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Abstract

We present here three results concerned on hydrody-
namical limit of exclusion process. The first one: for
conductances driven by any increasing function W , the
time evolution of the spatial density of particles is given
by a parabolic partial equation associated to a sym-
metric operator d

dx
d

dW
, expressing a large class of non-

homogeneous cases. The second one is about a d-
dimensional case, where slow bonds (bonds of conduc-
tance of order N−1) models a membrane slowing down
the passage of particles between two regions. It is also
proved the hydrodynamical limit of such case. At last,
the third result: for the one-dimensional case with finite
slow bonds of parameter N−β, the hydrodynamical limit
has three different behaviors depending if β ∈ [0, 1),
β = 1 or β ∈ (1,∞).
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Aos integrantes da banca de doutorado obrigado pela participação, correções e comentários.
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Chapter 1

Introduction

The subject of this PhD thesis is the hydrodynamical limit of exclusion process in non-
homogeneous medium. The goal of this introduction is to clarify what does it mean and
what kind of results we present here.

This work consists of three parts corresponding to three different papers (Chapters 2, 3
and 4). Each chapter is self-contained and can be read independently. In the beginning of
each chapter we give the references about the respective paper and also the collaborators, to
whom I am very much grateful. Namely, Ana Patŕıcia Gonçalves, Claudio Landim, Adriana
Neumann and Glauco Valle.

First of all, the motivation of this work. The exclusion process, to be described ahead, is a
well-known random dynamics, having a extensive literature associated, both in Mathematics
and Physics. The hydrodynamical limit is the name given to the convergence of the time
trajectory of the spatial density of particles of a interacting particle system, when re-scaling
time and space in a suitable way. Here, the particle system considered is the exclusion
process.

In the language of Probability Theory, the hydrodynamical limit is a law of large numbers
for the trajectory (in time) of the spatial density of particles. Re-scaling in a suitable way
both space and time, this trajectory of the spatial density of particles (which is random)
converges in distribution to a solution of a partial differential equation. Being such solution
unique, therefore deterministic, also holds the convergence in probability. Of course, this
occurs only under a hypothesis concerning the limit of the spatial density of particles at time
zero, which must be the initial condition for the PDE.

This study of time-evolution of spatial density of particles is of clear interest in Physics
(specially in Statistical Mechanics). Besides, there are obvious relations with PDE’s. Indeed,
by means of Probability techniques, the three papers here present proofs of existence of
solutions for the respective PDE’s, for instance. On the other hand, tools from PDE’s are
also required: uniqueness is needed in the method we have utilized, and it is proved here
invoking Analysis tools. Particular motivations of each model (Chapters 2, 3 and 4) are given
in the introduction of the respective chapter. Much more can be said about the motivations,
but we turn now to details of our work.

About the exclusion process: Let Td
N be the d-dimensional discrete torus with Nd sites,
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or else, (Z/NZ)d. Each site of Td
N is allowed to have one or no particle. Then, the space

state will be the space of configurations η ∈ {0, 1}TN . Remark: the name exclusion comes
from this rule of at most one particle per site. We say that two sites x, y ∈ T d

N are neighbors
(denoted by x ∼ y) if |x − y| = 1 in the norm of the sum of coordinates. For each pair
of neighbors x, y, we associate a number ξNx,y = ξNy,x > 0, usually called conductance. The
dynamics of the exclusion process can be described as follows. For each site x ∈ T d

N , we
associate an independent Poisson clock (Poisson Process) of parameter

∑

y; y∼x

ξNx,y .

When this clock rings, if there is no particle at x, nothing happens. If there is a particle
at x, this particle choose a neighbor y with probability proportional to ξNx,y. If this site y is
empty, the particle moves to there. If y is occupied, nothing happens.

The process can be also characterized in terms of a generator LN (generator of the
corresponding semi-group of the Markov Process) given by

LNf(η) =
∑

x,y; x∼y

η(x) (1− η(y)) ξNx,y [f(n
x,y)− f(η)] ,

where ηx,y is the configuration obtained exchanging the values of η at x and y, and f is a
real-valued function of the configuration. Since ξx,y = ξy,x, the generator can be rewritten as

LNf(η) =
∑

x∈Td
N

d
∑

j=1

ξNx,x+ej
[f(ηx,x+ej)− f(η)] .

which is a form of the generator often presented.
The (spatial) non-homogeneity cited in the title of this thesis comes from the choice of the

conductances ξNx,y. There is a natural embedding of the discrete torus TN into the continuous
d-dimensional torus Td = [0, 1)d given by

x 7−→ x/N ∈ [0, 1)d .

If ξNx,y is constant, the exclusion process will be spatially homogeneous with well known
hydrodynamical behavior driven by the heat equation, see [17]. If ξNx,y depends on the
position of x, y (as embedded in the continuous torus), we will say the process is (spatially)
non-homogeneous. A fundamental remark: since ξNx,y = ξNy,x, the exclusion process with
conductances can be interpreted as the non-homogeneous version of the simple symmetric
exclusion process. Because of this symmetry ξNx,y = ξNy,x, the Bernoulli product measures
(with constant parameter) are invariant (and in fact reversible) for the dynamics, for any
choice of the conductances.

As can be see in this thesis (but not only here), the choice of the conductances may mod-
ify the hydrodynamical limit (the macroscopic behavior of the system), which will follow
a partial differential equation depending on the conductances. Non-homogeneity does not
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necessarily imply a macroscopical effect. For instance, in the case β < 1 of Chapter 4, the
partial differential equation obtained is the same one would obtain in the homogeneous case.
In the same spirit, [5] consider random conductances in such a way the hydrodynamical
equation depends only on a average of conductances. Recently, much attention has been
raised to such subject, as we can see in [6], [7], [15], [26], [1], [14], [24], [23] and many others
not cited here. Notice not all papers just cited are concerned about the type of exclusion
process described above, [23] deals with random walks and [24] deals with totally asymmet-
ric exclusion process, which are related topics. And all papers deal with non-homogeneous
medium.

In all three chapters (2, 3 and 4) the scale will be diffusive. In words, we will concerned
about ηt, which denotes the configuration of particles at time tN2. Besides, ηt(x) will denote
the occupation of the site x at this time tN2. This Markov Process ηt will have as generator
N2LN , where LN has been defined above. The way to characterize the spatial density follows
the classical one, is to say, to consider the empirical measure defined by

πN
t :=

1

Nd

∑

x∈Td
N

ηt(x)δx/N ,

which is a random positive measure on the continuous torus Td, with total mass bounded by
one. Notice the definition is intuitive: if there is a particle at the site x in the corresponding
time, ηt(x) = 1 and a delta of Dirac measure is putted there (as embedded in the continuous
torus). The factor N−d guarantees the total mass will be bounded by one. Then, we consider
the trajectories (in time) given by

πN
t , 0≤t≤T .

Such space of trajectories has a metric, called the Skorohod Metric and, under such metric,
it is a Polish Space (complete separable metric space). Supposing that πN

0 converges in dis-
tribution to γ(u)du, the hydrodynamical limit consists of proving the following convergence
in distribution:

πN
t , 0≤t≤T

N→∞−→ ρ(t, u)du, 0≤t≤T ,

where ρ(t, u) will be a solution of some PDE with initial condition γ, what is called the
hydrodynamical equation.

In the next paragraphs, we briefly describe the content of each chapter.

Chapter 2 deals with the one-dimensional case where conductances are related to a strictly
increasing function W : [0, 1) → R in the way

ξNx,x+1 =
1

N
[

W (x+1
N

)−W ( x
N
)
] .

Furthermore, the exchange rate between x and x + 1 also is a particular function of the
presence of particles in x − 1 and x + 2. Such choice is the right one in order to observe a
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W

Figure 1.1: Function W needed to obtain the case β = 1. Roughly speaking, identity with a
discontinuity

macroscopical effect of conductances. Given W , the hydrodynamical equation will be

{

∂tρ = d
dx

d
dW

Φ(ρ)
ρ(0, ·) = γ(·) (1.0.1)

where d
dx

d
dW

is an operator depending on W . The function Φ appearing in the hydrodynam-
ical equation comes from this influence of sites x− 1 and x+2 in the exchange rate between
x and x + 1. The complete discussion and technical details are given in Chapter 2. Such
model includes a wide class of cases and also the case β = 1 of Chapter 4 as a particular case.

Chapter 3 deals with d-dimensional exclusion process. The problem considered there is
about conductances which models a membrane slowing down a passage of particles between
a smooth surface dividing the continuous torus in two regions Λ and Λ∁. The conductances
close to this surface are of order N−1 times a projection into the exterior normal vector to
the surface. Such projection into the normal vector was strictly necessary in the proof and
has a physical interpretation. The surface slows down the passage of particles, and the pas-
sage of particles into the surface becomes even harder as the direction becomes closer to the
tangent to the surface. The hydrodynamical equation is obtained and involves an operator
LΛ, which has a nice geometrical interpretation.

Chapter 4 is also about one-dimensional exclusion process (as the Chapter 2). There, all
edges have conductances equal to 1, except finite edges, which have conductances equal to
N−β , β ∈ [0,∞). As said before, the case β = 1 is a particular case of Chapter 2. For only
one edge with conductance N−1, take, for example, W as in Figure 1.1 and recall (1.0.1). In
this Chapter 4, by a simple proof, we arrive at the same result of expect by Chapter 2 in the
case β = 1. The cases β ∈ [0, 1) and β ∈ (0,∞) there considered show that β = 1 is sharp,
what is natural. In the case β < 1 the slows bonds (edges with conductance N−β) have no
influence in the macroscopical behavior. In the case β > 1, the passage of particles between
the slow bond is so small that implies no passage in the limit, which is given by the heat
equation with Neumann’s boundary condition (isolated boundary).

Finally, some open questions and works in progress. The one-dimensional case has already
quite general results. The hydrodynamical limit of exclusion process in non-homogeneous
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media in more dimensions still has natural unsolved questions. What should be the equivalent
of Chapter 2 of this thesis in more dimensions? In [26], a generalization is this direction
was made. There, conductances are taken in such way the generator could be, in certain
way, decomposed in the sum of d generators of the form considered here in the Chapter
2. The Chapter 3 in this thesis is also a work in d-dimensions, but not the same line of
[26]. As another example of open question, but not so general as before, what should be
the hydrodynamical limit in the same line of Chapter 3, but with a denumerable quantity
of smooth curves ∂Λ? It is possible to avoid the hypothesis about projection in the normal
vector to the surface?

Since the hydrodynamical limit is a law of large numbers, it gives raise to other natural
questions: large deviations and central limit theorem. Large deviations in one dimension
with a slow bond in the case β = 1, is a work in progress with the author, C. Landim and
Adriana Neumann. Fluctuation in equilibrium for general W in one dimensional has been
considered by [8]. Fluctuations for the three cases of β in the real line and the CLT for the
tagged particle is a work in progress with the author and P. Gonçalves.
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Chapter 2

Hydrodynamic limit of gradient
exclusion processes with conductances

Joint work with Claudio Landim (IMPA). Published in the Archive for Rational Me-

chanics and Analysis, v.195, p.409 - 439, 2010.

2.1 Abstract

Fix a strictly increasing right continuous with left limits function W : R → R and a smooth
function Φ : [l, r] → R, defined on some interval [l, r] of R, such that 0 < b ≤ Φ′ ≤ b−1.
On the diffusive time scale, the evolution of the empirical density of exclusion processes
with conductances given by W is described by the unique weak solution of the non-linear
differential equation ∂tρ = (d/dx)(d/dW )Φ(ρ). We also present some properties of the
operator (d/dx)(d/dW ).

2.2 Introduction

Recently, attention has been raised to the hydrodynamic behavior of interacting particle
systems with random conductances [23, 16, 5, 7]. In [7], for instance, the authors considered
the nearest-neighbor, one-dimensional exclusion process on N−1Z in which a particle jumps
from x/N (resp. (x+1)/N) to (x+1)/N (resp. x/N) at rate {N [W ((x+1)/N)−W (x/N)]}−1,
for a double sided α–stable subordinator W , 0 < α < 1. Their main result can be restated as
follows. On the diffusive time scale, as the parameter N ↑ ∞, the empirical density evolves
according to the solution of the differential equation

∂tρ =
d

dx

d

dW
ρ . (2.2.1)

In contrast with usual homogenization phenomena, the entire noise survives in the limit
and the differential operator itself depends on the specific realization of the Levy process W .
Moreover, the differential equation introduces a derivative with respect to a strictly increasing
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function W which may have jumps. In fact, in the Levy case, the set of discontinuities is
dense in R.

While the operators (d/dW )(d/dx) have attracted much attention, being closely related
to the so-called gap diffusions or quasi-diffusions when W has no jumps [22], the operator
(d/dx)(d/dW ) have not been examined yet in the case where W exhibit jumps. We refer
to [20, 21, 13] for recent results on the operators (d/dx)(d/dW ) in the case where W are
increasing continuous functions.

As we shall see below, non-linear versions of the partial differential equation (2.2.1) appear
naturally as scaling limits of interacting particle systems in inhomogeneous media. They may
model diffusions in which permeable membranes, at the points of the discontinuities of W ,
tend to reflect particles, creating space discontinuities in the solutions.

We present in this paper a gradient exclusion process whose macroscopic evolution is
described by the nonlinear differential equation

∂tρ =
d

dx

d

dW
Φ(ρ) ,

where Φ is a smooth function strictly increasing in the range of ρ (for a definition of Φ
and a discussion about, see Theorem 2.3.2). To prove this result we examine in details
the operator (d/dx)(d/dW ) in L2(T), where T is the one-dimensional torus. We prove in
Theorem 2.3.1 that (d/dx)(d/dW ), defined in an appropriate domain, is non-positive, self-
adjoint and dissipative. It is, in particular, the infinitesimal generator of a reversible Markov
process. We also prove that the eigenvalues of −(d/dx)(d/dW ) are countable and have finite
multiplicity, the associated eigenvectors forming a complete orthonormal system.

2.3 Notation and Results

We examine the hydrodynamic behavior of a one-dimensional exclusion process with conduc-
tances given by a strictly increasing function. Let TN be the one-dimensional discrete torus
with N points. Distribute particles on TN in such a way that each site of TN is occupied
by at most one particle. Denote by η the configurations of the state space {0, 1}TN so that
η(x) = 0 if site x is vacant and η(x) = 1 if site x is occupied.

Fix a > −1/2 and a strictly increasing right continuous with left limits (càdlàg) function
W : R → R, periodic in the sense that W (u+ 1)−W (u) = W (1)−W (0) for all u in R. To
simplify notation assume that W vanishes at the origin, W (0) = 0. For 0 ≤ x ≤ N − 1, let

cx,x+1(η) = 1 + a{η(x− 1) + η(x+ 2)} ,

where all sums are modulo N , and let

ξx =
1

N [W ((x+ 1)/N)−W (x/N)]

with the convention that ξN−1 = {N [W (1)−W (1− [1/N ])]}−1.
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The stochastic evolution can be described as follows. At rate ξxcx,x+1(η) the occupation
variables η(x), η(x + 1) are exchanged. Note that if W is differentiable at x/N , the rate
at which particles are exchanged is of order 1, while if W is discontinuous, the rate is of
order 1/N . To understand the dynamics, assume that W is discontinuous at some point
x/N and smooth on the intervals (x/N, x/N + ǫ), (x/N − ǫ, x/N). In this case, the rate at
which particles cross the bond {x− 1, x} is of order 1/N , while in a neighborhood of size N
of this bond, particles jump at rate 1. In particular, a particle at site x − 1 jumps to x at
rate 1/N and jumps to x− 2 at rate 1. Particles rebound therefore at the bond {x− 1, x}.
However, since time will be scaled diffusively and since on a time interval of length N2 a
particle spends a time of order N at site x, particles will be able to cross the slower bond
{x− 1, x}. This bond may model a membrane which obstructs the passage of particles.

The effect of the factor cx,x+1(η) is less dramatic. If the parameter a is positive, the
presence of particles at the neighbor sites of the bond {x, x+ 1} speeds up the exchange by
a factor of order one.

The dynamics informally presented above describes a Markov evolution. The generator
LN of this Markov process acts on functions f : {0, 1}TN → R as

(LNf)(η) =
∑

x∈TN

ξx cx,x+1(η) {f(σx,x+1η)− f(η)} , (2.3.1)

where σx,x+1η is the configuration obtained from η by exchanging the variables η(x), η(x+1):

(σx,x+1η)(y) =











η(x+ 1) if y = x,

η(x) if y = x+ 1,

η(y) otherwise.

(2.3.2)

A simple computation shows that the Bernoulli product measures {νN
α : 0 ≤ α ≤ 1}

are invariant, in fact reversible, for the dynamics. The measure νN
α is obtained by placing a

particle at each site, independently from the other sites, with probability α. Thus, νN
α is a

product measure over {0, 1}TN with marginals given by

νN
α {η : η(x) = 1} = α

for x in TN . We will often omit the index N of νN
α .

Denote by {ηt : t ≥ 0} the Markov process on {0, 1}TN associated to the generator LN

speeded up by N2. Let D(R+, {0, 1}TN ) be the path space of càdlàg trajectories with values
in {0, 1}TN endowed with the Skorohod topology. For a measure µN on {0, 1}TN , denote
by PµN

the probability measure on D(R+, {0, 1}TN ) induced by the initial state µN and the
Markov process {ηt : t ≥ 0}. Expectation with respect to PµN

is denoted by EµN
.

Denote by T the one-dimensional torus [0, 1). A sequence of probability measures {µN :
N ≥ 1} on {0, 1}TN is said to be associated to a profile ρ0 : T → [0, 1] if

lim
N→∞

µN

{
∣

∣

∣

1

N

∑

x∈TN

H(x/N)η(x)−
∫

H(u)ρ0(u)du
∣

∣

∣
> δ

}

= 0 (2.3.3)

for every δ > 0 and every continuous functions H : T → R.
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2.3.1 The operator LW

Denote by 〈·, ·〉 the inner product of L2(T):

〈f, g〉 =

∫

T

f(u) g(u) du .

Let DW be the set of functions f in L2(T) such that

f(x) = a + bW (x) +

∫

(0,x]

W (dy)

∫ y

0

f(z) dz

for some function f in L2(T) such that
∫ 1

0

f(z) dz = 0 ,

∫

(0,1]

W (dy)
{

b+

∫ y

0

f(z) dz
}

= 0 .

Define the operator LW : DW → L2(T) by LWf = f. Formally,

LWf =
d

dx

d

dW
f ,

where the generalized derivative d/dW is defined as

df

dW
(x) = lim

ǫ→0

f(x+ ǫ)− f(x)

W (x+ ǫ)−W (x)
,

if the above limit exists and is finite.
Denote by I the identity operator in L2(T).

Theorem 2.3.1. The operator LW : DW → L2(T) enjoys the following properties.

(a) DW is dense in L2(T);

(b) The operator I−LW : DW → L2(T) is bijective;

(c) LW : DW → L2(T) is self-adjoint and non-positive:

〈−LW f, f〉 ≥ 0 ;

(d) LW is dissipative;

(e) The eigenvalues of the operator −LW form a countable set {λn : n ≥ 0}. All eigenvalues
have finite multiplicity, 0 = λ0 ≤ λ1 ≤ · · · , and limn→∞ λn = ∞;

(f) The eigenvectors {fn} form a complete orthonormal system.

In view of (a), (b), (d), by the Hille-Yosida theorem, LW is the generator of a strongly
continuous contraction semi-group semigroup {Pt : t ≥ 0}, Pt : L

2(T) → L2(T). Moreover,
DW is a core for LW .

Denote by {Gλ : λ > 0}, Gλ : L2(T) → L2(T), the semi-group of resolvents associated to
the operator LW : Gλ = (λ− LW )−1. In terms of the semi-group {Pt}, Gλ =

∫∞

0
e−λtPt dt.
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2.3.2 Discrete approximation of the operator LW .

Consider a random walk in N−1TN which jumps from x/N (resp. (x+ 1)/N) to (x+ 1)/N
(resp. x/N) at rate N2ξx = N/{W ((x + 1)/N) − W (x/N)}. The generator LN of this
Markov process writes

(LNf)(x/N) = N2ξx{f((x+ 1)/N)− f(x/N)} + N2ξx−1{f((x− 1)/N)− f(x/N)} .

Denote by {PN
t : t ≥ 0} the semigroup associated to the generator LN and by {GN

λ : λ ≥
0} the resolvents. By Lemma 4.5 (i) in [7], for every continuous function H : T → R, PN

t H
converges to PtH in L1(T), and therefore in L2(T), as N ↑ ∞. Moreover, it follows from
Lemma 4.5 (iii) in [7] that for every continuous function H : T → R and for every λ > 0,

lim sup
N→∞

1

N

∑

x∈TN

∣

∣(GN
λ H)(x/N)− (GλH)(x/N)

∣

∣ = 0 . (2.3.4)

The same results holds in L1(T) and L2(T).
Note that in [7], the function W is of pure jump type, while here it is any strictly

increasing càdlàg function. One can check, however, that the proof applies to the present
general case.

2.3.3 The hydrodynamic equation

For a positive integer m ≥ 1, denote by Cm(T) the space of continuous functions H : T → R

with m continuous derivatives. Fix l < r and a smooth function Φ : [l, r] → R whose
derivative is bounded below by a strictly positive constant and bounded above by a finite
constant:

0 < B−1 ≤ Φ′(u) ≤ B

for u in [l, r]. Consider a bounded density profile γ : T → [l, r]. A bounded function
ρ : R+ × T → [l, r] is said to be a weak solution of the parabolic differential equation

{

∂tρ = LWΦ(ρ)
ρ(0, ·) = γ(·) (2.3.5)

if for all functions H in C1(T), all t > 0 and all λ > 0,

〈ρt, GλH〉 − 〈γ,GλH〉 =

∫ t

0

〈Φ(ρs),LWGλH〉 ds . (2.3.6)

We prove in Section 2.7 uniqueness of weak solutions. Existence follows from the tightness
of the sequence of probability measures QW,N

µN
introduced in Section 2.5.

Theorem 2.3.2. Fix a continuous initial profile ρ0 : T → [0, 1] and consider a sequence of
probability measures µN on {0, 1}TN associated to ρ0. Then, for any t ≥ 0,

lim
N→∞

PµN

{
∣

∣

∣

1

N

∑

x∈TN

H(x/N)ηt(x)−
∫

H(u)ρ(t, u)du
∣

∣

∣
> δ

}

= 0
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for every δ > 0 and every continuous functions H. Here, ρ is the unique weak solution of
the non-linear equation (2.3.5) with l = 0, r = 1, γ = ρ0 and Φ(α) = α + aα2.

Remark 2.3.3. The specific form of the rates cx,x+1 is not important, but three conditions
must be fulfilled. The rates have to be strictly positive, they may not depend on the occupation
variables η(x), η(x+ 1), and the induced process has to be gradient. (cf. Chapter 7 in [17]
for the definition of gradient processes).

We may define rates cx,x+1 to obtain any polynomial Φ of the form Φ(α) = α+
∑

2≤j≤m ajα
j,

m ≥ 1, such that 1 +
∑

2≤j≤m jaj > 0. For m = 3, for instance, let

ĉx,x+1(η) = cx,x+1(η) + b
{

η(x− 2)η(x− 1) + η(x− 1)η(x+ 2) + η(x+ 2)η(x+ 3)
}

,

where cx,x+1 is the rate defined at the beginning of Section 2 and a, b are such that 1+2a+3b >
0. An elementary computation shows that these rates satisfy the above three conditions and
that Φ(α) = 1 + aα2 + bα3.

Denote by πN
t the empirical measure at time t. This is the measure on T obtained by

rescaling space by N and by assigning mass N−1 to each particle:

πN
t =

1

N

∑

x∈TN

ηt(x) δx/N ,

where δu is the Dirac measure concentrated on u.
Theorem 2.3.2 states that the empirical measure πN

t converges, asN ↑ ∞, to an absolutely
continuous measure π(t, du) = ρ(t, u)du, whose density ρ is the solution of (2.3.5). In
Sections 2.5, 2.6 we prove that ρ has finite energy: for all t > 0,

∫ t

0

ds

∫

T

{ d

dW
Φ(ρ(s, u))

}2

dW < ∞ .

The derivative d/dWΦ(ρ(s, u)) must be understood in the generalized sense. Details are
given in Section 2.6.

2.3.4 Outline of the proof

We present in this subsection a sketch of the proof which clarifies the relation between the
stochastic evolution and the operator LW .

Fix a density profile ρ0 : T → R and a sequence of measures {µN : N ≥ 1} associated to
ρ0 in the sense (2.3.3). Recall the definition of the empirical measure πN

t introduced above.
We prove in Section 2.5 that the sequence of random measures {πN

t : t ≥ 0}N≥1 is pre-
compact and that all its limit points are absolutely continuous measures π(t, du) = ρ(t, u)du
with density ρ positive and bounded by 1.

To prove that all limit points are measures π(t, du) = ρ(t, u)du whose density ρ are
solutions of (2.3.5), assume, without loss of generality, that {πN

t : t ≥ 0}N≥1 converges, as
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N ↑ ∞, to πt, and fix a test function H : T → R. Denote by 〈πN
t , H〉 the integral of H with

respect to the measure πN
t :

〈πN
t , H〉 =

1

N

∑

x∈TN

H(x/N)ηt(x) .

In Section 2.5, we prove that the martingale MH,N
t , defined by

MH,N
t = 〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

N2LN〈πN
s , H〉 ds ,

vanishes as N ↑ 0. By assumption, 〈πN
t , H〉, 〈πN

0 , H〉 converge to 〈πt, H〉, 〈ρ0, H〉, respec-
tively. On the other hand, an elementary computation shows that

N2LN〈πN , H〉 =
1

N

∑

x∈TN

(LNH)(x/N) η(x)

+
a

N

∑

x∈TN

{

(LNH)((x+ 1)/N) + (LNH)(x/N)
}

(τxh1)(η)

− a

N

∑

x∈TN

(LNH)(x/N)(τxh2)(η) .

In this formula, LN is the generator of the random walk introduced in Subsection 2.3.2;
{τx : x ∈ Z} represents the group of translations in the configuration space so that (τxη)(y) =
η(x + y) for x, y in Z, where the sum is understood modulo N ; and h1(η) = η(0)η(1),
h2(η) = η(−1)η(1).

Recall the definition of the rates ξx to note that the generator LN is a discrete approxi-
mation of the differential operator LW . In particular, one expects LNH to converge to LWH
for a class of test functions. On the other hand, by local ergodicity of the dynamics, τxhj(ηt)
should be close to its expected value under the invariant measure with density given by the
density profile ρ(t, ·): τxhj(ηt) ∼ Eνρ(t,x/N)

[hj ] = ρ(t, x/N)2.

