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Abstract. We show that Lyapunov exponents of typical Hölder continuous

fiber bunched linear cocycles over Lorenz attractors have multiplicity one: the
exceptional set has infinite codimension. It is described in terms of rather ex-

plicit geometric conditions on sufficient simplicity criterion exhibited by Avila

and Viana in [5].
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CHAPTER 1

Introduction

A linear cocycle over a flow f t : Λ→ Λ is a flow F t : Λ× Cd → Λ× Cd of the
form

F t(x, v) = (f t(x), At(x)v)

where each At(x) : Cd → Cd is a linear isomorphism. The Lyapunov exponents are
the exponential rates

λ(x, v) = lim
t→+∞

1

t
log ||At(x)v||, v 6= 0.

By Oseledets [14] this limit exists for every v ∈ Cd on a full measure set of
x ∈ Λ, relative to any invariant probability measure m. There are at most d
Lyapunov exponents; they are constant on orbits and vary measurably with the
base point. Thus Lyapunov exponents are constant if m is ergodic.

One problem is to characterize when these exponents are different from zero.
Another main problem is to know when all exponents have multiplicity one meaning
that the subspace of vectors v ∈ C that share the same value of λ(x, v) has dimension
one. In this case we say that the Lyapunov spectrum is simple.

There has been much recent progress on these problems, specially when the
base dynamics is hyperbolic. See [7,18,4] for the first question and [8,5] for the
second one.

Here, we extend the theory to the case when the base dynamics is a geometric
Lorenz attractor. This class of systems was introduced in [19,11] as a geomet-
ric model for the behavior of the famous Lorenz equations [12]. Recently, it was
shown by Tucker [15] that these equations have all main features predicted by the
geometric models, as we recall next.

A geometric Loyrenz flow in 3-dimensions admits a cross section S and a
Poincaré transformation P : S\Γ→ S defined outside a curve Γ which is contained
in the intersection of S with the stable manifold of some hyperbolic equilibrium.
Trajectories through Γ just converge to the equilibrium and the other trajectories
through S eventually return to S. Their accumulation set is the so-called geometric
Lorenz attractor. Moreover, there is an invariant splitting

Es ⊕ Ecu

of the tangent bundle where the uniformly contracting bundle Es has dimension
1, and the volume-expanding bundle Ecu, which contains the flow direction has
dimension 2. Another important feature is that the Poincaré transformation admits
an invariant contracting foliation F through which the dynamics can be reduced to
that of a map on the interval (leaf space of F).
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1. Linear cocycles

A linear cocycle over a bijection f : N → N is a transformation F : N ×Cd →
N × Cd satisfying f ◦ π = π ◦ F which acts by linear isomorphisms A(x) on fibers.
So, the cocycle has the form

F (x, v) = (f(x), A(x)v)

where

A : N → GL(d,C).

Conversely, any A : N → GL(d,C) defines a linear cocycle over f . Note that
Fn(x, v) = (fn(x), An(x)v), where

An(x) = A(fn−1(x)) ... A(f(x))A(x),

A−n(x) = (An(f−n(x)))−1,

for any n ≥ 1, and A0(x) = id.
Let µ be a probability measure invariant by f . If x 7→ max{0, log ‖ A(x) ‖} is

µ-integrable then Oseledets [14] states that there exist a Lyapunov splitting

E1(x)⊕ ...⊕ Ek(x), 1 ≤ k = k(x) ≤ d,

and Lyapunov exponents λ1(x) > ... > λk(x),

λi(x) = lim
n→+∞

1

n
log ‖ An(x)vi ‖, vi ∈ Ei(x), 1 ≤ i ≤ k,

at µ-almost every point. Lyapunov exponents are invariant, uniquely defined at
almost every x and vary measurably with the base point x. Thus, Lyapunov expo-
nents are constant when µ is ergodic.

We recall that, in a differentiable structure, for any r ∈ N∪{0} and 0 ≤ ρ ≤ 1,
the Cr,ρ topology is defined by

||A||r,ρ = max
0≤i≤r

sup
x
||DiA(x)||+ sup

x 6=y

||DrA(x)−DrA(y)||
d(x, y)ρ

(for ρ = 0 omit the last term) and then

Cr,ρ(N, d,C) = {A : N → GL(d,C) : ||A||r,ρ < +∞}

is a Banach space. We assume that r + ρ > 0 which implies η−Hölder continuity:

‖ A(x)−A(y) ‖≤‖ A ‖0,η d(x, y)η,

with

η =

{
ρ r = 0
1 r ≥ 1.

2. Fiber bunching condition

In general, suppose that N is endowed with a metric d for which
(i) d(f(y), f(z)) ≤ θ(x)d(y, z), for all y, z ∈W s

loc(x),
(ii) d(f−1(y), f−1(z)) ≤ θ(x)d(y, z), for all y, z ∈Wu

loc(x),
where 0 < θ(x) ≤ θ < 1, for all x ∈ N .

Let A be an η-Hölder continuous linear cocycle over f .
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Definition 1.1. A is fiber bunched if there exists some constant τ ∈ (0, 1) such
that

||A(x)|| ||A(x)−1||θ(x)η < τ,

for any x ∈ N .

Remark 1.1. Fiber bunching is an open condition in Cr,ρ(N, d,C): if A is a fiber
bunched linear cocycle then any linear cocycle B sufficiently C0 close to A is also
fiber bunched, by definition.

Bonatti and Viana [8] showed that generic dominated linear cocycles over any
hyperbolic transformation have simple spectrum. Avila and Viana [5] proved a suf-
ficient condition for simplicity of Lyapunov spectrum over any shift structure when
the corresponding invariant measure has product structure. Assuming an induced
smooth structure on complete shift space we prove that

Theorem 1. Lyapunov exponents of typical Hölder continuous fiber bunched
linear cocycle over complete shift map have multiplicity one: the set of exceptional
cocycles has infinite codimention, i.e. it is locally contained in finite unions of closed
submanifolds with arbitrarily high codimension.

