic skew-products of the form (θ, y) → (τ(θ), Gθ(y))
acting on the space Λ×N where Λ is a symbolic space of a finite number of symbols
and N is the manifold.

The symbolic skew-products with the maps Gθ contractions were explored in [9]
where symbolic blenders were defined and were used to create robustly transitive sets in
the Hamiltonian setting. The interplay between dynamics of iterated function sytems
and the symbolic skew-products was an important tool. Symbolic blenders become
minimal sets with non-empty interior in the language of IFS.

The work of [5] studied iterated function systems of diffeomorphisms on the circle,
and there was given an example of a robustly minimal IFS in the topology of IFS. The
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robust properties in the IFS topology were then translated to robust properties in the
topology of symbolic skew-products. But for this, the space of symbolic skew-products
required the additional assumption that the fibers Gθ(y) have α-Holder dependence
with respect to the sequence. That is

d(Gθ, Gσ) < C · d(θ, σ)α.

The constant α had a relationship with how close the fiber maps Gθ are to the identity.
This Holder constraint does not create a problem in going from symbolic skew-products
back to diffeomorphisms on an actual manifold. Diffeomorphisms nearby F × IdN are
actually conjugated to skew-products with Holder dependence on the fibers [4].

The above discussion motivates the study of dynamics of IFS on its own right, the
connections with symbolic skew-products and partially hyperbolic sets. In this work
firstly are studied iterated function systems on the circle. We searched for minimal
sets with non-empty interior in the IFS context, as this will translate to sets with the
blender property for the symbolic skew-products.

Next will be given a brief description of the results. Consider an IFS given by a
generic pair of diffeomorphisms on the circle. The extra assumption is that the maps
are close to the identity in the C2 topology. With respect to this pair the following is
proven.

• Existence of minimal sets with non-empty interior (see theorems 2.1 and 2.4).

• Simple criteria based on the combinatorics of periodic points under which the
minimal set is the whole circle, thus giving new examples of robustly minimal
IFS on the circle (theorem 2.6).

• When the pair has hyperbolic fixed points we give a complete description of
the dynamics, in particular spectral decomposition and specification of mini-
mal/transitive sets (theorem 2.8).

It is interesting to note that minimal Cantor sets for these maps do not exist. This
mimics the classical Denjoy theory for the dynamics of a single diffeomorphism on the
circle where the Cantor sets are excluded in the C2 topology.

In the context of symbolic skew-products we

• Define symbolic blender-like sets which are sets carrying the key topological
property of the symbolic blender but are not necessarily hyperbolic (definition
2.9).

• Give sufficient conditions on IFS for existence of symbolic blender-like in the
topology of Holder skew-products (theorem 2.10).

• Prove that these sufficient conditions are satisfied for the generic pair of IFS
on the circle, C2 close to the identity. This shows the abundace of symbolic
blender-like sets (theorem 2.11 and corollary 2.12).
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The next section states the definitions and the main theorems. The following sec-
tions deal separetely with the proofs of each of the theorems.

This work was done in collaboration with Pablo Barrientos under the orientation
of Enrique Pujals.
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2 Definitions and Main Results

Let f1, . . . , fn be maps of a manifold M , possibly with boundary. We will be mainly
concerned when M is the closed interval or the circle S1. In particular denote by
Diff r+(S1) the set of orientation-preserving diffeomorphisms of the circle.

An iterated function system< f1 . . . fn > is the set of all finite forward compositions
of the maps fi. That is

< f1 . . . fn >= {h;h = f lkjk ◦ · · · ◦ f
l1
j1
, ji ∈ {1, . . . , n}}.

An orbit of a point x is

Orb(x) = {h(x);h ∈< f1 . . . fn >}.

The next set of definitions generalizes for IFS the usual notions of dynamical systems.

A set Λ is minimal for < f1, . . . , fn > if for all x ∈ Λ, Λ ⊂ Orb(x). This is
equivalent to saying that for all x ∈ Λ and open set U ⊂ Λ, there exists h in
< f1 . . . fn > with h(x) ∈ U .

A set Λ with the induced topology is called transitive if for any two open sets
U, V in Λ, there exists h in < f1 . . . fn > with h(U) ∩ V 6= ∅. A transitive set Λ is
maximal if for any transitive set Ξ * Λ, Λ ∪ Ξ is not transitive.

Observe that the notions of minimality and transitivity as defined above do not
require the set to be closed or invariant under the IFS. It can happen that
Λ * ∪ni=1fi(Λ), see for example theKsu set defined below. This is one of the difficulties,
when the manifold is the circle, in applying methods from the well-developed theory
of group actions of diffeomorphisms on S1 [10], since they depend on the invariance of
the minimal sets.

Observe that if Λ is minimal for < f1, . . . , fn >, then it is transitive for
< f−1

1 , . . . , f−1
n > . The < f1 . . . fn > is called minimal when the whole circle or interval

is minimal. It is called robustly minimal if there exists neighborhoods Uj of fj in
the relevant topology such that for all φj ∈ Uj, < φ1 . . . φn > is minimal.

Minimal sets of uniformly contracting iterated function systems were studied in [7]
and [9]. Examples of robustly minimal IFS of diffeomorphisms on the circle are given
in [5]. A similar question on surfaces for volume-preserving IFS was adressed in [8].

Given a possibly infinite sequence θ = {θj} ∈ {1, . . . , n}N we will use the notation

f jθ (x) = fθj−1
◦ · · · ◦ fθ0(x).

The forward or ω-limit of a point x with respect to a sequence θ is defined as

ωθ(x) = {y | there exists jk such that f jkθ (x)→ y}.

The forward limit of < f1 . . . fn > is defined by

ω = ω(< f1 . . . fn >) =
⋃
θ,x

ωθ(x).
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Similarly we define the backward or α-limit of < f1 . . . fn > as

α = α(< f1 . . . fn >) = ω(< f−1
1 . . . f−1

n >).

On a compact manifold the system < f1 . . . fn > has spectral decomposition if
the limit set, L = α ∪ ω, can be written as a finite union of maximal transitive sets.

A diffeomorphism f on the circle is called Morse-Smale if the set of periodic points
is non-empty and all the periodic points are hyperbolic. Morse-Smale maps form an
open and dense set in Diff r(S1).

From the motivation in the introduction our main objective is to search for minimal
sets with non-empty interior in the simplest setting under iteration of just two maps
on the circle. These sets will play the role similar to that of symoblic blenders for the
skew-products.

First lets describe geometrically the sets that will be proven to be minimal, have
non-empty interior and will make up the pieces of the spectral decomposition.

Let f, g ∈ Diff 2(S1) and we will define the following sets of type K∗∗, where
∗∗ = ss, su, or uu. Apriori lets suppose that there are no periodic points of f or g in
the interior ofK∗∗ sets. For now the periodic points do not have to be hyperbolic and so
they can attract from one side and repel from the other (semi-attractor, semi-repeller).
For simplicity assume that p is a fixed point of f , q is a fixed point of g.

f

g

f

g

KK
ss su

• A Kss type set is the interval [p, q] where p is a (semi) attractor for f and q is
in the basin of attraction of p. Similarly q is a (semi) attractor for g and p is in
the basin of attraction of q.

• A Kuu type set is the interval [p, q] where where p is a (semi) repeller for f and
q is in the basin of repulsion of p. Similarly q is a (semi) repeller for g and p is
in the basin of repulsion of q.
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• The Ksu type is the semi-open interval [p, q) where p is a (semi) attractor (resp.
(semi) repeller) for the map f , q is a (semi) repeller (resp. (semi) attractor) for
the same map, and g((p, q)) ∩ (p, q) 6= ∅.

If the maps g, f are periodic with periods m,n, the K∗∗ sets are defined as above with
respect to the maps fm, gn.

The first theorem that will be proved gives sufficient conditions under which K∗∗
sets are minimal.

Theorem 2.1. There exists an ε > 0 (ε ≥ 0.14) such that if f and g are ε-close to
the identity in the C2 topology, then Kss and Ksu sets are minimal for < f, g > and
Kuu is minimal for < f−1, g−1 >. Moreover K∗∗ ⊂ (Per(< f, g >).

This theorem actually forms part of the proof of a theorem of Duminy from the 70s
which has to do with the dynamics of groups of diffeomorphisms on the circle [10]. The
orbit of a point under the action of a group is related to the study of co-dimension one
foliations. For group actions the inverses of the functions can enter in the compositions.
For example compositions like f j1 ◦f−k0 ◦f l1 are possible whereas for IFS (or semi-group
actions) no.

Therefore, it is natural to expect a stronger result for group actions, which for our
purposes can be written in the following manner.

Theorem 2.2. (Duminy) There exists an ε > 0 such that if f and g are ε-close to
the identity in the C2 topology, and one of the maps has a finite number of periodic
points, then or S1 is minimal for the group action or there is a finite orbit.

We will not prove Duminys theorem but to go from theorem 2.1 to the second the-
orem 2.2 basically one can create the geometry of a K∗∗ set by making the necessary
compositions using the inverses of the functions. Then appling theorem 2.1 gives mini-
mality of K∗∗. For group actions minimality of an interval actually implies minimality
of the whole circle [10].

The proof of theorem 2.1 that we will give is similar to the original proof of Duminy
in the main ideias but somewhat different in the organization. It is organized as to
help the reader see the parallels with the proof of the more difficult result that follows.

A few words about the proof. It is based on finding an expanding return map for
backward iterations. The harder part is to estimate the derivative. The C2 condition
is necessary for the bounded distortion, and the maps being close to the identity
garantees that the derivative of the return map is greater than one. After this to prove
minimality, it is enough to pre-iterate any interval by the return map so it grows
enough to capture an attractor. This last argument was already used in [9] and will
permute several of the results.

Observe that theorem 2.1 does not require the points to be hyperbolic. One of
the applications of this, which will not be persued here, is related to bifurcation of
transitive sets as indicated in the next figure. Here f is a fixed map and gt, t ∈ [0, 1],
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is a one-parameter family such that all of the maps satisfy the hypothesis of theorem
2.1.

A minimal set for < f, g > with non-empty interior will be called blender-like.
The name comes from the connections with skew-products and symbolic blenders.
Then we can restate theorem 2.1.

Theorem 2.3. There exists an ε > 0 (ε ≥ 0.14) such that if f and g are ε-close to
the identity in the C2 topology and there is a Kss or Ksu set then < f, g > has a
blender-like.

As the following example shows, not necessarily with f, g Morse-Smale with fixed
points there is a K∗∗ set for < f, g >.

Example 1. Let f, g be as in the figure. Then there is no Kss or Kuu sets because
there is no attractor-attractor or repeller-repeller pairs of fixed points. We also ask
that Ii is contained in a fundamental domain of g, Ji is contained in a fundamental
domain of f . Then there is also no Ksu type sets for the following reason. There exists
a Ksu type set with an attractor q for the map g if and only if f(q) ∩ Bg(q) 6= ∅
where Bg denotes the basin of attraction. The previous conditions on the fundamental
domains prevents this from happening.

Then the question is if for f, g C2-close to the identity generically there exists a
blender-like. This is answered affirmatively by the next theorem, which can be thought
of as the parallel of Duminys theorem in the context of IFS or semi-groups.

Theorem 2.4. Let f, g be C2, orientation-preserving, Morse-Smale diffeomorphisms
of the circle with no periodic points in common. There exists an ε > 0 (ε ≥ 0.14) such
that if f, g are ε-close to the identity in the C2 topology, then there is a blender-like
set for < f, g >. Moreover the blender-like contains a fundamental domain of f (or g)
and is contained in (Per(< f, g >).
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The proof uses the main ideas of theorem 2.1. The key new step is supposing that
there is no Kss type set permits one to create a global expanding return map by going
around the whole circle inductively through the basins of attraction of f or g. One of
the difficulties is that the derivative of the return map also has to be computed in an
inductive manner.

When the maps f, g are not necessarily orientation-preserving consider f 2, g2, which
become orientation-preserving. Then result is the same at the cost of making ε smaller.

Corollary 2.5. Let f, g be C2 Morse-Smale diffeomorphisms of the circle with no
periodic points in common. There exists an ε > 0 (ε ≥ 0.06) such that if f,g are ε-
close to the identity in the C2 topology, then there is a blender-like set for < f, g >.
Moreover the blender-like is contained in (Per(< f, g >).

It turns out that having a Kss set is the only obstruction to the whole circle being
minimal.

Theorem 2.6. Let f, g be C2, orientation-preserving, Morse-Smale diffeomorphisms
of the circle with no periodic points in common. There exists an ε > 0 (ε ≥ 0.38) such
that if f, g are ε-close to the identity in the C2 topology and there is no Kss set, then
the system < f, g > is robustly minimal.

Supposing that f, g have fixed points, the existence of a Kss set implies < f, g >
is not minimal. This is because for any x ∈ Kss, Orb(x) ⊂ Kss and therefore it
is impossible to visit the whole circle. With this observation we obtain a complete
characterization of minimal IFS in our setting.

Corollary 2.7. Let f, g be C2, orientation-preserving, Morse-Smale diffeomorphisms
of the circle both having fixed points which are not in common. There exists an ε > 0
(ε ≥ 0.38) such that if f,g are ε-close to the identity in the C2 topology, then < f, g >
is robustly minimal if and only if there is no Kss set.
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Observe that the dichotomy in the theorem only depends on the combinatorics of
the periodic points. In the case the periodic points of f, g are fixed, we can completely
describe the global toplogical dynamics of the IFS.

Theorem 2.8. Let f, g be orientation-preserving, Morse-Smale diffeomorphisms of
the circle, both with fixed points which are not in common. There exists an ε > 0
(ε ≥ 0.14) such that if f, g are ε-close to the identity in the C2 topology then < f, g >
has spectral decomposition.

Specifically if S1 is not minimal, L(< g1, g2 >) = ∪ni=1Bi, where each Bi is either
a Kss, Ksu, or Kuu set or is a single fixed point of f or g.

The next diagram gives an example of how spectral decomposition of an IFS may
look like. Here the circle is the interval [0, 1] with the endpoints identified.

0 1

f

g

K KKss su uu

Now lets move on to symbolic skew-products. Consider a skew-product of the form

Ψ : Σk ×M → Σk ×M,Ψ(θ, x) = (τ(θ), ψθ(x))

where M is a Riemannian manifold with a metric dM , τ is the shift over a space of k
symbols Σk = {1, . . . , k}Z,

τ : Σk → Σk

θ = (. . . , θ−1, θ0; θ1, . . . ) 7→ (. . . , θ−1, θ0, θ1; . . . )
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and Σk = {1, . . . , k}Z has the metric

d(θ, σ)Σk =
∑
i∈Z

| θi − σi |
ki

.

