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1l n’y a guére que les conférenciers pour
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Alfred Capus, 1857-1922






Abstract

The purpose of this work is the study of the well-posedness of the initial value problem
(IVP) associated to two systems: The first one is the Davey-Stewartson, where we prove
global well posedness in some Lorents spaces and consequently we find self-similar solutions.
The second system is the Degenerated Zakharov, where we prove local well posedness in
the sobolev space H3(R?®) improving a result from Linares, Ponce and Saut.
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Introduction

In this thesis we are concerned with the well-posedness of the IVP associated to two
dispersive systems.

The first system is the Davey-Stewartson

{z&tu+6 ol 2 2&§u—x|u|au+bu8mga, (r,t)eR"xRandn=2or3, (1)

52190+m5§2s0+2 =3 azg = O, (Jul®),

where the exponent « is such that J(n—i% <a< M, n = 2,3, the parameters y, b
are constants in R™ and § and m are real positive.

The Davey-Stewartson systems are the 2D generalization of the cubic 1D Schrédinger
equation id;u + Au = |u|*u and model the evolution of weakly nonlinear water waves that
travel predominantly in one direction, but in which the amplitude is modulated slowly in
two horizontal directions.

The system (1), n = 2, a = 2, was first derived by Davey and Stewartson ([DS])
in the context of water waves, but their analysis did not take account of the effect of
surface tension (or capillarity). This effect was later included by Djordjevic and Redekopp
[DR] who have shown that the parameter m can become negative when capillary effects are
important. Independently, Ablowitz and Haberman [AH] obtained a particular form of (1),
n = 2, as an example of completely integrable model also generalizing the two-dimensional
nonlinear Schrodinger equation.

There has been a lot of work in the literature (see for instance [GS], [H1], [LP1],

[Oh], [Oz]) concerning different issues regarding the Davey-Stewartson systems including
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solvability of the initial and initial-boundary value problems, blow-up solutions, existence
of periodic solutions.

In [GS], Ghidaglia and Saut studied the existence of solutions of IVP (1), n =2, a = 2.
They classified the system as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic and
hyperbolic-hyperbolic, according to respective sign of (8, m) : (+, +), (+, —), (—, +), (—, —).
The particular cases (0, x,b,m) = (1,—1,—-2,—1) (elliptic-hyperbolic) and (4, x,b,m) =
(—1,-2,1,1) and (—1,2,—1,1) (hyperbolic-elliptic) are know as DSI, DSII defocusing
and DSII focusing, respectively. For these particular cases, the inverse scattering tech-
niques has led to remarkable issues including: the existence of solitons (Anker and Freeman
[AnFr], Ablowitz and Fokas [AF], Fokas and Santini [FS]); solvability of the cauchy prob-
lem(Beals and Coifman [BC], Fokas and Santini [F'S] and their bibliografy).

For the elliptic-elliptic and hyperbolic-elliptic cases, Ghidaglia and Saut [GS] reduced
the system (1), n = 2, to the nonlinear cubic Schrédinger equation with a nonlocal nonlin-

ear term, i.e.

0+ 602 u+ 2 u = x|ulPu + H(u),

where H(u) = (A~10?|ul?)u. They showed local well-posedness for data in L? H' and H?
using Strichartz estimates (see Theorem 1.7) and the continuity properties of the operator
AL

The remaining cases, elliptic-hyperbolic and hyperbolic-hyperbolic, were treated by
Linares and Ponce [LP1], Hayashi [H1|, [H2], Chihara [Ch], Hayashi and Hirata [HH1],
[HH2], Hayashi and Saut [HS].

In the elliptic-hyperbolic case (§, m) = (1,—1), after a rotation in the x;x9 plane, the

system (1), n = 2, can be written as

idu+Au = (x+ 2)|ul*u— %(Sz Oy | U2’y S:Z O, [u2da’s)u
+75((0,01) + (Ouip2) s (2)
u(x,0) = up(z),



where ¢ is assumed to satisfies the radiation condition

lim QO(JJ,t) = (pl(xlat)v lim @(x,t) = @2(1‘27t).

Xo—>00 T1—00

In the hyperbolic-hyperbolic case (4, m) = (—1,—1), after a rotation in the x;xo plane,

the system (1), n = 2, can be written as

104U — 20y, Ogy U (X + DulPu =587 0w, |ul?da’y 7 O, [ulPda’s)u

+\/i§((aw1901) + (8902902))u7 (3)
u(z,0) = wup(x).

In these cases LP — L? time decay estimates of the Schrodinger group e (problem (2))
or =209z (problem (3)) cannot be applied. The difficulty of the problems (2) and (3)
arises from the facts that the nonlinear terms contain derivatives of the unknown function
and that Sf:j Ou,, |ul?dz’; does not decay when |z;| — o where j # k (j, k = 1,2).

Linares and Ponce [LP1] proved local well-posedness for the IVP (2) under smallness
assumption on data in H™% n H%%, m > 12, ¢; = ¢y = 0 and local well-posedness for
the IVP (3) under smallness assumption on data in H%° n H>? ¢, = ¢y = 0. They used

—2it0z1 025 regpectively.

smoothing effect of Kato’s type associated to the groups e*® and e
Using pseudo-differential operators Chihara [Ch| obtained a local result for small data in
ug € H™? for the IVP (2). Also for the IVP (2) Hayashi and Hirata proved local result
(see [HH2]) in the usual Sobolev space H*?? for small data in L? norm and global result
(see [HH1]) for small data in H>Y ~ H%3.

Hayashi [H1] showed local well-posedness for small data in H™° A H% m, [ > 1, to the
IVP (2) and local well-posedness for small data in H*°~ H%® § > 1, to the IVP (3). Using
the parabolic regularized equation of the IVP (2), Hayashi [H2] proved local existence and

uniqueness without the smallness conditions on the data which were assumed in previous

works [Ch], [H1], [HH2], [LP1]. In [HS], Hayashi and Saut proved local existence solutions



in analytic function space to the IVP (2). The global existence of small solutions to (2)
was also given in [HS] when the data are real analytic and satisfy the exponential decay
condition.

Here we will concentrate in the elliptic-elliptic case.

We can reduce the IVP (1) to the nonlinear Schrodinger equation (see Section 2.1 to

more details)

O+ 802, u+ Y 0% u = xlul*u + buE(jul*),
10U z U ng a; U X|u| v Y (|u| ) VzeR" teR, <4)

u(z,0) = up(x),

where
—— &

PO =g v,

Using Strichartz estimates to the Schrodinger equation we deduce some inequalities

2 /©) =p©O]©).

that will be the key to run the fixed point argument and prove well posedness in some
weak LP spaces.

Now observe that if u(z,t) satisfies

iy + 602 u+ Y 02w = x|ulu + buBE(|ul*),
j=2

then also does 3%/2u(Bx, B%t), for all B > 0.

Therefore it is natural to ask whether solutions u(z,t) of (1) exist and satisfy, for § > 0:
u(,t) = B u(Br, 5%1).
Such solutions are called self-similar solutions of the equation (4). Formally:

Definition 0.1. u(z, t) is said to be a self-similar solution to the Schrédinger equation in
(4) of
u(z,t) = ug(z,t) = BQ/O‘U(/Bx,BQt), YV 5 >0.



So, supposing local well posedness and u a self-similar solution we must have
u(z,0) = ug(x,0), ¥V 5 >0,

ie.,
ug(z) = B**u(Ba).

In other words, ug(x) is homogeneous with degree —2/a and every initial data that
gives a self-similar solution must verify this property. Unfortunately, those functions do
not belong to the usual spaces where strong solutions exists, such as the Sobolev spaces
H*(R™). We shall therefore replace them by other functional spaces that allow homoge-
neous functions.

There are many motivations to find self-similar solutions. One of then is that they can
give a good description of the large time behaviour for solutions of dispersive equations.
For example, Escobedo and Kavian [EK] proved that on R", for 1 < p < 1+ 2/n, solutions
to dyu — Au + |ulP~tu = 0 behave like a self-similar solution as t — co.

The idea of constructing self-similar solutions by solving the initial value problem for
homogeneous data was first used by Giga and Miyakawa [GM], for the Navier Stokes equa-
tion in vorticity form. The idea of [GM] was used latter by Cannone and Planchon [CP],
Planchon [P] (for the Navier-Stokes equation); Kwak [K], Snoussi, Tayachi and Weissler
[STW] (for nonlinear parabolic problems); Kavian and Weissler [KW], Pecher [Pe], Ribaud
and Youssfi [RY2] (for the nonlinear wave equation); Cazenave and Weissler [CW1],[CW2],
Ribaud and Youssfi [RY1], Furioli [F], Cazenave, Vega and Vilela [CVeVi] (for the nonlinear
Schrodinger equation).

In [CP] Canone and Planchon constructed self- similar solutions for three-dimensional
incompressible Navier stokes equation in Besov spaces. In [P], Planchon proved that the
IVP for semi-linear wave equations is well-posed in the Besov spaces B;p “(R™), where the

nonlinearity is of type u”, with p e N and s, = § — % > % This result allowed to obtain



self-similar solutions.
Kawak [K] proved existence and uniqueness of non-negative solutions to the semilinear
heat equation
ou=Au+ F(u), (z,t)eR" xR, (5)
where F(u) = —Ju[P"!u, in the range 1 < p < 1+ 2/n, with initial data u(z,0) =
alz|72P~D z % 0 for a > 0. It was proved that maximal and minimal solutions are self-

similar with the form

Wa(z,t) =t/ Vg, (jx|/t'?),

where g = g, satisfies

Snoussi, Tayachi, and Weissler [STW] consider the nonlinear heat equation (5) with
F(u) = aluP~'u + f(u), where a € R, p > 1+ (2/n) and f satisfies certain growth
conditions. In order to treat a more general nonlinear term, they extended the methods
used in [CW1] and proved the existence of global solutions for small initial data with
respect to a norm wich is related to the structure of the equation. Moreover, some of those
global solutions are asymptotic for large time to self-similar solutions of the single power
heat equation, i.e., with f = 0.

The existence of self-similar solutions for the nonlinear wave equation (6)

2, _ a
{atu Au = vy|u[*u (2, t) eR" x RT,ye R and a > 0 (6)

u(z,0) = f(z), dwu(z,0) = g(z).
has been first proved by Kavian and Weissler [KW] in the radially symetric case, i.e.,

for (f,g) of the form

a+1

f@) = e[ 2D g(x) = epfa| a1,



They proved the existence of radially simetric self-similar solutions for subcritical and

critical values of a i.e. for a < a*(n) where a*(n) is given by

a*(n) = Zt; a*(1) = a*(2) = oo.

Pecher [Pe] considered the cauchy problem for the semilinear wave equation (6) in three
dimensions and showed the existence of self-similar solutions to homogeneous singular data
of the type

f@) = ele, g(a) = ez,
where ¢; and €, are small. The self-similar solutions were compared to certain weak so-
lutions u € L*(0,00; H"2(R?)),u’ € L*(0,00; L*(R?)) wich existence were already proved
in many early papers. These weak solutions were shown then to behave asymptotically as
t — oo like the self-similar solutions with the same data constructed before in the sense
that their difference tends to zero as t — oo faster than either of them separately.

Finally Ribaud and Youssfi [RY2] improved the study of self-similar solutions to the
equation (6) for all dimension n > 2.

In [CW1] Cazenave and Weissler proved the existence of global solutions, including self-
similar solutions, to the nonlinear Schrodinger equation (7) (NLS) using norms analogous

to those used in [CP].
idu + Au = vy|lu|u, a>0, yeR, (z,t) e R" x [0, 0). (7)

In [CW2], Cazenave and Weissler proved the existence of a class of self-similar solutions
to the equation (7), with higher regularity than the solutions constructed in [CW1]. The
results are valid for a range of o which differs from, but overlaps with, the range of «
considered in [CW1].

Ribaud and Youssfi [RY1] improved the results in [CW1] and [CW2]. They obtained
new global existence results for the (NLS) equation (7) with small initial data which allowed

to prove that there exists a large class of self-similar solutions.



Furioli [F] improved the result by Ribaud and Youssfi [RY1] on the existence of self-
similar solutions for the nonlinear Schrédinger equations (7) extending of available nonlin-

earities o + 1 to o smaller than 1.

Also Cazenave, Vega and Vilela ([CVeVi]) studied the global Cauchy problem for the
equation (7). Using a generalization of the Strichartz’s estimates for the Schrodinger equa-
tion (see Theorem 1.7) they showed that, under some restrictions on «, if the initial value
is sufficiently small in some weak LP space then there exists a global solution. This result
provided a common framework to the classical H® solutions and to self-similar solutions.
As we already mentioned we use their ideas in our work. From the condition m > 0 we
are allowed to reduce the Davey-Stewartson system (1) to the Schrodinger equation in (4).
Now comparing both Schrodinger equations in (4) and (7) we observe that we have the
nonlocal term buE(|u|*) to treat. The main ingredient to do that will be an interpolation
theorem and the generalization of the Strichartz’s estimates for the Schrodinger equation
derivated in [CVeVi]. As a consequence, we prove that the Cauchy problem (4) is glob-
ally well posed in the sense of distribution for n = 2 and 3. The existence of self-similar

solutions will then be a direct consequence of the global well posedness.

The second system is the degenerated Zakharov system

i(OE+i0.E)+ AE = nE,
?n—Ain = A(FEP),
E(z,y,z,0) Eo(z,y,2), VY(z,9,2)eR® t>0, (8)
n(x,y,z,0) no(x,y, 2),
om(z,y,2,0) = ni(z,y,2),

where A = 02 + 05, FE is a complex valued function, and n is a real valued function.

The system (8) describes the laser propagation when the paraxial approximation is
used and the effect of the group velocity is negligible. We use the term degenerate in the

sense that there is no dispersive term in the space variable z in the first equation.

The IVP (8) is one variation of the following system:
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Fn—An - A(|EP),
E(0) = E, Vi >0, 9)
n(0) = no,
om(0) = ny.

The system (9) was introduced in [Z] to describe the long wave Lungmuir turbulence
in a plasma.

In [CC], Colin and Colin posed the question of the well-posedness of the IVP (8). In
[LiPoS], Linares, Ponce and Saut answered this question showing the local well-posedness
result of the IVP system (8) in a suitable Sobolev spaces (see explanations below). The re-
sults proved in [LiPoS] extended previous ones for the Zakharov system (9), where transver-
sal dispersion is taken into account (see [OT], [GTV] and references therein). However,
the system (8) is quite different from the classical Zakharov system (9) since the cauchy
problem for the periodic data exhibits strong instabilities of the Hadamard type implying
ill-posedness (see [CM]).

Since our result is an improvement of the local well posedness result in [LiPoS] we now
explain with more details their ideas.

At first we reduce the IVP (8) into an IVP associated to a single equation, that is,

{ OB + aﬁl;éﬁ - %ixy g, V@ueR t>0 (10)
where
n(t) = N'(t)ng + N(t)ny + Lt N(t —tAL(E®)[*)at,
with
Nt f = (A1) sin((-AL)1) f, (11)
and

N'(t)f = cos((AL)*1)f, (12)
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where (A )2 f = (€2 + €)' f)~.

