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Chapter 1

Introduction

Over the last few decades the study of algebraic curves experienced significant changes with the

introduction of schemes and moduli spaces. For instance, instead of studying a fixed curve, we

are also interested in how curves vary in families. And to do so, it is important to have a good

parameter space, since, intuitively, a family of curves can be viewed as a continuous choosing of

such parameters. It is important as well to understand its geometry.

Such a space, denoted by Mg, the moduli space of smooth curves of genus g (see Section 2.1),

is actually a scheme of dimension 3g− 3, which is the dimension predicted by Riemann. It has the

property that for every family π : C → B of smooth genus-g curves, we have a map B →Mg that

takes a (closed) point b ∈ B to the (closed) point in Mg corresponding to the curve π−1(b).

This space can be constructed in several ways, by means of Teichmüller spaces, Hodge theory or

Geometric invariant theory (GIT), see [22], chapter 2C. The construction sketched here, in Section

2.1, is via GIT.

Since Mg is not complete it is natural to ask for a compactification. There are several such

compactifications. The one we are interested in is the Deligne–Mumford compactification ([6]),

the space Mg. This space is projective and has a modular description: it is the moduli space

parametrizing stable curves (Defintion 2.1.1 and Theorem 2.1.2). Such a description is important,

because by means of it we have a natural limit for any one-parameter family of smooth curves, in

other words, every degeneration has a stable model ([22] chapter 3C).

Moreover, we can describe the boundary ∆ of Mg:

∆ = ∆0 ∪∆1 ∪ . . . ∪∆[g/2]

where ∆0 is the closure of the locus of irreducible nodal curves and ∆i is the closure of the locus

of curves that are the nodal union of a genus-i curve with a genus-(g − i) curve. These ∆i have

codimension 1, and as such can be viewed as elements of the Picard group of Mg (see section 2.2).

The space Mg, however, does not admit a universal family, i.e., a family π : C →Mg such that

every other family of smooth curves is a pullback of this family via some map to Mg. In order to

1



have universal families, we need to work in a category larger than that of schemes, the category of

stacks.

To study the geometry of Mg, it is important to understand its Picard group. We actually

study the Picard group of the functor (or the Picard group of the stack) Picfun(Mg) (see Definition

2.2.1). It is an easier group to work with because we have a universal family on which to do the

computations. And, we have an isomorphism

Pic(Mg)⊗Q −→ Picfun(Mg)⊗Q.

In the Picard group of the functor we have the boundary classes δi, those associated to the

∆i, and the tautological classe λ defined in Section 2.2. And a theorem by Harer (Theorem 2.2.1)

implies that Picfun(Mg)⊗Q is freely generated by these classes for g ≥ 3.

Given this description of the Picard group it is natural to ask: How is the canonical class

expressed in terms of this basis? Can the formula for the canonical class can be used to prove that

the canonical bundle is (very) ample?

We will present the answer for the first question in Chapter 4: the canonical class is 13λ−2δ−δ1,

where δ = δ0 + . . . + δ[g/2]; see [22], p. 160 as well. With this description of the class at hand, it

turns out that to answer the second question in the affirmative we should be able to exhibit an

effective divisor class D such that

q(13λ− 2δ − δ1)−D ∈ Q+λ+
∑

Q+δi (1.1)

for some q ∈ Q+. This leads us to ask:

What divisors of the form aλ− bδ are effective? (1.2)

More generally, we can try to characterize the effective cone of Mg, i.e., the cone in Pic(Mg)⊗ R
given by the effective divisors. Unfortunately, we still do not have any characterization for large

genus. Nevertheless, several effective divisors are already known in terms of the Harer basis.

At any rate, the existence of a divisor satisfying Equation (1.1) proves that Mg is of general

type, i.e., has maximum Kodaira dimension, which is weaker than very ampleness for the canonical

class. As of now, it is known that Mg is of general type for genus g ≥ 22 and has Kodaira dimension

−∞ for g ≤ 16.

The first effective divisors to be computed by Harris and Mumford in the middle 80’s [23] were

the so-called Brill–Noether divisors. A Brill–Noether divisor is the closure of the locus in Mg of

curves that have a grd, for fixed r, d with ρ := g− (r+1)(g+ r−d) = −1. Since this divisor satisfies

(1.1) for g ≥ 24, it follows that Mg is of general type for g ≥ 24 and g odd. Later, Harris and

Morrison conjectured a partial answer to Question (1.2): in order that aλ − bδ be effective, it is

necessary that a
b ≥ 6 + 12

g+1 (this became known as the slope conjecture, [21]).

Harris’s and Mumford’s procedure to compute the Brill–Noether divisors was to write the

divisors in the form

D := aλ− b0δ0 − . . .− b[g/2]δ[g/2]
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and intersect them with certain special one-parameter families, for which it was easy to compute

their intersections with λ and the δi. It remained to compute the intersection of these families with

D.

This method, often referred to as the meothod of test curves, was later used by Diaz in [7] and

Cukierman in [2] to compute other divisors in Mg: defined as the closure of the locus of curves

possessing a special Weierstrass point of type g− 1 in the first case and of type g+ 1 in the second

case.

The other main tool that Harris and Mumford used was Hurwitz schemes, parametrizing rank-1

linear systems and their degenerations. Later the theory was extended, in a different format, to

higher-rank linear systems, though only for curves of compact type, by Eisenbud and Harris [9].

Farkas and Popa found a counterexample to the slope conjecture ([12]). The divisor of M10

given by the closure of the locus of smooth curves sitting on a K3 surface has slope 7 < 6 + 12
11 .

In loc.cit., and in subsequent papers Farkas computed several divisors, but now, instead of curves

that have a grd with ρ = −1, the divisors were defined as (the closure of) the locus of curves that

have a “special” grd with ρ = 0. In the example above, the divisor in M10 is given by the locus

of curves such that the canonical bundle (the only g9
18) has a degenerated Wahl map, i.e., the

map ∧2H0(ωC)→ H0(ω3
C) is not an isomorphism. Again the method used was the method of test

curves.

More recently, in 2008, Cumino, Esteves and Gatto ([4],[5]) recomputed the Diaz and Cukierman

divisors, but with a new approach. Instead of using test curves, the calculation was done over a

general 1-parameter family of stable curves. Here the main tool was also the theory of limit linear

series, but in a slightly more general format, i.e., working for nodal connected curves at the cost

of losing some rigidity. This theory is explained in more detail in Section 5.1.

Our aim in this work is to compute the class of a certain effective divisor of Mg using the same

methods Cumino, Esteves and Gatto used in [4]. This means computing the class over a general

1-parameter family, instead of computing it over test curves. The divisor considered in [4] was the

closure of the locus of smooth curves having a special Weierstrass point, and the computation was

based on computing the ramification divisor W of the relative dualizing line bundle ωπ of a family

π : X → T of curves (see Definition 5.1.4) and its “derivatives”. There are two natural variants of

this computation.

The first is: instead of considering the canonical bundle, consider the grd with ρ(g, d, r) = 0; then

our locus will be the closure of the locus of smooth curves having a grd with a special ramification

point. This means that instead of considering the relative dualizing sheaf of the family π, we

consider the tautological linear system of the family X ×T Grd(π) → Grd(π) where Grd(π) is the

T -scheme parametrizing the grd of the fibers of the family π. This variant has a major difficulty:

we do not clearly understand Grd(π). Nevertheless, there is work by Khosla ([24]) and Osserman

([32] and [33]) concerning Grd(π).

The second is: consider still the canonical bundle, but instead of imposing conditions on one

point, impose them on more points (in our case two points). One simple example is the locus of
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curves having a pair of points (P,Q) with Q having ramification weight 3 in the linear system

H0(ωC(−aP )), for some fixed a with 0 < a < g − 1. However, our computations take place now

in the double product of the curve, which leads to new difficulties: since we are looking for classes

of codimension 3 we might have excess in codimension 2, which is not as easy to remove as a

divisorial excess. Moreover, the ramification of H0(ωC(−aP )), as C and P vary, might not form a

flat family, which means that imposing conditions on its “derivatives” will not lower the dimension

as expected (giving us an excess that is hard to remove). Fortunately, there are good conditions

that do not lead us into these difficulties.

The divisor we compute, Rg in Mg, where g = 2n, is defined as the closure of the locus of

smooth curves C with a pair of points (P,Q) such that P is a special ramification point of the

linear system H0(ωC(−nQ)) and Q is a special ramification point of H0(ωC(−nP )). In fact, Rg is

going to be defined more carefully later (Definition 6.1.1), but its support in Mg is the locus above.

The work is organized as follows. In Chapters 2 and 3 we introduce the moduli scheme and

the moduli stack; in Chapter 4 we review some theorems on intersection theory; in Chapter 5 we

introduce the notions of limit linear systems and ramification schemes. Finally, in Chapter 6 we

compute the class of the divisor Rg in Picfun(Mg).

We will always work over C. A curve for us is a connected, projective, reduced scheme of

dimension 1 (over C). The genus of a curve C is its arithmetic genus, h1(C,OC). We will often

identify a vector bundle with its sheaf of sections; most of the times it will be clear which one we

are considering. The category (schemes) is the category of schemes over C.
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Chapter 2

The moduli space of curves

2.1 Definition and construction

In this section, we are going to introduce the main object we are interested in: the moduli space of

curves of a given genus. This is a space parametrizing smooth (or stable for its compactification)

curves; in other words, we want that the (closed) points of this space represent curves. Moreover,

this space has a structure, of a scheme of finite type. To formalize this, let us define the moduli

functor and the notion of representability.

We start by considering a class of objects (these objects could be schemes, sheaves, linear

systems, etc.) for which we have the notion of what is a family parametrized by a scheme B,

together with the notion of an equivalence relation ∼ on the set S(B), which is the set of all

families of such objects over B. The notion of family should also include a notion of fiber product,

which means that given a morphism B′ → B and a family over B, we have a family over B′ in

which the fiber over a point b′ ∈ B′ is the same as the fiber over its image.

For example, in our case of interest, our objects are smooth curves of a given genus g, a family

over B is a flat map π : X → B whose fibers are smooth (or stable) curves, and two families are

equivalent if they are isomorphic over the base. A second example consists of vector bundles over

a smooth curve C, where a family over B is a vector bundle over C × B, and two families are

equivalent if the bundles are isomorphic.

A moduli functor classifying such a class of objects is the contravariant functor:

F : (schemes) → (sets)

B 7→ S(B)/ ∼
(2.1)

On the other hand, if M is any scheme, we define the functor of points of M:

MorM : (schemes) → (sets)

B 7→ Mor(B,M)
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We say that F is representable by M if there is an (natural) isomorphism of functors Ψ : F →
MorM. In this case, we call M the fine moduli space for our class of objects.

If F is representable byM, and φ : X → B is any family in S(B), then χ := Ψ(φ) is a morphism

from B toM, which intuitively tells us thatM parametrizes our objects, χ mapping a closed point

b of B to the point in M corresponding to the fiber Xb. More precisely, the inverse image by Ψ

of the indentity map of M gives us a family π : C →M, called the universal family, such that for

any morphism χ : B →M we have a fiber diagram:

X −−−−→ C

φ

y yπ
B

χ−−−−→ M

where Ψ(φ) = χ, Furthermore, since Ψ is an isomorphism, every family over B is a pullback of the

universal family by some morphism χ.

Unfortunately, such fine moduli spaces exist only in a few cases. Indeed, if there were a fine

moduli space Mg parametrizing smooth genus-g curves, then all families that have isomorphic fibers

would be trivial, since the corresponding map χ would be constant, but there are nontrivial families

with isomorphic fibers. For instance, let C be a genus-g curve with a nontrivial automorphism group

G and E an elliptic curve such that G acts on E by translation, then the family (C×E)/G→ E/G

is an nontrivial family with all fibers isomorphic to C. To be sure, these families have as fibers

curves with nontrivial automorphisms, and we do have a fine moduli space parametrizing smooth

curves of genus g with no nontrivial automorphisms.

On the other hand, what if instead of an isomorphism Ψ we require only a natural map from F

to MorM? We would still get that for each family φ : X → B we have a map χ = Ψ(φ) : B →M,

and also, given a map ξ : B′ → B, and the induced family φ′ : X×BB′ → B′, we have Ψ(φ′) = χ◦ξ.
But in this case we may not have uniqueness, allowing completely pathological cases. For instance,

we always have a natural map from F to MorSpec(C).

The answer then is, first, to impose that we have a bijection between the closed points of M
and our objects, i.e., that the map

Ψ(Spec(C)) : F (Spec(C))→ Mor(Spec(C),M)

be a bijection. And second, thatM be universal, in the sense that, given a schemeM′ and a map

Ψ′ : F → MorM′ , we have a map M→M′ inducing Ψ′ from Ψ. If there exist such M and Ψ we

call M the coarse moduli space of the functor F .

One of the few cases where we do have a fine moduli space is the Hilbert scheme HP,r, where P

is a polynomial and r is a positive integer. This is the moduli space of the functor HilbP,r, which

assigns to a scheme B the set of B-flat closed subschemes of Pr × B whose fibers over B have

Hilbert polynomial P . The construction of HP,r was first carried out in [19].

Let’s now state the main results about the existence of moduli spaces in the case of curves.
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Theorem 2.1.1 There is a coarse moduli space Mg parametrizing smooth curves of genus g ≥
2, which contains as an open subscheme the fine moduli space M0

g parametrizing smooth curves

of genus g without nontrivial automorphisms. The scheme Mg is quasi-projective and has only

quotient singularities.

Since Mg is not complete, it is natural to search for a compactification of it, since we have many

more tools to understand the geometry of a projective variety than of a simply quasi-projective

one. Fortunately, this compactification can also be viewed as a moduli space:

Definition 2.1.1 A genus-g, g ≥ 2, stable curve C is a curve whose singularities are only ordinary

double points (nodes) and whose smooth rational components E satisfy #E ∩ C\E ≥ 3.

Theorem 2.1.2 There is a coarse moduli space Mg parametrizing stable curves of genus g. The

scheme Mg is projective and has only quotient singularities.

We denote the (closed) point in Mg corresponding to a genus-g stable curve C by [C].

Let’s give a brief idea how Mg is constructed. Given a stable curve C of genus g ≥ 2, let

ωC denote its dualizing sheaf. Since ωnC is very ample for n ≥ 3, by [6], its sections give us an

embedding

C → PN

of degree 2n(g − 1), where, by Riemann–Roch,

N = h0(C,ωnC)− 1 = (2n− 1)(g − 1)− 1.

Seeing C as a subscheme of PN we get that ωnC = OC(1) (we call such a curve n-canonically

embedded). The Hilbert polynomial of C is

P (T ) := 2n(g − 1)T + 1− g.

Let now H := HP,N be the Hilbert scheme parametrizing subschemes of PN with P as Hilbert

polynomial. Let H ′ ⊂ H be the open subscheme corresponding to nodal curves. There is a family

U ⊂ PN ×H ′ over H ′, which is simply the restriction of the universal family over H. This family U
admits a relative Picard algebraic space PicU/H′ over H ′, for which the sheaves ωnU/H′ and OU (1)

induce a map

H ′ → PicU/H′ ×H′ PicU/H′ .

Define now K as the preimage of the diagonal. Then K is locally closed in H ′, because so is

the diagonal in PicU/H′ ×H′ PicU/H′ , and is smooth (see Lemma 3.35 in [22]). We get a family

ν : V → K induced by the subscheme V ⊂ PN ×K, the restriction of U over K.

Since the group of automorphisms PGL(N + 1) of PN acts naturally on H, there is an induced

action PGL(N + 1) × K → K. For sufficiently large n, we can show, via GIT, that there is a

geometric quotient of K under this action (see [30] for smooth curves and, more generally, [17] for

stable curves), which we denote by Mg.
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Now we have to construct the map Ψ between the moduli functor of stable curves and MorMg
.

To construct this map, we see first that the family ν is versal, i.e, given a family φ : C → B of

genus-g stable curves, there are an open covering Uα of B, and maps χ̃α : Uα → K such that the

restriction

φα : Cα := φ−1(Uα)→ Uα

is the pullback of ν via χ̃α.

Indeed, let φ : C → B be a family of genus-g stable curves, and consider the n-th power of the

relative dualizing sheaf ωnφ , for n ≥ 3. Since, by Riemann–Roch, h0(C,ωnC) = (2n − 1)(g − 1) for

every stable curve C of genus g, we have that φ∗(ωnφ) is a vector bundle of rank (2n − 1)(g − 1).

Choose now an open covering Uα trivializing this bundle; this means that we have an isomorphism

σα : O⊕N+1
Uα

→ φ∗(ωnφ)|Uα . This isomorphism induces a map Cα → PN×Uα, which is an embedding

because the fibers of φ are stable and n ≥ 3. And since this is a n-canonical embedding by

construction, we get a fiber diagram
Cα −−−−→ V

φα

y yν
Uα

χ̃α−−−−→ K

from the universal property of the Hilbert scheme.

Composing this map with the quotient map, we get a collection of maps χα : Uα →Mg. But on

each double intersection Uα
⋂
Uβ the maps χ̃α and χ̃β differ only by the choice of the isomorphisms

σα and σβ , and this difference is given by an element of PGL(N + 1). So the maps χα and χβ

agree where they are both defined, and hence we get a morphism χ : B →Mg gluing them.

It is easy to see that we have a bijection between the set of families over Spec(C) (which are

just curves) and the set of closed points of Mg, because if two n-canonically embedded stable

curves are isomorphic then their images in PN differ by an automorphism of PN , and if there is

an automorphism taking the image of one curve to the image of the other, then these curves are

clearly isomorphic.

For the universality just observe that ν : V → K is a family of stable curves, so if M is a scheme

with a natural map ΨM from the moduli functor to MorM , we get a map ΨM (ν) : K →M . Also,

composing this map with an automorphism of K given by an element of PGL(N + 1), we still get

the same map, since acting on K by an element of PGL(N+1) does not change the abstract family

ν. Then we have a map Mg →M , which induces the map ΨM .

Given Mg, we would like to study its properties, for instance, we may try to characterize

its canonical bundle. To do this we need first to understand its tangent bundle, for which goal

we use deformation theory. The tangent space at a point [C] of M0
g consists of the maps from

I := Spec(C[ε]/(ε2)) to Mg that take the closed point to [C]. These maps induce families π : C → I
with special fiber C (because there is a universal family over M0

g ). These families are called first-

order deformations of C, and the space of first-order deformations can be identified with H1(C, TC),

where TC is the tangent bundle of C; see [22] Section 3-B for more details.
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This description can be extended to stable curves, but now the space of first-order deformations

of a stable curve C is given by Ext1
OC (Ω1

C ,OC), see [6]. Therefore, by duality, the cotangent space at

a point [C] of Mg
0
, the locus of stable curves with no nontrivial automorphisms, is H0(C,Ω1

C⊗ωC).

So, if π : C →M
0

g is the universal family, then the canonical bundle over Mg
0

is simply

3g−3∧
π∗(Ω1

π ⊗ ωπ).

This definition extends nicely to that of the canonical bundle of the stack, i.e., we can still define

the tangent bundle using maps from I to the moduli stack. But over the moduli stack we do have a

universal family. To extend the canonical bundle to Mg we need to notice that the stack is simply

ramified along ∆1 over Mg; see Section 3.2.

2.2 The Picard group of Mg

Let Mg be the coarse moduli space parametrizing stable curves. Let A1(Mg) be its Chow group of

codimension-1 cycles and Pic(Mg) its Picard group. Since Mg has only finite quotient singularities,

we have an isomorphism

A1(Mg)⊗Q→ Pic(Mg)⊗Q.

Indeed, if Y is a codimension-1 subvariety of Mg, there exists d ∈ N such that d[Y ] is the class of

a Cartier divisor.

Another useful notion will be that of the Picard group of the functor Picfun(Mg), in which

instead of looking at the divisors in Mg we see them in all families of stable curves:

Definition 2.2.1 An element γ ∈ Picfun(Mg) ⊗ Q is a collection of classes γπ ∈ Pic(B) ⊗ Q for

each family of stable curves π : C → B, such that for each fiber product

C′ f−−−−→ C

π′

y yπ
B′ −−−−→

i
B

(2.2)

we have γπ′ = i∗(γπ).

Given this new Picard group, one can ask how it is related to the old one. In fact, it can be

proved that Picfun(Mg) ⊗ Q is isomorphic to Pic(Mg) ⊗ Q (see [22], Proposition 3.88). The map

giving the isomorphism is actually easy to explain: Given a element Γ ∈ Pic(Mg) and a family

φ : C → B we can pull back Γ to Pic(B) via the map χ : B →Mg induced by φ.

One last useful incarnation of the Picard group, is the invariant subgroup Pic(K)PGL(N+1) ⊂
Pic(K), where K is the moduli space of n-canonically embedded stable curves defined in Section

2.1. There is a natural isomorphism (see [23], p.50)

Picfun(Mg)→ Pic(K)PGL(N+1) (2.3)
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that to a given class γ ∈ Picfun(Mg) associates γν , where ν : V → K is the universal family.

Now, let’s define the generators of Pic(Mg)⊗Q. We begin with the tautological class λ, which is

naturally defined in Picfun(Mg). Given a family φ : C → B of stable curves, let ωφ be its dualizing

sheaf; then λφ := det(φ∗(ωφ)).

The other classes are the boundary classes ∆i; these are naturally defined in A1(Mg): ∆0 is the

closure of the locus in Mg parametrizing irreducible singular curves, and ∆i, for i = 1, . . . , [g/2],

is the closure of the locus in Mg parametrizing reducible curves which are the union of two curves,

one of genus i and the other of genus g − i, meeting at a single point. We also denote ∆ :=
⋃

∆i.

Similarly, we can define the classes ∆i,K in Pic(K): ∆0,K is the closure of the locus in K

parametrizing n-canonically embedded irreducible singular curves, and ∆i,K , for i = 1, . . . , [g/2],

is the closure of the locus in K parametrizing n-canonically embedded reducible curves which are

the union of two curves, one of genus i and the other of genus g − i, meeting at a single point.

Clearly, these classes are invariant under the action of PGL(N + 1), therefore they induce classes

δ, δ0, . . . , δ[g/2] in Picfun(Mg). (For the relations among ∆i and δi see [22] page 147.) Then:

Theorem 2.2.1 (Harer) Picfun(Mg)⊗Q is freely generated by λ, δ0, δ1, · · · , δ[g/2] for g ≥ 3.

More precisely, we have

Theorem 2.2.2 (Arbarello-Cornalba) Picfun(Mg) is freely generated by λ, δ0, . . . , δ[g/2] for g ≥ 3.

If g = 2, Picfun(Mg) is generated by δ0 and δ1, while λ is expressed by Mumford’s relation:

10λ = δ0 + 2δ1.

Furthermore, and this is very important for our calculations, one can show that a class in

Picfun(Mg) ⊗ Q is defined by its value on 1-parameter families, i.e., if we have two classes γ, γ′

such that for every family φ : C → B over a 1-dimensional scheme B, where we can even assume

C smooth, we have γφ = γ′φ in Pic(B) ⊗ Q then γ = γ′. It is not even necessarily to consider all

families φ but just one “sufficiently general”.
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Chapter 3

The moduli stack of curves

Our purpose in this chapter is to introduce the language of stacks. Although this is not necessary

for the understanding of the following chapters, it enables us to properly define the moduli stack of

smooth (resp. stable) curves, understand its geometry and its relation to the coarse moduli space.

Our goal is simply to give an idea of what is meant by the moduli stack.

Here we follow [6] and [31].

3.1 Grothendieck topologies and sheaves

Before we define stacks, let’s first define Grothendieck topologies and algebraic spaces.

Definition 3.1.1 Let C be a category with fiber product. A Grothendieck topology τ over C is

the data of, for every object U of C, a collection τ(U) of families of morphisms {Ui → U}i∈I such

that:

1. If U ′ → U is an isomorphism then {U ′ → U} is in τ(U).

2. If {Ui → U}i∈I is in τ(U) and {Uij → Ui}j∈Ji is in τ(Ui) for every i ∈ I, then {Uij → Ui →
U}i∈I,j∈Ji is in τ(U).

3. If {Ui → U}i∈I is in τ(U), and V → U is a morphism, then {V ×U Ui → V }i∈I is in τ(V ).

The families in τ(U) are called covering families for U in the topology τ . A category C with

fiber products and a Grothendieck topology τ is called a site, and denoted Cτ .

For example, for the category (schemes), we can define τ(U) as the collection of the families

{Ui → U}i∈I whose morphisms are open embeddings satisfying
⋃
i∈I Ui = U ; the result is called

the big Zarsiki site (schemes)Zar. If, instead of imposing the morphisms to be open embeddings,

we impose them to be étale morphisms, we get the big étale site (schemes)et. And since open

embeddings are étale morphisms, we get an inclusion (schemes)Zar ⊂ (schemes)et.
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Definition 3.1.2 A presheaf of sets on a category C is a contravariant functor F : C → (sets).

Morphisms of presheaves are just natural transformations of functors.

A sheaf is a presheaf with glueing conditions:

Definition 3.1.3 A sheaf on a site Cτ is a presheaf of sets F with the following properties:

1. For every object U of C, and f, g ∈ F(U) such that for a covering family {Ui → U}i∈I in

τ(U) we have f |Ui = g|Ui for every i ∈ I, we have f = g.