3. Suspension flows

Consider a suspension flow f t : Λ → Λ of f : N → N and let T : N → R be
the corresponding return time to N . Assume that At : Λ → GL(d,C) is a linear
cocycle over f t, and define

Af (x) = AT (x)(x),

for any x ∈ N . Note that Af : N → GL(d,C) is a linear cocycle over f .
Then we define, for any r ∈ N ∪ {0} and 0 ≤ ρ ≤ 1 with r+ ρ > 0, the Banach

space
Cr,ρ(Λ, d,C) = {At : Λ→ GL(d,C) : ||Af ||r,ρ < +∞}.

It turns out that, At is η-Hölder continuous if the corresponding discrete time linear
cocycle Af is Hölder.

Let At be an η-Hölder continuous linear cocycle over f t.

Definition 1.2. At is fiber bunched if the corresponding linear cocycle Af is a fiber
bunched linear cocycle over f .

Note that fiber bunching is an open condition in Cr,ρ(Λ, d,C), by definition.

Theorem 2. Lyapunov exponents of typical Hölder continuous fiber bunched
linear cocycles over a Lorenz attractor have multiplicity one.
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CHAPTER 2

Lorenz Attractors

Attractors of flows present important features with respect to the discrete time
case when they involve singularities interacting with regular orbits.

The geometric model of a Lorenz attractor is historically the first example of
a C1 robust singular attractor as a rigorous model for the behavior of the Lorenz
attractor. An attractor for a smooth flow f t on a manifold M is a compact invariant
transitive set Λ admitting an open neighborhood U such that f t(Ū) ⊂ U , for all
t > 0, and

Λ =
⋂
t>0

f t(U).

The attractor is singular if it contains some singularity of the vector field.
From measure theoretic view point, a Lorenz flow provides a robust class of

expansive attractors that are not hyperbolic sets but exhibit some non-uniformly
hyperbolic behavior: the attractor supports a unique physical probability measure
m for which the tangent bundle splits into three 1-dimensional invariant subspaces

Es ⊕ EX ⊕ Eu,
at m-almost every point depending measurably on the base point, where Es is the
stable direction, EX is the direction of the Lorenz flow f t, and

lim
t→+∞

1

t
log ||Df t|Eu || > 0.

1. Lorenz equations

The system of equations

ẋ = a(y − x),
ẏ = bx− y − xz,
ż = xy − cx,

(1)

proposed by Lorenz [12] loosely related to fluid convection and weather prediction.
W. Tucker [15] showed that the system (1) exhibits a robust attractor Λ, for classical
parameters a = 10, b = 28, c = 8/3.

The system of equations (1) is symmetric with respect to the z−axis. The
singularity 0 has real eigenvalues αss < αs < 0 < −αss < αu with αs + αu > 0.
There are also two symmetric saddles σ1, σ2 with a real negative and two conjugate
complex eigenvalues where the complex eigenvalues have positive real parts. The
character of this flow is strongly dissipative, in particular, any maximally positively
invariant subset has zero volume.

Numerical simulations show that there exists an open set U homeomorphic to a
2-torus where

⋂
t>0 f

t(U) is an attracting set and the origin is the only singularity
contained in U . Indeed, a very general view of the orbit of a generic point in
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U is that the trajectory starts spiraling around one of the singularities, say σ2,
and suddenly jumps to the other singularity, σ1, and starts spiraling around the
other. This process repeats endlessly and then implies the “butterfly” appearance
of Lorenz attractor.

2. Geometric model

To construct a geometric Lorenz attractor, we should analyze the dynamics in
a neighborhood of 0 imitating the effect of the pair of saddles. By construction,
there is a cross section S intersecting the stable manifold of 0 along a curve Γ that
separates S into 2 connected components. We denote the corresponding Poincaré
transformation

P : S\Γ→ S.

Note that the future trajectories of points in Γ do not came back to S.

S1

S2

P (S1)

P (S2)

Γ

Figure 2.1. Poincaré transformation

We consider the smooth foliation F of S into curves having Γ as a leaf which
are invariant and uniformly contracted by forward iterates of P . Indeed, every leaf
F(x,y) is mapped by P completely inside the leaf FP (x,y), and P |F(x,y)

is a uniform
contraction. Henceforth, P must have the form

P (x, y) = (g(x), h(x, y))

which by effect of saddles and singularity, we can assume that h is a contraction
along its second coordinate. The map g is uniformly expanding with derivative
tending to infinity as one approaches to Γ. We assume that |g′| ≥ θ−1 >

√
2 and

since the rate of contraction of h on the second coordinate should be much higher
than the expansion of g, we can take |∂yh| ≤ θ < 1.

Let π be the canonical projection of section S into F , i.e. π assigns to each
point of S the leaf that contained it. By invariance of F , one dimensional Lorenz
map

g : (F\Γ)→ F
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is uniquely defined so that

S\Γ P−−−−→ S

π

y yπ
F\Γ −−−−→

g
F

commutes, i.e. g ◦ π = π ◦ P on S\Γ.
One may identify quotient space S/F with a compact interval as I = [−1, 1],

and so
g : [−1, 1]\{0} → [−1, 1]

is smooth on I\{0} with a discontinuity and infinite left and right derivatives at 0.
Note that the symmetry of the Lorenz equations implies g(−x) = −g(x).

0

Figure 2.2. Lorenz 1-dimensioanl map

2.1. The attractor. The geometric Lorenz attractor Λ is characterized as
follows. Note that the restriction of g to both {x < 0} and {x > 0} admits
continuous extensions to the point 0. Hence, g may be considered as an extension to
a 2-valued map at 0 and continuous on both {x ≤ 0} and {x ≥ 0}. Correspondingly,
the restriction of the Poincaré transformation to each of the connected components
of S\Γ admits a continuous extension to the closure, each one collapsing the curve
Γ to a single point. Thus, P may also be considered as a 2-valued transformation
defined on the whole cross section and continuous on the closure of each of the
connected components. Let

ΛP =
⋂
n≥0

Pn(S) ⊂ S.