Then we consider the integral equivalent formulation of IVP (10), that is,

E(t) =E(t)Ey + f Et —t"(N'(t")no + N(t")n1)E(t)dt' (13)
+ JE(t - t')(fo N(t' — s)AL(|E(s)]?)ds)E(t)dt',
where
E()Ey = (e M HHE BN (&, 6,6))” (14)

is the solution of the linear problem associated to (10).

Observing that the linear equation in (10) is almost a linear Schrodinger equation (but
not quite due to the propagation on the z—direction), [LiPoS| proved similar smoothing
effects for the operator £(t) as those of the Schrodinger propagator.

Using these results for the operator £(t) and properties of the wave operators N(t) and

N'(t), they proved that the integral operator (13) is a contraction in the following space:
(0, 7]: HFH®Y), 22,
where

HYY(R®) = {f e HY*'(R?), DY2o~f, D)o~ f e L*(R®), |a| <2j+1, jeN}, (15)

03 f(§) = (2mig)" f(E), (16)

DA f = (a2 f)" and Dy f = (l&]'21). (17)
Now we state the theorem proved in [LiPoS]:

Theorem 0.2. For initial data (Ey, no,ny) in H2H(R3) x H*+(R3) x H (R3) and d,n, €

H?(R?), jeN, j =2, there exist T > 0 and a unique solution E of the integral equation
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(13) such that

E e C([0,T] : HY+1(R3)), (18)
Y DB g2, < oo, (19)
la|<2j+1 v
and
1/2 Aa
2 Dy E”L;ngT < . (20)
la|<2j+1

Moreover, for T' € (0,T), the map (Ey,ng,n1) — E(t) from H¥+1(R3) x H¥+(R3) x
H?(R3) into the class defined by (18)-(20) is Lipschitz.

From (18)-(20) one also has that
ne C([0,T] : H¥*H(R?)).
Proof. We refer to [LiPoS] for a proof of this theorem. O

In the present work, we intend to improve Theorem 0.2. To do so, we establish the
following maximal function type estimates for the solution of the linear IVP associated

with the system (10):

€@ Eoll iz, < o(T, 5)| Eol

yzT

HS(R3)7 S > 3/2 (21)

The argument to prove (21) follows the ideas in [KZ], where they obtained a Li-maximal
function estimates for solutions of the linear problem associated to the modified Kadomttsev-

Petviashvili (KP) equation. The estimate (21) improves the following one
||€(t)EOHL%L;’2T < C(l + T)HE0||H4(R3)

obtained in [LiPoS], using just Sobolev embedding.
This estimate enable us to improve Theorem 0.2.
Finally, we stablish a conection between the two problems. To do that, we consider the

Zakharov-Rubenchik system
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(0 + vg0:0) + 5 0% + =AY = (gl + Bp + ad-0)¢,
Oip + pooAy + ad. P> = 0, (z,t) e R* x R, (22)
0p + 5=p + Blel® = 0.

P00

where ¢ denotes the complex amplitude of the carrying wave whose wave number k& and
frequency w are related by the dispersion relation w = w(k). v, = w'(k) is the group
velocity of the carrying wave. The functions p and ¢ denote the density fluctuation and the
hydrodynamic potential respectively. The parameters ¢ and «, measure the self-interaction
of the carrying wave and the Doppler shift respectively. ¢; = \/m is the sound velocity
and [ = %ﬁo) is related to the enthalpy.

According to Zakharov and Kutnetsov [ZK] if we proceed formally from (22), we can
obtain limits system of Zakharov and Davey-Stewartson type. In fact, the two limits
systems are

{ i@ + 0,0) + TRV + GEAY = B, pa R (23)

Oip — 2Ap = poo AP,

and

103 + %ﬂa§¢ + QUTQOAHD = q[Y[Y + p(;)cf)gpl/}’ (z,t) € R?® xR
atp — C?Ap = 0005A|¢|27 7 7

respectively. We notice that doing the following change of variable in the system (23)
Z =z —4t,

we obtain the Zakharov system in (9)

{ i) + %02 + 5EA LY = Bpy,
(0 — Ugaz)2:0 - cﬁAp = PooﬁAWF-

In the first chapter we describe the notations, define the functional spaces we will work

(z,t) e R* x R,

as well functions, distributions and operators that appear in the next chapters. Also we

give some well known results that will be used along this work.
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Next, in the second chapter, we prove that the Cauchy problem (1) is globally well-posed

in some Lorentz space and find self-similar solutions.

¢ )

Hereafter, we refer to the expression “ well-posedness ” in the following sense:

Definition 0.3. Let (X;|-|) be a Banach space. We will say that the Cauchy problem (4)
is locally well posed in X if for all ug € X there is T = T(|ugl|) > 0 and a unique solution

u to (4) such that
1. ue C([-T,T]: X) and
2. F: X > C(-T,T]:X), F(up) = u is continuous.
If 1 and 2 hold for any T > 0, we say that (4) is globally well posed in X .

Finally, in the third chapter, we prove that the IVP (8) is locally well-posed in the

Sobolev space H?, improving Theorem 0.2.



Chapter 1

Preliminaries

1.1 Notations

1. We will use the standard multi-index notation. A multi-index f = (f1,...,0,) is a

n-tuple of nonnegative integers. Given z = (21,...,2,) € R" we define the symbols

and the order of 3
1B = 2 Bi.
i=1
For multi-index o = (ay,...,a,) and f = (5, ..., B,) we define
Partial order:
b<asfi<aq YViel,...,n
and Binomial coefficient
(ﬁ) = (511) e (,8:)

2. For a complex number z with Rez > 0 define

o0
['(z) = f el dt.
0

I'(z) is called the gamma function.

15



16 1. Preliminaries

3. Given f:R™ - C, f will denote the complex conjugate of f.

4. The characteristic function of an interval I < R is defined as

) lifzel
Xi(#) =3 irpgr

1.2 Functional Spaces, the Fourier Transform and the
Hilbert Transform

The Lebesgue spaces

Let 1 < p < o0. We define LP(R™) as the set of all measurable functions from R" to C

such that
1/p
I flle := (J |f(x)|pdx> < oo for p < o0,
RTL

and

| flz= := inf{c > 0;| f(x)| < ¢ for almost every x}.
The mixed “space-time” Lebesgue spaces are defined by
LILY := {u: R x R" — C measurable ; [ul| sz < oo},
where
1/q
ilagor = ([ 1O gantt) i
The Fourier Transform

The Fourier transform of a function f € L'(R™), denoted by f, is defined as:

f(ﬁ) = f(z)e ™= 8dy, for £ e R™,
Rn

where - & = 21§ + -+ + 2,6,
F(&) = (g f()e¥™™¢dz is the inverse of the Fourier transform. Throughout this work,

the symbol " denote the Fourier transform in the space variable.
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An important propertie of the Fourier transform in the Lebesgue space L? is given in

the following theorem

Theorem 1.1 (Plancherel). Let f € L2 Then f € L? and

1Flz2 = 1f ]2
Proof. We refer to [G] for a proof of this theorem. O
The Schwartz class
The Schwartz class denoted by S(R™), is defined as
SR") = {pe C™(R"); | flup = |+"07 f |1 < o0 for any v, € (N)"}.

The topology in S(R") is that induced by the family of semi-norms {|| - |5}, e n2n-
The next lemma establishes a relationship between the Fourier transform and the func-

tion space S(R™):

Lemma 1.2. The Fourier transform is a homeomorphism from S(R™) onto itself.

Proof. We refer to [G] for a proof of this lemma. O
Finally we list some properties of Fourier Transform in Schwartz class :

(1) For f e S(R"), we can use Fourier Transform to define derivatives as:

(a) derivatives for multiindices

~

°f = ((2mi&)*f) , aeN",
and

(b) fractional derivatives, i.e.,

~

D'f = (@rlE)'f) , leR.
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(2) Let f and g € S(R"). Then we have that f » g € S(R") and

—~

fa=1r=+q

(3) If 7,f(x) = f(x — h) denotes the translation by h € R™, then

—

(nf)(€) = (e £)(¢).
The Hilbert Transform

For ¢ € S(R™) we define its Hilbert transform H(p) by

——

H{(p)(&) = —isgn(§)$(E)-

It follows direct from the definition that

H(H(p)) = —¢.

(1.2)

(1.3)

(1.4)

By Plancherel we can extend the Hilbert transform as an isometry in L?(R"), i.e.,

[H @)z =l

(1.5)

Using Hilbert transform we can stablish the following relationship between ¢, and D,:

Lemma 1.3. Given ¢ € S(R) we have that

e = DYDY,
where DY* = —2r HDY?.
Proof. By the definition of H we see that

Ho,po =21D,p.

In fact

Honp = —isgn(€)2mitp = 2ml€|p = 2nDp.

Now by properties (1.4) and (1.6) we obtain

019 = —H(H(29)) = —2nH(Dyg) = —2nH(DY?DY¢) = DYDY,

(1.6)
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Tempered Distributions

We say that a linear functional ¥ : S(R™) — C defines a tempered distribution if ¥
is continuous. We denote S’(R") as the set of all tempered distributions. We will use the

symbol (-, ¢) to denote the value of ¥ on ¢ € S(R™).
Examples of Tempered distributions
Given fe LP(R"),1<p<ooand = (f1,...,0,) e N":
1. We associate with f the distribution 7 whose value on ¢ € S(R") is given by
15(6) = (6= | @)l
2. We can define the diferential of f in the distribution sense as:
Pf: SR —C
@021, 8) = (=)7K [, 006),
where 0%¢ = (9;% . @fng.
3. Let T e S'(R"™). We define the Fourier transform 7" of a tempered distribution 7' by
(T,¢) =(T, ¢y V¢eSR").
Also, we have the following extension of lemma 1.2 in S’(R"):
Lemma 1.4. The Fourier transform is a isomorphism from S'(R™) into itself.
Proof. We refer to [LP2] for a proof of this lemma. O

From Lemma 1.4 we can get the following computation related with the fundamental

solution of the evolution Schrodinger equation:

— YR €i|£‘2/4t
(e=4m%itl2l*)(£) = lim (e 4m*(e+it)lal*)(¢) =

e—0Tt (47Tlt)n/2 <17)
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The Sobolev spaces
We will also use the fractional Sobolev spaces. Let s € R, then
HYR") = {f e S'(R") : (1+[¢)f(€) e L*(R™)}

with the norm

[l = 1L+ [P F()] e

and its homogeneous version
HY(R™) := {f e S'(R") : [¢]°F(€) € L*(R™)}

with the norm

~

[fllgzs = M1EPF(E)] 22 (1.8)

The weighted Sobolev spaces denoted by H™!(R") are defined as follows:

H™ (R") = {f € L*(R"); | flgms = (1 = A)"2(1 + |2 ") f] 12 < o0},

where (1— A)™/2f = (1 — [¢2)™2f) .

Analogously we define the weighted homogeneous Sobolev spaces Hm! (R™):
H™(R") = {f € L*(R"); | fllgma = (1 = A)™2Jaf' f]l12 < o0}.
The Lorentz spaces

The next spaces were introduced by Lorentz ([L1], [L2]) and generalizes the LP spaces:

Definition 1.5. The Lorentz space LP1(R"™),1 < p,q < o0, is defined as follows:

LP(R"™) = {f : R" — C measurable ; | f | pan) := (§o (/7 f*(t))"1dt) Ve oo} for g < oo
and

LPP(R"™) = {f : R" — C measurable ; || f| Lr=(mny := sup Aav(A, HYP < o0}

where A>0

F(t) = int{a(r, ) < ),



1.3. Important Theorems 21

a(A f) = p({z e R [f(z)] > A}),

and

= Lebesgue measure.

The function a(A, f) is called distribution function.
In Chapter 2 the LP® spaces will be particularly relevant in our analysis. They are also

called weak LP spaces. For more information about Lorentz spaces we refer to [BeLl.

1.3 Important Theorems

Now we present some facts in Lorentz spaces. The next theorem establishes a relation-

ship between Lorentz Spaces LP* and LY spaces:

Theorem 1.6 (Interpolation’s theorem). Given 0 < py < p; < oo, then for all p,q and 0

=104 0 4nd0<6<1 we have :

1
such that py < q < o0, »_ po " m

(LpO,Lpl)gﬂ = qu with ”fH(LPO,L”l)g,q = HfHqu,

where

1

@ dt\ ¢
(LP°, LP")g 4 = {a Lebesgue measurable; |alpeo, Loy, = (J t k(¢ a)q?) < o0}, q < o0,
0

(L™, LP")g, = {a Lebesque measurable; ||al(zro ro1),, = supt™?k(t,a) < oo}
t>0

and
k(t,a) = _inf (Jao[cro +t[ar]ze).
a=ag+ai
Proof. We refer to [BeL] for a proof of this theorem. O

Another relationship between Lorentz Spaces and LP spaces is given by the following

decomposition:
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Let 1 < p; <p < py <oo. Then
LP* = [P 4 [P2, (1.9)

The next theorem is a generalization of the classical Strichartz estimates for the Schrodinger

equation. The proof is based on ideas developed by Keel and Tao [KT].

Theorem 1.7. Consider r,7,q and q such that

- 1 1 2
2<rr<o0, - —-<—,
ron
1 n 1 1
et (5 —) =1, 1.10
{ rT # 0 if n=2,
n—2_ 1 1 n 1. (1.11)
]. - = < - < 1 - < > 37
S-g) < c<(-n) i o
and 11 11 11
0<—<T,<1—g(7,+——1) if S+-=1,
q q oo oo
nol 1 11 11 (1.12)
——(T,+——1)<—<T,<1 Zf T,+_<1
2 r q T r
Then we have the following inequalities:
t .
|| P s <l Pl (1.13)
0 e Li L
t .
H f AR )T gy < el Fll g0 (1.14)
— t
+00 A
i(t—T1
[ et r i, <dl Pl (115
Proof. We refer to [McV] for a proof of this theorem. O

Now we turn our attention to some inequalities on the Lorentz spaces semi-norm

| - | £pe (rn+1y that we will use in Chapter 2:
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Lemma 1.8. Let 1 < p,q,r < o0. The following estimates hold:
|1 < gl = fllzee@®ny < |g]zoe@n), (1.16)
If + glpre@n < 2 (1flpre@n) + |glzro@n) - (1.17)
Moreover z'f% + é = %, then
[ fgllzre@ny < |f|Loe@m gl Loe @y (1.18)
Proof. The inequality (1.16) follows directly from Definition 1.5.
The property (1.17) follows from Definition 1.5 observing that
A A
pliz, [f(@)] > 53) + n(iz, l9(@)] > 51) = nliz, [(f + 9)(@)] > A}).
For the proof of inequality (1.18) we refer to [O]. O

Remark 1.9. From inequality (1.17) in Lemma 1.8 we see that | - ||r= is not a norm, but

a quasi-norm, i.e., it only satisfies a quasi-triangular inequality. On the other hand, the

spaces | - |r= are complete with respect to their quasi-norm and they are therefore quasi

Banach spaces. Moreover, for p > 1 it is possible to replace this quasi-norm to a norm

such that || - | pre become Banach. We refer to [G] for more details.