The metric d in Σk × M is the product metric. The functions ψθ are taken to be
diffeomorphisms of the manifold M . The local and global unstable manifolds of the
shift with respect to a sequence θ are

W u
loc(θ; τ) = {(σi);∀i ≤ 0;σi = θi},

W u(θ, τ) =
⋃
i≥0

τ i(W u
loc(τ

−i(θ); τ) = {(σi);∃k,∀i ≤ k, σi = θi}.

The unstable manifold for a point (θ, p) with repect to Ψ is

W u(θ, p) = {(σ, q); d(Ψn(θ, p),Ψn(σ, q))→ 0 as n→ −∞}.

The stable manifolds are defined in a similar manner for τ−1,Ψ−1. Observe that

Ψn(θ, p) = (τn(θ), ψτn−1(θ) ◦ · · · ◦ ψθ(p))}

and similarly for Ψ−n.

We will make the following additional assumption. Suppose also that the fiber maps
only depend on the local unstable manifold of the shift, W u

loc(θ, τ). That is φθ = φξ if
θi = ξi for all i ≤ 0. This implies that the local unstable manifold of (θ, p), W u

loc(θ, p),
contains the set W u

loc(θ; τ)×{p}. Define the local and global strong unstable manifold
to be

W uu
loc (θ, p) ≡ W u

loc(θ; τ)× {p},
W uu(θ, p) = ∪n≥0Ψn(W uu

loc (Ψ
−n(θ, p))).

Denote by Hr(M) the set of Cr locally constant skew-products that only depend
on the zeroth coordinate of the sequence. That is for Ψ ∈ Hr(M), ψθ = ψθ0 . We will
write Ψ as τn < ψ1, . . . , ψk >.

To connect the dynamics of IFS with symbolic skew-products consider

Ψ = τn < ψ1, . . . , ψk >∈ Hr(M)

and the relevant IFS given by < ψ1, . . . , ψk >. Let (θ, p) be a fixed point of Ψ and let
σ ∈ W u

loc(θ; τ). As

Ψ−n(τn(θ), ψτn−1(θ) ◦ · · · ◦ ψθ(p))) = (σ, p) ∈ (W u
loc(θ), p)

and (θ, p) is a fixed point,

d(Ψ−n(Ψn(σ, p)),Ψ−n(θ, p)) = d((σ, p), (θ, p)).

And so for all n,
d(Ψ−k(Ψn(σ, p)),Ψ−k(θ, p))→ 0, k →∞.
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Therefore we obtain Ψn(σ, p) ∈ W uu(θ, p). Let πM be the projection onto M ,then

πM(Ψn(σ, p)) ∈ Orb(p)

where the orbit of p, Orb(p), is with respect to the IFS. In conclusion, the relation
between IFS and skew-products is given by

Orb(p) = πM(W uu(θ, p)) ⊂ πM(W u(θ, p)).

The above notation and commentaries are taken from section 2.3 of [9].

Next we will give a definition of a symbolic-blender like but for a restricted set
of skew-products Sα,rk (M) which will be described afterwards. The definition is the
same as that of symbolic blender in [9] and preserves the main topoligical property
of blenders (see (ii) in the definition). The difference being that in that paper the
authors worked with uniformely contracting IFS and with hyperbolic sets. By definition
blenders are hyperbolic sets [3]. As here there is no assumptions on hyperbolicity, we
use the name blender-like.

Given a periodic point (θΓ, pΓ) of Γ with period n. Denote by O(θΓ, pΓ) the orbit
of the point,

⋃n−1
i=0 Γi(θΓ, pΓ), and let

W uu(O(θΓ, pΓ)) =
n−1⋃
i=0

W uu(Γi(θΓ, pΓ)).

Definition 2.9. Symbolic Blender-like
Let B be an open set in M . The set B = Σk × B is a symbolic cs-blender-like of

Γ ∈ Sα,rk (M) if there exists a neighborhood Ω of Γ and a periodic point of Γ, (θΓ, pΓ),
such that

(i) For any Ψ ∈ Ω, there exists the continuation (θΨ, pΨ) of (θΓ, pΓ)

(ii) Given a sequence ξ and an open set U ⊂ B,

W uu(O(θΨ, pΨ)) ∩ (W s
loc(ξ, τ)× U) 6= ∅.

A symbolic cu-blender-like for Γ is a cs-blender-like for Γ−1.

Observe that the symbolic blender-like is robust by definition. To give examples
of existence of these sets in the symbolic skew-products we would need the additional
assumption that the inverses of the fiber maps have Holder dependence on the se-
quences.

Denote by Sα,rk (M) the set of the above skew-products that satisfies the following.

1. Ψ−1 has α-Holder dependence on the the fibers. There exists a (minimal) constant
CΨ such that for all sequences θ, ξ with θ0 = ξ0

dC0(ψ−1
θ , ψ−1

ξ ) ≤ CΨdΣk(θ, ξ)
α ≤ CΨ(1/kN)α

if θj = ξj for 0 ≤| j |≤ N − 1.
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2. Each fiber map is Cr-diffeomorphism of the manifold M and
supθ∈Σk{Djψθ} <∞ for 0 ≤ j ≤ r.

A distance in this space is given by

d(Φ,Ψ)Sα,rk (M) = max{| CΦ − CΨ |, supθ∈Σk{dM(φθ, ψθ)Cr}}

where CΦ, CΨ are the constants from the Holder dependence.

The set Hr(M) is contained in Sα,rk (M) for all α and the distance with respect to
the set Hr(M) is

d(Φ,Ψ)Hr(M) = maxj=1,...,k{dM(φj, ψj)Cr}.

The next theorem states sufficient conditions for obtaining symbolic blender-like
sets. The two properties that appear in the hypothesis of the theorem, covering and
minimality, are similar to the ones used in [9] where symbolic blenders were obtained
for locally constant skew-products. The Holder topology and the additional hypothesis
of the fiber maps close to the identity allows the existence of blenders in the bigger
set Sα,rk (M).

Theorem 2.10. Let c be such that (1−c)kα = 1 and B(Id, c)Sα,rk (M) be a ball of radius
c about the identity map Id = (τ, Id) in Sα,rk (M), r > 1. Consider

Γ ∈ Hr(M) ∩ B(Id, c)Sα,rk (M),

where Γ = τn < γ1, . . . , γk >. Suppose there exists a bounded open set B ⊂M , a finite
number of bounded closed sets Ui and the respective maps Hi ∈< γ−1

1 , . . . , γ−1
k > such

that

(i) Covering property:

B ⊂
k⋃
i=1

int(Ui),

with Hi(Ui) ⊂ B and DHi > 1 in Ui.

(ii) Periodic point with minimal orbit: there exists a hyperbolic periodic point
pΓ ∈ B of < γ1, . . . , γk > such that B ⊂ Orb(pΓ).

Then B is a cs-symbolic blender-like set in Sα,rk (M) for Γ.

The condition on c also appears in [5] where the authors had a similar objective in
mind: to transfer properties of IFS to robust properties in the space of symbolic skew-
products. Some of the steps that appear in our proof have resembling counterparts in
the technical lemmas of that paper.

The expanding return maps used in the proofs of theorems 2.1 and 2.4 have an
infinite number of branches and this creates the problem for perturbations in Sα,rk (S1).
But we can perform a reduction on the number of branches for a generic pair, thus
achieving the required hypothesis of theorem 2.10.
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Theorem 2.11. There exists a generic set G in Diff r(S1), r ≥ 2, such that for
f, g ∈ G ∩B(Id, 0.06) the following conditions are satisfied.

(i) There exists an open minimal set B such that B ⊂ Per < f, g >.

(ii) There is a finite set of closed intervals Uj such that B ⊂
⋃m
j=1 int(Uj). To

each Uj there is an associated map Hj ∈< f−1, g−1 > such that DHj > 1 in Uj and
Hj(Uj) ⊂ B.

A combination of theorems 2.10 and 2.11 will yield the last result.

Corollary 2.12. Consider B(Id, λ)Hr(S1) to be a ball of radius λ about the identity
map Id = (τ, Id) in Hr(S1). For a given α let c be such that (1 − c)kα = 1, and
λ = min{c, 0.06}.

There exists a generic set Λ ⊂ Hr(S1) for r ≥ 2 such that for

Γ ∈ B(Id, λ)Hr ∩ Λ

Γ has cs-symbolic blender-like in Sα,rk (S1), r ≥ 1.

This ends the statement of the results. The theorems are proven in order in each
of the following sections.
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3 Minimality of K∗∗

Let f0, f1 be C2 diffeomorphisms of the circle. Suppose that there exists a Kss or Ksu

set for the IFS < fn0
0 , fn1

1 > (where ni are the periods). We want to show the following.

Theorem 3.1. There exists an ε > 0 (ε ≥ 0.14) such that if f0 and f1 are ε-close
to the identity in the C2 topology, then K∗∗ is minimal for < fn0

0 , fn1
1 >. Moreover

K∗∗ ⊂ (Per(< f0, f1 >).

Proof. We first deal with the case when fi have fixed points. For simplicity we assume
that I = [0, 1], f0(0) = 0, f0 < Id, f1 > Id in (0, 1). In the Kss case we can suppose
that the overlap condition holds, that is f0(I)∩f1(I) 6= ∅. This is true if Df0 +Df1 > 1
or | fi − Id |C1< 0.5.

Step 1: Creating a Return Map

We will create a return map in the fundamental domain of f0,

D = (f1(0), f−1
0 (f1(0))].

Here enters the overlap condition, since it is necessary to be able to take the inverse
for f0. Let l be such that f l1(0) ∈ D, f l+1

1 (0) /∈ D. We can write D as

D =
l⊎

k=1

Jk

where Jk = (fk1 (0), fk+1
1 (0)] for k < l, Jl = (f l1(0), f−1

0 (f1(0))]

Consider then f−k1 (Jk) = (0, ck], for some ck with ck ≤ f1(0). Then there exists mk,
the first time that fmk0 (f1(0)) is in the interior of f−k1 (Jk) = (0, ck]. Let

Jki = (fmk+i
0 (f1(0)), fmk+i−1

0 (f1(0))], i > 0

Jk0 = (fmk0 (f1(0)), ck].

Then (0, ck] =
⊎∞
i=0 Jki and D = f

−(mk+i)
0 (Jki) for i > 0, f−(mk)

0 (Jk0) ⊂ D for i = 0.

Define Iki = fk1 (Jki), then D =
⊎
Iki. Setting hki = fk1 ◦ f

mk+i
0 , obtain that

h−1
ki (Iki) = D for i > 0, h−1

ki (Iki) ⊂ D for i = 0. See the figure for the geometry
of the construction.

Now we can define a return map in D with an infinite number of branches by
H : D → D,H = h−1

ki in Iki. There is a finite number of accumulation points of the
branches, given by the set {fk1 (0)}1≤k≤l.

Step 2: Bounded Distortion

In order to estimate the derivative of the maps h−1
ki , firstly we would need a bounded

distortion estimate.

Let cfi be the distortion constants of fi and c = max{cfi}, where

cfi = max{D
2fi(x)

Dfi(x)
},
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then e−C ≤ Dfi(x)

Dfi(y)
≤ eC . Since for difeomorphisms there is always a point with

derivative 1, e−cfi ≤ Dfi(x) ≤ ecfi .

Lemma 3.2. For x, y ∈ Iki,

e−c ≤ Dh−1
ki (x)

Dh−1
ki (y)

≤ ec

.

Call Uj = f−j1 (Iki), 0 ≤ j ≤ k and Ukj = f−j0 ◦ f−k1 (Iki), 1 ≤ j < mk + i. By
the construction, these intervals are all disjoint. The proof of the lemma is then the
classical bounded distortion argument.

Proof.

log
Dh−1

ki (x)

Dh−1
ki (y)

= log(Dh−1
ki (x))− log(Dh−1

ki (y))

= log[

mk+i−1∏
j=0

Df−1
0 (f−j0 (f−k1 (x))) ·

k−1∏
j=0

Df−1
1 (f−j1 (x))]−

log[

mk+i−1∏
j=0

Df−1
0 (f−j0 (f−k1 (y))) ·

k−1∏
j=0

Df−1
1 (f−j1 (y))]

≤
mk+i−1∑
j=0

| log[Df−1
0 (f−j0 (f−k1 (x)))]− log[Df−1

0 (f−j0 (f−k1 (y)))] |

+
k−1∑
j=0

| log[Df−1
1 (f−j1 (x)))]− log[Df−1

1 (f−j1 (y)))] |

≤ c ·
mk+i−1∑
j=0

| f−j0 (f−k1 (x))− f−j0 (f−k1 (y)) | +c ·
k−1∑
j=0

| f−j1 (x))− f−j1 (y)) |

18



= c ·
mk+i−1∑
j=1

| Ukj | +c ·
k∑
j=0

| Uj |≤ c

where the last inequality is a consequence of the disjointess of the intervals. Since this
holds for all x, y ∈ Iki, we can invert the fraction to obtain the bounded constant from
below.

For J ⊂ Iki, by the mean value theorem, there exists x ∈ J and y ∈ Iki such that
|h−1
ki (J)| = Dh−1

ki (x) · |J | and |h−1
ki (Iki)| = Dh−1

ki (y) · |Iki|. Therefore from the bounded
distortion lemma,

|h−1
ki (J)|
|J |

≥ e−c
|h−1
ki (Iik)|
|Iki|

Step 3: Estimation of the Derivative for the Return Map

We will show thatDH−1 > (1−ε)3 · e
−3c

3ε
, where | fi−Id |C1< ε. Let k = min{Dfi}.

Then the bounds for the return map, H, calculated above appear as

DH ≥ k3

3(1− k)
· e−3c ≥ e−3c

3(1− e−c)
· e−3c =

e−6c

3(1− e−c)

≥ e
−6ε
1+ε

3(1− e
−ε
1+ε )

In particular, DH > 1 if ε < 0.17.

Given x ∈ Iki, consider the ball of radius r, Br(x), then by the previous calculation

Dh−1
ki (x) = limr→0

|h−1
ki (Br(x))|
|Br(x)|

≥ e−c
|h−1
ki (Iki)|
|Iki|

.

Therefore we have to estimate
|h−1
ki (Iki)|
|Iki|

. This is easier to do first for the case when

i > 0 because then h−1
ki (Iki) = D.

The whole idea behind the estimations is to move the two intervals in question
(and so appear the bounded distorion constants) as to get in the situation of comparing
| f0(c)− c |

c
for some c. This on the other hand is greater than 1/ε where | fi−Id |C1< ε.

Lemma 3.3. For i > 0,
|h−1
ki (Iki)|
|Iki|

>
e−c

ε

and therefore Dh−1
ki >

e−2c

ε
, where | fi − Id |C1< ε

Proof. As Jk is contained in a fundamental domain of f1 and Iki ⊂ Jk, we have that

| Jk |
| Iki |

≥ e−c
| f−k1 (Jk) |
| f−k1 (Iki) |

.
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Since i > 0, Jk ⊂ D = h−1
ki (Iki) and so

|h−1
ki (Iki)|
|Iki|

≥ |Jk|
|Iki|

≥ e−c
|f−k1 (Jk)|
|f−k1 (Iki)|

.

