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Abstract

In this work we deal with two Cauchy problems associated to the Brinkman
Flow, which models fluid viscosity in certain types of porous media. In
the first of them, we study the local and global well-posedness in Sobolev
Spaces H*(R"),s > % + 1; using Kato’s Theory for Quasilinear Equations
and Parabolic Regularization.

Moreover, we study the same problem with Bore-Like initial conditions, and
we establish local solutions in H*(R), s > %, and a L*-global estimate of that

solution.

Key words: Brinkman Flow, Kato’s Quasilinear Theory, Parabolic Regu-
larization, Comparison Principle and Bore-Like initial condition.
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Resumo

Neste trabalho trataremos dois problemas de Cauchy associados ao Fluxo
de Brinkman, que modela o fluxo viscoso em certos tipo de meios porosos.
No primeiro deles, estudamos a boa colocagao, tanto local quanto global nos
espagos de Sobolev usuais, com s > 7 + 1, usando a Teoria de Kato para as
equagoes Quasilineares e o Método de Regularizagao Parabdlica.

Além disso, estudaremos o mesmo problema com condicoes iniciais tipo Bore-
Like, estabelecemos solugoes locais em H*(R), s > % e estimativa global da
solugao obtida em L?*(R).

Palavras Chave: Fluzo de Brinkman, Teoria Quasilinear de Kato, Regu-
larizagao Parabdlica, Principio de Comparacdo e condigoes iniciais tipo Bore-

Like.
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Chapter 1

Introduction.

1.1 The Brinkman Flow equation (BFE)

In most problems of slow incompressible fluid flow in porous media, it is
assumed that the macroscopic velocity and pressure are related by Darcy’s

law:
VP(p) = —(%)\7 (1.1)

where p, k and p are respectively, the fluid’s viscosity, the porous medium’s
permeability and the fluid’s density.

The Brinkman Flow equation involves modifying the usual Darcy’s law by
the addition of a standard viscosity term whose coefficient is usually identi-
fied with the pure fluid viscosity ([38]). Specifically, Brinkman modified (1.1)
to the form

VP(p) = —<%)v b pteg AV (1.2)

Combining the continuity equation or conservation equation of the flow, i.e.,
GO+ div (pv) =0 (1.3)
and the Brinkman’s law (1.2), we obtain the Brinkman Flow equation

¢Op = div <P (% - MeffA>_1 \ (P)> (1.4)

where ¢ is the porosity of the medium.
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In this work we are interested in the properties of the real valued solutions to
the Cauchy Problem associated to the Brinkman Flow ([13],[42]). Namely,

-1
¢Oyp = div (p (% - MeffA> 2 (P)) + F(t,p), z € R", t € (0, Ty)

p(0) = po
(1.5)
This models fluid flows in certain types of porous media. Here p ,k, and
s denote the fluid viscosity, the porous media permeability and the pure
fluid viscosity, respectively, while p is the fluid’s density, v its velocity, P is
the pressure, F' is an external mass flow rate, and ¢ is the porosity of the
medium.

In what follows, to simplify the notation, we will choose all the coefficients
in (1.5) to be equal to 1. At the moment we want to consider only the
mathematical structure of the system. At a later stage, the constants should
be put back in, and various limiting cases should be studied. Thus our
problem becomes:

(1.6)

{ dp=div (p(1=A)""VP(p)) + F(t,p), t € (0,To]
p(0) = po.

Then we solve (1.6), and compute Vv using the simplified Brinkman’s condi-
tion Vv = — (1 — A)"" VP (p). Of course, the following compatibility condi-
tion must be satisfied:

Vo=—(1—A)""VP(pg). (1.7)

This work is organized as follows:

In Chapter 2, we analyze the local well-posedness of (1.6) with Kato’s Quasi-
linear Theory ([18], [20], [26], [28]). We will prove that (1.6) is locally well-
posed in the sense described if s > § + 1.

In ([2]) the authors proved that the problem is well-posed in the one dimen-
sional case. As immediately consequence of Kato’s Method they obtained
continuous dependence of the solution with respect to the initial conditions.
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Chapter 3, is dedicated to the study of the the same problem in the con-
text of parabolic regularization in order to obtain global well-posedness . We
will prove global estimates (in the cases of case F(t,p) = 0, P(p) = p*,k =
1,2, ...) using the Comparison Principle mentioned in Section 3.2.

Parabolic Regularization is also applied in the study of other equations such
as The Benjamin-Ono and the Korteweg-de Vries ([16]),[17]). This leads to
local and global results. The global estimates are obtained with the help of
the conserved quantities associated to these equations (note that these equa-
tions are Hamiltonian Systems ([22],[39]).

In ([2]), such global results for the Brinkman Equation are obtained without
using additional information of the equation, because for n = 1, (1 — A)~!
has a bounded Kernel. In our case we need to use a Comparison Principle
for the solutions to obtain the global estimates in H*(R"), n > 1.

Since the Brinkman equation is not invariant under translations, we obtain
continuity of the solution from the right. However, combining this method
with Kato’s Theory we are able to guarantee the continuity of the unique
solution that we constructed.

Finally, in Chapter 4, we study the (BFE) with F(t,p) = 0,P(p) = p?
with Bore-Like Initial conditions on the real line. We proved that (1.6) has
a unique local(in time) solution in C.([0, T3], H*(R)),s > 3. We also obtain
a global L?-estimate for the solution.

The real reason for introducing Bore-Like initial conditions is that they model
certain travelling waves that occur in nature. Such a wave is formed when
a large river, like the Amazon, flows into the sea at times of exceptionally
high tide. The wave moves upstream two or three times as fast as the normal
tidal current, with a shape which corresponds roughly to the one described
by the conditions that characterize the Bore-Like initial datum.The problem
with bores is that they have a infinite mass, and Sobolev Spaces Methods,
in principle, cannot be applied.

The Brinkman Equation can also be used, for example, to study the vis-
cous fluid between two parallels plates packed with regular square arrays of
cylinders ([40], [50]).
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Other problems with this type of initial condition were studied in ([19], [21]).
In this articles global results were determined with the help of the associa-
ted conserved quantities which allows one to obtain global estimates H*(this
typically makes use of the fact that the equation in question are Hamiltonian
Systems).

We conclude this chapter with preliminaries and notations.

1.2 Some Preliminaries

The initial value problem associated to the Brinkman Flow equation (1.6),
corresponds to general problems of the form:
ou=G(tu) e X

u(O) =uy €Y

Here X and Y are Banach spaces and G : (0,7p] x Y — X is continuous
with respect to the relevant topologies. In practice one often takes X and Y
to be Sobolev Spaces type L2.

We will say that (1.8) is locally well-posed or, that the solutions of (1.8) define
a dynamical system, if the following conditions are satisfied:

o (LWP-I) Existence and Persistence: There exists T' > 0 and a function
u € C([0,T],Y) satistying the differential equation in (1.8), with the
time derivative computed with respect to the norm of X and such that
u(0) = o, i.e.

H“(t Fh=ult) o u(t))HX —0 (1.9)

lim
h—0

e (LWP-II) Uniqueness: There is at most one solution to the problem at
hand

o (LWP-III) Continuous dependence: The map uy — wu(t) is continuous
with respect to the appropriate topologies. More precisely, if (ug), —
up in Y, then for any 7" € [0,7T), u,, the solution corresponding to
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(uo)n, can be extended (if necessary) to [0,7”] for all n sufficiently
large and
lim sup ||u,(t) —u(t)|]ly =0 (1.10)

n—oo [07’1"/}

In the case that T' can be taken arbitrarily large, we will say that (1.8) is
globally well-posed. 1f any of those conditions is not satisfied, then (1.8) is
ill-posed. Tt deserves remark that any of the above conditions can fail, in-
cluding persistence.

Finally, we will introduce some notations and definitions that we will be
used throughout this work.
Let s € R, the Sobolev Space type L?, denoted as H*(R") is determined as

HYR") = {f € S'(R") : (1+ )3 /(&) € L*(R")}

where S’(R™) represents the set of temperate distributions, and f is the
Fourier Transform of f, defined as

o= (55)" [ e

2 R™

The space H*(R"), is a Hilbert Space with respect to the inner product

()= [ @+ fe)5E de

It is easy to see that if s > r then H*(R") — H"(R") where the inclusion is
continuous and dense. In particular, if s > 0 we are dealing with L? func-

tions. As s increases things get better and better: if £ > 0 is an integer,
f € H*R") if and only if 3*f € L? for all multi-indexes « such that |a| < k.

According to the Sobolev’s Lemma, if f € H*(R") with s > %, then f ¢
Cs(R™), the set of all continuous functions that tend to zero at infinity, and

f satisfies
1f [z < Cs(s,n)||fls (1.11)

In this case H*(R") is a Banach Algebra with respect to the usual multipli-
cation of functions. In particular,

I£glls < Cs(s; ) Fllsllglls (1.12)
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where C(s,n) is a constant depending only s and n.
Other notations that we will be used are:

R - the real number
|| ® || x - the norm in a Banach Space X
B(X,Y) - the space of all bounded linear operators from X to Y
| ® ||B(x,y) - the operator norm in B(X,Y)
0, =2 0, =2
z dx > Yt ot

D(A) - the domain of an operator A
R(A) - the range of an operator A
S(R™) - the Schwartz space of rapidly decreasing C*° functions

LP = LP(R™),1 <p < o0

L2 = L2(R") = J* LP(R") with norm || o |z = | @ [y

C(I,X) - the space of continuous functions on an interval I into a Banach
Space X. If I is compact, it is a Banach Spaces with a supremum norm.
C4(I,X) - the space of functions on an interval I, such that there all con-
tinuous on the right side.

CL(I,X) - the space of functions defined on an interval I, with derivative
belonging to C' (1, X)

Cyw(I,X) - the space of all weakly continuous functions from I to X

A < B - there exist a constant ¢ > 0 such that A < ¢B

— - strong convergence

— - weak convergence



Chapter 2

Local Theory

This chapter will make use of Kato’s Theory in order to obtain local existence
results to problem in question.

2.1 Kato’s Theory for Quasilinear Partial Differen-
tial Equations.

We consider the Cauchy Problem for the quasi-linear equation, that is:

{ o = G(t,u) = —A(u)u + F(t,u) € X, t € (0,Ty] 2.1)

U(O) =uy €Y
Here A(u) is a linear operator depending of u, and ug is the initial value.
We will need the following assumptions.

(K1) X is areflexive Banach space. There is another reflexive space Y — X
and there exists an isomorphism S from Y onto X such that |S¢|x =

[elly, Vo € Y.

(K2) The linear operator A(u) € G(X,1,p5) foru € W C Y, where W is
an open ball in Y and [ is the real number. In other words, for each u € W,
—A(u) generates a C° semigroup such that

He_SA(“)HB(X) <e’ se [0,00),u € W (2.2)

7
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(K3) For each u € W we have
SA(u)S™' = A(u) + B(u) (2.3)

where B(u) =[S, A(u)]S™! € B(X) is uniformly bounded ,that is, there is a
constant pp such that
1B(u)llx) < s (2.4)

(K4) Y C D(A(u)) (so that A(u)|y € B(Y,X) by the Closed Graph Theo-
rem).
The maps u € W+ A(u) is Lipschitz continuous in the sense:

[A(w) = A(v)ler.x) < pallu —vllx (2.5)
(K5) The function F satisfies:
a) For each uw € W, the maps t € (0,Ty] — F(t,u) € X is continuous.

b) For each t € (0,Tp], the maps u € W — F(t,u) € X is Lipschitz conti-
nuous in this topology, that is, there is a constant uz such that:

1t u) = F(t,v)llx < pellu—vllx (2.6)

Remarks about K2. In many cases A(u) is defined for all u € Y, so that, W
may be chosen as an arbitrary ball centered in zero.