2. For every covering family {Ui → U}i∈I in τ(U) and collection {fi ∈ F(Ui)}i∈I such that

fi|Ui×UUj = fj |Ui×UUj for all i, j ∈ I, there exists f ∈ F(U) such that f |Ui = fi for all i ∈ I.

Theorem 3.1.1 ( Grothendieck) For any scheme X, the functor of points of X, hX := Mor(−, X),

is a sheaf in the étale topology, that is, a sheaf in the site (schemes)et.

Proof. See [35].

This theorem and Yoneda Lemma show that the category (schemes) is a full subcategory of

the category of sheaves over (schemes)et. When no confusion can be made we will still denote by

X the sheaf induced of X. This theorem leads us to the notion of representability:

Definition 3.1.4 A sheaf F over (schemes)et is called representable if there exists a scheme X

and a natural isomorphism of functors

F(−) ∼= Mor(−, X).

To end the section, we define an algebraic space.

Definition 3.1.5 An algebraic space X is a sheaf over (schemes)et such that

1. For all schemes Y and Z and all morphisms of sheaves y : Y → X and z : Z → X , the sheaf

Y ×X Z is representable by a scheme.

2. There exist a scheme X, called an atlas, and a surjective étale morphism x : X → X (i.e., for

all morphisms y : Y → X , where Y is a scheme, the projection X ×X Y → Y is a surjetive

étale morphism of schemes).

Again, the category (schemes) is a full subcategory of the category of algebraic spaces. Alge-

braic spaces can also be characterized as quotients of a scheme by a smooth or étale equivalence

relation. In the next section, we will see that algebraic spaces are also algebraic stacks.

3.2 Algebraic stacks

In this section, we will describe the data that are necessary to define an algebraic stack, what

these data are in the special case of the moduli stack of stable curves, and how this moduli stack
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is related to the moduli space. In fact, we will see that the moduli stack of stable curves is a very

special kind of stack, a Deligne–Mumford stack.

We begin by defining a 2-category:

Definition 3.2.1 A 2-category C is given by the following data:

1. A collection of objects ob(C).

2. For each pair of objects X,Y ∈ ob(C) a category Hom(X,Y ).

3. For every X,Y, Z ∈ ob(C) a functor

µX,Y,Z : Hom(X,Y )×Hom(Y, Z)→ Hom(X,Z)

such that:

(a) For each X ∈ ob(C), there exists an object idX ∈ Hom(X,X) such that

µX,X,Y (idX ,−) = µX,Y,Y (−, idY ) = idHom(X,Y )

where idHom(X,Y ) is the identity functor.

(b) For every X,Y, Z,W ∈ ob(C), we have

µX,Z,W ◦ (µX,Y,Z × idHom(Z,W )) = µX,Y,W ◦ (idHom(X,Y ) × µY,Z,W ).

The objects of Hom(X,Y ) are called 1-morphisms and denoted f : X → Y , while the morphisms

of Hom(X,Y ) are called 2-morphisms and denoted α : f ⇒ g. We can see a category as a 2-

category by imposing that the category Hom(X,Y ) has as objects the morphisms between X and

Y and as morphisms the identity maps. And a 2-category can be transformed into a category by

keeping the objects and imposing that the morphisms are the equivalence classes of isomorphisms

of Hom(X,Y ).

Two objectsX and Y of a 2-category C are equivalent if there exist two 1-morphisms f : X → Y ,

g : Y → X and two 2-isomorphisms α : g ◦f ⇒ idX and β : f ◦g ⇒ idY , where g ◦f = µX,Y,X(f, g)

and f ◦ g = µY,X,Y (g, f).

The 2-category we are interested in is the 2-category of groupoids. This is the 2-category that

will replace the category (sets) in the previous section.

Definition 3.2.2 A groupoid is a category whose morphisms are invertible, i.e., isomorphisms.

Every set can be viewed as a groupoid whose objects are the elements of the set and whose

morphisms are the identity morphisms.

Definition 3.2.3 Let Grpds be the 2-category of groupoids. Its objects are groupoids, and for

each grupoids G,H, Hom(G,H) is the category of functors between G and H with morphisms being

the natural transformations.

13



A prestack is the analogue of presheaves, replacing the target category (sets) by the 2-category

Grpds:

Definition 3.2.4 Let C be a category. A prestack X over C is a pseudo-functor

X : C→ Grpds

i.e., the following data

1. For each U ∈ ob(C) an object X (U) in Grpds.

2. For each morphism f : X → Y in C a functor

f∗ := X (f) : X (Y )→ X (X)

3. For each f : X → Y and g : Y → Z in C, an ivertible natural transformation

εg,f : (g ◦ f)∗ ⇒ f∗ ◦ g∗

such that the following diagram is commutative, for every h : Z →W in C,

(h ◦ g ◦ f)∗
εh,g◦f=⇒ (g ◦ f)∗ ◦ h∗

⇓ εh◦g,f ⇓ εg,f ∗ idh∗

f∗ ◦ (h ◦ g)∗
idf∗∗εh,g=⇒ f∗ ◦ g∗ ◦ h∗

where εg,f ∗ idh∗ is the natural transformation that associates to every object G in X (Z) the

morphism

(εg,f ∗ idh∗)G := (εg,f )h∗(G) : (g ◦ f)∗(h∗(G)) −→ f∗ ◦ g∗(h∗(G))

and analogously for idf∗ ∗ εh,g.

A stack is just a prestack with gluing conditions:

Definition 3.2.5 Let Cτ be a site. A stack is a prestack X satisfying for every covering family

{Ui → U}i∈I the following three conditions:

1. Given xi ∈ ob(X (Ui)) and isomorphisms ϕij : xi|Uij → xj |Uij in X (Uij) satisfying

ϕjk|Uijk ◦ ϕij |Uijk = ϕik|Uijk ,

there exist x ∈ ob(X (U)) and isomorphisms ϕi : x|Ui → xi in X (Ui) such that

ϕij ◦ ϕi|Uij = ϕj |Uij

for all i, j ∈ I.
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2. Given objects x, y ∈ ob(X (U)) and isomorphisms ϕi : x|Ui → y|Ui such that ϕi|Uij = ϕj |Uij ,
there exists an isomorphism η : x→ y such that η|Ui = ϕi.

3. Given x, y ∈ ob(X (U)) and isomorphisms ϕ : x→ y and ψ : x→ y such that ϕ|Ui = ψ|Ui , we

have ϕ = ψ

For instance, every sheaf F on Cτ can be seen as a stack. Just consider the set F(X) as a

category with just identity morphisms. In particular every algebraic space is a stack, and every

scheme is a stack.

In our case, we have the moduli stack of genus-g smooth (resp. stable) curves Mg (resp.

M̃g) over site (schemes)et. For an object U , Mg(U) (resp. M̃g(U)) is the groupoid whose

objects are families of smooth (resp. stable) genus-g curves π : C → U and whose morphisms are

isomorphims over U between these families. For a morphism f : U ′ → U , Mg(f) is the functor

f∗ : Mg(U) → Mg(U ′) given by base change. For morphisms f : U ′′ → U ′ and g : U ′ → U , the

natural transformation εg,f is given by the natural isomorphisms C ×U U ′′ → (C ×U U ′) ×U ′ U ′′.
For the fact that M̃g is in fact a stack over (schemes)et and not just a pre-stack we refer to [20],

VIII, 7.8.

We now define morphisms between stacks.

Definition 3.2.6 Let C be a category. A 1-morphism between two prestacks X and Y over C is a

natural transformation of pseudo-functors of 2-categories F : X → Y, i.e., is given by the following

data:

1. for every Z ∈ ob(C), a functor FZ : X (Z)→ Y(Z).

2. for every morphism f : Z →W in C, an invertible natural transformation Ff : Y(f)◦FW ⇒
FZ ◦ X (f), which is compatible with the natural transformations

εg,f : (g ◦ f)∗ ⇒ f∗ ◦ g∗.

Definition 3.2.7 Let C be a category. A 2-morphism ψ between two 1-morphism of prestacks

F,G : X → Y associates to each X ∈ ob(C) a 2-morphism ψX : FX ⇒ GX of Grpds, such

that, for a morphism f : X → Y , the 2-morphisms ψX and ψY are compatible with the natural

transformations Ff and Gf .

The 1- and 2-morphisms between stacks are the the 1- and 2-morphisms between the underlying

prestacks. With these two definitions we can see that prestacks (resp. stacks) over a category C

(resp. site Cτ ) together with 1-morphisms and 2-morphisms form a 2-category Prestacks(C)

(resp. Stacks(Cτ )). Therefore the category of sheaves is a full 2-subcategory of the 2-category

Stacks(Cτ ).

We have now a Yoneda Lemma for stacks:

15



Theorem 3.2.1 Let X be a stack over Cτ . Then for any X ∈ ob(C) there is an equivalence of

categories

Θ : Mor(X,X ) → X (X)

(F : X → X ) 7→ F (idX)

Proof. See [31].

In particular, this theorem implies that a moduli functor is always representable in the category

of stacks. Moreover, every morphism x : X → M̃g is given by a family π : C → X of genus-g stable

curves, where π ∈ Θ(x). (Up to isomorphism, there is only one choice of π.) More precisely, to put

it in terms of Definition 3.2.6, the morphism x is the collection of functors:

xU : Mor(U,X) → M̃g(U)

u : U → X 7→ C ×X U.

Now, we want to define an algebraic stack, i.e., the analogue of algebraic spaces. Before this,

we must introduce the notion of fiber products and representability.

Definition 3.2.8 Let X , X ′ and I be stacks over a site Cτ , and F : X → I and F ′ : X ′ → I
morphisms of stacks. The 2-fiber product X ×I X ′ is the stack defined on an object U of C by the

category (X ×I X ′)(U), whose

• objects are triples (u, u′, φ) with u ∈ X (U), u′ ∈ X ′(U) and φ ∈ HomI(U)(F (u), F ′(u′)).

• morphisms Hom((u, u′, φ), (v, v′, ψ)) are the pairs (f : u → v, f ′ : u′ → v′) such that ψ ◦
F (f) = F ′(f ′) ◦ φ.

Definition 3.2.9 A stack X over (schemes)et is representable by an algebraic space (resp. by

a scheme) if there exists an algebraic space (resp. scheme) X, such that X is isomorphic to the

stack associated to X. A morphism of stacks F : X → Y is representable by algebraic spaces (resp.

schemes) if for each scheme Y and morphism Y → Y the fiber product Y ×Y X is representable by

an algebraic space (resp. scheme).

In our case, if x : X → M̃g and y : Y → M̃g are morphisms given by families πx : Cx → X and

πy : Cy → Y , then X ×M̃g
Y (U) is given by triples (u, u′, φ) where u : U → X and u′ : U → Y are

morphisms of schemes, and φ ∈ HomM̃g(U)
(u∗(πx), u′∗(πy)), i.e., φ is an isomorphism between the

families u∗(πx) and u′∗(πy).

The stack X ×M̃g
Y is actually representable. Indeed, let h : U

(u,u′)−−−−→ X × Y and denote by

p1 : X × Y → X and p2 : X × Y → Y the projections; then u∗ = h∗p∗1 and u′∗ = h∗p∗2. Also,

denote by π1 : Cx ×X (X × Y )→ X × Y and π2 : Cy ×Y (X × Y )→ X × Y the projections. Lets

construct the scheme Isom(X × Y, p∗1x, p∗2y) representing X ×M̃g
Y . Assume (Ui)i∈I is an open

covering of X × Y that trivializes both E1 := π1∗(ωnπ1
) and E2 := π2∗(ωnπ2

), for a certain n >> 0,
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and denote by L := Isom(P(E1),P(E2)) → X × Y the PGL(N + 1)-bundle that parametrizes the

isomorphisms between P(E1) and P(E2). Here, N = (2n− 1)(g − 1)− 1.

We can now construct a map η : L|Ui → K×K, where K is the fine moduli space parametrizing

n-canonically embedded stable curves. The construction is given as follows: first, fix trivializations

L|Ui ∼= Ui × PGL(N + 1)

E1|Ui ∼= Ui × AN+1

E2|Ui ∼= Ui × AN+1;

then fix a basis α of E1|Ui . For each g ∈ PGL(N + 1) we have an associated basis gα for E2|Ui ;
this basis induces a map Ui → K ×K; varying g we get the map η. Define the scheme Isom(X ×
Y, p∗1x, p

∗
2y)|Ui := η−1(∆). These schemes do not depend on the choice of trivializations and glue

together.

To summarize, the construction above implies that every morphism x : X → M̃g for a scheme

X is representable by schemes.

Definition 3.2.10 Let P be a property of morphisms of schemes that is stable under base change

and local in the étale topology. A representable morphism F : X → Y of stacks has property P, if

for each morphism Y → Y, with Y a scheme, the induced morphism of schemes Y ×Y X → Y has

the property P.

Examples of properties that are stable under base change and local in the étale topology include:

being étale, surjective, smooth, locally of finite type, quasi-compact, open embedding, closed em-

bedding, affine, quasi-affine, proper, unramified and separated.

Now, we are able to define an (Artin) algebraic stack:

Definition 3.2.11 A stack over (schemes)et is an Artin algebraic stack if

1. The diagonal morphism ∆ : X → X × X is representable by algebraic spaces and quasi-

compact.

2. There exist a scheme X, called an atlas, and a surjective smooth morphism X → X .

Finally, a Deligne–Mumford stack is defined by:

Definition 3.2.12 A stack over (schemes)et is a Deligne–Mumford algebraic stack if

1. The diagonal morphism ∆ : X → X × X is representable by schemes, quasi-compact and

separated.

2. There exist a scheme X, called an atlas, and a surjective étale morphism X → X .

In fact, we have a nicer characterization of Deligne–Mumford stacks:

Proposition 3.2.1 A stack X is Deligne–Mumford if and only if it is an algebraic stack and the

diagonal morphism is unramified and separated.
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Proof. This is [6] Theorem 4.21; a proof can be found in [1].

Since we have a surjective smooth map K → M̃g, induced by the versal family of n-canonically

embedded stable curves, to prove that M̃g is Deligne–Mumford we need only prove that the

diagonal morphism is representable by schemes, quasi-compact, separated and unramified.

Let (x, x′) : X → M̃g × M̃g be a morphism induced by families C → X and C′ → X; then we

have a Cartesian diagram

(X ×X)×M̃g×M̃g
M̃g −−−−→ X ×Xy y(x,x′)

M̃g −−−−→
∆

M̃g × M̃g

But

(X ×X)×M̃g×M̃g
M̃g = X ×M̃g

X = Isom(X ×X, p∗1x, p∗2x′).

We now have the following Cartesian diagram

(X ×M̃g
X)×X×X X −−−−→ Xy y∆

X ×M̃g
X −−−−→ X ×Xy y(x,x′)

M̃g −−−−→
∆

M̃g × M̃g

which implies that

X ×M̃g×M̃g
M̃g = (X ×M̃g

X)×X×X X,

and hence that ∆ is representable by schemes. All we have to prove now is that the map

IsomX(C, C′) = Isom(X ×X, p∗1x, p∗2x′)×X×X X → X

is quasi-compact, separated and unramified; this follows from Theorem 1.11 in [6].

M̃g being a Deligne–Mumford stack implies that there exist a scheme B and an étale surjective

morphism Φ : B → M̃g; the family C → B induced by this morphism is, therefore, a versal family.

To relate the moduli stack with the moduli space, we have a map M̃g → Mg, given by the

functor

M̃g(U) → Mor(U,Mg)

π : C → U 7→ χ(π) : U →Mg

where χ(π) is the map obtained from the fact that Mg is a coarse moduli space. Therefore, we

have a map η : B → Mg, the same map induced by the versal family. Moreover, we can assume

that η is finite, see [28].

The map η is, in fact, ramified along ∆1. To see this, let b ∈ B be a closed point for which the

fiber C = Cb is a general curve in ∆1. The tangent space TbB is given by Ext1
OC (Ω1

C ,OC), because
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Φ is étale and surjective. However, we have an action of Aut(C) = Z/2Z on TbB, and the map Φ

is “invariant” by this action, hence the ramification.

3.3 The Picard group of M̃g

In this section, we define the Picard group of the moduli stack of curves. The definition here is

basically the definition of Picfun(Mg), but in the language introduced above. We begin by defining

the smooth site of a stack, the site where our sheaves will be defined.

Definition 3.3.1 The smooth site Xsm of a stack X over (schemes)et is the category whose:

1. objects are pairs (U, u), where U is a scheme and u : U → X is a smooth morphism;

2. morphisms are pairs (ϕ, α) : (U, u)→ (V, v) where ϕ : U → V is a morphism and α : u⇒ v◦ϕ
is a 2-isomorphism;

3. coverings are given by smooth coverings of (U, u), i.e., families {Ui → U}i∈I whose mor-

phisms are smooth and the union of their images is U .

Definition 3.3.2 Let X be an algebraic stack. A sheaf F on the smooth site of X is given by the

following data:

1. For each object (U, u) of Xsm a sheaf FU,u on U .

2. For each morphism (ϕ, α) : (U, u)→ (V, v)a morphism of sheaves

θϕ,α : ϕ∗FV,v → FU,u

satifying the cocycle condition, i.e., for morphisms (ϕ, α) : (U, u) → (V, v) and (ψ, β) :

(V, v)→ (W,w) we have

θϕ,α ◦ ϕ∗θψ,β = θψ◦ϕ,ϕ∗β◦α

A morphism of sheaves h : F → F ′ is just a collection of morphism hU,u : FU,u → F ′U,u for all

objects (U, u) of Xsm which are compatible with the morphisms θϕ,α.

A sheaf over an algebraic stack X can be identified with a sheaf over some atlas X → X together

with some “descent data”. For example, in the case of the atlas K → M̃g, a sheaf over M̃g can

be identified with a PGL(N + 1)-invarian sheaf over K. A sheaf is called locally free if every FU,u
is locally free, and is called Cartesian if the θϕ,α are isomorphisms.

Now we can define the Picard group of the stack, simply as the isomorphism classes of Cartesian

locally free sheaves of rank 1. Note that this definition is pretty much the same definition of

Picfun(Mg), and from the observation above follows Isomorphism (2.3).
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Chapter 4

Intersection theory

Here we are going to introduce our main tools, the Thom–Porteous and Grothendieck–Riemann–

Roch formulas. Before this, let’s recall the basic properties of Chern classes. All that is exposed

here can be found in detail in [14] Chapters 3, 14 and 15 (for the definitions and theorems) and in

[22] Chapter 3, Section D (for the computations).

Let X be a scheme, and AkX the Chow group of its k-cycles modulo rational equivalence. Let

E be a vector bundle over X of rank e. We write ci(E) for its i-th Chern class for i = 0, 1, . . .,

which is a map:

ci(E) ∩ : AkX → Ak−iX

defined for all k by the following five properties:

1. c0(E) = 1

2. If f : X ′ → X is a flat morphism, then

ci(f∗E) ∩ f∗α = f∗(ci(E) ∩ α)

for all cycles α ∈ A∗(X) and all i.

3. (Whitney sum) If

0→ E′ → E → E′′ → 0

is an exact sequence of vector bundles on X, then

ck(E) =
∑
i+j=k

ci(E′)cj(E′′).

4. If E is a line bundle, and D is a Cartier divisor on X with OX(D) ∼= E, then

c1(E) ∩ [X] = [D].
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5. (Projection formula) If f : X → Y is a proper map, and E is a rank-e vector bundle over Y

then for all α ∈ A∗X we have:

f∗(ci(f∗E) ∩ α) = ci(E) ∩ f∗(α).

Denote by ct(E) the Chern polynomial of E, defined by

ct(E) := 1 + c1(E)t+ . . .+ ce(E)te.

If E admits a filtration 0 = E0 ⊂ E1 ⊂ . . . ⊂ Ee = E, with quotients Ei/Ei−1 = Li, then, by

Whitney sum,

ct(E) =
e∏
i=1

(1 + c1(Li)t),

and we say that the c1(Li) are the Chern roots of E. However, often E admits no such filtration.

Nonetheless, we can factor ct(E) =
∏e

1=1(1 +αit) in a formal way, i.e., ci(E) is the i-th symmetric

function of α1, . . . , αe. The αi are also called Chern roots.

We will also write ct(F − E) for the formal series given by ct(F )/ct(E), and write ci(F − E)

for the coefficient of ti in this series.

Definition 4.0.3 Let E be a rank-e vector bundle over a scheme X, and α1, . . . , αe its Chern

roots. Define the Chern character of E by the formula

ch(E) :=
e∑
i=1

exp(αi)

where exp(x) = ex =
∑∞
n=0 x

n/n!.

Since ch(E) is a symmetric function of the Chern roots of E, it can be written as a function of

the Chern classes. Here are the first terms:

ch(E) = e+ c1(E) +
1
2

(c1(E)2 − 2c2(E)) +
1
6

(c1(E)3 − 3c1(E)c2(E) + 3c3(E)) + . . .

The Chern character is additive on exact sequences and multiplicative on tensor products: For any

exact sequence of vector bundles

0→ E′ → E → E′′ → 0 (4.1)

we have

ch(E) = ch(E′) + ch(E′′),

and for any two vector bundles E,E′ we have

ch(E ⊗ E′) = ch(E) · ch(E′).
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Definition 4.0.4 Let E be a rank-e vector bundle over a scheme X, and α1, . . . , αe its Chern

roots. Define the the Todd class of E by the formula

td(E) :=
e∏
i=1

Q(αi)

where

Q(x) =
x

1− e−x
= 1 +

1
2
x+

∞∑
k=1

(−1)k−1 Bk
(2k)!

x2k,

where the Bk are the Bernoulli numbers.

As the Chern character, the Todd class can be written as a function of the Chern classes of E:

td(E) = 1 +
1
2
c1(E) +

1
12

(c1(E)2 + c2(E)) +
1
24
c1(E)c2(E) + . . .

and for an exact sequence as in (4.1) we get

td(E) = td(E′)td(E′′).

When X is smooth we often will identify ci(E) with the codimension-i cycle ci(E) ∩ [X].

Moreover since in this case every coherent sheaf F admits a resolution by vector bundles,

0→ En → En−1 → . . .→ E1 → E0 → F → 0,

we can expand the definition of Chern classes to coherent sheaves, defining ct(F ) via the Whitney

sum:

ct(F ) :=
n∏
i=0

ct(Ei)(−1)i

The main reason to make the above definitions is the Grothendieck–Riemann–Roch formula,

that relates the Chern caracter of the pushforward of a coherent sheaf with the pushforward of its

Chern caracter. Before stating the theorem, we need to make one more definition:

Definition 4.0.5 Let f : X → Y be a proper morphism, and E a coherent sheaf over X; define

then

ch(f!(E)) :=
∑
i=0

(−1)ich(Rif∗(E)).

Theorem 4.0.1 (Grothendieck–Riemann–Roch) Let f : X → Y be a proper morphism between

smooth connected schemes and E a coherent sheaf over X. Then:

ch(f!(E)) = f∗(ch(E) · td(TX/Y ))

where TX/Y is the relative tangent sheaf.

Since the Grothendieck–Riemann–Roch formula depends on the Todd class of the relative tan-

gent sheaf, it is useful to understand this relative sheaf for a family of stable curves. In fact, we
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will only need this for families φ : C → B of stable curves with B unidimensional and both B and

C smooth, because of the observation following Harer Theorem in Chapter 2.

Let φ be as above, and denote by Ωφ the relative cotangent sheaf, the cokernel of the natural

map

φ∗ΩB → ΩX . (4.2)

Outside the locus Z of nodes of the fibers, Ωφ is isomorphic to the relative dualizing sheaf ωφ. Let

now P ∈ Z and x, y local coordinates of C at P , and let t be a local coordinate at the point φ(P ) in

B such that the map φ is given by t = xy. (Such local description is possible because we assumed

C smooth). Then the map (4.2) is locally given by the map

OC,P 〈dt〉 → OC,P 〈dx, dy〉

dt 7→ xdy + ydx

Hence

Ωφ,P =
OC,P 〈dx, dy〉
〈xdy + ydx〉

,

Now, ωφ,P can be identified with

OC,P 〈α〉

where

α =
dx

x
− dy

y
.

(See [22], p. 157; this follows as well from Rosenlicht’s characterization in [34] page 76.) Since

xα = 2dx and yα = −2dy, we have a map

Ωφ,P → OC,P 〈α〉

2dx 7→ xα

2dy 7→ yα.

The image of this map is (x, y)〈α〉, and thus we conclude that Ωφ = IZ ⊗ ωφ.

Now, let i : Z → C be the inclusion. Then, by Grothendieck–Riemman–Roch,

ch(i∗OZ) = i∗(ch(OZ)td(TZ/C)).

But, since Z is a finite union of points, all the Chern classes are 0, whence ch(OZ) = 1 and

td(TZ/C) = 1, and thus

ch(i∗OZ) = [Z].

Set η := [Z]. It follows that

ch(IZ) = ch(OC)− ch(i∗OZ) = 1− η,
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which gives us

ch(Ωφ) = ch(IZ) · ch(ωφ)

= (1− η) ·
(

1 + c1(ωφ) +
c1(ωφ)2

2

)
=

(
1 + c1(ωφ) +

(
c1(ωφ)2

2
− η
))

.