We define Λ to be the saturation of ΛP by the Lorenz flow, that is, the orbits of
its points. Therefore, orbits in Λ intersect the cross section infinitely often, both
forward and backward.

This attractor has a complicated fractal structure that can be described as “a
cantor book with uncountably many pages” joined along a spine corresponding to
the unstable manifold of the singularity point 0 (see figure 4). Notice that the
unstable manifold accumulates on itself, and so the geometry of Λ is indeed very
complex.

13



Dynamical properties of Λ may be deduced from corresponding properties for
the quotient map h. More important, a quotient map with similar properties exists
for all nearby vector fields, and so such properties are robust for these flows.

3. Physical probability measure

The existence of a unique absolutely continuous invariant probability µg which

is ergodic and 0 <
dµg

dm < +∞ for Lorenz one-dimensional map g is well-known.
One may construct an invariant probability measure µP on ΛP , as the lifting

of µg. Indeed, we may think of µg as a probability measure on Borel subsets of F .
Since P is uniformly contracting on leaves of F , one concludes that the sequence

(Pn∗ µg)n≥1,

of push-forwards is weak∗-Cauchy: given any continuous ϕ : S → R,∫
ϕ d(Pn∗ µg) =

∫
(ϕ ◦ Pn) dµg, n ≥ 1,

is a Cauchy sequence in R. Define the probability measure µP as the weak∗-limit
of this sequence that is ∫

ϕ dµP = lim
n→+∞

∫
ϕ d(Pn∗ µg),

for each continuous function ϕ. Thus µP is invariant under P , and it is a physical
probability measure on Borel subsets of ΛP which is ergodic.

Later, as the Poincaré transformation maybe extended to the Lorenz flow
through a suspension construction, the invariant probability µP corresponds to
an ergodic physical probability measure µX on Λ: Denote by R : S\Γ → (0,+∞)
the first return time to S defined by

P (x) = fR(x)(x).

The first return time R is Lebesgue integrable, since P (x) ≈ | log(d(x,Γ))|, for x
close to Γ. This follows that ∫

R dµP < +∞.

Let ∼ be an equivalence relation on S × R defined as (x,R(x)) ∼ (P (x), 0). Set

S̃ = (S × R)/ ∼ and define the finite measure

µ̃ = π∗(µP × dt)
where π : S ×R→ S̃ is the quotient map and dt is Lebesgue measure in R. Define
φ : S̃ →M as φ(x, t) = f t(x), and let

m = φ∗µ̃.

One may check also that

1

T

∫ T

0

ϕ(f t(x)) dt →
∫
ϕ dm

as T → +∞, for any continuous function ϕ : M → R, and Lebesgue almost every
x ∈ φ(S̃).
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CHAPTER 3

Symbolic Structure

Suppose that N = NZ, the full shift space with countably many symbols, and
f : N → N the shift map

f((xn)n∈Z) = (xn+1)n∈Z.

A cylinder of N is any subset

[ak, ...; a0; ..., al] = {x : xj = ιj , j = k, ..., l}

of N . We endowed N with topology generated by cylinders. The local stable and
local unstable sets of any x ∈ N are defined as

W s
loc(x) = {y : xn = yn, n ≥ 0}

and

Wu
loc(x) = {y : xn = yn, n < 0}.

Let Nu = N{n≥0} and Ns = N{n<0}. The map

x 7→ (xs, xu)

is a homeomorphism form N onto Ns ×Nu where xs = πs(x) and xu = πu(x), for
natural projections πs : N → Ns and πu : N → Nu. We also consider the maps
fs : Ns → Ns and fu : Nu → Nu defined by

fu ◦ πu = πu ◦ f,

fs ◦ πs = πs ◦ f−1.

Assume that µf is an ergodic probability measure for f . Let µs = (πs)∗µf and
µu = (πu)∗µf be the images of µf under the natural projections. It is easy to see
that µs and µu are ergodic probabilities for fs and fu, respectively. Notice that µs
and µu are positive on cylinders, by definition.

We say that µf has product structure if there exists a measurable density
function ω : N → (0,+∞) such that

µf = ω(x)(µs × µu).

Notation 3.1. For simplicity, we omit u in the notation of fu, πu, Nu and µu,

and represent these objects by f̂ , π̂, N̂ and µ̂.
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1. Markov structure in dimension 1

Now consider the Lorenz map g : I\{0} → I.

Theorem 3.1. [D06] There exists a return map ĝ, an interval Î = (−δ, δ), 0 <

δ < 1, and a partition {Î(l) : l ∈ N} to subintervals of Î, Lebesgue mod 0, for

which ĝ maps any Î(l) diffeomorphically onto Î, and the return time r̂ is Lebesgue
integrable. Moreover, there exists a constant 0 < c < 1 such that, for all x, y in any
Î(l),

log
|ĝ′(x)|
|ĝ′(y)|

≤ cn(x,y)

where n(x, y) = min{n : ĝn(x) ∈ Î(li), ĝ
n(y) ∈ Î(lj), i 6= j}.

Remark 3.1. Note that, as Lorenz map g is uniformely expanding, the intesection
of (ĝ−n(J(ln))) over all n ≥ 0 consists of exactly one point.

Therefore ĝ maybe seen as the shift map on Σ̂: there exists a conjugation be-

tween f̂ and ĝ presented by the next commutting diagram

Σ̂
f̂−−−−→ Σ̂

φ̂

y yφ̂
Î −−−−→

ĝ
Î

where the bijection φ̂ maybe defined as

φ̂ : (ln)n≥0 7→
⋂
n≥0

ĝ−n(Î(ln)).