The next result will be important in Section 2.3 to find self-similar solutions:

Proposition 1.10. Let p(z) = |z|™ where 0 < Rep < n. Then e*®¢ is given by the
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explicit formula below for x # 0 and t > 0:

[\ 7" (m + D)ecki
['(m+2-0)
0 1 4t —a—m—1
X f (1—s)™ (—i — ST) e T dsdr
0

0

l o\ —k
+ ez‘|z‘2/4t|x|fn+p(4t ﬂpr Bk; b a) —(n+2k)mi/4 (@)

4t
-1 -
l 1 akz/2
+ ezlz\ /4t|£(]| n+p(4t **PBHI b,a <|4_> ;_4_—)2_[))

AtsT\ "
f J (1—3s) (—z — %) e Tt dsdr,
x

where a = p/2,b = (n —p)/2,m,l € N such that m +2 > Reb and | +2 > Rea

and

F(a+k)T(k+1-0) L+ kT(k+1—a)

Ap(a,b) = Bi(b,a) =
e(a,b) Tara—nu 260 T(a)C(1 — a)k!
where I' denotes the gamma function.
Proof. We refer to [CW1] for a proof of this proposition. n

Theorem 1.11 (Dominated Convergence theorem). Let (X,.A, ) be a measure space and
{fn} be a sequence of A-measurable functions from (X, A, u) toR. Let g be a A-measurable

nonnegative integrable function on (X, A, u). Suppose that for each s in X,
i. |fu(s)] < g(s) for alln =1 and
i, limy, e fu(s) = f(s).

Then

n—00

lim fn x)dp = L f(@)dp
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Proof. We refer to [I] for a proof of this theorem. O

Theorem 1.12 (Lebesgue Differentiation Theorem). If f € L} (R") then

loc

1

lim, o+ —— flz —y)dy = f(x) a.e.,
|Br| By

where B, = {y € R"; |y — z| < r} and L}, (R™) = {f; x, f € L'}.

loc

Proof. We refer to [G] for a proof of this lemma. O
In Chapter 3 we will need the following results:

Lemma 1.13. If a and b are nonnegative real numbers and p and q are real positive

numbers such that 213 + é =1 then we have

al b
ab < — + —.
p q

Proof. We consider an auxiliary function ¢ defined for all positive real numbers ¢ by

P 14
o(t) = " + e

It is easy to see that

¢'(t) = t'~' —t 7! = 1 is the only critical value of ¢ (in the domain of ¢) (1.19)

and
Iltinol o(t) = tlirg o(t) = o0. (1.20)

From (1.19) and (1.20) we have

tP t74
S =) = e() = 1. (1.21)

The result follows taking t = % where a and b are positive numbers. O]
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Lemma 1.14 (Holder’s inequality). Let 1 < p,q < o0 such that i —I—% = 1. Given f €
LP,g e L? we have fge L' and
I fgle < [f]zellg]Le.

Proof. We refer to [I]. O
Lemma 1.15 (Young’s inequality). Let 1 < p,q,r < o satzsfy +1= 217 l Then for all
f e LP(R™) and all g € L"(R™) we have

|« gllze < gl flee-
Proof. We refer to [G]. O

Lemma 1.16 (Leibiniz’ Rule). Let a € N" be a multi-index and f,g € C1*/(R"). Then

% (fg) =2, (5)ar’ralg. (1.22)
BeN™
BLa

Proof. The identity (1.22) is deduced by repeated aplication of the one dimension Leibiniz

rule
m

an(fg) = 3 (M)t farrg,
k=0
and induction. ]
Lemma 1.17 (Fractionary Leibiniz rule).
ID2(f9)lee < 1D fllualgles + 1 flez 1D gl 2, = € R. (1.23)
Proof. We refer to [KPV] for a proof of this lemma. O

Theorem 1.18 (Fubini’s Theorem). Let f: R™ x R™ — C be such that

j f (@, y)|dedy < oo.
R xR™

Then
| s =] (| sepaa=| e
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Proof. We refer to [I] for a proof of this theorem. O

Lemma 1.19 (Minkowski integral inequality). If 1 < p < oo, then

o[ rwaspaye < [ ([ Istempagyas

Proof. Define A(y) = §g.. | f(z,y)|dx and let 1 < ¢ < oo such that % + % = 1. Then by

Fubini’s theorem and Holder’s inequality we have

r

f Ay)dy = L. A(y)A(y)"dy
) J:R(f () ldw) A(y)dy
- [ ([ e awr
) J:Rm(d;{n £ )ldy) ( J A(y)'dy)de
= || s et Ay
Therefore
(| awran =< | (| irapra -

Finally from (1.24) and the definition of A(y) we conclude

o[ sadspagye < (| ([ waioran < [ ([ ifeppiane.
O

The next theorem gives a description of the Sobolev space H* without using the Fourier

transform whenever k € Z*.

Theorem 1.20. Ifk is a positive integer, then H*(R™) coincides with the space of functions
[ € L*(R™) whose derivatives (in the distribution sense) 0% f belong to L*(R™) for every

a€ (Z)" with |a| = a1 + ... + o, <k,

— ~

where 02 f(€§) = (2mi&)* f(£)-

In this case the norms | f| e and 35, o |95 fllz2 are equivalents.
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Proof. We refer To [LP2] for a proof of this theorem. O

Theorem 1.21. If s > n/2, then H*(R®) is an algebra with respect to the product of
functions. That is, if f, g€ H*(R?), then fg € H*(R®) with

If9]

e < | f]

Hs g‘H&

Proof. We refer to [LP2] for a proof of this theorem. O
We also need the following embbeding results:

Theorem 1.22. If s > n/2, then H*(R") is continuously embedded in C*(R™), i.e.,

[l < esllf]

HS .
Proof. We refer to [LP2] for a proof of this theorem. O

Theorem 1.23. If s € (0,n/2), then H*(R™) is continuously embedded in LP(R™) with

p=2n/(n —2s). Moreover

[flr < [D°fllze < [ f]

Hs,
where D'f = ((27[¢[")f).

Proof. We refer To [LP2] for a proof of this theorem.. O

Before stating the next result, due to Ginibre and Velo, we give some notations.
For any vector space D, we denote by D* its algebraic dual, by £(D, X) the space of
linear maps from D to some other vector space X, and by (1, f)p the pairing between D*

and D (with f € D and ¢ € D*). If X is a Banach space, | -||x will denote the norm in X.

Lemma 1.24. Let ‘H be a Hilbert space, X a Banach space, X* the dual of X, and D
a vector space densely contained in X. Let Ty € L(D,H) and let T} € L(H,D*) be its
adjoint, defined by

TV, frp ={v,T1f), YfeD, YveH,

where (-, -y is the scalar product in H. Then the following three conditions are equivalent.
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(1) There exists a, 0 < a < oo such that for all f € D,
[T0f e < 11f |-

(2) R(T}) = {1} (v); Yve H} < X*, and there is a , 0 < a < oo, such that for all ve H

[T 0] xx < afols.
(3) R(I7Ty) < X* and there exists a, 0 < a < o, such that for all f € D,

|7 T fllxs < o[ flx-

The constant a is the same in all three parts. If one of (all) those conditions is (are)
satisfied, the operators Ty and TVTT extend by continuity to bounded operators from X

to H and from X to X* respectively.
Proof. We refer to [GV] for a proof of this lemma. O

Next, we state a result in interpolation of operators in mixed Lebesgue spaces of type
LiLE, . It will be usefull to generate Strichartz estimates to the degenerated Zakharov

system in the third chapter .

Theorem 1.25 (Riez-Thorin). Let py # p1 and qo # q1. Let T be a bounded linear operator

from L2LP° to L2L% with norm My and from L2LPt to L?>L% with norm M,. Then T is

z - zy z -y z -y 2z xy

bounded from L?LPe¢ to L?L% with norm M, such that

zHzy zHxy
1—6 3 76
My < My~ M7,

with
1 1—-66 06 1 1—6 0

Do Po D1 Qo o ¢

Proof. We refer to [LP2] for a proof of this theorem. O
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In fact, the Riez-Thorin theorem appears in literature to L” spaces but the proof of

Theorem 1.25 is basically the same.

Theorem 1.26 (Hardy-Littlewood-Sobolev). Let 0 < o« < n, 1 < p < q¢ < o0, with

l:

% — =. Then the Riez potential defined as

If(z) = f o)y,

re [T — y|(*=®)

is a bounded linear operator from LP(R™) to LY(R"), i.e.,

[ a(F)ze < cponl flre-

Proof. We refer to [LP2] for a proof of this theorem. O



Chapter 2

Well Posedness for the Davey
Stewartson System on Weak L*

2.1 Introduction

Here we shall study the Cauchy problem for the Davey Stewartson systems:

j=2"x

i0pu + 005 u+ 337y 0 u = x|u|u + budy, ¢, .
{ &2 o+ md o+ S Q,%jgo Zon ([u]). (x,t)eR" x Rand n=2or 3, (2.1)

where u = u(z,t) is a complex-valued function and ¢ = ¢(x,t) is a real-valued function.

4(n+1)
n(n+2)

4(n+1)

n2

The exponent « is such that <a< , n = 2,3, the parameters xy and b are
constants in R, § and m are real positive and we can consider d, y normalized in such a
way that |6] = |x| = 1.

Solving the second equation in (2.1), we can express ¢ in terms of v and get
Oar 0 = E(Jul),

where the operator £ = E,, is defined in Fourier variables by
FDE = 5
£ +mé; + Zj:?,

We can therefore reduce (2.1) to the nonlinear Schrédinger equation

/(O = p(Of©) 2.2

31
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i0pu + 607w+ 3 02w = x|ul*u + buE(Jul®),
7=2

u(z,0) = up(x).

VreR" teR,

We consider the equation (2.3) in its integral form

u(t) = U(t)ug + Z'JO U(t — s)(x|u|u 4+ buE(|u|*))(s)ds,

where U(t)ug defined as

U(tuo(8) = e " ip(€),

P(&) = 4m6¢] +472i§?, n=2or 3,

7j=2

is the solution of the linear problem

i0pu + 607, u + 3, 07 u =0,
j=2

u(z,0) = up(x).

VreR" teR,

Remark 2.1. Note that

(2.3)

(2.5)

(2.6)

(2.7)

1. U(t) is the unitary group associated to the linear Schridinger equation (2.7) (see, for

example, [LP2] and references there in).

2. It follows directly from Lemma 1.2 that U(t)(S'(R")) < S'(R™).

3. The function a(A, f) in Definition 1.5 has the following invariance with respect to

the group U(t)uo(€) = (e~ O iy)¥ (€):

a\U(t+7)p) = jX{(y,t)e]R"><]Rg|(e—i(t+")¢(y)¢)v =2y (€, s)dxds

X{(y,t)eR" xR;|(e~ (¥ @) v |> A} (z, s)dzds = (X, U(t)p).
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The last identity gives us the following result: ¥ ¢ € S"(R™) and 7 € R:
||U(t)g0||pr‘(]Rn+1) = HU(t + T)QOHpr(RnH). (28)

In Section 2.2 we prove that the Cauchy problem (2.3) is globally well posed in the
sense of distribution for n = 2 and 3 and in Section 2.3 we find self-similar solutions for

(2.3).
2.2 Global Well Posedness

In this section we prove global well posedness for IVP (2.3) in the subspace Y < S’(R")
where:

a(n+2)

Y ={peSR"):Ult)pe L = "R}
and

ol = 10l g,

Observe that by the identity (2.8), U(t) is an isometry in Y, ie. [¢|y = |U(t)¢|y-

We first state some properties to the operator F, defined in (2.2), that will be usefull
to our main purpose:

The following result was proved by Xiangking (see [X]): given 1 < g < o0, E is strong
(¢, q), i.e. is a bounded operator from LI(R") to LI(R"™), and ||£/| < 1. It means that the

following inequality holds for 1 < ¢ < oo:

|E(f)|La@ny < [ f|La@n)- (2.9)
Lemma 2.2. The operator E : L*(R") < S'(R") — LP(R") < S'(R™) defined in (2.2) is

ijective for 1 < p < oo and n = 2.

Proof. By lemma 1.4 and the fact that F is a linear operator is enough to prove that

——

E(f)=0in S'"(R") = f =0 Lebesgue-qtp.
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m = 0 in S’(R") means that

—

(F(p(6)9)) =0 Vo e S(R").

By lemma 1.2 is enough to prove that

(f:p(€)9) = ” Fp(§)e(§)ds =0 Vo e S(R™). (2.10)

Now we recall the following result: given g € LY(R"), if it is true that

Jn g(@x)p(z)de =0 Voe S(R"), (2.11)

then we must have g = 0 Lebesgue-qtp.
From (2.10) and (2.11) we have p(§)¢(€) = 0 Lebesgue-qtp. Since p(§) = W
1 2T 2.5=35j

only vanishes in a set of null measure in R, n > 2, we must have ¢(§) = 0 Lebesgue-

qtp. O]

Proposition 2.3. Consider F': R! x R, — C. Then for1 <p < w0 :

IB(E) e @y = | (PEOFED) lzoninss) < [Fllpongner.

Proof. We first observe that the inequality (2.9) can be extended to the mixed “space-time”

Lebesgue spaces:
1EE) e, = 1EF) oy = WEE) zalee < M Fleallee = 1Flpops = 1Flleg,.  (2:12)

The inequality (2.12) and Theorem 1.6 will give us the result.

In fact, fix 1 < p < o0. Take 1 < pg, p1 <ooand0<9<1suchthat%=1p—_09+1%. By
Theorem 16 we have HE(F)”LPY;(R‘!H»l) = HE(F)||(LP07LP1)GW.
If

F = fO 4 fl = Lpo(Rn+1) 4+ L7 (Rn—&-l)7

then

E(F) = E(fo) + E(f1) € LP(R™™) + LPY(R™1),
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and
VE( e wnry < | filloe@neny, 5 =0, 1.
So
Kt B(F) =, inf  (Folwo@n) + HE o @)
< oy (B o + HE() | a)
S inf ([ follzro (rmy + t] f1ll o1 (m))-

E(F)=E(fo)+E(f1)

Since E is injective (lemma 2.2), E(F) = E(fo) + E(f1) = F = fo + f1 Lebesgue a.e.

Then
Kt E(F) < _inf (|l + tAil ) = K(t,£).
=fot+f1
Using Theorem 1.6 once more we obtain the result. O]

Observe that from the idea of this proof we could obtain a more general result:

Lemma 2.4. Let A: LP(R") — LY(R") be a linear, bounded and injective operator. Then

A is bounded from LP*®(R™) to LI°(R™).
Next we define two operators and derive some properties about then.