Since the martingale vanishes in the limit, and since we assumed πN to converge to
π(t, du) = ρ(t, u)du, for a class of test functions H ,

〈πt, H〉 − 〈ρ0, H〉 =

∫ t

0

ds

∫

T

Φ(ρ(s, u)) (LWH)(u) du ,

which is the weak formulation (2.3.6) of the differential equation (2.3.5) if we replace the test
function H by GλH . It remains to prove uniqueness of weak solutions of (2.3.5) to conclude
the proof.

2.4 The operator LW

We examine in this section properties of the operator LW introduced in the previous section.
Recall that we denote by 〈·, ·〉 the inner product of the Hilbert space L2(T) and by ‖ · ‖ its
norm.
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Let D(f) be the set of discontinuity points of a function f : T → R. Denote by CW (T)
the set of càdlàg functions f : T → R such that D(f) ⊂ D(W ). CW (T) is provided with the
usual sup norm ‖ · ‖∞.

All functions in CW (T) are bounded. In fact, it is easy to prove that for each fixed f in
CW (T) and ǫ > 0, there exists n ≥ 1 and 0 ≤ z1 < z2 < · · · < zn < 1 such that

|f(x)− f(y)| ≤ ǫ for all zk ≤ x, y < zk+1, 1 ≤ k ≤ n, (2.4.1)

where zn+1 = z1.
Define the generalized derivative d

dW
as follows

df

dW
(x) = lim

ǫ→0

f(x+ ǫ)− f(x)

W (x+ ǫ)−W (x)
, (2.4.2)

if the above limit exists and is finite. Denote by DW the set of functions f in CW (T) such
that df

dW
(x) is well defined and differentiable, and d

dx

(

df
dW

)

belongs to CW (T). Define the
operator LW : DW → CW (T) by

LW f =
d

dx

d

dW
f =

d

dx

(

df

dW

)

.

By [3, Lemma 0.9 in Appendix], given a right continuous function f and a continuous
function h,

df

dW
(x) = h(x)

for all x in T if and only if

f(b)− f(a) =

∫

(a,b]

h(y)dW (y) (2.4.3)

for all a < b. Note that the function h has integral equal to zero,
∫

T
h dW = 0, because

f(1) = f(0).
It follows from this observation and the definition of the operator LW that DW is the set

of functions f in CW (T) such that

f(x) = a + bW (x) +

∫

(0,x]

dW (y)

∫ y

0

g(z) dz (2.4.4)

for some function g in CW (R) and two real numbers a, b such that

bW (1) +

∫

T

dW (y)

∫ y

0

g(z) dz = 0 ,

∫

T

g(z) dz = 0 . (2.4.5)

The first requirement corresponds to the boundary condition f(1) = f(0) and the second
one to the boundary condition (df/dW )(1) = (df/dW )(0). Equivalently, (2.4.5) follows from
the conditions

∫

T

df

dW
dW = 0 ,

∫

T

d

dx

df

dW
dx = 0 . (2.4.6)

One can check that the function g, as well as the constants a, b, are unique.

20



Lemma 2.4.1. The following statements hold.

(a) The set DW is dense in L2(T).

(b) The operator LW : DW → L2(T) is symmetric and non-positive. More precisely,

〈LWf, g〉 = −
∫

T

df

dW

dg

dW
dW

for all f , g in DW .

(c) LW satisfies a Poincaré inequality: There exists a finite constant C0 such that

‖f‖2 ≤ C0〈−LW f, f〉 +
(

∫

T

f(x) dx
)2

for all functions f in DW .

(d) The Green function G of the boundary-value problem

{

LWu = 0 in (0, 1),
u(0) = u(1) = 0 ,

is given by

G(x, y) =























− [W (y)−W (0)] [W (1)−W (x)]

W (1)−W (0)
0 ≤ y ≤ x ≤ 1 ,

− [W (1)−W (y)] [W (x)−W (0)]

W (1)−W (0)
0 ≤ x ≤ y ≤ 1 .

Proof. Since the continuous functions are dense in L2(T), to prove (a) it is enough to show
that for each continuous function f : T → R and ǫ > 0, there exists g in DW such that
‖f − g‖ ≤ ǫ.

Fix therefore a continuous function f : T → R and ǫ > 0. There exists δ > 0 such
that |f(y)− f(x)| ≤ ǫ if |x − y| ≤ δ. Choose an integer n ≥ δ−1 and consider the function
g : T → R defined by

g(x) =
n−1
∑

j=0

f([j + 1]/n)− f(j/N)

W ([j + 1]/n)−W (j/N)
1{(j/n, (j + 1)/n]}(x) ,

where 1{A} stands for the indicator of the set A. Let G : T → R be given by G(x) =
f(0) +

∫

(0,x]
g(y)W (dy). By definition of g, G(j/n) = f(j/n) for 0 ≤ j < n. Thus, by our

choice of n and by definition of G, for j/n ≤ x ≤ (j + 1)/n,

∣

∣G(x)− f(x)
∣

∣ ≤
∣

∣G(x)−G(j/n)
∣

∣ +
∣

∣f(x)− f(j/n)
∣

∣ ≤ 2ǫ .
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so that ‖G− f‖∞ ≤ 2ǫ if ‖ · ‖∞ stands for the sup norm. Note that
∫

(0,1]

g dW = 0 . (2.4.7)

It remains to show that the function G may be approximated in L2(T) by functions in
the domain DW . Note that we were free to choose the set {0, 1/n, . . . , (n − 1)/n} as long
as the distance between two consecutive points is bounded by δ. We may therefore assume,
without loss of generality, that W is continuous at these points. Denote by {Hk : k ≥ 1}
a sequence of smooth functions Hk : T → R absolutely bounded by ‖g‖∞ and such that
limk Hk(x) = g(x) for xn 6∈ Z. By the dominated convergence theorem,

lim
k→∞

∫

T

∣

∣Hk(y)− g(y)
∣

∣dW (y) = 0 . (2.4.8)

Let {Fk : k ≥ 1} be the sequence of functions Fk : T → R defined by

Fk(x) = f(0) +

∫

(0,x]

{

bk +

∫ y

0

H ′
k(z) dz

}

W (dy)

= f(0) + bk W (x) +

∫

(0,x]

W (dy)

∫ y

0

H ′
k(z) dz ,

where bk = Hk(0) − W (1)−1
∫

(0,1]
Hk(y) dW (y). By (2.4.7), (2.4.8), Fk converges in the

uniform topology to G. On the other hand, in view of (2.4.4) and our choice of bk, Fk

belongs to DW for each k ≥ 1 because H ′
k, being continuous, belongs to CW (T). This

concludes the proof of (a).
To prove (b), fix two functions f , g in DW and let F = df/dW . F is differentiable with

derivative in CW (T). Fix ǫ > 0 and denote by {z1, . . . , zn} the finite set given by (2.4.1) for
the function g. Adding extra points if necessary, we may assume that max1≤k≤n supzk≤x,y≤zk+1

|F (y)−
F (x)| ≤ ǫ because F is continuous. Decomposing the integral over T on the intervals
[zk, zk+1], we get that

〈LWf, g〉 =

∫

T

dF

dx
(x) g(x) dx =

n
∑

k=1

g(zk){F (zk+1)− F (zk)} ± ǫ
∥

∥

∥

dF

dx

∥

∥

∥

∞
,

where ±C stands for a constant absolutely bounded by C. Changing the order of summations
in the last term, in view of (2.4.3), we obtain that the previous sum is equal to

−
n

∑

k=1

{g(zk)− g(zk−1)}F (zk) = −
n

∑

k=1

F (zk)

∫

(zk−1,zk]

dg

dW
(x) dW (x) .

Recall that dg/dW is continuous and that |F (x) − F (zk)| ≤ ǫ for zk−1 ≤ x ≤ zk. The
previous sum is thus equal to

−
∫

T

F (x)
dg

dW
(x) dW (x) ± ǫ

∥

∥

∥

dg

dW

∥

∥

∥

∞
[W (1)−W (0)] .
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This proves the first identity from which it follows that LW is symmetric and non-positive.
To prove the Poincaré inequality, fix a function f in DW and observe that by (2.4.3)

∫

T

f(x)2 dx −
(

∫

T

f(x) dx
)2

=

∫

T

(

∫

T

[f(x)− f(y)] dy
)2

dx

=

∫

T

dx
(

∫

T

dy

∫

(y,x]

df

dW
(z) dW (z)

)2

.

To conclude the proof, it remains to apply twice the Schwarz inequality and to change the
order of integration. Note that this proof gives C0 = W (1)−W (0).

An elementary computation permits to check that the Green’s function is given by the
expression proposed.

Denote by 〈·, ·〉1,2 the inner product on DW defined by

〈f, g〉1,2 = 〈f, g〉 + 〈−LW f, g〉 = 〈f, g〉 +

∫

T

df

dW

dg

dW
dW .

Let H1
2 (T) be the set of all functions f in L2(T) for which there exists a sequence {fn : n ≥ 1}

in DW such that fn converges to f in L2(T) and fn is Cauchy for the inner product 〈·, ·〉1,2.
Such sequence {fn} is called admissible for f . For f , g in H1

2 (T), define

〈f, g〉1,2 = lim
n→∞

〈fn, gn〉1,2 , (2.4.9)

where {fn}, {gn} are admissible sequences for f , g, respectively. By [27, Proposition 5.3.3],
this limit exists and does not depend on the admissible sequence chosen. Moreover, H1

2 (T)
endowed with the scalar product 〈·, ·〉1,2 just defined is a real Hilbert space.

Denote by L2
W (T) the Hilbert space generated by the continuous functions endowed with

the inner product 〈·, ·〉W defined by

〈f, g〉W =

∫

T

f(x) g(x)W (dx) .

The norm associated to the scalar product 〈·, ·〉W is denoted by ‖ · ‖W .

Lemma 2.4.2. A function f in L2(T) belongs to H1
2 (T) if and only if there exists F in

L2
W (T) and a finite constant c such that

∫

(0,1]

F (y) dW (y) = 0 and f(x) = c +

∫

(0,x]

F (y) dW (y)

Lebesgue almost surely. We denote the generalized W -derivative F of f by df/dW . For f ,
g in H1

2 (T),

〈f, g〉1,2 = 〈f, g〉 +

∫

T

df

dW

dg

dW
dW .
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Proof. Fix f in H1
2 (T). By definition, there exists a sequence {fn : n ≥ 1} in DW which

converges to f in L2(T) and which is Cauchy in H1
2 (T). In particular, dfn/dW is Cauchy in

L2
W (T) and therefore converges to some function G in L2

W (T). By (2.4.6),
∫

T

dfn
dW

dW = 0

for all n ≥ 1 so that
∫

(0,1]
GdW = 0. Let g(x) =

∫

(0,x]
G(y)dW (y). Since 1{(x, y]} belongs

to L2
W (T), for all x, y in T,

g(y)− g(x) =

∫

(x,y]

GdW = lim
n→∞

∫

(x,y]

dfn
dW

dW = lim
n→∞

{fn(y)− fn(x)} .

We claim that
∫

T
{fn(y)−fn(x)}dx converges to

∫

T
{g(y)−g(x)}dx for all y in T. Indeed,

on the one hand, for each fixed y, fn(y)−fn(x) converges to g(y)−g(x). On the other hand,
by Schwarz inequality,

[fn(y)− fn(x)]
2 ≤ [W (1)−W (0]

∫

T

( dfn
dW

)2

dW ≤ C0

for some finite constant C0. It remains to apply the dominated convergence theorem to
conclude.

Since fn converges to f in L2(T),
∫

T
fn(x) dx converges to

∫

T
f(x) dx. By Schwarz in-

equality, g belongs to L2(T) so that
∫

T
g(x)dx is finite. Therefore, for all y in T,

lim
n→∞

fn(y) = lim
n→∞

{

fn(y)−
∫

T

fn(x) dx
}

+

∫

T

f(x) dx

= g(y)−
∫

T

g(x) dx +

∫

T

f(x) dx .

Thus fn converges pointwisely to the above function. As fn also converges to f in L2(T), we
deduce that f = c + g a.s., and thus in L2(T), for c =

∫

T
f(x) dx −

∫

T
g(x) dx, proving the

first statement of the lemma.
The reciprocal is simpler. Let f = c +

∫

(0,x]
F (y) dW (y) for some F in L2

W (T) such that
∫

(0,1]
F (y) dW (y) = 0. There exists a sequence {gn : n ≥ 1} of smooth functions converging

to F in L2
W (T) and such that

∫

(0,1]
gn(y) dW (y) = 0. Let fn(x) = c +

∫

(0,x]
dW (y){gn(0) +

∫ y

0
g′n(z)dz}. For each n ≥ 1, fn belongs to DW because g′n is continuous. Schwarz inequality

shows that fn converges to f in L2(T). Finally, {fn : n ≥ 1} is a Cauchy sequence for the
inner product 〈·, ·〉1,2 because dfn/dW = gn converges to F in L2

W (T). Note that we just
proved that the sequence {fn : n ≥ 1} is admissible for f

Fix f , g in H1
2 (T) and recall that we denote by df/dW , dg/dW the generalized W -

derivatives of f , g, respectively. Denote by {fn : n ≥ 1}, {gn : n ≥ 1} the admissible
sequences constructed in the previous paragraph for f and g, respectively. By definition,

〈f, g〉1,2 = lim
n→∞

〈fn, gn〉1,2 = lim
n→∞

{

〈fn, gn〉 +

∫

T

dfn
dW

dgn
dW

dW
}

.
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Since fn (resp. gn) converges to f (resp. g) in L2(T) and since dfn/dW (resp. dgn/dW )
converges to df/dW (resp. dg/dW ) in L2

W (T), the previous expression is equal to

〈f, g〉 +

∫

T

df

dW

dg

dW
dW .

This concludes the proof of the lemma.

Lemma 2.4.3. The embedding H1
2 (T) ⊂ L2(T) is compact.

Proof. Consider a sequence {un : n ≥ 1} bounded in H1
2 (T). We need to prove the existence

of a subsequence {unk
: k ≥ 1} which converges in L2(T).

By the previous lemma, un(x) = cn +
∫

(0,x]
Un(y) dW (y) for some Un in L2

W (T) such

that
∫

(0,1]
Un(y) dW (y) = 0. Moreover, ‖Un‖W ≤ ‖un‖1,2. The sequence {Un} is therefore

bounded in L2
W (T). Also, by Schwarz inequality, the sequence

∫

(0,x]
Un(y)dW (y) is bounded

in L2(T). Since cn = un(x)−
∫

(0,x]
Un(y)dW (y) and since both sequence of functions on the

right hand side are bounded in L2(T), the sequence of real numbers {cn} is also bounded.
Since {Un} is a bounded sequence in L2

W (T) and since the sequence of real numbers
{cn} is bounded, there exists a subsequence {nk} such that cnk

converges and Unk
converges

weakly in L2
W (T) to a limit denoted by U . As constants belong to L2

W (T),
∫

(0,1]
U(y) dW (y) =

limk

∫

(0,1]
Unk

(y) dW (y) = 0. Moreover, for all x in T, as 1{(0, x]} belongs to L2
W (T),

lim
k→∞

unk
(x) = lim

k→∞

{

cnk
+

∫

(0,x]

Unk
(y)dW (y)

}

= c +

∫

(0,x]

U(y)dW (y) ,

if c stands for the limit of the sequence cnk
. The sequence unk

thus converges pointwisely
to u(x) = c +

∫

(0,x]
U(y)dW (y). Since, by Schwarz inequality, unk

(x)2 is bounded by 2c2nk
+

2[W (1)−W (0)] ‖Unk
‖2W , by the dominated convergence theorem, unk

converges to u in L2(T).
Note that the limit u belongs to H1

2 (T).

Let DW be the set of functions f in H1
2 (T) for which there exists u in L2(T) such that

〈f, g〉1,2 = 〈f, g〉 +

∫

df

dW

dg

dW
dW = 〈u, g〉 (2.4.10)

for all g in H1
2 (T). By Lemma 2.4.1 (b), DW ⊂ DW and, by definition, DW ⊂ H1

2 (T). The
function u is uniquely determined because, by Lemma 2.4.1 (a), H1

2 (T) ⊃ DW is dense in
L2(T). By definition of H1

2 (T) and by (2.4.9), it is enough to check (2.4.10) for functions g
in DW .

Lemma 2.4.4. The domain DW consists of all functions f in L2(T) such that

f(x) = a + bW (x) +

∫

(0,x]

W (dy)

∫ y

0

f(z) dz
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for some function f in L2(T) such that

∫ 1

0

f(z) dz = 0 ,

∫

(0,1]

W (dy)
{

b+

∫ y

0

f(z) dz
}

= 0 .

Moreover, in this case,

−
∫

df

dW

dg

dW
dW = 〈f, g〉

for all g in H1
2 (T).

Proof. We first show that any function f in L2(T) with the properties listed in the statement
of the lemma belongs to DW . Fix such a function and consider a sequence {fn : n ≥ 1} of

smooth functions fn : T → R which converges to f in L2(T) and such that
∫ 1

0
fn(z) dz = 0.

Let

fn(x) = a +

∫

(0,x]

W (dy)
{

bn +

∫ y

0

fn(z) dz
}

,

where bn is chosen so that
∫

(0,1]
W (dy){bn +

∫ y

0
fn(z) dz} = 0. Note that fn belongs to DW

for each n ≥ 1.
As n ↑ ∞, bn converges to b, fn converges to f in L2(T) and {fn} is Cauchy for the ‖ ·‖1,2

norm. Thus, f belongs to H1
2 (T) and {fn} is an admissible sequence for f .

Fix g in DW . We claim that

〈f, g〉1,2 = 〈f, g〉 − 〈f , g〉 .

Indeed, as g belongs to DW , by (2.4.9), 〈f, g〉1,2 = limn〈fn, g〉1,2 because the sequence {gn :
n ≥ 1} constant equal to g is admissible for g. By definition of the inner product 〈·, ·〉1,2 and
since LW fn = fn, 〈fn, g〉1,2 = 〈fn, g〉+ 〈−LW fn, g〉 = 〈fn, g〉+ 〈−fn, g〉. Since fn, fn converge
in L2(T) to f , f, respectively, the claim is proved. In particular (2.4.10) holds with u = f− f.
This proves that f belongs to DW and the identity claimed.

Conversely, assume that f belongs to DW and satisfy (2.4.10) for some u in L2(T). Thus,
there exists v (equal to f − u) in L2(T) such that

−
∫

df

dW

dg

dW
dW = 〈v, g〉 (2.4.11)

for all g in DW . Taking g = 1 in this equation we obtain that
∫ 1

0
v(x) dx = 0.

Since f belongs to H1
2 (T), by Lemma 2.4.2, f(x) = c+

∫

(0,x]
F (y)dW (y) for some function

F in L2
W (T) such that

∫

(0,1]
F (y)dW (y) = 0. To prove the lemma we need to show that

F (y) = b +

∫ y

0

f(z) dz

for some finite constant b and some function f in L2(T) such that
∫ 1

0
f(z) dz = 0.
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Fix g in DW so that

g(x) = a +

∫

(0,x]

G(y) dW (y)

for some continuous function G : T → R such that
∫ 1

0
G(y) dW (y) = 0. Since the integral

of v (resp. G) with respect to the Lebesgue measure (resp. the measure dW ) vanishes,
changing the order of integration, we obtain that

∫ 1

0

v(x) g(x) dx = −
∫

(0,1]

G(y)

∫ y

0

v(x) dx dW (y) .

Therefore, in view of (2.4.11),

∫

(0,1]

G(y)

∫ y

0

v(x) dx dW (y) =

∫

(0,1]

G(y)F (y) dW (y)

for all functions g in DW . The proof of Lemma 2.4.1 (a) shows that the set {dg/dW : g ∈
DW} is dense in L2

W,0 = {H ∈ L2
W (T) :

∫

HdW = 0}. In particular, F (y) = c +
∫ y

0
v(x) dx

for some finite constant c. This concludes the proof of the lemma.

Recall that we denote by I the identity in L2(T). By Lemma 2.4.1, the symmetric operator
(I− LW ) : DW → L2(T), is strongly monotone:

〈(I− LW )f, f〉 ≥ 〈f, f〉

for all f in DW . Denote by A1 : DW → L2(T) its Friedrichs extension, defined as A1f = u,
where u is the function in L2(T) given by (2.4.10). By [27, Theorem 5.5.a], A1 is self-adjoint,
bijective and

〈A1f, f〉 ≥ 〈f, f〉 (2.4.12)

for all f in DW . Note that the Friedrichs extension of the strongly monotone operator
(λI− LW ), λ > 0, is Aλ = (λ− 1)I+A1 : DW → L2(T).

Define LW : DW → L2(T) by LW = I−A1. In view of (2.4.10), LWf = u if and only if

−
∫

df

dW

dg

dW
dW = 〈u, g〉

for all g in H1
2 (T). In particular by Lemma 2.4.1 (b) LW f = LWf for all f in DW . Moreover,

if a function f in DW is represented as in Lemma 2.4.3, LWf = f. This identity together
with the identification of the space DW provides the alternative definition of the operator
LW presented just before the statement of Theorem 2.3.1.

Proof of Theorem 2.3.1. It follows from Lemma 2.4.1 (a) that the domain DW is dense in
L2(T) because DW ⊂ DW . This proves (a).

By definition, I−LW = A1 : DW → L2(T), which have been shown to be bijective. This
proves (b).
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The self-adjointness of LW : DW → L2(T) follows from the one of A1 and the definition
of LW as I−A1. Moreover, from (2.4.12) we obtain that 〈−LW f, f〉 ≥ 0 for all f in DW .

To prove (d), fix a function g in DW , λ > 0 and let f = (λI − LW )g. Taking the scalar
product with respect to g on both sides of this equation, we obtain that

λ〈g, g〉 + 〈−LW g, g〉 = 〈g, f〉 ≤ 〈g, g〉1/2 〈f, f〉1/2 .

Since g belongs to DW , by (c), the second term on the left hand side is positive. Thus,
‖λg‖ ≤ ‖f‖ = ‖(λI−LW )g‖.

We have already seen that the operator (I − LW ) : DW → L2(T) is symmetric and
strongly monotone. By Lemma 2.4.3, the embedding H1

2 (T) ⊂ L2(T) is compact. Therefore,
by [27, Theorem 5.5.c], the Friedrichs extension of (I− LW ), denoted by A1 : DW → L2(T),
satisfies claims (e) and (f) with 1 ≤ λ1 ≤ λ2 ≤ · · · , λn ↑ ∞. In particular, the operator
−LW = A1 − I has the same property with 0 ≤ λ1 ≤ λ2 ≤ · · · , λn ↑ ∞. Since 0 is an
eigenvalue of −LW associated at least to the constants, (e) and (f) are in force.

It follows also from [27, Theorem 5.5.c] that fn belongs to H1
2 (T) for all n.

2.4.1 Random walk with conductances

Recall that TN stands for the discrete one-dimensional torus with N points and recall the
definition of the sequence {ξx : 0 ≤ x ≤ N − 1}. Consider the random walk {XN

t : t ≥ 0} on
N−1TN which jumps over the bond {x/N, (x+ 1)/N} at rate N2ξx = N/{W ((x+ 1)/N)−
W (x/N)}. The generator LN of this Markov process writes

(LNf)(x/N) = N2ξx{f((x+ 1)/N)− f(x/N)} + N2ξx−1{f((x− 1)/N)− f(x/N)} .

The counting measure mN on N−1TN is reversible for this process. Denote by {PN
t : t ≥

0} (resp. {GN
λ : λ > 0}) the semigroup (resp. the resolvent) associated to the generator LN :

GN
λ H =

∫ ∞

0

dt e−λtPN
t H

for H : N−1TN → R.
Fix a function H : N−1TN → R. For λ > 0, let HN

λ = GN
λ H be the solution of the

resolvent equation
λHN

λ − LNH
N
λ = H .

Taking the scalar product on both sides of this equation with respect to HN
λ , we obtain that

for all N ≥ 1
1

N

∑

x∈TN

HN
λ (x/N)2 ≤ 1

λ2

1

N

∑

x∈TN

H(x/N)2 ,

1

N

∑

x∈TN

ξx(∇NH
N
λ )(x/N)2 ≤ 1

λ

1

N

∑

x∈TN

H(x/N)2 ,
(2.4.13)

where ∇N stands for the discrete derivative: (∇NH)(x/N) = N [H((x+ 1)/N)−H(x/N)].
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On the other hand, if H : T → R is a continuous function and we denote also by H its
restriction to N−1TN , by [7, Lemma 4.6],

lim
λ→∞

lim sup
N→∞

1

N

∑

x∈TN

∣

∣λHN
λ (x/N)−H(x/N)

∣

∣ = 0 . (2.4.14)

Note that in [7], the function W is of pure jump type, while here it is any strictly increasing
càdlàg function. One can check, however, that the proof applies to our general case.

2.5 Scaling limit

Let M be the space of positive measures on T with total mass bounded by one endowed
with the weak topology. Recall that πN

t ∈ M stands for the empirical measure at time t.
This is the measure on T obtained by rescaling space by N and by assigning mass N−1 to
each particle:

πN
t =

1

N

∑

x∈TN

ηt(x) δx/N , (2.5.1)

where δu is the Dirac measure concentrated on u. For a continuous function H : T → R,
〈πN

t , H〉 stands for the integral of H with respect to πN
t :

〈πN
t , H〉 =

1

N

∑

x∈TN

H(x/N)ηt(x) .

This notation is not to be mistaken with the inner product in L2(T) introduced earlier. Also,
when πt has a density ρ, π(t, du) = ρ(t, u)du, we sometimes write 〈ρt, H〉 for 〈πt, H〉.

Fix T > 0. Let D([0, T ],M) be the space of M-valued càdlàg trajectories π : [0, T ] → M
endowed with the Skorohod topology. For each probability measure µN on {0, 1}TN , denote
by QW,N

µN
the measure on the path space D([0, T ],M) induced by the measure µN and the

process πN
t introduced in (2.5.1).

Fix a continuous profile ρ0 : T → [0, 1] and consider a sequence {µN : N ≥ 1} of measures
on {0, 1}TN associated to ρ0 in the sense (2.3.3). Let QW be the probability measure on
D([0, T ],M) concentrated on the deterministic path π(t, du) = ρ(t, u)du, where ρ is the
unique weak solution of (2.3.5) with γ = ρ0, l = 0, r = 1 and Φ(α) = α+ aα2.

Proposition 2.5.1. As N ↑ ∞, the sequence of probability measures QW,N
µN

converges in the
uniform topology to QW .

The proof of this result is divided in two parts. In Subsection 2.5.1, we show that the
sequence {QW,N

µN
: N ≥ 1} is tight and in Subsection 2.5.2 we characterize the limit points of

this sequence.