2. Markov structure in dimension 2

Now, we consider the bi-dimensional domain Ŝ = π−1(Î) ⊂ S and correspond-

ing to the Markov partition of Î define a Markov partition {Ŝ(l) = π−1(Î(l)) : l ∈
N} of Ŝ. The return time is defined as

r(x) = r̂(π(x)).

Hence, there exists a return map P̂ to Ŝ as

P̂ (x) = P r(x)(x),

for any x ∈ Ŝ. Moreover

ĝ ◦ π = π ◦ P̂ .
Let

ΛP̂ =
⋂
n≥0

P̂n(Ŝ).

So ΛP̂ is homeomorphically equal to N . Indeed, since
⋂
n∈Z P̂

−n(Ŝ(ln)) consists of
exactly one point, one may define a bijection φ : N → ΛP̂ as

φ : (ln)n∈Z 7→
⋂
n∈Z

P̂−n(Ŝ(ln))
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which implies the commuting diagram

N
f−−−−→ N

φ

y yφ
ΛP̂ −−−−→

P̂
ΛP̂ .

3. Lifting the probability measure

The normalized restriction µ̂ of µg to the domain of ĝ is an absolutely continuous

ergodic probability for ĝ and then for f̂ , by conjugacy.

As the natural extension of f̂ realized as the complete shift map f on N , the
lift µ of µ̂ is the unique f -invariant probability measure on N such that

π̂∗µ = µ̂.

Indeed, let µ(E) = µ̂(π̂(E)), for any cylinder E ⊂ N . Using properties of µ̂
and applying Approximation Theorem, one may define µ on any Borelian subset
of N . Finally, Extension Theorem for probabilities concludes a unique extended
probability µ on Borelians of N for which, by construction, π̂∗µ = µ̂. Then µ is an
absolutely continuous ergodic probability for f .

Proposition 3.1. The lift probability µ has product structure. Moreover, the den-
sity function ω is continuous and, bounded from zero and infinity

Proof. Note that by Theorem 3.1, for all x̂, ŷ in the same cylinder

log
Jf̂(x̂)

Jf̂(ŷ)
≤ cn(x,y).

The rest of proof is based on 4 main steps stated with more details in [5] Step 1. If

x̂, ŷ ∈ N̂ then for any x ∈W s
loc(x̂) and y ∈Wu

loc(x) ∩W s
loc(ŷ), the limit

Jx̂,ŷ(x) = lim
n→∞

Jf̂n(x̂n)

Jf̂n(ŷn)
,

where x̂n = π̂(f−n(x)), ŷn = π̂(f−n(y)), exists uniformly on x̂, ŷ, x. Moreover,

(x̂, ŷ, x) 7→ Jx̂,ŷ(x)

is continuous and uniformly bounded from zero and infinity.
Indeed, we observe that

log
Jf̂n(x̂n)

Jf̂(ŷn)
≤

n∑
i=1

log
Jf̂(x̂i)

Jf̂(ŷi)
.

Since x̂i and ŷi are in the same cylinder, the series is uniformly bounded by∑
i c
n(x̂i,ŷi). But n(x̂i, ŷi) is strictly increasing that implies uniform convergence of

the series.
Step 2. If {µx̂ : x̂ ∈ N̂} be an integration of µ then, for µ-almost every x̂ ∈ N̂ ,

µx̂(ξn) =
1

Jf̂n(x̂n)
,
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for every cylinder ξn = [x−n, ..., x−1], n ≥ 1, and any x ∈ ξn × {x̂}.
Step 3. Given any disintegration, by the last step, one may find a disintegration
{µx̂ : x̂ ∈ N̂} of µ so that

µŷ = Jx̂,ŷµx̂.

Step 4. Fixing any x̂0 ∈ N̂ , one may define

ω̂(xs, xu) = Jx̂0,xu(xs, xu),

for every x = (xs, xu) ∈ N . By Step 2, µxu
= ω̂(xs, xu), for any xu ∈ N̂ .

The lift measure µ projects to µ̂ = µu, but the projection µs to Ns is given by

µs = µx̂0

∫
N̂

ω̂(xs, xu) dµ̂.

Therefore

µ = ω(xs, xu)µs × µu
where

ω(xs, xu) =
1∫

N̂
ω̂(xs, xu) dµ̂

ω̂(xs, xu).

As conditional probabilities in the proof of the last proposition vary contin-
uously with the base point so the density function ω is continuous. Also, ω is
bounded from zero and infinity. �

4. Suspending the bi-lateral shift by the flow

The saturation of N by the Lorenz flow f t, by ergodicity of µ, has full measure
in Λ since it is invariant and has positive measure. Now on, by Λ we mean this full
measure subset. Henceforth a return time to N is defined as

T : N → R

T (x) =

r(x)−1∑
j=0

R(P j(x)),

for any x ∈ N .

Lemma 3.1. T is integrable with respect to µ.

Proof. For almost every x,∫
T (x) dm =

∫
r(x)[

1

r(x)

r(x)−1∑
j=0

R(P j(x))] dm

converges to ∫
r(x)(

∫
R dm) dm < +∞

which implies ∫
T dm < +∞.

The proof is now completed by absolute continuity.
�
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Now, corresponding to any linear cocycle At over Λ we take the linear cocycle
Af on N by

Af (x) = AT (x)(x),

for any x ∈ N .

Proposition 3.2. Lyapunov spectrum of At is simple if and only if Lyapunov
spectrum of Af is simple.

Proof. The Lyapunov exponents of Af are obtained by multiplying those of
At by the average return time

sn(x) =

n−1∑
j=0

T (P̂ j(x)), x ∈ N.

Indeed, given any non zero vector v,

lim
n→+∞

1

n
log ||Anf (x)v|| = lim

n→+∞

1

n
log ||Asn(x)(x)v||

which, for µ-almost every x, this is equal to

lim
n→+∞

1

n
sn(x) lim

m→+∞

1

m
log ||Am(x)v||.

But 1
nsn(x) converges to

∫
T dµ < +∞. The proof is now completed.

