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mento especial à Vanessa pelo companheirismo durante o Doutorado. Por
ter dividido comigo os bons momentos, mas principalmente por ter estado ao
meu lado nos momentos dif́ıceis. Se cheguei até o fim, muito se deve a você.
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Abstract

If M is a three-manifold with scalar curvature greater than or equal to−2 and
Σ ⊂ M is a two-sided compact embedded Riemann surface of genus greater
than 1 which is locally area-minimizing, then the area of Σ is greater than
or equal to 4π(g(Σ)− 1), where g(Σ) denotes the genus of Σ. In the equality
case, we prove that the induced metric on Σ has constant Gauss curvature
equal to −1 and locally M splits along Σ. We also obtain a rigidity result
for cylinders (I × Σ, dt2 + gΣ), where I = [a, b] ⊂ R and gΣ is a Riemannian
metric on Σ with constant Gauss curvature equal to −1.

Keywords: Minimal surfaces, constant mean curvature surfaces, scalar cur-
vature, rigidity.
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Resumo

Se M é uma variedade tridimensional com curvatura escalar maior ou igual
a −2 e Σ ⊂ M é uma superf́ıcie de Riemann compacta, mergulhada, com
dois lados e gênero maior que 1 que é localmente minimizante de área, então
a área de Σ é maior ou igual a 4π(g(Σ) − 1), onde g(Σ) denota o gênero
de Σ. No caso de igualdade, provamos que a métrica induzida sobre Σ tem
curvatura de Gauss constante igual a −1 e localmente M é isométrica a um
cilindro sobre Σ. Obtemos também um resultado de rigidez para cilindros
(I × Σ, dt2 + gΣ), onde I = [a, b] ⊂ R e gΣ é um métrica Riemanniana sobre
Σ com curvatura de Gauss constante igual a −1.

Palavras-chave: Superf́ıcies mı́nimas, superf́ıcies com curvatura média con-
stante, curvatura escalar, rigidez.
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Introduction

In this work, we will deal with the relation between minimal surfaces of a Rie-
mannian three-manifold M and the scalar curvature of M . The link between
these two concepts is the second variation formula of area. If the minimal
surface is stable then this formula provides, using the Gauss equation, a con-
nection between the topology of the stable minimal surface and the scalar
curvature of M . This was first observed in [32] by R. Schoen and S. T. Yau.
In that paper, they proved the following result.

Recall that a surface Σ is incompressible in a three-manifold M if the
fundamental group of Σ injects into that of M .

Theorem 1 (R. Schoen, S. T. Yau). Let (M3, g) be a compact orientable
three-manifold with nonnegative scalar curvature. If M contains an incom-
pressible compact orientable surface Σ with genus greater than or equal to 1,
then M is flat.

To prove that result, they first show that any such manifold M contains a
stable minimal surface of genus equal to that of Σ. Next, they observe, using
the second variation formula of area, that if M has positive scalar curvature,
then every compact stable minimal surface in M is a two-sphere. The result
follows because if M admits a non-flat metric of nonnegative scalar curvature,
then M also admits a metric of positive scalar curvature (see [21]).

Remark 1. A very nice consequence of the theorem above is the fact that
any metric on the three-torus T 3 with nonnegative scalar curvature is flat.
In [33], R. Schoen and S. T. Yau extended this result to dimension n < 8.
The general case was settled by M. Gromov and H. B. Lawson using spin
techniques (see [15, 16]).
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It was also observed in [32] that if M is a Riemannian three-manifold
with nonnegative scalar curvature and Σ ⊂M is a stable minimal two-torus
then Σ is flat and totally geodesic. Moreover, the normal Ricci curvature
and the scalar curvature of M are equal to zero along Σ.

Motivated by the infinitesimal rigidity above, D. Fischer-Colbrie and R.
Schoen conjectured in [13] that in the Schoen and Yau’s theorem above it
is sufficient that M contains an area-minimizing two-torus (not necessarily
incompressible). This conjecture was proved in [9], by M. Cai and G. Gal-
loway. They proved that if M has nonnegative scalar curvature and Σ ⊂M
is a two-sided embedded two-torus which is area-minimizing in its isotopy
class, then M is flat. This result is obtained as a corollary of the following
local statement.

Theorem 2 (M. Cai, G. Galloway). Let (M3, g) be a three-manifold with
nonnegative scalar curvature. If Σ ⊂ M is a two-sided embedded two-torus
in M which is locally area-minimizing, then M is flat in a neighborhood of
Σ.

It follows that the induced metric on Σ is flat and that locally M splits
along Σ. The proof of Theorem 2 uses an argument based on a local defor-
mation around Σ to obtain a metric with positive scalar curvature together
with the fact that the three-torus does not admit a metric with positive scalar
curvature.

The Cai and Galloway’s result above is an example of how the existence
of an area-minimizing surface in a three-manifold M with lower bounded
scalar curvature can influence the geometry of M .

Remark 2. We note that there are similar rigidity results in higher dimen-
sions. More precisely, it was proved in [33], by R. Schoen and S. T. Yau,
that if (Mn, g) is a Riemannian manifold of dimension n > 4 with scalar
curvature Rg > 0 and Σn−1 ⊂ M is a compact two-sided stable minimal
hypersurface, then either Σ admits a conformal metric with positive scalar
curvature or Σ is Ricci flat and totally geodesic. In the case where Σ is Ricci
flat and totally geodesic, it was proved by M. Cai in [8] that if Σ is locally
volume-minimizing, then locally M splits along Σ. We also note that rigidity
results for complete non-compact stable minimal hypersurfaces in complete
manifolds with nonnegative seccional curvature was obtained in [34].

Recently, H. Bray, S. Brendle and A. Neves studied in [4] the case where
M has scalar curvature greater than or equal to 2 and Σ ⊂M is a locally area-
minimizing embedded two-sphere. In their case, the model is the Riemannian
manifold (R×S2, dt2+g), where g is the standard metric on S2 with constant
Gauss curvature equal to 1. They proved the following result.
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Theorem 3 (H. Bray, S. Brendle, A. Neves). Let (M3, g) be a three-manifold
with scalar curvature Rg > 2. If Σ is an embedded two-sphere which is locally
area-minimizing, then Σ has area less than or equal to 4π. Moreover, if
equality holds, then Σ with the induced metric has constant Gauss curvature
equal to 1 and locally M splits along Σ.

The proof in [4] is based on a construction of a one-parameter family of
constant mean curvature two-spheres. A global result was also obtained using
the local one above. More precisely, it was proved that if Σ is area-minimizing
in its homotopy class and has area equal to 4π, then the universal cover of M
is isometric to (R×S2, dt2 + g). A similar rigidity result for area-minimizing
projective planes was obtained in [3].

Remark 3. The following heuristic argument1 using the fact that the Hawking
mass is a non-decreasing quantity along the inverse mean curvature flow, is
interesting since it indicates the rigidity in Theorem 3. If Σ ⊂ (M3, g) is a
surface and Rg > Λ, Λ ∈ R, then the Hawking mass of Σ, denoted by mH(Σ),
is defined to be

mH(Σ) = |Σ|1/2
(

8πχ(Σ)−
∫

Σ

(H2 +
2

3
Λ) dσ

)
,

where H is the mean curvature of Σ and χ(Σ) denotes the Euler characteristic
of Σ.

Now, if Λ = 2 and Σ is a locally area-minimizing two-sphere with area
equal to 4π, then Σ attains the maximum possible value of the Hawking mass.
Suppose we have a family of two-spheres Σt ⊂ M , Σ0 = Σ, that solves the
inverse mean curvature flow. It is well known that mH(Σt) is non-decreasing
along the flow. Since mH(Σ) is the maximum of the Hawking mass, we have
that mH(Σt) = mH(Σ) for all t and consequently, all two-spheres Σt are
minimal and have area equal to 4π.

The next natural question is to know what happens when the model case
is the Riemannian product manifold (R×Σ, dt2 +gΣ), where Σ is a Riemann
surface of genus greater than 1 and gΣ is a Riemannian metric on Σ with
constant Gauss curvature equal to −1.

In the present work, we deal with this question. We prove that the
analogous result is true in this case. The first theorem of this work is stated
below.