Proof of Theorem 2.3.2. Since QW,N
µN

converges in the uniform topology to QW , a measure
which is concentrated on a deterministic path, for each 0 ≤ t ≤ T and each continuous
function H : T → R, 〈πN

t , H〉 converges in probability to
∫

T
du ρ(t, u) H(u), where ρ is the

unique weak solution of (2.3.5) with l = 0, r = 1, γ = ρ0 and Φ(α) = α+ aα2.
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2.5.1 Tightness

Tightness of the sequence {QW,N
µN

: N ≥ 1} is proved as in [16, 7]. by considering first the

auxiliary M-valued Markov process {Πλ,N
t : t ≥ 0}, λ > 0, defined by

Πλ,N
t (H) = 〈πN

t , GN
λ H〉 =

1

N

∑

x∈Z

(

GN
λ H

)

(x/N)ηt(x) ,

H in C(T), where {GN
λ : λ > 0} is the resolvent associated to the random walk {XN

t : t ≥ 0}
introduced in Section 2.4.

We first prove tightness of the process {Πλ,N
t : 0 ≤ t ≤ T} for every λ > 0 and then show

that {Πλ,N
t : 0 ≤ t ≤ T} and {πN

t : 0 ≤ t ≤ T} are not far apart if λ is large.
It is well known [17] that to prove tightness of {Πλ,N

t : 0 ≤ t ≤ T} it is enough to show
tightness of the real-valued processes {Πλ,N

t (H) : 0 ≤ t ≤ T} for a set of smooth functions
H : T → R dense in C(T) for the uniform topology.

Fix a smooth function H : T → R. Denote by the same symbol the restriction of H to
N−1TN . Let H

N
λ = GN

λ H so that

λHN
λ − LNH

N
λ = H . (2.5.2)

Keep in mind that Πλ,N
t (H) = 〈πN

t , HN
λ 〉 and denote by MN,λ

t the martingale defined by

MN,λ
t = Πλ,N

t (H) − Πλ,N
0 (H) −

∫ t

0

dsN2LN 〈πN
s , HN

λ 〉 . (2.5.3)

Clearly, tightness of Πλ,N
t (H) follows from tightness of the martingale MN,λ

t and tightness of
the additive functional

∫ t

0
dsN2LN〈πN

s , HN
λ 〉.

An elementary computation shows that the quadratic variation 〈MN,λ〉t of the martingale
MN,λ

t is given by

1

N2

∑

x∈TN

ξx [(∇NH
N
λ )(x/N)]2

∫ t

0

cx,x+1(ηs) [ηs(x+ 1)− ηs(x)]
2 ds .

In particular, by (2.4.13),

〈MN,λ〉t ≤ C0t

N2

∑

x∈TN

ξx [(∇NH
N
λ )(x/N)]2 ≤ C(H)t

λN

for some finite constant C(H) which depends only on H . Thus, by Doob inequality, for every
λ > 0, δ > 0

lim
N→∞

PµN

[

sup
0≤t≤T

∣

∣MN,λ
t

∣

∣ > δ
]

= 0 . (2.5.4)

In particular, the sequence of martingales {MN,λ
t : N ≥ 1} is tight for the uniform topology.
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It remains to examine the additive functional of the decomposition (2.5.3). A long and
elementary computations shows that N2LN〈πN , HN

λ 〉 is equal to

1

N

∑

x∈TN

(LNH
N
λ )(x/N) η(x)

+
a

N

∑

x∈TN

{

(LNH
N
λ )((x+ 1)/N) + (LNH

N
λ )(x/N)

}

(τxh1)(η)

− a

N

∑

x∈TN

(LNH
N
λ )(x/N)(τxh2)(η) ,

where {τx : x ∈ Z} is the group of translations so that (τxη)(y) = η(x+ y) for x, y in Z and
the sum is understood modulo N . Also, h1, h2 are the cylinder functions

h1(η) = η(0)η(1) , h2(η) = η(−1)η(1) .

Since HN
λ is the solution of the resolvent equation (2.5.2), we may replace LNH

N
λ by UN

λ =
λHN

λ −H in the previous formula. In particular, for all 0 ≤ s < t ≤ T ,

∣

∣

∣

∫ t

s

dr N2LN〈πN
r , HN

λ 〉
∣

∣

∣
≤ (1 + 3|a|)(t− s)

N

∑

x∈TN

|UN
λ (x/N)| .

It follows from the first estimate in (2.4.13) and from Schwarz inequality that the right hand
side is bounded above by C(H, a)(t− s) uniformly in N , where C(H, a) is a finite constant
depending only on a and H . This proves that the additive part of the decomposition (2.5.3)
is tight for the uniform topology and therefore that the sequence of processes {Πλ,N

t : N ≥ 1}
is tight.

Lemma 2.5.2. The sequence of measures {QW,N
µN : N ≥ 1} is tight for the uniform topology.

Proof. It is enough to show that for every smooth function H : T → R and every ǫ > 0,
there exists λ > 0 such that

lim
N→∞

PµN

[

sup
0≤t≤T

|Πλ,N
t (λH)− 〈πN

t , H〉 | > ǫ
]

= 0

because in this case the tightness of πN
t follows from the tightness of Πλ,N

t . Since there is at
most one particle per site the expression inside the absolute value is less than or equal to

1

N

∑

x∈TN

∣

∣λHN
λ (x/N)−H(x/N)

∣

∣ .

By (2.4.14) this expression vanishes as N ↑ ∞, λ ↑ ∞.
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2.5.2 Uniqueness of limit points

We prove in this subsection that all limit points Q∗ of the sequence QW,N
µN

are concentrated
on absolutely continuous trajectories π(t, du) = ρ(t, u)du, whose density ρ(t, u) is a weak
solution of the hydrodynamic equation (2.3.5) with l = 0, r = 1, γ = ρ0 and Φ(θ) = θ+ aθ2.

Let Q∗ be a limit point of the sequence QW,N
µN

and assume, without loss of generality, that
QW,N

µN
converges to Q∗.

Since there is at most one particle per site, it is clear that Q∗ is concentrated on tra-
jectories πt(du) which are absolutely continuous with respect to the Lebesgue measure,
πt(du) = ρ(t, u)du, and whose density ρ is non-negative and bounded by 1.

Fix a function H : T → R continuously differentiable and λ > 0. Recall the definition of
the martingale MN,λ

t introduced in the previous subsection. By (2.5.4), for every δ > 0,

lim
N→∞

PµN

[

sup
0≤t≤T

∣

∣MN,λ
t

∣

∣ > δ
]

= 0 .

The martingale MN,λ
t can be written in terms of the empirical measure as

〈πN
t , GN

λ H〉 − 〈πN
0 , GN

λ H〉 −
∫ t

0

dsN2LN 〈πN
s , GN

λ H〉 .

Therefore, for fixed 0 < t ≤ T and δ > 0,

lim
N→∞

QW,N
µN

[
∣

∣

∣
〈πN

t , GN
λ H〉 − 〈πN

0 , GN
λ H〉 −

∫ t

0

dsN2LN 〈πN
s , GN

λ H〉
∣

∣

∣
> δ

]

= 0 .

Since there is at most one particle per site, by (2.3.4), we may replace GN
λ H by GλH in

the expressions 〈πN
t , GN

λ H〉, 〈πN
0 , GN

λ H〉 above.
On the other hand, the expression N2LN 〈πN

s , GN
λ H〉 has been computed in the previous

subsection. Recall that LNG
N
λ H = λGN

λ H −H . As before, we may replace GN
λ H by GλH .

Let Uλ = λGλH − H . Since Eνα[hj ] = α2, j = 1, 2, in view of (2.4.13) and by Corollary
2.5.4, for every t > 0, λ > 0, δ > 0, j = 1, 2,

lim
ε→0

lim sup
N→∞

PµN

[
∣

∣

∣

∫ t

0

ds
1

N

∑

x∈TN

Uλ(x/N)
{

τxhj(ηs)−
[

ηεNs (x)
]2
}
∣

∣

∣
> δ

]

= 0 .

Since ηεNs (x) = ε−1πN
s ([x/N, x/N + ε]), we obtain from the previous considerations that

lim
ε→0

lim sup
N→∞

QW,N
µN

[
∣

∣

∣
〈πN

t , GλH〉 −

− 〈πN
0 , GλH〉 −

∫ t

0

ds
〈

Φ
(

ε−1πN
s ([·, ·+ ε])

)

, Uλ

〉
∣

∣

∣
> δ

]

= 0 .

Since H is a smooth function, GλH and Uλ can be approximated in L1(T) by continuous
functions. Since we assumed that QW,N

µN
converges in the uniform topology to Q∗, we have
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that

lim
ε→0

Q∗
[
∣

∣

∣
〈πt, GλH〉 −

− 〈π0, GλH〉 −
∫ t

0

ds
〈

Φ
(

ε−1πs([·, ·+ ε])
)

, Uλ

〉
∣

∣

∣
> δ

]

= 0 .

As Q∗ is concentrated on absolutely continuous paths πt(du) = ρ(t, u)du with positive
density bounded by 1, ε−1πs([·, ·+ ε]) converges in L1(T) to ρ(s, u) as ε ↓ 0. Thus,

Q∗
[
∣

∣

∣
〈πt, GλH〉 − 〈π0, GλH〉 −

∫ t

0

ds 〈Φ(ρs) , LWGλH〉
∣

∣

∣
> δ

]

= 0

because Uλ = LWGλH . Letting δ ↓ 0, we see that Q∗ a.s.

〈πt, GλH〉 − 〈π0, GλH〉 =

∫ t

0

ds 〈Φ(ρs) , LWGλH〉 .

This identity can be extended to a countable set of times t. Taking this set to be dense, by
continuity of the trajectories πt, we obtain that it holds for all 0 ≤ t ≤ T . In the same way, it
holds for any countable family of continuous functions. Taking a countable set of continuous
functions, dense for the uniform topology, we extend this identity to all continuous function
H because GλHn converges to GλH in L1(T) if Hn converges to H in the uniform topology.
Similarly, we can show that it holds for all λ > 0, since, for any continuous function H ,
GλnH converges to GλH in L1(T), as λn → λ.

Proof of Proposition 2.5.1. In the previous subsection we showed that the sequence of prob-
ability measures QW,N

µN
is tight for the uniform topology. We just proved that all limit points

of this sequence are concentrated on weak solutions of the parabolic equation (2.3.5). The
statement of the proposition follows from the uniqueness of weak solutions proved in Section
2.7.

2.5.3 Replacement lemma

Denote by HN(µN |να) the entropy of a probability measure µN with respect to a stationary
state να. We refer to [17, Section A1.8] for a precise definition. By the explicit formula given
in [17, Theorem A1.8.3], we see that there exists a finite constant K0, depending only on α,
such that

HN(µN |να) ≤ K0N (2.5.5)

for all measures µN .
Denote by 〈·, ·〉να the scalar product of L2(να) and denote by IξN the convex and lower

semicontinuous [17, Corollary A1.10.3] functional defined by

IξN (f) = 〈−LN

√

f ,
√

f〉να ,
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for all probability densities f with respect to να (i.e., f ≥ 0 and
∫

fdνα = 1). An elementary
computation shows that

IξN(f) =
∑

x∈TN

Iξx,x+1(f) , where

Iξx,x+1(f) = (1/2) ξx

∫

cx,x+1(η)
{

√

f(σx,x+1η)−
√

f(η)
}2

dνα .

By [17, Theorem A1.9.2], if {SN
t : t ≥ 0} represents the semi-group associated to the

generator N2LN ,

HN(µNS
N
t |να) + N2

∫ t

0

IξN(f
N
s ) ds ≤ HN(µN |να) ,

provided fN
s stands for the Radon-Nikodym derivative of µNS

N
s with respect to να.

For a local function g : {0, 1}Z → R, let g̃ : [0, 1] → R be the expected value of g under
the stationary states:

g̃(α) = Eνα[g(η)] .

For ℓ ≥ 1, let ηℓ(x) be the density of particles on the interval {x, . . . , x+ ℓ− 1}:

ηℓ(x) =
1

ℓ

x+ℓ−1
∑

y=x

η(y) .

Lemma 2.5.3. Fix a function F : N−1TN → R. There exists a finite constant C0, depending
only on a, g and W , such that

1

N

∑

x∈TN

F (x/N)

∫

{τxg(η)− g̃(ηεN(x))} f(η)να(dη)

≤ C0

εN2

∑

x∈TN

∣

∣F (x/N)
∣

∣ +
C0ε

δN

∑

x∈TN

F (x/N)2 + δNIξN (f)

for all δ > 0 and all probability density f with respect to να.

Proof. Any local function can be written as a linear combination of functions of type
∏

x∈A η(x), for finite sets A′s. It is therefore enough to prove the lemma for such func-
tions. We prove the result for g(η) = η(0)η(1). The general case can be handled in a similar
way.

We estimate first

1

N

∑

x∈TN

F (x/N)

∫

η(x)
{

η(x+ 1)− 1

εN

x+εN−1
∑

y=x

η(y)
}

f(η)να(dη) (2.5.6)
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in terms of the functional IξN (f). The integral can be rewritten as

1

εN

x+εN−1
∑

y=x+2

y−1
∑

z=x+1

∫

η(x){η(z)− η(z + 1)}f(η)να(dη) + O(
1

εN
) ,

where the remainder comes from the contribution y = x. Writing last integral as twice the
same expression and performing the change of variables η′ = σz,z+1η in one of them, the
previous integral becomes

(1/2)

∫

η(x){η(z)− η(z + 1)}
{

f(η)− f(σz,z+1η)
}

να(dη) .

Since a − b = (
√
a −

√
b)(

√
a +

√
b), by Schwarz inequality the previous expression is less

than or equal to

A

16(1− 2a−)ξz

∫

η(x){η(z)− η(z + 1)}2
{
√

f(η) +
√

f(σz,z+1η)
}2

να(dη)

+
ξz
A

∫

cz,z+1(η)
{
√

f(η)−
√

f(σz,z+1η)
}2

να(dη)

for every A > 0. In this formula we used the fact that cz,z+1 is bounded below by 1 − 2a−.
Since f is a density with respect to να, the first expression is bounded by A/4(1 − 2a−)ξz,
while the second one is equal to 2A−1Iξz,z+1(f). Adding together all previous estimates, we
obtain that (2.5.6) is less than or equal to

1

εN2

∑

x∈TN

∣

∣F (x/N)
∣

∣ +
A

4(1− 2a−)N

∑

x∈TN

F (x/N)2
x+εN
∑

z=x+1

ξ−1
z +

2ε

A

∑

z∈TN

Iξz,z+1(f) .

By definition of the sequence {ξz},
∑

x+1≤z≤x+εN ξ−1
z ≤ N [W (1) − W (0)]. Thus, choosing

A = 2εN−1δ−1, for some δ > 0, we obtain that the previous sum is bounded above by

1

εN2

∑

x∈TN

∣

∣F (x/N)
∣

∣ +
C0ε

δN

∑

x∈TN

F (x/N)2 + δNIξN (f) .

Up to this point we have replaced η(x)η(x+1) by η(x)ηεN(x). The same arguments permit
to replace this latter expression by [ηεN(x)]2, which concludes the proof of the lemma.

Corollary 2.5.4. Fix a cylinder function g and a sequence of functions {FN : N ≥ 1},
FN : N−1TN → R such that

lim sup
N→∞

1

N

∑

x∈TN

FN(x/N)2 < ∞ .

Then, for any t > 0 and any sequence of probability measures {µN : N ≥ 1} on {0, 1}TN ,

lim sup
ε→0

lim sup
N→∞

EµN

[
∣

∣

∣

∫ t

0

1

N

∑

x∈TN

FN(x/N)
{

τxg(ηs)− g̃(ηεNs (x))
}

∣

∣

∣

]

= 0 .
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Proof. Fix 0 < α < 1. By the entropy and Jensen inequalities, the expectation appearing in
the statement of the lemma is bounded above by

HN(µN |να)
γN

+

1

γN
logEνα

[

exp
{

γ
∣

∣

∣

∫ t

0

∑

x∈TN

FN(x/N)
{

τxg(ηs)− g̃(ηεNs (x))
}

ds
∣

∣

∣

} ]

for all γ > 0. In view of (2.5.5), to prove the corollary it is enough to show that the second
term vanishes as N ↑ ∞ and then ε ↓ 0 for every γ > 0. We may remove the absolute value
inside the exponential because e|x| ≤ ex + e−x and because lim supN→∞N−1 log{aN + bN} ≤
max{lim supN→∞N−1 log aN , lim supN→∞N−1 log bN}. Thus, to prove the corollary, we need
to show that

lim sup
ε→0

lim sup
N→∞

1

N
logEνα

[

exp
{

γ

∫ t

0

∑

x∈TN

FN(x/N){τxg(ηs)− g̃(ηεNs (x))}
}]

= 0

for every γ > 0.
By Feynman-Kac formula, for each fixed N the previous expression is bounded above by

t sup
f

{

∫

γ

N

∑

x∈TN

FN (x/N){τxg(η)− g̃(ηεN(x))}f(η) dνα − NIξN(f)
}

,

where the supremum is carried over all density functions f with respect to να. Letting δ = 1
in Lemma 2.5.3, we obtain that the previous expression is less than or equal to

C0γ

εN2

∑

x∈TN

∣

∣FN (x/N)
∣

∣ +
C0γε

N

∑

x∈TN

FN (x/N)2

for some finite constant C0 which depends on g and W . By assumption on the sequence
{FN}, for every γ > 0, this expression vanishes as N ↑ ∞ and then ε ↓ 0. This concludes
the proof of the lemma.

2.6 Energy estimate

We prove in this section that any limit point Q∗
W of the sequence QW,N

µN
is concentrated

on trajectories ρ(t, u)du with finite energy. Though not needed in the proof of uniqueness
of weak solutions, this estimate plays an important role in the proof of a large deviations
principle.

Let Q∗
W be a limit point of the sequence QW,N

µN
and assume without loss of generality

that the sequence QW,N
µN

converges to Q∗
W . Denote by ∂u the partial derivative of a function

with respect to the space variable. Let L2
W ([0, T ] × T) be the Hilbert space of measurable

functions H : [0, T ]× T → R such that
∫ T

0

ds

∫

T

dW (u)H(s, u)2 < ∞ ,
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endowed with the scalar product 〈〈H,G〉〉W defined by

〈〈H,G〉〉W =

∫ T

0

ds

∫

T

dW (u)H(s, u)G(s, u) .

Proposition 2.6.1. The measure Q∗
W is concentrated on paths ρ(t, u)du with the property

that there exists a function in L2
W ([0, T ]× T), denoted by dΦ/dW , such that

∫ T

0

ds

∫

T

du (∂uH)(s, u) Φ(ρ(s, u)) = −
∫ T

0

ds

∫

T

dW (u) (dΦ/dW )(s, u)H(s, u)

for all functions H in C0,1([0, T ]× T).

The previous result follows from the next lemma. Recall the definition of the constant
K0 given in (2.5.5).

Lemma 2.6.2. There exists a finite constant K1, depending only on a, such that

EQ∗

W

[

sup
H

{

∫ T

0

ds

∫

T

du (∂uH)(s, u) Φ(ρ(s, u))

− K1

∫ T

0

ds

∫

T

H(s, u)2 dW (u)
}]

≤ K0 ,

where the supremum is carried over all functions H in C0,1([0, T ]× T).

Proof of Proposition 2.6.1. Denote by ℓ : C0,1([0, T ]× T) → R the linear functional defined
by

ℓ(H) =

∫ T

0

ds

∫

T

du (∂uH)(s, u) Φ(ρ(s, u)) .

Since C0,1([0, T ]×T) is dense in L2
W ([0, T ]×T), by Lemma 2.6.2, ℓ is Q∗

W -almost surely finite
in L2

W ([0, T ]× T). In particular, by Riesz representation theorem, there exists a function G
in L2

W ([0, T ]× T) such that

ℓ(H) = −
∫ T

0

ds

∫

T

dW (u)H(s, u)G(s, u) .

This concludes the proof of the proposition.

The proof of Lemma 2.6.2 relies on the following result. For a finite constant K1, a
smooth function H : T → R, δ > 0, ε > 0 and a positive integer N , define WN(ε, δ,H, η) by

WN(ε, δ,H, η) =
∑

x∈TN

H(x/N)
1

εN

{

Φ(ηδN (x))− Φ(ηδN (x+ εN))
}

− K1

εN

∑

x∈TN

H(x/N)2{W ([x+ εN + 1]/N)−W (x/N)} .

37



Lemma 2.6.3. Consider a sequence {Hℓ, ℓ ≥ 1} dense in C0,1([0, T ] × T). There exists a
finite constant K1 such that

lim sup
δ→0

lim sup
N→∞

EµN

[

max
1≤i≤k

{

∫ T

0

WN(ε, δ,Hi(s, ·), ηs) ds
}]

≤ K0 .

For every k ≥ 1 and every ε > 0.

Proof. It follows from the replacement lemma that in order to prove the lemma we just need
to show that

lim sup
N→∞

EµN

[

max
1≤i≤k

{

∫ T

0

WN (ε,Hi(s, ·), ηs) ds
}]

≤ K0 ,

where

WN (ε,H, η) =
1

εN

∑

x∈TN

H(x/N)
{

τxg(η)− τx+εNg(η)
}

− K1

εN

∑

x∈TN

H(x/N)2{W ([x+ εN + 1]/N)−W (x/N)} ,

and g(η) = η(0) + 2aη(0)η(1).
By the entropy and the Jensen inequality, for each fixed N , the previous expectation is

bounded above by

H(µN |να)
N

+
1

N
logEνα

[

exp
{

max
1≤i≤k

{

N

∫ T

0

dsWN(ε,Hi(s, ·), ηs)
}}]

.

By (2.5.5), the first term is bounded by K0. Since exp{max1≤j≤k aj} is bounded above by
∑

1≤j≤k exp{aj} and since lim supN N−1 log{aN + bN} is less than or equal to the maximum

of lim supN N−1 log aN and lim supN N−1 log bN , the limit, as N ↑ ∞, of the second term of
the previous expression is less than or equal to

max
1≤i≤k

lim sup
N→∞

1

N
logEνα

[

exp
{

N

∫ T

0

dsWN(ε,Hi(s, ·), ηs)
}]

.

We now prove that for each fixed i the above limit is non-positive.
Fix 1 ≤ i ≤ k. By Feynman–Kac formula and the variational formula for the largest

eigenvalue of a symmetric operator, for each fixed N , the previous expression is bounded
above by

∫ T

0

ds sup
f

{

∫

WN(ε,Hi(s, ·), η)f(η)να(dη)−NIξN (f)
}

.

In this formula the supremum is taken over all probability densities f with respect to να.
It remains to rewrite η(x)η(x + 1) − η(x+ εN)η(x+ εN + 1) as η(x){η(x+ 1) − η(x+

εN + 1)}+ η(x+ εN + 1){η(x)− η(x+ εN)} and to repeat the arguments presented in the
proof of Lemma 2.5.3 to conclude.
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Proof of Lemma 2.6.2. Assume without loss of generality that QW,N
µN

converges to Q∗
W . Con-

sider a sequence {Hℓ, ℓ ≥ 1} dense in C0,1([0, T ]× T). By Lemma 2.6.3, for every k ≥ 1

lim sup
δ→0

EQ∗

W

[

max
1≤i≤k

{1

ε

∫ T

0

ds

∫

T

duHi(s, u)
{

Φ(ρδs(u))− Φ(ρδs(u+ ε))
}

− K1

ε

∫ T

0

ds

∫

T

duHi(s, u)
2 [W (u+ ε)−W (u)]

}]

≤ K0 ,

where ρδs(u) = (ρs∗ιδ)(u) and ιδ is the approximation of the identity ιδ(·) = (2δ)−11{[−δ, δ]}(·).
Letting δ ↓ 0, changing variables and then letting ε ↓ 0, we obtain that

EQ∗

W

[

max
1≤i≤k

{

∫ T

0

ds

∫

T

(∂uHi)(s, u)Φ(ρ(s, u)) du

− K1

∫ T

0

ds

∫

T

Hi(s, u)
2dW (u)

}]

≤ K0 .

To conclude the proof it remains to apply the monotone convergence theorem and recall that
{Hℓ, ℓ ≥ 1} is a dense sequence in C0,1([0, T ]× T) for the norm ‖H‖∞ + ‖(∂uH)‖∞.

2.7 Uniqueness of weak solutions of (2.3.5)

Recall that we denote by 〈·, ·〉 the inner product of the Hilbert space L2(T) and that {Gλ :
λ > 0} stands for the resolvents associated to LW .

Let ρ be a weak solution of the hydrodynamic equation (2.3.5). Since ρ, Φ(ρ) are bounded,
the smooth functions are dense in L2(T) and LWGλ = −I+ λGλ are bounded operators, for
any function H in L2(T),

〈ρt, GλH〉 − 〈γ,GλH〉 =

∫ t

0

〈Φ(ρs),LWGλH〉 ds

for all t > 0 and all λ > 0.
Let ρ : R+ × T → [l, r] be a weak solution of (2.3.5). We claim that

〈ρt , Gλρt〉 − 〈ρ0 , Gλρ0〉 = 2

∫ t

0

〈Φ(ρs) , LWGλρs〉 ds (2.7.1)

for all t > 0 and λ > 0.
To prove this claim, fix λ > 0, t > 0 and consider a partition 0 = t0 < t1 < · · · < tn = t

of the interval [0, t] so that

〈ρt , Gλρt〉 − 〈ρ0 , Gλρ0〉 =
n−1
∑

k=0

〈ρtk+1
, Gλρtk+1

〉 − 〈ρtk+1
, Gλρtk〉

+
n−1
∑

k=0

〈ρtk+1
, Gλρtk〉 − 〈ρtk , Gλρtk〉 .
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We handle the first term, the second one being similar. Since Gλ is self-adjoint in L2(T),
since ρtk+1

belongs to L2(T) and since ρ is a weak solution of (2.3.5),

〈ρtk+1
, Gλρtk+1

〉 − 〈ρtk+1
, Gλρtk〉 =

∫ tk+1

tk

〈Φ(ρs) , LWGλρtk+1
〉 ds .

Add and subtract on the right hand side 〈Φ(ρs) , LWGλρs〉. The time integral of this term
is exactly the expression announced in (2.7.1) and the remainder is given by

∫ tk+1

tk

{

〈Φ(ρs) , LWGλρtk+1
〉 − 〈Φ(ρs) , LWGλρs〉

}

ds .