�
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CHAPTER 4

Fiber Bunched Linear Cocycles

Note that if At is a Hölder continuous fiber bunched linear cocycle over Λ then,
by definition,

||Af (x)|| ||Af (x)−1||θr(x)η < τ,

for any x ∈ N where 0 < θ(x) = θr(x) ≤ θ < 1.

In general, assume an induced differentiable structure on N and let A be an
η-Hölder linear cocycle over f . We notice that all of the following results hold, up to
appropriate adjustments, under weaker condition that the last definition expressed
for some power > 1.

Notation 4.1. Set

θn(x) = θ(fn−1(x)) ... θ(x), n ≥ 1.

Lemma 4.1. If A is fiber bunched then there exists some constant C > 0 such that

‖ An(y) ‖‖ An(z)−1 ‖ θn(x)η ≤ Cτn,

for any y, z ∈W s
loc(x), and all n ≥ 1.

Proof. Sub-multiplicativity of norms implies that

‖ An(y) ‖‖ An(z)−1 ‖≤
n−1∏
j=0

‖ A(f j(y)) ‖ ‖ A(f j(z))−1 ‖ .

By regularity of cocycle A, there is C1 > 0 such that

‖ A(f j(y)) ‖ / ‖ A(f j(x)) ‖≤ exp(C1d(f j(x), f j(y))η) ≤ exp(C1θ
j(x)ηd(x, y)η).

It is similar for ‖ A(f j(z))−1 ‖ / ‖ A(f j(x))−1 ‖. So, the right hand side in
lemma is bounded above by

exp[C1

n−1∑
j=0

θj(x)η(d(x, y)η + d(x, z)η)]

n−1∏
j=0

‖ A(f j(x)) ‖ ‖ A(f j(x))−1 ‖ θnη.

Since θ(x) < θ < 1, the first factor is bounded by some uniform constant C > 0,
and fiber bunching implies that the second one is bounded by τn. The proof is now
completed.

�

1. Holonomy maps

Set Hn
x,y = An(y)−1An(x).

21



Definition 4.1. A cocycle A admits s-holonomy if

Hs
x,y = lim

n→+∞
Hn
x,y

exists for any pair of points x, y in the same local stable set. u-holonomy is defined
in a similar way, when n→ −∞, for pairs of points in the same local unstable set.

Proposition 4.1. If A is fiber bunched then, for all x and any y ∈ W s
loc(x), s-

holonomy Hs
x,y exists, where

(a) Hs
x,y = Hs

z,y.H
s
x,z, for any z ∈W s

loc(x), and Hs
y,x.H

s
x,y = id,

(b)Hs
fj(x),fj(y) = Aj(y) ◦Hs

x,y ◦Aj(x)−1, for all j ≥ 1.

Proof. We have

‖ Hn+1
x,y −Hn

x,y ‖≤‖ An(x)−1 ‖ ‖ A(fn(x))−1A(fn(y))− id ‖ ‖ An(y) ‖ .
By regularity of A, there is C2 > 0 such that the middle factor is bounded by

C2d(fn(x), fn(y))η ≤ C2θ
n(x)ηd(x, y)η,

and hence, by the last lemma

‖ Hn+1
x,y −Hn

x,y ‖≤ CC2τ
nd(x, y)η.(2)

As τ < 1, this implies that Hn(x, y) is a Cauchy sequence, uniformly on x, y,
and therefore, it is uniformly convergent. This proves the first part of proposition.
(a) follows immediately from definition, and

An(f j(y))−1An(f j(x)) = Aj(y)An+j(y)−1An+j(x)Aj(x)−1(3)

proves (b). The proof is now completed.
�

Remark 4.1. The s-holonomy Hs
x,y vary continuously on (x, y) in the sense that

the map

(x, y)→ Hs
x,y

is continuous on W s
n = {(x, y) : fn(y) ∈ W s

loc(x)}, for every n ≥ 0. It is, in fact,
a direct consequence of the uniform limit on (3) when (x, y) ∈ W s

0 , for instance.
The general case n > 0 follows immediately, by (b) of the last proposition .

Indeed, as the constants C, C̄ may be taken uniformly on U , the Cauchy estimate
in (3) is also locally uniform on A. Therefore, one may consider this notion of
dependence:

(A, x, y)→ Hs
A,x,y

is continuous on Cr,ρ(M,d,C)×W s
n, for all n ≥ 0.

There exist dual expressions of last results for u-holonomies, for points in
Wu

loc(x).

2. Dependence of holonomies

Notice that Cr,ρ(N, d,C) is the Banach space of all Cr,ρ maps from N to the
space of all d × d invertible matrices, and so the tangent space at each point A ∈
Cr,ρ(N, d,C) is naturally identified with that Banach space.

Recall fiber bunching is an open condition and the constants in Lemma 4.1 and
Proposition 4.1 may be taken uniform on some neighborhood U of A when A is
fiber bunched.
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Proposition 4.2. If A is fiber bunched then the map

B 7→ Hs
B,x,y

is of class C1 on U , for any y ∈W s
loc(x), and

∂BH
s
B,x,y(Ḃ) =

+∞∑
i=0

Bi(y)−1[Hs
B,fi(x),fi(y)B(f i(x))−1Ḃ(f i(x))−

B(f i(y))−1Ḃ(f i(y)))Hs
B,fi(x),fi(y)]B

i(x).

Proof. First, we show that the expression of ∂BH
s
B,x,p is well-defined. Let

i ≥ 0.

Hs
B,fi(x),fi(y)B(f i(x))−1Ḃ(f i(x))−B(f i(y))−1Ḃ(f i(y))Hs

B,fi(x),fi(y)(4)

may be written as

(Hs
B,fi(x),fi(y) − Id)B(f i(x))−1Ḃ(f i(x)) +B(f i(y))−1Ḃ(f i(y))(Id−Hs

B,fi(x),fi(y))

+B(f i(x))−1Ḃ(f i(x))−B(f i(y))−1Ḃ(f i(y)).