Writing f−k1 (Jk) = (0, ck], remember that f−k1 (Iki) = (fmk+i
0 (f1(0)), fmk+i−1

0 (f1(0))]
with fmk+i−1

0 (f1(0)) ≤ ck (since i > 0). Obtain then

|h−1
ki (Iki)|
|Iki|

≥ e−c
|ck|

|fmk+i
0 (f1(0))− fmk+i−1

0 (f1(0))|

≥ e−c
|fmk+i−1

0 (f1(0))|
|fmk+i

0 (f1(0))− fmk+i−1
0 (f1(0))|

= e−c
|c|

|f0(c)− c|
By the mean value theorem, f0(c) = Df0(z)c for some z and so

= e−c
1

| 1−Df0(z) |
>
e−c

ε
.

For the case i = 0 we dont have necessarilly that Jk ⊂ D = h−1
k0 (Ik0), what creates

the difficulty in the estimate.

Lemma 3.4. For i = 0, Dh−1
k0 > (1− ε)3 · e

−3c

3ε

Proof. We will distinguish two cases.

Case 1 : h−1
k0 (Ik0)∩ Ik0 6= ∅. In this case (Jk − Ik0) ⊂ h−1

k0 (Ik0), then we can proceed
as before

|h−1
k0 (Iki)|
|Ik0|

≥ |Jk − Ik0|
|Ik0|

≥ e−c
|f−k1 (Jk − Ik0)|
|f−k1 (Ik0)|

= e−c
|fmk0 (f1(0))|

|ck − fm−k0 (f1(0))|
≥ e−c

|fmk0 (f1(0))|
|fmk−1

0 (f1(0))− fm−k0 (f1(0))|

= e−c
|f0(c)|
|c− f0(c)|

≥ (1− ε)e−c |c|
|c− f0(c)|

>
(1− ε)e−c

ε

Case 2 : h−1
k0 (Ik0) ∩ Ik0 = ∅. First note that h−1

k0 = f0 ◦ h−1
k1 and so

Dh−1
k0 (x) = Df0(h−1

k1 (x))Dh−1
k1 (x) > (1− ε)Dh−1

k1 (x)

where x ∈ Ik0. We will estimate Dh−1
k1 but in Ik0.

The intervals defined previously Uj = f−j1 (Ik0), 1 ≤ l ≤ k and Ukj = f−j0 ◦
f−k1 (Ik0), 1 ≤ j < mk are disjoint. The hypothesis h−1

k0 (Ik0) ∩ Ik0 = ∅ implies Ukj
are disjoint for j ≤ mk. Then the bounded distortion argument can be applied to the
function h−1

k 1 = f−1
0 ◦ h−1

k0 on the interval Ik0. We obtain that for x, y ∈ Ik0

ec ≥ Dh−1
k1 (x)

Dh−1
k1 (y)

≥ e−c
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Let I = Ik0 ∪ Ik1. If both x, y are in Ik0 or both are in Ik1, then the bounded
distortion estimate above holds. If x ∈ Ik0 and y ∈ Ik1 letting z = fmk0 (f1(0)),

Dh−1
k1 (x)

Dh−1
k1 (y)

=
Dh−1

k1 (x)

Dh−1
k1 (z)

· Dh
−1
k1 (z)

Dh−1
k1 (y)

≥ e−2c.

Then as before,

| Dh−1
k1 |≥ e−2c | h−1

k1 (I) |
| I |

Now as Jk ⊂ D ⊂ h−1
k1 (I) and I ⊂ Jk we have

|h−1
k1 (I)|
|I|

≥ |Jk |
|I|
≥ e−c

|f−k1 (Jk)|
|f−k1 (I)|

Using that I = (fmk+1
0 (f1(0)), ck]

= e−c
|ck |

|ck − fmk+1
0 (f1(0))|

≥ e−c
|fmk+1

0 (f1(0)) |
| fmk−1

0 (f1(0))− fmk+1
0 (f1(0))|

= e−c
|f 2

0 (c) |
| f 2

0 (c)− c|
As f 2

0 (c) = Df 2
0 (z)c for some z, then

e−c
|Df 2

0 (z) |
| Df 2

0 (z)− 1|
≥ e−c

((1− ε)2

((1 + ε)2 − 1)
≥ e−c

(1− ε)2

3ε
.

In conclusion, Dh−1
k1 ≥ (1− ε)2 · e

−3c

3ε
and so Dh−1

k0 > (1− ε)3 · e
−3c

3ε
.

Step 4: End of Proof (for maps with fixed points)

Lemma 3.5. To show minimality of the interval I = (0, 1), it is enough to prove that
for any open interval J ⊂ I, there exists h1, h2 ∈< f0, f1 > such that h2(0) ∈ h−1

1 (J).

Proof. Take any point x ∈ I and an open interval J ⊂ I. To show minimality it
is sufficient to prove that there exists h ∈< f0, f1 > with h(x) ∈ J . By hypothesis
there exists h1, h2 ∈< f0, f1 > such that h2(0) ∈ h−1

1 (J). Since 0 is a global attractor
in I, there exists h3 with h3(x) so close to 0 such that h3 ◦ h2(x) ∈ h−1

1 (J). Then
h1 ◦ h3 ◦ h2(x) ∈ J .

No given J ⊂ I it is not hard to see that there exists h ∈< f0, f1 > with h−1(J) ∩
D 6= ∅. We can suppose h−1

1 (J) ⊂ D. Now there are two options or h−1
1 (J) ⊂ Ikj for

some Ikj, or h−1
1 (J) contains a point of the form fmk+i

0 (f1(0)). In the second case we
are done (by the above lemma), in the first case we can iterate by the return map H
and consider H ◦ h−1

1 (J).

Now repeating the argument or H ◦ h−1
1 (J) ⊂ Ikj for some Ikj, or H ◦ h−1

1 (J)
contains fmk+i

0 (f1(0)) and here we are done. Continuing in this manner we will obtain
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that Hn ◦h−1
1 (J) ⊂ D and as | Hn ◦h−1

1 (J) |> λn | h−1
1 (J) |, λ > 1, then at some point

H ◦ h−1
1 (J) will contain a point of the form fmk+i

0 (f1(0)).

Observe that this in particular shows that the orbit under< f0, f1 > of the attractor
at 0 is dense in I.

Finally to show that I ⊂ (Per(< f0, f1 >), we will use that the orbit of the attracto
0 is dense. So given J ⊂ I, open, there exists h ∈< f0, f1 > with h(0) ∈ J . As 0 is the
attractor, there exists a k such that fk0 ◦h(J) ⊂ J and D(fk0 ◦h) < 1 in J . Then there
exists a fixed point in J for the map fk0 ◦ h ∈< f0, f1 >.

Step 5: Bounds for Periodic fi
When there are periodic points we are led to consider the system < fn0

0 , fn1
1 >

where ni are the periods. But the distortion constant of fnii is ni · cfi , and if we apply

the above estimates obtain that DH ≥ e−6nc

3(1− e−nc)
where n = max{ni}, that is

depends on the period. This is bad if we are looking for a uniform neighborhood of
the Id.

The objective of this section is to show that actually DH ≥ e−8c

3(1− e−c)
, indepen-

dent of the periods ni. With respect to fi being ε-close to the identity, we have

DH ≥ e
−8ε
1+ε

3(1− e
−ε
1+ε )

If ε ≤ 0.14, then DH > 1.

To extend Duminys lemma for periodic Morse-Smale we will need the following
properties of Morse-Smale dynamics on the circle.

Lemma 3.6. Let f be a periodic Morse-Smale with period j, and as above C =

max{D
2f(x)

Df(x)
}. Then (i) e−C ≤ Df j(x) ≤ eC.

(ii) Suppose I is a fundamental domain of f j, I = (f 2j(x), f j(x)), x is not a one of
the periodic points. Then fm(I) ∩ fn(I) = ∅ for all m 6= n (not necessarily multiples
of j)

Proof. Let J = (p, q) where p, q is an attractor-repeller pair, fixed for f j. Then fk(J)∩
f l(J) = ∅ for all 0 ≤ k, l < j. On the contrary, fk−l(J) ∩ J 6= ∅ and therefore p or

q ∈ J . The disjointness of the intervals implies e−C ≤ Df j(x)

Df j(y)
≤ eC for all x, y ∈ J .

Since there is always a point of derivative one in J , we have that e−C ≤ Df j(x) ≤ eC .

In a similar manner for the second part, suppose fm(I)∩fn(I) = ∅, then fm−n(I)∩
I 6= ∅. As j is the minimal period m − n = ij for some i. So f ij(I) ∩ I 6= ∅, a
contradiction since I is a fundamental domain for f j.

We will indicate the modifications required in estimating the return map derivative
in steps 2 and 3. The return maps hki are with respect to the system < fn0

0 , fn1
1 >=<
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g0, g1 >. Let cfi (c = max{cfi}) be the distortion constants of the original maps fi and
not fnii .

The statement of the bounded distortion lemma takes form as

Lemma 3.7. For x, y ∈ Iki,

e−2c ≤ Dh−1
ki (x)

Dh−1
ki (y)

≤ e2c

.

Let Uj = f−j1 (Iki), 0 ≤ j ≤ kn1 and Ukj = f−j0 ◦ f−k1 (Iki), 1 ≤ j < (mk + i)n0.
As Iki is contained in a fundamental domain of f1 and f−kn1

1 (Iki) is contained in a
fundamental domain of f0. Then lemma3.6 says that Uj are disjoint with respect to
each other and Ukj are disjoint with respect to each other.

Proof.

log
Dh−1

ki (x)

Dh−1
ki (y)

= log[

mk+i−1∏
j=0

Dg−1
0 (g−j0 (g−k1 (x))) ·

k−1∏
j=0

Dg−1
1 (g−j1 (x))]−

log[

mk+i−1∏
j=0

Dg−1
0 (g−j0 (f−kg (y))) ·

k−1∏
j=0

Dg−1
1 (g−j1 (y))]

= log[

n0(mk+i)−1∏
j=0

Df−1
0 (f−j0 (f−n1k

1 (x))) ·
n1(k−1)∏
j=0

Df−1
1 (f−j1 (x))]−

log[

n0(mk+i)−1∏
j=0

Df−1
0 (f−j0 (f−n1k

1 (y))) ·
n1(k−1)∏
j=0

Df−1
1 (f−j1 (y))]

≤
n0(mk+i)−1∑

j=0

| log[Df−1
0 (f−j0 (f−n1k

1 (x)))]− log[Df−1
0 (f−j0 (f−n1k

1 (y)))] |

+

n1(k−1)∑
j=0

| log[Df−1
1 (f−j1 (x)))]− log[Df−1

1 (f−j1 (y)))] |

≤ c ·
n0(mk+i)−1∑

j=0

| f−j0 (f−n1k
1 (x))− f−j0 (f−n1k

1 (y)) | +c ·
n1(k−1)∑
j=0

| f−j1 (x))− f−j1 (y)) |

= c ·
n0(mk+i)−1∑

j=1

| Ukj | +c ·
n1k∑
j=0

| Uj |≤ 2c

where the last inequality is a consequence of the disjointess of Uj and Ukj.

The following is the analogue of lemma 3.3 of part 3,
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Lemma 3.8. For i > 0,
|h−1
ki (Iki)|
|Iki|

>
e−c

ε

and therefore Dh−1
ki >

e−3c

ε
, where | fnii − Id |C1< ε

Proof. As Jk is contained in a fundamental domain of fn1
1 and Iki ⊂ Jk, using lemma

3.6 we still have that
| Jk |
| Iki |

≥ e−c
| f−n1k

1 (Jk) |
| f−n1k

1 (Iki) |
.

The rest of the proof is the same, and using the bounded distortion estimate from
above we obtain the result.

Finally we will make the necessary changes when i = 0 in lemma 3.4

Lemma 3.9. For i = 0, Dh−1
k0 > (1− ε)3 · e

−5c

3ε

Proof. For the case h−1
k0 (Ik0) ∩ Ik0 6= ∅, we can proceed as in 3.4 with the same obser-

vations that were made in the last lemma 3.8, to obtain

|h−1
k0 (Iki)|
|Ik0|

>
(1− ε)e−c

ε

When h−1
k0 (Ik0) ∩ Ik0 6= ∅, using the new bounded distortione estimate with the

same notation as before to obtain for x, y ∈ I = Ik0 ∪ Ik1

Dh−1
k1 (x)

Dh−1
k1 (y)

≥ e−4c.

As Jk ⊂ D ⊂ h−1
k1 (I) and I ⊂ Jk and Jk is contained in a fundamental domain of

fn1
1 by lemma 3.6 we have as in the original inequality

|h−1
k1 (I)|
|I|

≥ |Jk |
|I|
≥ e−c

|f−k1 (Jk)|
|f−k1 (I)|

.

The rest of the proof is the same giving the result.

Letting k = min{Dfi}, the bounds for the return map become

DH ≥ k3

3(1− k)
· e−5c ≥ e−5c

3(1− e−c)
· e−3c =

e−8c

3(1− e−c)

The proof of minimality of K∗∗ for periodic fi is the same as for fi with fixed
points. This ends the proof of Duminys lemma.
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4 Blender-like Sets

Theorem 4.1. Let f, g be C2,orientation-preserving, Morse-Smale diffeomorphisms
of the circle with no periodic points in common. There exists an ε > 0 (ε ≥ 0.14) such
that if f,g are ε-close to the identity in the C2 topology, then there is a blender-like set
for < f, g >. Moreover the blender-like contains a fundamental domain of f (or g)
and is contained in (Per(< f, g >).

Observation: From step 4 of the proof of the theorem, one can see that the
blender-like set is of the form B = [p1, g

−ng(p1)] where p1 is an attractor for f and ng
is the period of g. If nf is the period of f then fnf (B) ∩ B 6= ∅ and gng(B) ∩ B 6= ∅.
This will become important in the next section.

When the diffeomorphisms are not necessarily orientation-preserving, the result
becomes

Corollary 4.2. Let f, g be C2 Morse-Smale diffeomorphisms of the circle with no
periodic points in common. There exists an ε > 0 (ε ≥ 0.06) such that if f,g are ε-
close to the identity in the C2 topology, then there is a blender-like set for < f, g >.
Moreover the blender-like is contained in (Per(< f, g >).

Proof. The proof will be similar to that of Duminys lemma (a local case) when the
blender-like set (K∗∗) was obtained from the local geometries of the two functions.
Here the expanding return map will be of global character. From the beginning we will
assume that there is no Kss blender-like set for < f, g > and will obtain a different
type of blender-like.

Lets suppose that the periodic points of f and g are actually fixed points. To find
the candidate for the return map we will define a cycle.