It is well known that given a C° semigroup U(s), there are constants M > 0
and f € R and a unique closed operator A (satisfying the conditions of
the Hille-Yosida-Philips Theorem, see [43, Vol.IT]) such that U(s) is genera-
ted by —A,ie.,U(s) = e*4. Moreover ||U(s)||pxx) < Me™F. Conversely,
given a closed operator A satisfying the conditions of the Hille-Yosida-Philips
Theorem, there are M > 0,8 € R and a C° semigroup U(s) satisfying
|U(s)|px)y < Me. The collection of all such A’s will be denoted by
G(X, M, B).

If A e G(X,1,0), that is, if (—A) generates a contraction semigroup, we
say that A is mazimally accretive(or m-accretive). If A € G(X,1,[), that
is, |U(s)|lpx) < Me™F A is said to be quasi mazimally accretive(or quasi
m-accretive).

Remark about K3,K4. The relation (2.3) should be satisfied in the strict
sense, including the domain relation. Thus z € X is in D(A(w)) if and only
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if S7'z € D(A(u)) with A(u)S™ 'z €Y
This strict equality is not as restrictive as it looks: in some sense S~z is
“better behaved” than an arbitrary element of D(A(u)). Consider KdV for
example, and let A(u) = 82 +ud,,Y = D(A(u)) = H*(R),s > 3, X = L*(R)
and S = (1 — 9?)2. Then if ¢ € D(A(u)), it follows that S~'¢ € H**(R) —
H*(R) = D(A(u)).

This results where extended to G(X, M, 3) in [31],[32] and [33] . The
non-Reflexive Spaces case is treated in [35],[37] and [45].

Theorem 2.1.1. (Abstract Local Theory for Quasilinear Equations).
Assume that K1 — K& are satisfied. Then there exist T € (0,1 and a
unique u € C([0,T);Y) such that (2.1) is satisfied with the derivative taken
with respect to the norm of X.

This theory is studied in [18],]20],[26],[27] and [35]

2.2 Existence and Uniqueness of the BFE

In this section we will apply Kato’s Theory for the Brinkman Flow equation
(BFE).

Theorem 2.2.1. (Existence and Uniqueness)

Let ©(p) = J2VP(p),J = (1 — A)z. Define

Alp)f = —div (f J*VP(p)) = —div (6(p)), (2.7)
so that the PDE in (1.6) can be written as
Op+ A(p)p = F(t, p). (2.8)

Let po € H*(R"), s > & + 1 and assume that P and F satisfy the following
assumptions:

a) P maps H*(R™) into itself, P(0) = 0 and is Lipschitz in the following
senses:
1P(p) = P(P)ls < Ls(llplls [121) o = plls (2.9)

1P(p) = PG < Ls(llpls: 15110 — 71 (2.10)

where Ly, Ly : [0,00) x [0,00) — [0,00) are continuous and monotone
non-decreasing with respect to each of its arguments
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b) F:(0,Ty] x H*(R") — H*(R"), F(t,0) = 0 and satisfies the following
Lipschitz conditions:

1E(t, p) — F(t,p)lls < Ms(llplls, 1211s)lp = 2lls (2.11)

I (t, p) = F(t. 2)I| < M(llplls: 1515 llp — 71 (2.12)

where My, M, : [0, 00) x [0,00) — [0,00) are continuous and monotone
non-decreasing with respect to each of its arguments

c) For each p € W, the map t € (0,Ty] — F(t,p) is continuous respect to
the topology of X.

Then there exists T € (0,T0] and unique p € C([0,T], H*) such that (1.6) is
satisfied with the derivative taken with respect to the norm of H57!.

Proof. We will verify the assumptions according of abstract theory.

(K1) We take the basic spaces X = L*(R"),Y = H*(R") and we prove
that S = (1 — A)> = J* is an isomorphism from Y to X.
Let f € Y, applying Parseval Identity we have:

ISCOI = 1O =111+ €2 FEN = 1111ls (2.13)

(K2) Since X is a Hilbert space, it is sufficient to prove that A(p) is maxi-
mally accretive in X. (See [27],[41] and [43, Vol. IIJ).

(A(P)f.f) = —BIfIPVF EDAP) =YipeW Y (214)

Integrating by parts and Sobolev Lemma, implies

(A(p)f, f) = (—div(fO(p Z/f@zz f6;(p (2.15)
= / 10, u(p Z [ontre
_ ——Z/anx,@ 2/(dw®( NP da

div© P)|| Lo

B
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Rg(A(p) + \) = X = L*(R"),VA > f3

The fact that A(p) is a closed operator combined with the inequality (2.14)
shows that (A(p) + ) has closed range for all A > 3

Thus it suffices to show that (A(p)+ A) has dense range for A > . For this, is
sufficient to prove that R(A(p)+A)* = {0}, because A(p) is a linear operator.

Let g € L2(R") : ((A(p) + \)f, g) = 0,Yf € D(A(p)) = H*(R")
Integrating by parts, yields
(Alp) + N f.g) =0=(Alp)f.g) +(Mf.9) =0 (2.16)
= (£,Vg6(p)) + (\f,g) =0

= (f.Vg6(p) +Ag) =0, ¥f € D(A(p)) = H*(R")
= VgO(p) + Ag =0

Therefore, multiplying by g, integrating by parts, and using (2.14) we have:

. 1 .
9998(p) + 35" = 0= 3 [ V() Blpdo+ Mgl =0 (217

1 o
N —§/g2div@(p) dz +\]|g]| = 0

N J/

g

=<A(p)g,g>

= (A(p)g.g) + Allg||* =0
= 0> 39>+ Mgl = (A = B)|g|I”
=g=0

(K3) Let W = {p e H*R") : [lplls < R}.

B(p) =[S, A(p))S™" € B(L*) & [S, A(p)] € B(H", L*), |[[S, A(p)]|| par.12) < 1
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Let f € H*(R")
S, A(p)Lf = SA(p )f A(p)Sf = —J*div (f6(p)) + div ((J*f)E(p))

=—J°[ Z 0:,(fOip))] + Z O,
_ Z [7°(02,0i(p) f) = 02, 0i(p)(J* )]
= 2_ [T (6i()0e.f) = ©ilp) s, (1° )]

- Z [‘]Saaa:i@z(p)}f — Z [JS,@i(p)]ﬁxif (2.18)

AN J

W 4

~
A

Using Lemma A.1.1 in Appendix,||.J~28,, || gzs.mo+1) < 1 and (2.9)

4] < Z 17,0, 0.0 £ < Z 190,040 lle- | £l (2.19)
< vl fll.- 1Z||a 0o, < evallflls Zn@ Mot
< eVl F S 1 20m o oo | PO < env/AlF1LIP() — PO,
< env/n Ly(llolls: Olloll 1 £l < (R £,
1B] <ZH 177, 04(0))0s, /]| <cZ||V@ Morlloe fllor  (2:20)

< cv/nllfls ZH@ Mst1 < o < env/n L([lplls; O)lolls]1.f 115

< u(R)| fls
Then

IS, AN < AI+IBI < 20(R)fI] = 119, Alp))l s, 22) < 21(R) = ps(R)
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(K4) D(A(p)) = H*(R"); | A(p) = APl B(r=,12) = pallp = pllr2
Let f € H*(R").

1(A(p) = A())fIl = [ldiv (f6(7)) — div (£6(p))l| (2.21)

= 2 (@) (®ilp) = 6i(5)) + f0r(Oi(p) — O:())

<3 10(Oulp) = BEN] + 3 [£0:(O1lr) = €:(7)|

c = D
Using Sobolev Lemma, || J~20,, || p(z2,u1) < 1 and (2.10).
C < (|0, fll=[1©i(p) — ©:i(p)] (2.22)

S 10w, flls1l1©:(p) = ©i(P) s
S AT 200, | sz 1P (p) — P(p)]
S s Zs(llells: A1) Lo — A1l

D < || f|[1 |0z, (©:(p) — ©:(p))| (2.23)
S 1l (©:(p) — ©5(p))ly
SN2 00, | Bz 1P (p) — P(B)l
S ANs LsCllells 1Al e — Al
Then

1(AG) = AL S 2011 el ol 111 1o = Al (2.24)
S ra(B)lp = Al s
= [|A(p) = AP as,r2) < pa(R)llp — 7l

(K5) This assumptions is satisfied due to the conditions about F' in Theorem
2.2.1b). O

2.3 Continuous Dependence of the initial data

To formulate the continuous dependence of the solution u on the data, we
consider the sequence of value initial problems for n € NU {oo}:
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u"(0) =u; €Y
Theorem 2.3.1. Assume that K1 — K5 hold for all equations in the se-
quence, with the same X, Y, S, W, and that the corresponding constants g, pia, jtr

can be chosen independently of n.
Assume also that:

a) The mapsu € W — B(u) =[S, A(u)]S™! € B(X) is Lipschitz continuous
in the sense:
[B(u) = Bv)|[ax) < Asllu —vlly (2.26)

b) The function F : [0, Ty] x W — Y is bounded,i.e.,there exists a constant
Ap > 0 such that:
[F(t,w)lly < Ar (2.27)

c) For each t € (0,Tp], the maps u € W — F(t,u) € Y is Lipschitz conti-
nuous n this topology,i.e, there is a constant Apr such that:

[F(t,u) = F(t,0)lly < Appllu—vlly (2.28)
d) A™(u) — A(u) strongly in B(Y, X)
e) B"(u) — B(u) strongly in B(X)
£) F"(t,u) — F(t,u) strongly in Y.

If ug,uy € W and ug — g in the topology of Y, then there is 0 < T" < Ty,
such that there are unique solutions u™ € C([0,T"], W) N C*([0,T"], X) with
u™(0) = uf to (2.25) and a unique solution w in the same class. Moreover,
we have: u"(t) — u(t) in Y, uniformly in t € [0, T"].

See [18],[26] and [35].

Consider the following sequence of initial value problems for the BFE.

p"(0) = (po)" (2.29)

Consider the same basic spaces X = L*(R"),Y = H*(R"),W C Y,S =
(1-A)z=Js

{ By — div [p"(1 — A) TP p)] = F*(t,p"), 2 €R"0<t<T
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Theorem 2.3.2. (Continuous Dependence). In addition to the assump-
tions in Theorem 2.2.1, assume that:
The sequences P™ and F™ satisfies

HS
a) P"(p)=—>P(p),n—o00, peW

HS
b) F"(t,p) == F(t,p), n — o0, (t,p) € (0,Tp] x W

If po, py € W and p§ — po in the topology of Y, then there is 0 < T" < Tj,
such that there are unique solutions p™ € C([0,T"]; W) N C*([0,T"]; H*™1)
with p™(0) = py to (2.29) and a unique solution p(t) in the same class.
Moreover, we have: p™(t) — p(t) in Y, uniformly in t € [0,T"].

Proof. We will verify the assumptions of abstract theorem. The assump-
tions about F, are satisfied immediately, by conditions imposed in Theorem
2.2.1(b) and this Theorem (2.3.2 (b)).

a) B(p) is Lipschitz continuous in the sense:

1B(p) = B(D)llBz2) < Asllp = plls (2.30)

Firstly, we prove that: [|A(p) = A(p)|| p(rr,12) < nLs([lplls, 1A11s) 1o —5lls
Let f € H*(R") C L2(R™).

1(A(p) = A())fI| = I|div (f.6(p)) — div (f.6(p))l| (2.31)

< Z 102, [ (©i(p) — ©i(p))]ll
< Z 1 f[©:(p) — ©:(p)][l1 < Z 1 £1©:(p) — ©:(p)]ls
< |Iflls Z 1©i(p) — ©i(p)ls41

< Ifls D120,

1=1
< n Ly(llplls, 1ol )l = AllslLflls

Therefore, we have

1ACP) = AP pas,12) < 1 Ls(llplls: 11110 = Al (2.32)

B(HS,HS“)”P(p) — P(p)]ls
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The result follows of the assumptions of A(p) and the domain conditions
described in Remark about K3,K4, in Section 2.1

d) Let f € H*(R")
AMp)f = —div [f.T 2V P"(p)] (2.33)

- Z Ous[f I 200, P (p)]

Hsfl n
ST ) 01T 0., Plp)]
=1

— div[fJ*VP(p)

= Alp)f
= A"p) = Al)
B(Hsst—l)

e) Let f € L*(R")

B(p)f = 5, A"())S1/ (2.34)
=S, A
= B(p)f

= B"(p) B(p)

—
—~—
B(L?)