Since LWGλ = −I + λGλ, where I is the identity, and since Gλ is self-adjoint, we may
rewrite the previous difference as

−
{

〈Φ(ρs) , ρtk+1
〉 − 〈Φ(ρs) , ρs〉

}

+ λ
{

〈GλΦ(ρs) , ρtk+1
〉 − 〈GλΦ(ρs) , ρs〉

}

.

The time integral between tk and tk+1 of the second term is equal to

λ

∫ tk+1

tk

ds

∫ tk+1

s

〈LWGλΦ(ρs) , Φ(ρr)〉 dr

because ρ is a weak solution of (2.3.5) and Φ(ρs) belongs to L2(T). It follows from the
boundedness of the operator LWGλ and from the boundedness of Φ(ρ) that this expression
is of order (tk+1 − tk)

2.
To conclude the proof of claim (2.7.1) it remains to show that

n−1
∑

k=0

∫ tk+1

tk

{

〈Φ(ρs) , ρtk+1
〉 − 〈Φ(ρs) , ρs〉

}

ds

vanishes as the mesh of the partition tends to 0. Fix ε > 0 and choose β large enough for

∫ t

0

ds

∫

T

{

βGβΦ(ρ(s, u))− Φ(ρ(s, u))
}2

du ≤ ε .

This is possible because Φ(ρ) is bounded, {βGβ : β > 0} are uniformly bounded operators,
and βGβΦ(ρ(s, ·)) converges to Φ(ρ(s, ·)) in L2(T), as β ↑ ∞, for all 0 ≤ s ≤ t.

Paying a price of order
√
ε, because l ≤ ρ ≤ r, we may replace Φ(ρs) in the penultimate

formula by βGβΦ(ρs). After this replacement, since ρ is weak solution, we may rewrite the
sum as

β

n−1
∑

k=0

∫ tk+1

tk

ds

∫ tk+1

s

〈LWGβΦ(ρs) , Φ(ρr)〉 dr .

We have already seen that this expression vanishes as the mesh of the partition tends to 0.
This proves (2.7.1).

Recall the definition of the constant B given at the beginning of Subsection 2.3.3
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Lemma 2.7.1. Fix two density profiles γ1, γ2 : T → [l, r] and denote by ρ1, ρ2 weak solutions
of (2.3.5) with initial value γ1, γ2, respectively. Then,

〈

ρ1t − ρ2t , Gλ

[

ρ1t − ρ2t
]

〉

≤
〈

γ1 − γ2 , Gλ

[

γ1 − γ2
]

〉

eBλt/2

for all λ > 0, t > 0. In particular, there exists at most one weak solution of (2.3.5).

Proof. Fix two density profiles γ1, γ2 : T → [l, r]. Let ρ1, ρ2 be two weak solutions with
initial value γ1, γ2, respectively. By (2.7.1), for any λ > 0,

〈

ρ1t − ρ2t , Gλ

[

ρ1t − ρ2t
]

〉

−
〈

γ1 − γ2 , Gλ

[

γ1 − γ2
]

〉

=

−2

∫ t

0

〈Φ(ρ1s)− Φ(ρ2s) , ρ
1
s − ρ2s〉 ds + 2λ

∫ t

0

〈

Φ(ρ1s)− Φ(ρ2s) , Gλ

[

ρ1s − ρ2s
]

〉

ds .

By Schwarz inequality, the second term on the right hand side is bounded above by

1

A

∫ t

0

〈

Φ(ρ1s)− Φ(ρ2s) , Gλ

[

Φ(ρ1s)− Φ(ρ2s)
]

〉

ds + Aλ2

∫ t

0

〈

ρ1s − ρ2s , Gλ

[

ρ1s − ρ2s
]

〉

ds

for every A > 0. Since the operator Gλ is bounded by λ−1, and since Φ′ is bounded by B,
the first term of the previous expression is less than or equal to

B

Aλ

∫ t

0

〈

ρ1s − ρ2s , Φ(ρ
1
s)− Φ(ρ2s)

〉

ds .

Choosing A = B/2λ, this expression cancels with the first term on the right hand side of
the first formula. In particular, the left hand side of this formula is bounded by

Bλ

2

∫ t

0

〈

ρ1s − ρ2s , Gλ

[

ρ1s − ρ2s
]

〉

ds .

It remains to recall Gronwall’s inequality to conclude.
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Chapter 3

Hydrodynamic limit for a type of
exclusion processes with slow bonds
in dimension ≥ 2

Joint work with Adriana Neumann (IMPA) and Glauco Valle (UFRJ). To appear in the
Journal of Applied Probability 48.2 (June 2011).

3.1 Abstract

Let Λ be a connected closed region with smooth boundary contained in the d-dimensional
continuous torus Td. In the discrete torus N−1Td

N , we consider a nearest neighbor symmetric
exclusion process where occupancies of neighboring sites are exchanged at rates depending
on Λ in the following way: if both sites are in Λ or Λ∁, the exchange rate is one; If one site is
in Λ and the other one is in Λ∁ and the direction of the bond connecting the sites is ej , then
the exchange rate is defined as N−1 times the absolute value of the inner product between
ej and the normal exterior vector to ∂Λ. We show that this exclusion type process has
a non-trivial hydrodynamical behavior under diffusive scaling and, in the continuum limit,
particles are not blocked or reflected by ∂Λ. Thus the model represents a system of particles
under hard core interaction in the presence of a permeable membrane which slows down the
passage of particles between two complementar regions.

3.2 Introduction

The exclusion process is a continuous time interacting particle system where particles move
as independent random walks on a graph except for the exclusion rule that prevents two
particles from occupying the same site, or vertex. In the symmetric case, the process evolves
as follows: to each bond we associate a waiting exponential time, which are independent
of the waiting time for any other bond; at the waiting time the occupancies of the sites
connected by the bond are exchanged; the parameter of the exchange times, or exchange
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rate, depends only on the bond. The specification of the exchange rates determines the
environment for the exclusion process. In our case, as the underlying graph, we consider the
discrete torus with Nd points and nearest neighbor bonds. The variable N is the scaling
parameter.

This paper studies the hydrodynamical behavior of symmetric exclusion processes in
non-homogeneous environments, where the non-homogeneity is due to the presence of slow
bonds. While a usual bond has exchange rate one, a slow bond has a lower exchange rate.
With respect to the scaling parameter, we assume that a slow bond has exchange rate of
order N−1.

When the environment is homogeneous, the exclusion process has a well-known hydro-
dynamical behavior under diffusive scaling. About non-homogeneous environments, results
have been obtained in several cases, even when the environment is random and consists only
of slow bonds. For one dimensional processes, in [7], the exchange rate over a bond [ x

N
, x+1

N
]

is given by [N(W (x+ 1/N)−W (x/N))]−1, where W is an α-stable subordinator of a Lévy
Process. They obtain a quenched hydrodynamic limit. In papers previous to [7], for exam-
ple [5] and [23], the randomness or non-homogeneity did not survive in the continuum limit.
Another one-dimensional result, following [7], was obtained in [9], for more general, but non-
random, increasing functions W . The techniques used in those papers were strongly based
on theorems about convergence of one dimensional continuous time stochastic processes. In
fact, even the d-dimensional case treated in [26] consists of a class of non-homogeneous envi-
ronments that could be decomposed, in a proper sense, in d one-dimensional cases. Recently,
different approaches have been searched to deal with d-dimensional environments, see [6] and
[15].

We now describe the exclusion processes we are concerned with. Let {ej : j = 1, ..., d} be
the canonical basis of Rd and Λ ⊂ Td be a simple connected region with smooth boundary ∂Λ.
If the bond [ x

N
,
x+ej
N

] ∈ N−1Td
N has vertices in each of the regions Λ and Λ∁, its exchange rate

is defined as N−1 times the absolute value of the inner product between ej and the normal
exterior vector to ∂Λ. For others edges, the exchange rate is defined as one. This means
that the slow bonds are among those crossing the boundary of Λ. We call this process the
exclusion process with slow bonds over ∂Λ.

We can interpret ∂Λ as a permeable membrane, which slows down the passage of particles
between the regions Λ and Λ∁. For this type of exclusion process, the membrane does
not completely prevent the passage of particles, and still survives in the continuum limit,
appearing explicitly in the hydrodynamic equation. The exchange rate of particles for a bond
crossing ∂Λ is smaller if the bond is close to a tangent line of ∂Λ. Note that this assumption
has physical meaning, take for example cases of reflections in several physical models: partial
reflection of light crossing a medium with different refraction indexes, mechanical systems
where particles try to cross some interface, etc. However the direction of the speed of particles
is not changed as usually occur in physical reflection. Our definition of the exchange rates
also allows a strong convergence result for the empirical measures associated to the exclusion
process making simpler the proof of the hydrodynamic limit.

The hydrodynamical equation of the exclusion process with slow bonds over ∂Λ is a
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parabolic partial differential equation ∂tρ = LΛρ, where the operator LΛ is a sort of d-
dimensional Krein-Feller operator. Without the presence of slow bonds, the operator LΛ

would be replaced by the laplacian operator acting on C2 functions and the hydrodynamical
equation is therefore the heat equation. Here, the existence of the membrane modifies the
domain, and thus the operator itself. In fact, we observe that the proper domain for LΛ

contains functions that are discontinuous over ∂Λ. Geometrically, LΛ glues the discontinuity
of a function around ∂Λ and then behaves like the laplacian.

One possible approach to prove the hydrodynamic limit for the exclusion process with
slow bonds over ∂Λ is through Gamma convergence. In [15], this approach and the conditions
for it to hold are discussed, see also [5]. There, the coersiveness condition would require some
kind of Rellich-Kondrachov Theorem (namely, the compact embedding in L2 of some sort of
Sobolev space supporting an extension of LΛ, see [4]). In the method presented here, we go
in this direction, but instead of reach the hypotheses in [15], we have used similar analytical
tools in order to obtain a short and simple proof of uniqueness of the hydrodynamic equation.
We also show that the extension of LΛ satisfies the Hille-Yoshida Theorem. On the other
hand, the convergence from discrete to continuous that we present here is made in a very
direct way, and it was inspired by the convergence of the discrete laplacian to the continuous
laplacian.

The paper is presented as follows: In Section 3.3, we define the model and state all results
contained in the paper; Section 3.4 is devoted to prove the results concerning the continuous
operator LΛ; In Section 3.5, the hydrodynamic limit is proved.

3.3 Notation and Results

Let Td be the d-dimensional torus, which is [0, 1)d with periodic boundary conditions, and Td
N

be the discrete torus with Nd points, i.e., {0, ..., N − 1}d with periodic boundary conditions.
We denote by η = (η(x))x∈Td

N
a typical configuration in the state space ΩN = {0, 1}Td

N , for

which, η(x) = 0 means that site x is vacant, and η(x) = 1 that site x is occupied. If a bond
of N−1Td

N has vertices x
N

and y
N
, it will be denoted by [ x

N
, y
N
].

Recall that {ej : j = 1, ..., d} is the canonical basis of Rd. The symmetric nearest neighbor
exclusion process with exchange rates ξNx,y > 0, x, y ∈ Td

N , |x− y| = 1, is a Markov process
with configuration space ΩN , whose generator LN acts on functions f : ΩN → R as

(LNf)(η) =
∑

x∈Td
N

d
∑

j=1

ξNx,x+ej

[

f(ηx,x+ej)− f(η)
]

, (3.3.1)

where ηx,x+ej is the configuration obtained from η by exchanging the variables η(x) and
η(x+ ej):

(ηx,x+ej)(y) =







η(x+ ej), if y = x ,
η(x), if y = x+ ej ,
η(y), otherwise.
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1
N
T2
N

Λ∁

Λ

Figure 3.1: The darker region corresponds to Λ. The bolded bonds have exchanges rates
|~ζx,j ·ej |

N
, any other bond has exchange rate 1.

Let νN
α , α ∈ [0, 1], be the Bernoulli product measure ΩN , i.e., the product measure whose

marginals have Bernoulli distribution with parameter α. Then {νN
α : 0 ≤ α ≤ 1} is a family

of invariant, in fact reversible, measures for any symmetric exclusion process.

Now, fix a simple connected region Λ ⊂ Td with smooth boundary ∂Λ. Denote by ~ζ(u)
the normal unitary exterior vector to the smooth surface ∂Λ in the point u ∈ ∂Λ. If x

N
∈ Λ

and
x+ej
N

∈ Λ∁, or x
N

∈ Λ∁ and
x+ej
N

∈ Λ, we define ~ζx,j as a vector ~ζ(u) evaluated in an
arbitrary but fixed point u ∈ ∂Λ ∩ [x, x + ej ]. The exclusion process with slow bonds over
∂Λ is a symmetric nearest neighbor exclusion process with exchange rates ξNx,x+ej

= ξNx+ej ,x

given by















|~ζx,j · ej |
N

, if x
N

∈ Λ and
x+ej
N

∈ Λ∁ , or x
N

∈ Λ∁ and
x+ej
N

∈ Λ ,

1 , otherwise,

(3.3.2)

for j = 1, . . . , d, and for every x ∈ Td
N . In this case, the exchange rate of a bond crossing the

boundary ∂Λ is also of order N−1, but it depends on the angle of incidence: the crossing of
∂Λ by a particle gets harder to happen as the direction of entrance gets closer to the tangent
plane to the surface ∂Λ.

From now on, the rates in the definition of LN will always be given by (3.3.2). Denote
by {ηNt : t ≥ 0} a Markov process with state space ΩN and generator LN speeded up by
N2. Let D(R+,ΩN ) be the Skorohod space of càdlàg trajectories taking values in ΩN . For
a measure µ on ΩN , denote by PN

µ the probability measure on D(R+,ΩN) induced by the
initial state µ and the Markov process {ηNt : t ≥ 0}. The expectation with respect to PN

µ is
going to be denoted by EN

µ .

A sequence of probability measures {µN : N ≥ 1} is said to be associated to a profile
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γ : Td → [0, 1] if µN is a probability measure on ΩN , for every N, and

lim
N→∞

µN







∣

∣

∣

1
Nd

∑

x∈Td
N

H( x
N
)η(x)−

∫

H(u)γ(u)du
∣

∣

∣
> δ







= 0 (3.3.3)

for every δ > 0, and every continuous function H : Td → R.

The exclusion process with slow bonds over ∂Λ has a related random walk on N−1Td
N that

describes the evolution of the system with a single particle. Thus particles in the exclusion
process evolve independently as such random walk except for the hard core interaction. To
simplify notation later, we introduce here the generator of this random walk, which is given
by

(LNH)( x
N
) =

d
∑

j=1

{

ξNx,x+ej

[

H(
x+ej
N

)−H( x
N
)
]

+ ξNx,x−ej

[

H(
x−ej
N

)−H( x
N
)
]}

, (3.3.4)

for every H : N−1Td
N → R and every x ∈ Td

N . We will not differentiate the notation for
functions H defined on Td and on N−1Td

N .

3.3.1 The Operator LΛ

Here we define the operator LΛ and state its main properties. First, its domain is defined
as a set of functions that are two times continuously differentiable inside and outside Λ
and satisfy some additional conditions related to their behavior at ∂Λ. Such conditions are
imposed in order to have good properties of LΛ that allows us to conclude the uniqueness
of solutions of the hydrodynamic equation, and obtain a strong convergence result for the
empirical measures in the proof of the hydrodynamic limit. The necessity of these conditions
are going to be made clear later in the text.

Definition 3.3.1. Recall that ~ζ denotes the normal exterior vector to the surface ∂Λ. The
domainDΛ ⊂ L2(Td) will be the set of functions H ∈ L2(Td), such that H(u)= h(u)+λ1Λ(u),
where:

(i) λ ∈ R;

(ii) h ∈ C2(Td);

(iii) ∇h|∂Λ(u) = −λ ~ζ(u).

Now, we define the operator LΛ : DΛ → L2(Td) by

LΛH = ∆h .

Geometrically, the operator LΛ removes the discontinuity around the surface ∂Λ and then
acts like the laplacian operator.
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Remark 3.3.1. It is not entirely obvious why there exist functions h ∈ C2(Td) such that

∇h|∂Λ(u) = −λ ~ζ(u), for λ 6= 0. For an example of such a function, consider firstly g : Td →
R defined by

g(u) =

{

λ dist (u, ∂Λ) , if u ∈ Λ∁ ,
−λ dist (u, ∂Λ) , if u ∈ Λ .

Since ∂Λ has no self intersection and is smooth, it is simple to check that there exists a
sufficiently small ε > 0 such that

V = {u ∈ Td : dist (u, ∂Λ) < ε }

has smooth boundary and without self intersection. Thus, the function g is smooth in the
open neighborhood V of ∂Λ, and satisfies the condition ∇g|∂Λ(u) = −λ ~ζ(u). However, g is
not differentiable in the space Td. To solve this problem, it is enough to multiply g by

∑

iΦi,
where {Φi} is a partition of unity such that the support of any Φi is contained in V and
∑

i Φi(u) = 1 for all u ∈ U ⊂ V , U an open set containing ∂Λ. Finally, the function

h(u) = g(u)
∑

i

Φi(u)

satisfies the required conditions.

For the next result we need to introduce some notation. We denote by I the identity
operator in L2(Td) and by 〈〈·, ·〉〉 and ‖ · ‖ its usual inner product and norm:

〈〈f, g〉〉 =

∫

Td

f(u) g(u) du and ‖f‖ =
√

〈〈f, f〉〉 , f, g ∈ L2(Td) .

Theorem 3.3.2. There exists a Hilbert space (H1
Λ, 〈〈·, ·〉〉1,Λ) which is compactly embedded in

L2(Td) such that DΛ ⊂ H1
Λ and LΛ can be extended to LΛ : H1

Λ → L2(Td) in such a way that
the extension enjoys the following properties:

(a) The domain H1
Λ is dense in L2(Td);

(b) The operator LΛ is self-adjoint and non-positive: 〈〈H,−LΛH〉〉 ≥ 0, for all H in H1
Λ;

(c) The operator I− LΛ : H1
Λ → L2(Td) is bijective and DΛ is a core for it;

(d) The operator LΛ is dissipative, i.e.,

‖µH − LΛH‖ ≥ µ‖H‖ ,

for all H ∈ H1
Λ and µ > 0;

(e) The eigenvalues of −LΛ form a countable set 0 = µ0 ≤ µ1 ≤ · · · with limn→∞ µn = ∞,
and all these eigenvalues have finite multiplicity;

(f) There exists a complete orthonormal basis of L2(Td) composed of eigenvectors of −LΛ.
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In view of (a), (c) and (d), by the Hille-Yoshida Theorem, LΛ is the generator of a strongly
continuous contraction semigroup in L2(Td).

The space H1
Λ will be defined in Section 3.4. The name has been chosen in analogy to

the notation used for Sobolev spaces.

3.3.2 The hydrodynamic equation

Consider a bounded Borel measurable profile ρ0 : T
d → R. A bounded function ρ : R+×Td →

R is said to be a weak solution of the parabolic differential equation
{

∂tρ = LΛρ
ρ(0, ·) = ρ0(·) ,

(3.3.5)

if for all functions H in H1
Λ and all t > 0, ρ satisfies the integral equation

〈〈ρt, H〉〉 − 〈〈ρ0, H〉〉 −
∫ t

0

〈〈ρs,LΛH〉〉 ds = 0, (3.3.6)

where ρt is the notation for ρ(t, ·). We prove in Subsection 3.5.3 the uniqueness of weak
solutions of (3.3.5). Existence follows from the convergence result for the empirical measures
associated to the diffusively rescaled exclusion processes with slow bonds over Λ, this is
discussed in Section 3.5. Here we do not use time dependent test functions as usual in the
definition of weak solution, but we have a well posed problem and we do not need a solution
in a stronger sense to prove the hydrodynamic limit which is the next stated theorem.

Theorem 3.3.3. Fix a Borel measurable initial profile γ : Td → [0, 1] and consider a
sequence of probability measures µN on ΩN associated to γ. Then, for any t ≥ 0,

lim
N→∞

PN
µN

{
∣

∣

∣

1
Nd

∑

x∈Td
N

H(x/N) ηt(x)−
∫

Td

H(u)ρ(t, u)du
∣

∣

∣
> δ

}

= 0 ,

for every δ > 0 and every function H ∈ C(Td), where ρ is the unique weak solution of the
differential equation (3.3.5) with ρ0 = γ.

3.4 The operator LΛ

We begin by studying properties of LΛ defined on the domain DΛ and we consider the
extension afterwards.

Lemma 3.4.1. The domain DΛ is dense in L2(Td).

Proof. It is enough to prove that there exists a subset of DΛ which is dense in L2(Td). All
smooth functions with support contained in Td\∂Λ belong to DΛ, which is clearly a dense
subset of L2(Td), since ∂Λ is a smooth zero Lebesgue measure surface that divides Td\∂Λ
in two disjoint open regions.
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From now on, we use ℓd to denote the d-dimensional Lebesgue measure on Td.

Lemma 3.4.2. The operator −LΛ : DΛ → L2(Td) is symmetric and non-negative. Further-
more, it satisfies a Poincaré inequality, which means that there exists a finite constant C > 0
such that

‖H‖2 ≤ C 〈〈−LΛH,H〉〉+
(

∫

Td

H(x) dx
)2

(3.4.1)

for all functions H ∈ DΛ.

Proof. Let H,G ∈ DΛ. Write H = h + λh 1Λ and G = g + λg 1Λ, as in Definition 3.3.1. By
the first Green identity and condition (iii) in Definition 3.3.1, we have that

λh

∫

Λ

∆g du = λh

∫

∂Λ

(∇g · ~ζ) dS = −λh λg Vold−1(∂Λ) (3.4.2)

= λg

∫

∂Λ

(∇h · ~ζ) dS = λg

∫

Λ

∆h du ,

where dS is a infinitesimal element of volume of ∂Λ and Vold−1(∂Λ) is its (d−1)-dimensional
volume. Thus,

〈〈H,−LΛG〉〉 = 〈〈h+ λh 1Λ,−∆g〉〉 = −
∫

Td

h∆g du− λh

∫

Λ

∆g du

= −
∫

Td

g∆h du− λg

∫

Λ

∆h du = 〈〈−LΛH,G〉〉 .

For the non-negativeness, using (3.4.2) above,

〈〈H,−LΛH〉〉 = −
∫

Td

h∆h du− λh

∫

Λ

∆h du

=

∫

Td

|∇h|2 du+ λ2
h Vold−1(∂Λ) ≥ 0 .

It remains to prove the Poincaré inequality. Write

‖H‖2 −
(

∫

Td

H(x) dx
)2

=

∫

Td

[

H(u)−
∫

Td

H(v) dv
]2

du ,

which can be rewritten as
∫

Td

[(

h(u)−
∫

Td

h(v) dv
)

+ λh

(

1Λ(u)− ℓd(Λ)
)]2

du .

Now apply the inequality (a + b)2 ≤ 2 (a2 + b2) to the previous expression to obtain that it
is bounded by

2

∫

Td

(

h(u)−
∫

Td

h(v) dv
)2

du+ 2 λ2
h

(

ℓd(Λ)− (ℓd(Λ))
2
)

.
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By the usual Poincaré inequality, see [4], the last expression is less than or equal to

2C1

∫

Td

|∇h(u)|2 du+ 2 λ2
h

(

ℓd(Λ)− (ℓd(Λ))
2
)

.

Choosing a constant C2 > 0 such that ℓd(Λ) − (ℓd(Λ))
2 ≤ C2Vold−1(∂Λ), the previous

expression is bounded above by

2 max{C1, C2} 〈〈−LΛH,H〉〉 ,

which finishes the proof with C = 2 max{C1, C2}.

Denote by 〈〈·, ·〉〉1,Λ the inner product on DΛ defined by

〈〈F,G〉〉1,Λ = 〈〈F,G〉〉 + 〈〈F,−LΛG〉〉 .

Let H1
Λ be the set of all functions F in L2(Td) for which there exists a sequence {Fn : n ≥ 1}

in DΛ such that Fn converges to F in L2(Td) and Fn is Cauchy for the inner product 〈〈·, ·〉〉1,Λ.
Such sequence {Fn} is called admissible for F . For F , G in H1

Λ, define

〈〈F,G〉〉1,Λ = lim
n→∞

〈〈Fn, Gn〉〉1,Λ , (3.4.3)

where {Fn}, {Gn} are admissible sequences for F , G, respectively. By [27, Proposition
5.3.3], the limit exists and does not depend on the admissible sequence chosen. Moreover,
H1

Λ endowed with the scalar product 〈〈·, ·〉〉1,Λ just defined is a real Hilbert space. From now
on, we consider H1

Λ with the norm induced by 〈〈·, ·〉〉1,Λ, unless we mention that we are going
to use the L2-norm.

Lemma 3.4.3. The embedding H1
Λ ⊂ L2(Td) is compact.

Proof. Let {Hn} a bounded sequence in H1
Λ. Fix {Fn} as a sequence in DΛ such that

‖Fn − Hn‖ → 0 and {Fn} is also bounded in H1
Λ. Thus, to get a convergent subsequence

of {Hn}, it is sufficient to find a convergent subsequence of {Fn} in L2(Td). Write Fn =
fn + λn1Λ, with fn ∈ C2(Td). Then,

〈〈Fn, Fn〉〉1,Λ = 〈〈fn + λn1Λ, fn + λn1Λ〉〉+ 〈〈fn + λn1Λ,−∆fn〉〉 .

Expanding the right hand side and using (3.4.2), we get that

〈〈Fn, Fn〉〉1,Λ = ‖fn‖2 + λ2
nℓd(Λ) + 2λn

∫

Λ

fn(u) du+ ‖∇fn‖2 + λ2
n Vold−1(∂Λ) ,

which is greater or equal to

‖fn‖2 + λ2
nℓd(Λ)− λ2

n − ℓd(Λ)

∫

Λ

f 2
n(u) du+ ‖∇fn‖2 + λ2

n Vold−1(∂Λ)
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=
(

ℓd(Λ)− 1 + Vold−1(∂Λ)
)

λ2
n + (1− ℓd(Λ))

∫

Λ

f 2
n(u) du+

∫

Λ∁

f 2
n(u) du+ ‖∇fn‖2

≥
(

Vold−1(∂Λ)− ℓd(Λ
∁)
)

λ2
n + (1− ℓd(Λ)) ‖fn‖2 + ‖∇fn‖2 .

If we put f̃n = fn + λn, and write Fn = f̃n − λn1Λ∁, an analogous computation shows that
〈〈Fn, Fn〉〉1,Λ is greater or equal than

(

Vold−1(∂Λ)− ℓd(Λ)
)

λ2
n + (1− ℓd(Λ

∁)) ‖f̃n‖2 + ‖∇f̃n‖2 .

By the classical isoperimetric inequality on the torus (see [2, Lemma 4.6] for the statement
and a direct proof), we have that

max{Vold−1(∂Λ)− ℓd(Λ
∁) , Vold−1(∂Λ)− ℓd(Λ) } > 0 .