Definition 4.3. Denote by pi the attractors of f, qi the attractors of g. Define a partial
order on the attracting points by pi ≺ qj ⇔ pi ∈ Bg(qj), where Bg denotes the basin of
attraction for g, with similar definitions for qi ≺ pj. A sequence of attractors forms a
cycle when we have pi1 ≺ qi2 ≺ pi3 · · · ≺ qin−1 ≺ pin and pi1 = pin.

Since f,g are Morse-Smale with no fixed points in common and have a finite number
of attractors, there always exists at least one cycle, and renumbering the points we
can suppose we have a sequence of the form p1 ≺ q2 ≺ p3 · · · ≺ qn ≺ pn+1 = p1.

Step 1: Creating a Return Map

The return map will be created in a fundamental domain of g, D = (p1, g
−1(p1)],

by going inductively around the circle through the cycle.

Lemma 4.4. D can be written as

D =
⊎

i1,...,in≥0

Ii1,...,in

where each Ii1,...,in is a right-closed interval such that:
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(i) To each interval, Ii1...in, there is an associated map hi1...in ∈< f, g > with
h−1
i1...in

(Ii1...in) ⊂ I when in = 0 and h−1
i1...in

(Ii1...in) = I for in > 0.

(ii) If a point c 6= g−1(p1) is the endpoint of Ii1...in, then it is on the orbit of the
attracting points of the cycle. That is, there exists h ∈< f, g > and pi (or qi) of the
cycle such that h(pi) = c.

Proof. Denote by p−1 , p
+
1 , the repelling points of f closest to p1, p−1 < p1 < p+

1 (here we
are looking at the lifts of f,g on the real line, with a small abuse of notation). We can
suppose, without losing generality, that qn ∈ (p1, p

+
1 ). If there is no Kss blender-like set

from the geometry of the functions, we cannot have an attractor-attractor pair for the
system < f, g >. Therefore, the fixed point of g in (p1, p

+
1 ) closest to p1 is a repeller,

which implies that the fundamental domain for g, [p1, g
−1(p1)], is in [p1, p

+
1 ].

p
1

q
n

p
n−1

I k

f

J

g

g

f

−j  −k
1

km

1k
−j   −m

−1
g    (p  )

1

To create the expanding return map we will divide I = [p1, g
−1(p1)] inductively.

If j1 is the first time that f j1(qn) ∈ (p1, g
−1(p1)), then D = (p1, g

−1(p1)] =
⊎∞
k=0 Ik,

where
I0 = (f j1(qn), g−1(p1)], Ik = (f j1+k(qn), f j1+k−1(qn)], k > 0.
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Letting hk = f j1+k, we have that h−1
k (Ik) = (qn, ck] for ck = f−1(qn) when k > 0 and

c0 = f−j1 ◦ g−1(p1) ∈ [qn, f
−1(qn)].

Now consider qn and as before let q−n , q+
n be the repelling points of g closest to qn,

q−n < qn < q+
n . Since g has to have a repeller as the fixed point closest to p1 (not

to create a Kss set), q−n ∈ (p1, p
+
1 ). As pn−1 ∈ Bg(qn), then pn−1 ∈ (qn, q

+
n ). Observe

that [qn, ck] is contained in a fundamental domain of f on the basin of p1, and so
p1 < ck < p+

1 < pn−1. In conclusion, for all k there is the following order on the real
line: qn < ck < pn−1 < q+

n .

This completes the first step of the induction and now we proceed with the inductive
hypothesis:

(i) Suppose that D =
⊎
i1,...,ik≥0 Ii1...ik , where Ii1...ik are right-closed intervals and

there exist the corresponding functions hi1...ik . The functions satisfy h−1
i1...ik

(Ii1...ik) =
(qn−k+1, ci1...ik ] (qn−k+1 can be substituted for pn−k+1 depending on k), with ci1...ik =
f−1(qn−k+1) for ik > 0 and ci1...ik−1,0 ∈ [qn−k+1, f

−1(qn−k+1)].

(ii) If a point, c 6= g−1(p1) is the endpoint of Ii1...ik , then there exists h ∈< f, g >
and pi (or qi) of the cycle such that h(pi) = c.

(iii) There is the following order on the real line: qn−k+1 < ci1...ik < pn−k < q+
n−k+1.

For each h−1
i1...ik

(Ii1...ik) = (qn−k+1, ci1...ik ] there exists a ji1...ik such that gji1...ik (pn−k)
is the first time that f ji1...ik (pn−k) ∈ (qn−k+1, ci1...ik). Then

(qn−k+1, ci1...ik ] =
∞⊎
l=0

Ji1...ik,l

where Ji1...ik,0 = (gji1...ik (pn−k), ci1...ik ] and

Ji1...ik,l = (gji1...ik+l(pn−k), g
ji1...ik+(l−1)(pn−k)], l > 0.

Define Ii1...ik,l ⊂ Ii1...ik by hi1...ik(Ji1...ik,l). Then D =
⊎
i1,...,ik+1≥0 Ii1,...,ik+1

. When
l > 0,

Ii1...ik,l = (hi1...ik ◦ gji1...ik+l(pn−k), hi1...ik ◦ gji1...ik+(l−1)(pn−k)]

and so the endpoints of the interval are images of the attracting points of the cycle.
When l = 0,

Ii1...ik,0 = (hi1...ik ◦ g
j
i1...ik

(pn−k), hi1...ik(ci1...ik)].

By the inductive hypothesis hi1...ik(ci1...ik) is the endpoint of Ii1...ik and therefore
hi1...ik(ci1...ik) = h(pi), h(qi), or g−1(p1) for some h ∈< f, g >.

Let hi1...ikl = hi1...ik ◦ gji1...ik+l, we have by construction that h−1
i1...ik+1

(Ii1,...ik+1
) =

(pn−k, ci1...ik+1
] for some ci1...ik+1

.

This shows the first three parts of the the inductive step and to complete the
induction we have to show the order of points on the real line satisfies pn−k < ci1...ik+1

<
qn−k−1 < p+

n−k.
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Since qn−k−1 ∈ Bf (pn−k), then qn−k−1 ∈ [p−n−k, pn−k] or qn−k−1 ∈ [pn−k, p
+
n−k]. As

there is no Kss (no attractor-attractor pairs) and pn−k ∈ [qn−k+1, q
+
n−k+1], then p−n−k ∈

[qn−k+1, q
+
n−k+1], and so qn−k−1 ∈ [pn−k, p

+
n−k]. Observing that

h−1
i1...ik

(Ii1...ik) ⊂ [qn−k+1, q
+
n−k+1],

we have

h−1
i1...ik+1

(Ii1...ik+1
) = g−ji1...ik−ik+1 ◦ h−1

i1...ik
(Ii1...ik+1

) ⊂ [qn−k+1, q
+
n−k+1].

Therefore pn−k < ci1...ik+1
< q+

n−k+1 < qn−k−1 < p+
n−k, which ends the inductive

process.

Going through the n steps of the cycle we conclude the lemma.

Step 2: Bounded Distortion

We can write the maps h−1
i1...in

as

h−1
i1...in

= g−kin ◦ f−kin . . . g−ki2 ◦ f−ki1 .

Fixing the indexes i1 . . . in, set

Ji1...im,l = f−l ◦ g−kim ◦ . . . g−ki2 ◦ f−ki1 (Ii1...in) = f−l ◦ h−1
i1...im

(Ii1...in)

with l ≤ kim+1 , for m < n − 1 and l < kim+1 when m = n − 1. Observe that when
m = 0, Jl = f−l(Ii1...in). By construction Ji1...,im is contained in a fundamental domain
of f (or g). Thus for a fixed set {i1, . . . , im}, the intervals Ji1...,im,l = f−l(Ji1,...,im) are
disjoint.

Let cf , cg be the distortion constants of f, g, and c = max{cf , cg}.

Lemma 4.5. For x, y ∈ Ii1...in,

e−nc ≤
Dh−1

i1...in
(x)

Dh−1
i1...in

(y)
≤ enc

.

Proof.

log
Dh−1

i1...in
(x)

Dh−1
i1...in

(y)
= log(Dh−1

i1...in
(x))− log(Dh−1

i1...in
(y))

= log[

kin−1∏
l=0

Dg−1(g−l ◦ h−1
i1...in−1

(x)) ·
kin−1

−1∏
l=0

Df−1(f−l ◦ h−1
i1...in−2

(x)) . . .

· · ·
ki1−1∏
l=0

Df−1(f−l(x))]

−log[

kin−1∏
l=0

Dg−1(g−l ◦ h−1
i1...in−1

(y)) ·
kin−1

−1∏
l=0

Df−1(f−l ◦ h−1
i1...in−2

(y)) . . .
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· · ·
ki1−1∏
l=0

Df−1(f−l(y))]

≤
kin−1∑
l=0

| log[Dg−1(g−l ◦ h−1
i1...in−1

(x))]− log[Dg−1(g−l ◦ h−1
i1...in−1

(y))] |

+

kin−1
−1∑

l=0

| log[Df−1(f−l ◦ h−1
i1...in−2

(x))]− log[Df−1(f−l ◦ h−1
i1...in−2

(x))] |

+ · · ·+
ki1−1∑
l=0

| log[Df−1(f−l(x))]− log[Df−1(f−l(y))] |

≤ c ·
kin−1∑
l=0

| g−l ◦ h−1
i1...in−1

(x)− g−l ◦ h−1
i1...in−1

(y) |

+c ·
kin−1

−1∑
l=0

| f−l ◦ h−1
i1...in−2

(x)− f−l ◦ h−1
i1...in−2

(x) |

+ · · ·+ c ·
ki1−1∑
l=0

| f−l(x)− f−l(y) |

≤ c ·
kin−1∑
l=0

| Ji1...in−1,l | +c ·
kin−1

−1∑
l=0

| Ji1...in−2,l | + · · ·+ c ·
ki1−1∑
l=0

| Jl |≤ nc

where the last inequality is a consequence of the disjointess of the intervals Ji1...ik,l.
Since this holds for all x, y ∈ Ii1...in , we can invert the fraction to obtain the bounded
constant from below.

For J ⊂ Ii1...in , by the mean value theorem, there exists x ∈ J and y ∈ Ii1...in such
that |h−1

i1...in
(J)| = Dh−1

i1...in
(x) · |J | and |h−1

i1...in
(Ii1...in)| = Dh−1

i1...in
(y) · |Ii1...in|. Therefore

from the bounded distortion lemma,

|h−1
i1...in

(J)|
|J |

≥ e−c
|h−1
i1...in

(Ii1...in)|
|Ii1...in|

Step 3: Estimation of the Derivative for the Return Map

The objective is to prove that

Dh−1
i1...in

(x) > ec(1− ε) · (e−3c(1− ε)/ε)n,

where | fi − Id |C1< ε and n is the length of the cycle. This will be greater than 1, if

e−3c (1− ε)2

ε
> 1, the importance being that this is independent of the length of the

cycle n. Letting k = min{Df,Dg}, then the bounds for the return map become

e−3c (1− ε)2

ε
≥ k2

1− k
· e−3c ≥ e−2c

1− e−c
· e−3c =

e−5c

1− e−c
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≥ e
−5ε
1+ε

1− e
−ε
1+ε

In particular, Dh−1
i1...in

> 1 if ε ≤ 0.38.

As in the proof of Duminys lemma, we have to estimate
|h−1
i1...in

(Ii1...in)|
|Ii1...in|

as then

Dh−1
i1...in

(x) = limr→0

|h−1
i1...in

(Br(x))|
|Br(x)|

≥ e−nc
|h−1
i1...in

(Ii1...in)|
|Ii1...in|

.

Many of the estimates that follow, apart from induction on the length of the cycle, are
analogous to lemmas 3.3 and 3.4 in the proof of Duminys proposition.

Lemma 4.6.
| h−1

i1...ik
(Ii1...ik) |

| h−1
i1...ik

(Ii1...ik+1
) |

>
1− ε
ε

where f, g are ε C1-close to the identity.

Proof. We have that h−1(Ii1...ik) = (qn−k+1, ci1...ik ] and h−1(Ii1...ik+1
) ⊂ Ji1...ik+1

where

Ji1...ik+1
= (gji1...ik+ik+1(pn−k), g

ji1...ik+ik+1−1(pn−k)], l > 0,

Ji1...ik,0 = (gji1...ik (pn−k), ci1...ik ].

In the case of ik+1 > 0, we obtain

| h−1
i1...ik

(Ii1...ik) |
| h−1

i1...ik
(Ii1...ik+1

) |
=

| ci1...ik − qn−k+1 |
| gji1...ik+ik+1(pn−k)− gji1...ik+ik+1−1(pn−k) |

≥ | gji1...ik+ik+1−1(pn−k)− qn−k+1 |
| gji1...ik+ik+1(pn−k)− gji1...ik+ik+1−1(pn−k) |

=
| c− qn−k+1 |
| g(c)− c |

>
1

ε

The last inequality follows from the fact that

| g(c)− c |=|| c− q | − | g(c)− qn−k+1 ||=| c− qn−k+1 | (| 1−Dg(z) |)

as | g(c) − qn−k+1 |=| g(c) − g(qn−k+1) |= Dg(z) | c − qn−k+1 | for some z. And so
| g(c)− c |> ε | c− qn−k+1 |.

In the case ik+1 = 0, we obtain

| h−1
i1...ik

(Ii1...ik) |
| h−1

i1...ik
(Ii1...ik,0) |

=
| ci1...ik − qn−k+1 |

| gji1...ik (pn−k)− ci1...ik) |

≥ | gji1...ik (pn−k)− qn−k+1 |
| gji1...ik (pn−k)− gji1...ik−1(pn−k) |

=
| g(c)− qn−k+1 |
| g(c)− c |

= Dg(z)
| c− qn−k+1 |
| g(c)− c |

> (1− ε) | c− qn−k+1 |
| g(c)− c |

>
1− ε
ε
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Lemma 4.7. For 1 ≤ k ≤ (n− 1),

| h−1
i1...ik−1

(Ii1...ik) |
| h−1

i1...ik−1
(Ii1...in) |

≥ e−c
| h−1

i1...ik
(Ii1...ik) |

| h−1
i1...ik

(Ii1...in) |

Proof. We may assume h−1
i1...ik

= g−ji1...ik−1
−ik ◦h−1

i1...ik−1
and that h−1

i1...ik−1
(Ii1...ik) as well

as h−1
i1...ik−1

(Ii1...in) are contained in a fundamental domain of g. Then the lemma follows
from the classical bounded distortion argument.