Therefore, continuous dependence follows. n

Remark. Note that although we took X = L?*(R"), in the sections 2.2
and 2.3, the differential equation in (2.8) implies that d;p € H*~'.



Chapter 3
Global Theory

This Chapter will make use of Parabolic Regularization technique and Com-
parison Principle, to obtain the H*® (s > % 4 1) global estimate for solutions
of BFE.

3.1 Parabolic Regularization of the BFE

3.1.1 Existence and uniqueness of Regularized BFE

In this section we begin the analysis of the problem:

Oupp = plAp, + div [p, J 2V P(p,)] + F(t, p,) € H*(R"), t€l=(0,Tp)
pu(0) = po € H*(R")
(3.1)

where p > 0 and the time derivative is computed in the norm of H §72,
The nonlinearity F'(t, p) = div [pJ >V P(p)] + F(t, p) has the following pro-
perties:

Lemma 3.1.1. Let s > §+1 be fived, P, F satisfy (2.9)-(2.12) as in Theorem

2.2.1. Then F(t,p) is a continuous map from I x H* to H*™! and satisfies
the estimates

1t p) = F(t, p)ls—1 < Alplls: 1811l = Al (3.2)

(p=pFt.p) = F(t.9)) < Lolllells. 12100 = Al (33)

17
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for all p,p € H*, where v, Ly : Rt x Rt — R™ are continuous functions,
monotone nondecreasing with respect to each of their arguments.

Proof.

1E ) = F(t. 5,

= ||div (0 6(p)) — div (56(p)) + F(t,p) = F(t,p)]|,

< [ldiv[06(0) = p OG- + [Ft:p) = FE A, 5
< ||div [0(6(p) = O] |, + |div [(0 - p)é DI,

=F1 7F2

+[|F( p) = F(t. D),

Applying the fact that H*(R"), s > % is a Banach Algebra, ||J 20, || p(gs,me+1) <
1,Vi and (2.9) we have:

F1=2_0:[0(0:(0) = 0:oD |,y < X_lle[O:0) ~ 6D, (35)
S lells 21100 = ©:A), < llells D [10:o) = ©:(A)]..

S lolls Y2 1PGe) = PG, < wllollLo(llells 1Al e = 41l

LN D SLATELEYC D o LACELCIC N
Sl —hlls ZII@ W1 < o= alls ZHP
San(lels,O)HP pllsllAlls (3.7)
Finally, using (2.11), we have
[t p) = Ft.p)|,_, < v(lells: 171110 = Alls (3.8)
with

Y(lells: lolls) = n[l!ﬂl!sLs(HpHs, 16[ls) + Il Ls (1l Al s 0)] + M(llplls: lIAlls)
(3.9)
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The continuity of F is a consequence of (3.8). As I x H*(R") is complete,we
prove that F'is sequentially continuous. Let ¢, = t,p, = pin H® =
Ir >0, M >0:|t.]| <7;llpn]] <N for large n. Then

|F(ta, pn) — FE,0)|],_, < A(loalls: o) lon — plls (3.10)
< C(N)||pn —plls — 0 as n — o

where C'(N) is a constant depending of N.
On the other hand, estimating (3.3)

(p=5.F(t.p) — F(1.5))
= (p = pdiv [p8(p) = 56()] ) + (p— 5. F(t,p) — F(t.5)) (1D

(. [ J/

v

:61 =C2
Integrating by parts

C1=3"(p = 5.0 [00:(0) ~ 50:(9)]) (3.12)

= Z <6‘xi(p —p),pOilp) — ﬁ@i(ﬁ)>

n n

--3 (000 = 1), (03(0) = ©4(7)) = S (3ulp = 7). (0 = P)ON())

1

K3
. S/ N

C1L ==Y (9hlp = 7). 0T 0. (P(p) = P(3))) (3.13)

((p= 7). 02 [0 20.,(P(p) — P(3))])

I
-
3l M:
—

=3 (0= 7). (0up) T 20, (P(p) - P(7)))

—1

K3
.

~
=C111
n

+ <(p —p),pJ 292 (P(p) — P(ﬁ))>

~
C112
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Applying Cauchy-Schwartz inequality, Sobolev’s Lemma, (2.10)and the in-
equalities ||J 720y, || prz,my < 1, [|J7202 || 2y < 1,

111 <Y [l = [[(@rp)d 20, (P(o) = P3| (3.14)
<D e = ol @zl e 7 0ecl | g ey | P ) = P

S D Mo = Al 20e gz oy E<lples 1) o = 1
=1

< nllpllsZs(llolls: 1l1s)llo = 2117

c112 <3 o= llllpd 222, (P(p) - P(5)] (3.15)

i=1

< 2 Mo =alllloll 17720 a1 P () = P

=1
<3Nl = alllell 17722 | e EoClolls 17116 = 71
i=1

< nllpllsLs(llplls, 1211) 1o = A1

Integrating by parts, using Sobolev’s Lemma, positivity of the pressure and
| T2 Beas, ms+2) < 1, we obtain
n ) ) ) 1 n oy )

= o= 08PE)) = 5 [(0= 7 772P@)) = (0 - 9% PD))]

(o= 3. T2 P(®)) < S1T*P@le~llp — il

_ . . 1 . . .
172 s =) I POsllp = 17 S 5 Lo (I, 01110 = 211"

<

S

N~ N -

(3.16)
Substituting (3.14), (3.15) in (3.13), and (3.16) in (3.12); we have:

C1= <p — p,div [pO(p) — ﬁ@(ﬁ)]> <ol A1) e = a1 (3.17)
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where

- 3 — 3 1. )
Cllplls 12lls) = ZnllpllsLs(llplls, 1A1ls) + 5141l LsllAlls, 0) (3.18)
Consider (2.12) in the last term in (3.11) we have:

C2< [(p—p.Flt,p) = F(t,p))| < llp = plllF(t, p) = F(t,p)|  (3.19)
< M(llplls; 180 llp = 11

Finally, substituting (3.17) and (3.19) in (3.11) we have

(p=5.Flt0) = (7)) < Lollolls Il — 7 (3:20)

with B N
Lo([lplls: 10lls) = Clplls 121ls) + Mslells, 15]ls) (3.21)
This finishes the proof. O

In what follows, we consider the linear part of (3.1) and prove certain
properties of the semigroup ([41]) associated to it.

Applying the Fourier transform to linear part, we have:

—_— ~ —~ ~ _ 2 ~
0upu(€) = 0upu(§) = —1€pu(€) = pu(§) = 7 pu(§) (3.22)
Then
_ 2 ~
pu(t) = Uu(t)po = "2 po = (7 po(€))" (3.23)
In the next lemma, we will show the smoothing properties of semigroup U, (t)
Lemma 3.1.2. Let A € [0,00);s € R.

a) U,(t) € B(H*(R"), H*™(R")),Vt > 0 and satisfies:

0O@ler < K[+ (5) ] el 320

A L
where g, (t) = Ky [1—1—(%/”) } *e Ll ([0,00) if A < 2, Ky is a constant
depending only on \.
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b) The mapst € (0,00) = U,(t)y is continuous with respect to the topology
Of Hs—l—)\ (Rn)

Proof. See [16],[17] and [18]. O

We are now in position to start the analysis of (3.1). The first step is to
obtain a convenient integral equation that can be used to solve it.

Theorem 3.1.1. Problem (3.1) is equivalent to the integral equation

t
pu(t) = e py + / ARG p (t) dt (3.25)

0
More precisely, if p, € C([0,To], H*) is a solution of (3.1) then p, satisfies
(3.25). Conversely, if p, € C([0,To), H®) solves (3.25) then p, € C*([0,Tp], H*?)
and satisfies (3.1).

Proof. In the first step we prove that if p, € C([0,7], H®) is a solution of
(3.1) then p, satisfies (3.25)

Using the method of variation of parameters and Fourier Transform, we
propose the solution to the nonlinear transformed equation is in the form
pu(t) = C(t)e #€ . Then, we substitute it in the transformed partial diffe-
rential equation, to obtain

¢ = /¢2
C(t):/ F(t, pu(t)) e dt' + cq (3.26)
0

where ¢y is a constant of integration

Using the initial condition py, then ¢y = C'(0) = gy

Therefore, applying inverse Fourier Transform, follows the integral equation
for a solution.

On the other hand, we prove that a solution of the integral equation satisfies
a partial differential equation.

We define
t
v(t) = / HEARG () dt 5t € [0, To] (3.27)
0
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v(t+h) —o(t)

t+h)—v
h
1 t+h o t o
E{/ eu(t-i—h—t )AF(t,,pu(t/))dt/ _/ eu(t—t )AF(t/,pu(t/)) dt/} _
0 0
1 t WA = t+h A =
ﬁ{/ 6uhA€u(t—t )AF(t/,pM(t/))dt/—f—/ euhAeu(t—t )AF@/,pu(t/))dt/—
0 t
t
/ 6u(t—t')AF(t/7p’u(t/))dt/} _
0

1 t A~ 1 [ih -
= (e~ 1d) / AR pu(t)) b+ / PR g (1)) di
0 t
(3.28)

Applying the Bochner Integral Mean Value ([15],[49]) in the final equality
with n, € [t,t + h] follows

v(t+h) —v(t)
h

1 t -
PGl f?)/f”t”AF< u(t)) dt! + et AR (o () (3.29)
0

Applying limit as h — 07 in (3.29), we obtain

W<>;AA MEOARW () dE + Pt pu(t)  (3:30)

Making the same analysis and considering h < 0, we have that 0, v(t) =

9; v(t). This implies that there exists dyv(t) = 9, v(t) = d; v(t)

Now, considering the integral equation and the definition of v(t), we have
Opu(t) = O [e"po + v(t)] = Du(e"*po) + Opu(t) (3.31)

Applying properties of continuous semigroup ([41, Chap. 1], [18, App.]) e#*4

n (3.31), follows the result

Dupilt) = umw%qu/?WtMth<»W+ﬁmm@>(mm
0

t
= uA [e“mpo + / et R pu(t'))dt'] + F(t,pu(t))  (3.33)
0

= A1) + F (1, pul1)) (3.34)



24 CHAPTER 3. GLOBAL THEORY

Finally, as the the operator puA : H® — H* 2 and F’(t,pu(t)) € H! —
H*2 we have that p,(t) € C*([0, o], H*™2). O

We will prove that the above integral equation, has a unique solution in
C([0, TH]; H®) for any 0 < T* < Ty and for all g > 0.

Theorem 3.1.2. Let p > 0 be fized and py € H*(R"), s > 7.
there exists T" = T'(s, | polls, t) and a unique function p, € C([0,T*]
C((0,T*]; H®) satisfying the integral equation (3.25).

Then
L H)N

Proof. We have:

eY=H*[R"), (A=1)

t
pu(t) = e2p +/ A div [pu(1 — A)TIVP(p)] + F(t, pu(t))] dt’
u( ) 0 o [ [ u( ) ( u)] ( u( ))}

~ /
v~

€Hs(R") €Hs—1(R")

J/

EV=Hs=1+X(Rn)

(3.35)

Consider the spaces V = H* '*AR"),Y = H*(R"). Thus, we have that
VCY CX =H2R")if A\ > 1. In the rest of the proof of theorem, we
use A = 1 for simplicity.

