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Resumo

Nesta tese consideramos trés modelos de processo de exclusao em dimensao d > 1: Processo de Ex-
clusado com Condutéancias, com Condutancias em Ambiente Aleatério e com Bordos e Velocidades. Para
o primeiro, obtemos o limite hidrodinamico, no segundo obtemos limite hidrodindmico e as flutuagoes
no equilibrio, e no ultimo provamos o principio dos grandes desvios.
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Introduction

O limite hidrodindmico permite obter uma descrigdo das caracteristicas termodindmicas (por exem-
plo, temperatura, densidade, pressdo) de sistemas infinitos assumindo que a dinamica das particulas
é estocdstica. Seguindo a abordagem da mecanica estatistica introduzida por Boltzmann, deduzimos
o comportamento macroscopico de um sistema a partir da iteracao microscépica entre as particulas.
Considera-se a dinamica microscopica consistindo de caminhos aleatérios sobre um grafo submetida a
alguma iteracao local, denominado sistema de particulas interagentes introduzido por Spitzer [36], veja
também [24]. Ademais, esta abordagem justifica rigorosamente um método algumas vezes utilizado pe-
los fisicos para estabelecer equagoes diferenciais parciais que descrevem a evolucao de caracteristicas
termodindmicas de um fluido. Assim, a existéncia de solugoes fracas de tais EDPs podem ser vistas
como um dos objetivos do limite hidrodinamico.

Um conhecido sistema de particulas interagentes é o processo de exclusao simples. Informalmente
é um processo onde apenas uma particula por sitio é permitida (dai o nome exclusao), e o salto das
particulas somente ocorrem para os vizinhos préximos. Nesta tese consideramos o processo de exclusao
simples sobre o toro discreto d-dimensional, ']T?V, e obtemos o comportamento hidrodinamico nos seguintes
modelos:

No capitulo 1, consideramos o processo de exclusao com condutdncias induzida por uma classe de
funcoes W e obtemos que, sobre uma escala difusiva, a evolugdo das densidades empiricas do processo
de exclusdo sobre o toro d-dimensional, T¢, é descrita pela tnica solucdo fraca da equacio diferencial

parcial generalizada nao-linear
d

Orp=">_ 02, 0w, ®(p), (0.0.1)
k=1

Onde a fungdo @ : [I,r] — R é fixada e suave, definida sobre um intervalo [I,7] de R. Esta funcao estd
associada a um fator na taxa de salto das particulas no processo microscopico e depende das configuragoes
do sistema. O adjetivo generalizada decorre do termo Oy, cuja definigdo e referéncias sdo dadas na Segao
1.2. Em Particular, se considerarmos Wy (z) = xj, obtemos que (0.0.1) é a equacdo do calor. Para a
prova do limite hidrodinamico, nés também obtemos algumas propriedades do operador eliptico do lado
direito de (0.0.1).

Ultimamente, a evolugao de processos de exclusao uni-dimensional com condutancias tem atraido
atencdo [13, 14, 18, 21]. Um dos propdsitos desta tese é estender esta andlise para dimensoes maiores.
Este processo pode, por exemplo, modelar difusoes de particulas em um meio com membranas permeaveis,
nos pontos de descontinuidade de W, tendendo a refletir particulas, criando espagos de descontinuidade
nos perfis de densidade. Nas primeiras linhas do capitulo 1, encontra-se uma detalhamento maior desta
aplicacao e da real conexao deste operador com os famosos operadores diferenciais de Féller.

No capitulo 2, consideramos um processo de exclusao com condutancias em ambiente aleatério e
obtemos o limite hidrodindmico. A condutincia é a mesma considerada no capitulo 1, no entanto a
novidade neste capitulo nao se resume ao ambiente aleatério. Isto porque a prova do comportamento
hidrodinamico no capitulo 1 é baseada em estimativas do semigrupo e resolventes entre o processo original
e um corrigido. O elo entre o casos d =1 [18, 14] e d > 1 é entdo estabelecido via uma classe especial de
funcoes W, a saber:

d
W(ml,...,xd):ZWk(xk) z €R,
k=1

onde cada W}, é da forma considerada em [18]. Enquanto no capitulo 2, usando as propriedades obtidas
do operador eliptico em (0.0.1), construimos o espago W-Sobolev, o qual consiste das fungoes f tendo



gradiente generalizado fraco Vi f = (0w, f, ..., 0w, f). Obtemos varias propriedades para este espago,
que sao andalogas aos classicos resultados para espagos de Sobolev. Equacoes W-generalizada eliptica
e parabdlica sao consideradas, alcancando resultados de existéncia e unicidade de solucoes fracas para
estas equacoes. Resultados de homogenizacao para uma classe de operadores aleatérios sao investigados,
finalmente, como primeira aplicacdo desta teoria desenvolvida, nos provamos o limite hidrodinamico
para o processo em questao. Em particular, substituindo a analise de semigrupos e resolventes feita no
capitulo 1, por homogenizagao.

A motivagao para este enfoque foi o artigo [20]. Nele os autores consideram um processo de exclusao
gradiente em ambiente aleatdrio e usam a teoria de homogenizagao, desenvolvida em [31], para obterem
o limite hidrodinamico e flutuagoes.

No capitulo 3, nos obtemos as flutuagoes do equilibrio para o processo considerado no capitulo 2. Esta
foi a segunda aplicagdo da teoria previamente desenvolvida. Nos obtemos que a distribuicao empirica
é governada pela tunica solugao de uma equagao diferencial estocastica, tomando valores em um certo
espago Frechet Nuclear.

No capitulo 4, nos provamos os grandes desvios dinamicos para um processo boundary driven, i.e.
um sistema que possui dois reservatérios infinitos de particulas na fronteira com particulas que podem
ter diferentes velocidades. Este resultado baseia-se na recente abordagem introduzida em [15].

Cada capitulo desta tese resultou em um artigo, os quais salvo alguns cortes para evitar excessivas
repeticoes, sao os préprios artigos. Em particular cada inicio de capitulo tem uma pequena introdugao
que complementa esta. Ressalto que o capitulo 2 é um trabalho conjunto com Alexandre Bustamante de
Simas e os capitulos 3 e 4 sdo em parceria com Jonathan Farfan e Alexandre Bustamante de Simas.



Chapter 1

Hydrodynamic limit of a
d-dimensional exclusion process with
conductances

The evolution of one-dimensional exclusion processes with random conductances has attracted some
attention recently [21, 13, 14, 18]. The purpose of this chapter is to extend this analysis to higher
dimension.

Let W : R — R be a function such that W(zy,...,24) = Zzzl Wi (xr), where d > 1 and each
function Wy, : R — R is strictly increasing, right continuous with left limits (cadlag) , and periodic in
the sense that Wi (u + 1) — Wi (u) = Wi(1) — Wi(0) for all u € R. Informally, the exclusion process
with conductances associated to W is an interacting particle systems on the d-dimensional discrete torus
N~1T4,, in which at most one particle per site is allowed, and only nearest-neighbor jumps are permitted.
Moreover, the jump rate in the direction e; is given by the reciprocal of the increments of W with respect
to the jth coordinate.

We show that, on the diffusive scale, the macroscopic evolution of the empirical density of exclusion
processes with conductances W is described by the nonlinear differential equation

d
atp = Zaﬂﬂkawkq)(p)> (1'0'1)
k=1

where ® is a smooth function, strictly increasing in the range of p, and such that 0 < b < ® < b1,
Furthermore, we denote by Oy, the generalized derivative with respect to Wy, see [8, 18] and a revision
in Section 1.2. The partial differential equation (1.0.1) appears naturally as, for instance, scaling limits
of interacting particle systems in inhomogeneous media. It may model diffusions in which permeable
membranes, at the points of discontinuities of W, tend to reflect particles, creating space discontinuities
in the density profiles.

The proof of hydrodynamic limit relies strongly on some properties of the differential operator
Zizl 0z, Ow, presented in Theorem 1.1.2. We prove, among other properties: that the operator
22:1 0z, 0w, , defined on an appropriate domain, is non-positive, self-adjoint and dissipative; that its
eigenvalues are countable and have finite multiplicity; and that the associated eigenvectors form a com-
plete orthonormal system.

There is a wide literature on the so-called Feller’s generalized diffusion operator (d/du)(d/dv). Where,
typically, u and v are strictly increasing functions with v (but not necessarily u) being continuous. It
provides general diffusions operators and an appreciable simplification of the theory of second-order
differential operators (see, for instance, [16, 17, 26]). The operator (d/dz)(d/du), considered in [18], is
the formal adjoint of (d/du)(d/dv) in the particular case v(x) = z (as in [17]). The goal of this work is
to extend this adjoint operator to higher dimensions and provide some results regarding this extension.

This chapter is organized as follows: in Section 1.1 we state the main results of the chapter; in
Section 1.2 we prove the main properties of the operator Ly, = Zizl 0z, 0w, ; in Section 1.3 we prove
the convergence of random walks with random conductances to Markov processes with generator given



by Lw; in Section 1.4 we prove the scaling limit of the exclusion process with conductances given by W
and, finally, in Section 1.5 we show that the unique solution of (1.0.1) has finite energy.

1.1 Notation and Results

We examine the hydrodynamic behavior of a d-dimensional exclusion process, with d > 1, with conduc-
tances induced by a special class of functions W : R¢ — R such that:

W(xl,...,xd) = Wk(l‘k) (111)

M=

k=1

where Wy, : R — R are strictly increasing right continuous functions with left limits (cadlag), and periodic
in the sense that

Wk(u + 1) . Wk(u) = Wk(l) — Wk(O)

forallu e Rand k= 1,...,d. To keep notation simple, we assume that W} vanishes at the origin, that
is, W(0) = 0.
Denote by T¢ = [0, 1)d the d-dimensional torus and by e1,...,eq the canonical basis of R?. For this

class of functions we have:
e W(0) =0;
e W is strictly increasing on each coordinate:
W(x + aej) > W(x)
forall1<j<d, a>0z¢cR%
e IV is continuous from above:

W(z) = lim_ W(y),

y—zT, y>

where we say that y >z if y; > x; forall 1 < j < dj
e W is defined on the torus T%:
Wi(z1,...,2j-1,0,j41,...,xq) = W(z1,...,zj—1, 1, zj11,...,2q) — W(e;),
forall 1 <j<d, (1,...,%j-1,Tj41, ..., %d) € Td-1,

Unless explicitly stated W belongs to this class. Let T4 = (Z/NZ)? = {0,...,N — 1}¢ be the
d-dimensional discrete torus with N¢ points. Distribute particles throughout 'I[“]iV in such a way that
each site of 'H“]j\, is occupied at most by one particle. Denote by 1 the configurations of the state space

{0, I}MV, so that n(x) = 0 if site x is vacant and n(z) = 1 if site z is occupied.
Fix b > —1/2 and W. For = = (z1,...,24) € T let

Cz,x+e; (77) =1+ 5{77(73 - ej) + 77(37 +2 ej)} )
where all sums are modulo N, and let

1 1

Srate = NW (@ +¢;)/N) = W(x/N)] — N[W;((x; +1)/N) = Wj(z;/N)|’

We now describe the stochastic evolution of the process. Let & = (w1,...,24) € T%. At rate
e xte;Caote; (1) the occupation variables n(z), n(z +e;) are exchanged. If W is differentiable at 2 /N €
[0,1)¢, the rate at which particles are exchanged is of order 1 for each direction, but if some W; is
discontinuous at x;/N , it no longer holds. In fact, assume, to fix ideas, that W; is discontinuous at
x;/N, and smooth on the segments (z;/N,z;/N +¢ce;) and (x;/N —ee;, x;/N). Assume, also, that Wy,
is differentiable in a neighborhood of =y /N for k # j. In this case, the rate at which particles jump over
the bonds {y —e;,y}, with y; = x;, is of order 1/N, whereas in a neighborhood of size N of these bonds,



particles jump at rate 1. Thus, note that a particle at site y — e; jumps to y at rate 1/N and jumps at
rate 1 to each one of the 2d — 1 other options. Particles, therefore, tend to avoid the bonds {y — e;, y}.
However, since time will be scaled diffusively, and since on a time interval of length N? a particle spends
a time of order N at each site y, particles will be able to cross the slower bond {y —e;, y}.

Then, this process models membranes that obstruct passages of particles. Note that these membranes
are (d — 1)-dimensional hyperplanes embedded in a d-dimensional environment. Moreover, if we consider
W; having more than one discontinuity point for more than one j, these membranes will be more
sophisticated manifolds, for instance, unions of (d — 1)-dimensional boxes.

The effect of the factor cg zye;(n) is the following: if the parameter b is positive, the presence of
particles in the neighboring sites of the bond {, z +e;} speeds up the exchange rate by a factor of order
one, and if the parameter b is negative, the presence of particles in the neighboring sites slows down the
exchange rate also by a factor of order one.

The dynamics informally presented describes a Markov evolution. The generator Ly of this Markov
process acts on functions f : {0,1}T% — R as

d
Lnf(n) = Z Z fz,ﬂﬂ-&-ej Cx,z+e; (n) {f(a'x7x+ej n) —fm}, (1.1.2)

j=1zeT,
where o™**¢iy is the configuration obtained from 7 by exchanging the variables n(z) and n(z + ¢;):

nx+e;) ify=u,
(™ n)(y) = @) if y =z +ej, (1.1.3)
n(y) otherwise.

A straightforward computation shows that the Bernoulli product measures {vY : 0 < a < 1} are
invariant, and in fact reversible, for the dynamics. The measure v is obtained by placing a particle at
each site, independently from the other sites, with probability a. Thus, 2 is a product measure over
{0, 1}T(Ii\' with marginals given by

va{n:n(@) =1} = a,

for x in T4,. For more details see [23, chapter 2]. We will often omit the index N on v,

a

N

Denote by {n; : t > 0} the Markov process on {0, 1}1‘?v associated to the generator Ly speeded up by
N2. Let D(R4, {0, 1}71'%) be the path space of cadlag trajectories with values in {0, l}TlliV. For a measure
pun on {0, 1}T?V, denote by P, the probability measure on D(R, {0, 1}1%) induced by the initial state
pn, and the Markov process {n; : t > 0}. Expectation with respect to P, is denoted by E,, .
1.1.1 The hydrodynamic equation

Fix W = ZZ:1 Wy, asin (1.1.1). In [18] it was shown that there exist self-adjoint operators Ly, : Dw, C
L*(T) — L*(T). The domain Dy, is completely characterized in the following proposition:

Proposition 1.1.1. The domain Dyy, consists of all functions f in L*(T) such that

f(z) = a + bWi(z) + Wi(dy) /y f(2) dz
(0,z] 0

for some function § in L*(T) that satisfies

/01 f(z)dz = 0 and Wk(dy){bJr/Oyf(z)dz} = 0.

(0,1]

The proof and further details can be found in [18]. Further, the set Ay, of the eigenvectors of Ly,
forms a complete orthonormal system in L?(T). Let

d
Aw = {f:T" = R; f(wr,...,za) = [] falan), fo € Ay, k=1,....d}, (1.1.4)
k=1



and denote by span(A) the space of finite linear combinations of the set A, and let Dy, := span(Aw ).
Define the operator Ly, : Dy — L2(T9) as follows: for f = ]_[Z:1 fr € Aw, we have

d d
Lw (f) @1, wa) =Y [ files)Lw frla), (1.1.5)

k=1j=1,j#k

and then extend to Dy by linearity.

Lemma 1.2.2, in Section 1.2, shows that: Ly is symmetric and non-positive; Dy is dense in L2(T9);
and the set Ay, forms a complete, orthonormal, countable system of eigenvectors for the operator Ly .
Let Aw = {hi}tr>0, {ouw}k>0 be the corresponding eigenvalues of —Lyy, and consider

Dw ={v= Z’L)khk € L*(T%); Zv%ai < 400}, (1.1.6)
k=1 k=1

Define the operator Ly : Dy — L?(T9) by

—+oo

7£Wv = Zakvkhk (117)
k=1

The operator Ly is clearly an extension of the operator Ly, and we present in Theorem 1.1.2 some
properties of this operator.

Theorem 1.1.2. The operator Ly, : Dy — L*(T?) enjoys the following properties:

(a) The domain Dw is dense in L*(T). In particular, the set of eigenvectors Aw = {hx}x>0 forms a
complete orthonormal system;

(b) The eigenvalues of the operator —Lw form a countable set {oy}i>0. All eigenvalues have finite
multiplicity, and it is possible to obtain a re-enumeration {ay >0 such that

O=ap<a; <--- and lim «, = oo;
n—oo

(c) The operator 1 — Ly, : Dy — L*(T?) is bijective;
(d) Lw : Dw — L3(T9) is self-adjoint and non-positive:

&_EVVf7f> 2 0;

(e) Lw is dissipative.

In view of (a), (b) and (d), we may use Hille-Yosida theorem to conclude that Ly is the generator
of a strongly continuous contraction semigroup {P; : L?(T%) — L*(T%) };>o0.

Denote by {G) : L?(T¢) — L?(T%) }xso the semigroup of resolvents associated to the operator Lyy:
Gy = (A= Lw) ! Gy can also be written in terms of the semigroup {P; ;¢ > 0}:

G, = / e MNP, dt.
0

In Section 1.3 we derive some properties and obtain some results for these operators.

The hydrodynamic equation is, roughly, a PDE that describes the time evolution of the thermody-
namical quantities of the model in a fluid. A sequence of probability measures {yy : N > 1} on {0,1}T%
is said to be associated to a profile pg : T? — [0, 1] if

lim py ‘% Z H(x/N)n(a:)—/H(u)po(u)du >0p =0 (1.1.8)

N —o0
wET%



for every 6 > 0, and every continuous function H : T — R. For details, see [23, chapter 3].

For a positive integer m > 1, denote by C™(T¢) the space of continuous functions H : T¢ — R with
m continuous derivatives. Fix I < r, and a smooth function ® : [I, 7] — R, whose derivative is bounded
below by a strictly positive constant and bounded above by a finite constant, that is,

0 < B'<d(z) < B,

for all z € [I,7]. Let v : T% — [I,7] be a bounded density profile, and consider the parabolic differential

equation
op = Lw®(p)
. 1.1.9
Loy 50 (19
A bounded function p : Ry x T¢ — [I,r] is said to be a weak solution of the parabolic differential
equation (1.1.9) if
t
(prnGoH) — (. GaH) = [ (@(p.), LwGrH) ds
0

for every continuous function H : T — R, all ¢t > 0 and all A > 0.
Existence of these weak solutions follows from tightness of the sequence of probability measures
introduced in Section 1.4. The proof of uniquenesses of weak solutions is analogous to [18].

W,N
Qux

Theorem 1.1.3. Fiz a continuous initial profile po : T — [0,1], and consider a sequence of probability
measures pn on {0, I}TN associated to pg, in the sense of (1.1.8). Then, for anyt >0,

lim P, ‘NdZHx/Nnt /H plt,u)du| > 8% = 0

N—o00
ze']l‘d

for every § > 0 and every continuous function H. Here, p is the unique weak solution of the non-linear
equation (1.1.9) with 1=10, r =1, v = poy, and ®(a) = a + aa?.

Remark 1.1.4. As noted in [18, remark 2.3], the specific form of the rates c; y+., is not important, but
two conditions must be fulfilled: the rates must be strictly positive, although they may not depend on the
occupation variables n(x), n(z + e;); but they have to be chosen in such a way that the resulting process
is gradient. (cf. Chapter 7 in [23] for the definition of gradient processes).

We may define rates cgpye, to obtain any polynomial ® of the form (o) = o+ Yo icp, ajal,
m > 1, with 1 + Z2§j§m ja; > 0. Let, for instance, m = 3. Then the rates

éw,z-i—ei (77) = Cgate; (7]) +
by {n(z — 2e;)n(x — e;) + n(x — e;)n(x + 2¢;) + n(x + 2¢;)n(x + 3e;)},

satisfy the above three conditions, where cy z4¢, 1S the rate defined at the beginning of Section 2 and b,
by are such that 1+ 2b+ 3b; > 0. An elementary computation shows that ®(a) = a + ba? + byad.

In Section 1.5 we prove that any limit point QJ;, of the sequence QWN is concentrated on trajectories
p(t,u)du, with finite energy in the following sense: for each 1 < j < d there is a Hilbert space Lw oW,
associated to W;, such that

t
d
| s 1 g ot DI o, <o

where ||.|[z;ow, is the norm in L?EJ@WJ,, and d/dW; is the derivative, which must be understood in the
generalized sense.

1.2 The operator Ly

The operator Ly : Dy C L*(T?) — L?(T?) is a natural extension, for the d-dimensional case, of the
self-adjoint operator obtained for the one-dimensional case in [18]. We begin by presenting one of the
main results obtained in [18], and we then present the necessary modifications to conclude similar results
for the d-dimensional case.



1.2.1 Some remarks on the one-dimensional case

Let T C R be the one-dimensional torus. Denote by (-,-) the inner product of L?(T):

(fr9) = /Tf(U)g(u)du_

Let W7 : R — R be a strictly increasing right continuous function with left limits (cadlag), and
periodic in the sense that Wy (u + 1) — Wy (u) = Wi (1) — W1(0) for all u in R.
Let Dy, be the set of functions f in L?(T) such that

f@) = o+ ) + [ Wi | "i) d,
(0,z] 0

for a,b € R and some function f in L?(T) that satisfies:

/01 f(z)dz = 0, o Wl(dy)(b+/oyf(2) dz) = 0.

Define the operator Ly, : Dw, — L?(T) by Lw, f = §. Formally

d d

Lw,f = %rmfv (1.2.1)

where the generalized derivative d/dW; is defined as

df T f(x—i—e)—f(x)
dwﬁ@y_E%MG@%f)7WG@)’ (1.2.2)

if the above limit exists and is finite.

Theorem 1.2.1. Denote by I the identity operator in L?(T). The operator Ly, : Dy, — L*(T) enjoys
the following properties:

(a) Dy, is dense in L*(T);

(b) The operator 1 — Ly, : Dw, — L*(T) is bijective;

(c) Lw, : Dw, — L*(T) is self-adjoint and non-positive:
(=Lw. [, [) = 0

(d) Lw, is dissipative i.e., for all g € Dy and A > 0, we have

[Agll < AL = L, )gll;

(e) The eigenvalues of the operator —Lyw form a countable set {\, : n > 0}. All eigenvalues have
finite multiplicity, 0 = Ao < A1 < -+, and lim,, 00 Ay, = 005

(f) The eigenvectors { fn}n>0 of the operator Ly form a complete orthonormal system.

The proof can be found in [18].

1.2.2 The d-dimensional case

Consider W as in (1.1.1). Let Aw, be the countable complete orthonormal system of eigenvectors of the
operator Ly, : Dw, C L*(T) — R given in Theorem 1.2.1.

Let A be as in (1.1.4), and let the operator Ly : Dy := span(Aw) — L*(T¢) be as in (1.1.5). By
Fubini’s theorem, the set Ay is orthonormal in L?(T¢), and the constant functions are eigenvectors of
the operator Ly, . Moreover, Aw, C Aw, in the sense that fy(z1,...,2q4) = fru(zk), fr € Aw,.



By (1.2.1), the operators Ly, can be formally extended to functions defined on T? as follows: given
a function f: T? — R, we define Ly, f as

where the generalized derivative Oy, is defined by

. S, et e xg) — fT, o, TEy e, )
0 =1 1.24
ka(l'l, s LThes 7l'd) 6% Wk(xk +€) — Wk(ivk) ) ( )

if the above limit exists and is finite. Hence, by (1.1.5), if f € Dy

d
Lwf=>_ Lw,f. (1.2.5)

k=1

Note that if f = HZ:l fr, where f, € Aw, is an eigenvector of Ly, associated to the eigenvalue A,
then f is an eigenvector of Ly, with eigenvalue ZZZI Ak-

Lemma 1.2.2. The following statements hold:
(a) The set Dy, is dense in L?(T?);
(b) The operator Ly, : Dy — L?(T?) is symmetric and non-positive:

(—Lw /. f) = 0.

Proof. The strategy to prove the above Lemma is the following. We begin by showing that the set

d
S = span({f € L*(T); f(x1,...,24) = H fe(zk), fr € D, })
k=1

is dense in

d
S = span({f € L*(T); f(z1,...,x H (z1), fx € L*(T)}).

We then show that Dy is dense in S. Since S is dense in LZ(’]I"d)7 item (a) follows.

We now prove item (a) rigorously. Since S is a vector space, we only have to show that we can
approximate the functions szl fr € L3(T?), where f; € Dw,, by functions of Dy. By Theorem 1.2.1,
the set Dy, is dense in L%(T), thus, there exists a sequence (f¥),en converging to fi in L2(T). Thus,
let

d
fn(.’L‘l,..., ka .’II]C
By the triangle inequality and Fubini’s theorem, the sequence (f,,) converges to HZ:1 fi. Fix e > 0, and
let
d
h(xl,...7 H k thDWk.

Since, for each k = 1...,d, Aw, C DWk is a complete orthonormal set, there exist sequences
g;-“ € Aw,, and ozf € R, such that

o =D~ gf ey <6,
j=1

where § = ¢/dM9~! and M := 1+ supy—1., ||hx||. Let

d n(k)

g(x1,...,xq) = H Z a?gf(mk) € Dy

k=1 j=1



An application of the triangle inequality, and Fubini’s theorem, yields ||h — g|| < e. This proves (a).
To prove (b), let

d d
flze,...,zq) = H fe(zr) and g(z1,...,24) = H gk (xg)
k=1 k=1

be functions belonging to Ay,. We have that

d d d d d
(f,.Lwg) = H Z H Lwogr) =Y (T figs felwign),
k=1 k=1j=1,5

k=1 j=1,j#k

where (-, -) denotes the inner product in L?(T%). Since, by Theorem 1.2.1, Ly, is self-adjoint, we have

d d
Z< H fjgjagkﬁwkfk>:<£Wfag>~

k=1 j=1,j#k

In particular, the operator Ly, is non-positive, and, therefore,

d d
FLwh) =Y C 1L 7 felwitr) <

k=1 j=1,j#k
Item (b) follows by linearity. O

Lemma 1.2.2 implies that the set Ay forms a complete, orthonormal, countable, system of eigenvec-
tors for the operator Lyy.

Let Ly : Dw — L?(T9) be the operator defined in (1.1.7). The operator Ly is clearly an extension
of the operator Ly,. Formally, by (1.2.5),

d
Lwf = Lw,f (1.2.6)

k=1

where

Lw,f = 02,0w, f.

We are now in conditions to prove Theorem 1.1.2.

Proof of Theorem 1.1.2. By Lemma 1.2.2, Dy is dense in L2(T9). Since Dy C Dy, we conclude that
Dy is dense in L?(T?).

If o are eigenvalues of —Ly, we may find eigenvalues \;, associated to some f; € Aw,, such that
ap = Z;l:l Aj. By item (e) of Theorem 1.2.1, (b) follows.

Let {a}r>0 be the set of eigenvalues of —Ly . Then, the set of eigenvalues of I — Ly is {Vk}x>0,
where v, = ax + 1, and the eigenvectors are the same as the ones of Ly. By item (b), we have

l=%<71 <+ and lim vy, =0.

n—oo
Thus, 1T — Ly is injective. For
+o0 [e'e]
v= kahk € L*(T%) , such that Zv,% < +oo,
k=1 k=1
let
400 o
u = 7hk.
kz::l Tk

Then v € Dy and (I — Ly )u = v. Hence, item (c) follows.

10



Let L}, : Dy~ C L*(T4) — L%(T9) be the adjoint of Ly. Since Ly is symmetric, we have Dy C
w. 50, to show the equality of the operators it suffices to show that Dy« C Dy . Given

—+0o0
¢ = ¢rhx € Dw-,
k=1

let Ly .o =1 € L?(T?). Therefore, for all v = Zz:i vihg € Dw,

(v,9) = (v, Lwsp) = (Lwv, p) Z —OQRVEPE-

Hence

“+o0
Y= Z —agprh.

k=1
In particular,
+oo
Zai(pi < 400 and ¢ € Dy.
k=1

Thus, Ly is self-adjoint. Let v = Zﬁzool vihg € Dy . From item (b), ap > 0, and

(=Lwwv,v) Zakvk > 0.

Therefore Ly is non-positive, and item (d) follows.
Fix a function g in Dy, A > 0, and let f = (Al — Ly )g. Taking inner product, with respect to g, on
both sides of this equation, we obtain

)‘<gag> + <_£ngg> = <g7f> < <gvg>1/2 <f7f>1/2'

Since g belongs to Dy, by (d), the second term on the left hand side is non-negative. Thus, ||Ag|] <
1= AL = Lw)gll H

1.3 Random walk with conductances

Recall the decomposition obtained in (1.2.6) for the operator Ly . In next subsection, we present the
discrete version Ly of Ly and we describe, informally, the Markovian dynamics generated by L.

1.3.1 Discrete approximation of the operator Ly,

Consider the random walk {X}¥ },>¢ in % T%, which jumps from z/N (resp. (z+¢;)/N) to (z +€;)/N
(resp. z/N) with rate
N?€saye; = N/{W;((2; + 1)/N) = Wy(;/N)}.

The generator L of this Markov process acts on local functions f : %T;’l\, — R as

Ly f(z/N) Z]L f(z/N), (1.3.1)

where
Ly f(@/N) = N{& e, [f((x+e;)/N) = f(z/N)]
+ Coe,alf((x—e)/N) = f(z/N)]}.

Note that Lgv f(xz/N) is, in fact, a discrete version of the operator Lyy,. The counting measure my
on T‘fv is reversible for this process. The following estimate is a key ingredient for proving the results in
Section 1.4:

11



Lemma 1.3.1. Let f be a function on N']I‘d . Then, for each j=1,...,d:

b5 (hsem) < e X (tastem)

zeT4 z€T4

Proof. Let X a be the linear space of functions f on ﬁ'ﬂ“fv over the field R. Note that the dimension
of Xya is N Denote by (-,-)ya the following inner product in X ya:

(og)ve =~ O F@/N)g(a/N).

zeTY,
For each j =1,...,d, consider the linear operators Eg\, on Xy (i-e., d =1) given by
£t = 0Y0 .
where 92 and G%j are the difference operators:

N f(@/N) = N[f((z+1)/N) - f(&/N)]  and

f((z+1)/N) — f(z/N)
o, f(z/N) = W,((z + 1)/N) = W;(z/N)’

The operators Lg\, are symmetric and non-positive. In fact, a simple computation shows that

Lt == 3 (Willa +1)/N) = Wi(w/N)) oW, £ /N, g(x/N).

z€T N

Using the spectral theorem, we obtain an orthonormal basis Ag\, = {h]l, ceey hgv} of Xy formed by
the eigenvectors of ,CN, ie.,

Lyh) =alhl  and (W WD) N = 6ig,

where ; 1, is the Kronecker’s delta, which equals 0 if i # k, and equals 1 if ¢ = k. Since ﬁg\, is non-positive,
we have that the eigenvalues ozj are non-positive: oﬂ <0,j=1,...,dandi=1,...,N.