Lemma 4.8.

| h−1
i1...in

(Ii1...in) |
| Ii1...in |

> (e−c(1− ε)/ε)n−1 | h
−1
i1...in

(Ii1...in) |
| Ii1 |

Proof.
| h−1

i1...in
(Ii1...in) |

| Ii1...in |
=
| h−1

i1...in
(Ii1...in) |
| Ii1 |

· | Ii1 |
| Ii1...in |

Which by lemma 4.7 is

≥ e−c
| h−1

i1...in
(Ii1...in) |
| Ii1 |

·
| h−1

i1
(Ii1) |

| h−1
i1

(Ii1...in) |

Multiplying by
| h−1

i1
(Ii1i2) |

| h−1
i1

(Ii1i2) |
and repeating the argument gives

≥ e−2c | h
−1
i1...in

(Ii1...in) |
| Ii1 |

·
| h−1

i1
(Ii1) |

| h−1
i1

(Ii1...in) |
·
| h−1

i1i2
(Ii1i2) |

| h−1
i1i2

(Ii1...in−1) |

Again repeating everything inductively in total (n-1) times obtain

≥ e−c(n−1) | h
−1
i1...in

(Ii1...in) |
| Ii1 |

·
| h−1

i1
(Ii1) |

| h−1
i1

(Ii1i2) |
·
| h−1

i1i2
(Ii1i2) |

| h−1
i1i2

(Ii1i2i3) |
·

· · ·
| h−1

i1...in−1
(Ii1...in−1) |

| h−1
i1...in−1

(Ii1...in) |
Now apply lemma 4.6 to conclude that

> (e−c(1− ε)/ε)n−1 | h
−1
i1...in

(Ii1...in) |
| Ii1 |

Now we have to estimate
| h−1

i1...in
(Ii1...in) |
| Ii1 |

Lemma 4.9. When in > 0

| h−1
i1...ik

(Ii1...ik) |
| Ii1 |

>
1− ε
ε
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Proof. When in > 0, h−1
i1...ik

(Ii1...ik) = D = (p1, g
−1(p1)],

I0 = (f j1(qn), g−1(p1)], Ii1 = (f j1+i1(qn), f j1+i1−1(qn)], i1 > 0.

So the calculations as in the above lemma 4.6 hold to obtain

| h−1
i1...ik

(Ii1...ik) |
| Ii1 |

>
1− ε
ε

.

Thus when in > 0, putting all the calculations together,

Dh−1
i1...in

(x) > e−nc · (e−c(1− ε)/ε)n−1 · 1− ε
ε

= ec · (e−2c(1− ε)/ε)n.

When in = 0,

h−1
i1...in−1,0

(Ii1...in−1,0) = (p1, ci1,...,in−1,0] ⊂ (p1, g
−1(p1)]

and not necessarily equal. There are two options, depending if

h−1
i1...in−1,0

(Ii1...in−1,0) ∩ Ii1 6= ∅

or
h−1
i1...in−1,0

(Ii1...in−1,0) ∩ Ii1 = ∅

Lemma 4.10. When in = 0 and

h−1
i1...in−1,0

(Ii1...in−1,0) ∩ Ii1 6= ∅

then
|h−1
i1...in−1,0

(Ii1...in−1,0)|
|Ii1|

>
1− ε
ε

.

Thus
Dh−1

i1...in−1,0
(x) > ec · (e−2c(1− ε)/ε)n.

Proof. In this case f j1+i1(qn) ∈ Ii1 and

f j1+i1(qn) ∈ h−1
i1...in−1,0

(Ii1...in−1,0)

Then
|h−1
i1...in−1,0

(Ii1...in−1,0)|
|Ii1|

=
|ci1...in−1,0 − p1|

|Ii1|

≥ |f j1+i1(qn)− p1|
|f j1+i1(qn)− f j1+i1−1(qn)|

>
1− ε
ε

by the same calculation as in lemma 4.6.
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Now lets proceed to the second case when

h−1
i1...in−1,0

(Ii1...in−1,0) ∩ Ii1 = ∅.

Since g−1 ◦ h−1
i1...in−1,0

= h−1
i1...in−1,1

, and ‖ f − Id ‖C1< ε, we have

Dh−1
i1...in−1,0

(x) = Dg(h−1
i1...in−1,1

(x)) ·Dh−1
i1...in−1,1

(x) > (1− ε) ·Dh−1
i1...in−1,1

(x).

We will estimate Dh−1
i1...in−1,1

(x) but in I = Ii1...in−1,0 ∪ Ii1...in−1,1. The usefulness of this
is that

h−1
i1...in−1,1

(I) ⊃ h−1
i1...in−1,1

(Ii1...in−1,1) = (p1, g
−1(p1)] = D

The bounded distortion argument of step 2 and lemmas 4.7, and 4.8 would have to be
repeated with respect to the interval I.

Lemma 4.11. When
h−1
i1...in−1,0

(Ii1...in−1,0) ∩ Ii1 = ∅

and for x, y ∈ I
Dh−1

i1...in−1,1
(x)

Dh−1
i1...in−1,1

(y)
≥ e−2nc

Proof. Firstly lets remember the notation used:

h−1
i1...in

= g−kin ◦ f−kin . . . g−ki2 ◦ f−ki1 ,

Ji1...im,l = f−l ◦ g−kim ◦ . . . g−ki2 ◦ f−ki1 (Ii1...in),

= f−l ◦ h−1
i1...im

(Ii1...in) with l ≤ kim+1 , for m < n − 1 and l < kim+1 when m = n − 1.
The intervals Ji1...im,l were proven to be disjoint.

When h−1
i1...in−1,0

(Ii1...in−1,0) ∩ Ii1...in−1,0 = ∅, this implies Ji1...im,l are disjoint for l ≤
kim+1 , when m < n−1 and for l ≤ kim+1 when m = n−1. Then the bounded distortion
argument can be applied to the function g−1 ◦ h−1

i1...in−1,0
on the interval Ii1...in−1,0.

Since g−1 ◦ h−1
i1...in−1,0

= h−1
i1...in−1,1

, we obtain for x, y ∈ Ii1...in−1,0

enc ≥
Dh−1

i1...in−1,1
(x)

Dh−1
i1...in−1,1

(y)
≥ e−nc

If both x, y are in Ii1...in−1,0 or both are in Ii1...in−1,1, then the bounded distortion
estimates hold as above. If x ∈ Ii1...in−1,0 and y ∈ Ii1...in−1,1, take z ∈ Ii1...in−1,0 ∩
Ii1...in−1,1.Then

Dh−1
i1...in−1,1

(x)

Dh−1
i1...in−1,1

(y)
=
Dh−1

i1...in−1,1
(x)

Dh−1
i1...in−1,1

(z)
·
Dh−1

i1...in−1,1
(z)

Dh−1
i1...in−1,1

(y)
≥ e−2nc.
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Lemma 4.6 does not have to be modified. Lemma 4.7 will hold for I in the sense
that for 1 ≤ k ≤ (n− 1)

| h−1
i1...ik−1

(Ii1...ik) |
| h−1

i1...ik−1
(I) |

≥ e−c
| h−1

i1...ik
(Ii1...ik) |

| h−1
i1...ik

(I) |
.

This is because by construction of the return map h−1
i1...ik−1

(I) is contained inside the
fundamental domain of g (or f) for 1 ≤ k ≤ (n− 1).

As a consequence lemma 4.8 holds:

| h−1
i1...in−1,1

(I) |
| I |

> (e−c(1− ε)/ε)n−1
| h−1

i1...in−1,1
(I) |

| Ii1 |

As Ii1 ⊂ [f j1+i1(qn), f j1+i1−1(qn)] and h−1
i1...in−1,1

(I) ⊃ D = (p1, g
−1(p1)], by the same

calculations as in the previous steps,

h−1
i1...in−1,1

(I)

Ii1
≥ | g−1(p1)− p1 |
| f j1+i1(qn)− f j1+i1−1(qn) |

>
1− ε
ε

Therefore now we can estimate the derivative of Dh−1
i1...in−1,1

(x) for all x ∈ I,

Dh−1
i1...in−1,1

(x) ≥ e−2nc
| h−1

i1...in−1,1
(I) |

| I |

> e−2nc · (e−c(1− ε)/ε)n−1 · 1− ε
ε

= ec · (e−3c(1− ε)/ε)n.

Finally,
Dh−1

i1...in−1,0
(x) > ec(1− ε) · (e−3c(1− ε)/ε)n

and so this estimate holds for all the return maps

Dh−1
i1...in

(x) > ec(1− ε) · (e−3c(1− ε)/ε)n

Step 4: Minimality of the Interval and Density of Periodic Points

This is very similar to the end of proof of Duminys lemma.

Lemma 4.12. To prove minimality of the interval (p1, g
−1(p1)), it is sufficient to show

that for any open interval J ⊂ (p1, g
−1(p1)), there exists qi (or pi), the attractor of the

minimal cycle, and maps h1, h2 ∈< f, g > such that h1(qi) ∈ h−1
2 (J).

Proof. Let x, J ∈ (p1, g
−1(p1)), where J is open, and x a point. As qi is part of the

cycle there exists a map h3 ∈< f, g > such that h3(p1) is arbitrary close to qi, and
in particular h1 ◦ h3(p1) ∈ h−1

2 (J). Since p1 is a global attractor in [p1, g
−1(p1)], there

exists a j such that f j ◦ h1 ◦ h3(x) ∩ h−1
2 (J) 6= ◦ and so h2 ◦ f j ◦ h1 ◦ h3(x) ∩ J 6= ◦.

Since the point x and the interval J were arbitrary, this shows minimality.

34



To end the proof, we will show that last the lemma holds. Let A be the set of
endpoints of the intervals Ii1...in . Remember that if c ∈ A, then there exists h ∈< f, g >
and a point qi(pi) of the cycle, such that h(qi) = c. Take J ⊂ [p1, g

−1(p1)] and we can
assume J ⊂ Ii1...in for some i1, . . . in. On the contrary J ∩ A 6= ◦ and we are done.
Since | Dh−1

i1...in
(x) |> λ > 1,then | h−1

i1...in
(J) |> λ · J . Now or h−1

i1...in
(J) ∩ A 6= ◦

(and we are done) or h−1
i1...in

(J) ⊂ Ij1...jn for some j1 . . . jn. In the second case we have
| h−1

j1...jn
◦ h−1

i1...in
(J) |> λ2 · J . Proceeding in this manner, as λn → ∞, the pre-images

of J will have to swallow c ∈ A at some point.

Observe that as p1 can be attracted arbitrary close to any of the points in the set
A, we actually have that the orbit of p1 is dense in (p1, g

−1(p1)) and so the closed
interval [p1, g

−1(p1)] is minimal.

To show that [p1, g
−1(p1)] ⊂ (Per(< f, g >), we will use that the orbit of the

attractor p1 is dense. Given J ⊂ [p1, g
−1(p1)], open, there exists h ∈< f, g > with

h(p1) ∈ J . As p1 is the attractor, there exists a k such that fk ◦ h(J) ⊂ J and
D(fk ◦ h) < 1 in J . Then there exists a fixed point in J for the map fk ◦ h ∈< f, g >.

Step 5: Bounds for Periodic f, g

Let f, g be periodic with periods p, q. Then the return maps h−1
i1...in

are found with
respect to < fp, gq >. Let S = fp, T = gq. The bounds on the derivatives will actually
be the same as for maps with fixed points,

Dh−1
i1...in

(x) > ec(1− ε) · (e−3c(1− ε)/ε)n

where c is max{cf , cg}.

Lemma 4.13. For x, y ∈ Ii1...in,

e−nc ≤
Dh−1

i1...in
(x)

Dh−1
i1...in

(y)
≤ enc

.

Proof.

log
Dh−1

i1...in
(x)

Dh−1
i1...in

(y)
≤

kin−1∑
l=0

| log[DT−1(T−l ◦ h−1
i1...in−1

(x))]− log[DT−1(T−l ◦ h−1
i1...in−1

(y))] |

+

kin−1
−1∑

l=0

| log[DS−1(S−l ◦ h−1
i1...in−2

(x))]− log[DS−1(S−l ◦ h−1
i1...in−2

(x))] |

+ · · ·+
ki1−1∑
l=0

| log[DS−1(S−l(x))]− log[DS−1(S−l(y))] |

≥
q(kin )−1∑
l=0

| log[Dg−1(g−l ◦ h−1
i1...in−1

(x))]− log[Dg−1(g−l ◦ h−1
i1...in−1

(y))] |
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+

p(kin−1
)−1∑

l=0

| log[Df−1(f−l ◦ h−1
i1...in−2

(x))]− log[Df−1(f−l ◦ h−1
i1...in−2

(x))] |

+ · · ·+
p(ki1 )−1∑
l=0

| log[Df−1(f−l(x))]− log[Df−1(f−l(y))] |

≥ c ·
q(kin )−1∑
l=0

| g−l ◦ h−1
i1...in−1

(x)− g−l ◦ h−1
i1...in−1

(y) |

+c ·
p(kin−1

)−1∑
l=0

| f−l ◦ h−1
i1...in−2

(x)− f−l ◦ h−1
i1...in−2

(x) |

+ · · ·+ c ·
p(ki1 )−1∑
l=0

| f−l(x)− f−l(y) |

≤ c ·
q(kin )−1∑
l=0

| Ji1...in−1,l | +c ·
p(kin−1

)−1∑
l=0

| Ji1...in−2,l | + · · ·+ c ·
p(ki1 )−1∑
l=0

| Jl

where Ji1...im,l is defined as before to be f−l ◦ h−1
i1...im

(Ii1...in). Since h−1
i1...im

(Ii1...in) is
contained in a fundamental domain of f (or g), lemma 3.6 implies that the intervals
Ji1...im,l are disjoint, and so the last inequality is again as before less then nc.

The other lemma that used the bounded distortion constant was lemma 4.7

Lemma 4.14. For 1 ≤ k ≤ (n− 1),

| h−1
i1...ik−1

(Ii1...ik) |
| h−1

i1...ik−1
(Ii1...in) |

≥ e−c
| h−1

i1...ik
(Ii1...ik) |

| h−1
i1...ik

(Ii1...in) |

Proof. As before
h−1
i1...ik

= T−ji1...ik−1
−ik ◦ h−1

i1...ik−1

= h−1
i1...ik

= g−q(ji1...ik−1
−ik) ◦ h−1

i1...ik−1

and h−1
i1...ik−1

(Ii1...ik) as well as h−1
i1...ik−1

(Ii1...in) are contained in a fundamental domain
of g. So again lemma 3.6 will imply the disjointness of the intervals g−l ◦ h−1

i1...ik−1
for

0 ≤ l ≤ q(ji1...ik−1
+ ik). Then the classical bounded distortion argument ends the

proof.

The rest of the proof goes on exactly as in the case of fixed points to give the
same bounds on the return map derivative. Combining this with lemma 3.6 that e−c ≤

Df p(x) ≤ ec (same for g), obtain that Dh−1
i1...in

> 1 if
e−5c

1− e−c
> 1 or ε ≤ 0.38.

This completes the proof of the theorem

Next we will prove corollary 4.2
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Proof. If f, g are not necessarily orientation-preserving, consider f ◦ f and g ◦ g which
are orientation-preserving. Then the return maps are created with respect to the IFS
< f 2, g2 >. If the maximum distortion of f, g is c, the maximum distortion of f 2, g2

is 2c. The worst estimation on the derivative of the return map from the proofs of
theorems 2.1 and 2.4 is given in step 5 in the proof of theorem 2.1. Substituting 2c it
becomes

DH ≥ e−16c

3(1− e−2c)
.