Consider the map

t
B(u(t) = Uulm + [ Unlt = O)F(E,0(t)) at (3.36)
0
defined in the complete metric space

X,(To) = {v € C([0,To), H*(R™)) : ||v(t) — Uu(t)po|| < M, Vt € [0,To]}
(3.37)
when the topology in the space X(Tp) is defined by the sup-norm, that is
d(v, w) = supeo 1 V() — w(t)|]s, with v,w € X (Tp)

We will show that by taking T* sufficiently small the map (3.36) is a con-
traction in X (7p). Once this is established, we will show that this is in fact
the only possible solution in C([0, T*], H*(R™)).
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Let v(t) € X,(Tp), it is easy to see that [[v(t)|[s < M+ ||po||s. The continuity
of the semigroup U, (t) and F'(t, p) implies that B(v(t)) € C([0,To], H*(R™)).

On other hand, considering the properties of semigroup U,(t) in Lemma
3.1.2 and F(t,v(t)), yields

IB() - Uutolls < [ 10,00 = )R ).t (3.35)
< [t = ENFE
< [ st =10
< 1+ Il (1 + o) [ 0,00)

To
< 1+ nll )y + ol 0) [ g0 dr
0

As g,(r) € L}, ([0, 00))

loc

To
A+l 0) [ gr)dr — 0, a5 Ty 0 (3:20)
0
Then
37 € O.T) 59V + [0) [ gulrar € R <1 (340)
T y Lol 2 Y Polls» gu\r)ar ~ ————— > .
o 3+ Tl

Therefore, we have
A7 € (0,To] : || B(v(t)) — Uu(t)polls < M = B(v(t)) € X(7) (3.41)
Next, we will prove that this map is a contraction: Let v(t), w(t) € X(7)

[B(v(t)) — B(w(t))ls < /0 ULt = )EE, o(t) = F(,w(t))]]], dt’
< /0 gt — V| E (o)) — B, wlt))]|._, dt
< /0 gu(t =)yl @)ls; NwE) ) o) — w5 dt’

< [+ lall 2+ ) [ ad0) dr] o)
(3.42)
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Then
A(B(0), B@) < [HO1 + ol M + ol [ gulrdr] dlvew) (343
0
Similarly
AL+ loull M+ nll) [ gulr)dr — 0, asT 0 (340
0
Then
TH
3T € (0.7 900 + ol M+l [ gu(r)dr=5<1 (343
0

Therefore, we have
IT" € (0,7] : d(B(v), B(w)) < dd(v,w) (3.46)

Existence and uniqueness in X(7p) is a usual application of Banach’s fixed
Point Theorem. This gives us 7" and p, € C([0,T"], H*(R")). The fact
that p, € C((0,7"], H*(R"™)) now follows from the integral equation using
a simple bootstrapping argument with A € (1,2)

Next we deal with uniqueness in C([0, 7#], H*(R™)). This is a immediately
consequence of the following weak continuous dependence result (weak in the
sense that we consider the same intervals of existence of solutions).

Lemma 3.1.3. Let > 0 and p,, p, solutions of (5.1) in C([0,T*], H*(R"))

with initial condition data pg, po respectively. Then

lou(®) = At < €Dy — gy (3.47)
where N = ma [supyefozn [14() 1 supieioo 1701

Proof. Let p,(t), p.(t) € C((0,T*], H*(R™)), with initial conditions py, po res-
pectively.

Then
lou(®) = ult)]
< N0 o0 = po)lls + || Jy Unlt =) [P, put)) = (' ()] |
< oo = olls + Jy gt = N E W, pu()) = P, () s-1
< oo = fiolls + Jy 9t = VY (UlouC®)llo 15 (@)1l pa¥) = Bl
< llpo = polls + (M, M) [ gt = )llpu(t') = 5t dt

(3.48)
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Applying Gronwall’s inequality in (3.48)

lpu() = pu(®)lls < 0 1pg — ol (3.49)
]

Finally, uniqueness of solution in C'([0,7"], H*(R")) follows of the above
inequality taking the same initial conditions for the solution, i.e.,

104(t) = B}l < 0= pu(t) = (), Ve € 0,77 (3.50)

This finishes the proof. [

3.1.2 Existence and uniqueness of BFE

Our aim in this subsection is to establish local existence and uniqueness
theorems for the problem (1.6) in certain Sobolev spaces. To do this, one of
the fundamental steps is to prove that the solution of (3.1) can be extended
to an interval independent of p, because the main difficulty is that T* — 0
as 1 — 0. Finally we will take the limit when p — 0.

Lemma 3.1.4. Assume that i > 0 and that P, F satisfy (2.9),(2.10) and
(2.11),(2.12) respectively for some fized s > 5. Then there exists Ty =

T(s, |lpolls) independent of u > 0, such that all solutions p,(t) can be ex-
tended, if necessary, to (0,T,] satisfying Hpﬂ(t)”i < h(t); t€[0,T).

Proof. Considering p = p,(t) € C((0,T"]; H*(R")), the following calcula-
tions are entirely rigorous.

allell? = 2(p.awp). (3.51)
= 2 [<p, uAp>S + <p, F(t, p)>s + <p, div (p é(p))u
—B1 —B2 -B3
As Hy = —A is a self-adjoint and positive operator, in H*.
>0

——
Bl = —u{p, Hop), = —p(Hop,p), <0 (3.52)
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Applying Cauchy Schwartz inequality and properties of F'

B2 = (p,F(t,p)), < [{p, F(t,p)),] (3.53)

—
< lpllsIlE s p)lls = ol EE p) = F (2 0) s
< M(llplls 0)loll2

Using the commutator
[02:0°,0i(p) | p = 00, T*(p©i(p)) — ©i(p) D, I°p (3.54)

We expand

B3=(p.> 0 [p0:(p)]) = (0.0 [00:(0)]) (3.55)

=B31 =B32

Thus, using Cauchy Schwartz inequality, Lemma A.1.3 in Appendix and
properties of the pressure

n

B31 = <Jsp, S [0, 70 (1 - A)*lazip(p)}p> (3.56)

=1

<[] ]Z (02,0, 02, (1 = 8) 1 P(p)] |

< dllplls| 172772 P o |70 + 17272 P o)l 1<

< Nl [P Jlells + 2o ) el
< 2oLl 0)
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Integrating by parts, considering that the Resolvent J=2 = (1 — A)~! pre-
serves positivity ([43, Vol. 1I]) and Sobolev’s Lemma

n

B32 = 3 (7,001~ )0, P(p)) (3.57)

=1

- —5<<JS .01 A>-1AP<p>>
_ _%< A)1P(p )>J+%<(Jsp)2,P(P)>

< {0 P)) < 1P|l
1Pl < 5oL ol 0

S

l\:>|>—t[\:>|ri

Summing (3.52), (3.53), (3.56), (3.57) in (3.51), we have the final estimate:

OWlou(I2 S My (lou(®) 15 0) o2 + lou@ L (lou®)s,0)  (358)
= M, ((llou()I12)2,0 )||pu< 2+ ea DL ((leu(t)12)%,0)
=G (llput)]2) (3.59)

Let h(t) be the maximal solution ([8]) of initial value problem for ordinary
differential equation:

Oih(t) = G(h(t))
1(0) = [lpol 3

Then Hp“(t)”j < h(t); t € [0,T.]; T, € [0,Ty), whenever both sides are
defined. This finishes the proof since h(t) not depends of y and we can
extend p,(t) to interval [0, T}]. O

We are now in position to state and prove the main result of this section.

Theorem 3.1.3. Let py € H*(R™), s > §+ 1. Then there exists T, =
T(s, |lpolls) > 0 and unique p € C. ([0, T3], H*(R™)). Moreover p(t) satisfies
that dyp € CL([0,Ts], HSH(R™)), [|p(t)||? < h(t), and the initial value problem
(1.6).
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Proof. We choose any such interval as in the preceding theorem, and write
p=pu(t), p=pu(t); v >0; pu(0) = p,(0) = po. Let M? = sup,c (o7, h(?),
and note that
Oillo — plI> = 2(p — p, 0 (p p)) (3.60)
,p) —

E(t,p)) +{p— p,uAp—VAp>]
—A

Integrating by parts and Cauchy Schwartz inequality implies that

A= (p—p,plp—vAp) (3.61)
= (p— P, pAp —vAp +vAp —vAp)
>0
= (p—p.(n—v)Ap) — v(p— p, Holp — p))
< (u—v){p—p,A0p) < |u—v|[{p—p,Ap)|

— |u—v]| Z (000,020~ )|

<|Ip||1<||p||a<M Slleli<llolls<M  <||plL<[Iplls<M
—~

——
< [p—v| Z ol (- Towell + Towal
< 2nM2|u —v|
Finally, substituting (3.3), (3.61) in (3.60); we have:
Ocllp = pII* < 4nd|u— v + 2 Lo(llplls, 12115l — A1I* (3.62)

< 402 — v + 2 Lo(M, M)[|p — ||

Integrating the last estimate from 0 to ¢:
¢
lpu () =pu(OI* < 4nM2Ts|M—V|+/ 2 Lo(M, M)||pu(7) = pu(7)|Pdr (3.63)
0

Gronwall’s inequality, then shows that

1ou(t) = pu(B)? < 40 MPT, | — v] 2 TEoO0D (3.64)

lim lpu(t) = pu (D)7 = 0= pu(t) — p,(t) in L, t € [0,T)]

pn—0,v—0
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Now, p,(t) is a Cauchy net in the space L?*(R™), which is complete. Therefore,
there exists p(t) € C([0,T,], L*(R™)) that satisfies

limy sup [|p,,(t) = p(t)[ =0
00,74

Thus t € [0, 7] — p,(t) is continuous and uniformly bounded in L*(R").

We claim that {p,(t)},>0 is a weak Cauchy net in H*(R") uniformly
with respect to ¢ € [0,7]. Indeed, given ¢ € H*(R") and € > 0, choose
ve € S(R™) such that || — ¢e||s < €.

(Pu(t) = pu(t); 0)s = (Pu(t) = pu(t), 0 — Pe)s + (Pul(t) — pu(t), ) (3.65)
< [ou(®) = pu(t)s 0 = @e)sl + (T (pu(t) — pu (1)), Jpe)|
< pu®) = po@®lslle = @ells + lpu®) = pu Ol @ell2s
<2Me+ [lpu(t) — pu(t)|ll|ell2s

So that lim, 0,0 sup[ojs]<pu(t) — pu(t), )s = 0 uniformly.