(The remaining terms of the product expansion are zero because dim C = 2.) Hence, c1(Ωφ) =

c1(ωφ) and c2(Ωφ) = η, which implies that

td(TC/B) = 1− c1(ωφ)
2

+
c1(ωφ)2 + η

12
. (4.3)

Now, define the tautological class κ in Picfun(Mg), which for a family φ : C → B is given by

κφ := φ∗(c1(ωφ)2). (4.4)

Using the description above, let’s write this class in terms of the basis given by Harer’s theorem.

Using Grothendieck–Riemann–Roch for the sheaf ωφ (with φ as above),

ch(φ∗ωφ)− ch(R1φ∗ωφ) = φ∗(ch(ωφ) · td(TC/B)).

Since R1φ∗ωφ = OB we get

g − 1 + λ = φ∗

((
1 + c1(ωφ) +

c1(ωφ)2

2

)
·
(

1− c1(ωφ)
2

+
c1(ωφ)2 + η

12

))
which then yields g − 1 = φ∗(

c1(ωφ)
2 ) (which is obvious) and

λ = φ∗

(
c1(ωφ)2 + η

12

)
=
κ+ δ

12
. (4.5)

Thus κ = 12λ− δ.
Note that (4.3) and (4.5) imply that φ∗(td2(TC/B)) = λ. Another way to derive this formula,

now over a base scheme B of any dimension, is to apply Grothendieck–Riemman–Roch to the

bundle OC . Using duality, we end up with

φ∗(td(TC/B)) = ch(φ∗(OC))− ch(φ∗(ωφ)∨)

= (1− g) + λ+ . . .

which implies that

φ∗(td2(TC/B)) = λ. (4.6)

Another useful application of Grothendieck–Riemann–Roch is the computation of the class of

the canonical bundle. By the description in Section 2.1, for a 1-parameter family φ : C → B the
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canonical class of the stack is given by c1(φ∗(Ωφ⊗ωφ)). Since the higher direct images of Ωφ⊗ωφ
are 0 by [6], p. 79, we get by Grothendieck–Riemann–Roch:

ch(φ∗(Ωφ ⊗ ωφ)) = φ∗(ch(Ωφ ⊗ ωφ) · td(Tφ))

= φ∗

(
ch(Ωφ) · ch(ωφ) ·

(
1− c1(ωφ)

2
+
c1(ωφ)2 + η

12

))
.

Now, note that

ch(Ωφ) · ch(ωφ) =
(

1 + c1(ωφ) +
(
c1(ωφ)2

2
− η
))(

1 + c1(ωφ) +
c1(ωφ)2

2

)
= 1 + 2c1(ωφ) + 2c1(ωφ)2 − η,

whence

ch(φ∗(Ωφ ⊗ ωφ)) = φ∗

((
1 + 2c1(ωφ) + 2c1(ωφ)2 − η

)(
1− c1(ωφ)

2
+
c1(ωφ)2 + η

12

))
= φ∗

(
1 +

3c1(ωφ)
2

+
(
c1(ωφ)2 − η +

c1(ωφ)2 + η

12

))
= 3(g − 1) + κ− δ + λ = 3(g − 1) + (13λ− 2δ).

So c1(φ∗(Ωφ ⊗ ωφ)) = 13λ− 2δ. Since the stack is ramified along ∆1 over Mg we end up with

KMg
= 13λ− 2δ0 − 3δ1 − 2δ2 − . . .− 2δ[g/2].

Finally, let’s state the Thom–Porteous formula, which gives us the class of a degeneration

scheme of a map of vector bundles.

Theorem 4.0.2 Let X be a smooth connected scheme, σ : E → F a morphism of vector bundles

of ranks e and f , and k ≤ min(e, f). Define Dk(σ) as the locus where the map σ has rank ≤ k. If

Dk(σ) has the expected codimension (e− k)(f − k) then:

[Dk(σ)] = ∆(e−k)
f−k (c(F − E)) ∩ [X]

where

∆(d)
l (c(F − E)) = det((cl+j−i(F − E))i,j=1,...,d).

In particular, if e = f and k = e− 1 then

[Dk(σ)] = c1(F )− c1(E),

and if k = 0 and E = OX then

[Dk(σ)] = cf (F ).
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Chapter 5

Limit linear systems

5.1 Limit linear systems

Let C be a smooth connected projective genus-g curve, L a line bundle over C and V ⊂ H0(L) a

linear system of dimension r + 1.

Definition 5.1.1 Given a point P of C, we can write the orders of vanishing of the sections of V

at P increasingly, a0, a1, . . . , ar, and define the (ramification) weight of P ,

wtV (P ) :=
r∑
i=0

ai − i,

and the total weight,

TwV (P ) :=
r∑
i=0

ai.

Alternatively, we can look locally at P , where we have a C-linear map V → OP , since L is trivial

in a neighborhood of P . Let VP be the image of this map and t a parameter of OP ; VP is still a

(r+ 1)-dimensional vector space. Let f0, f1, . . . , fr be a basis for VP ; from this basis we can define

a Wronskian matrix,

W (f0, f1, . . . , fr) :=
(
∂ifj
∂ti

)
i=0,...,r;j=0,...,r

,

and from this matrix we define

w(f0, f1, . . . , fr) := det(W (f0, f1, . . . , fr)).

Then wtV (P ) = ordP (w(f0, f1, . . . , fr)). Indeed, it is easy to see that the order of w(f0, f1, . . . , fr)

at P does not depend on the basis for VP chosen, nor on the local parameter t, nor the trivialization

of L at P , and agrees with wtV (P ) given in Definition 5.1.1.

We can now define the ramification divisor of V , which is simply

RV :=
∑

wtV (P )P .
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The first natural question is: can we compute deg(RV )? Or more specifically, can we find a

reasonable equivalence class for OC(RV ) in Pic(C)?

Fortunately, we can globalize the second approach as follows. Let J i(L) be the sheaf of jets

of order i (see [11], [26] or [27] for more details on sheaves of jets). This sheaf has the following

properties: J i(L) is a vector bundle of rank i+ 1 with a natural evaluation map

H0(L)⊗OC → J i(L)

given locally by a Wronskian matrix involving derivatives up to order i; and we have truncation

sequences

0→ ωi+1
C ⊗ L→ J i+1(L)→ J i(L)→ 0,

where ωC is the canonical bundle and J0(L) = L.

Restricting the evaluation map to V we have a map V ⊗OC → Jr(L) of vector bundles of the

same rank r + 1. Since V ⊗OC is trivial this map induces a (determinant) section

σ : OC →
r+1∧

Jr(L)

whose zero locus is RV . Hence

OC(RV ) ∼=
r+1∧

Jr(L),

and since
r+1∧

Jr(L) ∼= ω
(r+1

2 )
C ⊗ Lr+1,

an isomorphism obtained from the truncation sequences, we finally get that

degRV = (r + 1)r(g − 1) + (r + 1) degL,

known as the Plücker formula.

The remaining of this section is dedicated to understanding the behavior of RV in families, and

its “limits” in nodal curves.

Let π : X → T be a family of smooth genus-g curves with X smooth, L a line bundle over X ,

and V ⊂ π∗(L) a locally free subsheaf of rank r+ 1 over T . Denote by Xt the fiber over t ∈ T , i.e.,

Xt = π−1(t). Assume that over any point t ∈ T , the composition below is an injection

Vt :=
Vt

Mt,TVt
−→ π∗(L)t

Mt,Tπ∗(L)t
−→ H0(Xt,L|Xt) (5.1)

We say that V is a relative linear system. Let also J iπ(L) be the relative sheaf of jets of order i

(see [11], [27] for more details); J iπ(L) restricts to a sheaf of jets on each fiber, and satisfies similar

properties to those of the “absolute” sheaf. There are evaluation maps

π∗π∗(L)→ J iπ(L)
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and truncation sequences

0→ ωi+1
π ⊗ L → J i+1

π (L)→ J iπ(L)→ 0, (5.2)

where ωπ is the relative dualizing sheaf.

Definition 5.1.2 The ramification divisor W = WV of the relative linear system V is the degen-

eracy locus of the map

π∗V → Jrπ(L),

whence the divisor of zeros of the induced section

w : OX →
r+1∧

Jrπ(L)⊗

(
r+1∧

π∗V

)∨
.

The divisor W has the property that W ∩Xt is the ramification divisor RVt of the linear system

Vt ⊂ H0(L|Xt)

induced from (5.1).

Now, suppose the fibers of π : X → T are nodal, rather than smooth. Denote by Xns the open

locus of nonsingular fibers. We make two natural definitions. Since we still have sheaves of jets for

such families (see [11] for a construction of these sheavess) we can define:

Definition 5.1.3 The degeneration scheme W ′ = W ′V of V is the degeneracy locus of the map

π∗V → Jrπ(L).

And we can simply define:

Definition 5.1.4 The ramification divisor W = WV of V is the closure of W ′ ∩ Xns

Note that W ′ ∩ Xns is the ramification divisor of the restriction of V to π(Xns). When V = π∗(L)

we say that W is the ramification divisor of the line bundle L.

These two definitions do not coincide in general, but clearly W ⊂W ′. We are more interested in

W , but since W ′ is much easier to compute, it is important to understand how the two definitions

differ. Specifically, we want to know the diference W ′ −W and how W intersects a singular fiber.

But, before this, we must understand the formation of W ′.

Let ψ : L′ → L be an injective map of line bundles with degeneracy divisor D (i.e., L′ = L(−D)),

V ′ ⊂ π∗(L′) a relative linear system of rank r + 1, and µ : V ′ → V a map of rank-(r + 1) vector

bundles with degeneracy scheme Y , such that the following diagram commutes

V ′ −−−−→ π∗L′

µ

y yπ∗ψ
V −−−−→ π∗L.
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Taking adjoints, and using the naturality of the formation of the sheaves of jets we get another

commutative diagram
π∗V ′ −−−−→ Jrπ(L′)y yJrπψ
π∗V −−−−→ Jrπ(L)

of maps of vector bundles of rank r + 1. Since Jrπψ : Jrπ(L′) → Jrπ(L) has degeneracy divisor

(r + 1)D, as we can see from the truncation sequences, we obtain that Y is also a divisor, and

π∗Y +W ′V = (r + 1)D +W ′V′ . (5.3)

Definition 5.1.5 Let C be a nodal genus-g curve. A smoothing of C is a flat projective map

p : C → Σ, where Σ := Spec(C[[t]]) and C is regular, together with an isomorphism between C and

the special fiber.

Let p : C → Σ be a smoothing of a nodal genus-g curve C. Let us denote by C∗ the generic

fiber. Let also L be a line bundle over C, and V ⊂ p∗(L) a relative linear system of rank r+1. Since

Σ is local, V is the sheaf associated to a free C[[t]]-module V . Since p is flat and Σ = Spec(C[[t]]),

also L := H0(C,L) is a free C[[t]]-module containing V . We denote by V∗ and L∗ the localizations

V ⊗ C((t)) and L⊗ C((t)) (so L∗ = H0(C∗,L|C∗)). Since we have an injection

V

tV
→ L

tL
,

we get that V = V∗
⋂
L.

Let D be a divisor on C supported in C. We have an isomorphism

H0(C∗,L|C∗)→ H0(C∗,L(D)|C∗);

let V (D)∗ be the image of V∗ under it. Define now V (D) := V (D)∗ ∩H0(C,L(D)). It gives rise to

a new relative linear system V(D) ⊂ p∗(L(D)) of the same rank r + 1. On the other hand, if D is

a subscheme of C (the case where D is effective and reduced), we let V |D denote the image of V

under the restriction map H0(C,L)→ H0(D,L|D).

Let C1, C2, . . . , Cn be the irreducible components of C. Since C is connected, there exist line

bundles Li for i = 1, . . . , n of the form

Li = L(
n∑
l=1

ai,lCl) := L ⊗OC(
n∑
l=1

ai,lCl)

such that the restriction map

H0(C,Li|C)→ H0(Ci,Li|Ci) (5.4)

is an injection, which implies that the kernel of the restriction map

H0(C,Li)→ H0(Ci,Li|Ci) (5.5)

29



is tH0(C,Li). We say that Li has focus on Ci. More generally, we say that

Vi := V

(
n∑
l=1

ai,lCl

)

has focus on Ci if the induced map Vi|C → H0(Ci,L|Ci) is injective.

Let Vi be the image of Vi under the map (5.5). Since the map (5.4) is an injection, dimVi = r+1.

This implies that W ′i , the degeneration scheme of Vi, the sheaf associated to Vi, does not contain

Ci. We call Vi ⊂ H0(Ci,Li|Ci) a limit linear system on Ci.

Let Ri = RVi be the ramification divisor of the linear system Vi. Let W be the ramification

divisor of V. Then W is a divisor and (see [5]):

W ∩ C =
n∑
i=1

Ri +
∑
i<j

∑
P∈Ci∩Cj

(r + 1)(r − li,j)P (5.6)

where li,j = ai,i + aj,j − ai,j − aj,i.
To finish this section, let’s define the special ramification locus. Let π : X → T be a family

of genus-g semistable curves with X smooth. Let L be a line bundle on X and V ⊂ π∗(L) a

relative linear system of rank r + 1. Let W be the ramification divisor of V. Since W is a divisor,

because X is smooth, it induces a section w : OX → OX (W ), and this section induces “derivatives”

w(r) : OX → Jrπ(OX (W )). Let SrW be the zero scheme of the section w(r); we call SrW the r-th

special ramification locus. Note that, on Xns the support of SrW is the set of points P ∈ Xns such

that wtVπ(P )(P ) ≥ r+ 1. When r = 1 we write SW = S1W . However, on the singular locus, SrW

might have an odd behavior, because W might not be flat over T , and might contain nodes.

5.2 Machinery

Let C be a nodal curve of genus g. Assume C = E
⋃
F , where E and F are subcurves, not

necessarily irreducible, but with no common components. Write E
⋂
F = {P1, . . . , Pn}. Let

p : C → Σ be a smoothing of C, L a line bundle on C and V ⊂ p∗(L) a relative linear system of rank

r+1. Recall the notation in Section 5.1. We will view E and F as divisors of C. Since p∗(L(−E)) ⊂
p∗(L) we get an inclusion of modules L(−E) ⊂ L. As before define V (−E) := V∗

⋂
L(−E); then

V (−E) induces a rank-(r + 1) vector bundle V(−E) ⊂ π∗L(−E). This gives us a commutative

diagram
V(−E) → π∗(L(−E))

↓ ↓
V → π∗L

From this, as seen in Equation (5.3), we get W ′V = W ′V(−E) + (r + 1)E − p∗Y , where Y is the

degeneracy divisor of V(−E) → V. The latter map induces a map µ : V (−E) → V of rank-

(r + 1) free C[[t]]-modules, and we have p∗Y = ordt(det(µ))C. Since tV ⊂ V (−E), it follows that
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ordt(det(µ)) = dimC coker(µ). But coker(µ) = V |E , which is by definition the image of V via the

map H0(C,L)→ H0(E,L|E). Furthermore, since we have an exact sequence

0→ V |F (−P1 − . . .− Pn)→ V |C → V |E → 0, (5.7)

we obtain

W ′V = W ′V(−E) + dimC(V |F (−P1 − . . .− Pn))E − dimC(V |E)F. (5.8)

Where by definition

V |F (−P1 − . . .− Pn) := V |F ∩H0(F,L|F (−P1 − . . .− Pn)).

In addition, let D be an effective divisor of C such that D and E have no common components.

Then we have a commutative diagram

H0(C,L(−D)) −−−−→ H0(E,L(−D)|E)y y
H0(C,L) −−−−→ H0(E,L|E).

And, letting V (−D) := V
⋂

H0(C,L(−D)), we get that V (−D)|E ⊂ V |E(−D · E), because the

vertical maps are injections, since D and E have no common components.

Lemma 5.2.1 Let p : C → Σ be a smoothing of a semistable curve C. Let L be a line bundle on

C and V ⊂ p∗(L) a relative linear system. Let E be a subcurve of C, and D an effective divisor of

C without common components with E. Then

V (−D)|E ⊂ V |E(−D · E)

Proof. Follows from the previous discussion.

Lemma 5.2.2 Let C be the nodal union of two smooth curves, C = X
⋃
Y , where we identify the

point A ∈ X with the point B ∈ Y . Let p : C → Σ be a smoothing, L a line bundle on C and

V ⊂ p∗(L) a relative linear system of rank r + 1. Let W ′ be the degeneration scheme and W the

ramification divisor of V. Let V |X and V |Y the restrictions of V to X and Y . Assume that for

every positive integer i,

dimC(V (−iY )|Y (−B)) + dimC(V |X(−iA)) ≤ r + 1

dimC(V (−iX)|X(−A)) + dimC(V |Y (−iB)) ≤ r + 1.

Then

W ′ = W + TwV |X (A)Y + TwV |Y (B)X.

Proof. Let Li := L(−iY ). Let Vi := V(−iY ) be the induced vector bundle, and W ′i the degener-

ation scheme of Vi. Denote by mY (i) the coefficient of Y in the divisor W ′i . Then, by Equation

(5.8) we get

mY (i) = mY (i+ 1) + dimC(V (−iY )|X(−A)).
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From the Exact Sequence (5.7),

dimC(V (−iY )|X) = r + 1− dimC(V (−iY )|Y (−B)) ≥ dimC(V |X(−iA)).

where the inequality follows from the hypothesis of the lemma. Therefore, by lemma 5.2.1, we have

equality, that is, V (−iY )|X = V |X(−iA).

Hence, we get

mY (0) = mY (i) +
i∑

j=1

dimC(V |X(−jA)).

But, for sufficiently large i, mY (i) = 0 and dimC(V |X(−iA)) = 0. Therefore

mY (0) =
∞∑
j=1

dimC(V |X(−jA)) = TwV |X (A)

The same holds for X, which concludes the proof. �

Lemma 5.2.3 Let X be a nodal curve which is the union of a smooth genus-(g − 1) curve C and

a chain (E1, E2, . . . , Er) of r rational smooth curves. Assume that C intersects only E1 and Er,

the first at a single point A and the second at a single point B. Let p : C → Σ be a smoothing of

X, L a line bundle on C and V ⊂ p∗(L) a relative linear system of rank r + 1. Let W ′ be the

degeneration scheme and W the ramification divisor of V. Assume that L|Ei = OEi(0) for every

i. Let Ṽ = V |C(−A−B). Assume that

dimC(Ṽ (−iA− (r − i− 1)B)) = 1 and

dimC(Ṽ (−(i+ 1)A− (r − i)B)) = 0

for each i = 0, 1, . . . , r − 1. Then

W ′ = W +
r∑
i=1

i(r + 1− i)(r + 1)
2

Ei.

Proof. The proof is the same as that given to [4], Thm. 6.1.

For each i = 1, . . . , r, define

Li := L

− r∑
j=1

ai,jEj


where ai,j := (r + 1) min{i, j} − ij. Note that

Li|Ei = OEi(r + 1)

Li|Ej = OEj for j 6= i

Li|C = L|C(−(r + 1− i)A− iB).

Let Vi = V ∩ p∗(Li). Then

Vi|C(−A−B) ⊂ V |C(−(r + 1− i)A− iB)(−A−B) = Ṽ (−(r − i+ 1)A− iB) = 0.
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Figure 5.1: The curve X
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Hence, it follows from Exact Sequence (5.7) that Vi|X → Vi|Ei is an isomorphism. Keeping the

notation of Section 5.1, we set VEi := Vi|Ei . Hence the degeneration scheme of Vi does not contain

Ei.

As in the proof of Lemma 5.2.2, we define a filtration Li,j of L. For each i = 1, . . . , r and each

j = 0, 1, . . . , i(r + 1− i)− 1 let k, k′, l, l′ be integers such that

j = ki+ l = k′(r + 1− i) + l′, 0 ≤ k, l′ ≤ r − i, 0 ≤ k′, l ≤ i− 1,

and define

ci,j,m := km+ max{0, l − i+m+ 1}, m = 1, . . . , i,

c′i,j,m := k′(r + 1−m) + max{0, l′ + i−m+ 1}, m = i, . . . , r.

Now, let

Di,j :=
i∑

m=1

ci,j,mEm +
r∑

m=i+1

c′i,j,mEm,

and put Li,j := L(−Di,j). Notice that Li = Li,i(r+1−i)−1. Denote Vi,j := V ∩ p∗(Li,j).
For each i = 1, . . . , r, set Di,−1 = 0. Also, for each j let Fi,j = Di,j − Di,j−1. With this

notation, Li,j = Li,j−1(−Fi,j) and

Fi,j = Ei−l + Ei−l+1 + . . .+ Ei + . . .+ Ei+l′ .
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An inductive argument shows now that

Li,j |C =



L|C(−kA− k′B) if l 6= i− 1 and l′ 6= r − i,

L|C(−(k + 1)A− k′B) if l = i− 1 and l′ 6= r − i,

L|C(−kA− (k′ + 1)B) if l 6= i− 1 and l′ = r − i,

L|C(−(k + 1)A− (k′ + 1)B) if l = i− 1 and l′ = r − i,

(5.9)

and

Li,j |Em =


OEm(k + k′ + 2) if m = i

OEm(−1) if m = i− l − 1 or m = i+ l′ + 1

OEm otherwise.

(5.10)

It follows from (5.10) that

h0(Li,j−1|Fi,j ) = k + k′ + 1.

Also, setting F̂i,j = X − Fi,j , we have, by Equation (5.9) and Lemma 5.2.1, a map

Vi,j−1|F̂i,j → V |C(−Di,j−1 · C)

that is an injection by Equation (5.10), and whose image is included in Ṽ (−kA− k′B); just match

the cases of (5.10) with those of (5.9). Therefore,

dimVi,j−1|F̂i,j

− ∑
P∈F̂i,j∩Fi,j

P

 ≤ dim Ṽ (−kA− k′B) = r − k − k′,

the equality by the hypothesis of the lemma. However, by Exact Sequence (5.7), we have that

dimVi,j−1|Fi,j + dimVi,j−1|F̂i,j

− ∑
P∈F̂i,j∩Fi,j

P

 = r + 1,

and hence

dimVi,j−1|Fi,j = k + k′ + 1,

dimVi,j−1|F̂i,j

− ∑
P∈F̂i,j∩Fi,j

P

 = r − k − k′.

Now, just apply Equation (5.8), to see that

mEi(j − 1) = mEi(j) + (r − k − k′)

wheremEi(j) is the multiplicity of Ei in the degeneration scheme of Vi,j , for j =, 0, . . . , i(r+i−1)−1.

Summing up, we get our result.

Lemma 5.2.4 Let C be a semistable curve, p : C → Σ a smoothing of C, L a line bundle over C
and V = p∗(L). Let r + 1 be the rank of V. Write C = E

⋃
F , where E and F are subcurves of C

without common components. Then the following two statements hold:
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1. If

h0(E,L|E) + h0(F,L(−E)|F ) ≤ r + 1,

then h0(C,L|C) = r + 1, and we have equality above.

2. If h0(C,L|C) = r + 1 then the image of the map

H0(C,L)→ H0(E,L|E)

is equal to the image of the map

H0(C,L|C)→ H0(E,L|E).

In particular, if the inequality in item 1 is true, both maps are surjective, i.e., V |E =

H0(E,L|E).

Proof. From the exact sequence

0→ L(−E)|F → L|C → L|E → 0

we get a left-exact sequence

0→ H0(L(−E)|F )→ H0(L|C)→ H0(L|E)→ 0;

hence, by hypothesis,

h0(L|C) ≤ h0(L(−E)|F ) + h0(L|E) ≤ r + 1.

But, by semicontinuity, h0(L|C) ≥ r + 1; therefore we have equality and the latter sequence is in

fact right-exact as well.

To prove the second statement we just notice that the map

H0(L)→ H0(L|C)

is surjective by the base-change theorem, because h0(L|C) = r + 1.�

Lemma 5.2.5 Let C be a smooth curve, V a linear system, and V ′ := V (−P ) for any point P ∈ C
such that V ′ 6= V . Assume that V and V ′ do not have special ramification points. Then V ′ and V

have no common ramification points distinct from P .

Proof. Let r := dimV − 1. Let Q ∈ C\{P} be a ramification point of V ′; since Q is nonspecial,

the vanishing sequence at Q of V ′ is 0, 1, . . . , r− 2, r, which means the vanishing sequence at Q of

V cannot be 0, 1, . . . , r − 1, r + 1, the only possible sequence for a nonspecial ramification point.�

Lemma 5.2.6 Let C be a smooth curve, L a line bundle on C and V ⊂ H0(L) a linear system

with no special ramification points. Let a and b be positive integers such that dimV = a + b. Let

p1, p2 : C × C → C be the projections, and define the locally free sheaves

Vp1(−a∆) = V ⊗OC ∩ p1∗(p∗2(L)(−a∆)) ⊂ p1∗(p∗2(L)(−a∆)),

Vp2(−b∆) := V ⊗OC ∩ p2∗(p∗1(L)(−b∆)) ⊂ p2∗(p∗1(L)(−b∆)).
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Then Vp1(−a∆) and Vp2(−b∆) are relative linear systems of ranks b and a, respectively, whose

ramification divisors concide.

Proof. The ramification divisor Wp1 of Vp1(−a∆) is the degeneration scheme of the evaluation

map

p∗1(Vp1(−a∆))→ Jb−1
p1

(p∗2(L)(−a∆)).