1. Denote by G the following integral operator:

G(F)(2,t) = f U(t — $)F(-, 8)(x)ds. (2.13)

0
where U(t) group defined in (2.5).
2. Given f e S(R") we define the operator 7" as follows:

(TH)(x,t) = (UWDF) ().

Observe that by Strichartz estimates (see Theorem 1.7 with the group U(t) instead

’L'tA . . . . . . 1 n _n
of e"?), if (q,r) is an admissible pair, i.e., ot =1 we have

T:L*R") — L{L..
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The dual of the operator T is, as usual, denoted by 7™ and given by:
T*: LYL — L*(R™)

(T*F)(z) f U () ()t

+00
Finally we note that the integral operator that appears in the inequality (1.15) (¢4
replaced by U(t)) is exactly the composition of 7" and T*:
400

(TT*F)(x, ) — f Ut — 7)F(x, 7)dr. (2.14)

—0

The following properties holds to the operators G and TT™:

Proposition 2.5. Let 1 < p, r < oo such that

2
p r n+2
and
2 1 2 1 2
(D), 2t D2
n n
Then the following inequalities holds:
|G(F)|pre@niry < | F|poe@ny, (2.15)
HTT*(F)||LTT>(RTL+1) < CHF||LPT>(RTL+1). (216)

Proof. To prove properties (2.15) and (2.16) we need Theorem 1.7 (with U(¢) instead of

e2) and the interpolation theorem. In fact taking r = ¢ and 7 =¢§ =:p in Theorem 1.7,

the hypothesis (1.10) becomes
1 2

p r n+2

and the inequalities (1.13) and (1.15) becomes respectively

HGF||L7‘(RTL+1) < CHF||Lp(Rn+1), (217)
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and
HTT*F||L’I‘(RTL+1) < CHF||LP(RTL+1). (218)
The restriction % <r< w comes from hypothesis (1.11).
The result follows applying lemma 2.4 to inequalities (2.17) and (2.18). O

The next theorem is the main result of this chapter. It proves that taking “small”initial

data in the space Y, the integral equation (2.4) has a unique solution in

a(n+2) n
B(O,?)(Sl) = {f el 2 OO(R +1); ||f“La(n2+2)%(R”+1) < 351}

This result allows us to prove well posedness of equation (2.3) and to find self-similar

solutions for ¢ > 0 (see next section).

Theorem 2.6. There exists a 6, > 0 such that given ii(:i—i% <a< g’;—;ﬂl and uyg € Y with

a(n+2)

|luglly < 01 then there exists a unique v € B(0,36,) < L~ =2 ©(R"") solution of (2.4)

such that ||uHLa(n+2>w(Rn+1) < 301 for some 6, > 0.

Proof. Consider the following operator
(Pu)(t) = Ut)uo — iG (x|u|*u + buE(|u]"))(t),

G as in (2.13).
We want to use the Picard fixed point theorem to find a solution of © = ®(u) in

a(n+2) 0

B(0,35) c L2 ©(R"™™).

Note that (B(O, 301), || - HLa§n+2) ) is a complete metric space.

7 (R

We must prove that:
(1). ®(B(0,3d,) = B(0,34)

(2). |®(u) — @(v)||La§n2+2) < cfu — vHLa(n;z)y 0<c<l.

“(Rn+1) “(R"+1)7
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To prove 1 take u € B(0, 36;).

By property (1.17) in Lemma 1.8 it follows that

[P atear,, <2 (U(t)uoﬂLMﬁT

P (R °(Rn+1)

+ iG (x|u|*u + buE(|u|*)) Lmﬁx(w“)) .

< 61.

By hypothesis |U (¢)uo| S T

Using inequalities (2.15) from Proposition 2.5, (1.17) from Lemma 1.8 and the fact that

|x| = 1 we get for the second term

) ¢ @ a(n < a(n a(n .
|1G (x| u|*u+buE(|ul ))|| (n+2) S <|u| u||L2( If))f( )—i— [bu B (|u]* )”m((aﬁ)) (Rn+1)>
By property (1.18) from Lemma 1.8 we have

|||u| u” ‘1("+2) ||u|a—(t(1n+2) .
at) © (Rn+1) L™ 2 F(Rntl)

Applying Proposition 2.3 and inequality (1.18) we get

e [ PN 1= YOS
< bllul sz g 0O i,
Using that u € B(0,3d;) we have
[ e gy < 200 + 4e(361)* ! + 4c|b|(36,)*F < 341

Now we prove 2, i.e., that ® is a contraction in B(0,3d;). Take u,v € B(0,301):
O(u) — (v) = iG(x(|v|*v — [u[*u)) +iG (b(LE(|v|*) — wE([u]")).
By properties (1.17) and (2.15) we get

[®(w) = @)]| atnra,,

(Rn+1)

< 2¢ (|v|a |u|“uH afni2) + 1b]|[vE(|v]*) — uE(Ju]®)|| ams2), )
" (Rn+ L2a+D) * (Rn+1)

< 2 @ - a(n - a(n

S C<U(|U| [ul®)] L3 sy + [[ful*(u U)\\L2(< 2, (Rn+1))

+ 2¢|p| <||E(|U|a)(v —u)| amsz +[w(E(]") = E(Ju[*)] amsz) (Rn+1)> :

L2(a+D) ¢ (R +1) L2(a+D)*
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Applying inequality (1.18) and Proposition 2.3 we obtain

[9(u) — @(0)] stoe

()

«
< 20 (1ol g g 17 = 0 g g+ IO g g = ot )

+ 2y (||E(|v|a)#}%

SUEN Lkl NPICS SO

i g FECOI) = B g )

< 20l st g 1017 = 1t g+ Bl =l )
+2c|b|(||v I Tt I ! PP o |u|“||L<n;2)m(Rn+l))-
Now we set
glw) = Ju.

It follows by the Mean Value Theorem that

l9(w) = g(v)] < c(a)(jul*™" = []*7)|u —v].
This property and Lemma 1.8 imply that

ol = 1l o521,

a—1 a-1 -
< (@) <|||u| u — U|HL@T+22%(R”+1) + o] fu v||L£n2_+>22x(Rn+1)>

a—1
< c(a >(||u|| AN U PSP SN ) TSN LISt sy (Rn+1)>

By virtue of the last inequality and the hypothesis u, v € B(0,36;) we get

[®(w) = @(v)] atnra,

“ (Rt

2¢(36,) (2(351)0‘_1||u — ] awsa)

T(Rnﬂ)) +2¢(301)%u — U” ant2)

R+

a a—1
+ 2¢|b|(361) ||u—uLQ(?%WH)+2c|b|(351)( (30" u = 0] atazer (RW)),
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and finally
[9(0) = B0 g, ) < O er + b0 = ul e,
Again taking 0 < §; « 1 we get the contraction. m

Remark 2.7. Since Strichartz estimates still holds (up to endpoints) to the unitary group
U(t) defined in (2.5) with § < 0 in (2.6), and since we do not use the endpoints in the
Proposition 2.5, we conclude that Theorem 2.6 holds for the nonelliptic Schrodinger prob-
lem, i.e., the IVP (2.7) with 6 < 0.

The next proposition shows that giving any initial data in Y and assuming the existence
of a solution u to the integral equation (2.4) we have that u is the solution (in the weak
sense) of the differential equation (2.3). We emphasize that Theorem 2.6 provides the

existence of solutions to the equation (2.4) under the assumption of small initial data.

4(n+1)
n(n+2)

solution of (2.4). It follows that t € R — u(t) € S'(R™) is continuous and u(0) = ug. In

Proposition 2.8. Given

<a< 4(7;{1), up €Y and let u € La(n2+2)°°(R"+1) be the

particular, u is a solution of (2.3). Moreover u(ty) € Y V tg € R. In addition, there exist

uy such that ||U(t)uiHLa(n;z)%(RnH) < o0 and U(—=t)u(t) — ug in S'(R™) as t — +oo0.

a(n+2)

Proof. By hypothesis u € L™ 2 ©(R"*!). So by the inequality (1.18) in Lemma 1.8 and
Proposition 2.3

a(n+2)
lu|*u and wE(|u[*) € L¥a (R™1).
Now we can use the decomposition in (1.9) and write

ul*u = fi + fa, (2.19)

and

uE(|ul®) = f5 + fa, (2.20)
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where f; € LPi(R™1) for some 1 < p; < ;((Zﬁ; <py<wand1l<ps < ';((Zﬁ)) < py < 0.
Replacing (2.19) and (2.20) in (2.4) we get
u(t) = U(t)ug + ixG(f1)(t) + ixG(f2)(t) + ibG(f3)(t) + ibG(f1)(t). (2.21)

Observe that from the decomposition (2.21) and remark 2.1 we have that u(t) € S"(R™).
Now, if we take ¢ € S(R™) then U(t)¢p € C(R : S(R™)) and also G(¢)(t) € C(R : S(R"™)).
By duality we can extend U(t) to S’(R™) and get U(t)¢p € C(R : S’(R")) for ¢ € S"(R").
Using Dominated Convergence Theorem (Theorem 1.11) we have G(¢)(t) € C(R :
S'(R™)) for ¢ € S’(R™) and by (2.21)

u(t) € O(R : S'(R™)). (2.22)

Making ¢ — 0 in (2.21) we get u(0) = uy.
Now we prove that u(t) satisfies the equation

n
WUy + Oz + Z Ug,z; = X|u|%u + buE(|ul®),
j=2

in S'(R™) forall te R :

Define F'(u) := x|u|*u + buE(|u|*). We must prove that V¢ € S(R™)

g

u(t + h})b —u(t) ¢ = (— (6052, + Z Or,a,ult) + F(u)(t), ), (2.23)

where ([, g) = §yn f(2)g(x)dz.
Note that by (2.19), (2.20) and (2.22) we have

Fu)(t) e O(R, S'(R™)).

Using the integral equation (2.4) and the definition of the operator G in (2.13) we have

the following expression for w(t)

u(t) = Ut)up + iG(Fu)(t). (2.24)
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Thus

u(t + ) — u(t) = (U(t+ h})l— U(t)) - (G(Fu)h(t+h) - G(Fg)(t)) |

Without loss of generality we can suppose h > 0.

Now, taking ¢ € S(R") we have that
<<U(t+h)_U(t)>u0,¢>=—<u0,(U(_t_}i)_U( )>¢>_)

h h h—0
— (o, i(00g,¢, + Z O, ) U(=1)) = (i(00¢ ¢, + Z Og;¢,)U (t)uo, 9).

By group properties and the deﬁmtlon of G and F we have
%(G(Fu)(t +h), ) — l<G(Fu)(t) ¢) =
:_<J Ut —t' + h)Fu(t')dt', ¢>——<J (t =) Fu(t)dt', ¢)
- _<U( ) L U(t —t)Fu(t')dt', ¢) — E<Jo U(t =t Fu(t)dt', ¢)

_ <(M) L Ut — ) Fu(t')dt, ¢)+

+ E<f+ Ut —t)Fu(t)dt', ¢y — %q@t Ut —t")Fu(t)dt', o)

__ (" (Ut —t")Fu(t), <W> PYdt' + %Jf (U(t =t Fu(t'), p)dt’.

0

Next, since F'(u)(t) € C(R, S’ (R")), we can use the Lebesgue dominated convergence
Theorem (Theorem 1.11) and the Lebesgue differentiation Theorem (Theorem 1.12) to

obtain
HG(Fu)(t+1),6) — (G(Fu)(1), )
- [P s Yoo+ .o

= [0 + 3] 80 U~ OOl 00 + (Pl 0

=2

— Gi(00ne + Y ) f Ut — ¢)Fu(t)dt', 8) + (Fu(t), &),

j=2
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Therefore

%<u(t R — ut), &) — (2.25)

Ut +h) = U@t) (GFW)(t+h)  GFu)(t)
o G ) L R e e S RO

<i(6a£1§1 + Z a{fjgj)U(t)Um ¢> - <(6a§1§1 + Z aﬁjﬁj)G(Fu) (t)a ¢> + Z<F(u)7 ¢>

j=2 Jj=2

From (2.24) and (2.25) we have (2.23).

a(n+2)
2

To prove |[u(ty)|y < oo, take r = on the inequality (2.16) of Proposition 2.5.

Then we have |[TT*F| aw+2 < IF| amsz)
L2 #[Rrt I 2(a+1) (Rn+l)

Hence
IIU(t)JU(—S)P( )ds|| et ) < |F|| amaz (2.26)
“(R L2(a+1) (Rn+l)

From inequality (2.26) and identity (2.8), V to € R we get

U) [ Ut~ 9Pds] st <P goss,

Rn+1) L 2atD) “(Rn1y
(R+1)

Now taking x(o,;)F instead of F' in the last inequality we have

to
- F @{n < F a(n
() L Ulto = $)P($)ds] g, oy < IF) s,
ie.,
a(n+2 < a(n 2 . 22
ITOGE) )] ezt ) S IFI srsny, ) (2.27)

Now taking ¢ = ¢y in the integral equation (2.4) and applying U (t) we have
U(t)u(to) = U(t + to)uo + iU ()G (x|u|"u + buE(Ju|*))(to)-

By the properties (1.17) and (2.8) we obtain

(]R (R'n+1)

(U@ u(to)] o, 2(HU( Juo| atnrz),,

+ UG (x|u|u + buE([ul*) (o) acp. (Rm))
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Using inequality (2.27) and the same arguments as in Theorem 2.6 we get

|UU(%WMH%W+U\2<U@%MWWQWHI+CWWW+WEWWDM%ﬂ(WH)
<2V ol s, oy + ORI g, o+ ARB ] s,
O S P TN L C N 1) =
S2AVOol stz gy + Al sl A s, Tl et <0

Finally, to prove the last statement of the theorem we set
Uy = ug + ZJ U(—7)(x|u|"u + buE(|u|*))(T)dr.
0

It follows from inequalities (1.17) and (2.26) that:

V(0] sy, +anm+mwwm»nmﬂ(wm)<w.

(Rn+1) [ 2(a+1)

2 (1010l s,

“(gee) S

We deduce from the decompositions in (2.19) and (2.20) that

U(=t)u(t) — uy = foo U(—7)(x|u|*u + buE(|u|*))(7)dT — 0 in S'(R™) as t — 0.

t

The result for ¢t — —oo is proved similarly.

2.3 Self-similar solutions

In this section we find self-similar solutions to (2.3). Without lost of generality we can

suppose 0 = 1, so our equation becomes:

{ ’iut+Au X|u|°‘u+buE(|u|a), VeeR"'n=23.teR (228)

u(z,0) = up(x).
We already know that a self-similar solution must have an homogeneous initial condition

with degree —2/a. So the idea is to prove that ug(x) = €|z|~%% € Y where 0 < € « 1.
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Then by Theorem 2.6 and Proposition 2.8 we have existence and uniqueness for equation
(2.28) in Y. Since u(z,t) and B¥“u(Bx, B*t) are both solutions, we must have u = ug and
therefore self-similar solutions in Y.