Let Ay = {¢1,...,¢na} C Xya be set of functions of the form oi(x1, .. .,xd) = H?Zl hi(z;), with
W oe Al

Let o/ be the eigenvalue of h7, i.e., £ h? = a?h7. The linear operator Ly on X ya, defined in (1.3.1),
is such that ]Lqubi = al¢; and Ly¢g; = Z?Zl ol ¢;. Furthermore, if ¢;(z1,...,74) = H;l:1 hi(z;) and

Or(T1,. .., 2q) = H?Zl ¢ (z;), ¢i,ox € Ay, we have that

9 )N =ik,

¢za¢k

u’:]&

for i,k =1,...,N% So, the set Ay is an orthonormal basis of X ya formed by the eigenvectors of Ly
. d
and L. In particular, for each f € X, there exist 3; € R such that f = Zf\il Bi¢i. Thus,

N4 N
> (M'Vﬂx/N)) SR = L 7 BidilBe = (60 <
zeTY, i=1 i=1
d
WD = nf e = 502 30 (Lwsle/v)
i= 1 j=1 IETd

where a{ < 0 is the eigenvalue of the operator ]L?V associated to the eigenvector ¢;. This concludes the
proof of the lemma. O

12



1.3.2 Semigroups and resolvents.

In this subsection we introduce families of semigroups and resolvents associated to the generators Ly
and Lyy. We present some properties and results regarding the convergence of these operators.

Denote by {PN :t > 0} (resp. {GY¥ : A > 0}) the semigroup (resp. the resolvent) associated to the
generator Ly, by {P" : ¢ > 0} the semigroup associated to the generator Ly, by {P/ : t > 0} the
semigroup associated to the generator Ly, and by {P; : t > 0} (resp. {Gx : A > 0}) the semigroup
(resp. the resolvent) associated to the generator Ly .

Since the jump rates from z/N (resp. (z + ¢;)/N) to (x + e;)/N (resp. z/N) are equal, PN is
symmetric: PN (z,y) = PN(y,z).

Using the decompositions (1.3.1) and (1.2.6), we obtain

d d

H xj,y] ) and Pi(z,y) H (x5,v;).

ot i

By definition, for every H : N7!T% — R,
G\H = / dteMP,H = (\l— Lw) 'H,
0
where I is the identity operator.
Lemma 1.3.2. Let H : T = R be a continuous function. Then
. 1 N
Glim = > |PNH(2x/N) - P,H(x/N)| = 0. (1.3.2)

d
zeTL

Proof. If H : T — R has the form H(z1,...,7q4) = H?Zl Hj(z;), we have
d d
PNH(z) = [[ P} Hj(x;) and PH(x) = [] P/ Hj(x;). (1.3.3)

j=1 j=1

Now, for any continuous function H : T — R, and any ¢ > 0, we can find continuous functions
Hjj : T — R, such that H' : T* — R, which is given by

m d
=2 1 Hinwo),
j=1k=1

satisfies |H' — H||oo < €. Thus,

% > |PNH(x/N) - PH(x/N)| < Qe+$ > |PNH'(x/N) - PH'(z/N)].

z€TY, zeTY,

By (1.3.3) and similar identities for P,H’ and PtN’j H’, the sum on the right hand side in the previous
inequality is less than or equal to

m d d
v1 30 ST AN e /) = TT PR H (/N | <
k=1

zeTd j=1 k=1

Nd > ZC Z|PNkHJk z/N) = P H; (/N

zeTY, j=1

13



where C) is a constant that depends on the product H w—1 Hj x- The previous expressions can be rewritten
as

m

d
Yoy ~i o ZIPN’“HJH/N) PFH; (/N)| =

j=1 k=1 xer 14=1
m d 1 N
ZCjZNZ\PtN’kH k(i/N) = P Hj . (i/N)|.

Moreover, by [14, Lemma 4.5 item iii], when N — oo, the last expression converges to 0.

O
Corollary 1.3.3. Let H : T — R be a continuous function. Then
. 1 N
ML > IGYH(x/N) — G\H(z/N)| = 0. (1.3.4)
z€TY,
Proof. By the definition of resolvent, for each IV, the previous expression is less than or equal to
/ dt e” tNd > |PNH(x/N) - P.H(x/N)|.
z€TY,
Corollary now follows from the previous lemma. O

Let fn : %Tf\, — R be any function. Then, whenever needed, we consider f : T? — R as the
extension of fy to T? given by:

1
f) = ule), i weTh, yzo and Jy— e < 1

Let H : TY — R be a continuous function. Then the extension of PN H : T4 — R to T¢ belongs to
LY(T9), and by symmetry of the transition probability PN (z,y) we have

/w duPNH(u) = Nd > H(xz/N). (1.3.5)

The next Lemma shows that H can be approximated by PN H. As an immediate consequence, we
obtain an approximation result involving the resolvent.

Lemma 1.3.4. Let H : T* — R be a continuous function. Then,

o= 1 N
lim Hm < > |PNH(x/N) - H(z/N)| =0, (1.3.6)
IET%
and
lim  m - > INGYH(z/N) — H(z/N)| =0 (1.3.7)
A—+oo No+oo N4 = A ' e
zelyy

Proof. Fix ¢ > 0, and consider H’ as in the proof of Lemma 1.3.2. Thus,

2 S PN H@/N) ~ H(e/N)| < 264 100 S0 [PNH!(e/N) — H (a/N)],

zeT4 €T,

where the second term on the right hand side is less than or equal to

1 Nk
CoS]}ll?W > IPYFH (2 /N) — Hj g (/N

d
z€T$,

14



with C being a constant that depends on H’. By [14, Lemma 4.6], the last expression converges to 0,
when N — oo, and then t — 0. This proves the first equality.

To obtain the second limit, note that, by definition of the resolvent, the second expression is less than
or equal to

/Oo dt/\e”\tﬁ > |PNH(z/N) - H(z/N)|.

0
zeTY,

By (1.3.5) the sum is uniformly bounded in ¢t and N. Furthermore, it vanishes as N — oo and ¢t — 0.

This proves the second part.
O

Fix a function H : T4, — R. For A > 0, let H/J\V = Gf\VH be the solution of the resolvent equation
MHY —LyHY = H. (1.3.8)
Taking inner product on both sides of this equation with respect to H f\v ,we obtain

Mg 3 Y @/N)Y — < S HY (/ML HY

zeTY, z€T%
1
=+ > HY(x/N)H(z/N).
zET%

A simple computation shows that the second term on the left hand side is equal to
T
N
mz Z Eo,ate; [V NG HA (m/N)]27
j=1zeT,

where Vy jH(x/N) = N[H((x +e;)/N) — H(xz/N)] is the discrete derivative of the function H in the
direction of the vector e;. In particular, by Schwarz inequality,

1 11
~a 2 HYV@/N? < 55 D H(@/N)? and
z€T z€T4 0-39)
d . .
1 11
D0 Y Gt (Vg HY @/ N)P < T 3 H/N)?
J=1zeTq, zeTY,

1.4 Scaling limit

Let M be the space of positive measures on T¢ with total mass bounded by one, and endowed with the
weak topology. Recall that ¥ € M stands for the empirical measure at time ¢. This is the measure on
T< obtained by rescaling space by N, and by assigning mass 1/N¢ to each particle:

1
7Tiv = ~a Z ne(2) 0 /N (1.4.1)

d
z€Tq

where ¢,, is the Dirac measure concentrated in wu.
For a continuous function H : T¢ — R, (7N, H) stands for the integral of H with respect to ¥:

(' H) = < 3 H/Nna)

d
zeTy

This notation is not to be mistaken with the inner product in L?(T?) introduced earlier. Also, when m;
has a density p, w(t, du) = p(t, u)du, we sometimes write (p;, H) for (my, H).
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For a local function g : {0, I}Zd — R, let g : [0,1] — R be the expected value of g under the stationary
states:

9(e) = Ey lg(n)] .

For ¢ > 1 and d-dimensional integer * = (w1,...,24), denote by n‘(z) the empirical density of
particles in the box B (z) = {(y1,...,yq) € Z¢;0 < y; — z; < {}:
1
@) = Y ).
yEBY, (z)

Fix T > 0, and let D([0,T], M) be the space of M-valued cadlag trajectories 7 : [0,7] — M endowed
with the uniform topology. For each probability measure ux on {0, 1}ch1\'7 denote by Q%N the measure
on the path space D([0,7], M) induced by the measure iy and the process 77 introduced in (1.4.1).

Fix a continuous profile pg : T¢ — [0, 1], and consider a sequence {uy : N > 1} of measures on
{0, I}T?V associated to pg in the sense (1.1.8). Further, we denote by Qu be the probability measure
on D([0,T], M) concentrated on the deterministic path 7r(t7 du) = p(t,u)du, where p is the unique weak
solution of (1.1.9) with v = po, I =0, r, =1, k =1,. d and ®(a) = a + aa®.

In subsection 1.4.1 we show that the sequence {Q : N > 1} is tight, and in subsection 1.4.2 we
characterize the limit points of this sequence.

MN

1.4.1 Tightness

The proof of tightness of sequence {Q}/;" : N > 1} is motivated by [21, 18]. We consider, initially, the
auxiliary M-valued Markov process {II}"V : £ > 0}, A > 0, defined by

W) = (N GYH) = 1 S (GYH) /N (),

TEZ

for H in C(T?), where {GY : A > 0} is the resolvent associated to the random walk {X} : ¢ > 0}
introduced in Section 1.3.

We first prove tightness of the process {H?’N :0 <t < T} for every A > 0, and we then show that
MY 0 <t < T} and {7} : 0 <t < T} are not far apart if A is large.

It is well-known [23, proposition 4.1.7] that to prove tightness of {II™Y : 0 < ¢ < T} it is enough
to show tightness of the real-valued processes {II}""V (H) : 0 < t < T} for a set of smooth functions
H : T¢ — R dense in C(T¢) for the uniform topology.

Fix a smooth function H : T — R. Denote by the same symbol the restriction of H to N~!T%. Let

HY = GY H, and keep in mind that M (H) = (xN, HY'). Denote by MM the martingale defined by

M =N - N - [N L ). (142
0

Clearly, tightness of HZ\’N(H ) follows from tightness of the martingale MtN * and tightness of the additive
functional fot ds N?Ly(mN, HY).

A simple computation shows that the quadratic variation (M), of the martingale MtN A s given
by:

Ngdz S ot (ONG Y @I [ crories (1) o+ e) = nefo)lPds

Jj=1zeTe
In particular, by (1.3.9),

o C(H
(MVY, < NZZZZ&WJ (Vs HY) (/NP < /\(Ngt’

J=1zeTq,

for some finite constant C'(H) which depends only on H. Thus, by Doob inequality, for every A > 0,
6 >0,

lim P, { sup ‘MtNA| >46 =0. (1.4.3)
N—o00 0<t<T
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In particular, the sequence of martingales {MtN’)‘ : N > 1} is tight for the uniform topology.

It remains to be examined the additive functional of the decomposition (1.4.2). The generator of the
exclusion process Ly can be decomposed in terms of generators of the random walks L};. By (1.3.1)
and a long but simple computation, we obtain that N2Lx (7, HY) is equal to

d
Z > WA HY) (@/N) ()
Jj=1 xer
by S WA (e 4 e)/N) + (WY (/)] (7 ) (o)
IET%
o 3 WA HY) /N (k) (0)}
zeTY,

where {7, : z € Z%} is the group of translations, so that (7,1)(y) = n(x +y) for z, y in Z%, and the sum
is understood modulo N. Also, hy j, ha ; are the cylinder functions

hi;(m) = n0)nle;), haj(n) = n(—e;)nle;) .
For all 0 < s <t <T, we have
¢ 2 N N (1+3[b])( j
’ dr N*Ly (x¥, HYY| < —Z S© LA HY (2/N)]
$ J=1z€eT¢,

from Schwarz inequality and Lemma 1.3.1, the right hand side of the previous expression is bounded
above by

(1+ 3[b)(t — s)d ﬁ 3 (]LNH/I\V(af/N))Q.

d
€T}

Since HY is the solution of the resolvent equation (1.3.8), we may replace Ly HY by UYN = \HY — H
in the previous formula. In particular, It follows from the first estimate in (1.3.9), that the right hand
side of the previous expression is bounded above by dC(H,b)(t — s) uniformly in N, where C(H,b) is
a finite constant depending only on b and H. This proves that the additive part of the decomposition
(1.4.2) is tight for the uniform topology and therefore that the sequence of processes {Hi‘ NN > 1} is
tight.

Lemma 1.4.1. The sequence of measures {QE;’,N : N > 1} is tight for the uniform topology.

Proof. 1t is enough to show that for every smooth function H : T — R, and every e > 0, there exists
A > 0 such that

lim P~ [sup (TN (AH) — (xl¥ H)| > €| = 0,
N—oo 0<t<T

since, in this case, tightness of 7" follows from tightness of Hi‘ N Since there is at most one particle per
site, the expression inside the absolute value is less than or equal to

% > [MHY (2/N) - H(z/N)| .

d
z€T$,

By Lemma 1.3.4, this expression vanishes as N 1 oo and then A 1 oco. O

1.4.2 Uniqueness of limit points

We prove in this subsection that all limit points Q* of the sequence QZ‘;N are concentrated on absolutely
continuous trajectories 7 (t, du) = p(t, u)du, whose density p(t,u) is a weak solution of the hydrodynamic
equation (1.1.9) with [ =0 <7 =1 and ®(a) = a + aa?.
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Let Q* be a limit point of the sequence QE?VN and assume, without loss of generality, that QmN
converges to Q*.

Since there is at most one particle per site, it is clear that Q* is concentrated on trajectories m:(du)
which are absolutely continuous with respect to the Lebesgue measure, m;(du) = p(t,u)du, and whose
density p is non-negative and bounded by 1.

Fix a continuously differentiable function H : T — R, and A > 0. Recall the definition of the
martingale MtN’/\ introduced in the previous section. By (1.4.2) and (1.4.3), for fixed 0 < t < T and
0 >0,

lim QY “(w;’v,Gf\VH) — (), GYH) - / ds N2 L (zY, GY H)| > 5} = 0.
N—o0 0

Since there is at most one particle per site, we may use Corollary 1.3.3 to replace GY H by G\H in
the expressions (r, GYH), (r{',GY H) above. On the other hand the expression N 2L N( ,GNH)
has been computed in the previous subsection. Since E,_[h; ;] =a? i =1,2and j = 1,. d Lemma
1.3.1 and the estimate (1.3.9), permit us use Corollary 1.4.4 to obtain, for every t > 07 )\ > 0,6 >0,
1=1,2,

lim Tim P, ‘/ds ~7 O LAHY (2/N) {TI i i(ns) — [ngN(x)]Q} ‘ >3] =o.

e—=+0 N—oo
zeTY,

Recall that LyGY H = AGY H — H. As before, we may replace GY H by G\H. Let Uy = \G,H — H.

Since 7N (z) = e’dﬂ'év(]_[?:l[xj/N, zj/N + €e;]), we obtain, from the previous considerations, that

lim lim Q H(ﬂiv,G,\H>—

e—=+0 N—oo

— (xd GAH) — /Otds<<b(€dﬂiv(f[[-,-+€ej])),U,\>‘>5 ~0.

Since H is a smooth function, Gy H and Uy can be approximated, in L*(T?), by continuous functions.
Since we assumed that Q));" converges in the uniform topology to Q*, we have that

lim Q[ |(m, GAH) — (mo, GAH) -

e—0
/075 < ﬁ +56J UA>’>5 =0.

Using the fact that Q* is concentrated on absolutely continuous paths m¢(du) = p(t,u)du, with

positive density bounded by 1, a_de(szl[-,- + ee;]) converges in L'(T?) to p(s,.) as € | 0. Thus,

Q* “<7Tt’GAH> — (7m0, GAH) — /Otds (®(ps) EWGAH)‘ >5} =0,

because Uy = Ly G H. Letting § | 0, we see that, Q* a.s.,

<7Tt,G)\H> - <7T0,G,\H> == A d5<(p(ps),ﬁwG)\H> .

This identity can be extended to a countable set of times ¢. Taking this set to be dense, by continuity of
the trajectories m;, we obtain that it holds for all 0 < ¢ < T'. In the same way, it holds for any countable
family of continuous functions H. Taking a countable set of continuous functions, dense for the uniform
topology, we extend this identity to all continuous functions H, because G H,, converges to GyH in
LY(T%), if H,, converges to H in the uniform topology. Similarly, we can show that it holds for all A\ > 0,
since, for any continuous function H, G, H converges to Gy\H in L'(T9), as A, — .

Proposition 1.4.2. As N 1 oo, the sequence of probability measures converges in the uniform

topology to Qyy .

W,N
@HN

18



Proof. In the previous subsection we showed that the sequence of probability measures Q}Z’VN is tight for
the uniform topology. Moreover, we just proved that all limit points of this sequence are concentrated
on weak solutions of the parabolic equation (1.1.9). The proposition now follows from a straightforward
adaptation of the uniquenesses of weak solutions proved in [18] for the d-dimensional case. O

Proof of Theorem 1.1.3. Since QmN converges in the uniform topology to Qu, a measure which is
concentrated on a deterministic path. For each 0 < ¢ < T and each continuous function H : T — R,
(m{N, H) converges in probability to [ dup(t,u) H(u), where p is the unique weak solution of (1.1.9)
with I, = 0, 7, = 1, ¥ = pp and ®(a) = a + aa?. O

1.4.3 Replacement lemma

We will use some results from [23, Appendix Al]. Denote by Hy(un|va) the relative entropy of a
probability measure py with respect to a stationary state v, see [23, Section A1.8] for a precise definition.
By the explicit formula given in [23, Theorem A1.8.3], we see that there exists a finite constant Kj,
depending only on «, such that

Hy(pn|ve) < KoN¢, (1.4.4)

for all measures py .
Denote by (-, ), the inner product of L?(v,) and denote by IJEV the convex and lower semicontinuous
[23, Corollary A1.10.3] functional defined by

I5(f) = (~LavFs Vo s

for all probability densities f with respect to v, (ie., f > 0 and [ fdv, = 1). By [23, proposition
A1.10.1], an elementary computation shows that

d
I]E\I(f) = Z Z I§7z+ej(f), where

= d
Jj=1 z€T4

e (D) = 02 v, [ nme, 0 {50~ VI dver

By [23, Theorem A1.9.2], if {S} : ¢ > 0} stands for the semigroup associated to the generator N2Ly,

t
Hy(unS¥ ) +2 N [ IS5 ds < Hylulve).
0

where fV stands for the Radon-Nikodym derivative of jn SN with respect to v,.

Recall the definition of BY, (z) in begin of this section. For each y € B (), such that y; > 1, let

Afa+el,y = (Zg)ogkgM(y) (1.4.5)

be a path from z + e; to y such that:

1. A‘;Jrelyy begins at  + e; and ends at y, i.e.:
zp = x+er and z{ =y
2. The distance between two consecutive sites of the A§c+e1,y = (ZZ)OSkSM(y) is equal to 1, i.e.:
Zp4q = 2, +ej; forsome j=1...,d and forall k=0,...,M(y) - 1;
3. A‘;Jrelyy is injective:

z # 2 forall 0 <i<j<M(y);

4. The path begins by jumping in the direction of e;. Furthermore, the jump in the direction of e;4;
is only allowed when it is not possible to jump in the direction of e;, for j =1,...,d — 1.

19



Lemma 1.4.3. Fiz a function F : N7I1T%4 — R. There ezists a finite constant Cy = Co(a,g, W),
depending only on a, g and W, such that

xo X Fa) [{rgtn) - 507 @)} vatan)

xETd

Coe 1)
> €Nd+1 Z ’F x/N ﬁ F(z/N)? + Nd— 2I5 (),

xETd J;E’H“Ii\,

for all 5 > 0, € > 0 and all probability densities f with respect to v,

Proof. Any local function can be written as a linear combination of functions in the form [, ., n(x),
for finite sets A’s. It is therefore enough to prove the Lemma for such functions. We will only prove the
result for g(n) = n(0)n(e1). The general case can be handled in a similar way.

We begin by estimating

1 1
31 2 PN [n@inte+e) -

d
€Ty

> W)} (n)veldn) (1.4.6)

yEBY = (2)

in terms of the functional If\,(f) The integral in (1.4.6) can be rewritten as:

w2 @+ e) = aw) v o).
yeBYe ()

For each y € BY¢(x), such that y1 > x1, let A’
Then, by property (1) of A’

erery = (ZL)o<k<m(y) be a path like the one in (1.4.5).

and using telescopic sum we have the following:

T+e1,y
M(y)—1
n@+e)—n)= > M) —nz,)).
k=0

We can, therefore, bound (1.4.6) above by

e Y Y S [ PNl ~ i) +

z€TY, yEIB%NE(x k=0
W > P/,
zGT%

where the last term in the previous expression comes from the contribution of the points y € Bfe(x),
such that 3 = x;. Recall that, by property (2) of A’ we have that z,?jﬂ = 2} + ej, for some
j=1,...,d.

For each term of the form

/ Fa/N)n(@){n(z) — n(z + e;)} f(n)va(dn)

T+er,y’

we can use the change of variables ' = o**1% 5 to write the previous integral as
(1/2)/F(fﬂ/N)77(ﬂc){77(Z) —n(z+e;)} {f(n) = f(o™*n)} va(dn) .

Since a — b = (v/a — vb)(v/a + vb) and Vab < a + b, by Schwarz inequality the previous expression is
less than or equal to

A
4(1 - 2a_)£z7z+ej

[ P/ e - nte + ey
x {\/f(n) + \/f(oz’z+e-"n)}2 va(dn) +
v [ (VI - VA vl
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for every A > 0. In this formula we used the fact that c. .., (n) is bounded below by 1 — 2a~, where
a” = max{—a,0}. Since f is a density with respect to v,, the first expression is bounded above by
A/(1 —2a7 )&, o 1e;, whereas the second one is equal to 24~ 1ré vote, ()

So, using all the previous calculations together with properties (3) and (4) of the path A’
obtain that (1.4.6) is less than or equal to

1 d eN
W Z |F({17/N)| + (7]\]d Z F'T/N ZZ :L’+k: 1)eJ,a:+keJ +

zeTy, zeTg, J=1k=1

r+4eq1,y’ we

9 d
Wi_lz Z Icg,x+ej(f)

= d
J=1zeTy

By definition of the sequence {&; o+, }, Ziil f;ike,- e < N[W;(1) — W;(0)]. Thus, choosing A =
2e N~1571, for some 6 > 0, we obtain that the previous sum is bounded above by

Co C
SN Z |F(z/N)| + OE Z F(z/N)? Nd zjg(f)

zeT4 mer

Up to this point we have succeeded to replace n(z)n(x + e1) by n(z)n°Y(z). The same arguments
permit to replace this latter expression by [V (2)]2, which concludes the proof of the Lemma. O
Corollary 1.4.4. Fiz a cylinder function g, and a sequence of functions {Fy : N > 1}, Fy : N7'T¢, —
R such that 1
lim N Z Fn(z/N)? < .

N—oo ’
€T

Then, for any t > 0 and any sequence of probability measures {py : N > 1} on {0, 1}T5iv,
| [ 7 32 Aot ko) 0 ] =

Proof. Fix 0 < a < 1. By the entropy and Jensen inequalities, the expectation appearing in the statement
of the Lemma is bounded above by

Wlog]E,,a {exp {’y’ /O:isz Fn(z/N) {Tazg("?s) - }‘}} W’
z€TY,

for all v > 0. In view of (1.4.4), in order to prove the corollary it is enough to show that the first
term vanishes as IV 1 oo, and then € | 0, for every v > 0. We may remove the absolute value inside
the exponential by using the elementary inequalities e/*| < e® 4+ e~ and limpy 0o N~ log{an + by} <
max{limy o N~ 'logay, imy_,oo N~! logby}. Thus, to prove the corollary, it is enough to show that

T i o logEy, [exp {o / 453" Fx(e/N){rag(ne) — 5N @)} }] =0

e—=+0 N—oo
z€T4

for every v > 0.
By Feynman-Kac formula, for each fixed N the previous expression is bounded above by

rrswp [ 2 30 Ete/N)ragtn) = 507 @D v~ s I o

z€TY,

where the supremum is carried over all density functions f with respect to v,. Letting § = 1 in Lemma
1.4.3, we obtain that the previous expression is less than or equal to

Cot
ENOLI 3 [Fa(a/N)| + 3" Fn(z/N),

zeT% zeT%

C’ofyst
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for some finite constant Cy which depends on a, g and W. By assumption on the sequence {Fy},
for every v > 0, this expression vanishes as N 1 oo and then ¢ | 0. This concludes the proof of the
Lemma. [

1.5 Energy estimate

We prove in this section that any limit point Qy;, of the sequence QmN is concentrated on trajectories
p(t,u)du having finite energy. A more comprehensive treatment of energies can be found in [34].

Denote by 0., the partial derivative of a function with respect to the j-th coordinate, and by
C%1 ([0, T] x T?) the set of continuous functions with continuous partial derivative in the j-th coor-
dinate. Let L?cj@W, ([0, T] x T?) be the Hilbert space of measurable functions H : [0, 7] x T¢ — R such
that

T
/ ds/ d(z; @ W;) H(s,u)*> < oo,
0 T4

where d(x; ® W;) represents the product measure in T< obtained from Lesbegue’s measure in T¢~! and
the measure induced by W;:

d(IL'j ® WJ) = dz;... d:l?j_l dWJ dxj+1 ..o.dxg ,

endowed with the inner product (H,G)),,ow, defined by

(H, G ow, :/O dsAdd(xj®Wj)H(s7u)G(s,u).

W,N

Let Qjy be a limit point of the sequence Q.

W,N "
sequence Q> converges to Qf, .

and assume, without loss of generality, that the

Proposition 1.5.1. The measure Qfy, is concentrated on paths p(t,xz)dx with the property that for all
j=1,...,d there exists a function in Lij@Wj([O,T] x T4), denoted by d®/dW;, such that

T
/0 ds/Td dz (05, H)(s,z) ®(p(s,z)) =
_ / dS/d(ij®Wj(.’L’))(dq)/de)(87x)H(S7x)7
0 T

for all functions H in C%%i([0,T] x T).

The previous proposition follows from the next Lemma. Recall the definition of the constant K
given in (1.4.4).

Lemma 1.5.2. There exists a finite constant Ky, depending only on a, such that

Eqz,

sgp {/0 ds /Td dx (0., H)(s,x) ®(p(s,x))

e /OTds TdH(s,a:)Qd(a:j®Wj(x))H < K,

where the supremum is carried over all functions H € C%1([0,T] x T9).

Proof of Proposition 1.5.1. Denote by £ : C%%([0,T] x T%) — R the linear functional defined by

((H) = /0 ds /Td dx (0, H)(s,z) ®(p(s, x)) .
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Since C%1([0,7T] x T?) is dense in Lij®wj([0,T] x T9), by Lemma 1.5.2, £ is Qj-almost surely finite
in Lij@Wj([O,T] x T?). In particular, by Riesz representation theorem, there exists a function G in
L27®Wj([O,T] x T?) such that

T
o(H) = — /O s [ oy © Wy(a) His.2) Gls.z)

This concludes the proof of the proposition. O

For a smooth function H: T¢ = R, § > 0, ¢ > 0 and a positive integer N, define WZ{,(E, 0, H,n) by

WhEOH ) = 3 H/N)— {80 @) - 26V @+ eNey))}
weT%
DL HG/NP{W (s + N+ 1/N) ~ Wil /N)}
z€TY,

The proof of Lemma 1.5.2 relies on the following result:

Lemma 1.5.3. Consider a sequence {Hy, £ > 1} dense in C%1([0,T] x T?). For every k > 1, and every

e >0,
max{/ Wi (e,6, Hi(s,),n )ds}
1<i<k

Proof. Tt follows from the replacement lemma that in order to prove the Lemma we just need to show

lim lim E,~ < Kj .

d—0 N—oo

that
hmEN[max{/ W (e, Hi(s, ), n )ds}]SKo,
N—o00 1<i<k
where
; 1
Wi(e Hn) = —5 > H(w/N) {r29(n) = Tayene,9(n)}
z€TY,
K )
- N H(z/N){W;j([z; +eN +1]/N) = Wj(z;/N)}
zET%

and g(n) = n(0) + an(0)n(e;).
By the entropy and Jensen’s inequalities, for each fixed N, the previous expectation is bounded above

by
d 4 j
J . .
e"p{l%{N J e e )’””}H |

By (1.4.4), the first term is bounded by Kj. Since exp{maxi<;<y a;} is bounded above by >, ., exp{a;},

H(p" |va)

1
]Vd + jﬁﬁjlog]@y@

and since limy N—¢ log{an+bn} is less than or equal to the maximum oflimy N~ %logax and limy N~ ¢log by,
the limit, as N 1 oo, of the second term in the previous expression is less than or equal to

T
exp{Nd/O dsWi,(e,Hi(s,-),ns)}‘| )

We now prove that, for each fixed i, the above limit is non-positive for a convenient choice of the constant
K.

Fix 1 <1i < k. By Feynman—Kac formula and the variational formula for the largest eigenvalue of a
symmetric operator, the previous expression is bounded above by

1
1255, VI, g 108 e

/OT ds Sl;p{/WJ{f(€,Hi(Sv')an)f(n)va(dn) T (f)} 7
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for each fixed N. In this formula the supremum is taken over all probability densities f with respect to
Va.
To conclude the proof, rewrite

n(@)n(z +e;) —nx +eNej)n(e + (eN + 1))

n(@){n(z +e;) —n(x + (N +1)e;)} +n(z + (eN + Dej){n(z) —n(z +eNej)},

and repeat the arguments presented in the proof of Lemma 1.4.3. O

Proof of Lemma 1.5.2. Assume without loss of generality that QmN converges to Q. Consider a
sequence {Hy, £ > 1} dense in C%% ([0, 7] x T?). By Lemma 1.5.3, for every k > 1

Iim Eqg

5§—0 Wol1<i<k | €

T
_— {1 [ as [ awtis.) (2080 - i+ <)}
0 T

- I?/OTds AddxH¢(87$)2 [Wj($j+€)—Wj($j)]H < Ko,

where p®(z) = (ps * 15)(x) and ¢4 is the approximation of the identity ¢5(-) = (6)~¢1{[0, 5]¢}(-).
Letting ¢ | 0, changing variables, and then letting ¢ | 0, we obtain that

Eq:,

max {/OT ds Ad(aszi)(S,$)¢(p(S,x))dx

1<i<k
T

- Kl/ ds Hi(s,x)2d(xj®Wj(x))}1 < Kp .
0 Td

To conclude the proof, we apply the monotone convergence theorem, and recall that {H,, £ > 1} is a
dense sequence in C% ([0, T] x T?) for the norm ||H||o + [|(02, H)||oo- O
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Chapter 2

IW-Sobolev spaces: Theory,
Homogenization and Applications

The space of functions that admit differentiation in a weak sense has been widely studied in the mathe-
matical literature. The usage of such spaces provides a wide application to the theory of partial differential
equations (PDE), and to many other areas of pure and applied mathematics. These spaces have become
associated with the name of the late Russian mathematician S. L. Sobolev, although their origins predate
his major contributions to their development in the late 1930s. In theory of PDEs, the idea of Sobolev
space allows one to introduce the notion of weak solutions whose existence, uniqueness, regularities, and
well-posedness are based on tools of functional analysis.