(Likewise for Wp2 .) But we have a map

Jb−1
p1

(p∗2(L)(−a∆))→ Jb−1
p1

(p∗2(L))

which is an isomorphism outside ∆. Also Jb−1
p1

(p∗2(L)) = p∗2(Jb−1
C (L)), and we have an exact

sequence

0→ p2∗(p∗1(L)(−b∆))→ p2∗p
∗
1(L)→ Jb−1

C (L)

because

Jb−1(L) = p2∗

(
p∗1(L)

p∗1(L)(−b∆)

)
by definition.

Since V ⊂ H0(L) and H0(L)⊗OC = p1∗p
∗
2(L) = p2∗p

∗
1(L), we have an induced exact sequence

0→ p∗2(Vp2(−b∆))→ p∗2(V ⊗OC)→ Jb−1
p1

(p∗2L)→ 0.

This sequence is right-exact because V has no special ramification point, and left-exact because

of the definition of Vp2(−b∆), which proves that Vp2(−b∆) has rank a. Hence Wp1 (outside the

diagonal) is the degeneration scheme of the map

p∗1(Vp1(−a∆))⊕ p∗2(Vp2(−b∆))→ p∗2(V ⊗OC).

By the same argument, so is Wp2 . Since Wp1 and Wp2 are divisors that do not contain the diagonal,

because they intersect the diagonal on the ramification points of V , they are the same.�

Lemma 5.2.7 Let C be a smooth curve, and V a linear system on C of rank r + 1 with no

special ramification points. Let P and Q be distinct points of C, and a and b positive integers with

a+ b = r + 1. Then the following two statements are equivalent:

1. Q is a special ramification point of the system V (−aP ) and P is a special ramification point

of the system V (−bQ).

2. The points P and Q satisfy one of the following four conditions:

(a) dimV (−(a+ 1)P − (b+ 1)Q) ≥ 1

(b) dimV (−(a− 1)P − (b− 1)Q) ≥ 3

(c) dimV (−aP − (b+ 1)Q) ≥ 1 and dimV (−(a− 1)P − bQ) ≥ 2

(d) dimV (−(a+ 1)P − bQ) ≥ 1 and dimV (−aP − (b− 1)Q) ≥ 2
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Proof. Notice first that, since V has no special ramification points and a, b ≤ r, we have

dimV (−aP ) = r + 1− a = b

dimV (−bQ) = r + 1− b = a.

We will prove first that (1) implies (2). The point Q being a special ramification point of

V (−aP ) means that

dimV (−aP − (b− 1)Q) ≥ 2 or dimV (−aP − (b+ 1)Q) ≥ 1. (5.11)

Similarly, for P

dimV (−bQ− (a− 1)P ) ≥ 2 or dimV (−bQ− (a+ 1)P ) ≥ 1 (5.12)

If dimV (−aP − bQ) ≥ 2 then obviously P and Q satisfy (2c). Therefore, we can assume that

dimV (−aP − bQ) = 1.

If the second alternatives in (5.11) and (5.12) hold then P and Q are base points of V (−aP−bQ),

and thus

dimV (−(a+ 1)P − (b+ 1)Q) ≥ 1,

which is (2a). On the other hand, if the first alternatives in (5.11) and (5.12) hold and (2b) does

not hold, that is,

dimV (−(a− 1)P − (b− 1)Q) ≤ 2,

then P and Q are base points of V (−(a− 1)P − (b− 1)Q), which implies dimV (−aP − bQ) = 2,

a contradiction. The two other cases are trivial.

We will now prove that (2) implies (1). This is obvious if (2c) or (2d) holds. Also, (2a) implies

that

dimV (−(a+ 1)P − bQ) ≥ 1 and dimV (−aP − (b+ 1)Q) ≥ 1,

and (2b) implies that

dimV (−(a− 1)P − bQ) ≥ 2 and dimV (−aP − (b− 1)Q) ≥ 2.

In any case, (5.11) and (5.12) hold.�

5.3 The general curve

Since the Thom–Porteous formula may be applied only if the degeneration scheme has the expected

codimension, we devote a section to prove that the several loci that will appear have the expected

codimension. Since we are interested in the Picard group, we are only concerned with proving that

certain loci have the expected codimension 1 (i.e., they are in fact a divisor) and certain other loci

have the expected codimension at least 2 (i.e., we can avoid these loci).

Let ρ be an open property of smooth curves, and let Uρ be the open set in Mg corresponding

to ρ and Vρ the complement of Uρ. To prove that the codimension of Vρ is at least 1, it suffices
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to exhibit one curve C satifying ρ, since ρ is an open condition and Mg is irreducible. One way to

do this is to degenerate, that is, to show that there exists a curve in the boundary ∆ ⊂Mg which

cannot be the limit of curves in Mg not satisfying ρ. This curve will in general be a nodal union

of two general curves of lesser genus, for which we can apply induction.

Let’s state first two already known facts.

Proposition 5.3.1 The locus in Mg, g ≥ 4, of curves possessing a weight-3 Weierstras point has

codimension 2.

Proof. See [16], Thm. 3.7.

Proposition 5.3.2 Let (C,A,B) be a general genus-g smooth pointed curve, and a0, b0 positive

integers. Then for all 0 < a ≤ a0 and 0 < b ≤ b0, the linear system H0(ωC(aA+ bB)) has at most

simple ramification points, and A and B are not among them. Furthermore, the linear system

H0(ωC(aA)) has only simple ramification points distinct from A.

Proof. See [4] Prop. 4.4 and [5] Prop. 3.1.

Proposition 5.3.3 Let (C,A,B) be a two-pointed general smooth genus-g curve. Then, for all

nonnegative integers a and b with a + b ≤ g − 1, the complete linear system H0(ωC(−aA − bB))

has at most simple ramification points.

Proof. Since the condition is an open property, we need only to show that there exists a two-

pointed general curve with the stated property. In fact, we need only prove the case where b = 0,

as we can make the points A and B coalesce. Now, degenerate and do an induction: Pick a

pointed curve (C,A), the nodal union of a general pointed genus-(g−1) curve (X,Q) and a general

two-pointed elliptic curve (Y,R,A), identifying Q and R.

Take now a smoothing π : C → Σ of C. Choose a section σA of π such that σA(0) = A and let

ΓA be the image of σA. If the statement is not true for the generic curve (Cη, σA(η)), then there

is a point Pη on Cη which is a special ramification point for the linear system H0(ωCη (−aσA(η))).

After a base change, i.e., a map Σ→ Σ taking t→ tn+1 for some n, we may assume that this point

is rational, and thus induces a section σPη of π, with σPη (0) =: P a smooth point of C. However,

after this base change, the node of C becomes a singular point of C, locally given by the equation

tn+1 − xy. After desingularization, the node of C is replaced by a chain of rational smooth curves

(E1, E2, . . . , En) with E1 ∩ X = {Q} and En ∩ Y = {R}. We will still denote by π the newmap

and by C its special curve.

Let L := ωπ(−aΓA) and V := p∗(L). Since (C,A) is general, by Propositions 5.3.2 and 5.3.1, V
is a vector bundle of rank g− a. From Equation (5.6) we see that P must be a special ramification

point of one of the limit linear systems VX , VY and VEi with focus on X, Y and the Ei. Since C

is of compact type, there exists a divisor DX supported on C such that

L(DX)|X = ωX(−(a− 1)Q)

L(DX)|Ej = OEj for j = 1, . . . , n− 1

L(DX)|Y = OY (((a+ 1)R− aA)).
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Hence, L(DX) has focus on X. Furthermore, since h0(L(DX)|X) = g − a, we have VX =

H0(ωX(−(a− 1)Q)). By induction, VX has at most simple ramification points.

Analogously, VY = H0(OY (gR − aA)) and VEi = H0(OEi(g − 1 − a)), neither of them having

special ramification points.�

For the next propositions we will be using a similar approach, but now, we will have two

points varying. Pick the curve (C,R) defined as the union of two general pointed curves (X,A)

and (Y,B,R), with genus gX := g − 1 and 1 respectively, joined by a chain of rational curves

E1, E2, ..., En−1 with A ∈ E1 and B ∈ En−1. Define Aj := Ej−1 ∩ Ej and Bj := Ej ∩ Ej+1; see

Figure 5.3. (By convention, E0 = X and En = Y .) Now, pick a smoothing π : C → Σ of C. Let

σR : Σ → C be a section through the smooth locus of this smoothing (we will call the image ΓR)

such that σR(0) = R. Let

L := ωπ((1 + i)ΓR) (5.13)

for i ≥ 0, and V = π∗(L). Note that h0(Cη, L|Cη ) = g+ i, whence V is a vector bundle of rank g+ i.

Y

X

A

B

R

Figure 5.2: The curve (C,R).

        

     
        

         

X

Y

A

B

R

E1

En

Figure 5.3: (C,R) after base change.

Since C is of compact type, there exists an effective divisor DX supported on C but not

containing X such that

L(DX)|X = ωX((2 + i)A)

L(DX)|Ej = OEj for j = 1, . . . , n− 1

L(DX)|Y = OY ((1 + i)R− iB).

(5.14)

Hence, by Lemma 5.2.4,

VX := V (DX)|X = H0(ωX((2 + i)A)) (5.15)

is a limit linear system with focus on X.
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Considering Y , first notice that V |Y = H0(OY ((1 + i)R)). Also, there exists an effective divisor

DY supported on C but not containing Y , such that

ωπ(DY )|X = L(DY )|X = ωX((1− gX)A)

ωπ(DY )|Ej = L(DY )|Ej = OEj for j = 1, . . . , n− 1

ωπ(DY )|Y = OY ((1 + gX)B)

L(DY )|Y = OY ((1 + gX)B + (1 + i)R),

(5.16)

which means that

V (DY − (1 + i)ΓR)|Y = H0(OY ((1 + gX)B)),

because L(−(1 + i)ΓR) = ωπ. Hence, since L(DY ) has focus on Y , by Lemma 5.2.1,

H0(OY ((1 + gX)B)) ⊂ VY (−(1 + i)R)

H0(OY ((1 + i)R)) ⊂ VY (−(1 + gX)B),

where VY := V (DY )|Y . Therefore, by dimension considerations,

VY = V (DY )|Y = H0(OY ((1 + i)R)) + H0(OY ((1 + gX)B)), (5.17)

viewed as a subspace of H0(OY ((1 + i)R+ (1 + gX)B)), is a limit linear system with focus on Y .

As for Ej , there are effective divisors Dj,1, Dj,2 supported on C but not containing Ej , such

that
ωπ(Dj,1)|X = ωX((1− gX)A)

ωπ(Dj,1)|El = OEl for all l 6= j

ωπ(Dj,1)|Ej = ωEj ((1 + gX)Aj +Bj)

ωπ(Dj,1)|Y = OY (B)

(5.18)

and
L(Dj,2)|X = ωX(A)

L(Dj,2)|El = OEl for all l 6= j

L(Dj,2)|Ej = ωEj (Aj + (2 + i)Bj)

L(Dj,2)|Y = OY ((1 + i)R− iB).

(5.19)

Hence, since B is a base point of H0(OY (B)) and A is a base point of H0(ωX(A)),

V (Dj,1 − (1 + i)ΓR)|Ej = H0(ωEj ((1 + gX)Aj))

and

V (Dj,2)|Ej = H0(ωEj ((2 + i)Bj)).

Now, since L(Dj,1 +Dj,2) has focus on Ej , VEj := V (Dj,1 +Dj,2)|Ej is a limit linear system with

focus on Ej , and by Lemma 5.2.1,

H0(ωEj ((1 + gX)Aj)) ⊂ VEj (−(1 + i)Bj)

H0(ωEj ((2 + i)Bj)) ⊂ VEj (−gXAj).
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Hence, by dimension considerations,

VEj = H0(ωEj ((1 + gX)Aj))⊕H0(ωEj ((2 + i)Bj)) (5.20)

as a subspace of H0(ωEj ((1 + gX)Aj + (2 + i)Bj)).

Proposition 5.3.4 Let i0 be a fixed positive integer. Then for a general curve C of genus g and

a general point R ∈ C,

h0 (ωC((1 + i)R− (a+ 1)P − (b+ 1)Q)) = 0 (5.21)

for every P,Q ∈ C, every i = 0, 1, ..., i0 and every nonnegative integers a and b with a+ b = g + i.

Proof. We will do a double induction on g and i0. For g ≤ 2 we have that for every nonnegative

integer i

degωC((i+ 1)R− (a+ 1)P − (b+ 1)Q) = 2g − 2 + 1 + i− 1− a− 1− b = g − 3 < 0,

which means that the Proposition holds. For g ≥ 3 all we have to do is to find a pointed curve

with the required property. Since this property is open, the proposition follows. Our method to

do this is to degenerate. Let (C,R) be as in Figure 5.2 and π : C → Σ a smoothing of C, with a

section σR : Σ → C such that σR(0) = R. If for every pointed smooth curve there exist P and Q

negating (5.21), then there exist Pη and Qη points of the generic curve Cη with the same property.

Hence, possibly after a base change, under which C is transformed into the curve depicted in Figure

5.3, we have sections σP and σQ of π with σP (η) = Pη and σQ(η) = Qη. Let P := σP (0) and

Q = σQ(0). We may assume P and Q lie on the smooth locus of C. Also, let ΓP and ΓQ be the

images of σP and σQ. Define L′ := L(−(a+ 1)ΓP − (b+ 1)ΓQ), where L is defined in (5.13), and

V ′ := π∗(L′). Then V ′ is a vector bundle of rank at least 1.

Up to exchanging P and Q, there are 6 cases to consider:

Case 1: Assume P and Q lie on the Ei’s. Since C is of compact type we can choose a divisor

D of C supported on C such that

L′(D)|X = ωX(−gXA)

L′(D)|Ei = OEi for i = 1, . . . , n− 1

L′(D)|Y = OY (−(i+ 1)B + (1 + i)R).

Since A, B and R are general, we have

h0(ωX(−gXA)) = h0(OY (−(1 + 1)B + (i+ 1)R)) = 0,

a contradiction by Lemma 5.2.4.

Case 2: Assume P ∈ Ei and Q ∈ X. Again, we can choose D such that

L′(D)|X = ωX((1− gX + b)A− (b+ 1)Q)

L′(D)|Ei = OEi for i = 1, . . . , n− 1

L′(D)|Y = OY (−(i+ 1)B + (i+ 1)R).
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Since A, B and R are general, we have

h0(OY (−(i+ 1)B + (i+ 1)R)) = 0,

and, by Propositions 5.3.2 and 5.3.3,

h0(ωX((b− gX)A− (b+ 1)Q)) = 0,

again a contradiction by Lemma 5.2.4

Case 3: Assume P ∈ Ei and Q ∈ Y . Choose D such that

L′(D)|X = ωX((1− gX)A)

L′(D)|Ei = OEi for i = 1, . . . , n− 1

L′(D)|Y = OY ((g − a− 1)B + (i+ 1)R− (b+ 1)Q).

Since

h0(OY ((g − a− 1)B + (i+ 1)R− (b+ 1)Q)) = 0

and h0(ωX(−gXA)) = 0, we have a contradiction by Lemma 5.2.4.

Case 4: Assume P ∈ Y and Q ∈ X. First, suppose b ≤ gX ; hence a ≥ i+ 1. Recall Equation

(5.17):

VY = V (DY )|Y = H0(OY ((1 + i)R)) + H0(OY ((1 + gX)B)).

Then there exists an effective divisor D not containing Y such that L(DY −D)|Ei = OEi for all i,

and such that

V (DY −D)|Y ⊂ VY (−bB) = H0(OY ((1 + i)R)) + H0(OY ((1 + gX − b)B))

and

V (DY −D)|X ⊂ H0(ωX((1− gX + b)A)).

Hence, by Lemma 5.2.1 and Proposition A.2.1 applied to VY (−bB),

V ′(DY −D)|Y ⊂ VY (−bB − (a+ 1)P ) = 0.

Also, by Proposition 5.3.3,

V ′(DY −D)|X(−A) ⊂ H0(ωX((−gX + b)A− (b+ 1)Q)) = 0,

which, by Equation (5.7), implies that

V ′(DY −D)|C = 0,

a contradiction.

If b ≥ g then there exists a divisor D such that

L′(D)|X = ωX((1− gX + b)A− (b+ 1)Q)

L′(D)|Ej = OEj for i = 1, . . . , n− 1

L′(D)|Y = OY ((1 + i)R+ (1 + gX − b)B − (a+ 1)P ).
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However, by Proposition 5.3.2,

h0(L′(D)|X) = 0.

Thus, since

degL′(D)|Y (−B) = −1,

it follows from Lemma 5.2.4 that

h0(L′(D)|C) = 0,

a contradiction.

Case 5: Assume P,Q ∈ X. Choose D such that

L′(D)|X = ωX((2 + i)A− (b+ 1)Q− (a+ 1)P )

L′(D)|Ei = OEi for i = 1, . . . , n− 1

L′(D)|Y = OY (−iB + (i+ 1)R).

Since by induction

h0(ωX((2 + i)A− (b+ 1)Q− (a+ 1)P )) = 0,

and since h0(OY (−(i+ 1)B + (i+ 1)R)) = 0, it follows that h0(L′(D)|C) = 0, a contradiction.

Case 6: Assume P,Q ∈ Y . Choose D such that

L′(D)|X = ωX((1− gX)A)

L′(D)|Ei = OEi
L′(D)|Y = OY (gB + (i+ 1)R− (a+ 1)P − (b+ 1)Q).

Since

h0(OY (gB + (i+ 1)R− (a+ 1)P − (b+ 1)Q)) = 0

by degree considerations, and since h0(ωX(−gXA)) = 0, it follows again from Lemma 5.2.4 that

h0(L′(D)|C) = 0, a contradiction.�

Proposition 5.3.5 Let i0 be a fixed positive integer. Then for a general curve C of genus g and

a general point R ∈ C there are no points P,Q ∈ C\{R} satisfying both:

h0 (ωC((1 + i)R− aP − (b− 1)Q)) ≥ 2

and

h0 (ωC((1 + i)R− (a+ 1)P − bQ)) ≥ 1

for any i = 0, 1, ..., i0 and any nonnegative integers a and b with a+ b = g + i.

Proof. We will do an induction on g and follow the path of the proof of Proposition 5.3.4. For

g ≤ 1, the statement follows easily because

deg(ωC((1 + i)R− (a+ 1)P − bQ)) = g − 2 < 0.
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Keeping the notation and the initial constructions as in the proof of Proposition 5.3.4 and

defining

L1 := L(−aΓP − (b− 1)ΓQ) and (5.22)

L2 := L(−(a+ 1)ΓP − bΓQ), (5.23)

we see that V1 := π∗(L1) and V2 := π∗(L2) are vector bundles of rank at least 2 and 1, respectively.

Reasoning by contradiction, we will prove that on the special fiber either V1(D1)|C has dimension

at most 1 or V2(D2)|C has dimension 0 for certain divisors D1 and D2 of C supported on C.

Case 1: Assume P and Q lie on some of the Ei’s. Since C is of compact type we can choose a

divisor D2 supported on C such that

L2(D2)|X = ωX((1− gX)A)

L2(D2)|Ej = OEj for j = 1, . . . , n− 1

L2(D2)|Y = OY ((1 + i)R− (1 + i)B).

Now, since

h0(OY ((1 + i)R− (1 + i)B)) = 0

and h0(ωX(−gXA)) = 0, we get from Lemma 5.2.4 that h0(L2(D2)|C) = 0, a contradiction.

Case 2: Assume P ∈ Ei for a certain i, and Q ∈ X. First assume b ≥ g. Then we can choose

D1 such that

L1(D1)|Ej = OEj for j = 1, . . . , n− 1

L1(D1)|Y = OY ((1 + i)R− iB)

L1(D1)|X = ω((1− gX + b)A− (b− 1)Q).

Since L1(D1) has focus on X and h0(ωX((1 − gX + b)A − (b − 1)Q)) = 1 by Proposition 5.3.2, it

follows that h0(L1(D1)|C) ≤ 1, a contradiction.

If b ≤ gX , then, by Equation (5.20) and because C is of compact type, there exists an effective

divisor D1, which does not contain Ei, such that

V (Di,1 +Di,2 −D1 − aΓP − (b− 1)ΓQ)|Ei ⊂ VEj (−aP − bAj) = 0,

where the last equality follows from Section A.1, and

L1(Di,1 +Di,2 −D1)|Ej = OEj for j 6= i,

L1(Di,1 +Di,2 −D1)|X = ωX((1− gX + b)A− (b− 1)Q).

This means that

V1(Di,1 +Di,2 −D1)|X(−A) ⊂ H0(ωX((−gX + b)A− (b− 1)Q)).
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Since h0(ωX((−gX + b)A − (b − 1)Q)) = 1 by Proposition 5.3.3, if follows from Exact Sequence
(5.7) that

dim V1(Di,1+Di,2−D1)|C ≤ dim V (Di,1+Di,2−D1−aΓP−(b−1)ΓQ)|Ei+dim V1(Di,1+Di,2−D1)|X(−A),

thus bounded by 1, a contradiction.

Case 3: Assume P,Q ∈ X. We can choose D1 and D2 such that

L1(D1)|Ei = L2(D2)|Ei = OEi for i = 1, . . . , n− 1

L1(D1)|Y = L2(D2)|Y = OY ((1 + i)R− iB)

L1(D1)|X = ωX((2 + i)A− aP − (b− 1)Q)

L2(D2)|X = ωX((2 + i)A− (a+ 1)P − bQ),

and then argue by induction.

Case 4: Assume P,Q ∈ Y . By Equation (5.17) we just have to prove that the linear system

VY = H0(OY (1 + gX)B) + H0(OY ((1 + i)R)) ⊂ H0(OY ((1 + gX)B + (1 + i)R))

does not admit points P,Q satisfying

dim(VY (−(a+ 1)P − bQ)) ≥ 1 and

dim(VY (−aP − (b− 1)Q)) ≥ 2
(5.24)

But, when P,Q 6= R, this is just Proposition A.2.2.

Now, if P = Q = R then (5.24) does not hold because

VY (−(a+ b+ 1)R) ⊂ H0(OY ((1 + gX)B − (1 + gX)R))

and R and B are general. If P = R, Q 6= R and a ≤ i then (5.24) does not hold because

VY (−aP ) = H0(OY (1 + gX)B) + H0(OY ((i+ 1− a)R)),

and by Proposition A.2.1 such a linear system does not admit special ramification points. So we

are left with the case where P = R, Q 6= R and a ≥ i+ 1, which implies b ≤ gX . Blowing up C at

R, we add an exceptional divisor, which we will call E, and let PE := Γ̃P ∩ E and RE := Γ̃R ∩ E,

where Γ̃P and Γ̃R are the strict transforms; see Figure 5.4. If PE = RE we blow up again; however,

there is no loss of generality in assuming that PE 6= RE . With the same reasoning that led to

Equation (5.17) we can see that there exists DE such that

L(DE)|X = ωX((1− gX)A)

L(DE)|Ej = OEj
L(DE)|Y = OY ((1 + gX)B − gXR)

L(DE)|E = ωE((2 + gX)R+ (1 + i)RE)

and

VE := V (DE)|E = H0(ωE((2 + gX)R))⊕H0(ωE((1 + i)RE))
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Figure 5.4: The blow up on R

is a limit linear system with focus on E. Since there exists an effective divisor D2 not containing

E such that
L(DE −D2)|Y = OY ((1 + gX)B − (gX − b+ 1)R)

L(DE −D2)|E = ωE((2 + gX − (b− 1))R+ (1 + i)RE),

and since b ≤ gX , by Section A.1,

V2(DE −D2)|E ⊂ VE(−(b− 1)R− (a+ 1)PE) = 0.

Since

V2(DE −D2)|Y (−R) ⊂ H0(OY ((1 + gX)B − (gX − b+ 2)R− bQ)) = 0,

Exact Sequence (5.7) implies that V2(DE −D2)|C = 0, a contradiction.

Case 5: Assume P ∈ Ej for a certain j, and Q ∈ Y . If b − 1 ≤ i + 1 then there exists an

effective divisor D2 not containing Ej such that

L2(Dj,1 +Dj,2 −D2)|X = ωX((1− gX)A)

L2(Dj,1 +Dj,2 −D2)|El = OEl for l 6= j

L2(Dj,1 +Dj,2 −D2)|Ej = ωEj ((1 + gX)Aj + ((2 + i)− (b− 1))Bj − (a+ 1)P )

L2(Dj,1 +Dj,2 −D2)|Y = OY ((1 + i)R− (i− (b− 1))B − bQ)),

where Dj,1 and Dj,2 are those divisors that yielded Equations (5.18) and (5.19). Therefore, by

Lemma 5.2.1 and Equations (5.20) and (5.23), and by Section A.1 as well, applied to VEj (−(b −
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1)Bj),

V2(Dj,1 +Dj,2 −D2)|Ej ⊂ VEj (−(a+ 1)P − (b− 1)Bj) = 0 and

V2(Dj,1 +Dj,2 −D2)|Y (−B) ⊂ H0(OY ((1 + i)R− (i+ 1− (b− 1))B − bQ)) = 0.

Hence

V2(Dj,1 +Dj,2 −D2)|C = 0,

a contradiction.