To prove that ug € Y, we consider the homogeneous problem with initial condition

uo(w) = a2

{“‘”A“ =0 VeeR" n=23 teR. (2.29)

u(z,0) = |z|7%,

We know that the solution to the equation (2.29) is given by
u(z,t) = U(t)up(x),
where U(t) = e,
Since ug(z,t) = f¥*u(Bz, 5%), B > 0 is also a solution, we must have
B u(Ba, B°t) = U(t)uo(z) = u(z,1).
Taking 8 = 1/4/t we get
u(z,t) =t Vf(z/V1), (2.30)

where f(z) = u(x,1).

By Proposition 1.10 we have that for a > 2/n

- B 2/c; a=4/n
|f(2)] < e(1+ |z])~7 where o = { n—2/a: a<4/n (2.31)
Next, we calculate a(A, u) = [{(z,1); |u(z,t)| > A}|.
By (2.30) and (2.31)
a(\ u) <J . d(z,t) < J d(x,t)
{(at);|t—1/ (1+%) |>A} {(2,1);0<t< A= and |z|<tV/2[(tA>)~1/ac _1]}

A
<eAn/ J B[ — () ]t < AT
0

Therefore HU(-)UOHLa(nu),

E(RA+L)

Choosing 0 < ¢ « 1 and taking the initial condition ug(z) = €|z|~%* we conclude the

result.



Chapter 3

On a Degenerate Zakharov System

3.1 Introduction

We consider the initial value problem associated to the degenerate Zakharov system

W(OE+0,E)+ A E =
on—An =
E(z,y,2,0) =
n(x,y,2,0) =
om(z,y,2,0) =

nk,

A(IEP),

Eo(z,y,2), V(z,9,2)eR® t>0, (3.1)
no(x,y, 2),

nl(xayv Z)

where A = 0% + 05, FE is a complex valued function, and n is a real valued function.

The system (3.1) describes the laser propagation when the paraxial approximation is

used and the effect of the group velocity is negligible.

We now state the main result of this chapter:

Theorem 3.1. For initial data (Ey,ng,ny) in H3(R®) x H3(R®) x H*(R?) and o.ny €

H?(R3), there exist T > 0 and a unique solution E of the integral equation (13) such that

E e C([0,T] : H3(R3)), (3.2)
Z HDglcpaaE”LgongT < ©, (3.3)
lo| <3
and
DD E |y, < o0 (3.4)
|| <3

46
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where H3(R?) was defined in (15).
Moreover, there exists a neighborhood V of (Eq,no,n1) € H3(R3) x H3(R3) x H2(R?)
such that the map F : (Ey,ng,ny) — E(t) from V into the class defined by (3.2) is smooth.

One also has that

ne C([0,T] : H*(R?)).

To prove Theorem 3.1, we combine smoothing effects and the L?-maximal function
estimate (21) to apply the contraction principle.

It turns out, however, to be a hard task to reach all Sobolev indices s > 3/2 (see
explanation below), and our local well-posedness result is given in H3.

In Section 3.2 we recall the linear estimates proved by Linares, Ponce and Saut ([LiPoS]),
prove the L2 -maximal estimate (21) and also we prove Strichartz estimates in mixed
Lebesgue spaces L%LzL{;y for p and ¢ satisfying a certain condition. Observe that in the
z-direction we have the Lebesgue space with fixed index 2. It happens because we do not
have dispersion in this direction. Unfortunately these Strichartz estimates are not suficient
to reach s > 3/2 . In Section 3.3 we establish some estimates involving the nonlinear term
that allow us to simplify the exposition of the proof of the main result. In this section it
will appear clearly why we also could not reach the value s = 2 even if the maximal func-
tion estimate (21) attain this value. Finally in Section 3.4 we combine smoothing effects
and property (21) to apply the contraction principle and proof Theorem 3.1.

Throughout this chapter H . and L2, will always be denoted by H® and L?. H}

denotes the Sobolev space H? just in the spatial variable z and so on.

3.2 Linear Estimates

At first we recall the smoothing properties of solutions of the associated linear problems.

We refer the reader to [LiPoS] for more details.
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Also, we prove the maximal function estimate (21). We don’t know if this estimate is

sharp or not. In fact, following ideas from kenig and Ziesler for the KPI equation we show

that (21) does not work to s < 1. There is still a gap between 1 and 3/2.

Consider the linear problem:

O+ 0.E—iA E =0,
E(x7y7270) = EO(nyVZ)'

where A = 02 + 0.

Y (2,y,2) e R t >0,

(3.5)

The solution of the linear IVP (3.5) is given by the unitary group £(¢) : H® — H? such

that
E(t) = E(t)Ey = (e MBI E () 65, &))",

Proposition 3.2. The solution of the linear problem (3.5) satisfies

IDY2EW) Lz iz, < el fle

yz’

t
Dﬂlf/zjo E(t = )G |ugrz,. < c|Gliyr, .

TYz

and

t
”@Lgﬁ—ﬂGWMﬂgﬁﬂ<dWhﬂ2

yzT :

These estimates hold exchanging = and y. Here D> f = (27|&1 |12 )V .

Proof. We refer to [LiPoS]| for a proof of this proposition.

(3.6)

(3.7)

(3.8)

Now we state and prove the inequality (21). We will need the following lemma:

Lemma 3.3. Van der Corput

Let ke Z" and |¢*(x)| = X > 0 for any z € [a,b] with ¢ (x) monotonic in the case k = 1.

Then
b
[ e f@)aal < ax Ko + 17 ).
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Proof. We refer to [LP2] for a proof of this lemma. O

The next proposition is the key to the improvement of the Theorem 3.1. The main
idea is to use the dispersion in the first two variables (that is where lemma 3.3 will be
important) and in the third variable where we do not have dispersion, we use Sobolev

embedding. As we alredy said, we do not know if the estimate (3.10) is sharp or not.

Proposition 3.4. For s > 3/2, and T > 0 we have

€@ Eolzrg, < o(T, s)| El

s, VEq € H®. (3.10)
The same estimate holds exchanging x and y.

The proof of Proposition 3.4 is a direct consequence of the next lemma, as we shall see

later:

Lemma 3.5. For every T > 0 and k = 0 there exists a constant ¢(T) = 0 and a function
Hy.r(o) > 0 such that
+00
f Hyp()da < o(T)2%, (3.11)
0

and
| J J f6(i(_t§%_t5%_t53+x&+y€2+z€3))¢1 (£1)V2(&2)13(&3)dE1dEadEs| < Hyp(|x), (3.12)

for |t| < T and (x,y,z2) € R® where ;(&;) = p(28 —|§|), and p denotes a infinitely

differentiable function in R such that p =1 forx =1 and p =0 for x < 0.

Proof. Denote by J(t,z,y, z) the left-hand side in Eq.(3.12). We can rewrite J(¢,z,vy, z)

in the following way:

<Hux4ha::fé<%%%ﬂwm&y%3[é<%%%ﬂwx&ykgfé<%“%ﬂ¢x&y%&

Denoting by
5= [ @i,
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where ¢;(&1) = (=t + z&y),
Jy = Jei(_t§§+y£2)¢2(§2)d§27

and
J3 = Jei(_t53+Z§3)¢3(53)d53,

we have |J| < |Ji|J2| S5
Following Faminskii’s ideas (see [Fa]), we split R in the following cases:
For |z] < 1 we use the support of ¢, j = 1,2,3 and get |J| < ¢23*.
Next, supose that |z| > max{1,232%¢}. In this case |z| > 4|& |t and so |¢}(&)| = |z|/2.

Using integration by parts twice we get:
wl AN
5= [ () Ve
I
Now by the support of ¢; and the inequalities |, (&;)| = |2|/2 and |z|~* < 1 we have:

] < e(T) j g < o(T)2H a2

(ler/<2v+1) |1‘|
Then |J| < 2%¢(T)|z|~2, by the support of 1, and 3.

It remains the case 1 < |z| < 232%¢. Observe that in this case t > 273 > 0 and
t72 < c|lw| 7222k

Here we use Lemma 3.3 for J; and Js:

Since |¢; (&1)] = 2t > 0 then by Van der Corput |.J;| < ct /2,

Again by Van der Corput |Jo| < ct='/2.

So by the support of 3 we have |J| < ct712%F < ¢Tt722% < ¢23%|z| =2

Finally we define

Hyr(a) = c23F for 0<a<l,
RTAY) = c(T)2%*a2 for 1= q,

and this function satisfies (3.11) and (3.12). O
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Remark 3.6. Observe that Lemma 3.5 still works if we change ¥; by ¥;u(|&;| — 28 + 1),

7=1,2o0r3.
Now we turn to the proof of Proposition 3.4:

Proof. Using the same notation as in Lemma 3.5, i.e., 1; = p(2"1 —|&|), j =1,2,3, we

introduce the sequence 1), as follows:

Vo(&r, &2, &) = p(2 — & )u(2 — &) 2 - |&)),
and for k> 1
V&1, &2, &) = Yrvahsp(€n] — 28 + 1) + rhotbap(|&a] — 28 + 1) + hraborbapu(|&s] — 28 + 1).

Observe that >}, o ¢y, = 1.
Now we define the operator ka(g) 1/2(5),]‘?(5), where £ = (£1,&2,&3).

Then
|Buflie < 27|l (3.1
Bif = nf, (3.14)
> E(t)B{E, = E(t)Ey, (3.15)
k=0
and
T
| B =Bt ey 2)ar] < 3.16)

c(Hpr(] J JJ|Q ~ Y, 2)|drdydz)(z),

for |t| < T and g € CP(R?).
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In fact, by the support of 1y,

|BrfI2: =0 F12
=f f fwk(sl,éz,agﬂf(a,sz,§3)|2d51d§2d53

2k+1

=[] [ontal =2 i g Pirdeads,
ok+1

JLk J%%?/J:%M o] — 25+ 1)| (&1, &, &) [Pd€rdéadss

2k+1

j f (6] = 2+ DA€ 6 6 PdErdtadss

Therefore
2k+1 2s
|1Bf = = f j :?:25%%%# €1] = 2F + 1)|f (&1, &0, &) |PdErdEdes
ok 1
2k+1 2s R
JLk I?I%%%wsﬂﬂfﬂ — ok 4 1)|f(§1,52,53)|2d£1d£2d§3

k
2k+1 |£3|25

j j f (el =2 + DI (6 6. &) Pdeidsad
2k+1
<[ [ Jrearer vl - 2+ D176 6 g Pdérdendss
2k+1
f L B f 16?27y horapu( |G| — 2% + 1)| f (&, &, &) P dE1dEads

2k+1

f f f P (] =2+ D176 o )P dadey
= CRRAECIR

Then (3.14) follows directly from the definition of By.

To prove inequality (3.15) we use property (3.14) and the property ¥, ¢, =1

Z E(t)ByEy = 2 BiE, = Z(WEO) = Bt 2 UeBo)Y = E(t)Ey.

k=0 k=0 k=0 k=0
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By (3.14) we have
| j E(t —7)Big(7,8))(z,y, 2)dT| =
T ; 2, ¢2 5,
= | f (T DEHET I By (. ) (2, y, )|
-7
- |J (D) (£)g(T, €)) ¥ (2, y, 2)dr]
-7
T
< |J ("D hyipap([€r] — 2 + 1)g(7, €)Y (2, y, 2)dr]
-7
T
| (OO ]~ 2+ Dg(r.€)" (0.1 e
-7
T
+ | f (/ST oipgpa([€3] — 2 + 1)g(7,€))" (2, y, 2)d7].
-T

Finally using the inequality (3.12) (with 1, replaced by v;u(|¢;] — 2¥ + 1)) we obtain

| f B(t — 7)Bg(r,€))(z. y, 2)dr]
= f T<l< e/ TIEHE T Y o (26 — (&) (6| — 28 + 1))V # |g(T,€) ) (@, y, 2)dT
T
* f (D gy gat(] 2+ 1)« ol ) o2

T
* J (J(e D hoipapa([65] — 25 + 1)) |+ |g(7, €)]) (2, y, 2)dr

-T

< o tatied b, 0D ar = ettt [ [ [los 2 arava o),

which gives us (3.16).

Now defining

At L([-T,T]; L*(R)) — L*(R?), Apg = JX[T;F] (T)E(=7)Brg (7, &1, €2, E3)dT

and

X =L2(R; L}

tyz

([-T.7T] x R?)),
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we have
Af LA(R?) — L°([-T,T); L*(R?)), Afh = E(t) Byh,
and
X* = L2(R; LY ([-T,T] x R?)). (3.17)

By (3.16), Young’s inequality (Lemma 1.15) and inequality (3.11) we can apply an

argument due to Stein-Tomas and conclude
T
i duglxe = | (Bt~ 7)Bio(r, .6 €)dr
-T

T
= (| swpsup| | B(t = 1) Big(r.a,p,2)dr )
[t|I<T v,z -7

C(J(HkT(ED * JTJJ lg(7, €, y, 2)|drdydz)? (z)dx) />
o[ eD  19(©) 1y, 1)

< ol | Hur(fel)dn)lgl iz, < o(D)2*lglx ¥ € CP(RY),

TYZ

Therefore by Lemma 1.24 we have
| A%kl < (e(T)2) 2|02, ¥ he LX(R?).
So by the last inequality and (3.13) we get
| E()BEEo|xs = | Ay BiEo|x+ < c(T)?2%2| By Byl 2 < o(T) 277 | Byl e (3.18)
Thus by (3.15), Holder’s inequality and (3.18) we obtain

|E(t)Eo|xs = | Y. E(t)BiEollxx < Y. 27%|2%E(t) B} Eo|x+ < c(€) (] |27 E(t) BREo3+) "

k>0 k=0 k>0
< C(C)(Z C(T)22ke—2k(s—3/2) HEOH%IS)I/Q < C(E, T) HEO‘ s (Z 22ke—2k(s—3/2))1/2
k=0 k=0
< (e, T) |1 Eolla

f0<e<2s—3.

From (3.17) and the last inequality we obtain the result. O
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Now, following ideas from Kenig and Ziesler for the K-P equation (see[KZ]), we show
that (3.10) does not work for s < 1. The main idea is to suppose that inequality (3.10)
holds and then to construct a certain function Ey. Then using inequality (3.10) and change

of variables we must have s > 1.

Proposition 3.7. For each s < 1 there exists Ey such that
|1 E(t) Eollzzrz, = (T, s)| Eol ae-

Proof. Tf (3.10) is true, then we can choose Eo(£) = 9(2%) where k € N and § € CZ such
that

b(e) — 1 on {£eR31<[¢] <2},
©O=10 on {cr%j<1/2}0iceRYl = 1),

So by change of variables

| E|

510 5 1 o .
" :(J{;g;,g@}(l R — ([ PR

{3<¢l<4}

A 1 s A 1
P[Pl PdgE < P | (0Pde):
{3=<l¢l<4} {g=<lél<4}

<23k/2+k80(8).