Then DH > 1 if f, g are 0.06-close to the identity in the C2 topology. The rest of the
proof of the corollary is the same as in theorems 2.1 and 2.4 applied to the system
< f 2, g2 >.
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5 Robustly Minimal IFS in S1

Theorem 5.1. Let f, g be C2 Morse-Smale diffeomorphisms of the circle with no
periodic points in common. There exists an ε > 0 (ε ≥ 0.38) such that if f, g are ε-
close to the identity in the C2 topology, then if there is no Kss set the system < f, g >
is robustly minimal.

To prove the theorem we would need the following proposition which is based on
the combinatorics of periodic points on the circle.

Proposition 5.2. There is an interval Kss for the iterated function system IFS(f0, f1)
if and only if there is an interval Kuu for IFS(f0, f1).

Proof. Suppose there exists a Kuu set but no Kss. Let Ri, Ai denote the repellers and
attractors of f1 and Kuu = [R,R1] where R is a repeller of f0. Then we can subdivide
the circle in the following manner,

S1 = [R,R1] ∪ [R1, A1] ∪ [A1, R2] ∪ [R2, A2] · · · ∪ [An, R].

We will show that in the interior of each of this closed intervals f0 has an even
number of fixed points. Denote this set by F . Then ]F is even and the total number
of fixed points of f0 is ]F ∪ {R} is odd. This will contradict the fact that for any
Morse-Smale on the circle the number of fixed points is even.

The interval [R,R1] does not have any fixed points of f0 in its interior by definition.
Let [R,R+] denote an repeller-attractor interval for f0. If R+ belongs to the interval
of the form (Ai, Ri+1) then [Ai, R

+] form an attractor-attractor pair for the system
IFS(f0, f1), and a Kss set. Therefore R+ ∈ (Ri, Ai). The hypothesis of f0 and f1

having no fixed points in common is used here to guarantee R+ 6= Ri or Aj.

Again since there is noKss set there has to be a repeller R of f0 in (Ri, Ai) closest to
Ai. Consider [R+, R] ⊂ (Ri, Ai). Then in [R+, R], f0 has an even number of fixed points
and therefore the same holds for (Ri, Ai). For j < i the intervals [Rj, Aj], [Aj, Rj+1] do
not contain any fixed points of f0.

In this manner we proceed inductively now considering [R,R+] as the repeller-
attractor pair, where R+ ∈ (Rk, Ak) with k > i. The same reasoning applies and this
ends the proof.

Proposition 5.3. Suppose that there is no Kss (or Kuu) set for the system IFS(f0, f1)
and there exists an interval I such that fi(I) ∩ I 6= ∅. Then for all x ∈ S1 there exists
h1 ∈ IFS(f0, f1) and h−1

2 ∈ IFS(f−1
0 , f−1

1 ) with h1(x) ∈ I and h−1
2 (x) ∈ I.

Proof. As before let pi the attractors of f, qi the attractors of g. In theorem 2.4 we
defined a partial order relation on the attracting points by pi ≺ qj ⇔ pi ∈ Bg(qj),
where Bg denotes the basin of attraction for g, with similar definitions for qi ≺ pj. The
no existence of Kss sets was important in the inductive creation of the return map,
in particular the order of points on the real line pn−k < ci1...ik+1

< qn−k−1 < p+
n−k was

crucial. Here we need a similar order.
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Suppose that x ∈ Bf (p1). From now on we will work with the lifts of f, g, which
we will denote by the same letters. Looking at the lifts on the real line with the same
partial order relation as was defined on the circle, we can form an arbitrary long chain
on the real line starting from p1,

p1 ≺ q2 ≺ · · · ≺ pn ≺ . . .

We may assume p1 < q2 on the real line

Lemma 5.4. There is the following order on the real line

p1 < q2 < · · · < pn < . . .

Proof. The proof is by induction. Supposing that qn−1 < pn, lets show that pn < qn+1.
By hypothesis pn ∈ Bg(qn+1), then pn ∈ [q−n+1, qn+1] or pn ∈ [q+

n+1, qn+1]. If pn ∈
[q+
n+1, qn+1], as there is no Kss (no attractor-attractor pairs) then necessarily p−n ∈

[q+
n+1, qn+1], and so [p−n , pn] ⊂ (q+

n+1, qn+1). As by the inductve hypothesis qn−1 < pn,
then qn−1 ∈ [p−n , pn] ⊂ (q+

n+1, qn+1), a contradiction. Therefore pn ∈ [q−n+1, qn+1] and
pn < qn+1.

Lemma 5.5. There exists a sequence hk ∈< f, g > such that hk(x) → ∞ (here we
are looking at the lifts on the real line) hk+1(x) > hk(x), and hk+1 = f ◦ hk(or g ◦ hk).

Proof. Since the order pk < qk+1 < pk+2 holds for all k, we can attract x inductively
to p1 then to q2, etc... In this manner given k there exists hk ∈< f, g > such that
hk ∈ Bf (pk). As pk ∈ Bg(qk+1), then gm ◦ hk(x) is arbitrary close to qk+1 and since
pk < qk+1 we have that gm−1◦hk(x) < gm◦hk(x). Let hk+l = gl ◦hk for l ≤ m. Because
of the increasing order of the attractors pk < q−k+1 < pk+1, pk →∞, the same holds for
hk with hk+1(x) > hk(x).

From the lemma we can assume there exists a sequence of functions hk(x) → ∞.
If hk(x) /∈ I for any k, there exists a k such that hk(x) < I and hk+1(x) > I. Suppose
that hk+1(x) = f ◦hk(x). Then I ⊂ (hk(x), f ◦hk(x)) and as f is an increasing function
on the real line f(I) > I contradicting that f(I)∩ I 6= ∅. Therefore there exists k such
that hk ∈ I.

Observing that f(I)∩ I 6= ∅ if and only if f−1(I)∩ I 6= ∅ and there exists a Kss set
if and only there exists Kuu, repeating the argument we obtain h2 with h−1

2 (x) ∈ I.

Corollary 5.6. If under the above hypothesis I is minimal, then < f, g > is minimal
(as well as < f−1, g−1 >).

Proof. Take any x, y ∈ S1. It is enough to show that given ε > 0 there exists h ∈<
f, g > such that h(x) ∈ Bε(y). By the proposition there exists h1 with h1(x) ∈ I, and
h2 with h−1

2 (Bε(y))∩I 6= ∅. Since I is minimal, take h3 such that h3(x) ∈ h−1
2 (Bε(y))∩I.

Then h2 ◦ h3 ◦ h1(x) ∈ Bε(y).
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To prove theorem 5.1 it is enough to observe that by theorem 4.1 and the obser-
vation that follows there exists a blender-like set satisfying the hypothesis of the last
corollary. That ε ≥ 0.38 again comes from step 3 of theorem 4.1 and the fact that
we are not actually worried about the minimality of Kss (theorem 2.1). The robustez
comes from the fact that not having a Kss set is a robust property under the condition
that that fixed points are not in common. This ends the proof.
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6 Spectral Decomposition

First we will deal with spectral decomposition on the real line, and afterwards pass on
the circle considering the lifts to the real line. For now let g1, g2 be diffeomorphisms of
the real line. We say gi is Morse-Smale if the set of fixed points of both g1 and g2 is
not empty and all the fixed points are hyperbolic.

Definition 6.1. Spectral Decomposition for IFS on the real line The IFS < g1, g2 >
has spectral decompostion if the limit set

L(< g1, g2 >) = ∪∞i=1Bi ∪ {±∞}

where Bi transitive sets, and given any compact set K ⊂ R

L(< g1, g2 >) ∩K = ∪nj=1(Bji ∩K) (a finite union)

To state the theorem we have to enlarge the set of different types of K∗∗. Now ∗∗
can also be s or u where considering I = [a,∞), Ks is defined as

gi1(a) = a, gi1 < Id in (a,∞) and gi2 > Id in I.

Symmetrically denote as well by Kss I = (−∞, a] where the relevant definition be-
comes

gi1(a) = a, gi1 > Id in (−∞, a] and gi2 < Id in I.

The fixed point a is an attractor of gi1 . A Ku set is a Ks set for < g−1
1 , g−1

2 >.

The proof of Duminys lemma is exactly the same for Ks sets and so these are
minimal if | gi − Id |C2≤ 0.14.

Theorem 6.2. Let g1, g2 be Morse-Smale diffeomorphisms of the real line with no fixed
points in common. There exists an ε > 0 (ε ≥ 0.14) such that if gi are ε-close to the
identity in the C2 topology then < g1, g2 > has spectral decomposition.

Specifically L(< g1, g2 >) = ∪∞i=1Bi ∪ {±∞}, where each Bi is either a K∗∗ set or
is a single fixed point of gi.

Proof. By Duminys lemma for (ε ≤ 0.14) Ks, Kss sets are minimal, and Ksu, Ku, Kuu

sets are transitive.

If z is in the ω-limit of < g1, g2 >, then z can be approximated by points of the
form yl = limk→+∞ g

jk
σ (xl). It enough to show that if y = limk→+∞ g

jk
σ (x) then y is in

some K∗∗, a fixed point of the maps gi, or is {±∞}. Let {pi}i∈Z be the ordered set of
fixed points of both g1 and g2, which by hypothesis is not empty.

If y 6= {±∞}, we can assume that y ∈ (pi, pi+1) where by abuse of notation pi, pi+1

can take on the values of −∞,+∞ respectively. Also suppose that I = [pi, pi+1] is not
a K∗∗ type and that pi is an attractor for g1 (the other cases are handled similar).
Then there are three options:
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(1) pi+1 is a repeller for g1

(2) pi+1 = {∞}
(3) pi+1 is repeller for g2.
The following lemma says that for I = [pi, pi+1], if a point leaves it, then it can

never come back.

Lemma 6.3. Let x ∈ I = [pi, pi+1] but gl(x) /∈ I (l = 1 or 2). Then gjσ ◦ gl(x) /∈ I for
all σ, j.

Proof. The point pi is a fixed attractor of g1 and suppose that gl(x) < pi (the proof
for the other case is the same). Necessarily gl = g2 because if y > pi then g1(y) > pi.
As well by the assumptions g2 < Id in [p1, p2). Let c be the closest attractor of g2

to the left of pi and if it does not exist,let c = ∞. If y ≤ c, then g2(y) ≤ c and if
y ∈ [c, pi) then g2(y) < y. Putting the above observations together conclude that for
y < pi, gl(y) < pi, l = 1, 2, and this proves the lemma.

To take care of the first case, pi+1 is a repeller for g2 implies that both g1 and g2 are
below the identity line. Therefore if y = limk→+∞ g

jk
σ (x) and gjk−1

σ (x) is in (pi, pi+1), it
follows that gl ◦ gjk−1

σ (x) < g
jk−1
σ (x) for l = 1, 2.

The interval [pi, y] only contains a finite number of fundamental domains of g2.
So if the map g2 appears an infinite number of times in the sequence σ then at some
point gjkσ (x) < pi. But then by lemma 6.3 gl ◦ gjkσ (x) < pi for l = 1, 2 and therefore
gjnσ (x) /∈ (pi, pi+1 for n > k, a contradiction with that y = limk→+∞ g

jk
σ (x) ∈ (pi, pi+1)

Then for the sequence σ = {σl}, there exists an m such that σl = 1 for l > m.
So we may assume that y = liml→+∞ g

l
1 ◦ gjkσ (x) where gjkσ (x) ∈ (pi, pi+1). As pi is the

attractor for g1 in I, consequently y = pi, a contradiction as y is in the interior of I.
For case (2), pi+1 = ∞, since (pi, pi+1) is not a Ks set, this implies g2 < Id in

(pi, pi+1). As in the first case if gjk−1
σ (x) is in (pi, pi+1), then gl ◦ gjk−1

σ (x) < g
jk−1
σ (x) for

l = 1, 2 and the rest of the proof goes on as for the first case.
If pi+1 is a repeller for g1 (case 3) there are two sub-cases, g2(I) < Id or g2(I) > Id.

When g2(I) < Id the argument is again the same as in case (1). If g2(I) > Id since I
is not a Ksu set, then g2((pi, pi+1)) ∩ (pi, pi+1) = ∅.

Remembering that y = limk→+∞ g
jk
σ (x) and take gjkσ (x) in (pi, pi+1). Suppose that

in the sequence σ the function g2 appears after the index jk and will arrive at a
contradiction.

Let the index l > jk be the first time that 2 appears in the sequence. Then

glσ(x) = g2 ◦ gl−1
σ (x) = g2 ◦ gl−jk1 ◦ gjkσ (x)

Since p1 is an attrctor for g1, gl−jk1 ◦ gjkσ (x) ∈ (pi, pi+1). As g2(I) ∩ I = ∅ this implies
g2 ◦ gl−jk1 ◦ gjkσ (x) 6= I. By lemma 6.3 gnσ(x) 6= I for all n > l, contradiction with that
y = limk→+∞ g

jk
σ (x) ∈ I.

Therefore can conclude that the number 2 never appears in the sequence σ for
σl with l > jk. Then glσ(x) = gl−jk1 ◦ gjkσ (x) as pi is a attractor for g1 in I implies
y = liml→+∞ g

l
1 ◦ gjkσ (x) = p1, again a contradiction, and this ends the proof.
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The theorem for IFS on the circle takes form as

Theorem 6.4. Let g1, g2 be Morse-Smale diffeomorphisms of the circle, both with fixed
points but which are not in common. There exists an ε > 0 (ε ≥ 0.14) such that if gi are
ε-close to the identity in the C2 topology then < g1, g2 > has spectral decomposition.

Specifically L(< g1, g2 >) = ∪ni=1Bi, where each Bi is either a Kss, Ksu, or Kuu set
or is a single fixed point of gi.

Proof. By corollary 2.7 there is no Kss type set if and only if < g1, g2 > is minimal
and in which case the spectral decomposition is the whole circle. Therefore we can
suppose that there is a Kss type set.

Considering Gi as the lifts of gi to the real line, the system < G1, G2 > satisfies
the hypothesis of the anterior theorem 6.2, and so there is the spectral decomposition

L(< G1, G2 >) = ∪∞i=1Bi ∪ {±∞}.

The sets Bi cannot be of type Ks, Ku as gi have fixed points. The lifts of the fixed
points to the real line will repeat periodically going to ±∞.

If Bj is a Kss type set then it is invariant in the sense that Gi(Bj) ⊂ Bj. This
means that if Bj = [a, b], Bk = [c, d] are Kss sets and a ≤ x ≤ d, then a ≤ gjkσ (x) ≤ d.