If Q 6= R and b−1 ≥ i+ 2, then a ≤ gX −2. Following the steps above, there exists an effective

divisor D2, not containing Y , such that

L2(DY −D2)|X = ωX((1− gX)A)

L2(DY −D2)|El = OEl for l 6= j

L2(DY −D2)|Ej = OEj ((a+ 1)Bj − (a+ 1)P )

L2(DY −D2)|Y = OY ((1 + i)R+ (1 + gX − (a+ 1))B − bQ),

where DY is as in Equation (5.16). Therefore, by Lemma 5.2.1, Equations (5.17) and (5.23) and

Proposition A.2.1,

V2(DY −D2)|Y ⊂ VY (−bQ− (a+ 1)B) = 0

V2(DY −D2)|Ej (−Bj) ⊂ H0(OEj (aBj − (a+ 1)P )) = 0.

Hence, by Exact Sequence (5.7),

V2(DY −D2)|C = 0,

a contradiction.

The case Q = R follows as in the case Q = R in Case 4.

Case 6: Assume P ∈ X and Q ∈ Y . If a ≥ gX then we can choose D1 and D2 such that

L1(D1)|Ei = L2(D2)|Ei = OEi for i = 1, . . . , n− 1

L1(D1)|Y = OY ((1 + i)R− (b− 1)Q+ (b− i− 1)B)

L2(D2)|Y = OY ((1 + i)R− bQ+ (b− i)B)

L1(D1)|X = ωX((2 + a− gX)A− aP )

L2(D2)|X = ωX((1 + a− gX)A− (a+ 1)P ).

Since either

h0(OY ((1 + i)R− (b− 1)Q+ (b− i− 2)B)) = 0 or

h0(OY ((1 + i)R− bQ+ (b− i− 1)B)) = 0,

and since P cannot be a special ramification point of either H0(ωX((2 +a− gX)A)) or H0(ωX((1 +

a− gX)A)) by Proposition 5.3.2, Lemma 5.2.4 finishes the proof.
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Suppose now that a ≤ gX − 1. Then b ≥ i + 2. Suppose Q 6= R. Then there exist effective

divisors D1, D2 not containing Y such that

L1(DY −D1)|Ej = L(DY −D2)|Ej = OEj for j = 1, . . . , n− 1

and, using Lemma 5.2.1,

V1(DY −D1)|Y ⊂ VY (−(b− 1)Q− (a+ 1)B)

V2(DY −D2)|Y ⊂ VY (−bQ− aB)

and

V1(DY −D1)|X(−A) ⊂ H0(ωX(−(gX − a− 1)A− aP )) (5.25)

V2(DY −D2)|X(−A) ⊂ H0(ωX(−(gX − a)A− (a+ 1)P )), (5.26)

with DY as in Equation (5.16). But Proposition 5.3.3 says that the complete linear systems in

(5.25) and (5.26) have the expected dimensions, namely 1 and 0. Hence we get from Exact Sequence

(5.7), that both

dimVY (−bQ− aB) and dimVY (−(b− 1)Q− (a+ 1)B)

are positive, a contradiction by Proposition A.2.1 and Lemma 5.2.5.

The case Q = R is handled similarly to the case Q = R in Case 4.�

Proposition 5.3.6 Let i0 be a fixed positive integer. Then, for a general curve C of genus g and

a general point R ∈ C,

h0 (ωC((1 + i)R− (a− 1)P − (b− 1)Q)) = 2

for every P,Q ∈ C\{R}, every i = 0, 1, ..., i0 and every positive integers a, b with a+ b = g + i.

Proof. Since H0(ωC((1 + i)R)) has no special ramification points, we may assume that a > 1 and

b > 1. The condition

h0 (ωC((1 + i)R− (a− 1)P − (b− 1)Q)) ≥ 3

is equivalent to

h0(OC((a− 1)P + (b− 1)Q− (1 + i)R)) ≥ 1

which is equivalent to the existence of a map C → P1 of degree a+b−2 taking P and Q to the same

point and having ramification degrees a− 2 and b− 2 on P and Q, respectively, and ramification

degree at least i on R. If i > 0, considering the Hurwitz scheme Hi parametrizing covers of this

type (see [7] and [15]), we see that its dimension is

2g − 2 + 2(a− 1 + b− 1)− (a− 2)− (b− 2)− i− 1 = 3g − 3.

Hence the map Hi →Mg,1 taking a covering C → P1 to the curve (C,R) cannot be dominant.
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If i = 0 the dimension of H0 will actually be

2g − 2 + 2(a− 1 + b− 1)− (a− 2)− (b− 2)− 2 = 3g − 4.

Hence the map H0 →Mg taking a covering C → P1 to the curve C cannot be dominant.�

Corollary 5.3.1 Let (C,R) be a general genus-g pointed smooth curve, and a, b, i integers such

that i ≥ 0, a, b ≥ 1 and a + b = g + i. Then there are no points P,Q ∈ C\{R} such that Q

is a special ramification point of H0(ωC((1 + i)R − aP )) and Q is a special ramification point of

H0(ωC((1 + i)R− bQ)).

Proof. Just combine Lemma 5.2.7 with Propositions 5.3.4, 5.3.5 and 5.3.6.

Corollary 5.3.2 Let (C,A,B) be a general genus-g two-pointed smooth curve, and a, b integers

such that a, b > 1 and a + b = g + 1. Then there are no points P,Q ∈ C\{A,B} such that Q

is a special ramification point of H0(ωC(A + B − aP )) and P is a special ramification point of

H0(ωC(A+B − bQ)).

Proof. We will just make the points A and B coalesce. Let X be the union of a general

genus-g 1-pointed curve (C,R1) with a 3-pointed rational curve (P1, R2, A,B), identifying R1 with

R2. Let π : C → Σ be a smoothing of X and σA and σB sections of π intersecting X at A and B.

If every 2-pointed curve (C,A,B) admits points P and Q satisfying the conditions negated by the

Corollary, then (possibly after a base change) there exist sections σP and σQ through the smooth

locus of π intersecting the general fiber at those points. Let P := σP (0) and Q := σQ(0), denote by

ΓA, ΓB , ΓP and ΓQ the images of σA, σB , σP and σQ, and set L := ωπ(ΓA + ΓB) and V := π∗(L).

It is straightforward to see that for every i = 1, . . . , g we have

L(−C)|C = ωC(2R1)

L(−C)|P1 = ωP1(A+B)

L(−iP1)|C = ωC((1− i)R1)

L(−iP1)|P1 = ωP1((1 + i)R2 +A+B).

Thus, using Lemma 5.2.1,

VC = V(−C)|C = H0(ωC(2R1))

VP1 = V(−gP1)|P1 = H0(ωP1(A+B)) + H0(ωP1((1 + g)R2))

V(−iP1)|P1 = H0(ωP1(A+B)) + H0(ωP1((1 + i)R2)).

(5.27)

We now have some cases to check.

Case 1: Assume P,Q ∈ C (see Figure A.1). Then the result follows from Corollary 5.3.1.

Case 2: Assume P ∈ C and Q ∈ P1 (see Figure A.2). If P is not a ramification point of

H0(ωC(−(g − a)R1)), then

V(−aΓP )P1 = V(−(g − a)P1 − aΓP )|P1 = H0(ωP1(A+B)) + H0(ωP1((1 + g − a)R2)),
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which, by Proposition A.1.4, does not have special ramification points. Thus, P must be ramifica-

tion point of H0(ωC(−(g−a)R1)), and hence, by Lemma 5.2.5 and Proposition 5.3.3 we see that P

is not a ramification point of the linear systems H0(ωC(−(g−a−1)R1)) and H0(ωC(−(g−a+1)R1)).

However,

L(−(b− 1)P1 − bΓQ)|P1 = OP1 and

dimV(−(b+ 1)P1)|P1(−(b+ 1)Q) = 1

by Proposition A.1.4. Therefore, by Exact Sequence 5.7 and dimension considerations, we get that

H0(ωC(−(g − a+ 1)R1)) ⊂ V(−bΓQ)C ⊂ H0(ωC(−(g − a− 1)R1)).

Since P is a special ramification point of V(−bΓQ)C , P must be a ramification point of either

H0(ωC(−(g − a− 1)R1)) or H0(ωC(−(g − a+ 1)R1)),

a contradiction.

Case 3: Assume P,Q ∈ P1 (see Figure A.3). Thus, by Lemma 5.2.7 and degree considerations,

we have that

dimVP1(−(a− 1)P − (b− 1)Q) ≥ 3,

which, by Proposition A.1.4, implies that {P,Q} = {A,B}.
Without loss of generality we can assume P = A and Q = B. Now, we blow up the points A

and B. Let P1
A and P1

B be the exceptional divisors. We will still denote by ΓA, ΓB , ΓP and ΓQ
their strict transforms. Let Ã := ΓA ∩ P1

A and B̃ := ΓB ∩ P1
B (see Figure A.7). Then there exists

an effective divisor D on C supported on X such that

L(D)|C = ωC((1− g)R1)

L(D)|P1 = ωP1((1 + g)R2 + (1− a)A+ (1− b)B) = OP1

L(D)|P1
A

= ωP1
A

((1 + a)A+ Ã)

L(D)|P1
B

= ωP1
B

((1 + b)B + B̃),

and by Lemma 5.2.1 applied to L(D − ΓB − ΓA) and dimension considerations, we get that

H0(ωP1
A

((1 + a)A)) = V(D)|P1
A

H0(ωP1
B

((1 + b)B)) = V(D)|P1
B
.

Therefore, it is easy to see that V(−aΓP )P1
B

= V(D)|P1
B

, which does not have ramification points,

a contradiction.

Case 4: Assume that we have to do a base change, i.e., P goes to the node. Let F be the

exceptional divisor and P ∈ F (see Figure A.8). Note that there might appear other exceptional
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divisors, but they are irrelevant for the computations below. Then there exist divisors DC , DF

and DP1 on C supported on X such that

L(DC)|P1 = ωP1(A+B)

L(DC)|F = ωF (2R2 + aR1)

L(DC)|C = ωC((2− a)R1);

L(DF )|P1 = ωP1(A+B)

L(DF )|F = ωF (2R2 + (1 + g)R1)

L(DF )|C = ωC((1− g)R1) and

L(DP1)|P1 = ωP1((1 + b)R2 +A+B)

L(DP1)|F = ωF ((1− b)R2 + (1 + g)R1)

L(DP1)|C = ωC((1− g)R1).

Now, Lemma 5.2.1 implies that

V(DC)|F = H0(ωF (2R2)) + H0(ωF (aR1)),

and then, by Section A.1,

V(DC)|F (−aP ) = 0;

therefore,

V(−aΓP )C = V(DC − aΓP )|C = H0(ωC((1− a)R1)),

which does not have special ramification points, whence Q /∈ C.

In case Q ∈ P1, Lemma 5.2.1 implies that

V(−aΓP )P1 = V(DP1 − aΓP )|P1 = H0(ωP1(bR2)) + H0(ωP1(A+B)),

which does not have special ramification points by Proposition A.1.4. Finally, in case Q ∈ F , the

result follows from Proposition A.1.2, since

V(−aΓP )F = V(DF − aΓP ) = (H0(ωF (2R2)) + H0(ωF ((1 + g)R1)))(−aP ).

The case where P and Q go to diferent rational curves after the base change is handled in a

similar manner.�

Looking closely at the proof of Proposition 5.3.6, we see that the locus in Mg where the fibers

of the map H0 → Mg have dimension at least 1 has codimension at least 2; hence the locus of

curves C such that there exist infinitely many pairs of points (P,Q) satisfying

h0(OC((a− 1)P + (b− 1)Q)) ≥ 2
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has codimension at least 2 in Mg.

However we do not know the existence of parameter spaces to prove similar statements in the

setup of Propositions 5.3.4 and 5.3.5. The approach used here to prove these propositions, although

it can possibly be extended, would lead to a very long reasoning, since now the limit curve C will

be a nodal union of curves (X,A) and (Y,B) with X a general curve, but we must allow A to vary,

and in fact we must consider other kinds of curves C, some not of compact type. Therefore, we

just state:

Hypothesis 5.3.1 For g ≥ 4 and integers a, b > 1 with a+b = g, the locus in Mg of curves C hav-

ing infintely many pairs of points (P,Q) such that P is a special ramification point of H0(ωC(−aQ))

and Q is a special ramification point of H0(ωC(−bP )) has codimension at least 2.

For genus 4, and thus a = b = 2, it is easy to see that the hypothesis is true, since a nonhyperelliptic

genus-4 curve is canonically embbedded in P3. Indeed, supose there are infinitely many pairs of

points (P,Q) such that P is a special ramification point of H0(ωC(−2Q)) and Q is a special

ramification point of H0(ωC(−2P )). The condition

h0(ωC(−2P −Q)) ≥ 2

means that the tangent line at P intersects the curve again at Q, which is impossible for every

point P . To see this, just note that C lies on a quadric Q, whence the tangent L line at P cannot

intersect the quadric in another point, because L ·Q = 2, unless L ⊂ Q, but it is clear that for a

smooth nonrational curve C ⊂ P1 × P1 not every point P ∈ C has vertical or horizontal tangent

line.

So we must have infinitely many pairs of points (P,Q) with

h0(ωC(−3P − 3Q)) ≥ 1. (5.28)

But for a general point P , h0(ωC(−3P )) = 1; then there is a unique point Q satisfying (5.28). This

gives an automorphism of C, and the locus of curves with nontrivial automorphisms has codimen-

sion 2 in M4. (In general, the locus of curves with nontrivial automorphisms has codimension g−2

in Mg; see [22]).
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Chapter 6

The divisor

6.1 Introduction

Our aim in this section is to compute the class of the divisor Rg in Picfun(Mg), for g = 2n and

n ≥ 2, that is defined as the closure of the locus of smooth curves C with a pair of points (P,Q)

satisfying that P is a special ramification point of the linear system H0(ωC(−nQ)) and Q is a

special ramification point of H0(ωC(−nP )). In fact, Rg is going to be defined more carefully later,

but its support in Mg is the locus above.

But how do we compute this class? Let’s first understand what happens on the smooth locus.

Let π : X → T be a family of smooth curves, and denote by Xt the fiber over a point t. The idea

is to take the double product Y := X ×T X , viewed as a family of curves by the first projection

p1 : Y → X , and consider the ramification divisor W of the line bundle ωp1(−n∆) with respect to

p1; this divisor is also the ramification divisor of ωp2(−n∆) with respect to p2 by Lemma 5.2.6.

Following the steps in Section 5.1, the next part is to find the special ramification locus SWp1 (as

a set, this is {(t, P,Q), P,Q ∈ Xt such that Q is a special ramification point of H0(ωXt(−nP ))}),
which is given as the degeneracy scheme of the map OY(W )→ J1

p1
(OY(W )), and intersect it with

SWp2 , which can be defined analogously. It is easy to see that this intersection is the degeneracy

scheme SWp1,p2 of the map

OY(W )→ J1,1
p1,p2

(OY(W ))

where J l,kp1,p2
(L) is the fibered sum:

J l,kp1,p2
(L) → J lp1

(L)

↓ ↓
Jkp2

(L) → L

All we have to do now is to compute π∗p1∗([SWp1,p2 ]). To do this we need the class of W first,

which is given by the Thom–Porteous Formula:

[W ] = c1(Jn−1
p1

(ωp1(−n∆)))− c1(p∗1p1∗(ωp1(−n∆))).
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Using the truncation sequences to get

c1(Jn−1
p1

(ωp1(−n∆))) =
(
n

2

)
c1(ωp1) + nc1(ωp1(−n∆))

and Grothendieck–Riemann–Roch to see that

c1(p1∗(ωp1(−n∆))) = π∗λ−
(
n+ 1

2

)
Kπ,

we have (cf. Equation (6.4))

[W ] =
(
n+ 1

2

)
(Kp1 +Kp2)− n2∆− p∗1π∗λ,

where Kπ := c1(ωπ) and Kpi := p∗3−iKπ for i = 1, 2.

Now, [SWp1,p2 ] is given by the Thom–Porteous Formula:

[SWp1,p2 ] = c3(J1,1
p1,p2

(OY(W ))) = (Kp1 + [W ])(Kp2 + [W ])[W ].

And using formulas like K3
p1

= K3
p2

= 0 and π∗p1∗(Kp1Kp2∆) = κ we get:

π∗p1∗([SWp1,p2 ]) = (36n7 − 18n6 + 30n5 − 26n4 − 2n3 − 30n2 − 16n− 4)λπ

The steps above suggest us how to define properly the divisor we are able to compute. Let M̃0
g

be the locus in M0
g of curves C such that there is no point P ∈ C with h0(ωC(−nP )) ≥ n + 1

and there is at most a finite number of pairs (P,Q) such that P is a special ramification point

of H0(ωC(−nQ)) and Q is a special ramification point of H0(ωC(−nP )). The complement of this

locus has codimension at least 2 by Proposition 5.3.1 and by Hypothesis 5.3.1. Also, by Corollary

5.3.1, the image π ◦ p1(SWp1,p2) has codimension 1 in M̃0
g .

Definition 6.1.1 Let π : C̃0 → M̃0
g be the universal family. Define Rg := π ◦ p1(SWp1,p2) in Mg.

But how to generalize the steps taken above to stable curves? First of all, we can reduce our

family to a general 1-parameter family, therefore avoiding unwanted singular curves. In fact we

can assume that the singular curves we have in our family are of δi type, i.e., are general members

of ∆i having only one node. And furthermore, that these curves are not in Rg, which means that

any points of SWp1,p2 found on the singular fibers are excess points. The natural idea from here

on is to restrict the family to its smooth locus, and use limit linear series to understand the closure

of W . However, if we have a δ0 type curve X0 with node P , one can expect that the closure of

W will contain {P} ×X0; therefore SWp1,p2 will also contain {P} ×X0, hence will not have the

expected codimension, invalidating the Thom–Porteous Formula.

To solve this, take a finite map T ′ → T of degree n fully ramified over the points t of T such

that Xt is an irreducible singular fiber and unramified over the points where the fiber is reducible.

Let X ′ be the desingularization of X×T ′. Then our irreducible singular curves become the union of

a genus-(g−1) curve with a chain of n−1 rational smooth curves joining the points over the node.
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With this configuration the closure of W will not contain all the nodes, it will still contain some

nodes; but since we are differentianting in both directions, the nodes will not appear in SWp1,p2 .

But this new family introduces some other complications: we now have a lot of singularities in

the double product, which are solved by blowing up specific codimension-1 subschemes. Moreover,

after solving these singularities the sheaf p∗1p1∗(ωp1(−n∆̃)) will not be a vector bundle, and again

we cannot apply Thom–Porteous Formula. We solve this problem by twisting the line bundle

ωp1(−n∆̃) with a divisor supported in the singular fibers, thus leaving unchanged the divisor W .

Finally, the only concern that remains is whether the closure of W will be flat, but this is fortunately

the case. After all the work we end up with our main theorem:

Theorem 6.1.1 For each n ≥ 2, the following formula holds in Picfun(M2n)⊗Q:

Rg = a(n)λ− b0(n)δ0 −
n∑
i=1

bi(n)δi

where

a(n) := 36n7 − 18n6 + 30n5 − 26n4 − 2n3 − 30n2 − 16n− 4,

b0(n) := 4n7 − n6 +
2
3
n5 − 4

3
n4 − 5

3
n3 − 5

3
n2 − 2,

bi(n) := 12n7i+ 6n6i2 − 24n5i3 + 6n4i4 + 12n3i5 − 6n2i6 − 6n6i+ 42n5i2 − 33n4i3 − 30n3i4

+33n2i5 − 6ni6 + 6n6 − 52n5i+ 70n4i2 + 8n3i3 − 59n2i4 + 29ni5 − 4i6 + 12n5 − 43n4i

+24n3i2 + 46n2i3 − 51ni4 + 14i5 + 10n4 − 36n3i− 4n2i2 + 41ni3 − 18i4 + 4n3 − 17ni2

+11i3 − 4ni+ 2i2 − i.

6.2 Setup

Let π′ : X ′ → T ′ be a general 1-parameter family of stable curves over a smooth curve T ′. In

particular, X ′ is smooth. Let τ : T → T ′ be a finite map of degree n, fully ramified over the points

t′ of T ′ such that X ′t′ is an irreducible singular fiber, and unramified over the points where the fiber

is reducible. That such map exists can be seen in [10]. Let X be the desingularization of X ′ × T .

In the following calculations we will restrict ourselves to a neighborhood in T of some point t0,

such that the fiber of X over t0 is singular, and such that this fiber is the only singular fiber. It will

be clear how to “patch” these calculations later. We will still denote the family by π : X → T and

by τ the restricted map. We have then two cases to analyze, when the singular fiber is irreducible

and when it’s not.
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6.2.1 The irreducible case

The family π : X → T satifies Xt = X ′τ(t) if t 6= t0. Let t′0 := τ(t0); then X ′ := X ′t′0 is a nodal

irreducible curve with just one node, because the family is general. Let C be the normalization

of X ′ and denote by A and B the points over the node. Then X := Xt0 is the union of C and a

chain of n − 1 rational smooth curves E1, E2, . . . , En−1 connecting A and B (with {A} = E1 ∩ C
and {B} = En−1 ∩ C); see Figure 5.1. We extended the notation by setting E0 = En := C, and

denoting by AEi and BEi , for i = 1, . . . , n−1 the intersection of Ei−1 with Ei and the intersection

of Ei with Ei+1, respectively.

Now we define Y := X ×T X with projections p1, p2. Let E′i,j := Ei×Ej for i, j = 0, 1, 2, . . . , n.

Since Y is singular at the points (P,Q) where P and Q are singular points of X, we desingularize

it by blowing up in the following way: First, we blow up the diagonal; then we blow up the (strict

transforms of the) E′i,j with |i− j| = 0, then the (strict transforms of the) E′i,j with |i− j| = 1 and

so on. Let b : B → Y denote the desingularization. Let ∆̃ and Ei,j denote the strict transforms of

∆ and E′i,j ; also, let ρi := pi ◦ b.
In this desingularization, the preimage of a singular point of Y is a rational smooth curve.

Moreover if {R} = E′i,j ∩E′i,j+1 ∩E′i+1,j ∩E′i+1,j+1, then, R will be desingularized by the blowup

of E′i,j+1 or E′i+1,j if i 6= j, because in this case |i − j| > min{|i − j − 1|, |i − j + 1|}, and by the

blowup of the diagonal if i = j.

Let P ∈ X . The family ρ1 : B → X satisfies BP = Xπ(P ) if P isn’t a node of Xπ(P ). In

particular, if P ∈ X and is not a node, then the curve BP is the union of CP with a chain of n− 1

rational curves E1,P , E2,P , . . . , En−1,P , where Ei,P = {P} ×Ei and CP = {P} ×C. We will often

denote Ei = Ei,P and C = CP when it is clear that we are on the fiber BP .

When P is a node of X, we have that BP is the union of CP with a chain of 2n − 1 rational

curves F1,P , E1,P , F2,P , E2,P , ..., En−1,P , Fn,P with {A} = F1,P ∩ C and {B} = Fn,P ∩ C, where

Fi,P is the rational smooth curve over the singularity {P} × (Ei−1 ∩ Ei) of Y for i = 1, . . . , n. As

for the Ei we will often denote Fi := Fi,P . See figures 6.1 and 6.2. We define AFi and BFi in a

similar way to the AEi and BEi . It’s easy to see that if P ∈ Ei ∩ Ei+1 then

Ei,j ∩ BP = Fj ∪ Ej , Ei+1,j ∩ BP = Ej ∪ Fj+1 and ∆̃ ∩ BP = Fi+1

for i = 0, 1, . . . , n− 1.

Let

L := ωρ1(−n∆̃− E)

where

E :=
n−1∑
i,j=1

ai,jEi,j

and ai,j := nmin{i, j} − ij. Let also E := ρ∗1ρ1∗ (L) and F := Jn−1
ρ1

(L), and let e : E → F be the

evaluation map.

Proposition 6.2.1 E is a vector bundle of rank n.
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Figure 6.2: After the blowup

Proof. We just need to show that h0 (L|BP ) = n for every P ∈ X . Thus we have 4 cases to

check:

Case 1: P lies on a smooth fiber of π. Then

H0(L|BP ) = H0(ωXπ(P )(−nP ))

which has dimension n by Proposition 5.3.1. (Indeed, since π is a general family, it avoids a

codimension-2 locus in Mg.)

Case 2: P lies on C\{A,B}. Then

BP = C ∪ E1 ∪ . . . ∪ En.

Also, L|C = ωC(A+B − nP ) and L|Ei = OEi for i = 1, . . . , n− 1. So

h0(L|BP ) = h0(ωC(A+B − nP )),

and since (C,A,B) is a general 2-pointed curve with genus g−1, by Proposition 5.3.2 this dimension

is n.

57



Case 3: P lies on a certain Ei, with 0 < i < n, and is not a node. Then

L|C = ωC((1− n+ i)A+ (1− i)B)

L|Ej = OEj (2ai,j − ai,j−1 − ai,j+1) for j 6= i

L|Ei = OEi(2ai,i − ai,i−1 − ai,i+1 − n).

This means that L|Ej = OEj for j = 1, . . . , n− 1; then, by Lemma 5.2.4, h0(L|BP ) = n.