Next, we calculate E(t)Ey. Again by changing variables we get

(E(t)Eo)(z,y,2) = J el@sygatart(eh e +en) ék Jde
{3<fl<q} 2
—o%k (a2 62 a2 e R 2 G2 ) ) e

—93k J €ix56i8é(§)d§,
{z<lél<4

where & = 2F¢), s = y2R&, + 22F¢; + (222 4- 22R¢2 + 2R¢s).
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Now, by Taylor’s expansion

[(E(t)Eo)(x,y,2)| = 23k| S{%<‘§|<4} eimgeisé(@dﬂ
= 2%k S{%g‘ﬂ@} (cos(x€) + i sin(z€))(cos(s) + i sin(s))H(€)dE]
> 23] S{%g‘ﬂ@} (cos(x _)7005(5) — sin(z€) sin(s))0(€)d¢|
> 2§ ey [(1— S5 +r@d)(1— 5 +r(s)+

A~

1
—((@€)* = r1(2))(s —r1(5))10(€) |
(

> ey (L5, + plo, 5 DN
where
o5, = GL L 2, P8 | GOTO) | ey i)
ol .8) = 10D + T (6) 4 @) + 28 (5) + 50,
1) = (@) = (@)° + ()" -
and

If we choose 0 < 0 « 1 and take |z| < 027%, y, 2~ §27F t ~ 5272
then s, z€ ~ O(9), 0 < r(s), ri(s), r(zf), ri(z€) « 1 and 1 —n(x,s,&) > c > 0.
So

(B ) w0, 2)] > @ AL 0] > 2 A1 de = %
{5<lél<4} {1<(€/<2}
Then
I(E()Eo)lr2rr., = (J ( sup |E(t)Ey|)*dx)"? = 23272 = 2942,
v |z|<62—F t:d%*m]z
Y2027

Finally we have
¢ 2 < |(BOE)zag, < |Bolue < 2% vk e N,

which implies s > 1.
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Now we establish Strichartz estimates to the linear problem (3.5). Before that, we give
some notations and stablish a lemma that we will need.

We denote by 7% the translation in the third variable, i.e.,

(Tigzﬁsf)(xay7z) = f(:c,y,z - h’)

Given f e L2(R3) we denote by f ®* the Fourier transform of f in the first variable:

~

R e s (GRS
R
Analogously we define ]? v J? 3 and f T2

Lemma 3.8. Ift # O,% + z% =1 and p' € [1,2], then the group E(t) defined in (3.6) is a

continuous linear operator from L¥ (R3) to LP(R3) and

[E@)f

Proof. From Theorem 1.1 we have that

IE@) 2z, = |EWflrz = e ™ EHEH D Fl o = | flle = | 2z, (3.19)

Using property (1.2) and equality (1.7) we obtain

(E@)Vf)(2,y,2) = (e MEHEE) (e &5,6))" (2, y, 2)
e~ (gl (e1+63) ]?(51752’53))”112(95,%'))vzg(',',Z)

= (
(e—ztés —zt(51+§2))vm1m e J? x3 (&, &, 53))(35‘7 n )) Vg (" y Z)

(e +€3)/41t] R )
= (T e S G e 8@y ) )

= (7" g(w,y,)) ", 2)

where
(€T +€3)/4/t

4t It fx3(£17§27£3))(1’,y, ),

g(x7y7 ) =
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and #,, ,, is the convolution in the first two variables, i.e.,

(f *r120 g)(gj7y’ Z) = f(l' —T1,Y — T2, 2 )g($1,.’172,2)d931dx2.
R2

By property (1.3) and Young’s inequality we have

[E@DF G2 ezeg, = 1(75:97) (5 2)

ci(6T+€3)/41
= H —t/QW(T RETE f(fl, 52753))('7 ) Z)HLEL;%J
&+l
= H(4—7rt *arms Ty ond (§1562,63)) (0 2) 2y, (3.20)
L& +€3)/4lt
S M= lea I75%en f (o 2 2 < 1l ||| Sl G 2) 2y,
Interpolation (Theorem 1.25) between (3.19) and (3.20) yields the result. O

Now we are able to prove Strichartz estimates. We notice that our result do not cover

the endpoit (p, q) = (0, 2).

Proposition 3.9. The unitary group {E(t)}1% defined in (3.6) satisfies

IE@) fllrarare, < CHfHLW (3.21)
||, €6~ 000,00 ligizae, < el e, (3.22)
R 218
and
| eOat0atlss,, <l o, (3.93)
where

1 2 2
Iy =4 =1 Z=1—-Z agndp= fe (0,1
+ =L , andp = 9 € (0,1].
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Proof. At first we prove that (3.22) implies (3.23) and that (3.23) implies (3.21). In fact,

if inequality (3.22) holds we use an argument due to P. Tomas and Theorem 1.18 to get

|| e ,,,ﬁmw=mj8 ()| @G- ).
E(—

/
Y

= Js JR (t)g(7 ) ,t)(JR t')g(vw',t’)dt’)dt d(:(],y,z)
= [ [ st [ £ Tt e

JR

By Lemma 1.14 we obtain

IIJ EM)g(-, -, t)dt|Ls, =j J g 2. 8)] |j E(t—1g(,- 2 )t v, dz dt
R JR v JR
< [ 1@ || £~ 5@ V2t
R =R

<9l oz | JR E(-—1g)dt'|Larzre,-

Finally using (3.22) we conclude

|| et 0, < clolty .y,
which implies (3.23).
Now, suppose that (3.23) holds. Using duality we have that
O ugszae, = sull | | EOF o 2hwlev. 2 00w p.2) dth ] = 1)
R JR t HzHTYy

By Lemma 1.14, Theorem 1.18 and (3.23) we obtain

|| et ute v d <1 | fa) j E(~tyul,y, = At)d(,y, )

< lflzz, | | E(-0wte.y.z )itz

C||fHLgyz||WHLg'L§Lp < d ez,

and we have (3.21).
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Therefore the problem is reduced to proof (3.22). Minkowski’s inequality (Lemma 1.19)

and Lemma 3.8 give

|[ &= )a 012, < [ 16— rat.0)

where o = —(z% — %)

Theorem 1.26 (Hardy-Littlewood-Sobolev) and the last inequality imply

|| &= 000600 lugrass, = 1 | €= O0ate 0120 L

<l | 1= 10 g 1

< CHg||L§I'L§Lg;'

Next we establish some estimates associated to solutions of the linear problem

#n+ Ain=0
n(x,0) = no(z) (z,t) e R® x R,
om(x,0) = m(x),

where A = 02 + 02. The solution of the problem (3.24) can be written as
n(z,t) = N'(t)ng + N(t)nq,
where N(t) and N'(t) where defined in (11) and (12).

Lemma 3.10. For f e L*(R?) we have

IN@)fllz@s) < [ f]e2@),

IN"(t) flloesy < | f]r2s),

and

[(=ALD)2N @) fllramey < |1f]r2me).

g < | =1Ll

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Proof. We refer to [LiPoS] and references therein for a proof of this lemma. ]

Lemma 3.11.

IN"(t)nollzary., < nollmzs), (3.29)
and
[N rzrz, < Tlnalpees). (3.30)

These estimates hold exchanging x and y.
Proof. We refer to [LiPoS] and references therein for a proof of this lemma. O
Also we need the following result:

Lemma 3.12.
D INM Flzz,. < clfluzs) + cltl|ozf e,
|| <3

Proof. Fix |a| = |(on, ag, a3)| = 3. By Theorem 1.1 we have

—

IN@0)* fliz,. = 1| a2l 05N D) fz,..

TYyz

Now we split in two cases. The first one is a := a3 + as = 1,2 or 3. Observe that in this
case we must have a3 < 2. By Lemma 1.13 we get |21 |*|x2|*? < c(|21] + |z2])*

So, using Plancherel once more we have

—

< (o] + fa2])* 22N (8) flzz,. < cl(=AL)

N|=

(—AL) T 02N (t) f]| 12

zyz "

IN@)" 1z

Yz

By Lemma 3.10 we obtain

IN(F flliz,. < el(=A1)F 02 flua,. < (@7 + 35702 iz,
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Using that (e — 1) + a3 = 2 and Theorem 1.20 we obtain

[N@)" fl 2

ryz

< | f | 2 (rsy-

The second case is a; + ay = 0. In this case we must have a3 = 3. Then by Lemma

3.10 and Theorem 1.20 we conclude

IN(1) flrz,. < cIN@®)Of|1z,. < cltllOXflrz,. < cltl|0:-flm@.
[
3.3 Nonlinear Estimates
In this section we will find estimates for the nonlinear terms in our analysis.
We recall the integral formulation of the IVP (10):
t
E(t) =E(t)Ey + f E{t—tY(N'(tnog + N(t")ny)E(t")dt’
0
tl
+ JS(t — t')(f Nt —s)AL(|E(s)|*)ds)E(t)dt'.
0
We can rewrite this expression as
t t
E(t) =E(t)Ey + f Et =t (EF)(t)dt + J Et =t (EH)(tdt, (3.31)
0 0
where
F(t) = N'(t)ng + N(t)nq, (3.32)
and
t
H(t) = f Nt —t)AL(E]?)(t)dt'. (3.33)
0

In the next lemma we treat of the nonlinearity H in the Sobolev norm | - ||gs. In the proof

of this lemma will be clear why the Sobolev index s = 2 could not be reached.
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Lemma 3.13.
> l0°Hllz2 . + 1 HllLazz, + [Hzez, < (3.34)
lo|<3

< B g + T Y 0,07 Bl pgr2 |0 Ellia1,

|o1|<3
|| <1
+ T S 10,07 Blpra 0%l
<3
i<

Proof. Using the definition of H in (3.33) and the inequality (3.28) we have

|| <3 || <3
<y j AL (ER) iz, (339
lof<3
< TN (0,0 EE) g, + T2 Y 0,0%(BE)(s)| 12, .
lo<3 lo<3
Fix |a| = 3.
Now by Leibini’z Rule (Lemma 1.16) we have
10,0(EE)| 2 c |0:(0" EO™ E)| 12
Lzsz \ Lzsz
B1+B2<a
<c Y (100" E* Bz, , + 0" B0,0% Bz, ) -
Br+B2<5a

The idea is to split the sum >}, . _ in three cases depending on the value of |f[. For

|B2| = 0,1 we use Lemma 1.14 twice and get

S 00" BB < Y 10:0” Elugrs, 10% Bz

zT
B1+B2<a B1+B2<a ’
|52‘€{0,1} |ﬁ2‘€{0,1}
< Z ||539c5’8”}?||Lg;OL2 |0 Elrary,-
|81]<3
|B2|<1

We notice that the previous arguments used to treat the cases |f2] = 0,1 generated the

new norm 5. 107 L2 . To treat this new norm it will be essencial the maximal
< yz
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function estimate (3.10). If we tried to treat the case |f;] = 2 using the same arguments
it would appear one more derivative,i.e., Z‘ Bol<2 1052 1207, and our maximal function

estimate would not be enough. So we must use another argument.

For |f;] = 2 we use Lemma 1.14 and Theorems 1.23 and 1.20 and obtain

Z 10,0 EO™E |2

zyzT
B1+B2<a B1+B2<a
|B2]=2 |B2]=2

< > [10.D¥ 4P E| s, | DY E) 2

2
TYz Tyz ||LT

< Y 100" Ells, 10% B g

2
Yz TYz HLT

B1+B2<a
|B2]=2

< D [DuATAIE| L,

2,.|

D3/4+\62\EHL§W ||L2T

B1+B2<a
|B2]=2

< Al E o < TV Bl .

In the last argument we can see why it was not possible to reach the Sobolev index s = 2.
In fact, the difficult case is || = 2 (wich implies | 1| = 0 since we are in the case s = 2).

So, using the last argument we would have the following inequality

2 | D¥40%2E)| s

zTyz TYz

D, 100" E* Bz < > |l.DYE|y

[B1]=0 B1]=0
|B2]=2 |B2]=2

ez < N ENaN Blas] 3.

therefore it does not work. At this point it would be usefull if we had Strichartz estimates

with endpoits like

IE@) fllpar» < [ f]z2,

but unfortunately, this is not the case. The Strichartz estimates we got are not usefull.
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Finally for |5;| = 3, we use again Lemma 1.14 and Theorems 1.22 and 1.20 to deduce

Y 1@ E)0* Bz, < )} 10:E]y,

%Tﬂgga |B2]=3
=

0" E|s,. ez

< ) 0B Bl ez, |1z

zyz
|B2|=3

< Y II0*ER,,
|B2]<3

< |IEelzz < T Bl g s

2
LT

Analogously we estimate > |01 E0,0%F| 2 .
Br+pB2<a o
Therefore

N 10:0%(BE)($) |2, <cT? S 0:0° Ell sz, 10% B rar (3.36)

T HyzT
laf<3 |B1]<3
|B2]<1

2
+ T\ El| 7z s
By similar arguments we obtain

> 10 BB ige < ) 100 Eligz 107 Bligez, (337
laj<3 15| <3
|B2]<1

+ T E| Lz s-

Replacing inequalities (3.36) and (3.37) in (3.35) we get the first result.

Now, we use Lemma 3.11, Lemma 1.14 and Theorem 1.20 to obtain

T T
| Hllr2pe,, < J [N = )ALEP) )] 22,0t < TJ IALUEP) )| meat’
0 0
<STP|ALIEP | rame T ) |ALP|EP 1202
|8l<2
+ |020°|EP 2 )

xyzT

<7 Y (|8 EP e,
|Bl<2

<T ) (10:0%EP| 2

zyzT

+ 0,0 B[ 12

acsz) :
lo<3

Hence the previous arguments can be applied to obtain the result. O
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Lemma 3.14.

< CHEHL%HS (Tl/an()”HS + CT1/2||TL1 HHQ + CTS/QHaan HHQ) . (338)

2, (B2

zyzT
|o<3

and

S 1 EH) sz, <cT| Bl Y 100 Elpgrs 167 El iz

yzT
la[<3 lo1|<3
loa|<1
1/2 lo' lo'
+ TP Elgns Y 10,0 El gz |0 Elzre., (3.39)
o |<3
loa|<1

b LB
Proof. To obtain the estimate (3.38) we use the Lemma 1.16 to yield

[0*(EF)(#)]L:

xyzT

<c Y, |PEPF| . (3.40)
Bi1+B2<a

Fix |o| = 3.