Theorem A. Let (M3, g) be a Riemannian manifold with scalar curvature
Rg > −2. If Σ ⊂ M is a two-sided compact embedded Riemann surface of

1The author would like to thank A. Neves for pointing out this heuristic argument.
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genus g(Σ) > 2 which is locally area-minimizing, then

|Σ|g > 4π(g(Σ)− 1)

where |Σ|g denotes the area of Σ with respect to the induced metric. Moreover,
if equality holds, then the induced metric on Σ, denoted by gΣ, has constant
Gauss curvature equal to −1 and Σ has a neighborhood which is isometric to
((−ε, ε)×Σ, dt2 + gΣ), for some ε > 0. More precisely, the isometry is given
by f(t, x) = expx(tν(x)), (t, x) ∈ (−ε, ε) × Σ, where ν is the unit normal
vector field along Σ.

Remark 4. Note that if |Σ| = 4π(g(Σ) − 1) in Theorem A, then mH(Σ)
is the minimum (not the maximum) possible value of the Hawking mass
for minimal surfaces of genus equal to g(Σ) in three-manifolds with scalar
curvature bounded below by Λ = −2. It is interesting that rigidity still holds
despite the failure of the heuristic argument of Remark 3.

We note that a related rigidity result for constant mean curvature surfaces
of genus 1 was obtained in [1]. We also refer the reader to the excellent surveys
[5] and [14] on rigidity problems associated to scalar curvature.

Let us give an idea of the proof of Theorem A. The area estimate follows
from the second variation of area using the Gauss equation, the lower bound
of the scalar curvature and the Gauss-Bonnet theorem. In the equality case,
we construct, using the implicit function theorem, a one-parameter family of
constant mean curvature surfaces, denoted by Σt, with Σ0 = Σ and all Σt

having the same genus. The next argument in the proof is the fundamental
one. Arguing by contradiction and using the solution of the Yamabe problem
for compact manifolds with boundary and the Hopf’s maximum principle, we
are able to conclude that each Σt has the same area. Finally, we obtain from
this that Σ has a neighborhood isometric to ((−ε, ε)× Σ, dt2 + gΣ).

If we suppose that Σ minimizes area in its homotopy class, then we obtain
global rigidity using a standard continuation argument contained in [4, 9].

Corollary 1. Let (M3, g) be a complete Riemannian three-manifold with
scalar curvature Rg > −2. Moreover, suppose that Σ ⊂ M is a two-sided
compact embedded Riemann surface of genus g(Σ) > 2 which minimizes area
in its homotopy class. Then Σ has area greater than or equal to 4π(g(Σ)−1)
and if equality holds, then (R×Σ, dt2+gΣ) is an isometric covering of (M3, g),
where gΣ is the induced metric on Σ which has constant Gauss curvature equal
to −1. The covering is given by f(t, x) = expx(tν(x)), (t, x) ∈ R×Σ, where
ν is the unit normal vector along Σ.

Remark 5. We observe that lower bounds for scalar curvature do not imply
area estimates like those of Theorem 3 and Theorem A in higher dimensions.

Instituto de Matemática Pura e Aplicada 4 November 17, 2011
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This follows from the fact that for dimensions n > 3 there exist compact
Riemannian manifolds (Mn, g) with positive (negative) scalar curvature with
volume arbitrarily large (small). To see this, given n > 3 take any compact
Riemannian manifold (Nn−1, gN) with constant positive or negative scalar
curvature and consider the Riemannian manifold (Mn = Nn−1 × S1(r), g =
gN + dθ2), where (S1(r), dθ2) is the circle of radius r > 0 in R2 and dθ2 is
the canonical metric on S1(r). Note that for any r > 0 the scalar curva-
ture of M is always equal to that of N . Finally, in the case where M has
constant positive scalar curvature, we can arbitrarily increase the volume of
M by increasing the size of the radius r and we can decrease the radius r
to arbitrarily reduce the volume of M when M has constant negative scalar
curvature.

Next, let us give a motivation for the second theorem of this work. An
important result in differential geometry is the positive mass theorem. This
theorem states that an asymptotically flat manifold with nonnegative scalar
curvature has nonnegative ADM mass. Moreover, if the manifold is not
isometric to the Euclidean space, then the ADM mass is positive. This
result was first proved by R. Schoen and S. T. Yau in [31], for dimension
n < 8, using minimal surfaces techniques. In [37], E. Witten gave a proof of
this theorem for any spin manifold of any dimension.

In [23], P. Miao observed that the positive mass theorem implies the
following rigidity result for the unit ball Bn ⊂ Rn.

Theorem 4 (P. Miao). Let g be a smooth Riemannian metric on Bn with
nonnegative scalar curvature such that ∂Bn = Sn−1 with the induced metric
has mean curvature greater than or equal to (n− 1) and is isometric to Sn−1

with the standard metric. Then g is isometric to the standard metric of Bn.

The theorem above was generalized by Y. Shi and L. Tam in [29]. There
are some analogous rigidity results for the hyperbolic space (see [25], [2], [36]
and [10]). A similar rigidity result for the hemisphere Sn+ was conjectured by
M. Min-Oo in [26]:

Min-Oo’s Conjecture. Let g be a smooth metric on the hemisphere Sn+
with scalar curvature Rg > n(n − 1) such that the induced metric on ∂Sn+
agrees with the standard metric on ∂Sn+ and is totally geodesic. Then g is
isometric to the standard metric on Sn+.

This conjecture is true for n = 2, in which case it follows by a theorem of
Toponogov [35] (see also [17]). Recently, counterexamples were constructed
by S. Brendle, F. C. Marques and A. Neves in [6] for n > 3. They proved
the following result.

Instituto de Matemática Pura e Aplicada 5 November 17, 2011
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Theorem 5 (S. Brendle, F. C. Marques, A. Neves). Given any integer n >
3, there exists a smooth metric g on the hemisphere Sn+ with the following
properties:

• The scalar curvature of g is at least n(n− 1) at each point on Sn+.

• The scalar curvature of g is strictly greater than n(n−1) at some point
on Sn+.

• The metric g agrees with the standard metric of Sn+ in a neighborhood
of ∂Sn+.

We refer the reader to [17, 11, 19] for partial results concerning the Min-
Oo’s conjecture. In [7], a rigidity result for small geodesic balls in Sn was
proved.

The following theorem is the second one of this work and it can be consid-
ered as the analogue of Miao’s result and Min-Oo’s conjecture in our setting.
It is a rigidity result for cylinders ([a, b] × Σ, dt2 + gΣ), where (Σ, gΣ) is a
Riemann surface of genus greater than 1 and constant Gauss curvature equal
to -1.

Recall that a three-manifold is irreducible if every embedded 2-sphere in
M bounds an embedded 3-ball in M .

Theorem B. Let Σ be a compact Riemann surface of genus g(Σ) > 2 and gΣ

a metric on Σ with KΣ ≡ −1. Let (Ω3, g) be a compact irreducible connected
Riemannian three-manifold with boundary satisfying the following properties:

• Rg > −2.

• H∂Ω > 0. (H∂Ω is the mean curvature of ∂Ω with respect to inward
normal vector)

• Some connected component of ∂Ω is incompressible in Ω and with the
induced metric is isometric to (Σ, gΣ).

Moreover, suppose that Ω does not contain any one-sided compact embedded
surface. Then (Ω, g) is isometric to ([a, b]× Σ, dt2 + gΣ).

Remark 6. We note that the corresponding result for cylinders [a, b] × S2,
where S2 is the round sphere, does not hold. In fact, consider a rotation-
ally symmetric Delaunay-type metric ga = ua(t)

4(dt2 + gS2) on R× S2 with
constant scalar curvature equal to 2 such that ua(0) = a = minu < 1
and u′a(0) = 0 (see section 2.2, pg. 16). Since ua is a periodic func-
tion, choose t0, t1 ∈ R such that ua(t0) = ua(t1) = maxu. We note that

Instituto de Matemática Pura e Aplicada 6 November 17, 2011
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ua(t0) = ua(t1) > 1. The Riemannian manifold (Ω = [t0, t1] × S2, g), where
g = u(t0)−4g, gives a counterexample. In fact, Rg = u(t0)4 2 > 2, H∂Ω = 0
and every component of ∂Ω is isometric to the round sphere (S2, gS2). More-
over, Ω is irreducible and does not contain any one-sided compact embedded
surface and every component of ∂Ω is incompressible in Ω. However, (Ω, g)
is not isometric to a standard cylinder ([a, b]× S2, dt2 + gS2).