In classical theory of PDEs, two important classes of equations are: elliptic and parabolic PDEs.
They are second-order PDEs, with some constraints (coerciveness) in the higher-order terms. The
elliptic equations typically model the flow of some chemical quantity within some region, whereas the
parabolic equations model the time evolution of such quantities. Consider the following particular classes
of elliptic and parabolic equations:

Opu(t,z) = 2?21 Or, 0z, u(t, ),

w(0.7) = g(x), (2.0.1)

d
Z@ziaziu(x):g(x), and {

for t € (0,T] and x € D, where D is some suitable domain, and g is a function. Sobolev spaces are the
natural environment to treat equations like (2.0.1) - an elegant exposition of this fact can be found in
[11].

Consider the following generalization of the above equations:

d —d
;&Uiﬁwiu(z): g(z), and {c’)tu(t,x)u(o%iagm(gv’viU(tvx), (2.0.2)

where Oy, stands for the generalized derivative operator, and for each i, W; is a one-dimensional strictly
increasing (not necessarily continuous) function, as in Chapter 1. Note that if W;(z;) = x;, we obtain
the equations in (2.0.1). This notion of generalized derivative has been studied by several authors in the
literature, see for instance, [8, 16, 25, 26, 27]. We also call attention to [8] since it provides a detailed
study of such notion. The equations in (2.0.2) have the same physical interpretation as the equations in
(2.0.1). However, the latter covers more general situations. For instance, [18] and chapter 1 argue that
these equations may be used to model a diffusion of particles within a region with membranes induced
by the discontinuities of the functions W;. Unfortunately, the standard Sobolev spaces are not suitable
for being used as the space of weak solutions of equations in the form of (2.0.2).

One of our goals in this work is to define and obtain some properties of a space, which we call W-
Sobolev space. This space lets us formalize a notion of weak generalized derivative in such a way that,
if a function is W-differentiable in the strong sense, it will also be differentiable in the weak sense, with
their derivatives coinciding. Moreover, the W-Sobolev space will coincide with the standard Sobolev
space if W;(x;) = x; for all 7. With this in mind, we will be able to define weak solutions of equations in
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(2.0.2). We will prove that there exist weak solutions for such equations, and also, for some cases, the
uniqueness of such weak solutions. Some analogous to classical results of Sobolev spaces are obtained,
such as Poincaré’s inequality and Rellich-Kondrachov’s compactness theorem.

Besides the treatment of elliptic and parabolic equations in terms of these W-Sobolev spaces, we are
also interested in studying Homogenization and Hydrodynamic Limits. The study of homogenization is
motivated by several applications in mechanics, physics, chemistry and engineering. For example, when
one studies the thermal or electric conductivity in heterogeneous materials, the macroscopic properties
of crystals or the structure of polymers, are typically described in terms of linear or non-linear PDEs for
medium with periodic or quasi-periodic structure, or, more generally, stochastic.

We will consider stochastic homogenization. In the stochastic context, several works on homogeniza-
tion of operators with random coefficients have been published (see, for instance, [30, 31] and references
therein). In homogenization theory, only the stationarity of such random field is used. The notion of
stationary random field is formulated in such a manner that it covers many objects of non-probabilistic
nature, e.g., operators with periodic or quasi-periodic coefficients.

The focus of our approach is to study the asymptotic behavior of effective coefficients for a family
of random difference schemes, whose coeflicients can be obtained by the discretization of random high-
contrast lattice structures. In this sense, we want to extend the theory of homogenization of random
operators developed in [31], as well as to prove its main Theorem (Theorem 2.16) to the context in which
we have weak generalized derivatives.

Lastly, as an application of all the theory developed for W-Sobolev spaces, elliptic operators, parabolic
equations and homogenization, we prove a hydrodynamic limit for a process with conductances in random
environments. Hydrodynamic limit for process with conductances have been obtained in [18] for the one-
dimensional setup and in Chapter 1 for the d-dimensional setup. However, with the tools developed in our
present Chapter, the proof of the hydrodynamic limit on a more general setup (in random environments)
turns out to be simpler and much more natural. Furthermore, the proof of this hydrodynamic limit also
provides an existence theorem for the generalized parabolic equations such as the one in (2.0.2).

The random environment we considered is governed by the coefficients of the discrete formulation of
the model (the process on the lattice). It is possible to obtain other formulations of random environments,
for instance, in [14] they proved a hydrodynamic limit for a gradient process with conductances in
a random environment whose randomness consists of the random choice of the conductances. The
hydrodynamic limit for a gradient process without conductances on the random environment we are
considering was proved in [20]. We would like to mention that in [13] a process evolving on a percolation
cluster (a lattice with some bonds removed randomly) was considered and the resulting process turned
out to be non-gradient. However, the homogenization tools facilitated the proof of the hydrodynamic
limit, which made the proof much simpler than the usual proof of hydrodynamic limit for non-gradient
processes (see for instance [23, Chapter 7).

We now describe the organization of the Chapter. In Section 2.1 we define the W-Sobolev spaces
and obtain some results, namely, approximation by smooth functions, Poincaré’s inequality, Rellich-
Kondrachov theorem (compact embedding), and a characterization of the dual of the WW-Sobolev spaces.
In Section 2.2 we define the W-generalized elliptic equations, and what we call by weak solutions. We
then obtain some energy estimates and use them together with Lax-Milgram’s theorem to conclude
results regarding existence, uniqueness and boundedness of such weak solutions. In Section 2.3 we
define the W-generalized parabolic equations, their weak solutions, and prove uniquenesses of these
weak solutions. Moreover, a notion of energy is also introduced in this Section. Section 2.4 consists in
obtaining discrete analogous results to the ones of the previous sections. This Section serves as preamble
for the subsequent sections. In Section 2.5 we define the random operators we are interested and obtain
homogenization results for them. Finally, Section 2.6 concludes the Chapter with an application that is
interesting for both probability and theoretical physics, which is the hydrodynamic limit for a process
in random environments with conductances. This application uses results from all the previous sections
and provides a proof for existence of weak solutions of W-generalized parabolic equations.

2.1 TW-Sobolev spaces

This Section is devoted to the definition and derivation of properties of the W-Sobolev spaces. We
begin by introducing some notation, stating some known results, and giving a precise definition of these
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spaces. Poincaré’s inequality, Rellich-Kondrachov theorem and a characterization of the dual space of
these Sobolev spaces are also obtained.
Fix a function W : R? — R as in Chapter 1:

M=~

W(xl,...,md)z Wk(xk),

k=1

where each Wy : R — R is a strictly increasing right continuous function with left limits (cadlag),
periodic in the sense that for all u € R

Wi(u+1) = Wi(u) = Wi(1) — Wi(0).

Let L2y, (T?) be the Hilbert space of measurable functions H : T¢ — R such that
/ d(z* @ Wy) H(z)? < oo,
Td

where d(z*® W}) represents the product measure in T¢ obtained from Lesbegue’s measure in T?~! and
the measure induced by Wy in T:

dz* @ Wy) = day---daxj_1 dWy, degyy - - - dag.

Denote by (H, G)kgw, the inner product of L2, (T9):

(H,G) prow, = /w d(z*® Wy) H(z) G(z) ,

and by || - [|zkgw, the norm induced by this inner product.
Recall the definition of the operator Ly : Dy, — L?(T?) given in (1.1.5).

Lemma 2.1.1. Let f,g € Dy, then fori=1,...,d,

/ (02, 0w, f(2))g(2) dx = —/ (Ow, [)(Ow, 9)d(z' @ Wy).
'H‘d ']I‘d
In particular,
d
[ L f@ata) do = -3 | own@wga o w.

Proof. Let f,g € Dy. By Fubini’s theorem

L f(@)gats = | [ [ s @lgtaris) as',

’]I‘d ’]I‘d,—l
where dz' is the Lebesgue product measure in T~! on the coordinates x1, ..., Ti_1, Tit1, - .., T4
An application of [18, Lemma 3.1 (b)] and again Fubini’s theorem concludes the proof of this Lemma.

O

Let Li@wj,o(’]rd) be the closed subspace of Li@wj (T?) consisting of the functions that have zero
mean with respect to the measure d(z? @ W;):

fd(z? @ W;) = 0.
Td
Finally, using the characterization of the functions in Dy, given in Proposition 1.1.1, and the defini-

tion of Dy, we have that the set {Ow,h; h € Dy} is dense in Li@who(’}rd).
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2.1.1 The W-Sobolev space

We define the Sobolev space of W-generalized derivatives as the space of functions g € L?(T?) such that
for each i = 1,...,d there exist fuctions G; € L2 (T9) satisfying the following integral by parts
identity.

QW;,0
/ (02, 0w, f) gdz = — / (Ow, f) Gid(z' @ W;), (2.1.1)
Td Td

for every function f € Dy,. We denote this space by H. 1w (T?). A standard measure-theoretic argument
allows one to prove that for each function g € fILW(Td) and ¢ = 1,...,d, we have a unique function
G, that satisfies (2.1.1). Note that Dy C Hy w (T¢). Moreover, if g € Dy then G; = dw,g. For this
reason for each function g € fIl,W we denote G; simply by dw, g, and we call it the ith generalized weak
derivative of the function g with respect to W.

Lemma 2.1.2. The set I:ILW(']I‘d) is a Hilbert space with respect to the inner product

d
anw = (.00 + Y [ 0w ) Owig) da' W) (2:12)

Proof. Let (gn)nen be a Cauchy sequence in H; 1 (T%), and denote by || - ||1.w the norm induced by
the inner product (2.1.2). By the definition of the norm || - ||1,w, we obtain that (g, )nen is a Cauchy

sequence in L%(T?) and that (Ow,gn)nen is a Cauchy sequence in Lii@)wi o(T?) for each i = 1,...,d.
Therefore, there exist functions g € L?(T?) and G; € Li,.@W,_ o(T?) such that g = lim,—ec gn, and

G, = limy_, 00 Ow, gn. It remains to be proved that G; is, in fact, the ith generalized weak derivative of
g with respect to W. But this follows from a simple calculation: for each f € Dy we have

/d (awiawif)gdx = lim ] (&Cﬁwif)gndx
T

n—oo T

= —lim [ (0w, f)(Ow,g)d(z'® W)

n— oo Td
=~ [ OwnGdate W),
Td

where we used Holder’s inequality to pass the limit through the integral sign. O

2.1.2 Approximation by smooth functions and the energetic space

We will now obtain approximation of functions in the Sobolev space H LW(Td) by functions in Dyy. Note
that the functions in Dy can be seen as smooth, in the sense that one may apply the operator Ly, to
these functions in the strong sense.

Let us introduce (-, -)1,w the inner product on Dy, defined by

<fvg>1,W = <fvg> + <_Lvag>7 (2~1~3)

and note that by Lemma 2.1.1,

d
Fahw = g + 3 [ OwhOwa)i's W),
=1 )

Let Hy w(T) be the set of all functions f in L2(T?) for which there exists a sequence (fy,)nen in Dy
such that f,, converges to f in L?(T?) and f,, is a Cauchy sequence for the inner product (-, )1 1. Such
sequence (fp)nen is called admissible for f.

For f, g in Hy w(T%), define

(frohw = T (fo,gn)1w (2.1.4)

where (fn)nen, (gn)nen are admissible sequences for f, and g, respectively. By [40, Proposition 5.3.3],
this limit exists and does not depend on the admissible sequence chosen; the set Dy is dense in Hy w;
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and the embedding Hy 1 C L%(T?) is continuous. Moreover, Hy iy-(T?) endowed with the inner product
(-, )1,w just defined is a Hilbert space. Denote |||,  the norm in Hy w induced by (-, -)1,w. The space
Hyw(T9) is called energetic space. For more details on the theory of energetic spaces see [40, Chapter
5].

Note that H; v is the space of functions that can be approximated by functions in Dy, with respect
to the norm || - [|1,w. The following Proposition shows that this space is, in fact, the Sobolev space
Hyw (T9).

Proposition 2.1.3 (Approximation by smooth functions). We have the equality of the sets
Hyw (T%) = Hy w(T?).
In particular, we can approximate any function f in the Sobolev space I:ILW(’]I‘d) by functions in Dyy .

Proof. Fix g € Hy w(T?). By definition, there exists a sequence g,, in Dy such that g,, converges to g in
L?*(T9) and g, is Cauchy for the inner product (-,-); w. So, for each i = 1,...,d there exists functions
G; € L?:l‘@Wi,o(Td) such that dw, g, converges to G; in Lii@)wi,o(’ﬂ‘d)‘ Applying the Holder’s inequality,
we deduce that for every f € Dy

/d (aziawif)g dxr = lim (axﬁwif)gn dx.
T

n— oo Td

By Lemma 2.1.1, we obtain

lim (amiawi f)gndx = lim (Ow, ) (Ow, gn) d(xi@) Wi)

n—00 [mrd n—0o0 Jrd
= —/ (0w, )Gy d(z'® Wy).
Td

Then, g € Hy w(T%) and therefore Hy w(T%) C Hy w (T9).

We will now prove that Hj y (T9) is dense in fILW(']I‘d), and since both of them are complete, they
are equal. Note that since Dy is dense in L?(T%) and Dy, C Hy w (T?), we have that Hy w (T?) is also
dense in L?(T%).

Therefore, given a function g € Hy w (T?), we can approximate g by a sequence of functions (f,)nen
in Hy w (T?) with respect to the L?(T?) norm. Let F;,, be the ith generalized weak derivative of f,, with
respect to W. We have, therefore, for each h € Dy

lim [ (9w, h)(Fin — Gi)d(z'®@ W;) = — lim (9,0w, 1) (fr — g)dz = 0.

n—oo Td n—oo Td

Denote by F; p : Lii@Wi’O(Td) — R the sequence of bounded linear functionals induced by F; ,, — G;:
Fl,n(h) = / h[Fz,n - Gz]d(1'2® Wz),
Td

for h € Li@m o(T%). We then note that, since the set {9w,h;h € Dy} is dense in Li@m o(TH), Fin
converges to 0 pointwisely. By Banach-Steinhaus’ Theorem, F; ,, converges strongly to 0, and, thus, F; ,
converges to G; in Liz@w, o(T%), for each i = 1,...,d. Therefore, f, converges to g in L?(T%) and dw, f,,

converges to G; in Li@Wi_O (T?) for each 4, i.e., f, converges to g with the norm || - ||1,w, and the density

of Hy w(T?) in Hy w(T?) follows. O

The next Corollary shows an analogous of the classic result for Sobolev spaces with dimension d = 1,
which states that every function in the one-dimensional Sobolev space is absolutely continuous.

Corollary 2.1.4. A function f in L*(T) belongs to the Sobolev space f{LW(T) if and only if there exists
F in L?,(T) and a finite constant ¢ such that

Fy)dW(y) = 0 and f(z) = ¢ + / Fy) dW (y)

(0,1] (0,z]

Lebesgue almost surely.
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Proof. In [18] the energetic extension Hi w (T) has the characterization given in Corollary 2.1.4. By
Proposition 2.1.3 we have that these spaces coincide, and hence the proof follows. O

From Proposition 2.1.3, we may use the notation Hj yw (T¢) for the Sobolev space fIl)W(Td). Another
interesting feature we have on this space, which is very useful in the study of elliptic equations, is the
Poincaré inequality:

Corollary 2.1.5 (Poincaré Inequality). For all f € Hy w(T?) there exists a finite constant C such that

oz/ (0w, 1)? d(z'® W)

= ClIVwilliz ra).

2

IN

o[

L2(T4)

Proof. We begin by introducing some notations. For 2,y € T¢, i =0,...,d and t € T, denote

2(2,9,4) = (T1, -y Ta—i, Ya—it1s - -, Ya) € T?

and
Z(Z’,y,t,i) = (331; e axd—iytayd—i+27- .. 7yd) S Td-

With this notation, we may write f(z) — f(y) as the telescopic sum

d

f@) = fy) = fa(@,yi— 1) = f(z(2,,1).

i=1

We are now in conditions to prove this Lemma. Let f € Dy, then
d 2al
s [ s \LW) L UL s@ = i) @
2
_ / [ / Z / O, T (=(. ., ))dWi(1)dy] " dx
Td Td i=1 Yi

S/W [/Tdi:/T‘8Wif(z($7y,t,i))‘dWi(t)dyrdx
d
<[] ..
d
o[/

- Cg/m (awif)zd(xi@@ Wi),

where in the next-to-last inequality, we used Jensen’s inequality and the elementary inequality (>, 7;)? <
c>, x? for some positive constant C. To conclude the proof, one uses Proposition 2.1.3 to approximate
functions in Hy w (T¢) by functions in Dy O

2
awif(z(ﬂ%y,t,i))‘de—i(t)Q@ Yi—i+1® - -Q yq| dx

2
ow, f(z(z,y,t, i))‘ AWq—_i(t)® dyq—i+1® - - - @ dyqdx

2.1.3 A Rellich-Kondrachov theorem

In this subsection we prove an analogous of the Rellich-Kondrachov theorem for the W-Sobolev spaces.
We begin by stating this result in dimension 1, whose proof can be found in [18, Lemma 3.3].

Lemma 2.1.6. Fiz some k € {1,...,d}. The embedding Hy w, (T) C L*(T) is compact.

Recall that they proved this result for the energetic extension, but in view of Proposition 2.1.3, this
result holds for our Sobolev space Hi w, (T).
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Proposition 2.1.7 (Rellich-Kondrachov). The embedding Hy w (T9) C L2(T?) is compact.

Proof. We will outline the strategy of the proof. Using the definition of the set Dy, and the fact that it
is dense in H LW(']I‘d), it is enough to show this fact for sequences in Dy,. From this point, the main tool
is Lemma 2.1.6 and Cantor’s diagonal method to obtain converging subsequences.

We begin by noting that by Proposition 2.1.3, it is enough to prove that the embed Dy, C L?(T9) is
compact.

Let C' > 0 and consider a sequence (vp)nen in Dy, with ||v,|l1,w < C for all n € N. We have, by
definition of Dy (see the definition at the beginning of Section 2.1), that each v, can be expressed as a
finite linear combination of elements in Ay,. Furthermore, each element in Ay, is a product of elements

in Ay, for k =1,...,d. Therefore, we can write v,, as
N(n) d N(n)
J— n n J— n_ n
on=>_ o L ai; = 3 ajl
j=1 k=1 j=1

where g ; € Aw,,af € R, g7 = szl g7k and N(n) is chosen such that N(n) > n (we can complete
with zeros if necessary). Recall that these functions g’ ; have ||gy; ;|| z2(r) = 1, and hence, [|g} || z2(ray = 1.
Moreover, the set {g, ... ,g]’i,(n)} is orthogonal in L2(T%).

From orthogonality, we obtain that

N(n)
Z (a?)? < C?, uniformly in n € N.

i) =
Jj=1

Note that the uniform boundedness of v,, in Hy i (T?) implies the uniform boundedness of || i il wis
forallk=1,...,d,j=1,...,N(n) and n € N. Our goal now is to apply Lemma 2.1.6 to our current
setup.

Consider the sequence of functions afg7'; in Hy w,(T). By Lemma 2.1.6, this sequence has a con-
verging subsequence, and we call the limit point o;¢1,1. Repeat this step d — 1 times for the sequences
g1 in Hiw, (T), for k =2,...,d, considering in each step a subsequence of the previous step, to obtain
converging subsequences, and call their limit points g; 1. At the end of this procedure, we obtain a
converging subsequence of ngl ot gy, With limit point HZ:1 191, € L?(T?), which we will denote by
Q1g1-

In the jth step, in which we want to obtain the limit point «;g;, we repeat the previous idea, with the
sequences a7 g;'y and 95 ko> withn < jand k= 2,...,d. We note that it is always necessary to consider
a subsequence of all the previous steps.

This procedure provides limiting functions g, for all j € N. From now on, we use the notation v,
to mean the diagonal sequence obtained to ensure the convergence of the functions a7 gj' to a;g;. We
claim that the function -

v = Z a;4g;
j=1

is well-defined and belongs to L2(T%). To prove this claim, note that the set {gx }xen is orthonormal by
the continuity of the inner product. Suppose that there exists N € N such that

Z(aj)Q > 2,

N
Jj=1

We have that the sequence of functions
N

N . _ n.n
v, = E ajg;
j=1
converges to

N

N._E: 0

v o= Q;g;.
j=1
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Since |[vY|| < C uniformly in n € N, this yields a contradiction. Therefore v € L?(T¢) with the bound
ol < C.

It remains to be proved that v, has a subsequence that converges to v. Choose N so large that
lo— oM < €/3, | —vN| < €/3 and ||[vY — v,|| < €/3, and use the triangle inequality to conclude the
proof.

O

2.1.4 The space Hy'(T?)

Let H,;'(T¢) be the dual space to Hy w (T%), that is, Hy,'(T?) is the set of bounded linear functionals
on Hl)W(Td). Our objective in this subsection is to characterize the elements of this space. This proof
is based on the characterization of the dual of the standard Sobolev space in R? (see [11]).

We will write (-, -) to denote the pairing between Hyy' (T9) and Hy w (T?).

Lemma 2.1.8. f € H;VI(']I‘d) if and only if there exist functions fo € L*(T9), and fi, € Li@wk O(']I‘d),
such that .,
f=1f=Y 0uti (2.1.5)
i=1

in the sense that for v € Hy w (T?)

d
(Fo) = [ fwda+ 3 [ powdate W),
T oJr
Furthermore,

d 1/2
|| fll -2 = inf </ Z |fi|2dx> ;[ satisfies (2.1.5)
w Td

=0

Proof. Let f € H;Vl (T%). Applying the Riesz Representation Theorem, we deduce the existence of a
unique function u € Hy yw (T9) satisfying (f,v) = (u,v)1 w, for all v € Hy y (T?), that is

d
/ uvdx + Z/ (0w, ) (Ow,v)d(z! @ W;) = (f,v), forall ve Hyw(T?). (2.1.6)
Td ]_1 Td

This establishes the first claim of the Lemma for fo =w and f; = Ow,u, fori=1,...,d.
Assume now that f € H,;'(T%),

d
(Fo) = [ awde+ Y [ s ), (2.1.7)

for go,91,.-.,94 € Lia@vvj o(T%). Setting v = w in (2.1.6), using (2.1.7), and applying the Cauchy-
Schwartz inequality twice, we deduce

d
lul2 4w < /T R+ /T O g2 W), (2.1.8)
=1

From (2.1.6) it follows that
(o) < Nullw

if ||v]j1,w < 1. Consequently
e <l

Setting v = u/||lul|1,w in (2.1.6), we deduce that, in fact,

||f||H;V1 = |lu 1L,w-

The result now follows from the above expression and equation (2.1.8). O
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2.2 TW-Generalized elliptic equations

This subsection investigates the solvability of uniformly elliptic generalized partial differential equations
defined below. Energy methods within Sobolev spaces are, essentially, the techniques exploited.
Let A = (as(2))axa, z € T¢, be a diagonal matrix function such that there exists a constant § > 0
satisfying
671 < ay(x) <6, (2.2.1)

for every z € T? and i = 1,...,d. To keep notation simple, we write a;(x) to mean a;;(x).
Our interest lies on the study of the problem

Thu=f, (2.2.2)

where u : T¢ — R is the unknown function and f : T¢ — R is given. Here T denotes the generalized
elliptic operator

d
Tyu := M — VAVyu = \u— Z O, (ai(:r:)awiu). (2.2.3)
i=1
The bilinear form B[, -] associated with the elliptic operator T) is given by
d
Blu,v] = Mu,v) + / ai () (Bw,u) (Ow,v) d(W; @ z;), (2.2.4)
i=1

where u,v € Hyw T9).
Let f € Hyp'(T4). A function u € Hy 1w (T9) is said to be a weak solution of the equation Thu = f if

Blu,v] = (f,v) for all v € Hy w(T?).

Recall a classic result from linear functional analysis, which provides in certain circumstances the
existence and uniqueness of weak solutions of our problem, and whose proof can be found, for instance,
in [11]. Let H be a Hilbert space endowed with inner product <-,-> and norm ||| - |||. Also, (-,-) denotes
the pairing of H with its dual space.

Theorem 2.2.1 (Lax-Milgram Theorem). Assume that B: H xH — R is a bilinear mapping on Hilbert
space H, for which there exist constants a > 0 and 5 > 0 such that for all u,v € H,

| Blu,v]| < all[ull| - 0] and Blu,u] > B[ull*

Let f: H — R be a bounded linear functional on H. Then there exists a unique element u € H such
that

Blu, v} = (f,v),
for allv e H.

Return now to the specific bilinear form B[, -] defined in (2.2.4). Our goal now is to verify the
hypothesis of Lax-Milgram Theorem for our setup. We consider the cases A = 0 and A > 0 separately.
We begin by analyzing the case in which A = 0.

Let Hf:W (T?) be the set of functions in H; y (T?) which are orthogonal to the constant functions:

Hll,W(Td) = {f€H1,W(Td);/Tdfdw:0}.

The space H 1L’W(']I“d) is the natural environment to treat elliptic operators with Neumann condition.

Proposition 2.2.2 (Energy estimates for A = 0). Let B be the bilinear form on Hiy w(T%) defined in
(2.2.4) with A = 0. There exist constants o > 0 and 8 > 0 such that for all u,v € Hy w(T?),

| Blu, v]| < allu

w llollLw

and for all v € Hﬁw
Blu, u) > Bllull{ -
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Proof. By (2.2.1), the computation of the upper bound « easily follows. For the lower bound £, we have
for u € Hiyy (T?),

d .
||u||%w = /Td u? dx + Z/Td (8W71U) d(z' @ Wy).
i—1

Using Poincaré’s inequality and (2.2.1), we obtain a constant C' > 0 such that the previous expression is
bounded above by

2 .
C <8Wiu) d(z* @ W;) < CBlu,u.
’]I‘d

The lemma follows from the previous estimates. O

Corollary 2.2.3. Let f € L*(T%). There exists a weak solution u € Hy w (T%) for the equation
VAVwyu = f (2.2.5)

if and only if

fdx = 0.
Td
In this case, we have uniquenesses of the weak solutions if we disregard addition by constant functions.
Also, let u be the unique weak solution of (2.2.5) in HfW(Td). Then

ull,w < CHf”Lz('JI‘d)»
for some constant C independent of f.
Proof. Suppose that there exists a weak solution u € Hi w (T%) of (2.2.5). Since the function v =1 €
Hy w(T?), we have by definition of weak solution that
fdx = Blu,v] = 0.

Td

Now, let f € L*(T%) with [i, fdz = 0. Consider the bilinear form B, defined in (2.2.4) with A = 0,
on the Hilbert space H f:W(']I‘d). By Proposition 2.2.2, B satisfies the hypothesis of the Lax-Milgram’s
Theorem. Further, f defines the bounded linear functional in HﬁW(Td) given by (f,g9) = (f,g) for
every g € H f:W (T?). Then, an application of Lax-Milgram’s Theorem yields that there exists a unique
u € Hiy, (T?) such that

Blu,v] = (f,v) for allv € HfjW(']I‘d).

Moreover, by Proposition 2.2.2, there is a 8 > 0 such that
5||UH%W < Blu,u] = (f,u) < ||fHL2(Td)||U||L2(W) < Hf”L?(Td)Hu”LW'

The existence of weak solutions and the bound C in the statement of the Corollary follows from the
previous expression. O

We now analyze the case in which A > 0.

Proposition 2.2.4 (Energy estimates for A > 0). Let f € L?(T%). There erists a unique weak solution
u € Hyw(T?) for the equation
A — VAVyu = f, A>0. (2.2.6)

This solution enjoys the following bounds

lulliw < Cllfllz2 (e

for some constant C > 0 independent of f, and

lull < ATHFllz2(re)-
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Proof. Let 8 = min{\, 07} > 0 and a = maz{\,0} < oo, where 0 is given in (2.2.1). An elementary
computation shows that

Blu,v]| < allulls,w [[vlliw and  Blu,u] > Bllull? -
By Lax-Milgram’s Theorem, there exists a unique solution u € Hy w (T?) of (2.2.6). Note that

Bllulll w < Blu,u] = (f,u) < |fllzecra) lullzecray < [1Fllzzcrayllullw,

and therefore |[ull1w < C| f|L2(rey for some constant C' > 0 independent of f. The computation to
obtain the other bound is analogous. O

Remark 2.2.5. Let ]L‘;‘V : Dy — L2(T%) be given by LA = VAV . This operator has the properties
stated in Theorem 1.1.2. We now outline the main steps to prove it. We may prove an analogous of
Lemma 1.2.2 for the operator IL‘;‘V. Using the bounds on the diagonal matriz A and Proposition 2.1.7
(Rellich-Kondrachov), we conclude that the energetic extension of the space induced by this operator has
compact embedding in L?(T?). The previous results together with [39, Theorems 5.5.a and 5.5.c] implies
that L"j‘v has a self-adjoint extension E{?V, which is dissipative and non-positive, and its eigenvectors form
a complete orthonormal set in L?>(T%). Furthermore, the set of eigenvalues of this extension is countable
and its elements can be ordered resulting in a non-increasing sequence that tends to —oo.

Remark 2.2.6. Let E{j‘v be the self-adjoint extension given in Remark 2.2.5, and D{j‘v its domain. For
A > 0 the operator Al — E"j‘v : Dw — L*(T%) is bijective. Therefore, the equation

Au— VAVwu = f,

has strong solution in Dy if and only if f € (Ml — L{},)(Dw ), where 1 is the identity operator and
(AL — L) (Dyw) stands for the range of Dy under the operator Nl — Li3,. Moreover, this strong solution
coincides with the weak solution obtained in Proposition 2.2.4.

2.3 W-Generalized parabolic equations

In this Section, we study a class of W-generalized PDEs that involves time: the parabolic equations. The
parabolic equations are often used to describe in physical applications the time-evolution of the density
of some quantity, say a chemical concentration within a region. The motivation of this generalization
is to enlarge the possibility of such applications, for instance, these equations may be used to model a
diffusion of particles within a region with membranes (see Chapter 1 and [18]).