Case 4: P ∈ Ei ∩ Ei+1 for i = 0, 1, . . . , n− 1. Then

L|C = ωC((1− n+ i)A+ (−i)B)

L|Ej = OEj (ai,j + ai+1,j − ai,j+1 − ai+1,j−1) if j 6= i, i+ 1

L|Ej = OEj (ai,j + ai+1,j − ai,j+1 − ai+1,j−1 − n) if j = i, i+ 1

L|Fj = OFj (ai,j + ai+1,j−1 − ai,j−1 − ai+1,j) if j 6= i+ 1

L|Fj = OFj (ai,j + ai+1,j−1 − ai,j−1 − ai+1,j + n) if j = i+ 1

which implies L|Ej = OEj (−1) and L|Fj = OFj (1) for j = 1, . . . , n. Then, by Exact Sequence

(5.7),

h0(L|BP ) = h0(ωC((1− n+ i)A− iB)),

which gives us h0(L|BP ) = n. �

Since E is a vector bundle we can define W ′ as the degeneration scheme of the evaluation map

e : E → F . In addition let W̃ := W ′ ∩ Bns, where Bns is the smooth locus of p1, and let W be the

ramification divisor, i.e., W := W̃ .

Proposition 6.2.2

W = W ′ −
n−1∑
i=1

ni(n− i)
2

ρ∗2Ei

.

Proof. This equality is obvious off Bt0 . To prove the equality on Bt0 we take slices Σ in X
intersecting X transversally at a point P ∈ X, i.e., we will take a map Spec(C[[t]])→ X taking the

closed point to P and such that the image is transversal to X. (When P is a node, by “transversal”

we mean transversal to each component of X.) Then we consider the fiber product S:

S f−−−−→ B

σ

y yπ
Σ −−−−→

i
X

(6.1)

and prove the equality in S.

Above, σ is a family of genus-g curves with smooth general fiber. Since the formation of the

degeneration scheme comutes with base change, we get that f∗(W ′) is the degeneration scheme of

the line bundle LΣ := f∗(L).
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Assume now that P ∈ Ei, with 0 < i < n, and P is not a node of X; then, following the proof

of Proposition 6.2.1, we get

LΣ|C = ωC((1− n+ i)A+ (1− i)B),

LΣ|Ej = OEj for j = 1, . . . , n− 1.

We are done if we can apply Lemma 5.2.3. We see that, following the notation of that lemma,

Ṽ = H0(ωC(−(n− i)A− iB)).

Hence, the hypotheses of the lemma become:

h0(ωC(−jA− ((g − 1)− j − 1)B)) = 1,

h0(ωC(−(j + 1)A− ((g − 1)− j)B)) = 0

for all j = 0, . . . , g − 1, which hold since (C,A,B) is a 2-pointed general curve of genus g − 1.

On the other hand, if P ∈ C\{A,B} then

LΣ|C = ωC(A+B − nP ),

LΣ|Ej = OEj for j = 1, . . . , n− 1.

As before, we want to apply Lemma 5.2.3. Now, Ṽ = H0(ωC(−nP )), which means that we need

only check that

h0(ωC(−jA− (n− 2− j)B − nP )) = 1,

h0(ωC(−(j + 1)A− (n− 1− j)B − nP )) = 0

for all j = 0, . . . , n − 2. But (C,A,B) is a 2-pointed general curve; hence the linear systems

H0(ωC(−jA−(n−2−j)B)) and H0(ωC(−(j+1)A−(n−1−j)B)) do not have special ramification

points by Proposition 5.3.3, whence the equalities above follow.

By Lemma 5.2.3, the diference f∗(W ′)−
∑n−1
i=1

ni(n−i)
2 Ei has no vertical components, and hence

the proposition is proved.�

Proposition 6.2.3 The divisor W is flat over X . If P is a node of X then W ∩ BP is a reduced

scheme. At any rate, W ∩(Ei,P \{AEi , BEi}) is reduced for every i = 1, . . . , n−1 and every P ∈ X.

Proof. Let Σ be a slice through a point P ∈ X and S as in Cartesian Diagram (6.1). Set S0 := BP ,

the special fiber of σ. Assume first that {P} = Ei ∩ Ei+1, for i = 0, 1, . . . , n− 1 . Then

S0 = C ∪ F1 ∪ E1 ∪ . . . ∪ En−1 ∪ Fn.

.

Fix l ∈ {1, 2, . . . , n}. Recall that Fl ⊂ Ei,l ∩ Ei+1,l−1. Let

Li,l := L(−
n−1∑
j=1

(aj,lEi,j + aj,l−1Ei+1,j)).
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Then, over P , that is, on BP ,

Li,l|Fl = OFl(1 + al,l + al−1,l−1 − al−1,l − al,l−1) = OFl(n),

whereas for j < l

Li,l|Fj = OFj (1 + aj,l + aj−1,l−1 − aj−1,l − aj,l−1) = OFj ,
Li,l|E,j = OEj (−1 + aj,l + aj,l−1 − aj−1,l−1 − aj+1,l) = OEj .

Similarly, Li,l|Ej and Li,j |Fj are trivial ofr j > l as well. As for C, we get

Li,l|C = ωC((1− 2n+ i+ l)A+ (1− i− l)B),

which means that h0(Li,l|BP ) = n by Lemma 5.2.4. Therefore ρ1∗(Li,l) is a vector bundle in a

neighborhood of P . Also, for every Σ through P , the degeneration scheme W ′Σ,i,l of σ∗f∗(Li,l)
does not contain Fl, because σ∗f∗(Li,l) has focus on Fl.

Because the formation of the degeneration scheme commutes with base change, we see that

W ′Σ,i,l is the pullback of the degeneration scheme of π∗Li,l. But this degeneration scheme contains

W , and hence W does not contain Fl.

Moreover, we see that the limit linear system with focus on Fl is a subspace VFl ⊂ H0(OFl(n))

such that V (−AFl) = V (−BFl) = V (−AFl −BFl), because h0(Li,l|C(−A)) = h0(Li,l|C(−B)) = 0.

Hence

V (−nAFl) = V (−nAFl −BFl) ⊂ H0(OFl(n))(−nAFl −BFl) = 0,

which means that AFl (analogously, BFl) is not a ramification point of VFl . Also, for Q ∈ Fl\{A,B}

VFl(−(n+ 1)Q) ⊂ H0(OFl(n))(−(n+ 1)Q) = 0.

Moreover, since

H0(OFl(n))(−AFl −BFl) ⊂ VFl

and H0(OFl(n))(−AFl−BFl) is a complete linear system, the vanishing sequence of VFl at Q starts

with 0, 1, . . . , n − 2, which means that dim(VFl(−(n − 1)Q)) = 1. Therefore, VFl has no special

ramification point. By Plücker Formula, it has exactly n ramification points.

As for C, we know that LΣ has focus on C and the limit linear system is H0(ωC((1−n+i)A−iB)).

Since (C,A,B) is a general 2-pointed curve, by Proposition 5.3.3 this linear system has no special

ramification points, and A and B are not ramification points. By Plücker Formula, this linear

system has n(n − 1)(2n + 1) points. Moreover, the proof of Proposition 6.2.2, shows that W is

flat over X away from the nodes of X. Indeed, the proof of Proposition 6.2.2 shows that, for each

P ∈ X not a node and each slice Σ through P , f∗W does not have vertical components in S.

Since W ∩ S0 contain the n(n − 1)(2n + 1) + n2 = n(2n2 − 1) ramification points described

above and W is flat of degree n(2n2 − 1) in a punctured analytic neighboorhood of P , we see that

W does not contain any Ej and there are no more points in W ∩ S0 other than those described

above.
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Since W is flat, the intersection W ∩ BP is equal to the intersection of the ramification divisor

of the slice with S0. And this divisor is given by Equation (5.6). Therefore W ∩ S0 is reduced.

Assume now that P ∈ Ei, for 0 < i < n, but P is not a node of X. Let Σ be a slice through P ,

and set

Ll := LΣ

n−1∑
j=1

al,jEj

 . (6.2)

Then

Ll|Ej = OEj for j 6= l,

Ll|El = OEl(n),

Ll|C = ωC((1− 2n+ i+ l)A+ (1− i− l)B).

Therefore, Ll has focus on El, and again the limit linear system VEl is a subspace of H0(OEl(n))

satisfying

VEl(−AEl) = VEl(−BEl) = VEl(−AEl −BEl). (6.3)

As before, VEl has no special ramification points, n ramification points and AEl , BEl are not

ramification points.

If P ∈ C\{A,B}, then we can still define Ll as in Equation (6.2), but now one restriction

changes:

Ll|C = ωC((1− n+ l)A+ (1− l)B − nP ).

Since (C,A,B) is a general 2-pointed curve, by Proposition 5.3.3, h0(Ll|C) = 1. There are two

cases to consider: First, if

h0(ωC(−(n− l)A− (l − 1)B − nP )) = h0(ωC(−(n− l − 1)A− lB − nP )) = 0

then VEl satisfies (6.3) as well. On the other hand, if h0(ωC(−(n− l)A− (l− 1)B−nP )) = 1 (and

analogously for B) then the only section of H0(Ll|C) vanishes on A, and hence AEl is going to be

a base point of VEl ; therefore there will be no other ramification points by Plücker Formula. This

concludes the proof of the proposition. �

Corollary 6.2.1 SWρ1,ρ2 ∩ Bt0 = ∅

Proof. From the proposition above and the symmetry of W and SWρ1,ρ2 , we get that if R ∈
SWρ1,ρ2 ∩Bt0 , then ρ1(R), ρ2(R) ∈ C\{A,B}. Denoting P := ρ1(R) and Q := ρ2(R), the fact that

R is in the intersection above means that P is a special ramification point of H0(ωC(A+B−nQ))

and Q is a special ramification point of H0(ωC(A + B − nP )). But since (C,A,B) is general, by

Corollary 5.3.2 there are no such pairs of points (P,Q).

Proposition 6.2.4 R1ρ1∗L ∼= OX .
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Proof. First we see that h1 (L|BP ) = 1 for every P ∈ X , because of Proposition 6.2.1 and

Riemann–Roch. This means that R1ρ1∗L is a line bundle.

Now, set D = n∆̃ + E and consider the exact sequence.

0→ L → ωρ1 → ωρ1 |D → 0

Take the pushforward by ρ1, which gives us the long exact sequence:

0 → ρ1∗ (L) → ρ1∗ (ωρ1) → ρ1∗ (ωρ1 |D) →
R1ρ1∗ (L) → R1ρ1∗ (ωρ1) → R1ρ1∗ (ωρ1 |D) → 0.

Since R1ρ1∗(ωρ1) = OX , we have a map R1ρ1∗(L) → OX . Since R1ρ1∗(L) is a line bundle, if we

prove that R1ρ1∗(ωρ1 |D) = 0 in codimension 2, then the map is an isomorphism. To prove this we

take the exact sequence:

0→ ωρ1 (−E) |n∆̃ → ωρ1 |D → ωρ1 |E → 0.

Taking the pushforward under ρ1, and observing that R1ρ1∗(ωρ1 (−E) |n∆̃) = 0 in codimension 2,

because it is supported on the nodes of X, we get an isomorphism R1ρ1∗(ωρ1 |D)→̃R1ρ1∗(ωρ1 |E) in

codimension 2. Therefore we need only prove that R1ρ1∗(ωρ1 |E) = 0, or equivalently, H1(BP , (ωρ1 |E)|BP ) =

0 for every P ∈ X away from a codimension-2 locus. If P /∈
⋃n−1
i=1 Ei then this is obvious. Suppose

now that P ∈ Ei and P is not a node of X. (The locus of the nodes has codimension 2 in X .)

Consider the exact sequence

0→ ωρ1(−E)→ ωρ1 → ωρ1 |E → 0.

Restricting to BP , we get a right-exact sequence:

ωρ1(−E)|BP → ωBP → (ωρ1 |E)|BP → 0.

Now, writing BP = C∪(
⋃
Ei), we see that the image of the first map is ωC(A+B−E ·C), because

Ei ⊂ E and thus the map is 0 over the Ei. Therefore, we get an exact sequence of the form:

0→ ωC(A+B − E · C)→ ωBP → (ωρ1 |E)|BP → 0.

Taking the long exact sequence in cohomology,

H1 (C,ωC(A+B − E · C))→ H1 (BP , ωBP )→ H1(BP , (ωρ1 |E)|BP )→ 0

is exact. Therefore, we just have to prove that the first map is a surjection, which is the same, by

duality, as proving that the map H0(BP ,OBp)→ H0(C,OC((n− i− 1)A+ (i− 1)B)) is injective,

which is obvious.�
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6.2.2 The reducible case

Our special fiber now is the nodal union of a general genus-i pointed curve (X,A) with a general

genus-(2n− i) pointed curve (Y,B) identifying A with B, for i ≤ n. Then on Y := X ×T X we have

4 subschemes X×X, X×Y , Y ×X and Y ×Y , and we have a singularity on the commom point of

those subschemes. To solve this singularity we blow-up X ×X, which gives us a P1 over the point;

we will call B this blowup. We will denote the strict transform of X×X, X×Y , Y ×X and Y ×Y
by Z1,1, Z1,2, Z2,1 and Z2,2 respectively. We will also call the strict transform of the diagonal by

∆̃. A local analysis shows that the new P1 is contained in Z1,1 and Z2,2, but not in Z1,2 or Z2,1,

and intersects ∆̃ properly. See figures 6.3 and 6.4.Set L := ωπ(−n∆̃ − nZ1,1), E := ρ∗1ρ1∗(L) and

F := Jn−1
ρ1

(L).

Proposition 6.2.5 E is a vector bundle of rank n if i < n. If i = n then E is a vector bundle

outside a locus of codimension 2.

Proof. As in Proposition 6.2.1, it is sufficient to prove that h0 (L|BP ) = n for every P ∈ X
(for every P ∈ X outside a locus of codimension 2 if i = n). We have then 4 cases to check:

Case 1: P lies on a smooth fiber of X . Then

H0(L|BP ) = H0(ωXπ(P )(−nP )),

which has dimension n because X → T is a general family.

Case 2: P lies on X\{A}. Then

L|X = ωX((n+ 1)A− nP ),

L|Y = ωY (−(n− 1)B),

and since (X,A) and (Y,B) are general pointed curves we have h0 (L|BP ) = n.
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Case 3: P lies on Y \{B}. Then

L|X = ωX(A),

L|Y = ωY (B − nP ).

Again, since (X,A) and (Y,B) are general pointed curves, we have that h0 (L|BP ) = n if i < n and

if i = n or P is not a Weierstrass point of Y (thus, away form a codimension-2 locus in X ), by

Lemma 5.2.4.

Case 4: P is the node. Then

L|X = ωX(A),

L|P1 = OP1(0),

L|Y = ωY (−(n− 1)B),

which implies that h0 (L|BP ) = n by Lemma 5.2.4.�
Let e : E → F be the evaluation map, and define W ′ as the degeneration scheme of this map,

if i < n. If i = n, we define W ′ as the closure of the degeneration scheme of the restriction of e to

the open set where E is a vector bundle. Since the complement of this open set has codimension

2, the Chow groups of codimension-1 cycles are isomorphic, hence we will be able to apply the

Thom–Porteous formula later. Let W := W ′ ∩ Bns; then W ′ > W .

Let Pj , for j = 1, 2 . . . , i(n2 − 1), be the ramification points of H0(ωX((1 + n − i)A)) distinct

from A; note that Proposition 5.3.2 states that these points are distinct. Also, let Ql, for l =

1, 2, . . . , n(2n2 − in− 1), be the ramification points of H0(ωY (−(n− i)B)); note that Proposition

5.3.3 state that these points are also distinct.

Proposition 6.2.6

W = W ′ −

(
n− i+ 1

2

)
(Z1,1 + Z2,1)−

(
i

2

)
Z1,2 −

(
i+ 1

2

)
Z2,2.

Proof. As in the proof of Proposition 6.2.2 we take a slice Σ through a point P ∈ Xt0 , let S
denote the fibered product, and prove the equality on S:

S f−−−−→ B

σ

y yρ1

Σ −−−−→
i

X

Here, σ : S → Σ is a family of genus-g curves, with smooth generic fiber. The pullback f∗(W ′)

is the degeneration scheme of f∗E → f∗F because of the formation of the degeneration scheme

commutes with base change. Since the sheaf of jets commutes with base change as well, we get

f∗F = Jn−1
σ (ωσ(−nf∗(∆̃)− nf∗Z1,1)).
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Then it is sufficient to prove that

f∗(W ′)−

(
n− i+ 1

2

)
(f∗(Z1,1) + f∗(Z2,1))−

(
i

2

)
f∗(Z1,2)−

(
i+ 1

2

)
f∗(Z2,2)

is effective, and has no vertical components for P different from the Pj , the Ql and the node. (Note

that the Ql are exactly the points of X over which E might not be locally free if i = n.)

If P ∈ X\{A} then

f∗(Z2,j) = 0 j = 1, 2;

thus we need only prove that the degeneration scheme contains X with multiplicity
(
n−i+1

2

)
and

Y with multiplicity
(
i
2

)
. Since P 6= Pl, the point A is not a ramification point of the complete

linear system V |X = H0(ωX((n + 1)A − nP )), and hence has total weight
(
i
2

)
, which, by lemma

5.2.2, implies that the multiplicity of Y is the desired one. Also, B is not a ramification point of

the complete linear system V |Y = H0(ωY (−(n − 1)B)), and hence has total weight
(
n−i+1

2

)
. For

P ∈ Y \{B} the proof is similar.

To see that the hypotheses of Lemma 5.2.2 are satisfied, just notice that, for P 6= Pj ,

V |X(−(j + 1)A) = 0

for every j ≥ i, whereas for j ≤ i− 1 we have

V (−jY )|Y (−B) ⊂ H0(ωY (−(n− j)B)),

which implies dimV (−jY )|Y (−B) ≤ n− i+ j because B is general and

V |X(−jA) ⊂ H0(ωX((1 + n− j)A− nP )),

which implies dimV |X(−jA) ≤ i− j, by Proposition 5.3.2. The argument is similar for the other

hypothesis.�
Unlike the irreducible case, W is not flat in this case, this means that SWρ1,ρ2 will contain

excess points on Bto . Fortunately, we are able to write the local equation of W at these points,

and hence compute their weights in SWρ1,ρ2 .

Proposition 6.2.7 W ∩ Z1,2 is the union of the {Pj} × Y and the X × {Ql}. And in the ring

ÔPj×Ql the local equation of W is

t+ xy + tf(x, y, t) + [degree > 2]

with f(0, 0, 0) = 0, where t is a local parameter of T at π(Pj), and x and y are local parameters of

X at Pj and Y at Ql respectively.

Proof. Let P ∈ X and P 6= Pj , A. Note that, by Proposition 6.2.6 W ∩ BP is finite, and over

a slice Σ through P , the limit linear systems will be VX = H0((ωX((1 + 2n − i)A − nP ))) and

VY = H0(ωY (−(n − i)B)); the first has n2i ramification points (none of which are A) and the
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second n(2n2 − ni − 1) (none of which are B). These add up to n(2n2 − 1), which is the total

number of ramification points. Hence W does not contain the node, and intersects Y in a reduced

subscheme because of Propostion 5.3.3.

Now, if Q ∈ Y , Q 6= Ql, B, then over a slice through Q, the limit linear systems will be

VX = H0(ωX((1 +n− i)A)) and VY = H0(ωY ((1 + i)B−nQ)); the first has n2i ramification points

(now, A has weight i) and the second has n(2n2 − ni) ramification points (B has weight n − i).
These add up to n(2n2− 1) ramification points away from the nodes, which is the total number of

ramification points; hence W does not contain the node and intersects X is a reduced subscheme

by Proposition 5.3.2.

However, for every P ∈ X with P 6= Pj , VY does not depend on the choice of P . This means

that W ∩ Z1,2 contains X × {Ql}. With the same reasoning, we conclude that W ∩ Z2,1 contains

Y × {Pj}, which by the symmetry of W , implies that W ∩ Z1,2 contains {Pj} × Y . Moreover,

W ∩ Z1,2 =
⋃

(X × {Ql}) ∪
⋃

({Pj} × Y ), because W ∩ ({P} × Y ) and W ∩ (X × {Q}) is reduced

for every P 6= Pj and Q 6= Ql.

Now, let Σ be a slice through P := Pj . Let L := f∗(L)((i−2)X), L′ := L(2X) and L′′ := L(3X).

Then

L′|Y = ωY (−(n− 1− i)B)

L′|X = ωX((1 + n− i)A− nP )

L′′|Y = ωY (−(n− i− 2)B)

L′′|Y = ωX((n− i)A− nP ).

If i < n, the line bundle L′ has focus on Y , because h0(ωX((n − i)A − nP )) = 0 by Proposition

5.3.2. Let VY ⊂ H0(ωY (−(n− 1− i)B)) the limit linear system. Since

L|Y = ωY (−(n+ 1− i)B),

L|X = ωX((3 + n− i)A− nP )

and h0(ωX((2 + n− i)A− nP )) = 1 we get that H0(ωY (−(n+ 1− i)B)) ⊂ VY (−2B) by Lemmas

5.2.4 and 5.2.1. On the other hand, for i = n, the line bundle L′′ has focus on Y , because

h0(ωX(−A− nP )) = 0 by Proposition 5.3.3. In this case we have

H0(ωY (−B)) ⊂ VY ⊂ H0(ωY (2B))

Claim 1 If VY 6= H0(ωY (−(n− i)B)) then Ql is not a ramification point of VY .

Proof. Assume i < n. Since Ql is a ramification point of H0(ωY (−(n − i)B)) then Ql is not a

ramification point of either H0(ωY (−(n−i−1)B)) or H0(ωY (−(n−i+1)B)) (H0(ωY (2B)) if i = n),

by Lemma 5.2.5 and because H0(ωY (−aB)) does not admit special ramification points for any a

by Proposition 5.3.3. Hence, the vanishing sequence at Ql of VY starts with 0, 1, . . . , n− 2 but the
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last order cannot be n, because if s is the only, up to multiples, section in H0(ωY (−(n− i− 1)B))

that vanishes with order n at Ql, then s ∈ H0(ωY (−(n− i)B)). But

VY ∩H0(ωY (−(n− i)B)) = H0(ωY (−(n− i+ 1)B)),

and s /∈ H0(ωY (−(n− i+ 1)B)) thus s /∈ VY . This argument clearly works for i = n as well. This

finishes the proof of the claim.

Let x = αt, for α ∈ C, be the local equation of Σ and V ′C the image of the map H0(S, L′) →
H0(C,L′|C). If VY = H0(ωY (−(n − i)B)), then B is base point of VY , which means that every

section of VC vanishes on all X, because L′|X = ωX((1− n+ i)A− nP ). Therefore these sections

will be sections of L′(−X) that are in the image of

H0(S, L′(−X))→ H0(C,L′(−X)|C),

and then L′(−X) will have focus on Y . However, the image of the map

H0(S, L′(−X))→ H0(Y,L′(−X)|Y )

is clearly contained in H0(ωY (−(n−i+1)B)), because A is a base point of H0(ωX((2+n−i)A−nP )),

a contradiction. Thus, VY 6= H0(ωY (−(n− i)B)).

Write now a local equation for W at (Pj , Ql):

a1t+ a2x+ a3y + b1tx+ b2ty + b3xy + [degree ≥ 3],

Then the local equation of f∗W is

t(a1 + αa2) + a3y + t(αb1t+ b2y) + αb3ty + [degree ≥ 3].

But f∗(W ) contains Y and f∗(W ) − Y does not pass through Ql. Thus the local equation is a

multiple of t, whence a3 = 0, and a1 + αa2 6= 0. Since this is valid for almost every α, we must

have a2 = 0 and a1 6= 0.

To compute b3 we make t = 0 and invert x. Geometrically this means to consider Bt0\BPj . But,

in a punctured neighborhood of Pj , the limit linear system on Y is given by H0(ωY (−(n− i)B)),

which has Ql as a ramification point of weight 1, hence y appears with power 1. By symmetry,

also x appears with power 1, hence b3 6= 0, which concludes the proof.�

Proposition 6.2.8 SWρ1,ρ2 ∩Bt0 is the union of the set of points (Pj , Ql) and (Ql, Pj). Further-

more SWρ1,ρ2 is reduced in a neighborhood of these points.

Proof. By the proof of Proposition 6.2.7, for a point (P,Q) ∈ X × X P 6= A 6= Q, to be in

SWρ1,ρ2 it must satisfy that P is a special ramification point of H0(ωX((1 + 2n− i)A− nQ)) and

Q is a special ramification point of H0(ωX((1 + 2n− i)A−nP )), which is not possible by Corollary

5.3.1. The same argument holds for a point of Y × Y . For (P,Q) ∈ X × Y , we use the fact

that W ∩ {P} × Y is reduced if P 6= Pj , and W ∩ X × {Q} is also reduced if Q 6= Ql. Then
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SWρ1,ρ2 ∩Bt0 is supported in the set of points {(Pj , Ql), (Ql, Pj)}. To see that SWρ1,ρ2 is reduced,

just notice that, by Proposition 6.2.7, SWρ1,ρ2 is given locally by equations whose linear terms are

t, b1t+ y, b2t+ x with b1, b2 ∈ C. Hence SWρ1,ρ2 is reduced in a neighborhood of (Pj , Ql).

Let now P be the node. Write ρ−1
2 (P ) = XP ∪ P1 ∪ YP . Since for a general Q ∈ Xt0 we proved

that W does not contain the node of BQ, we have that W contains neither XP nor YP . However,

W does contain (Pj , P ) and (Ql, P ) (because it contains {Pj} × Y and {Ql} ×X). Hence, by the

symmetry of W we see that W ∩BP contains neither X nor Y but contains the points Pj , Ql. But

there are n(2n2 − 1)− i such points; thus we need to understand what happens on the P1.