The following example justifies the requirement that Ω does not contain
any one-sided compact embedded surface.

Example 1. Let (Σ̂, gΣ̂) be a compact non-orientable surface with constant
Gauss curvature equal to −1. Denote by Σ the orientable double covering
of Σ̂ and by π the covering map. Next, define gΣ = π∗gΣ̂ and consider
(M = [−k, k] × Σ, dt2 + gΣ). Take the subgroup Γ = {id, f} ⊂ Iso(M, g),
where f is defined by f(t, x) = (−t, φ(x)) and φ ∈ Iso(Σ, gΣ) is the non-

trivial deck transformation of π : Σ −→ Σ̂. Now, consider the Riemannian
manifold (Ω, gΩ), where Ω = M/Γ and gΩ is the quotient metric. Note that
Ω is irreducible, RgΩ

= −2, HgΩ
= 0, ∂Ω is incompressible in Ω and with the

induced metric is isometric to (Σ, gΣ). Finally, observe that ∂Ω has only one
component and that the image of {0} ×Σ is a one-sided compact embedded
surface in Ω.

The Theorems A and B of this thesis were proved in the reference [27],
posted on the arXiv in March of 2011. More recently, M. Micallef and V.
Moraru posted a paper on the arXiv, [24], where they prove Theorem A with
an alternative argument.
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CHAPTER 1

Preliminaries

In this chapter, our purpose is to fix notations, to give definitions and to
state some facts which will be used throughout this work. In Section 1.1,
we first list the definitions of the geometric objects related to a Riemannian
manifold and its submanifolds. We also state a very useful formula which is
a consequence of the Gauss equation. Next, we recall the first and second
variation formulas and the definition of stable minimal surface. Finally, we
state the formula for the first variation of the mean curvature of a one-
parameter family of surfaces. In Section 1.2, we state the Hopf’s maximum
principle which will be used in the proof of Theorem A. In Section 1.3,
we discuss the Meeks-Simon-Yau’s result concerning the existence of area-
minimizing surfaces in isotopy classes.

1.1 Terminology and basic facts

Let (M, g) be a Riemannian manifold of dimension n. Sometimes, we will also
denote the metric g by 〈·, ·〉. The Riemann curvature tensor of M , denoted
by R, is defined to be

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

where X, Y, Z ∈ X(M) and ∇ is the Levi-Civita connection of (M, g). Here,
X(M) denotes the space of smooth vector fields on M .

We also define

8
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R(X, Y, Z,W ) = 〈R(X, Y )W,Z〉,
where X, Y, Z,W ∈ X(M). We will use the notation Rx for the Riemman
curvature tensor at x ∈M .

The Ricci curvature of (M, g) at x ∈M in the direction v ∈ TxM , |v| = 1,
denoted by Ricx(v, v), is defined to be

Ricx(v, v) =
n−1∑
i=1

Rx(v, ei, v, ei),

where {v, e1, . . . , en−1} ⊂ TxM is an orthonormal basis.
The scalar curvature of (M, g) at x, denoted by Rg(x), is defined to be

Rg(x) =
n∑
i=1

Ricx(ei, ei),

where {e1, . . . , en} ⊂ TxM is an orthonormal basis.
Next, let Σ ⊂ M be a hypersurface and consider x ∈ Σ. The second

fundamental form of Σ at x, denoted by (AΣ)x, is defined to be

(AΣ)x(X, Y ) = (∇XY )⊥,

where X, Y ∈ TxΣ and (·)⊥ denotes the component orthogonal to TΣ with
respect to the metric g.

The mean curvature vector of Σ at x ∈ Σ, denoted by ~HΣ(x), is defined
to be

~HΣ(x) =
n−1∑
i=1

(AΣ)x(ei, ei),

where {e1, . . . , en−1} ⊂ TxΣ is an orthonormal basis with respect to the
induced metric

Let ν be a local unit normal vector field along Σ around x ∈ Σ. The
mean curvature of Σ at x with respect to ν, denoted by HΣ(x), is defined to
be

HΣ(x) = 〈 ~HΣ(x), ν(x)〉

= −
n−1∑
i=1

〈∇eiν, ei〉,

where {e1, . . . , en−1} ⊂ TxΣ is an orthonormal basis with respect to the
induced metric.
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Remark 7. If there is no ambiguity we will denote the second fundamental
form, the mean curvature vector and the mean curvature of Σ only by A, ~H
and H, respectively.

Denote by RΣ the Riemann curvature tensor of Σ with respect to the
induced metric.

Proposition 1 (Gauss Equation). Given x ∈ Σ, we have

RΣ
x (e1, e2, e1, e2) = Rx(e1, e2, e1, e2) + 〈Ax(e1, e1), Ax(e2, e2)〉 − |Ax(e1, e2)|2,

for every orthonormal vectors e1, e2 ∈ TxΣ.

It is easy to see that the Gauss equation implies the following relation:

RΣ
g = Rg − 2 Ric(ν, ν) +H2

Σ − |AΣ|2, (1.1)

where RΣ
g donotes the scalar curvature of Σ.

Now, suppose Σ ⊂ M is compact and let Σt ⊂ M , t ∈ (−ε, ε), ε > 0,
be a smooth normal variation of Σ in M . More precisely, Σt is given by
Σt = {f(t, x) : x ∈ Σ}, where f : (−ε, ε) × Σ −→ M is a smooth function
such that f(0, x) = x, ∀x ∈ Σ, and ft = f(t, ·) : Σ −→ M is an immersion

∀t ∈ (−ε, ε), and moreover
∂f

∂t
(0, x) ⊥ TxΣ, ∀x ∈ TΣ. Denote by X the

variational vector field
∂f

∂t
(0, x).

Proposition 2 (First variation formula of area). We have

d

dt
|Σt|
∣∣∣∣
t=0

= −
∫

Σ

〈 ~H,X〉 dσ,

where |Σt| and dσ denote the area of Σt and the area element of Σ with respect
to the induced metric, respectively.

We say that Σ is a minimal hypersurface if
d

dt
|Σt|
∣∣
t=0

= 0 for every smooth

normal variation Σt of Σ. This condition is equivalent to ~H ≡ 0.
Assume that Σ ⊂M is minimal and consider a smooth normal variation

Σt of Σ with variational vector field denoted by X.

Proposition 3 (Second variation formula of area). We have

d2

dt2
|Σt|
∣∣∣∣
t=0

=

∫
Σ

|∇⊥X|2 − (Ric(ν, ν) + |A|2)|X|2 dσ,

where |∇⊥X|2 =
∑n−1

i=1 〈∇⊥eiX,∇
⊥
ei
X〉 for any orthonornal basis {e1, · · · , en−1}

of TΣ and ∇⊥eiX = (∇eiX)⊥, for i = 1, 2, . . . , n− 1.

Instituto de Matemática Pura e Aplicada 10 November 17, 2011



Ivaldo Paz Nunes Area-minimizing Hyperbolic Surfaces in Three-Manifolds

We say that a compact minimal hypersurface Σ is stable if

d2

dt2
|Σt|
∣∣∣∣
t=0

> 0,

for every smooth normal variation Σt of Σ.
Suppose Σ is two-sided, that is, a unit normal vector field along Σ can be

globally defined. Denote by ν such a normal vector field. In this case, if X
is the variational vector field of a smooth normal variation Σt of Σ, then we
obtain that X = φν, where φ ∈ C∞(Σ). Thus, the stability of Σ is equivalent
to ∫

Σ

|∇Σφ|2 − (Ric(ν, ν) + |A|2)φ2 dσ > 0

for every φ ∈ C∞(Σ), where ∇Σφ denotes the gradient of φ on Σ with respect
to the induced metric.

Remark that if Σ is locally area-minimizing then Σ is a stable minimal
hypersurface. We also note that the condition of stability is equivalent to the
first eigenvalue of the operator L = ∆Σ + Ric(ν, ν) + |A|2, called the Jacobi
operator Σ, to be nonnegative. Here, ∆Σ denotes the Laplacian on Σ with
respect to the induced metric.