We begin by introducing the class of W-generalized parabolic equations we are interested. Then,
we define what is meant by weak solution of such equations, using the W-Sobolev spaces, and prove
uniquenesses of these weak solutions. In Section 2.6, we obtain existence of weak solutions of these
equations.

Fix T > 0 and let (B, || - ||g) be a Banach space. We denote by L2([0,T], B) the Banach space of
measurable functions U : [0,T] — B for which

T
IO1NZz 0,71, :/O U |35t < oo

Let A = A(t,z) be a diagonal matrix satisfying the ellipticity condition (2.2.1) for all ¢ € [0,T],
® : [I,r] = R be a continuously differentiable function such that

B! < ®'(z) < B,
for all z, where B > 0, [, € R are constants. We will consider the equation

{ Opu = VAV ®(u) in (0,7] x T,

u=r in {0} x T<. (2.3.1)

where u : [0,T] x T% — R is the unknown function and 7 : T — R is given.

We say that a function p = p(t, x) is a weak solution of the problem (2.3.1) if:
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e For every H € Dy the following integral identity holds

/Td/)(t,x)H(x)da:—/ dx—/ /w p(s,x)) VAV H(z)dz ds

e ®(p(,+)) and p(-,-) belong to L2([0,T], Hy w (T4)):

T
1905 2y + 17w R, ) ey s <

and

T
s,y + 19wl )23 ey s < .
0

Consider the energy in jth direction of a function u(s,x) as

Q;(u) = sup {2 / : /Tr (0, 0w, H)(5,0) u(s, 2)d ds

HeDw
T .
- [ as [ oG oPa@ o W)},
0 Td

and the total energy of a function u(s,z) as

Qu) = Q;(u).

The notion of energy is important in probability theory and is often used in large deviations of Markov
processes. We also use this notion to prove the hydrodynamic limit in Section 2.6. The following lemma
shows the connection between the functions of finite energy and functions in the Sobolev space.

Lemma 2.3.1. A functionu € L*([0, T, L?>(T%)) has finite energy if and only if u belongs to L*([0, T, Hy w (T%)).
In the case the energy is finite, we have

T
0(w) = [ VWl eyt

Proof. Consider functions U € L%([0, 7], L§7®W O(Td)) as trajectories in L2 TiBW, 0(']1“1)7 that is, consider
a trajectory U : [0,T] — Li@w 0("JI“d) and define U(s,x) as U(s,x) := [U(9)](z).

Let u € L*([0,7], L*(T?)) and recall that the set {Ow, H; H € Dy} is dense in Lm@w ofT 4). Then
the set {Ow, H (s, z); H € L*([0,T],Dw)} is dense in L*([0, 7], Li@W ofT 1)). Suppose that u has finite

energy, and let H € L?([0,T], Dy ), then

Fi(Ow,H) :/0 Ad(amjaij)(s,x) u(s, z)dx ds

is a bounded linear functional in L?([0, 77, L? (T?)). Consequently, by Riesz’s representation theo-

zIQW;,0
rem, there exists a function G; € L?([0,T], Li@w O(Td)) such that
Fi(ow, H / (Ow, H Gj(s,z)dz ds,
Td

for all H € L*([0,T],Dw).
From the uniqueness of the generalized weak derivative, we have that G;(s,z) = —0w,u(s, ).
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Now, suppose u belongs to L%([0,T], H; w(T%)) and let H € L?([0,T],Dy ). Then, we have
/ /TdﬁhawH (s,z)u sxdxds—/ ds » (9Wst) d(zI @ W;) =
—2/0 [ o, H(s.2)0w,u(s. )@ W) / [ (0w, 1, )2 d(z) © W)
We can rewrite the right-hand side of the above expression as

_2<8Wj f[7 28Wju + 8Wj H>mj®Wj . (2.3.2)

A simple calculation shows that, for a Hilbert space H with inner product <-,->, the following
inequality holds:

1
— <v,u+v>< 1 <u, u>,

for all u,v € H, and we have equality only when v = —1/2u.
Therefore, by the previous estimates and (2.3.2)

/ / (02, 0w, H) (s, ) u sxdmds—/ ds awHSI) (xJ®W)
Td
/ (Ow,u(s, z) (x] ®@ W;).
’]I‘d
By the definition of energy, we have for each j =1,...,d,
T ) A
u) < / (awju(s,:v)) d(z? @ W;).
0 JTd )

Hence, the total energy is finite. Using the fact that L2([0,T], Dy ) is dense in L?([0,T], Hy w (T%)), we
have that

Q(u)

T
S [ 1wl
j=1

T
/0 ||VWU||2L5V(Td)dt~

2.3.1 Uniqueness of weak solutions of the parabolic equation

Recall that we denote by (-, -) the inner product of the Hilbert space L?(T%). Fix H,G € L*(T%), A > 0,
and denote by Hy and G in H LW(Td) the unique weak solutions of the elliptic equations

NHy — VAV Hy = H,

and
MG\ — VAV Gy =G,

respectively. Then, we have the following symmetry property
(G, H) = (G, Hy).

In fact, both terms in the previous equality are equal to

/ H\G +Zaﬂ/ (O, Hy) (@, G (a7  TV).
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Let p : Ry x T — [l,7] be a weak solution of the parabolic equation (2.3.1). Since p, ®(p) €
L%([0,T), Hy w(T%)), and the set Dy is dense in Hy  (T?), we have for every H in Hy w (T9),

d t
(pusH) = (H) == Y a [ (0w, Do), 0w, Hsow, ds (2:3.3)
=1 70
for all t > 0.
Denote by p} € Hyw (T?) the unique weak solution of the elliptic equation
APy — VAV ) = p(s,). (2.3.4)
We claim that
d t
(Pt PtA> — {po, P())\> = 7220']']'/0 <8qu)(ps)a aij2\>Ij®W]‘ ds (2.3.5)
=1

for all ¢ > 0.
To prove this claim, fix ¢ > 0 and consider a partition 0 = tg < t; < --- < t, = t of the interval [0, ¢].
Using the telescopic sum, we obtain
n—1

<pt7 p?) - <p07 PS> = Z<ptk+1 ; pi\k+1> - <ptk:+1 ’ pi\k>
k=0

n—1

+ Y bt ) — (o o) -
k=0

We handle the first term, the second one being similar. From the symmetric property of the weak
solutions, p;\kH belongs to Hy w (T¢) and since p is a weak solution of (2.3.1),

d tht1
<ptk+1 ) pt)\k+1> - <ptk+1 ) pi\k> = - Zajj/ <3WJ(I)(pS) ) aiji\k+1> ds .
=1 b

Add and subtract (9w, ®(ps), Ow,p2) inside the integral on the right hand side of the above expression.
The time integral of this term is exactly the expression announced in (2.3.5) and the remainder is given
by

d te41
Soai [ {0w, 80 Owpd) — @, 200.). O, ) s
j=1 b

Since p? is the unique weak solution of the elliptic equation (2.3.4), and the weak solution has the
symmetric property, we may rewrite the previous difference as

(®(ps) Prags) — (B(ps), ps) p — A(@(p), prr) — (@(p)™, ps) | -
{ b= J

The time integral between t; and tx41 of the second term is equal to

tht1 tht1
A as [ w00 o 000 dr
tk S

because p is a weak solution of (2.3.1) and ®(ps) belongs to Hy w (T?). It follows from the boundedness
of the weak solution given in Proposition 2.2.4 and from the boundedness of the Li@wj (T¢) norm of
dw, ®(p) obtained in expression (2.3.3), that this expression is of order (tg41 — t)?.

To conclude the proof of claim (2.3.5) it remains to be shown that

Tf/:kﬂ{(‘l’(f)s),ptkﬂ) - <¢)(ps)7p3>}d8

k=0
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vanishes as the mesh of the partition tends to 0. Using, again, the fact that p is a weak solution, we may
rewrite the sum as

n—1 .t th+1
— Z/ ds/ (Ow,; @(ps) , Ow,; (p;)) dr .
k=0"1 s

k

We have that this expression vanishes as the mesh of the partition tends to 0 from the boundedness

of the Li@wj (T%) norm of Ay, ®(p). This proves (2.3.5).

Recall the definition of the constant B given at the beginning of this Section.

Lemma 2.3.2. Fiz \ > 0, two density profiles v*, v2 : T — [I, 7] and denote by p', p? weak solutions of
(2.3.1) with initial value v, v2, respectively. Then,

<pt1 —pi, ot = pf’h> < <71 — 2, A = 7”> BN/
for allt > 0. In particular, there exists at most one weak solution of (2.3.1).
Proof. We begin by showing that if there exists A > 0 such that
(H,H*) =0,
then H = 0. In fact, we would have the following
d
/w NHM?dz + Zajj/ (aWjHA)2 d(z? @ W;) = s HH*dx = 0,

j=1 T

which implies that ||H)\HH1,W(W) =0, and hence Hy = 0, which yields H = 0.
Fix two density profiles 4!, ¥2 : T¢ — [I,7]. Let p!, p? be two weak solutions with initial values !,
42, respectively. By (2.3.5), for any A > 0,

<pt1*ﬂ?,pi’A*pf’A>*<71*72,7“*v“> = 236
t t e
2 [3(@(p) = @(p2), ol — p2)ds + 27 [y (@(p1) = D(p2), pi* = p2*) ds

Define the inner product in H; y (T%)

(u,v)) = <u,11)‘>.

This is, in fact, an inner product, since (u,v)y = (v,u)) by the symmetric property, and if v # 0, then
(u,u)y > 0:

d
/ uuAda::/\/ uidm—l—Zaﬁ/ (6Wju>\)2d(xj® W;).
T4 T4 = T4

The linearity of this inner product can be easily verified.
Then, we have

t t
2) / (B(p}) = @(p2), p* = p2) ds = 2 / (®(p}) — @(p2), pl — p?) ds.
0 0 A

By using the Cauchy-Schwartz inequality twice, the term on the right hand side of the above formula
is bounded above by

1 t t
[ (B = @) @l — w2 s + A [ (g gk g ) ds
A 0 0

for every A > 0. From Proposition 2.2.4, we have that |[u*|| < A7!||u||, and since ®’ is bounded by B,
the first term of the previous expression is less than or equal to
B t

b 12 1y 2
), <ps ps > 2(p;) ‘P(ps)>d8-
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Choosing A = B/2\, this expression cancels with the first term on the right hand side of (2.3.6). In
particular, the left hand side of this formula is bounded by

BX [*
7/ <Pi —p2, pi — p?’)‘>ds :
0
To conclude, recall Gronwall’s inequality. O

Remark 2.3.3. Let Ef}v : Dw — L2(T) be the self-adjoint extension given in Remark 2.2.5. For A\ > 0,
define the resolvent operator G§ = (Al — L#},)~1. Following the Chapter 1 and [18], another possible
definition of weak solution of equation (2.3.1) is given as follows: a bounded function p : [0, T]xT¢ — [I, 7]
is said to be a weak solution of the parabolic differential equation (2.3.1) if

(oG = (.G = [ (@(p). LG ds (2.3.7)

for every continuous function h: T¢ — R, t € [0,T], and all A\ > 0. We claim that this definition of weak
solution coincides with our definition introduced at the beginning of Section 2.3. Indeed, for continuous
h:T¢ R, th belongs to Dy . Since Dy is dense in Dy, with respect to the Hllw(Td)-norm, it follows
that our definition implies the current definition. Conversely, since the set of continuous functions is
dense in L?(T9), the identity (2.3.7) is valid for all h € L*(T?). Therefore, for each H € Dy we have

<%m—mm=4@%mmw&

In particular, the above identity holds for every H € Dy, and therefore the integral identity in our
definition of weak solutions holds.

It remains to be checked that the weak solution of the current definition belongs to L*([0, T, H1,w (T<)).
This follows from the fact that there exists at most one weak solution satisfying (2.3.7), that this unique
solution has finite energy, and from Lemma 2.5.1. A proof of the fact that there exists at most one
solution satisfying (2.3.7), and that this unique solution has finite energy, can be found in [18].

Finally, the integral identity of our definition of weak solution has an advantage regarding the integral
identity (2.3.7), due to the fact that we do not need the resolvent operator Gf for any \. Moreover, we
have an explicit characterization of our test functions.

2.4 W-Generalized Sobolev spaces: Discrete version

We will now establish some of the results obtained in the above sections to the discrete version of the
W-Sobolev space. Our motivation to obtain these results is that they will be useful when studying
homogenization in Section 2.5. We begin by introducing some definitions and notations.

Fix W as in (1.1.1) and functions f, g defined on N~'T%. Consider the following difference operators:
8916\27 which is the standard difference operator,

ni(5) =~ |1 (552) - (5)]

and G%j, which is the Wj-difference operator:

N Ty _ f(
6ij(ﬁ) o W(m—ej)_W(%)’
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for z € T%. We introduce the following scalar product

oo = a3 S

I€Td

(9w, =Ni S F@g(@) (Wl + ) /N) = W(a/N)),

M-

<f7g>1,W,N = <f7g>N +

<6V]\[i'jf7 81]/Vng>Wj,Na

and its induced norms
Hf||2L2(T"N) = <f’ f>N7 ||f||2L%V(’]I“’N) = <f’ f>Wj7N and ||fH?—I1W(T}i\,) = <f7f>17W7N'

These norms are natural discretizations of the norms introduced in the previous sections. Note
that the properties of the Lebesgue’s measure used in the proof of Corollary 2.1.5, also holds for the
normalized counting measure. Therefore, we may use the same arguments of this Corollary to prove its
discrete version.

Lemma 2.4.1 (Discrete Poincaré Inequality). There exists a finite constant C' such that

1
- N Z f < CHV{/VVfHL%V(T;iV)

Td
2t llLa g

where 4
||VWingV(T§V) =3 ||3v]\1;jf||2L§V (T4
j=1

for all f: N7'T% — R.
Let A be a diagonal matrix satisfying (2.2.1). We are interested in studying the problem
TNu=f, (2.4.1)

where u : N *1'11“]1\, — R is the unknown function, f : N ’1']I“11V — R is given, and T){V denotes the discrete
generalized elliptic operator
TV = \u— VN AV, (2.4.2)

with
VN AV u = Z@ (a, (z/N)oyy, u)
The bilinear form B[, ] associated with the elliptic operator T}V is given by
BNu,v] = Mu,v)n +
+ 5= Lt perd, @@/ N) (O, w) (9, 0)[Wil(2: + 1)/N) = Wi /N)],

where u,v : N71T¢, — R.
A function u : N™!T% — R is said to be a weak solution of the equation TNu=f if

BNu,v] = (f,v)n forall v: N"'T% — R.

(2.4.3)

We say that a function f : N™'T% — R belongs to the discrete space of functions orthogonal to the
constant functions Hy (T4, if

1
i > f@/N)=o0.
z€TY,

The following results are analogous to the weak solutions of generalized elliptic equations for this
discrete version. We remark that the proofs of these lemmas are identical to the ones in the continuous
case. Furthermore, the weak solution for the case A = 0 is unique in Hx(T%).
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Lemma 2.4.2. The equation
VNAVYu = f,

has weak solution v : N71T4, — R if and only if
1
~i 2 f@)=0.
wET%
In this case we have uniqueness of the solution disregarding addition by constants. Moreover, if u €
Hx(T%;) we have the bound
lull 2, v rey < ClfllL2eray, and |ullpzerey < /\_1||fHL2(’]I‘§{,)a

where C' > 0 does not depend on f nor N.
Lemma 2.4.3. Let A > 0. There exists a unique weak solution u : N‘lTﬁl\, — R of the equation

M — VVNAVY 0 = f. (2.4.4)
Moreover,

||U||H1,w(1r5{,) < C”f”Lz(T‘Ii\,)v and HUHLZ(M\,) < >\71||f”L2(1r§V)a

where C' > 0 does not depend neither on f nor N.

Remark 2.4.4. Note that in the set of functions in ’]I“Iiv we have a “Dirac measure” concentrated in a
point & as a function: the function that takes value N in x and zero elsewhere. Therefore, we may
integrate these weak solutions with respect to this function to obtain that every weak solution is, in fact,
a strong solution.

2.4.1 Connections between the discrete and continuous Sobolev spaces

Given a function f € HLW(']I‘d), we can define its restriction fy to the lattice N_lTJdV as
fn(z) = f(z) if =€ N7'TY,.

However, given a function f : N~'T¢ — R it is not straightforward how to define an extension
belonging to Hy y (T%). To do so, we need the definition of W-interpolation, which we give below.
Let fy : N"!Ty — R and W : R — R, a strictly increasing right continuous function with left limits
(cadlag), and periodic. The W-interpolation f} of fx is given by:
W((z+1)/N) - W((x+1t)/N)

In(@+t) = W((z +1)/N) — W(z/N) Jt

W((z +t)/N) — W (z/N)
Y W N) =W @
for 0 <t < 1. Note that
of B flz+1) = f(z) _
ow TS TGy wey - @)

Using the standard construction of d-dimensional linear interpolation, it is possible to define the
W-interpolation of a function fy : T4, — R, with W (z) = 2?21 Wi(x;) as defined in (1.1.1).

We now establish the connection between the discrete and continuous Sobolev spaces by showing how
a sequence of functions defined in TdN can converge to a function in H LW(Td).

We say that a family fy € L?(T%) converges strongly (resp. weakly) to the function f € L?(T%) as
N — oo if f} converges strongly (resp. weakly) to the function f. From now on we will omit the symbol
“* 7 in the W-interpolated function, and denoting them simply by fy.

The convergence in H V}l (T?) can be defined in terms of duality. Namely, we say that a functional fx
on T4, converges to f € Hy,'(T?) strongly (resp. weakly) if for any sequence of functions uy : T4 — R
and u € Hy w(T%) such that uy — u weakly (resp. strongly) in Hy w (T%), we have

(fn,un)ny — (f,u), as N — oco.
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Remark 2.4.5. Suppose in Lemma 2.4.3 that f € L*(T?), and let u be a weak solution of the problem
(2.4.4), then we have the following bound

HUHHLW(T‘}V) < C||fHL2(1rd)7

since || fll2(ray = [ fllL2(ray as N — oco.

2.5 Homogenization

In this “brief” Section we prove a homogenization result for the W-generalized differential operator. We
follow the approach considered in [31]. The study of homogenization is motivated by several applications
in mechanics, physics, chemistry and engineering. The focus of our approach is to study the asymptotic
behavior of effective coefficients for a family of random difference schemes whose coefficients can be
obtained by the discretization of random high-contrast lattice structures.

This Section is structured as follows: in subsection 6.1 we define the concept of H-convergence
together with some properties; subsection 6.2 deals with a description of the random environment along
with some definitions, whereas the main result is proved in subsection 6.3.

2.5.1 H-convergence

We say that the diagonal matrix AN = (a;\/j) H-converges to the diagonal matrix A = (a,;), denoted by
AN Ly 4 if, for every sequence fV € Hy' (T4,) such that f¥ — f as N — oo in Hy,'(T?), we have

e uy — ug weakly in Hy w (T4) as N — oo,
. a%@{,vvjuN — a;;0w,; up weakly in L9251®W_7 (T?) for each j = 1,...,d,
where upy : T4 — R is the solution of the problem
Auy — VNANVJV\{;uN = fn,
and ug € HLW(']I‘d) is the solution of the problem
Mg — VAVwug = f.

The notion of convergence used in both items above was defined in subsection 2.4.1.
We now obtain a property regarding H-convergence.

Proposition 2.5.1. Let AN A, A, as N — oo, with uy being the solution of
Auy — VNANV%UN = f,

where f € H;Vl (T?) is fized. Then, the following limit relations hold true:

1 2 2
Na Z uy(z) — » ug(x)de,

zeTY,
and
d
S D O Al @)@, ()2 5 (g + 1)/N) = Wy V)]
i=1 zeT,
d .
- Z /Td a;;(x)(Ow,uo(2))*d(z? @ W),

as N — oo.
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Proof. We begin by noting that
1
N Z flun —ug) =0, (2.5.1)

d
zeTg

as N — oo since uy — ug converges weakly to 0 in Hy y (T%). On the other hand, we have

1 1
Nd Z flun —uo) = N Z Auy — VN AN un) (un — o)
Z‘ET‘}V xe’]I‘d
A
zeTY, z€TY,
A
- Z uNug + Nd Z ug VN AN VWuN

zeT4, z€TY

Using the weak convergences of uy and ajjﬁf,vvj uy, and the convergence in (2.5.1), we obtain, after a
summation by parts in the above expressions,

N P 12 > a0 un )W (w5 + 1)/N) = Wi(a)]

zeTY, J=1zeTg
d
Nogo )\/ u%dm-f-Z/ a;; (0w, uo)d(z? @ W;). (2.5.2)
Td = Td
By Lemma 2.4.3, the sequence uy is || - ||1,w bounded uniformly. Suppose, now, that uy does not

converge to ug in L?(T%). That is, there exist € > 0 and a subsequence (uy, ) such that
lun, — uollL2(ray > €,

for all k. By Rellich-Kondrachov Theorem (Proposition 2.1.7), we have that there exists v € L?(T%) and
a further subsequence (also denoted by uy, ) such that

UN, o v, in L*(T%).

This implies that
uy, — v, weakly in L3(T9),

but this is a contradiction, since
N, — Up, weakly in LQ(']I‘d),
and |lv—uol|p2(ra) > €. Therefore, uny — ug in L*(T%). The proof thus follows from expression (2.5.2). O
This Proposition shows that even though the H-convergence only requires weak convergence in its
definition, it yields a convergence in the strong sense (convergence in the L?-norm).

2.5.2 Random environment

In this subsection we introduce the statistically homogeneous rapidly oscillating coefficients that will be
used to define the random W-generalized difference elliptic operators, where the W-generalized difference
elliptic operator was given in Section 2.4.

Let (2, F, i) be a standard probability space and {T}, : Q — Q;z € Z¢} be a group of F-measurable
and ergodic transformations which preserve the measure pu:

o T, :Q — Qis F-measurable for all 2 € Z%,
o u(T,A) = p(A), for any A € F and z € Z,
o Ih=1, Ta:OTy :Teryv
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e For any f € L'(Q) such that f(T,w) = f(w) p-a.s for each x € Z%, is equal to a constant pi-a.s.

The last condition implies that the group T is ergodic.
Let us now introduce the vector-valued F-measurable functions {a;(w);j =1,...,d} such that there
exists § > 0 with
07" < aj(w) <0,

forallw € Q and j =1,...,d. Then, define the diagonal matrices A" whose elements are given by

N

N N =aj(Ty,w), 2€TY, j=1,...,d. (2.5.3)

aj;(z) = a;

2.5.3 Homogenization of random operators

Let A > 0, fx be a functional on the space of functions hy : T4, — R, f € HV_V1 (T9) (see also, subsection
2.1.4), uy be the unique weak solution of

)\UN - VNANVJV\{/UN = fN,
and ug be the unique weak solution of

For more details on existence and uniqueness of such solutions see Sections 2.2 and 2.4.
We say that the diagonal matrix A is a homogenization of the sequence of random matrices AV if
the following conditions hold:

e For each sequence fy — f in H;VI(']I‘d), un converges weakly in Hy w to ug, when N — oco;
o al¥ ol N — a;0w,u, weakly in Lii@)Wi (T?) when N — oo.

Note that homogenization is a particular case of H-convergence.
We will now state and prove the main result of this Section.

Theorem 2.5.2. Let AN be a sequence of ergodic random matrices, such as the one that defines our
random environment. Then, almost surely, AN (w) admits a homogenization, where the homogenized
matriz A does not depend on the realization w.

Proof. Fix f € H™'(T), and consider the problem
Auy — VNANVuy = f.

Using Lemma 2.4.3 and Remark 2.4.5, there exists a unique weak solution uy of the problem above,
such that its H{YW norm is uniformly bounded in N. That is, there exists a constant C' > 0 such that

lun e, rey < CllflIL2(ray-

Thus, the L*(T% )-norm of a8} uy is uniformly bounded.
From W-interpolation (see subsection 2.4.1) and the fact that Hj 1y (T9) is a Hilbert space (Lemma
2.1.2), there exists a convergent subsequence of uy (which we will also denote by ux) such that

UN — Ug, weakly in HLW(']I‘d),

and
apy Oy un — vo weakly in  L*(T%), (2.5.5)

as N — o0; vg being some function in Lii@)Wi (T%).
First, observe that the weak convergence in H LW('JI‘d) implies that

3%&1\/ Noge Ow,u weakly in Li@Wi(']I‘d). (2.5.6)
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From Birkhoff’s ergodic theorem, we obtain the almost sure convergence, as N tends to infinity, of the
random coefficients:
al¥ — a;, (2.5.7)

where a; = E[alY°], for any Ny € N.
From convergences in (2.5.5), (2.5.6) and (2.5.7), we obtain that

Vo = aiaW,- Uo,

where, from the weak convergences, ug clearly solves problem (2.5.4).
To conclude the proof it remains to be shown that we can pass from the subsequence to the sequence.
This follows from uniquenesses of weak solutions of the problem (2.5.4). O

Remark 2.5.3. At first sight, one may think that we are dealing with a very special class of matrices A
(diagonal matrices). Nevertheless, the random environment for random walks proposed in [31, Section
2.3], which is also exactly the same random environment employed in [20], results in diagonal matrices.
This is essentially due to the fact that in symmetric nearest-neighbor interacting particle systems (for
example, the zero-range dynamics considered in [20]), a particle at a site x € Tj‘lv may jump to the sites
xxe;, j=1,...,d. In such a case, the jump rate from x to x + e; determines the jth element of the
diagonal matriz.

Remark 2.5.4. Note that if u € Dy is a strong solution (or weak, in view of Remark 2.4.4) of
A —VAVyu=f
and uy is strong solution of the discrete problem
My — VVNANY S uy = f

then, the homogenization theorem also holds, that is, un also converges weakly in Hy w to u.

2.6 Hydrodynamic limit of processes with conductances in ran-
dom environment

Lastly, as an application of all the theory developed in the previous sections, we prove a hydrodynamic
limit for a process with conductances in random environments. Hydrodynamic limits for processes with
conductances have been obtained in [18] for the one-dimensional setup and in Chapter 1 for the d-
dimensional setup. However, the proof given here is much simpler and more natural, in view of the
theory developed here, than the proofs given in [18] and Chapter 1. Furthermore, the proof of this
hydrodynamic limit also provides an existence theorem for the W-generalized parabolic equations in
(2.3.1).

The hydrodynamic limit allows one to deduce the macroscopic behavior of the system from the micro-
scopic interaction among particles. Moreover, this approach justifies rigorously a method often used by
physicists to establish the partial differential equations that describe the evolution of the thermodynamic
characteristics of a fluid.

This Section is structured as follows: in subsection 7.1 we present the model, derive some properties
and fix the notations; subsection 7.2 deals with the hydrodynamic equation; finally, subsections 7.3 and
7.4 are devoted to the proof of the hydrodynamic limit.

2.6.1 The exclusion processes with conductances in random environments

Fix a typical realization w € Q of the random environment defined in Section 2.5. For each = € T4, and
J=1,...,d, define the symmetric rate §; y1e; = xte; 2 DY

ay(a:) aév(x)

5x,m+ej = N[W(($+€J)/N)_W(x/N)] - N[Wj((ﬂ?j-i-l)/N)—Wj(wj/N)].

(2.6.1)
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where alY () is given by (2.5.3), and ey, ..., eq is the canonical basis of Re. Also, let b > —1/2 and

recall that
Cw,;c-l-e]' (77) =1+ b{n(l‘ - ej) =+ 77(37 +2 ej)} )
where all sums are modulo N.

Distribute particles on ']T‘Iiv in such a way that each site of ']I“Iiv is occupied at most by one particle.
Denote by 71 the configurations of the state space {0, 1}1‘?\! so that n(xz) = 0 if site = is vacant, and
n(z) = 1 if site x is occupied.

The exclusion process with conductances in a random environment is a continuous-time Markov
process {n, : t > 0} with state space {0,1}T% = {5 : T4 — {0,1}}, whose generator Ly acts on
functions f : {0, 1}T71v — R as

d
(Lnf)(n) = Z Z gx,x-i-e,- Ca,z+e; (n) {f(a'm’wrejn) —fm},

J=lzeT¢
where o™**€iy is the configuration obtained from 1 by exchanging the variables n(z) and n(x + ¢;):

n(e+e;) ify=u,
(o™ ) (y) = { () ify =z +ej,
n(y) otherwise.

We consider the Markov process {n; : t > 0} on the configurations {0, 1}T§V associated to the generator
Ly in the diffusive scale, i.e., Ly is speeded up by N2.

We now describe the stochastic evolution of the process. After a time given by an exponential
distribution, a random choice of a point z € T4, is made. At rate &z,2+e; the occupation variables n(z),
n(x + e;) are exchanged. Note that only nearest neighbor jumps are allowed. The conductances are
induced by the function W, whereas the random environment is given by the matrix AV := (a% (2))axd-

The dynamics informally presented describes a Markov evolution. A computation shows that the
Bernoulli product measures {v) : 0 < o < 1} are invariant, in fact reversible, for the dynamics.

Counsider the random walk {X;};>0 of a particle in 'H“fv induced by the generator Ly given as follows.
Let £ z4e,; given by (2.6.1). If the particle is on a site x € T‘fv, it will jump to x +e; with rate N2§w,$+e]..
Furthermore, only nearest neighbor jumps are allowed. The generator Ly of the random walk {X;};>0

acts on functions f : T4 — R as
d
T (T
Lo (5) = St (5),
AV =~ LEAVS

L (57) = 8 {nese [1(552) 1 (F)] + a1 (557) - £(R)]}
It is not difficult to see that the following equality holds:

where,

d
Ly f(x/N)=>_ 0N (aY oy f)(z) == VNANVY, f(x). (2.6.2)

Jj=1

Note that several properties of the above operator have been obtained in Section 2.4. The counting
measure my on N _1'11‘?\, is reversible for this process. This random walk plays an important role in the
proof of the hydrodynamic limit of the process 7, as we will see in subsection 7.3.

Recall that D(R,,{0,1}T%) is the path space of cadlag trajectories with values in {0,1}T~. For a
measure py on {0,1}T%, denote by P, the probability measure on D(R,,{0,1}T%) induced by the
initial state pn and the Markov process {n; : t > 0}. Expectation with respect to P, is denoted by
E

KN
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2.6.2 The hydrodynamic equation

Let A = (a;j)dxa be a diagonal matrix with a;; > 0,7 =1,...,d, and consider the operator

d
VAVW = Zajjﬁxj (9{/1/_7.
j=1
defined on Dyy.