By last proposition and Remark , there is some uniform C̄ > o such that the
first term is bounded by

C̄d(f i(x), f i(y))η ‖ B(f i(x))−1 ‖ ‖ Ḃ(f i(x)) ‖ .
It is the same for second term. The third one is equal to

B(f i(x))−1[Ḃ(f i(x))− Ḃ(f i(y))] + [B(f i(x))−1 −B(f i(y))−1]Ḃ(f i(y)),

and since B−1 and Ḃ are Hı̈¿ 1
2 lder continuous, using (3), it is bounded by

[||B−1||0,0η(Ḃ)+η(B−1)||Ḃ||0,0]d(f i(x), f i(y))η ≤‖ B−1 ‖0,η‖ Ḃ ‖0,η d(f i(x), f i(y))η.

Hence (5) is bounded by

(2C̄ + 1)C3 ‖ Ḃ ‖0,η d(f i(x), f i(y))η ≤ (2C̄ + 1)C3 ‖ Ḃ ‖0,η θi(x)ηd(x, y)η

where C3 = sup{‖ B−1 ‖0,η, B ∈ U}. So, the ith term in the expression of

∂Bh
s
B,y,z(Ḃ) is bounded by

C4 ‖ Ḃ ‖0,η θi(x)ηd(x, y)η||Bi(p)−1||||Bi(x)|| ≤ C4τ
id(x, y)η ‖ Ḃ ‖0,η,(5)

by fiber bunching hypothesis where C4 = (2C̄ + 1)C3. Therefore, as τ < 1, the
series (5) does converge, uniformly.

Now, we derivate Hs
B,x,y. By definition, Hs

B,x,y is the uniform limit of Hn
B,x,y =

Bn(y)−1Bn(x) when n→∞. Indeed, Hn
B,x,y is a differentiable function of B with

derivative ∂BH
n
B,x,y(Ḃ) equal to

n−1∑
i=0

Bi(y)−1[Hn−i
B,fi(x),fi(y)B(f i(x))−1Ḃ(f i(x))−B(f i(y))−1Ḃ(f i(y))Hn−i

B,fi(x),fi(y)]B
i(x),

for all Ḃ ∈ TBCr,ρ(N, d,C) and any n ≥ 1.
It suffices to show that ∂BH

n
B,x,y converges uniformly to ∂BH

s
B,x,y as n→∞.

By (2), for any τ0 ∈ (τ, 1),

‖ Hs
B,x,y −Hn

B,x,y ‖≤ CC2

∞∑
i=n

τ id(x, y)η

≤ C5τ
nd(x, y)η
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≤ C5τ
n
0 d(x, y)η,

for some uniform constant C5 > 0. Then, for all 0 ≤ i ≤ n,

‖ Hs
B,fi(x),fi(y) −H

n−i
B,fi(x),fi(y) ‖≤ C5τ

(n−i)
0 d(f i(x), f i(y))η

≤ C5τ
(n−i)
0 θi(x)ηd(x, y)η.

It follows, by Lemma 4.1, that the difference between the ith terms in the
expressions of ∂BH

s
B,x,y and ∂BH

n
B,x,y is bounded by

2C3C5τ
n−i
0 θi(x)ηd(x, y)η||Bi(y)−1||||Bi(x)|| ≤ 2C3C5τ

n−i
0 τ id(x, y)η.

Combining with , ‖ ∂BHs
B,x,y − ∂BHn

B,x,y ‖ is bounded by

{2C3C5τ
n
0

n−1∑
i=0

(τ−10 τ)i + C4

+∞∑
i=n

τ i}d(x, y)η ‖ Ḃ ‖0,η .

Since τ, τ0 and (τ−10 τ) are strictly less that 1, therefore the series tends uni-
formly to 0 as n→∞. The proof is now completed.

�

There exists the dual of the last proposition

Proposition 4.3. If A is fiber bunched then

U 3 B 7→ Hu
B,x,y

is of class C1, and, for any y ∈Wu
loc(x),

∂BH
u
B,x,y(Ḃ) = −

+∞∑
i=1

B−i(y)−1[Hu
B,f−i(x),f−i(y)B(f−i(x))−1Ḃ(f−i(x))

−B(f−i(y))−1Ḃ(f−i(y))Hu
B,f−i(x),f−i(y)]B

−i(x).
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CHAPTER 5

Perturbation Tools

Consider the ergodic complete shift system (f, µ) where µ has product structure
and let A be a linear cocycle over f . Suppose that p is a periodic point of f , and q
a homoclinc point of p, i.e. q ∈Wu

loc(p) and there is some multiple m ≥ 1 of per(p)
such that fm(q) ∈W s

loc(p). We define the transition map

ΨA,p,q : Cdp → Cdp
by

ΨA,p,q = Hs
fm(q),pA

m(q)Hu
p,q ∈ GL(d,C).

Definition 5.1. A is pinching at p if all eigenvalues of Aper(p)(p) have distinct
absolute values. A is twisting at p, q if, for any pair of invariant subspaces E1, E2

of Aper(p)(p) with dimE1 + dimE2 = d,

ΨA,p,q(E1) ∩ E2 = {0}.
A cocycle A is simple if there exist some periodic point p and some homoclinic point
q of p such that A is both pinching at p and twisting at p, q.

Theorem 5.1. [5] If A is simple then the Lyapunov spectrum of A is simple.

p
fm(q)

q

Aper(p)(p)

ΨA,p,q

W s(p)

Wu(p)

Figure 5.1. Pinching and twisting

We remember that a submersion S1 → S2 means that all elements of S2 are
regular values which implies that every non-empty pre-image of any element of S2

25



is a submanifold of S1 with codimension equal to the dimension of S2. In a more
general case, the pre-image of any submanifold of S2 is a submanifold of S1 with
the same codimension.