Example 2. Let (Σ, gΣ) be a compact Riemannian manifold and consider
(M = R × Σ, g = dt2 + gΣ). It is easy to see that Σt = {t} × Σ ⊂ M is a
stable minimal (in fact, totally geodesic) hypersurface of M , for all t ∈ R. In
this work, we are interested in the case where (Σ, gΣ) is a compact Riemann
surface with constant Gauss curvature equal to −1.

Finally, consider a smooth variation (not necessarily normal) Σt of Σ
given by Σt = {f(t, x) : x ∈ Σ}. Denote by ν(t) the unit normal vector field
along Σt and let HΣt be the mean curvature of Σt with respect to ν(t).

Proposition 4. Let ρ(t) = 〈∂f
∂t

(t, x), ν(t)〉. We have

d

dt
HΣt = (∆Σt + Ric(ν(t), ν(t)) + |AΣt |2)ρ(t)

= LΣtρ(t).

Proof. See Theorem 3.2 in [20].

1.2 Hopf’s maximum principle

In this section we will recall the Hopf’s maximum principle which will be
used in the proof of Theorem A.
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Let Ω ⊂ Rn be an open connected set. Consider a linear differential
operator L in Ω of second order as follows.

L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x).

Suppose the matrix aij(x) is symmetric for all x ∈ Ω and L is uniformly
elliptic which means that there exists a constant λ > 0 such that

n∑
i,j=1

aij(x)ηiηj > λ|η|2,∀x ∈ Ω,∀η ∈ Rn.

Moreover, we also assume that there exists a constant C > 0 such that

|aij(x)|, |bj(x)|, |c(x)| 6 C, ∀x ∈ Ω.

Theorem 6 (Hopf’s maximum principle). Let Ω ⊂ Rn be an open connected
set and let L be a linear differential operator in Ω of second order as above
such that c(x) 6 0. Suppose u ∈ C2(Ω)∩C0(Ω) satisfies Lu > 0. If u attains
its maximum M > 0 in Ω, then u is constant equal to M on Ω. Otherwise,
if u(x0) = M at x0 ∈ ∂Ω and M > 0, then the outward normal derivative,

if it exists, satisfies
∂u

∂ν
(x0) > 0, provided x0 belongs to the boundary of a

ball included in Ω. Moreover, if c(x) ≡ 0, the same conclusions hold for a
maximum M < 0.

Proof. See [28], pg. 44.

1.3 Existence of area-minimizing surfaces in

isotopy classes

Let (M3, g) be a compact three-manifold and Σ ⊂ M a compact embedded
surface.

We say that a compact surface Σ̂ ⊂ M is isotopic to Σ if there exists a
smooth isotopy φ : [0, 1]×M −→M such that φ(1,Σ) = Σ̂ and φ(0, ·) = IdM .
The isotopy class of Σ, denoted by I(Σ), is defined to be

I(Σ) = {Σ̂ : Σ̂ is isotopic to Σ}.

In [22], W. Meeks, L. Simon and S. T. Yau considered the problem of
minimizing the area of surfaces in I(Σ). They proved a general existence
result using techniques of geometric measure theory (cf. Theorem 1 in [22]).
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The Meeks-Simon-Yau’s existence result will play an important role in
the proof of Theorem A. We will not need it in its full generality. In fact, we
will use a particular consequence in the case where M is irreducible and Σ is
incompressible in M .

We say that a three-manifold M is irreducible if every embedded 2-sphere
bounds an embedded 3-ball in M and we say that a surface Σ ⊂ M is
incompressible in M if the fundamental group of Σ injects into that of M .

The following theorem is consequence of the Meeks-Simon-Yau’s result in
the case where M is irreducible and Σ ⊂M is incompressible in M .

Theorem 7 (W. Meeks, L. Simon, S. T. Yau). Let (M3, g) be an irreducible
compact Riemannian three-manifold and consider Σ ⊂ M a connected com-
pact embedded surface which is incompressible in M . Define

α = inf
Σ̂∈I(Σ)

|Σ̂|g.

Then either there is a surface Σ ∈ I(Σ) such that |Σ|g = α or there is a one-

sided compact embedded surface Σ̃ of area α/2 and such that the boundary of

a tubular neighborhood of Σ̃ is in I(Σ).

The above result also holds when ∂M 6= ∅ in which case we have to
assume the mean curvature of ∂M with respect to the inward normal vector
is nonnegative (cf. section 6 in [22]).

We note that J. Hass and P. Scott [18] gave a proof of the result above
without using geometric measure theory (cf. Theorem 5.1 in [18]).

Let us give an idea of how Theorem 7 follows from the general existence
result in [22] using the fact that M is irreducible and Σ ⊂M is incompressible
in M .

Following [22], denote by Bρ the closed 3-ball of radius ρ > 0 and center
0 in R3. Since M is compact there exist ρ0, µ > 0 satisfying the following
properties:

• For each x0 ∈ M , the exponential map expx0
is a diffeomorphism of

Bρ0 onto Gρ0(x0) satisfying∥∥Dv(expx0
)
∥∥ ,∥∥Dx(expx0

)−1
∥∥ 6 2, ∀ v ∈ Bρ0 , ∀x ∈ Gρ0(x0).

Here, Gρ0 denotes the geodesic ball with center x0 and radius ρ0.

• For each x0 ∈M , we have

sup
Bρ0

∣∣∣∣∂gij∂xk

∣∣∣∣ 6 µ

ρ0

, sup
Bρ0

∣∣∣∣ ∂2gij
∂xk∂xl

∣∣∣∣ 6 µ

ρ2
0
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for i, j, k, l = 1, 2, 3, where gij dx
idxj is the metric relative to normal

coordinates for Gρ0(x0).

The following Lemma is contained in Section 2 of [22]. We state it here
for completeness.

Lemma 1. Let ρ0 and µ as above. There is a number δ ∈ (0, 1) ( independent
of M and ρ0 ) such that if Σ ⊂M is an embedded compact surface satisfying

|Σ ∩Gρ0(x0)| < δ2ρ2
0

for each x0 ∈M , then there exist a unique compact KΣ ⊂M with ∂KΣ = Σ
and

Vol(KΣ ∩Gρ0(x0)) 6 δ2ρ3
0, x0 ∈M.

This KΣ also satisfies

Vol(KΣ) 6 c|Σ|3/2, c = c(µ).

Also, if Σ is diffeomorphic to S2 = ∂B1, then KΣ is diffeomorphic to B1.

Now, let Σ1,Σ2 ⊂ M be compact embedded surfaces. Consider δ > 0
small such that the conclusion of Lemma 1 above holds. Following section 3
in [22], given 0 < γ < δ2/9 we say that Σ2 is obtained from Σ1 by γ−reduction
if the following conditions are satisfied (see Figure 1):

• Σ1 \ Σ2 has closure diffeomorphic to the standard closed annulus
A = {x ∈ R2 : 1

2
6 |x| 6 1};

• Σ2 \ Σ1 has closure consisting of two components D1, D2, each diffeo-
morphic to the 2-disc D = {x ∈ R2 : |x| 6 1};

• A ∪ D1 ∪ D2 = ∂Y , where Y is homeomorphic to the 3-ball
B = {x ∈ R3 : |x| 6 1} and (Y \ ∂Y ) ∩ (Σ1 ∪ Σ2) = ∅;

• ∂A = ∂D1 ∪ ∂D2 and |A|+ |D1|+ |D2| < 2γ;

• In case Σ∗1 \ A is not connected, each component is either not simply
connected or else has area greater than or equal to δ2/2. Here, Σ∗1
denotes the component of Σ1 containing A.
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Figura 1

The first observation is that if Σ1 is irreducible in M and Σ2 is obtained
from Σ1 by γ − reduction, then Σ2 has genus equal to that of Σ1. In fact,
Σ2 has two components where one component is a surface homeomorphic to
Σ1 and the other is an embedded 2-sphere. In this case, denote by Σ

(1)
2 the

component of Σ2 which is homeomorphic to Σ1 and by Σ
(2)
2 the component

of Σ2 which is an embedded 2-sphere. We suppose D1 ⊂ Σ
(1)
2 and D2 ⊂ Σ

(2)
2 .