Since H*(R") is reflexive, it is weakly complete ([15],[49]), and there exists
v(t) € Cu([0,Ts], H*(R™)) satisfying

1iH1<pM(t), 90>s = <U(t)7 90>5V(,0 S S(Rn) (366)

pn—0

It is easy to see that v(t) = p(t) Vt € [0, T}], as a consequence of uniqueness of
weakly limit. In particular, p(t) is weakly continuous and uniformly bounded

by the function \/h(t). Indeed,

IOl = sup [(p(t), 0).] = sup T |(pu(6), 0} (3.67)
Il s=1 I[plls=1H7
< sup T |p,(6) |19, < v/A(D)
¥lls=1#7

It remains to prove that p(t) € CL([0, T3], H>~*(R™)). Let 1) € H**(R")

<pu(t)a ¢>s—1 - <Uu(t)p07 ¢>s—1 +/ <F(t,,p#(t/)), 7vZ)>s—1 dt/7Vt € [Oa TS]
’ (3.68)
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Since p,(t) — p(t) in H*(R™), it follows that, EF(t, p,(t)) — F(t,p(t)) uni-
formly in H*~'(R™), therefore, taking the limit as © — 0 in (3.68) we obtain

(p(t), ) s—1 = (po, ¥)s—1+ /0 t<F<t’,p<t’>>,w>3_1 dt' vt €[0,1,]  (3.69)

As the integrand on the right-hand side of (3.69) is a continuous function,
from the Fundamental Theorem of Calculus, follows that:

(@up(t), )51 = (F(L, p(t)), )51, ¥t € [0, T] (3.70)

Since the map t € [0,7;] — E(t, p(t)) is weakly continuous and uniformly
bounded, Petti’s Theorem ([49, Chap.V]) implies that it is strongly measu-
rable. Thus we may define a Bochner integral

/t F(t', p(t") dt’ (3.71)

Combining this remark with (3.69) we conclude

o0 =0+ [ B plt) (372)

Thus p(t) € AC([0, Ty}, H~*(R™)) N L>(R™). Therefore dyp(t) exists almost
everywhere in [0, 7] and is given by

Qup(t) = F(t, p(t)) = div [p(t)J 2V P(p(t))] + F(t, p(t)), a.e., t € [0, T]
(3.73)
Next we claim that there is only such function in the class

AT:) = C([0, T:], L*(R™)) N Cu ([0, T3], H* (R™)) N AC([0, T2, H*H(R™))

Let p(t),n(t) € Q(T,) with p(0) = 7(0) = po, a calculation similar to that
leading to (3.62) implies:

Aellp(t) = n(®)II* < 2 Lo(M, M)]|p(t) — n(t)[I* (3.74)

Integrating from 0 to ¢:

lp(t) = n(®)]I* < [p(0) ~ 77(0)||2+/ 2 Lo(M, M)||p(t') — n(t")||*dt" (3.75)
—_— 0

=0
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Applying Gronwall’s lemma in the last estimate,we have:
lp(t) = 0] < 0= p(t) = n(t) € UT) (3.76)

It remains to prove that the unique solution in Q(7%) belongs to C ([0, T}, H*(R™)).
Let ¢ € H*(R™) be such that [|¢||s = 1. We have

(1), )l < llp()lls < V(D). Vi € H*(R™), Yt € [0, T3] (3.77)
Therefore
[{po phsl = lim [{p(t), @)s| = lim inf [{p(t), )| (3.78)
<

lim inf [[p(t)[]s < limsup [[p(t)]]s
t—0t t—0+

< limsupv/A(0) = [lpoll, Vo € H*(R")

t—0t

Taking the sup over ||¢||s = 1 we conclude that
liminf ||p(t)]|s = imsup || p(t)[|s = ||pol|s (3.79)
t—0+ t—0+
so that the limit of ||p(¢)||s exists as ¢ — 07 and
lim [p(8)]]s = lleolls (3.80)
t—0+t
Since p(t) — po weakly in H*(R"), it follows that

lim p(t) = po (3.81)

t—0t

in the norm of H*(R™) O

Remark Kato’s Theory and uniqueness of solution, implies that
p € C(0,Ty, H*(R")), s > § + L.
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3.2 Comparison Principle for the BFE

Consider the initial value problem (BFE) with F(t,p) = 0, P(p) = p*,k =

pv)=0,z€eR" te(0,T
V=-V(-A+1)"p* = -6(p) (3.82)
(p(0), ¥(0)) = (po, Vo)

Theorem 3.2.1. (Comparison Principle). Let (p,V) and (n, W) be solu-
tions of (BFE) with P(p) = p**, P(n) = n*,k = 1,2,3....; and initial values
(po, o) and (no, Wy) respectively. Then

0 <no(z) < po(x) nR" = 0 < n(x,t) < p(z,t) inR" x [0, Th (3.83)

—

Proof. Let R(t,y) = p(6(1,y),1); S(t,y) = n(¥(t,y),1), and Q(t,y) = R(t,y)—
S(t,y) where gb(t, y) and (¢, y) satisfy the following equations respectively.

%(t, y) = V(Q_g(t, y)7 t) 5(25, y) — (¢1(t, y), gbg(t, y), ceuy ¢n(t7 y))
5(0,9) =y v =0, (1= A) 7' p*
(3.84)
o e - B
Sy) = W), t)  Gy) = (il y) et ), vt y)
1/7(07y) =y w; = —0y, (1 — A)—ln%

(3.85)

Combining (3.82) with (3.84), and (3.82) with (3.85) we have that R(t) and
S(t) satisfy the ordinary differential equations, respectively

dR as
{ o —Rdivv T —Sdivw (3.56)

R(0,y) = po(y) S(0,y) = no(y)
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Solving (3.86), we obtain:

po(y)>0

R(t) = R(0)exp [ — /0 t div ¥(4(s,y), 8) ds] = R(t) >0

Analogously we have that:

n0(y)>0

S(t) = S(0)exp [ — /0 t div W (1 (s,y), s)ds] = S(t) >0

On the other hand, differentiating Q(t):

dQ drR dS L L
T (—divV)R(t) + (divw)S(t)
= —pdivv +ndivw

= —(p —n)divv + n(divw — div V)
= —Q(t)(div V) + S(t)(divw — div V)

Then
divv = —div ©(p)
= —div J2Vp* = —divV.J 3p*
— A=A = (1 A1) (1 A)
— ka _ (1 _ A)—lp%
Analogously

Substituting (3.90), (3.91) in (3.89):
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(3.90)

(3.91)
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%: —Q(t)(divv) + S(t) (leW d1VV> (3.92)
— —Q)(div¥) + S(t (77% A) Lk = % (1 - A)—lp%)
— —QU)(div¥) = S(1) (p* = ™) + S@)(1 = A) 7} (p* — )
%1
= —Q()(div) = S(t) (p =) ( 3 p*1)
Q) y
P(pm)
%1
+ SO0 (- ()]
i=0

As consequence of the above calculation, we have a new ordinary differential
equation for Q(t), i.e.:

dt
Q(0) = po(y) — mo(y)

{ 99 _ laive + S()P(R(), S(1)] Q1) + B(t, Q) (3.93)

Applying method of variation of parameters in (3.93), the integral solution
is:

Qt) = U(t,0)Q(0) +/0 U(t,s)B(s,Q(s)) ds (3.94)

where
Ul(t,s) = exp [ — / [div (V( _'(7', y), 7)) + S(1)P(R(T), S(T))]dT]. (3.95)

In view of conditions for py and 7y, we have that R(¢) > 0 and S(¢) >0
Consider the sequence

Quir(t) = U(t,0)Q(0) + / U(t, $)B(s, Quls))ds
Qo(t) = po(y) — no(y)

n=12, ..
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If Q(0) > 0,then Q,(¢t) > 0, for all n. Thus

—

Q) = p(d(t,y).t) —n(W(t,y).t) = lim Qu(t) 0

To complete the proof we need to show the functions y € R® — gg(t, y) € R"
andy € R" — J(t, y) € R™ are onto.To do this, we analyze in detail the map
y € R" — ¢(t,y) € R".

From (3.84), integrating de 0 a t, we obtain :

¢i(t) —yi = / vi(d(s,y), s)ds; i =1,2, ...
0
Then

t
‘(bl(t) - yll < / ’Ui(¢<87y)75)| ds < al(HpOHS?t)t y U= 1727 e 3 8 > 5
0

Yi — al(“lo()HSat) < ¢z(tay) < Y + a’i(HpOH&t)a vyl eR

Taking z; € R; y(l) << 0, y-(z)

7 A

>> 0 such that z € (y\”, yfz)) we have:

1 2
o+ ailllpolls t) < 2 < 5 — allpolls. 1)

Therefore

oi(t, y;n) <z < ¢i(t, yz'(Q))
The theorem of the average value, for continuous functions ¢; implies that
exists y; € (yz(l), y,fQ)) and satisfies ¢;(t,y;) = 2

An analogous argument, proves that the map y € R* — J(t, y) is onto. [
3.3 Global estimates in H*(R"), s > 5 +1

In this section we obtain the global H®-estimate for the solution of Brinkman
Flow equation. This will be a consequence of global-well posedness of the
regularized problem.

Theorem 3.3.1. (Global Solution). Lets > 241, P(p) = p*, F =0
and po € H*(R™) with 0 < po(x) <1 inR". Then (3.82) is globally well-posed
in the sense described in Chapter 1 and satisfies 0 < p(x,t) <1, Vt > 0.
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Proof. From the Comparison Principle follows that 0 < p(z,¢) < 1. Using

the regularized initial value problem, with the simplified notations p,(t) =
i Vilt) = V.
Op — pAp + div [pv] =
V— AV = —v,;% (3.96)
(5(0),¥(0)) = (Po, Vo)

We have that v = —(1 — A)"1Vp% = —J2Vp%* = —6(p)

Applying J* to regularized equation:

d

(D) = p(J°Ap) + Jdiv (5¥) = 0 (3.97)

Multiplying (3.97) by J°p and integrate over R™

o Jonr@pde— [rposay oy 6o
o [y e = [rnaw) w3 Jorno.ruyds (.99

g

<0

Using the commutator [0,, %, v;|p = Oy, J*(pv;) — v;0.,J°p, we obtain:

1 d S ~ S ~ S ~
sar | (P 2 dr < — Z/J A vzpdx—Z/J V0iB,, J* b da
(3.100)
Integrating by parts in (3.100)

1d

1
] < s\2 1:. 3
ST (J*p)? dx g /Jp )[0x, J° vl]pdx+2/((] p)=divvdzx (3.101)

Using (3.90) in (3.101)

i [(T°p)? do < — Zf () [0, T* i) pda + 1 [(J*)27% due

(3.102)

1 ) lﬁZk dx
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From the second equation in (3.96) we have v; = —d,.(1 — A)~!p?*. Substi-
tuting it in (3.102)
>0

N
7 N

i [(J°p) dv < [(Jp)*5™ do — / (Jp)*(1 — A) L da

(3.103)

2 [ () (300,700, (1 — A)7 75 da

=1

Observing that the third term it is non negative, and applying Cauchy
Schwartz inequality in the fourth term; we observe:

d - - o~
G e <1 [ 2

2 [P 3 0001 - 2) 175 3100
i=1

Using Lemma A.1.3 of Appendix, in (3.104), with f = (1 — A)715* and
g = p, we obtain:

d, _ i . _ k|| ||
ZA1S < 1A llee< 111 + 20H/9H5[Hp2’“HLooHpHs + HPQ’“HsHpHLm] (3.105)

Applying Corollary A.1.1 in (3.105):

d . . N .
—o13 S A 1513 (3.106)

In the following we need calculate ||p||~. Applying the Comparison Principle
for p and Sobolev Lemma we have

1Pllzoe <6 = pllzoe + [lplle S T+ 1I5 = plls (3.107)

Calculating [|p — pl|s, with [[p — pl[s = SUD|p||,=1 (6= ps0)s]
In the analysis of weak convergence of sequence p, we saw

[{ou(®) = pu(1),0)s] < llpu(t) = p@)slle = @ells + llou(t) = o (O]l @ell2s

(3.108)
< 2Me+ ||pu(t) = pu()|lllpelos
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Applying limit as v — 0 in (3.108)

[(pu(t) = p(t), @)s| < 2Me + || pu(t) — p(E)|[e |2 (3.109)

Considering that ||p,(t) — p, ()|| < 2M+\/nTy|p — v]eT-LoMM) and applying

limit as v — 0
lou(t) = p)]| < 2M\/n Ty peTHoOMD = C(n, M, T) /i (3.110)

Substituting (3.110) in (3.109) and considering that ||¢.|las < €7°||¢||s with
@e constructed as in [21, Lemma 2.6, pg 900], yields

[(pu(t) = p(t), )il < 2Me+ Cln, M, T) /el (3.111)

Then

15— plls = sup [(5—p, @)l <2Me+C(n, M, T,) /e (3.112)

llplls=1

and
1Al S 1+ 2Me+ C(n, M, T.)\/lie ", Ve > 0 (3.113)

Let (1) = 72 a non-decreasing function, it follows that:
d, . = ~ s\~
oIS S r(1 4 2Me+ Cn, M, T) /e ) |12 (3.114)
Integrating from 0 to ¢ in (3.114)

t
||ﬁ||§,§||po||§—|—r(1+2M6+C’(n,M,Ts)\/ﬁeS)/ () 12dr (3.115)
0

From Gronwalls inequality in (3.115), follows a priori-estimate in H*(R"™); s >
21
2

512 S llpol & (H2MACEMTWE)T, o 50 ves0  (3116)
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Finally, applying [49, Theo. 1, pg 120] in (3.116) we obtain the final estimate
o3 < liminf || p,.(¢)]]3 (3.117)
n—0

< lim inf ||p0”§ er(1+2Me+6(n,M,’fS)\/ﬁe’S)’fs
n—0

— 2 T(1+2M6+5(H,M,T5)\/}7€75)T5
ling [ o5
= llpolf2 €429 v >
Therefore,applying limit as € tends to zero, follows the final estimate

o112 < llpoll2 €™, vt € [0,T3] (3.118)

]
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Chapter 4

BFE with Bore-Like Initial
Conditions

4.1 Local Theory with Parabolic Regulariza-
tion

4.1.1 Auxiliar problem for the BFE

In this section we will describe how to deal with certain types of initial data
that do not belong to a Sobolev Space. More precisely, we will consider the
Cauchy problem for the Brinkman Flow equation with bore-like data and
P(p) = p?, that is:

(4.1)

Op = 896(,0(1 — A)*laz/f),:c eR, tel=(0,Tp
p(2,0) = po(x)

where pg : R — R satisfies the following conditions:

(BL1) po(z) — Cy as © — £ where C_ > C > 0.