1. Perturbation along periodic orbits

As we mentioned before, the tangent space at any B ∈ Cr,ρ(N, d,C) is identified
naturally with the space of all Cr,ρ maps on N into the space of linear maps in
Cd. Indeed, we may give the tangent vectors Ḃ as Cr,ρ maps which assign to every
point of N a linear map on Cd.

Proposition 5.1. Let p be a periodic point of f then the application

A 7→ Aper(p)(p) ∈ GL(d,C),

is a submersion at any A ∈ Cr,ρ(N, d,C), even restricted to tangent vectors sup-
ported in some neighborhood of p.

Proof. Assume that p is a fixed point of f . It is easy to see that

∂AA(p)(Ȧ) = Ȧ(p).

Fix a neighborhood Up of p such that p is the unique point of its orbit in Up.
Let α : N → [0, 1] be a Cr,ρ function vanishing outside Up, and α(p) = 1. For any

A ∈ GL(d,C), define Ȧ ∈ TBCr,ρ(N, d,C) as

Ȧ(x) = AA(p)−1α(x)A(x).

Note that Ȧ is supported on Up, and Ȧ(p) = A. Hence ∂AA(p)(Ȧ) = A, as we
have claimed. It is similar when per(p) > 1 where in this case

∂AA
per(p)(p)(Ȧ) = A(fper(p)−1(p)) ... Ȧ(p) + ... + Ȧ(fper(p)−1(p)) ... A(p)

which, for tangent vectors supported on Up, reduces to

A(fper(p)−1(p)) ... Ȧ(p).

The proof is now completed.
�

2. Perturbation along homoclinic orbits

Assume that p is a periodic point of f and q some homoclinic point of p. The
derivative of ΨB,p,q = Hs

fm(q),p.B
m(q).Hu

p,q at a vector Ḃ is given by

∂BH
s
fm(q),p(Ḃ).Bm(q).Hu

p,q+

Hs
fm(q),p∂BB

m(q)(Ḃ)Hu
p,q+

Hs
fm(q),pB

m(q)∂BH
u
p,q(Ḃ)

(6)

where

∂BB
m(q)(Ḃ) = B(fm−1(q)) ... Ḃ(q) + ... + Ḃ(fm−1(q)) ... B(q),

by definition.

Proposition 5.2. The application

U 3 B 7→ ΨB,p,q

is a submersion, even restricted to tangent vectors Ḃ supported on a neighborhood
of q, for any periodic point p and each homoclinic pint q of p.
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Proof. Without loose of generality, we assume that p is a fixed point of f ,
and m = 1. Let Uq be any neighborhood of q which is disjoint from the orbit of p
and {f j(q) : j 6= 0}. So, the expression in (6) reduces to

Hs
f(q),p∂BB(q)(Ḃ)Hu

p,q = Hs
f(q),pḂ(q)Hu

p,q.

Thus, ∂BΨB,p,q is given by

Ḃ 7→ Hs
f(q),pḂ(q)Hu

p,q,

for any vector Ḃ supported on Uq. We claim that

Φ(Ḃ) = Hs
f(q),pḂ(q)Hu

p,q

is surjective on TBCr,ρ(M,d,C).
Let β : N → [0, 1] be a Cr,ρ function vanishing outside Uq, where β(q) = 1.

For any B ∈ GL(d,C), define Ḃ ∈ TBCr,ρ(M,d,C) as

Ḃ(w) = (Hs
B,f(q),p)

−1BB(q)−1β(w)B(w)(Hu
B,p,q)

−1.

Note that Ḃ(q) = Hs
B,f(q),p

−1BHu
B,p,q

−1, and so Φ(Ḃ) = B, as we have claimed.

The proof is now completed. �

3. The main perturbation

Now, we consider the main perturbation including both periodic and homoclinic
orbits.

Proposition 5.3. If A ∈ Cr,ρ(N, d,C) is fiber bunched then the application

Θ : U → GL(d,C)2

Θ(B) = (B(p),ΨB,p,q),

B ∈ U , is a submersion, even restricted to the subspace of tangent vectors Ḃ sup-
ported on some neighborhoods of p, q.

Proof. Take Up such that Up ∩ orb(p) = {p}, Up ∩ orb(q) = ∅, and similarly
Uq so that Uq ∩ orb(q) = {q}, Uq ∩ orb(p) = ∅.

First note that, if Ḃ is a tangent vector supported on Up ∪ Uq, so, there exist

two tangent vectors Ḃ1 supported on Up, and Ḃ2 supported on Uq such that Ḃ =

Ḃ1 + Ḃ2. Indeed, we may assume that

Ḃ1(x) =

{
Ḃ(x) x ∈ UP

0 x /∈ UP

and

Ḃ2(x) =

{
Ḃ(x) x ∈ Uq

0 x /∈ Uq.

So

∂BΘ(B)(Ḃ) = ∂BΘ(B)(Ḃ1) + ∂BΘ(B)(Ḃ2)

which is equal to

(∂BB(p)(Ḃ1), ∂BΨB,p,q(Ḃ1)) + (∂BB(Ḃ2), ∂BΨB,p,q(Ḃ2)) =

(Ḃ1(p), ∂BΨB,p,q(Ḃ1)) + (0, ∂BΨB,p,q(Ḃ2))
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By Propositions 5.1 and 5.2, for any (B1,B2) ∈ GL(d,C)2, there exist tangent

vectors Ḃ1 supported on Up, and then Ḃ2 supported on Uq such that

∂BΨB,p,q(Ḃ2) = B2 − ∂BΨB,p,q(Ḃ1),

and therefore

∂BΘ(B)(Ḃ) = (B1,B2)

where Ḃ = Ḃ1 + Ḃ2 is supported on Up ∪ Uq.
�

4. Proof of Theorem 1

4.1. Pinching. Let Z be the subset of matrices A ∈ GL(d,C) whose eigen-
values are not all distinct in norm. Z is closed and contained in a finite union of
closed submanifolds of GL(d,C) with codimention ≥ 1.