Since {〈〈Fn, Fn〉〉1,Λ} is a bounded sequence, we conclude that {λn} is bounded, as well
the sequence {‖fn‖2 + ‖∇fn‖2}. By the Rellich-Kondrachov Compactness Theorem, see
[4, Theorem 5.7.1], {fn} has a convergent subsequence in L2(Td). From this subsequence,
choosing a convergent subsequence of {λn} finishes the proof.

Lemma 3.4.4. The image of I− LΛ : DΛ → L2(Td) is dense in L2(Td).

Proof. By a similar argument to the one found in Lemma 3.4.1, it is enough to show that any
smooth function f with support contained in Td\∂Λ belongs to (I − LΛ)(DΛ). Therefore,
we need to find a function h in C2(Td) with support in Td\∂Λ such that

h−∆h = f . (3.4.4)

From the classical theory of second-order elliptic equations, e.g., see [4, Theorem 5.7.1], there
exists h ∈ C2 satisfying (3.4.4).

Proof of Theorem 3.3.2. (a) Since DΛ ⊂ H1
Λ, it follows from Lemma 3.4.1 that H1

Λ is dense
in L2(Td).

(b) Denote I− LΛ = A : DΛ → L2(Td). From Lemma 3.4.2, A is linear, symmetric and
strongly monotone on the Hilbert space L2(Td). By strongly monotone, we mean that there
exists c > 0 such that

〈〈AH,H〉〉 ≥ c ‖H‖2 , ∀H ∈ DΛ .

In this case, A satisfies the inequality above with c = 1. By [27, Theorem 5.5.a], in the
conditions above, the Friedrichs extension A : H1

Λ → L2(T2) is self-adjoint, bijective and
strongly monotone. By an abuse of notation, define now the extension LΛ : H1

Λ → L2(T2) as
(I−A). Since I and A are self-adjoint inH1

Λ, this property is inherited by LΛ : H1
Λ → L2(T2).

For non-positiveness, note that

〈〈−LΛH,H〉〉 = 〈〈−(I−A)H,H〉〉 = −〈〈H,H〉〉+ 〈〈AH,H〉〉 ≥ 0 .
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(c) As mentioned in the proof of (b) above, the Friedrichs extension A : H1
Λ → L2(T2) is

bijective. So it remains to show that DΛ is a core of A : H1
Λ → L2(T2). For any operator B,

denote by G(B) the graphic of B. Then DΛ is a core for A, if the closure of G(A|DΛ
)L2×L2

in L2 × L2 is equal to G(A). Since A is self-adjoint, A is a closed operator, or else, G(A) is
a closed set. Thus the closure of G(A|DΛ

) is a subset of G(A). Let H ∈ H1
Λ, from Lemma

3.4.4, there exists a sequence {Hn} in DΛ such that AHn converges to AH in L2. Hence,
as proved in [27, Theorem 5.5.a], A−1 is a bounded linear operator, and Hn converges to H
in L2, which yields that the closure of G(A|DΛ

) contains G(A).

(d) Fix a function H in H1
Λ and µ > 0. Put G = (µI−LΛ)H . Taking the inner product

with respect to H on both sides of this equality, we obtain that

µ 〈〈H,H〉〉 + 〈〈−LΛH,H〉〉 = 〈〈H,G〉〉 ≤ 〈〈H,H〉〉1/2 〈〈G,G〉〉1/2 .

Since H belongs to H1
Λ, by (b), the second term on the left hand side is positive. Therefore,

µ‖H‖ ≤ ‖G‖ = ‖(µI−LΛ)H‖.
(e) and (f) We have seen that the operator (I − LΛ) : DΛ → L2(T) is symmetric and

strongly monotone. By Lemma 3.4.3 , the embedding H1
Λ ⊂ L2(Td) is compact. Therefore,

by [27, Theorem 5.5.c], the Friedrichs extension A : H1
Λ → L2(Td), satisfies claims (e) and

(f) with 1 ≤ λ1 ≤ λ2 ≤ · · · , λn ↑ ∞. In particular, the operator −LΛ = (A − I) has the
same property with 0 ≤ µ1 ≤ µ2 ≤ · · · , µn ↑ ∞. Since 0 is an eigenvalue of −LΛ, a constant
function is an eigenfunction with eigenvalue 0, then (e) and (f) also hold.

3.5 Scaling Limit

Let M be the space of positive Radon measures on Td with total mass bounded by one
endowed with the weak topology. For a measure π ∈ M and a measurable π-integrable
function H : Td → R, we denote by 〈π,H〉 the integral of H with respect to π.

Recall that {ηNt : t ≥ 0} denote a Markov process with state space ΩN and generator
LN speeded up by N2. Let πN

t ∈ M be the empirical measure at time t associated to
{ηNt : t ≥ 0}, which is the random measure in M given by

πN
t =

1

Nd

∑

x∈Td
N

ηNt (x) δx/N , (3.5.1)

where δu is the Dirac measure concentrated on u.
Note that

〈πN
t , H〉 = 1

Nd

∑

x∈Td
N

H( x
N
)ηNt (x) ,

for the empirical measures, and 〈π,H〉 = 〈〈ρ,H〉〉, for absolutely continuous measures π with
L2 bounded density ρ, and H ∈ L2(Td).

Fix T > 0. Let D([0, T ],M) be the space of M-valued càdlàg trajectories π : [0, T ] → M
endowed with the Skorohod topology. Then, the M-valued process {πN

t : t ≥ 0} is a
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random element of D([0, T ],M) whose distribution is determined by the initial distribution
of {ηNt : t ≥ 0}. For each probability measure µ on ΩN , denote by QΛ,N

µ the distribution of
{πN

t : t ≥ 0} on the path space D([0, T ],M), when ηN0 has distribution µ.

Proposition 3.5.1. Fix a Borel measurable profile γ : Td → [0, 1] and consider a sequence
{µN : N ≥ 1} of measures on ΩN associated to γ in the sense of (3.3.3). Then there exists
a unique weak solution ρ of (3.3.5) with initial condition γ and the sequence of probability
measures QΛ,N

µN
converges weakly to Q

γ
Λ as N ↑ ∞, where Q

γ
Λ is the probability measure on

D([0, T ],M) concentrated on the deterministic path π(t, du) = ρ(t, u)du.

It is straightforward to obtain Theorem 3.3.3 as a corollary of the previous proposition.
The proof of Proposition 3.5.1 follows directly from the uniqueness of weak solutions of
(3.3.5), proved in Subsection 3.5.3, and the next two results:

Proposition 3.5.2. For any sequence {µN : N ≥ 1} of probability measures with µN con-
centrated on ΩN , the sequence of measures {QΛ,N

µN
: N ≥ 1} is tight.

Proposition 3.5.3. Fix a Borel measurable profile γ : Td → [0, 1] and consider a sequence
{µN : N ≥ 1} of probability measures on ΩN associated to γ in the sense of (3.3.3). Then
any limit point of QΛ,N

µN
is concentrated on absolutely continuous trajectories that are weak

solutions of (3.3.5) with initial condition γ.

Proof of Proposition 3.5.1. By Proposition 3.5.2, the set of measures {QΛ,N
µN

: N ≥ 1} is
tight. Since the Skorohod space D([0, T ],M) is Polish, by Prohorov’s Theorem, tightness is
equivalent to relative compactness (for the weak convergence). By the relative compactness,
in order to prove the convergence of the sequence (QΛ,N

µN
)N≥1 to the probability measure Qγ

Λ,
it is enough to show that any convergent subsequence of (QΛ,N

µN
)N≥1 has limit equal to Q

γ
Λ.

Let Q∗ be a limit of a convergent subsequence. By Proposition 3.5.3, Q∗ is concentrated on
trajectories π(t, du) = ρ(t, u) du such that ρ(t, u) is a weak solution of (3.3.5) with initial
condition γ. Uniqueness of weak solutions of (3.3.5) proved in Section 3.5.3 implies that
Q∗ = Q

γ
Λ.

In Subsection 3.5.1, we prove Proposition 3.5.2 and in Subsection 3.5.2 we prove Propo-
sition 3.5.3. As a consequence, we have the existence of solutions of (3.3.5) with initial
condition γ. We complete the proof in Subsection (3.5.3) showing the uniqueness of weak
solutions of (3.3.5).

3.5.1 Tightness

Here we prove Proposition 3.5.2. LetD([0, T ],R) be the space of R-valued càdlàg trajectories
with domain [0, T ] endowed with the Skorohod topology. To prove tightness of {πN

t : 0 ≤ t ≤
T} in D([0, T ],M), it is enough to show tightness in D([0, T ],R) of the real-valued processes
{〈πN

t , H〉 : 0 ≤ t ≤ T} for a set of functions H : Td → R which is dense in the space of
continuous real functions on Td endowed with the uniform topology, see [17]. Furthermore,
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if a sequence of distributions in D([0, T ],R) endowed with the uniform topology is tight,
then it is also tight in D([0, T ],R) endowed with the Skorohod topology. Here we prove
tightness of {〈πN

t , H〉 : 0 ≤ t ≤ T} in D([0, T ],R), endowed with the uniform topology, for
H ∈ C2(Td).

Fix H ∈ C2(Td). By definition {〈πN
t , H〉 : 0 ≤ t ≤ T} is tight in D([0, T ],R) endowed

with the uniform topology if, for the boundedness,

lim
m→∞

sup
N

PN
µN

[

sup
0≤t≤T

|〈πN
t , H〉| > m

]

= 0 , (3.5.2)

and, for the equicontinuity,

lim
δ→0

lim sup
N→∞

PN
µN

[

sup
|t−s|≤δ

|〈πN
t , H〉 − 〈πN

s , H〉| > ε

]

= 0 , for all ε > 0 . (3.5.3)

The limit in (3.5.2) is trivial since

|〈πN
t , H〉| ≤ sup

u∈Td

|H(u)| .

So we only need to prove (3.5.3). By Dynkyn’s formula (see appendix in [17]),

MN
t = 〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

N2LN 〈πN
s , H〉ds (3.5.4)

is a martingale. By the previous expression, (3.5.3) follows from

lim
δ→0

lim sup
N→∞

PN
µN

[

sup
|t−s|≤δ

|MN
t −MN

s | > ε

]

= 0 , for all ε > 0 , (3.5.5)

and

lim
δ→0

lim sup
N→∞

PN
µN

[

sup
0≤t−s≤δ

∣

∣

∣

∫ t

s

N2LN 〈πN
r , H〉dr

∣

∣

∣
> ε

]

= 0 , for all ε > 0 . (3.5.6)

Indeed, we show the stronger results below:

lim
δ→0

lim sup
N→∞

EN
µN

[

sup
|t−s|≤δ

|MN
t −MN

s |
]

= 0 , (3.5.7)

and

lim
δ→0

lim sup
N→∞

EN
µN

[

sup
0≤t−s≤δ

∣

∣

∣

∫ t

s

N2LN 〈πN
r , H〉dr

∣

∣

∣

]

= 0 . (3.5.8)
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To verify (3.5.7), we use the quadratic variation of MN
t that we denote by 〈MN

t 〉. By Doob’s
inequality, we have that

EN
µN

[

sup
|t−s|≤δ

|MN
t −MN

s |
]

≤ 2EN
µN

[

sup
0≤t≤T

|MN
t |

]

≤ 2EN
µN

[

sup
0≤t≤T

|MN
t |2

]

1
2

≤ 4EN
µN

[

〈MN
T 〉

]

1
2 .

Since

〈MN
t 〉 =

∫ t

0

N2[LN〈πN
s , H〉2 − 2〈πN

s , H〉LN〈πN
s , H〉]ds ,

we obtain by a straightforward computation that

〈MN
t 〉 =

∫ t

0

N2

d
∑

j=1

∑

x∈Td
N

ξNx,x+ej
1

N2d

[

(ηs(x)− ηs(x+ ej))(H(
x+ej
N

)−H( x
N
))
]2

ds .

Therefore, since ξNx,x+ej
≤ 1,

〈MN
t 〉 ≤ T

N2d−2

d
∑

j=1

∑

x∈Td
N

ξNx,x+ej

[

H(
x+ej
N

)−H( x
N
)
]2

≤ Td

Nd

(

sup
u∈Td

|∇H(u) · ej |
)2

. (3.5.9)

Thus, MN
t converges to zero in L2 and (3.5.7) holds.

We finish the proof by verifying (3.5.8). Write

N2LN 〈πN
s , H〉 = 1

Nd−2

d
∑

j=1

∑

x∈Td
N

ξNx,x+ej
((ηs(x)− ηs(x+ ej))

(

H(
x+ej
N

)−H( x
N
)
)

= 1
Nd−2

d
∑

j=1

∑

x∈Td
N

ηs(x)
[

ξNx,x+ej

(

H(
x+ej
N

)−H( x
N
)
)

+ ξNx,x−ej

(

H(
x−ej
N

)−H( x
N
)
)]

.

Define ΓN ⊂ Td
N as the set of vertices whose have some adjacent edge with exchange rate

not equal to one. Then N2LN〈πN
s , H〉 is equal to the sum of

1
Nd−2

d
∑

j=1

∑

x/∈ΓN

ηs(x)
[

H(
x+ej
N

) +H(
x−ej
N

)− 2H( x
N
)
]

(3.5.10)

and

+ 1
Nd−2

d
∑

j=1

∑

x∈ΓN

ηs(x)
[

ξNx,x+ej

(

H(
x+ej
N

)−H( x
N
)
)

+ ξNx,x−ej

(

H(
x−ej
N

)−H( x
N
)
)]

. (3.5.11)
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By the Taylor expansion (remember H ∈ C2), the absolute value of the summand in (3.5.10)
is bounded by N−2 supu∈Td |∆H(u)|. Considering the factor N−d+2 in front of the sum, we
conclude that the expression (3.5.10) is bounded in absolute value by d supu∈Td |∆H(u)|.

Since there are in order of Nd−1 vertices in ΓN , and ξx,x+ej ≤ 1, the absolute value of the
expression (3.5.11) is bounded by

1
Nd−2

d
∑

j=1

∑

x∈ΓN

[

|H(
x+ej
N

)−H( x
N
)|+ |H(

x−ej
N

)−H( x
N
)|
]

≤ 2d sup
u∈Td

|∇H(u) · ej| .

By the boundedness of expressions (3.5.10) and (3.5.11), there exists C > 0, depending only
on H , such that |N2LN〈πN

s , H〉| ≤ C, which yields

∣

∣

∣

∣

∫ t

r

N2LN 〈πN
s , H〉ds

∣

∣

∣

∣

≤ C(t− r) ,

and (3.5.8) holds.

3.5.2 Characterization of limit points

Let γ : Td → [0, 1] be a Borel measurable profile and consider a sequence {µN : N ≥ 1} of
measures on ΩN associated to γ in the sense of (3.3.3). We prove Proposition 3.5.3 in this
subsection, i.e., that all limit points Q∗ of the sequence QΛ,N

µN
are concentrated on absolutely

continuous trajectories π(t, du) = ρ(t, u)du, whose density ρ(t, u) is a weak solution of the
hydrodynamic equation (3.3.5) with γ as initial condition.

Let Q∗ be a limit point of the sequence QΛ,N
µN

and assume, without loss of generality, that
QΛ,N

µN
converges to Q∗.

Since there is at most one particle per site, Q∗ is concentrated on trajectories πt(du)
which are absolutely continuous with respect to the Lebesgue measure, πt(du) = ρ(t, u)du,
and whose density ρ is non-negative and bounded by 1, see [17, Chapter 4].

We shall prove the following result:

Lemma 3.5.4. Any limit point Q∗ of QΛ,N
µN

is concentrated on absolutely continuous trajec-
tories πt(du) = ρ(t, u)du such that, for any H ∈ DΛ,

〈〈ρt, H〉〉 − 〈〈γ,H〉〉 =

∫ t

0

〈〈ρs , LΛH〉〉 ds . (3.5.12)

By the previous lemma we can show Proposition 3.5.3.

Proof of Proposition 3.5.3. It just remains to extend the equality (3.5.12) to functions H ∈
H1

Λ. By Theorem 3.3.2, the set DΛ is a core for the Friedrichs extension I − LΛ : H1
Λ →

L2(Td). Thus, for any H ∈ H1
Λ, there exists a sequence Hn ∈ DΛ such that Hn → H and

(I − LΛ)Hn → (I − LΛ)H , both in L2(Td). This implies that LΛ Hn → LΛH in L2(Td).
Replacing Hn in equality (3.5.12), and taking the limit as n → ∞ finishes the proof.
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The remain of this section is devoted to the proof of Lemma 3.5.4. Fix a function H ∈ DΛ

and define the martingale MN
t by

〈πN
t , H〉 − 〈πN

0 , H〉 −
∫ t

0

N2LN〈πN
s , H〉 ds . (3.5.13)

We claim that, for every δ > 0,

lim
N→∞

PN
µN

[

sup
0≤t≤T

∣

∣

∣
MN

t

∣

∣

∣
> δ

]

= 0 . (3.5.14)

For H ∈ C2, this follows from Chebyshev inequality and the estimates done in the proof of
tightness, where we have shown that

lim
N→∞

EN
µ

[

sup
0≤t≤T

|MN
t |

]

≤ lim
N→∞

EN
µ

[

sup
0≤t≤T

〈MN
t 〉

]

1
2

= 0 . (3.5.15)

For H = h+ λ 1Λ in DΛ, the first inequality in (3.5.9) is still valid and

〈MN
t 〉 ≤ T

N2d−2

d
∑

j=1

∑

x∈Td
N

ξNx,x+ej

[

H(
x+ej
N

)−H( x
N
)
]2

= T
N2d−2

d
∑

j=1

∑

x/∈ΓN

[

h(
x+ej
N

)− h( x
N
)
]2

(3.5.16)

+ T
N2d−2

d
∑

j=1

∑

x∈ΓN

ξNx,x+ej

[

H(
x+ej
N

)−H( x
N
)
]2

, (3.5.17)

where ΓN is also defined in the proof of tightness. The expression (3.5.16) goes to zero as
N increases, since the function h is Lipschitz. For the expression in (3.5.17), let x ∈ ΓN .
If x

N
∈ Λ and

x+ej
N

∈ Λ∁, then ξNx,x+ej
≤ 1

N
. The same occurs if x

N
∈ Λ∁ and

x+ej
N

∈ Λ. If
x
N
,
x+ej
N

both belong to Λ or Λ∁, the exchange rate ξNx,x+ej
is one, but |H(

x+ej
N

) − H( x
N
)| =

|h(x+ej
N

)− h( x
N
)| ≤ 1

N
supu∈Td |∇H(u) · ej |. In both cases, the expression (3.5.17) is of order

O(N−d). Therefore, from (3.5.15), we obtain (3.5.14). �

The next step is to show that we can replace N2LN by the continuous operator LΛ in
the martingale formula (3.5.13) and that the resulting expression still converges to zero in
probability. This will follow from the ensuing proposition. Recall the definition of LN given
in (3.3.4).

Proposition 3.5.5. For any H ∈ DΛ,

lim
N→∞

1

Nd

∑

x∈Td
N

∣

∣

∣
N2LNH( x

N
)− LΛH( x

N
)
∣

∣

∣
= 0 . (3.5.18)
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Proof. As usual, put H = h + λ 1Λ, where h ∈ C2(Td). Rewrite the sum in (3.5.18) as

1

Nd

∑

x/∈ΓN

∣

∣

∣
N2LNH( x

N
)− LΛH( x

N
)
∣

∣

∣
+

1

Nd

∑

x∈ΓN

∣

∣

∣
N2LNH( x

N
)− LΛH( x

N
)
∣

∣

∣
.

The first term above is equal to

1

Nd

∑

x/∈ΓN

∣

∣

∣
N2

(

h(
x+ej
N

) + h(
x−ej
N

)− 2h( x
N
)
)

−∆h( x
N
)
∣

∣

∣
,

which converges to zero because h ∈ C2. The second one is less than or equal to the sum of

1

Nd

∑

x∈ΓN

|∆h( x
N
)| (3.5.19)

and

1

Nd−1

∑

x∈ΓN

d
∑

j=1

∣

∣

∣
NξNx,x+ej

(H(
x+ej
N

)−H( x
N
))

+NξNx,x−ej
(H(

x−ej
N

)−H( x
N
))
∣

∣

∣
. (3.5.20)

Since there are O(Nd−1) terms in ΓN , the expression in (3.5.19) converges to zero as N → ∞.
Since ∂Λ is smooth, the quantity of points x ∈ ΓN for which both ξNx,x+ej

and ξNx,x−ej
are

different of one is negligible. Therefore, we must only worry about points x ∈ ΓN such that,
for some j, only one of ξNx,x+ej

and ξNx,x−ej
is of order N−1. This occurs in one of the following

four cases: x
N

∈ Λ,
x−ej
N

∈ Λ and
x+ej
N

∈ Λ∁; x
N

∈ Λ,
x−ej
N

∈ Λ∁ and
x+ej
N

∈ Λ; x
N

∈ Λ∁,
x−ej
N

∈ Λ and
x+ej
N

∈ Λ∁; x
N

∈ Λ∁,
x−ej
N

∈ Λ∁ and
x+ej
N

∈ Λ. The analysis of these cases are

analogous, thus we only consider the first one. Suppose x
N

∈ Λ,
x−ej
N

∈ Λ and
x+ej
N

∈ Λ∁. In
this case, the summand in (3.5.20) can be rewritten as

NξNx,x+ej
(H(

x+ej
N

)−H( x
N
)) +NξNx,x−ej

(H(
x−ej
N

)−H( x
N
))

= |~ζx,j · ej| [H(
x+ej
N

)−H( x
N
)] +N [H(

x−ej
N

)−H( x
N
)] ,

which becomes uniformly (in x ∈ ΓN ) close to

−λ|~ζx,j · ej| sgn
(

~ζx,j · ej
)

− ∂h
∂uj

( x
N
) = −λ ~ζx,j · ej − ∂h

∂uj
( x
N
) .

The condition ∇h|∂Λ(u) = −λ ~ζ(u), which was imposed in the definition of DΛ, implies that

lim
N→∞

NξNx,x+ej
(H(

x+ej
N

)−H( x
N
)) +NξNx,x−ej

(H(
x−ej
N

)−H( x
N
)) = 0 .

Therefore, the terms in (3.5.20) converge uniformly to zero, and the same holds for the whole
sum.
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Corollary 3.5.6. For H ∈ DΛ and for every δ > 0,

lim
N→∞

QΛ,N
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

〈πN
s ,LΛH〉 ds

∣

∣

∣
> δ

]

= 0 .

Proof. By a simple calculation, the martingale defined in (3.5.13) can be rewritten as

MN
t = 〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

〈πN
s , N2LN H〉 ds .

The result follows from Proposition 3.5.5 and expression (3.5.14).

At this point we have all the ingredients needed to prove Lemma 3.5.4, which says that,
under Q∗, with probability one, (3.5.12) holds for any H ∈ DΛ. In order to prove this, it is
enough to show that, for any δ > 0, and any H ∈ DΛ,

Q∗
[

sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ

]

= 0 . (3.5.21)

So let H be a fixed function in DΛ. The idea to estimate the probability in (3.5.21) is to
apply Portmanteau’s Theorem to replace Q∗ by QΛ,N

µN
and then use Corollary 3.5.6. But to

obtain an appropriate inequality we need the set
{

sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ

}

to be open in D([0, T ],M). In order to guarantee this, we need H to be continuous which
is not the case. To solve this problem, we use approximations of H by smooth functions.

For ε > 0, define
(∂Λ)ε = {u ∈ Td; dist(u, ∂Λ) ≤ ε} .

Let Hε be a smooth function which coincides with H on Td\(∂Λ)ε and supTd |Hε| ≤
supTd |H|. Fix δ > 0. By the triangular inequality,

Q∗
[

sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ

]

≤ Q∗
[

sup
0≤t≤T

∣

∣

∣
〈πt, H

ε〉 − 〈π0, H
ε〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ/3

]

+ 2Q∗
[

sup
0≤t≤T

∣

∣

∣
〈πt, H

ε −H〉
∣

∣

∣
> δ/3

]

.

(3.5.22)

Recall that Q∗ is concentrated on trajectories πt(du) = ρ(t, u)du whose density ρ is
non-negative and bounded above by 1. Then, under Q∗,

sup
0≤t≤T

|〈πt, H
ε −H〉| ≤ sup

0≤t≤T

∫

(∂Λ)ε
ρ(t, u) |Hε(u)−H(u)| du

≤ 2 ℓd((∂Λ)
ε) sup

u∈Td

|H(u)| .
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Therefore, for small enough ε, the second probability in the right hand side of inequality
(3.5.22) is null. So it remains to show that

Q∗
[

sup
0≤t≤T

∣

∣

∣
〈πt, H

ε〉 − 〈π0, H
ε〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ/3

]

= 0 .

If G1, G2, G3 are continuous functions, the application from D([0, T ],M) to R that
associates to a trajectory {πt, 0 ≤ t ≤ T} the number

sup
0≤t≤T

∣

∣

∣
〈πt, G1〉 − 〈π0, G2〉 −

∫ t

0

〈πs, G3〉 ds
∣

∣

∣

is continuous in the Skorohod metric. Notice that Hε and LΛH are continuous functions.
By Portmanteau’s Theorem,

Q∗
[

sup
0≤t≤T

∣

∣

∣
〈πt, H

ε〉 − 〈π0, H
ε〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ/3

]

≤ lim
N→∞

QΛ,N
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , Hε〉 − 〈πN
0 , Hε〉 −

∫ t

0

〈πN
s ,LΛH〉 ds

∣

∣

∣
> δ/3

]

, (3.5.23)

since QΛ,N
µN

converges weakly to Q∗ and the above set is open.
Now we replace Hε by H . This may be confusing to the reader, however the previous

introduction of Hε was a necessary step in the proof. From this point, to deal with the right
hand side in (3.5.23), we need Corollary 3.5.6. Hence Hε should be replaced by H .

By definition,

sup
0≤t≤T

∣

∣

∣
〈πN

t , H
ε −H〉

∣

∣

∣
≤ 1

Nd

∑

x∈Td
N

∣

∣

∣
Hε(x/N)−H(x/N)

∣

∣

∣

≤
(

ℓd((∂Λ)
ε) +O( 1

N
)
)

2 sup
u∈T

|H(u)| ,

because Hε coincides with H in T\(∂Λ)ε. Using the same argument as before, we obtain

lim
N→∞

QΛ,N
µN

[

sup
0≤t≤T

∣

∣

∣
〈πt, H

ε〉 − 〈π0, H
ε〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ/3

]

≤ lim
N→∞

QΛ,N
µN

[

sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs,LΛH〉 ds
∣

∣

∣
> δ/9

]

+2 lim
N→∞

QΛ,N
µN

[

sup
0≤t≤T

∣

∣

∣
〈πt, H

ε −H〉
∣

∣

∣
> δ/9

]

.