Take now a slice Σ through the node. Define L := f∗L and L′ = L(iX + (n − i)Y + nf∗∆̃),

then

L′|X = ωX((1− i)A)

L′|Y = ωY ((1− 2n+ i)B)

L′|P1 = OP1(2n).

So L′ has focus on P1 and V ′|P1 ⊂ H0(OP1(2n)). By Lemma 5.2.1, we see that

V ′(−iX)|P1 ⊂ V ′|P1(−iA) ⊂ H0(OP1(2n− iA)).

But L′(−iX)|X = ωX(A), and hence V ′(−iX)|P1 has A as a base point. Therefore

V ′(−iX)|P1 ⊂ H0(OP1(2n− (i+ 1)A)).

But, by the Exact Sequence (5.7), we see that dimV ′(−iX)|P1 = 2n− i; hence we have an equality

above. This gives us

H0(OP1(2n− (i+ 1)A)) ⊂ V ′|P1 .

Analogously,

H0(OP1(2n− (2n− i+ 1)B)) ⊂ V ′|P1 .

But

H0(OP1(2n− (i+ 1)A))
⋂

H0(OP1(2n− (2n− i+ 1)B)) = 0

as subspaces of H0(OP1(2n)); then, by dimension considerations,

V ′|P1 = H0(OP1(2n− (i+ 1)A))⊕H0(OP1(2n− (2n− i+ 1)B)).

Let R := P1 ∩ ∆̃. Using Lemma 5.2.1 again we get

V ′(−nf∗∆̃)|P1 ⊂ V ′|P1(−nR).

Since the only ramification points of V ′|P1 are A and B, we see that dimV ′|P1(−nR) = n, and

hence we have equality. Note that V ′(−nf∗∆̃)|P1 is the limit linear system of L wiht focus on P1.

Since this limit linear system does not depend on the slice Σ we see that W does not contain P1,

and by Proposition A.1.3 such linear system has only simple ramification points. This concludes

the proof. �
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Proposition 6.2.9 R1ρ1∗(L) = OX

Proof. As in the proof of Proposition 6.2.4 we just have to prove that R1ρ1∗(ωρ1 |nZ1,1) = 0;

so we will prove that the first cohomology of the restriction of ωρ1 |nZ1,1 over each fiber of ρ1 is 0.

As in Proposition 6.2.4, we need only consider the fiber over P ∈ X. By the same arguments, we

will have a right-exact sequence:

0→ ωY (−nZ1,1 · Y )→ ωBP →
(
ωρ1 |nZ1,1

)∣∣
BP
→ 0,

and again taking the long exact sequence in cohomology, will be left to prove that the induced map

H1(Y, ωY (−nZ1,1 · Y ))→ H1(BP , ωBP )

is surjective, which is the case if and only if H0(BP ,OBP )→ H0(Y,OY (nB)) is injective, which is

obvious.

6.3 The calculation

6.3.1 The irreducible case

Lemma 6.3.1 The map ρ1|∆̃ : ∆̃ → X is the blowup of X at the nodes of X and we have the

following:

ρ1∗

(
∆̃2
)

= ω−1
π

π∗ρ1∗

(
∆̃3
)

= κ− δ

Proof. We have the commutative diagram:

∆̃ −−−−→ B

f

y yb
∆ −−−−→ Y

where Y := X ×T X , and we have the projection p1 : Y → X , which becomes an isomorphism when

restricted to ∆. Let P be a node of the fiber Xt0 . Let t be a local equation of T at t0 and x, y the

local equations of X at P , such that t = xy. Then, we can write the (completion of the) local ring

of Y at (P, P ):
C[[t, x1, y1, x2, y2]]

(t− x1y1, x1y1 − x2y2)

Since the ideal of the diagonal is generated by x1 − x2, y1 − y2, locally the blowup is given by

C[[t, x1, y1, x2, y2, λ]]
(t− x1y1, λy1 + x2, (x1 − x2)− λ(y1 − y2))
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as we note that x1y1 − x2y2 = (x1 − x2)y1 + x2(y1 − y2). The ideal of the exceptional divisor is

generated by y1 − y2. Since ∆̃ is the exceptional divisor, its local ring is given by the quotient

C[[t, x1, y1, x2, y2, λ]]
(t− x1y1, y1 − y2, x1 − x2, λy1 + x1)

≡ C[[t, x1, y1, λ]]
(t− x1y1, λy1 + x1)

.

Therefore, the map ρ1|∆̃ : ∆̃ → X is the blowup of X at the nodes of Xt0 . We will call the

exceptional divisors of ∆̃ by Fj : the figure is pretty much the same we had before, but now the

multiplicity of this Fj in the fiber over T is 2 instead of 1. Now, we consider the exact sequence:

0→ I2
∆ → I∆ →

I∆

I2
∆

→ 0.

By definition Ω1
π
∼= I∆
I2

∆
(identifying ∆ and X by the natural isomorphism). Now we pull back the

sequence by b, obtaining the right-exact sequence:

b∗
(
I2

∆

)
−→ b∗ (I∆) −→ b∗

(
I∆

I2
∆

)
−→ 0.

But we have natural surjective maps b∗(I2
∆)→ OB(−2∆̃) and b∗(I∆)→ OB(−∆̃); thus we end up

with a diagram:
b∗
(
I2

∆

)
→ b∗ (I∆) → b∗

(
I∆
I2

∆

)
→ 0

↓ ↓
OB(−2∆̃) → OB(−∆̃) → OB(−∆̃)|∆̃ → 0

giving us a surjective map f∗
(
Ω1
π

)
→ OB(−∆̃)|∆̃. However, Ω1

π = ωπ ⊗ I, where I is the

ideal sheaf of the nodes, and since f∗I modulo torsion is O∆̃(−
∑n
j=1 Fj) we conclude that

OB(−∆̃)|∆̃ = ωρ1|∆̃(−
∑n
j=1 Fj). From this we easily have the stated equalities, because F 2

j = −1.

Lemma 6.3.2 We have the following equalities:

1. π∗

(n−1∑
i=1

ni(n− i)
2

Ei

)2
 = − (n− 1)n2(n+ 1)

12
δ0

2. ρ2∗
(
E2
)

= ρ1∗
(
E2
)

= −
n−1∑
i=1

ni(n− i)Ei

3. π∗ρ1∗
(
E3
)

=
3
2

(n− 1)2nδ0

4. ρ1∗

(
∆̃ · E

)
=
n−1∑
i=1

i(n− i)Ei

5. π∗ρ1∗

(
∆̃2 · E

)
= (n− 1)δ0

6. π∗ρ1∗

(
∆̃ · E2

)
= −2

3
(n− 1)(2n− 1)δ0
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where E1, . . . , En−1 and E are defined in the beginning of Section 6.2.1.

Proof. First of all, note that δ0 = n[t0], because we have n nodes over t0.

1. We start with

? :=

(
n−1∑
i=1

ni(n− i)
2

Ei

)2

=
n−1∑
i=1

ni(n− i)
2

Ei
n−1∑
j=1

nj(n− j)
2

Ej

 .

But

Ei · Ej =


1 if |i− j| = 1

−2 if i = j

0 otherwise

Thus

? =
n−1∑
i=1

ni(n− i)
2

(
n(i− 1)(n− i+ 1) + n(i+ 1)(n− i− 1)− 2ni(n− i)

2

)

=
n−1∑
i=1

ni(n− i)
2

(
−2n

2

)
= −

n−1∑
i=1

n2i(n− i)
2

= − (n− 1)n3(n+ 1)
12

.

2. The first equality is easy to see because of the symmetry of B and E. For the second equality,

observe first that:

ρ1∗ (Ei,j · Ei′,j′) =


Ei if i = i′ and |j − j′| = 1

−2Ei if i = i′ and j = j′

0 otherwise

because E2
i,j = −Ei,j · (Bt0 − Ei,j). This implies:

ρ1∗


 n−1∑
i,j=1

ai,jEi,j

2
 = ρ1∗

 n−1∑
i,j=1

ai,jEi,j

 n−1∑
i′,j′=1

ai′,j′Ei′,j′


=

n−1∑
i,j=1

ai,j (ai,j−1 + ai,j+1 − 2ai,j)Ei

=
n−1∑
i=1

Ei

n−1∑
j=1

ai,j (ai,j−1 + ai,j+1 − 2ai,j)


= −

n−1∑
i=1

nai,iEi = −
n−1∑
i=1

ni(n− i)Ei

because

ai,j−1 + ai,j+1 − 2ai,j = 0

71



unless i = j, in which case

ai,i−1 + ai,i+1 − 2ai,i = −n.

3. We begin with the following equalities:

Let

J := {(i− 1, j), (i− 1, j + 1), (i, j − 1), (i, j + 1), (i+ 1, j − 1), (i+ 1, j)}

for each i, j with 1 ≤ i, j ≤ n− 1. Then

Ei,j · E·i′,j′Ei′′,j′′ =



6 if (i, j) = (i′, j′) = (i′′, j′′)

1 if {(i′, j′), (i′′, j′′)} ⊂ J and |i′ − i′′|+ |j′ − j′′| = 1

−1 if (i′, j′) ∈ J and (i′′, j′′) = (i, j) or (i′′, j′′) = (i′, j′)

0 otherwise

Because E3
i,j = (Ei,j · (Bt0 − Ei,j))2, where the square is taken in Ei,j . But Ei,j can be identified

with the blowup of P1×P1 at the points ((0 : 1), (0 : 1)) and ((1 : 0), (1 : 0)). Let L1 and L2 be the

exceptional divisors, and let L3, L4, L5 and L6 be the strict transforms of (0 : 1)× P1, (1 : 0)× P1,

P1 × (0 : 1) and P1 × (1 : 0). Then Ei,j · (Bt0 −Ei,j) = L1 + . . .+L6 (just look at Figure 6.2), and

clearly (L1 + . . .+ L6)2 = 6. And Ei,j · E2
i′,j′ = L2

k = −1 for some k if (i′, j′) ∈ J .

Then we can see that:

E3 =
n−1∑
i,j=1

ai,jbi,j

where

bi,j = (6a2
i,j + 2(ai−1,jai,j−1 + ai,j−1ai+1,j−1 + ai+1,j−1ai+1,j + ai+1,jai,j+1 + ai,j+1ai−1,j+1

+ai−1,j+1ai−1,j)− ai,j(ai−1,j + ai,j−1 + ai+1,j−1 + ai+1,j + ai,j+1 + ai−1,j+1)− (a2
i−1,j

+a2
i,j−1 + a2

i+1,j−1 + a2
i+1,j + a2

i,j+1 + a2
i−1,j+1)).

But

bi,j =


−2 if j 6= i− 1, i, i+ 1

−n2 + 2n− 2 if j = i− 1, i+ 1

2n2 − 2 if j = i

Thus we end up with

E3 =
n−1∑
i=1

n−1∑
j=1

−2ai,j − (i− 1)(n− i)(n2 − 2n) + 2i(n− i)n2 − i(n− i− 1)(n2 − 2n)


=

n−1∑
i=1

(−ni(n− i)− (i− 1)(n− i)(n2 − 2n) + 2i(n− i)n2 − i(n− i− 1)(n2 − 2n))

=
n−1∑
i=1

−3i2n+ 3in2 + n3 − 2n2

=
3
2

(n− 1)2n2
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4. For this one all we need is to observe that

ρ1∗

(
∆̃ · Ei,j

)
=

{
Ei if i = j

0 otherwise

5. First of all, since ∆̃ ∩ Ei,j is the diagonal in Ei,j when i = j and L1 or L2 when |i− j| = 1,

(
∆̃2 · Ei,j

)
=


2 if i = j

−1 if |i− j| = 1

0 otherwise

which implies ∆̃2 ·
n−1∑
i,j=1

ai,jEi,j

 =
n−1∑
i=1

(2ai,i − ai−1,i − ai,i+1) = n(n− 1)

6.

∆̃·Ei,j ·Ei′,j′ =



1
if either i = j and (i′, j′) ∈ {(i− 1, i), (i, i− 1), (i, i+ 1), (i+ 1, i)}
or i′ = j′ and (i, j) ∈ {(i′ − 1, i′), (i′, i′ − 1), (i′, i′ + 1), (i′ + 1, i′)}

−1 if {(i, j), (i′, j′)} ⊆ {(l, l + 1), (l + 1, l)} for some l

−4 if (i, j) = (i′, j′) = (i, i)

0 otherwise

Since E2
i,i = −(L1 + . . .+L6) and ∆̃ ·Ei,i is the diagonal in Ei,i, we have ∆̃ ·E2

i,i = −4. In addition,

El,l+1 · ∆̃ = El+1,l · ∆̃ = Fl in ∆̃, and F 2
l = −1, as we saw in Lemma 6.3.1. The nonnegative

intersection numbers are easy to obtain. This implies

∆̃ · E2 = 2
n−1∑
i=1

ai,i(ai−1,i + ai,i−1 + ai,i+1 + ai+1,i)− 4
n−1∑
i=1

a2
i,i − 4

n−1∑
i=1

a2
i,i+1

= −4
n−1∑
i=1

(
i(n− i)2 − i2(n− i) + i2

)
= −4

(n− 1)n(2n− 1)
6

= −2
3

(n− 1)n(2n− 1)

With the above lemma and the projection formula, we are able to compute all the intersections

that will appear. Let Kπ := c1(ωπ) and Kρi := c1(ωρi). Note that ωρ1 = ρ∗2(ωπ) and Kπ · Ei = 0.

To calculate the class [W ], we calculate the class [W ′] and apply Proposition 6.2.2. By Thom–

Porteous Formula the class [W ′] is given by [W ′] = c1(F −E) = c1(F)− c1(E), where E = ρ∗1ρ1∗(L)
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and F = Jn−1
ρ1

(L). Using the truncation sequences of jets we get that

c1(F) =

(
n+ 1

2

)
Kρ1 − n2∆̃− n

n−1∑
i,j=1

ai,jEi,j .

To compute c1(E) we apply the Grothendieck–Riemann–Roch Formula:

ch (ρ1! (L)) = ρ1∗
(
ch(L) · td

(
TB/X

))
= ρ1∗

((
1 + c1(L) +

c1(L)2

2
+ ...

)
·
(

1− Kρ1

2
+ td2(TB/X ) + . . .

))
= ρ1∗

(
1 +

(
c1(L)− Kρ1

2

)
+
(
c1(L)2

2
− Kρ1c1(L)

2
+ td2(TB/X )

)
+ . . .

)
= (n− 1) +

(
π∗λ−

(
n+ 1

2

)
Kπ +

n−1∑
i=1

ni(n− i)
2

Ei

)
+ ...

The last equation came from Lemma 6.3.2 and Equation (4.6), and the fact that c1(L) = Kρ1 −
n∆̃− E. Therefore, since R1ρ1∗(L) = OX , we have

c1(ρ1∗(L)) = π∗λ−

(
n+ 1

2

)
Kπ +

n−1∑
i=1

ni(n− i)
2

Ei,

and thus we end up with

[W ] =

(
n+ 1

2

)
(Kρ1 +Kρ2)−ρ∗1π∗1λ−n2∆̃−n

n−1∑
i,j=1

ai,jEi,j−
n−1∑
i=1

ni(n− i)
2

(ρ∗1Ei + ρ∗2Ei) . (6.4)

Since

π∗ρ1∗([SWρ1,ρ2 ]) = π∗ρ1∗ ([W ] · ([W ] +Kρ1) · ([W ] +Kρ2)) ,

it follows from Lemma 6.3.2 that

b0(n) = 4n7 − n6 +
2
3
n5 − 4

3
n4 − 5

3
n3 − 5

3
n2 − 2n

6.3.2 The reducible case

Lemma 6.3.3 The map ρ1|∆̃ : ∆̃→ X is an isomorphism and we have:

ρ1∗

(
∆̃2
)

= ω−1
π

ρ1∗

(
∆̃3
)

= κ

Proof. Since the map B → Y is the blowup along X × X, a local analysis, as in Lemma 6.3.1,

shows that ∆̃→ X is an isomorphism, and we have the same diagram as in Lemma 6.3.1:

b∗
(
I2

∆

)
→ b∗ (I∆) → b∗

(
I∆
I2

∆

)
→ 0

↓ ↓
OB(−2∆̃) → OB(−∆̃) → OB(−∆̃)|∆̃ → 0
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which gives the surjective map f∗(Ω1
π) → OB(−∆̃)|∆̃. But now, f is an isomorphism, hence the

map factors through ωπ. This gives us OB(−∆̃)|∆̃ = ωπ, and from this the result follows.

Lemma 6.3.4 We have the following equalities:

1. π∗ρ1∗

(
∆̃2 · Z1,1

)
= −(2i− 1)δi

2. π∗ρ1∗

(
∆̃2 · Z2,2

)
= −(4n− 2i− 1)δi

3. π∗ρ1∗

(
∆̃ · Z2

1,1

)
= π∗ρ1∗

(
∆̃ · Z2

2,2

)
= −δi

4. π∗(X2) = π∗(Y 2) = −δi

5. π∗ρ1∗

(
∆̃ · Z1,1 · Z2,2

)
= δi

6. π∗ρ1∗
(
Z3

1,1

)
= π∗ρ1∗

(
Z3

2,2

)
= δi

7. ρ1∗
(
Z2

1,1

)
= ρ2∗

(
Z2

1,1

)
= −X

8. ρ1∗
(
Z2

2,2

)
= ρ2∗

(
Z2

2,2

)
= −Y

9. π∗ρ1∗
(
Z2

1,1 · Z2,2

)
= π∗ρ1∗

(
Z1,1 · Z2

2,2

)
= −δi

10. ρ1∗ (Z1,1 · Z2,2) = ρ2∗ (Z1,1 · Z2,2) = 0

.

Proof.

1. First we see that ∆̃ ·Z1,1 is the strict transform of the diagonal in the blowup Z1,1 → X×X;

thus the self-intersection of this transform is the self-intersection of the diagonal −1, because we

are exploding X×X in a point belonging to the diagonal. Since the self-intersection of the diagonal

is −(2gX − 2) we have the result.

2. Same as above.

3. Since Z1,1 + Z1,2 + Z2,1 + Z2,2 = 0, we get that Z2
1,1 is −({A} ×X +X × {A}+ P1). Then,

since the strict transform of the diagonal intersects only the P1, and transversally at just one point,

we are done. The proof is the same for Z2,2.

4. Obvious from the fact that X + Y = 0.

5. What we need is to observe that Z1,1 · Z2,2 = P1 and, again, the diagonal intersects P1

transversally at just one point.

6. We need to compute ({A} × X + X × {A} + P1)2 on Z1,1, which is 1. The same holds for

Z2,2.
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7. Again, since Z2
1,1 is −({A} ×X +X × {A}+ P1), and both P1 and {A} ×X are contracted

by ρ1, all that remains is −X. The same for ρ2.

8. As above.

9. All we have to compute is −({A} ×X +X × {A}+ P1) · P1, which is −1.

10. The intersection Z1,1 · Z2,2 is P1, which is vertical with respect to both projections.�

To compute the class [W ], we compute the class [W ′] and use Proposition 6.2.6. Now, W ′ is

given by [W ′] = c1(F) − c1(E), where E = ρ∗1ρ1∗(L) and F = Jn−1
ρ1

(L). Using the truncation

sequences for jets, we get:

c1(F) =

(
n+ 1

2

)
Kρ1 − n2∆̃− n2Z1,1.

As for c1(E) we apply the Grothendieck–Riemann–Roch Formula, as in Section 6.3.1, and use

Lemma 6.3.4 and Equation (4.6) together with the fact that c1(L) = Kρ1 − n∆̃− nZ1,1, to get

c1(E) = ρ∗1π
∗λ−

(
n+ 1

2

)
Kρ2 +

(
n+ 1

2

)
ρ∗1X − niρ∗1X.

Thus

[W ] =
(
n+ 1

2

)
(Kρ1 +Kρ2)− ρ∗1π∗λ− n2∆̃− n2Z1,1 −

(
n+ 1

2

)
ρ∗1X + niρ∗1X

−
(
n− i+ 1

2

)
(Z1,1 + Z2,1)−

(
i

2

)
Z1,2 −

(
i+ 1

2

)
Z2,2

=
(
n+ 1

2

)
(Kρ1 +Kρ2)− ρ∗1π∗λ− n2∆̃−

(
2n− i+ 1

2

)
Z1,1

−
(
n− i+ 1

2

)
(Z1,2 + Z2,1)−

(
i+ 1

2

)
Z2,2

=
(
n+ 1

2

)
(Kρ1 +Kρ2)− ρ∗1π∗λ− n2∆̃ +

((
i

2

)
− n2

)
Z1,1

−
(
n− i+ 1

2

)
(ρ∗1X + ρ∗2X)−

(
i+ 1

2

)
Z2,2 (6.5)

Since

π∗ρ1∗([SWρ1,ρ2 ]) = π∗ρ1∗ ([W ] · ([W ] +Kρ1) · ([W ] +Kρ2))

and

Rgπ = π∗ρ1∗([SWρ1,ρ2 ])− e(n, i)δi

where e(n, i) is the number of points of SWρ1,ρ2 lying on Bto , that is, the points (Pj , Ql) and

(Ql, Pj). Remember that the points Pj , for j = 1, . . . , i(n2 − 1), are the ramification points of

H0(ωX((1 + n − i)A)) distinct from A and the points Ql, for l = 1, . . . , n(2n2 − in − 1), are the

ramification points of H0(ωY (−(n− i)B)). Thus, we end up with

e(n, i) = 2i(n+ 1)(n− 1)n(2n2 − ni− 1).
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Hence, using Lemma 6.3.4, we get

bi(n) = 12n7i+ 6n6i2 − 24n5i3 + 6n4i4 + 12n3i5 − 6n2i6 − 6n6i+ 42n5i2 − 33n4i3 − 30n3i4

+33n2i5 − 6ni6 + 6n6 − 52n5i+ 70n4i2 + 8n3i3 − 59n2i4 + 29ni5 − 4i6 + 12n5 − 43n4i

+24n3i2 + 46n2i3 − 51ni4 + 14i5 + 10n4 − 36n3i− 4n2i2 + 41ni3 − 18i4 + 4n3 − 17ni2

+11i3 − 4ni+ 2i2 − i.

This finishes the proof of Theorem 6.1.1.

6.4 Decomposition of the divisor

As seen in Lemma 5.2.7, the condition for a smooth genus-g curve C, where g = 2n, to have points

P,Q such that P is a special ramification point of H0(ωC(−nQ)) and Q is a special ramification

point of H0(ωC(−nP )) can be split in 4 cases:

1. C has a special Weierstrass point (which would be P = Q);

2. C has points P , Q with

h0(ωC(−(n+ 1)P − (n+ 1)Q)) ≥ 1;

3. C has points P , Q with

h0(ωC(−(n− 1)P − (n− 1)Q)) ≥ 3;

4. C has points P , Q with

h0(ωC(−(n− 1)P − nQ)) ≥ 2

h0(ωC(−nP − (n+ 1)Q)) ≥ 1.

Each one of these conditions defines an effective divisor in Mg. The first defines the divisor SWg

studied in [4]. To define the others, let M̃0
g be the locus in M0

g of curves C such that there is no point

P with h0(ωC(−(n+ 1)P )) ≥ n. Note that the complement of this locus has codimension at least

2 by Proposition 5.3.1 if g ≥ 6. Let π : C̃0 → M̃0
g be the universal family and p1, p2 : C̃0 × C̃0 → C̃0

the projections.

Definition 6.4.1 Let

e+ : p∗1p1∗(ωp1(−(n+ 1)∆))→ Jnp1
(ωp1(−(n+ 1)∆))

be the evaluation map. Set B := π∗p1∗([Dn−2(e+)]) in Mg, where Dn−2(e+) is the locus where the

map e+ has rank at most n− 2.
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Definition 6.4.2 Let

e− : p∗1p1∗(ωp1(−(n− 1)∆))→ Jn−2
p1

(ωp1(−(n− 1)∆))

be the evaluation map. Set T := π∗p1∗([Dn−2(e−)]) in Mg.

Definition 6.4.3 Let

e1 : p∗1p1∗(ωp1(−(n− 1)∆)) → Jn−1
p1

(ωp1(−(n− 1)∆))

e2 : p∗1p1∗(ωp1(−n∆)) → Jnp1
(ωp1(−n∆))

be the evaluation maps. Set U := π∗p1∗([Dn−1(e1) ∩Dn−1(e2)]) in Mg.

Note that U is in fact a divisor, since, outside the diagonal, Dn−1(e1)∩Dn−1(e2) can be viewed

as the degeneration scheme of the flag

p∗1p1∗(ωp1(−n∆))→ p∗1p1∗(ωp1(−(n− 1)∆))→ Jnp1
(ωp1(−(n− 1)∆))→ Jn−1

p1
(ωp1(−(n− 1)∆))

as defined in [13].

Further computations show that in Pic(Mg)

B|Mg
= (n+ 1)2(6n5 + 13n4 − 5n3 − 28n2 − 20n− 6)λ

T |Mg
= n2(n− 1)3(n− 2)(6n− 1)λ

and suggests, although this is not completely clear, that

U|Mg = n(n+ 1)(n− 1)(12n4 − 6n3 − 16n2 − 5n− 2)λ

and that one can expect that

Rg = E−1 + E1 + B + T + 2U

where E−1, E1 are the Cukierman and Diaz divisors, defined as the locus of curves possessing a

special Weierstrass point of type g + 1 and g − 1, respectively.