Thus, we have that Σ
(2)
2 \D2 is an embedded 2-disc D and |Σ(2)

2 \D2| > δ2/2.
We also note that

|D1| < |A|+ |D1|+ |D2|
< 2γ

<
2δ2

9

<
δ2

2

6 |Σ(2)
2 \D2|

< |A|+ |Σ(2)
2 \D2|.

Therefore, we conclude that |Σ(1)
2 | 6 |Σ1|.

The second observation is that if in addition M is irreducible, then we
are able to conclude that Σ

(1)
2 is isotopic to Σ1. Next, consider a minimizing

sequence Σk ∈ I(Σ) (cf. section 1 in [22]). By [22] (cf. section 3, pg. 634),
there exists 0 < γ0 < δ2/9 such that, after γ0−reduction, Σk yields a strongly

γ0− irreducible (cf. section 3, pg. 630, in [22]) surface Σ̃k. The point is that
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in the case where M is irreducible and Σ is incompressible in M , instead of
doing γ0−reduction, we can obtain, by the above observations, a sequence Σ̂k

such that Σ̂k is strongly γ0− irreducible, Σ̂k ∈ I(Σk) = I(Σ) and |Σ̂k| 6 |Σk|
for all k. The inequality |Σ̂k| 6 |Σk| implies that Σ̂k is also a minimizing
sequence. Finally, to conclude Theorem 7 see Remark 3.27 in [22].
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CHAPTER 2

Some Examples and Proofs of the Results

In this chapter, we will give the proofs of the main results of this work. Before
doing this, we will consider in Section 2.1 some examples of conformal metrics
on M = R × Σ with constant scalar curvature, where Σ is an orientable
connected compact surface. In Section 2.2, we prove Theorem A. In Section
2.3, we give the proof of the rigidity result for cylinders stated in Theorem
B.

2.1 Some Examples

In this section, we will discuss a class of examples of conformal metrics on
M3 = R× Σ, where Σ is an orientable connected compact surface.

Let gΣ be a Riemannian metric on Σ with constant Gauss curvature. We
will assume that this constant is equal to 1, 0 or −1. Thus, KΣ ≡ 1 if Σ is a
two-sphere, KΣ ≡ 0 if Σ is a two-torus and KΣ ≡ −1 if Σ has genus greater
than 1. Denote by g the Riemannian product metric dt2 + gΣ on M which
has constant scalar curvature Rg equal to 2, 0 or −2.

First, we consider the case where Σ has genus greater than 1. In this
case, Rg ≡ −2. For each positive real function u = u(t), define the metric
g = u4(t) g. If we assume that Rg ≡ −2, then u satisfies the following
second-order differential linear equation

u′′(t) +
1

4
u(t)− 1

4
u5(t) = 0.

17
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Setting v′(t) = u(t), this equation is equivalent to the Hamiltonian systemu′(t) = v(t),

v′(t) =
1

4
u5(t)− 1

4
u(t).

(2.1)

The Hamiltonian function for the system above is

H(u, v) =
1

8
u2 − 1

24
u6 +

1

2
v2.

We note that (1, 0) is a critical point of H. Moreover, this initial condition
correponds to the Riemannian product metric g. Next, observe that

HessH(1, 0) =

(
−1 0
0 1

)
.

Thus, (1, 0) is a saddle point of H. Also observe that (0, 0) and (−1, 0) are
the others critical points of H, where (0, 0) is a local strict minimum point
and (−1, 0) is a saddle point.

From now on, we are only interested in solutions (u(t), v(t)) to (2.1) such
that g = u(t)4g is a complete Riemannian metric on M . Using the analysis
above, it easy to see that we have the following solutions (see figure 1).

• The solution with initial conditions u(0) = 1, v(0) = 0 which we have
alrealdy observed to be the Riemannian product metric g;

• Two solutions (u1(t), v1(t)) and (u2(t), v2(t)) which are related by u2(t) =
u1(−t), v2(t) = −v1(−t), and such that

lim
t→−∞

(u1(t), v1(t)) = (1, 0),

and
lim
t→+∞

u1(t) = lim
t→+∞

v1(t) =∞;

• A family of solutions which corresponds to the initial conditions u(0) =
a > 1, v(0) = 0. For each such solution, we note that t = 0 is a
strict global minimum of u and that lim

t→±∞
u(t) = lim

t→+∞
v(t) = +∞

and lim
t→−∞

v(t) = −∞. For each a > 1, denote by ga the complete

Riemannian metric on M corresponding to the initial condition u(0) =
a, v(0) = 0.
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Figure 2

Remark 8. Take a > 1 and let ga the Riemannian metric on M = R × Σ
as above. Consider Σ = {0} × Σ ⊂ (M, ga). We have that the area of Σ
with respect to the metric induced by ga is equal to 4π(g(Σ) − 1)a4. Since
a > 1, we get |Σ|ga > 4π(g(Σ) − 1). Also note that Σ is area-minimizing in
M because u(0) = a is a strict minimum value of u. This example shows
that there exist metrics on M with constant scalar curvature equal to −2
and such that the area-minimizing hyperbolic surface Σ ⊂M has are greater
than 4π(g(Σ)− 1).

Next, suppose that (Σ, gΣ) is a two-sphere withKΣ ≡ 1. In this case, if the
metric g = u(t)4g has constant scalar curvature equal to 2, then (u(t), v(t))
satisfies a Hamiltonian system with Hamiltonian function given by

H(u, v) =
1

24
u6 − 1

8
u2 +

1

2
v2.

The points (−1, 0), (0, 0) and (1, 0) are also critical points of H. The
difference is that (−1, 0) and (1, 0) are now local strict minimum points and
(0, 0) is a saddle point. Considering only the solutions (u(t), v(t)) such that
u(t) is positive and g = u(t)4g defines a complete Riemannian metric on M ,
we get a one-parameter family of periodic rotationally symmetric metrics
ga = ua(t)

4g with constant scalar curvature equal to 2, where a ∈ (0, 1]
and ua(t) satisfies ua(0) = a = minu and u′a(0) = 0 (see Figure 2). These
metrics are known as Delaunay-type metrics on M = R × Σ. Note that g1

corresponds to the metric g.
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Figure 3

Remark 9. Note also that for each Delaunay-type metric on M with 0 < a <
1 we have that Σ = {0}×Σ ⊂ (M, ga) is an area-minimizing two-sphere with
area less than 4π.

To finish this section, consider the case where (Σ, gΣ) is a flat two-torus.
Thus (M, g) is scalar flat. If g = u(t)4g is also scalar flat, then u(t) satisfies
u′′(t) = 0. Thus, we get u(t) = u′(0)t+ u(0). Note that among these metrics
the only ones which contain an area-minimizing two-torus are those of the
form g = cg, where c > 0 is constant.

2.2 Proof of Theorem A

In the following, we will give the proof of Theorem A. Let us recall the
statement of this result.

Theorem A. Let (M3, g) be a Riemannian manifold with scalar curvature
Rg > −2. If Σ ⊂ M is a two-sided compact embedded Riemann surface of
genus g(Σ) > 2 which is locally area-minimizing, then

|Σ|g > 4π(g(Σ)− 1), (2.2)

where |Σ|g denotes the area of Σ with respect to the induced metric. Moreover,
if equality holds, then the induced metric on Σ, denoted by gΣ, has constant
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Gauss curvature equal to −1 and Σ has a neighborhood which is isometric to
((−ε, ε)×Σ, dt2 + gΣ), for some ε > 0. More precisely, the isometry is given
by f(t, x) = expx(tν(x)), (t, x) ∈ (−ε, ε) × Σ, where ν is the unit normal
vector field along Σ.

In Subsection 2.2.1, we discuss the area estimate (2.2) and we prove the
rigidity statement in Subsection 2.2.2.