(BL2) pi(z) € H*(R), for some r > 0

(BL3) o) — C_ € L2((—00,0]) and py(x) — Cs € L2([0, +00))

Note that a function py with these conditions is necessarily bounded. The
real reason for introducing conditions (BL1)-(BL3) is that they model certain

43
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travelling waves that occur in nature. For more information on bores we refer
the reader to [6],[19],[20] and references therein.

The problem with bores is that ||p]| = oo, and Sobolev Space methods, in
principle, cannot be applied. Consider the following lemma.

Lemma 4.1.1. Let py satisfy conditions (BL1) and (BL2). Then for each
7 € (0,00) there exists a 1, € C®(R) such that ¢, € H®(R) and ¢, =
po — Uy € HTY(R), s > 0. Moreover

2 1
loo—= vl < () lleoll - lerlls < Cls bl (42)
Finally, if po satisfies (BL3) then 1, also has this property and lim, 4 ¥, =
Cy.
Proof. See [19],[20],[21]. O
Let 7 be fixed, and write ¢, = ¢ for simplicity. It is then natural to
define p(z,t) = w(z,t) + ¥ (z), and study the auxiliary initial value problem
associated to w(x,t), namely:
Ow = 8x(wJ_28xw2) + B(w,v) € H'(R), z€R, te I =(0,Ty
w(z,0) = po(x) = P(x) = d(x) € H*(R); s > 1
(4.3)
where
E(w,¢) = 0, (vJ20,0°) + 0p(wI ?0,0°) + 0, (v 2 0,w?) (4.4)
+20, (wJ_an(ww)) +20, (¢J‘28x(w¢))
This is the problem that we will study. Observe that the PDE in (4.3), is

a perturbation of (BFE) with five extra terms. We will employ parabolic
regularization to show that (4.3) is locally well posed if s > %

4.1.2 Parabolic Regularization for the auxiliary pro-
blem
In order to solve (4.3), locally in time, we will introduce an artificial viscosity

4, solve the regularized problem and then take limits as the viscosity tends
to zero. A little more precisely, we consider Cauchy problem.

{ Oyw, = pd’w, + B(w,, ) € H2(R), z €R, t €I =(0,Ty
Wy

(2,0) = ¢(x) € H*(R); s > 1 (4.5)
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where .
E(wy, ) = 0y (wuJ 20pw?) + E(wy, ¥) (4.6)

Using the method of variation of parameters we can show that (4.5) is equiva-
lent to the integral equation:

w0) = U)o+ [0t = OBl ) (4.7

This equivalence is in fact rigorous in view of lemma 3.1.2 which asserts that
t—U,t) = 9% the semigroup generated by ud? | is infinitely smoothing.

x
Its necessary to prove a result analogous to Lemma 3.1.1 in order to show

the properties of the nonlinear part E(w, 1))

Lemma 4.1.2. Let s > % be fized. Then E(w, 1Y) is a continuous map from
H® to H~! and satisfies the estimates

| E(w,0) = B0, 0)llor < Bl |l )lw =l (@48)
(w =, Bw,) = B@,)) < Qolwll, 10l 0)llw—al*  (49)

for all w,w € H®, where 3,Qy : RT x Rt — R™ are continuous functions,
monotone nondecreasing with respect to each of their arguments.

Proof. We have

||E(w7 ¢) - E(ﬁ}, 77Z)> ”S—l < \Haﬂ? (wJ_2azw2) - 8$ (UN)J_2awU~)2) ”s—lj

~a
+ 1100 ((w = )T 20:0%) [l st + 102 (VT 0a(w? — 07)) || -1
=B —
+21105 (4720, (Y (w — ) [ls—1 +2 |05 (wT 0 (wtd)) — O (0T 20 (1)) [l s—1
D -5

(4.10)

The first term (A), is exactly the nonlinear part of the (BFE), and that
estimate was made in the Chapter 3, in n-dimensional case, that is

AL (lwlls + [l llw — ]l (4.11)
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Since H*, s > % > % is a Banach algebra, using the Cauchy-Schwartz inequali-
ty , |J 2 Beas, mer2y < 1,]|J 720, Bems, ms+1y < 1, Lemma A.1.7 and Corollary
A.1.2 in Appendix, we have

B =210 ((w — @) J (1)) ls—1 < [lw = [l 77> (1) (4.12)
S lw =@l T2 @) v S llw = DIl 2 s e 1y
S (Il + [19'[1)* lw — @]

C < [pJ720:(w? = ?) || S 1T 720:(w* — )| ([W]lz> + [¥]l)  (4.13)
SN2 0:l B e [w® = @[] + 1¥7]]5)
S (lwlls + 1@ [ls) (1l e + 17 ][)l[w — @]

D < [0 J 720, (¢(w — @))|ls S 7720 (v (w — @) [s([¢ll = + [14]]s) (4.14)
SN0l s e v (w — D) ([ 2 + []47])
S (1l + 11911s)? lw — s

E < |0: (w] 20, (¢(w — ) [ls-1 + [10x(w — @) T 20 () ls—1 (4.15)
< w720, (¥ (w — @) |5 + || (w — @) T 720, () |5
S Nwlls|l 77205 (v (w — @) [ls + [Jw — @|ls]|J 720 ()|
S Nwllsll T2 0u | s s 19 (w = D)5 + 1w = @ s]|T720s | s ey 11010
(Il +110711s) + llw = @[]l 2 + 1%]ls)
(llze + ¢ l1s)lw — @]f5

S lJwllsllw =l
S (lwlls + f[ol]s)

Taking i
C(s,¢) = max{(|[¢ [l + [¢'[l)% (¢l + 1]l)} (4.16)

and substituting (4.11) to (4.15) in (4.10)
1E(w, ) = E(w, )51 < B(|[wlls, @5, ) [w — @], (4.17)
where

Bllwlls, @5, %) = (Jwlls + 1@]ls)* + 3C(s, ) (JJwlls + [l@]ls) +3C (s, )
(4.18)
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Finally, we will estimate (4.9)

<w — 0, E(w,w) = E(’Lb,iﬁ)>
= <w — W, 0, (wJ20,w?) — 0, (wﬂ@m@%

N

e

=I

+\<w — b, 0, ((w — w)J—an¢2)> +\<w — 0, Oy (1T 20 (w® — @2))>

J/ J/

—7I1 =II1
+2 <w — 0, 0, (wJ 20, (wy)) — 0, (@DJ_23$(U~J¢))>
=1V
42 <w — 1B, Dy (1] 20, (h (w — w))> (4.19)
=V
The first term in (4.19) was estimated in Chapter 3, by
IS (lwlls + ll@]]s)*lw — @ (4.20)

Integration by parts, Cauchy-Schwartz inequality, Sobolev Lemma, Lemma
A.1.7, Corollary A.1.2 in Appendix , || J 20, || p(ms,g=+1) < 1and || J 202 pearsy <
1 leads the other following estimates in (4.19)

1= 2<w — w0, 0, ((w — w)J*2<ww'>)> (4.21)
= —2((w— @) T2 (W), Bulw — ) )
= = (Oulw — @)%, T2 () ) = ((w— @)%, T 20, (4) )

< Jlw = @|*|T 00 (W)l < lhw = @|*[| 7200 (¥3") |1
S lw = @17 720: s e 109l S (lllzoe + 19/]l6)*|lw — |

T < |lw = @[]0, (] 20, (w® — &%) | (4.22)
< lw = @|lf[¢pJ 20 (w® — @) ||y
S llw = w720 (w? = @) [+ ([ ]|z + [197]]1)
S llw = @120 52, i)l (w — @) (w + @) ([[¢] o + 14']1)
S llw = @l [[w + @ o (|90 oo + [[9[]2)
< lwlls + l@lls) (el + 19| [Jw — @]
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- <w — 1B, Dy (w20, ((w — D)) > + §<(w — W), J*28§(w¢)>

< jw = @[]0, (w20, ((w — w)ih)) || + 31T 203 (W) || oo || — ]|

S w — @ lwT =20, ((w — @)Y) |1 + 3[[T 202 (w) ||s[lw — @ ||

S w = @ lwll 1T 720: ((w = @)ib) 1+ 5117203 | sy 10| s lw — @]

S w = @I lwlls 1T 20 | sz a1l o + @1l oo + 19 ]15) 1w — @ ]|
S (lwlls + 3ll@lls) Nl + 14]]s) w — @]

<,

(4.23)
V < Jlw — |[[|0; (YT 20: (¢ (w — @) | (4.24)
< Jlw = @[T 20, (d(w — @)l
S Nw = @19 ]| + 1) T 200 (v (w — @)l
S lw =@l ([l + 1 N1 0ull pezz 1o (w — @)
S lw =@l (¢l + 1 1) 1]z
S (Il + 19/1ls) 1w — @]
Then, substituting (4.20)-(4.24) in (4.19), follows the result, i.e.,

(w10, B(w,9) = B@,9)) < Qulllwll, Nl ) Jw -2l (1.25)
where

Qo([[wlls: @Iy, ) = (lwlls + [[@]s)* + 3 C (s, ) (lwlls + [[@]s) + 3 C (s, )
(4.26)
This finishes the proof. O

Now, introducing the complete metric space

X(To) = {v € C([0,Tp), H*(R)) : ||[v(t) = Uu(t)p|| < M, ¥t € [0,Tp] }
(4.27)
and the mapping

B®) = U0 + [ Uit =O)BG(0), ) de (4.28)

and combining these definitions with lemmas 3.1.2 and 4.1.2 a), it is not
difficult to prove the following Theorem.
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Theorem 4.1.1. Let p > 0 be fired and ¢ € H*(R), s > 1. Then there ezists
TF =1T(s,||¢|s, ) >0 and a unique solution w,, of IVP (4.5) satisfying

w# = O([07 Tﬂ], HS(R)) n C((O7 TM]? HOO(R))
Proof. 1t is similar to the proof of theorem 3.1.2 in section 3.1.1 [

The next step is to study the limit w = lim,_,ow,. First we must show
that w, can be extended to an interval of time independent of s.