The lift of a Kss type set on the circle will give and infinite number of Kss type
sets on the real line, call Bjk , which go of to ±∞. Therefore given x ∈ R there exists
Bjl = [a, b] and Bjk = [c, d] of Kss type such that a ≤ x ≤ d. Then for any y with
y = limk→+∞ g

jk
σ (x), a ≤ y ≤ d. This shows that {±∞} is not part of the spectral

decomposition L(< G1, G2 >).

From the above discussion we may conclude that L(< G1, G2 >) = ∪∞i=1Bi where
Bi is of type Kss, Ksu, or Kuu or is fixed point of Gi. Projecting these sets on the
circle we obtain a finite number sets of sets each containing one of the fixed points of
gi and the same result for L(< g1, g2 >).
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7 Symbolic Blender-like

Theorem 7.1. Let c be such that (1− c)kα = 1 and B(Id, c)Sα,rk (M) be a ball of radius
c about the identity map Id = (τ, Id) in Sα,rk (M). Consider

Γ ∈ Hr(M) ∩ B(Id, c)Sα,rk (M),

where Γ = τn < γ1, . . . , γk >. Suppose there exists a bounded open set B ⊂M , a finite
number of bounded closed sets Ui and the respective maps Hi ∈< γ−1

1 , . . . , γ−1
k > such

that

(i) Covering property:

B ⊂
k⋃
i=1

int(Ui),

with Hi(Ui) ⊂ B and DHi > 1 in Ui.

(ii) Periodic point with minimal orbit: there exists a hyperbolic periodic point pΓ ∈
B of < γ1, . . . , γk > such that B ⊂ Orb(pΓ).

Then B is a cs-symbolic blender-like set in Sα,rk (M) for Γ.

First lets prepare the notation.

Denote by ξ(θn, . . . , θ1) a sequence that satisfies {ξ ∈ Σk; ξ−j = θj, j ≤ n}. And by
ξ(0, θ1, . . . , θn) that satisfies {ξ ∈ Σk; ξj = θj, j ≤ n}. Sometimes instead of a single
index θj we will use blocks of a sequence.

The following notation will be handy, ◦ni=1γτ i(ξ) = γτn(ξ) ◦ · · · ◦ γτ(ξ)

Each map Hi can be written as γ−1
ξj
◦ · · · ◦γ−1

ξ1
and let vi denote the block {ξj . . . ξ1}

respective to each map. Then

Hi = ◦|vi|j=1γ
−1
τ−j(ξ(vi))

for all sequences ξ(vi).

As DHi > 1 in Ui, let σ be the minimum over the expanding constants of Hi in Ui.

Take a neighborhood Ω of Γ such that for all Ψ ∈ Ω and all sequences of the form
ξ(vi),

◦|vi|j=1ψ
−1
τ−j(ξ(vi))

(Ui) ⊂ B

and ◦|vi|j=1ψ
−1
τ−j(ξ(vi))

are expanding in Ui with expansion at least σ.

By hypothesis pΓ is a periodic point in B and may write

γθn ◦ · · · ◦ γθ1(pΓ) = pΓ.

Take the sequence θ to be periodic with the block {θ1, . . . , θn}. Then (θ, pΓ) is a periodic
point for Γ.

Since pΓ is hyperbolic, we may assume that the neighborhood Ω is such that for
all Ψ ∈ Ω there is continuation of pΓ given by pΨ ∈ B such that (θ, pΨ) is a periodic
point of Ψ.

44



Let L be the Lebesgue number of the open cover

B ⊂
l⋃

i=1

int(Ui).

By minimality of B for < γ1, γ2 >, the orbit of pΓ is dense in B. Then there exists a
finite set of functions {hi} in < γ1, γ2 > so that the set of points {hi(pΓ)} is L/8 dense
in B.

Each map hi can be written as γξij ◦ · · · ◦ γξi1 Designating by wi the block {ξij . . . ξi1}
then

hi = ◦|wi|−1
j=0 γτ j(ξ(0,wi))

for all sequences ξ(0, wi).

Also let Ω be so that for Ψ ∈ Ω and an open interval V ⊂ B with | V |> ρ > L/8
there exists a block wi for which

◦|wi|−1
j=0 ψτ j(ξ(0,wi))(pΨ) ∈ V

for all sequences ξ(0, wi).

Since Γ ∈ Hr, CΓ = 0. As well there exists a cΓ,

Γ ∈ B(Id, cΓ)Sα,rk (M)

with (1− cΓ)kα > 1.

Therefore we can assume that the neighborhood Ω of Γ is contained in

B(Id, cΓ)Sα,rk (M)

and is small enough as to satisfy for all Ψ ∈ Ω

CΨ

∞∑
j=0

1

((1− cΓ)kα)j
< L/8.

Proposition 7.2. For Ψ ∈ Ω, given B(x, r) (a ball of radius r around x) in B there
is a sequence of blocks {vθn , . . . , vθ1} and a block wi (depending on B(x, r)), such that

◦|wi|−1
j=0 ψτ j(ζ(0,wi))(pΨ) ∈ ◦βj=1ψ

−1
τ−j(ξ(vθn ,...,vθ1 ))

(B(x, r))

for all sequences ζ(0, wi), ξ(vθn , . . . , vθ1) where β =
∑n

j=1 | vθj |

Proof.

Lemma 7.3. Consider two sequences ζ(θn, . . . , θ1) and ξ(θn, . . . , θ1) with the extra
assumption that W s

loc(ζ(θn, . . . , θ1)) = W s
loc(ξ(θn, . . . , θ1)). Then for 1 ≤ i ≤ n,

d(◦ij=1ψ
−1
τ−j(ζ(θn,...,θ1))

(x), ◦ij=1ψ
−1
τ−j(ξ(θn,...,θ1))

(x)) < CΨ(
1

kα
)n−i

i−1∑
j=0

1

((1− cΓ)kα)j
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Proof. The proof is by induction, for i = 1 by the Holder-continuity hypothesis we
have that

d(ψτ−1(ζ(θn,...,θ1))(x), ψτ−1(ξ(θn,...,θ1)(x))) ≤ CΨ(
1

kα
)n−1

Supposing that the formula is valid at step i− 1 and lets show that it is also valid for
step i. Applying the triangle inequality gives,

d(◦ij=1ψ
−1
τ−j(ζ(θn,...,θ1))

(x), ◦ij=1ψ
−1
τ−j(ξ(θn,...,θ1))

(x))

≤ d(◦ij=1ψ
−1
τ−j(ζ(θn,...,θ1))

(x), ψ−1
τ−i(ξ(θn,...,θ1)

◦i−1
j=1 ψ

−1
τ−j(ζ(θn,...,θ1))

(x))

+d(ψ−1
τ−i(ζ(θn,...,θ1)

◦i−1
j=1 ψ

−1
τ−j(ξ(θn,...,θ1))

(x), ◦ij=1ψ
−1
τ−j(ξ(θn,...,θ1))

(x))

Now using that the inverses of the functions expand at most (1 − cΓ)−1 and setting
y = ◦i−1

j=1ψτ−j(ξ(θn,...,θ1))(x) obtain

< (1− cΓ)−1d(◦i−1
j=1ψ

−1
τ−j(ζ(θn,...,θ1))

(x), ◦i−1
j=1ψ

−1
τ−j(ξ(θn,...,θ1))

(x))

+d(ψ−1
τ−i(ζ(θn,...,θ1)

(y), ψ−1
τ−i(ξ(θn,...,θ1)

(y))

From the induction on the first term and the Holder-continuity on the second,

< (1− cΓ)−1CΨ(
1

kα
)n−i+1

i−2∑
j=0

1

((1− cΓ)kα)j
+ ε(

1

kα
)n−i

= CΨ(
1

kα
)n−i

i−2∑
j=0

(1− cΓ)−1

kα
1

((1− cΓ)kα)j
+ CΨ(

1

kα
)n−i

= CΨ(
1

kα
)n−i

i−1∑
j=1

1

((1− cΓ)kα)j
+ CΨ(

1

kα
)n−i

= CΨ(
1

kα
)n−i

i−1∑
j=0

1

((1− cΓ)kα)j

which ends the proof of the lemma.

Observe that for the case when i = n,

d(◦ij=1ψ
−1
τ−j(ζ(θn,...,θ1))

(x), ◦ij=1ψ
−1
τ−j(ξ(θn,...,θ1))

(x)) < CΨ

n−1∑
j=0

1

((1− cΓ)kα)j
< L/8. (1)

To prove the proposition, if r ≥ L/2 then by the initial assumptions there exists a
wi such that

◦|wi|−1
j=0 ψτ j(ξ(0,wi))(pΨ) ∈ B(x, r),

which concludes the proposition. So let r < L/2 and then we have the following lemma.
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Lemma 7.4. Consider 0 < r < L/2 and x ∈ B such that B(x, r) ⊂ B. There exists a
sequence of blocks {vθn , . . . , vθ1} and a specific sequence ζ(vθn , . . . , vθ1) such that

diam(◦mnj=1ψ
−1
τ−j(ζ(vθn ,...,vθ1 ))

(B(x, r))) > L/2

for this sequence. And for all sequences of the form ξ(vθn , . . . , vθ1)

◦mnj=1ψ
−1
τ−j(ξ(vθn ,...,vθ1 ))

(B(x, r))) ⊂ B

where mn =
∑n

i=1 | vθi |.

Proof. Observe that as r < L/2,

B(x, r) ⊂ Uθ1

for some θ1. Consider
◦|vθ1 |j=1 ψ

−1
τ−j(ξ(vθ1 ))

(B(x, r)) ⊂ B.

Lets distinguish two cases

(i) Either for all sequences ξ(vθ1)

diam(◦|vθ1 |j=1 ψ
−1
τ−j(ξ(vθ1 ))

(B(x, r))) < L/2

(ii) Or there exists a sequence ζ(vθ1) such that

diam(◦|vθ1 |j=1 ψ
−1
τ−j(ξ(vθ1 ))

(B(x, r))) ≥ L/2.

Assuming the first case call Ξ1 the set of all sequences of the form ξ(vθ1) and let

A1 = {◦|vθi |j=1ψ
−1
τ−j(ζ)(B(x, r)); ζ ∈ Ξ}.

The next goal is to prove that diam(A1) < L and so A1 ⊂ Uθ2 .

This follows from the fact that

diam(◦|vθ1 |j=1 ψ
−1
τ−j(ξ(vθ1 ))

(B(x, r))) < L/2

combined with lemma 7.3 which states

d(◦|vθ1 |j=1 ψ
−1
τ−j(ζ(vθ1 ))

(x), ◦|vθ1 |j=1 ψ
−1
τ−j(ξ(vθ1 ))

(x)) < CΨ

|vθ1 |−1∑
j=0

1

((1− cΓ)kα)j
< L/8

for all sequences ζ(vθ1), ξ(vθ1).

Suppose at step n we have constructed a sequence θn, . . . , θ1 with the additional
hypothesis that

diam(◦mlj=1ψ
−1
τ−j(ξ(vθl ,...,vθ1 ))

(B(x, r))) < L/2

47



for all sequences of the form ξ(vθl , . . . , vθ1) with 1 ≤ l ≤ n and ml =
∑l

i=1 | vθi |.
Define the sets Ξl the set of all sequences of the form ξ(vθl . . . vθ1) and

Al = {◦mlj=1ψ
−1
τ−j(ζ)(B(x, r)); ζ ∈ Ξl}.

where ml =
∑l

i=1 | vθi | and 1 ≤ l ≤ n

By induction assume Al ⊂ Uθl+1
for 1 ≤ l ≤ n− 1.

Now lets produce a sequence of length n+ 1 observing that diam(An) < L. As in
the case of A1, this follows from the inductive hypothesis and lemma 7.3 from which

d(◦mnj=1ψ
−1
τ−j(ζ(vθn ,...,vθ1 ))

(x), ◦mnj=1ψ
−1
τ−j(ξ(vθn ,...,vθ1 ))

(x)) < CΨ

mn−1∑
j=0

1

((1− cΓ)kα)j
< L/8

for all sequences ζ(vθ1), ξ(vθ1).

Therefore An ⊂ Uj for some Uj. Let θn+1 = j and assume again the hypothesis
that

diam(◦mn+1

j=1 ψ−1
τ−j(ξ(vθn+1

,...,vθ1 ))
(B(x, r))) < L/2 (2)

for all sequences of the form ξ(vθn+1 , . . . , vθ1) with mn+1 =
∑n+1

i=1 | vθi |.
Lets prove that this process cannot go on forever. As An ⊂ Uθn+1 for all n, and by

the initial conditions the maps ◦|vi|j=1ψ
−1
τ−j(ξ(vi))

are expanding in Ui with expansion at
least σ, implies

diam(◦mnj=1ψ
−1
τ−j(ξ(vθn+1

,...,vθ1 ))
(B(x, r))) > σnr.

For a sequence of size n, big enough so that σnr > L/2 this would contradict the
hypothesis (eq. 2).

Therefore there exists a sequence of blocks {vn, . . . , v1} and a specific sequence
ζ(vn, . . . , v1) such that

diam(◦mnj=1ψ
−1
τ−j(ζ(vθn ,...,vθ1 ))

(B(x, r))) > L/2.

Lemma 7.5. Consider the sequence of blocks {vθn , . . . , vθ1} given by previous lemma
7.4. There exists a point z ∈ B and a ball B(z, L/4) so that

B(z, L/4) ⊂ ◦mnj=1ψ
−1
τ−j(ξ(vθn ,...,vθ1 ))

(B(x, r)))

for all sequences of the form ξ(vθn , . . . , vθ1).

Proof. Let θ = vθn . . . vθ1 be the concatenation of the block from lemma 7.4. Consider
the boundary of the set

◦mnj=1ψ
−1

τ−j(ξ(θ))
(B(x, r))
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with respect to a given sequence ξ(θ). Since the fiber maps are diffeomorphisms the
boundary is a connected set given by

Fξ(θ) = {◦mnj=1ψ
−1

τ−j(ξ(θ))
(y) : y ∈ ∂(B(x, r))}.

With respect to the specific sequence of lemma 7.4, ζ(θ), by lemma 7.3 and equation
1

Fξ(θ) ⊂ {y ∈ B : ∃z ∈ Fζ(θ), d(y, z) < L/8}.

for all sequences ξ(θ). Thus

diam(
⋂
ξ(θ)

◦mnj=1ψ
−1

τ−j(ξ(θ))
(B(x, r))) ≥ L/2− 2L/8 = L/4.

Therefore there exists a point z such that

B(z, L/4) ⊂ ◦mnj=1ψ
−1
τ−j(ξ(vθn ,...,vθ1 ))

(B(x, r)))

for all sequences of the form ξ(vθn , . . . , vθ1), which concludes the proof.

To end the proof of the proposition, by the initial hypothesis there exists a block
wi such that

◦|wi|−1
i=0 ψτ j(ζ(0,wi))(pΨ) ∈ B(◦mnj=1ψ

−1
τ−j(ζ(vθn ,...,vθ1 ))

(z), L/4) ⊂

◦βi=1ψ
−1
τ−j(ξ(vθn ,...,vθ1 ))

(B(x, r))

for all sequences ζ(0, wi), ξ(vθn , . . . , vθ1).