Proposition 5.1 follows that the subset of cocycles B ∈ U for which Bper(p)(p) ∈
Z is closed and contained in a finite union of closed submanifolds with codimention
≥ 1.

For any l ≥ 1, consider periodic points p1, ..., pl. We imply that the subset of
linear cocycles B ∈ U where Bper(pi)(pi) ∈ Z is closed and contained in a finite
union of closed submanifolds with codimention ≥ l.

4.2. Twisting. The subset Y of all pairs of matrices (A,B) such that there
exist B-invariant subspaces E1, E2 with dimE1 + dimE2 = d where A(E1) ∩E2 6=
{0}, is closed and contained in a finite union of closed submanifolds of positive
codimention. Indeed, Fixing E1, E2, the application

GL(d,C) 3 A 7→ A(E1) ∈ Grass(dimE1, d)

is a submersion. In the other hand,

{A : A(E1) do not intersect transversally E2}

is a submanifold with codimension≥ 1, since

{E ∈ Grass(dimE1, d) : E do not intersect transversally E2}

is a submanifold of positive codimension. Now, for any fixed matrix B, the set Y
is contained in a finite number of submanifolds of positive codimension. So, Y is
contained in a finite number of submanifolds of positive codimension in GL(C, d)2.

Therefore, by Proposition 5.3, the subset of cocycles B ∈ U so that

(Bper(p)(p),ΨB,p,q) ∈ Y

is closed and contained in a finite union of closed submanifolds with positive codi-
mension.

Given l ≥ 1, if q1, ..., ql are some homoclinic points of periodic points p1, ..., pl,
respectively, then the subset of cocycles B ∈ U for which

(Bper(pi)(pi),ΨB,pi,qi) ∈ Y

is closed and contained in a finite union of closed submanifolds with codimension
≥ l.
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4.3. Real valued cocycles. All results in [5] and Perturbation arguments of
this section are valid for cocycles with values in GL(d,R). But, in this case there is
the possibility of existence of pairs of complex conjugate eigenvalues. Indeed, the
subset of matrices whose eigenvalues are not all distinct in norm has non-empty
interior in GL(d,R).

The way to hypass this, is treated in [7] and [8]:
Excluding a codimension 1 subset of cocycles, one may assume that
(i) all the eigenvalues of Bper(p)(p) are real and have distinct norms, except for
c ≥ 0 pairs of complex conjugate eigenvalues,
(ii) ΨA,p,q(E1) ∩ E2 = {0}, for any direct sums E1 and E2 of eigenspaces of

Bper(p)(p) with dimE1 + dimE2 ≤ d.
Avoiding another subset of positive codimention, we can choose a new periodic

point p̂ so that all the eigenvalues of Bper(p̂)(p̂) are real and distinct.
Now, in this way, for any l ≥ 1, avoiding a codimension l subset of cocycles,

one may suppose that periodic points p̂1, ..., p̂l are defined.

The proof of Theorem 1 is now completed.

5. Proof of Theorem 2

Let At be a linear cocycle over Λ. We define a neighborhood V of At as the
subset of all cocycles Bt over Λ for which Bf ∈ U .

Proposition 5.4. The application

V 3 Bt 7→ Bf ∈ U
is a submersion.

Proof. By definition,
∂BtBf (Ḃt) = Ḃf .

Let Ḃ ∈ Cr,ρ(N, d,C). Then the suspension Ḃt of Ḃ is defined by

Ḃt(Xs(x)) = (id, t+ s), 0 < t+ s ≤ T (x),

identifying (id, T (x)) with (Ḃ(x), 0), for any x ∈ N , setting Ḃ0 = id. Ḃt is an

η-Hölder linear cocycle over Λ for which Ḃf (x) = (Ḃ(x), 0). This shows that the
derivative is surjective. The proof is now completed. �

The proof of Theorem 2 is now completed.
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CHAPTER 6

Final Remarks

1. Non-vanishing exponents

Bonatti, Gomez-Mont and Viana in [7] proved that typical Hölder continuous
fiber bunched linear cocycles over any hyperbolic transformation have some nonzero
Lyapunov exponent. Viana in [18] improved the last result, in particular, removing
the fiber bunching condition. Therefore, by Proposition 5.4 we have also proved

Theorem 6.1. Typical Hölder continuous linear cocycles over a Lorenz attractor
have non-zero Lyapunov exponents.

2. Singular-hyperbolic attractors

[13] introduce a notion of singular hyperbolic sets and flows that includes the
geometric Lorenz models as special cases. They prove that every robust attractor
for a flow in dimension 3 is singular hyperbolic.

Singular hyperbolicity has many important consequences, for instance, [3] prove
that singular hyperbolic flows admit convenient cross sections and invariant foli-
ations for the corresponding Poincaré transformation that allow us to reduce the
dynamics to dimension 1. Moreover, by [2] every singular hyperbolic attractor
admits a Markov structure.

It would be interesting to know whether our results extend to this class of
systems:

Problem 1. Typical Hölder continuous fiber bunched linear cocycles over a singular-
hyperbolic attractor are simple?

and then removing the fiber bunching condition

Problem 2. Typical Hölder continuous linear cocycles over a singular-hyperbolic
attractor have non-zero Lyapunov exponents?
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Paris. Série I. Mathématique 328 (1999) 1197-1202.
[16] M. Viana, Stochastic dynamics of deterministic systems, Brazilian Mathematics Colloquium

IMPA (1997).

[17] M. Viana, What’s new on Lorenz strange attractors?, The Mathematical Intelligencer 22
(2000), 6-19

[18] M. Viana, Almost all cocycles over any hyperbolic system have non-vanishing Lyapunov

exponents, Annals of Mathematics 167 (2008) 643-680.

[19] R. Williams, The structure of the Lorenz attractor, Publications Mathématiques de l’IHÉS
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