2.2.1 Proof of the area estimate

Let ν be the unit normal vector field along Σ. For each function φ ∈ C∞(Σ),
we have, by the second variation formula of area and the fact that Σ is locally
area-minimizing, that∫

Σ

(Ric(ν, ν) + |A|2)φ2 dσ 6
∫

Σ

|∇Σφ|2 dσ,

where dσ denote the area element of Σ. Choosing φ = 1, we obtain∫
Σ

(Ric(ν, ν) + |A|2) dσ 6 0. (2.3)

Now, we have by the formula (1.1) that

Ric(ν, ν) =
1

2
Rg −KΣ −

1

2
|A|2, (2.4)

where KΣ denotes the Gauss curvature of Σ.
Substituting (2.4) in (2.3), we get

1

2

∫
Σ

(Rg + |A|2) dσ 6
∫

Σ

KΣ dσ. (2.5)

By the Gauss-Bonnet theorem and the fact that Rg > −2 and |A|2 > 0,
we have

−|Σ|g 6 4π(1− g(Σ)).

Therefore, |Σ|g > 4π(g(Σ)− 1).

2.2.2 Equality case

In this subsection we will give the proof of the rigidity statement of Theorem
A. We begin with the following infinitesimal rigidity.

Proposition 5. If Σ attains the equality in (2.2), then Σ is totally geodesic.
Moreover, Ric(ν, ν) = 0 and Rg = −2 on Σ and Σ has constant Gauss
curvature equal to −1 with the induced metric.
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Proof. If |Σ|g = 4π(g(Σ)−1), then it follows from the proof of the inequality
(2.2) that the inequalities (2.3) and (2.5) are in fact equalities. Let λ1 be the
first eigenvalue of the Jacobi operator L = ∆Σ + Ric(ν, ν) + |A|2 of Σ. We
have

λ1 = inf∫
φ2=1

∫
Σ

(|∇φ|2 − (Ric(ν, ν) + |A|2)φ2) dσ.

Since ∫
Σ

(Ric(ν, ν) + |A|2) dσ = 0,

we obtain that λ1 = 0 and that the constant functions are in the kernel of
L. Therefore, Ric(ν, ν) + |A|2 = 0 on Σ.

Now, the equality in (2.5) implies that Rg = −2 and A = 0 on Σ. Finally,
by (2.4), we conclude that Σ has constant Gauss curvature equal to −1 with
the induced metric.

The construction in the next proposition is fundamental to conclude the
rigidity in Theorem 3. The same construction was used in [1] and [4] to prove
similar rigidity results. We prove it here for completeness.

Proposition 6. If Σ attains the equality in (2.2), then there exists ε > 0
and a smooth family Σt ⊂ M , t ∈ (−ε, ε), of compact embedded surfaces
sastifying:

• Σt = {expx(w(t, x)ν(x)) : x ∈ Σ}, where w : (−ε, ε) × Σ −→ R is a
smooth function such that

w(0, x) = 0,
∂w

∂t
(0, x) = 1 and

∫
Σ

(w(t, ·)− t) dσ = 0.

• Σt has constant mean curvature for all t ∈ (−ε, ε).

Proof. By the previous proposition, we have L = ∆Σ. Fix α ∈ (0, 1) and
consider the Banach spaces X = {u ∈ C2,α(Σ) :

∫
Σ
u dσ = 0} and Y =

{u ∈ C0,α(Σ) :
∫

Σ
u dσ = 0}. For each real function u defined on Σ, let

Σu = {expx(u(x)ν(x)) : x ∈ Σ}, where ν is the unit normal vector field along
Σ.

Choose ε > 0 and δ > 0 such that Σu+t is a compact surface of class C2,α

for all (t, u) ∈ (−ε, ε)×B(0, δ), where B(0, δ) = {u ∈ C2,α(Σ) : ‖u‖C2,α < δ}.
Denote by HΣu+t the mean curvature of Σu+t.

Now, consider the application Ψ : (−ε, ε) × B(0, δ) ⊂ X −→ Y defined
by
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Ψ(t, u) = HΣu+t −
1

|Σ|

∫
Σ

HΣu+t dσ.

Notice that Ψ(0, 0) = 0 because Σ0 = Σ.
The next step is to compute DΨ(0, 0) · v, for v ∈ X. We have

DΨ(0, 0) · v =
dΨ

ds
(0, sv)

∣∣∣∣
s=0

=
d

ds

(
HΣsv −

1

|Σ|

∫
Σ

HΣsv dσ
)∣∣∣∣

s=0

= Lv − 1

|Σ|

∫
Σ

Lv dσ

= ∆Σv,

where the last equality follows from the fact that L = ∆Σ.
Since ∆Σ : X −→ Y is a linear isomorphism, we have, by the implicit

function theorem, that there exist 0 < ε1 < ε and u(t) = u(t, ·) ∈ B(0, δ) for
t ∈ (−ε1, ε1) such that

u(0) = 0 and Ψ(t, u(t)) = 0,∀t ∈ (−ε1, ε1).

Thus, defining w(t, x) = u(t, x)+ t, for (t, x) ∈ (−ε1, ε1)×Σ, we have that
all surfaces Σt = {expx(w(t, x)ν(x)) : x ∈ Σ} have constant mean curvature.
Notice that w(0, x) = 0 and

∫
Σ

(w(t, ·)− t) dσ = 0 since w(0, x) = u(0, x) = 0
and w(t, ·)− t = u(t, ·) ∈ B(0, δ) = {u ∈ C2,α(Σ) :

∫
Σ
u dσ = 0}. In order to

see that
∂w

∂t
(0, x) = 1,∀x ∈ Σ,

first note that

0 = Ψ(t, u(t)) = HΣw(t,·) −
1

|Σ|

∫
Σ

HΣw(t,·) dσ, ∀t. (2.6)

Define f(t, x) = expx(w(t, x)ν(x)), x ∈ Σ. We have that

∂f

∂t
(0, x) =

∂w

∂t
(0, x)ν(x),∀x ∈ Σ.

Differentiating (2.6) at t = 0 and using Proposition 4, we get

0 = −∆Σ

(∂w
∂t

(0, ·)
)

+
1

|Σ|

∫
Σ

∆Σ

(∂w
∂t

(0, ·)
)
dσ = −∆Σ

(∂w
∂t

(0, ·)
)
.

Instituto de Matemática Pura e Aplicada 23 November 17, 2011



Ivaldo Paz Nunes Area-minimizing Hyperbolic Surfaces in Three-Manifolds

Therefore,
∂w

∂t
(0, ·) is a constant function.

Finally, differentiating
∫

Σ
(w(t, ·)− t) dσ = 0 at t = 0, we obtain that∫
Σ

∂w

∂t
(0, ·) dσ = |Σ|.

Thus, we conclude that
∂w

∂t
(0, x) = 1, ∀x ∈ Σ.

Let ν(t) denote the unit normal vector along Σt such that ν(0) = ν. Let
HΣt be the mean curvature of Σt with respect to ν(t). Thus, we have

d

dt
|Σt|g = −HΣt

∫
Σt

〈ν(t),
∂f

∂t
(t, ·)〉 dσt, (2.7)

where f(t, x) = expx(w(t, x) ν(x)), x ∈ Σ. Notice that
∂f

∂t
(0, x) = ν(x), so

we can suppose, decreasing ε if necessarily, that∫
Σt

〈ν(t),
∂f

∂t
(t, ·)〉 dσt > 0

for all t ∈ (−ε, ε). Moreover, we can assume that |Σ|g 6 |Σt|g for all t ∈
(−ε, ε), because Σ is locally area-minimizing.

Before we prove the next proposition, we will recall some facts about the
Yamabe problem on manifolds with boundary which was first studied by J. F.
Escobar [12]. Let (Mn, g) be a compact Riemannian manifold with boundary
∂M 6= ∅. It is a basic fact that the existence of a metric g in the conformal
class of g having scalar curvature equal to C ∈ R and the boundary being
a minimal hypersurface is equivalent to the existence of a positive smooth
function u ∈ C∞(M) satisfying


∆gu−

n− 2

4(n− 1)
Rgu+

n− 2

4(n− 1)
Cu(n+2)/(n−2) = 0 on M

∂u

∂η
+

n− 2

2(n− 1)
Hgu = 0 on ∂M

(2.8)

where η is the outward normal vector with respect to the metric g and Hg is
the mean curvature of ∂M with respect to the inward normal vector.