Now we are ready to prove theorem 2.10.

Proof. To show that B is a symbolic blender-like, we have to show that for a given
sequence ξ and an open set U ⊂ B,

W u(θ, pΨ) ∩ (W s
loc(ξ, τ)× U) 6= ∅.

For a fixed x ∈ U by proposition 7.2 there exists a sequence of blocks {vµn , . . . , vµ1}
and a block wi such that for any sequences of the form ξ(vµn , . . . , vµ1) and ζ(0, wi),

◦|wi|−1
j=0 ψτ j(ζ(0,wi))(pΨ) ∈ ◦βj=1ψ

−1
τ−j(ξ(vµn ,...,vµ1 ))

(U).

For a block sequence vi let v−1
i represent the sequence written in reverse order. Rear-

ranging the last equation obtain that for any sequence of the form ζ(0, wi, v
−1
µn , . . . , v

−1
µ1

)

◦β+|wi|−1
j=0 ψτ j(ζ(0,wi,v−1

µn ,...,v
−1
µ1

))(pΨ) ∈ U.

Define a sequence η by

η = {. . . , θ1, θ0, wi, v
−1
µn , . . . , v

−1
µ1
, (ξj)j≥0}
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centered at ξ0. Then η ∈ W s
loc(ξ, τ) and is of the form ζ(0, wi, v

−1
µn , . . . , v

−1
µ1

). Therefore

◦β+|wi|−1
j=0 ψη(pΨ) ∈ U.

And so
(η, ◦βi=1ψτ i−β−1(ζ(vθn ,...,vθ1 ))(pΨ)) ∈ W s

loc(ξ, τ)× U.

It follows that

Ψ−β−|wi|+1(η, ◦β+|wi|−1
j=0 ψη(pΨ)) = (τ−β−|wi|+1(ξ), pΨ) ∈ (W u

loc(θ), pΨ).

Therefore

(η, ◦βi=1ψτ i−β−1(ζ(vθn ,...,vθ1 ))(pΨ)) ∈ W uu(O(θ, pΨ)) ∩ (W s
loc(ξ, τ)× U).

Thus the set B is a cs-symbolic blender like and so the proof is complete.
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8 Reduction on the Number of Branches of Return
Maps

Theorem 8.1. There exists a generic set G in Diff r(S1), r ≥ 2, such that for f, g ∈
G ∩B(Id, 0.06) the following conditions are satisfied.

(i) There exists an open minimal set B such that B ⊂ Per < f, g >.

(ii) There is a finite set of closed intervals Uj such that B ⊂
⋃m
j=1 int(Uj). To

each Uj there is an associated map Hj ∈< f−1, g−1 > such that DHj > 1 in Uj and
Hj(Uj) ⊂ B.

Corollary 8.2. Consider B(Id, λ)Hr(S1) to be a ball of radius λ about the identity
map Id = (τ, Id) in Hr(S1). For a given α let c be such that (1 − c)kα = 1, and
λ = min{c, 0.06}.

There exists a generic set Λ ⊂ Hr(S1) for r ≥ 2 such that for

Γ ∈ B(Id, λ)Hr ∩ Λ

Γ has cs-symbolic blender-like in Sα,rk (S1), r ≥ 1.

First lets obtain the corollary from the theorem.

Proof. (corollary 8.2) Let the set Λ ⊂ Hr(S1) be defined as

Γ = τn < γ1, . . . , γk >∈ Λ if γi ∈ G for i = 1, . . . , k.

As G is generic in Diff r(S1), Λ is generic in Hr. As γi ∈ B(Id, 0.06) the previous
theorem may be applied to the system < γ1, γ2 >. The corollary then follows by using
theorem 2.10.

The generic set G comes from the next proposition.

Definition 8.3. With respect to an IFS < f1, f2 > a pair of functions (h1, h2) with
hi ∈< f1, f2 > is said to be reducible to a pair (h1, h2) if there exists a sequence of
functions fj1 , . . . , fjk such that h1 = fjk ◦ · · · ◦ fj1 ◦ h1 and h2 = fjk ◦ · · · ◦ fj1 ◦ h2.

Proposition 8.4. For f1, f2 Morse-Smale in Diff r(S1) denote by ni the period of fi
and by {pj} the set of periodic points of both fi.

There exists a generic set G in Diff r(S1), r ≥ 1, contained in Morse-Smale, such
that for fi ∈ G and h1, h2 ∈< fn1

1 , fn2
2 > with h1(pk) = h2(pj) we have that (h1, h2) is

reducible to (fmnii , Id). Also pj = pk is a fixed point of the same function fnii .

Proof. The proof is by induction on the length | h |, where the length is the number
of compositions of functions fnii . Let Gl be the set such that the lemma holds for h of
length ≤ l. We will show that Gl is open and dense in Diff r(S1) for all l ≥ 0, and so
∩Gl is generic.
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As Morse-Smale functions are open and dense in Diff r(S1), we can suppose fi are
Morse-Smale and perturbing fi if necessary that fi have no periodic points in common.
As this last condition is open we obtain that fi are in G1.

By induction suppose fi are in Gl and there exists h1, h2 ∈< fn1
1 , fn2

2 > of length
l + 1 with h1(pk) = h2(pj). We can suppose that there are the following two cases

(i) h1 = fn1
1 ◦ h1 and h2 = fn1

1 ◦ h2 or

(ii) h1 = fn1
1 ◦ h1 and h2 = fn1

2 ◦ h2

for some functions h1, h2 of length l.

In case (i) the pair (h1, h2) is reducible to (h1, h2) and here we can apply the
induction hypothesis.

For case (ii) we may assume that or h1(pk) is not a fixed point of fn1
1 or h2(pj)

is not a fixed point of fn2
2 . On the contrary h1(pk) = h2(pj) gives fn1

1 (pk) = fn2
2 (pj)

contradicting that the two functions do not have fixed points in common.

So suppose that h1(pk) is not a fixed point of fn1
1 . Then we can perturb f1, arbitrary

small around the point fn1−1
1 (h1(pk)) such that fn1

1 (pk) 6= h2(pj) and without affecting
the periodic points of fi. The perturbation is the standard fε = fi + εφ where φ is a
bump function with support small enough as to not affect the rest of periodic points,
and ε controlling the size of the perturbation.

After the perturbation and with abuse of notation we may assume that we are
working with maps fnii such that for the sequence of functions given by h1, h2, we have

h1(pk) 6= h2(pj).

Since there are a finite number periodic points and a finite number of functions of
length l+1, then in a limited number of perturbations we will obtain maps fi arbitrary
close to the original maps and satisfying h1(pk) 6= h2(pj) for all hi of length l+1. Since
this conditions is open this completes the inductive step.

Now we will prove theorem 8.1

Proof. Assume that f, g are in G ∩ B(Id, 0.06), G as above. By corollary 2.5 we may
assume that f, g are orientation preserving. By the theorems 2.1, 2.4 there is a funda-
mental domain D of f (or g) which is minimal and D ⊂ Per < f, g >. In D there was
constructed the backwards expanding return map with an infinite number of branches.

To reduce the return map to a finite number of branches the idea is to inductively
take out the accumulation points of the branches by throwing them into the interior
of D via some other map.

Lemma 8.5. We may assume that the domain of the return map is D = (p, g−1(p)].
Then D =

⋃m
j=1 Lj, where Lj are closed intervals, Lj ⊂ int(D) for 2 ≤ j ≤ n− 1. To

each interval there is an associated map Hj ∈< f, g > such that Hj(Lj) ⊂ D, H1(L1)
and Hn(Ln) ⊂ int(D). Also DHj > 1 in Lj.
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Proof. Lets deal with the more complicated case when there is no Kss set and the
blender-like was constructed in theorem 2.4 inductively. The reader is referred to step
1 of the proof for the notation. We will proceed as well inductively, and as will become
clearer, the induction is done on the indexes ik of the intervals Ii1...in .

The domain of the return map H is D = (p1, g
−1(p1)] and since by theorem 2.6

< f−1, g−1 > is minimal there exists h−1 ∈< f−1, g−1 > such that h−1(p1) ∈ int(D).
Lets show h−1(p1) 6= c, where c is a discontinuity point of the return map. By con-
struction of the return map there exists h and a periodic point of say g, qj, such that
c = h(qj). Then h

−1 ◦ h−1(p1) = qj, which contradicts that f, g ∈ G and proposition
8.4.

Therefore h−1(p1) ∈ int(Ii1...in) for some i1 . . . in. By the same reasons Hm◦h−1(p1)
never hits the endpoints of any interval of the form Ii1...in . This means that the map
Hm ◦ h−1(p1) is well defined for all m. There exists m big enough and l1 such that
L1 = [p1, l1] satisfies Hm ◦ h−1(L1) ⊂ int(D) and D(Hm ◦ h−1) > λ > 1 in L1.

There exists n1 the first time that f j1+n1(qn) ∈ int(L1). Then

D = L1

⋃
0≤i1≤n1,i2,...,in≥0

Ii1...in .

Define R1 on these intervals, which may overlap by, by

R1 = Hm ◦ h−1 in L1, R1 = H = h−1
i1...in

for 0 ≤ i1 ≤ n1, and i2, . . . , in ≥ 0.

Suppose by the inductive hypothesis that at step k there is the following.

(i) Closed intervals L1, . . . , Lk, Lj ⊂ int(D) for 2 ≤ j and the associated maps
Hj ∈< f−1, g−1 > with DHj > λ > 1 in Lj.

(ii) We can write D as

D =
k⋃
j=1

Lj ∪
⋃

Ii1...in .

where the last union is taken over indexes i1 . . . in that satisfy 0 ≤ ij ≤ nj for j ≤ k,
and ik+1, . . . , in ≥ 0.

(iii) As a consequence of the first two points, there is the return map Rk defined in
the intervals Lj and Ii1...in (which overlap) for the above indexes with DRk > λ > 1.

Rk = Hj in Lj, Rk = h−1
i1...in

for 0 ≤ ij ≤ nj for j ≤ k, and ik+1, . . . , in ≥ 0.

The objective now is to limit the index ik+1 superiorly. Consider the point qn−k+1, by
theorem and minimality of S1 there exists h−1 ∈< f−1, g−1 > such that h−1(qn−k+1) ∈
int(D). Since f, g are in G, by proposition 8.4 and the same reasons as in the first
step of the induction h−1(qn−k+1) is not one of the discontinuity points of the original
return map H. The same holds for the iterates Hm ◦ h−1(qn−k+1).

With respect to the intervals h−1
i1...ik

(Ii1...ik) = (qn−k+1, ci1...ik ], consider

c = inf{0≤ij≤nj}{| ci1...ik − qn−k+1 |}
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Define t to be

t = inf{0≤ij≤nj}{Dh−1
i1...ik

(x);x ∈ [qn−k+1, qn−k+1 + c]}

Take the number m of iterates by H big enough so that

D(Hm ◦ h−1)(qn−k+1) > λm/t > λ > 1.

Then there exists an interval [qn−k+1, lk+1] such that the same is satisfied for all x in
the interval. We may suppose that lk+1 ≤ qn−k+1 + c and define

Lk+1 = hi1...ik([qn−k+1, lk+1]),

and the corresponding map

Hk+1 = Hm ◦ h−1 ◦ h−1
i1...ik

.

Observe that Lk+1 ⊂ int(D). The derivative of Hk+1 is

DHk+1 = D(Hm ◦ h−1) ·Dh−1
i1...ik

> λm/t · t > λ.

Let nk+1 be the first time that gji1...ik+nk+1(pn−k) belongs to (qn−k+1, lk+1). For ij ≤ nj
for j ≤ k and ik+1 > nk+1, the interval Ii1...in is contained in Lk+1. Then

D =
k+1⋃
j=1

Lj ∪
⋃

Ii1...in

where the last union is taken over indexes i1 . . . in that satisfy 0 ≤ ij ≤ nj for j ≤ k+1,
and ik+2, . . . , in ≥ 0.

Define the return map Rk+1 in these intervals that overlap as

Hj for x ∈ Lj and h−1
i1...in

for x ∈ Ii1...in
with 0 ≤ ij ≤ nj for j ≤ k + 1, and ik+2, . . . , in ≥ 0.

This completes the induction. Going through the n steps of the cycle almost completes
the proof of the lemma in the case of blender-like when f, g have no Kss set. The last
step is to obtain that the final interval Lm is contained in int(D), which can be done
by repeating the same process as for L1.

For the case when the fundamental domain D, in which the return map is con-
structed, is part of aKss set (see the proof of theorem 2.1), the setKss is not necessarily
minimal for < f−1, g−1 > (it is transitive). In the above induction the minimality of
< f−1, g−1 > was important for throwing points into the interior of D. In the Kss case
we will use the geometry of the functions to accomplish this.

Lets suppose Kss is of the form [a, b], where a is an attractor for f and b is
the attractor for g, f, g both with fixed points. The domain D is given by D =
(g(a), f−1(g(a))]. What is needed is to find h ∈< f, g > such that h−1(g(a)) ∈ int(D).

Consider j such that g−j ◦ f−1(g(a)) ∈ [a, g(a)]. Since f, g are in G, proposition
8.4 implies g−j ◦ f−1(g(a)) is actually in the interior of fk(D) for some k. Therefore,
f−k ◦ g−j ◦ f−1(g(a)) is in the interior of D. The rest of the proof is similar as in the
case of the cycle.
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To end the proof of the proposition, first extend the closed intervals L1 and Lm to
closed intervals U1, Um such that H1(U1), Hm(Um) ⊂ int(D) and DH1, DHm > λ > 1
in U1, Um respectively. Set

D1 = U1

⋃
Um

n−1⋃
j=1

Lj.

Then D1 is a closed connected interval and D ⊂ int(D1).

For 2 ≤ j ≤ m− 1 extend Lj to closed intervals Uj ⊂ int(D), such that H(Uj) ⊂
int(D1) and DHj > λ > 1 in Uj.

Consider for 2 ≤ j ≤ n− 1

K1j = H−1
j (Hj(Uj) ∩ U1), Kmj = H−1

j (Hj(Uj) ∩ Um)

with the associated maps defined as

H1j = H1 ◦Hj, Hmj = Hm ◦Hj.

As H1(U1) and Hm(Um) are in the interior of D obtain that

Hij(Kij) ⊂ int(D).

Let Vij1, Vij2 denote the two closed connected components of Uj − int(Kij). Then

⋃
i,j,k

int(Vijk)
⋃
i,j

int(Kij) =
m⋃
i=1

int(Ui) ⊃ D

and
Hj(Vijk) ⊂ int(D), Hij(Kij) ⊂ int(D)

with DHj > 1 in Vijk, DHij > 1 in Kij. Reordering and renaming the intervals and
the return maps we obtain the theorem.
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