A sequence of probability measures {uy : N > 1} on {0, I}T(Ij\f is said to be associated to a profile
po s T4 = [0,1] if

lim iy ]% S" H(z/N)y /H Yoo(u)du| > 6% =0 (2.6.3)

N —oc0 ’
zeTy

for every § > 0 and every function H € Dyy.
Let v : T¢ — [I,7] be a bounded density profile and consider the parabolic differential equation

{ dp = VAVw®(p) (2.6.4)

where the function @ : [I[,7] — R is given as in the beginning of Section 1.5, and ¢ € [0,T], for T > 0
fixed.
Recall, from Section 2.3, that a bounded function p : [0,7] x T¢ — [I,7] is said to be a weak solution

of the parabolic differential equation (1.1.9) if the following conditions hold. ®(p(-,-)) and p(-,-) belong
to L2([0,T], Hy,w (T%)), and we have the integral identity

/Tdﬂ(t,u)H(U)dU—/ p(0,u)H du—/ /w p(s,u)) VAV H(u)duds ,

for every function H € Dy and all ¢ € [0, 7.

Existence of such weak solutions follow from the tightness of the process proved in subsection 2.6.3,
and from the energy estimate obtained in Lemma 1.5.2. Uniquenesses of weak solutions was proved in
subsection 2.3.1.

Theorem 2.6.1. Fir a continuous initial profile py : T¢ — [0,1] and consider a sequence of probability
measures pn on {0, 1}T(IlV associated to po, in the sense of (2.6.3). Then, for anyt > 0,

1
lim P —Z (x/N)m(x /H p(t,u)du| >3 =0

for every § > 0 and every function H € Dy . Here, p is the unique weak solution of the non-linear
equation (1.1.9) with | =0, r =1, v = pg and ®(a) = o + aa?.

Let M be the space of positive measures on T? with total mass bounded by one endowed with the
weak topology. Recall that 7Y € M stands for the empirical measure at time ¢. This is the measure on
T? obtained by rescaling space by N and by assigning mass 1/N¢ to each particle:

1
= Nd Z () du/N (2.6.5)

d
€Ty

where §,, is the Dirac measure concentrated on u.
For a function H : T — R, (7}, H) stands for the integral of H with respect to w}¥:

() H) = 7 S H/Nn)

d
zeTy
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This notation is not to be mistaken with the inner product in L?(T¢) introduced earlier. Also, when 7
has a density p, 7(t,du) = p(t, u)du.

Fix T > 0 and let D([0,T], M) be the space of M-valued cadlag trajectories 7 : [0, 7] — M endowed
with the uniform topology. For each probability measure ux on {0, 1}T7V, denote by Q%N the measure
on the path space D([0,T], M) induced by the measure py and the process 7)Y introduced in (2.6.5).

Fix a continuous profile py : T¢ — [0,1] and consider a sequence {uy : N > 1} of measures on
{0, I}de\f associated to pp in the sense (2.6.3). Further, we denote by Qu the probability measure on
D([0,T], M) concentrated on the deterministic path 7(t,du) = p(t,u)du, where p is the unique weak
solution of (2.6.4) with v = pg, lx =0, 7, =1, k=1,...,d and ®(a) = a + ba?.

In subsection 2.6.3 we show that the sequence {QmN : N > 1} is tight, and in subsection 2.6.4 we
characterize the limit points of this sequence.

2.6.3 Tightness

The goal of this subsection is to prove tightness of sequence {QZVA’,N : N > 1}. We will do it by showing
that the set of equicontinuous paths of the empirical measures (2.6.5) has probability close to one.
Fix A > 0 and consider, initially, the auxiliary M-valued Markov process {H;\ N ¢ >0} defined by

m () = (oY) = 5 3 HY /N ()

z€Z
for H in Dy, where HY is the unique weak solution in Hy w (T4,) (see Section 2.4) of
MHY —VNANYE HY = \H — VAV H,

with the right-hand side being understood as the restriction of the function to the lattice ']I‘ﬁlv (see
subsection 2.4.1).

We first prove tightness of the process {II*" : 0 < ¢ < T'},then we show that {II™ : 0 < ¢ < T}
and {m} : 0 <t < T} are not far apart.

It is well known [23] that to prove tightness of {II}"" : 0 < ¢ < T} it is enough to show tightness
of the real-valued processes {II}"" (H) : 0 < t < T} for a set of smooth functions H : T? — R dense in
C(T%) for the uniform topology.

Fix a smooth function H : T¢ — R. Keep in mind that II"" (H) = (x2V, HY), and denote by MNA
the martingale defined by

t
MY = N (H) - 1N (H) - / ds N2Ly (x¥ HY) . (2.6.6)
0

Clearly, tightness of H?’N(H ) follows from tightness of the martingale MtN’/\ and tightness of the additive
functional fg ds N?Ly (N, HY).

A long computation, albeit simple, shows that the quadratic variation (M™*); of the martingale
MtN’)‘ is given by:

d
# DD O HY (@/N)PW (2 + ) /N) = W (z/N)]x

j=1zeTd
t
X / Cz,xte; (775) [775(37 + ej) - ns(x)]2 ds .
0

In particular, by Lemma 2.4.3,

d

Cot C(H)t
(MM, < N2 IZHH)\ ||WJ,N S SNd

for some finite constant C'(H ), which depends only on H. Thus, by Doob inequality, for every A > 0,
6 >0,

lim P, sup ‘MtNA| > 0

{ ] =0. (2.6.7)
N—o00 0<t<T
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In particular, the sequence of martingales {MtN’)‘ : N > 1} is tight for the uniform topology.

It remains to be examined the additive functional of the decomposition (2.6.6). The generator of the
exclusion process Ly can be decomposed in terms of the generator of the random walk L. A simple
computation, we obtain that N2Ly (7™, HY) is equal to

d
> Az 3 CAH /) 0(@)

z€TY,

b2 S [AHY (o e)/N) + (L HY) V)] (b ) )

d
zeTy

= ST W EY )@/ N (b))}
N

d
€Ty

where {7, : z € Z9} is the group of translations, so that (7,1)(y) = n(x +y) for z, y in Z%, and the sum
is understood modulo N. Also, hy j, he ; are the cylinder functions

hij(m) = n(0)n(e;), haj(n) = n(—e;j)nle;) .
Forall 0 < s <t <T, we have

d

t 1+ 3b)(t—s ;
/drNZLN@riV,HiV) < %E > [LAHY (z/N)]
s jzleT%

from Schwarz inequality and Lemma 1.3.1, the right hand side of the previous expression is bounded
above by

(14 3b])(t — 5)d ﬁ 3 (LNHiv(m/N))Q.

d
€Ty

Since H f\V is the weak solution of the discrete equation, we have by Remark 2.4.4 that it is also a
strong solution. Then, we may replace Ly H iv by U}\V =\H )1\\/ — H in the previous formula. In particular,
It follows from the estimate given in Lemma 2.4.3, that the right hand side of the previous expression is
bounded above by dC(H,b)(t — s) uniformly in N, where C(H,b) is a finite constant depending only on b
and H. This proves that the additive part of the decomposition (2.6.6) is tight for the uniform topology
and therefore that the sequence of processes {H?’N : N > 1} is tight.

Lemma 2.6.2. The sequence of measures {QK{QN : N > 1} is tight for the uniform topology.

Proof. Fix A > 0. It is enough to show that for every function H € Dy, and every € > 0, we have

lim P~ [ sup |H;\’N(H)—<7rtN,H>>e} =0,
N—o0 0<t<T

whence tightness of 7V follows from tightness of H? N By Chebyshev’s inequality, the last expression
is bounded above by

Ep [ sup [T (#) — () ﬂ <o - m,
0<t<T

since there exists at most one particle per site. By Theorem 2.5.2 and Proposition 2.5.1, || HY —H||% — 0
as N — oo, and the proof follows. O

2.6.4 Uniqueness of limit points

We prove in this subsection that all limit points Q* of the sequence Q%N are concentrated on absolutely
continuous trajectories w(t, du) = p(t, u)du, whose density p(t, u) is a weak solution of the hydrodynamic
equation (1.1.9) with [ =0, r = 1 and ®(a) = a + aa?.
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We now state a result necessary to prove the uniqueness of limit points. Recall that, for a local
function g : {0, 1}Zd — R, §:[0,1] = R be the expected value of g under the stationary states:

gla) = E, [g(n)] .

For £ > 1 and d-dimensional integer x = (z1,...,24), denote by n‘(x) the empirical density of particles
in the box BY (z) = {(y1,...,yq) € Z4;0 < y; — x; < {}:

i@ = Y )
yEBY (x)

W,N

W,N
Q e

Let Q* be a limit point of the sequence
converges to Q*.

Since there is at most one particle per site, it is clear that Q* is concentrated on trajectories m:(du)
which are absolutely continuous with respect to the Lebesgue measure, m:(du) = p(t, u)du, and whose
density p is non-negative and bounded by 1.

Fix a function H € Dy and A > 0. Recall the definition of the martingale MtN A introduced in the
previous section. From (2.6.7) we have, for every 6 > 0,

and assume, without loss of generality, that

lim P, {Sup ‘MN’\‘>5] =0,

N—oo 0<t<T
and from (1.4.2), for fixed 0 < ¢t < T and § > 0, we have
t
Jim Q% “<w,{V,H§V> — (N HY) — / dsN2LN<7T§V,H§V>’ > 5] — 0.
—00 0

Note that the expression N2Ly (7 , Hy M) has been computed in the previous subsection in terms
of generator L. On the other hand, ILNHN = )\Hiv — AMH + VAV H. Since there is at most one
particle per site, we may apply Theorem 2.5.2 to replace (7, HY) and (r{¥, HY) by (m, H) and (rq, H),
respectively, and replace Ly H /1\\7 by VAVy H plus a term that vanishes as N — oo.

Since E,_[h; ;] = a* i=1,2and j = 1,...,d, we have by Proposition 1.4.4 that, for every ¢ > 0,
A>0,0>0,i=1, 2,

. I . J
lim Tim P, ’/ds ST LA HY (2/N)x
z€T4
2
< {rahisn) = [N @)°} | > 8] = 0.
Since 7N (z) = €_d7T{V(H?:1[$j/N, z;/N + ee;]), we obtain, from the previous considerations, that

S

lim lim Q H(wt,H> -

e—0 N—oo
d
—(m),H}—/t < —dNH -+ eej]) VAVWH>‘>6 = 0.
0 j=1

. W,N . . *
Using the fact that Q, ;" converges in the uniform topology to Q*, we have that

Eh_r}rg)@* H(m,G;J-I) — (mo,GrH) —

- /Otds <(I>(5_d7rs(]f[1[-,-+£ej])),VAVWH>‘ >§| = 0.

Recall that Q* is concentrated on absolutely continuous paths 7 (du) = p(t, u)du with positive density

bounded by 1. Therefore, s_dﬂs(H?ZI[-, - + ee;]) converges in L'(T?) to p(s,.) as € | 0. Thus,

Q* “WH) ~ (mo, H) — /Otds (®(ps) VAVWH>‘ >5} — 0.
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Letting § | 0, we see that, Q* a.s.,

/po(t,u)H(U)du—/po(O,u)H(u)du:/Ot Admp(s,u))mvwmu)dud&

This identity can be extended to a countable set of times t. Taking this set to be dense we obtain,
by continuity of the trajectories m;, that it holds for all 0 < ¢ < T.

From Lemma 1.5.2, we may conclude that all limit points have, almost surely, finite energy, and
therefore, by Lemma 2.3.1, ®(p(-,-)) € L2([0,7T], H1,w(T%)). Analogously, it is possible to show that
p(-,-) has finite energy and hence it belongs to L*([0, T, Hy w (T¢)).

Proposition 2.6.3. As N 1 oo, the sequence of probability measures Q%N converges in the uniform
topology to Q.

Proof. In the previous subsection, we showed that the sequence of probability measures QmN is tight for
the uniform topology. Moreover, we just proved that all limit points of this sequence are concentrated
on weak solutions of the parabolic equation (2.6.4). The proposition now follows from the uniqueness
proved in subsection 2.3.1. O

Proof of Theorem 2.6.1. Since QmN converges in the uniform topology to Qu, a measure which is
concentrated on a deterministic path, for each 0 < ¢t < T and each continuous function H : T — R,
(w{¥, H) converges in probability to [, dup(t,u)H (u), where p is the unique weak solution of (2.6.4)
with I =0, 7, = 1, 7 = po and ®(a) = a + ba?. O
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Chapter 3

Equilibrium fluctuations for
exclusion processes with
conductances in random
environments

In this Chapter we study the equilibrium fluctuations for exclusion processes with conductances in
random environments, which can be viewed as a central limit theorem for the empirical distribution of
particles when the system starts from an equilibrium measure.

Let W : R — R be a function such that W(xy,...,24) = 22:1 Wi (xy), where d > 1 and each
function Wy, : R — R is strictly increasing, right continuous with left limits (cadlag), and periodic in the
sense that Wy (u + 1) — Wi(u) = Wi (1) — Wg(0), for all v € R. The inverse of the increments of the
function W will play the role of conductances in our system.

The random environment that we considered is governed by the coefficients of the discrete formulation
of the model on the lattice. Moreover, we will assume the underlying random field is ergodic, stationary
and satisfies an ellipticity condition.

The purpose of this Chapter is to study the density fluctuation field of this system as N — oo, and
also the influence of the randomness in this limit. For any realization of the random environment, the
scaling limit depends on the randomness only through some constants which depend on the distribution
of the random transition rates, but not on the particular realization of the random environment.

The evolution of one-dimensional exclusion processes with random conductances has attracted some
attention recently [12, 13, 14, 18, 21], with the hydrodynamic limit proved in [21] being also obtained in
[12], independently. In all of these papers, a hydrodynamic limit was proved. The hydrodynamic limit
may be interpreted as a law of large numbers for the empirical density of the system. Our goal is to go
beyond the hydrodynamic limit and provide a new result for such processes, which is the equilibrium
fluctuations and can be seen as a central limit theorem for the empirical density of the process.

To prove the equilibrium fluctuations, we would like to call attention to the main tools we needed: (i)
the theory of nuclear spaces and (ii) homogenization of differential operators. The first one followed the
classical approach of Kallianpur and Perez-Abreu [22] and Gel’fand and Vilenkin [19]. Nuclear spaces are
very suitable to attain existence and uniqueness of solutions for a general class of stochastic differential
equations. Furthermore, tightness of processes on such spaces was established by Mitoma [29]. A wide
literature on these spaces can be found cited inside the fourth volume of the amazing collection by
Gel’fand [19]. The second tool is motivated by several applications in mechanics, physics, chemistry and
engineering. We will consider stochastic homogenization. In the stochastic context, several works on
homogenization of operators with random coefficients have been published (see, for instance, [30, 31] and
references therein). In homogenization theory, only the stationarity of such random fields is used. The
notion of stationary random field is formulated in such a manner that it covers many objects of non-
probabilistic nature, e.g., operators with periodic or quasi-periodic coefficients. We follow the approach
given in Chapter 2, which was introduced by [31].
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The focus of our approach is to study the asymptotic behavior of effective coefficients for a family
of random difference schemes, whose coefficients can be obtained by the discretization of random high-
contrast lattice structures. Furthermore, the introduction of a corrected empirical measure was needed.
The corrected empirical measure was used in the literature, for instance, by [21, 18, 20] and also Chapters
1 and 2. It can be understood as a version of Tartar’s compensated compactness lemma in the context of
particle systems. In this situation, the averaging due to the dynamics and the inhomogeneities introduced
by the random media factorize after introducing the corrected empirical process, in such a way that we
can average them separately. It is noteworthy that we managed to prove an equivalence between the
asymptotic behavior with respect to both the corrected empirical measure and the uncorrected one. This
equivalence was helpful in the sense that whenever the calculation with the corrected empirical measure
turned cumbersome, we changed to a calculation with respect to the uncorrected one, and the other way
around. This whole approach made the proof more simpler than the usual one with respect solely to the
corrected empirical measure developed in the articles mentioned above.

We now describe the organization of the Chapter. In Section 3.1 we state the main results of the
article; in Section 3.2 we define the nuclear space needed in our context; in Section 3.3 we recall some
results obtained in [34] about homogenization, and then we prove the equilibrium fluctuations by showing
that the density fluctuation field converges to a process that solves the martingale problem. We also show
that the solution of the martingale problem corresponds to a generalized Ornstein-Uhlenbeck process.
In Section 3.4 we prove tightness of the density fluctuation field, as well as tightness of other related
quantities. In Section 3.5 we prove the Boltzmann-Gibbs principle, which is a key result for proving the
equilibrium fluctuations. Finally, the Appendix contains some known results about nuclear spaces and
stochastic differential equations evolving on topologic dual of such spaces.

3.1 Notation and results

Fix a function W : R? — R as (1.1.1):

W(l‘l,...,zd)z Wk(a:k),

M=~

k=1

where each Wy : R — R is a strictly increasing right continuous function with left limits (cadlag),
periodic in the sense that for all u € R

Wi(u+1) = Wi(u) = Wi(1) — Wi(0).
Recall in subsection 1.2 the definitions and properties of the generalized gradient of a function f:

Vwf=0Ow/f - ...0w,f).

We now recall the random environment introduced in Chapter 2. The statistically homogeneous
rapidly oscillating coefficients that will be used to define the random rates of the exclusion process
with conductances of which we want to study the equilibrium fluctuations. Let (€2, F, u) be a standard
probability space and {T, : Q — Q;x € Z%} be an ergodic group of F-measurable transformations which
preserve the measure pu:

o T, :Q — Qis F-measurable for all z € Z¢,

o u(T,A) = pu(A), for any A € F and = € Z7,

o Ty=1, T,0T, =Thiy,

e Any f € LY(Q) such that f(T,w) = f(w) p-a.s. for each z € Z%, is equal to a constant p-a.s..

The last condition implies that the group 7T, is ergodic.
Let the vector-valued F-measurable functions {a;(w);j = 1,...,d} be such that satisfies an ellipticity
condition: there exists 6 > 0 such that
07" < a;(w) <9,
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forall w e Qand j =1,...,d. Then, the diagonal matrices AV whose elements are given by

a%(m) = ajy:aj(TNww) ,xeTE, j=1,...,d (3.1.1)
Fix a typical realization w € € of the random environment. For each x € T;’lv and 7 = 1,...,d,

remember the symmetric rate {; z1e; = §xte; .« DY

brre, = a)'(z) _ a (z) (312)
z,x+e; N[W((:U-i-e])/N) —W(:E/N)] N[Wj((xj —|—1)/N) —Wj(xj/N)]’ 1.

where e1, ..., eq is the canonical basis of R?.

Distribute particles on ']I‘ in such a way that each site of T¢ % 1s occupied at most by one particle.
Denote by 71 the configurations of the state space {0, 1}TN so that n(x) = 0 if site x is vacant, and
n(x) = 1 if site x is occupied.

The exclusion process with conductances in a random environment is the continuous-time Markov
process {n; : t > 0} with state space {0, I}M\, = {n:T% — {0,1}}, whose generator Ly acts on functions
f:{0,1}"™% S R as

LNf Z Z giﬂ ,rte; Cy z+eJ( ) {f(o-x,z—i_ejn) - f(n)} ) (313)

Jj=1 we'ﬂ‘d

We consider the Markov process {n; : t > 0} on the configurations {0, 1}1‘?v associated to the generator
Ly in the diffusive scale, i.e., Ly is speeded up by N2. A describe of the stochastic evolution of the
process can be found in Section 2.6.

Consider the random walk {X;}+>¢ of a particle in T% induced by the generator Ly given as follows.
Let £z z1¢, given by (3.1.2). If the particle is on a site 2 € ’]I“Iiv, it will jump to x +e; with rate szz,awej'
Furthermore, only nearest neighbor jumps are allowed. The generator Ly of the random walk {X;};>0
acts on functions f: N71T¢ — R as

d
b (3) = S (3).

where,

U () = ¥ {€mses [ (F57) ~ 1 ()] + 6mane[1 (552) - 1 ()]}
It is not difficult to see that the following equality holds:

d
L f(2/N) = 300 (a0l f)(w) = TV ANV f(a), (3.1.4)

Jj=1

where, 8% is the standard difference operator:

% () = v (57) -1 (3]

and GVA{/j is the Wj-difference operator:

zr+e;
aNf(w f( N])_f(%)
W; N) T+e;
W) -w(%)
for x € T% . Several properties of the above operator have been obtained in Chapter 2.
Now we state a central limit theorem for the empirical measure, starting from an equilibrium measure

v,. Fix p > 0 and denote by Sw (T?) the generalized Schwartz space on T?, whose definition as well as
some properties are given in Section 3.2.
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Denote by YV the density fluctuation field, which is the bounded linear functional acting on functions
G € Sw(T?) as
1
YNNG = Nz Z G(2)[ne(z) — pl. (3.1.5)
xET%
Let D([0,T],X) be the path space of cadlag trajectories with values in a metric space X. In this

way we have defined a process in D([0,T],S};,(T¢)), where Sj;,(T?) is the topologic dual of the space
S (T9).

Theorem 3.1.1. Consider the fluctuation field Y~ defined above. Then, YN converges weakly to the
unique Siy (T?)-solution, Y; € D([0,T], S}y, (T9)), of the stochastic differential equation

dY, = ¢'(p) VAV Yidt + /2x(p)¢’ (p) AdNy, (3.1.6)

where x(p) = p(1 — p), d(p) = p+ bp?, and ¢’ is the derivative of ¢, ¢'(p) = 1+ 2bp; further A is a
constant diagonal matriz with jth diagonal element given by a; = E(a;»v), for any N € N; and Ny is a

Sty (T9)-valued mean-zero martingale, with quadratic variation
d , ‘
@)=ty [ [ow, G et W),
j=1"T

where d(a:j ® W;) is the product measure dz1 ® - - @ daxj_1 @ dAW; @ dzj11 ® - - - ® drg. Furthermore, Ny
is a Gaussian process with independent increments. More precisely, for each G € Sy (T?), N¢(G) is a
time deformation of a standard Brownian motion.

The proof of this theorem is given in Section 3.3.

Remark 3.1.2. The process Y is known in the literature as the generalized Ornstein-Uhlenbeck process

with characteristics ¢'(p)VAVw and /2x(p)¢' (p)AVw .

3.2 The space Sy (T9)

Recall the properties of the operator Ly introduced in Section 1.2. In this Section we build the countably
Hilbert nuclear space Sy (T?), which is associated the the self-adjoint operator L1y = VVy,. This space,
as we shall see, is a natural environment to attain existence and uniqueness of solutions of the stochastic
differential equation (3.1.6). Several lemmas are obtained to fulfill the conditions to ensure existence and
uniqueness of such solutions. The reader is referred to Appendix.

Let {¢;};>1 be the complete orthonormal set of the eigenvectors of the operator £ =1 — Ly, and
{A;};>1 the associated eigenvalues. Note that A\; = 1+ «;.

Consider the following increasing sequence || - ||, n € N, of Hilbertian norms:

(f,9)n =D _(Prf Prg) A" k™",
k=1

where we denote by Py the orthogonal projection on the linear space generated by the eigenvector .

So,

1% = D IR P AR K2,

k=1

where || - || is the L?(T%) norm.
Consider the Hilbert spaces S,, which are obtained by completing the space Dy, with respect to the
inner product (-, ).
The set o
Sw(T?) = (S

n=0
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endowed with the metric (3.6.2) is our countably Hilbert space, and even more, it is a countably Hilbert
nuclear space, see the Appendix for further details. In fact, fixed n € N and m > n + 1/2, we have that
{ W%‘ }j>1 is a complete orthonormal set in S,,,. Therefore,

> Gyl < Zﬂml) < o0,
where the above formula corresponds to formula (3.6.3) in Appendix.

Lemma 3.2.1. Let Ly : Dy — L?(T?) be the operator obtained in Theorem 1.1.2. We have
(a) Ly is the generator of a strongly continuous contraction semigroup {Py : L2(T%) — L?(T%)};>0;
(

b) Lw is a closed operator;

d

)
)
(c) For each f € L*(T%), t — P, f is a continuous function from [0,00) to L*(T%);
(d) LwPf = P.Lwf for each f € Dy and t > 0;

)

(e

Proof. Ttem (a) follows from Theorem 1.1.2 and Hille-Yosida’s theorem. Items (b), (¢) and (d) follows
from item (a), see, for instance, [10, chapter 1]. Item (e) follows from item (d) and from the fact that
Lwf=Lwfif f € Dw. O

(I—-Lw)"Pf = P(I—Lw)"f for each f € Dy, t >0 and n € N;

The next Lemma permits to conclude that the semigroup {P; : t > 0} acting on the domain Sy (T?)
is a Cp,1-semigroup, whose definition is recalled in Appendix 3.6.2.

Lemma 3.2.2. Let {P; : t > 0} be the semigroup whose infinitesimal generator is Ly, . Then for each
q € N we have:

1P fllg < N1 £llas
for all f € Sw(T). In particular, {P; : t > 0} is a Cp 1-semigroup.

Proof. Let f € Dy, then

k
£= B
j=1
for some k € N, and some constants S1,..., 8. A simple calculation shows that

k
Pif =) ety

Jj=1

Therefore, for f € Dy :

1P £

k
1Y Bt gl,,

j=1

k
= Y lIBE Ay PA

j=1

k
< D B IPA S = |I£113.
j=1

Since Dyy is dense in Sy (T?), we conclude the proof of the lemma. O

Lemma 3.2.3. The operator Ly belongs to L(Sy (T?), Sw (T9)), the space of linear continuous operators
from Sy (T?) into Sy (T?).
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Proof. Let f € Sw(T?), and {¢,};>1 be the complete orthonormal set of eigenvectors of Ly, with
{(1 = X;)}j>1 being their respectively eigenvalues. We have that

f= Zﬂj@j, with Zﬂ? < 00.
=1 j=1

j=

We also have that -
Lwf=> (1-X)Bjp;.
j=1

For every n € N:

Pe(Low F)IPARE" = [1Br(1 = A )pr|* A7 k"
k=1

18kl (1 = X ) AR K"

I
M8

1w 7

=
Il
—

I
NE

e
Il
—_

< 2 Z ”Pkf”Q)\inan +2 Z H]P;kaZAi(n-i-l)kQ(nJrl)
k=1 k=1

= 2([[flln + [[fllns1)-

Therefore, by the definition of Sy (T¢), Ly f belongs to Sy (T¢). Furthermore, Ly is continuous
from Sy (T9) to Sy (T9). O

3.3 Equilibrium Fluctuations

We begin by stating some results on homogenization of differential operators obtained in Chapter 2,
which will be very useful along this section.

Let Li@Wi (T?) be the space of square integrable functions with respect to the product measure
d2'@W;) =dz1 ® - @dr;_ 1 @dW; @dri11 @ - -@dx4, and HLW(']I‘d) be the Sobolev space of functions
with W-generalized derivatives. More precisely, H; w (T%) is the space of functions g € L?(T%) such that
for each i = 1,...,d there exist functions G; € Li@wi,o(']rd) satisfying the following integral by parts

identity.
/ (00,0w.f) g de = — / (0w, f) Gad(a'® W), (3.3.1)
T4 T4

(T?) is the closed subspace of L2 (T?) consisting of

for every function f € Sy (T?), where L2 2 oW,

zIQW;,0 )
the functions that have zero mean with respect to the measure d(z? ® W;):

fd(z? @ W;) = 0.
Td
. We denote G; simply by 0w, g. See [34] for further details and properties of this space.
Let A > 0, f be a functional on Hy w (T?), uy be the unique weak solution of
My — VVNANY Y uy = f,
and ug be the unique weak solution of

For more details on existence and uniqueness of such solutions see [34].
In this context, we say that the diagonal matrix A = {a;;} = {a;} is a homogenization of the sequence

of random matrices AV, denoted by AN A, A, if the following conditions hold:

e uy converges weakly in HLW(’]I'd) to ug, when N — o0;
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e a0y uN — a;0w,u, weakly in Lii@)Wi (T?) when N — oo.

Theorem 3.3.1. Let AN be a sequence of ergodic random matrices, such as the one that defines our
random environment. Then, almost surely, AN (w) admits a homogenization, where the homogenized
matriz A does not depend on the realization w.

The following proposition regards the convergence of energies:
Proposition 3.3.2. Let AN A, A, as N — oo, with uy being the solution of
AUy — VNANV%UN = f,

where f is a fized functional on Hy w (T?). Then, the following limit relations hold true:

1 2 2
— - d
w7 2 uk(@) = [ b,

zeTY,
and
d
N O 3 @)W, un (@))? [ (s + 1)/N) = Wi/ )
j=1zeTd,
d .
— Z/}rd ajj(x)((?wjuo(a:))gd(x%@ Wj),

as N — oo.

The proofs of these results can be found in Chapter 2.

3.3.1 Martingale Problem
We say that Y; € Sfy(T?) solves the martingale problem with initial condition Yj if for any G € Sy (T¢)

MG) = Yi(6) = %0(6) ~ ¢ 0) [ V(AT s (333)

is a martingale with quadratic variation
d ) ‘
(M(@) = 2tx(p) 8 () > / a5 (0w,G)" d(a? & W), (3.3.4)
j=1

Observe that if Y; is the generalized Ornstein-Uhlenbeck process with characteristics ¢'(p)VAVy and
V2x(p)¢' (p) AV, then Y; solves the martingale problem above.

Recall the definition of the density fluctuation field Y given in (3.1.5), and denote by Quy the
distribution in D([0,T],Sw (T%)) induced by Y., with initial distribution v,. Our goal is to show that
any limit point of Y/ solves the martingale problem. To this end, let us introduce the corrected density
fluctuation field:

YNNG) = O GA@) )~ 1),

z€eTd

where G is the weak solution of the equation
MGy — LyGN = \G — VAV G, (3.3.5)
that, via homogenization, converges to G which is the trivial solution of the problem

AG — VAV G = MG — VAV G.
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The processes YV and YV have the same asymptotic behavior, as we will see. But some calculations
are simpler with one of them than with the other. In this way, we have defined two processes in
D([0,T], Sy, (T7)).

Given a process Y. in D([0,T],8},(T¢)), and for ¢ > 0, let F; be the o-algebra generated by Y;(H)
for s <t and H € Sy (T9). Furthermore, set F, = U(Utzo ]-'t>. Denote by Qj the distribution on

D([0,T), S} (T4)) induced by the corrected density fluctuation field v¥* and initial distribution Vp.
Theorem 3.1.1 is a consequence of the following result about the corrected fluctuation field.

Theorem 3.3.3. Let Q be the probability measure on D([0,T], S}, (T¢)) corresponding to the generalized
Ornstein-Uhlenbeck process of mean zero and characteristics ¢'(p)V-AVw and \/2x(p)¢'(p)AVw . Then
the sequence {Q?V}Nzl converges weakly to the probability measure Q.