To follow the steps in [4] and compute these divisors in Pic(Mg), we can try to use test curves.

To use such curves we must be able to compute the number of triples of points (R,P,Q) on a

general curve C satisfying the aforementioned properties (with ωC((1 + i)R) instead of just ωC).

But so far we were unable to do such calculations, specially because we are now over the triple

product C ×C ×C, and then, when trying to apply the Thom–Porteous formula, we get excess in

codimension 2, which is somewhat hard to deal with.
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Appendix A

Linear systems on rational and

elliptic curves

A.1 Linear systems on rational curves

Let A, B and P be distinct points on P1, and a, b and i positive integers with a + b > i. Set

j := a+ b− i. Define the (a+ b)-dimensional linear system

Va,b := H0(ωP1((1 + a)A))⊕H0(ωP1((1 + b)B)) ⊂ H0(ωP1((1 + a)A+ (1 + b)B)).

Since we have an isomorphism ωP1((1 + a)A + (1 + b)B) ∼= OP1(a + b), and via this isomorphism

we have identifications

H0(ωP1((1 + a)A)) = H0(OP1(a+ b− (1 + b)B))

H0(ωP1((1 + b)B)) = H0(OP1(a+ b− (1 + a)A)),

we can write

Va,b = H0(OP1(a+ b− (1 + a)A))⊕H0(OP1(a+ b− (1 + b)B)).

It is easy to see that the vanishing sequence of Va,b at A is 0, 1, . . . , a − 1, a + 1, . . . , a + b and

at B is 0, 1, . . . , b − 1, b + 1, . . . , a + b. Hence wtVa,b(A) = b and wtVa,b(B) = a, which means,

by Plücker Formula, that we have no other ramification points. So the following linear system is

(a+ b− i)-dimensional:

V ia,b := Va,b(−iP ). (A.1)

To understand better V ia,b let’s assume A = (0 : 1), B = (1 : 0), P = (−1 : 1). Then Va,b is

the linear system of homogeneous polynomials F (X,Y ) of degree a + b whose coefficient of the

monomial XaY b is zero. Therefore V ia,b is the system of homogeneous polynomials G(X,Y ) of

degree a+ b− i such that (X + Y )iG(X,Y ) ∈ Va,b.
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Thus the point A is a ramification point of V ia,b if Xa+b−i(X + Y )i has 0 for the coefficient of

XaY b, which happens if and only if a+ b− i > a, and in this case the vanishing sequence at A of

V ia,b is 0, 1, . . . , a − 1, a + 1, . . . , a + b − i, because this sequence is the unique subsequence of the

vanishing sequence at A of Va,b with orders at most a+ b− i, the degree of V ia,b. This means that

the weight of A in V ia,b is wA := max{b− i, 0}. Analogously the weight of B is wB := max{a− i, 0}.
Now, for a point Q := (−λ : 1) to be a ramification point of V ia,b, it is necessary and sufficient

that there exist G ∈ V ia,b whose order of vanishing at Q is a + b − i, in other words, G(X,Y ) =

(X + λY )a+b−i.

For each i and j positive integers, define the degree-n homogeneous polynomials H [n]
i,j (Z,W ) as

the coefficient of Xi+j−n in the expansion of (X+Z)i(X+W )j . Note that, in fact, H [n]
i,j has degree

n only when 0 ≤ n ≤ i+ j, being 0 otherwise. These polynomials have the following properties

H
[n]
i,j = H

[n]
i−1,j + ZH

[n−1]
i−1,j

H
[n]
i,j = H

[n]
i,j−1 +WH

[n−1]
i,j−1

H
[n]
0,j =

(
j
n

)
Wn

H
[n]
i,0 =

(
i
n

)
Zn.

(A.2)

And can be written explicitly as

H
[n]
i,j =

n∑
l=0

(
i

l

)(
j

n− l

)
ZlWn−l.

Moreover, differentiating H
[n]
0,j with respect to W and Z and doing induction on i and j, we get

equalities:
∂
∂ZH

[n]
i,j = iH

[n−1]
i−1,j

∂
∂WH

[n]
i,j = jH

[n−1]
i,j−1 .

(A.3)

Let h[n]
i,j := H

[n]
i,j (1,W ).

With these definitions, we can see that Q is a ramification point of V ia,b if and only if

h := h
[i+j−a]
i,j (λ) = 0.

Furthermore, so that V ia,b does not have a special ramification point, h must not have double roots

distinct from 0.

But, when i ≥ n, h[n]
i,j is the hypergeometric function

F

(
−j,−n
i+ 1− n

∣∣∣∣∣ z
)

˙( i
n

)

which means that h[n]
i,j satisfies the differential equation (see [18] Equation (5.108)):

W (1−W )(h[n]
i,j )
′′ + (i− n+ 1 +W (j + n− 1))(h[n]

i,j )
′ − jnh[n]

i,j = 0.

Hence, if λ is a nonzero double root of h[n]
i,j then it is a double root of (h[n]

i,j )
′ (because clearly λ 6= 1).

Therefore, by induction on j we have no double roots. At any rate, the diferential equation above
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is valid for every i; indeed, it holds clearly when i = 0, and it is easy to do an induction on i. This

proves the following propositions:

Proposition A.1.1 The polynomial h[n]
i,j does not have double roots distinct from 0 and 1.

Proposition A.1.2 Let a and b be positive integers and A,B ∈ P1. Then V ia,b does not have

special ramification points for any positive integer i such that i < a+ b.

Let A, B and C be distinct points on P1, and a, b and i positive integers with a + b ≥ i. Set

j = a+ b+ 2− i. Define the (a+ b+ 1)-dimensional linear system

V := H0(ωP1((1 + a)A))⊕H0(ωP1((1 + b)B))⊕H0(ωP1(2C)) ⊂ H0(ωP1((1 + a)A+ (1 + b)B+ 2C)).

Since ωP1((1+a)A+(1+b)B+2C) ∼= OP1(i+j), and via this isomorphim we have the identifications

H0(ωP1((1 + a)A)) = H0(OP1(i+ j − (1 + b)B − 2C))

H0(ωP1((1 + b)B)) = H0(OP1(i+ j − (1 + a)A− 2C))

H0(ωP1((2C)) = H0(OP1(i+ j − (1 + b)B − (1 + a)A)),

we can thus write

V = H0(OP1(i+j−(a+1)A−2C))⊕H0(OP1(i+j−(b+1)B−2C))⊕H0(OP1(i+j−(a+1)A−(b+1)B)).

As for the linear system Va,b, we can easily see that the vanishing sequences of A, B and C are

0, 1, . . . , a− 1, a+ 1, . . . , a+ b+ 1

0, 1, . . . , b− 1, b+ 1, . . . , a+ b+ 1

0, 2, 3, . . . , a+ b+ 1.

Therefore, by Plücker Formula, V does not have other ramification points.

Proposition A.1.3 There are no points P and Q in P1\{A,B,C} satisfying both

dimV (−iP − jQ) ≥ 1 and dimV (−(i− 1)P − (j − 1)Q) ≥ 2.

Moreover, if we set P = A and only ask for Q 6= C, then there exists such point Q only if i ≥ a+1.

Proof. Let’s proceed by contradiction, and assume that P and Q satisfy the conditions above.

Since the vanishing sequence of C starts with 0, 2, . . ., this happens if and only if

dimV (−2C − (i− 1)P − (j − 1)Q) ≥ 1

dimV (−iP − jQ) ≥ 1,
(A.4)

because clearly

V (−2C − (i− 1)P − (j − 1)Q) + V (−iP − jQ) ⊂ V (−(i− 1)P − (j − 1)Q) and

V (−2C − (i− 1)P − (j − 1)Q) ∩ V (−iP − jQ) = 0.
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Without loss of generality, we can assume A = (0 : 1), B = (1 : 0), C = (1 : 1), P = (−λ1 : 1)

and Q = (−λ2 : 1). Then (A.4) happens if and only if

(X + λ1Y )i(X + λ2Y )j = (X − Y )2J(X,Y ) + cXa+1Y b+1, (A.5)

with J(X,Y ) and (X+λ1Y )i−1(X+λ2Y )j−1 having zero as coefficient of XaY b. The latter implies

that

H
[i+j−2−a]
i−1,j−1 (λ1, λ2) = 0. (A.6)

Setting Y = 1 in (A.5), and multiplying by (1−X)−2 we get(
i+j∑
n=0

H
[n]
i,j (λ1, λ2)Xi+j−n

)
(1 + 2X + 3X2 + . . .) = J(X, 1) + cXa+1(1 + 2X + 3X2 + . . .).

But, the coefficient of Xa on the right-hand side is 0, whence

i+j∑
n=i+j−a

(a+ n− i− j + 1)H [n]
i,j (λ1, λ2) = 0. (A.7)

Now, dividing (A.5) (still setting Y = 1) by Xa+1, differentiating with respect to X and setting

X = 1, we get

i(1 + λ1)i−1(1 + λ2)j + j(1 + λ1)i(1 + λ2)j−1 − (a+ 1)(1 + λ1)i(1 + λ2)j = 0,

which implies

i+ j − a− 1 =
iλ1

1 + λ1
+

jλ2

1 + λ2
. (A.8)

Repeating this step, but with (X + λ1)i(X + λ2)j replaced by its expansion, we get

i+j∑
n=0

(i+ j − n− a− 1)H [n]
i,j (λ1, λ2) = 0,

which, together with (A.7), imply

i+j−a−1∑
n=0

(i+ j − n− a− 1)H [n]
i,j (λ1, λ2) = 0. (A.9)

Define now

L
[a]
i,j :=

i+j−a−1∑
n=0

H
[n]
i,j .

Then, from (A.2) we get that

L
[a]
i,j = (1 + Z)L[a]

i−1,j +H
[i−1+j−a]
i−1,j = L

[a−1]
i−1,j + ZL

[a]
i−1,j

L
[a]
i,j = (1 +W )L[a]

i,j−1 +H
[i+j−1−a]
i,j−1 = L

[a−1]
i,j−1 +WL

[a]
i,j−1.

(A.10)

From these and (A.6), we have that

0 = H
[i+j−2−a]
i−1,j−1 (λ1, λ2) = L

[a]
i,j−1(λ1, λ2)− (1 + λ1)L[a]

i−1,j−1(λ1, λ2)

0 = H
[i+j−2−a]
i−1,j−1 (λ1, λ2) = L

[a]
i−1,j(λ1, λ2)− (1 + λ2)L[a]

i−1,j−1(λ1, λ2),
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whence
L

[a]
i,j−1(λ1, λ2)

1 + λ1
=
L

[a]
i−1,j(λ1, λ2)

1 + λ2
. (A.11)

Going back to equation (A.9), we see that

0 = (i+ j − a− 1)L[a]
i,j(λ1, λ2)−

i+j−a−1∑
n=0

nH
[n]
i,j (λ1, λ2). (A.12)

But

nH
[n]
i,j = W

∂

∂W
H

[n]
i,j + Z

∂

∂Z
H

[n]
i,j

= jWH
[n−1]
i,j−1 + iZH

[n−1]
i−1,j .

Summing up,
i+j−a−1∑
n=0

nH
[n]
i,j = jWL

[a]
i,j−1 + iZL

[a]
i−1,j .

Substituting in (A.12), we get

(i+ j − a− 1)L[a]
i,j(λ1, λ2) = jλ2L

[a]
i,j−1(λ1, λ2) + iλ1L

[a]
i−1,j(λ1, λ2). (A.13)

Finally, equations (A.8), (A.11) and (A.13) imply that the vectors(
1,

λ1

1 + λ1
,

λ2

1 + λ2

)
and

(
L

[a]
i,j(λ1, λ2), λ1L

[a]
i−1,j(λ1, λ2), λ2L

[a]
i,j−1(λ1, λ2)

)
must be colinear, and hence that

L
[a]
i,j(λ1, λ2) = (1 + λ1)(L[a]

i−1,j(λ1, λ2)),

and then, by (A.10),

H
[i+j−1−a]
i−1,j (λ1, λ2) = 0.

This, combined with (A.6), gives us

h
[i+j−1−a]
i−1,j

(
λ2

λ1

)
= 0

h
[i+j−2−a]
i−1,j−1

(
λ2

λ1

)
= 0,

but (h[i+j−1−a]
i−1,j )′ = jh

[i+j−2−a]
i−1,j−1 , which implies that λ2/λ1 is a double root of h[i+j−1−a]

i−1,j . But

Proposition A.1.1 says that this is only possible when λ1 = λ2, i.e., P = Q, but then P is

ramification point of V , a contradiction.

To finish, if P = A, Equation (A.6) implies that i ≥ a + 1 or Q = A,B. But, if Q = B then

Equation (A.8) gives us i = a+ 1, whereas equation (A.5) proves that Q 6= A.�
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Let A, B and C be distinct points on P1 and a, i and j positive integers with j + i = a − 1.

Define the (a+ 1)-dimensional linear system inside H0(ωP1((1 + a)C +A+B))

V := H0(ωP1((1 + a)C))⊕H0(ωP1(A+B)).

Via an isomorphism ωP1((1 + a)C +A+B) ∼= OP1(a+ 1) we can write

V = H0(OP1(a+ 1−A−B))⊕H0(OP1(a+ 1− (a+ 1)C)).

Proposition A.1.4 The linear system V does not have special ramification points. Furthermore,

the only pairs of points (P,Q) of P1 satisfying

dimV (−iP − jQ) ≥ 3,

are (A,B) and (B,A).

Proof. Without loss of generality, we can assume A = (0 : 1), B = (−1, 1), C = (1 : 0),

P = (−λ1, 1) and Q = (−λ2, 1). Then V is the space of polynomials of degree a + 1 of the form

cY a+1 + X(X + Y )F (X,Y ). By degree considerations, V does not have a special ramification

point of type a + 2, and for P to be a special ramification point of type a, we must have that all

polynomials of the form (t1X + t2Y )(X + λ1Y )a are in V . However setting t1 = 1 and t2 = 0 we

get that λ1 = 1 and setting t1 = t2 = 1 we get that λ1 = 0, a contradiction.

As for the second statement, first note that V (−iP − jQ) is the subspace of V of polynomials

of the form D(X,Y )(X + λ1Y )i(X + λ2Y )j with degD = 2. But XY (X + λ1Y )i(X + λ2Y )j is

of the form cY a+1 + X(X + Y )F (X,Y ) only when λ1 = 1 or λ2 = 1; analogously, (X + Y )(X +

λ1Y )i(X + λ2Y )j is of the form cY a+1 + X(X + Y )F (X,Y ) only when λ1 = 0 or λ2 = 0. This

concludes the proof.�

A.2 Linear systems on elliptic curves

Fix a and b positive integers. Let A and B be general distinct points on a elliptic curve E. Let

LA,B = OE((1 + a)A+ (1 + b)B) and

VA,B := H0(OE((1 + a)A)) + H0(OE((1 + b)B)) ⊂ H0(LA,B).

Then VA,B is a linear system of dimension a+ b+1. (Note that we do not need generality for this.)

The vanishing sequence at A of VA,B is

0, 1, . . . , a− 1, a+ 1, . . . , a+ b+ 1

and the vanishing sequence at B is

0, 1, . . . , b− 1, b+ 1, . . . , a+ b+ 1
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because both (1 + a)(A − B) and (1 + b)(A − B) are not equivalent to zero by the generality

assumption. Hence wtVA,B (A) = b+ 1 and wtVA,B (B) = a+ 1.

Take now the double product, viewed as a family by the first projection p1 : E × E → E, and

consider the line bundle given by L := OE×E((1 + a)Γ + (1 + b)∆), where Γ := E × {A} and ∆ is

the diagonal. Define the sheaf Ṽ as the image of the map

p1∗(L(−(1 + a)Γ))⊕ p1∗(L(−(1 + b)∆)) −→ p1∗(L)

Then for R ∈ E\{A} we have

ṼR := Ṽ|R = VA,R.

This means that, restricted to E\{A}, Ṽ is a vector bundle, and if R is general we see that A has

weight b+ 1 and R has weight a+ 1 in ṼR.

Since E is a smooth curve, there exists a vector bundle V of rank a+b+1, such that V ⊂ p1∗(L)

and

V|E\{A} = Ṽ|E\{A}

Therefore WV ≥ (1 + b)Γ + (1 + a)∆, and hence RVA = WV ∩ p−1
1 (A) ≥ (a+ b+ 2)A. However,

VA ⊂ H0(OE((2 + a + b)A)); therefore the vanishing sequence at A of VA is a subsequence of

0, 1, . . . , a+b, a+b+2; thus A is a base point of VA, which means that VA = H0(OE((1+a+b)A)).

Let W := WV − (1 + b)Γ − (1 + a)∆, and let SWp1 denote the zero scheme of the section

OE×E → J1
p1

(O(W )) induced by W . Since VA does not have special ramification points other than

A, we get that SWp1 ∩ p−1
1 (A) = ∅, and hence that SWp1 has codimension 2. Therefore, for a

general point B, the linear system VA,B does not have special ramification points distinct from A

and B.

Proposition A.2.1 Let (E,A,B) be a general two-pointed elliptic curve and a and b positive

integers. Then the linear system H0(OE((1+a)A))+H0(OE((1+b)B) ⊂ H0(OE((1+a)A+(1+b)B))

does not have special ramification points other than A and B.

Proof. Follows from the previous discussion.�

Following the same idea, we now want to prove:

Proposition A.2.2 Let (E,A,B) be a general two-pointed elliptic curve, and a, b, i and j be

positive integers such that i+ j = a+ b+ 2. Then there do not exist points P and Q in E\{A,B}
such that

dimVA,B(−iP − jQ) ≥ 1 and

dimVA,B(−(i− 1)P − (j − 1)Q) ≥ 2.
(A.14)

Proof. Note that by degree considerations we have equality in both equations if they are

satisfied and if j = 1 or i = 1 the result follows from Proposition A.2.1. In order to prove the

Proposition, we will repeat the same argument as above, but we will not allow the points P and

Q to coincide with A or B.
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Let X be the union of a general pointed elliptic curve (E,R1) with a 3-pointed rational curve

(P1, R2, A,B), identifying R1 with R2 (see Figure A.2). Let π : C → Σ be a smoothing of X and

σA and σB sections of π intersecting X at A and B. If every 2-pointed elliptic curve (E,A,B)

admits P and Q as in Proposition A.2.2, then (possibly after a base change, which will introduce

a chain of rational curves over the node) there exist sections σP and σQ of π through its smooth

locus intersecting the general fiber at these points. Let P := σP (0) and Q := σQ(0). Note that,

as seen in the proof of Proposition 5.3.4, we can disregard the rational curves that do not contain

some of the special points. Also, let ΓA, ΓB , ΓP and ΓQ be the images of σA, σB , σP and σQ.

Define L := ωπ((1 + a)ΓA + (1 + b)ΓB) and Ṽ as the image of the map

π∗(L(−(1 + a)ΓA))⊕ π∗(L(−(1 + b)ΓB))→ π∗(L).

As before, there exists a vector bundle V ⊂ π∗(L) such that

V|η = Ṽ|η,

where η is the generic point of Σ. Define V1 and V2 as follows:

V1 := V ∩ π∗(L(−iΓP − jΓQ))

V2 := V ∩ π∗(L(−(i− 1)ΓP − (j − 1)ΓQ)).

Since we have equality in (A.14), V1 and V2 are vector bundles of rank 1 and 2.

Also, for each positive integer l < a+ b+ 1, define

V(−lΓP ) := V ∩ π∗(L(−lΓP )) and

V(−lΓQ) := V ∩ π∗(L(−lΓQ)).

By Proposition A.2.1, both V(−lΓP ) and V(−lΓQ) are vector bundles of rank a+ b+ 1− l.
Note that

L(−P1)|P1 = ωP1((1 + a)A+ (1 + b)B + 2R2)

L(−P1)|E = OE ,

whence V(−P1) has focus on P1. Applying now Lemma 5.2.1 to V(−P1 − (1 + a)ΓA − 3E), to

V(−P1 − (1 + b)ΓB − 3E) and to V(−P1 − (1 + a)ΓA − (1 + b)ΓB), we get that

VP1 = V(−P1)|P1 = H0(ωP1((1 + a)A)) + H0(ωP1((1 + b)B)) + H0(ωP1(2R2))

⊂ H0(ωP1((1 + a)A+ (1 + b)B + 2R2))

and then, since VP1(−(a+ b+ 2)R2) = 0 by Section A.1,

VE = V(−(a+ b+ 1)E) = H0(OE((a+ b+ 1)R1)).

Here VP1 and VE are the limit linear systems over P1 and E. We have now some cases to check.
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Case 1: Assume P,Q ∈ E (see Figure A.1). Then V1|E = H0(OE((a+b+1)A))(−iP−jQ) = 0,

a contradiction.

Case 2: Assume Q ∈ E and P ∈ P1\{A,B} (see Figure A.2) . Then, by Lemma 5.2.1, we get

that

V := V|P1 = H0(ωP1((1 + a)A)) + H0(ωP1((1 + b)B)) and

V|E = H0(OE(R1)).

Note that in fact we have V ⊂ H0(ωP1((1 + a)A + (1 + b)B + R2)), with R2 as a base point of

V , but for simplicity we will assume V ⊂ H0(ωP1((1 + a)A + (1 + b)B)). Therefore, there exist

D1 and D2 effective divisors on C supported on X not containing P1, in fact D1 = (j − 1)E and

D2 = (j − 2)E, such that

V1(−D1)|P1 = V (−(j − 2)R2 − iP )

V1(−D1)|E = H0(OE(jR1 − jQ))

V2(−D2)|P1 = V (−(j − 3)R2 − (i− 1)P )

V2(−D2)|E = H0(OE((j − 1)R1 − (j − 1)Q)).

Since h0(OE(jR1 − jQ)) = 0 or h0(OE((j − 1)R1 − (j − 1)Q)) = 0, then

dimV (−(j − 1)R2 − iP ) = 1 or

dimV (−(j − 2)R2 − (i− 1)P ) = 2,

which means that P must be a special ramification point of V (−(j − 1)R2) or V (−(j − 2)R2), a

contradiction by Proposition A.1.2.

Case 3: Assume P,Q ∈ P1\{A,B} (see Figure A.3). Then Proposition A.1.3 solves our prob-

lem.

Case 4: Assume P = A. If Q ∈ P1, then by Proposition A.1.3 we have that i ≥ a + 1. Now,

we blow up C at A. Let P1
A be the exceptional divisor. We will still denote by ΓA and ΓP their

strict transforms; also, let Ã = ΓA ∩ P1
A. Assume first that Q ∈ P1

A (see Figure A.5). Then, there

exists an effective divisor DA such that

L(DA − (1 + a)ΓA)|P1
A

= ωP1
A

(2A) = OP1
A

L(DA − (1 + a)ΓA)|P1 = ωP1((1 + b)B + 2R2)

L(DA − (1 + a)ΓA)|E = OE .

By Lemma 5.2.1, we get that

V(−(1 + a)ΓA)P1 = H0(ωP1((1 + b)B)) + H0(ωP1(2R2)).

However, this (b+ 1)-dimensional linear system does not have A as a ramification point, whence

V(−(1 + a)ΓA)P1
A

= V(−(1 + a)ΓA − bP1
A) = H0(ωP1

A
((2 + b)A)).
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This, together with the fact that V(−(1 + b)ΓB)|P1
A

= H0(ωP1
A

((1 + a)Ã)), implies that

V(−iΓP )P1
A

= (H0(ωP1
A

((1 + a)Ã)) + H0(ωP1
A

((2 + b)A)))(−iP ),

which does not have special ramification points by Proposition A.1.2, a contradiction.

Assume now that Q ∈ P1 (see Figure A.4). Since i ≥ a + 1, A is not a ramification point of

V(−iΓP )P1
A

, because the weight of A is max{a−i, 0} by Section A.1. Note that dimV(−iΓP ) = j−1,

which means that V(−iΓP )P1
A

(−(j − 1)A) = 0. Then there exists a divisor D such that

L(D − iΓP )|P1
A

= ωP1
A

((1 + a)Ã+ (2 + b)A− iP − (j − 2)A)

L(D − iΓP )|P1 = OP1(j − 1)

L(D − iΓP )|E = OE .

then, Lemma 5.2.1 and Exact Sequence (5.7) yield that

V(−iΓP )P1 ⊂ H0(OP1(j − 1)).

And, repeating the same argument for D1 = D − E, we also get that

H0(OP1(j − 1− 2R2)) ⊂ V(−iΓP )P1 .

Therefore, V(−iΓP )P1 does not have special ramification points away from R2, a contradiction.

Note that this argument includes the case where Q = B.

If Q ∈ E (see Figure A.6), then there exists a divisor DE such that

L(DE − iΓP )|P1
A

= ωP1
A

((1 + a)Ã+ (2 + b)A− iP − (j − 2)A)

L(DE − iΓP )|P1 = OP1

L(DE − iΓP )|E = OE((j − 1)R2).

Again, Lemma 5.2.1 and Exact Sequence (5.7) imply that V(−iΓP )E = H0(OE((j − 1)R)), which

does not have special ramification points, a contradiction.

The case where P or Q goes to the node, i.e., where a base change is necessary (for instance,

see Figure A.8, although a more longer chain of rational curves may arise), as well as the more

degenerated case where P = Ã, can be handled similarly.�
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Figure A.4: P = A and Q ∈ P1
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