For || = 0,1 we use Lemma 1.14, Theorems 1.22 and 1.20 and the definition of F' in

(3.32) to obtain

Y, 07E*F|z < Y WO Elwe0®Fleelos <c D [1Elus|0%F|u2 s

Bi1+B2<a v B1+B2<a |B2]€{0,1}
|52|€{O,1} ‘/82‘6{071}
< Elizus Y [10°F| 2z
|o1|<3
<dBligm Y, (INOFnols,, + INGOF s ).
\a1\<3

By Lemma 3.10 and Lemma 3.12 we have

D, 0B Flpz < clBligns Y, (10" nollugre + Tl + T2 01 =)

B1+B2<a |1 |<3

|B2[€{0,1}
< CHEHL%H3 Z (T1/2Haﬁ2n0HL2 + T1/2Hn1HH2 + T3/2||6zn1”H2).
|B2|<3
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Therefore by Theorem 1.20 we obtain

Z |0% B F)|

xzyzT
B1+p2<a

|82]€{0,1}

< c|Blpgas (T nollge + T2 na |2 + T2 0| 2). (3.41)

For |5y| = 2,3 we use the same arguments, i.e., Lemma 1.14, Lemma 3.10, Lemma 3.12

and Theorem 1.22 to conclude

S | EF

xyzT

< > WmElpeo®Flizlz <e D 10 Elue0% Flz| .z

B1+B2<a B1+pP2<a B1+P2<a
|52‘E{273} ‘52‘6{273} ‘62‘6{273}
<c Y o Bl (IN'(8)0%no| 2 + [N (£)0%n4]12) ] 12,
|1 |<3
|821€{2,3}
<c|E|izm Y, (10%no]rzre + T |0l + T2 01| 1r2)
laz|<3
< CHEHL%:HS Z (T1/2H5a2n0||,;2 + T1/2||n1||H2 + T3/2H827L1HH2)
|2 |<3

By Theorem 1.20 we have

Z |05 Ed% )|

xyzT
B1+B2<a

|82]€{2,3}

< C”E”L%HS (T1/2HTL0||H3 + T1/2||n1 HH2 + T?’/QHaznl HHZ) . (342)

From inequalities (3.41) and (3.42) we obtain (3.38).

To prove (3.39) we use the Lemma 1.16 and get

(B2, <c Y [0MES H]|z .

xyzT
B1+p2<a
Fix |o| = 3.

For |33] = 0,1 we use Lemma 1.14 and Theorems 1.22 and 1.20 to obtain

Y, NPEoR | < Y WO El=lo®H ez <c ) [I1E]ue|0™Hl el g

B1+B2<a B1+B2<a |B21€{0,1}
|B2]€{0,1} 821€{0,1}

< c|Elgms Y, [0°H] 1z

|| <3
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Using Lemma 3.13 we have

S 10MEF Ay, < el Bl 3] 1007 Flizi, 107 iz,
B1+pP2<a |a|<3
‘/82‘6{071} ‘012|<1
+ TV Elpgns Y, 10,0 Elpzrz 10°E| 302,
|a1\<3
|a2\$1

+ TNE o
For |B2| = 2,3 we use Lemma 1.14 and Theorem 1.22 to get

Y, lo"Ed*Hlp < > 0" Blw|0®H|:p <c Y, 10" Elu0™ Hlrzps

B1+B2<a e B1+P2<a B1+B2<a
|B21€{2,3} |B2€{2,3} |B2|€{2,3}
<c|E|pgns Y. |0%H|pz 0.
|B21€{2,3}

Again Lemma 3.13 yields to

> 6P Ee%H |

xyzT
B1+Ba<a || <3

|B21€{2,3} B1+P2<a
|B21€{0,1}

+cT1/20||EHL;ﬁH3 Z \|ayaﬁlE||L;ongT||562EHL5L%

xzT

< TVC|Ellpgms D) 10:0™ B 112 |07 E |21

T HyzT

|orf<3
B1+B2<a
|B2|€{0,1}

T El g

Lemma 3.15.

t

t
3 ||Da1;/2fS(t—t’)aa(EF)(t’)dt’L%L%yz + 3 ). f E(t — 1) (BF)(t)dt' |1, <
0

<3 | <3 0

< TP Bl g (Inoll s (1 +T) + Imall= (T + T72) + 0. | 2T2) +

+¢ 30 107 Elzre, (T nollus + T || 2y + T 0:n1 | 12 rs)).
[Br]<1

These estimates holds exchanging x and y.
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Proof. Fix |af = 3.

By Lemma 1.16 we have
|D1/2f E(t — V)0 (BE)U)d| 112, + 10, f E(t — )0 (BF)(#)dt | 712, <

(12 [ 800 = 1)@ B )OOz, + 6. [ €600 B RN 13,)
51+52<Oé

Then we split the sum in three cases, depending on the value of |fs].

For |32] = 0 we use Proposition 3.2 to get

1/2 B1 B2 81 B2
(1Y f E(t — 1) (" BOP F)(U)dt |12, + |0 fg OB F) ()l 1 12,) <
f31+52<04
|B2|=0
< D 0" EF|pe,
|B1|=3

Using Lemma 1.14 twice, Theorem 1.20 and the properties of the operator N(t) (Lemma
3.11) we obtain

S 1 EFlge, < 3 107 Bl |Fliaiz,
1B1]=3 |B1]=3
< cT1/2HE||L2TH3(HN’( Jnollzzre, + [N (¢ )nlﬂLgL;;T)

< T2\ B g ps (o] a2 + Tlna | a2).

For | 3] = 1 we use Proposition 3.2 and group properties to get

IID”ZJ E(t— ) (M EO™F)(")dt | 1p1z,. + 0: fg t)(0" Eo» F)(#)dt | prz,) <
%T52<a

¢ f (I =) Dy*(0" Bo™F)(t)|ng1z,. + | D*E(t — ) D2 (0" EO*F)(¥)| 1z 12, ) dt’
B1+B2<
|B2|=1
T
<c 3| IDPHTESF)(t) iz, db'

B1+P2<a
|B2|=1
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Using Lemma 1.16 and Lemma 1.14 we conclude

|wmf5 (P B0 F)(t)d| iy 12, Hng )M ERF)()d | 1z12.,) <
51+52<04
|B2|=

<c ), J (IIDy20M E@) |2 107 F (') | el 2, + 107 E(@)|ca | Dy/*0% F(#) || sl 2. ) dt’
B1+P2<a
|B2|=1

<c ) f (1D E() |2, 0% F(t) Lz, + 10" E(X) |, | Dy 20% F(t') |11, ) dt'.
B1+pB2<a 0

|B2]=1
By Theorem 1.22, Theorem 1.23 and Theorem 1.20 we have

ﬂ1+/32<0<

t t
> (||D}/2J E(t —t) (MBI F)(t')dt'| 12, + ||amj E(t—t) (" EGF)(t)dl | 1r12 ) <
0 : 0 yzT
|Ba|=

<c ¥ f |E@) s 0% F () et + ¢ Y f | DY B(t)| 1, | DY DY26% ()] s,
|B2]=1

B1+p2<a
|B2]=1
<o 3 Bluga [ 10=F Ol dt + 3 [ IB@Oho 10 F@ s, i
la2|<3 o2 <3

EMWmJGNKW%w%,WNWWMU%Mﬂ

2| <3
Finally using Lemma 3.12 and Lemma 3.10 we obtain

(1Dy? f E(t = t)(0" EO” F)(t')dt | 1p12,. + |0 fg )" EO*F)(#)d | 1z1z.,) <

ﬂ1+,32<04
|B2|=

¢, E||L°°H3J (10°°no) 2, + Il masy + (L1020 | pr2grs)) A

loa|<3

< CHEHL;@HS (THnOHH?’(R?’) + T||n1||H2(R3) + T2||(9Zn1||H2(R3)).

For |;] = 2,3 we use Proposition 3.2 to get

(102 [ 00— 1) B )OO igas,, + 16 [ - )0 BF Ol 1,)
ﬂ1+,32<04
|B2]€{2,3}
<c Y 0B Flus,
Bi1+B2<a

B2|€{2,3}
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Using Lemma 1.14 twice, Lemma 3.12, Theorem 1.20 and Lemma 3.10 we get

> 10" EO*Flps, <

B1+B2<a
|B2]€{2,3}
<e Y 6% Eluip, |07 Flus,
B1+B2<a
|B2]€{2,3}
<c Y, 10" Elzie, (IN'(0)0%no] 12 12, + IN(#)0%n]1212,.)
B1+B2<a
|B2]€{2,3}
<c Y 107 Ellrzrz,, (10%n0] 212 + T2 0| 2asy + T2 001 2gs))
B1+B2<a
|B2]€{2,3}
(T nolus + TV |m|m2@sy + T2 |0l m2@s) D) 10" Elrzre,
|B1]<1
m
Lemma 3.16.
Z |D1/2J 8 aoz EH)( )dt HLocLQ + Z ||a Jg )aa(EH)(tl)dt,”L;PLizT <
|o| <3 |o| <3
<o 3 100 Bllzug 10 Eliang, + 3] 100 Blugua 10 Eligiz, )
|1 |<3 |t |<3
2| <1 2| <1
(T T S 0 Bl + | Elugms) + cTIE Ry x (T2 Elpgns + 3 167 Eliars,):
|a2|<1 |aa|<1
These estimates holds exchanging x and y.
Proof. By Lemma 1.16 we have
t t
Io. f E(t = ) (RO zaz, + DY | £ = 010 (BNt |7,
0
< Y (e j E(t —t')(0" BO* H)(¢)dt |y 12, + | DY j E(t—1')(0" BO* H)(¥)dt |ug12,.).
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For |B5| = 0 we use Proposition 3.2 to obtain

t t
3 (10, [ S =)@ B @) iy, + 1DV | £~ )0 B )W)t |z
0 vt 0

) <
T zyz

Bi1+P2<a

|B2]=0

< 3 (@ EH)()d 1y,

|81]<3
Now using Lemma 1.14 twice, Theorem 1.20 and Lemma 3.13 we obtain
(12, f E(t — )" BO* H)(t')at |12, + | DY f E(t — )" BO* H)(t)dt | g2, )

51+62<a

|B2|=0

<c Y, 0" Bl |Hlziz, < TIB|pus( Y 0.0 Elpr2, 10°Elrz1z,
|B1]<3 lo1|<3
loa|<1
(3.43)
+ 25 10,07 Blig iz 0°Elzz,) + T By o
|1 |<3
|| <1
For || = 1 we use Lemma 1.3, Proposition 3.2 and group properties to get
(12 [ 06— 1)@ B Y s, + 100 [ £t = 0" B BN 1115, <

/31+52<04
|Ba|=1

T
< Z J (Ie@t = )DY* (0" Ed” H) ()| g1, + |DyE(t — ') DY* (0" Eo” H)(t')|| 012, )dt!
%Tﬁiéa
A

T
< ¥ J |DY2(0% Bo™ H)(#) 1, '
Bi+B;<a V0
|B2]=1

By Lemma 1.17 we obtain

T
S| 1Dy 0 i)t <

HE
-+
T
<c Y f 6% B(t) s, | DY20" H(E) |0, dt + Y f |DY20% Bt g2, |07 H(t)] o dt
‘Bﬁﬁ‘r_ﬁiéa 0 51+B2<a

|B2]|=1
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Using Theorems 1.22, 1.23 and Theorem 1.20 we get

T
S| D@ B ) (@) 1e, df <

B1+B2<a
|B2|=1

T
< Z HD?’MaﬁlE(tl)”Lgyz ||D3/4D313/2aﬁ2H(t’)||Lgyz dt'

B1+P2<a 0
|B2[=1

TYz

Y W Ty O P I

51+52<0¢

|B2|=

< X [ 1B wlon B,
lon|<3
PP Bl Y 16 H ).,

\a1\<3
Finally by Lemma 3.13 we have

t t
S (10 [ &)@ B |igaa,, + 10 [ £ = BTz, <
B1+p2<a 0 0
|B2[=1

< 1Bz ( Y 100" Bligrs 10 Ellizsz, (3.4

|| <3
laz|<1

+ 2 10,0 Blligrz_ 10 Elizre,) + T Bz ys)-

1| <3
‘Oc2|§1

For |B2| = 2,3 we use Proposition 3.2 to get

(102 [ 16— 1)@ B I s, + 10x [ £~ )@ BBV 113,)
ﬂ1+,32<04
|B2]€{2,3}
< Z HaﬁlEaﬁzHHLngzT
B1+B2<a

B2/€{2,3}
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Next, we use Lemma 1.14 twice and Lemma 3.13 to obtain

¢ ¢
S (D2 [ e ) B e, 13 [ € B ) () paz)
0 0 vzt

B1+B2<a

|B2]€{2,3}
8 B2
< 3 10" Bl 107 Hle (3.45)
B1+B2<
|821€{2,3}
<CT1/2 2 ||851E||L2Lsz Z HamaalEHL%Lf,zT||aa2E”L3:L§OzT
|B1]<1 lon|<3
oz |<1
+ D0 10,0 Ell gz 10°Elizre,, + TV Elfzms)-
|041|<3
|ao|<1

The result follows from inequalyties (3.43), (3.44) and (3.45).

3.4 Proof of Theorem 3.1

We define

Xor ={EeC([0,7]: H*(R?)) : || E|| < a},

where

IE| =Bz mo@s) + Y] (\D1/2(90‘E||L%yz + HD1/2<9°‘E||L%W> (3.46)
|a<3

+ 2 (10:°Blig iz, + 10,0 Bligiz, ) + 2 (10°Elizeg, +10°Eluez, )
laf<3 laf<1

(3.47)

and DY* and D;/ ? were defined in section 3.1.

We also define the integral operator on X, r,
W(E)(t) = E(t)Ey + f E(t — #)EE)(N'(#)no + N(#)ny)de’
f E(t—tE{) ( Nt - S)Al(|E|2)(s)ds> dt’ (3.48)

— £ E, +f E(t —U)(EF)(t)dt + J tS(t — ) (EH)(t)dY,
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where F' and H were defined in (3.32) and (3.33), respectively.

We will show that for appropriate a and 7' the operator ¥(-) defines a contraction on
Xor.

We start by estimating the H*(R3)-norm of ¥(E).

Let E € X, 7. By Fubini’s Theorem (Theorem 1.18), Minkowski’s inequality (Lemma

1.19), Theorem 1.21 and group properties we have
T

T
[WE)O) ] < [ Eollus + IELOTCHBJ [E ()| rsdt” + EIIL”T@HSJ [H ()| s’ (3.49)
0 0

From Theorem 1.20, Lemma 3.10 and Lemma 3.12 we have

JHF ) gsdt’ < ZJ |0 F (1) | f2dt’ < ZJ (|N'(t") %ol 2 + | N(#)0%ny | 2) dt’

|a|<3 || <3
<) f (16%n0l 2 + clm e, + cltllumalas)) d (3.50)
|o| <3

< cT'|no| gs + cT||ny | g2wsy + cT? 10211 2 (3.

Next, from Theorem 1.20 and Lemmas 1.14 and 3.13 we deduce

[t < 3 [1ea@ea < 3 e,

|o|<3 |a]<3
< TP Y 0.0 E| g p2 |07 Ells2rz, (3.51)
|o1|<3
loz|<1
+ T 3 0,0 B ez 10" B 121,
<3
lst

+ 2Bl .
Therefore
T
j |H ()| gedt’ < o(T*? +T%)|| E||*. (3.52)
0
Finally
1W(E)(t)|2zms < el Eolus + clEN(T|no] gs + Tlnall mzesy + T2 0-m| 2 rsy) +

+ (T2 + T2 B
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Next, we calculate the norms

D10 lusige 3100 lazaz 2 0 Lz 2 100° - ligiz,,

o<1 |o <3 o<1 o] <3

By simetry is enough to estimate the two first norms.