Note also that the above theorem implies that any limit point of YV solves the martingale problem
(3.3.3)-(3.3.4).

Before proving the Theorem 3.3.3, we will state and prove a lemma. This lemma shows that tightness
of YtN’)‘ follows from tightness of Y,/V, and even more, that they have the same limit points. So we can
derive our main theorem from Theorem 3.3.3.

Lemma 3.3.4. For allt € [0,T] and G € Sw(T?), limy 0 By, [V (G) — Yt]\[”\(G)]2 =0.
Proof. By convergence of energies, we have that limy_,o, Gy = G in L% (T?), i.e.
1
GN — GI% = i > [Gn(x/N) = G(z/N)]> -0, as N — oo (3.3.6)
z€TY,

Since v, is a product measure we obtain

B, [YN@G) - N @) =

= B, [% Y [GX(z/N) = G(a/N)[GN (y/N) = Gly/N)(ne(x) = p)(m(y) = p)] =

z,yeTY,

= B, [5g Y (GMG/N) — Gla/N)P @) — )] < S S (@ (w/N) - Gla/ NP,

z€TY, z€TY,

where C(p) is a constant that depend on p. By (3.3.6) the last expression vanishes as N — oo. O

Proof of Theorem 3.3.3
Consider the martingale

t
MY(G) = YNE) - Y6 - [ NLyY(G)is (3:3.7)
0
associated to the original process and the martingale
t
MNNG) =Y VNG) - YNMNG) - / N2LyYNN@)ds (3.3.8)
0

associated to the corrected process.
A long, albeit simple, computation shows that the quadratic variation of the martingale MtN”\(G),
(MNX(G))y, is given by:

d
*Ni_l 33T a0, GX (@/N)EIW ((x + ¢5)/N) — W (z/N)]x (3.3.9)
Jj=1zeTd

x / Cosote, (1) s (@ + €5) — 15 ()2 ds .
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Is not difficult see that the quadratic variation of the martingale M} (G), (MY (G));, has the expres-
sion (3.3.9) with G replacing G. Further,

E,, [Cm,z+6j () Ins(x + ;) — (CE)]2}
B, [1+b(n(x = ¢j) + n(@)] By, [(n(z + ¢) — n(x))?] =
2(1+2bp)p(1 — p) = 2¢'(p)x(p)-

Lemma 3.3.5. Fiz G € Sy (T¢) and t > 0, and let (MN*(G)); and (MN(G)); be the quadratic
variations of the martingales M (G) and MM (G), respectively. Then,

lim B, [(MNNG), — (MN(G)),]* = o. (3.3.10)

N —o0

Proof. Fix G € Sy(T?) and ¢ > 0. A straightforward calculation shows that
By, [(MNA@)e — (MN(G))e]” <

d
020 e S0 57 a0, G (/M) — (@R, Glae/N) I (L)~ W),

j=1zeTd

where the constant k comes from the integral term. By the convergence of energies (Proposition 2.5.1),
the last term vanishes as N — oo. O

Lemma 3.3.6. Let G € Sy (T%) and d > 1. Then

lim E,, [%/ dsz S a0, Ga/N)) W ((z + €)/N) — W (x/N)]

N—o00
j=1zeTd
2
X [Casare, (05) [1s( + €5) = no(@)* = 2x(0)0/ ()] | = 0.
Proof. Fix G € Sy(T?) and d > 1. The term in the previous expression is less than or equal to

t294C( )

e L IV Gl (3:3.11)

where
IV Gl v a = Nd T Z > (O, G@/N) W ((w+e;)/N) = W(x/N)].
Jj=1zeTd
Thus, since for G € Sy (T%), [|V{{,G|[3y. x4 is bounded, the term in (3.3.11) converges to zero as N — oc.

The case d = 1 follows from calculations similar to the ones found in Lemma 12 of [28]. O

So, by Lemma 3.3.5 and 3.3.6, (M™*(G)); is given by

%X ZZ ol (O, GX (/M)W ((z + ¢;)/N) — W (z/N)]

j=12eTd

plus a term that vanishes in L,%p (T4) as N — oo. By the convergence of energies, Proposition 2.5.1, it
converges, as N — oo, to

2tx(p Z/ ¥ (9w, G () dz? @ W;.
Td

Our goal now consists in showing that it is possible to write the integral part of the martingale as
the integral of a function of the density fluctuation field plus a term that goes to zero in L?,p (T4). After
some simple computations, we obtain that
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d
NLNYNNG) = 3 s 3 LAGA (/N ne(a)

wETﬁ

e 3 LGN (o + e)/N) + LG (/N (s ) )

zeTd
b .
~ 5 O NG (@/N)(reha ) ()}

zGTﬁ

where {7, : z € Z?} is the group of translations, so that (7,7)(y) = n(z +y) for 2, y in Z4¢, and the sum
is understood modulo N. Also, hy j, ha ; are the cylinder functions

hii(m) = n0)n(e;) .  haj(m) = n(—e;)n(e;) -

Note that inside the expression N2LxYN:* we may replace Lg\,Gﬁ‘V by a;0.,0w,;G. Indeed, the
expression

t d ]
Eun{ [ Xiz 5 [ACAGN) - s, 00, Gla/ )] (1) = ) +
j=1 z€TY
+ N§/2 Z {LgVG?V((erej)/N) — a0z, 0w, G((z +¢;)/N) +

d
€T

LAGN (@/N) = 30,00, G(x/N)| ((7ah 5) 01,) = 07) —

X AN /N = 0300,00,G /)| ((maha ) = )}

d
z€Tq

is less than or equal to

C(p,b)/o % S [LnGy(x/N) - VAVwG(z/N)].

zeTe

Now, recall that G7 is solution of the equation (3.3.5), and therefore, the previous expression is less
than or equal to
tC(p,b)
)2

thus, by homogenization and energy estimates in Theorem 3.3.1 and Proposition 3.3.2, respectively, the
last expression converges to zero as N — oo.

By the Boltzmann Gibbs principle, Theorem 3.5.1 below, we can replace (7,h; ;) (ns)—p* by 2p[ns(z)—
p| for i = 1,2. Doing so, the martingale (3.3.8) can be written as

”(;x'_-(;nih

MYA@) = YNNG) - YIAN6) - /O i 2 VAVWG/N)S (), — p)ds,  (3312)

zeTe

plus a term that vanishes in L2 (T9) as N — oo.

Notice that, by (3.1.5), the integrand in the previous expression is a function of the density fluctuation
field Y,. By Lemma 3.3.4, we can replace the term inside the integral of the above expression by a term
which is a function of the corrected density fluctuation field Y,V*.

From the results of Section 3.4, the sequence {Q% } y>1 is tight and let @* be a limit point of it. Let
Y; be the process in D([0, T, S} (T%)) induced by the canonical projections under @Q*. Taking the limit
as N — oo, under an appropriate subsequence, in expression (3.3.12), we obtain that

MG = ¥i6) - %6 - [ Ya(¢(0)V - AV G, (3:3.13)
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where M} is some Siy,(T?)-valued process, in fact, a martingale. To see this, note that for a measurable
set U with respect to the canonical o-algebra Fy, Egy [MNMG)1y] converges to Egr[M}MG)1y]. Since
MNA(G) is a martingale, EQ?V[MQIY’)‘(G)lU] = EQAN[M;V)A(G)lU]. Taking a further subsequence if
necessary, this last term converges to Egx[M}(G)1y], which proves that M*(G) is a martingale for any
G € Sw(T?). Since all the projections of M;* are martingales, we conclude that M} is a S}, (T%)-valued
martingale.

Now, we need obtain the quadratic variation (M*(G)); of the martingale M (G). A simple applica-
tion of Tchebyshev’s inequality shows that (M™*(G)); converges in probability to

26x(p)(p) i [ os[owc] awows)

where x(p) stands for the static compressibility given by x(p) = p(1—p). By Doob-Meyer’s decomposition
theorem, we need to prove that

d 2 )
NAG) = NG =2 ()Y [ asfow, 6] daro W)
j=17T¢

is a martingale. The same argument we used above applies now if we can show that supy Eqgx MY @)Y <
oo and supy EQ?\V[<MN’)\(G>>%] < oo. Both bounds follows easily from the explicit form of (MM (G)),

and (3.3.12).
On the other hand, by a standard central limit theorem, Y; is a Gaussian field with covariance

BIGGY(I] = x(p) [ Gt ().

Therefore, by Theorem 3.3.7, Q* is equal to the probability distribution @ of a generalized Ornstein-
Uhlenbeck process in D([0, 7], S}y, (T?)) (and it does not depend on \). By existence and uniqueness of
the generalized Ornstein-Uhlenbeck processes (also due to Theorem 3.3.7), the sequence {Q }n>1 has
at most one limit point, and from tightness, it does have a unique limit point. This concludes the proof
of Theorem 3.3.3.

3.3.2 Generalized Ornstein-Uhlenbeck Processes

In this subsection we show that the generalized Ornstein-Uhlenbeck process obtained as the solution
martingale problem which we are interested, is also a Sy, (T¢)-solution of a stochastic differential equation,
and then we apply the theory in Appendix to conclude that there is at most one solution of the martingale
problem. Moreover, we also conclude that this process is a Gaussian process.

Theorem 3.3.7. Let Yy be a Gaussian field on S}y, (T?). Then the unique S}y, (T?)-solution, Y;, of the
stochastic differential equation

dY: = ¢ (p)VAVwYidt + \/2x(p)¢' (p) AdNy, (3.3.14)

solves the martingale problem (3.3.3)-(3.3.4) with initial condition Yy, where Ny is a mean-zero Siy, (T4)-
valued martingale with quadratic variation given by

d
(N(G)): = tZ/W [aWij d(z? @ W;).

Moreover, Yy is a Gaussian process.

Proof. In view of the definition of solutions of stochastic differential equations (see Appendix), Y; is a
Siy (T9)-solution of (3.3.14). In fact, by hypothesis Y; satisfies the integral identity (3.3.3), and is also
an additive functional of a Markov process.
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We now check the conditions in Proposition 3.6.1 to ensure uniqueness of Sfy, (T¢)-solutions of (3.3.14).
Since by hypothesis Y, is a Gaussian field, condition 1 is satisfied, and since the martingale M; has
quadratic variation given by (3.3.4), we use Remark 3.6.2 to conclude that condition 2 holds. Condition
3 follows from Lemmas 3.2.2 and 3.2.3. Therefore Y; is unique.

Finally, by Blumenthal’s 0-1 law for Markov processes, M; and Y{ are independent, since for measur-
able sets A and B,

P(Yo € A, M € B) = E(ly,ealmeB) =
ElE(1y,ealm,elFot)] = E[ly,eaE(Ly,enlFot)] =
E[lyOEAP(Mt € B)] = P(YO S A)P(Mt € B)
Applying Lévy’s martingale characterization of Brownian motions, the quadratic variation of M;, given
by (3.3.4), yields that M; is a time deformation of a Brownian motion. Therefore, M; is a Gaussian

process with independent increments. Since Yj is a Gaussian field, we apply Proposition 3.6.3 to conclude
that Y; is a Gaussian process in D([0, T, S4, (T4)). O

3.4 Tightness

In this section we prove tightness of the density fluctuation field {Y.V}x introduced in Section 1.1. We
begin by stating Mitoma’s criterion [29]:

Proposition 3.4.1. Let ®., be a nuclear Fréchet space and ® its topological dual. Let {QN}n be a
sequence of distributions in D([0,T],®..), and for a given function G € ®,, let QNC be the distribu-
tion in D((0,T],R) defined by Q¥4 [y € D([0,T),R);y(-) € 4] = Q¥ [Y" € D([0,T], . ); Y (-(G) € A].
Therefore, the sequence {QN }n is tight if and only if {QN%}y is tight for any G € ®.

From Mitoma’s criterion, {Y.V}y is tight if and only if {Y/V(G)} is tight for any G € Sy (T9), since
Sw (T?) is a nuclear Fréchet space. By Dynkin’s formula and after some manipulations, we see that

t d )
vNE) = WO [ Yz L one/N )

d
€T

+ % > [LAGN((x +¢)/N) + LG (a/N)] (1aha ;) (ns)

d
zeTg,

> LGN (@/N)(reha,;)(ns) bs + MN(G), (3.4.1)

z€TY,

b
Nd/2

where M (G) is a martingale of quadratic variation

d
NG = s Do D o, G (a/N)PIV (& + 5)/N) = W (/)]

j=1zeTd

X /0 Cz,z+e; (ns) [ns (= + ej) - ﬂs(x)]2 ds .

In order to prove tightness for the sequence {Y.V(G)} v, it is enough to prove tightness for {YV (G)}n,
{MXN(G)} y and the integral term in (3.4.1). The easiest one is the initial condition: from the usual central
limit theorem, Y3 (G) converges to a normal random variable of mean zero and variance x(p) [ G(z)*dz,
where x(p) = p(1 — p). For the other two terms, we use Aldous’ criterion:

Proposition 3.4.2 (Aldous’ criterion). A sequence of distributions { PN} in the path space D([0,T],R)
is tight if:

i) For anyt € [0,T)] the sequence { PN} of distributions in R defined by PN (A) = PN [y € D([0,T],R) : y(t) € A]
1s tight,
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ii) For any e >0,

lim im sup PN [y € D([0,T],R) : 6) —y(r)| > ¢ =0
lim T sup PY[y € DO, TLR) : [y(7+6) = y(7)] > ¢] =0,
0<6

where Yr is the set of stopping times bounded by T and y(t +0) =y(T) if T+ 6 > T.

Now we prove tightness of the martingale term. By the optional sampling theorem, we have

Qn[|MY(G) = MY (G)| > €] < EQN [(MPo(G)) = (MY (G))]

[<MT+9(G)> - (Y (G>>]

- % S ), Gl NIW (x4 e3)/N) — W)

J=1zeT¢
t+6
X /t Ca,ate; (M) [Ms(2 + €5) — 773(13)]2d5
< S0+ 20 S S N GNPV (o)) - W) (342)
J=1zeTg
< S0+ 2B)O0Tw Gy +9),

for N sufficiently large, since the rightmost term on (3.4.2) converges to |V G|%,, as N — oo, where

VWGl = i [, (owas) o w

Therefore, the martingale M} (G) satisfies the conditions of Aldous’ criterion. The integral term can
be handled in a similar way:

g (]

T

T+6

Nd/ZZZ{]LJ (@/N)(ne = p)

j=1 =z

+ BLAG((z + €;)/N) + LY G(x/N))(1ah1 — p°)
— BLA,G(z/N)(rohs — p2))2dt]

Ndz 3 (LJ as/N)

J=1zeT¢

< 6C(G,D),

IN

where C'(b) is a constant that depends on b, and C(G, b) is a constant that depends on C(b) and on the
function G € Sy (T9). Therefore, we conclude, by Mitoma’s criterion, that the sequence {Y.V} v is tight.
Thus, the sequence of Sjy,(T?)-valued martingales {MN}y is also tight.

3.5 Boltzmann-Gibbs Principle

We show in this section that the martingales MY (G) introduced in Section 3.3 can be expressed in terms
of the fluctuation field Y;V. This replacement of the cylinder function (7.h; ;)(ns) — p* by 2p[ns(x) — p]
for i = 1,2, constitutes one of the main steps toward the proof of equilibrium fluctuations.
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Recall that (2, F, u) is a standard probability space where we consider the vector-valued F-measurable
functions {a;(w);j = ...,d} that form our random environment (see Sections 1.1 and 3.3 for more de-
tails).

Take a function f : Q x {0,1}T% — R. Fix a realization w € €0, let z € T¢;, and define

f(xan) = f(‘T,nvw) = f(TNIw>TI77)a

where 7,7 is the shift of n to x: 7.n(y) = n(z + ).

We say that f is local if there exists R > 0 such that f(w,n) depends only on the values of n(y) for
|yl < R. On this case, we can consider f as defined in all the space £ x {0, 1}T(IiV for N > R.

We say that f is Lipschitz if there exists ¢ = ¢(w) > 0 such that for all z, |f(w,n) — f(w, )] <
cln(z) — o' (x)| for any n, 7’ € {0,1}T~ such that n(y) = n/(y) for any y # . If the constant ¢ can be
chosen independently of w, we say that f is uniformly Lipschitz.

Theorem 3.5.1. (Boltzmann-Gibbs principle)

For every G € Sy (T?), everyt > 0 and every local, uniformly Lipschitz function f : Qx{0, l}wv — R,
it holds

2
Iégnoo E,, [/0 Nz ; z)Vi(x ns)ds} =0, (3.5.1)

where
Vi) = faevn) ~ By, [Fon)] = ,E[ [ f(.mdv,n)] (o) - o).

Here, E denotes the expectation with respect to u, the random environment.

Let f: Q x {0, 1}11“,{, — R be a local, uniformly Lipschitz function and take f(z,n) = f(Onzw, T2n).
Fix a function G' € Sy (T?) and an integer K that shall increase to oo after N. For each N, we subdivide
T4, into non-overlapping boxes of linear size K. Denote them by {B;,1 < i < M9}, where M =
More precisely,

[%]-
Bi:yi—l—{l,...,K}d,

where y; € ']I“f\,7 and B; N B, = 0 if i # r. We assume that the points y; have the same relative position
on the boxes.

Let By be the set of points that are not included in any B;, then |By| < dK N1, If we restrict the
sum in the expression that appears inside the integral in (3.5.1) to the set By, then its L?,p (T?)-norm
clearly vanishes as N — +o0, since f is local, v, is an invariant product measure, and V; has mean zero
with respect to v,,.

Let Ag, be the smallest cube centered at the origin that contains the support of f and define sy as
the radius of A,,. Denote by BY the interior of the box B;, namely the sites x in B; that are at a distance
at least sy + 2 from the boundary:

BY = {z € B;,d(x,T% \ B;) > sy + 2}

Denote also by B¢ the set of points that are not included in any BY. By construction, it is easy to

see that |B¢| < de(% + £, where c(f) is a constant that depends on f.
We have that for continuous H : T¢ — R,

3 H@Vi(m) = s 2 H@)WVylam)+

zeTY, rE€B°
1 &
+7Nd/222 [H(C.U)_H(yz)}‘/f(l',nt Nd/QZHyZ vaxnt
i=1zeB) z€BY

Note that we may take H continuous, since the continuous functions are dense in L?(T?). The first step
is to prove that

dn g e[ [ i > H@Vamas] =
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As v, is an invariant product measure and V; has mean zero with respect to the measure v, the last
expectation is bounded above by

t2

Nd > H(@)H)E,, [Vi(z,m)Vi(y,n)].
z,y€B®
|z—y|<2sf

Since V; belongs to L,%p (T4) and |B¢| < dN d(cg) + £, the last expression vanishes by taking first
N — +o00 and then K — +o00.
From the continuity of H, and applying similar arguments, one may show that

¢ M 9
]\}iinwEup[/o Y [H(x)—H(yi)]Vf(x,m)ds} = 0.

i=1 2 BY

In order to conclude the proof it remains to be shown that

. . t 1 M 2
lim lim EUP[A WZH(%) Z Vf(x,nt)ds} =0. (3.5.2)
i=1

K—o00 N—o0
zeB?
To this end, recall proposition A 1.6.1 of [23]:
t
E,, [ i V(ns)ds] < 200t||V[|2,, (3.5.3)
where || - ||-1 is given by

VIE = s {2 [ virma, - LNF>p} |

FeL?(v,

and (-, ), denotes the inner product in L?(v,).

Let Ly be the generator of the exclusion process without the random environment, and without the
conductances (that is, taking a(w) = 1, and Wj(z;) = z;, for j =1,...,d, in (1.1.2)), and also without
the diffusive scaling N?2:

d

Lngm) =Y > cawre, () [g(n™ ") — g(n)],

= d
J=1lzeTy

for cylindric functions g on the configuration space {0, 1}TdN. )
For each i =1, .., M? denote by (; the configuration {n(z),r € B;} and by Lp, the restriction of the
generator Ly to the box B;, namely:

Lph(n)= > caym)[hn™) = h(n)].

z,y€B;
|z—y|=1/N

We would like to emphasize that we introduced the generator Ly because it is translation invariant.
Now we introduce some notation. Let L*(P ® v,) the set of measurable functions g such that

E[[ g(w,n)%dv,] < co. Fix a local function A : Q x {0,1}™% — R in L?(P @v,), measurable with respect
to o(n(r),r € By), and let h; be the translation of h by y; — y1: hi(2,m) = h(0(y,—y,)NWs Ty, —y,1)-

Consider
Md

1 5
Vir(n) = Nz ZH(yz')LBihi(Ci)-
=1

The strategy of the proof (3.5.2) is the following: we show that Vf[\f ;, vanishes in some sense as
N — o0, and then, that the difference between V; and Vé\f ,, also vanishes, as N — oo. The result follows
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a simple triangle inequality. The first part is done by obtaining estimates on boxes, whereas the second
part mainly considers the projections of V; on some appropriate Hilbert spaces, plus ergodicity of the
environment.

Let
5 Nay () sikes
Lw,g,h(n) = ;x%; Coyate,; (M) Wz te) W) [R(n™*7%) — h(n)].
Note that the following estimate holds
M
> (h,—Lw,p,h), < (h,—Lyh),.
i=1

Furthermore,

(f,—Lp h) < max W) — Wi (0)}

< max ¥ 0(h, —Lw.p,h),.

Using the Cauchy-Schwartz inequality, we have, for each i,

- 1 - ; -
(Lphi, F)p < 2 (=L hi, hi)p + %<F, —Lp,F)y,
where ~; is a positive constant.
Therefore,
9o U 1
N 7 Vi H
2 [ Vi, < 7 > o Inbih,+ R -LaF),] . (354
Choose
N1+d/2

1 Gmaxs <pea{Wi(1) — Wi(O)H ()]

and observe that the generator Ly is already speeded up by the factor N2. We, thus, obtain

M4
2 Vi = =
Najz ZH(yi)§<Fa —Lp,F), <(F,—LnF),.
i—1

The above bound and (3.5.4) allow us to use inequality (3.5.2) on Vé\f n, With the generator Ly, p,.
Therefore, we have that the expectation in (3.5.3) with Vé\f 5, is bounded above by

Md
200t <~ [H(yi)l, 5
N2 ;:1: ” (=L, hi; hi)p,
which in turn is less than or equal to

d
20t|| H || oo M 462 o1, -

—{(—Lpg,hi, h;),.

Nd+1 maxlgkgd{Wk(l) — Wk(O)} Zz:; Md< Bi >p

By Birkhoft’s ergodic theorem, the sum in the previous expression converges to a finite value as N — oo.
Therefore, this whole expression vanishes as N — oo. This concludes the first part of the strategy of the
proof.

To conclude the proof of the theorem it is enough to show that

d
. . . | M - 2
ggrlmheL;{iE@P) A}gnooEyp[/O Nz ;H(yi){ > Vi) _LBihi(Ci(S))}] =0.

zeBY?
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To this end, observe that the expectation in the previous expression is bounded by

t2 2
NdZHHHQ B, (Y Vi) - Lohil@)

zeBY

because the measure v, is invariant under the dynamics and the supports of Vj(z,n) — Lg,hi(¢;) and
Vi(y,m) — Lp, h-(¢) are disjoint for z € BY and y € BY, with i # r.
By the ergodic theorem, as N — oo, this expression converges to

el [ (3 Vit~ Lohteom) v, (555)

z€BY

So, it remains to be shown that

hm —H 1% h€L2(V op) {/( Z Vi(z,n) INJBIh(w,n)>2dup} =0.

z€BY

Denote by R(Lp,) the range of the generator Lp, in L?(v,® P) and by R(Lg, )" the space orthogonal
to R(Lg,). The infimum of (3.5.5) over all h € L?(v, ® P) is equal to the projection of ZzeB‘f Vi(z,n)
into ]%(I~491)J-.~

The set R(Lp, )™ is the space of functions that depend on 7 only through the total number of particles
on the box Bj. So, the previous expression is equal to

A %E{/ (Ev{ > Vf(xvn)‘nBl})zdup}, (3.5.6)

z€BY

where nB = K—¢ szl n(x).

Let us call this last expression Zg. Define 9 (z,p) = E,, [f(0.w)]. Notice that Vi(z,n) = f(z,n) —
U(z, p) — B[00 (x, p)](n(x) — p), since in the last term the partial derivative with respect to p commutes
with the expectation with respect to the random environment. In order to estimate the expression (3.5.6),
we use the elementary inequality (z+y)? < 222 + 2y2. Therefore, we obtain Zy < 4(Z; +Z3 + I3), where

6= et (5 et o) ),
T2 = %E{/ ( D (@) = d(x, p) — dp(x, p) ™ — p])Qd,,p}

z€BY

and
1

2B (B [( 5 @ntten)— O ™ - A) ]

z€BY

Is =

Recall the equivalence of ensembles (see Lemma A.2.2.2 in [23]):

Lemma 3.5.2. Let h: {0, 1}T§if — R be a local uniformly Lipschitz function and S € {1,...,N}. Then,
there exists a constant C' that depends on h only through its support and its Lipschitz constant, such that

By, IW(0)l®) — Bu s )] < o

and

(z) dz

yEAs

wz’thAS:{O,...,Sfl}d.
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Applying Lemma 3.5.2, we get

[/( Z E”ﬂ (2, |77 ] _w(xanBl))Qde} < %7

CDBO

which vanishes as K — oc.
Using a Taylor expansion for ¢(z, p), we obtain that

oLl / (X vten™) —v(a.p) — 00 ™ —p]) vy < .

z€BY

and also goes to 0 as K — oo.
Finally, we see that

Ty = B, [00) ) - B[ (0 2 @) — Bt p)]) .

z€BY

and it goes to 0 as K — oo by the L?-ergodic theorem. This concludes the proof of Theorem 3.5.1.

3.6 Appendix: Stochastic differential equations on nuclear spaces

3.6.1 Countably Hilbert nuclear spaces

In this subsection we introduce countably Hilbert nuclear spaces which will be the natural environment
for the study of the stochastic evolution equations obtained from the martingale problem. We will begin
by recalling some basic definitions on these spaces. To this end, we follow the ideas of Kallianpur and
Perez-Abreu [22] and Gel’fand and Vilenkin [19].

Let @ be a (real) linear space, and let | - ||, 7 € N be an increasing sequence of Hilbertian norms.
Define @, as the completion of ® with respect to || - ||-. Since for n < m
£l < Il for all f € @, (3.6.1)
we have,

®,, C ®,, for all m > n.
Let

B
r=1

Then @, is a Fréchet space with respect to the metric

=gl
ZQ T+ 17—l (36.2)

and (®.., p) is called a countably Hilbert space.

A countably Hilbert space @, is called nuclear if for each n > 0, there exists m > n such that the
canonical injection 7, ,, : ®,, — @5, is Hilbert-Schmidst, i.e., if {f;};>1 is a complete orthonormal system
in ®,,, we have

SIS < oo (3.6.3)
j=1

We now characterize the topologic dual ®._ of the countably Hilbert nuclear space ®, in terms of
the topologic dual of the auxiliary spaces ®,,.
Let @/ be the dual (Hilbert) space of ®,,, and for ¢ € ¥/, let

[6ll—n = sup [[f]

171l <1

)
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where ¢[f] means the value of ¢ at f. Equation (3.6.1) implies that
o/ C @ forall m > n.

Let ®/_ be the topologic dual of ®,, with respect to the strong topology, which is given by the
complete system of neighborhoods of zero given by sets of the form, {¢ € @, : |é|lz < €}, where
lollz = sup{|o[f]| : f € B} and B is a bounded set in ®,. So,

o = fj o
r=1

3.6.2 Stochastic differential equations

The aim of this subsection is to recall some results about existence and uniqueness of stochastic evolution
equations in nuclear spaces.

We denote by L£(Poo, Poo) (resp. L(PL, P )) the class of continuous linear operators from @, to
D, (resp. P/, to D).

A family {S(t) : t > 0} of the linear operators on ®, is said to be a Cy 1-semigroup if the following
three conditions are satisfied:

] S(tl)S(tQ) = S(tl +t2) for all t1,t5 > 0, S(O) =1
e The map t — S(t)f is Po-continuous for each f € P;

e For each g > 0 there exist numbers M, > 0,0, > 0 and p > ¢ such that

IS(t) fllq < My e“st||fll, forall feda, t>0.

Let A in £(®o, Poo) be infinitesimal generator of the semigroup {S(t) : t > 0} in L(Poo, Po). The
relations

oS f] = (S'(t)p)[f] forall t >0, f € Py and ¢ € P_;
olAf] = (A'¢)[f] forall fe Py and ¢ € P/ _;

define the infinitesimal generator A’ in L£(®. , ®..) of the semigroup {S’(¢) : t > 0} in L(DL,, PL.).

Let (X,U, P) be a complete probability space with a right continuous filtration (U;);>0, Uy containing
all the P-null sets of U, and M = (My);>0 be a @, -valued martingale with respect to U, i.e., for each
f € Dy, Mi[f] is a real-valued martingale with respect to Uz, t > 0. We are interested in results of
existence and uniqueness of the following @/ _-valued stochastic evolution equation:

dé-t == A’gtdt + th, t> O,
50 = 7

(3.6.4)

where 7 is a ®/_-valued random variable, and A is the infinitesimal generator of a Cy 1-semigroup on
D
We say that £ = (&)i>0 is a ®L-solution of the stochastic evolution equation (3.6.4) if the following
conditions are satisfied:

o ¢ is @/ _-valued, progressively measurable, and U;-adapted;

e the following integral identity holds:

&lfl =11+ /Ot §s[Af]ds + M[f],

forall f e @&, t>0as.

It is proved in [22, Corollary 2.2] the following result on existence and uniqueness of solutions of the
stochastic differential equation (3.6.4):
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Proposition 3.6.1. Assume the conditions below:
1. 7 is a DL -valued Uy-measurable random element such that, for some ro > 0, E|7|27,,0 < 005

2. M = (M)i>o is a P, -valued martingale such that My = 0 and, for each t > 0 and f €
D, E(M[f])* < o0;

3. A is a continuous linear operator on ®, and is the infinitesimal generator of a Cy 1-semigroup
{S(t): t>0} on Pe.

Then, the ®._-valued homogeneous stochastic evolution equation (3.6.4) has a unique solution § = (&)¢>0
giwen explicitly by the “evolution solution”:

¢
& =S'(t)y +/0 S'(t — s)dMs.

Remark 3.6.2. The statement E(M;[f])> < oo in condition 2 of Proposition 3.6.1 is satisfied if
E(M[f])? = tQ(f, f), where f € @, and Q(-,-) is a positive definite continuous bilinear form on
D x O

We now state a proposition, whose proof can be found in Corollary 2.1 of [22], that gives a sufficient
condition for the solution & of the equation (3.6.4) be a Gaussian process.