Again, for small enough ε, the second probability in the sum above is null. From Corollary
3.5.6, we finally conclude that (3.5.21) holds. Therefore Q∗ is concentrated on absolutely
continuous paths πt(du) = ρ(t, u)du with positive density bounded by 1, and Q∗ a.s.

〈〈ρt, H〉〉 − 〈〈ρ0, H〉〉 =

∫ t

0

〈〈ρs , LΛH〉〉 ds ,

for any H ∈ DΛ. Hence we have proved Lemma 3.5.4.
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3.5.3 Uniqueness of weak solutions

Now, we prove that the solution of (3.3.5) is unique. It suffices to check that the only solution
of (3.3.5) with ρ0 ≡ 0 is ρ ≡ 0, because of the linearity of LΛ. Let ρ : R+ × Td → R be a
weak solution of the parabolic differential equation

{

∂tρ = LΛρ
ρ(0, ·) = 0 .

By definition,

〈〈ρt, H〉〉 =

∫ t

0

〈〈ρs,LΛH〉〉 ds , (3.5.24)

for all functions H in H1
Λ and all t > 0. From the Theorem 3.3.2, the operator −LΛ has

countable eigenvalues {µn : n ≥ 0} and eigenvectors {Fn}. All eigenvalues have finite
multiplicity, 0 = µ0 ≤ µ1 ≤ · · · , and limn→∞ µn = ∞. Besides, the eigenvectors {Fn} form
a complete orthonormal system in the L2(Td). Define

R(t) =
∑

n∈N

1

n2(1 + µn)
〈〈ρt, Fn〉〉2,

for all t > 0. Notice that R(0) = 0 and R(t) is well defined because ρt belongs to L2(Td).
Since ρ satisfy (3.5.24), we have that d

dt
〈〈ρt, Fn〉〉2 = −2µn〈〈ρt, Fn〉〉2. Then

( d
dt
R)(t) = −

∑

n∈N

2µn

n2(1 + µn)
〈〈ρt, Fn〉〉2 ,

because
∑

n≤N
−2µn

n2(1+µn)
〈〈ρt, Fn〉〉2 converges uniformly to

∑

n∈N
−2µn

n2(1+µn)
〈〈ρt, Fn〉〉2, as N in-

creases to infinity. Thus R(t) ≥ 0 and ( d
dt
R)(t) ≤ 0, for all t > 0 and R(0) = 0. From this,

we obtain R(t) = 0 for all t > 0. Since {Fn} is a complete orthonormal system, 〈〈ρt, ρt〉〉 = 0,
for all t > 0, which implies ρ ≡ 0.
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Chapter 4

Hydrodynamical behavior of
symmetric exclusion with slow bonds
of parameter N−β

Joint work with Adriana Neumann (IMPA) and Ana Patŕıcia Gonçalves (Universidade do
Minho).

4.1 Abstract

We consider the exclusion process in the one-dimensional discrete torus with N points, where
all the bonds have conductance one, except a finite number of slow bonds, with conductance
N−β , with β ∈ [0,∞). We prove that the time evolution of the empirical density of particles,
in the diffusive scaling, has a distinct behavior according to the range of the parameter β. If
β ∈ [0, 1), the hydrodynamic limit is given by the usual heat equation. If β = 1, it is given
by a parabolic equation involving an operator d

dx
d

dW
, where W is the Lebesgue measure on

the torus plus the sum of the Dirac measure supported on each macroscopic point related
to the slow bond. If β ∈ (1,∞), it is given by the heat equation with Neumann’s boundary
conditions, meaning no passage through the slow bonds in the continuum.

4.2 Introduction

An important subject in Statistical Physics is the characterization of the hydrodynamical
behavior of interacting particle systems in random or inhomogeneous media. One relevant
and puzzling problem is to consider particle systems with slow bonds and to analyze the
macroscopic effect on the hydrodynamic profiles, depending on the strength at these bonds.
The problem we address in this paper is the complete characterization of the hydrodynamic
limit scenario for the exclusion process with a finite number of slow bonds. Depending on the
strength at the slow bonds, one observes a phase transition that goes from smooth profiles
to the development of singularities in the continuum.
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We begin by giving a brief and far from complete review about some results on the
subject, all of them related to the exclusion process. In [5], by taking suitable random
conductances {ck : k ≥ 1}, such that {c−1

k : k ≥ 1} satisfy a Law of Large Numbers, it was
proved that the randomness of the media does not survive in the macroscopic time evolution
of the density of particles. In [7], the authors consider conductances driven by an α-stable
subordinator W , and in this case, the randomness survives in the continuum, by replacing
in the hydrodynamical equation the usual Laplacian by a generalized operator d

dx
d

dW
, which

results in the weak heat equation. In the same line of such quenched result, [9] shows the
analogous behavior, but for a general strictly increasing function W . All the previous works
are restricted to the one-dimensional setting, and strongly based on convergence results for
diffusions or random walks in one-dimensional inhomogeneous media, see [25]. In [26], there
is a generalization of [9] for a suitable d-dimensional setting, in some sense decomposable
into d one-dimensional cases. General sufficient conditions for the hydrodynamical limit of
exclusion process in inhomogeneous media were established in [15]. All the above works have
in common the association of the exponential clock with the bonds, having the Bernoulli
product measure as invariant measure, and being close, in some sense, to the symmetric
simple exclusion process.

In [24], the totally asymmetric simple exclusion process is considered to have a single bond
with smaller clock parameter. Such “slow bond”, not only slows down the passage of particles
across it, but it also has a macroscopical impact since it disturbs the hydrodynamic profile.
Somewhat intermediate between the symmetric and asymmetric case, in [1] is considered a
single asymmetric bond in the exclusion process. This unique asymmetric bond gives rise to
a flux in the torus and also influences the macroscopic evolution of the density of particles.
In the symmetric case, [12] obtained a d-dimensional result for a model in which the slow
bonds are close to a smooth surface.

As a consequence of the above results, one can observe the recurrent phenomena about
the distinct characteristics of slow bonds in symmetric and asymmetric settings. In the
asymmetric case, e.g. [24] and [1], the slow bond parameter does not need to be rescaled,
in order to have a macroscopic influence. Nevertheless, in the symmetric case, from [7], [9]
and [12] we see that the slow bond must have parameter of order N−1 in order to have
macroscopical impact.

In this paper, we make precise this last statement for the following model. Consider the
state space of configurations with at most one particle per site in the discrete torus. To
each bond is associated an exponential clock. When this clock rings, the occupancies of
the sites connected by the bond are exchanged. All the bonds have clock parameter equal
to 1, except k finite bonds, chosen in such a way that these bonds correspond to k fixed
macroscopic points b1, . . . , bk. The conductances in these slow bonds are given by N−β , with
β ∈ [0,+∞) and the scale here is diffusive in all bonds.

If β = 1, the time evolution of the density of particles ρ(t, ·) is described by the partial
differential equation

{

∂tρ = d
dx

d
dW

ρ
ρ(0, ·) = γ(·) ,
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where the operator d
dx

d
dW

is defined in subsection 4.3.1 and W is the Lebesgue measure on
the torus plus the sum of the Dirac measure in each of the {bi : i = 1, ..., k}. This result
is a particular case of both the results in [9] and [12]. For the sake of completeness, we
present here a simpler proof of it. It is relevant to mention the interpretation of such partial
differential equation as a weak version of







∂tρ = ∂2
uρ

∂uρt(1) = ∂uρt(0) = ρt(1)− ρt(0)
ρ(0, ·) = γ(·)

,

where 0 and 1 mean the left and right side of a macroscopic point bi related to a slow bond.
This equation says that ρ is discontinuous at each macroscopic point {bi : i = 1, ..., k} with
passage of energy at such point and is governed by the Fourier’s Law: the rate of passage of
energy is proportional to the difference of temperature. Such interpretation comes from the
natural domain CW of the operator d

dx
d

dW
, defined in subsection 4.7.2. It is easy to verify

that all the functions in the domain CW satisfy the above boundary condition, for more
details see [9] and [11].

If β ∈ [0, 1), the conductances in these slow bonds do not converge to zero sufficiently fast
in order to appear in the hydrodynamical limit. As a consequence, there is no macroscopical
influence of the slow bonds in the continuum and we obtain the hydrodynamical equation as
the usual heat equation. The proof of last result is based on the Replacement Lemma, and
the range parameter of β is sharp in the sense that, it only works for β ∈ [0, 1).

As β increases, the conductance at the slow bonds decreases and the passage of particles
through these bonds becomes more difficult. In fact, for β ∈ (1,+∞), the clock parameters
go to zero faster than at the critical value β = 1 and each slow bond gives rise to a barrier
in the continuum. Macroscopically this phenomena gives rise to the usual heat equation
with Neumann’s boundary conditions at each macroscopic point {bi : i = 1, ..., k}, which
means here that the spatial derivative of ρ at each {bi : i = 1, ..., k} equals to zero and,
physically, this represents an isolated boundary. Moreover, the uniqueness of weak solutions
of such equation says explicitly that the macroscopic evolution of the density of particles
is independent for each interval [bi, bi+1], however the passage of particles in the discrete
torus through the slow bonds is still possible. The proof of this result is also based on the
Replacement Lemma and requires sharp energy estimates.

Since the regime β = 1 was already known from previous works, the main contribution
of this article is the complete characterization of the three distinct behaviors for the time
evolution of the empirical density of particles, exhibiting a phase transition depending on the
parameter of the conductance at the slow bonds. From our knowledge, no similar phenom-
ena were exploited for the hydrodynamic limit of interacting particle systems. Moreover, for
the regime β ∈ (1,∞) the density evolves according to the heat equation with Neumann’s
boundary conditions, which has a meaningful physical interpretation. This the other great
novelty developed in this paper. So far, partial differential equations with Dirichlet’s bound-
ary conditions could be approached by e.g. studying interacting particle systems in contact
with reservoirs. Here, by considering partial differential equations with Neumann’s boundary
conditions, we give a step towards extending the set of treatable partial differential equations
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by the hydrodynamic limit theory. Besides all the mentioned achievements, we also prove
that the regime β = 1 is critical, since the other two regimes have positive Lebesgue measure
on the line.

In order to achieve our goal, the main difficulties appear in the characterization of limit
points for each regime of β. We overcome this difficulty by developing a suitable Replacement
Lemma, which allows us to replace product of site occupancies by functions of the empirical
measure in the continuum limit. Furthermore, that Lemma is also crucial for characterizing
the behavior near the slow bonds.

Our result can also be extended to non-degenerate exclusion type models as introduced
in [14]. In such models, particles interact with hard core exclusion and the rate of exchange
between two consecutive sites is influenced by the number of particles in the vicinity of the
exchanging sites. The jump rate is strictly positive, so that all the configurations are erdogic,
in the sense that a move to an unoccupied site can always occur. It was shown in [14] that the
hydrodynamical equation for such models is given by a non-linear partial equation. Having
established the Replacement Lemma, the extension of our results to these models is almost
standard [9]. We also believe that our method is robust enough to fit other models such as
independent random walks, the zero-range process, the generalized exclusion process, when
a finite number of slow bonds is present.

The present work is divided as follows. In section 4.3, we introduce notation and state
the main result, namely Theorem 4.3.1. In section 4.4 we make precise the scaling limit
and sketch the proof of Theorem 4.3.1. In section 4.5, we prove tightness for any range
of the parameter β. In section 4.6, we prove the Replacement Lemma and we establish
the energy estimates, which are fundamental for characterizing the limit points and the
uniqueness of weak solutions of the partial differential equations considered here. In section
4.7 we characterize the limit points as weak solutions of the corresponding partial differential
equations. Finally, uniqueness of weak solutions is refereed to section 4.8.

4.3 Notation and Results

Let TN = {1, . . . , N} be the one-dimensional discrete torus with N points. At each site, we
allow at most one particle. Therefore, we will be concerned about the space state {0, 1}TN .
Configurations will be denoted by the Greek letter η, so that η(x) = 1, if the site x is occu-
pied, otherwise η(x) = 0.

We define now the exclusion process with space state {0, 1}TN and with conductance
{ξNx,x+1}x at the bond of vertices x, x + 1. The dynamics of this Markov process can be
described as follows. To each bond of vertices x, x + 1, we associate an exponential clock
of parameter ξNx,x+1. When this clock rings, the value of η at the vertices of this bond are
exchanged. This process can also be characterized in terms of its infinitesimal generator LN ,
which acts on local functions f : {0, 1}TN → R as
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LNf(η) =
∑

x∈TN

ξNx,x+1

[

f(ηx,x+1)− f(η)
]

,

where ηx,x+1 is the configuration obtained from η by exchanging the variables η(x) and
η(x+ 1):

(ηx,x+1)(y) =







η(x+ 1), if y = x ,
η(x), if y = x+ 1 ,
η(y), otherwise.

The Bernoulli product measures {νN
α : 0 ≤ α ≤ 1} are invariant and in fact, reversible,

for the dynamics introduced above. Namely, νN
α is a product measure on {0, 1}TN with

marginal at site x in TN given by νN
α {η : η(x) = 1} = α.

Denote by T the one-dimensional continuous torus [0, 1). The exclusion process with a
slow bond at each point b1 . . . , bk ∈ T is defined with the following conductances:

ξNx,x+1 =







N−β, if {b1, . . . , bk} ∩ ( x
N
, x+1

N
] 6= ∅ ,

1, otherwise .

The conductances are chosen in such a way that particles cross bonds at rate one, except
k particular bonds in which the dynamics is slowed down by a factor N−β, with β ∈ [0,∞).
Each one of these particular bonds contains the macroscopic point bi ∈ T; or bi coincides
with some vertex x

N
and the slow bond is chosen as the bond to the left of x

N
. To simplify

notation, we denote by Nbi the left vertex of the slow bond containing bi.

Denote by {ηt := ηtN2 : t ≥ 0} the Markov process on {0, 1}TN associated to the generator
LN speeded up by N2. Although ηt depends on N and β, we are not indexing it on that in
order not to overload notation. Let D(R+, {0, 1}TN ) be the path space of càdlàg trajectories
with values in {0, 1}TN . For a measure µN on {0, 1}TN , denote by Pβ

µN
the probability mea-

sure on D(R+, {0, 1}TN ) induced by the initial state µN and the Markov process {ηt : t ≥ 0}
and denote by Eβ

µN
the expectation with respect to Pβ

µN
.

Definition 4.3.1. A sequence of probability measures {µN : N ≥ 1} on {0, 1}TN is said to
be associated to a profile ρ0 : T → [0, 1] if for every δ > 0 and every continuous functions
H : T → R

lim
N→∞

µN

{

η :
∣

∣

∣

1
N

∑

x∈TN

H( x
N
) η(x)−

∫

T

H(u) ρ0(u)du
∣

∣

∣
> δ

}

= 0. (4.3.1)

Now we introduce an operator which corresponds to the generator of the random walk
in TN with conductance ξNx,x+1 at the bond of vertices x, x + 1. This operator is given on
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H : T → R by

LNH( x
N
) = ξNx,x+1

[

H
(

x+1
N

)

−H
(

x
N

)]

+ ξNx−1,x

[

H
(

x−1
N

)

−H
(

x
N

)]

. (4.3.2)

We will not differentiate the notation for functions H defined on T and on TN . The
indicator function of a set A will be written by 1A(u), which is one when u ∈ A and zero
otherwise.

4.3.1 The Operator d

dx

d

dW

Given the points b1, . . . , bk ∈ T, define the measure W (du) in the torus T by

W (du) = du+ δb1(du) + · · ·+ δbk(du) ,

so that W is the Lebesgue measure on the torus T plus the sum of the Dirac measure in
each of the {bi : i = 1, ..., k}.

Let H1
W be the set of functions F in L2(T) such that for x ∈ T

F (x) = a + bW (x) +

∫

(0,x]

(

∫ y

0

f(z) dz
)

W (dy),

for some function f in L2(T) such that
∫ 1

0

f(x) dx = 0 ,

∫

(0,1]

(

b+

∫ y

0

f(z) dz
)

W (dy) = 0 . (4.3.3)

Define the operator

d

dx

d

dW
: H1

W → L2(T)

d

dx

d

dW
F = f.

4.3.2 The hydrodynamical equations

Consider a continuous density profile γ : T → [0, 1]. Denote by 〈·, ·〉 the inner product in
L2(T), by ρt a function ρ(t, ·) and for an integer n denote by Cn(T) the set of continuous
functions from T to R and with continuous derivatives of order up to n. For I an interval
of T, here and in the sequel, for n and m integers, we use the notation Cn,m([0, T ] × I) to
denote the set of functions defined on the domain [0, T ]×I, that are of class Cn in time and
Cm in space.

Definition 4.3.2. A bounded function ρ : [0, T ] × T → R is said to be a weak solution of
the parabolic differential equation

{

∂tρ = ∂2
uρ

ρ(0, ·) = γ(·) (4.3.4)
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if, for t ∈ [0, T ] and H ∈ C2(T), ρ(t, ·) satisfies the integral equation

〈ρt, H〉 − 〈γ,H〉 −
∫ t

0

〈ρs, ∂2
uH〉 ds = 0.

Definition 4.3.3. A bounded function ρ : [0, T ] × T → R is said to be a weak solution of
the parabolic differential equation

{

∂tρ =
d

dx

d

dW
ρ

ρ(0, ·) = γ(·)
(4.3.5)

if, for t ∈ [0, T ] and H ∈ H1
W , ρ(t, ·) satisfies the integral equation

〈ρt, H〉 − 〈γ,H〉 −
∫ t

0

〈

ρs,
d

dx

d

dW
H
〉

ds = 0 .

Following the notation of [4], denote by L1(0, T ;H1(a, b)) the space of functions ̺ ∈
L2([0, T ] × [a, b]) for which there exists a function in L2([0, T ] × [a, b]), denoted by ∂u̺,
satisfying

∫ T

0

∫ b

a

(∂uH)(s, u) ̺(s, u) du ds = −
∫ T

0

∫ b

a

H(s, u) (∂u̺)(s, u) du ds ,

for any H ∈ C0,1([0, T ]× [a, b]) with compact support in [0, T ]× (a, b).

Definition 4.3.4. Let [bi, bi+1] ⊂ T. A bounded function ρ : [0, T ]× [bi, bi+1] → R is said to
be a weak solution of the parabolic differential equation with Neumann’s boundary conditions
in the cylinder [0, T ]× [bi, bi+1]







∂tρ = ∂2
uρ

ρ(0, ·) = γ(·)
∂uρ(t, bi) = ∂uρ(t, bi+1) = 0, ∀t ∈ [0, T ]

(4.3.6)

if, for t ∈ [0, T ] and H ∈ C1,2([0, T ]× [bi, bi+1]), ρ(t, ·) satisfies the integral equation

∫ bi+1

bi

ρ(t, u)H(t, u) du−
∫ bi+1

bi

γ(u)H(0, u) du

−
∫ t

0

∫ bi+1

bi

ρ(s, u) {∂2
uH(s, u) + ∂sH(s, u)} du ds

+

∫ t

0

∂uH(s, bi+1) ρ(s, b
−
i+i) ds−

∫ t

0

∂uH(s, bi) ρ(s, b
+
i ) ds = 0

(4.3.7)

and ρ(t, ·) belongs to L1(0, T ;H1(bi, bi+1)).
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For classical results about Sobolev spaces, we refer the reader to [4] and [19]. Since in
Definition 4.3.4 we impose ρ ∈ L1(0, T ;H1(bi, bi+1)), the integrals are well-defined at the
boundary. Heuristically, in order to establish an integral equation for the weak solution of
the heat equation with Neumann’s boundary conditions as above, one should multiply (4.3.6)
by a test function H and perform twice a formal integration by parts to arrive at (4.3.7).

We are now in position to state the main result of this paper:

Theorem 4.3.1. Fix β ∈ [0,∞). Consider the exclusion process with k slow bonds cor-
responding to macroscopic points b1, . . . , bk ∈ T and with conductance N−β at each one of
these slow bonds.

Fix a continuous initial profile γ : T → [0, 1]. Let {µN : N ≥ 1} be a sequence of
probability measures on {0, 1}TN associated to γ. Then, for any t ∈ [0, T ], for every δ > 0
and every H ∈ C(T), it holds that

lim
N→∞

Pβ
µN

{

η. :
∣

∣

∣

1
N

∑

x∈TN

H( x
N
) ηt(x)−

∫

T

H(u) ρ(t, u)du
∣

∣

∣
> δ

}

= 0 ,

where :

• if β ∈ [0, 1), ρ(t, ·) is the unique weak solution of (4.3.4);

• if β = 1, ρ(t, ·) is the unique weak solution of (4.3.5);

• if β ∈ (1,∞), in each cylinder [0, T ] × [bi, bi+1], ρ(t, ·) is the unique weak solution of
(4.3.6).

Remark 4.3.2. The assumption that all slow bonds have exactly the same conductance is not
necessary at all. In fact, last result is true when considering each slow bond containing the
macroscopic point bi with conductance N−βi. In that case, we would obtain a parabolic dif-
ferential equation with the behavior at each [bi, bi+1] given by the regime of the corresponding
βi as above. Another straightforward generalization is to consider conductances not exactly
equal to N−β, but of order N−β, in the sense that the quotient with N−β converges to one.
For sake of clarity, we present the proof under the conditions of Theorem 4.3.1.

4.4 Scaling Limit

Let M be the space of positive measures on T with total mass bounded by one, endowed
with the weak topology. Let πN

t ∈ M be the empirical measure at time t associated to ηt,
namely, it is the measure on T obtained by re-scaling space by N and by assigning mass
N−1 to each particle:

πN
t = 1

N

∑

x∈TN

ηt(x) δx/N , (4.4.1)
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where δu is the Dirac measure concentrated on u. For an integrable function H : T → R,
〈πN

t , H〉 stands for the integral of H with respect to πN
t :

〈πN
t , H〉 = 1

N

∑

x∈TN

H( x
N
) ηt(x) .

This notation is not to be mistaken with the inner product in L2(R). Also, when πt has a
density ρ, namely when π(t, du) = ρ(t, u)du, we sometimes write 〈ρt, H〉 for 〈πt, H〉.

Fix T > 0. Let D([0, T ],M) be the space of M-valued càdlàg trajectories π : [0, T ] → M
endowed with the Skorohod topology. For each probability measure µN on {0, 1}TN , denote
by Qβ,N

µN
the measure on the path space D([0, T ],M) induced by the measure µN and the

empirical process πN
t introduced in (4.4.1).

Fix a continuous profile γ : T → [0, 1] and consider a sequence {µN : N ≥ 1} of measures
on {0, 1}TN associated to γ. Let Qβ be the probability measure on D([0, T ],M) concentrated
on the deterministic path π(t, du) = ρ(t, u)du, where:

• if β ∈ [0, 1), ρ(t, ·) is the unique weak solution of (4.3.4);

• if β = 1, ρ(t, ·) is the unique weak solution of (4.3.5);

• if β ∈ (1,∞), in each cylinder [0, T ] × [bi, bi+1], ρ(t, ·) is the unique weak solution of
(4.3.6).

Proposition 4.4.1. As N ↑ ∞, the sequence of probability measures {Qβ,N
µN

: N ≥ 1}
converges weakly to Qβ.

The proof of this result is divided into three parts. In the next section, we show that
the sequence {Qβ,N

µN
: N ≥ 1} is tight, for any β ∈ [0,∞). In section 4.7 we characterize

the limit points of this sequence for each regime of the parameter β. Uniqueness of weak
solutions is presented in section 4.8 and this implies the uniqueness of limit points of the
sequence {Qβ,N

µN
: N ≥ 1}. In the fifth section, we prove a suitable Replacement Lemma for

each regime of β, which is crucial in the task of characterizing limit points and uniqueness.

4.5 Tightness

Proposition 4.5.1. For any fixed β ∈ [0,∞), the sequence of measures {Qβ,N
µN

: N ≥ 1} is
tight in the Skorohod topology of D([0, T ],M).

Proof. In order to prove tightness of {πN
t : 0 ≤ t ≤ T} it is enough to show tightness of the

real-valued processes {〈πN
t , H〉 : 0 ≤ t ≤ T} for H ∈ C(T). In fact, c.f. [17] it is enough to

show tightness of {〈πN
t , H〉 : 0 ≤ t ≤ T} for a dense set of functions in C(T) with respect to

the uniform topology. For that purpose, fix H ∈ C2(T). By Dynkin’s formula,

MN
t (H) = 〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

N2LN〈πN
s , H〉 ds , (4.5.1)
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is a martingale with respect to the natural filtration Ft := σ(ηs : s ≤ t). In order to prove
tightness of {〈πN

t , H〉 : N ≥ 1}, we prove tightness of the sequence of the martingales and
the integral terms in the decomposition above. We start by the former.

We begin by showing that the L2(Pβ
µN

)-norm of the martingale above vanishes as N →
+∞. The quadratic variation of MN

t (H) is given by

〈MN (H)〉t =

∫ t

0

∑

x∈TN

ξNx,x+1

[

(ηs(x)− ηs(x+ 1))(H(x+1
N

)−H( x
N
))
]2

ds. (4.5.2)

It is easy to show that 〈MN (H)〉t ≤ T
N
‖∂uH‖2∞. Here and in the sequel we use the notation

‖H‖∞ := supu∈T |H(u)|.
Thus, MN

t (H) converges to zero as N → +∞ in L2(Pβ
µN

). Notice that above we used the
trivial bound ξNx,x+1 ≤ 1. By Doob’s inequality, for every δ > 0,

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

|MN
t (H)| > δ

]

= 0 , (4.5.3)

which implies tightness of the sequence of martingales {MN
t (H);N ≥ 1}. Now, we need to

examine tightness of the integral term in (4.5.1).
Denote by ΓN the subset of sites x ∈ TN such that x has some adjacent slow bond,

namely, ξNx,x+1 = N−β or ξNx−1,x = N−β. The term N2LN〈πN
s , H〉 appearing inside the

integral in (4.5.1) is explicitly given by

N
∑

x/∈ΓN

ηs(x)
[

H(x+1
N

) +H(x−1
N

)− 2H( x
N
)
]

+N
∑

x∈ΓN

ηs(x)
[

ξNx,x+1{H(x+1
N

)−H( x
N
)}+ ξNx−1,x{H(x−1

N
)−H( x

N
)}
]

.

By Taylor expansion on H , the absolute value of the first sum above is bounded by ‖∂2
uH‖∞.