Using the definition of ¥ in (3.48) and Proposition 3.4 we have

T
D 10V(B)r2ez, < D, (I€®) Eolzre, +J |E(t =)0 (EF)(t)|zrz,dt’
. :

|o|<1 |af<1
T
b |18 = 000 B s, )
0
T
<c 3 (10° Bl + | 10°(EF)E) it
jal<1 ’

T
+J H@‘“(EH)(t')Hszt').
0
By Theorem 1.20 we obtain

S 1V Biaaz, < clBalws +¢ 3 (| 1PERO Nt + | 164 B 1ade).

|| <1 18]<3 0 0
(3.53)
Using Lemmas 1.14 and 3.14 we get
T
> [ eEnwea < Y e, (25

|B]<3 |a|<3

< TV B s (T2 ol s + T2z + T2 0.1 ).
Therefore

T
)3 J |0°(EF)(t)|p2dt’ < TV EN(T?nollzs + T2 a2 + T2 00| r2). (3.55)
18|<3 V0
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Applying Lemmas 1.14 and 3.14 we have

ZJ |0°(EH)(t)|z=dt’ < T Y 0% (EH) () |z, , (3.56)

181<3 18]<3
< \Elupmn ) 10,07 Bz, 1% Elizag,
|1 |<3
\a2|<1
+ T B s 2 ||ayaoqEHL;fL2 ||5a2E||L2L;zT
|1 |<3
|ao|<1

+ TP|BIR
So
D f |0 (EH)(¢)| 2dt’ < (T + T*?)|| B||°. (3.57)

| <3

Combining (3.53), (3.55) and (3.57) it follows that

2 100 (B) ey, < el Bollus + TN B (T nollms + T2 [na 2 + T2 0.1 =) +

T HyzT
o<1

+ (T + T°7) || B

To calculate the next norm we use the definition of ¥ in (3.48), Lemma 1.3 and Proposition

3.2 to get

|| <3

+ ||5 J 5 aa EH)( I)dtI”L%L?/zT)

< 3 (IDY20° Byl 2 + [0 jf: )0 (EF) () |z 12,

|a|<3

t
+ 6. f E(t — )™ (BH)(t)d | pr2, ).

0

By propertie (1.5) and Lemmas 3.15 and 3.16 we have

%, 100U Bz, < 3, (IDPDLEOF Bl + 10 [ et~ 0By,
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Z |0:0"V(E) |12 <

|o]<3

< Z | D20 Ey| 2 + cT1/2HE||L$H3((1 + T)|no) s + (T + TY2)|n|| g2+

lor<3
+ T3/2||azn1HH2) +c Z ||851EHL2LZCZT (T1/2||n0||H3 + Tl/QHanHQ + T3/2||azn1||H2)+
|B1]<1
o( Z 10:0 Elpor2 |0 Bl 21z . + 2 10,0 B 12 |0°* B r212,,.) ¥
|a1|<3 |o1|<3
|az|<1 laz|<1
X (T + T2 Z ||5“2E||L%LJZT + HE||L%QH3) + cT|\E||i$H3><
|a2\<1
< (T2l + 3 107 E iz, ).
|aa|<1
Finally by definition (3.46) we have
2 100U (E) iz, < D) 1D Eollia + T2 | (o] s (2 + T)+
|| <3 |a|<3
+ [na g2 (L + T + TY?) + || 0sm || =2 (T + T%?)) + (3.58)

+ T B2 + (T2 + T + T°7) || B|°.

It remains to calculate the norms | D220 || rprz,, and ) | D20 Lz, Again
|| <3 || <3
by simetry we calculate just the first one.

D IDYR U (E) g1z, < Y D20 Eollnz,, + ) ||D1/2J E(t =)0 (EF)(t)dt'| g1z, +
o] <3 <3 o] <3
+ |y f Y BH) () |12, — (3.59)
|a<3

=|Dy?0%Eo 2, + I+ 11.
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By Lemma 3.15 we have

I <c(TY? + V)| E| g (Inoll s (1 + T) + Tna| gz + T2 0201 | ) + (3.60)

+¢ 20 0" Elrzrz, (Inollas + T | meqesy + T2 02| 2 -
IB1I<1

By Lemma 3.16 we obtain

<e( D) 1020 Elpzrz 0% El2nz, + Y, 10,0 Elgrz [0 Elrzrz,) x

|1 |<3 |t |<3
‘OLQ|<1 ‘OAQ|§1
x (T+TY |0°2 Bl r2 ., + | Ellpus) + ¢TI E] 7z s (3.61)
|z <1
x (TYP|Elgms + ) 10°E|waLz,)-
|a2|$1

From (3.59), (3.60) and (3.61) we get

D 1D (E)grz,. < ) ID20" Eolz,. + I Bl (Inollas (2 + 2T + T*%)+  (3.62)

TYz
o <3 lo] <3

+ (T2 4+ T+ T |ny gz + (T2 + T + T°?) | 0.1 12) +

+IEIPT + IBIP (L + T2 + T + T°).

Hence, by apropriate choices of a = a(||Eo| s, T) and T' ( T sufficiently small depending
on [no| g, |1 g2 and [0.n1| z2), we see that ¥ maps X, r into X, r. Now if E,W € X, r,
t

(V(E) =W (W))(t) = f Et—t(E-W)F)(tdt' + J Et—t"(E—-W)H)(t)dt.

0 0

The same arguments as in (3.49)-(3.52) shows that

T T
[(W(E) = TW)(O)|ms < [E - WIIL%H?J [E () st + | E — WIL%H?’J [ H ()| st
0 0

< 1B = Wlle(Tnollms + Tlnilme + T = + (1% + T%?)a?).

To calculate the next norm we use Proposition 3.4 to obtain
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3 10 (U(E) W )lizag,, < [ 18~ )0°(B = WIFNO iz, ot
la|<1
t
+ [ €@ =)o (B = W)H)(t)|121z,.dt
0

< j 6 ((E — W) F)(t') |t
+ L 0% ((E — W)H)(t’)”szt'.

Next we combine the arguments used in (3.53)-(3.56) to conclude

Z Hﬁa(\IJ(E) — \I/(W))HL%L;PZT < CT1/2H‘E — WH|(T1/2H”0”H3 + T1/2||n1HH2 + T3/2HazanH2)+

|| <1

+ T E - W||a® + T*?|| E — W||a®.

Now we calculate the next two norms.

3 10,0 (W(E) = YW prs, < O s f E(t =)0 (E = W)F)(E)dt | o1z, +
lo|<3 |a]<3
+ 310 [ £ - 0B - WO,
lo|<3
and
S DY W(E) — W(W))l iz, < S |DY? j E(t — )0 (B — W)F)(¥)t |z 12, +
lo|<3 || <3
- ||D1/2f€ (B~ WYH)(E)dt |12,
|o| <3

Following the same ideas as in Lemma 3.15 and Lemma 3.16 we conclude that

S (2.0 (W (E) — W) ez, + D26 (W(E) — (W) ]igrz,.) <

|o<3

< TP+ DB = W2+ Dlnollms + (T + T |nill + (1% + T%2) | 02101 | 2) +

+ |E = W|la*(1 + T*(T + TY?).
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By simetry we obtain the results to the norms ngl |0 - ”LEL?&T’ Z|a|<3 |0, 0% - ||L;>L2 .
and >}, <3 ||D;/2aa “|zz1z,. Finally we can choose a = a(|Eol 3,1 and T' (T sufficiently

small depending on |no zs, |71 2 and [[0:n1] 72) that satisfies
V(X.r) © Xar, (3.63)

and

U is a contraction. (3.64)

It remains to prove E € C([0,T], H?) and the uniqueness in H*. It is enough to prove

the continuity in £ = 0. So Taking a small 7 > 0 we must show that

|E(t) — Eo|gs — 0, t — 0, (3.65)
|DY2o%(E(t) — Ey)||2 — 0, t — 0, for each |a| < 3, (3.66)

and
|D,20%(E(t) — Eo)|r2 — 0, t — 0, for each |a| < 3, (3.67)

where t € [0, Tp).

Since FE satisfies the integral equation
t t
E(t)=E()Ey + J Et =) (EF)(tdt + J Et =t (EH)(tdt, (3.68)
0 0

we have that
t

E(t)— Ey = E(t)Ey — Fo + j

Et—t)EF)(t)dt' + Jt Et—tWEH)()dt'.  (3.69)

Then

IE(t) — Bolas < |€(t)Eo — Eolls + f €t — ) (EF)E) |t + f €t — ) (EH)(E) st
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By group properties we get
Using Lemma 3.14 we have the hyphothesis of Theorem 1.11 and therefore
t t
J €t = ) (EF)(E) | modt = 3 J |0°(EF)(#)|p2dt — 0, £ — 0.
0 o <3 70
Again by Lemma 3.14 and Theorem 1.11 we have
t t
J &Gt — ) (EH)(E) ot = 3 J |0 (EH)(#)| p2dt’ — 0, £ — 0,
0 0
|o|<3

which proves (3.65).

To prove (3.66) we take |a| = 3 and use the expression (3.69) to obtain

t
D20 (B() - Eo)lia < |DV20"(E(0) Ea — o) + [DV70" | £~ £)(EF)(E)it

0

(3.70)
t
+ ||D1/20“J Et — ) (EH)()dt|| 2.
0
Using group properties we have
|DY20%(E(t)Ey — Ey)| 12 = |E(t)DY26%Ey — DY20°Ey|| 2 — 0, t — 0. (3.71)

Now, following the arguments in the proof of Lemma 3.15 we get

t
Dmmfﬁa—wawmwp<ﬂ%dmom@+ﬁ%+whmu+ﬁ”+%>
0

(3.72)
+ (To + T |0zm | 2).
Again, we can follow the argumentes in the proof of Lemma 3.16 and obtain
t
D20 f E(t — ¢')(EH)(t)dt' |12 < T a(l + T + T). (3.73)
0

Since we can take Tp as small as we want, the result follows from (3.70)-(3.73).
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The proof of propertie (3.67) is similar to (3.66).
To prove the uniqueness we consider W (t) other solution of the integral equation (3.68)

in some interval [0, 73] < [0,77] such that
W e X4, m, with a1 > a, (3.74)
and
W e C([0,T1], H*(R?)). (3.75)
From properties (3.74) and (3.75) we have that exists Ty < T3 such that
tes[gv%] W) g < a

Also, using the same arguments as in (3.53), (3.54) and (3.56) we conclude that exists

T3 < 15 such that

s + T3 a(lnolms + [mll a2 + T 0.ma ] 12) < a.

D10 W pare, < ¢l Eo

yzT
la|<1

Similarly:
Exists T) < T3 such that
Z HaaW”L%L;CzT <@,
la<1

exists T < T} such that

> 00°W | pz2, < @,

lo|<3

and exists Tg < T5 such that

3 100 Wlipsz, <a

|| <3
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Therefore we have W e X, 1,. By the uniqueness of the solutions in X, r we must have
W(t) = E(t), te|0,Ts].

Applying again this process with data E(7s), we can extend the solution W to the
interval [0, 7’| and obtain W (t) = E(t), t € [0,T].

We make two observations about this extension to the interval [0, T']:
1. Since [0, T] is a compact set, the process will have only a finite number of iteractions.
2. If there exists T < T such that

(T} > T,j >, (3.76)

then we must have 7 = 0 (or we could reapply the process and get Ty > T what

would be a contradiction with (3.76)). Since we have

1

Tjpr >
TETWAT) | s

then T' = 0 would imply |W(T})

i3 — 9, j — oo, what is a contradiction.

To prove (3.3) (and by simetry (3.4)) we use the integral equation (3.68), Proposition

3.2 and Lemma 3.14 to obtain

Z HDi/Qa"‘(E)HL;CszT <|Eo|ms + T1/2Haa(EF) (tl)dtIHLisz + T1/2||aa(EH) (tl)dtI”Liyz

lo|<3

T
<||EO||H3 + CHEHL%H3 (T1/2||n0||H3 + CT1/2HT?,1HH2 + CT3/2||aZTl1||H2)+

+ TPE g Y 166" Elzr |67 Elizrs,

|a1|<3
o<1
+ CT1/2||EHL1°9H3 Z ”ayaOﬂEHLZCLizT||aa2E||L§szT
|o¢1|<3
|az|<1

Bl < oo
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Now we prove the last part of the theorem. We already know that taking a initial data
Wy = (Eo,no,n1) in the set Z = {Wy = (Ey,9,71) € H> x H> x H*> ; d.,ny € H*} and
choosing a satisfying (3.63) and (3.64) we have a unique solution F € X, r of the integral
equation (3.68). So, fixing a initial data Wy € Z, let V' be a neighborhood of Wy in Z and

E(t) the corresponding solution in X, 7.

Define
Hi:  VxX.r = Xor i
((Eo, 0, 7n), E(t)) — E(t) — Wy (E)(t) = t ) (3.77)
= E(t) — (E(t)Ey + §, E(t — ) FL(E)(¢)d),
where
F(E)=E(F+H),
F = N(t)g + N'(t), (3.78)
and
H= f Nt —t)YAL(JE})()dt. (3.79)

Thus H; is smooth, Hy(Wy, E(t)) = 0, and

Dy Hi(Wy, E(t))W (t) = W(t) + Lte(t — t"YDw Fy(t')dt'.
Using the same arguments before it is easy to see that

W lle(a, T) < | Dw Hi(Wo, E()W ()] < [[Wl|ev(a, T),

where a and T must satisfies (3.63) and (3.64).

Then Dw Hy(Wy, E(t)) : Xor — Xar is one-to-one and onto. Thus by the implicit

function Theorem exists h : V — X, smooth (V < V) such that
H(Wo,h(Wo)) =0V WO € ‘N/ C V,

and
t

h(Wo) = E(t)Ey + f E(t —t')FL(h(Wy))(t)dt!

0
is a solution of the integral equation (3.68) with data Wy (instead of Wj).



Conclusion

In conclusion, we point out some open problems connected with this work:

- In the second chapter we proved global well-posedness and self-similar solutions to the
Davey-Stewartson system in the elliptic-elliptic case. To the hyperbolic-elliptic case
we could get just the global well posedness (see Remark 2.7). Do we have self-similar

solution in this case?

- Also in the second chapter, we don’t know any results about ill-posedness of the

Davey-Stewartson system.

- In the third chapter there are several questions still unanswered that concerns to:
conservation laws (we only know in L?), ill-posedness, the sobolev indices s #
3,5,7,9,.... The Strichartz estimates (Proposition 3.9) will certainly be usefull in

future works to improve the Sobolev indices.

- There is still a gap between 1 and 3/2 in the propositions 3.4 and 3.7 (maximal

function estimate to the homogeneous Zakharov equation).
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