If u is a solution of the equation above, then u is a critical point of the
following functional

Qg(φ) =

∫
M

(|∇gφ|2g + n−2
4(n−1)

Rg φ
2) dv + n−2

2(n−1)

∫
∂M

Hg φ
2 dσ

(
∫
M
|φ|2n/(n−2) dv)(n−2)/n

.
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The Sobolev quotient Q(M) is then defined by

Q(M) = inf{Qg(φ) : φ ∈ C1(M), φ 6= 0}

It is a well known fact that Q(M) 6 Q(Sn+), where Sn+ is the upper
standard hemisphere, and if Q(M) < Q(Sn+), then there exists a smooth
minimizer for the functional above. This function turns out to be a positive
solution of (2.8), with a constant C that has the same sign as Q(M).

Proposition 7. There exists 0 < ε1 < ε such that HΣt > 0 for all t ∈ [0, ε1).

Proof. Suppose, by contradiction, that there exists a sequence εk → 0, εk > 0,
such that HΣεk

< 0 for all k. Consider (Vk, gk), where Vk = [0, εk]×Σ and gk
is the pullback of the metric by f |Vk : Vk −→M . Therefore, Vk is a compact
three-manifold with boundary satisfying

• Rgk > −2.

• The mean curvature of ∂Vk with respect to the inward normal vector,
denoted by H∂Vk , is nonnegative. More precisely, ∂Vk = Σ∪Σεk , where
Σ is a minimal surface and Σεk has positive constant mean curvature
with respect to the inward normal vector.

• |Σ|gk = 4π(g(Σ)− 1).

Claim. For k suficiently large, we have Q(Vk) < 0. In particular, this implies
Q(Vk) < Q(S3

+).

Proof. By Proposition 5, we have Rg = −2 on Σ. Therefore, by continuity,
we have −2 6 Rgk 6 −1 on Vk for k sufficiently large. Choosing φ = 1, we
obtain

Qgk(φ) =
1
8

∫
Vk
Rgk dvk + 1

4

∫
∂Vk

H∂Vk dσk

Vol(Vk)1/3

6
−1

8
Vol(Vk) + 1

4
HΣεk

|Σεk |gk
Vol(Vk)1/3

Since
∂f

∂t
(0, x) = ν(x) and the stability operator of Σ is equal to ∆Σ,

we obtain that
d

dt
HΣt |t=0 = 0. Therefore, we conclude that HΣεk

= O(ε2k)

because HΣ0 = HΣ = 0. Moreover, if V (t) = [0, t] × Σ and gt = (f |V (t))
∗g,

we have that
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Vol(V (t)) = Vol(V (t), gt)

=

∫
[0,t]×Σ

(f |V (t))
∗ dv

=

∫
[0,t]×Σ

h(s, x)ds ∧ dσ

=

∫ t

0

∫
Σ

h(s, x) dσ ds,

where h is defined by h(s, x) = dv(∂f
∂s

(s, x), Df(s, x)e1, Df(s, x)e2) and
{e1, e2} ⊂ TM is a positive orthonormal basis with respect to the induced
metric on Σ. From this, we get

d

dt
Vol(V (t))

∣∣∣∣
t=0

=

∫
Σ

h(0, x) dσ.

Since
∂f

∂s
(0, x) = ν(x), we have h(0, x) = 1. Hence,

d

dt
Vol(V (t))|t=0 =

|Σ|g. From this, we obtain that Vol(Vk) = εk|Σ|gk + O(ε2k). Finally, it is
easy to see that for k sufficiently large we have Q(Vk) 6 Qgk(φ) < 0. This
concludes the proof of the claim.

Next, choose k sufficiently large such that Q(Vk) < 0. Thus, we have that
there exists a positive function u ∈ C∞(Vk) such that the metric g = u4gk
satisfies

Rg = C < 0, C ∈ R, on Vk and Hg = 0 on ∂Vk.

After scaling the metric g if necessary, we can suppose that C = −2.
In analytic terms, this means that u solves

∆gku−
1

8
Rgku−

1

4
u5 = 0 on Vk

∂u

∂η
+

1

4
H∂Vku = 0 on ∂Vk

(2.9)

Define v = u− 1. By (2.9) and the fact that Rgk > −2, we have that

∆gku+
1

4
u− 1

4
u5 > 0 on Vk.
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Therefore, we have

∆gkv − h(x) v > 0 on Vk,

where h(x) =
1

4
(u(x) + u(x)2 + u(x)3 + u(x)4) is positive.

Now, we consider x0 ∈ Vk such that v(x0) = max
Vk

v. If v(x0) > 0, we have,

by the Hopf’s maximum principle, that either v is constant or x0 ∈ ∂Vk with
∂v

∂η
(x0) > 0. The first possibility does not occur because this implies that u is

constant, which is impossible by the fact that the mean curvature of Σεk with
respect to gk is positive and with respect to g is equal to zero. Therefore,
∂v

∂η
(x0) > 0. But, since H∂Vk > 0, (2.9) implies that

∂v

∂η
(x0) =

∂u

∂η
(x0) 6 0

which is a contradiction.
Thus, we obtain that v(x0) < 0 and this implies that u(x) < 1 for all

x ∈ Vk. From this, we obtain that |Σ|g < |Σ|gk = 4π(g(Σ)− 1).
Finally, denote by I(Σ) the isotopy class of Σ in Vk. Observe that Σ is

incompressible in Vk. Moreover, we have that Vk is irreducible and does not
contain any one-sided compact embedded surface. In fact, the former follows
from the fact that if the universal cover of a three-manifold M is irreducible,
then M is also irreducible and the latter follows from the fact that M is
homeomorphic to a tubular neighborhood of an embedding of Σ in R3. Since
Hg = 0, we can directly apply the version for three-manifolds with boundary
of Theorem 7, to obtain a compact embedded surface Σ ∈ I(Σ) such that

|Σ|g = inf
Σ̂∈I(Σ)

|Σ̂|g.

Therefore, |Σ|g 6 |Σ|g < 4π(g(Σ) − 1). But this is a contradiction with
(2.2), since we have proven, by using the lower bound Rg > −2 and the
second variation of area, that we must have |Σ|g > 4π(g(Σ) − 1). This
concludes the proof of the proposition.

We are now in a position to proof the rigidity in Theorem A which is
stated in the proposition below.

Proposition 8. If Σ attains the equality in (2.2), then Σ has a neighborhood
which is isometric to ((−ε, ε)×Σ, dt2 +gΣ), where ε > 0 and gΣ is the induced
metric on Σ which has constant Gauss curvature equal to −1.

Proof. Let Σt ⊂M , t ∈ (−ε, ε), be the family of surfaces given by Proposition

6. By Proposition 7 there exists 0 < ε1 < ε such that
d

dt
|Σt|g 6 0 for all
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t ∈ [0, ε1). Thus, |Σt|g 6 |Σ|g for all t ∈ [0, ε1) and this implies |Σt|g = |Σ|g for
all t ∈ [0, ε1) because Σ is locally area-minimizing. Therefore, by Proposition
5, we have that Σt is totally geodesic and Ric(ν(t), ν(t)) = 0 on Σt for all
t ∈ [0, ε1). In particular, we have that all surfaces Σt are minimal and the
stability operator of Σt, denoted by LΣt , is equal to ∆Σt .

Define ρ(t) = ρ(t, x) = 〈ν(t, x),
∂f

∂t
(t, x)〉. By Proposition 4, we have

LΣtρ(t) =
d

dt
HΣt ,

so ∆Σtρ(t) = 0. Thus, ρ(t) does not depend on x.
Since Σt is totally geodesic, we obtain that ∇ ∂f

∂xi

ν(t) = 0 for all i =

1, 2, where (x1, x2) are local coordinates on Σ. Moreover, by the fact that
〈ν(t), ν(t)〉 = 1 we have that ∇ ∂f

∂t
ν(t) is tangent to Σt. Hence, it follows that

〈∇ ∂f
∂t
ν(t),

∂f

∂xi
〉 =

∂

∂t
〈ν(t),

∂f

∂xi
〉 − 〈ν(t),∇ ∂f

∂t
(∂f/∂xi)〉

= −〈ν(t),∇ ∂f
∂xi

(∂f/∂t)〉

= − ∂

∂xi
ρ(t)

= 0,

for all i = 1, 2. Hence, ∇ ∂f
∂t
ν(t) = 0. This means that, for all x ∈ Σ,

ν(t, x) is a parallel vector field along the curve αx : [0, ε1) −→ M given by
αx(t) = f(t, x) = expx(w(t, x)ν(x)).