Since there are at most 2k elements in ΓN , ξx,x+1 ≤ 1 and by the exclusion rule, the absolute
value of the second sum above is bounded by 2 k‖∂uH‖∞. Therefore, there exists a constant
C := C(H, k) > 0, such that |N2LN〈πN

s , H〉| ≤ C, which yields

∣

∣

∣

∣

∫ t

r

N2LN〈πN
s , H〉ds

∣

∣

∣

∣

≤ C|t− r| .

By Proposition 4.1.6 of [17], last inequality implies tightness of integral term. This concludes
the proof.

4.6 Replacement Lemma and Energy Estimates

In this section, we obtain fundamental results that allow us to replace the mean occupation
of a site by the mean density of particles in a small macroscopic box around this site. This
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result implies that the limit trajectories must belong to some Sobolev space, this will be
clear later. Before proceeding we introduce some tools that we use in the sequel.

Denote by HN(µN |να) the entropy of a probability measure µN with respect to the in-
variant state να. For a precise definition and properties of the entropy, we refer the reader
to [17]. In Proposition 5.0.2 in the Appendix we review a classical result saying that there
exists a finite constant K0 := K0(α), such that

HN(µN |να) ≤ K0N , (4.6.1)

for any probability measure µN ∈ {0, 1}TN .
Denote by 〈·, ·〉να the scalar product of L2(να) and denote by DN the Dirichlet form of

f , which is the convex and lower semicontinuous functional (see Corollary A1.10.3 of [17])
defined by

DN(f) = 〈−LN

√

f ,
√

f〉να ,

where f is a probability density with respect to να (i.e. f ≥ 0 and
∫

fdνα = 1). An
elementary computation shows that

DN(f) =
∑

x∈TN

ξNx,x+1

2

∫

(

√

f(ηx,x+1)−
√

f(η)
)2

dνα .

By Theorem A1.9.2 of [17], if {SN
t : t ≥ 0} stands for the semi-group associated to the

generator N2LN , then

HN(µNS
N
t |να) + N2

∫ t

0

DN(f
N
s ) ds ≤ HN(µN |να) ,

provided fN
s stands for the Radon-Nikodym derivative of µNS

N
s (the distribution of ηs start-

ing from µN) with respect to να.

4.6.1 Replacement Lemma

Now, we define the local density of particles, which corresponds to the mean occupation in
a box around a given site. We represent this empirical density in the box of size ℓ around
a given site x by ηℓ(x). For β ∈ [0, 1), this box can be chosen in the usual way, but for
β ∈ [1,∞), this box must avoid the slow bond. From this point on, we denote the integer
part of εN , namely ⌊εN⌋, simply by εN .

Definition 4.6.1. For β ∈ [0, 1), define the empirical density by

ηεN(x) = 1
εN

x+εN
∑

y=x+1

η(y) .
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Definition 4.6.2. For β ∈ [1,∞), if x is such that {Nb1, . . . , Nbk} ∩ {x, . . . , x+ εN} = ∅,
then the empirical density is defined by

ηεN(x) = 1
εN

x+εN
∑

y=x+1

η(y) .

Otherwise, if, let us say, Nbi ∈ {x, . . . , x + εN} for some i = 1, .., k, then the empirical
density is defined by

ηεN(x) = 1
εN

Nbi
∑

y=Nbi−εN+1

η(y) .

Since we are considering a finite number of slow bonds, the distance between two consec-
utive macroscopic points related to two consecutive slow bonds is at least ε, for ε sufficiently
small. As a consequence, we can suppose, without lost of generality that in the previous
definition, bi is unique.

Lemma 4.6.1. Fix β ∈ [0, 1). Let f be a density with respect to the invariant measure να.
Then,

∫

{η(x)− ηεN(x)}f(η)να(dη) ≤ 2(kNβ−1 + ε) +N DN(f) .

Proof. From Definition 4.6.1 we have that

∫

{η(x)− ηεN(x)}f(η)να(dη) =
∫

{

1
εN

x+εN
∑

y=x+1

(η(x)− η(y))
}

f(η) να(dη) .

Writing η(x)− η(y) as a telescopic sum, last expression becomes equal to

∫

{

1
εN

x+εN
∑

y=x+1

y−1
∑

z=x

(η(z)− η(z + 1))
}

f(η) να(dη) .

Rewriting the expression above as twice the half and making the transformation η 7→ ηz,z+1

(for which the probability να is invariant) it becomes as:

1
2εN

x+εN
∑

y=x+1

y−1
∑

z=x

∫

{η(z)− η(z + 1)}(f(η)− f(ηz,z+1)) να(dη) .

Since (a− b) = (
√
a−

√
b)(

√
a+

√
b) and by Cauchy-Schwarz’s inequality, for any A > 0, we

bound the previous expression from above by

1
2εN

x+εN
∑

y=x+1

y−1
∑

z=x

A

ξNz,z+1

∫

{η(z)− η(z + 1)}2
(

√

f(η) +
√

f(ηz,z+1)
)2

να(dη)

+ 1
2εN

x+εN
∑

y=x+1

y−1
∑

z=x

ξNz,z+1

A

∫

(

√

f(η)−
√

f(ηz,z+1)
)2

να(dη) .
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The second sum above is bounded by

1
2εN

x+εN
∑

y=x+1

∑

z∈TN

ξNz,z+1

A

∫

(

√

f(η)−
√

f(ηz,z+1)
)2

να(dη) =
1
A
DN(f) .

On the other hand, since f is a density, the first sum is bounded from above by

1
2εN

x+εN
∑

y=x+1

y−1
∑

z=x

4A

ξNz,z+1

≤ 1
εN

x+εN
∑

y=x+1

2A(kNβ + εN) = 2A(kNβ + εN) .

Notice that the term kNβ comes from the existence of k slow bonds. Choosing A = 1
N
, the

proof ends.

Lemma 4.6.2 (Replacement Lemma). Fix β ∈ [0, 1). Let b ∈ T and let x be the right (or
left) vertex of the bond containing the macroscopic point b. Then,

lim
ε→0

lim
N→∞

Eβ
µN

[
∣

∣

∣

∫ t

0

{ηs(x)− ηεNs (x)} ds
∣

∣

∣

]

= 0 .

Proof. From Jensen’s inequality and the definition of entropy, for any γ ∈ R (which will be
chosen large), the expectation appearing on the statement of the Lemma is bounded from
above by

HN(µN |να)
γN

+
1

γN
logEνα

[

exp
{

γ N
∣

∣

∣

∫ t

0

{ηs(x)− ηεNs (x)} ds
∣

∣

∣

}]

. (4.6.2)

By Proposition 5.0.2,HN(µN |να) ≤ K0N , so that it remains to focus on the second summand
above. Since e|x| ≤ ex + e−x and

lim
N

1
N
log(aN + bN ) = max

{

lim
N

1
N
log aN , lim

N

1
N
log bN

}

, (4.6.3)

we can remove the modulus inside the exponential. By Feynman-Kac’s formula, see Lemma
A1.7.2 of [17] and Proposition 5.0.3, the expectation in (4.6.2) is less than or equal to

t sup
f density

{

∫

{η(x)− ηεN(x)}f(η)να(dη)−N DN(f)
}

ds .

Applying Lemma 4.6.1 and recalling that γ is arbitrary large, the proof finishes.

The next two results are concerned with both cases β = 1 and β ∈ (1,∞).

Lemma 4.6.3. Fix β ∈ [1,∞). Let f be a density with respect to the invariant measure να.
Then,

∫

{η(x)− ηεN(x)}f(η)να(dη) ≤ NDN (f) + 4ε .

Moreover, given a function H : T → R:

1
N

∑

x∈TN

∫

H( x
N
){η(x)− ηεN(x)}f(η)να(dη) ≤ NDN (f) +

4ε
N

∑

x∈TN

(

H( x
N
)
)2

.
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Proof. Recall Definition 4.6.2. Let first x be a site such that there is no slow bond connecting
two sites in {x, . . . , x+ εN}. In this case,

∫

H( x
N
){η(x)− ηεN(x)}f(η)να(dη)

=

∫

H( x
N
)
{

1
εN

x+εN
∑

y=x+1

(η(x)− η(y))
}

f(η)να(dη) ,

and following the same arguments as in Lemma 4.6.1, we bound the previous expression
from above by

(H(
x
N

))2

2εN

x+εN
∑

y=x+1

y−1
∑

z=x

∫

A

ξNz,z+1

{η(z)− η(z + 1)}2
(

√

f(η) +
√

f(ηz,z+1)
)2

να(dη)

+
1

2εN

x+εN
∑

y=x+1

y−1
∑

z=x

∫

ξNz,z+1

A
{η(z)− η(z + 1)}2

(

√

f(η)−
√

f(ηz,z+1)
)2

να(dη) .

Since ξNz,z+1 = 1 for all z ∈ {x, . . . , x + εN − 1}, it yields the boundedness of the previous
expression by

2εNA
(

H( x
N
)
)2

+
DN(f)

A
.

Let now x be a site such that Nbi ∈ {x, . . . , x+ εN} for some i = 1, . . . , k. In this case,
∫

H( x
N
){η(x)− ηεN(x)}f(η)να(dη)

=

∫

H( x
N
)
1

εN

Nbi
∑

y=Nbi−εN+1

{

η(x)− η(y)
}

f(η)να(dη)
(4.6.4)

Now we split last summation into two cases, y > x and y < x and then we proceed by
writing η(x) − η(y) as a telescopic sum as in Lemma 4.6.1. Then, by the same arguments
of Lemma 4.6.1 and since ξNz,z+1 = 1 for all z in the range {Nbi − εN + 1, . . . , Nbi − 1}, we
bound the previous expression by

4εNA
(

H( x
N
)
)2

+
DN(f)

A
.

Now the first claim of the Lemma follows by taking the particular case H( x
N
) = 1 and

choosing A = 1
N
.

Finally, if in (4.6.4) we sum over x ∈ TN and then divide by N , one concludes the second
claim of the Lemma.

Lemma 4.6.4 (Replacement Lemma). Fix β ∈ [1,∞). Therefore,

lim
ε→0

lim
N→∞

Eβ
µN

[
∣

∣

∣

∫ t

0

{ηs(x)− ηεNs (x)} ds
∣

∣

∣

]

= 0 .
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Moreover, given a function H : T → R satisfying

lim
N→∞

1
N

∑

x∈TN

(

H( x
N
)
)2

< ∞ ,

also holds

lim
ε→0

lim
N→∞

Eβ
µN

[
∣

∣

∣

∫ t

0

1
N

∑

x∈TN

H( x
N
){ηs(x)− ηεNs (x)} ds

∣

∣

∣

]

= 0 .

Proof. The proof follows exactly the same arguments in Lemma 4.6.2. Therefore, is sufficient
to show that the expressions

t sup
f density

{

∫

{η(x)− ηεN(x)}f(η)dνα −NDN (f)
}

and

t sup
f density

{

∫

1
N

∑

x

H( x
N
){η(x)− ηεN(x)}f(η)dνα −NDN (f)

}

,

vanish as N → +∞, which is an immediate consequence of Lemma 4.6.3.

In the next subsection, we will need the following variation of Lemma 4.6.3:

Lemma 4.6.5. Let H : T → R and let f be a density with respect to να. Then,
∫

1

εN

∑

x∈TN

H( x
N
)
{

η(x)− η(x+ εN)
}

f(η) να(dη)

≤NDN (f) +
2

εN

∑

x∈TN

(

H( x
N
)
)2{

ε+Nβ−1
k

∑

i=1

1[bi,bi+ε)(
x
N
)
}

.

The proof of last Lemma follows the same steps as above and for that reason will be
omitted. Nevertheless, we sketch the idea of the proof. One begins by writing η(x)−η(x+εN)
as a telescopic sum and proceeding as in Lemma 4.6.3. The only relevant difference in this
case is that is not possible to avoid the slow bonds inside the telescopic sum, and therefore
the upper bound depends on β.

4.6.2 Energy Estimates

We prove in this subsection that any limit point Qβ
∗ of the sequence {Qβ,N

µN
: N ≥ 1} is con-

centrated on trajectories ρ(t, u)du with finite energy meaning that ρ(t, u) belongs to some
Sobolev space. For β ∈ [0, 1), this result is an immediate consequence of uniqueness of weak
solutions of the heat equation. The case β = 1 is a particular case of the one considered in
[9]. Therefore, we will treat here the remaining case β ∈ (1,∞). Such result will play an
important role in the uniqueness of weak solutions of (4.3.6).

Let Qβ
∗ be a limit point of {Qβ,N

µN
: N ≥ 1} and assume without lost of generality that

whole sequence converges weakly to Qβ
∗ .
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Proposition 4.6.6. The measure Qβ
∗ is concentrated on paths π(t, u) = ρ(t, u)du. Moreover,

there exists a function in L2([0, T ]× T), denoted by ∂uρ, such that

∫ T

0

∫

T

(∂uH)(s, u) ρ(s, u) du ds = −
∫ T

0

∫

T

H(s, u) (∂uρ)(s, u) du ds ,

for all H in C0,1([0, T ]× T) whose support is contained in [0, T ]× (T\{b1, . . . , bk}).

The previous result follows from next Lemma. Recall the definition of the constant K0

given in (4.6.1).

Lemma 4.6.7.

E
Q

β
∗

[

sup
H

{

∫ T

0

∫

T

(∂uH)(s, u) ρ(s, u) du ds

− 2

∫ T

0

∫

T

(

H(s, u)
)2

du ds
}]

≤ K0 ,

where the supremum is carried over all functions H in C0,1([0, T ]×T) with support contained
in [0, T ]× (T\{b1, . . . , bk}).

We start by showing Proposition 4.6.6 assuming last result. Later and independently we
will prove the previous Lemma.

of Proposition 4.6.6. Denote by ℓ : C0,1([0, T ]× T) → R the linear functional defined by

ℓ(H) =

∫ T

0

∫

T

(∂uH)(s, u) ρ(s, u) du ds.

Since the set of functionsH ∈ C0,1([0, T ]×T) with support contained in [0, T ]×(T\{b1, . . . , bk})
is dense in L2([0, T ] × T) and since by Lemma 4.6.7, ℓ is a Qβ

∗ -a.s. bounded functional in
C0,1([0, T ] × T), we can extend it to a Qβ

∗ -a.s. bounded functional in L2([0, T ] × T). In
particular, by the Riesz Representation Theorem, there exists a function G in L2([0, T ]×T)
such that

ℓ(H) = −
∫ T

0

∫

T

H(s, u)G(s, u) du ds .

This finishes the proof.

For a smooth function H : T → R, ε > 0 and a positive integer N , define VN (ε,H, η) by

VN(ε,H, η) = 1
εN

∑

x∈TN

H( x
N
){η(x)− η(x+ εN)} − 2

N

∑

x∈TN

(

H( x
N
)
)2

.

In order to prove Lemma 4.6.7, we need the following technical result:
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Lemma 4.6.8. Consider H1, . . . , Hk functions in C0,1([0, T ]×T) with support contained in
[0, T ]× (T\{b1, . . . , bk}). Hence, for every ε > 0:

lim
δ→0

lim
N→∞

E
β
µN

[

max
1≤i≤k

{

∫ T

0

VN(ε,Hi(s, ·), ηδNs ) ds
}]

≤ K0 . (4.6.5)

Proof. It follows from Lemma 4.6.4 that in order to prove (4.6.5), we just need to show that

lim
N→∞

E
β
µN

[

max
1≤i≤k

{

∫ T

0

VN(ε,Hi(s, ·), ηs) ds
}]

≤ K0 .

By the entropy and the Jensen’s inequality, for each fixed N , the previous expectation is less
than or equal to

H(µN |να)
N

+
1

N
logEνα

[

exp
{

max
1≤i≤k

N

∫ T

0

VN(ε,Hi(s, ·), ηs)ds
}]

.

By (4.6.1), the first term above is bounded by K0. Since exp{max1≤j≤k aj} is bounded from
above by

∑

1≤j≤k exp{aj} and by (4.6.3), the limit as N ↑ ∞, of the second term of the
previous expression is less than or equal to

max
1≤i≤k

lim
N→∞

1

N
logEνα

[

exp
{

N

∫ T

0

VN(ε,Hi(s, ·), ηs)ds
}]

.

We now prove that, for each fixed i the limit above is nonpositive.
Fix 1 ≤ i ≤ k. By Feynman-Kac’s formula and the variational formula for the largest

eigenvalue of a symmetric operator, for each fixed N , the previous expectation is bounded
from above by

∫ T

0

sup
f

{

∫

VN(ε,Hi(s, ·), η)f(η)να(dη)−NDN (f)
}

ds.

In last formula the supremum is taken over all probability densities f with respect to να.
By assumption, each of the functions {Hi : i = 1, . . . , k} vanishes in a neighborhood of each
bi ∈ T. This together with Lemma 4.6.5, imply that the previous expression has nonpositive
limsup. This is enough to conclude.

We define now an approximation of the identity in the continuous torus given by

ιε(u, v) =



























1
ε
1(v,v+ε)(u) , if v ∈ T\ ∪k

i=1 (bi − ε, bi) ,

1
ε
1(b1−ε,b1)(u) , if v ∈ (b1 − ε, b1) ,

...
...

1
ε
1(bk−ε,bk)(u) , if v ∈ (bk − ε, bk) .

(4.6.6)
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The convolution of a measure π with ιε is defined by

(π ∗ ιε)(v) =

∫

ιε(u, v) π(du) .

For a function ρ, the convolution ρ ∗ ιε is understood as the convolution of the measure
ρ(u) du with ιε. Recall Definition 4.6.2. At this point, an important remark is the equality

ηεNt (x) = (πN
t ∗ ιε)( x

N
) , (4.6.7)

which is of straightforward verification.

of Lemma 4.6.7. Consider a sequence {Hi : i ≥ 1} dense (with respect to the norm ‖H‖∞+
‖∂uH‖∞) in the subset of C0,1([0, T ] × T) of functions with support contained in [0, T ] ×
(T\{b1, . . . , bk}).

Recall that we suppose that {Qβ,N
µN

: N ≥ 1} converges to Qβ
∗ . By (4.6.5) and (4.6.7), for

every k ≥ 1,

lim
δ→0

E
Q

β
∗

[

max
1≤i≤k

{1

ε

∫ T

0

∫

T

Hi(s, u)
{

ρδs(u)− ρδs(u+ ε)
}

du ds

− 2

∫ T

0

∫

T

(Hi(s, u))
2 du ds

}]

≤ K0 ,

where ρδs(u) = (ρs ∗ ιδ)(u) as defined above. Letting δ ↓ 0, performing a change of variables
and then letting ε ↓ 0, we obtain that

E
Q

β
∗

[

max
1≤i≤k

{

∫ T

0

∫

T

(∂uHi)(s, u)ρ(s, u) du ds

− 2

∫ T

0

∫

T

(Hi(s, u))
2 du ds

}]

≤ K0 .

To conclude the proof it remains to apply the Monotone Convergence Theorem and recall
that {Hi : i ≥ 1} is a dense sequence (with respect to the norm ‖H‖∞ + ‖∂uH‖∞) in the
subset of functions of C0,1([0, T ]×T) with support contained in [0, T ]× (T\{b1 . . . , bk}).

Remark 4.6.9. In terms of Sobolev spaces, we have just proved that, for β ∈ (1,∞), Qβ
∗ -

almost surely, the limit trajectory ρ(t, u)du is such that ρ(t, u) belongs to L1(0, T ;H1(bi, bi+1)),
in each cylinder [0, T ] × (bi, bi+1). Notice that in view of the presence of slow bonds and
of Lemma 4.6.5 is it not possible to obtain the same result considering the whole space
L1(0, T ;H1(T)).

80



4.7 Characterization of Limit Points

We prove in this section that all limit points Qβ
∗ of the sequence {Qβ,N

µN
: N ≥ 1} are

concentrated on trajectories of measures absolutely continuous with respect to the Lebesgue
measure: π(t, du) = ρ(t, u)du, whose density ρ(t, u) is a weak solution of the hydrodynamic
equation (4.3.4), (4.3.5) or (4.3.6), for each corresponding value of β.

Let Qβ
∗ be a limit point of the sequence {Qβ,N

µN
: N ≥ 1} and assume, without lost of

generality, that {Qβ,N
µN

: N ≥ 1} converges to Qβ
∗ . The existence of Qβ

∗ is guaranteed by
Proposition 4.5.1.

Since there is at most one particle per site, it is easy to show that Qβ
∗ is concentrated on

trajectories πt(du) which are absolutely continuous with respect to the Lebesgue measure,
πt(du) = ρ(t, u)du and whose density ρ()t, · is non-negative and bounded by 1 (for more
details see [17]). We distinguish the regime of β in different subsections below. In all the
cases, we will make use of the martingale MN

t (H) defined in (4.5.1). By a simple change of
variables, the integral term in (4.5.1) can be rewritten as a function of the empirical measure,
such that:

MN
t (H) = 〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

〈πN
s , N2 LNH〉 ds , (4.7.1)

where LN was defined in (4.3.2).
We notice here that, for any choice of H , MN

t (H) is a martingale. In due course we
impose extra conditions on H in order to identify the density ρ(t, ·) as a weak solution of
the corresponding weak equation depending on the regime of the parameter β.

4.7.1 Characterization of Limit Points for β ∈ [0, 1)

Here, we want to show that ρ(t, ·) is a weak solution of (4.3.4). Let H ∈ C2(T). We begin
by claiming that

Qβ
∗

[

π· : 〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs, ∂
2
uH〉 ds = 0, ∀t ∈ [0, T ]

]

= 1. (4.7.2)

In order to prove last claim, it is enough to show that, for every δ > 0:

Qβ
∗

[

π· : sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs, ∂
2
uH〉 ds

∣

∣

∣
> δ

]

= 0.

By Portmanteau’s Theorem and Proposition 5.0.4, last probability is bounded from above
by

lim
N→∞

Qβ,N
µN

[

π· : sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs, ∂
2
uH〉 ds

∣

∣

∣
> δ

]

since the supremum above is a continuous function in the Skorohod metric. Adding and
subtracting 〈πN

s , N2 LNH〉 in the integral term above and recalling the definition of Qβ,N
µN

,
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the previous expression is bounded from above by

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

〈πN
s , N2 LNH〉 ds

∣

∣

∣
> δ/2

]

+ lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

〈πN
s , ∂2

uH −N2 LNH〉 ds
∣

∣

∣
> δ/2

]

.

By (4.7.1) and (4.5.3), the first term in last expression is null. By the definition of ΓN given
in Section 4.5, together with the exclusion rule, the second term in last expression becomes
bounded by

lim
N→∞

Pβ
µN

[

T
N

∑

x/∈ΓN

∣

∣

∣
∂2
uH

( x

N

)

−N2 LNH
( x

N

)
∣

∣

∣
> δ/4

]

+ lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

1
N

∑

x∈ΓN

{

∂2
uH( x

N
)−N2 LNH( x

N
)
}

ηs(x) ds
∣

∣

∣
> δ/4

]

.

Outside ΓN , the operator N
2 LN coincides with the discrete Laplacian and since H ∈ C2(T),

the first term in last expression is zero. Recall there are 2k elements in ΓN . Applying the
triangular inequality, the second expression in the previous sum becomes bounded by

lim
N→∞

Pβ
µN

[

2kT
N

‖∂2
uH‖∞ > δ/8

]

+ lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∑

x∈ΓN

∫ t

0

N LNH( x
N
) ηs(x) ds

∣

∣

∣
> δ/8

]

.

For large N , the first probability vanishes. Now we deal with the second term. We associate
to each slow bond containing a point bi, a unique pair of sites in ΓN , namely Nbi and Nbi+1.
By the triangular inequality, in order to show that the second expression above is zero, it is
sufficient to verify that

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

{N LNH(Nbi
N

) ηs(Nbi)

+N LNH(Nbi+1
N

) ηs(Nbi + 1)} ds
∣

∣

∣
> δ/8k

]

= 0,

for each i = 1, . . . , k. The expression inside the integral above can be explicitly written as
{

N [H(Nbi−1
N

)−H(Nbi
N

)] +N1−β [H(Nbi+1
N

)−H(Nbi
N

)]
}

ηs(Nbi)

+
{

N1−β [H(Nbi
N

)−H(Nbi+1
N

)] +N [H(Nbi+2
N

)−H(Nbi+1
N

)]
}

ηs(Nbi + 1) .

Since H is smooth and β ∈ [0, 1), the terms inside the parenthesis involving N1−β converge
to zero and the terms involving N converge to plus or minus the space derivative of H at bi.
Therefore, again by the triangular inequality, it remains to show that, for any δ > 0,

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

∂uH(bi)
{

ηs(Nbi) − ηs(Nbi + 1)
}

ds
∣

∣

∣
> δ

]

(4.7.3)
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equals to zero. The integral inside the probability above is continuous as a function of time
t. Moreover, it has a Lipschitz constant bounded by |∂uH(bi)|. If ∂uH(bi) = 0, then there is
nothing to do. Otherwise, let t0 = 0 < t1 < · · · < tn = T be a partition of [0, T ] with mesh
bounded by δ(|2∂uH(bi)|)−1. Notice the partition is fixed, depending only on the function
H . By the triangular inequality, (4.7.3) is bounded by

n
∑

j=0

lim
N→∞

Pβ
µN

[
∣

∣

∣

∫ tj

0

∂uH(bi)
{

ηs(Nbi) − ηs(Nbi + 1)
}

ds
∣

∣

∣
> δ/2

]

.

Therefore, we just need to prove that, for any δ > 0 and any t ∈ [0, T ]

lim
N→∞

Pβ
µN

[
∣

∣

∣

∫ t

0

{

ηs(Nbi) − ηs(Nbi + 1)
}

ds
∣

∣

∣
> δ

]

= 0.

Applying Markov’s inequality, we bound the previous probability by

δ−1 Eβ
µN

[
∣

∣

∣

∫ t

0

{

ηs(Nbi) − ηs(Nbi + 1)
}

ds
∣

∣

∣

]

.

Now, in order to conclude it is enough to do the following. First add and subtract the
empirical mean in the box of size εN around Nbi and Nbi + 1. Then, by the triangular
inequality and since |ηεNs (x)− ηεNs (x+1)| ≤ 2

εN
, the term involving the two empirical means

vanishes. For the other two terms, we invoke Lemma 4.6.2. This finishes the claim.

Proposition 4.7.1. For β ∈ [0, 1), any limit point of Qβ,N
µN

is concentrated in absolutely
continuous paths πt(du) = ρ(t, u) du, with positive density ρ(t, ·) bounded by 1, such that
ρ(t, ·) is a weak solution of (4.3.4).

Proof. Let {Hi : i ≥ 1} be a countable dense set of functions on C2(T), with respect to
the norm ‖H‖∞ + ‖∂2

uH‖∞. Provided by (4.7.2) and intercepting a countable number of
sets of probability one, is straightforward to extend (4.7.2) for all functions H ∈ C2(T)
simultaneously.