Lemma 4.1.3. Let s > 3 and w, € C([0,T"], H*(R)) be the solution of

the IVP (4.5) with > 0. Then w,(t) can be extended to an interval [0, 7]
where Ty = T(s,[|¢[|s) is independent of . Moreover, there exists h(t) €
C([0,Ty),R) such that:

lw (DI < k() h(0) = [16] (4.29)

Proof. Since w,(t) € H®(R), Vt € (0,7"], we may safely differentiate
lw,(t)||? with respect to ¢ to get

Ol (8)]2 = 2 (wa(t). uwa(t)) (4.30)

s

=2 <wu(t), ,u@iwu(t)>8 +2 <wu(t), E(w,(t), ¢)>

S

Since Hy = —0? is a self-adjoint and positive operator in H* we have

(w1020 (8)) = =pnwn(), How, (1)) <0 (4.31)

Expanding the other term

0)
+ <wu,8 ( 2(%;1/) <w Q/)J 20,w )>
+

<w#,E(wu,1/))>s:<wW8( J20,0° > <w#, (¢J—2az¢2)>s
—i—<wu,8( J20, (wuw))> <wu, (47720, (wuw))>s (4.32)

We now estimate each term in (4.32):
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The first term in E(wﬂ,w) is the similar to the case treated in chapter 3,
where we know that:

(wlt). 00 (wT20,2) ) S (4:33)

Using Cauchy Schwartz inequality, Lemmas A.1.5, A.1.7, any operators esti-
mates and Corollary A.1.2 we will estimate the others terms

(w00 (97720.07) ) < 2| (w0, (0T 2(00)) ) |

< 2/lwulls|0: (W T2 (W) lls < 2lwplsllbT 2 (@) s

S wulls T2 (@) s ([Pl e + 119 |s41) (4.34)
S Nwullsl T~ s ) 108 s (1l oo + (197l s41)

S lwplls(llzoe + 19 1)l oe + 14| s41)

S (U llzee + 19" ls1)?lwalls

(100 0:(w, 2axw2>> = 2wy 00 (w0, T () )

= 2[(w, (Do) T2 W) + (wys (w, (W’)H
< |72 v @), wu>\+1<wmw# I, ww'>>
< 2020, (00 o w2+ e T =20, (0,

SN sllwall?
S (U llzoe + 1) lwp 13

(4.35)

<wu,8z(w¢]_26xwi)>s < ‘<wu,8x(¢J_28xwi)>s‘

< Nwullsl102 (¥ T 7200w ) s < flwpllsll T 200w [l (4.36)
S Nwullsll T 200w s (19l + (19 [[51)

S llzse + (19 [s0) lw, |12
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<w#,8r (qu_Qam(w#w))>s

_ <w,“ (8IwM)J*26x(wu¢)> n <wu,qu’28§(w“@Z))>
< | (0210,) 20, (w,) ) |+ |(y w0, T~ 202 () )
S wadllslwall? + llwpllsllw,d =202 (w) ||

N ku@Z)Hsuwqu + kuHgHJ_Qag(wul/’)Hs

S llwublsllw,ll?

S (1l + [ ) [wll?
(1,0, (0720, (w,0) ) <
< ”wuHSHax(wJ_28m<wuw>)Hs
< Nlwpllsllt T 20, (w1)) ] 541 (4.38)
S Nwplls1 77200 (w, )[4 (10l oo + 11| 541)

S lwallsllwalls(llze + 19 lsr1)
S Nwpll 3l zoe + 114 |e42)?

Substituting (4.31),(4.33)-(4.38) in (4.30) we have:
O, ()12 S (s, 0) (N O+ o, (1 + [, (DI + (D)) (4.39)
= B ) (122 + G, (@12)F + a2 + (012
= G(lwu(®)II%)

S

(4.37)

(1002 (0720, w,)) )

with N
K(s,¢) = max{6K (s, ), 2}
and
K (s,0) = max{([¢l 2= + 19 ls+1)%, 19 o + [¢'[s42)%, ([9[] o + Hw/“(s-l-l)})‘
4.40

Considering h = h(t) maximal solution for:

{ Oh(t) = G(h(t)) = K[h* +h? + h+ hz], t € (0,T) (41)

h(0) = [l

Then for T, € [0,T*), we have:
o, (D)2 < A(t), t € [0,T] (4.42)
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Since h(t) does not depend on g, it follows that all solutions can be extended
to some interval [0, Ts] with Ty < T*, where T* is the maximal time of the
solution h(t). O

Now we are ready to establish the following result:

Theorem 4.1.2. Let ¢ € H*(R), s > 3. Then there eists T, =T(s,|¢s)
and a unique w € C4([0,T.], H*(R)) N CL([0,T.], H*"*(R)) that solves the
PDE in (4.3) and satisfies

lw(@)[I? < A(2), t €0, (4.43)

Proof. Let n > 0,v > 0 and w,,w, solutions obtained in Theorem 4.1.1,
with the same initial condition.
In the following we will prove that {w,} is a Cauchy sequence in L?(RR) space.

Estimating 0wy (t) — w, (t)|

Oulwn(t) = wn (D2 = 2(wa(t) = w, (1), Bl (t) — w, (1) )
= 2(wu(t) — wy (£), pO2w,(t) — 2w, (1)) (4.44)
+ 2(wu(t) = w,(8), B(w,(£),) = E(w, (1), )

The first in (4.44) is similar to the case treated in chapter 3, where we know
that:
<wﬂ — w,, pd2w, — V@iwy> <2M?|p —v| (4.45)

and the second term was estimated in Lemma 4.1.2
Therefore substituting(4.45),(4.9), in (4.44) we have

Orllw,(t) — w, (O)|* < AMP|p = v| + 2 Qo(M, M, ) [wy(t) — wy (8)]* (4.46)
Integrating (4.46) from 0 to ¢

t
[ (t) — w, (0)]1* < AMZ | — vt + / 2Qo(M, M, ¥)||lw(r) — w, (7)|* dr
0
(4.47)
Applying Gronwall’s Inequality in (4.47)

lwu(t) = w, (D2 < AM?T, | — v] eJo 2QUMw)dr (4.48)

< AM2T|p — v| 2QMMOT -y ¢ (0, T)
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Applying limit as 4 — 0, — 0

lim [, () — w, ()] = 0.ic, pu () "D pu (D)t € (0,1 (4.49)

pn—0,v—0

Thus, {w,(t)},>0 is a Cauchy sequence in the space L*(R"), that is complete.
Therefore, there exists w(t) € C([0, Ty, L*(R™)) that satisfies

lim sup ||w,(t) —w(t)|]| =0
,l/,*)O [O,TS]

Thus ¢ € [0,T,] — w,(t) is continuous and uniformly bounded in L(R™).
The remainder of the proof is similar to that of Theorem 3.1.3 ]

Once this is done, the next corollary follows

Corollary 4.1.1. Let w be the solution of IVP (4.3) given in Theorem 4.1.2.
Then p = w + 1 is the unique solution of IVP (4.1) satisfying p — 1 €
C.([0,Ty], H*(R)), s> %

4.2 L[?-Global Estimate

Theorem 4.2.1. Let s > 3, P(p) = p?, F = 0 and the initial Bore-Like

condition py with 0 < po(z) < 1. Then, the solution p is globally well-posed
in the sense that: 0 < p(x,t) <1 and p— 1 € C([0,T],L?), VT > 0.

Proof. As a immediate consequence of the Comparison Principle, we have
that 0 < p(z) <1
Consider the regularized auxiliary Brinkman Flow equation

{ Ow, = pd’w, + 0, (qu_Qamwi) + E(w,,¥) € H*'(R), z€R
Wy

(2,0) = po(z) —Y(z) = ¢(x) € H'(R); s > 1
(4.50)

where

E(wy, ¥) = 0u (W 20,0%) + O (0, ] 20:0%) + 0, (W 20pwy,)  (4.51)
+ 20, (. J 20, (w, ) + 20, (VI 205 (wy1)))
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Multiplying the equation by w, and integrating over R

1

58t/widg;=11+J2+J3+I4+I5+16+17 (4.52)

where

11 = ,u/wuaiwﬂ dex, 12 = /wuax(wHJQ(?mwi) dx
I3 = / W, 0y (Y 20,0°) dz, 14 = / W, 0y (W J 20,07) da

I5 = /wuax (zﬁJ’Q@xwi) dr, 16 = Q/wu&r(quQQC(wuw)) dx

and
17 = Q/wuﬁx (wJ_zé’x(w#w)) dx

In what follows we estimate each integral:

Since Hy = —? is a self-adjoint and positive operator, we have
11 = p{wy,, —How,) = —p{ Hyw,,, w,) <0 (4.53)

Integrating by parts the second integral

12 = / w0y (W J 20w’ do = — = / Dy ( w?) (4.54)

102 (w || 1
—<O
2 —

Using the Cauchy-Schwartz inequality, Lemma A.1.7, Corollary A.1.2 in ap-
pendix, and that ||J 72| g(gs ge+2) < 1, we have

I3 =2 / w0y (VT2 (1)) da < 2|{wy, Oy (T2 (")) )| (4.55)

< 2w, 1102 (T 2 (W) o1 < 2lwu |0 200" || 12

< 20wl 2 @) |2 (19| oo + 18 Nlsw2) S 2wl s (2] z + [19[|s42)
< 20wyl (]l + 19 )2 (el zee + 19 |s2)

S+ )Nl o + 18] s12)®

S (1l + 19 lss2)® + (oo + 19 lls12) w1
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Combining integration by parts, Sobolev’s Lemma ([1]), Corollary A.1.2 in
appendix A and the fact that ||J 20, p(gs ms+1) < 1, we obtain

14 = 2/%3 (w20, (V")) /a V) dw (4.56)

= [0, do < 1720, 00 o P

SN 720: W) |sallwpll® < Nl s, ]*
S (Ml + 119 11) lwll?

Applying Cauchy-Schwartz inequality, || J 20, || p(z2,n1) < 1 and Lemma A.1.7,
it follows that

15 = /w,ﬁx (¢J_23xwi) dx < ‘<wu,3x (@DJ_20$@UZ)>‘ (4.57)
< NJwp 18: (T 20w ) || < (w10 T 200w |y
S w1 720wl (1)l oo + 197]11) S gl [ (1]l + [14]15)
S Nl P llwpll zoe (1400l o + 1147115)

Using integration by parts, ||J202||p(12) < 1 and Cauchy-Schwartz inequa-
lity, we have

16 = 2/wuﬁx(qu_28z(wu¢)) dx = —/8m(wi)J_28x(wu¢) dr  (4.58)

— / wgr?ag(wm) dr < |<w3,J*28§(wuw)>|
< Nwi 1T 202 (w, )| < [Jwpl[lwy| e [[w, |

< Jlwpllzoe e[|z [l

In the last integral, we used the Cauchy-Schwartz inequality, ||.J 20, p(r2,51) <
1 and Lemma A.1.7.

I7 = 2/ 0o (VI 20 (wyt))) da < 2|(wy, Oy (I 205 (wu1))) )| (4.59)

S w102 (77205 (w)) | < NwlllT =20 (wh) |14
S w7720 () s (1l + 19'11) < Nwallllw, bl (2 + [17])
S lwallPll el e + 191 S el + 11415)?
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In estimates I5 and /6, we need to estimate ||w,|/z~. The Comparison
Principle for p implies that

Jwpllzee < [lwy = wllzee + [Jw][pee S [Jwy — wlls + o — Pl Lo (4.60)
S lwy —wlls + llpllzee + 19l S 1+ lwy — wlls + [[¢]] =
In order, to estimate ||w, —w||;,we use arguments similar to those employed

in the proof of H*- global estimates of Brinkman Equation, in section 3.3.
We have,

|lw, — w|s < 2Me+ C(M, Ty, )/l e (461)
where
C(M, T, 1) =2 M\/E Qo(M.M )T,
Then

lwp e < 2Me+ C(M, To, ) y/lie ™ + 1+ ] 1 (4.62)
Substituting (4.62) in 5, 16

15 S ([l + 19']]s) [2M e+ C(M, Ty, )y /e + 1+ ]| o] ]| (4.63)

16 < |9l [2Me + C(M, Ty, )v/e* + 1+ [l ] [[wal* - (4.64)

On the other hand, substituting (4.53),(4.54),(4.55),(4.56),(4.63),(4.64) and
(4.59) in (4.52), we have

Ollwull® S (llnee + 119 lls42)® + G, M, T, o, €) w2 (4.65)

where

G, M, Ty, pi, €) = (||¢]| = + Hib’!lswf” + 2 ([l + [1¢']ls)?
+ (9]l 2o + IWHQ[?M6 + C(M, Ty, p) e + 1+ |[Y|p=]  (4.66)
+ |9 e [2M e + C(M, T, )/l € + 1+ |9 1]