Proposition 3.6.3. Assume vy is a ®'_-valued Gaussian element independent of the ®’_-valued Gaussian
martingale with independent increments My. Then, the solution & = (&) of (3.6.4) is a D/ _-valued
Gaussian process.
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Chapter 4

Dynamical large deviations for a
boundary driven stochastic lattice
gas model with many conserved
quantities

In the last years there has been considerable progress in understanding stationary non equilibrium states:
diffusive systems in contact with different reservoirs at the boundary imposing a gradient on the conserved
quantities of the system. In these systems there is a flow of matter through the system and the dynamics
is not reversible. The main difference with respect to equilibrium (reversible) states is the following: in
equilibrium, the invariant measure, which determines the thermodynamic properties, is given for free
by the Gibbs distribution specified by the Hamiltonian; on the other hand, in non equilibrium states
the construction of the stationary state requires the solution of a dynamical problem. One of the most
striking typical property of these systems is the presence of long-range correlations. For the symmetric
simple exclusion this was already shown in a pioneering paper by Spohn [37]. We refer to [5, 7] for two
recent reviews on this topic.

We discuss this issue in the context of stochastic lattice gases in a box of linear size N with birth
and death processes at the boundary modeling the reservoirs. We consider the case when there are
many thermodynamic variables: the local density denoted by p, and the local momentum denoted by
Pk, k=1,....d, d being the dimension of the box.

Let the set of possible velocities, V, be a finite subset of R%, and for a point z = (x1,...,74) € RY,
let & = (za,...,24). The model which we will study can be informally described as follows: fix a velocity
v € V, an integer N > 1, and boundary densities 0 < a,(-) < 1 and 0 < §,(-) < 1; at any given time,
each site of the set {1,...,N — 1} x {0,..., N — 1}~ is either empty or occupied by one particle at
velocity v. In the bulk, each particle attempts to jump at any of its neighbors at the same velocity, with
a weakly asymmetric rate. To respect the exclusion rule, the particle jumps only if the target site at the
same velocity v is empty; otherwise nothing happens. At the boundary, sites with first coordinates given
by 1 or N — 1 have particles being created or removed in such a way that the local densities are «, (&)
and f8,(Z): at rate a,(Z/N) a particle is created at {1} x {Z} if the site is empty, and at rate 1 — «, (&)
the particle at {1} x {Z} is removed if the site is occupied, and at rate §,(Z) a particle is created at
{N — 1} x {Z} if the site is empty, and at rate 1 — 3,(Z) the particle at {N — 1} x {Z} is removed if the
site is occupied. Superposed to this dynamics, there is a collision process which exchange velocities of
particles in the same site in a way that momentum is conserved. Similar models have been studied by
[1, 9, 32]. In fact, the model we consider here is based on the model of Esposito et al. [9] which was used
to derive the Navier-Stokes equation. It is also noteworthy that the derivation of hydrodynamic limits
and macroscopic fluctuation theory for a system with two conserved quantities have been studied in [4].

The hydrodynamic limit for the above model has been proved in [33]. The hydrodynamic equation
is derived from the underlying stochastic dynamics through an appropriate scaling limit in which the
microscopic time and space coordinates are rescaled diffusively. The hydrodynamic equation thus rep-
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resents the law of large numbers for the empirical density of the stochastic lattice gas. The convergence
has to be understood in probability with respect to the law of the stochastic lattice gas. Once it is
established a natural question is to consider large deviations from the hydrodynamic limit.

In this Chapter thus provides a derivation of the dynamical large deviations for this model. As usual,
the main difficulty appears in the proof of the lower bound where one needs to show that any trajectory
A, 0 <t < T, with finite rate function, I7()\) < oo, can be approximated by a sequence of regular
trajectories {\" : n > 1} such that

A"~ A and  Ip(\") — Ip()) . (4.0.1)

To avoid this difficulty, we follow the method introduced in [15]. It is well known that if I7()\) < oo,
then there exists an external field H associated to A, in the sense that A solves a hydrodynamic equation
perturbed by the external field H. The strategy of [15] is to approximate the external field H by
a sequence of smooth functions, H,, and then to show that the corresponding weak solutions of the
hydrodynamical equations perturbed by H,, converge to A in the sense (4.0.1).

The main difference of our proof with respect to theirs, is that their proof of the convergence (4.0.1)
relied on some energy estimates that we were not able to achieve due to the presence of velocities.
Therefore, we had to overcome this problem by taking an alternative approach at that part. More
specific details are given in Section 4.4.

The Chapter is organized as follows: in Section 4.1 we establish the notation and state the main
results of the article; in Section 4.2, we review the hydrodynamics for this model, that was obtained in
[33]; in Section 4.3, several properties of the rate function are derived; Section 4.4 proves the Ir(:|v)-
density, which is a key result for proving the lower bound; finally, in Section 4.5 the proofs of the upper
and lower bounds of the dynamical large deviations are given.

4.1 Notation and Results

Fix a positive integer d > 1, and denote by D the open set (0,1) x T?~! where T* is the k-dimensional
torus (R/Z)* = [0,1)*, and by T the boundary of D% T = {(uy,...,uq) € [0,1] x T4 L;u; =0 or 1}.

For an open subset A of R x T4~!, C™(A), 1 < m < 400, stands for the space of m-continuously
differentiable real functions defined on A. Let CJ*(A) (resp. CI"(A)), 1 < m < 400, be the subset of
functions in C"™(A) which vanish at the boundary of A (resp with compact support in A).

For each integer N > 1, denote by T% ! = (Z/NZ)4~' = {0,...,N — 1}?~1 the discrete (d — 1)-
dimensional torus of length N. Let D4 = {1,...,N — 1} x ’]I‘;l\,_1 be the cylinder in Z% of length N — 1
and basis T%  and let Ty = {(1,...,24) € Zx T4 21 = 1 or (N — 1)} be the boundary of D%.

Let V C R? be a finite set of velocities v = (vy,...,vq). Assume that V is invariant under reflexions
and permutations of the coordinates:

(Ul, ey Ui—1, =V, Uiy, - - - ,’Ud) and (Ua(1)> ey Ua(d)) (4.1.1)

belong to V for all 1 <4 < d, and all permutations o of {1,...,d}, provided (vy,...,vq) belongs to V.
On each site of D%, at most one particle for each velocity is allowed. We denote: the number of

particles with velocity vat x, v € V, x € D , by n(z,v) € {0, 1}; the number of particles in each velocity

v at a site x by 0, = {n(z, v) v E V}; and a configuration by n = {n,;x € D%}. The set of particle

configurations is Xy = ({0, 1}V)

On the interior of the domain, the dynamics consists of two parts: (i) each particle of the system
evolves according to a nearest neighbor weakly asymmetric random walk with exclusion among particles
of the same velocity, and (ii) binary collision between particles of different velocities. Let p(z,v) be an
irreducible probability transition function of finite range, and mean velocity v:

Z xp(x,v) = v.

The jump law and the waiting times are chosen so that the jump rate from site = to site z + y for a
particle with velocity v is

S N0H

j=1

1
e; +0y,—e;) + Np(y,v),

l\')\»—l
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where ¢, ,, stands for the Kronecker delta, which equals one if = y and 0 otherwise, and {e,...,eq} is
the canonical basis in R¢.

4.1.1 The boundary driven exclusion process

Our main interest is to examine the stochastic lattice gas model given by the generator £y which is the
superposition of the boundary dynamics with the collision and exclusion:

Ly = N2{L5 + LS + LY, (4.1.2)

where CS’V stands for the generator which models the part of the dynamics at which a particle at the
boundary can enter or leave the system, L4, stands for the generator which models the collision part of
the dynamics and lastly, £37 models the exclusion part of the dynamics. Let f be a function on Xy.
The generator of the exclusion part of the dynamics, £%7, is given by

LENM =" > nl@,v)[1=n(z,0)]Py(z = a,0) [f(n"*") = ()],
veV z,zGD}{,

where
n(y,v) if w=wvandz =z,
noY(z,w) =< n(z,v) fw=wvandz=y,
n(z,w) otherwise.

The generator of the collision part of the dynamics, L%, is given by

LD = D> py.a.n) [f@r) - f)],

yeDY q€Q
where Q is the set of all collisions which preserve momentum:
Q= {g=(v,w, v, w) €eViv+w=1v+w'},
the rate p(y, ¢,n) is given by

Py, q;n) =y, v)ny, w)[1 —n(y,v")][1 = nly,w")],

and for ¢ = (vg, v1, v2,v3), the configuration n¥? after the collision is defined as

04z, u) = N(y,vj42) ifz=yand u=v; fo.r some 0 < j <3,
n(z,u) otherwise,

where the index of v, should be taken modulo 4. Particles of velocities v and w at the same site collide
at rate one and produce two particles of velocities v’ and w’ at that site.
Finally, the generator of the boundary part of the dynamics is given by

LX) = DD law(@/N)1—nlx,v)] + (1 — au(@/N))n(z, 0)][f(e™n) — f(n)]
zeDY veV
+ Y D Bu@/N)[L =, 0)] + (1= By(E/N))n(x, )] [f (e n) — f(n)],
zeD} veV
r1=N-—1

where & = (za,...,24),

)

1—n(z,w), if w=vandy==x
z,v _ ’ ) ’
a"'n(y, w) = { n(y, w), otherwise.

and for every v € V, au,, 8, € C?(T4"!). We also assume that, for every v € V, a,, and (3, have images
belonging to some compact subset of (0,1). The functions «, and (3, which affect the birth and death
rates at the two boundaries, represent the densities of the reservoirs.

Note that time has been speeded up diffusively in (4.1.2). Let {n(t);¢ > 0} be the Markov process with
generator Ly, and let D(R, X ) be the set of right continuous functions with left limits taking values
on Xy. For a probability measure i on Xy, denote by P, the measure on the path space D(Ry, Xn)
induced by {n(t);t > 0} and the initial measure p. Expectation with respect to IP,, is denoted by E,,.

(0]



4.1.2 Mass and momentum

For each configuration ¢ € {0,1}Y, denote by Iy(¢) the mass of ¢ and by I..(¢), k = 1,...,d, the

momentum of &:
I(€) =) &), Iu(€) =) vik(v)

vEV veY

Set I(§) = (Io(&),...,1a(€)). Assume that the set of velocities is chosen in such a way that the
unique quantities conserved by the random walk dynamics described above are mass and momentum:
Y oec pe 1 (n:). Two examples of sets of velocities satisfying these conditions can be found at [9].

For each chemical potential A = (Ao, ..., \q) € R¥ 1 denote by m, the measure on {0,1}Y given by

ma(§) = exp{A-I(§)}, (4.1.3)

1
Z(N)
where Z(A) is a normalizing constant. Note that my is a product measure on {0,1}Y, i.e., that the
variables {{(v);v € V} are independent under my.

Denote by 13 the product measure on Xy, with marginals given by

px {mn(z,-) = €} = ma(§),

for each ¢ in {0,1}Y and z € DY,. Note that {n(z,v);z € D,v € V} are independent variables under
ug , and that the measure ug is invariant for the exclusion process with periodic boundary condition.
The expectation under ug of the mass and momentum are given by

p(A) == By [lo(na) = 6u(A
vey

pk()\) = E Ik ’I7z kaﬁ
veY

In this formula 6, (\) denotes the expected value of the density of particles with velocity v under my:

exp {)\0 + 22:1 )\kvk}

0y (A) = Ep,, [E(v)] = .
( ) . [6( )] 1+6Xp{>\0+zz:1 )\kvk}

Denote by (p, p)(A) := (p(X),p1(A),...,pia(A)) the map that associates the chemical potential to the
vector of density and momentum. It is possible to prove that (p,p) is a diffeomorphism onto £ C R4+,
the interior of the convex envelope of {I(E);f e {0, 1}V}. Denote by A = (Ag,...,Aq) : U — R the
inverse of (p,p). This correspondence allows one to parameterize the invariant states by the density and
momentum: for each (p,p) in 4 we have a product measure ué\fp = uf\v(p’p) on Xy.

4.1.3 Dynamical large deviations

Fix T > 0, let M be the space of finite positive measures on D? endowed with the weak topology,
and let M be the space of bounded variation signed measures on D? endowed with the weak topology.
Let My x M9 be the cartesian product of these spaces endowed with the product topology, which is
metrizable. Let also M be the subset of M| x M¢? of all absolutely continuous measures with respect
to the Lebesgue measure satisfying:

={re My x M w(du) = (p,p)(u)du, and (p,p) € 4, a.e.}.

Note that if (p,p) € 4, then 0 < p(u) < V|, |px(u)| < 0|V|,k = 1,...,d, where ¥ = max,cy v1. Let
D([0,T], M4 x M?) be the set of right continuous functions with left limits taking values on M, x M4
endowed with the Skorohod topology. M9 is a closed subset of M, x M% and D(]0,T], M°) is a closed
subset of D([0,T], My x M%). For a measure m € M, denote by (7, G) the integral of a function G with
respect to .
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Let Qr = (0,7) x D% and Q7 = [0,T] x D4. For 1 < m,n < +oo, denote by C"™"(Qr) the space of
functions G = G¢(u) : Q7 — R with m continuous derivatives in time and n continuous derivatives in
space. We also denote by CJ"" (Qr) (resp. C2°(Qr)) the set of functions in C™"(Qr) (resp. C>>(Q7))
which vanish at [0,7] x I’ (resp. with compact support in Q7).

Let the energy Q : D([0,7], M°) — [0, 0] be given by

Q) = Ed:zd: sup {2/0T dt (pr.t, O0u,Gt) — /OT dt - G(t,u)? du}.

k=0 i=1 GECX(QT)

where py.¢(u) = pr(t,u) and po(u) = p(t, u).
Let 6(1)2(QT) be the set of vector valued function G = (GO LG 2 [0,T) x DY — R with
each coordinate G, in C’O (Qr), k =0,...,d. For each G € C 2(Qr) and each measurable function

= (po,py) : DT — 8L, let Jo = Jgr D([O,T],MO) — R be the functional given by

Ja(m) = G(T u) - (p, P)(T, u)du — o G(0,u) - (po, po)(u)du

d
- / dt/Dddu{p, (t,u) - OG(t,u) + ( p)(tu)-Z@zG(tu)}
+ / dt/ dS b(ii) - 9y, G(t,u) 77/ dt/ dS a(ii) - 8,, G(t, u)
{1} xTd=1 {0} xTd4~1

+ / dt/ du Zﬁxv(mp)z:w@ui(}'(t,u)
0 D4 i=1

/ dt/DdduZ

veEY

( Ukauquf(u)> Xo(p, D),

where x(r) = r(1 — r) is the static compressibility, x,(-) = x(6,(A(+))), for u = (u1,...,uq) € RY @ =
(ug,...,uq), m(du) = (p,p)(t,u)du, and dS is the Lebesgue measure on T¢~1. Define Jo = Jg 1 :
D([0,T], My x M%) — R by

400, otherwise .

JG’(ﬂ') _ {jG(ﬂ'), if e D([(),T],MO)’

We define the rate functional I7(-|y) : D([0,T], M x M%) — [0, +o0] as
sup {Ja(m)}, if Q(r) < oo

Ip(mly) = { Geey?(@r)
400, otherwise .

We now present the main result of this article, whose proof is given in Section 4.5, which is the
dynamical large deviations for this boundary driven exclusion process with many conserved quantities.

Theorem 4.1.1. Fiz T > 0 and a measurable function v = (po,py) : D¢ — 4. Consider a sequence n™
of configurations in Xy associated to y in the sense that:

tim (=5 (). 6) = [ Glam(u)du,

N—oc0

and
lim (7 (n™), G) :/ Gu)pr(u)du, k=1,...,d,
Dd

N— 00

for every continuous function G : D4 — R. Then, the measure Qv =P (7)™ on D([0,T], M4 x
M®) satisfies a large deviation principle with speed N% and rate function Ir(-|y). Namely, for each
closed set C C D([0,T], M4 x M%),

— 1 .
lim mlOanN(C) < *;Iég Ip(m|v)

N—oc0

7



and for each open set O C D([0,T], My x M%),

1
lim —

Noseo N log QnN (0) > _#Iel(fo Ir(nly) .

Moreover, the rate function It(-|y) is lower semicontinuous and has compact level sets.

4.2 Hydrodynamics

Fix T > 0 and let (B,| - |[g) be a Banach space. We denote by L?([0,7], B) the Banach space of
measurable functions U : [0,T] — B for which

T
U021, = / U3t < oo.

Moreover, we denote by H*(D?) the Sobolev space of measurable functions in L?(D?) that have gener-
alized derivatives in L%(DY).
For x = (z1,%) € {0,1} x T4, let

a(Z) = Y ep(w(Z), v1ay(T), . .. ,vaa, (7)), if z1 =0,
d(z) = (4.2.1)
b(Z) = > ey (Bu(@), 118u(Z), .. ., vafu()), if z1=1.

Fix a bounded density profile pg : D — R, and a bounded momentum profile p, : D¢ — R4, A
bounded function (p,p) : [0,7] x D¢ — R, x R? is a weak solution of the system of parabolic partial
differential equations

at(p’p) + ZUEV v [U ’ va(p,p)} = %A(p,p)’

(p.2)(0.) = (po. Po)(-) and (p, p)(t, ) = d(x),x € {0,1} x T,

(4.2.2)

if for every vector valued function H € Cé’Q(QiT), we have

H(T,w) - (p,p)(T,w)du — | H(0,u) - (po, po)(u)du
Dd Dd

T 1 d
=[] {<p, P)(t,u) - OLH(t,u) + 1 (p,p)(1,u) Z@%ﬁ(t,u)}

i=1

T T
1 / dt / dS b(i) - B, H(t, 1) + = / dt / dS a(ii) - O, H (t, )
2 Jo {1}xTd-1 2 Jo {0} xTd-1
d

T
—/ dt/ du waxv(p,p)Zvi(?uiH(t,u).
0 D

veV i=1

We say that that the solution (p, p) has finite energy if its components belong to L2([0,T], H'(D%)):

/OT ds </D |Vp(s,u)|2du) s
/OT ds (/D ||Vpk(87u)||2du) < o0,

for k =1,...,d, where Vf represents the generalized gradient of the function f.
In [33] the following theorem was proved:

and
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Theorem 4.2.1. Let (uV)n be a sequence of probability measures on Xx associated to the profile
(po, Po) in the sense of Theorem 4.1.1. Then, for everyt > 0, for every continuous function H : D — R
vanishing at the boundary I', and for every § > 0,

lim P~ L Z H(%) To(ns(t)) — . H(u)p(t,u)du| > | =0,

and for 1 <k <d

ngnoo]P) N Nd Z ( )Ik Ne (t / H(u)pg(t,u)du| > 6| =0,
zeD%

where (p,p) has finite energy and is the unique weak solution of equation (4.2.2).

4.3 The rate function I7(:|y)

We examine in this section the rate function Ip(-|y). The main result, presented in Theorem 4.3.6
below, states that I7(:|y) has compact level sets. The proof relies on two ingredients. The first one,
stated in Lemma 4.3.2, is an estimate of the energy and of the H_; norm of the time derivative of
a trajectory in terms of the rate function. The second one, stated in Lemma 4.3.5, establishes that
sequences of trajectories, with rate function uniformly bounded, which converge weakly in L? converge
in fact strongly. We follow the strategy introduced in [15].

Let V be an open neighborhood of D, and consider, for each v € V, smooth functions Ky V —(0,1)
in C*(V), for k =0, ...,d. We assume that the restriction of k = _, o\,(k§,v1KY,. .., vqr4) to {0} x T4~
equals the vector valued function a(-) defined in (4.2.1), and that the restriction of s to {1} x T¢~! equals
the vector valued function b(-), also defined in (4.2.1), in the sense that x(x) = d(x1,7) ifz € {0,1} x T4~ 1.

Let L?(D?) be the Hilbert space of functions G : D* — R such that [, |G(u)[*du < oo equlpped

with the inner product
(G, F)y = / G(u) F(u) du
Q

and the norm of L2(D?) is denoted by | - ||z
Recall that H'(D?) is the Sobolev space of functions G' with generalized derivatives d,, G, ..., 0,,G
in L2(D?). HY(D?) endowed with the scalar product (-, )1 2, defined by

d
(G,F)12=(G,F)2+ Z<8'U4jG7 8qu>2
j=1
is a Hilbert space. The corresponding norm is denoted by || - ||1,2.

Recall also that we denote by C5°(D?) the set of infinitely differentiable functions G : D? — R, with
compact support in D?. Denote by HE(D?) the closure of C(D%) in H'(D?). Since D? is bounded,
by Poincaré’s inequality, there exists a finite constant C such that for all G € Hg(D?)

d
IG5 < € (0,G, 0.,G)e
j=1

This implies that, in H}(D?)

d 1/2
G120 = {Z 0u; G, 0u,;G)2 }
j=1
is a norm equivalent to the norm | - [|1,o. Moreover, Hg(D?) is a Hilbert space with inner product given
by
d
<G’ J>1’270 = Z<8uJGa 8uj J>2
j=1
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To assign boundary values along the boundary T' of D? to any function G in H'(D?), recall, from the
trace Theorem ([39], Theorem 21.A.(e)), that there exists a continuous linear operator Tr : H'(D?) —
L?(T), called trace, such that Tr(G) = G‘F if G € H'(D%) N C(D4). Moreover, the space H}(D?) is the
space of functions G in H'(D?) with zero trace ([39], Appendix (48b)):

HY(DY) = {G € H'(D?): Tx(G) =0} |

Finally, denote by H~*(D?) the dual of H}(D?). H~(D?) is a Banach space with norm || -||_; given
by
oty = s {20600~ [ VGGl
D

GeCr (D)
where (v, G)_1,1 stands for the values of the linear form v at G.

For each G € C°(Qr) and each integer 1 < i < d, let ka : D([0,T], M°) — R be the functional
given by

T T
Q% () :2/0 dt (rF,0,,G;) —/O dt/Dd du G(t,u)?,

where m = (7%, 7!, ..., 7?). Recall, from subsection 2.2, that the energy Q(7) is given by

d d
Q(m) = Z Z Qin(m), with Quu(r)= sup QF(m).

k=0 i=1 GeC(Qr)

The functional ka is convex and continuous in the Skorohod topology. Therefore Q;; and Q are
convex and lower semicontinuous. Furthermore, it is well known that a measure 7 (¢, du) = (p, p)(t, u)du
in D([0,T], M4 x M%) has finite energy, Q(7) < oo, if and only if its density p and its momentum p
belong to L2([0,T], H*(D%)). In which case

d T
Q) = Z/ dt/ du |V ()|? < oo,
k=0""0 pe

where pg (u) = p(t, u).

Let D, = D, 4 be the subset of C([0,T], M) consisting of all paths n(t,du) = (p,p)(t, u)du with
initial profile v(-) = (po, po)(-), finite energy Q(7) (in which case p; and p, belong to H' (D) for almost
all 0 < ¢ < T and so Tr(p,) is well defined for those t) and such that Tr(p,) = dy and Tr(pg,.) = di,
k=1,...,d, for almost all ¢ in [0, T], where d(-) = (do(-),d1("),...,da(")).

Lemma 4.3.1. Let 7 be a trajectory in D([0,T], M4 x M%) such that I7(w|y) < co. Then 7 belongs to
D,.

Proof. Fix a path 7 in D([0,T], M, x M%) with finite rate function, I (7|y) < co. By definition of Ir,
7 belongs to D([0, 7], M°). Denote its density and momentum by (p, p): w(t,du) = (p, p)(t,u)du.

The proof that (p,p)(0,-) = ~(-) is similar to the one of Lemma 3.5 in [6], and the proof that
Tr(p:) = do, Tr(pre) = di, k=1,...,d, is similar to the one found in Lemma 4.1 in [15].

We deal now with the continuity of m. We claim that there exists a positive constant Cj such that,
for any g € [C°(DY)]4! and any 0 < s <r < T,

[(r,9) = (mos )| < Colr — )2 {C1 + In(ly) + llgl 00 + (r = )2 Aglln } - (4.3.1)
Indeed, for each § > 0, let ¢° : [0, 7] — R be the function given by
0 if0<t<sorr+6<t<T,
t

=S ifs<t<s+94
28 =4 3 st ;
(r—s)7() ifs+0<t<r,

1
1-5C ifr<t<r44,
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and let G¥(t,u) = ¢ (t)g(u), where 9 (-) is the standard e-mollification of 1%(-). Since G? is in €,*(Qr),
we have

/2 _ _ [
(r—)""" lim lim Jgs () (T, 9) = (75, 9) / dt (ms, Ag)
+ /dt/ du o xo(p,p sz ui g
Dd veV

2
T 1/2/ dt Dddu > (kaaug ) Xv(p, D).

To conclude the proof, we observe that the left-hand side is bounded by (r — s)'/2Ir(7|y), that x
is positive and bounded above on [0,1] by 1/4, and finally, we use the elementary inequality 2ab <
a? + b2 O

Denote by L2([0, T], H} (D?))* the dual of L%(]0, T, H} (D d)). By Proposition 23.7 in [39], L2([0,T], H} (D?))*
corresponds to L2([0,T], H=(D?)) and for v in L?([0,7T], H (D%))*, G in L2([0,T], H}(D%)),
T
(0,G) 11 = / (v, G) 11 dt (4.3.2)
0

where the left hand side stands for the value of the linear functional v at G. Moreover, if we denote by

lv]| -1 the norm of v,
T
o2, = / o2, dt -

Fix a path 7 (t,du) = (p, p)(t,u)du in D, and suppose that for k =0,...,d

T T
sup {2/ dt <pk,t,atc;t>r/ dt/ddu ||vc;t|\2} < . (4.3.3)
0 0 D

GeCe(Qr)

In this case, for each k, O : C°(Qr) — R defined by

T
dpn(G) = — / (Drs DG dt
0

can be extended to a bounded linear operator d;py : L?([0,T], H:(D%)) — R. It belongs therefore
to L2([0,T], HY(D?Y)* = L%([0,T], H~'(D%)). In particular, there exists v* = {vf;0 < t < T} in
L%([0,T), H~Y(D%)), which we denote by vF = d;py.+, such that for any G in L2([0,T], H} (D)),

T
(Bipes G 11 = / (s Go) 11 dt |
0

Moreover,

T
lowil?, = / 00| dt

sup / dt ( pkt78th>2—/ dt/ du ||VGtH2}
Gec (Qr)

Denote by (0:(p,p), )11 : L*([0,T], [HE(D%)]4*1) — R the linear functional given by

d
<<5t(P» Z 8tpk7 —1,15
k=0

with G = (G°,...,G%), and
19: (o, P)IIZ., Z l6pr ]| ;.-
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Let W be the set of paths 7 (¢, du) = (p, p)(t,u)du in D, such that (4.3.3) holds, i.e., such that O;py,
belongs to L? ([0,7], H~'(D?)). For G in L? ([0, T], [H}(D™)]**'), let Jo : W — R be the functional
given by

Ja(m) = (0(p,p), G 11+ = /dt/ 2> O (p.)(t,10) - O Gt )
Dd

=1
+ / dt/ du Zv Xo(p, D szauthu
D¢ veY
- / dt/ duz -0, Gy (1)) Xo(py D),
DT yev

Note that Jg(m) = Jg(m) for every G in C°(Qr) x [COO(Dd)] Moreover, since J. ( ) is continuous
in L% ([0, 7], [H} (D?)]4T1) and since C2°(Qr) is dense in Cy*(Qr) and in LQ([O T], Hi(D%)), for every
min W,

Ir(rly) = sup Ja(m) = sup Ja(m). (4.34)
GeC (Qr)x[Cee (D4)]4 GeL2([0,T],[H (D4)]4+1)

Lemma 4.3.2. There exists a constant Cy > 0 such that if the density and momentum (p,p) of some
path w(t,du) = (p,p)(t,u)du in D([0,T], M) has generalized gradients, Vp and Vpg, k=1,...,d. Then

10:p: D)2 < Co{lr(xly) + Q(m)} (4.3.5)

d T
3 / dt / du || Vpu(t, )|
k=0 0 Da

IA

Co {Ir(mly) + 1}, (4.3.6)

where py = p.

Proof. Fix a path 7(t,du) = (p,p)(t,u)du in D([0,T], M°). In view of the discussion presented before
the lemma, we need to show that the left hand side of (4.3.3) is bounded by the right hand side of
(4.3.5). Such an estimate follows from the definition of the rate function I (-|y) and from the elementary
inequality 2ab < Aa? + A~1b2.

To prove (4.3.6), observe that

T d
Ir(et) > Jolm) = om(@) 5 [ at [ d DA

d

+ / dt/ dUZXv (p,p Z (0,04, G)
Dt ey i=1

- / dt/ duzz - 0. G)* xo(p,p)
D vey i=1

v

k|2
o (G / dt/DdduZ&h pop) - O G — c/ dt/ duZHVG 12,

=1

where C is constant obtained from the elementary inequality 2ab < a? + b?, the fact that V is finite, and
that x is bounded above by 1/4 in [0, 1].

Recall the definition of the function k given at the beginning of Section 4.3. Now, consider G =
K(m — k), K > 0 being a constant, and note that = — x belongs to L2([0,T], Hi(D%)), which implies
that it may be approximated by C2° functions. Therefore |0y7(G)| = K|(nr, n7/2 — &) — {70, 70 /2 — K)|,
which is bounded from above by some constant C'y. We, then, obtain that

T K d K d d
_ - 2 _ . _ 2 _ 2
[ af-ci+g DIVl = 5 D 0uoip) D~ CK* 3 Vo~ )|}

d d
/ dt du K/4 2CK2) Z I = Z I Vik]|® = 2CK> Y " ||Vig|® - 01},
0 D¢ k=0 k=0

I(m)

v

v
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where in the last inequality we used the Cauchy-Schwartz inequality and the elementary inequality
2ab < a® + b2. The proof thus follows from choosing a suitable K, the estimate given in (4.3.5), and the
fact we have a fixed smooth function x. O

Corollary 4.3.3. The density (p,p) of a path ©(t,du) = (p,p)(t,u)du in D([0,T], M) is the weak
solution of the equation (4.2.2) and initial profile v if and only if the rate function Ir(w|y) vanishes.
Moreover, if any of the above conditions hold, 7 has finite energy (Q(m) < 00).

Proof. On the one hand, if the density (p,p) of a path n(t,du) = (p,p)(t,u)du in D([0,T], M°) is the
weak solution of equation (4.2.2) with initial condition is v, in the formula of Jg(r), the linear part
in G vanishes which proves that the rate functional It (7|y) vanishes. On the other hand, if the rate
functional vanishes, the path (p,p) belongs to L2([0,T], [H'(D?)]4*!) and the linear part in G of Jg()
has to vanish for all functions G. In particular, (p, p) is a weak solution of (4.2.2). Moreover, if the rate
function is finite, by the previous lemma, 7 has finite energy. Accordingly, if 7 is a weak solution, we
have from Theorem 4.2.1 that it has finite energy. O

For each ¢ > 0, let E, be the level set of Ir(n|y) defined by
E,={m € D([0,T], My x M) Ir(n]y) < q} .