Observe that D(expx)w(t,x)ν(x)(ν(x)) is also a parallel vector field along
the curve αx. Thus, ν(t, x) = D(expx)w(t,x)ν(x)(ν(x)) because w(0, x) = 1 by

Proposition 6. From this, we conclude that ρ(t) =
∂w

∂t
(t, x).

By Proposition 6, we have∫
Σ

(w(t, x)− t) dσ = 0,

so ∫
Σ

∂w

∂t
(t, x) dσ = |Σ|g.

Therefore, since
∂w

∂t
(t, x) does not depend on x, we get

∂w

∂t
(t, x) = 1. This

implies that w(t, x) = t for all (t, x) ∈ [0, ε1)×Σ because w(0, x) = 0. Thus,
we conclude that f(t, x) = expx(tν(x)) and, since Σt are totally geodesic,
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the pullback of g by f |[0,ε1)×Σ is the product metric dt2 + gΣ, where gΣ is the
induced metric on Σ.

Arguing similarly for t 6 0, we finish the proof of the proposition.

Remark 10. We have assumed until now that Σ is embedded. However,
we note that the same result holds if Σ is only immersed. The proof is
the same. The only difference is that, in this case, f(t, x) = expx(tν(x)),
(t, x) ∈ (−ε, ε)× Σ, is only a local isometry.

In the following proposition we give the proof of the Corollary 1. Suppose
Σ minimizes area in its homotopy class and Σ attains the equality in (2.2).
Define f : R×Σ −→M by f(t, x) = expx(tν(x)), where ν is the unit normal
vector field along Σ.

Proposition 9. f : (R× Σ, dt2 + gΣ) −→ (M, g) is an isometric covering.

Proof. Consider A = {t > 0 : f |[0,t]×Σ is a local isometry}. By Proposition
8, this set is nonempty. Moreover, A is closed. Let us prove that A is open.
Given t ∈ A, consider the immersed surface Σt = {expx(tν(x)) : x ∈ Σ} with
the metric induced by f . We have that Σt is homotopic to Σ and |Σt| = |Σ|.
Hence, Σt minimizes area in its homotopy class and attains the equality in
(2.2). Therefore, by Proposition 8, we conclude that there exists ε > 0 such
that f |[0,t+ε]×Σ is a local isometry. It follows that A is open and consequently
f |[0,∞)×Σ is a local isometry. Arguing similarly for t < 0, we conclude that
f : R×Σ −→M is a local isometry. Thus, since (M, g) is complete we have
that f : R× Σ −→M is an isometric covering.

2.3 Proof of Theorem B

In this section, we give the proof of Theorem B. At first, we recall the precise
statement of this result.

Theorem B. Let Σ be a compact Riemann surface of genus g(Σ) > 2 and gΣ

a metric on Σ with KΣ ≡ −1. Let (Ω3, g) be a compact irreducible connected
Riemannian three-manifold with boundary satisfying the following properties:

• Rg > −2.

• H∂Ω > 0. (H∂Ω is the mean curvature of ∂Ω with respect to inward
normal vector)

• Some connected component of ∂Ω is incompressible in Ω and with the
induced metric is isometric to (Σ, gΣ).
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Moreover, suppose that Ω does not contain any one-sided compact embedded
surface. Then (Ω, g) is isometric to ([a, b]× Σ, dt2 + gΣ).

The proof of the above result is as follows. Let ∂Ω(1) be a connected
component of ∂Ω which is isometric to (Σ, gΣ). Consider α = inf{|Σ̂|g : Σ̂ ∈
I(∂Ω(1))}, where I(∂Ω(1)) is the isotopy class of I(∂Ω(1)). By hypothesis,
∂Ω(1) is incompressible in Ω, H∂Ω > 0 and Ω is irreducible and does not
contain one-sided compact embedded surfaces. Therefore, we can apply the
version for three-manifolds with boundary of Theorem 7, to obtain a compact
embedded surface Σ ∈ I(∂Ω(1)) such that |Σ| = α. Note that Σ ∈ I(∂Ω(1))
implies Σ has genus equal to g(Σ).

Since all connected components of ∂Ω have nonnegative mean curvature,
it follows from the maximum principle that either Σ is a boundary component
of Ω or Σ is in the interior of Ω. If Σ is in the interior of Ω, then we obtain,
by Theorem A, that |Σ| > 4π(g(Σ)−1) since Rg > −2 and Σ has genus equal
to g(Σ). On the other hand, we have |∂Ω(1)| = 4π(g(Σ) − 1) because ∂Ω(1)

is isometric to (Σ, gΣ). From this, we get |Σ| = 4π(g(Σ)− 1). Now, if |Σ| is a
boundary component of Ω, then we have that Σ is a minimal surface because
Σ is area-minimizing and, by hypothesis, ∂Ω has nonnegative mean curvature
with respect to the inward normal vector. This implies, using Theorem A,
that |Σ| > 4π(g(Σ) − 1). Again we conclude that |Σ| = 4π(g(Σ) − 1). It
follows from the previous arguments that we can suppose Σ = ∂Ω(1), that is,
∂Ω(1) is area-minimizing.

By the proof of the rigidity in Theorem A, we have that there exists
ε > 0 such that the normal exponential map f : [0, ε)× Σ −→ Ω defined by
f(t, x) = expx(tν(x)), where ν is the inward normal vector, is an injective
local isometry.

Define l = sup{t > 0 : f(t, x) = expx(tν) is defined on [0, t) × Σ and is
an injective local isometry}. Since Ω is compact, we have that the normal
geodesics to Σ extend to t = l. Thus, f is defined on [0, l]×Σ. By continuity
and the definition of l, we obtain that f : [0, l]×Σ −→ Ω is a local isometry.
In particular, by continuity, the immersion f : Σl −→ Ω is totally geodesic,
where Σl = {l} × Σ.

Using again the maximum principle, we obtain that either f(Σl) is a
boundary component of Ω, different from Σ because of the injectivity of f
on [0, l)× Σ, or f(Σl) is in the interior of Ω.

Suppose f(Σl) is a boundary component of Ω. Since f is a local isometry

on [0, l]× Σ, we have
∂f

∂t
(l, x) is a unit normal vector to Σl. It follows from

this that f : Σl −→ Ω is injective because f(Σl) is a boundary component of
Ω. Thus, f : [0, l]×Σ −→ Ω is an injective local isometry. This implies that
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f([0, l]×Σ) is open in Ω since f(Σl) is a boundary component of Ω. Moreover,
f([0, l] × Σ) is closed in Ω because [0, l] × Σ is compact. Therefore, since Ω
is connected, we obtain f([0, l] × Σ) = Ω. It follows that Ω is isometric to
[0, l]× Σ.

Let us analyze the case where f(Σl) is in the interior of Ω. First, we
have that f : Σ −→ Ω cannot be injective. In fact, suppose f : Σl −→
Ω is injective. Thus, by the rigidity in the Theorem A, there exists ε >
0 such that f : [0, l + ε) × Σ −→ Ω is an injective local isometry which
is a contradiction because of the maximality of l. Therefore, there exist
x, y ∈ Σ, x 6= y, such that f(l, x) = f(l, y). We have Df(l, x)(TΣl) =
Df(l, y)(TΣl), since otherwise f would not be injective on [0, l) × Σ. This

implies
∂f

∂t
(l, x) = −∂f

∂t
(t, y). Thus, since f : Σl −→ Ω is totally geodesic,

there exist neighborhoods of x and y in Σl, respectively, such that the images
by f of these neighborhoods coincide. We conclude that Σ̂l = f(Σl) is a one-
sided embedded compact surface in Ω. But, this is a contradiction because,
by hypothesis, Ω does not contain any one-sided embedded compact surface.
This concludes the proof of Theorem B.

Instituto de Matemática Pura e Aplicada 31 November 17, 2011



Bibliography

[1] L. Andersson, M. Cai and G. J. Galloway, Rigidity and positivity of
mass for asymptotically hyperbolic manifolds, Ann. Henri Poincaré 9
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