Integrating (4.65) from 0 to ¢

(2 < (USIPH Ul + 10 s2)* T ) + G (0, M, T s €) / lw (7)1 d
(4.67)



4.2. L*>-GLOBAL ESTIMATE o7
Gronwall’s Inequality in (4.67) implies
leoa I < (U911 + (Ul + [9/ll512)* Ty ) eSOM T e > 0 (4.68)

Therefore, as we know that the sequence w, converges strongly in L? we
may apply limit as p tends to zero, in (4.68). Then, it follows that

@2 < (1612 + (lliw + 1) T2) COMOT e >0 (4.60)
with

G, M, €) = ([[¢l] o + [0/ lls+2)* + 2 ([l + [[¢/]]5)?
+ (9l + 19'1ls) [2Me + 1+ [[]] 1] (4.70)
9l [2Me + 1+ [[9]| ]

As e is sufficiently small, we take the limit as ¢ — 0 to get

lo 2 < (12 + (1l + 10 lle2) 7o) 5O a71)
where

K(¢) = (WHLwﬂWst)?’ﬂL?(HwHLerWHS)2+(2H¢HLOO+Hw’!ls)[1+H(1iH7L53}

Finally, the L? global estimate for p — 1 follows

lo = 9)I2 < (oo = 0l + (Il + 10 ls42)* T2) 50T (4.73)

]
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Appendix A

Appendix

A.1 Some inequalities

In what follows we consider some inequalities. In most cases these functions
are assumed to be in S(R™), but the resulting inequalities may be extended
as usual to more general functions by continuity. In addition to the Sobolev
norm || e ||, we occasionally use the Sobolev seminorm || e || given by

5 n
113 = [ 1ePIF©F de. s > -3
R™
Lemma A.1.1. Let J = (1 — A)z,s > 5+ 1. Then
177, Mylg|| < ellV £lls-1llglls—
Proof. See [31, Appendix, pag. 122].
Lemma A.1.2. Let 0 € C®(R" x R* — (0,0)) satisfy
0200 (&,m)] < Cas(lé] + )™=V

for (§,m) #(0,0) and any o, § € (Z7)"
If 0(D) denotes the bilinear operator

o(D)(f, 9)(x) = / / w41l (¢, ) F()3(n) dedn

Then
lo(D)(f, DIl < Cll flle=lgllze, p € (1,00)

29
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Proof. See [9, pag. 154]. ]

Lemma A.1.3. I[f s >0 and 1 < p < oo, then

| 3 100 (092000, 8 P 4], < (172 a7l 172 sl
k=1
(A.5)

Remark: In this Lemma we use |e, e]| to denote the Euclidean scalar pro-
duct in R".

Proof. The proof of this Lemma is similar to that of Lemma X1 in [34], is
based on the following result due to R.R.Coifman and Y. Meyer (Lemma
A1.2)

Applying the Inversion Fourier Transform, properties of Fourier Transform,
Fubini’s Theorem and a change of variable, we start from the formula

(9, (902, ) — Doy [ (02, 7°0)) (1)
= ¢ [ (00 (900, ) = Ou (02, 7°) ) (€) €%
= ¢ [ [&m(@+ [0)3 — (€ + ) (L+ 1€+ n?)36] =€ f(6)g(n) dédn

(A.6)
Then

—Cffe Ll [ 1€, n](1+ |nf*)2 — Li §+77J(1+|§+77| )3] £(€)d(n) dédn

~

= —c [[ el e+ n)(L+ 1€+ %2 — &)+ n*)2] f(£)g(n) dedn
= -3 1 0(D)(f.9)(x)
(A7)

where

€]

7i(€m) = {166+ nl(1+ €+ )% — L& )1+ o) s (12

) (A.8)
and the ®; are functions on R with the following properties
0<®,;, <1, j=1,2,3,

(I)l + (I)Q + (1)3 =1 on [0, OO), (Ag)
supp ®; C [—1/3, 1/3], supp P, C [1/4, 4], supp ®3 C [3, c0).
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First we consider o1(D)(f,g). We write

or(m) = {L&.€ + )L+ e +0) — LEn)(1+ )3 e (,i) (A 10
=(1+Inl2)5{L€,§+nJ(%) - & nJ}<1>1( )
= P16+l (1 (1 )66+ 20)) - Lo b ()

Using the generalized Newton’s Binomial Theorem, we have

01 (57 77) = Ul,l(gu 77) + 0-1,2<§7 77) (All)
with "
71a(6m) = (1+P)F[EP () (A.12)
and
naten) = { Slecenlc R ec ()]

If we multiply (A.11) by f(£)g(n), we obtain

(&I (©)30) = o0& MPTETg) + (3 o12.(6m)) P21 Tg(n)

r=1

) (A.14)
where
o110(8:m) = 1f"1’2¢1(%) (A.15)
and
o120(6m) =, ff E(y (L+ )7 |€.€ +20)7, (%) (A.16)
Thus
/ / el la (&) £(€)a(n) dédn (A.17)
o

= 0110(D)(Jf, J°g)(x) + 012(D)(J*f, J°g) (x)
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with

a110(D) (T2 f, T°g)(x) el 1 o(&,m) T2 F(€)T2g(n) dédn  (A18)

Il
N

and

na D) FTg)w) = [ [ 500 (3 0vanlem) TR gl ded

HS r=1

(A.19)
As is easily seen o11,(&,7),012.(§,n) satisfy (A.2). Since the series defined
by 012(&,m) converges (due fact that || < @ for ®; # 0), it follows from

estimate (A.3) in Lemma A.1.2 that
lo(D)(f ) ller < ell T fllz Nl T*gll v (A.20)

Next we consider o3(D)(f, g). Here we write 03(£,n) = 03.1(£,1m)—
03,2 (57 77)7 Where

o3.1(&,m) = (L& E+nl(1+|E+n)2 - ><I>3<‘|§|‘> (A.21)
and | ’
ria(€n) = (160 1+ P = 1) (1) (22
Now
o3(6,m) F(€)(n) = 0311(EMTH2F(E)d(n) — 31(6,m) T () T*g(n)
(A.23)
+ a30(6,m) T2F(€)T59(n)
with

raaal€on) = (1 I (16 €m0+ fe+ ) - 1)oa((5) (a2)

1§.n) €l
032,1(§5 1) = 1+|§I2®3<|nl) (A.25)
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RSN
0322(&,m) = W(b <|77|) (A.26)
Thus
a3(D)(f,9) \g][f el gy (€,m) £(£)g(n) dédn
>3
= 03,1,1(D)(J8+2f, 9)(x) = 0321 (D)(J?f, J°g)(x) + 0322(D)(J*f, J°g)(x)
(A.27)
where
7010 (D)2 g)(w) = [ [ S o (€T Eato) dedn (429
165

[ =

030 (D)(J2f. Fog)( / / gy (€ ) TEH(E) Tg(n) dédn (A.29)

>3

0302(D)(J2f. T°g) / / e gy (€ m) TEF(€) Tog(n) dédn (A.30)

1€l >3
[ =

Since (A.24),(A.25),(A.26) satisfy (A.2) with || > 3|n| for <I>3< ) # 0, we

obtain

o3 (D)(f, 9)(x)]| e

<oz 11 (D)2, 9) (@) o + [|o321(D)(T2f, T°g) (@) || 1
+lo322(D)(J2f, T°g) ()| Lr

< |72 flleellgll o + cll T fllpeo|| gl oo

Estimating o2(f, ¢)(x) is more complicated, due to the fact £ +n
m

ay vanish in the domain of integration, so that any negative power of
1+ [€ + n]* will not satisfy (A.2)
We write 02(&,n) in the form 02(€,n) = 091(£, 1) — 022(€, 1) with

(A.31)

o21(&m) =&+ n](1+ |§+nl2)3%(%) (A.32)
oaaen) = L&l (1+ o) (1) (A33)
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The term o95(D)(f, g) can be easily handled. Indeed, since

22(E,0) ()G = 0201 (€, 1) TH2F(€)5(n) (A.34)
where
maal6n) = gt e () s
we have

o22(D)(f,g)(x) = /6’“’“’”02,2,1(57n)J/S”\f(&)ﬁ(n)dﬁdn (A.36)

<lél<y
=Inl=

= 0272,1(D)(J5+2f7 9)(z)

As (A.35) satisfies condition (A.2), it follows that

N,

lo22(D)(f, 9)(@)[ee = oo (DY f, 9)(@)er < el T2l ll gl e

(A.37)

The same method can be used to estimate ||o91(D)(f,g)(x) if s is so large

that s > k = k(n,p)(see [34, Remark X3 for the definition of £]); then there

are no negative powers of 1 + |£ + n|? to estimate.

But, this method fails if s is not so large. To avoid this difficulty, we shall use

complex interpolation by extending o21(£,1) = 03,(£,7) to complex values

of s with 0 < R(s) < k, condition (A.2) and maximum principle in complex

function theory (see [34])

Finally, we obtain

lo21 (D)(f, ) (@)lIze < cll T fllollg]l e (A.38)
Finally, collecting the results (A.20),(A.31),(A.37) and (A.38);
we have proved the Lemma. O

Lemma A.1.4. If s >0 and 1 < p < oo, then LENL* is a Banach Algebra.
Moreover

1fgllsp < el fllzellgllee + ([ fllzollgllze-) (A.39)

Proof. See [34] O
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Corollary A.1.1. Let f € H* =L s> 2% k=1,2,.... Then

£ < IAIZET A1 (A.40)

Proof. Since f € H® s > 7, Sobolev’s Lemma implies that f € L*. Then
fel?nl® s>%2>0

(Case k=1) Applying the above Lemma we obtain
17205 < 2ell flze I < 2ellfllzeellflls = 1F20s S NNl flls (A4D)
(Case k=2) The above Lemma and the case k=1, implies

1FH s = 11721215 < 2ell 21z P20 < 26l FI1Zee [L£7]]s (A.42)
<A SNz 111

Then
140 S ANz NF s (A.43)
(Case k=k) Suppose as induction hypothesis that
1251 S WAIZ=HANL (A.44)

(Case k+1) By above Lemma and induction hypothesis
L2590 = 117221 S U oo L2 Ms + 12 e F2 1) (A45)

S 2N A A (A.46)

Then
1250 S A1l (A.47)
Finally, the result is proved. O]

Lemma A.1.5. Let s > § +1,t > 1,f,g € S(R"). Then there exists
C = C(s,n,t) > 0 such that

(fDg.9),| < ClIVFlls=allgll? + IV Flle-rllgllellgll:] (A.48)
with D = 0%, |a| =1
Proof. See [31] O
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Lemma A.1.6.

179l < cCllFlle=<llglli + [ fllllgliz<), s =0 (A.49)
Proof. See [14],[31]. O

Lemma A.1.7. Let f € H%,¢p € L>®, ¢’ € H*®. Then fi) € H® and satisfies:

1Flls S AUl e + 11[]s) (A.50)
Proof. We define an equivalent norm to || e ||2 by [[[ e [[[3 = [| & [|> + || e ||,
Applying (A.49) to calculate || f1||;s we have
1l = 1D OIS Uzl + I il ) (A.51)

SNl + Nl )
Then, substituting (A.51) in the equivalent norm to f
, 2
1F2IE = 11017 + IRy S NAIEN T + LA (1 lls + llebllee) ™ (A.52)

S IFI2 A 1% + 201 Nl e + 1))
UL s + 1ol e )

Finally, using the relation between equivalents norms, the desired result is
obtained. ]

Corollary A.1.2. Let i) € L with ' € H>®. Then Y’ € H® and satisfies:
[ lls < (1l + 19/1ls)? (A.53)
Proof. This result is a direct consequence of the previous Lemma.

Let ¢ € H*® C H*®
Using the estimate (A.50), we get |95

Iy lls S I sz + 19711s) < (e + [197]5)° (A.54)
O
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