4.7.2 Characterization of Limit Points for β = 1

The idea in this case is to show that ρ(t, ·) is an integral solution of (4.3.5) for a small domain
of functions and then extend this set to H1

W .

Let CW ⊂ H1
W be the set of functions H in L2(T) such that for x ∈ T

H(x) = a + bW (x) +

∫

(0,x]

(

∫ y

0

h(z)dz
)

W (dy),

for some function h in C(T) satisfying

∫ 1

0

h(x) dx = 0 ,

∫

(0,1]

(

b+

∫ y

0

h(z) dz
)

W (dy) = 0 .
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Now, fix a function H ∈ CW and define the martingale MN
t (H) as in (4.5.1). We aim that,

for every δ > 0, the result in (4.5.3) holds for H ∈ CW , In fact, this was already shown, for
H ∈ C2(T), in the proof of Proposition 4.5.1. By (4.5.2), for t ∈ [0, T ]

〈MN (H)〉t ≤ T
∑

x∈TN

ξNx,x+1

[

H(x+1
N

)−H( x
N
)
]2

.

Since H ∈ CW , then H is differentiable with bounded derivative, except at the points
b1, . . . , bk. Therefore, for any pair x, x + 1 such that there is no bi between x

N
and x+1

N
,

the following inequality holds

ξNx,x+1

[

H(x+1
N

)−H( x
N
)
]2

≤ 1

N2
‖∂2

uH‖2∞.

On the other hand, if there is some {bi : i = 1, .., k} in the interval [ x
N
, x+1

N
), then ξNx,x+1 = N−β

and in this case we get to:

ξNx,x+1

[

H(x+1
N

)−H( x
N
)
]2

≤ 4

N2β
‖H‖2∞ .

Since there are only finite k slow bonds, we conclude that, for any β > 0 fixed, the quadratic
variation of MN

t (H) vanishes as N → ∞. Now, Doob’s inequality is enough to conclude.
As above, by a simple change of variables, we may rewrite the martingale MN

t (H) in terms
of the empirical measure as in (4.7.1). Now we want to analyze the integral term in the
martingale decomposition (4.7.1).

Lemma 4.7.2. For any H ∈ CW ,

lim
N→∞

1
N

∑

x∈TN

∣

∣

∣
N2LNH( x

N
)− d

dx
d

dW
H( x

N
)
∣

∣

∣
= 0 .

Proof. Recall the definition of the set ΓN given in section 4.5 and rewrite the previous sum
as

1
N

∑

x/∈ΓN

∣

∣

∣
N2LNH( x

N
)− d

dx
d

dW
H( x

N
)
∣

∣

∣
+ 1

N

∑

x∈ΓN

∣

∣

∣
N2LNH( x

N
)− d

dx
d

dW
H( x

N
)
∣

∣

∣
. (4.7.4)

Outside b1, . . . , bk, the operator d
dx

d
dW

coincides with the Laplacian, and outside ΓN , the
discrete operator N2 LN coincides with the discrete Laplacian. Hence, the first term above
is equal to

1
N

∑

x/∈ΓN

∣

∣

∣
N2

(

H(x+1
N

) +H(x−1
N

)− 2H( x
N
)
)

− ∂2
uH( x

N
)
∣

∣

∣
.

It is easy to verify that H ∈ C2(T\{b1, . . . , bk}) and has bounded derivatives. Thus, by a
Taylor expansion on H , it follows that the previous sum converges to zero as N → +∞. On
the other hand, the second sum in (4.7.4) is bounded by the sum of

1
N

∑

x∈ΓN

∣

∣

∣

d
dx

d
dW

H( x
N
)
∣

∣

∣
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and
∑

x∈ΓN

∣

∣

∣
NξNx,x+1

[

H(x+1
N

)−H( x
N
)
]

+NξNx−1,x

[

H(x−1
N

)−H( x
N
)
]
∣

∣

∣
.

Since H ∈ CW , d
dx

d
W
H is a continuous function, therefore bounded. Since ΓN has k elements,

the first sum above converges to zero as N → +∞. It remains to analyze the second sum
above, where now the definition of the domain CW is crucial. For each x ∈ ΓN , one of the
conductances above is equal to N−1. Let us suppose that ξNx,x+1 = N−1 and ξNx−1,x = 1, the
other case being completely analogous. In this case, there exists some bi ∈ ( x

N
, x+1

N
]. From

the definition of CW and the measure W , the function H has a discontinuity at bi of size

∫ bi

0

h(dz) dz .

Besides that, the function H has also sided-derivatives at bi of the same value. With this in
mind, is easy to see that

[H(x+1
N

)−H( x
N
)] +N [H(x−1

N
)−H( x

N
)]

converges to zero as N → ∞. Recalling there are finite 2k elements in ΓN , we finish the
proof of the Lemma.

Now, fix H ∈ CW and take a continuous function Hε which coincides with H in T\ ∪k
i=1

(bi − ε, bi + ε) and that ‖Hε‖∞ ≤ ‖H‖∞. The choice of ε will be determined later. Notice
that

sup
0≤t≤T

|〈πt, H
ε −H〉| ≤ sup

0≤t≤T

∫

(a−ε,a+ε)

ρ(t, u) |Hε(u)−H(u)| du ≤ 4 k ε ‖H‖∞ .

For every δ > 0,

Qβ
∗

[

π· : sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs,
d
dx

d
dW

H〉 ds
∣

∣

∣
> δ

]

(4.7.5)

≤ Qβ
∗

[

π· : sup
0≤t≤T

∣

∣

∣
〈πt, H

ε〉 − 〈π0, H
ε〉 −

∫ t

0

〈πs,
d
dx

d
dW

H〉 ds
∣

∣

∣
> δ/3

]

+2Qβ
∗

[

π· : sup
0≤t≤T

∣

∣

∣
〈πt, H

ε −H〉
∣

∣

∣
> δ/3

]

.

By a suitable choice of ε, the second probability in the sum above is null. Since Hε and
d
dx

d
dW

H are continuous, by the Portmanteau’s Theorem and Proposition 5.0.4, it holds that

Qβ
∗

[

π : sup
0≤t≤T

∣

∣

∣
〈πt, H

ε〉 − 〈π0, H
ε〉 −

∫ t

0

〈πs,
d
dx

d
dW

H〉 ds
∣

∣

∣
> δ/3

]

≤ lim
N→∞

Qβ,N
µN

[

π : sup
0≤t≤T

∣

∣

∣
〈πt, H

ε〉 − 〈π0, H
ε〉 −

∫ t

0

〈πs,
d
dx

d
dW

H〉 ds
∣

∣

∣
> δ/3

]

= lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , Hε〉 − 〈πN
0 , Hε〉 −

∫ t

0

〈πN
s ,

d
dx

d
dW

H〉 ds
∣

∣

∣
> δ/3

]

.
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Notice the last equality is just the definition of the measure Qβ,N
µN

. By the exclusion rule, it

holds that sup0≤t≤T

∣

∣〈πN
t , Hε−H〉

∣

∣ ≤ 4 k ε‖H‖∞ , since Hε coincides with H in T\∪k
i=1 (bi−

ε, bi + ε). Adding and subtracting 〈πN
s , N2 LNH〉, 〈πN

t , H〉 and 〈πN
0 , H〉, we obtain that

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

|〈πN
t , Hε〉 − 〈πN

0 , Hε〉 −
∫ t

0

〈πN
s , d

dx
d

dW
H〉 ds| > δ/3

]

≤ lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , H〉 − 〈πN
0 , H〉 −

∫ t

0

〈πN
s , N2 LNH〉 ds

∣

∣

∣
> δ/12

]

+ lim
N→∞

Pβ
µN

[

1
N

∑

x∈TN

∣

∣

∣
N2LNH( x

N
)− d

dx
d

dW
H( x

N
)
∣

∣

∣
> δ/12

]

+2 lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , Hε −H〉
∣

∣

∣
> δ/12

]

.

With another suitable choice of ε, the third probability in the sum above is null. Lemma
4.7.2 implies that the second probability above is zero for N sufficiently large. Recall we
proved that (4.5.3) holds for H ∈ CW , so that the first term in the sum above is zero. Finally,
from the previous computations we conclude that (4.7.5) is zero for any δ > 0. Therefore,
Qβ

∗ is concentrated on absolutely continuous paths πt(du) = ρ(t, u) du with positive density
bounded by 1 and for any fixed H ∈ CW , Qβ

∗ a.s.

〈ρt, H〉 − 〈ρ0, H〉 =

∫ t

0

〈

ρs ,
d
dx

d
dW

H
〉

ds , for all t ∈ [0, T ] . (4.7.6)

Proposition 4.7.3. For β = 1, any limit point of Qβ,N
µN

is concentrated in absolutely con-
tinuous paths πt(du) = ρ(t, u) du, with positive density ρ(t, ·) bounded by 1, such that ρ(t, ·)
is a weak solution of (4.3.5).

Proof. By a density argument, (4.7.6) also holds, Qβ
∗ a.s., for all H ∈ CW simultaneously. It

remains to extend (4.7.6) for H ∈ H1
W . For that purpose fix H ∈ H1

W . Thus, for x ∈ T

H(x) = α +

∫

(0,x]

(

β +

∫ y

0

h(z) dz

)

W (dy) ,

with α, β ∈ R, h ∈ L2(T) satisfying (4.3.3). Let hn ∈ C(T) converging to h ∈ L2(T). Define

Hn(x) = αn +

∫

(0,x]

(

βn +

∫ y

0

hn(z) dz

)

W (dy) ,

where αn → α and βn → β. By the Dominated Convergence Theorem, it follows that that
Hn converges uniformly to H . Therefore (4.7.6) is true for all H ∈ H1

W .

4.7.3 Characterization of Limit Points for β ∈ (1,∞)

In this regime of the parameter β, Proposition 4.6.6 says that Qβ
∗ is concentrated on trajec-

tories absolutely continuous with respect to the Lebesgue measure πt(du) = ρ(t, u) du such
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that, for each interval (bi, bi+1), ρ(t, ·) belongs to L1(0, T ;H1(bi, bi+1)). It is well known that
the Sobolev space H1(a, b) has special properties: all its elements are absolutely continuous
functions with bounded variation, c.f. [4] and [19], therefore with lateral limits well-defined.
Such property is inherited by L1(0, T ;H1(bi, bi+1)) in the sense that we can integrate in time
the lateral limits. Therefore, Qβ

∗a.s., for each i = 1, . . . , k and for any t ∈ [0, T ]:

∫ t

0

ρ(s, b+i ) ds < ∞ and

∫ t

0

ρ(s, b−i+1) ds < ∞.

To simplify notation, in this subsection we denote a = bi and b = bi+1. Fix h ∈ C2(T)
and define H : [0, T ]× T → R by H(t, u) = h(t, u) 1[a,b](u).

Recall that πt(du) = ρ(t, u)du. We begin by claiming that

Qβ
∗

[

π· : 〈ρt, Ht〉 − 〈ρ0, H0〉 −
∫ t

0

〈ρs, ∂2
uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) ρ(s, a+) ds+

∫ t

0

∂uH(s, b−) ρ(s, b−) ds = 0, ∀t ∈ [0, T ]
]

= 1 .

(4.7.7)

In order to prove (4.7.7), its enough to show that, for every δ > 0

Qβ
∗

[

π : sup
0≤t≤T

∣

∣

∣
〈ρt, Ht〉 − 〈ρ0, H0〉 −

∫ t

0

〈ρs, ∂2
uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) ρ(s, a+) ds+

∫ t

0

∂uH(s, b−) ρ(s, b−) ds
∣

∣

∣
> δ

]

= 0 .

Since the boundary integrals are not well-defined in the whole Skorohod space D([0, T ],M),
we cannot use directly Portmanteau’s Theorem. To avoid this technical obstacle, fix ε > 0,
which will be taken small later. Adding and subtracting the convolution of ρ(t, u) with ιε,
the probability above is less than or equal to the sum of

Qβ
∗

[

π· : sup
0≤t≤T

∣

∣

∣
〈ρt, Ht〉 − 〈ρ0, H0〉 −

∫ t

0

〈ρs, ∂2
uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) (ρs ∗ ιε)(a) ds+
∫ t

0

∂uH(s, b−) (ρs ∗ ιε)(b− ε) ds
∣

∣

∣
> δ/2

]

(4.7.8)

and

Qβ
∗

[

π : sup
0≤t≤T

∣

∣

∣

∫ t

0

∂uH(s, a+) (ρs ∗ ιε)(a) ds−
∫ t

0

∂uH(s, b−) (ρs ∗ ιε)(b− ε) ds

−
∫ t

0

∂uH(s, a+) ρ(s, a+) ds+

∫ t

0

∂uH(s, b−) ρ(s, b−) ds
∣

∣

∣
> δ/2

]

.

where ιε and the convolution ρ ∗ ιε were defined in (4.6.6). The convolutions above are
suitable averages of ρ around the boundary points a and b. Therefore, as ε ↓ 0, the set inside
the previous probability decreases to a set of null probability. It remains to deal with (4.7.8).
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By Portmanteau’s Theorem, Proposition 5.0.4 and the exclusion rule, (4.7.8) is bounded
from above by

lim
N→∞

Qβ,N
µN

[

π· : sup
0≤t≤T

∣

∣

∣
〈πt, H〉 − 〈π0, H0〉 −

∫ t

0

〈πs, ∂
2
uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) (πs ∗ ιε)(a) ds+
∫ t

0

∂uH(s, b−) (πs ∗ ιε)(b− ε) ds
∣

∣

∣
> δ/2

]

.

Now, by the definition of Qβ,N
µN

, we can rewrite the previous expression as

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , Ht〉 − 〈πN
0 , H0〉 −

∫ t

0

〈πN
s , ∂2

uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na + 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣

∣

∣
> δ/2

]

.

If we consider the discrete torus as embedded in the continuous torus, Na+ 1 is the closest
site to the right of a and Nb is the closest site to the left of b. The next step is to add and
subtract 〈πN

s , N
2 LNH〉 and the previous probability becomes now bounded from above by

the sum of

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣
〈πN

t , Ht〉 − 〈πN
0 , H0〉 −

∫ t

0

〈πN
s , N2 LNHs + ∂sHs〉 ds

∣

∣

∣
> δ/4

]

and

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

〈πN
s , N2 LNHs〉 ds −

∫ t

0

〈πN
s , ∂

2
uHs〉 ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na + 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣

∣

∣
> δ/4

]

.

Repeating similar computations as performed in section 4.5 we can show (4.5.3) for a test
function H that depends also on time. Therefore the first probability above is null. Now
we focus on showing that the second probability above is null. Recalling the definition
of H(s, ·) above, we have that H(s, ·) is zero outside the interval [a, b]. Besides that, for
the set of vertices {Na + 2, . . . , Nb − 1}, the discrete operator N2 LN coincides with the
discrete Laplacian, which applied to H(s, ·) converges uniformly to the continuous Laplacian
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of H(s, ·). Hence, by the triangular inequality, it is enough to show that, for any δ > 0:

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

1
N

∫ t

0

{N2 LNHs(
Na
N
)− ∂2

uHs(
Na
N
)} ηs(Na) ds

+ 1
N

∫ t

0

{N2 LNHs(
Na+1
N

)− ∂2
uHs(

Na+1
N

)} ηs(Na + 1) ds

+ 1
N

∫ t

0

{N2 LNHs(
Nb
N
)− ∂2

uHs(
Nb
N
)} ηs(Nb) ds

+ 1
N

∫ t

0

{N2 LNHs(
Nb+1
N

)− ∂2
uHs(

Nb+1
N

)} ηs(Nb+ 1) ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na + 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣

∣

∣
> δ

]

= 0.

Since h ∈ C2(T), the term involving the Laplacian above is bounded. Now, by the triangular
inequality, it is sufficient to show that, for any δ > 0:

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

NLNHs(
Na
N
) ηs(Na)ds+

∫ t

0

NLNHs(
Na+1
N

) ηs(Na + 1)ds

+

∫ t

0

N LNHs(
Nb
N
) ηs(Nb) ds+

∫ t

0

N LNHs(
Nb+1
N

) ηs(Nb+ 1) ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na + 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣

∣

∣
> δ

]

= 0.

For each one of the four vertices appearing inside the previous probability, the operator
LN has two conductances, one equals to N−β and the other equals to 1. Since β > 1, the
terms involving N−β converge to zero. The terms involving the conductances equal to 1,
converge to plus or minus the lateral space derivatives of H . Recall from definition of H
that ∂uH(s, a−) = ∂uH(s, b+) = 0 for all 0 ≤ s ≤ t. From this, it remains to show that for
any δ > 0

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

∂uH(s, a+) ηs(Na + 1) ds−
∫ t

0

∂uH(s, b−) ηs(Nb) ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na + 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣

∣

∣
> δ

]

,

is null. Last expression is bounded from above by

lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

∂uH(s, a+)
{

ηs(Na + 1)− ηεNs (Na+ 1)
}

ds
∣

∣

∣
> δ/2

]

+ lim
N→∞

Pβ
µN

[

sup
0≤t≤T

∣

∣

∣

∫ t

0

∂uH(s, b−)
{

ηs(Nb)− ηεNs (Nb)
}

ds
∣

∣

∣
> δ/2

]

.

The integral inside the probability above is a continuous function of the time t. Moreover,
it has a bounded Lipschitz constant. The same argument as the one used in (4.7.3) together
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with Lemma 4.6.4 imply that the previous expression converges to zero when ε ↓ 0, which
proves (4.7.7).

Proposition 4.7.4. For β ∈ (1,∞), any limit point of {Qβ,N
µN

: N ≥ 1} is concentrated in
absolutely continuous paths πt(du) = ρ(t, u) du, with positive density ρ(t, ·) bounded by 1,
such that ρ(t, ·) is a weak solution of (4.3.6) in each cylinder [0, T ]× [bi, bi+1].

Proof. Given (4.7.7), it remains to extend the result for all functions H and all cylinders
[0, T ]× [bi, bi+1] simultaneously. Intercepting a countable number of sets of probability one
and applying a density argument as in Proposition 4.7.1, the statement follows.

4.8 Uniqueness of Weak Solutions

The uniqueness of weak solutions of (4.3.4) is standard and we refer to [17] for a proof. It
remains to prove uniqueness of weak solutions of the parabolic differential equations (4.3.5)
and (4.3.6). In both cases, by linearity it suffices to check the uniqueness for γ(·) ≡ 0. Notice
that existence of weak solutions of (4.3.4), (4.3.5) and (4.3.6) is guaranteed by tightness of
the process as proved in section 4.5, together with the characterization of limit points as
proved in section 4.7.

4.8.1 Uniqueness of weak solutions of (4.3.5)

Let ρ : R+ × T → R be a weak solution of (4.3.5) with γ ≡ 0. By Definition 4.3.3, for all
H ∈ H1

W and all t > 0

〈ρt, H〉 =

∫ t

0

〈

ρs,
d

dx

d

dW
H
〉

ds . (4.8.1)

From Theorem 1 of [9], the operator − d
dx

d
dW

has a countable number eigenvalues {λn : n ≥ 0}
and eigenvectors {Fn : n ≥ 0}. All eigenvalues have finite multiplicity, 0 = λ0 ≤ λ1 ≤ · · ·
and limn→∞ λn = ∞. Moreover, the eigenvectors {Fn : n ≥ 0} form a complete orthonormal
system in L2(T). For t > 0, define

R(t) =
∑

n∈N

1

n2(1 + λn)
〈ρt, Fn〉2.

Notice that R(0) = 0 and since ρt belongs to L2(T), R(t) is well defined for all t ≥ 0. By
(4.8.1), it follows that d

dt
〈ρt, Fn〉2 = −2λn〈ρt, Fn〉2. Thus

( d
dt
R)(t) = −

∑

n∈N

2λn

n2(1 + λn)
〈ρt, Fn〉2 ,

because
∑

n≤N
−2λn

n2(1+λn)
〈ρt, Fn〉2 converges uniformly to

∑

n∈N
−2λn

n2(1+λn)
〈ρt, Fn〉2, asN increases

to infinity. Therefore R(t) ≥ 0 and ( d
dt
R)(t) ≤ 0, for all t > 0 and since R(0) = 0, it follows

that R(t) = 0 for all t > 0. As a consequence of {Fn : n ≥ 0} being a complete orthonormal
system, it follows that 〈ρt, ρt〉 = 0, which is enough to conclude.
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4.8.2 Uniqueness of weak solutions of (4.3.6)

At first, we begin with an auxiliary Lemma on integration by parts.

Lemma 4.8.1. Let ρ(t, ·) be a function in the Sobolev space L1(0, T ;H1(a, b)). Then, for
any H ∈ C0,1([0, T ]× [a, b]):

∫ T

0

∫ b

a

ρ(s, u) ∂uH(s, u) du ds

=−
∫ T

0

∫ b

a

∂uρ(s, u)H(u, s) du ds+

∫ T

0

{

ρ(s, b)H(s, b)− ρ(s, a)H(s, a)
}

ds .

Notice the partial derivative in ρ is the weak derivative, while the partial derivative in
H is the usual one. Besides that, the function H is smooth, but possibly not null at the
boundary [0, T ] × {a, b}, and therefore is not valid the integration by parts in the sense of
L1(0, T ;H1(a, b)), which has no boundary integrals.

Proof. Fix ε > 0 and write H = Hε + (H −Hε), where Hε coincides with H in the region
[0, T ]×(a+ε, b−ε), has compact support contained in [0, T ]×(a, b) and belongs to C0,1([0, T ]×
(a, b)). By the assumptions on Hε, we have that

∫ T

0

∫ b

a

ρ(s, u) ∂uH(s, u) du ds

=−
∫ T

0

∫ b

a

∂uρ(s, u)H
ε(s, u) du ds+

∫ T

0

∫ b

a

ρ(s, u)∂u(H −Hε)(s, u) du ds .

Last result is a consequence of Hε having compact support strictly contained in the open
set (a, b). Let fε : [a, b] → R be the function such that f(u) = 1 if u ∈ (a+ ε, b− ε), f(a) =
f(b) = 0, and interpolated linearly otherwise. The decomposition H = H f ε + H(1 − f ε)
can be done, but now the function H f ε does not have the properties as required above for
Hε. Nevertheless, taking a suitable approximating sequence of functions Hε, it follows that

∫ T

0

∫ b

a

ρ(s, u) ∂uH(s, u) du ds

=−
∫ T

0

∫ b

a

{

∂uρ(s, u)H(s, u)f ε(u) + ρ(s, u)∂u

(

H(s, u)(1− f ε(u))
)}

du ds.

Taking the limit as ε ↓ 0 yields the statement of the Lemma.

Let ρ(t, ·) be a weak solution of (4.3.6) with γ ≡ 0. Provided by Lemma 4.8.1, for any
function H ∈ C1,2([0, T ]× (bi, bi+1)),

∫ bi+1

bi

ρt(u)H(t, u) du+

∫ t

0

∫ bi+1

bi

{

∂uρs(u)∂uH(s, u)− ρs(u)∂sH(s, u)
}

du ds = 0.
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From this point, uniqueness is a particular case of a general result in [18], namely Theorem
III.4.1. In sake of completeness, we sketch an adaptation of it to our particular case. Denote
by W 1

2,T = W 1
2,T ([0, T ] × (a, b)) the space of functions with one weak derivative in space

and time, both belonging to L2([0, T ] × (a, b)) and vanishing at time T . By extending the
previous equality to H ∈ W 1

2,T it follows that

∫ T

0

∫ bi+1

bi

{

∂uρs(u) ∂uH(s, u)− ρs(u) ∂sH(s, u)
}

du ds = 0 . (4.8.2)

It is not difficult to show that the function

H(s, u) = −
∫ T

s

ρ(r, u) dr

belongs to W 1
2,T . Replacing last function in (4.8.2), then we can rewrite (4.8.2) as

∫ T

0

∫ bi+1

bi

{1

2
∂s(∂uH(s, u))2 − (∂sH(s, u))2

}

du ds = 0 .

By Fubini’s Theorem we get to

1

2

∫ bi+1

bi

{

(∂uH(T, u))2 − (∂uH(0, u))2
}

du−
∫ T

0

∫ bi+1

bi

(∂sH(s, u))2 du ds = 0 .

By the definition of H , its weak space derivative vanishes at time T , so that the first integral
above is null. Therefore, ∂sH is identically null, and by the definition of H above, this
implies that ρ vanishes, finishing the proof.
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Chapter 5

Appendix

Proposition 5.0.2. Denote by HN(µN |να) the entropy of a probability measure µN with
respect to a stationary state να. Then, there exists a finite constant K0 := K0(α) such that
HN(µN |να) ≤ K0N , for all probability measures µN .

Proof. Recall that να is Bernoulli product of parameter α. By the explicit formula given in
Theorem A1.8.3 of [17],

HN(µN |να) =
∑

η∈{0,1}TN

µN(η) log
µN(η)

να(η)

≤
∑

η∈{0,1}TN

µN(η) log
1

να(dη)

≤
∑

η∈{0,1}TN

µN(η) log
1

[α ∧ (1− α)]N

= N (− log[α ∧ (1− α)]) .

Proposition 5.0.3. Assume that L is a reversible generator with respect to an invariant
measure ν in a countable space-state E, and V : R+ ×E → R is a bounded function. Notice
that L + Vt will be a symmetric operator in L2(ν). Denote by Γt the largest eigenvalue of
L+ Vt:

Γt = sup
〈f,f〉ν=1

{

〈Vt, f
2〉ν + 〈Lf, f〉ν

}

.

Then, the supremum above can be taken over only positive functions f , or else,

Γt = sup
f density

{

〈Vt, (
√

f)2〉ν + 〈L
√

f,
√

f〉ν
}

.

Proof. It follows from the expression of the Dirichlet form (see [17]),

〈Lf, f〉ν = −1
2

∑

x,y∈E

ν(x)L(x, y)[f(y)− f(x)]2 ,
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and the inequality ||f(y)| − |f(x)|| ≤ |f(y)− f(x)|.

Proposition 5.0.4. If G1, G2, G3 are continuous functions defined in the torus T, the
application from D([0, T ],M) to R that associates to a trajectory {πt : 0 ≤ t ≤ T} the
number

sup
0≤t≤T

∣

∣

∣
〈πt, G1〉 − 〈π0, G2〉 −

∫ t

0

〈πs, G3〉 ds
∣

∣

∣

is continuous for the Skorohod metric in D([0, T ],M).

Proof. If G is a continuous function in the torus, the application π 7→ 〈π,G〉 is a continuous
application from M to R in the weak topology. From this observation and the definition
of the Skorohod metric as an infimum under reparametrizations (c.f. [17]), the statement
follows.
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