By Lemma 4.3.1, E, is a subset of C([0,7], M°). Thus, from the previous lemma, it is easy to deduce
the next result.

Corollary 4.3.4. For every q > 0, there exists a finite constant C(q) such that

d T
swp {|o(pp)l2, + 3 [t [ auiewl?} < Cl).
TeE, h—0”0 Dd

Next result together with the previous estimates provide the compactness needed in the proof of the
lower semicontinuity of the rate function.

Lemma 4.3.5. Let {p";n > 1} be a sequence of functions in L*(Q7) such that uniformly on n,

T T
n (2 ni(2
/ dt || p; ||1,2 +/0 dt || O py H—l <C

0

for some positive constant C. Suppose that p € L*(Qr) and that p™ — p weakly in L*(Qr). Then p™ — p
strongly in L*(Qr).

Proof. Since H'(D?%) c L?(D%) c H~'(D?) with compact embedding H'(D?%) — L?(D%), from Corol-
lary 8.4, [35], the sequence {p,} is relatively compact in L?([0,T7], L>(D)). Therefore the weak conver-
gence implies the strong convergence in L?([0, T, L*(D)). O

Theorem 4.3.6. The functional I (-|7y) is lower semicontinuous and has compact level sets.

Proof. We have to show that, for all ¢ > 0, E, is compact in D([0,T], M4 x M?). Since E, C
C([0,T7], M°) and C([0,T], M°) is a closed subset of D([0,T], M), we just need to show that E, is
compact in C([0,T], M?).

We will show first that E, is closed in C([0,77], M"). Fix ¢ € R and let {#"; n > 1} be a sequence in
E, converging to some 7 in C([0, 7], M°). Then, for all G € C(Qr) x [C(D)]4,

T T
lim dt <7TZL, Gt> = / dt <7Tt, Gt> .
0

n— oo 0

Notice that this means that 7% — 7% weakly in L?(Qr), for each k = 0,...,d, which together with
Corollary 4.3.4 and Lemma 4.3.5 imply that 7% — istrongly in L2(Qr). From this fact and the
definition of Jg it is easy to see that, for all G in Qé’Q(QT),

lim Jg(m,) = Ja(n).

n—roo
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This limit, Corollary 4.3.4 and the lower semicontinuity of Q permit us to conclude that Q(w) < C(q)
and that Ip(7w|y) < q.
We prove now that E, is relatively compact. To this end, it is enough to prove that for every

continuous function G : D¢ — R, and every k= 0,...,d,
lim sup sup |(7F,G) — (7% G)=0. (4.3.7)
=0 Te€E, 0<s,r<T
|[r—s|<d
Since E, C C([0,T], M), we may assume by approximations of G in L*(D?) that G € C®(D?). In
which case, (4.3.7) follows from (4.3.1). O

We conclude this section with an explicit formula for the rate function I7(:|y). For each 7 (t,du) =
(p,p)(t,u)du in D(]0,T], M°), denote by HE () the Hilbert space induced by € (Q7) endowed with
the inner product (-, ), defined by

d T
(H,G =3} /0 dt /D duxa(p, P00, H[i 9,61, (4.3.8)

veY i=1

Induced means that we first declare two functions F, G in 6(1)’2 (Q7) to be equivalent if (F—G, F—G), = 0,
and then we complete the quotient space with respect to the inner product (-, -),. The norm of H{ ()
is denoted by || - || x.

Fix a path 7 in D([0, 7], M°) and a function H in H}(w). A measurable function A : [0,7] x D? —
R, x R? is said to be a weak solution of the nonlinear boundary value parabolic equation

3t>\ + 2;1:1 Zuev f}auf, [XU(A)(W -0 autHH = %A)‘v
A0,) =~() (4.3.9)
Mt, ) =d(z),z € {0,1} x T4—1

if it satisfies the following two conditions:

(i) For k=0,...,d, A belongs to L ([0, T}, H'(D%)):

T
/ ds(/ | VAk(s,u) HQdu) < 00;
0 Dd

(ii) For every function G(t,u) = Gy(u) in €5 (Qr),

G(T,u) - MT,u)du — / G(0,u) - y(u)du

Dd Dd

T 1 d )
:/0 dt/Dd du{)\(t,u) ~8tG(t,u)+2)\(t,u)~;8uiG(t,u)}

1T 1 /T
_7/ dt/ ds b(7) -8ulG(t7u)+f/ dt/ dS a(@) - 0,,G(t, u)
2 Jo {1} xTa-1 2 Jo {0} xTd~1

T d
—/ dt/ du Zﬁ-xv(A)ZUﬁuiG(t,u),
0 Dd -

veY i=
d T
+ZZ/O dt /Ddduxv()\)[f)~8uiH][6o8uiG].
veV i=1

Uniqueness of solutions of equation (1.3.9) follows from the same arguments of the uniqueness proved
in [33].

Lemma 4.3.7. Assume that 7(t,du) = (p,p)(t,u)du in D(]0,T], M) has finite rate function: Ir(w|y) <
oo. Then, there exists a function H in Hg () such that (p,p) is a weak solution to (4.3.9). Moreover,

1
Ir(wly) = 7 IIHII7 - (4.3.10)

The proof of this lemma is similar to the one of Lemma 10.5.3 in [3] and is therefore omitted.
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4.4 Ip(-|y)-Density

The main result of this section, stated in Theorem 4.4.5, asserts that any trajectory Ay, 0 <t < T, with
finite rate function, IT(A|y) < oo, can be approximated by a sequence of smooth trajectories {\";n > 1}
such that

A" — A and  Ir(A"|y) — Ir(Aly) .

This is one of the main steps in the proof of the lower bound of the large deviations principle for the
empirical measure. The proof is mainly based on the regularizing effects of the hydrodynamic equation.
This strategy was introduced in [15].

A subset A of D([0,T], M, x M%) is said to be Ir(-|y)-dense if for every 7 in D([0,T], M4 x M%)
such that Ir(w|y) < oo, there exists a sequence {n";n > 1} in A such that 7™ converges to 7 and
I (™) converges to Ir(m|y).

Let I1; be the subset of D([0, 7], M°) consisting of paths 7(t, du) = (p, p)(t, u)du whose density (p, p)
is a weak solution of the hydrodynamic equation (4.2.2) in the time interval [0, §] for some § > 0.

Lemma 4.4.1. The set I1; is I7(-|v)-dense.

Proof. Fix ©(t,du) = (p,p)(t,u)du in D([0,T], M4 x M?) such that Ir(7|y) < co. By Lemma 4.3.1, 7
belongs to C([0, T], M°). For each § > 0, let (p°,p°) be the path defined as

7(t,u) ifo<t<g,
(0%, p°)(t,u) = { 7(26 — t,u) if6<t<26,

where 7 is the weak solution of the hydrodynamic equation (4.2.2) starting at . It is clear that 7% (¢, du) =
(p°,p%)(t,u)du belongs to D., because so do m and 7 and that Q(n°) < Q(7) + 2Q(7) < oo. Moreover,
7% converges to m as 0 | 0 because 7 belongs to C([0,T], M°). By the lower semicontinuity of Ir(-|y),
Ir(nly) < limg_,q I7(70|y). Then, in order to prove the lemma, it is enough to prove that Ir(m|y) >
lims_, I7(7°|y). To this end, decompose the rate function I7(7%|y) as the sum of the contributions
on each time interval [0,6], [5,25] and [20,T]. The first contribution vanishes because 7° solves the

hydrodynamic equation in this interval. On the time interval [5,25], 0;p¢ = —0sTos_t = —%Ang_t +
> oey 00 Vxu(ras—e)] = =3 A8, p) + e 0l - Vixo(p?, pf)]. In particular, the second contribution
is equal to

Z/Oédt /Dd duxu(pvp)[ﬁ-auicp}

veY

d s
sup Z{/o ds/Dddu Ou; (py D) - Ou,G —
1

Geey?(Qr) =

which, by Lemma 4.5.5 is bounded from above, and therefore this last expression converges to zero as
§ | 0. Finally, the third contribution is bounded by Ir(w|y) because 7° in this interval is just a time
translation of the path . O

Recall the definition of the set i given at the ending of subsection 4.1.2. Let Ils be the set of all
paths 7 in II; with the property that for every § > 0 there exists ¢ > 0 such that, for k = 0,...,d,
d(mF(-),0U) > € for all ¢ € [5, T], where 04 stands for the boundary of 1.

We begin by proving an auxiliary lemma.

Lemma 4.4.2. Let m, A € 8, and let 7€ = (1 —e)m + e, 0 < e < 1. Then, for allv €V, we have
0,(A(m€)) = (1 = €)0, (A(m)) + €0, (A(X)).
Proof. Fix some A € 4. Observe that
(Z 0,(AN), Y v10u,(A(N)), ..., ZvdHU(A()\))> = (Ao, M, M)
veyY veVY veV

is a linear system with d + 1 equations and |V| unknowns (given by 6, (A(\)), for v € V). Therefore, any
solution of this linear system can be expressed as a linear combination of A;, i = 0,1,...,d. The proof
follows from this fact. O
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Remark 4.4.3. In the particular case when d = 1 and the set of velocities is V = {v,—v} C R, a simple
computation gives the unique solution

)\0 )\ )\0 )\1
00 (A(Xo, M)) = 5 +% and 0_,(Ao, M) = T = T

Lemma 4.4.4. The set Il is I7(+|7v)-dense.

Proof. By Lemma 4.4.1, it is enough to show that each path w(¢,du) = (p,p)(t,u)du in II; can be
approximated by paths in IIs. Fix 7 in II; and let 7 be as in the proof of the previous lemma. For each
0<e<1,let (p5,p°) = (1 —¢e)(p,p) + e, 7°(t,du) = (p°,p°)(t,u)du. Note that Q(n°) < oo because
Q is convex and both Q(7) and Q(r) are finite. Hence, 7° belongs to D., since both p and 7 satisfy the
boundary conditions. Moreover, It is clear that 7° converges to 7w as € | 0. By the lower semicontinuity
of Ir(:]y), in order to conclude the proof, it is enough to show that

T Ir(r]y) < Ir(n]). (4.4.1)
N—o00

By Lemma 4.3.7, there exists H € H{ () such that (p,p) solves the equation (4.3.9). Let P; ,(7) =
Xv(p, D) (f} <Oy, H — vl—), and note that P; ,(7) = —v;x» (7). Let also

Pz,'u (1 _G)P ( )+€P75,U(T>‘
Observe that, by Lemma 4.3.7,
1
Ir(wly) = 7IHIIZ,

and that, using the definition of || - || in (4.3.8),

1
1||H||72r = ZZ/ dt/ dux.(p, p) (- 9y, H)?

’UEV’L 1

AT [ el st

veV i=1

A simple computation shows that

ZZ// s+ 0 BV (5 - 00,G) — Xl )5 - 0, G

veY i=1

2
z vt Xv(peﬁp€>vi]2 1 Piev + Xv(ps’pe) -
422/ at , - (3 - VP 9,.6) |

oy =1 Xo(p©,P°) 2 Vxolpf,p)

Let

ZZ/ dt/Dd zv+XUp(pp1;)’Ul] |

'UEVz 1

and

/dt/Dd ( Bl + X005 P) \/xv<p,p><f}-auia>>.

VX (0%, %)
This implies that

Ir(n|y) = supJa(n) = sup {Ac — B(G)*} = Ac — inf B.(G) < A,
G G

where the supremum and infimum are taken over in G in C°(Qr) x [C°(D9)]4.
It remains to be shown that A, is uniformly integrable in e. However, this is a simple consequence of
Lemma 4.4.2. [
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Let II be the subset of II> consisting of all those paths 7 which are solutions of the equation (4.3.9)
for some H € €5 (Q7).

Theorem 4.4.5. The set II is I (-|y)-dense.

Proof. By the previous lemma, it is enough to show that each path 7 in Il can be approximated by
paths in II. Fix 7(¢,du) = (p,p)(t,u)du in I15. By Lemma 4.3.7, there exists H € Hg () such that (p, p)
solves the equation (4.3.9). Since 7 belongs to IIx C Iy, (p,p) is the weak solution of (4.2.2) in some
time interval [0, 26] for some 6 > 0. In particular, 9 - 9,,H = 0 a.e in [0,20] x D¢, i = 1,...,d, v € V.
This implies, by equation (4.1.1), that VH* = 0 a.e. in [0,20] x D%, k =0,...,d. On the other hand,
since 7 belongs to IIj, there exists € > 0 such that, for k = 0,...,d, d(7F(-),08) > e for § <t < T.
Therefore,

T
[ [ vak@Pa < s, k=0 (142)
0 Dd

Since H belongs to Hg (), there exists a sequence of functions {H™ = (H™',... . H™%); n > 1} in

¢3(Qr) converging to H in H (r). We may assume of course that VH;"* = 0 in the time interval [0, 4],
k=0,...,d. In particular,

T
lim dt/ du |[VHM (u) = VHF@)|2 =0, k=0,...,d. (4.4.3)
n—oo 0 Dd

For each integer n > 0, let (p™,p™) be the weak solution of (4.3.9) with H™ in place of H and set
7 (t, du) = (p™, p™)(t, u)du. By (4.3.10) and since y is bounded above in [0, 1] by 1/4, we have that

(m"17) = ZZ/ dt (x.(pr',p}), (0 0y, HY)’ <COZZ/ dt/Dddu 5 O HP ()2

UEVZ 1 veY i=1

In partlcular by (4.4.2) and (4.4.3), Ir(7"|7y) is uniformly bounded on n. Thus, by Theorem 4.3.6, the
sequence 7" is relatively compact in D([0,T], M4 x M%),

The sequence 7" has a subsequence converging to some 7° in D([0, Tl, M?O). To keep notation simple,
we will assume that the sequence 7™ converges to 7°. For every G in @0’2 (Qr),

G(T7 u) ’ (p?ap?)(Ta u)du - G(O7u) V(U)du
Dd Dd
- [ dt/Dddu{ (60 P2)(t,0) - 0 G(t) + 3 o ) 80 Za >}

1 (T 1 (T
1 / dt / 48 b(@) - 0. G(t,u) + - / dt / dS a(i) - B, G(t, )
2 Jo {1} xTd—1 2 Jo {0} xTd—1

/ dt/ du Zv Xo(p}, Py Zv,@ G(t,u),
Dd

veEV

+ZZ/ dt/ dux.(py, i)V - Ou, H"|[0 - 04, G].

veV i=1

Letting n — oo in this equation, we obtain the same equation with 7° and H in place of 7™ and H",
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respectively, if

T d
i [t [ du 35l p) Y 0 Gl
0 Dd 1

n— oo e
veVY i=

T d
S A D SER RN ) SRl n}
0 D 7

vey = (4.4.4)

d T
Jim > > /0 dt /D dux, (0} )G - 0, HY[5 - 9,C)

veV i=1

d T
= uxo(pY, P[0 - O, H][D - O, G).
—ZZ/O dt /Ddd Xo(pt,P7)[0 - Ou, H][V - 0y, G]

veY i=1

We prove the second claim, the first one being simpler. Note first that we can replace H” by H in
the previous limit, because x is bounded in [0,1] by 1/4, and (4.4.3) holds. Now, (p",p"™) converges
to (p°,p°) weakly in L2(Qr) x [L2(D9)]? because 7™ converges to 7° in D([0,T], M?). Since I7(7"|7)
is uniformly bounded, by Corollary 4.3.4 and Lemma 4.3.5, (p™, p") converges to (p°,p?) strongly in
L3(Q7) x [L*(D%)]¢ which implies (4.4.4). In particular, since (4.4.2) holds, by uniqueness of weak
solutions of equation (4.3.9), 7 = 7 and we are done. O

4.5 Large deviations

We prove in this section Theorem 4.1.1, which is the dynamical large deviations principle for the empirical
measure of boundary driven stochastic lattice gas model with many conserved quantities. The proof uses
some of the ideas introduced in [15].

4.5.1 Superexponential estimates

It is well known that one of the main steps in the derivation of the upper bound is a super-exponential
estimate which allows the replacement of local functions by functionals of the empirical density in the
large deviations regime.

Let k be as in the beginning of Section 4.3. Note that since v/ is not the invariant state, there are
no reasons for (—N2Ly f, f)uy to be positive. The next statement shows that this expression is almost
positive.

For each function f: Xy — R, let D,~(f) be

Dy (f) = D () + Dl () + Dl (£),

where
5= % Y Pu-ao) [ (Vi - V)] v,
veV zeD¢ z+2z€DY,
=3 3 [ptean [VEED - V@] v,
‘ZEQ:EED?V
and

Dle(N=3 3 [laula/N) - n(e.0) + (1 - a@/N)nle. o))

d—1
vEV 2 {1} xTY

< (VT /)] v dn) +
+ Y Y [N 0) + (- /N

d—1
vEV e {N-1}xT%

X {\/f(ff‘”"”n) — \/f(n)} " (dn).
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Proposition 4. 5 1. There exist constants C1 > 0 and Cy = Cy(w, 8) > 0 such that for every density f
with respect to v, we have

K

< LNV A >y < —CiDyn (f) + CoN2,
The proof of this proposition is elementary and is thus omitted.
Further, we may choose k for which there exists a constant § > 0 such that:
(U1,~):d(0ﬂ) if O§u1§97
k(uy, @) = d(1,a) if 1-0<wu; <1,
for all & € T?"!. In that case, for every N large enough, v/Y is reversible for the process with generator
LY and then (—N2L% f, f)uy is positive.

Fix L > 1 and a configuration 7, let I*(z,n) := I'*(z) = (I}(z),...,Ik(x)) be the average of the
conserved quantities in a cube of the length L centered at z:

1
I"(z)= 7= Y. I(n),
|AL| zEx+AL

where, A, = {—L,...,L}¢ and |Ar| = (2L + 1)4 is the discrete volume of box Ar.
For each G € C(Qr) x [C(D%)]¢, and each ¢ > 0, let

Vﬁsl (s,m) Ndzz Z Dy, G*(s,2/N) {TIV]{,S} ,

k=014,j=1zeD%

where
= 5.k
) = G 2 Dot 2 P )5 (00— n(z.e)
yEANE veVY z€74
- Z ijkXU 7
veY
and let

VR (s,m =3 Nd >y Z Z vrv; 0N G (2 /N)OY GF (x/N) x

’UEVIGDd i=1 j,k=0
X {n(m,v)[l —n(z+e;,v)] +n(x,v)[l —nz —e;,v)] — 2XU(IZ(0))}
Let, again, G € C(Qr) x [C(D%)]%, and consider the quantities

Vy (s,m,G) = Nd T Z Z Gi(s a:/N)(Ik(n(l (s kaau x/N)

k=0 zeTd ! veV

Vy (s,0,G) = Nd 1 Z > Gils JJ/N)(Ik( Nv—1.3)(5)) = > vkBu( JJ/N)

k=0 zeTd 1 vEV

Proposition 4.5.2. Fiz G € C(Qr) x [C(D)]¢, H in C([0,T] x ) x [C(D)]?, a cylinder function ¥ and
a sequence {n™; N > 1} of configurations with n™ in Xy. For every § > 0,

T T ]- T G,j
i%&%mlogﬂ”n”wo V! (5,me) ds| > 6] = —oo,
— 1 T .

A}EEOWPWNH/O Vii(s.m G)| > 6] = —oo,

forj=1,2.
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The proof of the above proposition follows from Proposition 4.5.1, the replacement lemmas proved
in [33], and the computation presented in [3], p. 78, for nonreversible processes.

For each € > 0 and 7 in My x M, for k = 0,...,d, denote by Z () = w5 the absolutely continuous
measure obtained by smoothing the measure 7y:

1 m(Ad(@))

Ze(my)(de) = mi(de) = ===

dzx ,

where A (z) = {y € D% |y — x| < ¢}, |A| stands for the Lebesgue measure of the set A, and {U.;¢ > 0}
is a strictly decreasing sequence converging to 1: U, > 1, U > U for € > €', lim, o U, = 1. Let

Ve = (Eg(ﬂ—(jjv)aaa(ﬂ—iv)?'"’EE(W(JiV))'

A simple computation shows that 7>¢ belongs to M for N sufficiently large because U, > 1, and that
for each continuous function H : D¢ — R+,

(Ve H) = 1 3 H@/N) - TN(@) + O(N.<),
zeDY,

where O(N, €) is absolutely bounded by Co{N 1 4+ ¢} for some finite constant Cy depending only on H.
For each H in Gé’z(QT) consider the exponential martingale M defined by

ME = exp{Nd{<7rt]V,Ht> — (Y, Ho)

1

t
_ W/ o~ NUxN H) (0 + N2Ly) NN H) ds} }
0

Recall from subsection 2.2 the definition of the functional J;. An elementary computation shows that
MH = exp {Nd [jH(wNﬁe) +VE 4 che) + c%,(N*)} } . (4.5.1)

In this formula,

T d T
V%f = —/O Vﬁs’l(s,n)ds—z:/o VJ\C,;E’Q(S,n) ds
i=1

+ Vﬁ(sanvamH) - Vj\?(san’amH) + <7r(])V>HO>_<'77HO>§

and ¢, : Ry — R, j = 1,2, are functions depending only on H such that ¢};(8) converges to 0 as ¢ | 0.
In particular, the martingale M is bounded by exp {C(H ,T)N d} for some finite constant C(H,T)
depending only on H and T'. Therefore, Proposition 4.5.2 holds for IP’{;[N =P~ Mﬁ in place of P, ~.

4.5.2 Energy estimates

To exclude paths with infinite energy in the large deviations regime, we need an energy estimate. We
state first the following technical result.

Lemma 4.5.3. There exists a finite constant Cy, depending on T, such that for every G in C(Q2r),
every integer 1 <i < d, 0 < k <d, and every sequence {n™N; N > 1} of configurations with n~ in Xy,

Tim Z\}dlogEnw{exp{Nd/ont <7T§Vv’“,auia>}] < co{1+/0T ||Gt||§dt},

N—o0

The proof of this proposition follows from Lemma 3.8 in [33], and the fact that dé,~ /dv) < cN,
for some positive constant C' = C(k). 3

For each G in C°(€Qr) and each integer 1 < i < d, let Q) : D([0,T], M x M%) — R be the function
given by

T T
chfk(ﬂ) = / dt (7}, 04,Gr) — Co/ dt du G(t,u)? .
0 0 Dd
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Notice that

sup {QZG,C(W)} = Qi (m) . (4.5.2)

GeCxr(Qr) 400

Fix a sequence {G,;7 > 1} of smooth functions dense in L2([0, 7], H'(D?)). For any positive integers
m,l, let

dy. AG;
Bl ={m € D(0.T, My x M%): max Q7 (m) <1}
1<i<d

Since, for fixed G in C°(Qr) and 1 < 4 < d integer, the function Qle is continuous, B, ; is a closed
subset of D([0,T], M).

Lemma 4.5.4. There exists a finite constant Cy, depending on T, such that for any positive integers
r,1 and any sequence {n™; N > 1} of configurations with n™ in Xy,

N@oo IOan [( ml) ] < =1+ Cy,

where k=10,...,d.

Proof. For integers 1 < k < r and 1 < ¢ < d, by Chebychev inequality and by Lemma 4.5.3,
— 1 G
Am -7 log Py {QM > l} <=1+

Hence, from

1 — 1 — 1
— < im — im — 5.
A}gl(l)oN log(an +bn) < max{}\}gx(l)o Nd logaN,]\;gnéo Nd long} , (4.5.3)
we obtain the desired inequality. O

Lemma 4.5.5. There exists a finite constant Cy, depending on T, such that for every G in C°(Qr) X
[C2 (D)), and every sequence {n™; N > 1} of configurations with n™¥ in Xy,

d T
. d Nk k 2
ng%oN logE, N[exp{N / Zl:l;o:dt ,0u.G >}] < Co{l+/0 ||Gt||,rdt}.
In particular, we have that if (p,p) is the solution of (4.2.2), then

d

sup Z{/Tds du Oy, (p,p) - Ou,G — Z/ dt/ dux,(p,p 6u1G} }

Geey?(Qr) =1 /O veV
is finite, and vanishes if T — 0.

Proof. Applying Feynman-Kac’s formula and using the same arguments of Lemma 3.3 in [33], we have
that

T d d
Salog B,y fexpd N / a3 5 ST 0 (9)) — (s ()00, G (5,2/N)

i=1 k=0 ze D4,
IR
m/o AS dS,
where A\ is equal to

sup{<NZ Z I(n — I(n(x — ei)))auin(s,x/N),fEév—i— N? < Ly T, \/f>,,'z€v },

i,k wEDd

is bounded above by
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where the supremum is taken over all densities f with respect to Y. By Proposition 4.5.1, the expression
inside brackets is bounded above by

N

— N+3 S {woucH /) [1tm) = el () |

i,k zeD%,
We now rewrite the term inside the brackets as
Y Y { [ 56 0u6ts.0/ o) ~ o~ excol st @ }.
veV i=1 zeDd

Writing n(z,v) — n(z — e;,v) = n(x,v)[1 —n(x — e;,v)] — n(z — e;,v)[1 — n(x,v)], and applying the same
arguments in Lemma 3.8 of [33], we obtain that

N(@ - 0,,G(s,2/N)) / Iz, v) — 0z — s, 0)] f(n) (d)

IN

(6 0. Gls,2/N))? / 0, 0)[1 = 0 — s, )] (7655w

2
+ i / Fn==eomv) [N (1 - %%UU)] vy (dn)
+ N [ S = R
20 0, Gls,a/ NP [ 0)[1 = e s o)) (VTG + /T 2 ),

we have that (1/f(n) + \/f(n*=®))2 < 2(f(n) + f(n® ¢=¥)). An application of the replacement
lemma (Lemma 3.7 in [33]) concludes the proof. O

4.5.3 Upper Bound

Fix a sequence {F};j > 1} of smooth functions dense in C (ﬁ) for the uniform topology, with positive
coordinates. For j > 1 and 6 > 0, let

Dj,(;:{weD([O,T],MerMd);\(wt, \<T;’“|V|/ w)de + C;0, k=0, d,ogth},

where ° = 1 and % = ¥, C; = |[VF}||w and VF is the gradient of F. Clearly, the set D;s, j > 1,
§ > 0, is a closed subset of D([0,T], M, x M%). Moreover, if

m
E,.s; = ﬂ Djs,
i=1

we have that D([0, T], M°) = Np>1 Nim>1 B 1/n- Note, finally, that for all m > 1,6 > 0,

7% belongs to E,, s for N sufficiently large. (4.5.4)

Fix a sequence of configurations {#™; N > 1} with ¥ in Xy and such that =V (")

y(u)du in My x M?. Let A be a subset of D([0,T], M4 x M%),

converges to

1 1 _
WIOanN [ﬂ'N €A = WlogEnN [MT{J (MEY11{x"N ¢ A}] .
Maximizing over 7V in A, we get from (4.5.1) that the last term is bounded above by

P | vy B
7#22‘]1{(# )+ mlOgEnN [Mq{ie N VN,E} —ch(e) — (N,
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Since 7™ (™) converges to y(u)du in M, x M? and since Proposition 4.5.2 holds for ]P’f]{ =P,~M# in

place of P, ~, the second term of the previous expression is bounded above by some C (e, N) such that

T fm Cu(e, N) =0.

e—=0 N—oo
Hence, for every € > 0, and every H in Qé’Q(E),
— 1

Jim 7 logPyv[A] < — inf Ju(n%) + Oy (), (4.5.5)

. / _
where 51_13(1) Cy(e) =0. Let

d
_ dy. AG
By = {7 € D(0,T], My x M?; mka ofi(m <1},
1<i<d k=

and, for each H € ¢)*(Qr), each ¢ > 0 and any r,l,m,n € Z,, let J}}fém’" : D([0, T), My x M%) —
R U {0} be the functional given by

T ) = {

jH(’]TE) ifre Br,l N EnL,l/nv

+00 otherwise .

This functional is lower semicontinuous because so is .J 1 ©Z¢ and because By, Ey, 1/, are closed subsets
of D([0,T], My x M%).
Let O be an open subset of D([0,T], My x M%). By Lemma 4.5.4, (4.5.3), (4.5.4) and (4.5.5),

— 1
lim —

1
M g log @y [O] < max { i =5 10g Qv [O N By N B 1yl

i log Qv [(Br)]}

N—oc0

IN

max{— T (n%) + Cly(e) | —z+00}

inf
T€ONBr 1NEm 1/n

= b Ly " (m).

where
L (m) = min { L™ () = Cpr(e), 1= Co } -
In particular,
— 1 . rl,m,n
T8O S -, mp  BEE)
Note that, for each H € €(1)’2(QiT), each ¢ > 0 and r,l,m,n € Z,, the functional LTI;{’Em’" is lower
semicontinuous. Then, by Lemma A2.3.3 in [23], for each compact subset K of D([0,T], M x M%),

— 1 !
lim — lo K] < — inf S L™ ().
N v los @kl < =l sup | L)

By (4.5.2) and since D([0,7], M°) = Np>1 N1 Eri/n,

R T L I I ’l’ s
lim lim lim lim lim L%™"(w) =
€—01l—00 r—00 m—00 n—00 )

Ju(m) if Q(n) < oo and w € D([0,T], MP),
400 otherwise .

This result and the last inequality imply the upper bound for compact sets because Ju and Jy coincide
on D([0,T], M"). To pass from compact sets to closed sets, we have to obtain exponential tightness
for the sequence {Q,~}. This means that there exists a sequence of compact sets {K,;n > 1} in
D([0,T], My x M?) such that
— 1
N2 N
The proof presented in [2] for the non interacting zero range process is easily adapted to our context.

log Q,~ (K,°) < —n.
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4.5.4 Lower Bound

The proof of the lower bound is similar to the one in the convex periodic case. We just sketch it and
refer to [23], Section 10.5. Fix a path 7 in IT and let H € €;*(Qr) be such that 7 is the weak solution
of equation (4.3.9). Recall from the previous section the definition of the martingale M/ and denote by
]P’;IN the probability measure on D([0,T], Xn) given by ]P’;IN [A] = E,~ [M# 1{A}]. Under ]P’f;{N and for

each 0 <t < T, the empirical measure 7}¥ converges in probability to ;. Further,

) 1
i 7 (B3[P ) = Fr(al).

where H(p|v) stands for the relative entropy of p with respect to v. From these two results we can
obtain that for every open set O C D([0,T], M4 x M¢?) which contains T,

. 1
Nhjmoo ~a logP,~ [O] > —Ip(n]v).

The lower bound follows from this and the I7(:|y)-density of IT established in Theorem 4.4.5.
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